WorldWideScience

Sample records for sarcoplasmic reticulum vesicles

  1. Biochemical and morphological characterization of light and heavy sarcoplasmic reticulum vesicles

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, K.P.

    1978-01-01

    Light and heavy sarcoplasmic reticulum vesicles isolated from rabbit leg muscle have been used in a study of chloride-induced calcium release. The biochemical and morphological data indicate that light sarcoplasmic reticulum vesicles are derived from the longitudinal reticulum and heavy sarcoplasmic reticulum vesicles are derived from the terminal cisternae of the sarcoplasmic reticulum. The light and heavy sarcoplasmic reticulum vesicles were both able to accumulate calcium in the presence of ATP to amounts greater than 100 nmoles Ca/sup + +/ per mg of protein in less than one minute. Light and heavy sarcoplasmic reticulum vesicles each had a biphasic time course of calcium uptake. The initial uptake was followed by a rapid release after approximately one minute, of 30 to 40% of the accumulated calcium, which was then followed by a slower phase of calcium accumulation. Results indicate that the chloride induced release of calcium may be acting by two mechanisms, osmotic swelling and depolarization. The release of calcium from the light SR vesicles is probably due to osmotic swelling and the release of calcium from the heavy SR vesicles is probably due to depolarization.

  2. Biochemical and morphological characterization of light and heavy sarcoplasmic reticulum vesicles

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, Kevin Peter [Univ. of Rochester, NY (United States)

    1978-01-01

    Light (30 to 32.5% sucrose) and heavy (38.5 to 42% sucrose) sarcoplasmic reticulum vesicles (LSR,HSR) were isolated from rabbit leg muscle using a combination of differential centrifugation and isopycnic zonal ultracentrifugation. Thin-section electron microscopy of LSR vesicles reveals empty vesicles of various sizes and shapes whereas the HSR vesicles appear as rounded vesicles of uniform size filled with electron dense material, similar to that seen in the terminal cisternae of the sarcoplasmic reticulum. The sucrose HSR vesicles have an additional morphological feature which appears as membrane projections that resemble the SR feet. The freeze-fracture morphology of either type of SR reveals an asymmetric distribution of intramembraneous particles in the same orientation and distribution as the sarcoplasmic reticulum in vivo. Biochemical studies were made on the content of Ca, Mg, ATPase, and protein of the vesicles and phosphorylation of the vesicles. The biochemical and morphological data indicate that the LSR is derived from the longitudinal sarcoplasmic reticulum and the HSR is derived from the terminal cisternae of the sarcoplasmic reticulum, contains junctional SR membrane and has three unique proteins (calsequestrin, an intrinsic 30,000 dalton protein and a 9000 dalton proteolipid).

  3. Biochemical and morphological characterization of light and heavy sarcoplasmic reticulum vesicles. Volume I

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, Kevin Peter [Univ. of Rochester, NY (United States)

    1978-01-01

    Light (30 to 32.5% sucrose) and heavy (38.5 to 42% sucrose) sarcoplasmic reticulum vesicles (LSR, HSR) were isolated from rabbit leg muscle. They were then diluted and washed with sucrose or KCl and referred to as sucrose or KCl washed vesicles. Thin-section electron microscopy of LSR vesicles reveals empty vesicles of various sizes and shapes where as the HSR vesicles appear as rounded vesicles of uniform size filled with electron dense material. The LSR consists of predominantly Ca2+ + Mg2+ ATPase (80 to 90%), a small amount of the high affinity Ca binding protein (5%), and a 5000 dalton proteolipid. The sucrose HSR vesicles contain the Ca2+ + Mg2+ ATPase (50%), Calsequestrin (25%), high affinity Ca binding protein (5%), one extrinsic 34,000 dalton protein (3%), one intrinsic 30,000 dalton protein (3%), a 9000 dalton proteolipid, and a 5000 dalton proteolipid. The sucrose--washed HSR vesicles contain greater than three times the calcium content of the sucrose washed LSR vesicles where as the KCl--washed vesicles contain less than 15 nmoles Ca2+ mg of protein each. The light and heavy sarcoplasmic reticulum vesicles were both able to accumulate calcium in the presence of ATP. Exchange of methanesulfonate for chloride resulted in the release of calcium from both the light and heavy SR vesicles. Sucrose causes a slight inhibition of chloride--induced calcium release from the heavy SR vesicles but it greatly reduces the release of calcium from the light SR vesicles. Sodium dantrolene (20 uM) has no effect on the release of calcium from the light SR vesicles but it inhibits the release of calcium from the heavy SR vesicles. The results indicate that the chloride--induced release of calcium may be acting by two mechanisms, osmotic swelling and depolarization.

  4. Biochemical and morphological characterization of light and heavy sarcoplasmic reticulum vesicles. Volume I

    International Nuclear Information System (INIS)

    Campbell, K.P.

    1978-01-01

    Light (30 to 32.5% sucrose) and heavy (38.5 to 42% sucrose) sarcoplasmic reticulum vesicles (LSR, HSR) were isolated from rabbit leg muscle. They were then diluted and washed with sucrose or KCl and referred to as sucrose or KCl washed vesicles. Thin-section electron microscopy of LSR vesicles reveals empty vesicles of various sizes and shapes where as the HSR vesicles appear as rounded vesicles of uniform size filled with electron dense material. The LSR consists of predominantly Ca 2+ + Mg 2+ ATPase (80 to 90%), a small amount of the high affinity Ca binding protein (5%), and a 5000 dalton proteolipid. The sucrose HSR vesicles contain the Ca 2+ + Mg 2+ ATPase (50%), Calsequestrin (25%), high affinity Ca binding protein (5%), one extrinsic 34,000 dalton protein (3%), one intrinsic 30,000 dalton protein (3%), a 9000 dalton proteolipid, and a 5000 dalton proteolipid. The sucrose--washed HSR vesicles contain greater than three times the calcium content of the sucrose washed LSR vesicles where as the KCl--washed vesicles contain less than 15 nmoles Ca 2+ /mg of protein each. The light and heavy sarcoplasmic reticulum vesicles were both able to accumulate calcium in the presence of ATP. Exchange of methanesulfonate for chloride resulted in the release of calcium from both the light and heavy SR vesicles. Sucrose causes a slight inhibition of chloride--induced calcium release from the heavy SR vesicles but it greatly reduces the release of calcium from the light SR vesicles. Sodium dantrolene (20 uM) has no effect on the release of calcium from the light SR vesicles but it inhibits the release of calcium from the heavy SR vesicles. The results indicate that the chloride--induced release of calcium may be acting by two mechanisms, osmotic swelling and depolarization

  5. Cardiac sarcoplasmic reticulum

    International Nuclear Information System (INIS)

    Jacobson, M.S.; Ambudkar, I.S.; Young, E.P.; Naseem, S.M.; Heald, F.P.; Shamoo, A.E.

    1985-01-01

    The effect on the cardiac sarcoplasmic reticulum of an atherogenic (1% cholesterol) diet fed during the neonatal vs the juvenile period of life was studied in Yorkshire swine. Male piglets were randomly assigned at birth to 1 of 4 groups: group I (control), group II (lactation feeding), group III (juvenile period feeding) and group IV (lactation and juvenile feeding). All animals were killed at 55 weeks of age and cardiac sarcoplasmic reticulum (SR) isolated for assay of calcium uptake, Ca 2+ -Mg 2+ ATPase activity, and lipid analysis by thin-layer chromatography and gas chromatography. The amount of cholesterol/mg SR protein and the cholesterol/phospholipid ratio were higher in the animals fed during lactation (groups II and IV) and lower in those fed only during the juvenile period (group III). Phospholipid fatty acid patterns as measured by gas chromatography were unaltered in any group. Calcium uptake was markedly diminished in all experimental conditions: group II 47%, group III 65% and group IV 96%. Compared to the observed changes in calcium transport, the ATP hydrolytic activity was relatively less affected. Only in group IV a significant decrease (41%) was seen. Groups II and III show no change in ATP hydrolytic activity. The decrease in calcium uptake and altered cholesterol/phospholipid ratio without effect on ATP hydrolytic activity is consistent with an uncoupling of calcium transport related to the atherogenic diet in early life. (author)

  6. 3-Bromopyruvate inhibits calcium uptake by sarcoplasmic reticulum vesicles but not SERCA ATP hydrolysis activity.

    Science.gov (United States)

    Jardim-Messeder, Douglas; Camacho-Pereira, Juliana; Galina, Antonio

    2012-05-01

    3-Bromopyruvate (3BrPA) is an antitumor agent that alkylates the thiol groups of enzymes and has been proposed as a treatment for neoplasias because of its specific reactivity with metabolic energy transducing enzymes in tumor cells. In this study, we show that the sarco/endoplasmic reticulum calcium (Ca(2+)) ATPase (SERCA) type 1 is one of the target enzymes of 3BrPA activity. Sarco/endoplasmic reticulum vesicles (SRV) were incubated in the presence of 1mM 3BrPA, which was unable to inhibit the ATPase activity of SERCA. However, Ca(2+)-uptake activity was significantly inhibited by 80% with 150 μM 3BrPA. These results indicate that 3BrPA has the ability to uncouple the ATP hydrolysis from the calcium transport activities. In addition, we observed that the inclusion of 2mM reduced glutathione (GSH) in the reaction medium with different 3BrPA concentrations promoted an increase in 40% in ATPase activity and protects the inhibition promoted by 3BrPA in calcium uptake activity. This derivatization is accompanied by a decrease of reduced cysteine (Cys), suggesting that GSH and 3BrPA increases SERCA activity and transport by pyruvylation and/or S-glutathiolation mediated by GSH at a critical Cys residues of the SERCA. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Specific binding of (/sup 3/H)LY186126, an analogue of indolidan (LY195115), to cardiac membranes enriched in sarcoplasmic reticulum vesicles

    Energy Technology Data Exchange (ETDEWEB)

    Kauffman, R.F.; Utterback, B.G.; Robertson, D.W.

    1989-05-01

    LY186126 was found to be a potent inhibitor of type IV cyclic AMP phosphodiesterase located in the sarcoplasmic reticulum of canine cardiac muscle. This compound, a close structural analogue of indolidan (LY195115), was prepared in high specific activity, tritiated form to study the positive inotropic receptor(s) for cardiotonic phosphodiesterase inhibitors such as indolidan and milrinone. A high-affinity binding site for (/sup 3/H)LY186126 was observed (Kd = 4 nM) in purified preparations of canine cardiac sarcoplasmic reticulum vesicles. Binding was proportional to vesicle protein, was inactivated by subjecting membranes to proteolysis or boiling, and was dependent on added Mg2+. Scatchard analysis suggested the presence of a single class of binding sites in the membrane preparation. Indolidan, milrinone, and LY186126 (all at 1 microM) produced essentially complete displacement of bound (/sup 3/H)LY186126, while nifedipine, propranolol, and prazosin had little or no effect at this concentration. This represents the first reported use of a radioactive analogue to label the inotropic receptor for cardiotonic phosphodiesterase inhibitors. The results suggest that (/sup 3/H)LY186126 is a useful radioligand for examining the subcellular site(s) responsible for positive inotropic effects of these drugs.

  8. Specific binding of [3H]LY186126, an analogue of indolidan (LY195115), to cardiac membranes enriched in sarcoplasmic reticulum vesicles

    International Nuclear Information System (INIS)

    Kauffman, R.F.; Utterback, B.G.; Robertson, D.W.

    1989-01-01

    LY186126 was found to be a potent inhibitor of type IV cyclic AMP phosphodiesterase located in the sarcoplasmic reticulum of canine cardiac muscle. This compound, a close structural analogue of indolidan (LY195115), was prepared in high specific activity, tritiated form to study the positive inotropic receptor(s) for cardiotonic phosphodiesterase inhibitors such as indolidan and milrinone. A high-affinity binding site for [ 3 H]LY186126 was observed (Kd = 4 nM) in purified preparations of canine cardiac sarcoplasmic reticulum vesicles. Binding was proportional to vesicle protein, was inactivated by subjecting membranes to proteolysis or boiling, and was dependent on added Mg2+. Scatchard analysis suggested the presence of a single class of binding sites in the membrane preparation. Indolidan, milrinone, and LY186126 (all at 1 microM) produced essentially complete displacement of bound [ 3 H]LY186126, while nifedipine, propranolol, and prazosin had little or no effect at this concentration. This represents the first reported use of a radioactive analogue to label the inotropic receptor for cardiotonic phosphodiesterase inhibitors. The results suggest that [ 3 H]LY186126 is a useful radioligand for examining the subcellular site(s) responsible for positive inotropic effects of these drugs

  9. Structural role of lipids in mitochondrial and sarcoplasmic reticulum membranes: freeze-fracture electron microscopy studies

    Energy Technology Data Exchange (ETDEWEB)

    Packer, L; Mehard, C W; Meissner, G; Zahler, W L; Fleischer, S

    1974-01-01

    The role of phospholipid in the structure of the membranes of beef heart mitochondria and of the sarcoplasmic reticulum membranes from rabbit skeletal muscle has been investigated by freeze-fracture electron microscopy. Progressive removal of membrane phospholipids, by phospholipase A treatment or detergent treatment, or by organic solvent extraction, results in loss of the smooth background seen in membrane fracture faces and decreased ability of membrane to undergo freeze fracture to yield fracture faces. Instead cross-sections of vesicles or particle clusters are observed. Sarcoplasmic reticulum vesicles have a 9 to 1 asymmetry in the distribution of particles between the convex and concave fracture faces. There is also a wide range of particle size distribution in both of these fracture faces with 85-A particles in greatest number. The removal of membrane associated proteins by detergent extraction does not appreciably change the distribution in particle size. Sarcoplasmic reticulum vesicles were dissolved with detergent and reassembled to form membrane vesicles containing mainly one protein (approx. 90%), i.e., the Ca/sup 2 +/ pump protein, and with a ratio of lipid to protein similar to the original membrane. The reconstituted vesicles readily underwent freeze fracture but the asymmetric particle distribution between the fracture faces was no longer observed. The size distribution of particles in the reconstituted membrane, consisting mainly of Ca/sup 2 +/ pump protein, and phospholipid, was similar in heterogeneity to the original sarcoplasmic reticulum membrane. Thus the heterogeneity in particle size could reflect variation in the orientation of the Ca/sup 2 +/ pump protein within the membrane.

  10. Preparation of a highly concentrated, completely monomeric, active sarcoplasmic reticulum Ca2+-ATPase.

    Science.gov (United States)

    Lüdi, H; Hasselbach, W

    1985-11-21

    Sarcoplasmic reticulum vesicles from fast skeletal muscle were partially delipidated with sodium cholate at high ionic strength and sedimented in a discontinuous sucrose gradient. Phospholipid content was reduced from 0.777 mumol/mg protein to 0.242 mumol/mg protein. As judged from gel electrophoresis and high pressure liquid gel chromatography, accessory proteins were removed during centrifugation and the Ca2+-ATPase was obtained in an almost pure form. Addition of myristoylglycerophosphocholine (1 mg/mg protein) reactivates ATPase and dinitrophenylphosphatase activity to the same degree obtained with native vesicles. Using the analytical ultracentrifuge it could be demonstrated that the reactivated Ca2+-ATPase was present exclusively in a monomeric state. These results were obtained at high and low ionic strength and up to a protein concentration of 10 mg/ml. Therefore this preparation should be very useful to investigate differences between oligomeric and monomeric Ca2+-ATPase.

  11. Dynamic Changes in Sarcoplasmic Reticulum Structure in Ventricular Myocytes

    Directory of Open Access Journals (Sweden)

    Amanda L. Vega

    2011-01-01

    sarcoplasmic reticulum (SR and the sarcolemma where Ca2+ release is activated. Here, we tested the hypothesis that the SR is a structurally inert organelle in ventricular myocytes. Our data suggest that rather than being static, the SR undergoes frequent dynamic structural changes. SR boutons expressing functional ryanodine receptors moved throughout the cell, approaching or moving away from the sarcolemma of ventricular myocytes. These changes in SR structure occurred in the absence of changes in [Ca2+] during EC coupling. Microtubules and the molecular motors dynein and kinesin 1(Kif5b were important regulators of SR motility. These findings support a model in which the SR is a motile organelle capable of molecular motor protein-driven structural changes.

  12. Porcine malignant hyperthermia susceptibility: hypersensitive calcium-release mechanism of skeletal muscle sarcoplasmic reticulum.

    Science.gov (United States)

    O'Brien, P J

    1986-01-01

    This study tested the hypothesis that calcium-release from sarcoplasmic reticulum isolated from malignant hyperthermia swine had abnormal concentration-dependency on release modulators. Halothane stimulated half-maximal calcium-release at similar concentrations for malignant hyperthermia and control sarcoplasmic reticulum (0.10 +/- 0.04 mM). However, concentrations causing half-maximal calcium-release were lower for malignant hyperthermia sarcoplasmic reticulum (P less than 0.001) by an order of magnitude for Ca2+ (28.1 +/- 8.3 versus 1.23 +/- 0.45 nM), adenosine triphosphate (0.33 +/- 0.09 versus 0.023 +/- 0.014 mM) and caffeine (7.79 +/- 1.56 versus 0.80 +/- 0.44 mM). Half-maximal inhibition by Mg2+ occurred at threefold higher concentrations for malignant hyperthermia sarcoplasmic reticulum (0.23 +/- 0.02 versus 0.78 +/- 0.17 mM). The Ca2+-sensitivity curves for calcium-release by sarcoplasmic reticulum isolated from heterozygotes for the malignant hyperthermia-defect were indistinguishable from the averages of the curves for controls and malignant hyperthermia-homozygotes. Results of this study suggest that malignant hyperthermia is initiated due to a hypersensitive calcium-release mechanism which is inherited in an autosomal, codominant pattern and may be diagnosed using calcium-release sensitivity-tests on isolated sarcoplasmic reticulum. Images Fig. 1. PMID:3742367

  13. Sarcoplasmic reticulum function in slow- and fast-twitch skeletal muscles from mdx mice.

    Science.gov (United States)

    Divet, Alexandra; Huchet-Cadiou, Corinne

    2002-08-01

    The aim of the present study was to establish whether alterations in sarcoplasmic reticulum function are involved in the abnormal Ca(2+) homeostasis of skeletal muscle in mice with muscular dystrophy ( mdx). The properties of the sarcoplasmic reticulum and contractile proteins of fast- and slow-twitch muscles were therefore investigated in chemically skinned fibres isolated from the extensor digitorum longus (EDL) and soleus muscles of normal (C57BL/10) and mdx mice at 4 and 11 weeks of development. Sarcoplasmic reticulum Ca(2+) uptake, estimated by the Ca(2+) release following exposure to caffeine, was significantly slower in mdx mice, while the maximal Ca(2+) quantity did not differ in either type of skeletal muscle at either stage of development. In 4-week-old mice spontaneous sarcoplasmic reticulum Ca(2+) leakage was observed in EDL and soleus fibres and this was more pronounced in mdx mice. In addition, the maximal Ca(2+)-activated tension was smaller in mdx than in normal fibres, while the Ca(2+) sensitivity of the contractile apparatus was not significantly different. These results indicate that mdx hindlimb muscles are affected differently by the disease process and suggest that a reduced ability of the Ca(2+)-ATPase to load Ca(2+) and a leaky sarcoplasmic reticulum membrane may be involved in the altered intracellular Ca(2+) homeostasis.

  14. Hofmeister effect of anions on calcium translocation by sarcoplasmic reticulum Ca2+-ATPase

    Science.gov (United States)

    Tadini-Buoninsegni, Francesco; Moncelli, Maria Rosa; Peruzzi, Niccolò; Ninham, Barry W.; Dei, Luigi; Nostro, Pierandrea Lo

    2015-10-01

    The occurrence of Hofmeister (specific ion) effects in various membrane-related physiological processes is well documented. For example the effect of anions on the transport activity of the ion pump Na+, K+-ATPase has been investigated. Here we report on specific anion effects on the ATP-dependent Ca2+ translocation by the sarcoplasmic reticulum Ca2+-ATPase (SERCA). Current measurements following ATP concentration jumps on SERCA-containing vesicles adsorbed on solid supported membranes were carried out in the presence of different potassium salts. We found that monovalent anions strongly interfere with ATP-induced Ca2+ translocation by SERCA, according to their increasing chaotropicity in the Hofmeister series. On the contrary, a significant increase in Ca2+ translocation was observed in the presence of sulphate. We suggest that the anions can affect the conformational transition between the phosphorylated intermediates E1P and E2P of the SERCA cycle. In particular, the stabilization of the E1P conformation by chaotropic anions seems to be related to their adsorption at the enzyme/water and/or at the membrane/water interface, while the more kosmotropic species affect SERCA conformation and functionality by modifying the hydration layers of the enzyme.

  15. Roles of phosphorylation and nucleotide binding domains in calcium transport by sarcoplasmic reticulum adenosinetriphosphatase

    International Nuclear Information System (INIS)

    Teruel, J.A.; Inesi, G.

    1988-01-01

    The roles of the phosphorylation (phosphorylated enzyme intermediate) and nucleotide binding domains in calcium transport were studied by comparing acetyl phosphate and ATP as substrates for the Ca 2+ -ATPase of sarcoplasmic reticulum vesicles. The authors found that the maximal level of phosphoenzyme obtained with either substrate is approximately 4 nmol/mg of protein, corresponding to the stoichiometry of catalytic sites in their preparation. The initial burst of phosphoenzyme formation observed in the transient state, following addition of either substrate, is accompanied by internalization of 2 mol of calcium per mole of phosphoenzyme. The internalized calcium is then translocated with a sequential pattern, independent of the substrate used. Following a rate-limiting step, the phosphoenzyme undergoes hydrolytic cleavage and proceeds to the steady-state activity which is soon back inhibited by the rise of Ca 2+ concentration in the lumen of the vesicles. When the back inhibition is released by the addition of oxalate, substrate utilization and calcium transport occur with a ratio of 1:2, independent of the substrate and its concentration. When the nucleotide binding site is derivatized with FITP, the enzyme can still utilize acetyl phosphate (but not ATP) for calcium transport. These observations demonstrate that the basic coupling mechanism of catalysis and calcium transport involves the phosphorylation and calcium binding domains, and not the nucleotide binding domain. On the other hand, occupancy of the FITC-sensitive nucleotide site is involved in kinetic regulation not only with respect to utilization of substrate for the phosphoryl transfer reaction but also for subsequent steps related to calcium translocation and phosphoenzyme turnover

  16. Calcium uptake by sarcoplasmic reticulum in the presence of organophosphorus insecticide methyl-parathion

    International Nuclear Information System (INIS)

    Blasiak, J.

    1995-01-01

    Using an isotope labelling technique it has been shown that an organophosphorus insecticide methyl parathion (0,0-diethyl 0-4-nitrophenyl phosphorothionate) depressed calcium uptake by sarcoplasmic reticulum isolated from rabbit hind leg muscle. The effect was significant for insecticide concentrations of 50 and 100 μM and was dose-dependent. The insecticide exerted a more pronounced effect on calcium uptake in the presence of ATP in the reticulum environment than in the absence of ATP. The inhibitory action of methyl parathion on Ca 2+ accumulation by sarcoplasmic reticulum can cause a rise in myoplasmic free Ca 2+ , the essential prerequisite for contracture activation. Because methyl parathion, as well as other organophosphorus insecticides, is primarily neurotoxic, evidence of non-specific effect could be important for assessing its environmental safety. (author). 20 refs, 2 figs

  17. Regulatory effects of phospholamban on cardiac sarcoplasmic reticulum function

    International Nuclear Information System (INIS)

    Kim, Hae Won.

