WorldWideScience

Sample records for satellite components systems

  1. 77 FR 58579 - Certain Two-Way Global Satellite Communication Devices, System and Components Thereof...

    Science.gov (United States)

    2012-09-21

    ... Communication Devices, System and Components Thereof; Institution of Investigation Pursuant to 19 U.S.C. 1337... certain two-way global satellite communication devices, system and components thereof that infringe one or... within the United States after importation of certain two-way global satellite communication devices...

  2. Analysis on Sealing Reliability of Bolted Joint Ball Head Component of Satellite Propulsion System

    Science.gov (United States)

    Guo, Tao; Fan, Yougao; Gao, Feng; Gu, Shixin; Wang, Wei

    2018-01-01

    Propulsion system is one of the important subsystems of satellite, and its performance directly affects the service life, attitude control and reliability of the satellite. The Paper analyzes the sealing principle of bolted joint ball head component of satellite propulsion system and discuss from the compatibility of hydrazine anhydrous and bolted joint ball head component, influence of ground environment on the sealing performance of bolted joint ball heads, and material failure caused by environment, showing that the sealing reliability of bolted joint ball head component is good and the influence of above three aspects on sealing of bolted joint ball head component can be ignored.

  3. 77 FR 51045 - Certain Two-Way Global Satellite Communication Devices, System and Components Thereof; Notice of...

    Science.gov (United States)

    2012-08-23

    ... Certain Two-Way Global Satellite Communication Devices, System and Components Thereof, DN 2907; the... INTERNATIONAL TRADE COMMISSION [Docket No. 2907] Certain Two-Way Global Satellite Communication Devices, System and Components Thereof; Notice of Receipt of Complaint; Solicitation of Comments Relating...

  4. Satellite lidar and radar: Key components of the future climate observing system

    Science.gov (United States)

    Winker, D. M.

    2017-12-01

    Cloud feedbacks represent the dominant source of uncertainties in estimates of climate sensitivity and aerosols represent the largest source of uncertainty in climate forcing. Both observation of long-term changes and observational constraints on the processes responsible for those changes are necessary. The existing 30-year record of passive satellite observations has not yet provided constraints to significantly reduce these uncertainties, though. We now have more than a decade of experience with active sensors flying in the A-Train. These new observations have demonstrated the strengths of active sensors and the benefits of continued and more advanced active sensors. This talk will discuss the multiple roles for active sensors as an essential component of a global climate observing system.

  5. 78 FR 31576 - Enforcement Proceeding; Certain Two-Way Global Satellite Communication Devices, System and...

    Science.gov (United States)

    2013-05-24

    ...-Way Global Satellite Communication Devices, System and Components Thereof; Notice of Institution of... importation of certain two-way global satellite communication devices, system and components thereof by reason... importation any two-way global satellite communication devices, system, and components thereof that infringe...

  6. Space Solar Power Satellite Systems, Modern Small Satellites, and Space Rectenna

    Science.gov (United States)

    Bergsrud, Corey Alexis Marvin

    Space solar power satellite (SSPS) systems is the concept of placing large satellite into geostationary Earth orbit (GEO) to harvest and convert massive amounts of solar energy into microwave energy, and to transmit the microwaves to a rectifying antenna (rectenna) array on Earth. The rectenna array captures and converts the microwave power into usable power that is injected into the terrestrial electric grid for use. This work approached the microwave power beam as an additional source of power (with solar) for lower orbiting satellites. Assuming the concept of retrodirectivity, a GEO-SSPS antenna array system tracks and delivers microwave power to lower orbiting satellites. The lower orbiting satellites are equipped with a stacked photovoltaic (PV)/rectenna array hybrid power generation unit (HPGU) in order to harvest solar and/or microwave energy for on-board use during orbit. The area, and mass of the PV array part of the HPGU was reduced at about 32% beginning-of-life power in order to achieve the spacecraft power requirements. The HPGU proved to offer a mass decrease in the PGU, and an increase in mission life due to longer living component life of the rectenna array. Moreover, greater mission flexibility is achieved through a track and power delivery concept. To validate the potential advantages offered by a HPGU, a mission concept was presented that utilizes modern small satellites as technology demonstrators. During launch, a smaller power receiving "daughter" satellite sits inside a larger power transmitting "mother" satellite. Once separated from the launch vehicle the daughter satellite is ejected away from the mother satellite, and each satellite deploys its respective power transmitting or power receiving hardware's for experimentation. The concept of close proximity mission operations between the satellites is considered. To validate the technology of the space rectenna array part of the HPGU, six milestones were completed in the design. The first

  7. IMPLEMENTATION OF AERONAUTICAL LOCAL SATELLITE AUGMENTATION SYSTEM

    Directory of Open Access Journals (Sweden)

    Stojce Ilcev

    2011-03-01

    Full Text Available Abstract. This paper introduces development and implementation of new Local Satellite AugmentationSystem as an integration component of the Regional Satellite Augmentation System (RSAS employingcurrent and new Satellite Communications, Navigation and Surveillance (CNS for improvement of the AirTraffic Control (ATC and Air Traffic Management (ATM and for enhancement safety systems includingtransport security and control of flights in all stages, airport approaching, landing, departures and allmovements over airport surface areas. The current first generation of the Global Navigation Satellite SystemGNSS-1 applications are represented by fundamental military solutions for Position, Velocity and Time ofthe satellite navigation and determination systems such as the US GPS and Russian GLONASS (Former-USSR requirements, respectively. The establishment of Aeronautical CNS is also discussed as a part ofGlobal Satellite Augmentation Systems of GPS and GLONASS systems integrated with existing and futureRSAS and LSAS in airports areas. Specific influence and factors related to the Comparison of the Currentand New Aeronautical CNS System including the Integration of RSAS and GNSS solutions are discussedand packet of facts is determined to maximize the new satellite Automatic Dependent Surveillance System(ADSS and Special Effects of the RSAS Networks. The possible future integration of RSAS and GNSS andthe common proposal of the satellite Surface Movement Guidance and Control are presented in thechangeless ways as of importance for future enfacements of ATC and ATM for any hypothetical airportinfrastructure.Keywords: ADSS, ATC, ATM, CNS, GSAS, LRAS, RSAS, SMGC, Special Effects of RSAS.

  8. Evaluating the hydrological consistency of satellite based water cycle components

    KAUST Repository

    Lopez Valencia, Oliver Miguel

    2016-06-15

    Advances in multi-satellite based observations of the earth system have provided the capacity to retrieve information across a wide-range of land surface hydrological components and provided an opportunity to characterize terrestrial processes from a completely new perspective. Given the spatial advantage that space-based observations offer, several regional-to-global scale products have been developed, offering insights into the multi-scale behaviour and variability of hydrological states and fluxes. However, one of the key challenges in the use of satellite-based products is characterizing the degree to which they provide realistic and representative estimates of the underlying retrieval: that is, how accurate are the hydrological components derived from satellite observations? The challenge is intrinsically linked to issues of scale, since the availability of high-quality in-situ data is limited, and even where it does exist, is generally not commensurate to the resolution of the satellite observation. Basin-scale studies have shown considerable variability in achieving water budget closure with any degree of accuracy using satellite estimates of the water cycle. In order to assess the suitability of this type of approach for evaluating hydrological observations, it makes sense to first test it over environments with restricted hydrological inputs, before applying it to more hydrological complex basins. Here we explore the concept of hydrological consistency, i.e. the physical considerations that the water budget impose on the hydrologic fluxes and states to be temporally and spatially linked, to evaluate the reproduction of a set of large-scale evaporation (E) products by using a combination of satellite rainfall (P) and Gravity Recovery and Climate Experiment (GRACE) observations of storage change, focusing on arid and semi-arid environments, where the hydrological flows can be more realistically described. Our results indicate no persistent hydrological

  9. Planning for a data base system to support satellite conceptual design

    Science.gov (United States)

    Claydon, C. R.

    1976-01-01

    The conceptual design of an automated satellite design data base system is presented. The satellite catalog in the system includes data for all earth orbital satellites funded to the hardware stage for launch between 1970 and 1980, and provides a concise compilation of satellite capabilities and design parameters. The cost of satellite subsystems and components will be added to the base. Data elements are listed and discussed. Sensor and science and applications opportunities catalogs will be included in the data system. Capabilities of the BASIS storage, retrieval, and analysis system are used in the system design.

  10. Development of the TRSSS-1 Satellite as the Major Component of the Space Based Information System(SBIS) for Effective Decision Support System for Thailand's Natural Resources and Environmental Management

    OpenAIRE

    Musigasam, Weerapant; Ditsariyakue, Praneet; Aphicholati, Navanit; Vibulsresth, Suvit

    1997-01-01

    The paper describes development of the first Thailand Remote Sensing Satellite System (TRSSS-1) by the National Research Council of Thailand (NRCT), Ministry of Science Technology and Environment (MOSTE). The TRSSS-1 project has primarily been developed as a major component of the Space Base Information System (SBIS) for effective decision support system for Thailand's natural resources and environmental management. The Space Based Information System consists of three components namely, the u...

  11. Technical comparison of several global mobile satellite communications systems

    Science.gov (United States)

    Comparetto, Gary M.

    The era of satellite-based mobile satellite communications (MSC) systems started with the first MARISAT satellite which was launched into a geostationary orbit over the Pacific Ocean in 1976 to provide communications between ships and shore stations. The combination of high cost and unacceptably large equipment has kept the space-based MSC systems from appealing to the wider market of personal mobile communications. The progress made over the last ten years, however, in digital voice processing, satellite technology, and component miniaturization has resulted in the viability of satellite-based mobile satellite communications systems to meet the growing market in personal mobile communications using handsets similar to those currently in use with land-based cellular systems. Three of the more mature LEO/MEO satellite systems are addressed in this paper including GLOBALSTAR, Iridium, and Odyssey. The system architectures of each system are presented along with a description of the satellite and user handset designs and the multiaccess techniques employed. It will be shown that, although a number of similarities exist among the system addressed, each system is unique in a variety of significant design areas. It is concluded that the technical feasibility of satellite-based mobile satellite communications systems seems to be secure. It will be challenging, however, for the vendors to actually develop and deploy these systems in a cost effective, timely, and reliable way that meets a continually evolving set of requirements based upon a rapidly changing technology base.

  12. End-to-end network models encompassing terrestrial, wireless, and satellite components

    Science.gov (United States)

    Boyarko, Chandler L.; Britton, John S.; Flores, Phil E.; Lambert, Charles B.; Pendzick, John M.; Ryan, Christopher M.; Shankman, Gordon L.; Williams, Ramon P.

    2004-08-01

    Development of network models that reflect true end-to-end architectures such as the Transformational Communications Architecture need to encompass terrestrial, wireless and satellite component to truly represent all of the complexities in a world wide communications network. Use of best-in-class tools including OPNET, Satellite Tool Kit (STK), Popkin System Architect and their well known XML-friendly definitions, such as OPNET Modeler's Data Type Description (DTD), or socket-based data transfer modules, such as STK/Connect, enable the sharing of data between applications for more rapid development of end-to-end system architectures and a more complete system design. By sharing the results of and integrating best-in-class tools we are able to (1) promote sharing of data, (2) enhance the fidelity of our results and (3) allow network and application performance to be viewed in the context of the entire enterprise and its processes.

  13. Handoff algorithm for mobile satellite systems with ancillary terrestrial component

    KAUST Repository

    Sadek, Mirette

    2012-06-01

    This paper presents a locally optimal handoff algorithm for integrated satellite/ground communication systems. We derive the handoff decision function and present the results in the form of tradeoff curves between the number of handoffs and the number of link degradation events in a given distance covered by the mobile user. This is a practical receiver-controlled handoff algorithm that optimizes the handoff process from a user perspective based on the received signal strength rather than from a network perspective. © 2012 IEEE.

  14. Sun and planet detection system for satellites. Sonnen- und Erderfassungsverfahren fuer Satelliten

    Energy Technology Data Exchange (ETDEWEB)

    Lange, B O; Scheit, A

    1980-05-22

    The invention refers to a process for the sun and planet detection system for satellites stabilised in three axes and equipped with detection sensors. The purpose of the invention is to describe such a detection system, which makes quick and reliable guiding of the satellite to its final position possible, permits the use of sensors of simple construction and of simple control laws and simple control logic. According to the invention, this problem is solved by having cumulative or alternate steps, depending on the position of the satellite relative to the sun. According to the invention they refer to the position of the sun outside the field of view for the measurement of various components and the simultaneous availability of several component values. It is particularly advantageous if only the absolutely necessary satellite manoeuvres have to be carried out, as this saves fuel and makes it possible to increase the payload or extend the satellite's life. (HWJ).

  15. Satellite services system overview

    Science.gov (United States)

    Rysavy, G.

    1982-01-01

    The benefits of a satellite services system and the basic needs of the Space Transportation System to have improved satellite service capability are identified. Specific required servicing equipment are discussed in terms of their technology development status and their operative functions. Concepts include maneuverable television systems, extravehicular maneuvering unit, orbiter exterior lighting, satellite holding and positioning aid, fluid transfer equipment, end effectors for the remote manipulator system, teleoperator maneuvering system, and hand and power tools.

  16. Using satellite fire detection to calibrate components of the fire weather index system in Malaysia and Indonesia.

    Science.gov (United States)

    Dymond, Caren C; Field, Robert D; Roswintiarti, Orbita; Guswanto

    2005-04-01

    Vegetation fires have become an increasing problem in tropical environments as a consequence of socioeconomic pressures and subsequent land-use change. In response, fire management systems are being developed. This study set out to determine the relationships between two aspects of the fire problems in western Indonesia and Malaysia, and two components of the Canadian Forest Fire Weather Index System. The study resulted in a new method for calibrating components of fire danger rating systems based on satellite fire detection (hotspot) data. Once the climate was accounted for, a problematic number of fires were related to high levels of the Fine Fuel Moisture Code. The relationship between climate, Fine Fuel Moisture Code, and hotspot occurrence was used to calibrate Fire Occurrence Potential classes where low accounted for 3% of the fires from 1994 to 2000, moderate accounted for 25%, high 26%, and extreme 38%. Further problems arise when there are large clusters of fires burning that may consume valuable land or produce local smoke pollution. Once the climate was taken into account, the hotspot load (number and size of clusters of hotspots) was related to the Fire Weather Index. The relationship between climate, Fire Weather Index, and hotspot load was used to calibrate Fire Load Potential classes. Low Fire Load Potential conditions (75% of an average year) corresponded with 24% of the hotspot clusters, which had an average size of 30% of the largest cluster. In contrast, extreme Fire Load Potential conditions (1% of an average year) corresponded with 30% of the hotspot clusters, which had an average size of 58% of the maximum. Both Fire Occurrence Potential and Fire Load Potential calibrations were successfully validated with data from 2001. This study showed that when ground measurements are not available, fire statistics derived from satellite fire detection archives can be reliably used for calibration. More importantly, as a result of this work, Malaysia and

  17. A geostationary satellite system for mobile multimedia applications using portable, aeronautical and mobile terminals

    Science.gov (United States)

    Losquadro, G.; Luglio, M.; Vatalaro, F.

    1997-01-01

    A geostationary satellite system for mobile multimedia services via portable, aeronautical and mobile terminals was developed within the framework of the Advanced Communications Technology Service (ACTS) programs. The architecture of the system developed under the 'satellite extremely high frequency communications for multimedia mobile services (SECOMS)/ACTS broadband aeronautical terminal experiment' (ABATE) project is presented. The system will be composed of a Ka band system component, and an extremely high frequency band component. The major characteristics of the space segment, the ground control station and the portable, aeronautical and mobile user terminals are outlined.

  18. Cooperative and cognitive satellite systems

    CERN Document Server

    Chatzinotas, Symeon; De Gaudenzi, Riccardo

    2015-01-01

    Cooperative and Cognitive Satellite Systems provides a solid overview of the current research in the field of cooperative and cognitive satellite systems, helping users understand how to incorporate state-of-the-art communication techniques in innovative satellite network architectures to enable the next generation of satellite systems. The book is edited and written by top researchers and practitioners in the field, providing a comprehensive explanation of current research that allows users to discover future technologies and their applications, integrate satellite and terrestrial systems

  19. A Reusable Software Architecture for Small Satellite AOCS Systems

    DEFF Research Database (Denmark)

    Alminde, Lars; Bendtsen, Jan Dimon; Laursen, Karl Kaas

    2006-01-01

    This paper concerns the software architecture called Sophy, which is an abbreviation for Simulation, Observation, and Planning in HYbrid systems. We present a framework that allows execution of hybrid dynamical systems in an on-line distributed computing environment, which includes interaction...... with both hardware and on-board software. Some of the key issues addressed by the framework are automatic translation of mathematical specifications of hybrid systems into executable software entities, management of execution of coupled models in a parallel distributed environment, as well as interaction...... with external components, hardware and/or software, through generic interfaces. Sophy is primarily intended as a tool for development of model based reusable software for the control and autonomous functions of satellites and/or satellite clusters....

  20. Satellite Power Systems (SPS) concept definition study. Volume 5: Special emphasis studies. [rectenna and solar power satellite design studies

    Science.gov (United States)

    Hanley, G. M.

    1980-01-01

    Satellite configurations based on the Satellite Power System baseline requirements were analyzed and a preferred concept selected. A satellite construction base was defined, precursor operations incident to establishment of orbital support facilities identified, and the satellite construction sequence and procedures developed. Rectenna construction requirement were also addressed. Mass flow to orbit requirements were revised and traffic models established based on construction of 60 instead of 120 satellites. Analyses were conducted to determine satellite control, resources, manufacturing, and propellant requirements. The impact of the laser beam used for space-to-Earth power transmission upon the intervening atmosphere was examined as well as the inverse effect. The significant space environments and their effects on spacecraft components were investigated to define the design and operational limits imposed by the environments on an orbit transfer vehicle. The results show that LEO altitude 300 nmi and transfer orbit duration 6 months are preferrable.

  1. Adding a Mission to the Joint Polar Satellite System (JPSS) Common Ground System (CGS)

    Science.gov (United States)

    Miller, S. W.; Grant, K. D.; Jamilkowski, M. L.

    2014-12-01

    The National Oceanic and Atmospheric Administration (NOAA) and National Aeronautics and Space Administration (NASA) are jointly acquiring the next-generation civilian weather and environmental satellite system: the Joint Polar Satellite System (JPSS). The Joint Polar Satellite System will replace the afternoon orbit component and ground processing system of the current Polar-orbiting Operational Environmental Satellites (POES) managed by NOAA. The JPSS satellites will carry a suite of sensors designed to collect meteorological, oceanographic, climatological and geophysical observations of the Earth. The ground processing system for JPSS is known as the JPSS Common Ground System (JPSS CGS). Developed and maintained by Raytheon Intelligence, Information and Services (IIS), the CGS is a multi-mission enterprise system serving NOAA, NASA and their national and international partners. The CGS provides a wide range of support to a number of missions: 1) Command and control and mission management for the Suomi National Polar-orbiting Partnership (S-NPP) mission today, expanding this support to the JPSS-1 satellite and the Polar Free Flyer mission in 2017 2) Data acquisition via a Polar Receptor Network (PRN) for S-NPP, the Japan Aerospace Exploration Agency's (JAXA) Global Change Observation Mission - Water (GCOM-W1), POES, and the Defense Meteorological Satellite Program (DMSP) and Coriolis/WindSat for the Department of Defense (DoD) 3) Data routing over a global fiber Wide Area Network (WAN) for S-NPP, JPSS-1, Polar Free Flyer, GCOM-W1, POES, DMSP, Coriolis/WindSat, the NASA Space Communications and Navigation (SCaN, which includes several Earth Observing System [EOS] missions), MetOp for the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT), and the National Science Foundation (NSF) 4) Environmental data processing and distribution for S-NPP, GCOM-W1 and JPSS-1 With this established infrastructure and existing suite of missions, the CGS

  2. Plan of Time Management of Satellite Positioning System using Quasi-zenith Satellite

    Science.gov (United States)

    Takahashi, Yasuhiro; Fujieda, Miho; Amagai, Jun; Yokota, Shoichiro; Kimura, Kazuhiro; Ito, Hiroyuki; Hama, Shin'ichi; Morikawa, Takao; Kawano, Isao; Kogure, Satoshi

    The Quasi-Zenith satellites System (QZSS) is developed as an integrated satellite service system of communication, broadcasting and positioning for mobile users in specified regions of Japan from high elevation angle. Purposes of the satellite positioning system using Quasi-Zenith satellite (QZS) are to complement and augment the GPS. The national institutes concerned have been developing the positioning system using QZS since 2003 and will carry out experiments and researches in three years after the launch. In this system, National Institute of Information and Communications Technology (NICT) is mainly in charge of timing system for the satellite positioning system using QZS, such as onboard hydrogen maser atomic clock and precise time management system of the QZSS. We started to develop the engineering model of the time management system for the QZSS. The time management system for the QZSS will be used to compare time differences between QZS and earth station as well as to compare between three onboard atomic clocks. This paper introduces time management of satellite positioning system using the QZSS.

  3. Joint Polar Satellite System (JPSS) Common Ground System (CGS) Current Technical Performance Measures

    Science.gov (United States)

    Cochran, S.; Panas, M.; Jamilkowski, M. L.; Miller, S. W.

    2015-12-01

    ABSTRACT The National Oceanic and Atmospheric Administration (NOAA) and National Aeronautics and Space Administration (NASA) are jointly acquiring the next-generation civilian weather and environmental satellite system: the Joint Polar Satellite System (JPSS). The Joint Polar Satellite System will replace the afternoon orbit component and ground processing system of the current Polar-orbiting Operational Environmental Satellites (POES) managed by NOAA. The JPSS satellites will carry a suite of sensors designed to collect meteorological, oceanographic, climatological and geophysical observations of the Earth. The ground processing system for JPSS is known as the JPSS Common Ground System (JPSS CGS). Developed and maintained by Raytheon Intelligence, Information and Services (IIS), the CGS is a multi-mission enterprise system serving NOAA, NASA and their national and international partners. The CGS has demonstrated its scalability and flexibility to incorporate multiple missions efficiently and with minimal cost, schedule and risk, while strengthening global partnerships in weather and environmental monitoring. The CGS architecture is being upgraded to Block 2.0 in 2015 to "operationalize" S-NPP, leverage lessons learned to date in multi-mission support, take advantage of more reliable and efficient technologies, and satisfy new requirements and constraints in the continually evolving budgetary environment. To ensure the CGS meets these needs, we have developed 49 Technical Performance Measures (TPMs) across 10 categories, such as data latency, operational availability and scalability. This paper will provide an overview of the CGS Block 2.0 architecture, with particular focus on the 10 TPM categories listed above. We will provide updates on how we ensure the deployed architecture meets these TPMs to satisfy our multi-mission objectives with the deployment of Block 2.0.

  4. Solar power satellite system; Uchu hatsuden system

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, S [Institute of Space and Astronautical Science, Tokyo (Japan)

    1995-09-05

    The solar power satellite system is a system that converts solar energy into electric energy in the space, transmits power to earth through wireless resort such as microwave and supplies energy of new concept. In order to realize this system it is necessary to have new technologies such as space power transmission at low cost, construction of large space buildings and wireless high power transmission. In this paper, the principles, characteristics and the necessary technology of this system were explained. Besides Japan`s SPS2000 Plan (cooperative research by universities, government agencies and private corporations on the model of solar power satellite) the group of Europe, Russia and the United States has also proposed some ideas concerning the solar power satellite system. As far as the microwave power transmission, which is the key technology for solar power satellite system, is concerned, ground demonstration tests at the level of several tens of kW are discussed in Canada and France. 3 refs., 3 figs.

  5. Deviations in CBERS-4 Satellite Direction Components From The Electromagnetic Disturbance of Communication Antennas

    Science.gov (United States)

    Heilmann, A.; Fernandes, C.

    2017-10-01

    The CBERS-4 is a low Earth orbit satellite, with a set of antennas S-band/UHF for communication almost omni-direcional. For the electromagnetic radiation from transmission antennas, was developed a model of electromagnetic disturbance considering the antennas theory and the laws of the conservation energy-momentum. Was propagated the orbit of the CBERS-4 satellite considering your state vector from the March 14, 2016, at 11h 14m 15.23s using the equation of motion in the form of cartesian components. From the state vector of the CBERS-4 satellite was possible to propagate the orbit for different periods, without disturbance (considering just the problem of two bodies) and with a disturbance of electromagnetic origin. The model of reaction of electromagnetic acceleration on the satellite depends on only the type of antenna. Quadrifilar and parabolic propeller antennas were considered in this paper. Using the equation of motion of the satellite based on the method of Runge-Kutta of fourth and fifth degree, the effect disturber this modeling was applied on the CBERS-4 considering the mass of satellite, characteristics of antenna, power irradiated and gain maximum of antenna. The final analysis discusses the values of components in the direction (radial, cross and normal) and the coordinates X-Y-Z considering the case disturbed to both antennas.

  6. Study of chaos in chaotic satellite systems

    Science.gov (United States)

    Khan, Ayub; Kumar, Sanjay

    2018-01-01

    In this paper, we study the qualitative behaviour of satellite systems using bifurcation diagrams, Poincaré section, Lyapunov exponents, dissipation, equilibrium points, Kaplan-Yorke dimension etc. Bifurcation diagrams with respect to the known parameters of satellite systems are analysed. Poincaré sections with different sowing axes of the satellite are drawn. Eigenvalues of Jacobian matrices for the satellite system at different equilibrium points are calculated to justify the unstable regions. Lyapunov exponents are estimated. From these studies, chaos in satellite system has been established. Solution of equations of motion of the satellite system are drawn in the form of three-dimensional, two-dimensional and time series phase portraits. Phase portraits and time series display the chaotic nature of the considered system.

  7. Radiation load experiments with electronic components of the SYMPHONIE satellite

    International Nuclear Information System (INIS)

    Spencker, A.; Wagemann, H.G.; Braeunig, D.

    1975-09-01

    This report surveys fundamentals, realization and results of irradiation experiments which applied to 36 different electronic components of the Symphonie satellite and which were completed at the HMI Berlin and the C.N.E.T. Lannion in the years 1972/73. In a general section the evaluation of equivalent fluencies concerning 1 MeV electrons as radiation simulating the extraterrestric particle spectra with regard to the well-known semiconductor damage mechanisms is discussed. Then the realization of irradiation testing for the Symphonie satellite is described. Three selected examples demonstrate typical failure modes of semiconductor devices under radiation stress: Finally the main experimental results are shown in a standardized manner; a survey in English is given on p. 44. (orig.) [de

  8. Reusing Joint Polar Satellite System (jpss) Ground System Components to Process AURA Ozone Monitoring Instrument (omi) Science Products

    Science.gov (United States)

    Moses, J. F.; Jain, P.; Johnson, J.; Doiron, J. A.

    2017-12-01

    New Earth observation instruments are planned to enable advancements in Earth science research over the next decade. Diversity of Earth observing instruments and their observing platforms will continue to increase as new instrument technologies emerge and are deployed as part of National programs such as Joint Polar Satellite System (JPSS), Geostationary Operational Environmental Satellite system (GOES), Landsat as well as the potential for many CubeSat and aircraft missions. The practical use and value of these observational data often extends well beyond their original purpose. The practicing community needs intuitive and standardized tools to enable quick unfettered development of tailored products for specific applications and decision support systems. However, the associated data processing system can take years to develop and requires inherent knowledge and the ability to integrate increasingly diverse data types from multiple sources. This paper describes the adaptation of a large-scale data processing system built for supporting JPSS algorithm calibration and validation (Cal/Val) node to a simplified science data system for rapid application. The new configurable data system reuses scalable JAVA technologies built for the JPSS Government Resource for Algorithm Verification, Independent Test, and Evaluation (GRAVITE) system to run within a laptop environment and support product generation and data processing of AURA Ozone Monitoring Instrument (OMI) science products. Of particular interest are the root requirements necessary for integrating experimental algorithms and Hierarchical Data Format (HDF) data access libraries into a science data production system. This study demonstrates the ability to reuse existing Ground System technologies to support future missions with minimal changes.

  9. 47 CFR 25.149 - Application requirements for ancillary terrestrial components in the mobile-satellite service...

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Application requirements for ancillary terrestrial components in the mobile-satellite service networks operating in the 1.5./1.6 GHz, 1.6/2.4 GHz and 2 GHz mobile-satellite service. 25.149 Section 25.149 Telecommunication FEDERAL COMMUNICATIONS...

  10. Deep Charging Evaluation of Satellite Power and Communication System Components

    Science.gov (United States)

    Schneider, T. A.; Vaughn, J. A.; Chu, B.; Wong, F.; Gardiner, G.; Wright, K. H.; Phillips, B.

    2016-01-01

    Deep charging, in contrast to surface charging, focuses on electron penetration deep into insulating materials applied over conductors. A classic example of this scenario is an insulated wire. Deep charging can pose a threat to material integrity, and to sensitive electronics, when it gives rise to an electrostatic discharge or arc. With the advent of Electric Orbit Raising, which requires spiraling through Earth's radiation belts, satellites are subjected to high energy electron environments which they normally would not encounter. Beyond Earth orbit, missions to Jupiter and Saturn face deep charging concerns due to the high energy radiation environments. While predictions can be made about charging in insulating materials, it is difficult to extend those predictions to complicated geometries, such as the case of an insulating coating around a small wire, or a non-uniform silicone grouting on a bus bar. Therefore, to conclusively determine the susceptibility of a system to arcs from deep charging, experimental investigations must be carried out. This paper will describe the evaluation carried out by NASA's Marshall Space Flight Center on subscale flight-like samples developed by Space Systems/Loral, LLC. Specifically, deep charging evaluations of solar array wire coupons, a photovoltaic cell coupon, and a coaxial microwave transmission cable, will be discussed. The results of each evaluation will be benchmarked against control sample tests, as well as typical power system levels, to show no significant deep charging threat existed for this set of samples under the conditions tested.

  11. PROMISE: A preliminary study of a scientific information system for MIPAS satellite experiment

    International Nuclear Information System (INIS)

    Kapetanios, E.

    1993-08-01

    A scientific information system for MIPAS satellite experiment will be presented according to its main hardware and software configuration. It will be considered as a MIPAS data processing and archiving node of the ground segment of the planned satellite mission for the remote sensing of atmospheric parameters, as well as an information system supporting the researchers in their scientific environment. In this preliminary study, the methodology of a more detailed system design has also been specified. The system consists of two logical components, an operational database for the generation, storage and management of vast amounts of MIPAS data received from the satellite, and the research and development database, which must be interfaced to the operational one, providing a more abstract and user-friendly interface for the scientific community enabling experimentation and the extraction of the information needed. (orig.) [de

  12. The Location GNSS Modules for the Components of Proteus System

    Science.gov (United States)

    Brzostowski, K.; Darakchiev, R.; Foks-Ryznar, A.; Sitek, P.

    2012-01-01

    The Proteus system - the Integrated Mobile System for Counterterrorism and Rescue Operations is a complex innovative project. To assure the best possible localization of mobile components of the system, many different Global Navigation Satellite System (GNSS) modules were taken into account. In order to chose the best solution many types of tests were done. Full results and conclusions are presented in this paper. The idea of measurements was to test modules in GPS Standard Positioning Service (SPS) with EGNOS system specification according to certain algorithms. The tests had to answer the question: what type of GNSS modules should be used on different components with respect to specific usage of Proteus system. The second goal of tests was to check the solution quality of integrated GNSS/INS (Inertial Navigation System) and its possible usage in some Proteus system components.

  13. Integrated Satellite-HAP Systems

    DEFF Research Database (Denmark)

    Cianca, Ernestina; De Sanctis, Mauro; De Luise, Aldo

    2005-01-01

    Thus far, high-altitude platform (HAP)-based systems have been mainly conceived as an alternative to satellites for complementing the terrestrial network. This article aims to show that HAP should no longer be seen as a competitor technology by investors of satellites, but as a key element for an...

  14. STABILITY OF SATELLITES IN CLOSELY PACKED PLANETARY SYSTEMS

    International Nuclear Information System (INIS)

    Payne, Matthew J.; Holman, Matthew J.; Deck, Katherine M.; Perets, Hagai B.

    2013-01-01

    We perform numerical integrations of four-body (star, planet, planet, satellite) systems to investigate the stability of satellites in planetary systems with tightly packed inner planets (STIPs). We find that the majority of closely spaced stable two-planet systems can stably support satellites across a range of parameter-space which is only slightly decreased compared to that seen for the single-planet case. In particular, circular prograde satellites remain stable out to ∼0.4 R H (where R H is the Hill radius) as opposed to 0.5 R H in the single-planet case. A similarly small restriction in the stable parameter-space for retrograde satellites is observed, where planetary close approaches in the range 2.5-4.5 mutual Hill radii destabilize most satellites orbits only if a ∼ 0.65 R H . In very close planetary pairs (e.g., the 12:11 resonance) the addition of a satellite frequently destabilizes the entire system, causing extreme close approaches and the loss of satellites over a range of circumplanetary semi-major axes. The majority of systems investigated stably harbored satellites over a wide parameter-space, suggesting that STIPs can generally offer a dynamically stable home for satellites, albeit with a slightly smaller stable parameter-space than the single-planet case. As we demonstrate that multi-planet systems are not a priori poor candidates for hosting satellites, future measurements of satellite occurrence rates in multi-planet systems versus single-planet systems could be used to constrain either satellite formation or past periods of strong dynamical interaction between planets

  15. Dynamical history of coplanar two-satellite systems

    International Nuclear Information System (INIS)

    Ruskol, E.L.; Nikolajeva, E.V.; Syzdykov, A.S.

    1975-01-01

    One of the possible early states of the Earth-Moon system was a system of several large satellites around the Earth. The dynamical evolution of coplanar three-body systems is studied; a planet (Earth) and two massive satellites (proto-moons) with geocentric orbits of slightly different radii. Such configurations may arise in multiple satellite systems receding from a planet due to tidal friction. The numerical integration of the equations of motion shows that initially circular Keplerian orbits are soon transformed into disturbed elliptic orbits which are intersecting. The life-time of such a coplanar system between two probable physical collisions of satellites is roughly from one day to one year for satellite systems with radii less than 20 R(Earth), and may reach 100 yr for three-dimensional systems. This time-scale is short in comparison with the duration of the removal of satellites due to tides raised on the planet, which is estimated as 10 6 -10 8 yr for the same orbital dimensions. Therefore, the life-time of a system of several proto-moons is mainly determined by their tidal interactions with the Earth. For conditions which we have considered, the most probable result of the evolution was coalescence of satellites as the consequence of the collisions. (Auth.)

  16. Texstar: The all-Texas educational satellite system

    Science.gov (United States)

    1990-01-01

    Longhorn Satellite Company (LSC) has designed Texstar, and educational satellite communications system which will be considered as a means of equalizing the distribution of educational resources throughout the state of Texas. Texstar will be capable of broadcasting live lectures and documentaries in addition to transmitting data from a centralized receiving-transmitting station. Included in the design of Texstar is the system and subsystem design for the satellite and the design of the ground stations. The launch vehicle used will be the Texas-built Conestoga 421-48. The Texstar system incorporates three small satellites in slightly inclined geosynchronous orbits. Due to the configuration and spacing of these satellites, the system will be accessed as if it were one large, geostationary satellite. Texstar is shown to be a viable option to the educational crisis in the state of Texas.

  17. New Generation of Broadcasting Satellite Systems: New Markets and Business Developments

    Science.gov (United States)

    Perrot, Bruno; Michel, Cyril; Villaret, Stéfanie

    2002-01-01

    Since the deployment of the first Digital Broadcasting Satellite Systems, European satellite operators and service providers have been faced with the continuously increasing demand for Digital Broadcasting Services. Their success is built on the availability of the MPEG and DVB standards. Undoubtedly, conventional digital television broadcasting is today the `Killer' application. Various service providers already offer multimedia applications through DVB-S systems based upon the `Push' technology. Although these services do not currently represent the core business for broadcasting satellite operators, their percentage is increasing. `Push' technology services include Data Carousel, Webcasting, Turbo Internet, File casting and so on. Such technology can support the implementation of different emerging multimedia services scenarios from Newsgroups, Network collaborative learning, and tele-medicine, to others that may be invented in the near future. The penetration rate of multi-channel television reception is still increasing. Broadcasting satellites benefit both from the development of new, more segmented and sophisticated offers and from the development of Internet services. Satellite is likely to enter these new markets at different levels of the value chain: Even if the satellite has demonstrated its capacity to fully serve the television, combinations with other networks may be necessary to address the new markets: at the consumer premises, Internet-related services will require a return path; at the backbone level, satellite becomes a component of a full telecommunications solution. This article focuses on the European market and proposes:

  18. Spanish Earth Observation Satellite System

    Science.gov (United States)

    Borges, A.; Cerezo, F.; Fernandez, M.; Lomba, J.; Lopez, M.; Moreno, J.; Neira, A.; Quintana, C.; Torres, J.; Trigo, R.; Urena, J.; Vega, E.; Vez, E.

    2010-12-01

    The Spanish Ministry of Industry, Tourism and Trade (MITyC) and the Ministry of Defense (MoD) signed an agreement in 2007 for the development of a "Spanish Earth Observation Satellite System" based, in first instance, on two satellites: a high resolution optical satellite, called SEOSAT/Ingenio, and a radar satellite based on SAR technology, called SEOSAR/Paz. SEOSAT/Ingenio is managed by MITyC through the Centre for the Development of Industrial Technology (CDTI), with technical and contractual support from the European Space Agency (ESA). HISDESA T together with the Spanish Instituto Nacional de Técnica Aeroespacial (INTA, National Institute for Aerospace Technology) will be responsible for the in-orbit operation and the commercial operation of both satellites, and for the technical management of SEOSAR/Paz on behalf of the MoD. In both cases EADS CASA Espacio (ECE) is the prime contractor leading the industrial consortia. The ground segment development will be assigned to a Spanish consortium. This system is the most important contribution of Spain to the European Programme Global Monitoring for Environment and Security, GMES. This paper presents the Spanish Earth Observation Satellite System focusing on SEOSA T/Ingenio Programme and with special emphasis in the potential contribution to the ESA Third Party Missions Programme and to the Global Monitoring for Environment and Security initiative (GMES) Data Access.

  19. Non-exclusive satellite power system

    Energy Technology Data Exchange (ETDEWEB)

    Drummond, J.E. (Power Conversion Technology, Inc., San Diego, Calif.); Cowhey, P.F. (California, University, La Jolla, Calif.)

    1980-09-01

    A modification of the satellite solar power system employing smaller satellites that are not stationary but move in circular or elliptical orbits of two or three hour periods is discussed. The orbits could be inclined at plus or minus 63.4 deg, 73.1 deg, or 14.3 deg to the equatorial plane. This Interregional or Isoinsolation Power System (IPS) greatly reduces the mass and cost of the antenna needed in the sky and the area required for the rectenna and safety region on the ground (the product of the areas of the antennas and rectennas of the IPS system being between 10 and 20 times lower than that required in the conventional SPS system). International control of IPS through a Solar Satellite Consortium (Solsat) is advocated, patterned after the successful Intelsat consortium, and it is stressed that the system must not be allowed to acquire a military capacity. It is emphasized that the smaller rectennas would not destabilize the ionosphere.

  20. Joint Polar Satellite System (JPSS) Common Ground System (CGS) Overview and Architectural Tenets

    Science.gov (United States)

    Miller, S. W.; Grant, K. D.; Jamilkowski, M. L.

    2013-12-01

    The National Oceanic and Atmospheric Administration (NOAA) and National Aeronautics and Space Administration (NASA) are jointly acquiring the next-generation civilian weather and environmental satellite system: the Joint Polar Satellite System (JPSS). The Joint Polar Satellite System will replace the afternoon orbit component and ground processing system of the current Polar-orbiting Operational Environmental Satellites (POES) managed by NOAA. The JPSS satellites will carry a suite of sensors designed to collect meteorological, oceanographic, climatological and geophysical observations of the Earth. The ground processing system for JPSS is known as the JPSS Common Ground System (JPSS CGS). Developed and maintained by Raytheon Intelligence and Information Systems (IIS), the CGS is a multi-mission enterprise system serving NOAA, NASA and their national and international partners. The CGS provides a wide range of support to a number of missions: 1) Command and control and mission management for the Suomi National Polar Partnership (S-NPP) mission today, expanding this support to the JPSS-1 satellite and the Polar Free Flyer mission in 2017 2) Data acquisition via a Polar Receptor Network (PRN) for S-NPP, the Japan Aerospace Exploration Agency's (JAXA) Global Change Observation Mission - Water (GCOM-W1), POES, and the Defense Meteorological Satellite Program (DMSP) and Coriolis/WindSat for the Department of Defense (DoD) 3) Data routing over a global fiber Wide Area Network (WAN) for S-NPP, JPSS-1, Polar Free Flyer, GCOM-W1, POES, DMSP, Coriolis/WindSat, the NASA Space Communications and Navigation (SCaN, which includes several Earth Observing System [EOS] missions), MetOp for the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT), and the National Science Foundation (NSF) 4) Environmental data processing and distribution for S-NPP, GCOM-W1 and JPSS-1 The CGS architecture will receive a technology refresh in 2015 to satisfy several key

  1. A new digital land mobile satellite system

    Science.gov (United States)

    Schneider, Philip

    A description is given of the different digital services planned to be carried over existing and planned mobile satellite systems. These systems are then compared with analog services in terms of bandwidth and power efficiency. This comparison provides the rationale for the establishment of a digital land mobile satellite service (DLMSS) to use frequencies that are currently available but not yet assigned to a domestic mobile satellite system in the United States. The focus here is on the expected advantages of digital transmission techniques in accommodating additional mobile satellite systems in this portion of the spectrum, and how such techniques can fully satisfy voice, data and facsimile mobile communications requirements in a cost effective manner. A description is given of the system architecture of the DMLSS service proposed by the Geostar Messaging Corporation (GMC) and the market potential of DLMSS.

  2. Space industrialization - Education. [via communication satellites

    Science.gov (United States)

    Joels, K. M.

    1978-01-01

    The components of an educational system based on, and perhaps enhanced by, space industrialization communications technology are considered. Satellite technology has introduced a synoptic distribution system for various transmittable educational media. The cost of communications satellite distribution for educational programming has been high. It has, therefore, been proposed to utilize Space Shuttle related technology and Large Space Structures (LSS) to construct a system with a quantum advancement in communication capability and a quantum reduction in user cost. LSS for communications purposes have three basic advantages for both developed and emerging nations, including the ability to distribute signals over wide geographic areas, the reduced cost of satellite communications systems versus installation of land based systems, and the ability of a communication satellite system to create instant educational networks.

  3. Core Flight System Satellite Starter Kit

    Data.gov (United States)

    National Aeronautics and Space Administration — The Core Flight System Satellite Starter Kit (cFS Kit) will allow a small satellite or CubeSat developer to rapidly develop, deploy, test, and operate flight...

  4. Automated tracking for advanced satellite laser ranging systems

    Science.gov (United States)

    McGarry, Jan F.; Degnan, John J.; Titterton, Paul J., Sr.; Sweeney, Harold E.; Conklin, Brion P.; Dunn, Peter J.

    1996-06-01

    NASA's Satellite Laser Ranging Network was originally developed during the 1970's to track satellites carrying corner cube reflectors. Today eight NASA systems, achieving millimeter ranging precision, are part of a global network of more than 40 stations that track 17 international satellites. To meet the tracking demands of a steadily growing satellite constellation within existing resources, NASA is embarking on a major automation program. While manpower on the current systems will be reduced to a single operator, the fully automated SLR2000 system is being designed to operate for months without human intervention. Because SLR2000 must be eyesafe and operate in daylight, tracking is often performed in a low probability of detection and high noise environment. The goal is to automatically select the satellite, setup the tracking and ranging hardware, verify acquisition, and close the tracking loop to optimize data yield. TO accomplish the autotracking tasks, we are investigating (1) improved satellite force models, (2) more frequent updates of orbital ephemerides, (3) lunar laser ranging data processing techniques to distinguish satellite returns from noise, and (4) angular detection and search techniques to acquire the satellite. A Monte Carlo simulator has been developed to allow optimization of the autotracking algorithms by modeling the relevant system errors and then checking performance against system truth. A combination of simulator and preliminary field results will be presented.

  5. Satellite Attitude Control System Simulator

    Directory of Open Access Journals (Sweden)

    G.T. Conti

    2008-01-01

    Full Text Available Future space missions will involve satellites with great autonomy and stringent pointing precision, requiring of the Attitude Control Systems (ACS with better performance than before, which is function of the control algorithms implemented on board computers. The difficulties for developing experimental ACS test is to obtain zero gravity and torque free conditions similar to the SCA operate in space. However, prototypes for control algorithms experimental verification are fundamental for space mission success. This paper presents the parameters estimation such as inertia matrix and position of mass centre of a Satellite Attitude Control System Simulator (SACSS, using algorithms based on least square regression and least square recursive methods. Simulations have shown that both methods have estimated the system parameters with small error. However, the least square recursive methods have performance more adequate for the SACSS objectives. The SACSS platform model will be used to do experimental verification of fundamental aspects of the satellite attitude dynamics and design of different attitude control algorithm.

  6. Cyber security with radio frequency interferences mitigation study for satellite systems

    Science.gov (United States)

    Wang, Gang; Wei, Sixiao; Chen, Genshe; Tian, Xin; Shen, Dan; Pham, Khanh; Nguyen, Tien M.; Blasch, Erik

    2016-05-01

    Satellite systems including the Global Navigation Satellite System (GNSS) and the satellite communications (SATCOM) system provide great convenience and utility to human life including emergency response, wide area efficient communications, and effective transportation. Elements of satellite systems incorporate technologies such as navigation with the global positioning system (GPS), satellite digital video broadcasting, and information transmission with a very small aperture terminal (VSAT), etc. The satellite systems importance is growing in prominence with end users' requirement for globally high data rate transmissions; the cost reduction of launching satellites; development of smaller sized satellites including cubesat, nanosat, picosat, and femtosat; and integrating internet services with satellite networks. However, with the promising benefits, challenges remain to fully develop secure and robust satellite systems with pervasive computing and communications. In this paper, we investigate both cyber security and radio frequency (RF) interferences mitigation for satellite systems, and demonstrate that they are not isolated. The action space for both cyber security and RF interferences are firstly summarized for satellite systems, based on which the mitigation schemes for both cyber security and RF interferences are given. A multi-layered satellite systems structure is provided with cross-layer design considering multi-path routing and channel coding, to provide great security and diversity gains for secure and robust satellite systems.

  7. Odyssey, an optimized personal communications satellite system

    Science.gov (United States)

    Rusch, Roger J.

    Personal communications places severe demands on service providers and transmission facilities. Customers are not satisfied with the current levels of service and want improvements. Among the characteristics that users seek are: lower service rates, hand held convenience, acceptable time delays, ubiquitous service, high availability, reliability, and high quality. The space industry is developing commercial space systems for providing mobile communications to personal telephones. Provision of land mobile satellite service is fundamentally different from the fixed satellite service provided by geostationary satellites. In fixed service, the earth based antennas can depend on a clear path from user to satellite. Mobile users in a terrestrial environment commonly encounter blockage due to vegetation, terrain or buildings. Consequently, high elevation angles are of premium value. TRW studied the issues and concluded that a Medium Earth Orbit constellation is the best solution for Personal Communications Satellite Service. TRW has developed Odyssey, which uses twelve satellites in medium altitude orbit to provide personal communications satellite service. The Odyssey communications system projects a multibeam antenna pattern to the Earth. The attitude control system orients the satellites to ensure constant coverage of land mass and coastal areas. Pointing can be reprogrammed by ground control to ensure optimized coverage of the desired service areas. The payload architecture features non-processing, "bent pipe" transponders and matrix amplifiers to ensure dynamic power delivery to high demand areas. Circuit capacity is 3000 circuits per satellite. Each satellite weighs 1917 kg (4226 pounds) at launch and the solar arrays provide 3126 Watts of power. Satellites are launched in pairs on Ariane, Atlas, or other vehicles. Each satellite is placed in a circular orbit at an altitude of 10,354 km. There are three orbit planes inclined at 55° to the equatorial plane

  8. Satellite communications network design and analysis

    CERN Document Server

    Jo, Kenneth Y

    2011-01-01

    This authoritative book provides a thorough understanding of the fundamental concepts of satellite communications (SATCOM) network design and performance assessments. You find discussions on a wide class of SATCOM networks using satellites as core components, as well as coverage key applications in the field. This in-depth resource presents a broad range of critical topics, from geosynchronous Earth orbiting (GEO) satellites and direct broadcast satellite systems, to low Earth orbiting (LEO) satellites, radio standards and protocols.This invaluable reference explains the many specific uses of

  9. Planning alternative organizational frameworks for a large scale educational telecommunications system served by fixed/broadcast satellites

    Science.gov (United States)

    Walkmeyer, J.

    1973-01-01

    This memorandum explores a host of considerations meriting attention from those who are concerned with designing organizational structures for development and control of a large scale educational telecommunications system using satellites. Part of a broader investigation at Washington University into the potential uses of fixed/broadcast satellites in U.S. education, this study lays ground work for a later effort to spell out a small number of hypothetical organizational blueprints for such a system and for assessment of potential short and long term impacts. The memorandum consists of two main parts. Part A deals with subjects of system-wide concern, while Part B deals with matters related to specific system components.

  10. GPS-based satellite tracking system for precise positioning

    Science.gov (United States)

    Yunck, T. P.; Melbourne, W. G.; Thornton, C. L.

    1985-01-01

    NASA is developing a Global Positioning System (GPS) based measurement system to provide precise determination of earth satellite orbits, geodetic baselines, ionospheric electron content, and clock offsets between worldwide tracking sites. The system will employ variations on the differential GPS observing technique and will use a network of nine fixed ground terminals. Satellite applications will require either a GPS flight receiver or an on-board GPS beacon. Operation of the system for all but satellite tracking will begin by 1988. The first major satellite application will be a demonstration of decimeter accuracy in determining the altitude of TOPEX in the early 1990's. By then the system is expected to yield long-baseline accuracies of a few centimeters and instantaneous time synchronization to 1 ns.

  11. Augmentation of Quasi-Zenith Satellite Positioning System Using High Altitude Platforms Systems (HAPS)

    Science.gov (United States)

    Tsujii, Toshiaki; Harigae, Masatoshi

    Recently, some feasibility studies on a regional positioning system using the quasi-zenith satellites and the geostationary satellites have been conducted in Japan. However, the geometry of this system seems to be unsatisfactory in terms of the positioning accuracy in north-south direction. In this paper, an augmented satellite positioning system by the High Altitude Platform Systems (HAPS) is proposed since the flexibility of the HAPS location is effective to improve the geometry of satellite positioning system. The improved positioning performance of the augmented system is also demonstrated.

  12. A Space Based Solar Power Satellite System

    Science.gov (United States)

    Engel, J. M.; Polling, D.; Ustamujic, F.; Yaldiz, R.; et al.

    2002-01-01

    (SPoTS) supplying other satellites with energy. SPoTS is due to be commercially viable and operative in 2020. of Technology designed the SPoTS during a full-time design period of six weeks as a third year final project. The team, organized according to the principles of systems engineering, first conducted a literature study on space wireless energy transfer to select the most suitable candidates for use on the SPoTS. After that, several different system concepts have been generated and evaluated, the most promising concept being worked out in greater detail. km altitude. Each SPoTS satellite has a 50m diameter inflatable solar collector that focuses all received sunlight. Then, the received sunlight is further redirected by means of four pointing mirrors toward four individual customer satellites. A market-analysis study showed, that providing power to geo-stationary communication satellites during their eclipse would be most beneficial. At arrival at geo-stationary orbit, the focused beam has expended to such an extent that its density equals one solar flux. This means that customer satellites can continue to use their regular solar arrays during their eclipse for power generation, resulting in a satellite battery mass reduction. the customer satellites in geo-stationary orbit, the transmitted energy beams needs to be pointed with very high accuracy. Computations showed that for this degree of accuracy, sensors are needed, which are not mainstream nowadays. Therefore further research must be conducted in this area in order to make these high-accuracy-pointing systems commercially attractive for use on the SPoTS satellites around 2020. Total 20-year system lifetime cost for 18 SPoT satellites are estimated at approximately USD 6 billion [FY2001]. In order to compete with traditional battery-based satellite power systems or possible ground based wireless power transfer systems the price per kWh for the customer must be significantly lower than the present one

  13. About Nano-JASMINE Satellite System and Project Status

    Science.gov (United States)

    Sako, Nobutada

    Intelligent Space Systems Laboratory, The University of Tokyo (ISSL) and National Astronomical Observatory of Japan (NAO) have been developing a small infrared astrometry satellite named “Nano-JASMINE”. The satellite size is about 50cm cubic and 20kg, which plays a pre-cursor role of JASMINE Project which is programmed by NAO and JAXA. In addition, since there has been only one astrometry satellite HIPPARCOS by ESA in the past, Nano-JASMINE is also expected to achieve certain scientific results in the field of astrometry. In this project, ISSL aims to develop new advanced small satellite bus system whose performance is comparable to that of 100-500kg sized satellites, including attitude stability of 1 arc-second and thermal stability of the mission subsystem of 1 mK. This paper overviews the Nano-JASMINE bus system with emphasis on attitude and thermal control systems.

  14. Satellite Sanitary Systems in Kampala, Uganda

    NARCIS (Netherlands)

    Letema, S.C.; Vliet, van B.J.M.; Lier, van J.B.

    2012-01-01

    Satellite sewage collection and treatment systems have been independently developed and managed in East African cities outside the centrally planned and sewered areas. A satellite approach is a promising provisioning option parallel to public sewerage for middle- and high-income residential areas,

  15. Satellite Sanitary Systems in Kampala, Uganda

    NARCIS (Netherlands)

    Letema, S.; Van Vliet, B.; Van Lier, J.B.

    2011-01-01

    Satellite sewage collection and treatment systems have been independently developed and managed in East African cities outside the centrally planned and sewered areas. A satellite approach is a promising provisioning option parallel to public sewerage for middle- and high-income residential areas,

  16. 22 CFR 123.27 - Special licensing regime for export to U.S. allies of commercial communications satellite...

    Science.gov (United States)

    2010-04-01

    .... allies of commercial communications satellite components, systems, parts, accessories, attachments and... export to U.S. allies of commercial communications satellite components, systems, parts, accessories... associated technical data for commercial communications satellites, and who are so registered with the...

  17. Study of chaos in chaotic satellite systems

    Indian Academy of Sciences (India)

    Lyapunov exponents are estimated. From these studies, chaosin satellite system has been established. Solution of equations of motion of the satellite system are drawn in the form of three-dimensional, two-dimensional and time series phase portraits. Phase portraits and time series display the chaotic nature of the ...

  18. Advanced domestic digital satellite communications systems experiments

    Science.gov (United States)

    Iso, A.; Izumisawa, T.; Ishida, N.

    1984-02-01

    The characteristics of advanced digital transmission systems were measured, using newly developed small earth stations and a K-band and C-band communication satellite. Satellite link performance for data, facsimile, video and packet switching information transmission at bit rates ranging from 6.4 kbit/s to 6.3 Mbit/s have been confirmed, using a small K-band earth station and a demand-assignment time division multiple access system. A low-capacity omni-use C-band terminal experiment has verified a telephone channel transmission performance by spread-spectrum multiple access. Single point to multipoint transmission characteristics of the 64 kbit/s data signals from the computer center were tested, using a receive-only 4 GHz earth terminal. Basic satellite link performance was confirmed under clear-sky conditions. Precise satellite orbit and attitude keeping experiments were carried out to obtain precise satellite antenna pointing accuracy for development of K-band earth stations that do not require satellite tracking equipment. Precise station keeping accuracy of 0.02 degrees was obtained.

  19. Influence of space radiation on satellite magnetics

    Energy Technology Data Exchange (ETDEWEB)

    Mukherjee, M K [Vikram Sarabhai Space Centre, Trivandrum (India)

    1978-12-01

    The magnetic circuits and devices used in space-borne systems such as satellites are naturally exposed to space environments having among others, hazardous radiations. Such radiations, in turn, may be of solar, cosmic or nuclear origin depending upon the altitude as well as the propulsion/power systems involving mini atomic reactors when utilised. The influence of such radiations on the magnetic components of the satellite have been analysed revealing the critical hazards in the latter circuits system. Remedial measures by appropriate shielding, etc. necessary for maintaining optimum performance of the satellite have been discussed.

  20. Protocols for second-generation business satellites systems

    Science.gov (United States)

    Evans, B. G.; Coakley, F. P.; El Amin, M. H. M.

    The paper discusses the nature and mix of traffic in business satellite systems and describes the limitations on the protocol imposed by the differing impairments of speech, video, and data. A simple TDMA system protocol is presented which meets the requirements of mixed-service operation. The efficiency of the protocol together with implications for allocation, scheduling and synchronisation are discussed. Future-generation satellites will probably use on-board processing. Some initial work on protocols that make use of on-board processing and the implications for satellite and earth-station equipment are presented.

  1. Joint Polar Satellite System (JPSS) System Architecture: Suomi-NPP to the Future

    Science.gov (United States)

    Furgerson, J.; Layns, A.; Feeley, J. H.; Griffin, A.; Trumbower, G.

    2014-12-01

    The National Oceanic and Atmospheric Administration (NOAA) is acquiring the next-generation weather and environmental satellite system, named the Joint Polar Satellite System (JPSS). NOAA has overall responsibility for the system including funding and requirements while the National Aeronautics and Space Administration (NASA) serves as the acquisition and development agent. The Suomi National Polar-orbiting Partnership (S-NPP) satellite was launched on 28 October, 2011, and is a pathfinder for JPSS and provides continuity for the NASA Earth Observation System and the NOAA Polar-orbiting Operational Environmental Satellite (POES) system. S-NPP and the follow-on JPSS satellites will operate in the 1330 LTAN orbit. JPSS-1 is scheduled to launch in early 2017. NASA is developing the Common Ground System which will process JPSS data and has the flexibility to process data from other satellites. This poster will provide a top level status update of the program, as well as an overview of the JPSS system architecture. The space segment carries a suite of sensors that collect meteorological, oceanographic, and climatological observations of the earth and atmosphere. The system design allows centralized mission management and delivers high quality environmental products to military, civil and scientific users through a Command, Control, and Communication Segment (C3S). The data processing for S-NPP/JPSS is accomplished through an Interface Data Processing Segment (IDPS)/Field Terminal Segment (FTS) that processes S-NPP/JPSS satellite data to provide environmental data products to U.S. and international partners as well as remote terminal users throughout the world.

  2. Meteorological satellite systems

    CERN Document Server

    Tan, Su-Yin

    2014-01-01

    “Meteorological Satellite Systems” is a primer on weather satellites and their Earth applications. This book reviews historic developments and recent technological advancements in GEO and polar orbiting meteorological satellites. It explores the evolution of these remote sensing technologies and their capabilities to monitor short- and long-term changes in weather patterns in response to climate change. Satellites developed by various countries, such as U.S. meteorological satellites, EUMETSAT, and Russian, Chinese, Japanese and Indian satellite platforms are reviewed. This book also discusses international efforts to coordinate meteorological remote sensing data collection and sharing. This title provides a ready and quick reference for information about meteorological satellites. It serves as a useful tool for a broad audience that includes students, academics, private consultants, engineers, scientists, and teachers.

  3. Miniaturization of components and systems for space using MEMS-technology

    Science.gov (United States)

    Grönland, Tor-Arne; Rangsten, Pelle; Nese, Martin; Lang, Martin

    2007-06-01

    Development of MEMS-based (micro electro mechanical system) components and subsystems for space applications has been pursued by various research groups and organizations around the world for at least two decades. The main driver for developing MEMS-based components for space is the miniaturization that can be achieved. Miniaturization can not only save orders of magnitude in mass and volume of individual components, but it can also allow increased redundancy, and enable novel spacecraft designs and mission scenarios. However, the commercial breakthrough of MEMS has not occurred within the space business as it has within other branches such as the IT/telecom or automotive industries, or as it has in biotech or life science applications. A main explanation to this is the highly conservative attitude to new technology within the space community. This conservatism is in many senses motivated by a very low risk acceptance in the few and costly space projects that actually ends with a space flight. To overcome this threshold there is a strong need for flight opportunities where reasonable risks can be accepted. Currently there are a few flight opportunities allowing extensive use of new technology in space, but one of the exceptions is the PRISMA program. PRISMA is an international (Sweden, Germany, France, Denmark, Norway, Greece) technology demonstration program with focus on rendezvous and formation flying. It is a two satellite LEO mission with a launch scheduled for the first half of 2009. On PRISMA, a number of novel technologies e.g. RF metrology sensor for Darwin, autonomous formation flying based on GPS and vision-based sensors, ADN-based "green propulsion" will be demonstrated in space for the first time. One of the satellites will also have a miniaturized propulsion system onboard based on MEMS-technology. This novel propulsion system includes two microthruster modules, each including four thrusters with micro- to milli-Newton thrust capability. The novelty

  4. Experimental study on the precise orbit determination of the BeiDou navigation satellite system.

    Science.gov (United States)

    He, Lina; Ge, Maorong; Wang, Jiexian; Wickert, Jens; Schuh, Harald

    2013-03-01

    The regional service of the Chinese BeiDou satellite navigation system is now in operation with a constellation including five Geostationary Earth Orbit satellites (GEO), five Inclined Geosynchronous Orbit (IGSO) satellites and four Medium Earth Orbit (MEO) satellites. Besides the standard positioning service with positioning accuracy of about 10 m, both precise relative positioning and precise point positioning are already demonstrated. As is well known, precise orbit and clock determination is essential in enhancing precise positioning services. To improve the satellite orbits of the BeiDou regional system, we concentrate on the impact of the tracking geometry and the involvement of MEOs, and on the effect of integer ambiguity resolution as well. About seven weeks of data collected at the BeiDou Experimental Test Service (BETS) network is employed in this experimental study. Several tracking scenarios are defined, various processing schemata are designed and carried out; and then, the estimates are compared and analyzed in detail. The results show that GEO orbits, especially the along-track component, can be significantly improved by extending the tracking network in China along longitude direction, whereas IGSOs gain more improvement if the tracking network extends in latitude. The involvement of MEOs and ambiguity-fixing also make the orbits better.

  5. Joint Polar Satellite System (JPSS) Common Ground System (CGS) Technical Performance Measures of the Block 2 Architecture

    Science.gov (United States)

    Grant, K. D.; Panas, M.

    2016-12-01

    NOAA and NASA are jointly acquiring the next-generation civilian weather satellite system: the Joint Polar Satellite System (JPSS). JPSS replaced the afternoon orbit component and ground processing of NOAA's old POES system. JPSS satellites carry sensors that collect meteorological, oceanographic, climatological, and solar-geophysical observations of the earth, atmosphere, and space. The ground processing system for JPSS is known as the JPSS Common Ground System (JPSS CGS). Developed and maintained by Raytheon Intelligence, Information and Services (IIS), the CGS is a globally distributed, multi-mission system serving NOAA, NASA and their national and international partners. The CGS has demonstrated its scalability and flexibility to incorporate multiple missions efficiently and with minimal cost, schedule and risk, while strengthening global partnerships in weather and environmental monitoring. The CGS architecture has been upgraded to Block 2.0 to satisfy several key objectives, including: "operationalizing" the first satellite, Suomi NPP, which originally was a risk reduction mission; leveraging lessons learned in multi-mission support, taking advantage of newer, more reliable and efficient technologies and satisfying constraints due of the continually evolving budgetary environment. To ensure the CGS meets these needs, we have developed 48 Technical Performance Measures (TPMs) across 9 categories: Data Availability, Data Latency, Operational Availability, Margin, Scalability, Situational Awareness, Transition (between environments and sites), WAN Efficiency, and Data Recovery Processing. This paper will provide an overview of the CGS Block 2.0 architecture, with particular focus on the 9 TPM categories listed above. We will describe how we ensure the deployed architecture meets these TPMs to satisfy our multi-mission objectives with the deployment of Block 2.0.