    1989-01-01

    In this thesis, the author reports the effect of phospholamban on: (a) Ca 2+ release by cardiac SR and (b) the Ca 2+ -ATPase activity in a purified reconstituted system. Phosphorylation of phospholamban by Ca 2+ · calmodulin-dependent protein kinase had no appreciable effect on the initial rates of Ca 2+ release from cardiac SR vesicles loaded under passive conditions and on the apparent 45 Ca 2+ - 40 Ca 2+ exchange from cardiac SR vesicles loaded under active conditions. us, it appears that Ca 2+ · calmodulin-dependent phosphorylation of phospholamban is not involved in the regulation of Ca 2+ release and 45 Ca 2+-40 Ca 2+ exchange. To determine the molecular mechanism by which phospholamban regulates the Ca 2+ pump, a reconstituted system was developed, using a freeze-thaw sonication procedure. The Ca 2+ -ATPase was purified by a method which yields an active enzyme preparation essentially free of phospholamban. The best rates of Ca 2+ uptake were obtained when cholate and phosphatidylcholine (PC) were used at a ratio of cholate/PC/Ca 2 + -ATPase of 2/80/1. The maximal rates of Ca 2+ Uptake were 700 nmol/min/mg reconstituted vesicles compared to 800 nmol/min/mg SR vesicles. The EC 50 values for Ca 2+ were 0.05 μM for both Ca 2+ uptake and Ca 2+ -ATPase activity in the reconstituted vesicles compared to 0.63 μM Ca 2+ in native SR vesicles. To determine the effect of phospholamban on the Ca + -ATPase activity in the reconstituted vesicles, purified phospholamban was added to the cholate/Ca 2+ -ATPase mixture prior to combining it with liposomes

  18. Methods for Creating and Animating a Computer Model Depicting the Structure and Function of the Sarcoplasmic Reticulum Calcium ATPase Enzyme.

    Science.gov (United States)

    Chen, Alice Y.; McKee, Nancy

    1999-01-01

    Describes the developmental process used to visualize the calcium ATPase enzyme of the sarcoplasmic reticulum which involves evaluating scientific information, consulting scientists, model making, storyboarding, and creating and editing in a computer medium. (Author/CCM)

  19. Effect of ionizing radiation on catalytic properties of Ca2+-ATP-ase from sarcoplasmic reticulum of skeletal muscle

    International Nuclear Information System (INIS)

    Bagel', I.M.; Shafranovskaya, E.V.; Gorokh, G.A.; Markova, A.G.

    1999-01-01

    It was studied kinetic and thermodynamic characteristics of Ca 2+ -ATP-ase of rat skeletal muscle (membranes of sarcoplasmic reticulum) after irradiation in doses 0,5, 4,0 and 8,0 Gy. It was shown that external gamma-irradiation at different doses changed kinetic and thermodynamic characteristics of the enzyme of sarcoplasmic reticulum membranes of skeletal muscle. These alterations probably correlate with disbalance of hormonal regulation of intracellular calcium metabolism and changes in membrane structure and functions

  20. pH-modulation of chloride channels from the sarcoplasmic reticulum of skeletal muscle.

    Science.gov (United States)

    Kourie, J I

    1999-01-01

    The understanding of the role of cytoplasmic pH in modulating sarcoplasmic reticulum (SR) ion channels involved in Ca2+ regulation is important for the understanding of the function of normal and adversely affected muscles. The dependency of the SR small chloride (SCl) channel from rabbit skeletal muscle on cytoplasmic pH (pHcis) and luminal pH (pHtrans) was investigated using the lipid bilayer-vesicle fusion technique. Low pHcis 6.75-4.28 modifies the operational mode of this multiconductance channel (conductance levels between 5 and 75 pS). At pHcis 7.26-7.37 the channel mode is dominated by the conductance and kinetics of the main conductance state (65-75 pS) whereas at low pHcis 6.75-4.28 the channel mode is dominated by the conductance and kinetics of subconductance states (5-40 pS). Similarly, low pHtrans 4.07, but not pHtrans 6.28, modified the activity of SCl channels. The effects of low pHcis are pronounced at 10(-3) and 10(-4) M [Ca2+]cis but are not apparent at 10(-5) M [Ca2+]cis, where the subconductances of the channel are already prominent. Low pHcis-induced mode shift in the SCl channel activity is due to modification of the channel proteins that cause the uncoupling of the subconductance states. The results in this study suggest that low pHcis can modify the functional properties of the skeletal SR ion channels and hence contribute, at least partly, to the malfunction in the contraction-relaxation mechanism in skeletal muscle under low cytoplasmic pH levels.

  1. Detection, Properties, and Frequency of Local Calcium Release from the Sarcoplasmic Reticulum in Teleost Cardiomyocytes

    OpenAIRE

    Llach, Anna; Molina, Cristina E.; Alvarez Lacalle, Enrique; Tort, Lluis; Benítez, Raul; Hove, Leif

    2011-01-01

    Calcium release from the sarcoplasmic reticulum (SR) plays a central role in the regulation of cardiac contraction and rhythm in mammals and humans but its role is controversial in teleosts. Since the zebrafish is an emerging model for studies of cardiovascular function and regeneration we here sought to determine if basic features of SR calcium release are phylogenetically conserved. Confocal calcium imaging was used to detect spontaneous calcium release (calcium sparks and waves) from...

  2. Purification of a sarcoplasmic reticulum protein that binds Ca2+ and plasma lipoproteins

    International Nuclear Information System (INIS)

    Hofmann, S.L.; Brown, M.S.; Lee, E.; Pathak, R.K.; Anderson, R.G.; Goldstein, J.L.

    1989-01-01

    A protein in the sarcoplasmic reticulum of rabbit skeletal and cardiac muscle was identified because of its ability to bind 125I-labeled low density lipoprotein (LDL) with high affinity after sodium dodecyl sulfate-polyacrylamide gel electrophoresis. This protein, referred to as the 165-kDa protein, is restricted to striated muscle. It was not detected in 14 other tissues, including several that contain smooth muscle, but it appears in rat L6 myoblasts when they differentiate into myocytes. Immunofluorescence and immunoelectron microscopic studies revealed that the protein is present throughout the sarcoplasmic reticulum and the terminal cisternae. It binds 45Ca2+ on nitrocellulose blots and stains metachromatically with Stains-all, a cationic dye that stains Ca2+-binding proteins. It does not appear to be a glycoprotein, and it appears slightly larger than the 160-kDa glycoprotein previously described in sarcoplasmic reticulum. The 165-kDa protein binds LDL, beta-migrating very low density lipoprotein, and a cholesterol-induced high density lipoprotein particle that contains apoprotein E as its sole apoprotein with much higher affinity than it binds high density lipoprotein. The protein is stable to boiling and to treatment with sodium dodecyl sulfate, but it becomes sensitive to these treatments when its cystine residues are reduced and alkylated. The protein was purified 1300-fold to apparent homogeneity from rabbit skeletal muscle membranes. It differs from the cell surface LDL receptor in that (1) its apparent molecular weight is not changed by reduction and alkylation; (2) it is present in Watanabe-heritable hyperlipidemic rabbits, which lack functional LDL receptors; (3) binding of lipoproteins is not inhibited by EDTA; and (4) it is located within the lumen of the sarcoplasmic reticulum where it has no access to plasma lipoproteins

  3. Different thermostabilities of sarcoplasmic reticulum (Ca2+ + Mg2+)-ATPases from rabbit and trout muscles.

    Science.gov (United States)

    de Toledo, F G; Albuquerque, M C; Goulart, B H; Chini, E N

    1995-05-01

    Trout and rabbit (Ca2+ + Mg2+)-ATPases from sarcoplasmic reticulum were compared for differences in thermal inactivation and susceptibility to trypsin digestion. The trout ATPase is more heat-sensitive than the rabbit ATPase and is stabilized by Ca2+, Na+, K+ and nucleotides. Solubilization of both ATPases shows that the two ATPases have different protein-intrinsic inactivation kinetics. When digested by trypsin, the two ATPases display different cleavage patterns. The present results indicate that the trout and rabbit ATPases have dissimilarities in protein structure that may explain the differences in thermal inactivation kinetics.

  4. Cardiac sarcoplasmic reticulum. Effects of an atherogenic diet during the neonatal and juvenile period

    Energy Technology Data Exchange (ETDEWEB)

    Jacobson, M S; Ambudkar, I S; Young, E P; Naseem, S M; Heald, F P; Shamoo, A E [Maryland Univ., College Park (USA). School of Medicine

    1985-04-01

    The effect on the cardiac sarcoplasmic reticulum of an atherogenic (1% cholesterol) diet fed during the neonatal vs the juvenile period of life was studied in Yorkshire swine. Male piglets were randomly assigned at birth to 1 of 4 groups: group I (control), group II (lactation feeding), group III (juvenile period feeding) and group IV (lactation and juvenile feeding). All animals were killed at 55 weeks of age and cardiac sarcoplasmic reticulum (SR) isolated for assay of calcium uptake, Ca/sup 2 +/-Mg/sup 2 +/ ATPase activity, and lipid analysis by thin-layer chromatography and gas chromatography. The amount of cholesterol/mg SR protein and the cholesterol/phospholipid ratio were higher in the animals fed during lactation (groups II and IV) and lower in those fed only during the juvenile period (group III). Phospholipid fatty acid patterns as measured by gas chromatography were unaltered in any group. Calcium uptake was markedly diminished in all experimental conditions: group II 47%, group III 65% and group IV 96%. Compared to the observed changes in calcium transport, the ATP hydrolytic activity was relatively less affected. Only in group IV a significant decrease (41%) was seen. Groups II and III show no change in ATP hydrolytic activity. The decrease in calcium uptake and altered cholesterol/phospholipid ratio without effect on ATP hydrolytic activity is consistent with an uncoupling of calcium transport related to the atherogenic diet in early life.

  5. Uncoupling of sarcoplasmic reticulum Ca²⁺-ATPase by N-arachidonoyl dopamine. Members of the endocannabinoid family as thermogenic drugs

    DEFF Research Database (Denmark)

    Mahmmoud, Yasser Ahmed; Gaster, Michel

    2013-01-01

    BACKGROUND AND PURPOSE: The sarcoplasmic reticulum Ca²⁺-ATPase (SERCA) plays a role in thermogenesis. The exogenous compound capsaicin increased SERCA-mediated ATP hydrolysis not coupled to Ca²⁺ transport. Here, we have sought to identify endogenous compounds that may function as SERCA uncoupling...... agents. EXPERIMENTAL APPROACH: Using isolated SR vesicles from rabbits, we have screened for endogenous compounds that uncouple SERCA. We have also studied their ability to deplete cytoplasmic ATP from human skeletal muscle cells in culture. KEY RESULTS: Studies on SR vesicles showed that the endogenous......, regardless of the presence of glucose. CONCLUSIONS AND IMPLICATIONS: NADA is an endogenous molecule that may function as SERCA uncoupling agent in vivo. Members of the endocannabinoid family exert concerted actions on several Ca²⁺-handling proteins. Uncoupling of SERCA by exogenous compounds could be a novel...

  6. Investigation of function similarities between the sarcoplasmic reticulum and platelet calcium-dependent adenosinetriphosphatases with the inhibitors quercetin and calmidazolium

    International Nuclear Information System (INIS)

    Fischer, T.H.; Campbell, K.P.; White, G.C. II

    1987-01-01

    The platelet and skeletal sarcoplasmic reticulum calcium-dependent adenosinetriphosphatases (Ca 2+ -ATPases) were functionally compared with respect to substrate activation by steady-state kinetic methods using the inhibitors quercetin and calmidazolium. Quercetin inhibited platelet and sarcoplasmic reticulum Ca 2+ -ATPase activities in a dose-dependent manner with IC 50 values of 25 and 10 μM, respectively. Calmidazolium also inhibited platelet and sarcoplasmic reticulum Ca 2+ -ATPase activities, with half-maximal inhibition measured at 5 and 4 μM, respectively. Both inhibitors also affected the [ 45 Ca] calcium transport activity of intact platelet microsomes at concentrations similar to those which reduced Ca 2+ -ATPase activity. These inhibitors were then used to examine substrate ligation by the platelet and sarcoplasmic reticulum calcium pump proteins. For both Ca 2+ -ATPase proteins, quercetin has an affinity for the E-Ca 2 (fully ligated with respect to calcium at the exterior high-affinity calcium binding sites, unligated with respect to ATP) conformational state of the protein that is approximately 10-fold grater than for other conformational states in the hydrolytic cycle. Quercetin can thus be considered a competitive inhibitor of the calcium pump proteins with respect to ATP. In contrast to the effect of quercetin, calmidazolium interacts with the platelet and sarcoplasmic reticulum Ca 2+ -ATPases in an uncompetitive manner. The dissociation constants for this inhibitor for the different conformational states of the calcium pump proteins were similar, indicating that calmidazolium has equal affinity for all of the reaction intermediates probed. These observations indicate that the substrate ligation processes are similar for the two pump proteins. This supports the concept that the hydrolytic cycles of the two proteins are comparable

  7. Specific protein-protein interactions of calsequestrin with junctional sarcoplasmic reticulum of skeletal muscle

    International Nuclear Information System (INIS)

    Damiani, E.; Margreth, A.

    1990-01-01

    Minor protein components of triads and of sarcoplasmic reticulum (SR) terminal cisternae (TC), i.e. 47 and 37 kDa peptides and 31-30 kDa and 26-25 kDa peptide doublets, were identified from their ability to bind 125 I calsequestrin (CS) in the presence of EGTA. The CS-binding peptides are specifically associated with the junctional membrane of TC, since they could not be detected in junctional transverse tubules and in longitudinal SR fragments. The 31-30 kDa peptide doublet, exclusively, did not bind CS in the presence of Ca 2+ . Thus, different types of protein-protein interactions appear to be involved in selective binding of CS to junctional TC

  8. Vanilloid receptor expressed in the sarcoplasmic reticulum of rat skeletal muscle

    International Nuclear Information System (INIS)

    Xin Hong; Tanaka, Hideyuki; Yamaguchi, Maki; Takemori, Shigeru; Nakamura, Akio; Kohama, Kazuhiro

    2005-01-01

    Vanilloid receptor subtype 1 (VR1) was cloned as a capsaicin receptor from neuronal cells of dorsal root ganglia. VR1 was subsequently found in a few non-neuronal tissues, including skeletal muscle [Onozawa et al., Tissue distribution of capsaicin receptor in the various organs of rats, Proc. Jpn. Acad. Ser. B 76 (2000) 68-72]. We confirmed the expression of VR1 in muscle cells using the RT-PCR method and Western blot analysis. Immunostaining studies with a confocal microscope and an electron microscope indicated that VR1 was present in the sarcoplasmic reticulum (SR), a store of Ca 2+ . The SR releases Ca 2+ to cause a contraction when a muscle is excited. However, SR still releases a small amount of Ca 2+ under relaxed conditions. We found that this leakage was enhanced by capsaicin and was antagonized by capsazepine, a capsaicin blocker, indicating that leakage of Ca 2+ occurs through a channel composed of VR1

  9. Effects of inorganic phosphate and ADP on calcium handling by the sarcoplasmic reticulum in rat skinned cardiac muscles.

    Science.gov (United States)

    Xiang, J Z; Kentish, J C

    1995-03-01

    The aim was to investigate whether, and how, increases in inorganic phosphate (Pi) and ADP, similar to those occurring intracellularly during early myocardial ischaemia, affect the calcium handling of the sarcoplasmic reticulum. Rat ventricular trabeculae were permeabilised with saponin. The physiological process of calcium induced calcium release (CICR) from the muscle sarcoplasmic reticulum was triggered via flash photolysis of the "caged Ca2+", nitr-5. Alternatively, calcium release was induced by rapid application of caffeine to give an estimate of sarcoplasmic reticular calcium loading. The initial rate of sarcoplasmic reticular calcium pumping was also assessed by photolysis of caged ATP at saturating [Ca2+]. Myoplasmic [Ca2+] (using fluo-3) and isometric force were measured. Pi (2-20 mM) significantly depressed the magnitude of CICR and the associated force transient. Sarcoplasmic reticular calcium loading was inhibited even more than CICR by Pi, suggesting that reduced calcium loading could account for all of the inhibitory effect of Pi on CICR and that Pi may slightly activate the calcium release mechanism. The reduced sarcoplasmic reticular calcium loading seemed to be due to a fall in the free energy of ATP hydrolysis (delta GATP) available for the calcium pump, since equal decreases in delta GATP produced by adding both Pi and ADP in various ratios caused similar falls in the calcium loading of the sarcoplasmic reticulum. The caged ATP experiments indicated that Pi (20 mM) did not affect the rate constant of sarcoplasmic reticular calcium uptake. ADP (10 mM) alone, or with 1 mM Pi, inhibited calcium loading. In spite of this, ADP (10 mM) did not alter CICR and, when 1 mM Pi was added, ADP increased CICR above control. An increase in intracellular Pi reduces sarcoplasmic reticular calcium loading and thus depresses the CICR. This could be an important contributing factor in the hypoxic or ischaemic contractile failure of the myocardium. However the

  10. Effects of exercise training and exhaustion on 45Ca uptake by rat skeletal muscle mitochondria and sarcoplasmic reticulum

    International Nuclear Information System (INIS)

    Bonner, H.W.; Leslie, S.W.; Combs, A.B.; Tate, C.A.

    1976-01-01

    Mitochondrial and sarcoplasmic reticular 45 Ca 2+ uptake and Ca 2+ -ATPase activity were determined in skeletal muscle from exercise trained and non-trained rats at rest or following short-term exhaustive exercise. In trained rats exercised to exhaustion, mitochondrial 45 Ca 2+ uptake was significantly depressed when compared to non-trained rats at rest. Ca 2+ -ATPase activity of sarcoplasmic reticulum from trained rats exercised to exhaustion was significantly increased as compared to trained rats at rest. These data suggest that the disruptive influence of Ca 2+ accumulation in mitochondria isolated following exhaustive exercise may be diminished as a result of training

  11. Disturbances of the sarcoplasmic reticulum and transverse tubular system in 24-h electrostimulated fast-twitch skeletal muscle

    DEFF Research Database (Denmark)

    Frías, J A; Cadefau, J A; Prats, C

    2005-01-01

    Chronic low-frequency stimulation of rabbit tibialis anterior muscle over a 24-h period induces a conspicuous loss of isometric tension that is unrelated to muscle energy metabolism (J.A. Cadefau, J. Parra, R. Cusso, G. Heine, D. Pette, Responses of fatigable and fatigue-resistant fibres of rabbit...... muscle to low-frequency stimulation, Pflugers Arch. 424 (1993) 529-537). To assess the involvement of sarcoplasmic reticulum and transverse tubular system in this force impairment, we isolated microsomal fractions from stimulated and control (contralateral, unstimulated) muscles on discontinuous sucrose...... of muscles stimulated for 24 h underwent acute changes in the pattern of protein bands. First, light fractions from longitudinal sarcoplasmic reticulum, enriched in Ca2+-ATPase activity, R1 and R2, were greatly reduced (67% and 51%, respectively); this reduction was reflected in protein yield of crude...

  12. Biphasic decay of the Ca transient results from increased sarcoplasmic reticulum Ca leak

    Science.gov (United States)

    Sankaranarayanan, Rajiv; Li, Yatong; Greensmith, David J.; Eisner, David A.

    2016-01-01

    Key points Ca leak from the sarcoplasmic reticulum through the ryanodine receptor (RyR) reduces the amplitude of the Ca transient and slows its rate of decay.In the presence of β‐adrenergic stimulation, RyR‐mediated Ca leak produces a biphasic decay of the Ca transient with a fast early phase and a slow late phase.Two forms of Ca leak have been studied, Ca‐sensitising (induced by caffeine) and non‐sensitising (induced by ryanodine) and both induce biphasic decay of the Ca transient.Only Ca‐sensitising leak can be reversed by traditional RyR inhibitors such as tetracaine.Ca leak can also induce Ca waves. At low levels of leak, waves occur. As leak is increased, first biphasic decay and then slowed monophasic decay is seen. The level of leak has major effects on the shape of the Ca transient. Abstract In heart failure, a reduction in Ca transient amplitude and contractile dysfunction can by caused by Ca leak through the sarcoplasmic reticulum (SR) Ca channel (ryanodine receptor, RyR) and/or decreased activity of the SR Ca ATPase (SERCA). We have characterised the effects of two forms of Ca leak (Ca‐sensitising and non‐sensitising) on calcium cycling and compared with those of SERCA inhibition. We measured [Ca2+]i with fluo‐3 in voltage‐clamped rat ventricular myocytes. Increasing SR leak with either caffeine (to sensitise the RyR to Ca activation) or ryanodine (non‐sensitising) had similar effects to SERCA inhibition: decreased systolic [Ca2+]i, increased diastolic [Ca2+]i and slowed decay. However, in the presence of isoproterenol, leak produced a biphasic decay of the Ca transient in the majority of cells while SERCA inhibition produced monophasic decay. Tetracaine reversed the effects of caffeine but not of ryanodine. When caffeine (1 mmol l−1) was added to a cell which displayed Ca waves, the wave frequency initially increased before waves disappeared and biphasic decay developed. Eventually (at higher caffeine concentrations), the

  13. Molecular cloning and expression of cDNA encoding a lumenal calcium binding glycoprotein from sarcoplasmic reticulum

    International Nuclear Information System (INIS)

    Leberer, E.; Charuk, J.H.M.; MacLennan, D.H.; Green, N.M.

    1989-01-01

    Antibody screening was used to isolate a cDNA encoding the 160-kDa glycoprotein of rabbit skeletal muscle sarcoplasmic reticulum. The cDNA is identical to that encoding the 53-kDa glycoprotein except that it contains an in-frame insertion of 1,308 nucleotides near its 5' end, apparently resulting from alternative splicing. The protein encoded by the cDNA would contain a 19-residue NH 2 -terminal signal sequence and a 453-residue COOH-terminal sequence identical to the 53-kDa glycoprotein. It would also contain a 436-amino acid insert between these sequences. This insert would be highly acidic, suggesting that it might bind Ca 2+ . The purified 160-kDa glycoprotein and the glycoprotein expressed in COS-1 cells transfected with cDNA encoding the 160-kDa glycoprotein were shown to bind 45 C 2+ in a gel overlay assay. The protein was shown to be located in the lumen of the sarcoplasmic reticulum and to be associated through Ca 2+ with the membrane. The authors propose that this lumenal Ca 2+ binding glycoprotein of the sarcoplasmic reticulum be designated sarcalumenin

  14. Reduced sarcoplasmic reticulum content of releasable Ca2+ in rat soleus muscle fibres after eccentric contractions

    DEFF Research Database (Denmark)

    Nielsen, J S; Sahlin, K; Ørtenblad, N

    2007-01-01

    AIM: The purpose was to evaluate the effects of fatiguing eccentric contractions (EC) on calcium (Ca2+) handling properties in mammalian type I muscles. We hypothesized that EC reduces both endogenous sarcoplasmic reticulum (SR) content of releasable Ca2+ (eSRCa2+) and myofibrillar Ca2+ sensitivity....... METHODS: Isolated rat soleus muscles performed 30 EC bouts. Single fibres were isolated from the muscle and after mechanical removal of sarcolemma used to measure eSRCa2+, rate of SR Ca2+ loading and myofibrillar Ca2+ sensitivity. RESULTS: Following EC maximal force in whole muscle was reduced by 30......% and 16/100 Hz force ratio by 33%. The eSRCa2+ in fibres from non-stimulated muscles was 45 +/- 5% of the maximal loading capacity. After EC, eSRCa2+ per fibre CSA decreased by 38% (P = 0.05), and the maximal capacity of SR Ca2+ loading was depressed by 32%. There were no effects of EC on either...