  6. SOVCAN STAR: An international satellite system

    Science.gov (United States)

    Skatchkov, Valery A.

    SOVCAN STAR is a Russian-Canadian cooperative venture company formed to manufacture, test, launch and operate a Ku-band satellite system. Drawing on the more than twenty years communications satellite experience of the founding companies, the SOVCAN STAR satellites are being designed to be competitive and cost effective. They will be equipped with 24 transponders and four steerable antennas. The design allows the operators to switch individual transponders between the various antenna coverage beams. These satellites will offer a high degree of operational flexibility and performance. The SOVCAN STAR strategy is to develop a network of satellites in parallel with the growth and evolution of the traffic requirements. Such an approach minimizes the technical, schedule and program risks while at the same time significantly reduces the financial exposure. The first SOVCAN STAR satellite will be commissioned in 1996 and operated at 14 deg W. The beams will be aligned to North America and Europe offering International service between Canada, the Eastern U.S.A., Europe, Russia and the Western C.I.S. Republics. The second SOVCAN STAR satellite will be commissioned a year later and operated at 145 deg E. This satellite will cover the Western Pacific Ocean, Eastern Asia and Australasia.

  7. Satellite Application for Disaster Management Information Systems

    Science.gov (United States)

    Okpanachi, George

    Abstract Satellites are becoming increasingly vital to modern day disaster management activities. Earth observation (EO) satellites provide images at various wavelengths that assist rapid-mapping in all phases of the disaster management cycle: mitigation of potential risks in a given area, preparedness for eventual disasters, immediate response to a disaster event, and the recovery/reconstruction efforts follo wing it. Global navigation satellite systems (GNSS) such as the Global Positioning System (GPS) assist all the phases by providing precise location and navigation data, helping manage land and infrastructures, and aiding rescue crews coordinate their search efforts. Effective disaster management is a complex problem, because it involves many parameters, which are usually not easy to measure and even identify: Analysis of current situation, planning, optimum resource management, coordination, controlling and monitoring current activities and making quick and correct decisions are only some of these parameters, whose complete list is very long. Disaster management information systems (DMIS) assist disaster management to analyse the situation better, make decisions and suggest further actions following the emergency plans. This requires not only fast and thorough processing and optimization abilities, but also real-time data provided to the DMIS. The need of DMIS for disaster’s real-time data can be satisfied by small satellites data utilization. Small satellites can provide up-to-data, plus a better media to transfer data. This paper suggests a rationale and a framework for utilization of small Satellite data by DMIS. DMIS should be used ‘’before’’, ‘’during’’ and ‘’after’’ the disasters. Data provided by the Small Satellites are almost crucial in any period of the disasters, because early warning can save lives, and satellite data may help to identify disasters before they occur. The paper also presents’ ‘when’’,

  8. Design of tracking mount and controller for mobile satellite laser ranging system

    Science.gov (United States)

    Park, Cheol Hoon; Son, Young Su; Kim, Byung In; Ham, Sang Young; Lee, Sung Whee; Lim, Hyung Chul

    2012-01-01

    In this study, we have proposed and implemented a design for the tracking mount and controller of the ARGO-M (Accurate Ranging system for Geodetic Observation - Mobile) which is a mobile satellite laser ranging (SLR) system developed by the Korea Astronomy and Space Science Institute (KASI) and Korea Institute of Machinery and Materials (KIMM). The tracking mount comprises a few core components such as bearings, driving motors and encoders. These components were selected as per the technical specifications for the tracking mount of the ARGO-M. A three-dimensional model of the tracking mount was designed. The frequency analysis of the model predicted that the first natural frequency of the designed tracking mount was high enough. The tracking controller is simulated using MATLAB/xPC Target to achieve the required pointing and tracking accuracy. In order to evaluate the system repeatability and tracking accuracy of the tracking mount, a prototype of the ARGO-M was fabricated, and repeatability tests were carried out using a laser interferometer. Tracking tests were conducted using the trajectories of low earth orbit (LEO) and high earth orbit (HEO) satellites. Based on the test results, it was confirmed that the prototype of the tracking mount and controller of the ARGO-M could achieve the required repeatability along with a tracking accuracy of less than 1 arcsec.

  9. Discussions on attitude determination and control system for micro/nano/pico-satellites considering survivability based on Hodoyoshi-3 and 4 experiences

    Science.gov (United States)

    Nakasuka, Shinichi; Miyata, Kikuko; Tsuruda, Yoshihiro; Aoyanagi, Yoshihide; Matsumoto, Takeshi

    2018-04-01

    The recent advancement of micro/nano/pico-satellites technologies encourages many universities to develop three axis stabilized satellites. As three axis stabilization is high level technology requiring the proper functioning of various sensors, actuators and control software, many early satellites failed in their initial operation phase because of shortage of solar power generation or inability to realize the initial step of missions because of unexpected attitude control system performance. These results come from failure to design the satellite attitude determination and control system (ADCS) appropriately and not considering "satellite survivability." ADCS should be designed such that even if some sensors or actuators cannot work as expected, the satellite can survive and carry out some of its missions, even if not full. This paper discusses how to realize ADCS while taking satellite survivability into account, based on our experiences of design and in-orbit operations of Hodoyoshi-3 and 4 satellites launched in 2014, which suffered from various component anomalies but could complete their missions.

  10. Modeling of discharge-triggered electric field redistribution on the interior components of a satellite

    International Nuclear Information System (INIS)

    Varga, L.; Horvath, E.B.

    1999-01-01

    This work examines an electrostatic charging/discharging cycle of a populated circuit board inside an equipment housing of a satellite at GEO. Component potentials and electric field strengths are examined before and after a common ground discharge event. Field reversal after the discharge suggests that favourable conditions exist for charge dissipation from dielectrics. (authors)

  11. Advantages of Hybrid Global Navigation Satellite Systems

    Directory of Open Access Journals (Sweden)

    Asim Bilajbegović

    2007-05-01

    Full Text Available In a decision-making situation, what kind of GPS equipment to purchase, one always has a dilemma, tobuy hybrid (GPS+GLONASS or only GPS receivers? In the case of completeness of the GLONASS satellite system, this dilemma probably would not have existed. The answer to this dilemma is given in the present paper, but for the constellation of the GLONASS satellites in summer 2006 (14 satellites operational. Due to the short operational period of these satellites (for example GLONASS-M, 5 years, and not launching new ones, at this moment (February 25, 2007, only 10 satellites are operational. For the sake of research and giving answers to these questions, about 252 RTK measurements have been done using (GPS and GNSS receivers, on points with different obstructions of horizon. Besides that, initialisation time has been investigated for both systems from about 480 measurements, using rover's antenna with metal cover, during a time interval of 0.5, 2 and 5 seconds. Moreover, accuracy, firmware declared accuracy and redundancy of GPS and GNSS RTK measurements have been investigating.  

  12. Satellite data transferring subsystem based on system 'Materik'

    International Nuclear Information System (INIS)

    Belogub, V.P.; Kal'schikov, I.B.; Kirillov, Yu.K.; Kulikov, V.N.; Shumov, A.N.

    1998-01-01

    One of the most important indicators of successful function of the International Monitoring System is existence of highly reliable communication channels providing transfer data from observation points in a real time scales. Up to present, the most communication channels were provided with existing VF-channels (Voice Frequency) that are relatively low-speedy in transfer process (4.8-9.6 kbit/sec.). In addition, reliability of the channels is insufficient because of many retransmission points. In connection with it, the special control service of MD RF decided to improve the information transfer system (ITS) installed between the observation point and National Data Center (Dubna-city). The improvement of the ITS comprises replacement of wire lines of VF-channels with satellite ones within the framework of the computer-aided satellite communication system (CASCS) M aterik . Besides it was considered to be expedient that the satellite system of data transfer from NPP to the Crisis Center of 'ROSENERGOATOM' Concern would be combined with CASCS M aterik , using the facilities of the Central Earth Station of Satellite Communication (CESSC) in Dubna. Such approach to the creation of Satellite communication has advantages in solution of radiation safety and global monitoring issues

  13. TELE-X and its role in a future operational Nordic satellite system

    Science.gov (United States)

    Anderson, Lars

    In the middle of 1987 it is planned to launch TELE-X, the first Nordic telecommunications satellite. The Swedish-Norwegian company NOTELSAT (Nordic Telecommunications Satellite Corporation) will be responsible for the operation of the TELE-X system. Via the experimental TELE-X satellite the Nordic countries will get access to direct broadcasting of two TV-programs and at least four digital sound programs in stereo by use of two transponders in the 12.2 to 12.5 GHz band. The programs are planned to be composed of nationally produced programs in Norway. Sweden and Finland. By means of distributing these programs via satellite they will reach up to 4 times as many viewers and listernes as presently in the terrestrial national systems. The basic motivations for exchanging programs are to strengthen the cultural ties between the Nordic countries and to give the individuals more freedom in the choice of programs. Another goal is to give the public a better sound and picture quality than can be achieved today. These quality improvements shall be met by using small receiver parabolas of less than 1 m in diameter. Contributing to the improved quality is the choice of the C-MAC (Multiplexed Analoque Components) modulation system. TELE-X is a multipurpose satellite which besides the two TV-transponders will have two transponders for data/video communication in the frequency band 12.5 to 12.75 GHz. The choice of system for data and video is based on the philosophy of thin-route traffic between small and low cost earth stations (1.8 to 2.5 m) placed directly at the subscribers premises. The system includes an advanced Data/Video Control Station which automatically connects the traffic stations with standarized transmission speeds up to 2 Mbps. The system which is based on the SCPC/DAMA method can be expanded up to 5000 traffic stations. Numerous data/video applications will be investigated in the initial experimental phase of the project which also will be used for market

  14. Computer-Aided Communication Satellite System Analysis and Optimization.

    Science.gov (United States)

    Stagl, Thomas W.; And Others

    Various published computer programs for fixed/broadcast communication satellite system synthesis and optimization are discussed. The rationale for selecting General Dynamics/Convair's Satellite Telecommunication Analysis and Modeling Program (STAMP) in modified form to aid in the system costing and sensitivity analysis work in the Program on…

  15. Tethered Satellite System Contingency Investigation Board

    Science.gov (United States)

    1992-11-01

    The Tethered Satellite System (TSS-1) was launched aboard the Space Shuttle Atlantis (STS-46) on July 31, 1992. During the attempted on-orbit operations, the Tethered Satellite System failed to deploy successfully beyond 256 meters. The satellite was retrieved successfully and was returned on August 6, 1992. The National Aeronautics and Space Administration (NASA) Associate Administrator for Space Flight formed the Tethered Satellite System (TSS-1) Contingency Investigation Board on August 12, 1992. The TSS-1 Contingency Investigation Board was asked to review the anomalies which occurred, to determine the probable cause, and to recommend corrective measures to prevent recurrence. The board was supported by the TSS Systems Working group as identified in MSFC-TSS-11-90, 'Tethered Satellite System (TSS) Contingency Plan'. The board identified five anomalies for investigation: initial failure to retract the U2 umbilical; initial failure to flyaway; unplanned tether deployment stop at 179 meters; unplanned tether deployment stop at 256 meters; and failure to move tether in either direction at 224 meters. Initial observations of the returned flight hardware revealed evidence of mechanical interference by a bolt with the level wind mechanism travel as well as a helical shaped wrap of tether which indicated that the tether had been unwound from the reel beyond the travel by the level wind mechanism. Examination of the detailed mission events from flight data and mission logs related to the initial failure to flyaway and the failure to move in either direction at 224 meters, together with known preflight concerns regarding slack tether, focused the assessment of these anomalies on the upper tether control mechanism. After the second meeting, the board requested the working group to complete and validate a detailed integrated mission sequence to focus the fault tree analysis on a stuck U2 umbilical, level wind mechanical interference, and slack tether in upper tether

  16. Grand Challenges in Space Technology: Distributed Satellite Systems

    National Research Council Canada - National Science Library

    Miller, David

    2001-01-01

    The MITIAFRL Distributed Satellite Systems program examines the motivation, analysis and development of technology associated with the distribution of assets and functionality over a number of cooperating satellites...

  17. Networks for Autonomous Formation Flying Satellite Systems

    Science.gov (United States)

    Knoblock, Eric J.; Konangi, Vijay K.; Wallett, Thomas M.; Bhasin, Kul B.

    2001-01-01

    The performance of three communications networks to support autonomous multi-spacecraft formation flying systems is presented. All systems are comprised of a ten-satellite formation arranged in a star topology, with one of the satellites designated as the central or "mother ship." All data is routed through the mother ship to the terrestrial network. The first system uses a TCP/lP over ATM protocol architecture within the formation the second system uses the IEEE 802.11 protocol architecture within the formation and the last system uses both of the previous architectures with a constellation of geosynchronous satellites serving as an intermediate point-of-contact between the formation and the terrestrial network. The simulations consist of file transfers using either the File Transfer Protocol (FTP) or the Simple Automatic File Exchange (SAFE) Protocol. The results compare the IF queuing delay, and IP processing delay at the mother ship as well as application-level round-trip time for both systems, In all cases, using IEEE 802.11 within the formation yields less delay. Also, the throughput exhibited by SAFE is better than FTP.

  18. Cladistical Analysis of the Jovian and Saturnian Satellite Systems

    Science.gov (United States)

    Holt, Timothy. R.; Brown, Adrian. J.; Nesvorný, David; Horner, Jonathan; Carter, Brad

    2018-06-01

    Jupiter and Saturn each have complex systems of satellites and rings. These satellites can be classified into dynamical groups, implying similar formation scenarios. Recently, a larger number of additional irregular satellites have been discovered around both gas giants that have yet to be classified. The aim of this paper is to examine the relationships between the satellites and rings of the gas giants, using an analytical technique called cladistics. Cladistics is traditionally used to examine relationships between living organisms, the “tree of life.” In this work, we perform the first cladistical study of objects in a planetary science context. Our method uses the orbital, physical, and compositional characteristics of satellites to classify the objects in the Jovian and Saturnian systems. We find that the major relationships between the satellites in the two systems, such as families, as presented in previous studies, are broadly preserved. In addition, based on our analysis of the Jovian system, we identify a new retrograde irregular family, the Iocaste family, and suggest that the Phoebe family of the Saturnian system can be further divided into two subfamilies. We also propose that the Saturnian irregular families be renamed, to be consistent with the convention used in Jovian families. Using cladistics, we are also able to assign the new unclassified irregular satellites into families. Taken together, the results of this study demonstrate the potential use of the cladistical technique in the investigation of relationships between orbital bodies.

  19. Transmission media appropriate laser-microwave solar power satellite system

    Science.gov (United States)

    Schäfer, C. A.; Gray, D.

    2012-10-01

    As a solution to the most critical problems with Solar power Satellite (SPS) development, a system is proposed which uses laser power transmission in space to a receiver high in the atmosphere that relays the power to Earth by either cable or microwave power transmission. It has been shown in the past that such hybrid systems have the advantages of a reduction in the mass of equipment required in geostationary orbit and avoidance of radio frequency interference with other satellites and terrestrial communications systems. The advantage over a purely laser power beam SPS is that atmospheric absorption is avoided and outages due to clouds and precipitation will not occur, allowing for deployment in the equatorial zone and guaranteeing year round operation. This proposal is supported by brief literature surveys and theoretical calculations to estimate crucial parameters in this paper. In relation to this concept, we build on a recently proposed method to collect solar energy by a tethered balloon at high altitude because it enables a low-cost start for bringing the first Watt of power to Earth giving some quick return on investment, which is desperately missing in the traditional SPS concept. To tackle the significant problem of GW-class SPSs of high launch cost per kg mass brought to space, this paper introduces a concept which aims to achieve a superior power over mass ratio compared to traditional satellite designs by the use of thin-film solar cells combined with optical fibres for power delivery. To minimise the aperture sizes and cost of the transmitting and receiving components of the satellite and high altitude receiver, closed-loop laser beam pointing and target tracking is crucial for pointing a laser beam onto a target area that is of similar size to the beam's diameter. A recently developed technique based on optical phase conjugation is introduced and its applicability for maintaining power transmission between the satellite and high altitude receiver is

  20. Satellite Telemetry and Command using Big LEO Mobile Telecommunications Systems

    Science.gov (United States)

    Huegel, Fred

    1998-01-01

    Various issues associated with satellite telemetry and command using Big LEO mobile telecommunications systems are presented in viewgraph form. Specific topics include: 1) Commercial Satellite system overviews: Globalstar, ICO, and Iridium; 2) System capabilities and cost reduction; 3) Satellite constellations and contact limitations; 4) Capabilities of Globalstar, ICO and Iridium with emphasis on Globalstar; and 5) Flight transceiver issues and security.

  1. Information content in reflected global navigation satellite system signals

    DEFF Research Database (Denmark)

    Høeg, Per; Carlstrom, Anders

    2011-01-01

    The direct signals from satellites in global satellite navigation satellites systems (GNSS) as, GPS, GLONASS and GALILEO, constitute the primary source for positioning, navigation and timing from space. But also the reflected GNSS signals contain an important information content of signal travel...

  2. Advanced Deployable Structural Systems for Small Satellites

    Science.gov (United States)

    Belvin, W. Keith; Straubel, Marco; Wilkie, W. Keats; Zander, Martin E.; Fernandez, Juan M.; Hillebrandt, Martin F.

    2016-01-01

    One of the key challenges for small satellites is packaging and reliable deployment of structural booms and arrays used for power, communication, and scientific instruments. The lack of reliable and efficient boom and membrane deployment concepts for small satellites is addressed in this work through a collaborative project between NASA and DLR. The paper provides a state of the art overview on existing spacecraft deployable appendages, the special requirements for small satellites, and initial concepts for deployable booms and arrays needed for various small satellite applications. The goal is to enhance deployable boom predictability and ground testability, develop designs that are tolerant of manufacturing imperfections, and incorporate simple and reliable deployment systems.

  3. Advanced mobile satellite communications system using Ka and MM-wave bands in Japan's R and D satellite project

    Science.gov (United States)

    Isobe, Shunkichi; Ohmori, Shingo; Hamamoto, Naokazu; Yamamoto, Minoru

    1991-01-01

    Communications Research Laboratory (CRL) studied an advanced mobile satellite communications system using Ka and millimeter-wave bands in the R&D Satellite project. The project started in 1990 and the satellite will be launched in 1997. On-board multi-beam interconnecting is one of basic functions to realize one-hop connection among Very Small Aperture Terminals (VSATs), mobile, and hand-held terminals in future mobile satellite communications system. An Intermediate Frequency (IF) filter bank and regenerative transponder are suitable for this function. The transponder configuration of an advanced mobile communications mission of the R&D Satellite for experiment is shown. High power transmitters of Ka and millimeter-wave bands, a 3x3 IF filter band and Single Channel Per Carrier/Time Division Multiplexing (SCPC/TDM) regenerative MODEMS, which will be boarded on the R&D Satellite, are being developed for the purpose of studying the feasibility of advanced mobile communications system.

  4. Advanced Communications Technology Satellite (ACTS) and potential system applications

    Science.gov (United States)

    Wright, David L.; Balombin, Joseph R.; Sohn, Philip Y.

    1990-01-01

    A description of the advanced communications technology satellite (ACTS) system is given with special emphasis on the communication characteristics. Potential satellite communications scenarios, including future operational ACTS-like satellite systems, are discussed. The description of the ACTS system updates previously published ACTS system references. Detailed information on items such as experimental ground stations is presented. The potential services can be generically described as voice, video, and data services. The implementation of these services on future operational ACTS-like systems can lead to unique quality, flexibility, and capacity characteristics at lower service costs. The specific service applications that could be supported range from low to high data rates and include both domestic and international applications.

  5. Reusable Reentry Satellite (RRS): Propulsion system trade study

    Science.gov (United States)

    1990-01-01

    The purpose of the Reusable Reentry Satellite (RRS) Propulsion System Trade Study described in this summary report was to investigate various propulsion options available for incorporation on the RRS and to select the option best suited for RRS application. The design requirements for the RRS propulsion system were driven by the total impulse requirements necessary to operate within the performance envelope specified in the RRS System Requirements Documents. These requirements were incorporated within the Design Reference Missions (DRM's) identified for use in this and other subsystem trade studies. This study investigated the following propulsion systems: solid rocket, monopropellant, bipropellant (monomethyl hydrazine and nitrogen tetroxide or MMH/NTO), dual-mode bipropellant (hydrazine and nitrogen tetroxide or N2H4/NTO), liquid oxygen and liquid hydrogen (LO2/LH2), and an advanced design propulsion system using SDI-developed components. A liquid monopropellant blowdown propulsion system was found to be best suited for meeting the RRS requirements and is recommended as the baseline system. This system was chosen because it is the simplest of all investigated, has the fewest components, and is the most cost effective. The monopropellant system meets all RRS performance requirements and has the capability to provide a very accurate deorbit burn which minimizes reentry dispersions. In addition, no new hardware qualification is required for a monopropellant system. Although the bipropellant systems offered some weight savings capability for missions requiring large deorbit velocities, the advantage of a lower mass system only applies if the total vehicle design can be reduced to allow a cheaper launch vehicle to be used. At the time of this trade study, the overall RRS weight budget and launch vehicle selection were not being driven by the propulsion system selection. Thus, the added cost and complexity of more advanced systems did not warrant application.

  6. Engineering satellite-based navigation and timing global navigation satellite systems, signals, and receivers

    CERN Document Server

    Betz, J

    2016-01-01

    This book describes the design and performance analysis of satnav systems, signals, and receivers. It also provides succinct descriptions and comparisons of all the world’s satnav systems. Its comprehensive and logical structure addresses all satnav signals and systems in operation and being developed. Engineering Satellite-Based Navigation and Timing: Global Navigation Satellite Systems, Signals, and Receivers provides the technical foundation for designing and analyzing satnav signals, systems, and receivers. Its contents and structure address all satnav systems and signals: legacy, modernized, and new. It combines qualitative information with detailed techniques and analyses, providing a comprehensive set of insights and engineering tools for this complex multidisciplinary field. Part I describes system and signal engineering including orbital mechanics and constellation design, signal design principles and underlying considerations, link budgets, qua tifying receiver performance in interference, and e...

  7. Tracking and data relay satellite system (TDRSS) capabilities

    Science.gov (United States)

    Spearing, R. E.

    1985-10-01

    The Tracking and Data Relay Satellite System (TDRSS) is the latest implementation to tracking and data acquisition network for near-earth orbiting satellite support designed to meet the requirements of the current and projected (to the year 2000) satellite user community. The TDRSS consists of a space segment (SS) and a ground segment (GS) that fit within NASA's Space Network (SN) complex controlled at the Goddard Space Flight Center. The SS currently employs a single satellite, TDRS-1, with two additional satellites to be deployed in January 1986 and July 1986. The GS contains the communications and equipment required to manage the three TDR satellites and to transmit and receive information to and from TDRSS user satellites. Diagrams and tables illustrating the TDRSS signal characteristics, the situation of TDRSS within the SN, the SN operations and element interrelationships, as well as future plans for new missions are included.

  8. Anomaly Monitoring Method for Key Components of Satellite

    Directory of Open Access Journals (Sweden)

    Jian Peng

    2014-01-01

    Full Text Available This paper presented a fault diagnosis method for key components of satellite, called Anomaly Monitoring Method (AMM, which is made up of state estimation based on Multivariate State Estimation Techniques (MSET and anomaly detection based on Sequential Probability Ratio Test (SPRT. On the basis of analysis failure of lithium-ion batteries (LIBs, we divided the failure of LIBs into internal failure, external failure, and thermal runaway and selected electrolyte resistance (Re and the charge transfer resistance (Rct as the key parameters of state estimation. Then, through the actual in-orbit telemetry data of the key parameters of LIBs, we obtained the actual residual value (RX and healthy residual value (RL of LIBs based on the state estimation of MSET, and then, through the residual values (RX and RL of LIBs, we detected the anomaly states based on the anomaly detection of SPRT. Lastly, we conducted an example of AMM for LIBs, and, according to the results of AMM, we validated the feasibility and effectiveness of AMM by comparing it with the results of threshold detective method (TDM.

  9. Prevention measures for avoiding unexpected drifting of marine component in recovery equipment of significant metals from sea water. Positioning and monitoring system for marine component and improvement of its positioning accuracy

    Energy Technology Data Exchange (ETDEWEB)

    Tamada, Masao; Kasai, Noboru; Seko, Noriaki; Hasegawa, Shin; Takeda, Hayato; Katakai, Akio; Sugo, Takanobu [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment; Kawabata, Yukiya [Ebara Reseach Co., Ltd., Fujisawa, Kanagawa (Japan); Onuma, Kenji [Mitsubishi Materials Corp., Tokyo (Japan)

    2001-11-01

    Positioning and monitoring system for marine component in recovery equipment of significant metals from seawater with adsorbent was designed and assembled to avoid unexpected drifting accident. This system which was set on float part of the marine component obtains the positioning data from GPS satellites and sends them to Takasaki and Mutsu establishments through satellite communication. In both establishments, the position data were shown in computer displays. As characteristic test for 20 days in the real sea, 262 data were obtained every 2 hours. The twice of the distance root mean square (2DRMS) was 223.7 m. To improve this performance, three new functions were added to the present firmware. There are to raise positioning resolutions in longitude and latitude from 0.001 to 0.00001 degree, to remove the reflection of GPS signal from sea surface, and to average remaining three positioning data after maximum and minimum data were omitted from continuous five positioning data. The improved system shows the 2DRMS positioning of 15.5 m. This performance is enough to prevent marine component from its drifting accident. (author)

  10. ORIGIN OF THE DIFFERENT ARCHITECTURES OF THE JOVIAN AND SATURNIAN SATELLITE SYSTEMS

    International Nuclear Information System (INIS)

    Sasaki, T.; Ida, S.; Stewart, G. R.

    2010-01-01

    The Jovian regular satellite system mainly consists of four Galilean satellites that have similar masses and are trapped in mutual mean-motion resonances except for the outer satellite, Callisto. On the other hand, the Saturnian regular satellite system has only one big icy body, Titan, and a population of much smaller icy moons. We have investigated the origin of these major differences between the Jovian and Saturnian satellite systems by semi-analytically simulating the growth and orbital migration of proto-satellites in an accreting proto-satellite disk. We set up two different disk evolution/structure models that correspond to Jovian and Saturnian systems, by building upon previously developed models of an actively supplied proto-satellite disk, the formation of gas giants, and observations of young stars. Our simulations extend previous models by including the (1) different termination timescales of gas infall onto the proto-satellite disk and (2) different evolution of a cavity in the disk, between the Jovian and Saturnian systems. We have performed Monte Carlo simulations and have shown that in the case of the Jovian systems, four to five similar-mass satellites are likely to remain trapped in mean-motion resonances. This orbital configuration is formed by type I migration, temporal stopping of the migration near the disk inner edge, and quick truncation of gas infall caused by Jupiter opening a gap in the solar nebula. The Saturnian systems tend to end up with one dominant body in the outer regions caused by the slower decay of gas infall associated with global depletion of the solar nebula. The total mass and compositional zoning of the predicted Jovian and Saturnian satellite systems are consistent with the observed satellite systems.

  11. Statistics of Shared Components in Complex Component Systems

    Science.gov (United States)

    Mazzolini, Andrea; Gherardi, Marco; Caselle, Michele; Cosentino Lagomarsino, Marco; Osella, Matteo

    2018-04-01

    Many complex systems are modular. Such systems can be represented as "component systems," i.e., sets of elementary components, such as LEGO bricks in LEGO sets. The bricks found in a LEGO set reflect a target architecture, which can be built following a set-specific list of instructions. In other component systems, instead, the underlying functional design and constraints are not obvious a priori, and their detection is often a challenge of both scientific and practical importance, requiring a clear understanding of component statistics. Importantly, some quantitative invariants appear to be common to many component systems, most notably a common broad distribution of component abundances, which often resembles the well-known Zipf's law. Such "laws" affect in a general and nontrivial way the component statistics, potentially hindering the identification of system-specific functional constraints or generative processes. Here, we specifically focus on the statistics of shared components, i.e., the distribution of the number of components shared by different system realizations, such as the common bricks found in different LEGO sets. To account for the effects of component heterogeneity, we consider a simple null model, which builds system realizations by random draws from a universe of possible components. Under general assumptions on abundance heterogeneity, we provide analytical estimates of component occurrence, which quantify exhaustively the statistics of shared components. Surprisingly, this simple null model can positively explain important features of empirical component-occurrence distributions obtained from large-scale data on bacterial genomes, LEGO sets, and book chapters. Specific architectural features and functional constraints can be detected from occurrence patterns as deviations from these null predictions, as we show for the illustrative case of the "core" genome in bacteria.

  12. Advanced Satellite Workstation - An integrated workstation environment for operational support of satellite system planning and analysis

    Science.gov (United States)

    Hamilton, Marvin J.; Sutton, Stewart A.

    A prototype integrated environment, the Advanced Satellite Workstation (ASW), which was developed and delivered for evaluation and operator feedback in an operational satellite control center, is described. The current ASW hardware consists of a Sun Workstation and Macintosh II Workstation connected via an ethernet Network Hardware and Software, Laser Disk System, Optical Storage System, and Telemetry Data File Interface. The central objective of ASW is to provide an intelligent decision support and training environment for operator/analysis of complex systems such as satellites. Compared to the many recent workstation implementations that incorporate graphical telemetry displays and expert systems, ASW provides a considerably broader look at intelligent, integrated environments for decision support, based on the premise that the central features of such an environment are intelligent data access and integrated toolsets.

  13. High power communication satellites power systems study

    International Nuclear Information System (INIS)

    Josloff, A.T.; Peterson, J.R.

    1994-01-01

    This paper discusses a DOE-funded study to evaluate the commercial attractiveness of high power communication satellites and assesses the attributes of both conventional photovoltaic and reactor power systems. This study brings together a preeminent US Industry/Russian team to cooperate on the role of high power communication satellites in the rapidly expanding communications revolution. These high power satellites play a vital role in assuring availability of universally accessible, wide bandwidth communications, for high definition TV, super computer networks and other services. Satellites are ideally suited to provide the wide bandwidths and data rates required and are unique in the ability to provide services directly to the users. As new or relocated markets arise, satellites offer a flexibility that conventional distribution services cannot match, and it is no longer necessary to be near population centers to take advantage of the telecommunication revolution. The geopolitical implications of these substantially enhanced communications capabilities will be significant

  14. Control of the Tevatron Satellite Refrigeration system

    International Nuclear Information System (INIS)

    Theilacker, J.; Chapman, L.; Gannon, J.; Hentges, M.; Martin, M.; Rode, C.H.; Zagel, J.

    1984-01-01

    This chapter describes a computerized control system for 24 satellite refrigerators which cool a six kilometer ring of superconducting magnets. The control system consists of 31 independent microprocessors operating over 400 servo loops, and a central computer system which provides monitoring, alarms, logging and changing of parameters. Topics considered include pressure measurement, flow measurement, temperature measurement, gas analysis, control valves, expansion engine controllers, and control loops. Each refrigerator has 12 active microprocessor based control loops which tune the refrigerator to one of its four operating modes: satellite, liquefier, refrigerator, and stand-by. It is suggested that optimizing the refrigerator control loops and quench recovery scheme will minimize the accelerator down time

  15. Statistics of Shared Components in Complex Component Systems

    Directory of Open Access Journals (Sweden)

    Andrea Mazzolini

    2018-04-01

    Full Text Available Many complex systems are modular. Such systems can be represented as “component systems,” i.e., sets of elementary components, such as LEGO bricks in LEGO sets. The bricks found in a LEGO set reflect a target architecture, which can be built following a set-specific list of instructions. In other component systems, instead, the underlying functional design and constraints are not obvious a priori, and their detection is often a challenge of both scientific and practical importance, requiring a clear understanding of component statistics. Importantly, some quantitative invariants appear to be common to many component systems, most notably a common broad distribution of component abundances, which often resembles the well-known Zipf’s law. Such “laws” affect in a general and nontrivial way the component statistics, potentially hindering the identification of system-specific functional constraints or generative processes. Here, we specifically focus on the statistics of shared components, i.e., the distribution of the number of components shared by different system realizations, such as the common bricks found in different LEGO sets. To account for the effects of component heterogeneity, we consider a simple null model, which builds system realizations by random draws from a universe of possible components. Under general assumptions on abundance heterogeneity, we provide analytical estimates of component occurrence, which quantify exhaustively the statistics of shared components. Surprisingly, this simple null model can positively explain important features of empirical component-occurrence distributions obtained from large-scale data on bacterial genomes, LEGO sets, and book chapters. Specific architectural features and functional constraints can be detected from occurrence patterns as deviations from these null predictions, as we show for the illustrative case of the “core” genome in bacteria.

  16. High power communication satellites power systems study

    Science.gov (United States)

    Josloff, Allan T.; Peterson, Jerry R.

    1995-01-01

    This paper discusses a planned study to evaluate the commercial attractiveness of high power communication satellites and assesses the attributes of both conventional photovoltaic and reactor power systems. These high power satellites can play a vital role in assuring availability of universally accessible, wide bandwidth communications, for high definition TV, super computer networks and other services. Satellites are ideally suited to provide the wide bandwidths and data rates required and are unique in the ability to provide services directly to the users. As new or relocated markets arise, satellites offer a flexibility that conventional distribution services cannot match, and it is no longer necessary to be near population centers to take advantage of the telecommunication revolution. The geopolitical implications of these substantially enhanced communications capabilities can be significant.

  17. MEMS for pico- to micro-satellites

    OpenAIRE

    Shea, Herbert

    2009-01-01

    MEMS sensors, actuators, and sub-systems can enable an important reduction in the size and mass of spacecrafts, first by replacing larger and heavier components, then by replacing entire subsystems, and finally by enabling the microfabrication of highly integrated picosats. Very small satellites (1 to 100 kg) stand to benefit the most from MEMS technologies. These small satellites are typically used for science or technology demonstration missions, with higher risk tolerance than multi-ton te...

  18. Proposed systems configurations for a satellite based ISDN

    Science.gov (United States)

    Capece, M.; Pavesi, B.; Tozzi, P.; Galligan, K. P.

    This paper summarizes concepts developed during a study for the ESA in which the evolution of ISDN capability and the impact in the satellite land mobile area are examined. Following the progressive steps of the expected ISDN implementation and the potential market penetration, a space based system capable of satisfying particular user services classes has been investigated. The approach used is to establish a comparison between the requirements of potential mobile users and the services already envisaged by ISDN, identifying the service subclasses that might be adopted in a mobile environment through a satellite system. Two system alternatives, with different ISDN compatibility, have been identified. The first option allows a partial compatibility, by providing the central stations of the earth segment with suitable interface units. The second option permits a full integration, operating on the satellite on-board capabilities.

  19. Economics of satellite communications systems

    Science.gov (United States)

    Pritchard, Wilbur L.

    This paper is partly a tutorial, telling systematically how one goes about calculating the total annual costs of a satellite communications system, and partly the expression of some original ideas on the choice of parameters so as to minimize these costs. The calculation of costs can be divided into two broad categories. The first is technical and is concerned with estimating what particular equipment will cost and what will be the annual expense to maintain and operate it. One starts in the estimation of any new system by listing the principal items of equipment, such as satellites, earth stations of various sizes and functions, telemetry and tracking equipment and terrestrial interfaces, and then estimating how much each item will cost. Methods are presented for generating such estimates, based on a knowledge of the gross parameters, such as antenna size, coverage area, transmitter power and information rate. These parameters determine the system performance and it is usually possible, knowing them, to estimate the costs of the equipment rather well. Some formulae based on regression analyses are presented. Methods are then given for estimating closely related expenses, such as maintenance and operation, and then an approximate method is developed for estimating terrestrial interconnection costs. It is pointed out that in specific cases when tariff and geographical information are available, it is usually better to work with specific data, but nonetheless it is often desirable, especially in global system estimating, to approximate these interconnect costs without recourse to individual tariffs. The procedure results in a set of costs for the purchase of equipment and its maintenance, and a schedule of payments. Some payments will be incurred during the manufacture of the satellite and before any systems operation, but many will not be incurred until the system is no longer in use, e.g. incentives. In any case, with the methods presented in the first section, one

  20. A semi-physical simulation platform of attitude determination and control system for satellite

    Directory of Open Access Journals (Sweden)

    Yuanjin Yu

    2016-05-01

    Full Text Available A semi-physical simulation platform for attitude determination and control system is proposed to verify the attitude estimator and controller on ground. A simulation target, a host PC, many attitude sensors, and actuators compose the simulation platform. The simulation target is composed of a central processing unit board with VxWorks operating system and many input/output boards connected via Compact Peripheral Component Interconnect bus. The executable programs in target are automatically generated from the simulation models in Simulink based on Real-Time Workshop of MATLAB. A three-axes gyroscope, a three-axes magnetometer, a sun sensor, a star tracer, three flywheels, and a Global Positioning System receiver are connected to the simulation target, which formulates the attitude control cycle of a satellite. The simulation models of the attitude determination and control system are described in detail. Finally, the semi-physical simulation platform is used to demonstrate the availability and rationality of the control scheme of a micro-satellite. Comparing the results between the numerical simulation in Simulink and the semi-physical simulation, the semi-physical simulation platform is available and the control scheme successfully achieves three-axes stabilization.

  1. FORMATION OF MULTIPLE-SATELLITE SYSTEMS FROM LOW-MASS CIRCUMPLANETARY PARTICLE DISKS

    International Nuclear Information System (INIS)

    Hyodo, Ryuki; Ohtsuki, Keiji; Takeda, Takaaki

    2015-01-01

    Circumplanetary particle disks would be created in the late stage of planetary formation either by impacts of planetary bodies or disruption of satellites or passing bodies, and satellites can be formed by accretion of disk particles spreading across the Roche limit. Previous N-body simulation of lunar accretion focused on the formation of single-satellite systems from disks with large disk-to-planet mass ratios, while recent models of the formation of multiple-satellite systems from disks with smaller mass ratios do not take account of gravitational interaction between formed satellites. In the present work, we investigate satellite accretion from particle disks with various masses, using N-body simulation. In the case of accretion from somewhat less massive disks than the case of lunar accretion, formed satellites are not massive enough to clear out the disk, but can become massive enough to gravitationally shepherd the disk outer edge and start outward migration due to gravitational interaction with the disk. When the radial location of the 2:1 mean motion resonance of the satellite reaches outside the Roche limit, the second satellite can be formed near the disk outer edge, and then the two satellites continue outward migration while being locked in the resonance. Co-orbital satellites are found to be occasionally formed on the orbit of the first satellite. Our simulations also show that stochastic nature involved in gravitational interaction and collision between aggregates in the tidal environment can lead to diversity in the final mass and orbital architecture, which would be expected in satellite systems of exoplanets

  2. Power Processing Unit For Micro Satellite Electric Propulsion System

    Directory of Open Access Journals (Sweden)

    Savvas Spiridon

    2017-01-01

    Full Text Available The Micro Satellite Electric Propulsion System (MEPS program has been originated by the increasing need to provide a low-cost and low-power Electric Propulsion System (EPS for small satellites ( 92%, small size and weight and high reliability. Its functional modules and preliminary results obtained at breadboard level are also presented.

  3. Centriolar satellites

    DEFF Research Database (Denmark)

    Tollenaere, Maxim A X; Mailand, Niels; Bekker-Jensen, Simon

    2015-01-01

    Centriolar satellites are small, microscopically visible granules that cluster around centrosomes. These structures, which contain numerous proteins directly involved in centrosome maintenance, ciliogenesis, and neurogenesis, have traditionally been viewed as vehicles for protein trafficking...... highlight newly discovered regulatory mechanisms targeting centriolar satellites and their functional status, and we discuss how defects in centriolar satellite components are intimately linked to a wide spectrum of human diseases....

  4. An Experimental System for a Global Flood Prediction: From Satellite Precipitation Data to a Flood Inundation Map

    Science.gov (United States)

    Adler, Robert

    2007-01-01

    Floods impact more people globally than any other type of natural disaster. It has been established by experience that the most effective means to reduce the property damage and life loss caused by floods is the development of flood early warning systems. However, advances for such a system have been constrained by the difficulty in estimating rainfall continuously over space (catchment-. national-, continental-. or even global-scale areas) and time (hourly to daily). Particularly, insufficient in situ data, long delay in data transmission and absence of real-time data sharing agreements in many trans-boundary basins hamper the development of a real-time system at the regional to global scale. In many countries around the world, particularly in the tropics where rainfall and flooding co-exist in abundance, satellite-based precipitation estimation may be the best source of rainfall data for those data scarce (ungauged) areas and trans-boundary basins. Satellite remote sensing data acquired and processed in real time can now provide the space-time information on rainfall fluxes needed to monitor severe flood events around the world. This can be achieved by integrating the satellite-derived forcing data with hydrological models, which can be parameterized by a tailored geospatial database. An example that is a key to this progress is NASA's contribution to the Tropical Rainfall Measuring Mission (TRMM), launched in November 1997. Hence, in an effort to evolve toward a more hydrologically-relevant flood alert system, this talk articulates a module-structured framework for quasi-global flood potential naming, that is 'up to date' with the state of the art on satellite rainfall estimation and the improved geospatial datasets. The system is modular in design with the flexibility that permits changes in the model structure and in the choice of components. Four major components included in the system are: 1) multi-satellite precipitation estimation; 2) characterization of

  5. R&D of a Next Generation LEO System for Global Multimedia Mobile Satellite Communications

    Science.gov (United States)

    Morikawa, E.; Motoyoshi, S.; Koyama, Y.; Suzuki, R.; Yasuda, Y.

    2002-01-01

    Next-generation LEO System Research Center (NeLS) was formed in the end of 1997 as a research group under the Telecommunications Advancement Organization of Japan, in cooperation with the telecommunications operators, manufacturers, universities and governmental research organization. The aim of this project is to develop new technology for global multimedia mobile satellite communications services with a user data rate around 2Mbps for handy terminals. component of the IMT-2000, and the second generation of the big-LEO systems. In prosecuting this project, two-phase approach, phase 1 and phase 2, is considered. Phase 1 is the system definition and development of key technologies. In Phase 2, we plan to verify the developed technology in Phase 1 on space. From this year we shifted the stage to Phase 2, and are now developing the prototype of on-board communication systems for flight tests, which will be planed at around 2006. The satellite altitude is assumed to be 1200 km in order to reduce the number of satellites, to avoid the Van Allen radiation belts and to increase the minimum elevation angle. Ten of the circular orbits with 55 degree of inclination are selected to cover the earth surface from -70 to 70 degree in latitude. 12 satellites are positioned at regular intervals in each orbit. In this case, the minimum elevation angle from the user terminal can be keep more than 20 degree for the visibility of the satellite, and 15 degree for simultaneous visibility of two satellites. Then, NeLS Research Center was focusing on the development of key technologies as the phase 1 project. Four kinds of key technologies; DBF satellite antenna, optical inter-satellite link system, satellite network technology with on-board ATM switch and variable rate modulation were selected. Satellite Antenna Technology: Development of on-board direct radiating active phased array antenna with digital beam forming technology would be one of the most important breakthroughs for the

  6. SOFT project: a new forecasting system based on satellite data

    Science.gov (United States)

    Pascual, Ananda; Orfila, A.; Alvarez, Alberto; Hernandez, E.; Gomis, D.; Barth, Alexander; Tintore, Joaquim

    2002-01-01

    The aim of the SOFT project is to develop a new ocean forecasting system by using a combination of satellite dat, evolutionary programming and numerical ocean models. To achieve this objective two steps are proved: (1) to obtain an accurate ocean forecasting system using genetic algorithms based on satellite data; and (2) to integrate the above new system into existing deterministic numerical models. Evolutionary programming will be employed to build 'intelligent' systems that, learning form the past ocean variability and considering the present ocean state, will be able to infer near future ocean conditions. Validation of the forecast skill will be carried out by comparing the forecasts fields with satellite and in situ observations. Validation with satellite observations will provide the expected errors in the forecasting system. Validation with in situ data will indicate the capabilities of the satellite based forecast information to improve the performance of the numerical ocean models. This later validation will be accomplished considering in situ measurements in a specific oceanographic area at two different periods of time. The first set of observations will be employed to feed the hybrid systems while the second set will be used to validate the hybrid and traditional numerical model results.

  7. Satellite Observation Systems for Polar Climate Change Studies

    Science.gov (United States)

    Comiso, Josefino C.

    2012-01-01

    The key observational tools for detecting large scale changes of various parameters in the polar regions have been satellite sensors. The sensors include passive and active satellite systems in the visible, infrared and microwave frequencies. The monitoring started with Tiros and Nimbus research satellites series in the 1970s but during the period, not much data was stored digitally because of limitations and cost of the needed storage systems. Continuous global data came about starting with the launch of ocean color, passive microwave, and thermal infrared sensors on board Nimbus-7 and Synthetic Aperture Radar, Radar Altimeter and Scatterometer on board SeaSat satellite both launched in 1978. The Nimbus-7 lasted longer than expected and provided about 9 years of useful data while SeaSat quit working after 3 months but provided very useful data that became the baseline for follow-up systems with similar capabilities. Over the years, many new sensors were launched, some from Japan Aeronautics and Space Agency (JAXA), some from the European Space Agency (ESA) and more recently, from RuSSia, China, Korea, Canada and India. For polar studies, among the most useful sensors has been the passive microwave sensor which provides day/night and almost all weather observation of the surface. The sensor provide sea surface temperature, precipitation, wind, water vapor and sea ice concentration data that have been very useful in monitoring the climate of the region. More than 30 years of such data are now available, starting with the Scanning Multichannel Microwave Radiometer (SMMR) on board the Nimbus-7, the Special Scanning Microwave/Imager (SSM/I) on board a Defense Meteorological Satellite Program (DMSP) and the Advanced Microwave Scanning Radiometer on board the EOS/ Aqua satellite. The techniques that have been developed to derive geophysical parameters from data provided by these and other sensors and associated instrumental and algorithm errors and validation techniques

  8. Three-month performance evaluation of the Nanometrics, Inc., Libra Satellite Seismograph System in the northern California Seismic Network

    Science.gov (United States)

    Oppenheimer, David H.

    2000-01-01

    In 1999 the Northern California Seismic Network (NCSN) purchased a Libra satellite seismograph system from Nanometrics, Inc to assess whether this technology was a cost-effective and robust replacement for their analog microwave system. The system was purchased subject to it meeting the requirements, criteria and tests described in Appendix A. In early 2000, Nanometrics began delivery of various components of the system, such as the hub and remote satellite dish and mounting hardware, and the NCSN installed and assembled most equipment in advance of the arrival of Nanometrics engineers to facilitate the configuration of the system. The hub was installed in its permanent location, but for logistical reasons the "remote" satellite hardware was initially configured at the NCSN for testing. During the first week of April Nanometrics engineers came to Menlo Park to configure the system and train NCSN staff. The two dishes were aligned with the satellite, and the system was fully operational in 2 days with little problem. Nanometrics engineers spent the remaining 3 days providing hands-on training to NCSN staff in hardware/software operation, configuration, and maintenance. During the second week of April 2000, NCSN staff moved the entire remote system of digitizers, dish assembly, and mounting hardware to Mammoth Lakes, California. The system was reinstalled at the Mammoth Lakes water treatment plant and communications successfully reestablished with the hub via the satellite on 14 April 2000. The system has been in continuous operation since then. This report reviews the performance of the Libra system for the three-month period 20 April 2000 through 20 July 2000. The purpose of the report is to assess whether the system passed the acceptance tests described in Appendix A. We examine all data gaps reported by NCSN "gap list" software and discuss their cause.

  9. 2-component heating systems

    Energy Technology Data Exchange (ETDEWEB)

    Radtke, W

    1987-03-01

    The knowledge accumulated only recently of the damage to buildings and the hazards of formaldehyde, radon and hydrocarbons has been inducing louder calls for ventilation, which, on their part, account for the fact that increasing importance is being attached to the controlled ventilation of buildings. Two-component heating systems provide for fresh air and thermal comfort in one. While the first component uses fresh air blown directly and controllably into the rooms, the second component is similar to the Roman hypocaustic heating systems, meaning that heated outer air is circulating under the floor, thus providing for hot surfaces and thermal comfort. Details concerning the two-component heating system are presented along with systems diagrams, diagrams of the heating system and tables identifying the respective costs. Descriptions are given of the two systems components, the fast heat-up, the two-component made, the change of air, heat recovery and control systems. Comparative evaluations determine the differences between two-component heating systems and other heating systems. Conclusive remarks are dedicated to energy conservation and comparative evaluations of costs. (HWJ).

  10. The Development of a Field Services Network for a Satellite-Based Educational Telecommunications Experiment. Satellite Technology Demonstration, Technical Report No. 0333.

    Science.gov (United States)

    Anderson, Frank; And Others

    The Satellite Technology Demonstration (STD) of the Federation of Rocky Mountain States (FRMS) employed a technical delivery system to merge effectively hardware and software, products and services. It also needed a nontechnical component to insure product and service acceptance. Accordingly, the STD's Utilization Component was responsible for…

  11. An Instructional Satellite System for the United States: Preliminary Considerations.

    Science.gov (United States)

    DuMolin, James R.; Morgan, Robert P.

    Based on educational, social, political, and other considerations, an instructional satellite system, AVSIN (Ausio-Visual Satellite Instruction), is hypothesized which represents one possible organizational and administrative arrangement for delivering large amounts of quality software to schools and learning centers. The AVSIN system is conceived…

  12. Integration between terrestrial-based and satellite-based land mobile communications systems

    Science.gov (United States)

    Arcidiancono, Antonio

    1990-01-01

    A survey is given of several approaches to improving the performance and marketability of mobile satellite systems (MSS). The provision of voice/data services in the future regional European Land Mobile Satellite System (LMSS), network integration between the Digital Cellular Mobile System (GSM) and LMSS, the identification of critical areas for the implementation of integrated GSM/LMSS areas, space segment scenarios, LMSS for digital trunked private mobile radio (PMR) services, and code division multiple access (CDMA) techniques for a terrestrial/satellite system are covered.

  13. Rural applications of Advanced Traveler Information Systems : evaluation of satellite communications systems for mayday applications

    Science.gov (United States)

    This report documents the results of an evaluation of satellite communication systems for mayday applications conducted as part of the Rural Applications of Advanced Traveler Information Systems (ATIS) study. It focuses on satellite communications sy...

  14. Satellite systems for personal applications concepts and technology

    CERN Document Server

    Richharia, Madhavendra

    2010-01-01

    Presents the concepts, technology, and role of satellite systems in support of personal applications, such as mobile and broadband communications, navigation, television, radio and multimedia broadcasting, safety of life services, etc. This book presents a novel perspective on satellite systems, reflecting the modern personal technology context, and hence a focus on the individual as end-user. The book begins by outlining key generic concepts before discussing techniques adopted in particular application areas; next, it exemplifies these techniques through discussion of state-of-art c

  15. Comprehensive Comparisons of Satellite Data, Signals, and Measurements between the BeiDou Navigation Satellite System and the Global Positioning System

    Science.gov (United States)

    Jan, Shau-Shiun; Tao, An-Lin

    2016-01-01

    The Chinese BeiDou navigation satellite system (BDS) aims to provide global positioning service by 2020. The combined use of BDS and Global Positioning System (GPS) is proposed to provide navigation service with more stringent requirements. Actual satellite data, signals and measurements were collected for more than one month to analyze the positioning service qualities from both BDS and GPS. In addition to the conversions of coordinate and timing system, five data quality analysis (DQA) methods, three signal quality analysis (SQA) methods, and four measurement quality analysis (MQA) methods are proposed in this paper to improve the integrated positioning performance of BDS and GPS. As shown in the experiment results, issues related to BDS and GPS are resolved by the above proposed quality analysis methods. Thus, the anomalies in satellite data, signals and measurements can be detected by following the suggested resolutions to enhance the positioning performance of the combined use of BDS and GPS in the Asia Pacific region. PMID:27187403

  16. Customer premise service study for 30/20 GHz satellite system

    Science.gov (United States)

    Milton, R. T.; Ross, D. P.; Harcar, A. R.; Freedenberg, P.; Schoen, D.

    1983-01-01

    Satellite systems in which the space segment operates in the 30/20 GHz frequency band are defined and compared as to their potential for providing various types of communications services to customer premises and the economic and technical feasibility of doing so. Technical tasks performed include: market postulation, definition of the ground segment, definition of the space segment, definition of the integrated satellite system, service costs for satellite systems, sensitivity analysis, and critical technology. Based on an analysis of market data, a sufficiently large market for services is projected so as to make the system economically viable. A large market, and hence a high capacity satellite system, is found to be necessary to minimize service costs, i.e., economy of scale is found to hold. The wide bandwidth expected to be available in the 30/20 GHz band, along with frequency reuse which further increases the effective system bandwidth, makes possible the high capacity system. Extensive ground networking is required in most systems to both connect users into the system and to interconnect Earth stations to provide spatial diversity. Earth station spatial diversity is found to be a cost effective means of compensating the large fading encountered in the 30/20 GHz operating band.

  17. Thermal Analysis of Iodine Satellite (iSAT)

    Science.gov (United States)

    Mauro, Stephanie

    2015-01-01

    This paper presents the progress of the thermal analysis and design of the Iodine Satellite (iSAT). The purpose of the iSAT spacecraft (SC) is to demonstrate the ability of the iodine Hall Thruster propulsion system throughout a one year mission in an effort to mature the system for use on future satellites. The benefit of this propulsion system is that it uses a propellant, iodine, that is easy to store and provides a high thrust-to-mass ratio. The spacecraft will also act as a bus for an earth observation payload, the Long Wave Infrared (LWIR) Camera. Four phases of the mission, determined to either be critical to achieving requirements or phases of thermal concern, are modeled. The phases are the Right Ascension of the Ascending Node (RAAN) Change, Altitude Reduction, De-Orbit, and Science Phases. Each phase was modeled in a worst case hot environment and the coldest phase, the Science Phase, was also modeled in a worst case cold environment. The thermal environments of the spacecraft are especially important to model because iSAT has a very high power density. The satellite is the size of a 12 unit cubesat, and dissipates slightly more than 75 Watts of power as heat at times. The maximum temperatures for several components are above their maximum operational limit for one or more cases. The analysis done for the first Design and Analysis Cycle (DAC1) showed that many components were above or within 5 degrees Centigrade of their maximum operation limit. The battery is a component of concern because although it is not over its operational temperature limit, efficiency greatly decreases if it operates at the currently predicted temperatures. In the second Design and Analysis Cycle (DAC2), many steps were taken to mitigate the overheating of components, including isolating several high temperature components, removal of components, and rearrangement of systems. These changes have greatly increased the thermal margin available.

  18. The NOAA Satellite Observing System Architecture Study

    Science.gov (United States)

    Volz, Stephen; Maier, Mark; Di Pietro, David

    2016-01-01

    NOAA is beginning a study, the NOAA Satellite Observing System Architecture (NSOSA) study, to plan for the future operational environmental satellite system that will follow GOES and JPSS, beginning about 2030. This is an opportunity to design a modern architecture with no pre-conceived notions regarding instruments, platforms, orbits, etc. The NSOSA study will develop and evaluate architecture alternatives to include partner and commercial alternatives that are likely to become available. The objectives will include both functional needs and strategic characteristics (e.g., flexibility, responsiveness, sustainability). Part of this study is the Space Platform Requirements Working Group (SPRWG), which is being commissioned by NESDIS. The SPRWG is charged to assess new or existing user needs and to provide relative priorities for observational needs in the context of the future architecture. SPRWG results will serve as input to the process for new foundational (Level 0 and Level 1) requirements for the next generation of NOAA satellites that follow the GOES-R, JPSS, DSCOVR, Jason-3, and COSMIC-2 missions.

  19. Satellites for U.S. education - Needs, opportunities and systems.

    Science.gov (United States)

    Morgan, R. P.; Singh, J. P.; Anderson, B. D.; Greenberg, E.

    1972-01-01

    This paper presents results of a continuing interdisciplinary study of the potential applications of Fixed- and Broadcast-Satellites for educational information transfer in the United States for the period 1975-1985. The status of U.S. education is examined and needs, trends and issues are discussed. The existing educational telecommunications infrastructure is examined and opportunities for satellite services are defined. Potential uses include networking of educational institutions and service centers for delivery of public and instructional television, computer-aided instruction, computing and information resources to regions and groups not now adequately served. Systems alternatives and some of the organizational and economic issues inherent in the deployment of an educational satellite system are discussed.-

  20. THE THREE-DIMENSIONAL STRUCTURE OF THE M31 SATELLITE SYSTEM; STRONG EVIDENCE FOR AN INHOMOGENEOUS DISTRIBUTION OF SATELLITES

    International Nuclear Information System (INIS)

    Conn, A. R.; Parker, Q. A.; Zucker, D. B.; Lewis, G. F.; Ibata, R. A.; Martin, N. F.; McConnachie, A. W.; Valls-Gabaud, D.; Tanvir, N.; Irwin, M. J.; Ferguson, A. M. N.; Chapman, S. C.

    2013-01-01

    We undertake an investigation into the spatial structure of the M31 satellite system utilizing the distance distributions presented in a previous publication. These distances make use of the unique combination of depth and spatial coverage of the Pan-Andromeda Archaeological Survey to provide a large, homogeneous sample consisting of 27 of M31's satellites, as well as M31 itself. We find that the satellite distribution, when viewed as a whole, is no more planar than one would expect from a random distribution of equal size. A disk consisting of 15 of the satellites is however found to be highly significant, and strikingly thin, with an rms thickness of just 12.34 +0.75 -0.43 kpc. This disk is oriented approximately edge-on with respect to the Milky Way and almost perpendicular to the Milky Way disk. It is also roughly orthogonal to the disk-like structure regularly reported for the Milky Way satellite system and in close alignment with M31's Giant Stellar Stream. A similar analysis of the asymmetry of the M31 satellite distribution finds that it is also significantly larger than one would expect from a random distribution. In particular, it is remarkable that 20 of the 27 satellites most likely lie on the Milky Way side of the galaxy, with the asymmetry being most pronounced within the satellite subset forming the aforementioned disk. This lopsidedness is all the more intriguing in light of the apparent orthogonality observed between the satellite disk structures of the Milky Way and M31.

  1. Multi-agent robotic systems and applications for satellite missions

    Science.gov (United States)

    Nunes, Miguel A.

    A revolution in the space sector is happening. It is expected that in the next decade there will be more satellites launched than in the previous sixty years of space exploration. Major challenges are associated with this growth of space assets such as the autonomy and management of large groups of satellites, in particular with small satellites. There are two main objectives for this work. First, a flexible and distributed software architecture is presented to expand the possibilities of spacecraft autonomy and in particular autonomous motion in attitude and position. The approach taken is based on the concept of distributed software agents, also referred to as multi-agent robotic system. Agents are defined as software programs that are social, reactive and proactive to autonomously maximize the chances of achieving the set goals. Part of the work is to demonstrate that a multi-agent robotic system is a feasible approach for different problems of autonomy such as satellite attitude determination and control and autonomous rendezvous and docking. The second main objective is to develop a method to optimize multi-satellite configurations in space, also known as satellite constellations. This automated method generates new optimal mega-constellations designs for Earth observations and fast revisit times on large ground areas. The optimal satellite constellation can be used by researchers as the baseline for new missions. The first contribution of this work is the development of a new multi-agent robotic system for distributing the attitude determination and control subsystem for HiakaSat. The multi-agent robotic system is implemented and tested on the satellite hardware-in-the-loop testbed that simulates a representative space environment. The results show that the newly proposed system for this particular case achieves an equivalent control performance when compared to the monolithic implementation. In terms on computational efficiency it is found that the multi

  2. Satellite power system in the service of man

    Energy Technology Data Exchange (ETDEWEB)

    Hyde, F.W.

    1981-01-01

    The solar power satellite concept is discussed in its various aspects: technical assumptions; unit power output; economic impact; impact on resources; environmental impacts; primary system functions; transmission of energy to earth; reception and conversion to usable energy on earth; space transport; station-keeping and attitude control; fabrication and assembly in space; power beam phase control; satellite maintenance; ancillary functions at rectenna site; and emerging technologies.

  3. Satellite Power Systems (SPS) concept definition study, exhibit C. Volume 2, part 1: System engineering

    Science.gov (United States)

    Hanley, G. M.

    1979-01-01

    Volume 2, Part 1, of a seven volume report is presented. Part 1 encompasses Satellite Power Systems (SPS) systems engineering aspects and is divided into three sections. The first section presents descriptions of the various candidate concepts considered and conclusions and recommendations for a preferred concept. The second section presents a summary of results of the various trade studies and analysis conducted during the course of the study. The third section describes the Photovoltaic Satellite Based Satellite Power System (SPS) Point Design as it was defined through studies performed during the period January 1977 through March 1979.

  4. Review On Feasibility of Using Satellite Imaging for Risk Management of Derailment Related Turnout Component Failures

    Science.gov (United States)

    Dindar, Serdar; Kaewunruen, Sakdirat; Osman, Mohd H.

    2017-10-01

    One of the emerging significant advances in engineering, satellite imaging (SI) is becoming very common in any kind of civil engineering projects e.g., bridge, canal, dam, earthworks, power plant, water works etc., to provide an accurate, economical and expeditious means of acquiring a rapid assessment. Satellite imaging services in general utilise combinations of high quality satellite imagery, image processing and interpretation to obtain specific required information, e.g. surface movement analysis. To extract, manipulate and provide such a precise knowledge, several systems, including geographic information systems (GIS) and global positioning system (GPS), are generally used for orthorectification. Although such systems are useful for mitigating risk from projects, their productiveness is arguable and operational risk after application is open to discussion. As the applicability of any novel application to the railway industry is often measured in terms of whether or not it has gained in-depth knowledge and to what degree, as a result of errors during its operation, this novel application generates risk in ongoing projects. This study reviews what can be achievable for risk management of railway turnouts thorough satellite imaging. The methodology is established on the basis of other published articles in this area and the results of applications to understand how applicable such imagining process is on railway turnouts, and how sub-systems in turnouts can be effectively traced/operated with less risk than at present. As a result of this review study, it is aimed that the railway sector better understands risk mitigation in particular applications.

  5. Power system design and in orbit performance of Algeria's first micro satellite Alsat-1

    Energy Technology Data Exchange (ETDEWEB)

    Bekhti, Mohammed [Centre National des Techniques Spatiales, BP13, Arzew 31200 (Algeria); Sweeting, M.N. [Centre for Satellite Engineering Research, University of Surrey, Guildford, Surrey GU2 7XH (United Kingdom)

    2008-07-15

    On the 28th November 2002, Algeria's first enhanced micro satellite was launched into a 686 km low earth orbit onboard a Cosmos 3M rocket from Plesetsk. The spacecraft was designed, manufactured and launched as a technology transfer programme between the National Centre of Space Techniques (CNTS) Algeria and Surrey Satellite Technology Limited (SSTL) United Kingdom in the timescale of 18 months. This paper will describe the design and in orbit performance of the mission power system, stressing the decisions taken in order to meet the mission requirements within the 18 months, concept to launch programme. Most of the design and construction techniques used in the production of the Alsat-1 power system were based on SSTL heritage over the years. It will be shown how off the shelf components either for the generation or storage of the onboard energy can be applied successfully to such missions. (author)

  6. Tracking System : Suaineadh satellite experiment

    OpenAIRE

    Brengesjö, Carl; Selin, Martine

    2011-01-01

    The purpose of this bachelor thesis is to present a tracking system for the Suaineadh satellite experiment. The experiment is a part of the REXUS (Rocket EXperiments for University Students) program and the objective is to deploy a foldable web in space. The assignment of this thesis is to develop a tracking system to find the parts from the Suaineadh experiment that will land on Earth. It is important to find the parts and recover all the data that the experiment performed during the travel ...

  7. Development of Mission and Spacecraft Dynamics Analysis System for Geostationary Communication Satellite

    Directory of Open Access Journals (Sweden)

    Hyeon Cheol Gong

    1998-06-01

    Full Text Available We consider the motion of the subsystems as separate bodies as well as the entire satellite for the attitude and orbit control of a communication satellite by multi-body modeling technique. Thus, the system can be applied to a general communication satellite as well as a specific communication satellite, i.e. Koreasat I, II. The simulation results can be viewed by two-dimensional graphics and three-dimensional animation. The graphical user interface (GUI makes its usage much simpler. We have simulated a couple of scenarios for Koreasat I, II which are being operated as geostationary communication satellites to verify the system performance.

  8. Combined Global Navigation Satellite Systems in the Space Service Volume

    Science.gov (United States)

    Force, Dale A.; Miller, James J.

    2013-01-01

    Besides providing position, velocity, and timing (PVT) for terrestrial users, the Global Positioning System (GPS) is also being used to provide PVT information for earth orbiting satellites. In 2006, F. H. Bauer, et. al., defined the Space Service Volume in the paper GPS in the Space Service Volume , presented at ION s 19th international Technical Meeting of the Satellite Division, and looked at GPS coverage for orbiting satellites. With GLONASS already operational, and the first satellites of the Galileo and Beidou/COMPASS constellations already in orbit, it is time to look at the use of the new Global Navigation Satellite Systems (GNSS) coming into service to provide PVT information for earth orbiting satellites. This presentation extends GPS in the Space Service Volume by examining the coverage capability of combinations of the new constellations with GPS GPS was first explored as a system for refining the position, velocity, and timing of other spacecraft equipped with GPS receivers in the early eighties. Because of this, a new GPS utility developed beyond the original purpose of providing position, velocity, and timing services for land, maritime, and aerial applications. GPS signals are now received and processed by spacecraft both above and below the GPS constellation, including signals that spill over the limb of the earth. Support of GPS space applications is now part of the system plan for GPS, and support of the Space Service Volume by other GNSS providers has been proposed to the UN International Committee on GNSS (ICG). GPS has been demonstrated to provide decimeter level position accuracy in real-time for satellites in low Earth orbit (centimeter level in non-real-time applications). GPS has been proven useful for satellites in geosynchronous orbit, and also for satellites in highly elliptical orbits. Depending on how many satellites are in view, one can keep time locked to the GNSS standard, and through that to Universal Time as long as at least one

  9. Auto Mission Planning System Design for Imaging Satellites and Its Applications in Environmental Field

    Directory of Open Access Journals (Sweden)

    He Yongming

    2016-10-01

    Full Text Available Satellite hardware has reached a level of development that enables imaging satellites to realize applications in the area of meteorology and environmental monitoring. As the requirements in terms of feasibility and the actual profit achieved by satellite applications increase, we need to comprehensively consider the actual status, constraints, unpredictable information, and complicated requirements. The management of this complex information and the allocation of satellite resources to realize image acquisition have become essential for enhancing the efficiency of satellite instrumentation. In view of this, we designed a satellite auto mission planning system, which includes two sub-systems: the imaging satellite itself and the ground base, and these systems would then collaborate to process complicated missions: the satellite mainly focuses on mission planning and functions according to actual parameters, whereas the ground base provides auxiliary information, management, and control. Based on the requirements analysis, we have devised the application scenarios, main module, and key techniques. Comparison of the simulation results of the system, confirmed the feasibility and optimization efficiency of the system framework, which also stimulates new thinking for the method of monitoring environment and design of mission planning systems.

  10. Satellites

    International Nuclear Information System (INIS)

    Burns, J.A.; Matthews, M.S.

    1986-01-01

    The present work is based on a conference: Natural Satellites, Colloquium 77 of the IAU, held at Cornell University from July 5 to 9, 1983. Attention is given to the background and origins of satellites, protosatellite swarms, the tectonics of icy satellites, the physical characteristics of satellite surfaces, and the interactions of planetary magnetospheres with icy satellite surfaces. Other topics include the surface composition of natural satellites, the cratering of planetary satellites, the moon, Io, and Europa. Consideration is also given to Ganymede and Callisto, the satellites of Saturn, small satellites, satellites of Uranus and Neptune, and the Pluto-Charon system

  11. Eumetcast receiving station integration withinthe satellite image database interface (SAIDIN) system.

    OpenAIRE

    Chic, Òscar

    2010-01-01

    Within the tasks devoted to operational oceanography, Coastal Ocean Observatory at Institut de Ciències del Mar (CSIC) has acquired an European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT) Broadcast System for Environmental Data (EUMETCast reception system) to replace a satellite direct broadcast system that receives data via High Resolution Picture Transmission (HRPT). EUMETCast system can receive data based on standard Digital Video Broadcastin...

  12. Design and Fabrication of DebriSat - A Representative LEO Satellite for Improvements to Standard Satellite Breakup Models

    Science.gov (United States)

    Clark, S.; Dietrich, A.; Fitz-Coy, N.; Weremeyer, M.; Liou, J.-C.

    2012-01-01

    This paper discusses the design and fabrication of DebriSat, a 50 kg satellite developed to be representative of a modern low Earth orbit satellite in terms of its components, materials used, and fabrication procedures. DebriSat will be the target of a future hypervelocity impact experiment to determine the physical characteristics of debris generated after an on-orbit collision of a modern LEO satellite. The major ground-based satellite impact experiment used by DoD and NASA in their development of satellite breakup models was SOCIT, conducted in 1992. The target used for that experiment was a Navy transit satellite (40 cm, 35 kg) fabricated in the 1960's. Modern satellites are very different in materials and construction techniques than those built 40 years ago. Therefore, there is a need to conduct a similar experiment using a modern target satellite to improve the fidelity of the satellite breakup models. To ensure that DebriSat is truly representative of typical LEO missions, a comprehensive study of historical LEO satellite designs and missions within the past 15 years for satellites ranging from 1 kg to 5000 kg was conducted. This study identified modern trends in hardware, material, and construction practices utilized in recent LEO missions. Although DebriSat is an engineering model, specific attention is placed on the quality, type, and quantity of the materials used in its fabrication to ensure the integrity of the outcome. With the exception of software, all other aspects of the satellite s design, fabrication, and assembly integration and testing will be as rigorous as that of an actual flight vehicle. For example, to simulate survivability of launch loads, DebriSat will be subjected to a vibration test. As well, the satellite will undergo thermal vacuum tests to verify that the components and overall systems meet typical environmental standards. Proper assembly and integration techniques will involve comprehensive joint analysis, including the precise

  13. A WebGIS system on the base of satellite data processing system for marine application

    Science.gov (United States)

    Gong, Fang; Wang, Difeng; Huang, Haiqing; Chen, Jianyu

    2007-10-01

    From 2002 to 2004, a satellite data processing system for marine application had been built up in State Key Laboratory of Satellite Ocean Environment Dynamics (Second Institute of Oceanography, State Oceanic Administration). The system received satellite data from TERRA, AQUA, NOAA-12/15/16/17/18, FY-1D and automatically generated Level3 products and Level4 products(products of single orbit and merged multi-orbits products) deriving from Level0 data, which is controlled by an operational control sub-system. Currently, the products created by this system play an important role in the marine environment monitoring, disaster monitoring and researches. Now a distribution platform has been developed on this foundation, namely WebGIS system for querying and browsing of oceanic remote sensing data. This system is based upon large database system-Oracle. We made use of the space database engine of ArcSDE and other middleware to perform database operation in addition. J2EE frame was adopted as development model, and Oracle 9.2 DBMS as database background and server. Simply using standard browsers(such as IE6.0), users can visit and browse the public service information that provided by system, including browsing for oceanic remote sensing data, and enlarge, contract, move, renew, traveling, further data inquiry, attribution search and data download etc. The system is still under test now. Founding of such a system will become an important distribution platform of Chinese satellite oceanic environment products of special topic and category (including Sea surface temperature, Concentration of chlorophyll, and so on), for the exaltation of satellite products' utilization and promoting the data share and the research of the oceanic remote sensing platform.

  14. ESA personal communications and digital audio broadcasting systems based on non-geostationary satellites

    Science.gov (United States)

    Logalbo, P.; Benedicto, J.; Viola, R.

    1993-01-01

    Personal Communications and Digital Audio Broadcasting are two new services that the European Space Agency (ESA) is investigating for future European and Global Mobile Satellite systems. ESA is active in promoting these services in their various mission options including non-geostationary and geostationary satellite systems. A Medium Altitude Global Satellite System (MAGSS) for global personal communications at L and S-band, and a Multiregional Highly inclined Elliptical Orbit (M-HEO) system for multiregional digital audio broadcasting at L-band are described. Both systems are being investigated by ESA in the context of future programs, such as Archimedes, which are intended to demonstrate the new services and to develop the technology for future non-geostationary mobile communication and broadcasting satellites.

  15. Geometric model of pseudo-distance measurement in satellite location systems

    Science.gov (United States)

    Panchuk, K. L.; Lyashkov, A. A.; Lyubchinov, E. V.

    2018-04-01

    The existing mathematical model of pseudo-distance measurement in satellite location systems does not provide a precise solution of the problem, but rather an approximate one. The existence of such inaccuracy, as well as bias in measurement of distance from satellite to receiver, results in inaccuracy level of several meters. Thereupon, relevance of refinement of the current mathematical model becomes obvious. The solution of the system of quadratic equations used in the current mathematical model is based on linearization. The objective of the paper is refinement of current mathematical model and derivation of analytical solution of the system of equations on its basis. In order to attain the objective, geometric analysis is performed; geometric interpretation of the equations is given. As a result, an equivalent system of equations, which allows analytical solution, is derived. An example of analytical solution implementation is presented. Application of analytical solution algorithm to the problem of pseudo-distance measurement in satellite location systems allows to improve the accuracy such measurements.

  16. Testing command and control of the satellites in formation flight

    Science.gov (United States)

    Gheorghe, Popan; Gheorghe, Gh. Ion; Gabriel, Todoran

    2013-10-01

    The topics covered in the paper are mechatronic systems for determining the distance between the satellites and the design of the displacement system on air cushion table for satellites testing. INCDMTM has the capability to approach the collaboration within European Programms (ESA) of human exploration of outer space through mechatronic systems and accessories for telescopes, mechatronics systems used by the launchers, sensors and mechatronic systems for the robotic exploration programs of atmosphere and Mars. This research has a strong development component of industrial competitiveness many of the results of space research have direct applicability in industrial fabrication.

  17. Optical neural network system for pose determination of spinning satellites

    Science.gov (United States)

    Lee, Andrew; Casasent, David

    1990-01-01

    An optical neural network architecture and algorithm based on a Hopfield optimization network are presented for multitarget tracking. This tracker utilizes a neuron for every possible target track, and a quadratic energy function of neural activities which is minimized using gradient descent neural evolution. The neural net tracker is demonstrated as part of a system for determining position and orientation (pose) of spinning satellites with respect to a robotic spacecraft. The input to the system is time sequence video from a single camera. Novelty detection and filtering are utilized to locate and segment novel regions from the input images. The neural net multitarget tracker determines the correspondences (or tracks) of the novel regions as a function of time, and hence the paths of object (satellite) parts. The path traced out by a given part or region is approximately elliptical in image space, and the position, shape and orientation of the ellipse are functions of the satellite geometry and its pose. Having a geometric model of the satellite, and the elliptical path of a part in image space, the three-dimensional pose of the satellite is determined. Digital simulation results using this algorithm are presented for various satellite poses and lighting conditions.

  18. Communications Satellite Systems Conference, 9th, San Diego, CA, March 7-11, 1982, Collection of Technical Papers

    Science.gov (United States)

    The Shuttle-to-Geostationary Orbital Transfer by mid-level thrust is considered along with multibeam antenna concepts for global communications, the antenna pointing systems for large communication satellites, the connection phase of multidestination protocols for broadcast satellites, and an experiment in high-speed international packet switching. Attention is given to a dynamic switch matrix for the TDMA satellite switching system, the characterization of 16 bit microprocessors for space use, in-orbit operation and test of Intelsat V satellites, the first operational communications system via satellite in Europe, the Arab satellite communications systems, second generation business satellite systems for Europe, and a high performance Ku-band satellite for the 1980's. Other topics investigated are related to Ku-band terminal design tradeoffs, progress in the definition of the Italian satellite for domestic telecommunications, future global satellite systems for Intelsat, and satellite refuelling in orbit.

  19. Satellite communication system for emergency monitoring within the Chernobyl exclusion zone

    International Nuclear Information System (INIS)

    Franchini, C.; Mensa, M.; Kanevsky, V.A.

    1997-01-01

    A Satellite Emergency Monitoring system of the Chernobyl Exclusive Zone (SEM CEZ) was designed to provide the Ukraine authorities and the neighbouring countries with updated information when an emergency situation occurs in the Exclusion Zone. This is of particular importance when environment contamination has transboundary effect. SEM system consists of mobile and fixed sensors reporting data via a dedicated satellite communications link. Mobile sensors are fitted with Global Positioning System (GPS) receivers that determine current coordinates of the sensor. Sensors data are transmitted to the Emergency Monitoring Centre equipped with PC and a satellite terminal. Both sensors data and the current position are visualized on digital maps

  20. Satellite Imagery Assisted Road-Based Visual Navigation System

    Science.gov (United States)

    Volkova, A.; Gibbens, P. W.

    2016-06-01

    There is a growing demand for unmanned aerial systems as autonomous surveillance, exploration and remote sensing solutions. Among the key concerns for robust operation of these systems is the need to reliably navigate the environment without reliance on global navigation satellite system (GNSS). This is of particular concern in Defence circles, but is also a major safety issue for commercial operations. In these circumstances, the aircraft needs to navigate relying only on information from on-board passive sensors such as digital cameras. An autonomous feature-based visual system presented in this work offers a novel integral approach to the modelling and registration of visual features that responds to the specific needs of the navigation system. It detects visual features from Google Earth* build a feature database. The same algorithm then detects features in an on-board cameras video stream. On one level this serves to localise the vehicle relative to the environment using Simultaneous Localisation and Mapping (SLAM). On a second level it correlates them with the database to localise the vehicle with respect to the inertial frame. The performance of the presented visual navigation system was compared using the satellite imagery from different years. Based on comparison results, an analysis of the effects of seasonal, structural and qualitative changes of the imagery source on the performance of the navigation algorithm is presented. * The algorithm is independent of the source of satellite imagery and another provider can be used

  1. The Creation of Differential Correction Systems and the Systems of Global Navigation Satellite System Monitoring

    National Research Council Canada - National Science Library

    Polishchuk, G. M; Kozlov, V. I; Urlichich, Y. M; Dvorkin, V. V; Gvozdev, V. V

    2002-01-01

    ... for the Russian Federation and a system of global navigation satellite system monitoring. These projects are some of the basic ones in the Federal program "Global Navigation System," aimed at maintenance and development of the GLONASS system...

  2. Proposed advanced satellite applications utilizing space nuclear power systems

    International Nuclear Information System (INIS)

    Bailey, P.G.; Isenberg, L.

    1990-01-01

    A review of the status of space nuclear reactor systems and their possible applications is presented. Such systems have been developed over the past twenty years and are capable of use in various military and civilian applications in the 5-1000 kWe power range. The capabilities and limitations of the currently proposed nuclear reactor systems are summarized. Safety issues are shown to be identified, and if properly addressed should not pose a hindrance. Applications are summarized for the federal and civilian community. These applications include both low and high altitude satellite surveillance missions, communications satellites, planetary probes, low and high power lunar and planetary base power systems, broad-band global telecommunications, air traffic control, and high-definition television

  3. Ground-Based Global Navigation Satellite System GLONASS (GLObal NAvigation Satellite System) Combined Broadcast Ephemeris Data (daily files) from NASA CDDIS

    Data.gov (United States)

    National Aeronautics and Space Administration — This dataset consists of ground-based Global Navigation Satellite System (GNSS) GLONASS Combined Broadcast Ephemeris Data (daily files of all distinct navigation...

  4. Key issues of multiple access technique for LEO satellite communication systems

    Institute of Scientific and Technical Information of China (English)

    温萍萍; 顾学迈

    2004-01-01

    The large carrier frequency shift caused by the high-speed movement of satellite (Doppler effects) and the propagation delay on the up-down link are very critical issues in an LEO satellite communication system, which affects both the selection and the implementation of a suitable access method. A Doppler based multiple access technique is used here to control the flow and an MPRMA-HS protocol is proposed for the application in LEO satellite communication systems. The extended simulation trials prove that the proposed scheme seems to be a very promising access method.

  5. Study of LEO-SAT microwave link for broad-band mobile satellite communication system

    Science.gov (United States)

    Fujise, Masayuki; Chujo, Wataru; Chiba, Isamu; Furuhama, Yoji; Kawabata, Kazuaki; Konishi, Yoshihiko

    1993-01-01

    In the field of mobile satellite communications, a system based on low-earth-orbit satellites (LEO-SAT's) such as the Iridium system has been proposed. The LEO-SAT system is able to offer mobile telecommunication services in high-latitude areas. Rain degradation, fading and shadowing are also expected to be decreased when the system is operated at a high elevation angle. Furthermore, the propagation delay generated in the LEO-SAT system is less pronounced than that in the geostationary orbit satellite (GEO-SAT) system and, in voice services, the effect of the delay is almost negligible. We proposed a concept of a broad-band mobile satellite communication system with LEO-SAT's and Optical ISL. In that system, a fixed L-band (1.6/1.5 GHz) multibeam is used to offer narrow band service to the mobile terminals in the entire area covered by a LEO-SAT and steerable Ka-band (30/20 GHz) spot beams are used for the wide band service. In this paper, we present results of a study of LEO-SAT microwave link between a satellite and a mobile terminal for a broad-band mobile satellite communication system. First, the results of link budget calculations are presented and the antennas mounted on satellites are shown. For a future mobile antenna technology, we also show digital beamforming (DBF) techniques. DBF, together with modulation and/or demodulation, is becoming a key technique for mobile antennas with advanced functions such as antenna pattern calibration, correction, and radio interference suppression. In this paper, efficient DBF techniques for transmitting and receiving are presented. Furthermore, an adaptive array antenna system suitable for this LEO-SAT is presented.

  6. Cooling system for auxiliary reactor component

    International Nuclear Information System (INIS)

    Fujihira, Tomoko.

    1991-01-01

    A cooling system for auxiliary reactor components comprises three systems, that is, two systems of reactor component cooling water systems (RCCW systems) and a high pressure component cooling water system (HPCCW system). Connecting pipelines having partition valves are intervened each in a cooling water supply pipeline to an emmergency component of each of the RCCW systems, a cooling water return pipeline from the emmergency component of each of the RCCW systems, a cooling water supply pipeline to each of the emmergency components of one of the RCCW system and the HPCCW system and a cooling water return pipeline from each of the emmergency components of one of the RCCW system and the HPCCW system. With such constitution, cooling water can be supplied also to the emmergency components in the stand-by system upon periodical inspection or ISI, thereby enabling to improve the backup performance of the emmergency cooling system. (I.N.)

  7. Guidance, Navigation, and Control System for Maneuverable Pico-Satellites, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — A compact, low-power GN&C system is essential to the success of pico-satellite Automated Rendezvous and Docking (AR&D). Austin Satellite Design (ASD)...

  8. Component Control System for a Vehicle

    Science.gov (United States)

    Fraser-Chanpong, Nathan (Inventor); Spain, Ivan (Inventor); Dawson, Andrew D. (Inventor); Bluethmann, William J. (Inventor); Lee, Chunhao J. (Inventor); Vitale, Robert L. (Inventor); Guo, Raymond (Inventor); Waligora, Thomas M. (Inventor); Akinyode, Akinjide Akinniyi (Inventor); Reed, Ryan M. (Inventor)

    2016-01-01

    A vehicle includes a chassis, a modular component, and a central operating system. The modular component is supported by the chassis. The central operating system includes a component control system, a primary master controller, and a secondary master controller. The component control system is configured for controlling the modular component. The primary and secondary master controllers are in operative communication with the component control system. The primary and secondary master controllers are configured to simultaneously transmit commands to the component control system. The component control system is configured to accept commands from the secondary master controller only when a fault occurs in the primary master controller.

  9. National Satellite Forest Monitoring systems for REDD+

    Science.gov (United States)

    Jonckheere, I. G.

    2012-12-01

    Reducing Emissions from Deforestation and Forest Degradation (REDD) is an effort to create a financial value for the carbon stored in forests, offering incentives for developing countries to reduce emissions from forested lands and invest in low-carbon paths to sustainable development. "REDD+" goes beyond deforestation and forest degradation, and includes the role of conservation, sustainable management of forests and enhancement of forest carbon stocks. In the framework of getting countries ready for REDD+, the UN-REDD Programme assists developing countries to prepare and implement national REDD+ strategies. For the monitoring, reporting and verification, FAO supports the countries to develop national satellite forest monitoring systems that allow for credible measurement, reporting and verification (MRV) of REDD+ activities. These are among the most critical elements for the successful implementation of any REDD+ mechanism. The UN-REDD Programme through a joint effort of FAO and Brazil's National Space Agency, INPE, is supporting countries to develop cost- effective, robust and compatible national monitoring and MRV systems, providing tools, methodologies, training and knowledge sharing that help countries to strengthen their technical and institutional capacity for effective MRV systems. To develop strong nationally-owned forest monitoring systems, technical and institutional capacity building is key. The UN-REDD Programme, through FAO, has taken on intensive training together with INPE, and has provided technical help and assistance for in-country training and implementation for national satellite forest monitoring. The goal of the support to UN-REDD pilot countries in this capacity building effort is the training of technical forest people and IT persons from interested REDD+ countries, and to set- up the national satellite forest monitoring systems. The Brazilian forest monitoring system, TerraAmazon, which is used as a basis for this initiative, allows

  10. Daily Radiation Budget of the Baltic Sea Surface from Satellite Data

    Directory of Open Access Journals (Sweden)

    Zapadka Tomasz

    2015-09-01

    Full Text Available Recently developed system for assessment of radiation budget for the Baltic Sea has been presented and verified. The system utilizes data from various sources: satellite, model and in situ measurements. It has been developed within the SatBałtyk project (Satellite Monitoring of the Baltic Sea Environment - www.satbaltyk.eu where the energy radiation budget is one of the key element. The SatBałtyk system generates daily maps of the all components of radiation budget on every day basis. We show the scheme of making daily maps, applied algorithms and empirical data collection within the system. An empirical verification of the system has been carried out based on empirical data collected on the oil rig placed on the Baltic Sea. This verification concerned all the components of the surface radiation budget. The average daily NET products are estimated with statistical error ca. 13 Wm-2. The biggest absolute statistical error is for LWd component and equals 14 Wm-2. The relative error in relation to the average annual values for whole Baltic is the biggest for SWu and reaches 25%. All estimated components have correlation coefficient above 0.91.

  11. Ambiguity resolution for satellite Doppler positioning systems

    Science.gov (United States)

    Argentiero, P.; Marini, J.

    1979-01-01

    The implementation of satellite-based Doppler positioning systems frequently requires the recovery of transmitter position from a single pass of Doppler data. The least-squares approach to the problem yields conjugate solutions on either side of the satellite subtrack. It is important to develop a procedure for choosing the proper solution which is correct in a high percentage of cases. A test for ambiguity resolution which is the most powerful in the sense that it maximizes the probability of a correct decision is derived. When systematic error sources are properly included in the least-squares reduction process to yield an optimal solution the test reduces to choosing the solution which provides the smaller valuation of the least-squares loss function. When systematic error sources are ignored in the least-squares reduction, the most powerful test is a quadratic form comparison with the weighting matrix of the quadratic form obtained by computing the pseudoinverse of a reduced-rank square matrix. A formula for computing the power of the most powerful test is provided. Numerical examples are included in which the power of the test is computed for situations that are relevant to the design of a satellite-aided search and rescue system.

  12. Broadband and scalable mobile satellite communication system for future access networks

    Science.gov (United States)

    Ohata, Kohei; Kobayashi, Kiyoshi; Nakahira, Katsuya; Ueba, Masazumi

    2005-07-01

    Due to the recent market trends, NTT has begun research into next generation satellite communication systems, such as broadband and scalable mobile communication systems. One service application objective is to provide broadband Internet access for transportation systems, temporal broadband access networks and telemetries to remote areas. While these are niche markets the total amount of capacity should be significant. We set a 1-Gb/s total transmission capacity as our goal. Our key concern is the system cost, which means that the system should be unified system with diversified services and not tailored for each application. As satellites account for a large portion of the total system cost, we set the target satellite size as a small, one-ton class dry mass with a 2-kW class payload power. In addition to the payload power and weight, the mobile satellite's frequency band is extremely limited. Therefore, we need to develop innovative technologies that will reduce the weight and maximize spectrum and power efficiency. Another challenge is the need for the system to handle up to 50 dB and a wide data rate range of other applications. This paper describes the key communication system technologies; the frequency reuse strategy, multiplexing scheme, resource allocation scheme, and QoS management algorithm to ensure excellent spectrum efficiency and support a variety of services and quality requirements in the mobile environment.

  13. Advanced Microelectronics Technologies for Future Small Satellite Systems

    Science.gov (United States)

    Alkalai, Leon

    1999-01-01

    Future small satellite systems for both Earth observation as well as deep-space exploration are greatly enabled by the technological advances in deep sub-micron microelectronics technologies. Whereas these technological advances are being fueled by the commercial (non-space) industries, more recently there has been an exciting new synergism evolving between the two otherwise disjointed markets. In other words, both the commercial and space industries are enabled by advances in low-power, highly integrated, miniaturized (low-volume), lightweight, and reliable real-time embedded systems. Recent announcements by commercial semiconductor manufacturers to introduce Silicon On Insulator (SOI) technology into their commercial product lines is driven by the need for high-performance low-power integrated devices. Moreover, SOI has been the technology of choice for many space semiconductor manufacturers where radiation requirements are critical. This technology has inherent radiation latch-up immunity built into the process, which makes it very attractive to space applications. In this paper, we describe the advanced microelectronics and avionics technologies under development by NASA's Deep Space Systems Technology Program (also known as X2000). These technologies are of significant benefit to both the commercial satellite as well as the deep-space and Earth orbiting science missions. Such a synergistic technology roadmap may truly enable quick turn-around, low-cost, and highly capable small satellite systems for both Earth observation as well as deep-space missions.

  14. Advanced payload concepts and system architecture for emerging services in Indian National Satellite Systems

    Science.gov (United States)

    Balasubramanian, E. P.; Rao, N. Prahlad; Sarkar, S.; Singh, D. K.

    2008-07-01

    Over the past two decades Indian Space Research Organization (ISRO) has developed and operationalized satellites to generate a large capacity of transponders for telecommunication service use in INSAT system. More powerful on-board transmitters are built to usher-in direct-to-home broadcast services. These have transformed the Satcom application scenario in the country. With the proliferation of satellite technology, a shift in the Indian market is witnessed today in terms of demand for new services like Broadband Internet, Interactive Multimedia, etc. While it is imperative to pay attention to market trends, ISRO is also committed towards taking the benefits of technological advancement to all round growth of our population, 70% of which dwell in rural areas. The initiatives already taken in space application related to telemedicine, tele-education and Village Resource Centres are required to be taken to a greater height of efficiency. These targets pose technological challenges to build a large capacity and cost-effective satellite system. This paper addresses advanced payload concepts and system architecture along with the trade-off analysis on design parameters in proposing a new generation satellite system capable of extending the reach of the Indian broadband structure to individual users, educational and medical institutions and enterprises for interactive services. This will be a strategic step in the evolution of INSAT system to employ advanced technology to touch every human face of our population.

  15. A Satellite Mortality Study to Support Space Systems Lifetime Prediction

    Science.gov (United States)

    Fox, George; Salazar, Ronald; Habib-Agahi, Hamid; Dubos, Gregory

    2013-01-01

    Estimating the operational lifetime of satellites and spacecraft is a complex process. Operational lifetime can differ from mission design lifetime for a variety of reasons. Unexpected mortality can occur due to human errors in design and fabrication, to human errors in launch and operations, to random anomalies of hardware and software or even satellite function degradation or technology change, leading to unrealized economic or mission return. This study focuses on data collection of public information using, for the first time, a large, publically available dataset, and preliminary analysis of satellite lifetimes, both operational lifetime and design lifetime. The objective of this study is the illustration of the relationship of design life to actual lifetime for some representative classes of satellites and spacecraft. First, a Weibull and Exponential lifetime analysis comparison is performed on the ratio of mission operating lifetime to design life, accounting for terminated and ongoing missions. Next a Kaplan-Meier survivor function, standard practice for clinical trials analysis, is estimated from operating lifetime. Bootstrap resampling is used to provide uncertainty estimates of selected survival probabilities. This study highlights the need for more detailed databases and engineering reliability models of satellite lifetime that include satellite systems and subsystems, operations procedures and environmental characteristics to support the design of complex, multi-generation, long-lived space systems in Earth orbit.

  16. Precise Point Positioning with the BeiDou Navigation Satellite System

    Directory of Open Access Journals (Sweden)

    Min Li

    2014-01-01

    Full Text Available By the end of 2012, China had launched 16 BeiDou-2 navigation satellites that include six GEOs, five IGSOs and five MEOs. This has provided initial navigation and precise pointing services ability in the Asia-Pacific regions. In order to assess the navigation and positioning performance of the BeiDou-2 system, Wuhan University has built up a network of BeiDou Experimental Tracking Stations (BETS around the World. The Position and Navigation Data Analyst (PANDA software was modified to determine the orbits of BeiDou satellites and provide precise orbit and satellite clock bias products from the BeiDou satellite system for user applications. This article uses the BeiDou/GPS observations of the BeiDou Experimental Tracking Stations to realize the BeiDou and BeiDou/GPS static and kinematic precise point positioning (PPP. The result indicates that the precision of BeiDou static and kinematic PPP reaches centimeter level. The precision of BeiDou/GPS kinematic PPP solutions is improved significantly compared to that of BeiDou-only or GPS-only kinematic PPP solutions. The PPP convergence time also decreases with the use of combined BeiDou/GPS systems.

  17. Precise point positioning with the BeiDou navigation satellite system.

    Science.gov (United States)

    Li, Min; Qu, Lizhong; Zhao, Qile; Guo, Jing; Su, Xing; Li, Xiaotao

    2014-01-08

    By the end of 2012, China had launched 16 BeiDou-2 navigation satellites that include six GEOs, five IGSOs and five MEOs. This has provided initial navigation and precise pointing services ability in the Asia-Pacific regions. In order to assess the navigation and positioning performance of the BeiDou-2 system, Wuhan University has built up a network of BeiDou Experimental Tracking Stations (BETS) around the World. The Position and Navigation Data Analyst (PANDA) software was modified to determine the orbits of BeiDou satellites and provide precise orbit and satellite clock bias products from the BeiDou satellite system for user applications. This article uses the BeiDou/GPS observations of the BeiDou Experimental Tracking Stations to realize the BeiDou and BeiDou/GPS static and kinematic precise point positioning (PPP). The result indicates that the precision of BeiDou static and kinematic PPP reaches centimeter level. The precision of BeiDou/GPS kinematic PPP solutions is improved significantly compared to that of BeiDou-only or GPS-only kinematic PPP solutions. The PPP convergence time also decreases with the use of combined BeiDou/GPS systems.

  18. Dynamical and observational constraints on satellites in the inner Pluto-Charon system

    Science.gov (United States)

    Stern, S. Alan; Parker, Joel William; Duncan, Martin J.; Snowdall, J. Clark, Jr.; Levison, Harold F.

    1994-01-01

    It is not known if Pluto has other satellites besides its massive partner Charon. In the past, searches for additional satellites in the Pluto-Charon system have extended from the solar-tidal stability boundary (approximately 90 arcsec from Pluto) inward to about 1 arcsec from Pluto. Here we further explore the inner (i.e., less than 10 arcsec) region of the Pluto-Charon system to determine where additional satellites might lie. In particular, we report on (1) dynamical simulations to delineate the region where unstable orbits lie around Charon, (2) dynamical simulations which use the low orbital eccentricity of Charon to constrain the mass of any third body near Pluto, and (3) analysis of Hubble Space Telescope (HST) archival images to search for satellites in the inner Pluto-Charon system. Although no objects were found, significant new constraints on bodies orbiting in the inner Pluto-Charon system were obtained.

  19. Integration of Satellite and Terrestrial Systems in Future Multimedia Communications

    OpenAIRE

    Evans, Barry; Werner, Markus; Lutz, Erich; Bousquet, Michel; Corazza, Giovanni E; Maral, Gerard; Rumeau, Robert; Ferro, Erina

    2005-01-01

    In this article we examine the role of satellite communications in future telecommunication networks and service provision. Lessons from the past indicate that satellites are successful as a result of their wide area coverage or speed to market for new services. Niche areas such as coverage of air and sea will persist, but for land masses convergence of fixed, mobile, and broadcasting will dictate that the only way forward for satellites is in an integrated format with terrestrial systems. We...

  20. Network flexibility of the IRIDIUM (R) Global Mobile Satellite System

    Science.gov (United States)

    Hutcheson, Jonathan; Laurin, Mala

    1995-01-01

    The IRIDIUM system is a global personal communications system supported by a constellation of 66 low earth orbit (LEO) satellites and a collection of earth-based 'gateway' switching installations. Like traditional wireless cellular systems, coverage is achieved by a grid of cells in which bandwidth is reused for spectral efficiency. Unlike any cellular system ever built, the moving cells can be shared by multiple switching facilities. Noteworthy features of the IRIDIUM system include inter-satellite links, a GSM-based telephony architecture, and a geographically controlled system access process. These features, working in concert, permit flexible and reliable administration of the worldwide service area by gateway operators. This paper will explore this unique concept.

  1. Introducing Multisensor Satellite Radiance-Based Evaluation for Regional Earth System Modeling

    Science.gov (United States)

    Matsui, T.; Santanello, J.; Shi, J. J.; Tao, W.-K.; Wu, D.; Peters-Lidard, C.; Kemp, E.; Chin, M.; Starr, D.; Sekiguchi, M.; hide

    2014-01-01

    Earth System modeling has become more complex, and its evaluation using satellite data has also become more difficult due to model and data diversity. Therefore, the fundamental methodology of using satellite direct measurements with instrumental simulators should be addressed especially for modeling community members lacking a solid background of radiative transfer and scattering theory. This manuscript introduces principles of multisatellite, multisensor radiance-based evaluation methods for a fully coupled regional Earth System model: NASA-Unified Weather Research and Forecasting (NU-WRF) model. We use a NU-WRF case study simulation over West Africa as an example of evaluating aerosol-cloud-precipitation-land processes with various satellite observations. NU-WRF-simulated geophysical parameters are converted to the satellite-observable raw radiance and backscatter under nearly consistent physics assumptions via the multisensor satellite simulator, the Goddard Satellite Data Simulator Unit. We present varied examples of simple yet robust methods that characterize forecast errors and model physics biases through the spatial and statistical interpretation of various satellite raw signals: infrared brightness temperature (Tb) for surface skin temperature and cloud top temperature, microwave Tb for precipitation ice and surface flooding, and radar and lidar backscatter for aerosol-cloud profiling simultaneously. Because raw satellite signals integrate many sources of geophysical information, we demonstrate user-defined thresholds and a simple statistical process to facilitate evaluations, including the infrared-microwave-based cloud types and lidar/radar-based profile classifications.

  2. Second-generation mobile satellite system. A conceptual design and trade-off study

    Science.gov (United States)

    Sue, M. K.; Park, Y. H.

    1985-01-01

    In recent years, interest has grown in the mobile satellite (MSAT) system, a satellite-based communications system capable of providing integrated voice and data services to a large number of users. To explore the potential of a commercial mobile satellite system (MSS) beyond the horizon of the first generation, using technologies of the 1990's and to assist MSAT-X in directing its efforts, a conceptual design has been performed for a second-generation system to be launched around the mid-1990's. The design goal is to maximize the number of satellite channels and/or minimize the overall life-cycle cost, subject to the constraint of utilizing a commercial satellite bus with minimum modifications. To provide an optimal design, a series of trade-offs are performed, including antenna sizing, feed configurations, and interference analysis. Interference is a serious problem for MSAT and often an overlapping feed design is required to reduce interbeam interference. The trade-off studies will show that a simple non-overlapping feed is sufficient for the second-generation system, thus avoiding the need for the complicated beam-forming network that is associated with the overlapping feed designs. In addition, a system that operates at L-band, an alternative frequency band that is being considered by some for possible MSAT applications, is also presented.

  3. Boomerang Satellites

    Science.gov (United States)

    Hesselbrock, Andrew; Minton, David A.

    2017-10-01

    We recently reported that the orbital architecture of the Martian environment allows for material in orbit around the planet to ``cycle'' between orbiting the planet as a ring, or as coherent satellites. Here we generalize our previous analysis to examine several factors that determine whether satellites accreting at the edge of planetary rings will cycle. In order for the orbiting material to cycle, tidal evolution must decrease the semi-major axis of any accreting satellites. In some systems, the density of the ring/satellite material, the surface mass density of the ring, the tidal parameters of the system, and the rotation rate of the primary body contribute to a competition between resonant ring torques and tidal dissipation that prevent this from occurring, either permanently or temporarily. Analyzing these criteria, we examine various bodies in our solar system (such as Saturn, Uranus, and Eris) to identify systems where cycling may occur. We find that a ring-satellite cycle may give rise to the current Uranian ring-satellite system, and suggest that Miranda may have formed from an early, more massive Uranian ring.

  4. National Polar-orbiting Operational Environmental Satellite System (NPOESS) Design and Architecture

    Science.gov (United States)

    Hinnant, F.

    2008-12-01

    The National Oceanic and Atmospheric Administration (NOAA), Department of Defense (DoD), and National Aeronautics and Space Administration (NASA) are jointly acquiring the next-generation weather and environmental satellite system - the National Polar-orbiting Operational Environmental Satellite System (NPOESS). NPOESS will replace the current Polar-orbiting Operational Environmental Satellites (POES) managed by NOAA and the Defense Meteorological Satellite Program (DMSP) managed by the DoD and will provide continuity for the NASA Earth Observing System (EOS) with the launch of the NPOESS Preparatory Project (NPP). This poster will provide an overview of the NPOESS architecture, which includes four segments. The space segment includes satellites in two orbits that carry a suite of sensors to collect meteorological, oceanographic, climatological, and solar-geophysical observations of the Earth, atmosphere, and near-Earth space environment. The NPOESS design allows centralized mission management and delivers high quality environmental products to military, civil and scientific users through a Command, Control, and Communication Segment (C3S). The data processing for NPOESS is accomplished through an Interface Data Processing Segment (IDPS)/Field Terminal Segment (FTS) that processes NPOESS satellite data to provide environmental data products to NOAA and DoD processing centers operated by the United States government as well as to remote terminal users. The Launch Support Segment completes the four segments that make up NPOESS that will enhance the connectivity between research and operations and provide critical operational and scientific environmental measurements to military, civil, and scientific users until 2026.

  5. Development of a solar array drive mechanism for micro-satellite platforms

    Science.gov (United States)

    Galatis, Giorgos; Guo, Jian; Buursink, Jeroen

    2017-10-01

    Photovoltaic solar array (PVSA) systems are the most widely used method for spacecraft power generation. However, in many satellite missions, the optimum orientation of the PVSA system is not always compatible with that of the payload orientation. Many methods, have been examined in the past to overcome this problem. Up to date, the most widely used active method for large costly satellites is the Solar Array Drive Mechanism (SADM). The SADM serves as the interface between the satellite body and the PVSA subsystem, enabling the decoupling of their spatial orientation. Nonetheless, there exists a research and development gap for such systems regarding low cost micro-satellites. During the literature study of this paper, individual orbital parameters of various micro-satellites have been extracted and compared to the rotational freedom of the corresponding SADMs used. The findings demonstrated that the implemented SADMs are over designed. It is therefore concluded that these components are not tailored made for each spacecraft mission individually, but rather, exhibit a generic design to full fill a majority of mission profiles and requirements. Motivated by the above analysis, the cardinal objective of the current research is to develop a low cost mechanism that will be precisely tailored for the use of a low Earth orbit (LEO) micro-satellite platform orbiting in altitudes of 500 - 1000km . The design of the mechanism may vary from the existing miniaturized SADMs. For example, the preliminary analysis of the current research suggests, that the conventional use of the slip ring system as the electronic transfer unit can be replaced by a seMI Orientation Unit (MIOU). Systems engineering tools for concept generation and selection have been used. In addition, simulation and mathematical modelling have been implemented on component and system level, to accurately predict the behaviour of the system under various modes of operation. The production and system testing of

  6. A novel magnetic suspension cum linear actuator system for satellite cryo coolers

    International Nuclear Information System (INIS)

    Sivadasan, K.K.

    1994-01-01

    Stirling cycle cryogenic coolers have been widely used for device cooling in satellites. Various types of magnetic bearings and linear actuators find application in such systems. The most widely used configurations have two-axis-radially-active suspension stations placed at either ends of a reciprocating shaft in the compression and expansion sections. Separate or integral liner motors are provided in each section for axial shaft movement. It may be noted that such configurations are rather complicated and less reliable because of the presence of numerous electro-mechanical components, sensors and electronic servo channels. In this paper, a simple and reliable scheme is suggested which axially stabilizes and linearly perturbs the piston so that the need for a separate motor for axial actuation can be totally dispensed with. The piston is radially supported by passive repulsive bearings. In the axial direction, a servo actuator ''balances'' the piston and also actuates it bi-directionally. Implemented of this ''bearing cum motor theme,'' reduces the number of electromechanical and electronic components required to operate the system and hence minimizes the chances of system failure. Apart from this, the system's power consumption is reduced and efficiency is improved as electrical heating losses caused by quiescent-operating currents are removed and electromagnetic losses on the moving parts are minimized. The necessary system parameters have been derived using finite element analysis techniques. Finally, the proposed design is validated by computer-aided system simulation

  7. ORBITAL DEPENDENCE OF GALAXY PROPERTIES IN SATELLITE SYSTEMS OF GALAXIES

    International Nuclear Information System (INIS)

    Hwang, Ho Seong; Park, Changbom

    2010-01-01

    We study the dependence of satellite galaxy properties on the distance to the host galaxy and the orbital motion (prograde and retrograde orbits) using the Sloan Digital Sky Survey (SDSS) data. From SDSS Data Release 7, we find 3515 isolated satellite systems of galaxies at z -1 . It is found that the radial distribution of early-type satellites in prograde orbit is strongly concentrated toward the host while that of retrograde ones shows much less concentration. We also find the orbital speed of late-type satellites in prograde orbit increases as the projected distance to the host (R) decreases while the speed decreases for those in retrograde orbit. At R less than 0.1 times the host virial radius (R vir,host ), the orbital speed decreases in both prograde and retrograde orbit cases. Prograde satellites are on average fainter than retrograde satellites for both early and late morphological types. The u - r color becomes redder as R decreases for both prograde and retrograde orbit late-type satellites. The differences between prograde and retrograde orbit satellite galaxies may be attributed to their different origin or the different strength of physical processes that they have experienced through hydrodynamic interactions with their host galaxies.

  8. The integrated satellite-acoustic telemetry (iSAT) system for tracking marine megafauna

    KAUST Repository

    De la Torre, Pedro

    2012-10-06

    This document describes the integrated satellite-acoustic telemetry (iSAT) system: an autonomous modular system for tracking the movements of large pelagic fish using acoustic telemetry and satellite communications. The sensor platform is described along with the propulsion and navigation systems. An application for tracking the whale shark (Rhincodon typus) in the Red Sea is included along with a discussion of the technical difficulties that such a system faces.

  9. The integrated satellite-acoustic telemetry (iSAT) system for tracking marine megafauna

    KAUST Repository

    De la Torre, Pedro; Berumen, Michael L.; Salama, Khaled N.; Smith, E. Lloyd

    2012-01-01

    This document describes the integrated satellite-acoustic telemetry (iSAT) system: an autonomous modular system for tracking the movements of large pelagic fish using acoustic telemetry and satellite communications. The sensor platform is described along with the propulsion and navigation systems. An application for tracking the whale shark (Rhincodon typus) in the Red Sea is included along with a discussion of the technical difficulties that such a system faces.

  10. An FDMA system concept for 30/20 GHz high capacity domestic satellite service

    Science.gov (United States)

    Berk, G.; Jean, P. N.; Rotholz, E.; White, B. E.

    1982-01-01

    The paper summarizes a feasibility study of a multibeam FDMA satellite system operating in the 30/20 GHz band. The system must accommodate a very high volume of traffic within the restrictions of a 5 kW solar cell array and a 2.5 GHz bandwidth. Multibeam satellite operation reduces the DC power demand and allows reuse of the available bandwidth. Interferences among the beams are brought to acceptable levels by appropriate frequency assignments. A transponder design is presented; it is greatly simplified by the application of a regional concept. System analysis shows that MSK modulation is appropriate for a high-capacity system because it conserves the frequency spectrum. Rain attenuation, a serious problem in this frequency band, is combatted with sufficient power margins and with coding. Link budgets, cost analysis, and weight and power calculations are also discussed. A satellite-routed FDMA system compares favorably in performance and cost with a satellite-switched TDMA system.

  11. Design and Implementation of Effective Electrical Power System for Surya Satellite-1

    Science.gov (United States)

    Sulistya, A. H.; Hasbi, W.; Muhida, R.

    2018-05-01

    Surya Satellite-1 is a nanosatellite developed by students of Surya University. The subject of this paper is the design and implementation of effective electrical power system for Surya Satellite 1. The electrical power system role is to supply other systems of the satellite with appropriate electrical power. First, the requirements of the electrical power system are defined. The architecture of the electrical power system is then designed to build the prototype. The orbit simulation is calculated to predict the power production. When prototype test and simulation data is gained, we make an operation scenario to keep the produced power and the consumed power in balance. The design of the modules of the electrical power system is carried out with triple junction solar cells, lithium ion batteries, maximum power point trackers, charging controllers, power distributions, and protection systems. Finally, the prototypes of the electrical power system are presented.

  12. Component reliability criticality or importance metrics for systems with degrading components

    NARCIS (Netherlands)

    Peng, H.; Coit, D.W.; Feng, Q.

    2012-01-01

    This paper proposes two new importance measures: one new importance measure for systems with -independent degrading components, and another one for systems with -correlated degrading components. Importance measures in previous research are inadequate for systems with degrading components because

  13. An airborne meteorological data collection system using satellite relay /ASDAR/

    Science.gov (United States)

    Bagwell, J. W.; Lindow, B. G.

    1978-01-01

    The paper describes the aircraft to satellite data relay (ASDAR) project which processes information collected by the navigation and data systems of widebody jet aircraft which cross data-sparse areas of the tropics and southern hemisphere. The ASDAR system consists of a data acquisition and control unit to acquire, store, and format latitude, longitude, altitude, wind speed, wind direction, and outside air temperature data; a transmitter to relay the formatted data via satellite to the ground; and a clock to time the data sampling and transmission periods.

  14. A proposed architecture for a satellite-based mobile communications network - The lowest three layers

    Science.gov (United States)

    Yan, T. Y.; Naderi, F. M.

    1986-01-01

    Architecture for a commercial mobile satellite network is proposed. The mobile satellite system (MSS) is composed of a network management center, mobile terminals, base stations, and gateways; the functions of each component are described. The satellite is a 'bent pipe' that performs frequency translations, and it has multiple UHF beams. The development of the MSS design based on the seven-layer open system interconnection model is examined. Consideration is given to the functions of the physical, data link, and network layers and the integrated adaptive mobile access protocol.

  15. GNSS global navigation satellite systems : GPS, GLONASS, Galileo, and more

    CERN Document Server

    Hofmann-Wellenhof, Bernhard; Wasle, Elmar

    2008-01-01

    This book is an extension to the acclaimed scientific bestseller "GPS - Theory and Practice". It covers Global Navigation Satellite Systems (GNSS) and includes the Russian GLONASS, the European system Galileo, and additional systems.

  16. On board processing for future satellite communications systems: Comparison of FDM, TDM and hybrid accessing schemes

    Science.gov (United States)

    Berk, G.; Jean, P. N.; Rotholz, E.

    1982-01-01

    Several satellite uplink and downlink accessing schemes for customer premises service are compared. Four conceptual system designs are presented: satellite-routed frequency division multiple access (FDMA), satellite-switched time division multiple access (TDMA), processor-routed TDMA, and frequency-routed TDMA, operating in the 30/20 GHz band. The designs are compared on the basis of estimated satellite weight, system capacity, power consumption, and cost. The systems are analyzed for fixed multibeam coverage of the continental United States. Analysis shows that the system capacity is limited by the available satellite resources and by the terminal size and cost.

  17. Characteristics of BeiDou Navigation Satellite System Multipath and Its Mitigation Method Based on Kalman Filter and Rauch-Tung-Striebel Smoother.

    Science.gov (United States)

    Zhang, Qiuzhao; Yang, Wei; Zhang, Shubi; Liu, Xin

    2018-01-12

    Global Navigation Satellite System (GNSS) carrier phase measurement for short baseline meets the requirements of deformation monitoring of large structures. However, the carrier phase multipath effect is the main error source with double difference (DD) processing. There are lots of methods to deal with the multipath errors of Global Position System (GPS) carrier phase data. The BeiDou navigation satellite System (BDS) multipath mitigation is still a research hotspot because the unique constellation design of BDS makes it different to mitigate multipath effects compared to GPS. Multipath error periodically repeats for its strong correlation to geometry of satellites, reflective surface and antenna which is also repetitive. We analyzed the characteristics of orbital periods of BDS satellites which are consistent with multipath repeat periods of corresponding satellites. The results show that the orbital periods and multipath periods for BDS geostationary earth orbit (GEO) and inclined geosynchronous orbit (IGSO) satellites are about one day but the periods of MEO satellites are about seven days. The Kalman filter (KF) and Rauch-Tung-Striebel Smoother (RTSS) was introduced to extract the multipath models from single difference (SD) residuals with traditional sidereal filter (SF). Wavelet filter and Empirical mode decomposition (EMD) were also used to mitigate multipath effects. The experimental results show that the three filters methods all have obvious effect on improvement of baseline accuracy and the performance of KT-RTSS method is slightly better than that of wavelet filter and EMD filter. The baseline vector accuracy on east, north and up (E, N, U) components with KF-RTSS method were improved by 62.8%, 63.6%, 62.5% on day of year 280 and 57.3%, 53.4%, 55.9% on day of year 281, respectively.

  18. Characteristics of BeiDou Navigation Satellite System Multipath and Its Mitigation Method Based on Kalman Filter and Rauch-Tung-Striebel Smoother

    Directory of Open Access Journals (Sweden)

    Qiuzhao Zhang

    2018-01-01

    Full Text Available Global Navigation Satellite System (GNSS carrier phase measurement for short baseline meets the requirements of deformation monitoring of large structures. However, the carrier phase multipath effect is the main error source with double difference (DD processing. There are lots of methods to deal with the multipath errors of Global Position System (GPS carrier phase data. The BeiDou navigation satellite System (BDS multipath mitigation is still a research hotspot because the unique constellation design of BDS makes it different to mitigate multipath effects compared to GPS. Multipath error periodically repeats for its strong correlation to geometry of satellites, reflective surface and antenna which is also repetitive. We analyzed the characteristics of orbital periods of BDS satellites which are consistent with multipath repeat periods of corresponding satellites. The results show that the orbital periods and multipath periods for BDS geostationary earth orbit (GEO and inclined geosynchronous orbit (IGSO satellites are about one day but the periods of MEO satellites are about seven days. The Kalman filter (KF and Rauch-Tung-Striebel Smoother (RTSS was introduced to extract the multipath models from single difference (SD residuals with traditional sidereal filter (SF. Wavelet filter and Empirical mode decomposition (EMD were also used to mitigate multipath effects. The experimental results show that the three filters methods all have obvious effect on improvement of baseline accuracy and the performance of KT-RTSS method is slightly better than that of wavelet filter and EMD filter. The baseline vector accuracy on east, north and up (E, N, U components with KF-RTSS method were improved by 62.8%, 63.6%, 62.5% on day of year 280 and 57.3%, 53.4%, 55.9% on day of year 281, respectively.

  19. Joint Polar Satellite System: the United States New Generation Civilian Polar Orbiting Environmental Satellite System

    Science.gov (United States)

    Mandt, G.

    2017-12-01

    The Joint Polar Satellite System (JPSS) is the Nation's advanced series of polar-orbiting environmental satellites. JPSS represents significant technological and scientific advancements in observations used for severe weather prediction and environmental monitoring. The Suomi National Polar-orbiting Partnership (S-NPP) is providing state-of-the art atmospheric, oceanographic, and environmental data, as the first of the JPSS satellites while the second in the series, J-1, is scheduled to launch in October 2017. The JPSS baseline consists of a suite of four instruments: an advanced microwave and infrared sounders which are critical for weather forecasting; a leading-edge visible and infrared imager critical to data sparse areas such as Alaska and needed for environmental assessments such as snow/ice cover, droughts, volcanic ash, forest fires and surface temperature; and an ozone sensor primarily used for global monitoring of ozone and input to weather and climate models. The same suite of instruments that are on JPSS-1 will be on JPSS-2, 3 and 4. The JPSS-2 instruments are well into their assembly and test phases and are scheduled to be completed in 2018. The JPSS-2 spacecraft critical design review (CDR) is scheduled for 2Q 2018 with the launch in 2021. The sensors for the JPSS-3 and 4 spacecraft have been approved to enter into their acquisition phases. JPSS partnership with the US National Aeronautics and Space Agency (NASA) continues to provide a strong foundation for the program's success. JPSS also continues to maintain its important international relationships with European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT) and the Japan Aerospace Exploration Agency (JAXA). JPSS works closely with its user community through the Proving Ground and Risk Reduction (PGRR) Program to identify opportunities to maximize the operational application of current JPSS capabilities. The PGRR Program also helps identify and evaluate the use of JPSS

  20. The precision of today's satellite laser ranging systems

    Science.gov (United States)

    Dunn, Peter J.; Torrence, Mark H.; Hussen, Van S.; Pearlman, Michael R.

    1993-06-01

    Recent improvements in the accuracy of modern satellite laser ranging (SLR) systems are strengthened by the new capability of many instruments to track an increasing number of geodetic satellite targets without significant scheduling conflict. This will allow the refinement of some geophysical parameters, such as solid Earth tidal effects and GM, and the improved temporal resolution of others, such as Earth orientation and station position. Better time resolution for the locations of fixed observatories will allow us to monitor more subtle motions at the stations, and transportable systems will be able to provide indicators of long term trends with shorter occupations. If we are to take advantage of these improvements, care must be taken to preserve the essential accuracy of an increasing volume of range observations at each stage of the data reduction process.

  1. Introduction to the Personal Access Satellite System Study

    Science.gov (United States)

    Sue, Miles K.

    1990-01-01

    A recent study by the National Telecommunications and Information Administration (NTIA) has concluded that the 21st century will be the age of information in which the telecommunication infrastructure will be vital to the social and economic well being of society. To meet the challenge of the coming age, JPL has been performing studies on a personal access satellite system (PASS) for the 21st century. The PASS study can be traced back to a study in which the technical feasibility and potential applications of a high frequency, low data rate satellite system were identified using small fixed terminals. Herein, the PASS concept is described along with the strawman design. Then the key challenges are identified along with possible solutions. Finally, the plan for the future is summarized from the key results.

  2. Satellites, tweets, forecasts: the future of flood disaster management?

    Science.gov (United States)

    Dottori, Francesco; Kalas, Milan; Lorini, Valerio; Wania, Annett; Pappenberger, Florian; Salamon, Peter; Ramos, Maria Helena; Cloke, Hannah; Castillo, Carlos

    2017-04-01

    Floods have devastating effects on lives and livelihoods around the world. Structural flood defence measures such as dikes and dams can help protect people. However, it is the emerging science and technologies for flood disaster management and preparedness, such as increasingly accurate flood forecasting systems, high-resolution satellite monitoring, rapid risk mapping, and the unique strength of social media information and crowdsourcing, that are most promising for reducing the impacts of flooding. Here, we describe an innovative framework which integrates in real-time two components of the Copernicus Emergency mapping services, namely the European Flood Awareness System and the satellite-based Rapid Mapping, with new procedures for rapid risk assessment and social media and news monitoring. The integrated framework enables improved flood impact forecast, thanks to the real-time integration of forecasting and monitoring components, and increases the timeliness and efficiency of satellite mapping, with the aim of capturing flood peaks and following the evolution of flooding processes. Thanks to the proposed framework, emergency responders will have access to a broad range of timely and accurate information for more effective and robust planning, decision-making, and resource allocation.

  3. System architecture and market aspects of an European Land Mobile Satellite System via EMS

    Science.gov (United States)

    Ananasso, F.; Mistretta, I.

    1992-03-01

    The paper describes an implementation scenario of a Land Mobile Satellite System via the EMS (European Mobile System) payload embarked on Italsat F-2. Some emphasis is given on market issues aiming at singling out business niches of Land Mobile Satellite Services (LMSS) in Europe. Other crucial issues exist such as: the alternate/competitive systems, the problems of interworking with other existing and/or planned systems, the definition of network architecture that better fits the user requirements, the marketing strategy and, last but not least, the financial evaluation of the project. The paper, on the basis of a study performed by Telespazio on behalf of ESA, discusses some of these issues with emphasis on competitive market aspects.

  4. Mutual Events in the Uranian satellite system in 2007

    Science.gov (United States)

    Arlot, J. E.

    2008-09-01

    The equinox time on the giant planets When the Sun crosses the equatorial plane of a giant planet, it is the equinox time occurring every half orbit of the planet, i.e. every 6 years for Jupiter, 14 years for Saturn, 42 years for Uranus and 82 years for Neptune. Except Neptune, each planet have several major satellites orbiting in the equatorial plane, then, during the equinox time, the satellites will eclipse each other mutually. Since the Earth follows the Sun, during the equinox time, a terrestrial observer will see each satellite occulting each other during the same period. These events may be observed with photometric receivers since the light from the satellites will decrease during the events. The light curve will provide information on the geometric configuration of the the satellites at the time of the event with an accuracy of a few kilometers, not depending on the distance of the satellite system. Then, we are able to get an astrometric observation with an accuracy several times better than using direct imaging for positions. Equinox on Uranus in 2007 In 2007, it was equinox time on Uranus. The Sun crossed the equatorial plane of Uranus on December 6, 2007. Since the opposition Uranus-Sun was at the end of August 2007, observations were performed from May to December 2007. Since the declination of Uranus was between -5 and -6 degrees, observations were better to make in the southern hemisphere. However, some difficulties had to be solved: the faintness of the satellites (magnitude between 14 and 16), the brightness of the planet (magnitude 5) making difficult the photometric observation of the satellites. The used of K' filter associated to a large telescope allows to increase the number of observable events. Dynamics of the Uranian satellites One of the goals of the observations was to evaluate the accuracy of the current dynamical models of the motion of the satellites. This knowledge is important for several reasons: most of time the Uranian system is

  5. SDR Implementation for Satellite Communication

    OpenAIRE

    Jakobsson, Carin; Sjödin, Olof

    2017-01-01

    SDR (Software Defined Radio) is a radio communicationsystem that has been of great interest and developmentover the last 20 years. It decreases communication costs significantlyas it replaces expensive analogue system components withcheap and flexible digital ones. In this article we describe anSDR implementation for communication with the SEAM (SmallExplorer for Advances Missions) satellite, a CubeSat satellitethat will perform high quality magnetic measurements in theEarth orbit. The projec...

  6. An Online Satellite Altimetry Data Processing System: Ads Central

    Science.gov (United States)

    Helm, A.; Braun, A.; Schöne, T.; Wen, H.; Reigber, C.

    To help solving important issues of climate change and sea level change and to un- derstand the complex system Earth, an interdisciplinary interpretation of various data sets is needed. Several groups on the national and international level are recently ac- tive in building up services to faciliate the access to geoscientific data to a broader community, especially the access to higher level products. In Germany, GFZ-Potsdam is currently building up the modular German Earth Science and Information System (GESIS). In the frame of GESIS the Altimeter Database System (ADS) has been com- pleted recently. This modul provides high quality data and processing capabilities for radar altimetry data to a wide range of users. The ADS modul can be accessed worldwide via the internet based user-interface "ADS Central" with a standard browser at (http://gesis.gfz-potsdam.de/ads). After a registra- tion process the system offers higher level standard products, calculated routinely from the harmonised and intercalibrated satellite database. Additionally, ADS allows to generate individual user specific products. The user is able to perform several processing and analysing steps, e.g. to generate mean sea sur- face height grids, to extract altimetry data time series around a given location, to anal- yse parameter variability, or to perform a crossover analysis. The user can specify general parameters like the satellite mission, time interval and region of the used data. Additionally, different available correction models can be choosen, which will be ap- plied to the data. It is further possible to enter several quality parameters to optimize the data for individual applications. These individual user defined products are au- tomatically processed by ADS at GFZ-Potsdam and are subsequently distributed via anonymous ftp. The system is an attempt to offer easy access to the daily growing satellite altime- try database and numerous correction models and orbits. Due to the effectiveness

  7. Advanced Communications Technology Satellite (ACTS): Four-Year System Performance

    Science.gov (United States)

    Acosta, Roberto J.; Bauer, Robert; Krawczyk, Richard J.; Reinhart, Richard C.; Zernic, Michael J.; Gargione, Frank

    1999-01-01

    The Advanced Communications Technology Satellite (ACTS) was conceived at the National Aeronautics and Space Administration (NASA) in the late 1970's as a follow-on program to ATS and CTS to continue NASA's long history of satellite communications projects. The ACTS project set the stage for the C-band satellites that started the industry, and later the ACTS project established the use of Ku-band for video distribution and direct-to-home broadcasting. ACTS, launched in September 1993 from the space shuttle, created a revolution in satellite system architecture by using digital communications techniques employing key technologies such as a fast hopping multibeam antenna, an on-board baseband processor, a wide-band microwave switch matrix, adaptive rain fade compensation, and the use of 900 MHz transponders operating at Ka-band frequencies. This paper describes the lessons learned in each of the key ACTS technology areas, as well as in the propagation investigations.

  8. Disaster warning system: Satellite feasibility and comparison with terrestrial systems. Volume 1: Executive summary

    Science.gov (United States)

    Spoor, J. H.; Hodge, W. H.; Fluk, M. J.; Bamford, T. F.

    1974-01-01

    The Disaster Warning System (DWS) is a conceptual system which will provide the National Weather Service (NWS) with communication services in the 1980s to help minimize losses caused by natural disasters. The object of this study is a comparative analysis between a terrestrial DWS and a satellite DWS. Baseline systems satisfying the NOAA requirements were synthesized in sufficient detail so that a comparison could be made in terms of performance and cost. The cost of both baseline systems is dominated by the disaster warning and spotter reporting functions. An effort was undertaken to reduce system cost through lower-capacity alternative systems generated by modifying the baseline systems. By reducing the number of required channels and modifying the spotter reporting techniques, alternative satellite systems were synthesized. A terrestrial alternative with the coverage reduced to an estimated 95 percent of the population was considered.