  15. Impaired sarcoplasmic reticulum Ca(2+) release rate after fatiguing stimulation in rat skeletal muscle

    DEFF Research Database (Denmark)

    Ørtenblad, Niels; Sjøgaard, G; Madsen, Klavs

    2000-01-01

    during the first 0.5-1 h the metabolic state recovered to resting levels, and a slow phase from 1-3 h characterized by a rather slow recovery of the mechanical properties. The recovery of SR Ca(2+) release rate was closely correlated to +dF/dt during the slow phase of recovery (r(2) = 0.51; P ... to 66% that persisted for 1 h, followed by a gradual recovery to 87% of prefatigue release rate at 3 h recovery. Tetanic force and rate of force development (+dF/dt) and relaxation (-dF/dt) were depressed by approximately 80% after stimulation. Recovery occurred in two phases: an initial phase, in which......The purpose of the study was to characterize the sarcoplasmic reticulum (SR) function and contractile properties before and during recovery from fatigue in the rat extensor digitorum longus muscle. Fatiguing contractions (60 Hz, 150 ms/s for 4 min) induced a reduction of the SR Ca(2+) release rate...

  16. Modulation of sarcoplasmic reticulum calcium release by calsequestrin in cardiac myocytes

    Directory of Open Access Journals (Sweden)

    SANDOR GYÖRKE

    2004-01-01

    Full Text Available Calsequestrin (CASQ2 is a high capacity Ca-binding protein expressed inside the sarcoplasmic reticulum (SR. Mutations in the cardiac calsequestrin gene (CASQ2 have been linked to arrhythmias and sudden death induced by exercise and emotional stress. We have studied the function of CASQ2 and the consequences of arrhythmogenic CASQ2 mutations on intracellular Ca signalling using a combination of approaches of reverse genetics and cellular physiology in adult cardiac myocytes. We have found that CASQ2 is an essential determinant of the ability of the SR to store and release Ca2+ in cardiac muscle. CASQ2 serves as a reservoir for Ca2+ that is readily accessible for Ca2+-induced Ca2+ release (CICR and also as an active Ca2+ buffer that modulates the local luminal Ca-dependent closure of the SR Ca2+ release channels. At the same time, CASQ2 stabilizes the CICR process by slowing the functional recharging of SR Ca2+ stores. Abnormal restitution of the Ca2+ release channels from a luminal Ca-dependent refractory state could account for ventricular arrhythmias associated with mutations in the CASQ2 gene.

  17. Calcium uptake by sarcoplasmic reticulum isolated from hearts of septic rats

    International Nuclear Information System (INIS)

    McDonough, K.H.

    1988-01-01

    Myocardial sarcoplasmic reticulum (SR) plays a critical role in the regulation of the cytosolic calcium fluctuations that occur during the cardiac cycle. One function of the SR is to lower the calcium concentration so that myocardial relaxation and thus ventricular filling can occur. The aim of the present study was to determine if hyperdynamic sepsis induced a decrease in the capacity of SR to take up calcium. This defect would result in decreased ventricular filling and thus decreased cardiac output, as has previously been shown in isolated perfused working hearts removed from septic rats. Therefore, rats were anesthetized with ether, and sepsis was induced by the injection of an aliquot of a fecal homogenate into the peritoneal cavity. Control animals either underwent surgery and received an aliquot of sterilized fecal inoculum (sham) or were untreated (no surgery). On day 2 after surgery, animals were anesthetized with pentobarbital, and hearts were removed, weighted, and SR isolated. The rate of uptake of 45 Ca 2+ by SR from septic rats was not depressed compared to controls but in fact was elevated. Maximum 45 Ca 2+ accumulated by the SR and Ca 2+ -stimulated ATPase activity were similar in SR from control and septic hearts. These results suggest that the contractile dysfunction noted in the myocardium in early sepsis is probably not due to inadequate SR removal of Ca 2+ during diastole

  18. Crosstalk between mitochondrial and sarcoplasmic reticulum Ca2+ cycling modulates cardiac pacemaker cell automaticity.

    Directory of Open Access Journals (Sweden)

    Yael Yaniv

    Full Text Available Mitochondria dynamically buffer cytosolic Ca(2+ in cardiac ventricular cells and this affects the Ca(2+ load of the sarcoplasmic reticulum (SR. In sinoatrial-node cells (SANC the SR generates periodic local, subsarcolemmal Ca(2+ releases (LCRs that depend upon the SR load and are involved in SANC automaticity: LCRs activate an inward Na(+-Ca(2+ exchange current to accelerate the diastolic depolarization, prompting the ensemble of surface membrane ion channels to generate the next action potential (AP.To determine if mitochondrial Ca(2+ (Ca(2+ (m, cytosolic Ca(2+ (Ca(2+ (c-SR-Ca(2+ crosstalk occurs in single rabbit SANC, and how this may relate to SANC normal automaticity.Inhibition of mitochondrial Ca(2+ influx into (Ru360 or Ca(2+ efflux from (CGP-37157 decreased [Ca(2+](m to 80 ± 8% control or increased [Ca(2+](m to 119 ± 7% control, respectively. Concurrent with inhibition of mitochondrial Ca(2+ influx or efflux, the SR Ca(2+ load, and LCR size, duration, amplitude and period (imaged via confocal linescan significantly increased or decreased, respectively. Changes in total ensemble LCR Ca(2+ signal were highly correlated with the change in the SR Ca(2+ load (r(2 = 0.97. Changes in the spontaneous AP cycle length (Ru360, 111 ± 1% control; CGP-37157, 89 ± 2% control in response to changes in [Ca(2+](m were predicted by concurrent changes in LCR period (r(2 = 0.84.A change in SANC Ca(2+ (m flux translates into a change in the AP firing rate by effecting changes in Ca(2+ (c and SR Ca(2+ loading, which affects the characteristics of spontaneous SR Ca(2+ release.

  19. Effect of triorganotin compounds on calcium transport mechanisms in rat cardiac sarcoplasmic reticulum

    International Nuclear Information System (INIS)

    Cameron, J.A.; Kodavanti, P.R.S.; Yallapragada, P.R.; Desaiah, D.

    1990-01-01

    Although organotin compounds, in general, are neurotoxicants, recent studies indicate that these tin compounds affect heme metabolism as well as cardiovascular system. Sarcoplasmic reticulum (SR) calcium pump together with phosphorylation of phospholamban has an important role in myocardial contraction and relaxation. Since organotin compounds interfere with cardiovascular system, we have studied the in vitro as well as in vivo effects of tributyltin bromide (TBT), triethyltin bromide (TET) and trimethyltin chloride (TMT) on cardiac SR Ca 2+ -pump activity, in order to know the relative potency of these tin compounds. SR was isolated from heart ventricles of male Sprague-Dawley rats and used for in vitro studies. For in vivo studies, rats were treated orally in corn oil for 6 days with different doses of TET (0.5, 1.0 and 1.5 mg/kg/d), TMT (0.75, 1.5 and 2.5 mg/kg/d) and TBT (0.75, 1.5 and 2.5 mg/kg/d). Rats were sacrificed 24 hr after the last dosage and cardiac SR was prepared. Cardiac SR Ca 2+ -ATPase and 45 Ca-uptake were measured. All the three tin compounds inhibited Ca 2+ -ATPase and 45 Ca-uptake in vitro in a concentration dependent manner. The order of potency for Ca 2+ -ATPase as determined IC 50 , is TBT (2 uM) > TET (63 uM) > TMT (280 uM). For 45 Ca-uptake, if followed the same order i.e., TBT (0.35 uM) > TET (10 uM) > TMT (440 uM). In agreement with in vitro results, both SR Ca 2+ -ATPase and 45 Ca-uptake were significantly inhibited in rats treated with these tin compounds. These studies indicate that triorganotin compounds affect Ca 2+ -pumping mechanisms and thereby alter cardiac contraction-relaxation process

  20. Dynamic measurement of the calcium buffering properties of the sarcoplasmic reticulum in mouse skeletal muscle.

    Science.gov (United States)

    Manno, Carlo; Sztretye, Monika; Figueroa, Lourdes; Allen, Paul D; Ríos, Eduardo

    2013-01-15

    The buffering power, B, of the sarcoplasmic reticulum (SR), ratio of the changes in total and free [Ca(2+)], was determined in fast-twitch mouse muscle cells subjected to depleting membrane depolarization. Changes in total SR [Ca(2+)] were measured integrating Ca(2+) release flux, determined with a cytosolic [Ca(2+)] monitor. Free [Ca(2+)](SR) was measured using the cameleon D4cpv-Casq1. In 34 wild-type (WT) cells average B during the depolarization (ON phase) was 157 (SEM 26), implying that of 157 ions released, 156 were bound inside the SR. B was significantly greater when BAPTA, which increases release flux, was present in the cytosol. B was greater early in the pulse - when flux was greatest - than at its end, and greater in the ON than in the OFF. In 29 Casq1-null cells, B was 40 (3.6). The difference suggests that 75% of the releasable calcium is normally bound to calsequestrin. In the nulls the difference in B between ON and OFF was less than in the WT but still significant. This difference and the associated decay in B during the ON were not artifacts of a slow SR monitor, as they were also found in the WT when [Ca(2+)](SR) was tracked with the fast dye fluo-5N. The calcium buffering power, binding capacity and non-linear binding properties of the SR measured here could be accounted for by calsequestrin at the concentration present in mammalian muscle, provided that its properties were substantially different from those found in solution. Its affinity should be higher, or K(D) lower than the conventionally accepted 1 mm; its cooperativity (n in a Hill fit) should be higher and the stoichiometry of binding should be at the higher end of the values derived in solution. The reduction in B during release might reflect changes in calsequestrin conformation upon calcium loss.

  1. Characterization of detergent-solubilized sarcoplasmic reticulum Ca2+-ATPase by high-performance liquid chromatography

    International Nuclear Information System (INIS)

    Andersen, J.P.; Vilsen, B.; Nielsen, H.; Moller, J.V.

    1986-01-01

    Sarcoplasmic reticulum Ca 2+ -ATPase solubilized by the nonionic detergent octaethylene glycol monododecyl ether was studied by molecular sieve high-performance liquid chromatography (HPLC) and analytical ultracentrifugation. Significant irreversible aggregation of soluble Ca 2+ -ATPase occurred within a few hours in the presence of ≤ 50 μM Ca 2+ . The aggregates were inactive and were primarily held together by hydrophobic forces. In the absence of reducing agent, secondary formation of disulfide bonds occurred. The stability of the inactive dimer upon dilution permitted unambiguous assignment of its elution position and sedimentation coefficient. At high 45 Ca 2+ concentration (500 μM), monomeric Ca 2+ -ATPase was stable for several house. Reversible self-association induced by variation in protein, detergent, and lipid concentrations was studied by large-zone HPLC. The association constant for dimerization of active Ca 2+ -ATPase was found to be 10 5 -10 6 M -1 depending on the detergent concentration. More detergent was bound to monomeric than to dimeric Ca 2+ -ATPase, even above the critical micellar concentration of the detergent. Binding of Ca 2+ and 48 V vanadate as well as ATP-dependent phosphorylation was studied in monomeric and in reversibly associated dimeric preparations. In both forms, two high-affinity Ca 2+ binding sites per phosphorylation site existed. The delipidated monomer purified by HPLC was able to form ADP-insensitive phosphoenzyme and to bind ATP and vanadate simultaneously. The results suggest that formation of Ca 2+ -ATPase oligomers in the membrane is governed by nonspecific forces (low affinity) and that each polypeptide chain constitutes a functional unit

  2. Patterns of proteolytic cleavage and carbodiimide derivatization in sarcoplasmic reticulum adenosinetriphosphatase

    International Nuclear Information System (INIS)

    de Ancos, J.G.; Inesi, G.

    1988-01-01

    Two series of experiments were carried out to characterize (a) peptide fragments of sarcoplasmic reticulum (SR) ATPase, based on proteolysis with different enzymes and distribution of known labels, and (b) specific labeling and functional inactivation patterns, following ATPase derivatization with dicyclohexylcarbodiimide (DCCD) under various conditions. Digestion with trypsin or chymotrypsin results in the initial cleavage of the SR ATPase in two fragments of similar size and then into smaller fragments, while subtilisin and thermolysin immediately yield smaller fragments. Peptide fragments were assigned to segments of the protein primary structure and to functionally relevant domains, such as those containing the 32 P at the active site and the fluorescein isothiocyanate at the nucleotide site. ATPase derivatization with [ 14 C]DCCD under mild conditions produced selective inhibition of ATPase hydrolytic catalysis without significant incorporation of the 14 C radioactive label. This effect is attributed to blockage of catalytically active residues by reaction of the initial DCCD adduct with endogenous or exogenous nucleophiles. ATPase derivatization with [ 14 C]DCCD under more drastic conditions produced inhibition of calcium binding, 14 C radioactive labeling of tryptic fragments A 1 and A 2 (but not of B), and extensive cross-linking. The presence of calcium during derivatization prevented functional inactivation, radioactive labeling of fragment A 2 , and internal cross-linking of fragment A 1 . It is proposed that both A 1 and A 2 fragments participate in formation of the calcium binding domain and that the labeled residues of fragment A 2 are directly involved in calcium complexation. A diagram is constructed, representing the relative positions of labels and functional domains within the ATPase protein

  3. Matching of sarcoplasmic reticulum and contractile properties in rat fast- and slow-twitch muscle fibres.

    Science.gov (United States)

    Trinh, Huong H; Lamb, Graham D

    2006-07-01

    1. The twitch characteristics (fast-twitch or slow-twitch) of skeletal muscle fibres are determined not only by the contractile apparatus properties of the fibre, but also by the time-course of Ca2+ release and re-uptake by the sarcoplasmic reticulum (SR). The present study examined, in individual fibres from non-transforming muscle of the rat, whether particular SR properties are matched to the contractile apparatus properties of the fibre, in particular in the case of fibres with fast-twitch contractile apparatus located in a slow-twitch muscle, namely the soleus. 2. Force was recorded in single, mechanically skinned fibres from extensor digitorum longus (EDL), gastrocnemius, peroneus longus and soleus muscles. Using repeated cycles in which the SR was emptied of all releasable Ca2+ and then reloaded, it was possible to determine the relative amount of Ca2+ present in the SR endogenously, the maximum SR capacity and the rate of Ca2+ loading. The sensitivity of the contractile apparatus to Ca2+ and Sr2+ was used to classify the fibres as fast-twitch (FT), slow-twitch (ST) or mixed (fibres examined) and thereby identify the likely troponin C and myosin heavy chain types present. 3. There was no significant difference in SR properties between the groups of FT fibres obtained from the four different muscles, including soleus. Despite some overlap in the SR properties of individual fibres between the FT and ST groups, the properties of the FT fibres in all four muscles studied were significantly different from those of the ST and mixed fibres. 4. In general, in FT fibres the SR had a larger capacity and the endogenous Ca2+ content was a relatively lower percentage of maximum compared with ST fibres. Importantly, in terms of their SR properties, FT fibres from soleus muscle more closely resembled FT fibres from other muscles than they did ST fibres from soleus muscle.

  4. Presence of a Ca2+-sensitive CDPdiglyceride-inositol transferase in canine cardiac sarcoplasmic reticulum

    International Nuclear Information System (INIS)

    Kasinathan, C.; Kirchberger, M.A.

    1988-01-01

    Sarcoplasmic reticulum (SR) and plasma membranes from canine left ventricle were used to evaluate the presence of the enzyme CDPdiglyceride-inositol transferase in these membranes. (K + ,-Ca 2+ )-ATPase activity, a marker for SR, was 79.2 +/- 5.0 (SE) and 11.2 +/- 2.0 μmol x mg -1 x h -1 in SR and plasma membrane preparations, respectively, and (Na + , K + )-ATPase activity, a marker for plasma membranes, was 5.6 +/- 1.2 and 99.2 +/- 8.0 μmol x mg -1 x h -1 , respectively. Contamination of SR and plasma membrane preparations by mitochondria was estimated to be 2% and 8%, respectively, and by Golgi membranes, 0.9% and 1.8%, respectively. The transferase activity detected in the plasma membrane preparation could be accounted for largely, but not entirely, by contaminating SR membranes. The pH optimum for the SR transferase activity was between 8.0 and 9.0. Ca 2+ inhibited the enzyme, half-maximal inhibition occurring at about 10 μM Ca 2+ . No loss of [ 3 H]PtdIns could be detected when membranes were incubated in the presence or absence of Ca 2+ . The Ca 2+ inhibition of the transferase was noncompetitive with respect to CDP-dipalmitin while that with respect to myo-inositol was slightly noncompetitive at low [Ca 2+ ] and became uncompetitive at higher [Ca 2+ ]. It is concluded that CDPdiglyceride-inositol transferase is present on SR membranes and is sensitive to micromolar Ca 2+ . The data are consistent with a putative role for the inhibition of the SR transferase by Ca 2+ and acidic pH in the protection of the SR against calcium overload in ischemic myocardium

  5. Inhibition of sarcoplasmic reticulum Ca(2+)-ATPase decreases atrioventricular node-paced heart rate in rabbits.

    Science.gov (United States)

    Cheng, Hongwei; Smith, Godfrey L; Orchard, Clive H; Hancox, Jules C; Burton, Francis L

    2012-10-01

    Recent data indicate that Ca(2+) cycling in isolated atrioventricular node (AVN) cells contributes to setting spontaneous rate. The aim of the present study was to extend this observation to the intact AVN in situ, by evaluating the effects of inhibiting sarcoplasmic reticulum Ca(2+) uptake with cyclopiazonic acid (CPA) on intact AVN spontaneous activity and its response to isoprenaline. A model of the AVN-paced heart was produced to investigate intact AVN automaticity, by surgical ablation of the sino-atrial node (SAN) in the rabbit Langendorff-perfused heart. Electrograms were recorded from a site close to the AVN (triangle of Koch), an atrial site above the AVN, the left atrium and right ventricle, enabling AVN pacing of the preparation to be confirmed. Before SAN ablation, the heart rate was 166.8 ± 5.4 beats min(-1). Ablation of the SAN was clearly indicated by a sudden and significant decrease of heart rate to 108.6 ± 9.6 beats min(-1) (P AVN rate to 187.8 ± 12.0 beats min(-1) after 1 min of application (P AVN rate to 81.6 ± 4.8 (n = 9) and 77.4 ± 6.0 beats min(-1) (n = 7), respectively [P AVN rate increase in response to isoprenaline from 78.8 ± 10.0 to 46.8 ± 6.8 and 26.7 ± 5.3%, respectively (P AVN rate and its response to isoprenaline indicate that Ca(2+) cycling is important to the intact AVN spontaneous activity and its acceleration during sympathetic stimulation.

  6. The influence of ionizing radiation on the structure of Ca-ATPase hydrophobic fragment of skeletal muscle sarcoplasmic reticulum

    International Nuclear Information System (INIS)

    Vojtsitskij, V.M.; Fedorov, A.N.; Lugovskoj, Eh.B.; Derzskaya, S.G.; Khizhnyak, S.V.; Kurskij, M.D.; Kucherenko, N.E.

    1990-01-01

    Early (1 and 24 h) after X-irradiation with a dose of 0.21 C/kg changes occurred in the acceptibility of the polypeptide chain parts of sarcoplasmic reticulum Ca-ATPase for the effect of trypsin. The analysis of the results of studying the structural and functional properties of a hydrophobic fragment of this enzyme in the control and after irradiation permitted to define the part of the Ca-ATPase polypeptide chain that provided ion selectivity of the fragment

  7. Activity of Ca(2+,Mg(2+-ATPase of sarcoplasmic reticulum and contraction strength of the frog skeletal muscles under the effect of organophosphorus insecticides

    Directory of Open Access Journals (Sweden)

    D. M. Nozdrenko

    2015-08-01

    Full Text Available The results of an experimental study of organo­phosphorus insecticides, including pirimiphosmethyl, diazinon and chlorpyrifos caused a decline of the contraction properties in m. tibialis anterior fiber bundles of Rana temporaria, as well as sarcoplasmic reticulum Ca2+,Mg2+-ATPase enzymatic activity reduction are outlined in this paper. Concentration-dependent strengths response diminishing in isolated skeletal muscle fiber bundles as a result of non-cholinergic influence of organophosphorus insecticides were found. A decrease of Ca2+,Mg2+-ATPase enzymatic activity in sarcoplasmic reticulum was observed after administration of each insecticide. The most significant inhibition of this enzyme was observed when using chlorpyrifos.

  8. [ACTIVITY OF Ca2+,Mg(2+)-ATPase OF SARCOPLASMIC RETICULUM AND CONTRACTION STRENGTH OF THE FROG SKELETAL MUSCLES UNDER THE EFFECT OF ORGANOPHOSPHORUS INSECTICIDES].

    Science.gov (United States)

    Nozdrenko, D M; Korchinska, L V; Soroca, V M

    2015-01-01

    The results of an experimental study of organophosphorus insecticides, including pirimiphosmethyl, diazinon and chlorpyrifos caused a decline of the contraction properties in m. tibialis anterior fiber bundles of Rana temporaria, as well as sarcoplasmic reticulum Ca2+, Mg(2+)-ATPase enzymatic activity reduction are outlined in this paper. Concentration-dependent strengths response diminishing in isolated skeletal muscle fiber bundles as a result of non-cholinergic influence of organophosphorus insecticides were found. A decrease of Ca2+, Mg(2+)-ATPase enzymatic activity in sarcoplasmic reticulum was observed after administration of each insecticide. The most significant inhibition of this enzyme was observed when using chlorpyrifos.

  9. Characterization of sarcoplasmic reticulum Ca(2+) ATPase pumps in muscle of patients with myotonic dystrophy and with hypothyroid myopathy.

    Science.gov (United States)

    Guglielmi, V; Oosterhof, A; Voermans, N C; Cardani, R; Molenaar, J P; van Kuppevelt, T H; Meola, G; van Engelen, B G; Tomelleri, G; Vattemi, G

    2016-06-01

    Sarcoplasmic/endoplasmic reticulum Ca(2+) ATPase (SERCA) pumps play the major role in lowering cytoplasmic calcium concentration in skeletal muscle by catalyzing the ATP-dependent transport of Ca(2+) from the cytosol to the lumen of the sarcoplasmic reticulum (SR). Although SERCA abnormalities have been hypothesized to contribute to the dysregulation of intracellular Ca(2+) homeostasis and signaling in muscle of patients with myotonic dystrophy (DM) and hypothyroid myopathy, the characterization of SERCA pumps remains elusive and their impairment is still unclear. We assessed the activity of SR Ca(2+)-ATPase, expression levels and fiber distribution of SERCA1 and SERCA2, and oligomerization of SERCA1 protein in muscle of patients with DM type 1 and 2, and with hypothyroid myopathy. Our data provide evidence that SR Ca(2+) ATPase activity, protein levels and muscle fiber distribution of total SERCA1 and SERCA2, and SERCA1 oligomerization pattern are similar in patients with both DM1 and DM2, hypothyroid myopathy and in control subjects. We prove that SERCA1b, the neonatal isoform of SERCA1, is expressed at protein level in muscle of patients with DM2 and, in lower amount, of patients with DM1. Our present study demonstrates that SERCA function is not altered in muscle of patients with DM and with hypothyroid myopathy. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Nandrolone decanoate treatment affects sarcoplasmic reticulum Ca(2+) ATPase function in skinned rat slow- and fast-twitch fibres.