  9. Reliability for systems of degrading components with distinct component shock sets

    International Nuclear Information System (INIS)

    Song, Sanling; Coit, David W.; Feng, Qianmei

    2014-01-01

    This paper studies reliability for multi-component systems subject to dependent competing risks of degradation wear and random shocks, with distinct shock sets. In practice, many systems are exposed to distinct and different types of shocks that can be categorized according to their sizes, function, affected components, etc. Previous research primarily focuses on simple systems with independent failure processes, systems with independent component time-to-failure, or components that share the same shock set or type of shocks. In our new model, we classify random shocks into different sets based on their sizes or function. Shocks with specific sizes or function can selectively affect one or more components in the system but not necessarily all components. Additionally the shocks from the different shock sets can arrive at different rates and have different relative magnitudes. Preventive maintenance (PM) optimization is conducted for the system with different component shock sets. Decision variables for two different maintenance scheduling problems, the PM replacement time interval, and the PM inspection time interval, are determined by minimizing a defined system cost rate. Sensitivity analysis is performed to provide insight into the behavior of the proposed maintenance policies. These models can be applied directly or customized for many complex systems that experience dependent competing failure processes with different component shock sets. A MEMS (Micro-electro mechanical systems) oscillator is a typical system subject to dependent and competing failure processes, and it is used as a numerical example to illustrate our new reliability and maintenance models

  10. Component reliability for electronic systems

    CERN Document Server

    Bajenescu, Titu-Marius I

    2010-01-01

    The main reason for the premature breakdown of today's electronic products (computers, cars, tools, appliances, etc.) is the failure of the components used to build these products. Today professionals are looking for effective ways to minimize the degradation of electronic components to help ensure longer-lasting, more technically sound products and systems. This practical book offers engineers specific guidance on how to design more reliable components and build more reliable electronic systems. Professionals learn how to optimize a virtual component prototype, accurately monitor product reliability during the entire production process, and add the burn-in and selection procedures that are the most appropriate for the intended applications. Moreover, the book helps system designers ensure that all components are correctly applied, margins are adequate, wear-out failure modes are prevented during the expected duration of life, and system interfaces cannot lead to failure.

  11. Comparative study of FDMA, TDMA and hybrid 30/20 GHz satellite communications systems for small users

    Science.gov (United States)

    Berk, G.; Jean, P. N.; Rotholz, E.

    1982-01-01

    This study compares several satellite uplink and downlink accessing schemes for a Customer Premises Service. Four conceptual system designs are presented: Satellite-Routed FDMA, Frequency-Routed TDMA, Satellite-Switched TDMA, and Processor-Routed TDMA, operating in the 30/20 GHz band. The designs are compared on the basis of estimated satellite weight, power consumption, and cost. The system capacities are analyzed for a fixed multibeam coverage of CONUS. Analysis shows that the system capacity is limited by the available satellite resources and by the terminal size and cost.

  12. Multi-spectral band selection for satellite-based systems

    International Nuclear Information System (INIS)

    Clodius, W.B.; Weber, P.G.; Borel, C.C.; Smith, B.W.

    1998-01-01

    The design of satellite based multispectral imaging systems requires the consideration of a number of tradeoffs between cost and performance. The authors have recently been involved in the design and evaluation of a satellite based multispectral sensor operating from the visible through the long wavelength IR. The criteria that led to some of the proposed designs and the modeling used to evaluate and fine tune the designs will both be discussed. These criteria emphasized the use of bands for surface temperature retrieval and the correction of atmospheric effects. The impact of cost estimate changes on the final design will also be discussed

  13. 75 FR 14658 - Invitation for Public Comment on Mitigation Options for Global Positioning System Satellite...

    Science.gov (United States)

    2010-03-26

    ... Public Comment on Mitigation Options for Global Positioning System Satellite Vehicle Number 49 AGENCY... options prior to changing the health status of Global Positioning System (GPS) satellite IIR-20M (satellite vehicle number 49--SVN 49) from unhealthy to healthy. The potential mitigations are each designed...

  14. Military Dependence on Commercial Satellite Communications Systems - Strength or Vulnerability

    National Research Council Canada - National Science Library

    Hook, Jack

    1999-01-01

    The military's growing dependence on commercial satellite communications systems will become a strength or vulnerability based on how well the right balance is achieved between commercial and military systems...

  15. Onboard autonomous mission re-planning for multi-satellite system

    Science.gov (United States)

    Zheng, Zixuan; Guo, Jian; Gill, Eberhard

    2018-04-01

    This paper presents an onboard autonomous mission re-planning system for Multi-Satellites System (MSS) to perform onboard re-planing in disruptive situations. The proposed re-planning system can deal with different potential emergency situations. This paper uses Multi-Objective Hybrid Dynamic Mutation Genetic Algorithm (MO-HDM GA) combined with re-planning techniques as the core algorithm. The Cyclically Re-planning Method (CRM) and the Near Real-time Re-planning Method (NRRM) are developed to meet different mission requirements. Simulations results show that both methods can provide feasible re-planning sequences under unforeseen situations. The comparisons illustrate that using the CRM is average 20% faster than the NRRM on computation time. However, by using the NRRM more raw data can be observed and transmitted than using the CRM within the same period. The usability of this onboard re-planning system is not limited to multi-satellite system. Other mission planning and re-planning problems related to autonomous multiple vehicles with similar demands are also applicable.

  16. 6/4 GHz band small capacity omni-use terminal satellite system

    Science.gov (United States)

    Masamura, T.; Inoue, T.

    1983-03-01

    This paper presents system outline and multiple access techniques for a domestic satellite communication system accommodating numerous small earth stations. Two kinds of earth stations are employed in this system, a small earth terminal (SET) and a master earth station (MES). There are 48 both way satellite channels using a 6/4 GHz band transponder whose e.i.r.p is about 62 dBm. The TDM (Time Division Multiplex) method is employed in the MES to SET link, and the SSMA (Spread Spectrum Multiple Access) method is used in the SET to MES link.

  17. Transcom's next move: Improvements to DOE's transportation satellite tracking systems

    International Nuclear Information System (INIS)

    Harmon, L.H.; Harris, A.D. III; Driscoll, K.L.; Ellis, L.G.

    1990-01-01

    In today's society, the use of satellites is becoming the state-of-the-art method of tracking shipments. The United States Department of Energy (US DOE) has advanced technology in this area with its transportation tracking and communications system, TRANSCOM, which has been in operation for over one year. TRANSCOM was developed by DOE to monitor selected, unclassified shipments of radioactive materials across the country. With the latest technology in satellite communications, Long Range Navigation (Loran), and computer networks, TRANSCOM tracks shipments in near-real time, disseminates information on each shipment to authorized users of the system, and offers two-way communications between vehicle operators and TRANSCOM users anywhere in the country. TRANSCOM's successful tracking record, during fiscal year 1989, includes shipments of spent fuel, cesium, uranium hexafluoride, and demonstration shipments for the Waste Isolation Pilot Plant (WIPP). Plans for fiscal year 1990 include tracking additional shipments, implementing system enhancements designed to meet the users' needs, and continuing to research the technology of tracking systems so that TRANSCOM can provide its users with the newest technology available in satellite communications. 3 refs., 1 fig

  18. A European Land Mobile Satellite System via EMS

    Science.gov (United States)

    Ananasso, Fulvio; Mistretta, Ignazio

    1991-10-01

    The paper analyzes the technical and market issues that influence the strategy of implementation of a Land Mobile Satellite System via the payload EMS (European Mobile System) embarked on ITALSAT F-2. The final goal is to determine services, network architecture, and added value chain that make LMSS via EMS profitable for a typical telecommunication company.

  19. Small Satellite Passive Magnetic Attitude Control

    Science.gov (United States)

    Gerhardt, David T.

    Passive Magnetic Attitude Control (PMAC) is capable of aligning a satellite within 5 degrees of the local magnetic field at low resource cost, making it ideal for a small satellite. However, simulation attempts to date have not been able to predict the attitude dynamics at a level sufficient for mission design. Also, some satellites have suffered from degraded performance due to an incomplete understanding of PMAC system design. This dissertation alleviates these issues by discussing the design, inputs, and validation of PMAC systems for small satellites. Design rules for a PMAC system are defined using the Colorado Student Space Weather Experiment (CSSWE) CubeSat as an example. A Multiplicative Extended Kalman Filter (MEKF) is defined for the attitude determination of a PMAC satellite without a rate gyro. After on-orbit calibration of the off-the-shelf magnetometer and photodiodes and an on-orbit fit to the satellite magnetic moment, the MEKF regularly achieves a three sigma attitude uncertainty of 4 degrees or less. CSSWE is found to settle to the magnetic field in seven days, verifying its attitude design requirement. A Helmholtz cage is constructed and used to characterize the CSSWE bar magnet and hysteresis rods both individually and in the flight configuration. Fitted parameters which govern the magnetic material behavior are used as input to a PMAC dynamics simulation. All components of this simulation are described and defined. Simulation-based dynamics analysis shows that certain initial conditions result in abnormally decreased settling times; these cases may be identified by their dynamic response. The simulation output is compared to the MEKF output; the true dynamics are well modeled and the predicted settling time is found to possess a 20 percent error, a significant improvement over prior simulation.

  20. A satellite-tracking millimeter-wave reflector antenna system for mobile satellite-tracking

    Science.gov (United States)

    Densmore, Arthur C.; Jamnejad, Vahraz; Woo, Kenneth E.

    1995-03-01

    A miniature dual-band two-way mobile satellite tracking antenna system mounted on a movable ground vehicle includes a miniature parabolic reflector dish having an elliptical aperture with major and minor elliptical axes aligned horizontally and vertically, respectively, to maximize azimuthal directionality and minimize elevational directionality to an extent corresponding to expected pitch excursions of the movable ground vehicle. A feed-horn has a back end and an open front end facing the reflector dish and has vertical side walls opening out from the back end to the front end at a lesser horn angle and horizontal top and bottom walls opening out from the back end to the front end at a greater horn angle. An RF circuit couples two different signal bands between the feed-horn and the user. An antenna attitude controller maintains an antenna azimuth direction relative to the satellite by rotating it in azimuth in response to sensed yaw motions of the movable ground vehicle so as to compensate for the yaw motions to within a pointing error angle. The controller sinusoidally dithers the antenna through a small azimuth dither angle greater than the pointing error angle while sensing a signal from the satellite received at the reflector dish, and deduces the pointing angle error from dither-induced fluctuations in the received signal.

  1. Programming a real-time operating system for satellite control applications Satellite Control Applications

    International Nuclear Information System (INIS)

    Omer, M.; Anjum, O.; Suddle, M.R.

    2004-01-01

    With the realization of ideas like formation flights and multi-body space vehicles the demands on an attitude control system have become increasingly complex. Even in its most simplified form, the control system for a typical geostationary satellite has to run various supervisory functions along with determination and control algorithms side by side. Within each algorithm it has to employ multiple actuation and sensing mechanisms and service real time interrupts, for example, in the case of actuator saturation and sensor data fusion. This entails the idea of thread scheduling and program synchronization, tasks specifically meant for a real time OS. This paper explores the embedding of attitude determination and control loop within the framework of a real time operating system provided for TI's DSP C6xxx series. The paper details out the much functionality provided within the scaleable real time kernel and the analysis and configuration tools available, It goes on to describe a layered implementation stack associated with a typical control for Geo Stationary satellites. An application for control is then presented in which state of the art analysis tools are employed to view program threads, synchronization semaphores, hardware interrupts and data exchange pipes operating in real time. (author)

  2. Real Time Fire Reconnaissance Satellite Monitoring System Failure Model

    Science.gov (United States)

    Nino Prieto, Omar Ariosto; Colmenares Guillen, Luis Enrique

    2013-09-01

    In this paper the Real Time Fire Reconnaissance Satellite Monitoring System is presented. This architecture is a legacy of the Detection System for Real-Time Physical Variables which is undergoing a patent process in Mexico. The methodologies for this design are the Structured Analysis for Real Time (SA- RT) [8], and the software is carried out by LACATRE (Langage d'aide à la Conception d'Application multitâche Temps Réel) [9,10] Real Time formal language. The system failures model is analyzed and the proposal is based on the formal language for the design of critical systems and Risk Assessment; AltaRica. This formal architecture uses satellites as input sensors and it was adapted from the original model which is a design pattern for physical variation detection in Real Time. The original design, whose task is to monitor events such as natural disasters and health related applications, or actual sickness monitoring and prevention, as the Real Time Diabetes Monitoring System, among others. Some related work has been presented on the Mexican Space Agency (AEM) Creation and Consultation Forums (2010-2011), and throughout the International Mexican Aerospace Science and Technology Society (SOMECYTA) international congress held in San Luis Potosí, México (2012). This Architecture will allow a Real Time Fire Satellite Monitoring, which will reduce the damage and danger caused by fires which consumes the forests and tropical forests of Mexico. This new proposal, permits having a new system that impacts on disaster prevention, by combining national and international technologies and cooperation for the benefit of humankind.

  3. Communication satellite applications

    Science.gov (United States)

    Pelton, Joseph N.

    The status and future of the technologies, numbers and services provided by communications satellites worldwide are explored. The evolution of Intelsat satellites and the associated earth terminals toward high-rate all-digital telephony, data, facsimile, videophone, videoconferencing and DBS capabilities are described. The capabilities, services and usage of the Intersputnik, Eutelsat, Arabsat and Palapa systems are also outlined. Domestic satellite communications by means of the Molniya, ANIK, Olympus, Intelsat and Palapa spacecraft are outlined, noting the fast growth of the market and the growing number of different satellite manufacturers. The technical, economic and service definition issues surrounding DBS systems are discussed, along with presently operating and planned maritime and aeronautical communications and positioning systems. Features of search and rescue and tracking, data, and relay satellite systems are summarized, and services offered or which will be offered by every existing or planned communication satellite worldwide are tabulated.

  4. Initial Assessment of Cyclone Global Navigation Satellite System (CYGNSS) Observations

    Science.gov (United States)

    McKague, D. S.; Ruf, C. S.

    2017-12-01

    The NASA Cyclone Global Navigation Satellite System (CYNSS) mission provides high temporal resolution observations of cyclones from a constellation of eight low-Earth orbiting satellites. Using the relatively new technique of Global Navigation Satellite System reflectometry (GNSS-R), all-weather observations are possible, penetrating even deep convection within hurricane eye walls. The compact nature of the GNSS-R receivers permits the use of small satellites, which in turn enables the launch of a constellation of satellites from a single launch vehicle. Launched in December of 2016, the eight CYGNSS satellites provide 25 km resolution observations of mean square slope (surface roughness) and surface winds with a 2.8 hour median revisit time from 38 S to 38 N degrees latitude. In addition to the calibration and validation of CYGNSS sea state observations, the CYGNSS science team is assessing the ability of the mission to provide estimates of cyclone size, intensity, and integrated kinetic energy. With its all-weather ability and high temporal resolution, the CYGNSS mission will add significantly to our ability to monitor cyclone genesis and intensification and will significantly reduce uncertainties in our ability to estimate cyclone intensity, a key variable in predicting its destructive potential. Members of the CYGNSS Science Team are also assessing the assimilation of CYGNSS data into hurricane forecast models to determine the impact of the data on forecast skill, using the data to study extra-tropical cyclones, and looking at connections between tropical cyclones and global scale weather, including the global hydrologic cycle. This presentation will focus on the assessment of early on-orbit observations of cyclones with respect to these various applications.

  5. Development of the European Small Geostationary Satellite SGEO

    Science.gov (United States)

    Lübberstedt, H.; Schneider, A.; Schuff, H.; Miesner, Th.; Winkler, A.

    2008-08-01

    The SGEO product portfolio, ranging from Satellite platform delivery up to in-orbit delivery of a turnkey system including satellite and ground control station, is designed for applications ranging from TV Broadcast to multimedia applications, Internet access, mobile or fixed services in a wide range of frequency bands. Furthermore, Data Relay missions such as the European Data Relay Satellite (EDRS) as well as other institutional missions are targeted. Key design features of the SGEO platform are high flexibility and modularity in order to accommodate a very wide range of future missions, a short development time below two years and the objective to build the system based on ITAR free subsystems and components. The system will provide a long lifetime of up to 15 years in orbit operations with high reliability. SGEO is the first European satellite to perform all orbit control tasks solely by electrical propulsion (EP). This design provides high mass efficiency and the capability for direct injection into geostationary orbit without chemical propulsion (CP). Optionally, an Apogee Engine Module based on CP will provide the perigee raising manoeuvres in case of a launch into geostationary transfer orbit (GTO). This approach allows an ideal choice out of a wide range of launcher candidates in dependence of the required payload capacity. SGEO will offer to the market a versatile and high performance satellite system with low investment risk for the customer and a short development time. This paper provides an overview of the SGEO system key features and the current status of the SGEO programme.

  6. Formation of the satellites of the outer solar system - Sources of their atmospheres

    International Nuclear Information System (INIS)

    Coradini, A.; Cerroni, P.; Magni, G.; Federico, C.

    1989-01-01

    The present account of the current understanding of regular satellite systems' origins gives attention to the essential processes leading to current satellite configurations, proceeding on the concept that the presence of atmospheres is connected with the final phases of satellite formation. Four major formation stages are envisioned: (1) the disk phase, linking the formation of the primary body to that of the satellites; (2) the formation phase of intermediate-sized bodies; (3) the collisional evolution of planatesimals; and (4) a series of evolutionary phases linking the primordial phases to currently observed states, in which the internal composition and thermal history of the satellites are key factors in satellite atmosphere formation

  7. Dynamic characterization of satellite assembly for responsive space applications

    International Nuclear Information System (INIS)

    Mascarenas, David; Macknelly, David; Mullins, Josh; Wiest, Heather; Park, Gyuhae

    2013-01-01

    The rapid deployment of satellites for responsive space surveillance applications is hindered by the need to flight-qualify their components and the resulting mechanical assembly. Conventional methods for qualification testing of satellite components are costly and time consuming. Furthermore, full-scale vehicles must be subjected to simulated launch loads during testing, and this harsh testing environment increases the risk of damage to satellite components during qualification. This work focuses on replacing this potentially destructive testing procedure with a non-destructive structural health monitoring (SHM)-based technique while maintaining the same level of confidence in the testing procedure's ability to qualify the satellite for flight. We focus on assessing the performance of SHM techniques to replace the high-cost qualification procedure and to localize faults introduced by improper assembly. The goal of this work is to create a dual-use system that can both assist in the process of qualifying the satellite for launch, as well as provide continuous structural integrity monitoring during manufacture, transport, launch and deployment. SHM techniques were applied on a small-scale structure representative of a responsive satellite. The test structure consisted of an extruded aluminum space-frame covered with aluminum shear plates assembled using bolted joints. Multiple piezoelectric transducers were bonded to the test structure and acted as combined actuators and sensors. Piezoelectric active-sensing based techniques, including measurements of low-frequency global frequency response functions and high-frequency wave propagation techniques, were employed. Using these methods in conjunction with finite element modeling, the dynamic properties of the test structure were established and areas of potential damage could be identified and localized. A procedure for guiding the effective placement of the sensors and actuators is also outlined. (paper)

  8. Composite Broadcasting and Ranging via a Satellite Dual-Frequency MPPSK System

    Directory of Open Access Journals (Sweden)

    Yu Yao

    2013-01-01

    Full Text Available Since digital video broadcasting via satellite (DVB-S signals are “inefficient”, regarding the amount of information they convey on the bandwidth they occupy, a joint broadcasting and ranging system would constitute a unique platform for future digital video broadcasting satellite services effecting the essential tasks of satellite navigation system and direct to home (DTH services, in terms of both spectrum efficiency and cost effectiveness. In this paper, the design of dual frequency M-ary position phase shift keying (MPPSK system which is suitable for, respectively, performing both data transmission and range measurement is proposed. The approach is based on MPPSK modulation waveforms utilized in digital video broadcasting. In particular, requirements that allow for employing such signals for range measurements with high accuracy and high range are investigated. Also, the relationship between the frequency difference of dual frequency MPPSK system and range accuracy is discussed. Moreover, the selection of MPPSK modulation parameter for data rate and ranging is considered. In addition to theoretical considerations, the paper presents system simulations and measurement results of new systems, demonstrating the high spectral utilization of integrated broadcasting and ranging applications.

  9. Sharing possibilities amongst CDMA Mobile Satellite Systems, and impacts of terminal characteristics on sharing

    Science.gov (United States)

    Bambace, Luís Antonio Waack; Ceballos, Décio Castilho

    CDMA Mobile Satellite Systems (CDMA MSS) are able to co-directional, co-frequency and co-coverage sharing, and they are strongly interdependent in case of such a sharing. It is also known that the success of any telecommunication project is the use of the correct media to each task. Operators have a clear sight of such a media adequacy in traditional systems, but not necessarily in the case of Mobile Satellite Systems. This creates a risk that a wrong market objective operator causes trouble to other systems. This paper deals with the sharing alternatives for up to four CDMA MSS operating in the same frequency band, and analysts both: satellite to user downlink and user to satellite uplink. The influence of several items in capacity is here treated. The scope includes: downlink power flux density: code availability; single system internal interference; inter-system interference; diversity schemes: average link impairments, margins; user cooperation; terminal specifications and the dependence of the insulation between RHCP and LHCP with fade.

  10. Satellite data driven modeling system for predicting air quality and visibility during wildfire and prescribed burn events

    Science.gov (United States)

    Nair, U. S.; Keiser, K.; Wu, Y.; Maskey, M.; Berendes, D.; Glass, P.; Dhakal, A.; Christopher, S. A.

    2012-12-01

    The Alabama Forestry Commission (AFC) is responsible for wildfire control and also prescribed burn management in the state of Alabama. Visibility and air quality degradation resulting from smoke are two pieces of information that are crucial for this activity. Currently the tools available to AFC are the dispersion index available from the National Weather Service and also surface smoke concentrations. The former provides broad guidance for prescribed burning activities but does not provide specific information regarding smoke transport, areas affected and quantification of air quality and visibility degradation. While the NOAA operational air quality guidance includes surface smoke concentrations from existing fire events, it does not account for contributions from background aerosols, which are important for the southeastern region including Alabama. Also lacking is the quantification of visibility. The University of Alabama in Huntsville has developed a state-of-the-art integrated modeling system to address these concerns. This system based on the Community Air Quality Modeling System (CMAQ) that ingests satellite derived smoke emissions and also assimilates NASA MODIS derived aerosol optical thickness. In addition, this operational modeling system also simulates the impact of potential prescribed burn events based on location information derived from the AFC prescribed burn permit database. A lagrangian model is used to simulate smoke plumes for the prescribed burns requests. The combined air quality and visibility degradation resulting from these smoke plumes and background aerosols is computed and the information is made available through a web based decision support system utilizing open source GIS components. This system provides information regarding intersections between highways and other critical facilities such as old age homes, hospitals and schools. The system also includes satellite detected fire locations and other satellite derived datasets

  11. Quebec firm develops satellite monitoring system

    Energy Technology Data Exchange (ETDEWEB)

    Anon

    2004-09-01

    Satellite-based technology that gives project owners an affordable way to monitor and control wind turbine operation, even in remote sites, is announced. Called Satwind, the system can be adapted to any scale, ranging from simple, low-cost units for small wind turbines to advanced versions designed to handle more complex wind-diesel installations, as well as large turbines used in offshore projects. Current installations include a turbine in the Tunisian desert and two Quebec wind-diesel plants accessible only by helicopter. The system can be operated directly from a cell-phone, in a user-friendly Internet manner, without the need to be connected to a complex centralized wind farm monitoring system.

  12. DATA MANAGEMENT SYSTEM FOR MOBILE SATELLITE PROPAGATION DATA

    Science.gov (United States)

    Kantak, A. V.

    1994-01-01

    The "Data Management System for Mobile Satellite Propogation" package is a collection of FORTRAN programs and UNIX shell scripts designed to handle the huge amounts of data resulting from Mobile Satellite propogation experiments. These experiments are designed to assist in defining channels for mobile satellite systems. By understanding multipath fading characteristics of the channel, doppler effects, and blockage due to manmade objects as well as natural surroundings, characterization of the channel can be realized. Propogation experiments, then, are performed using a prototype of the system simulating the ultimate product environment. After the data from these experiments is generated, the researcher must access this data with a minimum of effort and to derive some standard results. The programs included in this package manipulate the data files generated by the NASA/JPL Mobile Satellite propogation experiment on an interactive basis. In the experiment, a transmitter operating at 869 MHz was carried to an altitude of 32Km by a stratospheric balloon. A vehicle within the line-of-sight of the transmitter was then driven around, splitting the incoming signal into I and Q channels, and sampling the resulting signal strength at 1000 samples per second. The data was collected at various antenna elavation angles and different times of day generating the ancillary data for the experiment. This package contains a program to convert the binary format of the data generated into standard ASCII format suitable for use with a wide variety of machine architectures. Also included is a UNIX shell-script designed to parse this ASCII file into those records of data that match the researcher's desired values for the ancillary data parameters. In addition, four FORTRAN programs are included to obtain standard quantities from the data. Quantities such as probability of signal level greater than or equal to a specified signal level, probability density of the signal levels, frequency

  13. Multi-GNSS orbit determination using satellite laser ranging

    Science.gov (United States)

    Bury, Grzegorz; Sośnica, Krzysztof; Zajdel, Radosław

    2018-04-01

    Galileo, BeiDou, QZSS, and NavIC are emerging global navigation satellite systems (GNSSs) and regional navigation satellite systems all of which are equipped with laser retroreflector arrays for range measurements. This paper summarizes the GNSS-intensive tracking campaigns conducted by the International Laser Ranging Service and provides results from multi-GNSS orbit determination using solely SLR observations. We consider the whole constellation of GLONASS, all active Galileo, four BeiDou satellites: 1 MEO, 3 IGSO, and one QZSS. We analyze the influence of the number of SLR observations on the quality of the 3-day multi-GNSS orbit solution. About 60 SLR observations are needed for obtaining MEO orbits of sufficient quality with the root mean square (RMS) of 3 cm for the radial component when compared to microwave-based orbits. From the analysis of a minimum number of tracking stations, when considering the 3-day arcs, 5 SLR stations do not provide a sufficient geometry of observations. The solution obtained using ten stations is characterized with RMS of 4, 9, and 18 cm in the radial, along-track, and cross-track direction, respectively, for MEO satellites. We also investigate the impact of the length of orbital arc on the quality of SLR-derived orbits. Hence, 5- and 7-day arcs constitute the best solution, whereas 3-day arcs are of inferior quality due to an insufficient number of SLR observations and 9-day arcs deteriorate the along-track component. The median RMS from the comparison between 7-day orbital arcs determined using SLR data with microwave-based orbits assumes values in the range of 3-4, 11-16, and 15-27 cm in radial, along-track, and cross-track, respectively, for MEO satellites. BeiDou IGSO and QZSS are characterized by RMS values higher by a factor of 8 and 24, respectively, than MEO orbits.

  14. Development of a demand assignment/TDMA system for international business satellite communications

    Science.gov (United States)

    Nohara, Mitsuo; Takeuchi, Yoshio; Takahata, Fumio; Hirata, Yasuo; Yamazaki, Yoshiharu

    An experimental IBS (international business satellite) communications system based on a demand assignment and TDMA (time-division multiple-access) operation has been developed. The system utilizes a limited satellite resource efficiently and provides various kinds of ISDN services totally. A discussion is presented of the IBS network configurations suitable to international communications and describes the developed communications system from the viewpoint of the hardware and software implementation. The performance in terms of the transmission quality and call processing is also demonstrated.

  15. Multiple continuous coverage of the earth based on multi-satellite systems with linear structure

    Science.gov (United States)

    Saulskiy, V. K.

    2009-04-01

    A new and wider definition is given to multi-satellite systems with linear structure (SLS), and efficiency of their application to multiple continuous coverage of the Earth is substantiated. Owing to this widening, SLS have incorporated already well-recognized “polar systems” by L. Rider and W.S. Adams, “kinematically regular systems” by G.V. Mozhaev, and “delta-systems” by J.G. Walker, as well as “near-polar systems” by Yu.P. Ulybyshev, and some other satellite constellations unknown before. A universal method of SLS optimization is presented, valid for any values of coverage multiplicity and the number of satellites in a system. The method uses the criterion of minimum radius of a circle seen from a satellite on the surface of the globe. Among the best SLS found in this way there are both systems representing the well-known classes mentioned above and new orbit constellations of satellites.

  16. Water resource monitoring systems and the role of satellite observations

    Directory of Open Access Journals (Sweden)

    A. I. J. M. van Dijk

    2011-01-01

    Full Text Available Spatial water resource monitoring systems (SWRMS can provide valuable information in support of water management, but current operational systems are few and provide only a subset of the information required. Necessary innovations include the explicit description of water redistribution and water use from river and groundwater systems, achieving greater spatial detail (particularly in key features such as irrigated areas and wetlands, and improving accuracy as assessed against hydrometric observations, as well as assimilating those observations. The Australian water resources assessment (AWRA system aims to achieve this by coupling landscape models with models describing surface water and groundwater dynamics and water use. A review of operational and research applications demonstrates that satellite observations can improve accuracy and spatial detail in hydrological model estimation. All operational systems use dynamic forcing, land cover classifications and a priori parameterisation of vegetation dynamics that are partially or wholly derived from remote sensing. Satellite observations are used to varying degrees in model evaluation and data assimilation. The utility of satellite observations through data assimilation can vary as a function of dominant hydrological processes. Opportunities for improvement are identified, including the development of more accurate and higher spatial and temporal resolution precipitation products, and the use of a greater range of remote sensing products in a priori model parameter estimation, model evaluation and data assimilation. Operational challenges include the continuity of research satellite missions and data services, and the need to find computationally-efficient data assimilation techniques. The successful use of observations critically depends on the availability of detailed information on observational error and understanding of the relationship between remotely-sensed and model variables, as

  17. Global existence and blow-up phenomena for two-component Degasperis-Procesi system and two-component b-family system

    OpenAIRE

    Liu, Jingjing; Yin, Zhaoyang

    2014-01-01

    This paper is concerned with global existence and blow-up phenomena for two-component Degasperis-Procesi system and two-component b-family system. The strategy relies on our observation on new conservative quantities of these systems. Several new global existence results and a new blowup result of strong solutions to the two-component Degasperis- Procesi system and the two-component b-family system are presented by using these new conservative quantities.

  18. Handbook of satellite applications

    CERN Document Server

    Madry, Scott; Camacho-Lara, Sergio

    2017-01-01

    The first edition of this ground breaking reference work was the most comprehensive reference source available about the key aspects of the satellite applications field. This updated second edition covers the technology, the markets, applications and regulations related to satellite telecommunications, broadcasting and networking—including civilian and military systems; precise satellite navigation and timing networks (i.e. GPS and others); remote sensing and meteorological satellite systems. Created under the auspices of the International Space University based in France, this brand new edition is now expanded to cover new innovative small satellite constellations, new commercial launching systems, innovation in military application satellites and their acquisition, updated appendices, a useful glossary and more.

  19. Optimization of Power Allocation for Multiusers in Multi-Spot-Beam Satellite Communication Systems

    Directory of Open Access Journals (Sweden)

    Heng Wang

    2014-01-01

    Full Text Available In recent years, multi-spot-beam satellite communication systems have played a key role in global seamless communication. However, satellite power resources are scarce and expensive, due to the limitations of satellite platform. Therefore, this paper proposes optimizing the power allocation of each user in order to improve the power utilization efficiency. Initially the capacity allocated to each user is calculated according to the satellite link budget equations, which can be achieved in the practical satellite communication systems. The problem of power allocation is then formulated as a convex optimization, taking account of a trade-off between the maximization of the total system capacity and the fairness of power allocation amongst the users. Finally, an iterative algorithm based on the duality theory is proposed to obtain the optimal solution to the optimization. Compared with the traditional uniform resource allocation or proportional resource allocation algorithms, the proposed optimal power allocation algorithm improves the fairness of power allocation amongst the users. Moreover, the computational complexity of the proposed algorithm is linear with both the numbers of the spot beams and users. As a result, the proposed power allocation algorithm is easy to be implemented in practice.

  20. Mobile satellite business networks: A part of the European mobile system

    Science.gov (United States)

    deMateo, M. L.; Jongejans, A.; Loisy, C.; VanHimbeeck, C.; Marchal, J. P.; Borella, A.; Sartori, M.

    1995-01-01

    The European Space Agency (ESA) is presently procuring an L-band payload EMS, to be embarked on the ITALSAT-2 satellite due for launch in early 1996, in order to promote a regional European mobile system. One of the Land Mobile Communication systems supported by EMS is the MSBN (Mobile Satellite Business Network) voice and data system which will offer the services of a business network on a seamless European coverage. This paper will first recall the characteristics of the MSBN system, which is based on quasi-synchronized CDMA (Code Division Multiple Access) techniques in both directions, and then describe the CDMA receivers implementation. Main validation test results will also be reported confirming predicted performances.

  1. A Piecewise Affine Hybrid Systems Approach to Fault Tolerant Satellite Formation Control

    DEFF Research Database (Denmark)

    Grunnet, Jacob Deleuran; Larsen, Jesper Abildgaard; Bak, Thomas

    2008-01-01

    In this paper a procedure for modelling satellite formations   including failure dynamics as a piecewise-affine hybrid system is   shown. The formulation enables recently developed methods and tools   for control and analysis of piecewise-affine systems to be applied   leading to synthesis of fault...... tolerant controllers and analysis of   the system behaviour given possible faults.  The method is   illustrated using a simple example involving two satellites trying   to reach a specific formation despite of actuator faults occurring....

  2. Economics of satellite solar power system operation

    Energy Technology Data Exchange (ETDEWEB)

    Collins, P.Q.; Tomkins, R.

    1981-01-01

    The potential value of the Satellite Power System (SPS) concept depends partly on the effects of integrating SPS power into a national supply grid. Some of these effects are evaluated. The factors that would affect utilities appraisal of the system are briefly reviewed. The cost implications of these factors are considered under the headings Load factors, Reliability, System Planning and Integration, and Rectenna Siting and Transmission, with particular reference to the UK and W Europe. A method is proposed for studying the ground segment of the system; a utility could calculate the value it would place on microwave 'fuel' supplied by the space segment, thereby providing firm cost targets for this part of the system. 21 refs.

  3. Network coding and its applications to satellite systems

    DEFF Research Database (Denmark)

    Vieira, Fausto; Roetter, Daniel Enrique Lucani

    2015-01-01

    Network coding has its roots in information theory where it was initially proposed as a way to improve a two-node communication using a (broadcasting) relay. For this theoretical construct, a satellite communications system was proposed as an illustrative example, where the relay node would be a ...

  4. Solar power satellite system definition study. Volume 7, phase 1: SPS and rectenna systems analyses

    Science.gov (United States)

    1979-01-01

    A systems definition study of the solar power satellite systems is presented. The design and power distribution of the rectenna system is discussed. The communication subsystem and thermal control characteristics are described and a failure analysis performed on the systems is reported.

  5. Saturn satellites

    International Nuclear Information System (INIS)

    Ruskol, E.L.

    1981-01-01

    The characteristics of the Saturn satellites are discussed. The satellites close to Saturn - Janus, Mimas, Enceladus, Tethys, Dione and Rhea - rotate along the circular orbits. High reflectivity is attributed to them, and the density of the satellites is 1 g/cm 3 . Titan is one of the biggest Saturn satellites. Titan has atmosphere many times more powerful than that of Mars. The Titan atmosphere is a peculiar medium with a unique methane and hydrogen distribution in the whole Solar system. The external satellites - Hyperion, Japetus and Phoebe - are poorly investigated. Neither satellite substance density, nor their composition are known. The experimental data on the Saturn rings obtained on the ''Pioneer-11'' and ''Voyager-1'' satellites are presented [ru

  6. Multi-core fiber amplifier arrays for intra-satellite links

    Science.gov (United States)

    Kechagias, Marios; Crabb, Jonathan; Stampoulidis, Leontios; Farzana, Jihan; Kehayas, Efstratios; Filipowicz, Marta; Napierala, Marek; Murawski, Michal; Nasilowski, Tomasz; Barbero, Juan

    2017-09-01

    In this paper we present erbium doped fibre (EDF) aimed at signal amplification within satellite photonic payload systems operating in C telecommunication band. In such volume-hungry applications, the use of advanced optical transmission techniques such as space division multiplexing (SDM) can be advantageous to reduce the component and cable count.

  7. Rectenna System Design. [energy conversion solar power satellites

    Science.gov (United States)

    Woodcock, G. R.; Andryczyk, R. W.

    1980-01-01

    The fundamental processes involved in the operation of the rectenna system designed for the solar power satellite system are described. The basic design choices are presented based on the desired microwave rf field concentration prior to rectification and based on the ground clearance requirements for the rectenna structure. A nonconcentrating inclined planar panel with a 2 meter minimum clearance configuration is selected as a representative of the typical rectenna.

  8. GPS-based system for satellite tracking and geodesy

    Science.gov (United States)

    Bertiger, Willy I.; Thornton, Catherine L.

    1989-01-01

    High-performance receivers and data processing systems developed for GPS are reviewed. The GPS Inferred Positioning System (GIPSY) and the Orbiter Analysis and Simulation Software (OASIS) are described. The OASIS software is used to assess GPS system performance using GIPSY for data processing. Consideration is given to parameter estimation for multiday arcs, orbit repeatability, orbit prediction, daily baseline repeatability, agreement with VLBI, and ambiguity resolution. Also, the dual-frequency Rogue receiver, which can track up to eight GPS satellites simultaneously, is discussed.

  9. The Relativistic Effect of the Deviation between the CMB Temperatures Obtained by the COBE Satellite

    Directory of Open Access Journals (Sweden)

    Rabounski D.

    2007-01-01

    Full Text Available The Far-Infrared Absolute Spectrophotometer (FIRAS on the COBE satellite, gives different temperatures of the Cosmic Microwave Background. This deviation has a theoretical explanation in the Doppler effect on the dipole (weak component of the radiation, the true microwave background of the Universe that moves at 365 km/sec, if the monopole (strong component of the radiation is due to the Earth. Owing to the Doppler effect, the dipole radiation temperature (determined by the 1st derivative of the monopole is lower than the monopole radiation temperature, with a value equal to the observed deviation. By this theory, the WMAP and PLANCK satellites, targeting the L2 point in the Sun-Earth-Moon system, should be insensitive to the monopole radiation. In contrast to the launched WMAP satellite, the PLANCK satellite will have on board absolute instruments which will not be able to detect the measured temperature of the Cosmic Microwave Background. That the monopole (strong component of the observed Cosmic Microwave Background is generated by the Earth is given a complete theoretical proof herein.

  10. Precise positioning with current multi-constellation Global Navigation Satellite Systems: GPS, GLONASS, Galileo and BeiDou.

    Science.gov (United States)

    Li, Xingxing; Zhang, Xiaohong; Ren, Xiaodong; Fritsche, Mathias; Wickert, Jens; Schuh, Harald

    2015-02-09

    The world of satellite navigation is undergoing dramatic changes with the rapid development of multi-constellation Global Navigation Satellite Systems (GNSSs). At the moment more than 70 satellites are already in view, and about 120 satellites will be available once all four systems (BeiDou + Galileo + GLONASS + GPS) are fully deployed in the next few years. This will bring great opportunities and challenges for both scientific and engineering applications. In this paper we develop a four-system positioning model to make full use of all available observations from different GNSSs. The significant improvement of satellite visibility, spatial geometry, dilution of precision, convergence, accuracy, continuity and reliability that a combining utilization of multi-GNSS brings to precise positioning are carefully analyzed and evaluated, especially in constrained environments.

  11. A Study on Satellite Diagnostic Expert Systems Using Case-Based Approach

    Directory of Open Access Journals (Sweden)

    Young-Tack Park

    1997-06-01

    Full Text Available Many research works are on going to monitor and diagnose diverse malfunctions of satellite systems as the complexity and number of satellites increase. Currently, many works on monitoring and diagnosis are carried out by human experts but there are needs to automate much of the routine works of them. Hence, it is necessary to study on using expert systems which can assist human experts routine work by doing automatically, thereby allow human experts devote their expertise more critical and important areas of monitoring and diagnosis. In this paper, we are employing artificial intelligence techniques to model human experts' knowledge and inference the constructed knowledge. Especially, case-based approaches are used to construct a knowledge base to model human expert capabilities which use previous typical exemplars. We have designed and implemented a prototype case-based system for diagnosing satellite malfunctions using cases. Our system remembers typical failure cases and diagnoses a current malfunction by indexing the case base. Diverse methods are used to build a more user friendly interface which allows human experts can build a knowledge base in as easy way.

  12. An Autonomous Satellite Time Synchronization System Using Remotely Disciplined VC-OCXOs

    Directory of Open Access Journals (Sweden)

    Xiaobo Gu

    2015-07-01

    Full Text Available An autonomous remote clock control system is proposed to provide time synchronization and frequency syntonization for satellite to satellite or ground to satellite time transfer, with the system comprising on-board voltage controlled oven controlled crystal oscillators (VC-OCXOs that are disciplined to a remote master atomic clock or oscillator. The synchronization loop aims to provide autonomous operation over extended periods, be widely applicable to a variety of scenarios and robust. A new architecture comprising the use of frequency division duplex (FDD, synchronous time division (STDD duplex and code division multiple access (CDMA with a centralized topology is employed. This new design utilizes dual one-way ranging methods to precisely measure the clock error, adopts least square (LS methods to predict the clock error and employs a third-order phase lock loop (PLL to generate the voltage control signal. A general functional model for this system is proposed and the error sources and delays that affect the time synchronization are discussed. Related algorithms for estimating and correcting these errors are also proposed. The performance of the proposed system is simulated and guidance for selecting the clock is provided.

  13. An alternative ionospheric correction model for global navigation satellite systems

    Science.gov (United States)

    Hoque, M. M.; Jakowski, N.

    2015-04-01

    The ionosphere is recognized as a major error source for single-frequency operations of global navigation satellite systems (GNSS). To enhance single-frequency operations the global positioning system (GPS) uses an ionospheric correction algorithm (ICA) driven by 8 coefficients broadcasted in the navigation message every 24 h. Similarly, the global navigation satellite system Galileo uses the electron density NeQuick model for ionospheric correction. The Galileo satellite vehicles (SVs) transmit 3 ionospheric correction coefficients as driver parameters of the NeQuick model. In the present work, we propose an alternative ionospheric correction algorithm called Neustrelitz TEC broadcast model NTCM-BC that is also applicable for global satellite navigation systems. Like the GPS ICA or Galileo NeQuick, the NTCM-BC can be optimized on a daily basis by utilizing GNSS data obtained at the previous day at monitor stations. To drive the NTCM-BC, 9 ionospheric correction coefficients need to be uploaded to the SVs for broadcasting in the navigation message. Our investigation using GPS data of about 200 worldwide ground stations shows that the 24-h-ahead prediction performance of the NTCM-BC is better than the GPS ICA and comparable to the Galileo NeQuick model. We have found that the 95 percentiles of the prediction error are about 16.1, 16.1 and 13.4 TECU for the GPS ICA, Galileo NeQuick and NTCM-BC, respectively, during a selected quiet ionospheric period, whereas the corresponding numbers are found about 40.5, 28.2 and 26.5 TECU during a selected geomagnetic perturbed period. However, in terms of complexity the NTCM-BC is easier to handle than the Galileo NeQuick and in this respect comparable to the GPS ICA.

  14. The C3PO project: a laser communication system concept for small satellites

    Science.gov (United States)

    d'Humières, Benoît; Esmiller, Bruno; Gouy, Yann; Steck, Emilie; Quintana, Crisanto; Faulkner, Graham; O'Brien, Dominic; Sproll, Fabian; Wagner, Paul; Hampf, Daniel; Riede, Wolfgang; Salter, Michael; Wang, Qin; Platt, Duncan; Jakonis, Darius; Piao, Xiaoyu; Karlsson, Mikael; Oberg, Olof; Petermann, Ingemar; Michalkiewicz, Aneta; Krezel, Jerzy; Debowska, Anna; Thueux, Yoann

    2017-02-01

    The satellite market is shifting towards smaller (micro and nanosatellites), lowered mass and increased performance platforms. Nanosatellites and picosatellites have been used for a number of new, innovative and unique payloads and missions. This trend requires new concepts for a reduced size, a better performance/weight ratio and a reduction of onboard power consumption. In this context, disruptive technologies, such as laser-optical communication systems, are opening new possibilities. This paper presents the C3PO1 system, "advanced Concept for laser uplink/ downlink CommuniCation with sPace Objects", and the first results of the development of its key technologies. This project targets the design of a communications system that uses a ground-based laser to illuminate a satellite, and a Modulating Retro-Reflector (MRR) to return a beam of light modulated by data to the ground. This enables a downlink, without a laser source on the satellite. This architecture suits well to small satellite applications so as high data rates are potentially provided with very low board mass. C3PO project aims to achieve data rates of 1Gbit/s between LEO satellites and Earth with a communication payload mass of less than 1kilogram. In this paper, results of the initial experiments and demonstration of the key technologies will be shown.

  15. Ground-Based Global Navigation Satellite System (GNSS) GLONASS Broadcast Ephemeris Data (hourly files) from NASA CDDIS

    Data.gov (United States)

    National Aeronautics and Space Administration — This dataset consists of ground-based Global Navigation Satellite System (GNSS) GLObal NAvigation Satellite System (GLONASS) Broadcast Ephemeris Data (hourly files)...

  16. Comparative health and safety assessment of the satellite power system and other electrical generation alternatives

    International Nuclear Information System (INIS)

    1980-12-01

    The work reported here is an analysis of existing data on the health and safety risks of a satellite power system and six electrical generation systems: a combined-cycle coal power system with a low-Btu gasifier and open-cycle gas turbine; a light water fission power system without fuel reprocessing; a liquid-metal, fast-breeder fission reactor; a centralized and decentralized, terrestrial, solar-photovoltaic power system; and a first-generation design for a fusion power system. The systems are compared on the basis of expected deaths and person-days lost per year associated with 1000 MW of average electricity generation. Risks are estimated and uncertainties indicated for all phases of the energy production cycle, including fuel and raw material extraction and processing, direct and indirect component manufacture, on-site construction, and system operation and maintenance. Also discussed is the potential significance of related major health and safety issues that remain largely unquantifiable. The appendices provide more detailed information on risks, uncertainties, additional research needed, and references for the identified impacts of each system

  17. The 30/20 GHz experimental communications satellite system

    Science.gov (United States)

    Sivo, J. N.

    NASA is continuing to pursue an agressive satellite communications technology development program focused on the 30/20 GHz frequency band. A review of the program progress to date is presented. Included is a discussion of the technology program status as well as a description of the experimental system concept under study. Expected system performance characteristics together with spacecraft and payload configuration details including weight and power budget is presented. Overall program schedules of both the technology development and the flight system development are included.

  18. Properties of the Irregular Satellite System around Uranus Inferred from K2, Herschel, and Spitzer Observations

    Science.gov (United States)

    Farkas-Takács, A.; Kiss, Cs.; Pál, A.; Molnár, L.; Szabó, Gy. M.; Hanyecz, O.; Sárneczky, K.; Szabó, R.; Marton, G.; Mommert, M.; Szakáts, R.; Müller, T.; Kiss, L. L.

    2017-09-01

    In this paper, we present visible-range light curves of the irregular Uranian satellites Sycorax, Caliban, Prospero, Ferdinand, and Setebos taken with the Kepler Space Telescope over the course of the K2 mission. Thermal emission measurements obtained with the Herschel/PACS and Spitzer/MIPS instruments of Sycorax and Caliban were also analyzed and used to determine size, albedo, and surface characteristics of these bodies. We compare these properties with the rotational and surface characteristics of irregular satellites in other giant planet systems and also with those of main belt and Trojan asteroids and trans-Neptunian objects. Our results indicate that the Uranian irregular satellite system likely went through a more intense collisional evolution than the irregular satellites of Jupiter and Saturn. Surface characteristics of Uranian irregular satellites seem to resemble the Centaurs and trans-Neptunian objects more than irregular satellites around other giant planets, suggesting the existence of a compositional discontinuity in the young solar system inside the orbit of Uranus.

  19. Properties of the Irregular Satellite System around Uranus Inferred from K2 , Herschel , and Spitzer Observations

    Energy Technology Data Exchange (ETDEWEB)

    Farkas-Takács, A.; Kiss, Cs.; Pál, A.; Molnár, L.; Szabó, Gy. M.; Hanyecz, O.; Sárneczky, K.; Szabó, R.; Marton, G.; Szakáts, R.; Kiss, L. L. [Konkoly Observatory, Research Centre for Astronomy and Earth Sciences, Hungarian Academy of Sciences, Konkoly Thege Miklós út 15-17, H-1121 Budapest (Hungary); Mommert, M. [Department of Physics and Astronomy, Northern Arizona University, P.O. Box 6010, Flagstaff, AZ 86011 (United States); Müller, T., E-mail: farkas.aniko@csfk.mta.hu [Max-Plank-Institut für extraterrestrsiche Pyhsik, Garching (Germany)

    2017-09-01

    In this paper, we present visible-range light curves of the irregular Uranian satellites Sycorax, Caliban, Prospero, Ferdinand, and Setebos taken with the Kepler Space Telescope over the course of the K2 mission. Thermal emission measurements obtained with the Herschel /PACS and Spitzer /MIPS instruments of Sycorax and Caliban were also analyzed and used to determine size, albedo, and surface characteristics of these bodies. We compare these properties with the rotational and surface characteristics of irregular satellites in other giant planet systems and also with those of main belt and Trojan asteroids and trans-Neptunian objects. Our results indicate that the Uranian irregular satellite system likely went through a more intense collisional evolution than the irregular satellites of Jupiter and Saturn. Surface characteristics of Uranian irregular satellites seem to resemble the Centaurs and trans-Neptunian objects more than irregular satellites around other giant planets, suggesting the existence of a compositional discontinuity in the young solar system inside the orbit of Uranus.

  20. Regional model simulation of the North Atlantic cyclone "Caroline" and comparisons with satellite data

    Directory of Open Access Journals (Sweden)

    E. Keup-Thiel

    2003-03-01

    Full Text Available An individual regional model simulation of cyclone "Caroline" has been carried out to study water cycle components over the North Atlantic Ocean. The uncertainties associated with quantitative estimates of the water cycle components are highlighted by a comparison of the model results with SSM/I (Special Sensor Microwave Imager satellite data. The vertically integrated water vapor of the REgional MOdel REMO is in good agreement with the SSM/I satellite data. The simulation results for other water budget components like the vertically integrated liquid water content and precipitation compare also reasonably well within the frontal system. However, the high precipitation rate in the cold air outbreak on the backside of the cold front derived from SSM/I satellite data is generally underestimated by REMO. This results in a considerable deficit of the total precipitation amount accumulated for the cyclone "Caroline". While REMO simulates 24.3 108 m3 h-1 for 09:00 UTC, the total areal precipitation from SSM/I satellite data amounts to 54.7 08 m3 h-1.Key words. Meteorology and atmospheric dynamics (precipitation; mesoscale meteorology – Radio science (remote sensing

  1. Development of a PC-based ground support system for a small satellite instrument

    Science.gov (United States)

    Deschambault, Robert L.; Gregory, Philip R.; Spenler, Stephen; Whalen, Brian A.

    1993-11-01

    The importance of effective ground support for the remote control and data retrieval of a satellite instrument cannot be understated. Problems with ground support may include the need to base personnel at a ground tracking station for extended periods, and the delay between the instrument observation and the processing of the data by the science team. Flexible solutions to such problems in the case of small satellite systems are provided by using low-cost, powerful personal computers and off-the-shelf software for data acquisition and processing, and by using Internet as a communication pathway to enable scientists to view and manipulate satellite data in real time at any ground location. The personal computer based ground support system is illustrated for the case of the cold plasma analyzer flown on the Freja satellite. Commercial software was used as building blocks for writing the ground support equipment software. Several levels of hardware support, including unit tests and development, functional tests, and integration were provided by portable and desktop personal computers. Satellite stations in Saskatchewan and Sweden were linked to the science team via phone lines and Internet, which provided remote control through a central point. These successful strategies will be used on future small satellite space programs.

  2. Coarse Initial Orbit Determination for a Geostationary Satellite Using Single-Epoch GPS Measurements

    Directory of Open Access Journals (Sweden)

    Ghangho Kim

    2015-04-01

    Full Text Available A practical algorithm is proposed for determining the orbit of a geostationary orbit (GEO satellite using single-epoch measurements from a Global Positioning System (GPS receiver under the sparse visibility of the GPS satellites. The algorithm uses three components of a state vector to determine the satellite’s state, even when it is impossible to apply the classical single-point solutions (SPS. Through consideration of the characteristics of the GEO orbital elements and GPS measurements, the components of the state vector are reduced to three. However, the algorithm remains sufficiently accurate for a GEO satellite. The developed algorithm was tested on simulated measurements from two or three GPS satellites, and the calculated maximum position error was found to be less than approximately 40 km or even several kilometers within the geometric range, even when the classical SPS solution was unattainable. In addition, extended Kalman filter (EKF tests of a GEO satellite with the estimated initial state were performed to validate the algorithm. In the EKF, a reliable dynamic model was adapted to reduce the probability of divergence that can be caused by large errors in the initial state.

  3. Coarse Initial Orbit Determination for a Geostationary Satellite Using Single-Epoch GPS Measurements

    Science.gov (United States)

    Kim, Ghangho; Kim, Chongwon; Kee, Changdon

    2015-01-01

    A practical algorithm is proposed for determining the orbit of a geostationary orbit (GEO) satellite using single-epoch measurements from a Global Positioning System (GPS) receiver under the sparse visibility of the GPS satellites. The algorithm uses three components of a state vector to determine the satellite’s state, even when it is impossible to apply the classical single-point solutions (SPS). Through consideration of the characteristics of the GEO orbital elements and GPS measurements, the components of the state vector are reduced to three. However, the algorithm remains sufficiently accurate for a GEO satellite. The developed algorithm was tested on simulated measurements from two or three GPS satellites, and the calculated maximum position error was found to be less than approximately 40 km or even several kilometers within the geometric range, even when the classical SPS solution was unattainable. In addition, extended Kalman filter (EKF) tests of a GEO satellite with the estimated initial state were performed to validate the algorithm. In the EKF, a reliable dynamic model was adapted to reduce the probability of divergence that can be caused by large errors in the initial state. PMID:25835299

  4. Ground Simulation of an Autonomous Satellite Rendezvous and Tracking System Using Dual Robotic Systems

    Science.gov (United States)

    Trube, Matthew J.; Hyslop, Andrew M.; Carignan, Craig R.; Easley, Joseph W.

    2012-01-01

    A hardware-in-the-loop ground system was developed for simulating a robotic servicer spacecraft tracking a target satellite at short range. A relative navigation sensor package "Argon" is mounted on the end-effector of a Fanuc 430 manipulator, which functions as the base platform of the robotic spacecraft servicer. Machine vision algorithms estimate the pose of the target spacecraft, mounted on a Rotopod R-2000 platform, relay the solution to a simulation of the servicer spacecraft running in "Freespace", which performs guidance, navigation and control functions, integrates dynamics, and issues motion commands to a Fanuc platform controller so that it tracks the simulated servicer spacecraft. Results will be reviewed for several satellite motion scenarios at different ranges. Key words: robotics, satellite, servicing, guidance, navigation, tracking, control, docking.

  5. Natural disaster reduction applications of the Chinese small satellite constellation for environment and disaster monitoring and forecasting

    Science.gov (United States)

    Liu, Sanchao; Fan, Yida; Gao, Maofang

    2013-10-01

    The Small Satellite Constellation for Environment and Disaster Monitoring and Forecasting (SSCEDMF) is an important component of Chinese satellites earth observation system. The first stage of SSCEDMF is composed by "2+1" satellites. The 2 optical satellites (HJ-1-A and HJ-1-B) and 1 S band microwave satellite (HJ-1-C) were successful launched on September 6, 2008 and November 19, 2012 respectively. This article introduced SSCEDMF characteristic and the disaster reduction application system and satellites on-orbit test works, and also analyzed the application capacity in natural disasters included flood, ice flooding, wild fire, severely drought, snow disasters, large area landslide and debris flow, sea ice, earthquake recovering, desertification and plant diseases and insect pests. Furthermore, we show some cases of China's and other countries' new natural disasters forecasting, monitoring, assessment and recovery construction.

  6. Seven-core active fibre for application in telecommunication satellites

    Science.gov (United States)

    Filipowicz, Marta; Napierała, Marek; Murawski, Michał; Ostrowski, Łukasz; Szostkiewicz, Łukasz; Szymański, Michał; Tenderenda, Tadeusz; Anders, Krzysztof; Piramidowicz, Ryszard; Wójcik, Grzegorz; Makara, Mariusz; Poturaj, Krzysztof; Mergo, Paweł; Nasiłowski, Tomasz

    2015-12-01

    The use of optical elements and other photonic components makes it possible to overcome telecommunication satellite's bottleneck problems such as size and weight reduction. Despite the unquestionable potential of such elements, nowadays they are not widely used in systems operating in space. This is due to many factors, including the fact that space radiation has disruptive influence on optical fibre. Namely it introduces additional radiation induced attenuation (RIA) that significantly lowers efficiency of optical fibre based systems. However, there is a possibility to produce radiation-hardened (rad-hard) components. One of them is seven core erbium-doped active fibre (MC-EDF) for fibre amplifiers in satellites that we have been developing. In this paper we present a detailed description of seven core structure design as well as experimental results. We report that average gain of 20 dB in C-band with noise figure of 5.8 dB was obtained. We also confirmed that low crosstalk value for a multicore fibre amplifier based on our fibre can be achieved.

  7. The Future of Satellite Communications Technology.

    Science.gov (United States)

    Nowland, Wayne

    1985-01-01

    Discusses technical advances in satellite technology since the 1960s, and the International Telecommunications Satellite Organization's role in these developments; describes how AUSSAT, Australia's domestic satellite system, exemplifies the latest developments in satellite technology; and reviews satellite system features, possible future…

  8. Satellite image collection optimization

    Science.gov (United States)

    Martin, William

    2002-09-01

    Imaging satellite systems represent a high capital cost. Optimizing the collection of images is critical for both satisfying customer orders and building a sustainable satellite operations business. We describe the functions of an operational, multivariable, time dynamic optimization system that maximizes the daily collection of satellite images. A graphical user interface allows the operator to quickly see the results of what if adjustments to an image collection plan. Used for both long range planning and daily collection scheduling of Space Imaging's IKONOS satellite, the satellite control and tasking (SCT) software allows collection commands to be altered up to 10 min before upload to the satellite.

  9. Market capture by 30/20 GHz satellite systems. Volume 1: Executive summary

    Science.gov (United States)

    Gamble, R. B.; Saporta, L.

    1981-01-01

    Demand for 30/20 GHz satellite systems over the next two decades is projected. Topics include a profile of the communications market, switched, dedicated, and packet transmission modes, deferred and real-time traffic, quality and reliability considerations, the capacity of competing transmission media, and scenarios for the growth and development of 30/20 GHz satellite communications.

  10. Environmental Testing Philosophy for a Sandia National Laboratories' Small Satellite Project - A Retrospective

    Energy Technology Data Exchange (ETDEWEB)

    CAP,JEROME S.

    2000-08-24

    Sandia has recently completed the flight certification test series for the Multi-Spectral Thermal Imaging satellite (MTI), which is a small satellite for which Sandia was the system integrator. A paper was presented at the 16th Aerospace Testing Seminar discussing plans for performing the structural dynamics certification program for that satellite. The testing philosophy was originally based on a combination of system level vibroacoustic tests and component level shock and vibration tests. However, the plans evolved to include computational analyses using both Finite Element Analysis and Statistical Energy Analysis techniques. This paper outlines the final certification process and discuss lessons learned including both things that went well and things that should/could have been done differently.

  11. Development of Space Qualified Microlens Arrays for Solar Cells Used on Satellite Power Systems

    Directory of Open Access Journals (Sweden)

    Ömer Faruk Keser

    2017-08-01

    Full Text Available The power system, one of the main systems of satellite, provides energy required for the satellite. Solar cells are also the most used energy source in the power system. The third generation multi-junction solar cells are known as the ones with highest performance. One of the methods to increase the performance of the solar cells is anti-reflective surface coatings with the Micro Lens Array-MLA. It's expected that satellite technologies has high power efficiency and low mass. The space environment has many effects like atomic oxygen, radiation and thermal cycles. Researches for increasing the solar cells performance shows that MLA coated solar cell has increased light absorption performance and less cell heating with very low additional mass. However, it is established that few studies on MLA coatings of solar cells are not applicable on space platforms. In this study, the process of development of MLA which is convenient to space power systems is investigated in a methodological way. In this context, a method which is developed based on MLA coatings of multi-junction solar cells for satellite power systems is presented.

  12. A Land Product Characterization System for Comparative Analysis of Satellite Data and Products

    Directory of Open Access Journals (Sweden)

    Kevin Gallo

    2017-12-01

    Full Text Available A Land Product Characterization System (LPCS has been developed to provide land data and products to the community of individuals interested in validating space-based land products by comparing them with similar products available from other sensors or surface-based observations. The LPCS facilitates the application of global multi-satellite and in situ data for characterization and validation of higher-level, satellite-derived, land surface products (e.g., surface reflectance, normalized difference vegetation index, and land surface temperature. The LPCS includes data search, inventory, access, and analysis functions that will permit data to be easily identified, retrieved, co-registered, and compared statistically through a single interface. The system currently includes data and products available from Landsat 4 through 8, Moderate Resolution Imaging Spectroradiometer (MODIS Terra and Aqua, Suomi National Polar-Orbiting Partnership (S-NPP/Joint Polar Satellite System (JPSS Visible Infrared Imaging Radiometer Suite (VIIRS, and simulated data for the Geostationary Operational Environmental Satellite (GOES-16 Advanced Baseline Imager (ABI. In addition to the future inclusion of in situ data, higher-level land products from the European Space Agency (ESA Sentinel-2 and -3 series of satellites, and other high and medium resolution spatial sensors, will be included as available. When fully implemented, any of the sensor data or products included in the LPCS would be available for comparative analysis.

  13. Satellite-aided coastal zone monitoring and vessel traffic system

    Science.gov (United States)

    Baker, J. L.

    1981-01-01

    The development and demonstration of a coastal zone monitoring and vessel traffic system is described. This technique uses a LORAN-C navigational system and relays signals via the ATS-3 satellite to a computer driven color video display for real time control. Multi-use applications of the system to search and rescue operations, coastal zone management and marine safety are described. It is emphasized that among the advantages of the system are: its unlimited range; compatibility with existing navigation systems; and relatively inexpensive cost.

  14. FOP is a centriolar satellite protein involved in ciliogenesis.

    Directory of Open Access Journals (Sweden)

    Joanna Y Lee

    Full Text Available Centriolar satellites are proteinaceous granules that are often clustered around the centrosome. Although centriolar satellites have been implicated in protein trafficking in relation to the centrosome and cilium, the details of their function and composition remain unknown. FOP (FGFR1 Oncogene Partner is a known centrosome protein with homology to the centriolar satellite proteins FOR20 and OFD1. We find that FOP partially co-localizes with the satellite component PCM1 in a cell cycle-dependent manner, similarly to the satellite and cilium component BBS4. As for BBS4, FOP localization to satellites is cell cycle dependent, with few satellites labeled in G1, when FOP protein levels are lowest, and most labeled in G2. FOP-FGFR1, an oncogenic fusion that causes a form of leukemia called myeloproliferative neoplasm, also localizes to centriolar satellites where it increases tyrosine phosphorylation. Depletion of FOP strongly inhibits primary cilium formation in human RPE-1 cells. These results suggest that FOP is a centriolar satellite cargo protein and, as for several other satellite-associated proteins, is involved in ciliogenesis. Localization of the FOP-FGFR1 fusion kinase to centriolar satellites may be relevant to myeloproliferative neoplasm disease progression.

  15. Schedule Optimization of Imaging Missions for Multiple Satellites and Ground Stations Using Genetic Algorithm

    Science.gov (United States)

    Lee, Junghyun; Kim, Heewon; Chung, Hyun; Kim, Haedong; Choi, Sujin; Jung, Okchul; Chung, Daewon; Ko, Kwanghee

    2018-04-01

    In this paper, we propose a method that uses a genetic algorithm for the dynamic schedule optimization of imaging missions for multiple satellites and ground systems. In particular, the visibility conflicts of communication and mission operation using satellite resources (electric power and onboard memory) are integrated in sequence. Resource consumption and restoration are considered in the optimization process. Image acquisition is an essential part of satellite missions and is performed via a series of subtasks such as command uplink, image capturing, image storing, and image downlink. An objective function for optimization is designed to maximize the usability by considering the following components: user-assigned priority, resource consumption, and image-acquisition time. For the simulation, a series of hypothetical imaging missions are allocated to a multi-satellite control system comprising five satellites and three ground stations having S- and X-band antennas. To demonstrate the performance of the proposed method, simulations are performed via three operation modes: general, commercial, and tactical.