    Science.gov (United States)

    Bouhlel, Aicha; Joumaa, Wissam H; Léoty, Claude

    2003-09-01

    The effects of anabolic-androgenic steroid administration on the function of the sarcoplasmic reticulum (SR) pump were investigated in chemically skinned fibres from the extensor digitorum longus (EDL) and soleus muscles of sedentary rats. Twenty male rats were divided into two groups, one group received an intramuscular injection of nandrolone decanoate (15 mg x kg(-1)) weekly for 8 weeks, the second received similar weekly doses of vehicle (sterile peanut oil). Compared with control muscles, nandrolone decanoate treatment reduced SR Ca(2+) loading in EDL and soleus fibres by 49% and 29%, respectively. In control and treated muscles, the rate of Ca(2+) leakage depended on the quantity of Ca(2+) loaded. Furthermore, for similar SR Ca(2+) contents, the Ca(2+) leakage rate was not significantly modified by nandrolone decanoate treatment. Nandrolone decanoate treatment thus affects Ca (2+) uptake by the SR in a fibre-type dependent manner.

  11. Temperature and Ca2+-dependence of the sarcoplasmic reticulum Ca2(+)-ATPase in haddock, salmon, rainbow trout and zebra cichlid

    DEFF Research Database (Denmark)

    Godiksen, Helene; Jessen, Flemming

    2002-01-01

    Temperature dependence of Ca2+-ATPase from the sarcoplasmic reticulum (SR) in rabbit muscle has been widely studied, and it is generally accepted that a break point in Arrhenius plot exist at approximately 20 degreesC. Whether the break point arises as a result of temperature dependent changes......+- ATPase activity. The temperature range of the plateau was 14-21 and 18-25 degreesC in salmon and rainbow trout, respectively. Ca2+-dependence in the four different fish species investigated was very similar with half maximal activation (K-0.5) between 0.2 and 0.6 muM and half maximal inhibition (I-0.......5) between 60 and 250 muM. Results indicated that interaction between SR Ca2+-ATPase and its lipid environment may play an important role for the different Arrhenius plot of the different types of fish species investigated. (C) 2002 Elsevier Science Inc. All rights reserved....

  12. Is the Ca2+-ATPase from sarcoplasmic reticulum also a heat pump?

    Science.gov (United States)

    Kjelstrup, Signe; de Meis, Leopoldo; Bedeaux, Dick; Simon, Jean-Marc

    2008-11-01

    We calculate, using the first law of thermodynamics, the membrane heat fluxes during active transport of Ca(2+) in the Ca(2+)-ATPase in leaky and intact vesicles, during ATP hydrolysis or synthesis conditions. The results show that the vesicle interior may cool down during hydrolysis and Ca(2+)-uptake, and heat up during ATP synthesis and Ca(2+)-efflux. The heat flux varies with the SERCA isoform. Electroneutral processes and rapid equilibration of water were assumed. The results are consistent with the second law of thermodynamics for the overall processes. The expression for the heat flux and experimental data, show that important contributions come from the enthalpy of hydrolysis for the medium in question, and from proton transport between the vesicle interior and exterior. The analysis give quantitative support to earlier proposals that certain, but not all, Ca(2+)-ATPases, not only act as Ca(2+)-pumps, but also as heat pumps. It can thus help explain why SERCA 1 type enzymes dominate in tissues where thermal regulation is important, while SERCA 2 type enzymes, with their lower activity and better ability to use the energy from the reaction to pump ions, dominate in tissues where this is not an issue.

  13. Direct measurement of newly synthesized ATP dissociation kinetics in sarcoplasmic reticulum ATPase

    International Nuclear Information System (INIS)

    Teruel-Puche, J.; Kurzmack, M.; Inesi, G.

    1987-01-01

    Incubation of SR vesicles with Ca 2+ and ( 32 P)acetylphosphate, yields steady state levels of ( 32 P)phosphorylated enzyme (ATPase) intermediate and high concentrations of Ca 2+ in the lumen of the vesicles. At this time, addition of ADP (and EGTA to lower the Ca 2+ concentration in the medium outside the vesicles) results in single cycle formation of (γ- 32 P)ATP by transfer of ( 32 P)phosphate from the enzyme intermediate to ADP. The phosphoenzyme decay and ATP formation exhibit a fast component within the first 20 msec following addition of ADP, and a slower component reaching an asymptote in approximately 100 msec. They have now measured by a rapid filtration method the fraction of newly synthesized ATP which is bound to the enzyme, as opposed to the fraction dissociated into the medium. They find that nearly all the ATP formed during the initial burst is still bound to the enzyme within the initial 20 msec of reaction. Dissociation of newly synthesized ATP occurs then with approximately 13 sec -1 rate constant, permitting reequilibration of the system and further formation of ATP. The rate limiting effect of ATP dissociation and other partial reactions on the slow component of single cycle ATP synthesis is evaluated by appropriate kinetic simulations

  14. Comparison of the calcium release channel of cardiac and skeletal muscle sarcoplasmic reticulum by target inactivation analysis

    International Nuclear Information System (INIS)

    McGrew, S.G.; Inui, Makoto; Chadwick, C.C.; Boucek, R.J. Jr.; Jung, C.Y.; Fleischer, S.

    1989-01-01

    The calcium release channel of sarcoplasmic reticulum which triggers muscle contraction in excitation-contraction coupling has recently been isolated. The channel has been found to be morphologically identical with the feet structures of the junctional face membrane of terminal cisternae and consists of an oligomer of a unique high molecular weight polypeptide. In this study, the authors compare the target size of the calcium release channel from heart and skeletal muscle using target inactivation analysis. The target molecular weights of the calcium release channel estimated by measuring ryanodine binding after irradiation are similar for heart (139,000) and skeletal muscle (143,000) and are smaller than the monomeric unit (estimated to be about 360,000). The target size, estimated by measuring polypeptide remaining after irradiation, was essentially the same for heart and skeletal muscle, 1,061,000 and 1,070,000, respectively, indicating an oligomeric association of protomers. Thus, the calcium release channel of both cardiac and skeletal muscle reacts uniquely with regard to target inactivation analysis in that (1) the size by ryanodine binding is smaller than the monomeric unit and (2) a single hit leads to destruction of more than one polypeptide, by measuring polypeptide remaining. The target inactivation analysis studies indicate that heart and skeletal muscle receptors are structurally very similar

  15. Interaction between neuronal nitric oxide synthase signaling and temperature influences sarcoplasmic reticulum calcium leak: role of nitroso-redox balance.

    Science.gov (United States)

    Dulce, Raul A; Mayo, Vera; Rangel, Erika B; Balkan, Wayne; Hare, Joshua M

    2015-01-02

    Although nitric oxide (NO) signaling modulates cardiac function and excitation-contraction coupling, opposing results because of inconsistent experimental conditions, particularly with respect to temperature, confound the ability to elucidate NO signaling pathways. Here, we show that temperature significantly modulates NO effects. To test the hypothesis that temperature profoundly affects nitroso-redox equilibrium, thereby affecting sarcoplasmic reticulum (SR) calcium (Ca(2+)) leak. We measured SR Ca(2+) leak in cardiomyocytes from wild-type (WT), NO/redox imbalance (neuronal nitric oxide synthase-deficient mice-1 [NOS1(-/-)]), and hyper S-nitrosoglutathione reductase-deficient (GSNOR(-/-)) mice. In WT cardiomyocytes, SR Ca(2+) leak increased because temperature decreased from 37°C to 23°C, whereas in NOS1(-/-) cells, the leak suddenly increased when the temperature surpassed 30°C. GSNOR(-/-) cardiomyocytes exhibited low leak throughout the temperature range. Exogenously added NO had a biphasic effect on NOS1(-/-) cardiomyocytes; reducing leak at 37°C but increasing it at subphysiological temperatures. Oxypurinol and Tempol diminished the leak in NOS1(-/-) cardiomyocytes. Cooling from 37°C to 23°C increased reactive oxygen species generation in WT but decreased it in NOS1(-/-) cardiomyocytes. Oxypurinol further reduced reactive oxygen species generation. At 23°C in WT cells, leak was decreased by tetrahydrobiopterin, an essential NOS cofactor. Cooling significantly increased SR Ca(2+) content in NOS1(-/-) cells but had no effect in WT or GSNOR(-/-). Ca(2+) leak and temperature are normally inversely proportional, whereas NOS1 deficiency reverses this effect, increasing leak and elevating reactive oxygen species production because temperature increases. Reduced denitrosylation (GSNOR deficiency) eliminates the temperature dependence of leak. Thus, temperature regulates the balance between NO and reactive oxygen species which in turn has a major effect on SR

  16. Role of sarcoplasmic reticulum calcium in development of secondary calcium rise and early afterdepolarizations in long QT syndrome rabbit model.

    Directory of Open Access Journals (Sweden)

    Po-Cheng Chang

    Full Text Available L-type calcium current reactivation plays an important role in development of early afterdepolarizations (EADs and torsades de pointes (TdP. Secondary intracellular calcium (Cai rise is associated with initiation of EADs.To test whether inhibition of sarcoplasmic reticulum (SR Ca2+ cycling suppresses secondary Cai rise and genesis of EADs.Langendorff perfusion and dual voltage and Cai optical mapping were conducted in 10 rabbit hearts. Atrioventricular block (AVB was created by radiofrequency ablation. After baseline studies, E4031, SR Ca2+ cycling inhibitors (ryanodine plus thapsigargin and nifedipine were then administrated subsequently, and the protocols were repeated.At baseline, there was no spontaneous or pacing-induced TdP. After E4031 administration, action potential duration (APD was significantly prolonged and the amplitude of secondary Cai rise was enhanced, and 7 (70% rabbits developed spontaneous or pacing-induced TdP. In the presence of ryanodine plus thapsigargin, TdP inducibility was significantly reduced (2 hearts, 20%, p = 0.03. Although APD was significantly prolonged (from 298 ± 30 ms to 457 ± 75 ms at pacing cycle length of 1000 m, p = 0.007 by ryanodine plus thapsigargin, the secondary Cai rise was suppressed (from 8.8 ± 2.6% to 1.2 ± 0.9%, p = 0.02. Nifedipine inhibited TdP inducibility in all rabbit hearts.In this AVB and long QT rabbit model, inhibition of SR Ca2+ cycyling reduces the inducibility of TdP. The mechanism might be suppression of secondary Cai rise and genesis of EADs.

  17. Effects of dantrolene and its derivatives on Ca2+ release from the sarcoplasmic reticulum of mouse skeletal muscle fibres

    Science.gov (United States)

    Ikemoto, Takaaki; Hosoya, Takamitsu; Aoyama, Hiroshi; Kihara, Yasutaka; Suzuki, Masaaki; Endo, Makoto

    2001-01-01

    We analysed the effect of dantrolene (Dan) and five newly synthesized derivatives (GIFs) on Ca2+ release from the sarcoplasmic reticulum (SR) of mouse skeletal muscle.In intact muscles, GIF-0185 reduced the size of twitch contraction induced by electrical stimulation to the same extent as Dan. GIF-0082, an azido-functionalized Dan derivative, also inhibited twitch contraction, although the extent of inhibition was less than that of Dan and of GIF-0185.In skinned fibres, Dan inhibited Ca2+-induced Ca2+ release (CICR) under Mg2+-free conditions at room temperature. In contrast, GIF-0082 and GIF-0185 showed no inhibitory effect on CICR under the same conditions.Dan-induced inhibition of CICR was not affected by the presence of GIF-0082, whereas it was diminished in the presence of GIF-0185.GIF-0082 and GIF-0185 significantly inhibited clofibric acid (Clof)-induced Ca2+ release, as did Dan.Several Dan derivatives other than GIF-0082 and GIF-0185 showed an inhibitory effect on twitch tension but not on the CICR mechanism. All of these derivatives inhibited Clof-induced Ca2+ release.The magnitudes of inhibition of Clof-induced Ca2+ release by all Dan derivatives were well correlated with those of twitch inhibition. This supports the notion that the mode of Clof-induced opening of the RyR-Ca2+ release channel may be similar to that of physiological Ca2+ release (PCR).These results indicate that the difference in opening modes of the RyR-Ca2+ release channel is recognized by certain Dan derivatives. PMID:11606312

  18. Properties of Ca2+ release induced by clofibric acid from the sarcoplasmic reticulum of mouse skeletal muscle fibres

    Science.gov (United States)

    Ikemoto, Takaaki; Endo, Makoto

    2001-01-01

    To characterize the effect of clofibric acid (Clof) on the Ca2+ release mechanism in the sarcoplasmic reticulum (SR) of skeletal muscle, we analysed the properties of Clof-induced Ca2+ release under various conditions using chemically skinned skeletal muscle fibres of the mouse.Clof (>0.5 mM) released Ca2+ from the SR under Ca2+-free conditions buffered with 10 mM EGTA (pCa >8).Co-application of ryanodine and Clof at pCa >8 but not ryanodine alone reduced the Ca2+ uptake capacity of the SR. Thus, Ca2+ release induced by Clof at pCa >8 must be a result of the activation of the ryanodine receptor (RyR).At pCa >8, (i) Clof-induced Ca2+ release was inhibited by adenosine monophosphate (AMP), (ii) the inhibitory effect of Mg2+ on the Clof-induced Ca2+ release was saturated at about 1 mM, and (iii) Clof-induced Ca2+ release was not inhibited by procaine (10 mM). These results indicate that Clof may activate the RyR-Ca2+ release channels in a manner different from Ca2+-induced Ca2+ release (CICR).In addition to this unique mode of opening, Clof also enhanced the CICR mode of opening of RyR-Ca2+ release channels.Apart from CICR, a high concentration of Ca2+ might also enhance the unique mode of opening by Clof.These results suggest that some features of Ca2+ release activated by Clof are similar to those of physiological Ca2+ release (PCR) in living muscle cells and raise the possibility that Clof may be useful in elucidating the mechanism of PCR in skeletal muscle. PMID:11606311

  19. Ryanodine receptor fragmentation and sarcoplasmic reticulum Ca2+ leak after one session of high-intensity interval exercise.

    Science.gov (United States)

    Place, Nicolas; Ivarsson, Niklas; Venckunas, Tomas; Neyroud, Daria; Brazaitis, Marius; Cheng, Arthur J; Ochala, Julien; Kamandulis, Sigitas; Girard, Sebastien; Volungevičius, Gintautas; Paužas, Henrikas; Mekideche, Abdelhafid; Kayser, Bengt; Martinez-Redondo, Vicente; Ruas, Jorge L; Bruton, Joseph; Truffert, Andre; Lanner, Johanna T; Skurvydas, Albertas; Westerblad, Håkan

    2015-12-15

    High-intensity interval training (HIIT) is a time-efficient way of improving physical performance in healthy subjects and in patients with common chronic diseases, but less so in elite endurance athletes. The mechanisms underlying the effectiveness of HIIT are uncertain. Here, recreationally active human subjects performed highly demanding HIIT consisting of 30-s bouts of all-out cycling with 4-min rest in between bouts (≤3 min total exercise time). Skeletal muscle biopsies taken 24 h after the HIIT exercise showed an extensive fragmentation of the sarcoplasmic reticulum (SR) Ca(2+) release channel, the ryanodine receptor type 1 (RyR1). The HIIT exercise also caused a prolonged force depression and triggered major changes in the expression of genes related to endurance exercise. Subsequent experiments on elite endurance athletes performing the same HIIT exercise showed no RyR1 fragmentation or prolonged changes in the expression of endurance-related genes. Finally, mechanistic experiments performed on isolated mouse muscles exposed to HIIT-mimicking stimulation showed reactive oxygen/nitrogen species (ROS)-dependent RyR1 fragmentation, calpain activation, increased SR Ca(2+) leak at rest, and depressed force production due to impaired SR Ca(2+) release upon stimulation. In conclusion, HIIT exercise induces a ROS-dependent RyR1 fragmentation in muscles of recreationally active subjects, and the resulting changes in muscle fiber Ca(2+)-handling trigger muscular adaptations. However, the same HIIT exercise does not cause RyR1 fragmentation in muscles of elite endurance athletes, which may explain why HIIT is less effective in this group.

  20. Decrease in sarcoplasmic reticulum calcium content, not myofilament function, contributes to muscle twitch force decline in isolated cardiac trabeculae

    Science.gov (United States)

    Milani-Nejad, Nima; Brunello, Lucia; Gyorke, Sándor; Janssen, Paul M.L.

    2014-01-01

    We set out to determine the factors responsible for twitch force decline in isolated intact rat cardiac trabeculae. The contractile force of trabeculae declined over extended periods of isometric twitch contractions. The force-frequency relationship within the frequency range of 4–8 Hz, at 37 °C, became more positive and the frequency optimum shifted to higher rates with this decline in baseline twitch tensions. The post-rest potentiation (37 °C), a phenomenon highly dependent on calcium handling mechanisms, became more pronounced with decrease in twitch tensions. We show that the main abnormality during muscle run-down was not due to a deficit in the myofilaments; maximal tension achieved using a K+ contracture protocol was either unaffected or only slightly decreased. Conversely, the sarcoplasmic reticulum (SR) calcium content, as assessed by rapid cooling contractures (from 27 °C to 0 °C), decreased, and had a close association with the declining twitch tensions (R2 ~ 0.76). SR Ca2+-ATPase, relative to Na+/Ca2+ exchanger activity, was not altered as there was no significant change in paired rapid cooling contracture ratios. Furthermore, confocal microscopy detected no abnormalities in the overall structure of the cardiomyocytes and t-tubules in the cardiac trabeculae (~23 °C). Overall, the data indicates that the primary mechanism responsible for force run-down in multi-cellular cardiac preparations is a decline in the SR calcium content and not the maximal tension generation capability of the myofilaments. PMID:25056841

  1. Ryanodine receptor fragmentation and sarcoplasmic reticulum Ca2+ leak after one session of high-intensity interval exercise

    Science.gov (United States)

    Place, Nicolas; Ivarsson, Niklas; Venckunas, Tomas; Neyroud, Daria; Brazaitis, Marius; Cheng, Arthur J.; Ochala, Julien; Kamandulis, Sigitas; Girard, Sebastien; Volungevičius, Gintautas; Paužas, Henrikas; Mekideche, Abdelhafid; Kayser, Bengt; Martinez-Redondo, Vicente; Bruton, Joseph; Truffert, Andre; Lanner, Johanna T.; Skurvydas, Albertas; Westerblad, Håkan

    2015-01-01

    High-intensity interval training (HIIT) is a time-efficient way of improving physical performance in healthy subjects and in patients with common chronic diseases, but less so in elite endurance athletes. The mechanisms underlying the effectiveness of HIIT are uncertain. Here, recreationally active human subjects performed highly demanding HIIT consisting of 30-s bouts of all-out cycling with 4-min rest in between bouts (≤3 min total exercise time). Skeletal muscle biopsies taken 24 h after the HIIT exercise showed an extensive fragmentation of the sarcoplasmic reticulum (SR) Ca2+ release channel, the ryanodine receptor type 1 (RyR1). The HIIT exercise also caused a prolonged force depression and triggered major changes in the expression of genes related to endurance exercise. Subsequent experiments on elite endurance athletes performing the same HIIT exercise showed no RyR1 fragmentation or prolonged changes in the expression of endurance-related genes. Finally, mechanistic experiments performed on isolated mouse muscles exposed to HIIT-mimicking stimulation showed reactive oxygen/nitrogen species (ROS)-dependent RyR1 fragmentation, calpain activation, increased SR Ca2+ leak at rest, and depressed force production due to impaired SR Ca2+ release upon stimulation. In conclusion, HIIT exercise induces a ROS-dependent RyR1 fragmentation in muscles of recreationally active subjects, and the resulting changes in muscle fiber Ca2+-handling trigger muscular adaptations. However, the same HIIT exercise does not cause RyR1 fragmentation in muscles of elite endurance athletes, which may explain why HIIT is less effective in this group. PMID:26575622

  2. The role of the sarcoplasmic reticulum in the generation of high heart rates and blood pressures in reptiles.

    Science.gov (United States)

    Galli, Gina L J; Gesser, Hans; Taylor, Edwin W; Shiels, Holly A; Wang, Tobias

    2006-05-01

    The functional significance of the sarcoplasmic reticulum (SR) in the generation of high heart rates and blood pressures was investigated in four species of reptile; the turtle, Trachemys scripta; the python, Python regius, the tegu lizard, Tupinanvis merianae, and the varanid lizard, Varanus exanthematicus. Force-frequency trials and imposed pauses were performed on ventricular and atrial tissue from each species with and without the SR inhibitor ryanodine, and in the absence and presence of adrenaline. In all species, an imposed pause of 1 or 5 min caused a post-rest decay of force, and a negative force-frequency response was observed in all species within their in vivo frequency range of heart rates. These relationships were not affected by either ryanodine or adrenaline. In ventricular strips from varanid lizards and pythons, ryanodine caused significant reductions in twitch force within their physiologically relevant frequency range. In atrial tissue from the tegu and varanid lizards, SR inhibition reduced twitch force across the whole of their physiological frequency range. In contrast, in the more sedentary species, the turtle and the python, SR inhibition only decreased twitch force at stimulation frequencies above maximal in vivo heart rates. Adrenaline caused an increase in twitch force in all species studied. In ventricular tissue, this positive inotropic effect was sufficient to overcome the negative effects of ryanodine. In atrial tissue however, adrenaline could only ameliorate the negative effects of ryanodine at the lower pacing frequencies. Our results indicate that reptiles recruit Ca2+ from the SR for force development in a frequency and tissue dependent manner. This is discussed in the context of the development of high reptilian heart rates and blood pressures.

  3. Ceramide transport from endoplasmic reticulum to Golgi apparatus is not vesicle-mediated

    NARCIS (Netherlands)

    Kok, JW; Babia, T; Klappe, K; Egea, G; Hoekstra, D

    1998-01-01

    Ceramide (Cer) transfer from the endoplasmic reticulum (ER) to the Golgi apparatus was measured under conditions that block vesicle-mediated protein transfer. This was done either in intact cells by reducing the incubation temperature to 15 degrees C, or in streptolysin O-permeabilized cells by

  4. A novel artificial microRNA expressing AAV vector for phospholamban silencing in cardiomyocytes improves Ca2+ uptake into the sarcoplasmic reticulum.

    Directory of Open Access Journals (Sweden)

    Tobias Gröβl

    Full Text Available In failing rat hearts, post-transcriptonal inhibition of phospholamban (PLB expression by AAV9 vector-mediated cardiac delivery of short hairpin RNAs directed against PLB (shPLBr improves both impaired SERCA2a controlled Ca2+ cycling and contractile dysfunction. Cardiac delivery of shPLB, however, was reported to cause cardiac toxicity in canines. Thus we developed a new AAV vector, scAAV6-amiR155-PLBr, expressing a novel engineered artificial microRNA (amiR155-PLBr directed against PLB under control of a heart-specific hybrid promoter. Its PLB silencing efficiency and safety were compared with those of an AAV vector expressing shPLBr (scAAV6-shPLBr from an ubiquitously active U6 promoter. Investigations were carried out in cultured neonatal rat cardiomyocytes (CM over a period of 14 days. Compared to shPLBr, amiR155-PLBr was expressed at a significantly lower level, resulting in delayed and less pronounced PLB silencing. Despite decreased knockdown efficiency of scAAV6-amiR155-PLBr, a similar increase of the SERCA2a-catalyzed Ca2+ uptake into sarcoplasmic reticulum (SR vesicles was observed for both the shPLBr and amiR155-PLBr vectors. Proteomic analysis confirmed PLB silencing of both therapeutic vectors and revealed that shPLBr, but not the amiR155-PLBr vector, increased the proinflammatory proteins STAT3, STAT1 and activated STAT1 phosphorylation at the key amino acid residue Tyr701. Quantitative RT-PCR analysis detected alterations in the expression of several cardiac microRNAs after treatment of CM with scAAV6-shPLBr and scAAV6-amiR155-PLBr, as well as after treatment with its related amiR155- and shRNAs-expressing control AAV vectors. The results demonstrate that scAAV6-amiR155-PLBr is capable of enhancing the Ca2+ transport function of the cardiac SR PLB/SERCA2a system as efficiently as scAAV6-shPLBr while offering a superior safety profile.

  5. The amino-terminal 200 amino acids of the plasma membrane Na+,K+-ATPase alpha subunit confer ouabain sensitivity on the sarcoplasmic reticulum Ca(2+)-ATPase.

    OpenAIRE

    Ishii, T; Takeyasu, K

    1993-01-01

    Cardiac glycosides such as G-strophanthin (ouabain) bind to and inhibit the plasma membrane Na+,K(+)-ATPase but not the sarcoplasmic reticulum (SR) Ca(2+)-ATPase, whereas thapsigargin specifically blocks the SR Ca(2+)-ATPase. The chimera [n/c]CC, in which the amino-terminal amino acids Met1 to Asp162 of the SR Ca(2+)-ATPase (SERCA1) were replaced with the corresponding portion of the Na+,K(+)-ATPase alpha 1 subunit (Met1 to Asp200), retained thapsigargin- and Ca(2+)-sensitive ATPase activity,...

  6. Impact of sarcoplasmic reticulum calcium release on calcium dynamics and action potential morphology in human atrial myocytes: a computational study.

    Directory of Open Access Journals (Sweden)

    Jussi T Koivumäki

    Full Text Available Electrophysiological studies of the human heart face the fundamental challenge that experimental data can be acquired only from patients with underlying heart disease. Regarding human atria, there exist sizable gaps in the understanding of the functional role of cellular Ca²+ dynamics, which differ crucially from that of ventricular cells, in the modulation of excitation-contraction coupling. Accordingly, the objective of this study was to develop a mathematical model of the human atrial myocyte that, in addition to the sarcolemmal (SL ion currents, accounts for the heterogeneity of intracellular Ca²+ dynamics emerging from a structurally detailed sarcoplasmic reticulum (SR. Based on the simulation results, our model convincingly reproduces the principal characteristics of Ca²+ dynamics: 1 the biphasic increment during the upstroke of the Ca²+ transient resulting from the delay between the peripheral and central SR Ca²+ release, and 2 the relative contribution of SL Ca²+ current and SR Ca²+ release to the Ca²+ transient. In line with experimental findings, the model also replicates the strong impact of intracellular Ca²+ dynamics on the shape of the action potential. The simulation results suggest that the peripheral SR Ca²+ release sites define the interface between Ca²+ and AP, whereas the central release sites are important for the fire-diffuse-fire propagation of Ca²+ diffusion. Furthermore, our analysis predicts that the modulation of the action potential duration due to increasing heart rate is largely mediated by changes in the intracellular Na+ concentration. Finally, the results indicate that the SR Ca²+ release is a strong modulator of AP duration and, consequently, myocyte refractoriness/excitability. We conclude that the developed model is robust and reproduces many fundamental aspects of the tight coupling between SL ion currents and intracellular Ca²+ signaling. Thus, the model provides a useful framework for future

  7. Sarcoplasmic reticulum calcium release compared in slow-twitch and fast-twitch fibres of mouse muscle.

    Science.gov (United States)

    Baylor, S M; Hollingworth, S

    2003-08-15

    Experiments were carried out to compare the amplitude and time course of Ca2+ release from the sarcoplasmic reticulum (SR) in intact slow-twitch and fast-twitch mouse fibres. Individual fibres within small bundles were injected with furaptra, a low-affinity, rapidly responding Ca2+ indicator. In response to a single action potential at 16 degrees C, the peak amplitude and half-duration of the change in myoplasmic free [Ca2+] (Delta[Ca2+]) differed significantly between fibre types (slow-twitch: peak amplitude, 9.4 +/- 1.0 microM (mean +/- S.E.M.); half-duration, 7.7 +/- 0.6 ms; fast-twitch: peak amplitude 18.5 +/- 0.5 microM; half-duration, 4.9 +/- 0.3 ms). SR Ca2+ release was estimated from Delta[Ca2+] with a computational model that calculated Ca2+ binding to the major myoplasmic Ca2+ buffers (troponin, ATP and parvalbumin); buffer concentrations and reaction rate constants were adjusted to reflect fibre-type differences. In response to an action potential, the total concentration of released Ca2+ (Delta[CaT]) and the peak rate of Ca2+ release ((d/dt)Delta[CaT]) differed about 3-fold between the fibre types (slow-twitch: Delta[CaT], 127 +/- 7 microM; (d/dt)Delta[CaT], 70 +/- 6 microM ms-1; fast-twitch: Delta[CaT], 346 +/- 6 microM; (d/dt)Delta[CaT], 212 +/- 4 microM ms-1). In contrast, the half-duration of (d/dt)Delta[CaT] was very similar in the two fibre types (slow-twitch, 1.8 +/- 0.1 ms; fast-twitch, 1.6 +/- 0.0 ms). When fibres were stimulated with a 5-shock train at 67 Hz, the peaks of (d/dt)Delta[CaT] in response to the second and subsequent shocks were much smaller than that due to the first shock; the later peaks, expressed as a fraction of the amplitude of the first peak, were similar in the two fibre types (slow-twitch, 0.2-0.3; fast-twitch, 0.1-0.3). The results support the conclusion that individual SR Ca2+ release units function similarly in slow-twitch and fast-twitch mammalian fibres.

  8. Influence of the sarcoplasmic reticulum on the inotropic responses of the rat myocardium resulting from changes in rate and rhythm.

    Science.gov (United States)

    Mill, J G; Vassallo, D V; Leite, C M; Campagnaro, P

    1994-06-01

    1. The role of the sarcoplasmic reticulum (SR) in the inotropic responses produced by changes in stimulation rate and rhythm and resting tension was investigated in the rat myocardium. 2. Rat papillary muscles contracting isometrically (basic stimulation rate = 30/min) were superfused in vitro with normal Krebs solution and after addition of ryanodine (1 microM). Post-rest potentiation was obtained after pauses of 5, 10, 15, 30, 60 and 120 s, and the stimulation rate was changed from 6 to 90 bpm. Post-extrasystolic potentiation was induced by interpolating an extra stimulus after an interval of 413 +/- 15 ms. NiCl2 (2 mM) was used to confirm that contractions obtained after SR blockade with ryanodine were activated only by sarcolemmal calcium influx. 3. In the presence of ryanodine, the post-rest potentiation phenomenon disappears and the force-frequency relationship changes from the typical force decrease produced by rate increase to force increase. Under the effect of ryanodine, resting tension increased with the increase in stimulation rate. This behavior was enhanced by reducing extracellular KCl from 5.4 mM to 1 mM. This maneuver decreases Na(+)-K(+)-ATPase and increases intracellular Na+ activity, which reduces Ca2+ extrusion through the Na(+)-Ca2+ exchange mechanism. 4. SR participation in the post-extrasystolic potentiation phenomenon is also suggested because ryanodine treatment reversed the extrasystolic force depression into potentiation. In the presence of ryanodine, blockade of Ca2+ influx with NiCl2 (2 mM) abolished isometric contractions indicating that after SR blockade contractions are mainly dependent on sarcolemmal Ca2+ influx. 5. The results suggest that the SR is involved in the genesis of post-rest potentiation and contributes to the typical force-frequency relationship of the rat myocardium and to the post-extrasystolic potentiation phenomenon. Moreover, SR activity seems to be important for the maintenance of low resting tension in the

  9. Size of the plasma membrane H+-ATPase from Neurospora crassa determined by radiation inactivation and comparison with the sarcoplasmic reticulum Ca2+-ATPase from skeletal muscle

    International Nuclear Information System (INIS)

    Bowman, B.J.; Berenski, C.J.; Jung, C.Y.

    1985-01-01

    Using radiation inactivation, the authors have measured the size of the H + -ATPase in Neurospora crassa plasma membranes. Membranes were exposed to either high energy electrons from a Van de Graaff generator or to gamma irradiation from 60 Co. Both forms of radiation caused an exponential loss of ATPase activity in parallel with the physical destruction of the Mr = 104,000 polypeptide of which this enzyme is composed. By applying target theory, the size of the H + -ATPase in situ was found to be approximately 2.3 X 10(5) daltons. They also used radiation inactivation to measure the size of the Ca 2+ -ATPase of sarcoplasmic reticulum and got a value of approximately 2.4 X 10(5) daltons, in agreement with previous reports. By irradiating a mixture of Neurospora plasma membranes and rabbit sarcoplasmic reticulum, they directly compared the sizes of these two ATPases and found them to be essentially the same. The authors conclude that both H + -ATPase and Ca 2+ -ATPase are oligomeric enzymes, most likely composed of two approximately 100,000-dalton polypeptides

  10. Interaction between endoplasmic/sarcoplasmic reticulum stress (ER/SR stress), mitochondrial signaling and Ca(2+) regulation in airway smooth muscle (ASM).

    Science.gov (United States)

    Delmotte, Philippe; Sieck, Gary C

    2015-02-01

    Airway inflammation is a key aspect of diseases such as asthma. Several inflammatory cytokines (e.g., TNFα and IL-13) increase cytosolic Ca(2+) ([Ca(2+)]cyt) responses to agonist stimulation and Ca(2+) sensitivity of force generation, thereby enhancing airway smooth muscle (ASM) contractility (hyper-reactive state). Inflammation also induces ASM proliferation and remodeling (synthetic state). In normal ASM, the transient elevation of [Ca(2+)]cyt induced by agonists leads to a transient increase in mitochondrial Ca(2+) ([Ca(2+)]mito) that may be important in matching ATP production with ATP consumption. In human ASM (hASM) exposed to TNFα and IL-13, the transient increase in [Ca(2+)]mito is blunted despite enhanced [Ca(2+)]cyt responses. We also found that TNFα and IL-13 induce reactive oxidant species (ROS) formation and endoplasmic/sarcoplasmic reticulum (ER/SR) stress (unfolded protein response) in hASM. ER/SR stress in hASM is associated with disruption of mitochondrial coupling with the ER/SR membrane, which relates to reduced mitofusin 2 (Mfn2) expression. Thus, in hASM it appears that TNFα and IL-13 result in ROS formation leading to ER/SR stress, reduced Mfn2 expression, disruption of mitochondrion-ER/SR coupling, decreased mitochondrial Ca(2+) buffering, mitochondrial fragmentation, and increased cell proliferation.

  11. Altered calcium pump and secondary deficiency of γ-sarcoglycan and microspan in sarcoplasmic reticulum membranes isolated from δ-sarcoglycan knockout mice

    Science.gov (United States)

    Solares-Pérez, Alhondra; Álvarez, Rocío; Crosbie, Rachelle H.; Vega-Moreno, Jesús; Medina-Monares, Joel; Estrada, Francisco J.; Ortega, Alicia; Coral-Vazquez, Ramón

    2016-01-01

    Sarcoglycans (SGs) and sarcospan (SSPN) are transmembrane proteins of the dystrophin-glycoprotein complex. Mutations in the genes encoding SGs cause many inherited forms of muscular dystrophy. In this study, using purified membranes of wild-type (WT) and δ-SG knockout (KO) mice, we found the specific localization of the SG-SSPN isoforms in transverse tubules (TT) and sarcoplasmic reticulum (SR) membranes. Immunoblotting revealed that the absence of δ-SG isoforms in TT and SR results in a secondary deficiency of γ-SG and µSPN. Our results showed augmented ATP hydrolytic activity, ATP-dependent calcium uptake and passive calcium efflux, probably through SERCA1 in KO compared to WT mice. Furthermore, we found a conformational change in SERCA1 isolated from KO muscle as demonstrated by calorimetric analysis. Following these alterations with mechanical properties, we found an increase in force in KO muscle with the same rate of fatigue but with a decreased fatigue recovery compared to WT. Together our observations suggest, for the first time, that the δ-SG isoforms may stabilize the expression of γ-SG and µSPN in the TT and SR membranes and that this possible complex may play a role in the maintenance of a stable level of resting cytosolic calcium concentration in skeletal muscle. PMID:20638123

  12. N-acetylcysteine fails to modulate the in vitro function of sarcoplasmic reticulum of diaphragm in the final phase of fatigue.

    Science.gov (United States)

    Mishima, T; Yamada, T; Matsunaga, S; Wada, M

    2005-07-01

    In the present study, we tested the hypothesis whether N-acetylcysteine (NAC), a non-specific antioxidant, might influence fatigue by modulating Ca2+-handling capacity by the sarcoplasmic reticulum (SR). In the presence (10 mm) or absence of NAC, bundles of rat diaphragm were stimulated with tetanic trains (350 ms, 30-40 Hz) at 1 train every 2 s for 300 s. SR functions, as assessed by SR Ca2+-uptake and release rates and SR Ca2+-ATPase activity, were measured in vitro on muscle homogenates. Following the 300-s stimulation, the force developed by NAC-treated muscles is approximately 1.8-fold higher (P depression in SR function (P < 0.05). Despite the differing degrees of fatigue between NAC-treated and non-treated muscles, SR functions in these muscles were reduced to similar extents. These results suggest that modulation of SR function measured in vitro may not be a major contributor to inhibition of diaphragmic fatigue with antioxidant, at least, in the final phase of fatigue where force output is remarkably reduced.

  13. The protein phosphatase-1/inhibitor-2 complex differentially regulates GSK3 dephosphorylation and increases sarcoplasmic/endoplasmic reticulum calcium ATPase 2 levels

    International Nuclear Information System (INIS)

    King, Taj D.; Gandy, Johanna C.; Bijur, Gautam N.

    2006-01-01

    The ubiquitously expressed protein glycogen synthase kinase-3 (GSK3) is constitutively active, however its activity is markedly diminished following phosphorylation of Ser21 of GSK3α and Ser9 of GSK3β. Although several kinases are known to phosphorylate Ser21/9 of GSK3, for example Akt, relatively much less is known about the mechanisms that cause the dephosphorylation of GSK3 at Ser21/9. In the present study KCl-induced plasma membrane depolarization of SH-SY5Y cells, which increases intracellular calcium concentrations caused a transient decrease in the phosphorylation of Akt at Thr308 and Ser473, and GSK3 at Ser21/9. Overexpression of the selective protein phosphatase-1 inhibitor protein, inhibitor-2, increased basal GSK3 phosphorylation at Ser21/9 and significantly blocked the KCl-induced dephosphorylation of GSK3β, but not GSK3α. The phosphorylation of Akt was not affected by the overexpression of inhibitor-2. GSK3 activity is known to affect sarcoplasmic/endoplasmic reticulum calcium ATPase 2 (SERCA2) levels. Overexpression of inhibitor-2 or treatment of cells with the GSK3 inhibitors lithium and SB216763 increased the levels of SERCA2. These results indicate that the protein phosphatase-1/inhibitor-2 complex differentially regulates GSK3 dephosphorylation induced by KCl and that GSK3 activity regulates SERCA2 levels

  14. Determination of the separate lipid and protein profile structures derived from the total membrane profile structure or isolated sarcoplasmic reticulum via x-ray and neutron diffraction

    International Nuclear Information System (INIS)

    Herbette, L.; Blasie, J.K.

    1984-01-01

    Sarcoplasmic reticulum (SR) membranes were prepared to contain biosynthetically deuterated SR phospholipids utilizing specific and general phospholipid exchange proteins (PLEP). Functional measurements and freeze fracture on SR dispersions and x-ray diffraction of hydrated oriented membrane multilayers revealed that the exchanged SR membranes were very similar to unexchanged SR membranes. Low resolution (28-A) neutron diffraction studies utilizing SR membranes exchanged with either protonated or perdeuterated SR phospholipids allowed direct determination of the lipid profile within the isolated SR membrane at two different unit cell repeat distances. These lipid profile structures were found to be highly asymmetric regarding the conformation of the fatty acid chain extents and compositional distribution of phospholipid molecules in the inner vs. outer monolayer of the SR membrane bilayer. The relatively high resolution (11-A) electron-density profile from x-ray diffraction was decomposed by utilizing the asymmetry in the number of phospholipid molecules residing in the inner vs. outer monolayer of the SR lipid bilayer as obtained from the neutron diffraction study. To our knowledge, this represents the first direct determination of a lipid bilayer profile structure within an isolated membrane system

  15. Phospholipid alterations in cardiac sarcoplasmic reticulum induced by xanthine oxidase: contamination of commercial preparations of xanthine oxidase by phospholipase A2

    International Nuclear Information System (INIS)

    Gamache, D.A.; Kornberg, L.J.; Bartolf, M.; Franson, R.C.

    1986-01-01

    Incubation of cardiac sarcoplasmic reticulum with xanthine oxidase alone at pH 7.0 resulted in a loss of lipid phosphorus that was potentiated by the addition of xanthine. Using autoclaved E.coli with 1- 14 C-oleate in the 2-acyl position of membrane phospholipids, the authors demonstrate that many, but not all, commercial preparations of xanthine oxidase contain significant phospholipase A 2 (PLA 2 ) activity (64.3-545.6 nmols/min/mg). The PLA 2 was maximally active in the neutral-alkaline pH range, was Ca 2+ -dependent, and was unaffected by the addition of xanthine. PLA 2 activity was totally inhibited by 1mM EDTA whereas radical production by optimal concentrations of xanthine/xanthine oxidase (X/XO) was unaffected by EDTA. Chromatographically purified xanthine oxidase (Sigma Grade III) contained high levels of PLA 2 activity (64.3 nmols/min/mg) compared to endogenous levels of neutral-active, Ca 2+ -dependent PLA 2 measured in various tissue homogenates (≤ 0.5 nmols/ min/mg). Because X/XO mixtures are used extensively to study oxygen free radical-induced cell injury and membrane phospholipid alterations, the presence of a potent extracellular PLA 2 may have influenced previously published reports, and such studies should be interpreted cautiously

  16. Calsequestrin 2 deletion causes sinoatrial node dysfunction and atrial arrhythmias associated with altered sarcoplasmic reticulum calcium cycling and degenerative fibrosis within the mouse atrial pacemaker complex1

    Science.gov (United States)

    Glukhov, Alexey V.; Kalyanasundaram, Anuradha; Lou, Qing; Hage, Lori T.; Hansen, Brian J.; Belevych, Andriy E.; Mohler, Peter J.; Knollmann, Björn C.; Periasamy, Muthu; Györke, Sandor; Fedorov, Vadim V.

    2015-01-01

    Aims Loss-of-function mutations in Calsequestrin 2 (CASQ2) are associated with catecholaminergic polymorphic ventricular tachycardia (CPVT). CPVT patients also exhibit bradycardia and atrial arrhythmias for which the underlying mechanism remains unknown. We aimed to study the sinoatrial node (SAN) dysfunction due to loss of CASQ2. Methods and results In vivo electrocardiogram (ECG) monitoring, in vitro high-resolution optical mapping, confocal imaging of intracellular Ca2+ cycling, and 3D atrial immunohistology were performed in wild-type (WT) and Casq2 null (Casq2−/−) mice. Casq2−/− mice exhibited bradycardia, SAN conduction abnormalities, and beat-to-beat heart rate variability due to enhanced atrial ectopic activity both at baseline and with autonomic stimulation. Loss of CASQ2 increased fibrosis within the pacemaker complex, depressed primary SAN activity, and conduction, but enhanced atrial ectopic activity and atrial fibrillation (AF) associated with macro- and micro-reentry during autonomic stimulation. In SAN myocytes, CASQ2 deficiency induced perturbations in intracellular Ca2+ cycling, including abnormal Ca2+ release, periods of significantly elevated diastolic Ca2+ levels leading to pauses and unstable pacemaker rate. Importantly, Ca2+ cycling dysfunction occurred not only at the SAN cellular level but was also globally manifested as an increased delay between action potential (AP) and Ca2+ transient upstrokes throughout the atrial pacemaker complex. Conclusions Loss of CASQ2 causes abnormal sarcoplasmic reticulum Ca2+ release and selective interstitial fibrosis in the atrial pacemaker complex, which disrupt SAN pacemaking but enhance latent pacemaker activity, create conduction abnormalities and increase susceptibility to AF. These functional and extensive structural alterations could contribute to SAN dysfunction as well as AF in CPVT patients. PMID:24216388

  17. Calsequestrin content and SERCA determine normal and maximal Ca2+ storage levels in sarcoplasmic reticulum of fast- and slow-twitch fibres of rat.

    Science.gov (United States)

    Murphy, Robyn M; Larkins, Noni T; Mollica, Janelle P; Beard, Nicole A; Lamb, Graham D

    2009-01-15

    Whilst calsequestrin (CSQ) is widely recognized as the primary Ca2+ buffer in the sarcoplasmic reticulum (SR) in skeletal muscle fibres, its total buffering capacity and importance have come into question. This study quantified the absolute amount of CSQ isoform 1 (CSQ1, the primary isoform) present in rat extensor digitorum longus (EDL) and soleus fibres, and related this to their endogenous and maximal SR Ca2+ content. Using Western blotting, the entire constituents of minute samples of muscle homogenates or segments of individual muscle fibres were compared with known amounts of purified CSQ1. The fidelity of the analysis was proven by examining the relative signal intensity when mixing muscle samples and purified CSQ1. The CSQ1 contents of EDL fibres, almost exclusively type II fibres, and soleus type I fibres [SOL (I)] were, respectively, 36 +/- 2 and 10 +/- 1 micromol (l fibre volume)(-1), quantitatively accounting for the maximal SR Ca2+ content of each. Soleus type II [SOL (II)] fibres (approximately 20% of soleus fibres) had an intermediate amount of CSQ1. Every SOL (I) fibre examined also contained some CSQ isoform 2 (CSQ2), which was absent in every EDL and other type II fibre except for trace amounts in one case. Every EDL and other type II fibre had a high density of SERCA1, the fast-twitch muscle sarco(endo)plasmic reticulum Ca2+-ATPase isoform, whereas there was virtually no SERCA1 in any SOL (I) fibre. Maximal SR Ca2+ content measured in skinned fibres increased with CSQ1 content, and the ratio of endogenous to maximal Ca2+ content was inversely correlated with CSQ1 content. The relative SR Ca2+ content that could be maintained in resting cytoplasmic conditions was found to be much lower in EDL fibres than in SOL (I) fibres (approximately 20 versus >60%). Leakage of Ca2+ from the SR in EDL fibres could be substantially reduced with a SR Ca2+ pump blocker and increased by adding creatine to buffer cytoplasmic [ADP] at a higher level, both results

  18. Cardiac function improved by sarcoplasmic reticulum Ca2+-ATPase overexpression in a heart failure model induced by chronic myocardial ischemia

    Directory of Open Access Journals (Sweden)

    Wei XIN

    2011-04-01

    Full Text Available Objective Chronic myocardial ischemia(CMI has become an important cause of heart failure(HF.The aim of present study was to examine the effects of Sarco-endoplasmic reticulum calcium ATPase(SERCA2a gene transfer in HF model in large animal induced by CMI.Methods HF was reproduced in minipigs by ligating the initial segment of proximal left anterior descending(LAD coronary artery with an ameroid constrictor to produce progressive vessel occlusion and ischemia.After confirmation of myocardial perfusion defect and cardiac function impairment by SPECT and echocardiography in the model,animals were divided into 4 groups: HF group;HF+enhanced green fluorescent protein(EGFP group;HF+SERCA2a group;and sham operation group as control.rAAV1-EGFP and rAAV1-SERCA2a(1×1012 vg for each animal were directly and intramyocardially injected to the animals of HF+EGFP and HF+SERCA2a groups.Sixty days after the gene transfer,the expression of SERCA2a at the protein level was examined by Western blotting and immunohistochemistry,the changes in cardiac function were determined by echocardiographic and hemodynamic analysis,and the changes in serum inflammatory and neuro-hormonal factors(including BNP,TNF-a,IL-6,ET-1 and Ang II were determined by radioimmunoassay.Results Sixty days after gene transfer,LVEF,Ev/Av and ±dp/dtmax increased significantly(P < 0.05,along with an increase of SERCA2a protein expression in the ischemic myocardium(PP < 0.05,accompanied by a significant decrease of inflammatory and neural-hormonal factors(PP < 0.05 in HF+SERCA2a group as compared with HF/HF+EGFP group.Conclusions Overexpression of SERCA2a may significantly improve the cardiac function of the ischemic myocardium of HF model induced by CMI and reverse the activation of neural-hormonal factors,implying that it has a potential therapeutic significance in CMI related heart failure.