  16. Component Reification in Systems Modelling

    DEFF Research Database (Denmark)

    Bendisposto, Jens; Hallerstede, Stefan

    When modelling concurrent or distributed systems in Event-B, we often obtain models where the structure of the connected components is specified by constants. Their behaviour is specified by the non-deterministic choice of event parameters for events that operate on shared variables. From a certain......? These components may still refer to shared variables. Events of these components should not refer to the constants specifying the structure. The non-deterministic choice between these components should not be via parameters. We say the components are reified. We need to address how the reified components get...... reflected into the original model. This reflection should indicate the constraints on how to connect the components....

  17. Larger Optics and Improved Calibration Techniques for Small Satellite Observations with the ERAU OSCOM System

    Science.gov (United States)

    Bilardi, S.; Barjatya, A.; Gasdia, F.

    OSCOM, Optical tracking and Spectral characterization of CubeSats for Operational Missions, is a system capable of providing time-resolved satellite photometry using commercial-off-the-shelf (COTS) hardware and custom tracking and analysis software. This system has acquired photometry of objects as small as CubeSats using a Celestron 11” RASA and an inexpensive CMOS machine vision camera. For satellites with known shapes, these light curves can be used to verify a satellite’s attitude and the state of its deployed solar panels or antennae. While the OSCOM system can successfully track satellites and produce light curves, there is ongoing improvement towards increasing its automation while supporting additional mounts and telescopes. A newly acquired Celestron 14” Edge HD can be used with a Starizona Hyperstar to increase the SNR for small objects as well as extend beyond the limiting magnitude of the 11” RASA. OSCOM currently corrects instrumental brightness measurements for satellite range and observatory site average atmospheric extinction, but calibrated absolute brightness is required to determine information about satellites other than their spin rate, such as surface albedo. A calibration method that automatically detects and identifies background stars can use their catalog magnitudes to calibrate the brightness of the satellite in the image. We present a photometric light curve from both the 14” Edge HD and 11” RASA optical systems as well as plans for a calibration method that will perform background star photometry to efficiently determine calibrated satellite brightness in each frame.

  18. Design of a gigawatt space solar power satellite using optical concentrator system

    Science.gov (United States)

    Dessanti, B.; Komerath, N.; Shah, S.

    A 1-gigawatt space solar power satellite using a large array of individually pointable optical elements is identified as the key mass element of a large scale space solar power architecture using the Space Power Grid concept. The proposed satellite design enables a significant increase in specific power. Placed in sun-synchronous dynamic orbits near 2000km altitude, these satellites can maintain the constant solar view requirement of GEO-based architectures, while greatly reducing the beaming distance required, decreasing the required antenna size and in turn the overall system mass. The satellite uses an array of individually pointable optical elements (which we call a Mirasol Concentrator Array) to concentrate solar energy to an intensified feed target that feeds into the main heater of the spacecraft, similar conceptually to heliostat arrays. The spacecraft then utilizes Brayton cycle conversion to take advantage of non-linear power level scaling in order to generate high specific power values. Using phase array antennas, the power is then beamed at a millimeter wave frequency of 220GHz down to Earth. The design of the Mirasol concentrator system will be described and a detailed mass estimation of the system is developed. The technical challenges of pointing the elements and maintaining constant solar view is investigated. An end-to-end efficiency analysis is performed. Subsystem designs for the spacecraft are outlined. A detailed mass budget is refined to reflect reductions in uncertainty of the spacecraft mass, particularly in the Mirasol system. One of the key mass drivers of the spacecraft is the active thermal control system. The design of a lightweight thermal control system utilizing graphene sheets is also detailed.

  19. DS-CDMA satellite diversity reception for personal satellite communication: Downlink performance analysis

    Science.gov (United States)

    DeGaudenzi, Riccardo; Giannetti, Filippo

    1995-01-01

    The downlink of a satellite-mobile personal communication system employing power-controlled Direct Sequence Code Division Multiple Access (DS-CDMA) and exploiting satellite-diversity is analyzed and its performance compared with a more traditional communication system utilizing single satellite reception. The analytical model developed has been thoroughly validated by means of extensive Monte Carlo computer simulations. It is shown how the capacity gain provided by diversity reception shrinks considerably in the presence of increasing traffic or in the case of light shadowing conditions. Moreover, the quantitative results tend to indicate that to combat system capacity reduction due to intra-system interference, no more than two satellites shall be active over the same region. To achieve higher system capacity, differently from terrestrial cellular systems, Multi-User Detection (MUD) techniques are likely to be required in the mobile user terminal, thus considerably increasing its complexity.

  20. Contribution of BeiDou satellite system for long baseline GNSS measurement in Indonesia

    Science.gov (United States)

    Gumilar, I.; Bramanto, B.; Kuntjoro, W.; Abidin, H. Z.; Trihantoro, N. F.

    2018-05-01

    The demand for more precise positioning method using GNSS (Global Navigation Satellite System) in Indonesia continue to rise. The accuracy of GNSS positioning depends on the length of baseline and the distribution of observed satellites. BeiDou Navigation Satellite System (BDS) is a positioning system owned by China that operating in Asia-Pacific region, including Indonesia. This research aims to find out the contribution of BDS in increasing the accuracy of long baseline static positioning in Indonesia. The contributions are assessed by comparing the accuracy of measurement using only GPS (Global Positioning System) and measurement using the combination of GPS and BDS. The data used is 5 days of GPS and BDS measurement data for baseline with 120 km in length. The software used is open-source RTKLIB and commercial software Compass Solution. This research will explain in detail the contribution of BDS to the accuracy of position in long baseline static GNSS measurement.

  1. Satellite switched FDMA advanced communication technology satellite program

    Science.gov (United States)

    Atwood, S.; Higton, G. H.; Wood, K.; Kline, A.; Furiga, A.; Rausch, M.; Jan, Y.

    1982-01-01

    The satellite switched frequency division multiple access system provided a detailed system architecture that supports a point to point communication system for long haul voice, video and data traffic between small Earth terminals at Ka band frequencies at 30/20 GHz. A detailed system design is presented for the space segment, small terminal/trunking segment at network control segment for domestic traffic model A or B, each totaling 3.8 Gb/s of small terminal traffic and 6.2 Gb/s trunk traffic. The small terminal traffic (3.8 Gb/s) is emphasized, for the satellite router portion of the system design, which is a composite of thousands of Earth stations with digital traffic ranging from a single 32 Kb/s CVSD voice channel to thousands of channels containing voice, video and data with a data rate as high as 33 Mb/s. The system design concept presented, effectively optimizes a unique frequency and channelization plan for both traffic models A and B with minimum reorganization of the satellite payload transponder subsystem hardware design. The unique zoning concept allows multiple beam antennas while maximizing multiple carrier frequency reuse. Detailed hardware design estimates for an FDMA router (part of the satellite transponder subsystem) indicate a weight and dc power budget of 353 lbs, 195 watts for traffic model A and 498 lbs, 244 watts for traffic model B.

  2. Air traffic management system design using satellite based geo-positioning and communications assets

    Science.gov (United States)

    Horkin, Phil

    1995-01-01

    The current FAA and ICAO FANS vision of Air Traffic Management will transition the functions of Communications, Navigation, and Surveillance to satellite based assets in the 21st century. Fundamental to widespread acceptance of this vision is a geo-positioning system that can provide worldwide access with best case differential GPS performance, but without the associated problems. A robust communications capability linking-up aircraft and towers to meet the voice and data requirements is also essential. The current GPS constellation does not provide continuous global coverage with a sufficient number of satellites to meet the precision landing requirements as set by the world community. Periodic loss of the minimum number of satellites in view creates an integrity problem, which prevents GPS from becoming the primary system for navigation. Furthermore, there is reluctance on the part of many countries to depend on assets like GPS and GLONASS which are controlled by military communities. This paper addresses these concerns and provides a system solving the key issues associated with navigation, automatic dependent surveillance, and flexible communications. It contains an independent GPS-like navigation system with 27 satellites providing global coverage with a minimum of six in view at all times. Robust communications is provided by a network of TDMA/FDMA communications payloads contained on these satellites. This network can support simultaneous communications for up to 30,000 links, nearly enough to simultaneously support three times the current global fleet of jumbo air passenger aircraft. All of the required hardware is directly traceable to existing designs.

  3. Application of communications satellites to educational development. [technology utilization/information systems - bibliographies

    Science.gov (United States)

    Morgan, R. P.

    1975-01-01

    A summary of research is presented. The broad objectives of this interdisciplinary research effort were: (1) to assess the role of satellite communications as a means of improving education in the United States, as well as in less-developed areas of the world; (2) to generate basic knowledge which will aid in making rational decisions about satellite application in the field of education in the years ahead; (3) to devise systems and strategies for improving education; and (4) to educate individuals who will be knowledgeable about aspects of satellite communications policy which transcend any single discipline.

  4. Evaluating the hydrological consistency of satellite based water cycle components

    KAUST Repository

    Lopez Valencia, Oliver Miguel; Houborg, Rasmus; McCabe, Matthew

    2016-01-01

    observation. Basin-scale studies have shown considerable variability in achieving water budget closure with any degree of accuracy using satellite estimates of the water cycle. In order to assess the suitability of this type of approach for evaluating

  5. The Use of a Satellite Human Interaction System in Conjunction with a Satellite Media Distribution System. Satellite Technology Demonstration, Technical Report No. 0217.

    Science.gov (United States)

    Dale, Joyce B.

    Satellite Technology Demonstration (STD) was designed to provide data on the use of a satellite to deliver educational programs to 56 rural-isolated schools in eight Rocky Mountain States. Three series were broadcast: (1) a junior high school career development, (2) career development for public school administrators and teachers, and (3) topical…

  6. Mobility management in satellite networks

    Science.gov (United States)

    Johanson, Gary A.

    1995-01-01

    This paper addresses the methods used or proposed for use in multi-beam and/or multi-satellite networks designed to provide Mobile Satellite Services (MSS). Specific topics include beam crossover in the North American Mobile Satellite (MSAT) system as well as registration and live call hand-off for a multi-regional geosynchronous (GEO) satellite based system and a global coverage Low Earth Orbiting (LEO) system. In the MSAT system, the individual satellite beams cover very large geographic areas so the need for live call hand-off was not anticipated. This paper discusses the methods used to keep track of the beam location of the users so that incoming call announcements or other messages may be directed to them. Proposed new GEO systems with large numbers of beams will provide much smaller geographic coverage in individual beams and thus the need arises to keep track of the user's location as well as to provide live call hand-off as the user traverses from beam to beam. This situation also occurs in proposed LEO systems where the problems are worsened by the need for satellite to satellite hand-off as well as beam to beam hand-off within a single satellite. The paper discusses methods to accomplish these handoffs and proposes system architectures to address the various hand-off scenarios.

  7. Global Navigation Satellite System (GNSS) Rapid Clock Product Summary from NASA CDDIS

    Data.gov (United States)

    National Aeronautics and Space Administration — This derived product set consists of Global Navigation Satellite System Rapid Clock Product Summary from the NASA Crustal Dynamics Data Information System (CDDIS)....

  8. Digital Components in Swedish NPP Power Systems

    International Nuclear Information System (INIS)

    Karlsson, Mattias; Eriksson, Tage

    2015-01-01

    Swedish nuclear power plants have over the last 20 years of operation modernised or exchanged several systems and components of the electrical power system. Within these works, new components based on digital technology have been employed in order to realize functionality that was previously achieved by using electro-mechanical or analogue technology. Components and systems such as relay protection, rectifiers, inverters, variable speed drives and diesel-generator sets are today equipped with digital components. Several of the systems and components fulfil functions with a safety-role in the NPP. Recently, however, a number of incidents have occurred which highlight deficiencies in the design or HMI of the equipment, which warrants questions whether there are generic problems with some applications of digital components that needs to be addressed. The use of digital components has presented cost effective solutions, or even the only available solution on the market enabling a modernisation. The vast majority of systems using digital components have been operating without problems and often contribute to improved safety but the challenge of non-detectable, or non-identifiable, failure modes remain. In this paper, the extent to which digital components are used in Swedish NPP power systems will be presented including a description of typical applications. Based on data from maintenance records and fault reports, as well as interviews with designers and maintenance personnel, the main areas where problems have been encountered and where possible risks have been identified will be described. The paper intends to investigate any 'tell-tales' that could give signals of unwanted behaviour. Furthermore, particular benefits experienced by using digital components will be highlighted. The paper will also discuss the safety relevance of these findings and suggest measures to improve safety in the application of digital components in power systems. (authors)

  9. Satellite gravity gradient views help reveal the Antarctic lithosphere

    Science.gov (United States)

    Ferraccioli, F.; Ebbing, J.; Pappa, F.; Kern, M.; Forsberg, R.

    2017-12-01

    Here we present and analyse satellite gravity gradient signatures derived from GOCE and superimpose these on tectonic and bedrock topography elements, as well as seismically-derived estimates of crustal thickness for the Antarctic continent. The GIU satellite gravity component images the contrast between the thinner crust and lithosphere underlying the West Antarctic Rift System and the Weddell Sea Rift System and the thicker lithosphere of East Antarctica. The new images also suggest that more distributed wide-mode lithospheric and crustal extension affects both the Ross Sea Embayment and the less well known Ross Ice Shelf segment of the rift system. However, this pattern is less clear towards the Bellingshousen Embayment, indicating that the rift system narrows towards the southern edge of the Antarctic Peninsula. In East Antarctica, the satellite gravity data provides new views into the Archean to Mesoproterozoic Terre Adelie Craton, and clearly shows the contrast wrt to the crust and lithosphere underlying both the Wilkes Subglacial Basin to the east and the Sabrina Subglacial Basin to the west. This finding augments recent interpretations of aeromagnetic and airborne gravity data over the region, suggesting that the Mawson Continent is a composite lithospheric-scale entity, which was affected by several Paleoproterozoic and Mesoproterozoic orogenic events. Thick crust is imaged beneath the Transantarctic Mountains, the Terre Adelie Craton, the Gamburtsev Subglacial Mountains and also Eastern Dronning Maud Land, in particular beneath the recently proposed region of the Tonian Oceanic Arc Superterrane. The GIA and GIU components help delineate the edges of several of these lithospheric provinces. One of the most prominent lithospheric-scale features discovered in East Antarctica from satellite gravity gradient imaging is the Trans East Antarctic Shear Zone that separates the Gamburtsev Province from the Eastern Dronning Maud Land Province and appears to form the

  10. Programmable Ultra-Lightweight System Adaptable Radio Satellite Base Station

    Science.gov (United States)

    Varnavas, Kosta; Sims, Herb

    2015-01-01

    With the explosion of the CubeSat, small sat, and nanosat markets, the need for a robust, highly capable, yet affordable satellite base station, capable of telemetry capture and relay, is significant. The Programmable Ultra-Lightweight System Adaptable Radio (PULSAR) is NASA Marshall Space Flight Center's (MSFC's) software-defined digital radio, developed with previous Technology Investment Programs and Technology Transfer Office resources. The current PULSAR will have achieved a Technology Readiness Level-6 by the end of FY 2014. The extensibility of the PULSAR will allow it to be adapted to perform the tasks of a mobile base station capable of commanding, receiving, and processing satellite, rover, or planetary probe data streams with an appropriate antenna.

  11. Impact of the "faster better cheaper" requirements for satellites components/subsystems on SEP organisation and processes.

    Science.gov (United States)

    Pages, X.

    2000-03-01

    In the early 90's, SEP environment in the satellites business quickly evolved from agencies funded programs (ESA, CNES, government) to a situation in which SEP has numerous private customers and where agencies behave as private companies i.e. opening world-wide competition, requesting high involvement of SEP in non recurring funding. SEP quickly reacted to face this challenge by improving not only their products but also the way these products are developed and produced. A new organization of SEP/DPES unit (around 200 people) was set up end 1994, with project oriented guidelines such as streamlining the hierarchical levels in order to increase personals implication and motivation, favoring flexible project organizations to the previous somewhat rigid matrix organization, enforcing commercial/marketing structure to the new customers. Highly motivated slim teams were constituted around each project, picking up expert partners inside SEP/DPES departments. Project partners proved to plead in an efficient manner with their own management on the behalf of the projects they were implied in. Eventually, this organization helped, of course with other progress actions, to a global performance improvement of SEP/DPES. Improved development processes were put into practice in 1995 among which design to cost, carefully decided internal preliminary studies, long term agreements with preferred subcontractors. SEP/DPES ISO.9001 certification (mid-1998) which gives evidence of the satisfactory status of SEP/DPES PA system already helps to avoid to costly comply with numerous project tailored P.A. requirements. New products were developed/qualified since the mid-90's, on SEP funding (at least partial, sometimes total), following the here before described processes and organization. Among SEP/DPES newly developed products, three examples are more thoroughly discussed. In the field of electrical propulsion where SEP/DPES has gained expertise in since the 60's, new developments started

  12. ECOSPACE : a pre-operational satellite system and services for ocean colour monitoring

    Science.gov (United States)

    Morel, André; Cerutti-Maori, Guy; Morel, Michel

    2017-11-01

    technological experience developed in particular under ESA funding in the frame of the MERIS project, including sensor simulation and processor, and instrument building. Indeed, most of the ECOSPACE components are already available or in final approval processes ; costly activities on the critical path for a traditional satellite system will be greatly reduced, when not totally cancelled by use of developed µsatellite platform : PROBA from ESA or µSAT from CNES. The same argument holds true for the ground segment, algorithm architecture, and data management. These platforms are compatible of piggy back on ARIANE 5 Launcher.

  13. Networks systems and operations. [wideband communication techniques for data links with satellites

    Science.gov (United States)

    1975-01-01

    The application of wideband communication techniques for data links with satellites is discussed. A diagram of the demand assigned voice communications system is provided. The development of prototype integrated spacecraft paramps at S- and C-bands is described and the performance of space-qualified paramps is tabulated. The characteristics of a dual parabolic cylinder monopulse zoom antenna for use with the tracking and data relay satellite system (TDRSS) are analyzed. The development of a universally applicable transponder at S-band is reported. A block diagram of the major subassemblies of the S-band transponder is included. The technology aspects of network timing and synchronization of communication systems are to show the use of the Omega navigation system. The telemetry data compression system used during the Skylab program is evaluated.

  14. 47 CFR 25.259 - Time sharing between NOAA meteorological satellite systems and non-voice, non-geostationary...

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Time sharing between NOAA meteorological... SATELLITE COMMUNICATIONS Technical Standards § 25.259 Time sharing between NOAA meteorological satellite... Atmospheric Administration (“NOAA”) satellite systems. When calculating the protection areas for a NOAA...

  15. The Eccentric Satellites Problem: Comparing Milky Way Satellite Orbital Properties to Simulation Results

    Science.gov (United States)

    Haji, Umran; Pryor, Carlton; Applebaum, Elaad; Brooks, Alyson

    2018-01-01

    We compare the orbital properties of the satellite galaxies of the Milky Way to those of satellites found in simulated Milky Way-like systems as a means of testing cosmological simulations of galaxy formation. The particular problem that we are investigating is a discrepancy in the distribution of orbital eccentricities. Previous studies of Milky Way-mass systems analyzed in a semi-analytic ΛCDM cosmological model have found that the satellites tend to have significantly larger fractions of their kinetic energy invested in radial motion with respect to their central galaxy than do the real-world Milky Way satellites. We analyze several high-resolution ("zoom-in") hydrodynamical simulations of Milky Way-mass galaxies and their associated satellite systems to investigate why previous works found Milky Way-like systems to be rare. We find a possible relationship between a quiescent galactic assembly history and a distribution of satellite kinematics resembling that of the Milky Way. This project has been supported by funding from National Science Foundation grant PHY-1560077.

  16. Assessment of the Contribution of BeiDou GEO, IGSO, and MEO Satellites to PPP in Asia—Pacific Region

    Directory of Open Access Journals (Sweden)

    Qile Zhao

    2015-12-01

    Full Text Available In contrast to the US Global Positioning System (GPS, the Russian Global Navigation Satellite System (GLONASS and the European Galileo, the developing Chinese BeiDou satellite navigation system (BDS consists of not only Medium Earth Orbit (MEO, but also Geostationary Orbit (GEO as well as Inclined Geosynchronous Orbit (IGSO satellites. In this study, the Precise Point Positioning (PPP and PPP with Integer Ambiguity Resolution (IAR are obtained. The contributions of these three different types of BDS satellites to PPP in Asia-Pacific region are assessed using data from selected 20 sites over more than four weeks. By using various PPP cases with different satellite combinations, in general, the largest contribution of BDS IGSO among the three kinds of BDS satellites to the reduction of convergence time and the improvement of positioning accuracy, particularly in the east direction, is identified. These PPP cases include static BDS only solutions and static/kinematic ambiguity-float and -fixed PPP with the combination of GPS and BDS. The statistical results demonstrate that the inclusion of BDS GEO and MEO satellites can improve the observation condition and result in better PPP performance as well. When combined with GPS, the contribution of BDS to the reduction of convergence time is, however, not as significant as that of GLONASS. As far as the positioning accuracy is concerned, GLONASS improves the accuracy in vertical component more than BDS does, whereas similar improvement in horizontal component can be achieved by inclusion of BDS IGSO and MEO as GLONASS.

  17. How Satellites Have Contributed to Building a Weather Ready Nation

    Science.gov (United States)

    Lapenta, W.

    2017-12-01

    prediction. The purpose of this paper is to highlight the value of the satellite component of the global observing system to NWS operational weather forecasting and emphasize how these data form a critical component of the NWS ability to protect life and property and ensure economic well-being.

  18. IoSiS: a radar system for imaging of satellites in space

    Science.gov (United States)

    Jirousek, M.; Anger, S.; Dill, S.; Schreiber, E.; Peichl, M.

    2017-05-01

    Space debris nowadays is one of the main threats for satellite systems especially in low earth orbit (LEO). More than 700,000 debris objects with potential to destroy or damage a satellite are estimated. The effects of an impact often are not identifiable directly from ground. High-resolution radar images are helpful in analyzing a possible damage. Therefor DLR is currently developing a radar system called IoSiS (Imaging of Satellites in Space), being based on an existing steering antenna structure and our multi-purpose high-performance radar system GigaRad for experimental investigations. GigaRad is a multi-channel system operating at X band and using a bandwidth of up to 4.4 GHz in the IoSiS configuration, providing fully separated transmit (TX) and receive (RX) channels, and separated antennas. For the observation of small satellites or space debris a highpower traveling-wave-tube amplifier (TWTA) is mounted close to the TX antenna feed. For the experimental phase IoSiS uses a 9 m TX and a 1 m RX antenna mounted on a common steerable positioner. High-resolution radar images are obtained by using Inverse Synthetic Aperture Radar (ISAR) techniques. The guided tracking of known objects during overpass allows here wide azimuth observation angles. Thus high azimuth resolution comparable to the range resolution can be achieved. This paper outlines technical main characteristics of the IoSiS radar system including the basic setup of the antenna, the radar instrument with the RF error correction, and the measurement strategy. Also a short description about a simulation tool for the whole instrument and expected images is shown.

  19. From extended integrity monitoring to the safety evaluation of satellite-based localisation system

    International Nuclear Information System (INIS)

    Legrand, Cyril; Beugin, Julie; Marais, Juliette; Conrard, Blaise; El-Koursi, El-Miloudi; Berbineau, Marion

    2016-01-01

    Global Navigation Satellite Systems (GNSS) such as GPS, already used in aeronautics for safety-related applications, can play a major role in railway safety by allowing a train to locate itself safely. However, in order to implement this positioning solution in any embedded system, its performances must be evaluated according to railway standards. The evaluation of GNSS performances is not based on the same attributes class than RAMS evaluation. Face to these diffculties, we propose to express the integrity attribute, performance of satellite-based localisation. This attribute comes from aeronautical standards and for a hybridised GNSS with inertial system. To achieve this objective, the integrity attribute must be extended to this kind of system and algorithms initially devoted to GNSS integrity monitoring only must be adapted. Thereafter, the formalisation of this integrity attribute permits us to analyse the safety quantitatively through the probabilities of integrity risk and wrong-side failure. In this paper, after an introductory discussion about the use of localisation systems in railway safety context together with integrity issues, a particular integrity monitoring is proposed and described. The detection events of this algorithm permit us to conclude about safety level of satellite-based localisation system.

  20. Spacecraft design project: Low Earth orbit communications satellite

    Science.gov (United States)

    Moroney, Dave; Lashbrook, Dave; Mckibben, Barry; Gardener, Nigel; Rivers, Thane; Nottingham, Greg; Golden, Bill; Barfield, Bill; Bruening, Joe; Wood, Dave

    1991-01-01

    This is the final product of the spacecraft design project completed to fulfill the academic requirements of the Spacecraft Design and Integration 2 course (AE-4871) taught at the U.S. Naval Postgraduate School. The Spacecraft Design and Integration 2 course is intended to provide students detailed design experience in selection and design of both satellite system and subsystem components, and their location and integration into a final spacecraft configuration. The design team pursued a design to support a Low Earth Orbiting (LEO) communications system (GLOBALSTAR) currently under development by the Loral Cellular Systems Corporation. Each of the 14 team members was assigned both primary and secondary duties in program management or system design. Hardware selection, spacecraft component design, analysis, and integration were accomplished within the constraints imposed by the 11 week academic schedule and the available design facilities.

  1. COSMIC Payload in NCAR-NASPO GPS Satellite System for Severe Weather Prediction

    Science.gov (United States)

    Lai-Chen, C.

    Severe weather, such as cyclones, heavy rainfall, outburst of cold air, etc., results in great disaster all the world. It is the mission for the scientists to design a warning system, to predict the severe weather systems and to reduce the damage of the society. In Taiwan, National Satellite Project Office (NSPO) initiated ROCSAT-3 program at 1997. She scheduled the Phase I conceptual design to determine the mission for observation weather system. Cooperating with National Center of Atmospheric Research (NCAR), NSPO involved an international cooperation research and operation program to build a 32 GPS satellites system. NCAR will offer 24 GPS satellites. The total expanse will be US 100 millions. NSPO also provide US 80 millions for launching and system engineering operation. And NCAR will be responsible for Payload Control Center and Fiducial Network. The cooperative program contract has been signed by Taiwan National Science Council, Taipei Economic Cultural Office of United States and American Institute in Taiwan. One of the payload is COSMIC, Constellation Observation System for Meteorology, Ionosphere and Climate. It is a GPS meteorology instrument system. The system will observe the weather information, e. g. electron density profiles, horizontal and vertical TEC and CFT scintillation and communication outage maps. The mission is to obtain the weather data such as vertical temperature profiles, water vapor distribution and pressure distribution over the world for global weather forecasting, especially during the severe weather period. The COSMIC Conference held on November, 1998. The export license was also issued by Department of Commerce of Unites States at November, 1998. Recently, NSPO begun to train their scientists to investigate the system. Scientists simulate the observation data to combine the existing routine satellite infrared cloud maps, radar echo and synoptic weather analysis for severe weather forecasting. It is hopeful to provide more accurate

  2. Handbook of satellite applications

    CERN Document Server

    Madry, Scott; Camacho-Lara, Sergio

    2013-01-01

    Top space experts from around the world have collaborated to produce this comprehensive, authoritative, and clearly illustrated reference guide to the fast growing, multi-billion dollar field of satellite applications and space communications. This handbook, done under the auspices of the International Space University based in France, addresses not only system technologies but also examines market dynamics, technical standards and regulatory constraints. The handbook is a completely multi-disciplinary reference book that covers, in an in-depth fashion, the fields of satellite telecommunications, Earth observation, remote sensing, satellite navigation, geographical information systems, and geosynchronous meteorological systems. It covers current practices and designs as well as advanced concepts and future systems. It provides a comparative analysis of the common technologies and design elements for satellite application bus structures, thermal controls, power systems, stabilization techniques, telemetry, com...

  3. Trends in mobile satellite communication

    Science.gov (United States)

    Johannsen, Klaus G.; Bowles, Mike W.; Milliken, Samuel; Cherrette, Alan R.; Busche, Gregory C.

    1993-01-01

    Ever since the U.S. Federal Communication Commission opened the discussion on spectrum usage for personal handheld communication, the community of satellite manufacturers has been searching for an economically viable and technically feasible satellite mobile communication system. Hughes Aircraft Company and others have joined in providing proposals for such systems, ranging from low to medium to geosynchronous orbits. These proposals make it clear that the trend in mobile satellite communication is toward more sophisticated satellites with a large number of spot beams and onboard processing, providing worldwide interconnectivity. Recent Hughes studies indicate that from a cost standpoint the geosynchronous satellite (GEOS) is most economical, followed by the medium earth orbit satellite (MEOS) and then by the low earth orbit satellite (LEOS). From a system performance standpoint, this evaluation may be in reverse order, depending on how the public will react to speech delay and collision. This paper discusses the trends and various mobile satellite constellations in satellite communication under investigation. It considers the effect of orbital altitude and modulation/multiple access on the link and spacecraft design.

  4. Regional model simulation of the North Atlantic cyclone "Caroline" and comparisons with satellite data

    Directory of Open Access Journals (Sweden)

    E. Keup-Thiel

    Full Text Available An individual regional model simulation of cyclone "Caroline" has been carried out to study water cycle components over the North Atlantic Ocean. The uncertainties associated with quantitative estimates of the water cycle components are highlighted by a comparison of the model results with SSM/I (Special Sensor Microwave Imager satellite data.

    The vertically integrated water vapor of the REgional MOdel REMO is in good agreement with the SSM/I satellite data. The simulation results for other water budget components like the vertically integrated liquid water content and precipitation compare also reasonably well within the frontal system. However, the high precipitation rate in the cold air outbreak on the backside of the cold front derived from SSM/I satellite data is generally underestimated by REMO. This results in a considerable deficit of the total precipitation amount accumulated for the cyclone "Caroline". While REMO simulates 24.3 108 m3 h-1 for 09:00 UTC, the total areal precipitation from SSM/I satellite data amounts to 54.7 08 m3 h-1.

    Key words. Meteorology and atmospheric dynamics (precipitation; mesoscale meteorology – Radio science (remote sensing

  5. Research on the new type of multi-functional satellite system for space debris detection

    Science.gov (United States)

    Guo, Linghua; Fu, Qiang; Jiang, Huilin; Xu, Xihe

    2017-05-01

    With the rapid development of space exploration and utilization, orbital debris increases dramatically, leading to great threat to human space activities and spacecraft security. In this paper, a new type of multi-functional space debris satellite system (MSDS) was put forward, which shared main optical system, and possessed functions of multidimensional information detection, polarized remote sensing and high rate transmission. The MSDS system can meet the requirements of detection and identification for the small orbital debris which is 1000km faraway, as well as the requirements of the data transmission by 50 Mbps to 2.5 Gbps@200-1000 km. At the same time, by the method of satellite orbital maneuver and attitude adjusting, the orbital debris information that is real-time, complex and refined, allweather can be acquired and transmitted by the new system. Such new type of multifunctional satellite system can provide important and effective technology for international orbital debris detection.

  6. A Prototype Knowledge-Based System for Satellite Mission Planning.

    Science.gov (United States)

    1986-12-01

    used by different groups in an operational environment. 6 II. Literature Review As management science has recognized, it is not practical to separate...schedule only one satellite per set of requirements. A -4 .............. er.- Appendix B O9perational Conce~t Usin a Knowlede -Based System There are many

  7. Satellite power system (SPS) public outreach experiment

    Energy Technology Data Exchange (ETDEWEB)

    McNeal, S.R.

    1980-12-01

    To improve the results of the Satellite Power System (SPS) Concept Development and Evaluation Program, an outreach experiment was conducted. Three public interest groups participated: the L-5 Society (L-5), Citizen's Energy Project (CEP), and the Forum for the Advancement of Students in Science and Technology (FASST). Each group disseminated summary information about SPS to approximately 3000 constituents with a request for feedback on the SPS concept. The objectives of the outreach were to (1) determine the areas of major concern relative to the SPS concept, and (2) gain experience with an outreach process for use in future public involvement. Due to the combined efforts of all three groups, 9200 individuals/organizations received information about the SPS concept. Over 1500 receipients of this information provided feedback. The response to the outreach effort was positive for all three groups, suggesting that the effort extended by the SPS Project Division to encourage an information exchange with the public was well received. The general response to the SPS differed with each group. The L-5 position is very much in favor of SPS; CEP is very much opposed and FASST is relatively neutral. The responses are analyzed, and from the responses some questions and answers about the satellite power system are presented in the appendix. (WHK)

  8. Encryption protection for communication satellites

    Science.gov (United States)

    Sood, D. R.; Hoernig, O. W., Jr.

    In connection with the growing importance of the commercial communication satellite systems and the introduction of new technological developments, users and operators of these systems become increasingly concerned with aspects of security. The user community is concerned with maintaining confidentiality and integrity of the information being transmitted over the satellite links, while the satellite operators are concerned about the safety of their assets in space. In response to these concerns, the commercial satellite operators are now taking steps to protect the communication information and the satellites. Thus, communication information is being protected by end-to-end encryption of the customer communication traffic. Attention is given to the selection of the NBS DES algorithm, the command protection systems, and the communication protection systems.

  9. Satellite Communications

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Satellite Communications. Arthur C Clarke wrote a seminal paper in 1945 in wireless world. Use three satellites in geo-synchronous orbit to enable intercontinental communications. System could be realised in '50 to 100 years'

  10. H infinity controller design to a rigid-flexible satellite with two vibration modes

    International Nuclear Information System (INIS)

    De Souza, A G; De Souza, L C G

    2015-01-01

    The satellite attitude control system (ACS) design becomes more complex when the satellite structure has components like, flexible solar panels, antennas and mechanical manipulators. These flexible structures can interact with the satellite rigid parts during translational and/or rotational manoeuvre damaging the ACS pointing accuracy. Although, a well-designed controller can suppress such disturbances quickly, the controller error pointing may be limited by the minimum time necessary to suppress such disturbances thus affecting the satellite attitude acquisition. This paper deals with the rigid-flexible satellite ACS design using the H infinity method. The rigid-flexible satellite is represented by a beam connected to a central rigid hub at one end and free at the other one. The equations of motions are obtained considering small flexible deformations and the Euler-Bernoulli hypothesis. The results of the simulations have shown that the H-infinity controller was able to control the rigid motion and suppress the vibrations. (paper)

  11. Payload system tradeoffs for mobile communications satellites

    Science.gov (United States)

    Moody, H. J.

    1990-01-01

    System level trade-offs carried out during Mobile Satellite (M-SAT) design activities are described. These trade-offs relate to the use of low level beam forming, flexible power and spectrum distribution, and selection of the number of beams to cover the service area. It is shown that antenna performance can be improved by sharing horns between beams using a low level beam forming network (BFN). Additionally, greatly increased power utilization is possible using a hybrid matrix concept to share power between beams.

  12. Tether dynamics and control results for tethered satellite system's initial flight

    Science.gov (United States)

    Chapel, Jim D.; Flanders, Howard

    The recent Tethered Satellite System-1 (TSS-1) mission has provided a wealth of data concerning the dynamics of tethered systems in space and has demonstrated the effectiveness of operational techniques designed to control these dynamics. In this paper, we review control techniques developed for managing tether dynamics, and discuss the results of using these techniques for the Tethered Satellite System's maiden flight on STS-46. In particular, the flight results of controlling libration dynamics, string dynamics, and slack tether are presented. These results show that tether dynamics can be safely managed. The overall stability of the system was found to be surprisingly good even at relatively short tether lengths. In fact, the system operated in passive mode at a tether length of 256 meters for over 9 hours. Only monitoring of the system was required during this time. Although flight anomalies prevented the planned deployment to 20 km, the extended operations at shorter tether lengths have proven the viability of using tethers in space. These results should prove invaluable in preparing for future missions with tethered objects in space.

  13. Magsat - A new satellite to survey the earth's magnetic field

    Science.gov (United States)

    Mobley, F. F.; Eckard, L. D.; Fountain, G. H.; Ousley, G. W.

    1980-01-01

    The Magsat satellite was launched on Oct. 30, 1979 into a sun-synchronous dawn-dusk orbit, of 97 deg inclination, 350 km perigee, and 550 km apogee. It contains a precision vector magnetometer and a cesium-vapor scalar magnetometer at the end of a 6-m long graphite epoxy scissors boom. The magnetometers are accurate to 2 nanotesla. A pair of star cameras are used to define the body orientation to 10 arc sec rms. An 'attitude transfer system' measures the orientation of the magnetometer sensors relative to the star cameras to approximately 5 arc sec rms. The satellite position is determined to 70 meters rms by Doppler tracking. The overall objective is to determine each component of the earth's vector magnetic field to an accuracy of 6 nanotesla rms. The Magsat satellite gathers a complete picture of the earth's magnetic field every 12 hours. The vector components are sampled 16 times per second with a resolution of 0.5 nanotesla. The data will be used by the U.S. Geological Survey to prepare 1980 world magnetic field charts and to detect large-scale magnetic anomalies in the earth's crust for use in planning resource exploration strategy.

  14. Intuitive Tools for the Design and Analysis of Communication Payloads for Satellites

    Science.gov (United States)

    Culver, Michael R.; Soong, Christine; Warner, Joseph D.

    2014-01-01

    In an effort to make future communications satellite payload design more efficient and accessible, two tools were created with intuitive graphical user interfaces (GUIs). The first tool allows payload designers to graphically design their payload by using simple drag and drop of payload components onto a design area within the program. Information about each picked component is pulled from a database of common space-qualified communication components sold by commerical companies. Once a design is completed, various reports can be generated, such as the Master Equipment List. The second tool is a link budget calculator designed specifically for ease of use. Other features of this tool include being able to access a database of NASA ground based apertures for near Earth and Deep Space communication, the Tracking and Data Relay Satellite System (TDRSS) base apertures, and information about the solar system relevant to link budget calculations. The link budget tool allows for over 50 different combinations of user inputs, eliminating the need for multiple spreadsheets and the user errors associated with using them. Both of the aforementioned tools increase the productivity of space communication systems designers, and have the colloquial latitude to allow non-communication experts to design preliminary communication payloads.

  15. Space micropropulsion systems for Cubesats and small satellites: From proximate targets to furthermost frontiers

    Science.gov (United States)

    Levchenko, Igor; Bazaka, Kateryna; Ding, Yongjie; Raitses, Yevgeny; Mazouffre, Stéphane; Henning, Torsten; Klar, Peter J.; Shinohara, Shunjiro; Schein, Jochen; Garrigues, Laurent; Kim, Minkwan; Lev, Dan; Taccogna, Francesco; Boswell, Rod W.; Charles, Christine; Koizumi, Hiroyuki; Shen, Yan; Scharlemann, Carsten; Keidar, Michael; Xu, Shuyan

    2018-03-01

    Rapid evolution of miniaturized, automatic, robotized, function-centered devices has redefined space technology, bringing closer the realization of most ambitious interplanetary missions and intense near-Earth space exploration. Small unmanned satellites and probes are now being launched in hundreds at a time, resurrecting a dream of satellite constellations, i.e., wide, all-covering networks of small satellites capable of forming universal multifunctional, intelligent platforms for global communication, navigation, ubiquitous data mining, Earth observation, and many other functions, which was once doomed by the extraordinary cost of such systems. The ingression of novel nanostructured materials provided a solid base that enabled the advancement of these affordable systems in aspects of power, instrumentation, and communication. However, absence of efficient and reliable thrust systems with the capacity to support precise maneuvering of small satellites and CubeSats over long periods of deployment remains a real stumbling block both for the deployment of large satellite systems and for further exploration of deep space using a new generation of spacecraft. The last few years have seen tremendous global efforts to develop various miniaturized space thrusters, with great success stories. Yet, there are critical challenges that still face the space technology. These have been outlined at an inaugural International Workshop on Micropropulsion and Cubesats, MPCS-2017, a joint effort between Plasma Sources and Application Centre/Space Propulsion Centre (Singapore) and the Micropropulsion and Nanotechnology Lab, the G. Washington University (USA) devoted to miniaturized space propulsion systems, and hosted by CNR-Nanotec—P.Las.M.I. lab in Bari, Italy. This focused review aims to highlight the most promising developments reported at MPCS-2017 by leading world-reputed experts in miniaturized space propulsion systems. Recent advances in several major types of small

  16. Two component systems: physiological effect of a third component.

    Directory of Open Access Journals (Sweden)

    Baldiri Salvado

    Full Text Available Signal transduction systems mediate the response and adaptation of organisms to environmental changes. In prokaryotes, this signal transduction is often done through Two Component Systems (TCS. These TCS are phosphotransfer protein cascades, and in their prototypical form they are composed by a kinase that senses the environmental signals (SK and by a response regulator (RR that regulates the cellular response. This basic motif can be modified by the addition of a third protein that interacts either with the SK or the RR in a way that could change the dynamic response of the TCS module. In this work we aim at understanding the effect of such an additional protein (which we call "third component" on the functional properties of a prototypical TCS. To do so we build mathematical models of TCS with alternative designs for their interaction with that third component. These mathematical models are analyzed in order to identify the differences in dynamic behavior inherent to each design, with respect to functionally relevant properties such as sensitivity to changes in either the parameter values or the molecular concentrations, temporal responsiveness, possibility of multiple steady states, or stochastic fluctuations in the system. The differences are then correlated to the physiological requirements that impinge on the functioning of the TCS. This analysis sheds light on both, the dynamic behavior of synthetically designed TCS, and the conditions under which natural selection might favor each of the designs. We find that a third component that modulates SK activity increases the parameter space where a bistable response of the TCS module to signals is possible, if SK is monofunctional, but decreases it when the SK is bifunctional. The presence of a third component that modulates RR activity decreases the parameter space where a bistable response of the TCS module to signals is possible.

  17. Development of Japanese Earth Resources Satellite-1 (JERS-1; FUYO-1) and it's operational results

    Science.gov (United States)

    1993-03-01

    Various aspects of development progress from the policy decision to the launch and early orbit phase operation of the JERS-l (Japanese Earth Resources Satellite-l) are presented. The items presented are as follows: the fundamental development policy, related organizations, and the system for the development; the master schedule and the progress of the development; the outline of JERS-l including its missions, the structure and characteristics of the system, and the operation plan; satellite mission and the system design analyses; the system development, including that of subsystems and components, production and test of the system development model, the integration and test of the system PFM (Proto-Flight Model), and the modification and post-modification test of the PFM; interfaces with other programs; program control; satellite operation in the launch and early orbit operation phase and the analysis and evaluation of the operation results; and the initial examination on on-orbit failures.

  18. Handover aspects for a Low Earth Orbit (LEO) CDMA Land Mobile Satellite (LMS) system

    Science.gov (United States)

    Carter, P.; Beach, M. A.

    1993-01-01

    This paper addresses the problem of handoff in a land mobile satellite (LMS) system between adjacent satellites in a low earth orbit (LEO) constellation. In particular, emphasis is placed on the application of soft handoff in a direct sequence code division multiple access (DS-CDMA) LMS system. Soft handoff is explained in terms of terrestrial macroscopic diversity, in which signals transmitted via several independent fading paths are combined to enhance the link quality. This concept is then reconsidered in the context of a LEO LMS system. A two-state Markov channel model is used to simulate the effects of shadowing on the communications path from the mobile to each satellite during handoff. The results of the channel simulation form a platform for discussion regarding soft handoff, highlighting the potential merits of the scheme when applied in a LEO LMS environment.

  19. Satellite Power Systems (SPS) concept definition study. Volume 2, part 2: System engineering. [cost and programmatics

    Science.gov (United States)

    Hanley, G. M.

    1980-01-01

    The latest technical and programmatic developments are considered as well as expansions of the Rockwell SPS cost model covering each phase of the program through the year 2030. Comparative cost/economic analyses cover elements of the satellite, construction system, space transportation vehicles and operations, and the ground receiving station. System plans to define time phased costs and planning requirements that support major milestones through the year 2000. A special analysis is included on natural resources required to build the SPS reference configuration. An appendix contains the SPS Work Breakdown Structure and dictionary along with detail cost data sheet on each system and main element of the program. Over 200 line items address DDT&E, theoretical first unit, investment cost per satellite, and operations charges for replacement capital and normal operations and maintenance costs.

  20. Geometrically constrained kinematic global navigation satellite systems positioning: Implementation and performance

    Science.gov (United States)

    Asgari, Jamal; Mohammadloo, Tannaz H.; Amiri-Simkooei, Ali Reza

    2015-09-01

    GNSS kinematic techniques are capable of providing precise coordinates in extremely short observation time-span. These methods usually determine the coordinates of an unknown station with respect to a reference one. To enhance the precision, accuracy, reliability and integrity of the estimated unknown parameters, GNSS kinematic equations are to be augmented by possible constraints. Such constraints could be derived from the geometric relation of the receiver positions in motion. This contribution presents the formulation of the constrained kinematic global navigation satellite systems positioning. Constraints effectively restrict the definition domain of the unknown parameters from the three-dimensional space to a subspace defined by the equation of motion. To test the concept of the constrained kinematic positioning method, the equation of a circle is employed as a constraint. A device capable of moving on a circle was made and the observations from 11 positions on the circle were analyzed. Relative positioning was conducted by considering the center of the circle as the reference station. The equation of the receiver's motion was rewritten in the ECEF coordinates system. A special attention is drawn onto how a constraint is applied to kinematic positioning. Implementing the constraint in the positioning process provides much more precise results compared to the unconstrained case. This has been verified based on the results obtained from the covariance matrix of the estimated parameters and the empirical results using kinematic positioning samples as well. The theoretical standard deviations of the horizontal components are reduced by a factor ranging from 1.24 to 2.64. The improvement on the empirical standard deviation of the horizontal components ranges from 1.08 to 2.2.

  1. Migration to Earth Observation Satellite Product Dissemination System at JAXA

    Science.gov (United States)

    Ikehata, Y.; Matsunaga, M.

    2017-12-01

    JAXA released "G-Portal" as a portal web site for search and deliver data of Earth observation satellites in February 2013. G-Portal handles ten satellites data; GPM, TRMM, Aqua, ADEOS-II, ALOS (search only), ALOS-2 (search only), MOS-1, MOS-1b, ERS-1 and JERS-1 and archives 5.17 million products and 14 million catalogues in total. Users can search those products/catalogues in GUI web search and catalogue interface(CSW/Opensearch). In this fiscal year, we will replace this to "Next G-Portal" and has been doing integration, test and migrations. New G-Portal will treat data of satellites planned to be launched in the future in addition to those handled by G - Portal. At system architecture perspective, G-Portal adopted "cluster system" for its redundancy, so we must replace the servers into those with higher specifications when we improve its performance ("scale up approach"). This requests a lot of cost in every improvement. To avoid this, Next G-Portal adopts "scale out" system: load balancing interfaces, distributed file system, distributed data bases. (We reported in AGU fall meeting 2015(IN23D-1748).) At customer usability perspective, G-Portal provides complicated interface: "step by step" web design, randomly generated URLs, sftp (needs anomaly tcp port). Customers complained about the interfaces and the support team had been tired from answering them. To solve this problem, Next G-Portal adopts simple interfaces: "1 page" web design, RESTful URL, and Normal FTP. (We reported in AGU fall meeting 2016(IN23B-1778).) Furthermore, Next G-Portal must merge GCOM-W data dissemination system to be terminated in the next March as well as the current G-Portal. This might arrise some difficulties, since the current G-Portal and GCOM-W data dissemination systems are quite different from Next G-Portal. The presentation reports the knowledge obtained from the process of merging those systems.

  2. Accounting of fundamental components of the rotation parameters of the Earth in the formation of a high-accuracy orbit of navigation satellites

    Science.gov (United States)

    Markov, Yu. G.; Mikhailov, M. V.; Pochukaev, V. N.

    2012-07-01

    An analysis of perturbing factors influencing the motion of a navigation satellite (NS) is carried out, and the degree of influence of each factor on the GLONASS orbit is estimated. It is found that fundamental components of the Earth's rotation parameters (ERP) are one substantial factor commensurable with maximum perturbations. Algorithms for the calculation of orbital perturbations caused by these parameters are given; these algorithms can be implemented in a consumer's equipment. The daily prediction of NS coordinates is performed on the basis of real GLONASS satellite ephemerides transmitted to a consumer, using the developed prediction algorithms taking the ERP into account. The obtained accuracy of the daily prediction of GLONASS ephemerides exceeds by tens of times the accuracy of the daily prediction performed using algorithms recommended in interface control documents.

  3. Satellite retrieval of actual evapotranspiration in the Tibetan Plateau: Components partitioning, multidecadal trends and dominated factors identifying

    Science.gov (United States)

    Wang, Weiguang; Li, Jinxing; Yu, Zhongbo; Ding, Yimin; Xing, Wanqiu; Lu, Wenjun

    2018-04-01

    As the only connecting term between water balance and energy budget in the earth-atmospheric system, evapotranspiration (ET) is considered the most excellent indicator for the activity for the water and energy cycle. Under the background of global change, regional ET estimates, components partitioning as well as their spatial and temporal patterns recognition are of great importance in understanding the hydrological processes and improving water management practices. This is particularly true for the Tibetan Plateau (TP), one of most sensitive and vulnerable region in response to the environment change in the earth. In this study, with flux site observation data and monthly ET data from the monthly water balance method incorporating the terrestrial water storage changes from the Gravity Recovery and Climate Experiment satellite (GRACE) production as the multiple validations, the long-term daily ET in the TP was retrieved by a modified Penman-Monteith-Leuning (PML) model with considering evapotranspiration over snow covered area during 1982-2012. The spatial and temporal changes of partitioned three components of ET, i.e., soil evaporation (Es), transpiration through the stomata of plant (Ec) and canopy interception (Ei), were investigated in the TP. Meanwhile, how the ET components contribute to ET changes and respond to the change in environmental factors in the TP was revealed and discussed. The results indicate that Es dominates ET in most areas of the TP with the mean annual ratio of 65.7%, except southeastern regions where the vegetation coverage is high. Although regional average ET and three main components all present obvious increase trends during the past decades, high spatial heterogeneity for their trends are identified in the TP. Moreover, a mixed changing pattern can be apparently found for Es in southeastern area, Ec and Ei in northwestern and southeastern area. Spatially, the ET variation are mainly attributed to change in Es, followed by Ec and Ei

  4. Impacts of satellite power system technology

    Energy Technology Data Exchange (ETDEWEB)

    Moses, H.

    1979-01-01

    In the Satellite Power System (SPS) considered here, energy from the sun is collected by an array, 5 km*10.5 km in area, located in geostationary orbit. The array contains either silicon or gallium aluminum arsenide photovoltaic cells whose output is transformed to 2.45 GHz microwaves. These are beamed to earth to a 10 km*15 km rectifying antenna (rectenna) which rectifies the microwaves and interfaces the power with utility power lines. This paper deals with an assessment of both the environmental and societal aspects of an SPS. Under environmental aspects, attention is devoted to the health and ecological effects of both microwave radiation and other effects. 15 refs.

  5. User Validation of VIIRS Satellite Imagery

    Directory of Open Access Journals (Sweden)

    Don Hillger

    2015-12-01

    Full Text Available Visible/Infrared Imaging Radiometer Suite (VIIRS Imagery from the Suomi National Polar-orbiting Partnership (S-NPP satellite is the finest spatial resolution (375 m multi-spectral imagery of any operational meteorological satellite to date. The Imagery environmental data record (EDR has been designated as a Key Performance Parameter (KPP for VIIRS, meaning that its performance is vital to the success of a series of Joint Polar Satellite System (JPSS satellites that will carry this instrument. Because VIIRS covers the high-latitude and Polar Regions especially well via overlapping swaths from adjacent orbits, the Alaska theatre in particular benefits from VIIRS more than lower-latitude regions. While there are no requirements that specifically address the quality of the EDR Imagery aside from the VIIRS SDR performance requirements, the value of VIIRS Imagery to operational users is an important consideration in the Cal/Val process. As such, engaging a wide diversity of users constitutes a vital part of the Imagery validation strategy. The best possible image quality is of utmost importance. This paper summarizes the Imagery Cal/Val Team’s quality assessment in this context. Since users are a vital component to the validation of VIIRS Imagery, specific examples of VIIRS imagery applied to operational needs are presented as an integral part of the post-checkout Imagery validation.

  6. Telecommunication service markets through the year 2000 in relation to millimeter wave satellite systems

    Science.gov (United States)

    Stevenson, S. M.

    1979-01-01

    NASA is currently conducting a series of millimeter wave satellite system market studies to develop 30/20 GHz satellite system concepts that have commercial potential. Four contractual efforts were undertaken: two parallel and independent system studies and two parallel and independent market studies. The marketing efforts are focused on forecasting the total domestic demand for long haul telecommunications services for the 1980-2000 period. Work completed to date and reported in this paper include projections of: geographical distribution of traffic; traffic volume as a function of urban area size; and user identification and forecasted demand.

  7. Security Concepts for Satellite Links

    Science.gov (United States)

    Tobehn, C.; Penné, B.; Rathje, R.; Weigl, A.; Gorecki, Ch.; Michalik, H.

    2008-08-01

    The high costs to develop, launch and maintain a satellite network makes protecting the assets imperative. Attacks may be passive such as eavesdropping on the payload data. More serious threat are active attacks that try to gain control of the satellite, which may lead to the total lost of the satellite asset. To counter these threats, new satellite and ground systems are using cryptographic technologies to provide a range of services: confidentiality, entity & message authentication, and data integrity. Additionally, key management cryptographic services are required to support these services. This paper describes the key points of current satellite control and operations, that are authentication of the access to the satellite TMTC link and encryption of security relevant TM/TC data. For payload data management the key points are multi-user ground station access and high data rates both requiring frequent updates and uploads of keys with the corresponding key management methods. For secure satellite management authentication & key negotiation algorithms as HMAC-RIPEMD160, EC- DSA and EC-DH are used. Encryption of data uses algorithms as IDEA, AES, Triple-DES, or other. A channel coding and encryption unit for payload data provides download data rates up to Nx250 Mbps. The presented concepts are based on our experience and heritage of the security systems for all German MOD satellite projects (SATCOMBw2, SAR-Lupe multi- satellite system and German-French SAR-Lupe-Helios- II systems inter-operability) as well as for further international (KOMPSAT-II Payload data link system) and ESA activities (TMTC security and GMES).

  8. Applying of component system development in object methodology

    Directory of Open Access Journals (Sweden)

    Milan Mišovič

    2013-01-01

    Full Text Available In the last three decades, the concept and implementation of component-based architectures have been promoted in software systems creation. Increasingly complex demands are placed on the software component systems, in particular relating to the dynamic properties. The emergence of such requirements has been gradually enforced by the practice of development and implementation of these systems, especially for information systems software.Just the information systems (robust IS of different types require that target software meets their requirements. Among other things, we mean primarily the adaptive processes of different domains, high distributives due to the possibilities of the Internet 2.0, acceptance of high integrity of life domains (process, data and communications integrity, scalability, and flexible adaptation to process changes, a good context for external devices and transparent structure of the sub-process modules and architectural units.Of course, the target software of required qualities and the type robust cannot be a monolith. As commonly known, development of design toward information systems software has clearly come to the need for the software composition of completely autonomous, but cooperating architectural units that communicate with each other using messages of prescribed formats.Although for such units there were often used the so called subsystems and modules, see (Jac, Boo, Rumbo, 1998 and (Arlo, Neus, 2007, their abstraction being gradually enacted as the term component. In other words, the subsystems and modules are specific types of components.In (Král, Žeml, 2000 and (Král, Žeml, 2003 there are considered two types of target software of information systems. The first type – there are SWC (Software Components, composed of permanently available components, which are thought as services – Confederate software. The second type – SWA (Software Alliance, called semi Confederate, formed during the run-time of the

  9. Proportional fair scheduling algorithm based on traffic in satellite communication system

    Science.gov (United States)

    Pan, Cheng-Sheng; Sui, Shi-Long; Liu, Chun-ling; Shi, Yu-Xin

    2018-02-01

    In the satellite communication network system, in order to solve the problem of low system capacity and user fairness in multi-user access to satellite communication network in the downlink, combined with the characteristics of user data service, an algorithm study on throughput capacity and user fairness scheduling is proposed - Proportional Fairness Algorithm Based on Traffic(B-PF). The algorithm is improved on the basis of the proportional fairness algorithm in the wireless communication system, taking into account the user channel condition and caching traffic information. The user outgoing traffic is considered as the adjustment factor of the scheduling priority and presents the concept of traffic satisfaction. Firstly,the algorithm calculates the priority of the user according to the scheduling algorithm and dispatches the users with the highest priority. Secondly, when a scheduled user is the business satisfied user, the system dispatches the next priority user. The simulation results show that compared with the PF algorithm, B-PF can improve the system throughput, the business satisfaction and fairness.

  10. The solar power satellite

    Energy Technology Data Exchange (ETDEWEB)

    Combes, P.F.

    1982-01-01

    The construction, launch, components, and operations of satellite solar power systems (SSPS) for direct beaming of solar energy converted to electricity to earth stations are outlined. The reference designs of either Si or concentrator GaAs solar cell assemblies large enough to project 5 GW of power are described. The beam will be furnished by klystrons or amplitrons for reception by rectennas on earth. Conforming to the law of amplitude and the equiphase law will permit high efficiencies, pointing accuracy, and low power deposition/sq cm, thus avoiding environmental problems, although some telecommunications systems may suffer interference. The construction of the dipole rectenna grid is sketched, noting that one receiver would be an ellipse sized at 10 x 13 km. Various forms of pollution which could result from the construction of an SSPS are examined.

  11. Relative tracking control of constellation satellites considering inter-satellite link

    Science.gov (United States)

    Fakoor, M.; Amozegary, F.; Bakhtiari, M.; Daneshjou, K.

    2017-11-01

    In this article, two main issues related to the large-scale relative motion of satellites in the constellation are investigated to establish the Inter Satellite Link (ISL) which means the dynamic and control problems. In the section related to dynamic problems, a detailed and effective analytical solution is initially provided for the problem of satellite relative motion considering perturbations. The direct geometric method utilizing spherical coordinates is employed to achieve this solution. The evaluation of simulation shows that the solution obtained from the geometric method calculates the relative motion of the satellite with high accuracy. Thus, the proposed analytical solution will be applicable and effective. In the section related to control problems, the relative tracking control system between two satellites will be designed in order to establish a communication link between the satellites utilizing analytical solution for relative motion of satellites with respect to the reference trajectory. Sliding mode control approach is employed to develop the relative tracking control system for body to body and payload to payload tracking control. Efficiency of sliding mode control approach is compared with PID and LQR controllers. Two types of payload to payload tracking control considering with and without payload degree of freedom are designed and suitable one for practical ISL applications is introduced. Also, Fuzzy controller is utilized to eliminate the control input in the sliding mode controller.

  12. Multi-level predictive maintenance for multi-component systems

    International Nuclear Information System (INIS)

    Nguyen, Kim-Anh; Do, Phuc; Grall, Antoine

    2015-01-01

    In this paper, a novel predictive maintenance policy with multi-level decision-making is proposed for multi-component system with complex structure. The main idea is to propose a decision-making process considered on two levels: system level and component one. The goal of the decision rules at the system level is to address if preventive maintenance actions are needed regarding the predictive reliability of the system. At component level the decision rules aim at identifying optimally a group of several components to be preventively maintained when preventive maintenance is trigged due to the system level decision. Selecting optimal components is based on a cost-based group improvement factor taking into account the predictive reliability of the components, the economic dependencies as well as the location of the components in the system. Moreover, a cost model is developed to find the optimal maintenance decision variables. A 14-component system is finally introduced to illustrate the use and the performance of the proposed predictive maintenance policy. Different sensitivity analysis are also investigated and discussed. Indeed, the proposed policy provides more flexibility in maintenance decision-making for complex structure systems, hence leading to significant profits in terms of maintenance cost when compared with existing policies. - Highlights: • A predictive maintenance policy for complex structure systems is proposed. • Multi-level decision process based on prognostic results is proposed. • A cost-based group importance measure is introduced for decision-making. • Both positive and negative dependencies between components are investigated. • A cost model and Monte Carlo simulation are developed for optimization process.

  13. NHI Component Technical Readiness Evaluation System

    International Nuclear Information System (INIS)

    Sherman, S.; Wilson, Dane F.; Pawel, Steven J.

    2007-01-01

    A decision process for evaluating the technical readiness or maturity of components (i.e., heat exchangers, chemical reactors, valves, etc.) for use by the U.S. DOE Nuclear Hydrogen Initiative is described. This system is used by the DOE NHI to assess individual components in relation to their readiness for pilot-scale and larger-scale deployment and to drive the research and development work needed to attain technical maturity. A description of the evaluation system is provided, and examples are given to illustrate how it is used to assist in component R and D decisions.

  14. The development of component-based information systems

    CERN Document Server

    Cesare, Sergio de; Macredie, Robert

    2015-01-01

    This work provides a comprehensive overview of research and practical issues relating to component-based development information systems (CBIS). Spanning the organizational, developmental, and technical aspects of the subject, the original research included here provides fresh insights into successful CBIS technology and application. Part I covers component-based development methodologies and system architectures. Part II analyzes different aspects of managing component-based development. Part III investigates component-based development versus commercial off-the-shelf products (COTS), includi

  15. Tracking wildlife by satellite: Current systems and performance

    Science.gov (United States)

    Harris, Richard B.; Fancy, Steven G.; Douglas, David C.; Garner, Gerald W.; Amstrup, Steven C.; McCabe, Thomas R.; Pank, Larry F.

    1990-01-01

    Since 1984, the U.S. Fish and Wildlife Service has used the Argos Data Collection and Location System (DCLS) and Tiros-N series satellites to monitor movements and activities of 10 species of large mammals in Alaska and the Rocky Mountain region. Reliability of the entire system was generally high. Data were received from instrumented caribou (Rangifer tarandus) during 91% of 318 possible transmitter-months. Transmitters failed prematurely on 5 of 45 caribou, 2 of 6 muskoxen (Ovibos moschatus), and 1 of 2 gray wolves (Canis lupus). Failure rates were considerably higher for polar (Ursus maritimus) and brown (U. arctos) bears than for caribou (Rangifer tarandus). Efficiency of gathering both locational and sensor data was related to both latitude and topography.Mean error of locations was estimated to be 954 m (median = 543 m) for transmitters on captive animals; 90% of locations were indices of animal activity were developed and evaluated. For several species, the long-term index was correlated with movement patterns and the short-term index was calibrated to specific activity categories (e.g., lying, feeding, walking).Data processing and sampling considerations were evaluated. Algorithms for choosing the most reliable among a series of reported locations were investigated. Applications of satellite telemetry data and problems with lack of independence among locations are discussed.

  16. 47 CFR 25.278 - Additional coordination obligation for non-geostationary and geostationary satellite systems in...

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Additional coordination obligation for non-geostationary and geostationary satellite systems in frequencies allocated to the fixed-satellite service. 25.278 Section 25.278 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER...

  17. Lineament systems indentification in Banten site using Spot 5 satellite image

    International Nuclear Information System (INIS)

    Yuliastuti; Heni Susiati; Yunus Daud; A-Sarwiyana Sastratenaya

    2013-01-01

    Lineament systems identification in Banten site using SPOT 5 satellite image has been performed. Based on regional site survey in Java Island, Banten is one of the potential candidate sites. The objective of this study was to determine direction and chronology of regional lineament morphology which was consider as fault or faulting in Banten site. The methodology used this study covered satellite image cropping, band selection, edge enhancement filtering, lineament extraction and lineament analysis. Result of the study showed that there were three dominant lineament groups, namely N-S, NW-SE, and E-W. Based on the forming chronology of the lineament, N-S group was the oldest one, followed by E-W group and NW-SE as the youngest group. These lineament groups have been confirmed as a manifestation of fault system structure. (author)

  18. The National Polar-orbiting Operational Environmental Satellite System

    Science.gov (United States)

    Bloom, H.