  19. MicroRNAs and cardiac sarcoplasmic reticulum calcium ATPase-2 in human myocardial infarction: expression and bioinformatic analysis.

    Science.gov (United States)

    Boštjančič, Emanuela; Zidar, Nina; Glavač, Damjan

    2012-10-15

    Cardiac sarco(endo)plasmic reticulum calcium ATPase-2 (SERCA2) plays one of the central roles in myocardial contractility. Both, SERCA2 mRNA and protein are reduced in myocardial infarction (MI), but the correlation has not been always observed. MicroRNAs (miRNAs) act by targeting 3'-UTR mRNA, causing translational repression in physiological and pathological conditions, including cardiovascular diseases. One of the aims of our study was to identify miRNAs that could influence SERCA2 expression in human MI. The protein SERCA2 was decreased and 43 miRNAs were deregulated in infarcted myocardium compared to corresponding remote myocardium, analyzed by western blot and microRNA microarrays, respectively. All the samples were stored as FFPE tissue and in RNAlater. miRNAs binding prediction to SERCA2 including four prediction algorithms (TargetScan, PicTar, miRanda and mirTarget2) identified 213 putative miRNAs. TAM and miRNApath annotation of deregulated miRNAs identified 18 functional and 21 diseased states related to heart diseases, and association of the half of the deregulated miRNAs to SERCA2. Free-energy of binding and flanking regions (RNA22, RNAfold) was calculated for 10 up-regulated miRNAs from microarray analysis (miR-122, miR-320a/b/c/d, miR-574-3p/-5p, miR-199a, miR-140, and miR-483), and nine miRNAs deregulated from microarray analysis were used for validation with qPCR (miR-21, miR-122, miR-126, miR-1, miR-133, miR-125a/b, and miR-98). Based on qPCR results, the comparison between FFPE and RNAlater stored tissue samples, between Sybr Green and TaqMan approaches, as well as between different reference genes were also performed. Combing all the results, we identified certain miRNAs as potential regulators of SERCA2; however, further functional studies are needed for verification. Using qPCR, we confirmed deregulation of nine miRNAs in human MI, and show that qPCR normalization strategy is important for the outcome of miRNA expression analysis in human MI.

  20. Nitric oxide-dependent activation of CaMKII increases diastolic sarcoplasmic reticulum calcium release in cardiac myocytes in response to adrenergic stimulation.

    Science.gov (United States)

    Curran, Jerry; Tang, Lifei; Roof, Steve R; Velmurugan, Sathya; Millard, Ashley; Shonts, Stephen; Wang, Honglan; Santiago, Demetrio; Ahmad, Usama; Perryman, Matthew; Bers, Donald M; Mohler, Peter J; Ziolo, Mark T; Shannon, Thomas R

    2014-01-01

    Spontaneous calcium waves in cardiac myocytes are caused by diastolic sarcoplasmic reticulum release (SR Ca(2+) leak) through ryanodine receptors. Beta-adrenergic (β-AR) tone is known to increase this leak through the activation of Ca-calmodulin-dependent protein kinase (CaMKII) and the subsequent phosphorylation of the ryanodine receptor. When β-AR drive is chronic, as observed in heart failure, this CaMKII-dependent effect is exaggerated and becomes potentially arrhythmogenic. Recent evidence has indicated that CaMKII activation can be regulated by cellular oxidizing agents, such as reactive oxygen species. Here, we investigate how the cellular second messenger, nitric oxide, mediates CaMKII activity downstream of the adrenergic signaling cascade and promotes the generation of arrhythmogenic spontaneous Ca(2+) waves in intact cardiomyocytes. Both SCaWs and SR Ca(2+) leak were measured in intact rabbit and mouse ventricular myocytes loaded with the Ca-dependent fluorescent dye, fluo-4. CaMKII activity in vitro and immunoblotting for phosphorylated residues on CaMKII, nitric oxide synthase, and Akt were measured to confirm activity of these enzymes as part of the adrenergic cascade. We demonstrate that stimulation of the β-AR pathway by isoproterenol increased the CaMKII-dependent SR Ca(2+) leak. This increased leak was prevented by inhibition of nitric oxide synthase 1 but not nitric oxide synthase 3. In ventricular myocytes isolated from wild-type mice, isoproterenol stimulation also increased the CaMKII-dependent leak. Critically, in myocytes isolated from nitric oxide synthase 1 knock-out mice this effect is ablated. We show that isoproterenol stimulation leads to an increase in nitric oxide production, and nitric oxide alone is sufficient to activate CaMKII and increase SR Ca(2+) leak. Mechanistically, our data links Akt to nitric oxide synthase 1 activation downstream of β-AR stimulation. Collectively, this evidence supports the hypothesis that CaMKII is

  1. Nanospan, an alternatively spliced isoform of sarcospan, localizes to the sarcoplasmic reticulum in skeletal muscle and is absent in limb girdle muscular dystrophy 2F.

    Science.gov (United States)

    Peter, Angela K; Miller, Gaynor; Capote, Joana; DiFranco, Marino; Solares-Pérez, Alhondra; Wang, Emily L; Heighway, Jim; Coral-Vázquez, Ramón M; Vergara, Julio; Crosbie-Watson, Rachelle H

    2017-06-06

    Sarcospan (SSPN) is a transmembrane protein that interacts with the sarcoglycans (SGs) to form a tight subcomplex within the dystrophin-glycoprotein complex that spans the sarcolemma and interacts with laminin in the extracellular matrix. Overexpression of SSPN ameliorates Duchenne muscular dystrophy in murine models. Standard cloning approaches were used to identify nanospan, and nanospan-specific polyclonal antibodies were generated and validated. Biochemical isolation of skeletal muscle membranes and two-photon laser scanning microscopy were used to analyze nanospan localization in muscle from multiple murine models. Duchenne muscular dystrophy biopsies were analyzed by immunoblot analysis of protein lysates as well as indirect immunofluorescence analysis of muscle cryosections. Nanospan is an alternatively spliced isoform of sarcospan. While SSPN has four transmembrane domains and is a core component of the sarcolemmal dystrophin-glycoprotein complex, nanospan is a type II transmembrane protein that does not associate with the dystrophin-glycoprotein complex. We demonstrate that nanospan is enriched in the sarcoplasmic reticulum (SR) fractions and is not present in the T-tubules. SR fractions contain membranes from three distinct structural regions: a region flanking the T-tubules (triadic SR), a SR region across the Z-line (ZSR), and a longitudinal SR region across the M-line (LSR). Analysis of isolated murine muscles reveals that nanospan is mostly associated with the ZSR and triadic SR, and only minimally with the LSR. Furthermore, nanospan is absent from the SR of δ-SG-null (Sgcd -/- ) skeletal muscle, a murine model for limb girdle muscular dystrophy 2F. Analysis of skeletal muscle biopsies from Duchenne muscular dystrophy patients reveals that nanospan is preferentially expressed in type I (slow) fibers in both control and Duchenne samples. Furthermore, nanospan is significantly reduced in Duchenne biopsies. Alternative splicing of proteins from the SG

  2. Effect of phospholipid, detergent and protein-protein interaction on stability and phosphoenzyme isomerization of soluble sarcoplasmic reticulum Ca-ATPase.

    Science.gov (United States)

    Vilsen, B; Andersen, J P

    1987-12-30

    The purpose of the present study was to elucidate the separate roles of lipid, detergent and protein-protein interaction for stability and catalytic properties of sarcoplasmic reticulum Ca-ATPase solubilized in the non-ionic detergent octa(ethylene glycol) monododecyl ether (C12E8). The use of large-zone high-performance liquid chromatography permitted us to define the self-association state of Ca-ATPase peptide at various detergent, phospholipid and protein concentrations, and also during enzymatic turnover with ATP. Conditions were established for monomerization of Ca-ATPase in the presence of a high concentration of phospholipid relative to detergent. The lipid-saturated monomeric preparation was relatively resistant to inactivation in the absence of Ca2+, whereas delipidated enzyme in monomeric or in oligomeric form was prone to inactivation. Kinetics of phosphoenzyme turnover were examined in the presence and absence of Mg2+. Dephosphorylation rates were sensitive to Mg2+, irrespective of whether the peptide was present in soluble monomeric form or was membrane-bound. C12E8-solubilized monomer without added phospholipid was, however, characterized by a fast initial phase of dephosphorylation in the absence of Mg2+. This was not observed with monomer saturated with phospholipid or with monomer solubilized in myristoylglycerophosphocholine or deoxycholate. The mechanism underlying this difference was shown to be a C12E8-induced acceleration of conversion of ADP-sensitive phosphoenzyme (E1P) to ADP-insensitive phosphoenzyme (E2P). The phosphoenzyme isomerization rate was also found to be enhanced by low-affinity binding of ATP. This was demonstrated both in membrane-bound and in soluble monomeric Ca-ATPase. Our results indicate that a single peptide chain constitutes the target for modulation of phosphoenzyme turnover by Mg2+ and ATP, and that detergent effects, distinct from those arising from disruption of protein-protein contacts, are the major determinants of

  3. Contractile properties and sarcoplasmic reticulum calcium content in type I and type II skeletal muscle fibres in active aged humans.

    Science.gov (United States)

    Lamboley, C R; Wyckelsma, V L; Dutka, T L; McKenna, M J; Murphy, R M; Lamb, G D

    2015-06-01

    Muscle weakness in old age is due in large part to an overall loss of skeletal muscle tissue, but it remains uncertain how much also stems from alterations in the properties of the individual muscle fibres. This study examined the contractile properties and amount of stored intracellular calcium in single muscle fibres of Old (70 ± 4 years) and Young (22 ± 3 years) adults. The maximum level of force production (per unit cross-sectional area) in fast twitch fibres in Old subjects was lower than in Young subjects, and the fibres were also less sensitive to activation by calcium. The amount of calcium stored inside muscle fibres and available to trigger contraction was also lower in both fast- and slow-twitch muscle fibres in the Old subjects. These findings indicate that muscle weakness in old age stems in part from an impaired capacity for force production in the individual muscle fibres. This study examined the contractile properties and sarcoplasmic reticulum (SR) Ca(2+) content in mechanically skinned vastus lateralis muscle fibres of Old (70 ± 4 years) and Young (22 ± 3 years) humans to investigate whether changes in muscle fibre properties contribute to muscle weakness in old age. In type II fibres of Old subjects, specific force was reduced by ∼17% and Ca(2+) sensitivity was also reduced (pCa50 decreased ∼0.05 pCa units) relative to that in Young. S-Glutathionylation of fast troponin I (TnIf ) markedly increased Ca(2+) sensitivity in type II fibres, but the increase was significantly smaller in Old versus Young (+0.136 and +0.164 pCa unit increases, respectively). Endogenous and maximal SR Ca(2+) content were significantly smaller in both type I and type II fibres in Old subjects. In fibres of Young, the SR could be nearly fully depleted of Ca(2+) by a combined caffeine and low Mg(2+) stimulus, whereas in fibres of Old the amount of non-releasable Ca(2+) was significantly increased (by > 12% of endogenous Ca(2+) content). Western

  4. A low-dose β1-blocker in combination with milrinone improves intracellular Ca2+ handling in failing cardiomyocytes by inhibition of milrinone-induced diastolic Ca2+ leakage from the sarcoplasmic reticulum.

    Directory of Open Access Journals (Sweden)

    Shigeki Kobayashi

    Full Text Available OBJECTIVES: The purpose of this study was to investigate whether adding a low-dose β1-blocker to milrinone improves cardiac function in failing cardiomyocytes and the underlying cardioprotective mechanism. BACKGROUND: The molecular mechanism underlying how the combination of low-dose β1-blocker and milrinone affects intracellular Ca(2+ handling in heart failure remains unclear. METHODS: We investigated the effect of milrinone plus landiolol on intracellular Ca(2+ transient (CaT, cell shortening (CS, the frequency of diastolic Ca(2+ sparks (CaSF, and sarcoplasmic reticulum Ca(2+ concentration ({Ca(2+}SR in normal and failing canine cardiomyocytes and used immunoblotting to determine the phosphorylation level of ryanodine receptor (RyR2 and phospholamban (PLB. RESULTS: In failing cardiomyocytes, CaSF significantly increased, and peak CaT and CS markedly decreased compared with normal myocytes. Administration of milrinone alone slightly increased peak CaT and CS, while CaSF greatly increased with a slight increase in {Ca(2+}SR. Co-administration of β1-blocker landiolol to failing cardiomyocytes at a dose that does not inhibit cardiomyocyte function significantly decreased CaSF with a further increase in {Ca(2+}SR, and peak CaT and CS improved compared with milrinone alone. Landiolol suppressed the hyperphosphorylation of RyR2 (Ser2808 in failing cardiomyocytes but had no effect on levels of phosphorylated PLB (Ser16 and Thr17. Low-dose landiolol significantly inhibited the alternans of CaT and CS under a fixed pacing rate (0.5 Hz in failing cardiomyocytes. CONCLUSION: A low-dose β1-blocker in combination with milrinone improved cardiac function in failing cardiomyocytes, apparently by inhibiting the phosphorylation of RyR2, not PLB, and subsequent diastolic Ca(2+ leak.

  5. A low-dose β1-blocker in combination with milrinone improves intracellular Ca2+ handling in failing cardiomyocytes by inhibition of milrinone-induced diastolic Ca2+ leakage from the sarcoplasmic reticulum.

    Science.gov (United States)

    Kobayashi, Shigeki; Susa, Takehisa; Ishiguchi, Hironori; Myoren, Takeki; Murakami, Wakako; Kato, Takayoshi; Fukuda, Masakazu; Hino, Akihiro; Suetomi, Takeshi; Ono, Makoto; Uchinoumi, Hitoshi; Tateishi, Hiroki; Mochizuki, Mamoru; Oda, Tetsuro; Okuda, Shinichi; Doi, Masahiro; Yamamoto, Takeshi; Yano, Masafumi

    2015-01-01

    The purpose of this study was to investigate whether adding a low-dose β1-blocker to milrinone improves cardiac function in failing cardiomyocytes and the underlying cardioprotective mechanism. The molecular mechanism underlying how the combination of low-dose β1-blocker and milrinone affects intracellular Ca(2+) handling in heart failure remains unclear. We investigated the effect of milrinone plus landiolol on intracellular Ca(2+) transient (CaT), cell shortening (CS), the frequency of diastolic Ca(2+) sparks (CaSF), and sarcoplasmic reticulum Ca(2+) concentration ({Ca(2+)}SR) in normal and failing canine cardiomyocytes and used immunoblotting to determine the phosphorylation level of ryanodine receptor (RyR2) and phospholamban (PLB). In failing cardiomyocytes, CaSF significantly increased, and peak CaT and CS markedly decreased compared with normal myocytes. Administration of milrinone alone slightly increased peak CaT and CS, while CaSF greatly increased with a slight increase in {Ca(2+)}SR. Co-administration of β1-blocker landiolol to failing cardiomyocytes at a dose that does not inhibit cardiomyocyte function significantly decreased CaSF with a further increase in {Ca(2+)}SR, and peak CaT and CS improved compared with milrinone alone. Landiolol suppressed the hyperphosphorylation of RyR2 (Ser2808) in failing cardiomyocytes but had no effect on levels of phosphorylated PLB (Ser16 and Thr17). Low-dose landiolol significantly inhibited the alternans of CaT and CS under a fixed pacing rate (0.5 Hz) in failing cardiomyocytes. A low-dose β1-blocker in combination with milrinone improved cardiac function in failing cardiomyocytes, apparently by inhibiting the phosphorylation of RyR2, not PLB, and subsequent diastolic Ca(2+) leak.

  6. Left ventricular wall stress and sarcoplasmic reticulum Ca(2+)-ATPase gene expression in renal hypertensive rats: dose-dependent effects of ACE inhibition and AT1-receptor blockade.

    Science.gov (United States)

    Zierhut, W; Studer, R; Laurent, D; Kästner, S; Allegrini, P; Whitebread, S; Cumin, F; Baum, H P; de Gasparo, M; Drexler, H

    1996-05-01

    Cardiac hypertrophy is associated with altered Ca2+ handling and may predispose to the development of LV dysfunction and cardiac failure. At the cellular level, the re-expression of ANF represents a well-established marker of myocyte hypertrophy while the decreased expression of the sarcoplasmatic reticulum (SR) Ca(2+)-ATPase is thought o play a crucial role in the alterations of Ca2+ handling and LV function. We assessed the dose-dependent effect of chronic ACE inhibition or AT1 receptor blockade on cardiac function in relation to the cardiac expression of the SR Ca(2+)-ATPase and ANF. Renal hypertensive rats (2K-1C) were treated for 12 weeks with three different doses of the ACE inhibitor benazepril, the AT1-receptor antagonist valsartan (each drug 0.3, 3, and 10 mg/kg per day i.p.) or placebo. LV dimensions, hypertrophy and wall stress were determined in vivo by magnetic resonance imaging and the gene expressions of ANF and SR Ca(2+)-ATPase were quantified by Northern blot. Low doses of both drugs did not affect blood pressure, hypertrophy, systolic wall stress and the ANF and SR Ca(2+)-ATPase gene expression. High doses of each drug reduced systolic blood pressure, wall stress, and LV hypertrophy to a similar extent and to values comparable to normotensive, age-matched rats. In addition, high dose treatment reduced LV end-systolic and end-diastolic volume as compared to untreated 2K-1C animals and normalized the mRNA levels of both ANF and SR Ca(2+)-ATPase (as compared to normotensive animals). We conclude that in this model, high doses of ACE inhibition and AT1-receptor blockade are necessary to normalize systolic blood pressure, LV hypertrophy and systolic LV wall stress which, in turn, is associated with restoration of a normal cardiac phenotype with respect to SR Ca(2+)-ATPase and ANF and normalization of cardiac function.

  7. 78 kDa receptor for Man6P-independent lysosomal enzyme targeting: Biosynthetic transport from endoplasmic reticulum to 'high-density vesicles'

    International Nuclear Information System (INIS)

    Gonzalez-Noriega, Alfonso; Ortega Cuellar, Daniel D.; Michalak, Colette

    2006-01-01

    Recent work has shown that the cation-independent mannose 6-phosphate and the 78 kDa receptors for lysosomal enzyme targeting are located in different cell compartments. While the mannose 6-phosphate receptor is enriched in the Percoll fractions that contain Golgi apparatus, most of the 78 kDa receptor is localized in a heavy fraction at the bottom of the Percoll gradient. This report presents the biosynthetic transport of the 78 kDa receptor. Newly synthesized 78 kDa receptor was transported to Golgi from endoplasmic reticulum with a half life of 5 min. From the Golgi apparatus, the receptor takes two routes; about 15-25% is transported to the plasma membrane, and the rest migrates to late endosomes, subsequently to prelysosomes and finally to the dense vesicles. The 78 kDa receptor starts appearing at the dense vesicles 120 min after biosynthesis and reaches a maximum of 40-50% of the total receptor. Treatment of cells with NH 4 Cl causes depletion of the receptor from the dense vesicles and prelysosomes and corresponding augmentation in endosomes and plasma membrane. These results suggest that the 78 kDa receptor cycles between compartments and that the dense vesicles seem to represent the most distal compartment in the biosynthetic pathway of this receptor

  8. Hsp47 and cyclophilin B traverse the endoplasmic reticulum with procollagen into pre-Golgi intermediate vesicles. A role for Hsp47 and cyclophilin B in the export of procollagen from the endoplasmic reticulum.

    Science.gov (United States)

    Smith, T; Ferreira, L R; Hebert, C; Norris, K; Sauk, J J

    1995-08-04

    Hsp47 and cyclophilin B (CyPB) are residents of the endoplasmic reticulum (ER). Both of these proteins are closely associated with polysome-associated alpha 1(I) procollagen chains. Hsp47 possesses chaperone properties early during the translation of procollagen while the cis/trans-isomerase properties of CyPB facilitate procollagen folding. In this report, we further investigate the interaction of these proteins with procollagen I during export from the ER. To inhibit vesicular budding and retain procollagen within the ER, cells were treated with the heterotrimeric G protein inhibitor mastoparan or calphostin C, a specific inhibitor of diacylglycerol/phorbol ester binding proteins. To arrest procollagen in pre-Golgi intermediate vesicles, cells were treated with guanosine 5'-3-O-(thio)triphosphate. Pulse-chase experiments of cells labeled with [35S]methionine followed by immunoprecipitation during the chase period with anti-procollagen, anti-Hsp47, and anti-CyPB antibodies were performed to reveal the relationship between Hsp47/CyPB/procollagen I. The distribution of procollagen, Hsp47, and CyPB to the ER and/or pre-Golgi vesicles was verified by immunofluorescence. Hsp47 and CyPB remained associated with procollagen retained within the ER. Hsp47 and CyPB were also associated with procollagen exported from the ER into pre-Golgi intermediate vesicles. Treatment of cells with cyclosporin A diminished the levels of CyPB bound to procollagen and diminished the rate of Hsp47 released from procollagen and the rate of procollagen secretion, suggesting that Hsp47 release from procollagen may be driven by helix formation. Also, these studies suggest that Hsp47 may resemble protein disulfide isomerase and possess both chaperone and anti-chaperone properties. During translation, high levels of Hsp47 are seen to limit protein aggregation and facilitate chain registration. Later, Hsp47 and/or CyPB and protein disulfide isomerase act as anti-chaperones and provide the basis for

  9. Altered sarco(endo)plasmic reticulum calcium adenosine triphosphatase 2a content: Targets for heart failure therapy.

    Science.gov (United States)

    Liu, Gang; Li, Si Qi; Hu, Ping Ping; Tong, Xiao Yong

    2018-05-01

    Sarco(endo)plasmic reticulum calcium adenosine triphosphatase is responsible for transporting cytosolic calcium into the sarcoplasmic reticulum and endoplasmic reticulum to maintain calcium homeostasis. Sarco(endo)plasmic reticulum calcium adenosine triphosphatase is the dominant isoform expressed in cardiac tissue, which is regulated by endogenous protein inhibitors, post-translational modifications, hormones as well as microRNAs. Dysfunction of sarco(endo)plasmic reticulum calcium adenosine triphosphatase is associated with heart failure, which makes sarco(endo)plasmic reticulum calcium adenosine triphosphatase a promising target for heart failure therapy. This review summarizes current approaches to ameliorate sarco(endo)plasmic reticulum calcium adenosine triphosphatase function and focuses on phospholamban, an endogenous inhibitor of sarco(endo)plasmic reticulum calcium adenosine triphosphatase, pharmacological tools and gene therapies.