    The tri-agency Integrated Program Office (IPO) is responsible for managing the development of the National Polar-orbiting Operational Environmental Satellite System (NPOESS). NPOESS will replace the current military and civilian operational polar-orbiting ``weather'' satellites. The Northrop Grumman Space Technology - Raytheon team was competitively selected in 2002 as the Acquisition and Operations contractor team to develop, integrate, deploy, and operate NPOESS satellites to meet the tri-agency user requirements for NPOESS over the 10-year (2009-2018) operational life of the program. Beginning in 2009, NPOESS spacecraft will be launched into three orbital planes to provide significantly improved operational capabilities and benefits to satisfy critical civil and national security requirements for space-based, remotely sensed environmental data. With the development of NPOESS, we are evolving operational ``weather'' satellites into integrated environmental observing systems by expanding our capabilities to observe, assess, and predict the total Earth system - atmosphere, ocean, land, and the space environment. In recent years, the operational weather forecasting and climate science communities have levied more rigorous requirements on space-based observations of the Earth's system that have significantly increased demands on performance of the instruments, spacecraft, and ground systems required to deliver NPOESS data, products, and information to end users. The ``end-to-end'' system consists of: the spacecraft; instruments and sensors on the spacecraft; launch support capabilities; the command, control, communications, and data routing infrastructure; and data processing hardware and software. NPOESS will observe significantly more phenomena simultaneously from space than its operational predecessors. NPOESS is expected to deliver large volumes of more accurate measurements at higher spatial (horizontal and vertical) and temporal resolution at much higher data

  19. Electronic components and systems

    CERN Document Server

    Dennis, W H

    2013-01-01

    Electronic Components and Systems focuses on the principles and processes in the field of electronics and the integrated circuit. Covered in the book are basic aspects and physical fundamentals; different types of materials involved in the field; and passive and active electronic components such as capacitors, inductors, diodes, and transistors. Also covered in the book are topics such as the fabrication of semiconductors and integrated circuits; analog circuitry; digital logic technology; and microprocessors. The monograph is recommended for beginning electrical engineers who would like to kn

  20. Methodology for the comparative assessment of the Satellite Power System (SPS) and alternative technologies

    Energy Technology Data Exchange (ETDEWEB)

    Wolsko, T.; Buehring, W.; Cirillo, R.; Gasper, J.; Habegger, L.; Hub, K.; Newsom, D.; Samsa, M.; Stenehjem, E.; Whitfield, R.

    1980-01-01

    A description of the initial methodology for the Comparative Assessment of the Satellite Power System Concept Development and Evaluation Program of NASA and DOE is presented. Included are study objectives, issue identification, units of measurement, methods, and data bases. The energy systems concerned are the satellite power system, several coal technologies, geothermal energy, fission, fusion, terrestrial solar systems, and ocean thermal energy conversion. Guidelines are suggested for the characterization of these systems, side-by-side analysis, alternative futures analysis, and integration and aggregation of data. The bulk of this report is a description of the methods for assessing the technical, economic, environmental, societal, and institutional issues surrounding the development of the selected energy technologies.

  1. Hot gas path component cooling system

    Science.gov (United States)

    Lacy, Benjamin Paul; Bunker, Ronald Scott; Itzel, Gary Michael

    2014-02-18

    A cooling system for a hot gas path component is disclosed. The cooling system may include a component layer and a cover layer. The component layer may include a first inner surface and a second outer surface. The second outer surface may define a plurality of channels. The component layer may further define a plurality of passages extending generally between the first inner surface and the second outer surface. Each of the plurality of channels may be fluidly connected to at least one of the plurality of passages. The cover layer may be situated adjacent the second outer surface of the component layer. The plurality of passages may be configured to flow a cooling medium to the plurality of channels and provide impingement cooling to the cover layer. The plurality of channels may be configured to flow cooling medium therethrough, cooling the cover layer.

  2. A systems approach to the commercialization of space communications technology - The NASA/JPL Mobile Satellite Program

    Science.gov (United States)

    Weber, William J., III; Gray, Valerie W.; Jackson, Byron; Steele, Laura C.

    1991-10-01

    This paper discusss the systems approach taken by NASA and the Jet Propulsion Laboratory in the commercialization of land-mobile satellite services (LMSS) in the United States. As the lead center for NASA's Mobile Satellite Program, JPL was involved in identifying and addressing many of the key barriers to commercialization of mobile satellite communications, including technical, economic, regulatory and institutional risks, or uncertainties. The systems engineering approach described here was used to mitigate these risks. The result was the development and implementation of the JPL Mobile Satellite Experiment Project. This Project included not only technology development, but also studies to support NASA in the definition of the regulatory, market, and investment environments within which LMSS would evolve and eventually operate, as well as initiatives to mitigate their associated commercialization risks. The end result of these government-led endeavors was the acceleration of the introduction of commercial mobile satellite services, both nationally and internationally.

  3. 47 CFR 25.260 - Time sharing between DoD meteorological satellite systems and non-voice, non-geostationary...

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Time sharing between DoD meteorological satellite systems and non-voice, non-geostationary satellite systems in the 400.15-401 MHz band. 25.260 Section 25.260 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES...

  4. Advance Power Technology Experiment for the Starshine 3 Satellite

    Science.gov (United States)

    Jenkins, Phillip; Scheiman, David; Wilt, David; Raffaelle, Ryne; Button, Robert; Smith, Mark; Kerslake, Thomas; Miller, Thomas; Bailey, Sheila (Technical Monitor); Hepp, A. (Technical Monitor)

    2001-01-01

    The Starshine 3 satellite will carry several power technology demonstrations. Since Starshine 3 is primarily a passive experiment and does not need electrical power to successfully complete its mission, the requirement for a highly reliable power system is greatly reduced. This creates an excellent opportunity to test new power technologies. Several government and commercial interests have teamed up to provide Starshine 3 with a small power system using state-of-the-art components. Starshine 3 will also fly novel integrated microelectronic power supplies (IWS) for evaluation.

  5. Polar-Orbiting Satellite (POES) Images

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Visible and Infrared satellite imagery taken from camera systems or radiometer instruments on satellites in orbit around the poles. Satellite campaigns include...

  6. The FODA-TDMA satellite access scheme - Presentation, study of the system, and results

    Science.gov (United States)

    Celandroni, Nedo; Ferro, Erina

    1991-12-01

    A description is given of FODA-TDMA, a satellite access scheme designed for mixed traffic. The study of the system is presented and the choice of some parameters is justified. A simplified analytic solution is found, describing the steady-state behavior of the system. Some results of the simulation tests for an already existing hardware environment are also presented for the channel speeds of 2 and 8 Mb/s, considering both the stationary and the transient cases. The results of the experimentation at 2 Mb/s on the satellite Eutelsat-F2 are also presented and compared with the results of the simulation.

  7. PERFORMANCE OF ALTERNATIVE COMPONENT PRICING SYSTEMS FOR PORK

    OpenAIRE

    Brorsen, B. Wade; Akridge, Jay T.; Boland, Michael A.; Mauney, Sean; Forrest, John C.

    1998-01-01

    One method of implementing value-based marketing is a component pricing system. This research develops and evaluates alternative component pricing systems for pork. Two electronic technologies for estimating carcass components (optical probe and electromagnetic scanner) were evaluated on two sets of data representing different populations. Model accuracy increased as additional components were added.

  8. Design of a fiber-optic interrogator module for telecommunication satellites

    Science.gov (United States)

    Putzer, Philipp; Koch, Alexander W.; Plattner, Markus; Hurni, Andreas; Manhart, Markus

    2017-11-01

    In this paper we present the results of the radiation tests performed on the optical components of the fiber-optic interrogator module as a part of the Hybrid Sensor Bus (HSB) system. The HSB-system is developed in the frame of an ESAARTES program and will be verified as flight demonstrator onboard the German Heinrich Hertz satellite in 2016. The HSB system is based on a modular concept which includes sensor interrogation modules based on I2C electrical and fiber Bragg grating (FBG) fiber-optical sensor elements. Onboard fiber-optic sensing allows the implementation of novel control and monitoring methods. For read-out of multiple FBG sensors, a design based on a tunable laser diode as well as a design based on a spectrometer is considered. The expected and tested total ionizing dose (TID) applicable to the HSB system is in the range between 100 krad and 300 krad inside the satellite in the geostationary orbit over a life time of 15 years. We present radiation test results carried out on critical optical components to be used in the fiber-optic interrogation module. These components are a modulated grating Y-branch (MGY) tunable laser diode acting as light source for the tuning laser approach, the line detector of a spectrometer, photodetectors and the FBG sensors acting as sensor elements. A detailed literature inquiry of radiation effects on optical fibers and FBG sensors, is also included in the paper. The fiber-optic interrogator module implemented in the HSB system is based on the most suitable technology, which sustains the harsh environment in the geostationary orbit.

  9. Optimization of Joint Power and Bandwidth Allocation in Multi-Spot-Beam Satellite Communication Systems

    Directory of Open Access Journals (Sweden)

    Heng Wang

    2014-01-01

    Full Text Available Multi-spot-beam technique has been widely applied in modern satellite communication systems. However, the satellite power and bandwidth resources in a multi-spot-beam satellite communication system are scarce and expensive; it is urgent to utilize the resources efficiently. To this end, dynamically allocating the power and bandwidth is an available way. This paper initially formulates the problem of resource joint allocation as a convex optimization problem, taking into account a compromise between the maximum total system capacity and the fairness among the spot beams. A joint bandwidth and power allocation iterative algorithm based on duality theory is then proposed to obtain the optimal solution of this optimization problem. Compared with the existing separate bandwidth or power optimal allocation algorithms, it is shown that the joint allocation algorithm improves both the total system capacity and the fairness among spot beams. Moreover, it is easy to be implemented in practice, as the computational complexity of the proposed algorithm is linear with the number of spot beams.

  10. Semi-analytical study of the rotational motion stability of artificial satellites using quaternions

    International Nuclear Information System (INIS)

    Dos Santos, Josué C; Zanardi, Maria Cecília; Matos, Nicholas

    2013-01-01

    This study at aims performing the stability analysis of the rotational motion to artificial satellites using quaternions to describe the satellite attitude (orientation on the space). In the system of rotational motion equations, which is composed by four kinematic equations of the quaternions and by the three Euler equations in terms of the rotational spin components. The influence of the gravity gradient and the direct solar radiation pressure torques have been considered. Equilibrium points were obtained through numerical simulations using the softwares Matlab and Octave, which are then analyzed by the Routh-Hurwitz Stability Criterion

  11. A Novel Double Cluster and Principal Component Analysis-Based Optimization Method for the Orbit Design of Earth Observation Satellites

    Directory of Open Access Journals (Sweden)

    Yunfeng Dong

    2017-01-01

    Full Text Available The weighted sum and genetic algorithm-based hybrid method (WSGA-based HM, which has been applied to multiobjective orbit optimizations, is negatively influenced by human factors through the artificial choice of the weight coefficients in weighted sum method and the slow convergence of GA. To address these two problems, a cluster and principal component analysis-based optimization method (CPC-based OM is proposed, in which many candidate orbits are gradually randomly generated until the optimal orbit is obtained using a data mining method, that is, cluster analysis based on principal components. Then, the second cluster analysis of the orbital elements is introduced into CPC-based OM to improve the convergence, developing a novel double cluster and principal component analysis-based optimization method (DCPC-based OM. In DCPC-based OM, the cluster analysis based on principal components has the advantage of reducing the human influences, and the cluster analysis based on six orbital elements can reduce the search space to effectively accelerate convergence. The test results from a multiobjective numerical benchmark function and the orbit design results of an Earth observation satellite show that DCPC-based OM converges more efficiently than WSGA-based HM. And DCPC-based OM, to some degree, reduces the influence of human factors presented in WSGA-based HM.

  12. DebriSat: The New Hypervelocity Impact Test for Satellite Breakup Fragment Characterization

    Science.gov (United States)

    Cowardin, Heather

    2015-01-01

    To replicate a hyper-velocity fragmentation event using modern-day spacecraft materials and construction techniques to better improve the existing DoD and NASA breakup models: DebriSat is intended to be representative of modern LEO satellites. Major design decisions were reviewed and approved by Aerospace subject matter experts from different disciplines. DebriSat includes 7 major subsystems. Attitude determination and control system (ADCS), command and data handling (C&DH), electrical power system (EPS), payload, propulsion, telemetry tracking and command (TT&C), and thermal management. To reduce cost, most components are emulated based on existing design of flight hardware and fabricated with the same materials. center dotA key laboratory-based test, Satellite Orbital debris Characterization Impact Test (SOCIT), supporting the development of the DoD and NASA satellite breakup models was conducted at AEDC in 1992. Breakup models based on SOCIT have supported many applications and matched on-orbit events reasonably well over the years.

  13. Solar satellites

    Energy Technology Data Exchange (ETDEWEB)

    Poher, C.

    1982-01-01

    A reference system design, projected costs, and the functional concepts of a satellite solar power system (SSPS) for converting sunlight falling on solar panels of a satellite in GEO to a multi-GW beam which could be received by a rectenna on earth are outlined. Electricity transmission by microwaves has been demonstrated, and a reference design system for supplying 5 GW dc to earth was devised. The system will use either monocrystalline Si or concentrator GaAs solar cells for energy collection in GEO. Development is still needed to improve the lifespan of the cells. Currently, the cell performance degrades 50 percent in efficiency after 7-8 yr in space. Each SSPS satellite would weigh either 34,000 tons (Si) or 51,000 tons (GaAs), thereby requiring the fabrication of a heavy lift launch vehicle or a single-stage-to-orbit transport in order to minimize launch costs. Costs for the solar panels have been estimated at $500/kW using the GaAs technology, with transport costs for materials to GEO being $40/kg.

  14. Solar satellites

    Science.gov (United States)

    Poher, C.

    A reference system design, projected costs, and the functional concepts of a satellite solar power system (SSPS) for converting sunlight falling on solar panels of a satellite in GEO to a multi-GW beam which could be received by a rectenna on earth are outlined. Electricity transmission by microwaves has been demonstrated, and a reference design system for supplying 5 GW dc to earth was devised. The system will use either monocrystalline Si or concentrator GaAs solar cells for energy collection in GEO. Development is still needed to improve the lifespan of the cells. Currently, the cell performance degrades 50 percent in efficiency after 7-8 yr in space. Each SSPS satellite would weigh either 34,000 tons (Si) or 51,000 tons (GaAs), thereby requiring the fabrication of a heavy lift launch vehicle or a single-stage-to-orbit transport in order to minimize launch costs. Costs for the solar panels have been estimated at $500/kW using the GaAs technology, with transport costs for materials to GEO being $40/kg.

  15. Concurrent Engineering in Aerospace Industry: How To Achieve Radiofrequency Geometric Specifications in Satellite Antennae

    Directory of Open Access Journals (Sweden)

    J. Vargas

    2000-01-01

    Full Text Available One of the problems that a satellite manufacturing involves is to obtain the geometrical forms and the accurate positions for the different radiofrequency components (reflectors, subreflectors and feeders. CFRP (Carbon Fibber Reinforced Plastics sandwich structures never are obtained as designed due to the deformations associated to the manufacturing process. So, reflectors, subreflectors and structural components (towers, panels... have to be measured in order to include their deviations in the design of the regulation parts. High performance equipment (Co-ordinate Measurement Machines, CAD/CAM Systems and 5 Axis Machine Tool is used, but it is also necessary to make an integrated and multidisciplinary team. This paper describes how this process was implemented in CASA Space Division during HISPASAT 1C satellite manufacturing program.

  16. Clustering of tethered satellite system simulation data by an adaptive neuro-fuzzy algorithm

    Science.gov (United States)

    Mitra, Sunanda; Pemmaraju, Surya

    1992-01-01

    Recent developments in neuro-fuzzy systems indicate that the concepts of adaptive pattern recognition, when used to identify appropriate control actions corresponding to clusters of patterns representing system states in dynamic nonlinear control systems, may result in innovative designs. A modular, unsupervised neural network architecture, in which fuzzy learning rules have been embedded is used for on-line identification of similar states. The architecture and control rules involved in Adaptive Fuzzy Leader Clustering (AFLC) allow this system to be incorporated in control systems for identification of system states corresponding to specific control actions. We have used this algorithm to cluster the simulation data of Tethered Satellite System (TSS) to estimate the range of delta voltages necessary to maintain the desired length rate of the tether. The AFLC algorithm is capable of on-line estimation of the appropriate control voltages from the corresponding length error and length rate error without a priori knowledge of their membership functions and familarity with the behavior of the Tethered Satellite System.

  17. FFTF Heat Transport System (HTS) component and system design

    International Nuclear Information System (INIS)

    Young, M.W.; Edwards, P.A.

    1980-01-01

    The FFTF Heat Transport Systems and Components designs have been completed and successfully tested at isothermal conditions up to 427 0 C (800 0 F). General performance has been as predicted in the design analyses. Operational flexibility and reliability have been outstanding throughout the test program. The components and systems have been demonstrated ready to support reactor powered operation testing planned later in 1980

  18. Mobile satellite communications in the 1990's

    Science.gov (United States)

    Singh, Jai

    1992-07-01

    The evolution of Inmarsat global services from a single market and single service of the 1980's to all of the key mobile markets and a wide range of new terminals and services in the 1990's is described. An overview of existing mobile satellite services, as well as new services under implementation for introduction in the near and longer term, including a handheld satellite phone (Inmarsat-P), is provided. The initiative taken by Inmarsat in the integration of its global mobile satellite services with global navigation capability derived from GPS (Global Positioning System) and the GLONASS (Russian GPS) navigation satellite systems and the provision of an international civil overlay for GPS/GLONASS integrity and augmentation is highlighted. To complete the overview of the development of mobile satellite services in the 1990's, the known national and regional mobile satellite system plans and the various recent proposals for both orbiting and geostationary satellite systems for proving handheld satellite phone and/or data messaging services are described.

  19. IMT-2000 Satellite Standards with Applications to Mobile Air Traffic Communications Networks

    Science.gov (United States)

    Shamma, Mohammed A.

    2004-01-01

    The International Mobile Telecommunications - 2000 (IMT-2000) standard and more specifically the Satellite component of it, is investigated as a potential alternative for communications to aircraft mobile users en-route and in terminal area. Its application to Air Traffic Management (ATM) communication needs is considered. A summary of the specifications of IMT-2000 satellite standards are outlined. It is shown via a system research analysis that it is possible to support most air traffic communication needs via an IMT-2000 infrastructure. This technology can compliment existing, or future digital aeronautical communications technologies such as VDL2, VDL3, Mode S, and UAT.

  20. NASA Operational Simulator for Small Satellites: Tools for Software Based Validation and Verification of Small Satellites

    Science.gov (United States)

    Grubb, Matt

    2016-01-01

    The NASA Operational Simulator for Small Satellites (NOS3) is a suite of tools to aid in areas such as software development, integration test (IT), mission operations training, verification and validation (VV), and software systems check-out. NOS3 provides a software development environment, a multi-target build system, an operator interface-ground station, dynamics and environment simulations, and software-based hardware models. NOS3 enables the development of flight software (FSW) early in the project life cycle, when access to hardware is typically not available. For small satellites there are extensive lead times on many of the commercial-off-the-shelf (COTS) components as well as limited funding for engineering test units (ETU). Considering the difficulty of providing a hardware test-bed to each developer tester, hardware models are modeled based upon characteristic data or manufacturers data sheets for each individual component. The fidelity of each hardware models is such that FSW executes unaware that physical hardware is not present. This allows binaries to be compiled for both the simulation environment, and the flight computer, without changing the FSW source code. For hardware models that provide data dependent on the environment, such as a GPS receiver or magnetometer, an open-source tool from NASA GSFC (42 Spacecraft Simulation) is used to provide the necessary data. The underlying infrastructure used to transfer messages between FSW and the hardware models can also be used to monitor, intercept, and inject messages, which has proven to be beneficial for VV of larger missions such as James Webb Space Telescope (JWST). As hardware is procured, drivers can be added to the environment to enable hardware-in-the-loop (HWIL) testing. When strict time synchronization is not vital, any number of combinations of hardware components and software-based models can be tested. The open-source operator interface used in NOS3 is COSMOS from Ball Aerospace. For

  1. Advanced mobile satellite communications using COMETS satellite in MM-wave and Ka-band

    Science.gov (United States)

    Ohmori, Shingo; Isobe, Shunkichi; Takeuchi, Makoto; Naito, Hideyuki

    1993-01-01

    Early in the 21st century, the demand for personal communications using mobile, hand-held, and VSAT terminals will rapidly increase. In a future system, many different types of services should be provided with one-hop connection. The Communications Research Laboratory (CRL) has studied a future advanced mobile satellite communications system using millimeter wave and Ka band. In 1990, CRL started the Communications and Broadcasting Engineering Test Satellite (COMETS) project. The satellite has been developed in conjunction with NASDA and will be launched in 1997. This paper describes the COMETS payload configuration and the experimental system for the advanced mobile communications mission.

  2. Kagawa Satellite “STARS” in Shikoku

    Science.gov (United States)

    Nohmi, Masahiro; Yamamoto, Takeshi; Andatsu, Akira; Takagi, Yohei; Nishikawa, Yusuke; Kaneko, Takashi; Kunitom, Daisuke

    The Space Tethered Autonomous Robotic Satellite (STARS) is being developed in Kagawa University, and it will be launched by the H-IIA rocket by Japan Aerospace Exploration Agency (JAXA) in summer 2008. STARS is the first satellite developed in Shikoku, and its specific characteristics are: (i) mother and daughter satellites, which have basic satellite system respectively, and those are launched at the same time; (ii) large space system more than 5m by extending tether; (iii) robotic system, the daughter satellite controls its arm link and the mother satellite controls tether extension. Development of STARS in Kagawa University demonstrates space technology in local community, which has been considered to be a national project. Also, it promotes popularization, enlightenment, and understanding of space technology in local area of the Kagawa prefecture and around it.

  3. Aging of systems: theoretical investigations on system and components time behaviour

    International Nuclear Information System (INIS)

    Eid, M.; Coudray, R.

    1995-01-01

    Being a direct indicator of aging, the systems time-dependent failure rates need to be evaluated using qualified methodologies and starting from basic components time-dependent failure data. Basic component time-dependent failure data are not often available. Components failure data used in the paper are issued from some theoretical considerations rather than from field statistical observations. Four academic cases are presented and their results are discussed. Evaluations result in, very often, systems time-dependent failure rates that require understanding and careful interpretation. Kinetic trends of systems and of components may sometimes be different. (authors). 4 figs., 3 tabs., 3 refs., 1 appendix

  4. Retrofitting a fine-pointing system to satellite optics

    Energy Technology Data Exchange (ETDEWEB)

    Woods, R.O.

    1994-12-31

    This paper describe a system that was added to an existing satellite-borne telescope design for the purpose of compensating the boresight errors that had been observed in earlier flights of similar instruments. Those errors had been found to be caused by thermal distortion of the spaceframe. This retrofit design was subject to severe volume restrictions because it was fitted into an already tightly-packaged instrument envelope. It was found practical to improve the basic design by converting a redundant structure into a statically-determinate one. It was also possible to use portions of the mechanical actuation system to facilitate the position encoding needed for computer interfacing.

  5. Data Collection Satellite Application in Precision Agriculture

    Science.gov (United States)

    Durào, O.

    2002-01-01

    Agricultural Instrumentation Research Center, Brazilian Agricultural Research Corporation; Space Programs Brazil launched in 1993 its first satellite partially built and entirely designed, integrated, tested and operated in the country. It was the SCD-1 satellite, a small (115 kg. and an octagonal prism with 80 cm. height and an external diameter of 100 cm.) with a payload transponder that receives data from ground platforms spread all over the country (including its sea shore). These data are then retransmitted to a receiving station at every satellite pass. Data collected and received are processed at Data Collection Mission Center for distribution via internet at most 30 min after the satellite pass. The ground platforms are called PCD's and differ in the parameters measured according to its purpose and location. Thus, they are able to measure temperature, rain level, wind direction, solar radiation, carbon monoxide as well as many others, beyond its own location. SCD- 1 had a nominal designed life of one year, but is still functioning. It is a LEO satellite with inclination of 25°. In 1998, the country launched SCD-2, with the same purpose, but in phase with SCD-1 . Other differences were a higher index of Brazilian made components and an active attitude control subsystem for the spin rate provided by the magnetic torque coils (these in accordance with a development strategy previously planned). In 1999 the country launched in cooperation with China a remote sensing satellite (mass of 1.4 ton.) called CBERS-1. This satellite is sun synchronous (98° inclination) and also carries a transponder for data collection/transmission as a secondary payload. Thus, the country has now three satellites with data collection/transmission capabilities, two in low inclination phased orbits and one in polar orbit, providing a nice coverage both geographical and temporal not only to its territory but also to other regions of the world.. At first there were not too many PCD

  6. FLIGHT DEVELOPMENT OF A DISTRIBUTED INERTIAL SATELLITE MICRONAVIGATTION SYSTEM FOR SYNTHETIC - APERTURE RADAR

    Directory of Open Access Journals (Sweden)

    Alexander Vladimirovich Chernodarov

    2017-01-01

    Full Text Available The current state of the onboard systems is characterized by the integration of aviation and radio-electronic equipment systems for solving problems of navigation and control. These problems include micro-navigation of the anten- na phase center (APC of the radar during the review of the Earth's surface from aboard the aircraft. Increasing of the reso- lution of the radar station (RLS by hardware increasing the antenna size is not always possible due to restrictions on the aircraft onboard equipment weight and dimensions. Therefore the implementation of analytic extension of the radiation pattern by "gluing" the images, obtained by RLS on the aircraft motion trajectory is embodied. The estimations are con- verted into amendments to the signals of RLS with synthetic aperture RSA to compensate instabilities. The purpose of the research is building a theoretical basis and a practical implementation of procedures for evaluating the trajectory APS in- stabilities using a distributed system of inertial-satellite micro-navigation (DSMN taking into account the RSA flight oper- ations actual conditions. The technology of evaluation and compensation of RSA trajectory instabilities via DSMN is con- sidered. The implementation of this technology is based on the mutual support of inertial, satellite and radar systems. Syn- chronization procedures of inertial and satellite measurements in the evaluation of DSMN errors are proposed. The given results of DSMN flight testing justify the possibility and expediency to apply the proposed technology in order to improve the resolution of RSA. The compensation of aircraft trajectory instabilities in RSA signals can be provided by inertial- satellite micro-navigation system, taking into account the actual conditions of the RSA flight operations. The researches show that in order to achieve the required resolution of RSA it seems to be appropriate to define the rational balance be- tween accuracy DSMN characteristics

  7. Telecommunication service markets through the year 2000 in relation to millimeter wave satellite systems

    Science.gov (United States)

    Stevenson, S. M.

    1979-01-01

    NASA is currently conducting a series of millimeter wave satellite system and market studies to develop 30/20 GHz satellite system concepts that have commercial potential for the period 1980-2000. The results of the market studies to-date focusing on the overall demand forecasts and distributions by geographic location, distance, and user category are discussed. Tables are presented indicating baseline market forecast voice and video services, data service category, impacted baseline forecast, and traffic/distance distribution voice services. It is concluded that the total market and system activity will be influential in determining the potential role of millimeter wave systems in the overall transmission needs of the nation, and the amount of the total forecasted traffic suitable for millimeter wave systems.

  8. Application of Component Technology to E-commerce System

    Institute of Scientific and Technical Information of China (English)

    ZHU Jianfeng

    2004-01-01

    At present E-commerce system tends to become more complex, and traditional system designing methods can not fufil the need of E-commerce system, thus requiring an effective methodas solution. With this concern, this paper introduces some concepts of component technology, then brings forward the new connotation and basic features of component technology through the analysis of its technological character. This paper finally discusses the application of component technology to E-commerce system.

  9. Cryosphere Monitoring from Satellites and Aircrafts

    DEFF Research Database (Denmark)

    Nilsson, Johan

    The cryosphere is collective term for all the components containing frozen water on the Earth’s surface. These components are highly sensitive to changes in the air temperature and precipitation, and hence to climate change. The major components of frozen water in the cryosphere are the ice sheet...... is of vital importance to gain insight into the behaviour of these systems and how they affect the global sea level. Satellite altimetry has for the last two decades been used to monitor the changes of the worlds ice sheets, allowing for the determination of their mass balance. In recent years this has been...... terrain in the Arctic region. The results from this validation study was then inter-compared with results derived from the ESA L2 baseline-B product to judge the quality of both products. From this inter-comparison it was shown that the new processing chains, developed in this thesis, performed better...

  10. Expert system for accelerator single-freedom nonlinear components

    International Nuclear Information System (INIS)

    Wang Sheng; Xie Xi; Liu Chunliang

    1995-01-01

    An expert system by Arity Prolog is developed for accelerator single-freedom nonlinear components. It automatically yields any order approximate analytical solutions for various accelerator single-freedom nonlinear components. As an example, the eighth order approximate analytical solution is derived by this expert system for a general accelerator single-freedom nonlinear component, showing that the design of the expert system is successful

  11. Gravity model improvement using the DORIS tracking system on the SPOT 2 satellite

    Science.gov (United States)

    Nerem, R. S.; Lerch, F. J.; Williamson, R. G.; Klosko, S. M.; Robbins, J. W.; Patel, G. B.

    1994-01-01

    A high-precision radiometric satellite tracking system, Doppler Orbitography and Radio-positioning Integrated by Satellite system (DORIS), has recently been developed by the French space agency, Centre National d'Etudes Spatiales (CNES). DORIS was designed to provide tracking support for missions such as the joint United States/French TOPEX/Poseidon. As part of the flight testing process, a DORIS package was flown on the French SPOT 2 satellite. A substantial quantity of geodetic quality tracking data was obtained on SPOT 2 from an extensive international DORIS tracking network. These data were analyzed to assess their accuracy and to evaluate the gravitational modeling enhancements provided by these data in combination with the Goddard Earth Model-T3 (GEM-T3) gravitational model. These observations have noise levels of 0.4 to 0.5 mm/s, with few residual systematic effects. Although the SPOT 2 satellite experiences high atmospheric drag forces, the precision and global coverage of the DORIS tracking data have enabled more extensive orbit parameterization to mitigate these effects. As a result, the SPOT 2 orbital errors have been reduced to an estimated radial accuracy in the 10-20 cm RMS range. The addition of these data, which encompass many regions heretofore lacking in precision satellite tracking, has significantly improved GEM-T3 and allowed greatly improved orbit accuracies for Sun-synchronous satellites like SPOT 2 (such as ERS 1 and EOS). Comparison of the ensuing gravity model with other contemporary fields (GRIM-4C2, TEG2B, and OSU91A) provides a means to assess the current state of knowledge of the Earth's gravity field. Thus, the DORIS experiment on SPOT 2 has provided a strong basis for evaluating this new orbit tracking technology and has demonstrated the important contribution of the DORIS network to the success of the TOPEX/Poseidon mission.

  12. Applications of TRMM-based Multi-Satellite Precipitation Estimation for Global Runoff Simulation: Prototyping a Global Flood Monitoring System

    Science.gov (United States)

    Hong, Yang; Adler, Robert F.; Huffman, George J.; Pierce, Harold

    2008-01-01

    Advances in flood monitoring/forecasting have been constrained by the difficulty in estimating rainfall continuously over space (catchment-, national-, continental-, or even global-scale areas) and flood-relevant time scale. With the recent availability of satellite rainfall estimates at fine time and space resolution, this paper describes a prototype research framework for global flood monitoring by combining real-time satellite observations with a database of global terrestrial characteristics through a hydrologically relevant modeling scheme. Four major components included in the framework are (1) real-time precipitation input from NASA TRMM-based Multi-satellite Precipitation Analysis (TMPA); (2) a central geospatial database to preprocess the land surface characteristics: water divides, slopes, soils, land use, flow directions, flow accumulation, drainage network etc.; (3) a modified distributed hydrological model to convert rainfall to runoff and route the flow through the stream network in order to predict the timing and severity of the flood wave, and (4) an open-access web interface to quickly disseminate flood alerts for potential decision-making. Retrospective simulations for 1998-2006 demonstrate that the Global Flood Monitor (GFM) system performs consistently at both station and catchment levels. The GFM website (experimental version) has been running at near real-time in an effort to offer a cost-effective solution to the ultimate challenge of building natural disaster early warning systems for the data-sparse regions of the world. The interactive GFM website shows close-up maps of the flood risks overlaid on topography/population or integrated with the Google-Earth visualization tool. One additional capability, which extends forecast lead-time by assimilating QPF into the GFM, also will be implemented in the future.

  13. Development strategies for the satellite flight software on-board Meteosat Third Generation

    Science.gov (United States)

    Tipaldi, Massimo; Legendre, Cedric; Koopmann, Olliver; Ferraguto, Massimo; Wenker, Ralf; D'Angelo, Gianni

    2018-04-01

    Nowadays, satellites are becoming increasingly software dependent. Satellite Flight Software (FSW), that is to say, the application software running on the satellite main On-Board Computer (OBC), plays a relevant role in implementing complex space mission requirements. In this paper, we examine relevant technical approaches and programmatic strategies adopted for the development of the Meteosat Third Generation Satellite (MTG) FSW. To begin with, we present its layered model-based architecture, and the means for ensuring a robust and reliable interaction among the FSW components. Then, we focus on the selection of an effective software development life cycle model. In particular, by combining plan-driven and agile approaches, we can fulfill the need of having preliminary SW versions. They can be used for the elicitation of complex system-level requirements as well as for the initial satellite integration and testing activities. Another important aspect can be identified in the testing activities. Indeed, very demanding quality requirements have to be fulfilled in satellite SW applications. This manuscript proposes a test automation framework, which uses an XML-based test procedure language independent of the underlying test environment. Finally, a short overview of the MTG FSW sizing and timing budgets concludes the paper.

  14. Optimization and Feasibility Analysis of Satellite Earth Station Power System Using Homer

    Directory of Open Access Journals (Sweden)

    Hassen T. Dorrah

    2012-06-01

    Full Text Available Satellite earth stations which located in remote areas are one of many applications powered by the renewable energy sources. Ground system consists of ground station and control centers working together to support the spacecraft and the data user. Earth station consists of major subsystems, transmitter, receiver, antenna, tracking equipment, terrestrial interface equipment and power supply. Power subsystem is an important part that required for supplying the earth station with electrical power to continue communicating with its remote sensing satellite. This paper deals with simulation and optimal sizing of earth station power system using HOMER software. A combination of two energy sources (solar, and wind to provide a continuous electric power production is used to determine the optimum system operation. Three system configurations are compared with respect to the total net present cost (NPC and levelized cost of energy (COE. Also, economical study will be analyzed for energy demand and sensitivity analysis will be performed.

  15. Activities of Canadian Satellite Communications, Inc.

    Science.gov (United States)

    1992-12-01

    Canadian Satellite Communications (Cancom) has as its core business the provision of television and radio signals to cable systems in Canada, with the objective of making affordable broadcast signals available to remote and/or small communities. Cancom also provides direct-to-home services to backyard receiving dishes, as well as satellite digital data business communications services, satellite business television, and satellite network services. Its business communication services range from satellite links for big-city businesses with small branch operations located far from major centers, to a mobile messaging and tracking system for the trucking industry. Revenues in 1992 totalled $48,212,000 and net income was just over $7 million. Cancom bought 10 percent interest in Leosat Corp. of Washington, DC, who are seeking approval to operate a position locator network from low-orbit satellites. Cancom has also become a partner in SovCan Star Satellite Communications Inc., which will build an international satellite system in partnership with Russia. The first satellite in this east-west business network will be placed in a Russian orbital slot over the Atlantic by 1996, and a second satellite will follow for the Pacific region. This annual report of Cancom's activities for 1992 includes financial statements and a six year financial review.

  16. Study of chaos in chaotic satellite systems

    Indian Academy of Sciences (India)

    Ayub Khan

    2017-12-27

    Dec 27, 2017 ... through strange attractor which is framed of the com- plex patterns. The one ... jectory of the Slave satellite be the measured attitude of the Master satellite [12 ... Bifurcation occurs when a tiny smooth change is made to the parameter .... negative and one of these tends to zero which is the required condition ...

  17. Investigation of multipactor breakdown in communication satellite

    Indian Academy of Sciences (India)

    Multipactor breakdown or multipactor discharge is a form of high frequency discharge that may occur in microwave components operating at very low pressures. Some RF components of multi-channel communication satellites have co-axial geometry and handle high RF power under near-vacuum conditions.

  18. Partnership via Satellite.

    Science.gov (United States)

    Powell, Marie Clare

    1980-01-01

    Segments of the 1980 National Catholic Educational Association (NCEA) conference were to be telecast nationally by satellite. The author briefly explains the satellite transmission process and advises Catholic educators on how to pick up the broadcast through their local cable television system. (SJL)

  19. Component aging evaluation with expert systems

    International Nuclear Information System (INIS)

    Wiesemann, J.S.; Maguire, H.T. Jr.

    1988-01-01

    The age degradation of components involves a complex relationship between a variety of variables. These relationships are typically modeled using probabilistic and deterministic analyses. These methods depend upon a formal understanding of the underlying degradation mechanisms and a database of experience which allows statistical analyses to extract numerical trends. At present, not all age degradation mechanisms are adequately modeled and available data for age degradation is in most cases insufficient. In addition, these methods tend to focus upon answers to isolated questions (e.g., What is the component failure rate?) rather than the more pertinent questions concerning operations and maintenance (e.g., should the component be replaced at the next outage). Fortunately, knowledge in the form of personal experience does exist which allows plant personnel to make decisions concerning operations and maintenance. This knowledge can be modeled using expert systems. This paper discusses CAGES (Component Aging Expert System). It combines expert rules (heuristics), probabilistic models, and deterministic models to make evaluations of component aging; predict the implications for component life extension, operational readiness, maintenance effectiveness, and safety, and make recommendations for maintenance and operation

  20. Cirlularly Polarized Proximity- Fed Microstrip Array Antenna for LAPAN TUBSAT Micro Satellite System

    Directory of Open Access Journals (Sweden)

    Endra Wijaya

    2013-11-01

    Full Text Available The design microstrip of array antenna circular polarization characteristic developed for support LAPAN TUBSAT micro satellite system. The antenna on the micro satellite systems transmit data to ground stations operating at S band frequencies.The antenna is designed for impedance matching at frequencies of 2:25 GHz.The four elements of the square patch antenna array composed using linear methods, where the design of the transmission lines used by federal corporate structure model network consisting of three elements of the quarter wave transformer of a power divider. The feeding techniques for antenna designed using proximity coupling method, which for the type of substrate material used is similar. Circularly polarized antenna characteristics are influenced by the truncated corner pieces on the patch. To design the overall antenna used simulated method of moments in microwave office software applications. The results of measurements and simulations obtained antenna parameters, such as: bandwidth of return loss under 10 dB is 200 MHz (shifted 35%, bandwidth of axial ratio under 3dB is 1.7% and maximum gain directivity is 9 dB. Overall results obtained antenna parameters to meet the specifications of LAPAN TUBSAT micro satellite system.

  1. Application of fuzzy-MOORA method: Ranking of components for reliability estimation of component-based software systems

    Directory of Open Access Journals (Sweden)

    Zeeshan Ali Siddiqui

    2016-01-01

    Full Text Available Component-based software system (CBSS development technique is an emerging discipline that promises to take software development into a new era. As hardware systems are presently being constructed from kits of parts, software systems may also be assembled from components. It is more reliable to reuse software than to create. It is the glue code and individual components reliability that contribute to the reliability of the overall system. Every component contributes to overall system reliability according to the number of times it is being used, some components are of critical usage, known as usage frequency of component. The usage frequency decides the weight of each component. According to their weights, each component contributes to the overall reliability of the system. Therefore, ranking of components may be obtained by analyzing their reliability impacts on overall application. In this paper, we propose the application of fuzzy multi-objective optimization on the basis of ratio analysis, Fuzzy-MOORA. The method helps us find the best suitable alternative, software component, from a set of available feasible alternatives named software components. It is an accurate and easy to understand tool for solving multi-criteria decision making problems that have imprecise and vague evaluation data. By the use of ratio analysis, the proposed method determines the most suitable alternative among all possible alternatives, and dimensionless measurement will realize the job of ranking of components for estimating CBSS reliability in a non-subjective way. Finally, three case studies are shown to illustrate the use of the proposed technique.

  2. Preliminary environmental assessment for the Satellite Power System (SPS). Revision 1. Volume 2. Detailed assessment

    Energy Technology Data Exchange (ETDEWEB)

    1980-01-01

    The Department of Energy (DOE) is considering several options for generating electrical power to meet future energy needs. The satellite power system (SPS), one of these options, would collect solar energy through a system of satellites in space and transfer this energy to earth. A reference system has been described that would convert the energy to microwaves and transmit the microwave energy via directive antennas to large receiving/rectifying antennas (rectennas) located on the earth. At the rectennas, the microwave energy would be converted into electricity. The potential environmental impacts of constructing and operating the satellite power system are being assessed as a part of the Department of Energy's SPS Concept Development and Evaluation Program. This report is Revision I of the Preliminary Environmental Assessment for the Satellite Power System published in October 1978. It refines and extends the 1978 assessment and provides a basis for a 1980 revision that will guide and support DOE recommendations regarding future SPS development. This is Volume 2 of two volumes. It contains the technical detail suitable for peer review and integrates information appearing in documents referenced herein. The key environmental issues associated with the SPS concern human health and safety, ecosystems, climate, and electromagnetic systems interactions. In order to address these issues in an organized manner, five tasks are reported: (I) microwave-radiation health and ecological effects; (II) nonmicrowave health and ecological effectss; (III) atmospheric effects; (IV) effects on communication systems due to ionospheric disturbance; and (V) electromagnetic compatibility. (WHK)

  3. Evaluation of expert systems - An approach and case study. [of determining software functional requirements for command management of satellites

    Science.gov (United States)

    Liebowitz, J.

    1985-01-01

    Techniques that were applied in defining an expert system prototype for first-cut evaluations of the software functional requirements of NASA satellite command management activities are described. The prototype was developed using the Knowledge Engineering System. Criteria were selected for evaluating the satellite software before defining the expert system prototype. Application of the prototype system is illustrated in terms of the evaluation procedures used with the COBE satellite to be launched in 1988. The limited number of options which can be considered by the program mandates that biases in the system output must be well understood by the users.

  4. Observing System Simulations for Small Satellite Formations Estimating Bidirectional Reflectance

    Science.gov (United States)

    Nag, Sreeja; Gatebe, Charles K.; de Weck, Olivier

    2015-01-01

    The bidirectional reflectance distribution function (BRDF) gives the reflectance of a target as a function of illumination geometry and viewing geometry, hence carries information about the anisotropy of the surface. BRDF is needed in remote sensing for the correction of view and illumination angle effects (for example in image standardization and mosaicing), for deriving albedo, for land cover classification, for cloud detection, for atmospheric correction, and other applications. However, current spaceborne instruments provide sparse angular sampling of BRDF and airborne instruments are limited in the spatial and temporal coverage. To fill the gaps in angular coverage within spatial, spectral and temporal requirements, we propose a new measurement technique: Use of small satellites in formation flight, each satellite with a VNIR (visible and near infrared) imaging spectrometer, to make multi-spectral, near-simultaneous measurements of every ground spot in the swath at multiple angles. This paper describes an observing system simulation experiment (OSSE) to evaluate the proposed concept and select the optimal formation architecture that minimizes BRDF uncertainties. The variables of the OSSE are identified; number of satellites, measurement spread in the view zenith and relative azimuth with respect to solar plane, solar zenith angle, BRDF models and wavelength of reflection. Analyzing the sensitivity of BRDF estimation errors to the variables allow simplification of the OSSE, to enable its use to rapidly evaluate formation architectures. A 6-satellite formation is shown to produce lower BRDF estimation errors, purely in terms of angular sampling as evaluated by the OSSE, than a single spacecraft with 9 forward-aft sensors. We demonstrate the ability to use OSSEs to design small satellite formations as complements to flagship mission data. The formations can fill angular sampling gaps and enable better BRDF products than currently possible.

  5. Observing system simulations for small satellite formations estimating bidirectional reflectance

    Science.gov (United States)

    Nag, Sreeja; Gatebe, Charles K.; Weck, Olivier de

    2015-12-01

    The bidirectional reflectance distribution function (BRDF) gives the reflectance of a target as a function of illumination geometry and viewing geometry, hence carries information about the anisotropy of the surface. BRDF is needed in remote sensing for the correction of view and illumination angle effects (for example in image standardization and mosaicing), for deriving albedo, for land cover classification, for cloud detection, for atmospheric correction, and other applications. However, current spaceborne instruments provide sparse angular sampling of BRDF and airborne instruments are limited in the spatial and temporal coverage. To fill the gaps in angular coverage within spatial, spectral and temporal requirements, we propose a new measurement technique: use of small satellites in formation flight, each satellite with a VNIR (visible and near infrared) imaging spectrometer, to make multi-spectral, near-simultaneous measurements of every ground spot in the swath at multiple angles. This paper describes an observing system simulation experiment (OSSE) to evaluate the proposed concept and select the optimal formation architecture that minimizes BRDF uncertainties. The variables of the OSSE are identified; number of satellites, measurement spread in the view zenith and relative azimuth with respect to solar plane, solar zenith angle, BRDF models and wavelength of reflection. Analyzing the sensitivity of BRDF estimation errors to the variables allow simplification of the OSSE, to enable its use to rapidly evaluate formation architectures. A 6-satellite formation is shown to produce lower BRDF estimation errors, purely in terms of angular sampling as evaluated by the OSSE, than a single spacecraft with 9 forward-aft sensors. We demonstrate the ability to use OSSEs to design small satellite formations as complements to flagship mission data. The formations can fill angular sampling gaps and enable better BRDF products than currently possible.

  6. Hybrid solar lighting distribution systems and components

    Science.gov (United States)

    Muhs, Jeffrey D [Lenoir City, TN; Earl, Dennis D [Knoxville, TN; Beshears, David L [Knoxville, TN; Maxey, Lonnie C [Powell, TN; Jordan, John K [Oak Ridge, TN; Lind, Randall F [Lenoir City, TN

    2011-07-05

    A hybrid solar lighting distribution system and components having at least one hybrid solar concentrator, at least one fiber receiver, at least one hybrid luminaire, and a light distribution system operably connected to each hybrid solar concentrator and each hybrid luminaire. A controller operates all components.

  7. Ad hoc laser networks component technology for modular spacecraft

    Science.gov (United States)

    Huang, Xiujun; Shi, Dele; Shen, Jingshi

    2017-10-01

    Distributed reconfigurable satellite is a new kind of spacecraft system, which is based on a flexible platform of modularization and standardization. Based on the module data flow analysis of the spacecraft, this paper proposes a network component of ad hoc Laser networks architecture. Low speed control network with high speed load network of Microwave-Laser communication mode, no mesh network mode, to improve the flexibility of the network. Ad hoc Laser networks component technology was developed, and carried out the related performance testing and experiment. The results showed that ad hoc Laser networks components can meet the demand of future networking between the module of spacecraft.

  8. HIPPARCOS satellite: Aeritalia involvement and system test activities and results

    Science.gov (United States)

    Strim, B.; Cugno, W.; Morsillo, G.

    In 1989 the European Space Agency is scheduled to launch HIPPARCOS on a 2.5-year mission that will revolutionize the state of astronomy. This is the first satellite to be dedicated to astrometry, a branch of astronomy that deals with the position of celestial objects and their motion in space. With an accuracy impossible to achieve from Earth, HIPPARCOS will make position, trigonometric parallax and proper motion measurements of some 100.000 pre-selected stars. The data will be used to calculate each star's distance and motion, providing astronomers with an unprecedented map of the heavens. In the end, the HIPPARCOS mission is expected to reveal surprisingly new insight into theories of stellar evolution, as well as into the nature of our galaxy and the universe. The program has been awarded to the MESH industrial consortium for definition, development and production. The French firm MATRA (prime contractor) and the AERITALIA SPACE SYSTEMS GROUP (major co-contractor) share program responsibility. AERITALIA is in charge of the spacecraft or "service module". This is the structural platform for the telescope payload and provides all subsystem services including thermal control, data handling, telecommunications, electrical power distribution, power generation, attitude and orbit control, and apogee kick motor. AERITALIA is responsible for the procurement of all spacecraft subsystems for which it directs the activities of a multinational team of subcontractors. In addition, it is in charge of the satellite's final assembly, integration and testing, as well as for the procurement of all ground support equipment for satellite testing. HIPPARCOS stands for HIgh Precision PARallax COllecting Satellite. Its name is also intended to honor the Greek astronomer Hipparchus (190-120 BC) who compiled the first star catalog and who first used trigonometric parallax to calculate the distance to the moon. (Parallax is the apparent shift in a celestial body's position in the sky

  9. Solid State Lighting Reliability Components to Systems

    CERN Document Server

    Fan, XJ

    2013-01-01

    Solid State Lighting Reliability: Components to Systems begins with an explanation of the major benefits of solid state lighting (SSL) when compared to conventional lighting systems including but not limited to long useful lifetimes of 50,000 (or more) hours and high efficacy. When designing effective devices that take advantage of SSL capabilities the reliability of internal components (optics, drive electronics, controls, thermal design) take on critical importance. As such a detailed discussion of reliability from performance at the device level to sub components is included as well as the integrated systems of SSL modules, lamps and luminaires including various failure modes, reliability testing and reliability performance. This book also: Covers the essential reliability theories and practices for current and future development of Solid State Lighting components and systems Provides a systematic overview for not only the state-of-the-art, but also future roadmap and perspectives of Solid State Lighting r...

  10. The Implementation of Satellite Attitude Control System Software Using Object Oriented Design

    Science.gov (United States)

    Reid, W. Mark; Hansell, William; Phillips, Tom; Anderson, Mark O.; Drury, Derek

    1998-01-01

    NASA established the Small Explorer (SNMX) program in 1988 to provide frequent opportunities for highly focused and relatively inexpensive space science missions. The SMEX program has produced five satellites, three of which have been successfully launched. The remaining two spacecraft are scheduled for launch within the coming year. NASA has recently developed a prototype for the next generation Small Explorer spacecraft (SMEX-Lite). This paper describes the object-oriented design (OOD) of the SMEX-Lite Attitude Control System (ACS) software. The SMEX-Lite ACS is three-axis controlled and is capable of performing sub-arc-minute pointing. This paper first describes high level requirements governing the SMEX-Lite ACS software architecture. Next, the context in which the software resides is explained. The paper describes the principles of encapsulation, inheritance, and polymorphism with respect to the implementation of an ACS software system. This paper will also discuss the design of several ACS software components. Specifically, object-oriented designs are presented for sensor data processing, attitude determination, attitude control, and failure detection. Finally, this paper will address the establishment of the ACS Foundation Class (AFC) Library. The AFC is a large software repository, requiring a minimal amount of code modifications to produce ACS software for future projects.

  11. Global Drought Monitoring and Forecasting based on Satellite Data and Land Surface Modeling

    Science.gov (United States)

    Sheffield, J.; Lobell, D. B.; Wood, E. F.

    2010-12-01

    Monitoring drought globally is challenging because of the lack of dense in-situ hydrologic data in many regions. In particular, soil moisture measurements are absent in many regions and in real time. This is especially problematic for developing regions such as Africa where water information is arguably most needed, but virtually non-existent on the ground. With the emergence of remote sensing estimates of all components of the water cycle there is now the potential to monitor the full terrestrial water cycle from space to give global coverage and provide the basis for drought monitoring. These estimates include microwave-infrared merged precipitation retrievals, evapotranspiration based on satellite radiation, temperature and vegetation data, gravity recovery measurements of changes in water storage, microwave based retrievals of soil moisture and altimetry based estimates of lake levels and river flows. However, many challenges remain in using these data, especially due to biases in individual satellite retrieved components, their incomplete sampling in time and space, and their failure to provide budget closure in concert. A potential way forward is to use modeling to provide a framework to merge these disparate sources of information to give physically consistent and spatially and temporally continuous estimates of the water cycle and drought. Here we present results from our experimental global water cycle monitor and its African drought monitor counterpart (http://hydrology.princeton.edu/monitor). The system relies heavily on satellite data to drive the Variable Infiltration Capacity (VIC) land surface model to provide near real-time estimates of precipitation, evapotranspiraiton, soil moisture, snow pack and streamflow. Drought is defined in terms of anomalies of soil moisture and other hydrologic variables relative to a long-term (1950-2000) climatology. We present some examples of recent droughts and how they are identified by the system, including

  12. The NASA Earth Science Program and Small Satellites

    Science.gov (United States)

    Neeck, Steven P.

    2015-01-01

    . Some examples are the aforementioned Orbiting Carbon Observatory-2 (OCO-2), the Gravity Recovery and Climate Experiment Follow On (GRACE FO), and the Cyclone Global Navigation Satellite System (CYGNSS) microsatellite constellation. Small satellites also support ESD in space validation and risk reduction of enabling technologies (components and systems). The status of the ESD Flight Program and the role of small satellites will be discussed.

  13. Optimized High Temperature PEM Fuel Cell & High Pressure PEM Electrolyser for Regenerative Fuel Cell Systems in GEO Telecommunication Satellites

    Directory of Open Access Journals (Sweden)

    Farnes Jarle

    2017-01-01

    Full Text Available Next generation telecommunication satellites will demand increasingly more power. Power levels up to 50 kW are foreseen for the next decades. Battery technology that can sustain up to 50 kW for eclipse lengths of up to 72 minutes will represent a major impact on the total mass of the satellite, even with new Li-ion battery technologies. Regenerative fuel cell systems (RFCS were identified years ago as a possible alternative to rechargeable batteries. CMR Prototech has investigated this technology in a series of projects initiated by ESA focusing on both the essential fuel cell technology, demonstration of cycle performance of a RFCS, corresponding to 15 years in orbit, as well as the very important reactants storage systems. In the last two years the development has been focused towards optimising the key elements of the RFCS; the HTPEM fuel cell and the High Pressure PEM electrolyser. In these ESA activities the main target has been to optimise the design by reducing the mass and at the same time improve the performance, thus increasing the specific energy. This paper will present the latest development, including the main results, showing that significant steps have been taken to increase TRL on these key components.

  14. Ionospheric Simulation System for Satellite Observations and Global Assimilative Model Experiments - ISOGAME

    Science.gov (United States)

    Pi, Xiaoqing; Mannucci, Anthony J.; Verkhoglyadova, Olga; Stephens, Philip; Iijima, Bryron A.

    2013-01-01

    Modeling and imaging the Earth's ionosphere as well as understanding its structures, inhomogeneities, and disturbances is a key part of NASA's Heliophysics Directorate science roadmap. This invention provides a design tool for scientific missions focused on the ionosphere. It is a scientifically important and technologically challenging task to assess the impact of a new observation system quantitatively on our capability of imaging and modeling the ionosphere. This question is often raised whenever a new satellite system is proposed, a new type of data is emerging, or a new modeling technique is developed. The proposed constellation would be part of a new observation system with more low-Earth orbiters tracking more radio occultation signals broadcast by Global Navigation Satellite System (GNSS) than those offered by the current GPS and COSMIC observation system. A simulation system was developed to fulfill this task. The system is composed of a suite of software that combines the Global Assimilative Ionospheric Model (GAIM) including first-principles and empirical ionospheric models, a multiple- dipole geomagnetic field model, data assimilation modules, observation simulator, visualization software, and orbit design, simulation, and optimization software.

  15. Satellite Communications for ATM

    Science.gov (United States)

    Shamma, Mohammed A.

    2003-01-01

    This presentation is an overview on Satellite Communication for the Aeronautical Telecommunication Management (ATM) research. Satellite Communications are being considered by the FAA and NASA as a possible alternative to the present and future ground systems supporting Air Traffic Communications. The international Civil Aviation Organization (ICAO) have in place Standards and Recommended Practices (SARPS) for the Aeronautical Mobile Satellite Services (AMSS) which is mainly derived from the pre-existing Inmarsat service that has been in service since the 1980s. The Working Group A of the Aeronautical Mobile Communication Panel of ICAO has also been investigating SARPS for what is called the Next Generation Satellite Service (NGSS) which conforms less to the Inmarsat based architecture and explores wider options in terms of satellite architectures. Several designs are being proposed by Firms such as Boeing, ESA, NASA that are geared toward full or secondary usage of satellite communications for ATM. Satellite communications for ATM can serve several purposes ranging from primary usage where ground services would play a minimal backup role, to an integrated solution where it will be used to cover services, or areas that are less likely to be supported by the proposed and existing ground infrastructure. Such Integrated roles can include usage of satellite communications for oceanic and remote land areas for example. It also can include relieving the capacity of the ground network by providing broadcast based services of Traffic Information Services messages (TIS-B), or Flight Information Services (FIS-B) which can take a significant portion of the ground system capacity. Additionally, satellite communication can play a backup role to support any needs for ground replacement, or additional needed capacity even after the new digital systems are in place. The additional bandwidth that can be provided via satellite communications can also open the door for many new

  16. Fermilab satellite refrigerator compressors with the oil- and moisture-removal systems

    International Nuclear Information System (INIS)

    Satti, J.A.; Andrews, R.A.

    1983-08-01

    We have designed and tested a helium purification system for the Energy Doubler and the experimental areas. A purification system is installed after each screw compressor in the satellite refrigerators. The purification system removes oil mist, oil vapor, water vapor, and particulate from the compressed helium. The units were designed with consideration of modularity and necessary redundancy (i.e., guard purification). Test results which led to the final configuration are presented, along with achieved performance of the oil removal in the operating system

  17. OCSEGen: Open Components and Systems Environment Generator

    Science.gov (United States)

    Tkachuk, Oksana

    2014-01-01

    To analyze a large system, one often needs to break it into smaller components.To analyze a component or unit under analysis, one needs to model its context of execution, called environment, which represents the components with which the unit interacts. Environment generation is a challenging problem, because the environment needs to be general enough to uncover unit errors, yet precise enough to make the analysis tractable. In this paper, we present a tool for automated environment generation for open components and systems. The tool, called OCSEGen, is implemented on top of the Soot framework. We present the tool's current support and discuss its possible future extensions.

  18. Land use change detection based on multi-date imagery from different satellite sensor systems

    Science.gov (United States)

    Stow, Douglas A.; Collins, Doretta; Mckinsey, David

    1990-01-01

    An empirical study is conducted to assess the accuracy of land use change detection using satellite image data acquired ten years apart by sensors with differing spatial resolutions. The primary goals of the investigation were to (1) compare standard change detection methods applied to image data of varying spatial resolution, (2) assess whether to transform the raster grid of the higher resolution image data to that of the lower resolution raster grid or vice versa in the registration process, (3) determine if Landsat/Thermatic Mapper or SPOT/High Resolution Visible multispectral data provide more accurate detection of land use changes when registered to historical Landsat/MSS data. It is concluded that image ratioing of multisensor, multidate satellite data produced higher change detection accuracies than did principal components analysis, and that it is useful as a land use change enhancement method.

  19. Digital optical feeder links system for broadband geostationary satellite

    Science.gov (United States)

    Poulenard, Sylvain; Mège, Alexandre; Fuchs, Christian; Perlot, Nicolas; Riedi, Jerome; Perdigues, Josep

    2017-02-01

    An optical link based on a multiplex of wavelengths at 1.55μm is foreseen to be a valuable solution for the feeder link of the next generation of high-throughput geostationary satellite. The main satellite operator specifications for such link are an availability of 99.9% over the year, a capacity around 500Gbit/s and to be bent-pipe. Optical ground station networks connected to Terabit/s terrestrial fibers are proposed. The availability of the optical feeder link is simulated over 5 years based on a state-of-the-art cloud mask data bank and an atmospheric turbulence strength model. Yearly and seasonal optical feeder link availabilities are derived and discussed. On-ground and on-board terminals are designed to be compliant with 10Gbit/s per optical channel data rate taking into account adaptive optic systems to mitigate the impact of atmospheric turbulences on single-mode optical fiber receivers. The forward and return transmission chains, concept and implementation, are described. These are based on a digital transparent on-off keying optical link with digitalization of the DVB-S2 and DVB-RCS signals prior to the transmission, and a forward error correcting code. In addition, the satellite architecture is described taking into account optical and radiofrequency payloads as well as their interfaces.

  20. Integrating the pastoral component in agricultural systems

    Directory of Open Access Journals (Sweden)

    Paulo César de Faccio Carvalho

    2018-03-01

    Full Text Available ABSTRACT This paper aims to discuss the impact of the introduction of pastures and grazing animals in agricultural systems. For the purposes of this manuscript, we focus on within-farm integrated crop-livestock systems (ICLS, typical of Southern Brazil. These ICLS are designed to create and enhance the synergisms and emergent properties have arisen from agricultural areas where livestock activities are integrated with crops. We show that the introduction of the crop component will affect less the preceding condition than the introduction of the livestock component. While the introduction of crops in pastoral systems represents increasing diversity of the plant component, the introduction of animals would represent the entry of new flows and interactions within the system. Thus, given the new complexity levels achieved from the introduction of grazing, the probability of arising emergent properties is theoretically much higher. However, grazing management is vital in determining the success or failure of such initiative. The grazing intensity practiced during the pasture phase would affect the canopy structure and the forage availability to animals. In adequate and moderate grazing intensities, it is possible to affirm that livestock combined with crops (ICLS has a potential positive impact. As important as the improvements that grazing animals can generate to the soil-plant components, the economic resilience remarkably increases when pasture rotations are introduced compared with purely agriculture systems, particularly in climate-risk situations. Thus, the integration of the pastoral component can enhance the sustainable intensification of food production, but it modifies simple, pure agricultural systems into more complex and knowledge-demanding production systems.

  1. Systems with randomly failing repairable components

    DEFF Research Database (Denmark)

    Der Kiureghian, Armen; Ditlevsen, Ove Dalager; Song, Junho

    2005-01-01

    Closed-form expressions are derived for the steady-state availability, mean rate of failure, mean duration of downtime and reliability of a general system with randomly and independently failing repairable components. Component failures are assumed to be homogeneous Poisson events in time and rep...

  2. Gigabit Satellite Network for NASA's Advanced Communication Technology Satellite (ACTS)

    Science.gov (United States)

    Hoder, Douglas; Bergamo, Marcos

    1996-01-01

    The advanced communication technology satellite (ACTS) gigabit satellite network provides long-haul point-to-point and point-to-multipoint full-duplex SONET services over NASA's ACTS. at rates up to 622 Mbit/s (SONET OC-12), with signal quality comparable to that obtained with terrestrial fiber networks. Data multiplexing over the satellite is accomplished using time-division multiple access (TDMA) techniques coordinated with the switching and beam hopping facilities provided by ACTS. Transmissions through the satellite are protected with Reed-Solomon encoding. providing virtually error-free transmission under most weather conditions. Unique to the system are a TDMA frame structure and satellite synchronization mechanism that allow: (a) very efficient utilization of the satellite capacity: (b) over-the-satellite dosed-loop synchronization of the network in configurations with up to 64 ground stations: and (c) ground station initial acquisition without collisions with existing signalling or data traffic. The user interfaces are compatible with SONET standards, performing the function of conventional SONET multiplexers and. as such. can be: readily integrated with standard SONET fiber-based terrestrial networks. Management of the network is based upon the simple network management protocol (SNMP). and includes an over-the-satellite signalling network and backup terrestrial internet (IP-based) connectivity. A description of the ground stations is also included.

  3. Altered Satellite Cell Responsiveness and Denervation Implicated in Progression of Rotator-Cuff Injury.

    Directory of Open Access Journals (Sweden)

    Deanna Gigliotti

    Full Text Available Rotator-cuff injury (RCI is common and painful; even after surgery, joint stability and function may not recover. Relative contributions to atrophy from disuse, fibrosis, denervation, and satellite-cell responsiveness to activating stimuli are not known.Potential contributions of denervation and disrupted satellite cell responses to growth signals were examined in supraspinatus (SS and control (ipsilateral deltoid muscles biopsied from participants with RCI (N = 27. Biopsies were prepared for explant culture (to study satellite cell activity, immunostained to localize Pax7, BrdU, and Semaphorin 3A in satellite cells, sectioning to study blood vessel density, and western blotting to measure the fetal (γ subunit of acetylcholine receptor (γ-AchR. Principal component analysis (PCA for 35 parameters extracted components identified variables that contributed most to variability in the dataset. γ-AchR was higher in SS than control, indicating denervation. Satellite cells in SS had a low baseline level of activity (Pax7+ cells labelled in S-phase versus control; only satellite cells in SS showed increased proliferative activity after nitric oxide-donor treatment. Interestingly, satellite cell localization of Semaphorin 3A, a neuro-chemorepellent, was greater in SS (consistent with fiber denervation than control muscle at baseline. PCAs extracted components including fiber atrophy, satellite cell activity, fibrosis, atrogin-1, smoking status, vascular density, γAchR, and the time between symptoms and surgery. Use of deltoid as a control for SS was supported by PCA findings since "muscle" was not extracted as a variable in the first two principal components. SS muscle in RCI is therefore atrophic, denervated, and fibrotic, and has satellite cells that respond to activating stimuli.Since SS satellite cells can be activated in culture, a NO-donor drug combined with stretching could promote muscle growth and improve functional outcome after RCI. PCAs

  4. Altered Satellite Cell Responsiveness and Denervation Implicated in Progression of Rotator-Cuff Injury.

    Science.gov (United States)

    Gigliotti, Deanna; Leiter, Jeff R S; MacDonald, Peter B; Peeler, Jason; Anderson, Judy E

    Rotator-cuff injury (RCI) is common and painful; even after surgery, joint stability and function may not recover. Relative contributions to atrophy from disuse, fibrosis, denervation, and satellite-cell responsiveness to activating stimuli are not known. Potential contributions of denervation and disrupted satellite cell responses to growth signals were examined in supraspinatus (SS) and control (ipsilateral deltoid) muscles biopsied from participants with RCI (N = 27). Biopsies were prepared for explant culture (to study satellite cell activity), immunostained to localize Pax7, BrdU, and Semaphorin 3A in satellite cells, sectioning to study blood vessel density, and western blotting to measure the fetal (γ) subunit of acetylcholine receptor (γ-AchR). Principal component analysis (PCA) for 35 parameters extracted components identified variables that contributed most to variability in the dataset. γ-AchR was higher in SS than control, indicating denervation. Satellite cells in SS had a low baseline level of activity (Pax7+ cells labelled in S-phase) versus control; only satellite cells in SS showed increased proliferative activity after nitric oxide-donor treatment. Interestingly, satellite cell localization of Semaphorin 3A, a neuro-chemorepellent, was greater in SS (consistent with fiber denervation) than control muscle at baseline. PCAs extracted components including fiber atrophy, satellite cell activity, fibrosis, atrogin-1, smoking status, vascular density, γAchR, and the time between symptoms and surgery. Use of deltoid as a control for SS was supported by PCA findings since "muscle" was not extracted as a variable in the first two principal components. SS muscle in RCI is therefore atrophic, denervated, and fibrotic, and has satellite cells that respond to activating stimuli. Since SS satellite cells can be activated in culture, a NO-donor drug combined with stretching could promote muscle growth and improve functional outcome after RCI. PCAs suggest

  5. Structured Performance Analysis for Component Based Systems

    OpenAIRE

    Salmi , N.; Moreaux , Patrice; Ioualalen , M.

    2012-01-01

    International audience; The Component Based System (CBS) paradigm is now largely used to design software systems. In addition, performance and behavioural analysis remains a required step for the design and the construction of efficient systems. This is especially the case of CBS, which involve interconnected components running concurrent processes. % This paper proposes a compositional method for modeling and structured performance analysis of CBS. Modeling is based on Stochastic Well-formed...

  6. Land Mobile Satellite Service (LMSS): A conceptual system design and identification of the critical technologies: Part 2: Technical report

    Science.gov (United States)

    Naderi, F. (Editor)

    1982-01-01

    A conceptual system design for a satellite-aided land mobile service is described. A geostationary satellite which employs a large (55-m) UHF reflector to communicate with small inexpensive user antennas on mobile vehicles is discussed. It is shown that such a satellite system through multiple beam antennas and frequency reuse can provide thousands of radiotelephone and dispatch channels serving hundreds of thousands of users throughout the U.S.

  7. Orbit and clock determination of BDS regional navigation satellite system based on IGS M-GEX and WHU BETS tracking network

    Science.gov (United States)

    GENG, T.; Zhao, Q.; Shi, C.; Shum, C.; Guo, J.; Su, X.

    2013-12-01

    BeiDou Navigation Satellite System (BDS) began to provide the regional open service on December 27th 2012 and will provide the global open service by the end of 2020. Compared to GPS, the space segment of BDS Regional System consists of 5 Geostationary Earth Orbit satellites (GEO), 5 Inclined Geosynchronous Orbit satellites (IGSO) and 4 Medium Earth orbit (MEO) satellites. Since 2011, IGS Multiple-GNSS Experiment (M-GEX) focuses on tracking the newly available GNSS signals. This includes all signals from the modernized satellites of the GPS and GLONASS systems, as well as signals of the BDS, Galileo and QZSS systems. Up to now, BDS satellites are tracked by around 25 stations with a variety of different antennas and receivers from different GNSS manufacture communities in M-GEX network. Meanwhile, there are 17 stations with Unicore Communications Incorporation's GPS/BDS receivers in BeiDou Experimental Tracking Stations (BETS) network by Wuhan University. In addition, 5 BDS satellites have been tracking by the International Laser Ranging Service (ILRS). BDS performance is expected to be further studied by the GNSS communities. Following an introduction of the BDS system and above different tracking network, this paper discusses the achieved BDS characterization and performance assessment. Firstly, the BDS signal and measurement quality are analyzed with different antennas and receivers in detail compared to GPS. This includes depth of coverage for satellite observation, carrier-to-noise-density ratios, code noise and multipath, carrier phase errors. Secondly, BDS Precise Orbit Determination (POD) is processed. Different arc lengths and sets of orbit parameters are tested using Position And Navigation Data Analysis software (PANDA) which is developed at the Wuhan University. GEO, IGSO and MEO satellites orbit quality will be assessed using overlap comparison, 2-day orbit fit and external validations with Satellite Laser Range (SLR). Then BDS satellites are equipped

  8. Gas data transmission system by satellite telephone; Systeme de transmission de donnees sur le gaz utilisant le telephone par satellite

    Energy Technology Data Exchange (ETDEWEB)

    Ogasawara, S.; Tanji, A. [Dengineer Co., Ltd (Japan); Akiyama, S. [Buyo Gas Company (Japan)

    2000-07-01

    Dengineer Co., Ltd. and Buyo Gas Co., Ltd. had been developing and using the data and alarm transmission system by public telephone since 1984, that was first practical use in Japan. It is very important for business management that adjusts the production value of gas by measuring gas pressures in each governor. Also, it is indispensable to know the accident of gas leakage or abnormal gas pressure quickly. But this convenient system is not spread yet in Japanese market cause of the following reasons. - Take time and cost for installation of terminal station. - Terminal station is apt to damage by thunder. - Big disaster must stop working this system. In order to solve those problems, we have developed and tested the system organized of the satellite telephone system and solar cells for power. This system will be very useful for wide place, not only Japanese market but also the area, which has no electricity and phone. Also, it will be convenient for international rescue as is able to access it from the foreign countries. (authors)

  9. NOSS/ALDCS analysis and system requirements definition. [national oceanic satellite system data collection

    Science.gov (United States)

    Reed, D. L.; Wallace, R. G.

    1981-01-01

    The results of system analyses and implementation studies of an advanced location and data collection system (ALDCS) , proposed for inclusion on the National Oceanic Satellite System (NOSS) spacecraft are reported. The system applies Doppler processing and radiofrequency interferometer position location technqiues both alone and in combination. Aspects analyzed include: the constraints imposed by random access to the system by platforms, the RF link parameters, geometric concepts of position and velocity estimation by the two techniques considered, and the effects of electrical measurement errors, spacecraft attitude errors, and geometric parameters on estimation accuracy. Hardware techniques and trade-offs for interferometric phase measurement, ambiguity resolution and calibration are considered. A combined Doppler-interferometer ALDCS intended to fulfill the NOSS data validation and oceanic research support mission is also described.

  10. Design mobile satellite system architecture as an integral part of the cellular access digital network

    Science.gov (United States)

    Chien, E. S. K.; Marinho, J. A.; Russell, J. E., Sr.

    1988-01-01

    The Cellular Access Digital Network (CADN) is the access vehicle through which cellular technology is brought into the mainstream of the evolving integrated telecommunications network. Beyond the integrated end-to-end digital access and per call network services provisioning of the Integrated Services Digital Network (ISDN), the CADN engenders the added capability of mobility freedom via wireless access. One key element of the CADN network architecture is the standard user to network interface that is independent of RF transmission technology. Since the Mobile Satellite System (MSS) is envisioned to not only complement but also enhance the capabilities of the terrestrial cellular telecommunications network, compatibility and interoperability between terrestrial cellular and mobile satellite systems are vitally important to provide an integrated moving telecommunications network of the future. From a network standpoint, there exist very strong commonalities between the terrestrial cellular system and the mobile satellite system. Therefore, the MSS architecture should be designed as an integral part of the CADN. This paper describes the concept of the CADN, the functional architecture of the MSS, and the user-network interface signaling protocols.

  11. S-band multiple-access interference study for advanced tracking and data relay satellite systems

    Science.gov (United States)

    Peng, Wei-Chung; Yang, Chau-Chin

    1990-01-01

    The results of a study on the effect of mutual interference among S-band multiple access (SMA) system users of advanced tracking and data relay satellite system (ATDRSS) are presented. In the ATDRSS era, the SMA system is required to support data rates ranging from 10 kb/s to 3 Mb/s. The system will consist of four advanced tracking and data relay satellites (ATDRS) each supporting up to five telemetry links. All users have 10 MHz bandwidth with their carrier frequency equal to 2.2875 GHz. A hybrid SDMA/CDMA scheme is used to mitigate the effect of the interference among system users. SMA system interference probability is evaluated with CLASS software. User link margin degradation due to mutual interference between two users is evaluated. System interference probability is evaluated for the projected 1996 mission model, a reference mission model, and a modified reference mission model.

  12. Satellite Navigation Systems: Policy, Commercial and Technical Interaction.

    Science.gov (United States)

    Rycroft, M.

    2003-12-01

    This book adopts a broad perspective on positioning and navigation systems which rely on Earth orbiting satellites for their successful operation. The first of such global systems was the US Global Positioning System (GPS), and the next the Russian GLONASS system. Now studies relating to Europe's future Galileo system are gaining momentum and other nations are planning regional augmentation systems. All such systems are discussed here, particularly relating to political, commercial, legal and technical issues. The opportunities - and also the problems - of having three similar systems in operation simultaneously are examined, and several novel applications are proposed. These range from improved vehicular transport by land, sea and air, to more accurate surveying, more efficient agricultural practices and safer operations in mountainous regions. Everyone who is challenged by these topics will find this volume invaluable. ISU WWW Server; http://www.isunet.edu. Further information on ISU Symposia may also be obtained by e-mail from symposium@isu.isunet.edu Link: http://www.wkap.nl/prod/b/1-4020-1678-6

  13. SAW based systems for mobile communications satellites

    Science.gov (United States)

    Peach, R. C.; Miller, N.; Lee, M.

    1993-01-01

    Modern mobile communications satellites, such as INMARSAT 3, EMS, and ARTEMIS, use advanced onboard processing to make efficient use of the available L-band spectrum. In all of these cases, high performance surface acoustic wave (SAW) devices are used. SAW filters can provide high selectivity (100-200 kHz transition widths), combined with flat amplitude and linear phase characteristics; their simple construction and radiation hardness also makes them especially suitable for space applications. An overview of the architectures used in the above systems, describing the technologies employed, and the use of bandwidth switchable SAW filtering (BSSF) is given. The tradeoffs to be considered when specifying a SAW based system are analyzed, using both theoretical and experimental data. Empirical rules for estimating SAW filter performance are given. Achievable performance is illustrated using data from the INMARSAT 3 engineering model (EM) processors.

  14. Interim Service ISDN Satellite (ISIS) simulator development for advanced satellite designs and experiments

    Science.gov (United States)

    Pepin, Gerard R.

    1992-01-01

    The simulation development associated with the network models of both the Interim Service Integrated Services Digital Network (ISDN) Satellite (ISIS) and the Full Service ISDN Satellite (FSIS) architectures is documented. The ISIS Network Model design represents satellite systems like the Advanced Communications Technology Satellite (ACTS) orbiting switch. The FSIS architecture, the ultimate aim of this element of the Satellite Communications Applications Research (SCAR) Program, moves all control and switching functions on-board the next generation ISDN communications satellite. The technical and operational parameters for the advanced ISDN communications satellite design will be obtained from the simulation of ISIS and FSIS engineering software models for their major subsystems. Discrete event simulation experiments will be performed with these models using various traffic scenarios, design parameters, and operational procedures. The data from these simulations will be used to determine the engineering parameters for the advanced ISDN communications satellite.

  15. Satellite Power System (SPS) financial/management scenarios

    Science.gov (United States)

    Vajk, J. P.

    1978-01-01

    The possible benefits of a Satellite Power System (SPS) program, both domestically and internationally, justify detailed and imaginative investigation of the issues involved in financing and managing such a large-scale program. In this study, ten possible methods of financing a SPS program are identified ranging from pure government agency to private corporations. The following were analyzed and evaluated: (1) capital requirements for SPS; (2) ownership and control; (3) management principles; (4) organizational forms for SPS; (5) criteria for evaluation; (6) detailed description and preliminary evaluation of alternatives; (7) phased approaches; and (8) comparative evaluation. Key issues and observations and recommendations for further study are also presented.

  16. The Federated Satellite Systems paradigm: Concept and business case evaluation

    Science.gov (United States)

    Golkar, Alessandro; Lluch i Cruz, Ignasi

    2015-06-01

    This paper defines the paradigm of Federated Satellite Systems (FSS) as a novel distributed space systems architecture. FSS are networks of spacecraft trading previously inefficiently allocated and unused resources such as downlink bandwidth, storage, processing power, and instrument time. FSS holds the promise to enhance cost-effectiveness, performance and reliability of existing and future space missions, by networking different missions and effectively creating a pool of resources to exchange between participants in the federation. This paper introduces and describes the FSS paradigm, and develops an approach integrating mission analysis and economic assessments to evaluate the feasibility of the business case of FSS. The approach is demonstrated on a case study on opportunities enabled by FSS to enhance space exploration programs, with particular reference to the International Space Station. The application of the proposed methodology shows that the FSS concept is potentially able to create large commercial markets of in-space resources, by providing the technical platform to offer the opportunity for spacecraft to share or make use of unused resources within their orbital neighborhood. It is shown how the concept is beneficial to satellite operators, space agencies, and other stakeholders of the space industry to more flexibly interoperate space systems as a portfolio of assets, allowing unprecedented collaboration among heterogeneous types of missions.

  17. Feature-based component model for design of embedded systems

    Science.gov (United States)

    Zha, Xuan Fang; Sriram, Ram D.

    2004-11-01

    An embedded system is a hybrid of hardware and software, which combines software's flexibility and hardware real-time performance. Embedded systems can be considered as assemblies of hardware and software components. An Open Embedded System Model (OESM) is currently being developed at NIST to provide a standard representation and exchange protocol for embedded systems and system-level design, simulation, and testing information. This paper proposes an approach to representing an embedded system feature-based model in OESM, i.e., Open Embedded System Feature Model (OESFM), addressing models of embedded system artifacts, embedded system components, embedded system features, and embedded system configuration/assembly. The approach provides an object-oriented UML (Unified Modeling Language) representation for the embedded system feature model and defines an extension to the NIST Core Product Model. The model provides a feature-based component framework allowing the designer to develop a virtual embedded system prototype through assembling virtual components. The framework not only provides a formal precise model of the embedded system prototype but also offers the possibility of designing variation of prototypes whose members are derived by changing certain virtual components with different features. A case study example is discussed to illustrate the embedded system model.

  18. Global Navigation Satellite System (GNSS) Final Clock Product (5 minute resolution, daily files, generated weekly) from NASA CDDIS

    Data.gov (United States)

    National Aeronautics and Space Administration — This derived product set consists of Global Navigation Satellite System Final Satellite and Receiver Clock Product (5-minute granularity, daily files, generated...

  19. The Implementation of Satellite Control System Software Using Object Oriented Design

    Science.gov (United States)

    Anderson, Mark O.; Reid, Mark; Drury, Derek; Hansell, William; Phillips, Tom

    1998-01-01

    NASA established the Small Explorer (SMEX) program in 1988 to provide frequent opportunities for highly focused and relatively inexpensive space science missions that can be launched into low earth orbit by small expendable vehicles. The development schedule for each SMEX spacecraft was three years from start to launch. The SMEX program has produced five satellites; Solar Anomalous and Magnetospheric Particle Explorer (SAMPEX), Fast Auroral Snapshot Explorer (FAST), Submillimeter Wave Astronomy Satellite (SWAS), Transition Region and Coronal Explorer (TRACE) and Wide-Field Infrared Explorer (WIRE). SAMPEX and FAST are on-orbit, TRACE is scheduled to be launched in April of 1998, WIRE is scheduled to be launched in September of 1998, and SWAS is scheduled to be launched in January of 1999. In each of these missions, the Attitude Control System (ACS) software was written using a modular procedural design. Current program goals require complete spacecraft development within 18 months. This requirement has increased pressure to write reusable flight software. Object-Oriented Design (OOD) offers the constructs for developing an application that only needs modification for mission unique requirements. This paper describes the OOD that was used to develop the SMEX-Lite ACS software. The SMEX-Lite ACS is three-axis controlled, momentum stabilized, and is capable of performing sub-arc-minute pointing. The paper first describes the high level requirements which governed the architecture of the SMEX-Lite ACS software. Next, the context in which the software resides is explained. The paper describes the benefits of encapsulation, inheritance and polymorphism with respect to the implementation of an ACS software system. This paper will discuss the design of several software components that comprise the ACS software. Specifically, Object-Oriented designs are presented for sensor data processing, attitude control, attitude determination and failure detection. The paper addresses

  20. Environmental assessment for the satellite power system concept development and evaluation program: atmospheric effects

    International Nuclear Information System (INIS)

    Rote, D.M.; Brubaker, K.L.; Lee, J.L.

    1980-11-01

    The US Department of Energy (DOE) has undertaken a preliminary, three-year program to investigate the impacts of the construction and operation of a satellite power system, of unprecedented scale. The Department of Energy's program, titled The Concept Development and Evaluation Program, focused its investigations on a Reference System description that calls for the use of either silicon (Si) or gallium aluminum-arsenide (GaAlAs) photovoltaic cells on 60 satellites to be constructed in GEO over a 30-yr period. Rectennas would be constructed on the ground to receive microwave energy from the satellites. Each satellite-rectenna pair is designed to produce 5 GW of power on an essentially continuous basis for use as a baseload power source for an electric power distribution system. The environmental assessment part of the program was divided into five interdependent task areas. The present document constitutes the final technical report on one of the five task areas, the Assessment of the Atmospheric Effects, and as such presents an in-depth summary of work performed during the assessment program. The issues associated with SPS activities in the troposphere are examined. These include tropospheric weather modification related to rectenna operations and rocket launches, and air quality impacts related to rocketlaunch ground clouds. Then progressing upward through the various levels of the atmosphere, the principal middle and upper atmospheric effects associated with rocket effluents are analyzed. Finally, all of the potential SPS atmospheric effects are summarized

  1. Design and Development of High-Repetition-Rate Satellite Laser Ranging System

    Science.gov (United States)

    Choi, Eun-Jung; Bang, Seong-Cheol; Sung, Ki-Pyoung; Lim, Hyung-Chul; Jung, Chan-Gyu; Kim, In-Yeung; Choi, Jae-Seung

    2015-09-01

    The Accurate Ranging System for Geodetic Observation ? Mobile (ARGO-M) was successfully developed as the first Korean mobile Satellite Laser Ranging (SLR) system in 2012, and has joined in the International Laser Ranging Service (ILRS) tracking network, DAEdeoK (DAEK) station. The DAEK SLR station was approved as a validated station in April 2014, through the ILRS station ¡°data validation¡± process. The ARGO-M system is designed to enable 2 kHz laser ranging with millimeter-level precision for geodetic, remote sensing, navigation, and experimental satellites equipped with Laser Retroreflector Arrays (LRAs). In this paper, we present the design and development of a next generation high-repetition-rate SLR system for ARGO-M. The laser ranging rate up to 10 kHz is becoming an important issue in the SLR community to improve ranging precision. To implement high-repetition-rate SLR system, the High-repetition-rate SLR operation system (HSLR-10) was designed and developed using ARGO-M Range Gate Generator (A-RGG), so as to enable laser ranging from 50 Hz to 10 kHz. HSLR-10 includes both hardware controlling software and data post-processing software. This paper shows the design and development of key technologies of high-repetition-rate SLR system. The developed system was tested successfully at DAEK station and then moved to Sejong station, a new Korean SLR station, on July 1, 2015. HSLR-10 will begin normal operations at Sejong station in the near future.

  2. AMFIC Web Data Base - A Satellite System for the Monitoring and Forecasting of Atmospheric Pollution

    Directory of Open Access Journals (Sweden)

    P. Symeonidis

    2008-01-01

    Full Text Available In this work we present the contribution of the Laboratory of Atmospheric Pollution and Pollution Control Engineering of Democritus University of Thrace in the AMFIC-Air Monitoring and Forecasting In China European project. Within the framework of this project our laboratory in co-operation with DRAXIS company will create and manage a web satellite data base. This system will host atmospheric pollution satellite data for China and for the whole globe in general. Atmospheric pollution data with different spatial resolution such as O3 and NO2 total columns and measurements of other important trace gasses from GOME (ERS-2, SCIAMACHY (ENVISAT and OMI (EOS-AURA along with aerosol total load estimates from AATSR (ENVISAT will be brought to a common spatial and temporal resolution and become available to the scientific community in simple ascii files and maps format. Available will also be the results from the validation procedure of the satellite data with the use of ground-based observations and a set of high resolution maps and forecasts emerging from atmospheric pollution models. Data will be available for two geographical clusters. The one cluster includes the greater area of China and the other the whole globe. This integrated satellite system will be fully operational within the next two years and will also include a set of innovative tools that allow easy manipulation and analysis of the data. Automatic detection of features such as plumes and monitoring of their evolution, data covariance analysis enabling the detection of emission signatures of different sources, cluster analysis etc will be possible through those tools. The AMFIC satellite system shares a set of characteristics with its predecessor, AIRSAT. Here, we present some of these characteristics in order to bring out the contribution of such a system in atmospheric sciences.

  3. Development of U.S. Government General Technical Requirements for UAS Flight Safety Systems Utilizing the Iridium Satellite Constellation

    Science.gov (United States)

    Murray, Jennifer; Birr, Richard

    2010-01-01

    This slide presentation reviews the development of technical requirements for Unmanned Aircraft Systems (UAS) utilization of the Iridium Satellite Constellation to provide flight safety. The Federal Aviation Authority (FAA) required an over-the-horizon communication standard to guarantee flight safety before permitting widespread UAS flights in the National Air Space (NAS). This is important to ensure reliable control of UASs during loss-link and over-the-horizon scenarios. The core requirement was to utilize a satellite system to send GPS tracking data and other telemetry from a flight vehicle down to the ground. Iridium was chosen as the system because it is one of the only true satellite systems that has world wide coverage, and the service has a highly reliable link margin. The Iridium system, the flight modems, and the test flight are described.

  4. A simple satellite system to locate gamma-ray bursters using scintillating fiber technology

    International Nuclear Information System (INIS)

    Colavita, A.; Fratnik, F.

    1993-07-01

    We present a study on the feasibility of using a system of small, light, long-lived and simple satellites in order to locate gamma-ray bursters. Each small satellite possesses only electronics to discriminate gamma-rays out of the large background of cosmic rays and to time the arrival of the front of a gamma-ray burst. The arrival of a γ-ray strikes a plane made out of scintillating fibers. A layered structure of thin lead foils and scintillating fibers is used to obtain a low trigger threshold of approximately 20 MeV. To locate the burster applying triangulation methods, we use the time of arrival of the front of the gamma-ray burst and the position of the satellites at that very moment. We review an elementary version of the triangulation method to study the angular error in the determination of the burster position. We show that for almost all non-pathological distances among satellites we can determine the angular location of the source to better than one arc min. This precision allows us to find the visible counterpart of the burster, if it exists. These simple satellites can be made modular in order to customize their sizes or weights in order to use spare space available during major launches. We also propose a block diagram for the satellite architecture as well as a simple and strong detector using scintillating fiber technology. (author). 13 refs, 5 figs

  5. Observation of new satellites in Cs-Ar system using resonance ionization spectroscopy

    International Nuclear Information System (INIS)

    Nayfeh, M.H.; Hurst, G.S.; Payne, M.G.; Young, J.P.

    1978-01-01

    The absorption line shape of Cs-Ar system is recorded using two-photon ionization of the system with Cs(7P) as an intermediate state. New satellite structures in the wings of Cs(7P) are observed which were not resolved in previous absorption measurements. Also the absolute absorption cross section in the blue wing is measured

  6. Dynamic k-out-of-n system reliability with component partnership

    International Nuclear Information System (INIS)

    Coit, David W.; Chatwattanasiri, Nida; Wattanapongsakorn, Naruemon; Konak, Abdullah

    2015-01-01

    This paper describes a new k-out-of-n system reliability model that is appropriate for certain design problems when the minimum number of required components, k, changes dynamically in response to failures to maximize the utility of the available collection of functioning components. This new model shares some distinct similarities with weighted k-out-of-n models and for some problems they produce the same result. However, there are subtle and distinct differences, and in practice, there are some complex applications have not been properly explained or modeled by traditional or extended k-out-of-n system models. For this application, components are arranged in a k-out-of-n configuration of heterogeneous components with different performance levels. Component performance is indicated by a component-specific component partnership level; the fewer partners required to operate successfully implies higher performance. The components can work collectively with partners at the same level to maintain system reliability, or they can create a partnership group with components at higher performance levels which serve as replacements to provide the necessary number of working components. When components fail, the dynamic k-out-of-n configuration maintains reliability of the system with changing k by having components create partnerships with other components at the same level or above. To demonstrate the model, a system replacement maintenance policy based on a replacement interval variable is applied to an example system to obtain the optimal replacement time. - Highlights: • A new k-out-of-n system reliability model is presented. • Components can form partnerships with other components. • The new k-out-of-n model is presented with a dynamic or changing k. • The new model is for systems with components that must work together in a group

  7. Use of satellite images for the monitoring of water systems

    Science.gov (United States)

    Hillebrand, Gudrun; Winterscheid, Axel; Baschek, Björn; Wolf, Thomas

    2015-04-01

    Satellite images are a proven source of information for monitoring ecological indicators in coastal waters and inland river systems. This potential of remote sensing products was demonstrated by recent research projects (e.g. EU-funded project Freshmon - www.freshmon.eu) and other activities by national institutions. Among indicators for water quality, a particular focus was set on the temporal and spatial dynamics of suspended particulate matter (SPM) and Chlorophyll-a (Chl-a). The German Federal Institute of Hydrology (BfG) was using the Weser and Elbe estuaries as test cases to compare in-situ measurements with results obtained from a temporal series of automatically generated maps of SPM distributions based on remote sensing data. Maps of SPM and Chl-a distributions in European inland rivers and alpine lakes were generated by the Freshmon Project. Earth observation based products are a valuable source for additional data that can well supplement in-situ monitoring. For 2015, the BfG and the Institute for Lake Research of the State Institute for the Environment, Measurements and Nature Conservation of Baden-Wuerttemberg, Germany (LUBW) are in the process to start implementing an operational service for monitoring SPM and Chl-a based on satellite images (Landsat 7 & 8, Sentinel 2, and if required other systems with higher spatial resolution, e.g. Rapid Eye). In this 2-years project, which is part of the European Copernicus Programme, the operational service will be set up for - the inland rivers of Rhine and Elbe - the North Sea estuaries of Elbe, Weser and Ems. Furthermore - Lake Constance and other lakes located within the Federal State of Baden-Wuerttemberg. In future, the service can be implemented for other rivers and lakes as well. Key feature of the project is a data base that holds the stock of geo-referenced maps of SPM and Chl-a distributions. Via web-based portals (e.g. GGInA - geo-portal of the BfG; UIS - environmental information system of the

  8. Analytical Prediction of the Spin Stabilized Satellite's Attitude Using The Solar Radiation Torque

    International Nuclear Information System (INIS)

    Motta, G B; Carvalho, M V; Zanardi, M C

    2013-01-01

    The aim of this paper is to present an analytical solution for the spin motion equations of spin-stabilized satellite considering only the influence of solar radiation torque. The theory uses a cylindrical satellite on a circular orbit and considers that the satellite is always illuminated. The average components of this torque were determined over an orbital period. These components are substituted in the spin motion equations in order to get an analytical solution for the right ascension and declination of the satellite spin axis. The time evolution for the pointing deviation of the spin axis was also analyzed. These solutions were numerically implemented and compared with real data of the Brazilian Satellite of Data Collection – SCD1 an SCD2. The results show that the theory has consistency and can be applied to predict the spin motion of spin-stabilized artificial satellites

  9. Thermally activated, single component epoxy systems

    KAUST Repository

    Unruh, David A.; Pastine, Stefan J.; Moreton, Jessica C.; Frechet, Jean

    2011-01-01

    A single component epoxy system in which the resin and hardener components found in many two-component epoxies are combined onto the same molecule is described. The single molecule precursor to the epoxy resin contains both multiple epoxide moieties and a diamine held latent by thermally degradable carbamate linkages. These bis-carbamate "single molecule epoxies" have an essentially infinite shelf life and access a significant range in curing temperatures related to the structure of the carbamate linkages used. © 2011 American Chemical Society.

  10. Thermally activated, single component epoxy systems

    KAUST Repository

    Unruh, David A.

    2011-08-23

    A single component epoxy system in which the resin and hardener components found in many two-component epoxies are combined onto the same molecule is described. The single molecule precursor to the epoxy resin contains both multiple epoxide moieties and a diamine held latent by thermally degradable carbamate linkages. These bis-carbamate "single molecule epoxies" have an essentially infinite shelf life and access a significant range in curing temperatures related to the structure of the carbamate linkages used. © 2011 American Chemical Society.

  11. Tracking and Data Relay Satellite System user impact and network compatibility study. [antenna design and telecommunication links

    Science.gov (United States)

    1973-01-01

    The report contains data on antenna configurations for the low data rate users of the Tracking and Data Relay Satellite System (TDRSS). It treats the coverage and mutual visibility considerations between the user satellites and the relay satellites and relates these considerations to requirements of antenna beamwidth and fractional user orbital coverage. A final section includes user/TDRS telecommunication link budgets and forward and return link data rate tradeoffs.

  12. Instructional Television: A Comparative Study of Satellites and Other Delivery Systems. Final Report.

    Science.gov (United States)

    Syracuse Univ. Research Corp., NY. Educational Policy Research Center.

    This report summarizes the results of a two year investigation into the feasibility of using telecommunications satellites for educational purposes compared with the use of other delivery systems. Different systems emerge as preferable depending upon such circumstances as topography, number, and geographic distribution of participants, and the…

  13. Development of satellite position location system for aircraft and boat distress beacons

    Science.gov (United States)

    Kahle, D. R.

    1982-01-01

    An international satellite system for the detection and location of distress beacons carried on aircraft and vessels is in its technical checkout phase. User demonstration and evaluation (D&E) will start in early 1983 and continue for two years. The D&E phase and a subsequent transition period will form the basis for improved search and rescue operations for the 1980's and beyond. The system, called COSPAS/SARSAT, has international participation involving the U.S., Canada, and France as SARSAT members and joint participation with the Soviet Union's COSPAS Project. Norway and the U.K. have recently joined as investigators. Average position location error of the satellite aided processing is expected to be from 10-20KM for the existing 121.5/243 MHz distress beacons and from 2-5KM for experimental beacons transmitting in the 406 MHz band.

  14. PS2013 Satellite Workshop on Photosynthetic Light-Harvesting Systems

    Energy Technology Data Exchange (ETDEWEB)

    Niederman, Robert A. [Rutgers Univ., New Brunswick, NJ (United States); Blankenship, Robert E. [Washington Univ., St. Louis, MO (United States); Frank, Harry A. [Univ. of Connecticut, Storrs, CT (United States)

    2015-02-07

    These funds were used for partial support of the PS2013 Satellite Workshop on Photosynthetic Light-Harvesting Systems, that was held on 8-11 August, 2013, at Washington University, St. Louis, MO. This conference, held in conjunction with the 16th International Congress on Photosynthesis/St. Louis, continued a long tradition of light-harvesting satellite conferences that have been held prior to the previous six international photosynthesis congresses. In this Workshop, the basis was explored for the current interest in replacing fossil fuels with energy sources derived form direct solar radiation, coupled with light-driven electron transport in natural photosynthetic systems and how they offer a valuable blueprint for conversion of sunlight to useful energy forms. This was accomplished through sessions on the initial light-harvesting events in the biological conversion of solar energy to chemically stored energy forms, and how these natural photosynthetic processes serve as a guide to the development of robust bio-hybrid and artificial systems for solar energy conversion into both electricity or chemical fuels. Organized similar to a Gordon Research Conference, a lively, informal and collegial setting was established, highlighting the exchange of exciting new data and unpublished results from ongoing studies. A significant amount of time was set aside for open discussion and interactive poster sessions, with a special session devoted to oral presentations by talented students and postdoctoral fellows judged to have the best posters. This area of research has seen exceptionally rapid progress in recent years, with the availability of a number of antenna protein structures at atomic resolution, elucidation of the molecular surface architecture of native photosynthetic membranes by atomic force microscopy and the maturing of ultrafast spectroscopic and molecular biological techniques for the investigation and manipulation of photosynthetic systems. The conferees

  15. Solar power satellite life-cycle energy recovery consideration

    Science.gov (United States)

    Weingartner, S.; Blumenberg, J.

    The construction, in-orbit installation and maintenance of a solar power satellite (SPS) will demand large amounts of energy. As a minimum requirement for an energy effective power satellite it is asked that this amount of energy be recovered. The energy effectiveness in this sense resulting in a positive net energy balance is a prerequisite for cost-effective power satellite. This paper concentrates on life-cycle energy recovery instead on monetary aspects. The trade-offs between various power generation systems (different types of solar cells, solar dynamic), various construction and installation strategies (using terrestrial or extra-terrestrial resources) and the expected/required lifetime of the SPS are reviewed. The presented work is based on a 2-year study performed at the Technical University of Munich. The study showed that the main energy which is needed to make a solar power satellite a reality is required for the production of the solar power components (up to 65%), especially for the solar cell production. Whereas transport into orbit accounts in the order of 20% and the receiving station on earth (rectenna) requires about 15% of the total energy investment. The energetic amortization time, i.e. the time the SPS has to be operational to give back the amount of energy which was needed for its production installation and operation, is about two years.

  16. Compressing interpreted satellite imagery for geographic information systems applications over extensive regions

    Science.gov (United States)

    Miller, Stephan W.

    1981-01-01

    Image processing systems (IPS) and techniques effectively transform satellite imagery into data for input into a spatial database. Geographic information systems (GIS), consisting of graphic input and spatial database management subsystems, are capable of processing digital map and map overlay data to build and manipulate a spatial database. These systems can be successfully integrated to create a successful spatial data handling capability provided certain obstacle are understood and overcome.

  17. Cibola flight experiment satellite

    Science.gov (United States)

    Davies, P.; Liddle, Doug; Paffett, John; Sweeting, Martin; Curiel, A.; Sun, Wei; Eves, Stuart

    2004-11-01

    In order to achieve an "economy of scale" with respect to payload capacity the major trend in telecommunications satellites is for larger and larger platforms. With these large platforms the level of integration between platform and payload is increasing leading to longer delivery schedules. The typical lifecycle for procurement of these large telecommunications satellites is now 3-6 years depending on the level of non-recurring engineering needed. Surrey Satellite Technology Ltd (SSTL) has designed a low-cost platform aimed at telecommunications and navigation applications. SSTL's Geostationary Minisatellite Platform (GMP) is a new entrant addressing the lower end of the market with payloads up to 250kg requiring less than 1.5 kW power. The British National Space Centre through the MOSAIC Small Satellite Initiative supported the development of GMP. The main design goals for GMP are low-cost for the complete mission including launch and operations and a platform allowing flexible payload accommodation. GMP is specifically designed to allow rapid development and deployment with schedules typically between 1 and 2 years from contract signature to flight readiness. GMP achieves these aims by a modular design where the level of integration between the platform and payload is low. The modular design decomposes the satellite into three major components - the propulsion bay, the avionics bay and the payload module. Both the propulsion and avionics bays are reusable, largely unchanged, and independent of the payload configuration. Such a design means that SSTL or a 3rd party manufacturer can manufacture the payload in parallel to the platform with integration taking place quite late in the schedule. In July 2003 SSTL signed a contract for ESA's first Galileo navigation satellite known as GSTBV2/A. The satellite is based on GMP and ESA plan to launch it into a MEO orbit late in 2005. The second flight of GMP is likely to be in 2006 carrying a geostationary payload

  18. An Alternative Inter-Satellite Calibration of the UMD HIRS OLR Retrievals

    Science.gov (United States)

    Robertson, Franklin R.; Lee, Hai-Tien

    2012-01-01

    Outgoing Longwave Radiation (OLR) at the top-of-atmosphere (TOA) is a fundamental component of Earth's energy balance and represents the heat energy in the thermal bands rejected to space by the planet. Determination of OLR from satellites has a long and storied history, but the observational record remains largely fragmented with gaps in satellite measurements over the past three decades. Perhaps the most semi-continuous set of retrievals comes from the University of Maryland (UMD) algorithm that uses four HIRS (High Resolution Infrared Sounder) channels on the NOAA polar orbiting satellites to estimate OLR. This data set shows great promise in helping to bridge the discontinuous ERBS (Earth Radiation Budget Satellite) and CERES (Clouds and the Earth s Radiant Energy System) measurements. However, significant satellite inter-calibration biases persist with the present UMD data, principally outside the tropics. Difficulties relate to the combination of drift of the satellite equator crossing time through the diurnal cycle and changes in HIRS channel response function design. Here we show how an ad hoc recalibration of the UMD retrievals among the different satellites removes much of the remaining uncertainty due to diurnal drift of the satellite orbit. The adjusted HIRS data (using no other external information) show much better agreement with OLR from the European Center Interim Reanalysis (EC-Int), longer-term signals in the Global Energy and Water Cycle Experiment / Surface Radiation Budget (GEWEX/SRB) retrievals, and also agree well with ERBS and CERES OLR measurements. These results augur well for narrowing the uncertainties in multi-decadal estimates of this important climate variable.

  19. Potential markets for advanced satellite communications

    Science.gov (United States)

    Adamson, Steven; Roberts, David; Schubert, Leroy; Smith, Brian; Sogegian, Robert; Walters, Daniel

    1993-09-01

    This report identifies trends in the volume and type of traffic offered to the U.S. domestic communications infrastructure and extrapolates these trends through the year 2011. To describe how telecommunications service providers are adapting to the identified trends, this report assesses the status, plans, and capacity of the domestic communications infrastructure. Cable, satellite, and radio components of the infrastructure are examined separately. The report also assesses the following major applications making use of the infrastructure: (1) Broadband services, including Broadband Integrated Services Digital Network (BISDN), Switched Multimegabit Data Service (SMDS), and frame relay; (2) mobile services, including voice, location, and paging; (3) Very Small Aperture Terminals (VSAT), including mesh VSAT; and (4) Direct Broadcast Satellite (DBS) for audio and video. The report associates satellite implementation of specific applications with market segments appropriate to their features and capabilities. The volume and dollar value of these market segments are estimated. For the satellite applications able to address the needs of significant market segments, the report also examines the potential of each satellite-based application to capture business from alternative technologies.

  20. Potential markets for advanced satellite communications

    Science.gov (United States)

    Adamson, Steven; Roberts, David; Schubert, Leroy; Smith, Brian; Sogegian, Robert; Walters, Daniel

    1993-01-01

    This report identifies trends in the volume and type of traffic offered to the U.S. domestic communications infrastructure and extrapolates these trends through the year 2011. To describe how telecommunications service providers are adapting to the identified trends, this report assesses the status, plans, and capacity of the domestic communications infrastructure. Cable, satellite, and radio components of the infrastructure are examined separately. The report also assesses the following major applications making use of the infrastructure: (1) Broadband services, including Broadband Integrated Services Digital Network (BISDN), Switched Multimegabit Data Service (SMDS), and frame relay; (2) mobile services, including voice, location, and paging; (3) Very Small Aperture Terminals (VSAT), including mesh VSAT; and (4) Direct Broadcast Satellite (DBS) for audio and video. The report associates satellite implementation of specific applications with market segments appropriate to their features and capabilities. The volume and dollar value of these market segments are estimated. For the satellite applications able to address the needs of significant market segments, the report also examines the potential of each satellite-based application to capture business from alternative technologies.

  1. Individual Global Navigation Satellite Systems in the Space Service Volume

    Science.gov (United States)

    Force, Dale A.

    2015-01-01

    Besides providing position, navigation, and timing (PNT) to terrestrial users, GPS is currently used to provide for precision orbit determination, precise time synchronization, real-time spacecraft navigation, and three-axis control of Earth orbiting satellites. With additional Global Navigation Satellite Systems (GNSS) coming into service (GLONASS, Beidou, and Galileo), it will be possible to provide these services by using other GNSS constellations. The paper, "GPS in the Space Service Volume," presented at the ION GNSS 19th International Technical Meeting in 2006 (Ref. 1), defined the Space Service Volume, and analyzed the performance of GPS out to 70,000 km. This paper will report a similar analysis of the performance of each of the additional GNSS and compare them with GPS alone. The Space Service Volume, defined as the volume between 3,000 km altitude and geosynchronous altitude, as compared with the Terrestrial Service Volume between the surface and 3,000 km. In the Terrestrial Service Volume, GNSS performance will be similar to performance on the Earth's surface. The GPS system has established signal requirements for the Space Service Volume. A separate paper presented at the conference covers the use of multiple GNSS in the Space Service Volume.

  2. Satellite Power Systems (SPS) concept definition study, exhibit C. Volume 2, part 2: System engineering, cost and programmatics

    Science.gov (United States)

    Hanley, G. M.

    1979-01-01

    Volume 2, Part 2, of a seven volume Satellite Power Systems (SPS) report is presented. Part 2 covers cost and programmatics and is divided into four sections. The first section gives illustrations of the SPS reference satellite and rectenna concept, and an overall scenario for SPS space transportation involvement. The second section presents SPS program plans for the implementation of PHASE C/D activities. These plans describe SPS program schedules and networks, critical items of systems evolution/technology development, and the natural resources analysis. The fourth section presents summary comments on the methods and rationale followed in arriving at the results documented. Suggestions are also provided in those areas where further analysis or evaluation will enhance SPS cost and programmatic definitions.

  3. Multilayer electronic component systems and methods of manufacture

    Science.gov (United States)

    Thompson, Dane (Inventor); Wang, Guoan (Inventor); Kingsley, Nickolas D. (Inventor); Papapolymerou, Ioannis (Inventor); Tentzeris, Emmanouil M. (Inventor); Bairavasubramanian, Ramanan (Inventor); DeJean, Gerald (Inventor); Li, RongLin (Inventor)

    2010-01-01

    Multilayer electronic component systems and methods of manufacture are provided. In this regard, an exemplary system comprises a first layer of liquid crystal polymer (LCP), first electronic components supported by the first layer, and a second layer of LCP. The first layer is attached to the second layer by thermal bonds. Additionally, at least a portion of the first electronic components are located between the first layer and the second layer.

  4. ARM Radiosondes for National Polar-Orbiting Operational Environmental Satellite System Preparatory Project Validation Field Campaign Report

    Energy Technology Data Exchange (ETDEWEB)

    Borg, Lori [Univ. of Wisconsin, Madison, WI (United States); Tobin, David [Univ. of Wisconsin, Madison, WI (United States); Reale, Anthony [National Oceanic and Atmospheric Administration (NOAA), Washington, DC (United States); Knuteson, Robert [Univ. of Wisconsin, Madison, WI (United States); Feltz, Michelle [Univ. of Wisconsin, Madison, WI (United States); Liu, Mark [National Oceanic and Atmospheric Administration (NOAA), Washington, DC (United States); Holdridge, Donna J [Argonne National Lab. (ANL), Argonne, IL (United States); Mather, James [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2017-06-01

    This IOP has been a coordinated effort involving the U.S. Department of Energy (DOE) Atmospheric Radiation (ARM) Climate Research Facility, the University of Wisconsin (UW)-Madison, and the JPSS project to validate SNPP NOAA Unique Combined Atmospheric Processing System (NUCAPS) temperature and moisture sounding products from the Cross-track Infrared Sounder (CrIS) and the Advanced Technology Microwave Sounder (ATMS). In this arrangement, funding for radiosondes was provided by the JPSS project to ARM. These radiosondes were launched coincident with the SNPP satellite overpasses (OP) at four of the ARM field sites beginning in July 2012 and running through September 2017. Combined with other ARM data, an assessment of the radiosonde data quality was performed and post-processing corrections applied producing an ARM site Best Estimate (BE) product. The SNPP targeted radiosondes were integrated into the NOAA Products Validation System (NPROVS+) system, which collocated the radiosondes with satellite products (NOAA, National Aeronautics and Space Administration [NASA], European Organisation for the Exploitation of Meteorological Satellites [EUMETSAT], Geostationary Operational Environmental Satellite [GOES], Constellation Observing System for Meteorology, Ionosphere, and Climate [COSMIC]) and Numerical Weather Prediction (NWP forecasts for use in product assessment and algorithm development. This work was a fundamental, integral, and cost-effective part of the SNPP validation effort and provided critical accuracy assessments of the SNPP temperature and water vapor soundings.

  5. Reference satellite selection method for GNSS high-precision relative positioning

    Directory of Open Access Journals (Sweden)

    Xiao Gao

    2017-03-01

    Full Text Available Selecting the optimal reference satellite is an important component of high-precision relative positioning because the reference satellite directly influences the strength of the normal equation. The reference satellite selection methods based on elevation and positional dilution of precision (PDOP value were compared. Results show that all the above methods cannot select the optimal reference satellite. We introduce condition number of the design matrix in the reference satellite selection method to improve structure of the normal equation, because condition number can indicate the ill condition of the normal equation. The experimental results show that the new method can improve positioning accuracy and reliability in precise relative positioning.

  6. Network design consideration of a satellite-based mobile communications system

    Science.gov (United States)

    Yan, T.-Y.

    1986-01-01

    Technical considerations for the Mobile Satellite Experiment (MSAT-X), the ground segment testbed for the low-cost spectral efficient satellite-based mobile communications technologies being developed for the 1990's, are discussed. The Network Management Center contains a flexible resource sharing algorithm, the Demand Assigned Multiple Access scheme, which partitions the satellite transponder bandwidth among voice, data, and request channels. Satellite use of multiple UHF beams permits frequency reuse. The backhaul communications and the Telemetry, Tracking and Control traffic are provided through a single full-coverage SHF beam. Mobile Terminals communicate with the satellite using UHF. All communications including SHF-SHF between Base Stations and/or Gateways, are routed through the satellite. Because MSAT-X is an experimental network, higher level network protocols (which are service-specific) will be developed only to test the operation of the lowest three levels, the physical, data link, and network layers.

  7. Commercial Off-the-Shelf (COTS) Components and Enterprise Component Information System (eCIS)

    Energy Technology Data Exchange (ETDEWEB)

    John Minihan; Ed Schmidt; Greg Enserro; Melissa Thompson

    2008-06-30

    The purpose of the project was to develop the processes for using commercial off-the-shelf (COTS) parts for WR production and to put in place a system for implementing the data management tools required to disseminate, store, track procurement, and qualify vendors. Much of the effort was devoted to determining if the use of COTS parts was possible. A basic question: How does the Nuclear Weapons Complex (NWC) begin to use COTS in the weapon Stockpile Life Extension Programs with high reliability, affordability, while managing risk at acceptable levels? In FY00, it was determined that a certain weapon refurbishment program could not be accomplished without the use of COTS components. The elements driving the use of COTS components included decreased cost, greater availability, and shorter delivery time. Key factors that required implementation included identifying the best suppliers and components, defining life cycles and predictions of obsolescence, testing the feasibility of using COTS components with a test contractor to ensure capability, as well as quality and reliability, and implementing the data management tools required to disseminate, store, track procurement, and qualify vendors. The primary effort of this project then was to concentrate on the risks involved in the use of COTS and address the issues of part and vendor selection, procurement and acceptance processes, and qualification of the parts via part and sample testing. The Enterprise Component Information System (eCIS) was used to manage the information generated by the COTS process. eCIS is a common interface for both the design and production of NWC components and systems integrating information between SNL National Laboratory (SNL) and the Kansas City Plant (KCP). The implementation of COTS components utilizes eCIS from part selection through qualification release. All part related data is linked across an unclassified network for access by both SNL and KCP personnel. The system includes not

  8. A space weather forecasting system with multiple satellites based on a self-recognizing network.

    Science.gov (United States)

    Tokumitsu, Masahiro; Ishida, Yoshiteru

    2014-05-05

    This paper proposes a space weather forecasting system at geostationary orbit for high-energy electron flux (>2 MeV). The forecasting model involves multiple sensors on multiple satellites. The sensors interconnect and evaluate each other to predict future conditions at geostationary orbit. The proposed forecasting model is constructed using a dynamic relational network for sensor diagnosis and event monitoring. The sensors of the proposed model are located at different positions in space. The satellites for solar monitoring equip with monitoring devices for the interplanetary magnetic field and solar wind speed. The satellites orbit near the Earth monitoring high-energy electron flux. We investigate forecasting for typical two examples by comparing the performance of two models with different numbers of sensors. We demonstrate the prediction by the proposed model against coronal mass ejections and a coronal hole. This paper aims to investigate a possibility of space weather forecasting based on the satellite network with in-situ sensing.

  9. A Space Weather Forecasting System with Multiple Satellites Based on a Self-Recognizing Network

    Directory of Open Access Journals (Sweden)

    Masahiro Tokumitsu

    2014-05-01

    Full Text Available This paper proposes a space weather forecasting system at geostationary orbit for high-energy electron flux (>2 MeV. The forecasting model involves multiple sensors on multiple satellites. The sensors interconnect and evaluate each other to predict future conditions at geostationary orbit. The proposed forecasting model is constructed using a dynamic relational network for sensor diagnosis and event monitoring. The sensors of the proposed model are located at different positions in space. The satellites for solar monitoring equip with monitoring devices for the interplanetary magnetic field and solar wind speed. The satellites orbit near the Earth monitoring high-energy electron flux. We investigate forecasting for typical two examples by comparing the performance of two models with different numbers of sensors. We demonstrate the prediction by the proposed model against coronal mass ejections and a coronal hole. This paper aims to investigate a possibility of space weather forecasting based on the satellite network with in-situ sensing.

  10. Computing and Visualizing Reachable Volumes for Maneuvering Satellites

    Science.gov (United States)

    Jiang, M.; de Vries, W.; Pertica, A.; Olivier, S.

    2011-09-01

    Detecting and predicting maneuvering satellites is an important problem for Space Situational Awareness. The spatial envelope of all possible locations within reach of such a maneuvering satellite is known as the Reachable Volume (RV). As soon as custody of a satellite is lost, calculating the RV and its subsequent time evolution is a critical component in the rapid recovery of the satellite. In this paper, we present a Monte Carlo approach to computing the RV for a given object. Essentially, our approach samples all possible trajectories by randomizing thrust-vectors, thrust magnitudes and time of burn. At any given instance, the distribution of the "point-cloud" of the virtual particles defines the RV. For short orbital time-scales, the temporal evolution of the point-cloud can result in complex, multi-reentrant manifolds. Visualization plays an important role in gaining insight and understanding into this complex and evolving manifold. In the second part of this paper, we focus on how to effectively visualize the large number of virtual trajectories and the computed RV. We present a real-time out-of-core rendering technique for visualizing the large number of virtual trajectories. We also examine different techniques for visualizing the computed volume of probability density distribution, including volume slicing, convex hull and isosurfacing. We compare and contrast these techniques in terms of computational cost and visualization effectiveness, and describe the main implementation issues encountered during our development process. Finally, we will present some of the results from our end-to-end system for computing and visualizing RVs using examples of maneuvering satellites.

  11. Computing and Visualizing Reachable Volumes for Maneuvering Satellites

    International Nuclear Information System (INIS)

    Jiang, M.; de Vries, W.H.; Pertica, A.J.; Olivier, S.S.

    2011-01-01

    Detecting and predicting maneuvering satellites is an important problem for Space Situational Awareness. The spatial envelope of all possible locations within reach of such a maneuvering satellite is known as the Reachable Volume (RV). As soon as custody of a satellite is lost, calculating the RV and its subsequent time evolution is a critical component in the rapid recovery of the satellite. In this paper, we present a Monte Carlo approach to computing the RV for a given object. Essentially, our approach samples all possible trajectories by randomizing thrust-vectors, thrust magnitudes and time of burn. At any given instance, the distribution of the 'point-cloud' of the virtual particles defines the RV. For short orbital time-scales, the temporal evolution of the point-cloud can result in complex, multi-reentrant manifolds. Visualization plays an important role in gaining insight and understanding into this complex and evolving manifold. In the second part of this paper, we focus on how to effectively visualize the large number of virtual trajectories and the computed RV. We present a real-time out-of-core rendering technique for visualizing the large number of virtual trajectories. We also examine different techniques for visualizing the computed volume of probability density distribution, including volume slicing, convex hull and isosurfacing. We compare and contrast these techniques in terms of computational cost and visualization effectiveness, and describe the main implementation issues encountered during our development process. Finally, we will present some of the results from our end-to-end system for computing and visualizing RVs using examples of maneuvering satellites.

  12. The limits of direct satellite tracking with the Global Positioning System (GPS)

    Science.gov (United States)

    Bertiger, W. I.; Yunck, T. P.

    1988-01-01

    Recent advances in high precision differential Global Positioning System-based satellite tracking can be applied to the more conventional direct tracking of low earth satellites. To properly evaluate the limiting accuracy of direct GPS-based tracking, it is necessary to account for the correlations between the a-priori errors in GPS states, Y-bias, and solar pressure parameters. These can be obtained by careful analysis of the GPS orbit determination process. The analysis indicates that sub-meter accuracy can be readily achieved for a user above 1000 km altitude, even when the user solution is obtained with data taken 12 hours after the data used in the GPS orbit solutions.

  13. VLBI Observations of Geostationary Satellites

    Science.gov (United States)

    Artz, T.; Nothnagel, A.; La Porta, L.

    2013-08-01

    For a consistent realization of a Global Geodetic Observing System (GGOS), a proper tie between the individual global reference systems used in the analysis of space-geodetic observations is a prerequisite. For instance, the link between the terrestrial, the celestial and the dynamic reference system of artificial Earth orbiters may be realized by Very Long O Baseline Interferometry (VLBI) observations of one or several satellites. In the preparation phase for a dedicated satellite mission, one option to realize this is using a geostationary (GEO) satellite emitting a radio signal in X-Band and/or S-Band and, thus, imitating a quasar. In this way, the GEO satellite can be observed by VLBI together with nearby quasars and the GEO orbit can, thus, be determined in a celestial reference frame. If the GEO satellite is, e.g., also equipped with a GNSS-type transmitter, a further tie between GNSS and VLBI may be realized. In this paper, a concept for the generation of a radio signal is shown. Furthermore, simulation studies for estimating the GEO position are presented with a GEO satellite included in the VLBI schedule. VLBI group delay observations are then simulated for the quasars as well as for the GEO satellite. The analysis of the simulated observations shows that constant orbit changes are adequately absorbed by estimated orbit parameters. Furthermore, the post-fit residuals are comparable to those from real VLBI sessions.

  14. Utilization of satellite remote sensing data on land surface characteristics in water and heat balance component modeling for vegetation covered territories

    Science.gov (United States)

    Muzylev, Eugene; Uspensky, Alexander; Startseva, Zoya; Volkova, Elena; Kukharsky, Alexander; Uspensky, Sergey

    2010-05-01

    The model of vertical water and heat transfer in the "soil-vegetation-atmosphere" system (SVAT) for vegetation covered territory has been developed, allowing assimilating satellite remote sensing data on land surface condition as well as accounting for heterogeneities of vegetation and meteorological characteristics. The model provides the calculation of water and heat balance components (such as evapotranspiration Ev, soil water content W, sensible and latent heat fluxes and others ) as well as vertical soil moisture and temperature distributions, temperatures of soil surface and foliage, land surface brightness temperature for any time interval within vegetation season. To describe the landscape diversity soil constants and leaf area index LAI, vegetation cover fraction B, and other vegetation characteristics are used. All these values are considered to be the model parameters. Territory of Kursk region with square about 15 thousands km2 situated in the Black Earth zone of Central Russia was chosen for investigation. Satellite-derived estimates of land surface characteristics have been constructed under cloud-free condition basing AVHRR/NOAA, MODIS/EOS Terra and EOS Aqua, SEVIRI/Meteosat-8, -9 data. The developed technologies of AVHRR data thematic processing have been refined providing the retrieval of surface skin brightness temperature Tsg, air foliage temperature Ta, efficient surface temperature Ts.eff and emissivity E, as well as derivation of vegetation index NDVI, B, and LAI. The linear regression estimators for Tsg, Ta and LAI have been built using representative training samples for 2003-2009 vegetation seasons. The updated software package has been applied for AVHRR data thematic processing to generate named remote sensing products for various dates of the above vegetation seasons. The error statistics of Ta, Ts.eff and Тsg derivation has been investigated for various samples using comparison with in-situ measurements that has given RMS errors in the

  15. Detection of the Velocity Shear Effect on the Spatial Distributions of the Galactic Satellites in Isolated Systems

    Science.gov (United States)

    Lee, Jounghun; Choi, Yun-Young

    2015-02-01

    We report a detection of the effect of the large-scale velocity shear on the spatial distributions of the galactic satellites around the isolated hosts. Identifying the isolated galactic systems, each of which consists of a single host galaxy and its satellites, from the Seventh Data Release of the Sloan Digital Sky Survey and reconstructing linearly the velocity shear field in the local universe, we measure the alignments between the relative positions of the satellites from their isolated hosts and the principal axes of the local velocity shear tensors projected onto the plane of sky. We find a clear signal that the galactic satellites in isolated systems are located preferentially along the directions of the minor principal axes of the large-scale velocity shear field. Those galactic satellites that are spirals, are brighter, are located at distances larger than the projected virial radii of the hosts, and belong to the spiral hosts yield stronger alignment signals, which implies that the alignment strength depends on the formation and accretion epochs of the galactic satellites. It is also shown that the alignment strength is quite insensitive to the cosmic web environment, as well as the size and luminosity of the isolated hosts. Although this result is consistent with the numerical finding of Libeskind et al. based on an N-body experiment, owing to the very low significance of the observed signals, it remains inconclusive whether or not the velocity shear effect on the satellite distribution is truly universal.

  16. DETECTION OF THE VELOCITY SHEAR EFFECT ON THE SPATIAL DISTRIBUTIONS OF THE GALACTIC SATELLITES IN ISOLATED SYSTEMS

    International Nuclear Information System (INIS)

    Lee, Jounghun; Choi, Yun-Young

    2015-01-01

    We report a detection of the effect of the large-scale velocity shear on the spatial distributions of the galactic satellites around the isolated hosts. Identifying the isolated galactic systems, each of which consists of a single host galaxy and its satellites, from the Seventh Data Release of the Sloan Digital Sky Survey and reconstructing linearly the velocity shear field in the local universe, we measure the alignments between the relative positions of the satellites from their isolated hosts and the principal axes of the local velocity shear tensors projected onto the plane of sky. We find a clear signal that the galactic satellites in isolated systems are located preferentially along the directions of the minor principal axes of the large-scale velocity shear field. Those galactic satellites that are spirals, are brighter, are located at distances larger than the projected virial radii of the hosts, and belong to the spiral hosts yield stronger alignment signals, which implies that the alignment strength depends on the formation and accretion epochs of the galactic satellites. It is also shown that the alignment strength is quite insensitive to the cosmic web environment, as well as the size and luminosity of the isolated hosts. Although this result is consistent with the numerical finding of Libeskind et al. based on an N-body experiment, owing to the very low significance of the observed signals, it remains inconclusive whether or not the velocity shear effect on the satellite distribution is truly universal

  17. Design and Simulation of a Nano-Satellite Attitude Determination System

    Science.gov (United States)

    2009-12-01

    4 D. SURVEY OF CUBESAT ATTITUDE DETERMINATION SYSTEMS... 6 1. Pumpkin IMI ADCS...imagery satellites are going through the same trend in resolution. They have improved in the past decade, from relatively low resolution at about 5m to...this is the nearly complete lack of a pre-packaged ADS. Until August of 2009, there was only one ADS available on the market. It was the Pumpkin

  18. Management approach recommendations. Earth Observatory Satellite system definition study (EOS)

    Science.gov (United States)

    1974-01-01

    Management analyses and tradeoffs were performed to determine the most cost effective management approach for the Earth Observatory Satellite (EOS) Phase C/D. The basic objectives of the management approach are identified. Some of the subjects considered are as follows: (1) contract startup phase, (2) project management control system, (3) configuration management, (4) quality control and reliability engineering requirements, and (5) the parts procurement program.

  19. The investigation of tethered satellite system dynamics

    Science.gov (United States)

    Lorenzini, E. C.

    1986-01-01

    The analysis of the rotational dynamics of the satellite was focused on the rotational amplitude increase of the satellite, with respect to the tether, during retrieval. The dependence of the rotational amplitude upon the tether tension variation to the power 1/4 was thoroughly investigated. The damping of rotational oscillations achievable by reel control was also quantified while an alternative solution that makes use of a lever arm attached with a universal joint to the satellite was proposed. Comparison simulations between the Smithsonian Astrophysical Observatory and the Martin Marietta (MMA) computer code of reteival maneuvers were also carried out. The agreement between the two, completely independent, codes was extremely close, demonstrating the reliability of the models. The slack tether dynamics during reel jams was analytically investigated in order to identify the limits of applicability of the SLACK3 computer code to this particular case. Test runs with SLACK3 were also carried out.

  20. Near-toll quality digital speech transmission in the mobile satellite service

    Science.gov (United States)

    Townes, S. A.; Divsalar, D.

    1986-01-01

    This paper discusses system considerations for near-toll quality digital speech transmission in a 5 kHz mobile satellite system channel. Tradeoffs are shown for power performance versus delay for a 4800 bps speech compression system in conjunction with a 16 state rate 2/3 trellis coded 8PSK modulation system. The suggested system has an additional 150 ms of delay beyond the propagation delay and requires an E(b)/N(0) of about 7 dB for a Ricean channel assumption with line-of-sight to diffuse component ratio of 10 assuming ideal synchronization. An additional loss of 2 to 3 dB is expected for synchronization in fading environment.

  1. Advancing satellite operations with intelligent graphical monitoring systems

    Science.gov (United States)

    Hughes, Peter M.; Shirah, Gregory W.; Luczak, Edward C.