  10. Vesicle electrohydrodynamics.

    Science.gov (United States)

    Schwalbe, Jonathan T; Vlahovska, Petia M; Miksis, Michael J

    2011-04-01

    A small amplitude perturbation analysis is developed to describe the effect of a uniform electric field on the dynamics of a lipid bilayer vesicle in a simple shear flow. All media are treated as leaky dielectrics and fluid motion is described by the Stokes equations. The instantaneous vesicle shape is obtained by balancing electric, hydrodynamic, bending, and tension stresses exerted on the membrane. We find that in the absence of ambient shear flow, it is possible that an applied stepwise uniform dc electric field could cause the vesicle shape to evolve from oblate to prolate over time if the encapsulated fluid is less conducting than the suspending fluid. For a vesicle in ambient shear flow, the electric field damps the tumbling motion, leading to a stable tank-treading state.

  11. Model of Ca(2+) Concentration Controlled by Sarcoplasmic Reticulum of Skeletal Muscle, Using the State Transition

    National Research Council Canada - National Science Library

    Yokota, M

    2001-01-01

    ...). This report proposed a model that represents Ca(2+) in a muscle cell controlled by the SR using a state transition probability model in which one state means that protein in the SR is binding ligands, and the other...

  12. Temperature dependence of cardiac sarcoplasmic reticulum and sarcolemma in the ventricle of catfish (Clarias gariepinus

    Directory of Open Access Journals (Sweden)

    El-Sabry Abu-Amra

    2015-10-01

    The sarcolemmal Ca2+ contribution of activator Ca2+ was greater at a test temperature of 30 °C as assessed by verapamil. Whereas the SR-Ca2+ contribution was higher at 20 and 30 °C and a frequency rate of 0.2 and 0.4 Hz as assessed by caffeine and adrenaline, respectively. Bradykinin potentiating factor (BPF7 which was isolated from jelly fish (Cassiopea andromeda decreased the cardiac force developed at a frequency rate of 0.2 Hz and a temperature of 20 °C, whereas it increased the force developed at frequency rates of 0.2 and 0.4 Hz at 30 °C. These results indicate that BPF7 may act like verapamil in reducing the cardiac force through blocking the sarcolemmal Ca2+ channels at low temperature and like adrenaline in an increase of the cardiac force developed at warm temperature and the high frequency rate through stimulation of SR-Ca2+ activator. Therefore, this study indicates that the sarcolemmal Ca2+ influx and the SR-Ca2+ release contributors of activator Ca2+ for cardiac force development in the catfish heart were significantly greater at warm temperature and at the pacing frequency rates of 0.2 and 0.4 Hz as assessed by verapamil, adrenaline, caffeine and BPF7. However, the relative contribution of the sarcolemmal Ca2+ influx in the development of cardiac force in the catfish heart was greater than that of SR-Ca2+ release.

  13. Role of glycogen availability in sarcoplasmic reticulum Ca2+ kinetics in human skeletal muscle

    DEFF Research Database (Denmark)

    Ørtenblad, Niels; Nielsen, Joachim; Saltin, Bengt

    2011-01-01

    Glucose is stored as glycogen in skeletal muscle. The importance of glycogen as a fuel during exercise has been recognized since the 1960s; however, little is known about the precise mechanism that relates skeletal muscle glycogen to muscle fatigue. We show that low muscle glycogen is associated...... with an impairment of muscle ability to release Ca(2+), which is an important signal in the muscle activation. Thus, depletion of glycogen during prolonged, exhausting exercise may contribute to muscle fatigue by causing decreased Ca(2+) release inside the muscle. These data provide indications of a signal...

  14. Pseudomonas aeruginosa vesicles associate with and are internalized by human lung epithelial cells

    Directory of Open Access Journals (Sweden)

    Kuehn Meta J

    2009-02-01

    Full Text Available Abstract Background Pseudomonas aeruginosa is the major pathogen associated with chronic and ultimately fatal lung infections in patients with cystic fibrosis (CF. To investigate how P. aeruginosa-derived vesicles may contribute to lung disease, we explored their ability to associate with human lung cells. Results Purified vesicles associated with lung cells and were internalized in a time- and dose-dependent manner. Vesicles from a CF isolate exhibited a 3- to 4-fold greater association with lung cells than vesicles from the lab strain PAO1. Vesicle internalization was temperature-dependent and was inhibited by hypertonic sucrose and cyclodextrins. Surface-bound vesicles rarely colocalized with clathrin. Internalized vesicles colocalized with the endoplasmic reticulum (ER marker, TRAPα, as well as with ER-localized pools of cholera toxin and transferrin. CF isolates of P. aeruginosa abundantly secrete PaAP (PA2939, an aminopeptidase that associates with the surface of vesicles. Vesicles from a PaAP knockout strain exhibited a 40% decrease in cell association. Likewise, vesicles from PAO1 overexpressing PaAP displayed a significant increase in cell association. Conclusion These data reveal that PaAP promotes the association of vesicles with lung cells. Taken together, these results suggest that P. aeruginosa vesicles can interact with and be internalized by lung epithelial cells and contribute to the inflammatory response during infection.

  15. Solution-blown nanofiber mats from fish sarcoplasmic protein

    DEFF Research Database (Denmark)

    Sett, S.; Boutrup Stephansen, Karen; Yarin, A.L.

    2016-01-01

    In the present work, solution-blowing was adopted to form nanofibers from fish sarcoplasmic proteins (FSPs). Nanofiber mats containing different weight ratios (up to 90/10) of FSP in the FSP/nylon 6 blended nanofibers were formed from formic acid solutions, and compared to electrospun fibers made...... that the production rate of solution-blowing was increased 30-fold in relation to electrospinning. Overall, this study reveals FSP as an interesting biopolymeric alternative to synthetic polymers, and the introduction of FSP to nylon 6 provides a composite with controlled properties....

  16. Fusion of Nonionic Vesicles

    DEFF Research Database (Denmark)

    Bulut, Sanja; Oskolkova, M. Z.; Schweins, R.

    2010-01-01

    We present an experimental study of vesicle fusion using light and neutron scattering to monitor fusion events. Vesicles are reproducibly formed with an extrusion procedure using an single amphiphile triethylene glycol mono-n-decyl ether in water. They show long-term stability for temperatures ar...... a barrier to fusion changing from 15 k(B)T at T = 26 degrees C to 10k(H) T at T = 35 degrees C. These results are compatible with the theoretical predictions using the stalk model of vesicle fusion....

  17. Vesicle coating and uncoating: controlling the formation of large COPII-coated carriers.

    Science.gov (United States)

    Townley, Anna K; Stephens, David J

    2009-08-26

    The basic mechanisms underlying the formation of coated vesicles are now defined in considerable detail. This article highlights recent developments in our understanding of the problem of exporting large macromolecular cargo such as procollagen from the endoplasmic reticulum and discusses the implications that this has for cell and tissue organisation and human disease.

  18. Cannabinoid signalling inhibits sarcoplasmic Ca2+ release and regulates excitation–contraction coupling in mammalian skeletal muscle

    Science.gov (United States)

    Oláh, Tamás; Bodnár, Dóra; Tóth, Adrienn; Vincze, János; Fodor, János; Reischl, Barbara; Kovács, Adrienn; Ruzsnavszky, Olga; Dienes, Beatrix; Szentesi, Péter; Friedrich, Oliver

    2016-01-01

    Key points Marijuana was found to cause muscle weakness, although the exact regulatory role of its receptors (CB1 cannabinoid receptor; CB1R) in the excitation–contraction coupling (ECC) of mammalian skeletal muscle remains unknown.We found that CB1R activation or its knockout did not affect muscle force directly, whereas its activation decreased the Ca2+‐sensitivity of the contractile apparatus and made the muscle fibres more prone to fatigue.We demonstrate that CB1Rs are not connected to the inositol 1,4,5‐trisphosphate pathway either in myotubes or in adult muscle fibres.By contrast, CB1Rs constitutively inhibit sarcoplasmic Ca2+ release and sarcoplasmic reticulum Ca2+ ATPase during ECC in a Gi/o protein‐mediated way in adult skeletal muscle fibres but not in myotubes.These results help with our understanding of the physiological effects and pathological consequences of CB1R activation in skeletal muscle and may be useful in the development of new cannabinoid drugs. Abstract Marijuana was found to cause muscle weakness, although it is unknown whether it affects the muscles directly or modulates only the motor control of the central nervous system. Although the presence of CB1 cannabinoid receptors (CB1R), which are responsible for the psychoactive effects of the drug in the brain, have recently been demonstrated in skeletal muscle, it is unclear how CB1R‐mediated signalling affects the contraction and Ca²⁺ homeostasis of mammalian skeletal muscle. In the present study, we demonstrate that in vitro CB1R activation increased muscle fatigability and decreased the Ca2+‐sensitivity of the contractile apparatus, whereas it did not alter the amplitude of single twitch contractions. In myotubes, CB1R agonists neither evoked, nor influenced inositol 1,4,5‐trisphosphate (IP3)‐mediated Ca2+ transients, nor did they alter excitation–contraction coupling. By contrast, in isolated muscle fibres of wild‐type mice, although CB1R agonists did not evoke IP3

  19. Cannabinoid signalling inhibits sarcoplasmic Ca2+ release and regulates excitation-contraction coupling in mammalian skeletal muscle.

    Science.gov (United States)

    Oláh, Tamás; Bodnár, Dóra; Tóth, Adrienn; Vincze, János; Fodor, János; Reischl, Barbara; Kovács, Adrienn; Ruzsnavszky, Olga; Dienes, Beatrix; Szentesi, Péter; Friedrich, Oliver; Csernoch, László

    2016-12-15

    Marijuana was found to cause muscle weakness, although the exact regulatory role of its receptors (CB1 cannabinoid receptor; CB1R) in the excitation-contraction coupling (ECC) of mammalian skeletal muscle remains unknown. We found that CB1R activation or its knockout did not affect muscle force directly, whereas its activation decreased the Ca 2+ -sensitivity of the contractile apparatus and made the muscle fibres more prone to fatigue. We demonstrate that CB1Rs are not connected to the inositol 1,4,5-trisphosphate pathway either in myotubes or in adult muscle fibres. By contrast, CB1Rs constitutively inhibit sarcoplasmic Ca 2+ release and sarcoplasmic reticulum Ca 2+ ATPase during ECC in a G i/o protein-mediated way in adult skeletal muscle fibres but not in myotubes. These results help with our understanding of the physiological effects and pathological consequences of CB1R activation in skeletal muscle and may be useful in the development of new cannabinoid drugs. Marijuana was found to cause muscle weakness, although it is unknown whether it affects the muscles directly or modulates only the motor control of the central nervous system. Although the presence of CB1 cannabinoid receptors (CB1R), which are responsible for the psychoactive effects of the drug in the brain, have recently been demonstrated in skeletal muscle, it is unclear how CB1R-mediated signalling affects the contraction and Ca²⁺ homeostasis of mammalian skeletal muscle. In the present study, we demonstrate that in vitro CB1R activation increased muscle fatigability and decreased the Ca 2+ -sensitivity of the contractile apparatus, whereas it did not alter the amplitude of single twitch contractions. In myotubes, CB1R agonists neither evoked, nor influenced inositol 1,4,5-trisphosphate (IP 3 )-mediated Ca 2+ transients, nor did they alter excitation-contraction coupling. By contrast, in isolated muscle fibres of wild-type mice, although CB1R agonists did not evoke IP 3 -mediated Ca 2

  20. Seminal vesicle cycts

    International Nuclear Information System (INIS)

    Alpern, M.B.; Dorfman, R.E.; Gross, B.H.; Gottlieb, C.A.; Sandler, M.A.

    1990-01-01

    PURPOSE: Adult polycystic kidney disease (APKCD), an autosomal dominant disorder, causes cyst formation in the kidney, liver, pancreas, esophagus, ovaries, uterus, and brain. This paper describes four APKCD patients with CT evidence of seminal vesicle cysts (SVCs). Four patients (aged 45-65 years) underwent abdominal/pelvic CT with oral and intravenous contrast material. Three were evaluated for possible renal transplantation and one for sepsis material. All seminal vesicles contained cystic masses with fluid that measured between 0 and 30 HU. Seminal vesicle thickness was 3-4 cm (normal, 1.5 cm). High-density walls separated the 3-12-mm diameter cysts. All patients demonstrated typical renal stigmata of APKCD. One patient had hepatic cysts, and none had cysts elsewhere. Postmortem examination in one patient confirmed the SVCs

  1. Cyclopiazonic Acid Is Complexed to a Divalent Metal Ion When Bound to the Sarcoplasmic Reticulum Ca2+-ATPase

    DEFF Research Database (Denmark)

    Laursen, Mette; Bublitz, Maike; Moncoq, Karine

    2009-01-01

    is expected to be part of the cytoplasmic cation access pathway. Our model is consistent with the biochemical data on CPA function and provides new measures in structure-based drug design targeting Ca2+-ATPases, e. g. from pathogens. We also present an extended structural basis of ATP modulation pinpointing...

  2. Vesicle-based rechargeable batteries

    Energy Technology Data Exchange (ETDEWEB)

    Stanish, I.; Singh, A. [Center for Bio/Molecular Science and Engineering, Naval Research Laboratory, 4555 Overlook Ave., S.W., Washington, DC 20375 (United States); Lowy, D.A. [Nova Research, Inc., 1900 Elkin St., Alexandria, VA 22308 (United States); Hung, C.W. [Department of Chemical Engineering, University of Maryland, College Park, MD 20742 (United States)

    2005-05-02

    Vesicle-based rechargeable batteries can be fabricated by mounting polymerized vesicles filled with ferrocyanide or ferricyanide to a conductive surface. The potential can be adjusted by changing the concentration ratio of hydroquinone and benzoquinone bound to the vesicle membranes. These batteries show promise as a means of supplying portable power for future autonomous nanosystems. (Abstract Copyright [2005], Wiley Periodicals, Inc.)

  3. Flexibility contra Stiffness: The Phragmoplast as a Physical Barrier for Beads But Not for Vesicles[OA

    Science.gov (United States)

    Esseling-Ozdoba, Agnieszka; Kik, Richard A.; van Lammeren, André A.M.; Kleijn, J. Mieke; Emons, Anne Mie C.

    2010-01-01

    In plant cells, Golgi vesicles are transported to the division plane to fuse with each other, forming the cell plate, the initial membrane-bordered cell wall separating daughter cells. Vesicles, but not organelles, move through the phragmoplast, which consists of two opposing cylinders of microtubules and actin filaments, interlaced with endoplasmic reticulum membrane. To study physical aspects of this transport/inhibition process, we microinjected fluorescent synthetic 1,2-dioleoyl-sn-glycero-3-phospho-rac-1-glycerol (DOPG) vesicles and polystyrene beads into Tradescantia virginiana stamen hair cells. The phragmoplast was nonselective for DOPG vesicles of a size up to 150 nm in diameter but was a physical barrier for polystyrene beads having a diameter of 20 and 40 nm and also when beads were coated with the same DOPG membrane. We conclude that stiffness is a parameter for vesicle transit through the phragmoplast and discuss that cytoskeleton configurations can physically block such transit. PMID:19939943

  4. Plane partition vesicles

    International Nuclear Information System (INIS)

    Rensburg, E J Janse van; Ma, J

    2006-01-01

    We examine partitions and their natural three-dimensional generalizations, plane partitions, as models of vesicles undergoing an inflation-deflation transition. The phase diagrams of these models include a critical point corresponding to an inflation-deflation transition, and exhibits multicritical scaling in the vicinity of a multicritical point located elsewhere on the critical curve. We determine the locations of the multicritical points by analysing the generating functions using analytic and numerical means. In addition, we determine the numerical values of the multicritical scaling exponents associated with the multicritical scaling regimes in these models

  5. Vesicles and vesicle fusion: coarse-grained simulations

    DEFF Research Database (Denmark)

    Shillcock, Julian C.

    2010-01-01

    of vesicles that is crucial for this transport is their ability to fuse to target membranes and release their contents to the distal side. In industry, some personal care products contain vesicles to help transport reagents across the skin, and research on drug formulation shows that packaging active......Biological cells are highly dynamic, and continually move material around their own volume and between their interior and exterior. Much of this transport encapsulates the material inside phospholipid vesicles that shuttle to and fro, fusing with, and budding from, other membranes. A feature...

  6. The Highly Conserved COPII Coat Complex Sorts Cargo from the Endoplasmic Reticulum and Targets It to the Golgi

    OpenAIRE

    Lord, Christopher; Ferro-Novick, Susan; Miller, Elizabeth A.

    2013-01-01

    Protein egress from the endoplasmic reticulum (ER) is driven by a conserved cytoplasmic coat complex called the COPII coat. The COPII coat complex contains an inner shell (Sec23/Sec24) that sorts cargo into ER-derived vesicles and an outer cage (Sec13/Sec31) that leads to coat polymerization. Once released from the ER, vesicles must tether to and fuse with the target membrane to deliver their protein and lipid contents. This delivery step also depends on the COPII coat, with coat proteins bin...

  7. Vesicles and vesicle gels - structure and dynamics of formation

    International Nuclear Information System (INIS)

    Gradzielski, M

    2003-01-01

    Vesicles constitute an interesting morphology formed by self-aggregating amphiphilic molecules. They exhibit a rich structural variety and are of interest both from a fundamental point of view (for studying closed bilayer systems) and from a practical point of view (whenever one is interested in the encapsulation of active molecules). In many circumstances vesicular structures have to be formed by external forces, but of great interest are amphiphilic systems, where they form spontaneously. Here the question arises of whether this means that they are also thermodynamically stable structures, which at least in some systems appears to be the case. If such vesicles are well defined in size, it is possible to pack them densely and thereby form vesicle gels that possess highly elastic properties even for relatively low volume fractions of amphiphile. Conditions for the formation and the microstructure of such vesicle gels have been studied in some detail for the case of unilamellar vesicles. Another important and topical issue is the dynamics of vesicle formation/breakdown, as the understanding of the transition process will open the way to a deeper understanding of their stability and also allow controlling of the structures formed, by means of their formation processes. Significant progress in the study of the transformation processes has been achieved, in particular by means of time-resolved scattering experiments. (topical review)

  8. Comparative profiling of sarcoplasmic phosphoproteins in ovine muscle with different color stability.

    Science.gov (United States)

    Li, Meng; Li, Zheng; Li, Xin; Xin, Jianzeng; Wang, Ying; Li, Guixia; Wu, Liguo; Shen, Qingwu W; Zhang, Dequan

    2018-02-01

    The phosphorylation of sarcoplasmic proteins in postmortem muscles was investigated in relationship to color stability in the present study. Although no difference was observed in the global phosphorylation level of sarcoplasmic proteins, difference was determined in the phosphorylation levels of individual protein bands from muscles with different color stability. Correlation analysis and liquid chromatography - tandem mass spectrometry (LC-MS/MS) identification of phosphoproteins showed that most of the color stability-related proteins were glycolytic enzymes. Interestingly, the phosphorylation level of myoglobin was inversely related to meat color stability. As the phosphorylation of myoglobin increased, color stability based on a ∗ value decreased and metMb content increased. In summary, the study revealed that protein phosphorylation might play a role in the regulation of meat color stability probably by regulating glycolysis and the redox stability of myoglobin, which might be affected by the phosphorylation of myoglobin. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Time Course of the Response of Myofibrillar and Sarcoplasmic Protein Metabolism to Unweighting of the Soleus Muscle

    Science.gov (United States)

    Munoz, Kathryn A.; Satarug, Soisungwan; Tischler, Marc E.

    1993-01-01

    Contributions of altered in vivo protein synthesis and degradation to unweighting atrophy of the soleus muscle in tail-suspended young female rats were analyzed daily for up to 6 days. Specific changes in myofibrillar and sarcoplasmic proteins were also evaluated to assess their contributions to the loss of total protein. Synthesis of myofibrillar and sarcoplasmic proteins was estimated by intramuscular (IM) injection and total protein by intraperitoneal (IP) injection of flooding doses of H-3-phenylaianine. Total protein loss was greatest during the first 3 days following suspension and was a consequence of the loss of myofibrillar rather than sarcoplasmic proteins. However, synthesis of total myofibrillar and sarcoplasmic proteins diminished in parallel beginning in the first 24 hours. Therefore sarcoplasmic proteins must be spared due to a decrease in their degradation. In contrast, myofibrillar protein degradation increased, thus explaining the elevated degradation of the total pool. Following 72 hours of suspension, protein synthesis remained low, but the rate of myofibrillar protein loss diminished, suggesting a slowing of degradation. These various results show acute loss of protein during unweighting atrophy is a consequence of decreased synthesis and increased degradation of myofibrillar proteins, and sarcoplasmic proteins are spared due to slower degradation, likely explaining the sparing of plasma membrane receptors. Based on other published data, we propose that the slowing of atrophy after the initial response may be attributed to an increased effect of insulin.

  10. Endoplasmic Reticulum Stress and Obesity.

    Science.gov (United States)

    Yilmaz, Erkan

    2017-01-01

    In recent years, the world has seen an alarming increase in obesity and closely associated with insulin resistance which is a state of low-grade inflammation, the latter characterized by elevated levels of proinflammatory cytokines in blood and tissues. A shift in energy balance alters systemic metabolic regulation and the important role that chronic inflammation, endoplasmic reticulum (ER) dysfunction, and activation of the unfolded protein response (UPR) play in this process.Why obesity is so closely associated with insulin resistance and inflammation is not understood well. This suggests that there are probably other causes for obesity-related insulin resistance and inflammation. One of these appears to be endoplasmic reticulum (ER) stress.The ER is a vast membranous network responsible for the trafficking of a wide range of proteins and plays a central role in integrating multiple metabolic signals critical in cellular homeostasis. Conditions that may trigger unfolded protein response activation include increased protein synthesis, the presence of mutant or misfolded proteins, inhibition of protein glycosylation, imbalance of ER calcium levels, glucose and energy deprivation, hypoxia, pathogens or pathogen-associated components and toxins. Thus, characterizing the mechanisms contributing to obesity and identifying potential targets for its prevention and treatment will have a great impact on the control of associated conditions, particularly T2D.