    1993-01-01

    For nearly twenty-five years, spacecraft missions have been operated in essentially the same manner: human operators monitor displays filled with alphanumeric text watching for limit violations or other indicators that signal a problem. The task is performed predominately by humans. Only in recent years have graphical user interfaces and expert systems been accepted within the control center environment to help reduce operator workloads. Unfortunately, the development of these systems is often time consuming and costly. At the NASA Goddard Space Flight Center (GSFC), a new domain specific expert system development tool called the Generic Spacecraft Analyst Assistant (GenSAA) has been developed. Through the use of a highly graphical user interface and point-and-click operation, GenSAA facilitates the rapid, 'programming-free' construction of intelligent graphical monitoring systems to serve as real-time, fault-isolation assistants for spacecraft analysts. Although specifically developed to support real-time satellite monitoring, GenSAA can support the development of intelligent graphical monitoring systems in a variety of space and commercial applications.

  2. Advanced satellite servicing facility studies

    Science.gov (United States)

    Qualls, Garry D.; Ferebee, Melvin J., Jr.

    1988-01-01

    A NASA-sponsored systems analysis designed to identify and recommend advanced subsystems and technologies specifically for a manned Sun-synchronous platform for satellite management is discussed. An overview of system design, manned and unmanned servicing facilities, and representative mission scenarios are given. Mission areas discussed include facility based satellite assembly, checkout, deployment, refueling, repair, and systems upgrade. The ferrying of materials and consumables to and from manufacturing platforms, deorbit, removal, repositioning, or salvage of satellites and debris, and crew rescue of any other manned vehicles are also examined. Impacted subsytems discussed include guidance navigation and control, propulsion, data management, power, thermal control, structures, life support, and radiation management. In addition, technology issues which would have significant impacts on the system design are discussed.

  3. Algorithmic fault tree construction by component-based system modeling

    International Nuclear Information System (INIS)

    Majdara, Aref; Wakabayashi, Toshio

    2008-01-01

    Computer-aided fault tree generation can be easier, faster and less vulnerable to errors than the conventional manual fault tree construction. In this paper, a new approach for algorithmic fault tree generation is presented. The method mainly consists of a component-based system modeling procedure an a trace-back algorithm for fault tree synthesis. Components, as the building blocks of systems, are modeled using function tables and state transition tables. The proposed method can be used for a wide range of systems with various kinds of components, if an inclusive component database is developed. (author)

  4. Investigation of multipactor breakdown in communication satellite microwave co-axial systems

    Science.gov (United States)

    Nagesh, S. K.; Revannasiddiah, D.; Shastry, S. V. K.

    2005-01-01

    Multipactor breakdown or multipactor discharge is a form of high frequency discharge that may occur in microwave components operating at very low pressures. Some RF components of multi-channel communication satellites have co-axial geometry and handle high RF power under near-vacuum conditions. The breakdown occurs due to secondary electron resonance, wherein electrons move back and forth in synchronism with the RF voltage across the gap between the inner and outer conductors of the co-axial structure. If the yield of secondary electrons from the walls of the co-axial structure is greater than unity, then the electron density increases with time and eventually leads to the breakdown. In this paper, the current due to the oscillating electrons in the co-axial geometry has been treated as a radially oriented Hertzian dipole. The electric field, due to this dipole, at any point in the coaxial structure, may then be determined by employing the dyadic Green's function technique. This field has been compared with the field that would exist in the absence of multipactor.

  5. Application Research of Horn Array Multi-Beam Antenna in Reference Source System for Satellite Interference Location

    Science.gov (United States)

    Zhou, Ping; Lin, Hui; Zhang, Qi

    2018-01-01

    The reference source system is a key factor to ensure the successful location of the satellite interference source. Currently, the traditional system used a mechanical rotating antenna which leaded to the disadvantages of slow rotation and high failure-rate, which seriously restricted the system’s positioning-timeliness and became its obvious weaknesses. In this paper, a multi-beam antenna scheme based on the horn array was proposed as a reference source for the satellite interference location, which was used as an alternative to the traditional reference source antenna. The new scheme has designed a small circularly polarized horn antenna as an element and proposed a multi-beamforming algorithm based on planar array. Moreover, the simulation analysis of horn antenna pattern, multi-beam forming algorithm and simulated satellite link cross-ambiguity calculation have been carried out respectively. Finally, cross-ambiguity calculation of the traditional reference source system has also been tested. The comparison between the results of computer simulation and the actual test results shows that the scheme is scientific and feasible, obviously superior to the traditional reference source system.

  6. 17th East European Conference on Advances in Databases and Information Systems and Associated Satellite Events

    CERN Document Server

    Cerquitelli, Tania; Chiusano, Silvia; Guerrini, Giovanna; Kämpf, Mirko; Kemper, Alfons; Novikov, Boris; Palpanas, Themis; Pokorný, Jaroslav; Vakali, Athena

    2014-01-01

    This book reports on state-of-art research and applications in the field of databases and information systems. It includes both fourteen selected short contributions, presented at the East-European Conference on Advances in Databases and Information Systems (ADBIS 2013, September 1-4, Genova, Italy), and twenty-six papers from ADBIS 2013 satellite events. The short contributions from the main conference are collected in the first part of the book, which covers a wide range of topics, like data management, similarity searches, spatio-temporal and social network data, data mining, data warehousing, and data management on novel architectures, such as graphics processing units, parallel database management systems, cloud and MapReduce environments. In contrast, the contributions from the satellite events are organized in five different parts, according to their respective ADBIS satellite event: BiDaTA 2013 - Special Session on Big Data: New Trends and Applications); GID 2013 – The Second International Workshop ...

  7. Component-Based Approach in Learning Management System Development

    Science.gov (United States)

    Zaitseva, Larisa; Bule, Jekaterina; Makarov, Sergey

    2013-01-01

    The paper describes component-based approach (CBA) for learning management system development. Learning object as components of e-learning courses and their metadata is considered. The architecture of learning management system based on CBA being developed in Riga Technical University, namely its architecture, elements and possibilities are…

  8. A communication protocol for mobile satellite systems affected by rain attenuation

    Science.gov (United States)

    Lay, Norman; Dessouky, Khaled

    1992-01-01

    A communication protocol is described that has been developed as part of a K/Ka-band mobile terminal breadboard system to be demonstrated through NASA's Advanced Communications Technology Satellite (ACTS) in 1993. The protocol is aimed at providing the means for enhancing link availability and continuity by supporting real-time data rate selection and changes during rain events. Particular attention is given to the system architecture; types of links, connections, and packets; the protocol procedures; and design rationales.

  9. Maui Space Surveillance System Satellite Categorization Laboratory

    Science.gov (United States)

    Deiotte, R.; Guyote, M.; Kelecy, T.; Hall, D.; Africano, J.; Kervin, P.

    The MSSS satellite categorization laboratory is a fusion of robotics and digital imaging processes that aims to decompose satellite photometric characteristics and behavior in a controlled setting. By combining a robot, light source and camera to acquire non-resolved images of a model satellite, detailed photometric analyses can be performed to extract relevant information about shape features, elemental makeup, and ultimately attitude and function. Using the laboratory setting a detailed analysis can be done on any type of material or design and the results cataloged in a database that will facilitate object identification by "curve-fitting" individual elements in the basis set to observational data that might otherwise be unidentifiable. Currently the laboratory has created, an ST-Robotics five degree of freedom robotic arm, collimated light source and non-focused Apogee camera have all been integrated into a MATLAB based software package that facilitates automatic data acquisition and analysis. Efforts to date have been aimed at construction of the lab as well as validation and verification of simple geometric objects. Simple tests on spheres, cubes and simple satellites show promising results that could lead to a much better understanding of non-resolvable space object characteristics. This paper presents a description of the laboratory configuration and validation test results with emphasis on the non-resolved photometric characteristics for a variety of object shapes, spin dynamics and orientations. The future vision, utility and benefits of the laboratory to the SSA community as a whole are also discussed.

  10. Thermal Analysis of Iodine Satellite (iSAT) from Preliminary Design Review (PDR) to Critical Design Review (CDR)

    Science.gov (United States)

    Mauro, Stephanie

    2016-01-01

    The Iodine Satellite (iSAT) is a 12U cubesat with a primary mission to demonstrate the iodine fueled Hall Effect Thruster (HET) propulsion system. The spacecraft (SC) will operate throughout a one year mission in an effort to mature the propulsion system for use in future applications. The benefit of the HET is that it uses a propellant, iodine, which is easy to store and provides a high thrust-to-mass ratio. This paper will describe the thermal analysis and design of the SC between Preliminary Design Review (PDR) and Critical Design Review (CDR). The design of the satellite has undergone many changes due to a variety of challenges, both before PDR and during the time period discussed in this paper. Thermal challenges associated with the system include a high power density, small amounts of available radiative surface area, localized temperature requirements of the propulsion components, and unknown orbital parameters. The thermal control system is implemented to maintain component temperatures within their respective operational limits throughout the mission, while also maintaining propulsion components at the high temperatures needed to allow gaseous iodine propellant to flow. The design includes heaters, insulation, radiators, coatings, and thermal straps. Currently, the maximum temperatures for several components are near to their maximum operation limit, and the battery is close to its minimum operation limit. Mitigation strategies and planned work to solve these challenges will be discussed.

  11. BMP signaling regulates satellite cell-dependent postnatal muscle growth.

    Science.gov (United States)

    Stantzou, Amalia; Schirwis, Elija; Swist, Sandra; Alonso-Martin, Sonia; Polydorou, Ioanna; Zarrouki, Faouzi; Mouisel, Etienne; Beley, Cyriaque; Julien, Anaïs; Le Grand, Fabien; Garcia, Luis; Colnot, Céline; Birchmeier, Carmen; Braun, Thomas; Schuelke, Markus; Relaix, Frédéric; Amthor, Helge

    2017-08-01

    Postnatal growth of skeletal muscle largely depends on the expansion and differentiation of resident stem cells, the so-called satellite cells. Here, we demonstrate that postnatal satellite cells express components of the bone morphogenetic protein (BMP) signaling machinery. Overexpression of noggin in postnatal mice (to antagonize BMP ligands), satellite cell-specific knockout of Alk3 (the gene encoding the BMP transmembrane receptor) or overexpression of inhibitory SMAD6 decreased satellite cell proliferation and accretion during myofiber growth, and ultimately retarded muscle growth. Moreover, reduced BMP signaling diminished the adult satellite cell pool. Abrogation of BMP signaling in satellite cell-derived primary myoblasts strongly diminished cell proliferation and upregulated the expression of cell cycle inhibitors p21 and p57 In conclusion, these results show that BMP signaling defines postnatal muscle development by regulating satellite cell-dependent myofiber growth and the generation of the adult muscle stem cell pool. © 2017. Published by The Company of Biologists Ltd.

  12. Imprecise system reliability and component importance based on survival signature

    International Nuclear Information System (INIS)

    Feng, Geng; Patelli, Edoardo; Beer, Michael; Coolen, Frank P.A.

    2016-01-01

    The concept of the survival signature has recently attracted increasing attention for performing reliability analysis on systems with multiple types of components. It opens a new pathway for a structured approach with high computational efficiency based on a complete probabilistic description of the system. In practical applications, however, some of the parameters of the system might not be defined completely due to limited data, which implies the need to take imprecisions of component specifications into account. This paper presents a methodology to include explicitly the imprecision, which leads to upper and lower bounds of the survival function of the system. In addition, the approach introduces novel and efficient component importance measures. By implementing relative importance index of each component without or with imprecision, the most critical component in the system can be identified depending on the service time of the system. Simulation method based on survival signature is introduced to deal with imprecision within components, which is precise and efficient. Numerical example is presented to show the applicability of the approach for systems. - Highlights: • Survival signature is a novel way for system reliability and component importance • High computational efficiency based on a complete description of system. • Include explicitly the imprecision, which leads to bounds of the survival function. • A novel relative importance index is proposed as importance measure. • Allows to identify critical components depending on the service time of the system.

  13. Satellite Data Assimilation within KIAPS-LETKF system

    Science.gov (United States)

    Jo, Y.; Lee, S., Sr.; Cho, K.

    2016-12-01

    Korea Institute of Atmospheric Prediction Systems (KIAPS) has been developing an ensemble data assimilation system using four-dimensional local ensemble transform kalman filter (LETKF; Hunt et al., 2007) within KIAPS Integrated Model (KIM), referred to as "KIAPS-LETKF". KIAPS-LETKF system was successfully evaluated with various Observing System Simulation Experiments (OSSEs) with NCAR Community Atmospheric Model - Spectral Element (Kang et al., 2013), which has fully unstructured quadrilateral meshes based on the cubed-sphere grid as the same grid system of KIM. Recently, assimilation of real observations has been conducted within the KIAPS-LETKF system with four-dimensional covariance functions over the 6-hr assimilation window. Then, conventional (e.g., sonde, aircraft, and surface) and satellite (e.g., AMSU-A, IASI, GPS-RO, and AMV) observations have been provided by the KIAPS Package for Observation Processing (KPOP). Wind speed prediction was found most beneficial due to ingestion of AMV and for the temperature prediction the improvement in assimilation is mostly due to ingestion of AMSU-A and IASI. However, some degradation in the simulation of the GPS-RO is presented in the upper stratosphere, even though GPS-RO leads positive impacts on the analysis and forecasts. We plan to test the bias correction method and several vertical localization strategies for radiance observations to improve analysis and forecast impacts.

  14. Experiment In Aeronautical-Mobile/Satellite Communication

    Science.gov (United States)

    Jedrey, Thomas C.; Lay, Norman E.; Dessouky, Khaled

    1992-01-01

    Report describes study of performance of digital mobile/satellite communication terminals of advanced design intended for use in ground stations and airplanes in aeronautical-mobile service. Study was collaboration of NASA, Federal Aviation Administration (FAA), Communications Satellite Corp. (COMSAT), and International Maritime Satellite System (INMARSAT).

  15. The next generation of Palapa satellite (Palapa-C)

    Science.gov (United States)

    Setiawan, Bambang

    The Indonesian Palapa Communication Satellite System was established in Aug. 1976 when the first satellite of Palapa A series (Palapa A1) began operation. The system is owned and operated by PT. Telekomunikasi Indonesia (Telkom), which is a state owned company. The purpose of the system was to unify the telecommunications of the nation. Many years of operation have shown that satellite technology is the best solution for improving telecommunications in Indonesia. The system was started with 2 (two) satellites, each with 12 transponders (for a total of 24), and 40 earth stations. Now the system has 3 (three) satellites, each with 24 transponders (for a total of 72 transponders), and thousands of earth stations. The services have been extended to satisfy the requirements of the region as well as the original objectives. The use of satellite transponders in the region is increasing rapidly. In the next ten years, opportunities in the satellite communications business will become even more attractive. The next generation Palapa-C will incorporate improvements in capacity, quality, and coverage. The new frequency bands (ku- and Extended-C Band) will be used to meet the new transponder capacity requirements.

  16. Land Mobile Satellite Service (LMSS): A conceptual system design and identification of the critical technologies. Part 1: Executive summary

    Science.gov (United States)

    Naderi, F. (Editor)

    1982-01-01

    A system design for a satellite aided land mobile service is described. The advanced system is based on a geostationary satellite which employs a large UHF reflector to communicate with small user antennas on mobile vehicles. It is shown that the system through multiple beam antennas and frequency reuse provides for radiotelephone and dispatch channels. It is concluded that the system is technologically feasible to provide service to rural and remote regions.

  17. Satellite transmission of oceanographic data

    Digital Repository Service at National Institute of Oceanography (India)

    Desa, E.S.; Desai, R.G.P.; DeSa, E.J.

    Oceanographic data collected on a research vessel has been transmitted to a shore laboratory using the INMARSAT maritime satellite The system configuration used, consisted of Satellite Communication Terminals interfaced to desk top computers...

  18. Defense Strategies for Asymmetric Networked Systems with Discrete Components

    Directory of Open Access Journals (Sweden)

    Nageswara S. V. Rao

    2018-05-01

    Full Text Available We consider infrastructures consisting of a network of systems, each composed of discrete components. The network provides the vital connectivity between the systems and hence plays a critical, asymmetric role in the infrastructure operations. The individual components of the systems can be attacked by cyber and physical means and can be appropriately reinforced to withstand these attacks. We formulate the problem of ensuring the infrastructure performance as a game between an attacker and a provider, who choose the numbers of the components of the systems and network to attack and reinforce, respectively. The costs and benefits of attacks and reinforcements are characterized using the sum-form, product-form and composite utility functions, each composed of a survival probability term and a component cost term. We present a two-level characterization of the correlations within the infrastructure: (i the aggregate failure correlation function specifies the infrastructure failure probability given the failure of an individual system or network, and (ii the survival probabilities of the systems and network satisfy first-order differential conditions that capture the component-level correlations using multiplier functions. We derive Nash equilibrium conditions that provide expressions for individual system survival probabilities and also the expected infrastructure capacity specified by the total number of operational components. We apply these results to derive and analyze defense strategies for distributed cloud computing infrastructures using cyber-physical models.

  19. Defense Strategies for Asymmetric Networked Systems with Discrete Components.

    Science.gov (United States)

    Rao, Nageswara S V; Ma, Chris Y T; Hausken, Kjell; He, Fei; Yau, David K Y; Zhuang, Jun

    2018-05-03

    We consider infrastructures consisting of a network of systems, each composed of discrete components. The network provides the vital connectivity between the systems and hence plays a critical, asymmetric role in the infrastructure operations. The individual components of the systems can be attacked by cyber and physical means and can be appropriately reinforced to withstand these attacks. We formulate the problem of ensuring the infrastructure performance as a game between an attacker and a provider, who choose the numbers of the components of the systems and network to attack and reinforce, respectively. The costs and benefits of attacks and reinforcements are characterized using the sum-form, product-form and composite utility functions, each composed of a survival probability term and a component cost term. We present a two-level characterization of the correlations within the infrastructure: (i) the aggregate failure correlation function specifies the infrastructure failure probability given the failure of an individual system or network, and (ii) the survival probabilities of the systems and network satisfy first-order differential conditions that capture the component-level correlations using multiplier functions. We derive Nash equilibrium conditions that provide expressions for individual system survival probabilities and also the expected infrastructure capacity specified by the total number of operational components. We apply these results to derive and analyze defense strategies for distributed cloud computing infrastructures using cyber-physical models.

  20. A high precision dual feedback discrete control system designed for satellite trajectory simulator

    Science.gov (United States)

    Liu, Ximin; Liu, Liren; Sun, Jianfeng; Xu, Nan

    2005-08-01

    Cooperating with the free-space laser communication terminals, the satellite trajectory simulator is used to test the acquisition, pointing, tracking and communicating performances of the terminals. So the satellite trajectory simulator plays an important role in terminal ground test and verification. Using the double-prism, Sun etc in our group designed a satellite trajectory simulator. In this paper, a high precision dual feedback discrete control system designed for the simulator is given and a digital fabrication of the simulator is made correspondingly. In the dual feedback discrete control system, Proportional- Integral controller is used in velocity feedback loop and Proportional- Integral- Derivative controller is used in position feedback loop. In the controller design, simplex method is introduced and an improvement to the method is made. According to the transfer function of the control system in Z domain, the digital fabrication of the simulator is given when it is exposed to mechanism error and moment disturbance. Typically, when the mechanism error is 100urad, the residual standard error of pitching angle, azimuth angle, x-coordinate position and y-coordinate position are 0.49urad, 6.12urad, 4.56urad, 4.09urad respectively. When the moment disturbance is 0.1rad, the residual standard error of pitching angle, azimuth angle, x-coordinate position and y-coordinate position are 0.26urad, 0.22urad, 0.16urad, 0.15urad respectively. The digital fabrication results demonstrate that the dual feedback discrete control system designed for the simulator can achieve the anticipated high precision performance.

  1. Deep Charging Evaluation of Satellite Power and Communication System Components

    Science.gov (United States)

    Schneider, T. A.; Vaughn, J. A.; Chu, B.; Wong, F.; Gardiner, G.; Wright, K. H.; Phillips, B.

    2016-01-01

    A set of deep charging tests has been carried out by NASA's Marshall Space Flight Center on subscale flight-like samples developed by Space Systems/Loral, LLC. The samples, which included solar array wire coupons, a photovoltaic cell coupon, and a coaxial microwave transmission cable, were placed in passive and active (powered) circuit configurations and exposed to electron radiation. The energy of the electron radiation was chosen to deeply penetrate insulating (dielectric) materials on each sample. Each circuit configuration was monitored to determine if potentially damaging electrostatic discharge events (arcs) were developed on the coupon as a result of deep charging. The motivation for the test, along with charging levels, experimental setup, sample details, and results will be discussed.

  2. Selection of fiber-optical components for temperature measurement for satellite applications

    Science.gov (United States)

    Putzer, P.; Kuhenuri Chami, N.; Koch, A. W.; Hurni, A.; Roner, M.; Obermaier, J.; Lemke, N. M. K.

    2017-11-01

    The Hybrid Sensor Bus (HSB) is a modular system for housekeeping measurements for space applications. The focus here is the fiber-optical module and the used fiber-Bragg gratings (FBGs) for temperature measurements at up to 100 measuring points. The fiber-optial module uses a tunable diode laser to scan through the wavelength spectrum and a passive optical network for reading back the reflections from the FBG sensors. The sensors are based on FBGs which show a temperature dependent shift in wavelength, allowing a high accuracy of measurement. The temperature at each sensor is derivated from the sensors Bragg wavelength shift by evaluating the measured spectrum with an FBG peak detection algorithm and by computing the corresponding temperature difference with regard to the calibration value. It is crucial to eliminate unwanted influence on the measurement accuracy through FBG wavelength shifts caused by other reasons than the temperature change. The paper presents gamma radiation test results up to 25 Mrad for standard UV-written FBGs in a bare fiber and in a mechanically housed version. This high total ionizing dose (TID) load comes from a possible location of the fiber outside the satellite's housing, like e.g. on the panels or directly embedded into the satellites structure. Due to the high shift in wavelength of the standard written gratings also the femto-second infrared (fs- IR) writing technique is investigated in more detail. Special focus is given to the deployed fibers for the external sensor network. These fibers have to be mechanically robust and the radiation induced attenuation must be low in order not to influence the system's performance. For this reason different fiber types have been considered and tested to high dose gamma radiation. Dedicated tests proved the absence of enhanced low dose rate sensitivity (ELDRS). Once the fiber has been finally selected, the fs-IR grating will be written to these fibers and the FBGs will be tested in order to

  3. Study on networking issues of medium earth orbit satellite communications systems

    Science.gov (United States)

    Araki, Noriyuki; Shinonaga, Hideyuki; Ito, Yasuhiko

    1993-01-01

    Two networking issues of communications systems with medium earth orbit (MEO) satellites, namely network architectures and location determination and registration methods for hand-held terminals, are investigated in this paper. For network architecture, five candidate architectures are considered and evaluated in terms of signaling traffic. For location determination and registration, two methods are discussed and evaluated.

  4. The Design and Application of Data Storage System in Miyun Satellite Ground Station

    Science.gov (United States)

    Xue, Xiping; Su, Yan; Zhang, Hongbo; Liu, Bin; Yao, Meijuan; Zhao, Shu

    2015-04-01

    China has launched Chang'E-3 satellite in 2013, firstly achieved soft landing on moon for China's lunar probe. Miyun satellite ground station firstly used SAN storage network system based-on Stornext sharing software in Chang'E-3 mission. System performance fully meets the application requirements of Miyun ground station data storage.The Stornext file system is a sharing file system with high performance, supports multiple servers to access the file system using different operating system at the same time, and supports access to data on a variety of topologies, such as SAN and LAN. Stornext focused on data protection and big data management. It is announced that Quantum province has sold more than 70,000 licenses of Stornext file system worldwide, and its customer base is growing, which marks its leading position in the big data management.The responsibilities of Miyun satellite ground station are the reception of Chang'E-3 satellite downlink data and management of local data storage. The station mainly completes exploration mission management, receiving and management of observation data, and provides a comprehensive, centralized monitoring and control functions on data receiving equipment. The ground station applied SAN storage network system based on Stornext shared software for receiving and managing data reliable.The computer system in Miyun ground station is composed by business running servers, application workstations and other storage equipments. So storage systems need a shared file system which supports heterogeneous multi-operating system. In practical applications, 10 nodes simultaneously write data to the file system through 16 channels, and the maximum data transfer rate of each channel is up to 15MB/s. Thus the network throughput of file system is not less than 240MB/s. At the same time, the maximum capacity of each data file is up to 810GB. The storage system planned requires that 10 nodes simultaneously write data to the file system through 16

  5. [Mobile hospital -real time mobile telehealthcare system with ultrasound and CT van using high-speed satellite communication-].

    Science.gov (United States)

    Takizawa, Masaomi; Miyashita, Toyohisa; Murase, Sumio; Kanda, Hirohito; Karaki, Yoshiaki; Yagi, Kazuo; Ohue, Toru

    2003-01-01

    A real-time telescreening system is developed to detect early diseases for rural area residents using two types of mobile vans with a portable satellite station. The system consists of a satellite communication system with 1.5Mbps of the JCSAT-1B satellite, a spiral CT van, an ultrasound imaging van with two video conference system, a DICOM server and a multicast communication unit. The video image and examination image data are transmitted from the van to hospitals and the university simultaneously. Physician in the hospital observes and interprets exam images from the van and watches the video images of the position of ultrasound transducer on screenee in the van. After the observation images, physician explains a results of the examination by the video conference system. Seventy lung CT screening and 203 ultrasound screening were done from March to June 2002. The trial of this real time screening suggested that rural residents are given better healthcare without visit to the hospital. And it will open the gateway to reduce the medical cost and medical divide between city area and rural area.

  6. Cross-polarisation discrimination-induced interference in dual-polarised high-capacity satellite communication systems

    Directory of Open Access Journals (Sweden)

    Abdulkareem Sarki Karasuwa

    2016-05-01

    Full Text Available The design of spectrally-efficient, high-throughput satellite (HTS systems with capacity approaching one terabit per second requires operating at Ka-band frequencies and above, where there are several gigahertz of allocated radio spectrum, using multiple spot beams with dual orthogonal polarisation mode. At these high frequencies, rain attenuation poses a major obstacle to the design of high-availability satellite links which are needed for the realisation of ubiquitous broadband multimedia communication services including high-speed Internet access at rural and remote locations. Furthermore, depolarisation-induced interference in such systems could have a performance-limiting impact if a co-channel cross-polar signal combines with system noise to drive the carrier-to-noise-plus-interference ratio (CNIR below an acceptable threshold. This paper employs real measurement data to investigate the impact of depolarisation-induced interference on dual-polarised HTS systems for temperate and tropical climatic regions. Scenarios that cause significant system performance degradation are analysed, including the effects of signal frequency, antenna size, and regional rainfall rate. The impact of depolarisation on system performance is quantified by the reductions in the CNIR and link availability of a dual-polarised system when compared with those of a similarly-dimensioned single-polarised system.

  7. Ground-Based Global Navigation Satellite System Data (30-second sampling, 1 hour files) from NASA CDDIS

    Data.gov (United States)

    National Aeronautics and Space Administration — Global Navigation Satellite System (GNSS) daily 30-second sampled data available from the Crustal Dynamics Data Information System (CDDIS). Global Navigation...

  8. Coherent systems with multistate components

    International Nuclear Information System (INIS)

    Caldarola, L.

    1980-01-01

    The basic rules of the Boolean algebra with restrictions on variables are briefly recalled. This special type of Boolean algebra allows one to handle fault trees of systems made of multistate (two or more than two states) components. Coherent systems are defined in the case of multistate components. This definition is consistent with that originally suggested by Barlow in the case of binary (two states) components. The basic properties of coherence are described and discussed. Coherent Boolean functions are also defined. It is shown that these functions are irredundant, that is they have only one base which is at the same time complete and irredundant. However, irredundant functions are not necessarily coherent. Finally a simplified algorithm for the calculation of the base of a coherent function is described. In the case that the function is not coherent, the algorithm can be used to reduce the size of the normal disjunctive form of the function. This in turn eases the application of the Nelson algorithm to calculate the complete base of the function. The simplified algorithm has been built in the computer program MUSTAFA-1. In a sample case the use of this algorithm caused a reduction of the CPU time by a factor of about 20. (orig.)

  9. EFFECTS OF RICIAN FADING ON THE OPERATION OF AERONAUTICAL SATELLITE OFDM CHANNEL

    Directory of Open Access Journals (Sweden)

    Volodymyr Kharchenko

    2016-06-01

    Full Text Available The aim of this study is to investigate the influence of Rician fading on messages transmission via the aeronautical satellite OFDM channel with adaptive modulation and the development of a method for estimating the parameters of such a channel. Methods: To study the effect of Rician fading on messages transmission via aeronautical satellite OFDM channel with adaptive modulation the original model of the communication channel “Aircraft-Satellite-Ground Station” was built using software package MATLAB Sіmulіnk. The model includes “Aircraft Transmitter”, “Uplink/Downlink Path”, “Satellite Transponder”, and “Ground Station Receiver”. Each modulator block in the modulation bank performs convolutional coding and puncturing using code rates of ½, ²/3, and ¾, data interleaving, BPSK, QPSK, 16-QAM, and 64-QAM modulation. Results: Dependences of Estimated channel SNR on the ratio between the power of the LOS component and the diffuse component, on the downlink gain and delay in the diffuse component for different Doppler spectrum types and Doppler frequency offsets were obtained. A method for estimating the parameters of the satellite channels with fading was proposed. Discussion: The realistic model of aeronautical satellite OFDM link with Rician fading is developed for the first time on a basis of IEEE 802.11a standard and used for channel parameters evaluation. Proposed in this article approach can be considered as a method for estimating parameters of the channel with fading.

  10. A design proposal of a certain missile tactical command system based on Beidou satellite communication and GPS positioning techniques

    Science.gov (United States)

    Ma, Jian; Hao, Yongsheng; Miao, Jian; Zhang, Jianmao

    2007-11-01

    This paper introduced a design proposal of tactical command system that applied to a kind of anti-tank missile carriers. The tactical command system was made up of embedded computer system based on PC104 bus, Linux operating system, digital military map, Beidou satellite communication equipments and GPS positioning equipments. The geographic coordinates was measured by the GPS receiver, the positioning data, commands and information were transmitted real-time between tactical command systems, tactical command systems and command center, by the Beidou satellite communication systems. The Beidou satellite communication equipments and GPS positioning equipments were integrated to an independent module, exchanging data with embedded computer through RS232 serial ports and USB ports. The decision support system software based on information fusion, calculates positioning data, geography information and battle field information synthetically, shows the position of allies and the position of enemy on the military map, and assesses the various threats of different enemy objects, educes a situation assessment and threat assessment.

  11. Evolution of NASA's Near-Earth Tracking and Data Relay Satellite System (TDRSS)

    Science.gov (United States)

    Flaherty, Roger; Stocklin, Frank; Weinberg, Aaron

    2006-01-01

    NASA's Tracking and Data Relay Satellite System (TDRSS) is now in its 23rd year of operations and its spacecraft fleet includes three second-generation spacecraft launched since the year 2000; a figure illustrates the first generation TDRSS spacecraft. During this time frame the TDRSS has provided communications relay support to a broad range of missions, with emphasis on low-earth-orbiting (LEO) spacecraft that include unmanned science spacecraft (e.g., Hubble Space Telescope), and human spaceflight (Space Shuttle and Space Station). Furthermore, the TDRSS has consistently demonstrated its uniqueness and adaptability in several ways. First, its S- and K-band services, combined with its multi-band/steerable single-access (SA) antennas and ground-based configuration flexibility, have permitted the mission set to expand to unique users such as scientific balloons and launch vehicles. Second, the bent-pipe nature of the system has enabled the introduction of new/improved services via technology insertion and upgrades at each of the ground terminals; a specific example here is the Demand Access Service (DAS), which, for example, is currently providing science-alert support to NASA science missions Third, the bent-pipe nature of the system, combined with the flexible ground-terminal signal processing architecture has permitted the demonstration/vaIidation of new techniques/services/technologies via a real satellite channel; over the past 10+ years these have, for example, included demonstrations/evaluations of emerging modulation/coding techniques. Given NASA's emerging Exploration plans, with missions beginning later this decade and expanding for decades to come, NASA is currently planning the development of a seamless, NASA-wide architecture that must accommodate missions from near-earth to deep space. Near-earth elements include Ground-Network (GN) and Near-Earth Relay (NER) components and both must efficiently and seamlessly support missions that encompass: earth

  12. Efficient medium access control protocol for geostationary satellite systems

    Institute of Scientific and Technical Information of China (English)

    王丽娜; 顾学迈

    2004-01-01

    This paper proposes an efficient medium access control (MAC) protocol based on multifrequency-time division multiple access (MF-TDMA) for geostationary satellite systems deploying multiple spot-beams and onboard processing,which uses a method of random reservation access with movable boundaries to dynamically request the transmission slots and can transmit different types of traffic. The simulation results have shown that our designed MAC protocol can achieve a high bandwidth utilization, while providing the required quality of service (QoS) for each class of service.

  13. Famine Early Warning Systems and Their Use of Satellite Remote Sensing Data

    Science.gov (United States)

    Brown, Molly E.; Essam, Timothy; Leonard, Kenneth

    2011-01-01

    Famine early warning organizations have experience that has much to contribute to efforts to incorporate climate and weather information into economic and political systems. Food security crises are now caused almost exclusively by problems of food access, not absolute food availability, but the role of monitoring agricultural production both locally and globally remains central. The price of food important to the understanding of food security in any region, but it needs to be understood in the context of local production. Thus remote sensing is still at the center of much food security analysis, along with an examination of markets, trade and economic policies during food security analyses. Technology including satellite remote sensing, earth science models, databases of food production and yield, and modem telecommunication systems contributed to improved food production information. Here we present an econometric approach focused on bringing together satellite remote sensing and market analysis into food security assessment in the context of early warning.

  14. Sustained Satellite Missions for Climate Data Records

    Science.gov (United States)

    Halpern, David

    2012-01-01

    Satellite CDRs possess the accuracy, longevity, and stability for sustained moni toring of critical variables to enhance understanding of the global integrated Earth system and predict future conditions. center dot Satellite CDRs are a critical element of a global climate observing system. center dot Satellite CDRs are a difficult challenge and require high - level managerial commitment, extensive intellectual capital, and adequate funding.

  15. The Mobile Satellite Services Market.

    Science.gov (United States)

    Anderson, Samuel

    Mobile satellite (MSAT) technology is the basis for a new component of the telecommunications industry capable of providing services to small inexpensive subscriber terminals located almost any place in the world. The market for MSAT space segment capacity (bandwidth and power) is a natural monopoly that can be logically and technically…

  16. Clock Management Data Analysis for Satellite Communications

    National Research Council Canada - National Science Library

    Gross, Rachel; Melkers, Raimond

    2005-01-01

    The U.S. Naval Research Laboratory has installed GPS-based timing systems in several Defense Satellite Communication System "DSCS-III" satellite communication facilities to support the Single Channel Transponder "SCT" program...

  17. FODA/IBEA satellite access scheme for MIXED traffic at variable bit and coding rates system description

    OpenAIRE

    Celandroni, Nedo; Ferro, Erina; Mihal, Vlado; Potort?, Francesco

    1992-01-01

    This report describes the FODA system working at variable coding and bit rates (FODA/IBEA-TDMA) FODA/IBEA is the natural evolution of the FODA-TDMA satellite access scheme working at 2 Mbit/s fixed rate with data 1/2 coded or uncoded. FODA-TDMA was used in the European SATINE-II experiment [8]. We remind here that the term FODA/IBEA system is comprehensive of the FODA/IBEA-TDMA (1) satellite access scheme and of the hardware prototype realised by the Marconi R.C. (U.K.). Both of them come fro...

  18. Ground-truth measurement systems

    Science.gov (United States)

    Serafin, R.; Seliga, T. A.; Lhermitte, R. M.; Nystuen, J. A.; Cherry, S.; Bringi, V. N.; Blackmer, R.; Heymsfield, G. M.

    1981-01-01

    Ground-truth measurements of precipitation and related weather events are an essential component of any satellite system designed for monitoring rainfall from space. Such measurements are required for testing, evaluation, and operations; they provide detailed information on the actual weather events, which can then be compared with satellite observations intended to provide both quantitative and qualitative information about them. Also, very comprehensive ground-truth observations should lead to a better understanding of precipitation fields and their relationships to satellite data. This process serves two very important functions: (a) aiding in the development and interpretation of schemes of analyzing satellite data, and (b) providing a continuing method for verifying satellite measurements.

  19. Informing future NRT satellite distribution capabilities: Lessons learned from NASA's Land Atmosphere NRT capability for EOS (LANCE)

    Science.gov (United States)

    Davies, D.; Murphy, K. J.; Michael, K.

    2013-12-01

    NASA's Land Atmosphere Near real-time Capability for EOS (Earth Observing System) (LANCE) provides data and imagery from Terra, Aqua and Aura satellites in less than 3 hours from satellite observation, to meet the needs of the near real-time (NRT) applications community. This article describes the architecture of the LANCE and outlines the modifications made to achieve the 3-hour latency requirement with a view to informing future NRT satellite distribution capabilities. It also describes how latency is determined. LANCE is a distributed system that builds on the existing EOS Data and Information System (EOSDIS) capabilities. To achieve the NRT latency requirement, many components of the EOS satellite operations, ground and science processing systems have been made more efficient without compromising the quality of science data processing. The EOS Data and Operations System (EDOS) processes the NRT stream with higher priority than the science data stream in order to minimize latency. In addition to expediting transfer times, the key difference between the NRT Level 0 products and those for standard science processing is the data used to determine the precise location and tilt of the satellite. Standard products use definitive geo-location (attitude and ephemeris) data provided daily, whereas NRT products use predicted geo-location provided by the instrument Global Positioning System (GPS) or approximation of navigational data (depending on platform). Level 0 data are processed in to higher-level products at designated Science Investigator-led Processing Systems (SIPS). The processes used by LANCE have been streamlined and adapted to work with datasets as soon as they are downlinked from satellites or transmitted from ground stations. Level 2 products that require ancillary data have modified production rules to relax the requirements for ancillary data so reducing processing times. Looking to the future, experience gained from LANCE can provide valuable lessons on

  20. Space Solar Power: Satellite Concepts

    Science.gov (United States)

    Little, Frank E.

    1999-01-01

    Space Solar Power (SSP) applies broadly to the use of solar power for space related applications. The thrust of the NASA SSP initiative is to develop concepts and demonstrate technology for applying space solar power to NASA missions. Providing power from satellites in space via wireless transmission to a receiving station either on earth, another celestial body or a second satellite is one goal of the SSP initiative. The sandwich design is a satellite design in which the microwave transmitting array is the front face of a thin disk and the back of the disk is populated with solar cells, with the microwave electronics in between. The transmitter remains aimed at the earth in geostationary orbit while a system of mirrors directs sunlight to the photovoltaic cells, regardless of the satellite's orientation to the sun. The primary advantage of the sandwich design is it eliminates the need for a massive and complex electric power management and distribution system for the satellite. However, it requires a complex system for focusing sunlight onto the photovoltaic cells. In addition, positioning the photovoltaic array directly behind the transmitting array power conversion electronics will create a thermal management challenge. This project focused on developing designs and finding emerging technology to meet the challenges of solar tracking, a concentrating mirror system including materials and coatings, improved photovoltaic materials and thermal management.

  1. Time assignment system and its performance aboard the Hitomi satellite

    Science.gov (United States)

    Terada, Yukikatsu; Yamaguchi, Sunao; Sugimoto, Shigenobu; Inoue, Taku; Nakaya, Souhei; Murakami, Maika; Yabe, Seiya; Oshimizu, Kenya; Ogawa, Mina; Dotani, Tadayasu; Ishisaki, Yoshitaka; Mizushima, Kazuyo; Kominato, Takashi; Mine, Hiroaki; Hihara, Hiroki; Iwase, Kaori; Kouzu, Tomomi; Tashiro, Makoto S.; Natsukari, Chikara; Ozaki, Masanobu; Kokubun, Motohide; Takahashi, Tadayuki; Kawakami, Satoko; Kasahara, Masaru; Kumagai, Susumu; Angelini, Lorella; Witthoeft, Michael

    2018-01-01

    Fast timing capability in x-ray observation of astrophysical objects is one of the key properties for the ASTRO-H (Hitomi) mission. Absolute timing accuracies of 350 or 35 μs are required to achieve nominal scientific goals or to study fast variabilities of specific sources. The satellite carries a GPS receiver to obtain accurate time information, which is distributed from the central onboard computer through the large and complex SpaceWire network. The details of the time system on the hardware and software design are described. In the distribution of the time information, the propagation delays and jitters affect the timing accuracy. Six other items identified within the timing system will also contribute to absolute time error. These error items have been measured and checked on ground to ensure the time error budgets meet the mission requirements. The overall timing performance in combination with hardware performance, software algorithm, and the orbital determination accuracies, etc. under nominal conditions satisfies the mission requirements of 35 μs. This work demonstrates key points for space-use instruments in hardware and software designs and calibration measurements for fine timing accuracy on the order of microseconds for midsized satellites using the SpaceWire (IEEE1355) network.

  2. Assessment of a satellite power system and six alternative technologies

    Energy Technology Data Exchange (ETDEWEB)

    Wolsko, T.; Whitfield, R.; Samsa, M.; Habegger, L.S.; Levine, E.; Tanzman, E.

    1981-04-01

    The satellite power system is assessed in comparison to six alternative technologies. The alternatives are: central-station terrestrial photovoltaic systems, conventional coal-fired power plants, coal-gasification/combined-cycle power plants, light water reactor power plants, liquid-metal fast-breeder reactors, and fusion. The comparison is made regarding issues of cost and performance, health and safety, environmental effects, resources, socio-economic factors, and insitutional issues. The criteria for selecting the issues and the alternative technologies are given, and the methodology of the comparison is discussed. Brief descriptions of each of the technologies considered are included. (LEW)

  3. A Fast and Sensitive New Satellite SO2 Retrieval Algorithm based on Principal Component Analysis: Application to the Ozone Monitoring Instrument

    Science.gov (United States)

    Li, Can; Joiner, Joanna; Krotkov, A.; Bhartia, Pawan K.

    2013-01-01

    We describe a new algorithm to retrieve SO2 from satellite-measured hyperspectral radiances. We employ the principal component analysis technique in regions with no significant SO2 to capture radiance variability caused by both physical processes (e.g., Rayleigh and Raman scattering and ozone absorption) and measurement artifacts. We use the resulting principal components and SO2 Jacobians calculated with a radiative transfer model to directly estimate SO2 vertical column density in one step. Application to the Ozone Monitoring Instrument (OMI) radiance spectra in 310.5-340 nm demonstrates that this approach can greatly reduce biases in the operational OMI product and decrease the noise by a factor of 2, providing greater sensitivity to anthropogenic emissions. The new algorithm is fast, eliminates the need for instrument-specific radiance correction schemes, and can be easily adapted to other sensors. These attributes make it a promising technique for producing longterm, consistent SO2 records for air quality and climate research.

  4. SDI satellite autonomy using AI and Ada

    Science.gov (United States)

    Fiala, Harvey E.

    1990-01-01

    The use of Artificial Intelligence (AI) and the programming language Ada to help a satellite recover from selected failures that could lead to mission failure are described. An unmanned satellite will have a separate AI subsystem running in parallel with the normal satellite subsystems. A satellite monitoring subsystem (SMS), under the control of a blackboard system, will continuously monitor selected satellite subsystems to become alert to any actual or potential problems. In the case of loss of communications with the earth or the home base, the satellite will go into a survival mode to reestablish communications with the earth. The use of an AI subsystem in this manner would have avoided the tragic loss of the two recent Soviet probes that were sent to investigate the planet Mars and its moons. The blackboard system works in conjunction with an SMS and a reconfiguration control subsystem (RCS). It can be shown to be an effective way for one central control subsystem to monitor and coordinate the activities and loads of many interacting subsystems that may or may not contain redundant and/or fault-tolerant elements. The blackboard system will be coded in Ada using tools such as the ABLE development system and the Ada Production system.

  5. Calculation and experimental investigation of multi-component ceramic systems

    International Nuclear Information System (INIS)

    Rother, M.

    1994-12-01

    This work shows a way to combine thermodynamic calculations and experiments in order to get useful information on the constitution of metal/non-metal systems. Many data from literature are critically evaluated and used as a basis for experiments and calculations. The following multi-component systems are treated: 1. Multi-component systems of 'ceramic' materials with partially metallic bonding (carbides, nitrides, oxides, borides, carbonitrides, borocarbides, oxinitrides of the 4-8th transition group metals) 2. multi-component systems of non-metallic materials with dominant covalent bonding (SiC, Si 3 N 4 , SiB 6 , BN, Al 4 C 3 , Be 2 C) 3. multi-component systems of non-metallic materials with dominant heteropolar bonding (Al 2 O 3 , TiO 2 , BeO, SiO 2 , ZrO 2 ). The interactions between 1. and 2., 2. and 3., 1. and 3. are also considered. The latest commercially available programmes for the calculation of thermodynamical equilibria and phase diagrams are evaluated and compared considering their facilities and limits. New phase diagrams are presented for many presently unknown multi-component systems; partly known systems are completed on the basis of selected thermodynamic data. The calculations are verified by experimental investigations (metallurgical and powder technology methods). Altogether 690 systems are evaluated, 126 are calculated for the first time and 52 systems are experimentally verified. New data for 60 ternary phases are elaborated by estimating the data limits for the Gibbs energy values. A synthesis of critical evaluation of literature, calculations and experiments leads to new important information about equilibria and reaction behaviour in multi-component systems. This information is necessary to develop new stable and metastable materials. (orig./MM) [de

  6. Component state-based integrated importance measure for multi-state systems

    International Nuclear Information System (INIS)

    Si, Shubin; Levitin, Gregory; Dui, Hongyan; Sun, Shudong

    2013-01-01

    Importance measures in reliability engineering are used to identify weak components and/or states in contributing to the reliable functioning of a system. Traditionally, importance measures do not consider the possible effect of groups of transition rates among different component states, which, however, has great effect on the component probability distribution and should therefore be taken into consideration. This paper extends the integrated importance measure (IIM) to estimate the effect of a component residing at certain states on the performance of the entire multi-state systems. This generalization of IIM describes in which state it is most worthy to keep the component to provide the desired level of system performance, and which component is the most important to keep in some state and above for improving the performance of the system. An application to an oil transportation system is presented to illustrate the use of the suggested importance measure

  7. The Study of a Super Low Altitude Satellite

    Science.gov (United States)

    Noda, Atsushi; Homma, Masanori; Utashima, Masayoshi

    This paper reports the result of a study for super low altitude satellite. The altitude of this satellite's orbit is lower than ever. The altitude of a conventional earth observing satellite is generally around from 600km to 900km. The lowest altitude of earth observing satellite launched in Japan was 350km; the Tropical Rainfall Measuring Mission (TRMM). By comparison, the satellite reported in this paper is much lower than that and it is planned to orbit below 200km. Furthermore, the duration of the flight planned is more than two years. Any satellite in the world has not achieved to keep such a low altitude that long term. The satellite in such a low orbit drops quickly because of the strong air drag. Our satellite will cancel the air drag effect by ion engine thrust. To realize this idea, a drag-free system will be applied. This usually leads a complicated and expensive satellite system. We, however, succeeded in finding a robust control law for a simple system even under the unpredictable change of air drag. When the altitude of the satellite is lowered successfully, the spatial resolution of an optical sensor can be highly improved. If a SAR is equipped with the satellite, it enables the drastic reduction of electric power consumption and the fabulous spatial resolution improvement at the same time.

  8. 47 CFR 25.159 - Limits on pending applications and unbuilt satellite systems.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Limits on pending applications and unbuilt... § 25.159 Limits on pending applications and unbuilt satellite systems. (a) Applicants with a total of... band, or a combination of pending GSO-like applications and licensed-but-unbuilt GSO-like space...

  9. Next-generation satellite gravimetry for measuring mass transport in the Earth system

    NARCIS (Netherlands)

    Teixeira Encarnação, J.

    2015-01-01

    The main objective of the thesis is to identify the optimal set-up for future satellite gravimetry missions aimed at monitoring mass transport in the Earth’s system.The recent variability of climatic patterns, the spread of arid regions and associ- ated changes in the hydrological cycle, and

  10. Does the GPM mission improve the systematic error component in satellite rainfall estimates over TRMM? An evaluation at a pan-India scale

    Science.gov (United States)

    Beria, Harsh; Nanda, Trushnamayee; Singh Bisht, Deepak; Chatterjee, Chandranath

    2017-12-01

    The last couple of decades have seen the outburst of a number of satellite-based precipitation products with Tropical Rainfall Measuring Mission (TRMM) as the most widely used for hydrologic applications. Transition of TRMM into the Global Precipitation Measurement (GPM) promises enhanced spatio-temporal resolution along with upgrades to sensors and rainfall estimation techniques. The dependence of systematic error components in rainfall estimates of the Integrated Multi-satellitE Retrievals for GPM (IMERG), and their variation with climatology and topography, was evaluated over 86 basins in India for year 2014 and compared with the corresponding (2014) and retrospective (1998-2013) TRMM estimates. IMERG outperformed TRMM for all rainfall intensities across a majority of Indian basins, with significant improvement in low rainfall estimates showing smaller negative biases in 75 out of 86 basins. Low rainfall estimates in TRMM showed a systematic dependence on basin climatology, with significant overprediction in semi-arid basins, which gradually improved in the higher rainfall basins. Medium and high rainfall estimates of TRMM exhibited a strong dependence on basin topography, with declining skill in higher elevation basins. The systematic dependence of error components on basin climatology and topography was reduced in IMERG, especially in terms of topography. Rainfall-runoff modeling using the Variable Infiltration Capacity (VIC) model over two flood-prone basins (Mahanadi and Wainganga) revealed that improvement in rainfall estimates in IMERG did not translate into improvement in runoff simulations. More studies are required over basins in different hydroclimatic zones to evaluate the hydrologic significance of IMERG.

  11. Does the GPM mission improve the systematic error component in satellite rainfall estimates over TRMM? An evaluation at a pan-India scale

    Directory of Open Access Journals (Sweden)

    H. Beria

    2017-12-01

    Full Text Available The last couple of decades have seen the outburst of a number of satellite-based precipitation products with Tropical Rainfall Measuring Mission (TRMM as the most widely used for hydrologic applications. Transition of TRMM into the Global Precipitation Measurement (GPM promises enhanced spatio-temporal resolution along with upgrades to sensors and rainfall estimation techniques. The dependence of systematic error components in rainfall estimates of the Integrated Multi-satellitE Retrievals for GPM (IMERG, and their variation with climatology and topography, was evaluated over 86 basins in India for year 2014 and compared with the corresponding (2014 and retrospective (1998–2013 TRMM estimates. IMERG outperformed TRMM for all rainfall intensities across a majority of Indian basins, with significant improvement in low rainfall estimates showing smaller negative biases in 75 out of 86 basins. Low rainfall estimates in TRMM showed a systematic dependence on basin climatology, with significant overprediction in semi-arid basins, which gradually improved in the higher rainfall basins. Medium and high rainfall estimates of TRMM exhibited a strong dependence on basin topography, with declining skill in higher elevation basins. The systematic dependence of error components on basin climatology and topography was reduced in IMERG, especially in terms of topography. Rainfall-runoff modeling using the Variable Infiltration Capacity (VIC model over two flood-prone basins (Mahanadi and Wainganga revealed that improvement in rainfall estimates in IMERG did not translate into improvement in runoff simulations. More studies are required over basins in different hydroclimatic zones to evaluate the hydrologic significance of IMERG.

  12. Using Multi-Scale Modeling Systems and Satellite Data to Study the Precipitation Processes

    Science.gov (United States)

    Tao, Wei-Kuo; Chern, J.; Lamg, S.; Matsui, T.; Shen, B.; Zeng, X.; Shi, R.

    2011-01-01

    In recent years, exponentially increasing computer power has extended Cloud Resolving Model (CRM) integrations from hours to months, the number of computational grid points from less than a thousand to close to ten million. Three-dimensional models are now more prevalent. Much attention is devoted to precipitating cloud systems where the crucial 1-km scales are resolved in horizontal domains as large as 10,000 km in two-dimensions, and 1,000 x 1,000 km2 in three-dimensions. Cloud resolving models now provide statistical information useful for developing more realistic physically based parameterizations for climate models and numerical weather prediction models. It is also expected that NWP and mesoscale model can be run in grid size similar to cloud resolving model through nesting technique. Recently, a multi-scale modeling system with unified physics was developed at NASA Goddard. It consists of (l) a cloud-resolving model (Goddard Cumulus Ensemble model, GCE model), (2) a regional scale model (a NASA unified weather research and forecast, WRF), (3) a coupled CRM and global model (Goddard Multi-scale Modeling Framework, MMF), and (4) a land modeling system. The same microphysical processes, long and short wave radiative transfer and land processes and the explicit cloud-radiation, and cloud-land surface interactive processes are applied in this multi-scale modeling system. This modeling system has been coupled with a multi-satellite simulator to use NASA high-resolution satellite data to identify the strengths and weaknesses of cloud and precipitation processes simulated by the model. In this talk, the recent developments and applications of the multi-scale modeling system will be presented. In particular, the results from using multi-scale modeling system to study the precipitating systems and hurricanes/typhoons will be presented. The high-resolution spatial and temporal visualization will be utilized to show the evolution of precipitation processes. Also how to

  13. A modified error correction protocol for CCITT signalling system no. 7 on satellite links

    Science.gov (United States)

    Kreuer, Dieter; Quernheim, Ulrich

    1991-10-01

    Comite Consultatif International des Telegraphe et Telephone (CCITT) Signalling System No. 7 (SS7) provides a level 2 error correction protocol particularly suited for links with propagation delays higher than 15 ms. Not being originally designed for satellite links, however, the so called Preventive Cyclic Retransmission (PCR) Method only performs well on satellite channels when traffic is low. A modified level 2 error control protocol, termed Fix Delay Retransmission (FDR) method is suggested which performs better at high loads, thus providing a more efficient use of the limited carrier capacity. Both the PCR and the FDR methods are investigated by means of simulation and results concerning throughput, queueing delay, and system delay, respectively. The FDR method exhibits higher capacity and shorter delay than the PCR method.

  14. The 3D Radiation Dose Analysis For Satellite

    Science.gov (United States)

    Cai, Zhenbo; Lin, Guocheng; Chen, Guozhen; Liu, Xia

    2002-01-01

    the earth. These particles come from the Van Allen Belt, Solar Cosmic Ray and Galaxy Cosmic Ray. They have different energy and flux, varying with time and space, and correlating with solar activity tightly. These particles interact with electrical components and materials used on satellites, producing various space radiation effects, which will damage satellite to some extent, or even affect its safety. orbit. Space energy particles inject into components and materials used on satellites, and generate radiation dose by depositing partial or entire energy in them through ionization, which causes their characteristic degradation or even failure. As a consequence, the analysis and protection for radiation dose has been paid more attention during satellite design and manufacture. Designers of satellites need to analyze accurately the space radiation dose while satellites are on orbit, and use the results as the basis for radiation protection designs and ground experiments for satellites. can be calculated, using the model of the trapped proton and the trapped electron in the Van Allen Belt (AE8 and AP8). This is the 1D radiation dose analysis for satellites. Obviously, the mass shielding from the outside space to the computed point in all directions is regarded as a simple sphere shell. The actual structure of satellites, however, is very complex. When energy particles are injecting into a given equipment inside satellite from outside space, they will travel across satellite structure, other equipment, the shell of the given equipment, and so on, which depends greatly on actual layout of satellite. This complex radiation shielding has two characteristics. One is that the shielding masses for the computed point are different in different injecting directions. The other is that for different computed points, the shielding conditions vary in all space directions. Therefore, it is very difficult to tell the differences described above using the 1D radiation analysis, and

  15. Small Satellite Constellations for Geospace Sciences

    Science.gov (United States)

    Spence, H. E.

    2016-12-01

    The recent National Academy of Sciences Solar and Space Physics Decadal Survey (DS) identified community-consensus science priorities for the decade spanning 2013 - 2022. In this talk, we discuss the ways by which small satellite constellations are already and may soon accelerate progress toward achieving many of these science targets. The DS outlined four overarching science goals: (1) determine the origins of the Sun's activity and predict the variations in the space environment; (2) determine the dynamics and coupling of Earth's magnetosphere, ionosphere, and atmosphere and their response to solar and terrestrial inputs; (3) determine the interaction of the Sun with the solar system and the interstellar medium; and, (4) discover and characterize fundamental processes that occur both within the heliosphere and throughout the universe. These DS science goals provide the context for key science challenges in the three connected parts of the system that encompass all of solar and space physics, herein referred to as geospace: the Sun and heliosphere; the coupled solar wind-magnetosphere system; and, the coupled atmosphere-ionosphere-magnetosphere system. The DS further presented the role that small satellites play in resolving many of these science challenges, with a particular emphasis on the role that constellations of small satellites will play. While once considered by many as being "futuristic" or even "unrealizable", constellations of small satellites are already making important contributions to geospace science and with the promise for more to come. Using the DS as a guidepost, in this presentation, we outline representative small satellite constellation missions alread underway, some in development, and others notionally proposed over the next several years that employ small satellite constellations to tackle large science imperatives. Finally, we give examples of key small satellite technologies in development that will potentially enable great scientific

  16. System diagnostics using qualitative analysis and component functional classification

    International Nuclear Information System (INIS)

    Reifman, J.; Wei, T.Y.C.

    1993-01-01

    A method for detecting and identifying faulty component candidates during off-normal operations of nuclear power plants involves the qualitative analysis of macroscopic imbalances in the conservation equations of mass, energy and momentum in thermal-hydraulic control volumes associated with one or more plant components and the functional classification of components. The qualitative analysis of mass and energy is performed through the associated equations of state, while imbalances in momentum are obtained by tracking mass flow rates which are incorporated into a first knowledge base. The plant components are functionally classified, according to their type, as sources or sinks of mass, energy and momentum, depending upon which of the three balance equations is most strongly affected by a faulty component which is incorporated into a second knowledge base. Information describing the connections among the components of the system forms a third knowledge base. The method is particularly adapted for use in a diagnostic expert system to detect and identify faulty component candidates in the presence of component failures and is not limited to use in a nuclear power plant, but may be used with virtually any type of thermal-hydraulic operating system. 5 figures

  17. A basic component for ISGRI, the CdTe gamma camera on board the INTEGRAL satellite

    International Nuclear Information System (INIS)

    Arques, M.; Baffert, N.; Lattard, D.

    1999-01-01

    A basic component, called Polycell, has been developed for the ISGRI (INTEGRAL Soft Gamma Ray Imager) CdTe camera on board the INTEGRAL (INTErnational Gamma-Ray Astrophysics Laboratory) satellite. Operating at room temperature, it covers the 20 keV--1 MeV energy range. It features a sub-ensemble of 16 CdTe detectors and their associated front end electronics. This electronics is based on 4-channel analog-digital ASICs. Their analog part features a low noise preamplifier, allowing a threshold below 20 keV and a pulse rise-time measurement which permits a charge loss correction. The digital part ensures the internal acquisition timing sequence as well as the dialogue with external electronics. Two versions of the ISGRI ASIC have been developed in a collaboration of two CEA microelectronics teams from CEA/DTA/LETI/DSYS and CEA/DSM/DAPNIA/SEI, respectively on a standard CMOS AMS process hardened against radiation by lay-out, and on a Silicon On Insulator process (DMILL MHS), the latter being latch-up free. This paper presents the ASIC and polycell architecture as well as experimental results obtained with polycells equipped with AMS ASICs

  18. Towards a Component Based Model for Database Systems

    Directory of Open Access Journals (Sweden)

    Octavian Paul ROTARU

    2004-02-01

    Full Text Available Due to their effectiveness in the design and development of software applications and due to their recognized advantages in terms of reusability, Component-Based Software Engineering (CBSE concepts have been arousing a great deal of interest in recent years. This paper presents and extends a component-based approach to object-oriented database systems (OODB introduced by us in [1] and [2]. Components are proposed as a new abstraction level for database system, logical partitions of the schema. In this context, the scope is introduced as an escalated property for transactions. Components are studied from the integrity, consistency, and concurrency control perspective. The main benefits of our proposed component model for OODB are the reusability of the database design, including the access statistics required for a proper query optimization, and a smooth information exchange. The integration of crosscutting concerns into the component database model using aspect-oriented techniques is also discussed. One of the main goals is to define a method for the assessment of component composition capabilities. These capabilities are restricted by the component’s interface and measured in terms of adaptability, degree of compose-ability and acceptability level. The above-mentioned metrics are extended from database components to generic software components. This paper extends and consolidates into one common view the ideas previously presented by us in [1, 2, 3].[1] Octavian Paul Rotaru, Marian Dobre, Component Aspects in Object Oriented Databases, Proceedings of the International Conference on Software Engineering Research and Practice (SERP’04, Volume II, ISBN 1-932415-29-7, pages 719-725, Las Vegas, NV, USA, June 2004.[2] Octavian Paul Rotaru, Marian Dobre, Mircea Petrescu, Integrity and Consistency Aspects in Component-Oriented Databases, Proceedings of the International Symposium on Innovation in Information and Communication Technology (ISIICT

  19. Component-based modeling of systems for automated fault tree generation

    International Nuclear Information System (INIS)

    Majdara, Aref; Wakabayashi, Toshio

    2009-01-01

    One of the challenges in the field of automated fault tree construction is to find an efficient modeling approach that can support modeling of different types of systems without ignoring any necessary details. In this paper, we are going to represent a new system of modeling approach for computer-aided fault tree generation. In this method, every system model is composed of some components and different types of flows propagating through them. Each component has a function table that describes its input-output relations. For the components having different operational states, there is also a state transition table. Each component can communicate with other components in the system only through its inputs and outputs. A trace-back algorithm is proposed that can be applied to the system model to generate the required fault trees. The system modeling approach and the fault tree construction algorithm are applied to a fire sprinkler system and the results are presented

  20. NASA/DARPA advanced communications technology satellite project for evaluation of telemedicine outreach using next-generation communications satellite technology: Mayo Foundation participation.

    Science.gov (United States)

    Gilbert, B K; Mitchell, M P; Bengali, A R; Khandheria, B K

    1999-08-01

    To describe the development of telemedicine capabilities-application of remote consultation and diagnostic techniques-and to evaluate the feasibility and practicality of such clinical outreach to rural and underserved communities with limited telecommunications infrastructures. In 1992, Mayo Foundation (Rochester, Minn, Jacksonville, Fla, and Scottsdale, Ariz), the National Aeronautics and Space Administration, and the Defense Advanced Research Projects Agency collaborated to create a complex network of fiberoptic landlines, video recording systems, satellite terminals, and specially developed data translators linking Mayo sites with other locations in the continental United States on an on-demand basis. The purpose was to transmit data via the asynchronous transfer mode (ATM) digital communications protocol over the Advanced Communications Technology Satellite. The links were intended to provide a conduit for transmission of data for patient-specific consultations between physicians, evaluation of medical imagery, and medical education for clinical staffs at remote sites. Low-data-rate (LDR) experiments went live late in 1993. Mayo Clinic Rochester successfully provided medical consultation and services to 2 small regional medical facilities. High-data-rate (HDR) experiments included studies of remote digital echocardiography, store-and-forward telemedicine, cardiac catheterization, and teleconsultation for congenital heart disease. These studies combined landline data transmission with use of the satellite. The complexity of the routing paths and network components, immaturity of available software, and inexperience with existing telecommunications caused significant study delays. These experiments demonstrated that next-generation satellite technology can provide batch and real-time imagery for telemedicine. The first-generation of the ATM and satellite network technology used in these experiments created several technical problems and inconveniences that should