  11. Extracellular vesicles: Exosomes, microvesicles, and friends

    NARCIS (Netherlands)

    Raposo, G.; Stoorvogel, W.|info:eu-repo/dai/nl/074352385

    2013-01-01

    Cells release into the extracellular environment diverse types of membrane vesicles of endosomal and plasma membrane origin called exosomes and microvesicles, respectively. These extracellular vesicles (EVs) represent an important mode of intercellular communication by serving as vehicles for

  12. Spontaneous charged lipid transfer between lipid vesicles.

    Science.gov (United States)

    Richens, Joanna L; Tyler, Arwen I I; Barriga, Hanna M G; Bramble, Jonathan P; Law, Robert V; Brooks, Nicholas J; Seddon, John M; Ces, Oscar; O'Shea, Paul

    2017-10-03

    An assay to study the spontaneous charged lipid transfer between lipid vesicles is described. A donor/acceptor vesicle system is employed, where neutrally charged acceptor vesicles are fluorescently labelled with the electrostatic membrane probe Fluoresceinphosphatidylethanolamine (FPE). Upon addition of charged donor vesicles, transfer of negatively charged lipid occurs, resulting in a fluorescently detectable change in the membrane potential of the acceptor vesicles. Using this approach we have studied the transfer properties of a range of lipids, varying both the headgroup and the chain length. At the low vesicle concentrations chosen, the transfer follows a first-order process where lipid monomers are transferred presumably through the aqueous solution phase from donor to acceptor vesicle. The rate of transfer decreases with increasing chain length which is consistent with energy models previously reported for lipid monomer vesicle interactions. Our assay improves on existing methods allowing the study of a range of unmodified lipids, continuous monitoring of transfer and simplified experimental procedures.

  13. Impermeability effects in three-dimensional vesicles

    International Nuclear Information System (INIS)

    Biscari, P; Canevese, S M; Napoli, G

    2004-01-01

    We analyse the effects of the impermeability constraint on the equilibrium shapes of a three-dimensional vesicle hosting a rigid inclusion. A given alteration of the inclusion and/or vesicle parameters leads to shape modifications of different orders of magnitude, when applied to permeable or impermeable vesicles. Moreover, the enclosed-volume constraint wrecks the uniqueness of stationary equilibrium shapes, and gives rise to pear-shaped or stomatocyte-like vesicles

  14. Membrane Trafficking and Vesicle Fusion

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 19; Issue 5. Membrane Trafficking and Vesicle Fusion: Post-Palade Era Researchers Win the Nobel Prize. Riddhi Atul Jani Subba Rao Gangi Setty. General Article Volume 19 Issue 5 May 2014 pp 421-445 ...

  15. Suppression of the endoplasmic reticulum calcium pump during zebrafish gastrulation affects left-right asymmetry of the heart and brain.

    Science.gov (United States)

    Kreiling, Jill A; Balantac, Zaneta L; Crawford, Andrew R; Ren, Yuexin; Toure, Jamal; Zchut, Sigalit; Kochilas, Lazaros; Creton, Robbert

    2008-01-01

    Vertebrate embryos generate striking Ca(2+) patterns, which are unique regulators of dynamic developmental events. In the present study, we used zebrafish embryos as a model system to examine the developmental roles of Ca(2+) during gastrulation. We found that gastrula stage embryos maintain a distinct pattern of cytosolic Ca(2+) along the dorsal-ventral axis, with higher Ca(2+) concentrations in the ventral margin and lower Ca(2+) concentrations in the dorsal margin and dorsal forerunner cells. Suppression of the endoplasmic reticulum Ca(2+) pump with 0.5 microM thapsigargin elevates cytosolic Ca(2+) in all embryonic regions and induces a randomization of laterality in the heart and brain. Affected hearts, visualized in living embryos by a subtractive imaging technique, displayed either a reversal or loss of left-right asymmetry. Brain defects include a left-right reversal of pitx2 expression in the dorsal diencephalon and a left-right reversal of the prominent habenular nucleus in the brain. Embryos are sensitive to inhibition of the endoplasmic reticulum Ca(2+) pump during early and mid gastrulation and lose their sensitivity during late gastrulation and early segmentation. Suppression of the endoplasmic reticulum Ca(2+) pump during gastrulation inhibits expression of no tail (ntl) and left-right dynein related (lrdr) in the dorsal forerunner cells and affects development of Kupffer's vesicle, a ciliated organ that generates a counter-clockwise flow of fluid. Previous studies have shown that Ca(2+) plays a role in Kupffer's vesicle function, influencing ciliary motility and translating the vesicle's counter-clockwise flow into asymmetric patterns of gene expression. The present results suggest that Ca(2+) plays an additional role in the formation of Kupffer's vesicle.

  16. Yarrowia lipolytica vesicle-mediated protein transport pathways

    Directory of Open Access Journals (Sweden)

    Beckerich Jean-Marie

    2007-11-01

    Full Text Available Abstract Background Protein secretion is a universal cellular process involving vesicles which bud and fuse between organelles to bring proteins to their final destination. Vesicle budding is mediated by protein coats; vesicle targeting and fusion depend on Rab GTPase, tethering factors and SNARE complexes. The Génolevures II sequencing project made available entire genome sequences of four hemiascomycetous yeasts, Yarrowia lipolytica, Debaryomyces hansenii, Kluyveromyces lactis and Candida glabrata. Y. lipolytica is a dimorphic yeast and has good capacities to secrete proteins. The translocation of nascent protein through the endoplasmic reticulum membrane was well studied in Y. lipolytica and is largely co-translational as in the mammalian protein secretion pathway. Results We identified S. cerevisiae proteins involved in vesicular secretion and these protein sequences were used for the BLAST searches against Génolevures protein database (Y. lipolytica, C. glabrata, K. lactis and D. hansenii. These proteins are well conserved between these yeasts and Saccharomyces cerevisiae. We note several specificities of Y. lipolytica which may be related to its good protein secretion capacities and to its dimorphic aspect. An expansion of the Y. lipolytica Rab protein family was observed with autoBLAST and the Rab2- and Rab4-related members were identified with BLAST against NCBI protein database. An expansion of this family is also found in filamentous fungi and may reflect the greater complexity of the Y. lipolytica secretion pathway. The Rab4p-related protein may play a role in membrane recycling as rab4 deleted strain shows a modification of colony morphology, dimorphic transition and permeability. Similarly, we find three copies of the gene (SSO encoding the plasma membrane SNARE protein. Quantification of the percentages of proteins with the greatest homology between S. cerevisiae, Y. lipolytica and animal homologues involved in vesicular

  17. Endoplasmic reticulum stress in lung disease

    Directory of Open Access Journals (Sweden)

    Stefan J. Marciniak

    2017-06-01

    Full Text Available Exposure to inhaled pollutants, including fine particulates and cigarette smoke is a major cause of lung disease in Europe. While it is established that inhaled pollutants have devastating effects on the genome, it is now recognised that additional effects on protein folding also drive the development of lung disease. Protein misfolding in the endoplasmic reticulum affects the pathogenesis of many diseases, ranging from pulmonary fibrosis to cancer. It is therefore important to understand how cells respond to endoplasmic reticulum stress and how this affects pulmonary tissues in disease. These insights may offer opportunities to manipulate such endoplasmic reticulum stress pathways and thereby cure lung disease.

  18. Emergence and stability of intermediate open vesicles in disk-to-vesicle transitions.

    Science.gov (United States)

    Li, Jianfeng; Zhang, Hongdong; Qiu, Feng; Shi, An-Chang

    2013-07-01

    The transition between two basic structures, a disk and an enclosed vesicle, of a finite membrane is studied by examining the minimum energy path (MEP) connecting these two states. The MEP is constructed using the string method applied to continuum elastic membrane models. The results reveal that, besides the commonly observed disk and vesicle, open vesicles (bowl-shaped vesicles or vesicles with a pore) can become stable or metastable shapes. The emergence, stability, and probability distribution of these open vesicles are analyzed. It is demonstrated that open vesicles can be stabilized by higher-order elastic energies. The estimated probability distribution of the different structures is in good agreement with available experiments.

  19. Design and characterization of self-assembled fish sarcoplasmic protein-alginate nanocomplexes

    DEFF Research Database (Denmark)

    Boutrup Stephansen, Karen; Mattebjerg, Maria Ahlm; Wattjes, Jasper

    2015-01-01

    Macrostructures based on natural polymers are subject to large attention, as the application range is wide within the food and pharmaceutical industries. In this study we present nanocomplexes (NCXs) made from electrostatic self-assembly between negatively charged alginate and positively charged...... fish sarcoplasmic proteins (FSP), prepared by bulk mixing. A concentration screening revealed that there was a range of alginate and FSP concentrations where stable NCXs with similar properties were formed, rather than two exact concentrations. The size of the NCXs was 293 +/- 3 nm, and the zeta...

  20. Formation of Oligovesicular Vesicles by Micromanipulation

    Directory of Open Access Journals (Sweden)

    Yukihisa Okumura

    2011-09-01

    Full Text Available Cell-sized lipid bilayer membrane vesicles (giant vesicles, GVs or semi-vesicles were formed from egg yolk phosphatidylcholine on a platinum electrode under applied electric voltage by electroformation. Micromanipulation of the semi-vesicle by first pressing its membrane with a glass microneedle and then withdrawing the needle left a GV in the interior of the vesicle. During the process, an aqueous solution of Ficoll that filled the needle was introduced into the newly formed inner vesicle and remained encapsulated. Approximately 50% of attempted micromanipulation resulted in the formation of an inner daughter vesicle, “microvesiculation”. By repeating the microvesiculation process, multiple inner GVs could be formed in a single parent semi-vesicle. A semi-vesicle with inner GVs could be detached from the electrode by scraping with a microneedle, yielding an oligovesicular vesicle (OVV with desired inner aqueous contents. Microvesiculation of a GV held on the tip of a glass micropipette was also possible, and this also produced an OVV. Breaking the membrane of the parent semi-vesicle by micromanipulation with a glass needle after microvesiculation, released the inner GVs. This protocol may be used for controlled formation of GVs with desired contents.

  1. Phospholipid Vesicles in Materials Science

    Energy Technology Data Exchange (ETDEWEB)

    Granick, Steve [Univ. of Illinois, Champaign, IL (United States)

    2016-05-11

    The objective of this research was to develop the science basis needed to deploy phospholipid vesicles as functional materials in energy contexts. Specifically, we sought to: (1) Develop an integrated molecular-level understanding of what determines their dynamical shape, spatial organization, and responsiveness to complex, time-varying environments; and (2) Develop understanding of their active transportation in crowded environments, which our preliminary measurements in cells suggest may hold design principles for targeting improved energy efficiency in new materials systems. The methods to do this largely involved fluorescence imaging and other spectroscopy involving single particles, vesicles, particles, DNA, and endosomes. An unexpected importance outcome was a new method to image light-emitting diodes during actual operation using super-resolution spectroscopy.

  2. Spontaneous Vesicle Recycling in the Synaptic Bouton

    Directory of Open Access Journals (Sweden)

    Sven eTruckenbrodt

    2014-12-01

    Full Text Available The trigger for synaptic vesicle exocytosis is Ca2+, which enters the synaptic bouton following action potential stimulation. However, spontaneous release of neurotransmitter also occurs in the absence of stimulation in virtually all synaptic boutons. It has long been thought that this represents exocytosis driven by fluctuations in local Ca2+ levels. The vesicles responding to these fluctuations are thought to be the same ones that release upon stimulation, albeit potentially triggered by different Ca2+ sensors. This view has been challenged by several recent works, which have suggested that spontaneous release is driven by a separate pool of synaptic vesicles. Numerous articles appeared during the last few years in support of each of these hypotheses, and it has been challenging to bring them into accord. We speculate here on the origins of this controversy, and propose a solution that is related to developmental effects. Constitutive membrane traffic, needed for the biogenesis of vesicles and synapses, is responsible for high levels of spontaneous membrane fusion in young neurons, probably independent of Ca2+. The vesicles releasing spontaneously in such neurons are not related to other synaptic vesicle pools and may represent constitutively releasing vesicles (CRVs rather than bona fide synaptic vesicles. In mature neurons, constitutive traffic is much dampened, and the few remaining spontaneous release events probably represent bona fide spontaneously releasing synaptic vesicles (SRSVs responding to Ca2+ fluctuations, along with a handful of CRVs that participate in synaptic vesicle turnover.

  3. Critical roles of hydrophobicity and orientation of side chains for inactivation of sarcoplasmic reticulum Ca2+-ATPase with thapsigargin and thapsigargin analogs

    DEFF Research Database (Denmark)

    Winther, Anne-Marie Lund; Liu, Huizhen; Sonntag, Yonathan

    2010-01-01

    fluorescence data to show how Tg and chemical analogs of the compound with modified or removed side chains bind to isolated SERCA 1a membranes. This occurs by uptake via the membrane lipid followed by insertion into a resident intramembranous binding site with few adaptative changes. Our binding data indicate...... that a balanced hydrophobicity and accurate positioning of the side chains, provided by the central guaianolide ring structure, defines a pharmacophore of Tg that governs both high affinity and access to the protein-binding site. Tg analogs substituted with long linkers at O-8 extend from the binding site between...... transmembrane segments to the putative N-terminal Ca(2+) entry pathway. The long chain analogs provide a rational basis for the localization of the linker, the presence of which is necessary for enabling prostate-specific antigen to cleave peptide-conjugated prodrugs targeting SERCA of cancer cells (Denmeade, S...

  4. Optogenetic acidification of synaptic vesicles and lysosomes.

    Science.gov (United States)

    Rost, Benjamin R; Schneider, Franziska; Grauel, M Katharina; Wozny, Christian; Bentz, Claudia; Blessing, Anja; Rosenmund, Tanja; Jentsch, Thomas J; Schmitz, Dietmar; Hegemann, Peter; Rosenmund, Christian

    2015-12-01

    Acidification is required for the function of many intracellular organelles, but methods to acutely manipulate their intraluminal pH have not been available. Here we present a targeting strategy to selectively express the light-driven proton pump Arch3 on synaptic vesicles. Our new tool, pHoenix, can functionally replace endogenous proton pumps, enabling optogenetic control of vesicular acidification and neurotransmitter accumulation. Under physiological conditions, glutamatergic vesicles are nearly full, as additional vesicle acidification with pHoenix only slightly increased the quantal size. By contrast, we found that incompletely filled vesicles exhibited a lower release probability than full vesicles, suggesting preferential exocytosis of vesicles with high transmitter content. Our subcellular targeting approach can be transferred to other organelles, as demonstrated for a pHoenix variant that allows light-activated acidification of lysosomes.

  5. Ultrasound-responsive ultrathin multiblock copolyamide vesicles

    Science.gov (United States)

    Huang, Lei; Yu, Chunyang; Huang, Tong; Xu, Shuting; Bai, Yongping; Zhou, Yongfeng

    2016-02-01

    This study reports the self-assembly of novel polymer vesicles from an amphiphilic multiblock copolyamide, and the vesicles show a special structure with an ultrathin wall thickness of about 4.5 nm and a combined bilayer and monolayer packing model. Most interestingly, the vesicles are ultrasound-responsive and can release the encapsulated model drugs in response to ultrasonic irradiation.This study reports the self-assembly of novel polymer vesicles from an amphiphilic multiblock copolyamide, and the vesicles show a special structure with an ultrathin wall thickness of about 4.5 nm and a combined bilayer and monolayer packing model. Most interestingly, the vesicles are ultrasound-responsive and can release the encapsulated model drugs in response to ultrasonic irradiation. Electronic supplementary information (ESI) available: Details of experiments and characterization, and FT-IR, TEM, DPD, FL and micro-DSC results. See DOI: 10.1039/c5nr08596a

  6. Effects of Preslaughter Stress Levels on the Post-mortem Sarcoplasmic Proteomic Profile of Gilthead Seabream Muscle

    DEFF Research Database (Denmark)

    Silva, Tomé Santos; Cordeiro, Odete D; Matos, Elisabete D.

    2012-01-01

    identification was performed by MALDI-TOF-TOF MS. Analysis of the results indicates changes on several cellular pathways, with some of these changes being attributable to oxidative and proteolytic activity on sarcoplasmic proteins, together with leaking of myofibrillar proteins. These processes appear to have...

  7. Single-vesicle imaging reveals different transport mechanisms between glutamatergic and GABAergic vesicles

    NARCIS (Netherlands)

    Farsi, Z.; Preobraschenski, J.; Bogaart, G. van den; Riedel, D.; Jahn, R.; Woehler, A.

    2016-01-01

    Synaptic transmission is mediated by the release of neurotransmitters, which involves exo-endocytotic cycling of synaptic vesicles. To maintain synaptic function, synaptic vesicles are refilled with thousands of neurotransmitter molecules within seconds after endocytosis, using the energy provided

  8. Transcriptome of extracellular vesicles released by hepatocytes.

    Directory of Open Access Journals (Sweden)

    Felix Royo

    Full Text Available The discovery that the cells communicate through emission of vesicles has opened new opportunities for better understanding of physiological and pathological mechanisms. This discovery also provides a novel source for non-invasive disease biomarker research. Our group has previously reported that hepatocytes release extracellular vesicles with protein content reflecting the cell-type of origin. Here, we show that the extracellular vesicles released by hepatocytes also carry RNA. We report the messenger RNA composition of extracellular vesicles released in two non-tumoral hepatic models: primary culture of rat hepatocytes and a progenitor cell line obtained from a mouse foetal liver. We describe different subpopulations of extracellular vesicles with different densities and protein and RNA content. We also show that the RNA cargo of extracellular vesicles released by primary hepatocytes can be transferred to rat liver stellate-like cells and promote their activation. Finally, we provide in vitro and in vivo evidence that liver-damaging drugs galactosamine, acetaminophen, and diclofenac modify the RNA content of these vesicles. To summarize, we show that the extracellular vesicles secreted by hepatocytes contain various RNAs. These vesicles, likely to be involved in the activation of stellate cells, might become a new source for non-invasive identification of the liver toxicity markers.

  9. Trafficking of astrocytic vesicles in hippocampal slices

    International Nuclear Information System (INIS)

    Potokar, Maja; Kreft, Marko; Lee, So-Young; Takano, Hajime; Haydon, Philip G.; Zorec, Robert

    2009-01-01

    The increasingly appreciated role of astrocytes in neurophysiology dictates a thorough understanding of the mechanisms underlying the communication between astrocytes and neurons. In particular, the uptake and release of signaling substances into/from astrocytes is considered as crucial. The release of different gliotransmitters involves regulated exocytosis, consisting of the fusion between the vesicle and the plasma membranes. After fusion with the plasma membrane vesicles may be retrieved into the cytoplasm and may continue to recycle. To study the mobility implicated in the retrieval of secretory vesicles, these structures have been previously efficiently and specifically labeled in cultured astrocytes, by exposing live cells to primary and secondary antibodies. Since the vesicle labeling and the vesicle mobility properties may be an artifact of cell culture conditions, we here asked whether the retrieving exocytotic vesicles can be labeled in brain tissue slices and whether their mobility differs to that observed in cell cultures. We labeled astrocytic vesicles and recorded their mobility with two-photon microscopy in hippocampal slices from transgenic mice with fluorescently tagged astrocytes (GFP mice) and in wild-type mice with astrocytes labeled by Fluo4 fluorescence indicator. Glutamatergic vesicles and peptidergic granules were labeled by the anti-vesicular glutamate transporter 1 (vGlut1) and anti-atrial natriuretic peptide (ANP) antibodies, respectively. We report that the vesicle mobility parameters (velocity, maximal displacement and track length) recorded in astrocytes from tissue slices are similar to those reported previously in cultured astrocytes.

  10. Extracellular Vesicles in Hematological Disorders

    Directory of Open Access Journals (Sweden)

    Anat Aharon

    2014-10-01

    Full Text Available Extracellular vesicles (EVs, comprised of exosomes, microparticles, apoptotic bodies, and other microvesicles, are shed from a variety of cells upon cell activation or apoptosis. EVs promote clot formation, mediate pro-inflammatory processes, transfer proteins and miRNA to cells, and induce cell signaling that regulates cell differentiation, proliferation, migration, invasion, and apoptosis. This paper will review the contribution of EVs in hematological disorders, including hemoglobinopathies (sickle cell disease, thalassemia, paroxysmal nocturnal hemoglobinuria, and hematological malignancies (lymphomas, myelomas, and acute and chronic leukemias.

  11. Sodium Butyrate Induces Endoplasmic Reticulum Stress and Autophagy in Colorectal Cells: Implications for Apoptosis.

    Directory of Open Access Journals (Sweden)

    Jintao Zhang

    Full Text Available Butyrate, a short-chain fatty acid derived from dietary fiber, inhibits proliferation and induces cell death in colorectal cancer cells. However, clinical trials have shown mixed results regarding the anti-tumor activities of butyrate. We have previously shown that sodium butyrate increases endoplasmic reticulum stress by altering intracellular calcium levels, a well-known autophagy trigger. Here, we investigated whether sodium butyrate-induced endoplasmic reticulum stress mediated autophagy, and whether there was crosstalk between autophagy and the sodium butyrate-induced apoptotic response in human colorectal cancer cells.Human colorectal cancer cell lines (HCT-116 and HT-29 were treated with sodium butyrate at concentrations ranging from 0.5-5mM. Cell proliferation was assessed using MTT tetrazolium salt formation. Autophagy induction was confirmed through a combination of Western blotting for associated proteins, acridine orange staining for acidic vesicles, detection of autolysosomes (MDC staining, and electron microscopy. Apoptosis was quantified by flow cytometry using standard annexinV/propidium iodide staining and by assessing PARP-1 cleavage by Western blot.Sodium butyrate suppressed colorectal cancer cell proliferation, induced autophagy, and resulted in apoptotic cell death. The induction of autophagy was supported by the accumulation of acidic vesicular organelles and autolysosomes, and the expression of autophagy-associated proteins, including microtubule-associated protein II light chain 3 (LC3-II, beclin-1, and autophagocytosis-associated protein (Atg3. The autophagy inhibitors 3-methyladenine (3-MA and chloroquine inhibited sodium butyrate induced autophagy. Furthermore, sodium butyrate treatment markedly enhanced the expression of endoplasmic reticulum stress-associated proteins, including BIP, CHOP, PDI, and IRE-1a. When endoplasmic reticulum stress was inhibited by pharmacological (cycloheximide and mithramycin and genetic

  12. The International Society for Extracellular Vesicles launches the first massive open online course on extracellular vesicles

    OpenAIRE

    L?sser, Cecilia; Th?ry, Clotilde; Buz?s, Edit I.; Mathivanan, Suresh; Zhao, Weian; Gho, Yong Song; L?tvall, Jan

    2016-01-01

    The International Society for Extracellular Vesicles (ISEV) has organised its first educational online course for students and beginners in the field of extracellular vesicles (EVs). This course, “Basics of Extracellular Vesicles,” uses recorded lectures from experts in the field and will be open for an unlimited number of participants. The course is divided into 5 modules and can be accessed at www.coursera.org/learn/extracellular-vesicles. The first module is an introduction to the field co...

  13. Synaptic vesicle distribution by conveyor belt.

    Science.gov (United States)

    Moughamian, Armen J; Holzbaur, Erika L F

    2012-03-02

    The equal distribution of synaptic vesicles among synapses along the axon is critical for robust neurotransmission. Wong et al. show that the continuous circulation of synaptic vesicles throughout the axon driven by molecular motors ultimately yields this even distribution. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. Amyloglucosidase enzymatic reactivity inside lipid vesicles

    Directory of Open Access Journals (Sweden)

    Kim Jin-Woo

    2007-10-01

    Full Text Available Abstract Efficient functioning of enzymes inside liposomes would open new avenues for applications in biocatalysis and bioanalytical tools. In this study, the entrapment of amyloglucosidase (AMG (EC 3.2.1.3 from Aspergillus niger into dipalmitoylphosphatidylcholine (DPPC multilamellar vesicles (MLVs and large unilamellar vesicles (LUVs was investigated. Negative-stain, freeze-fracture, and cryo-transmission electron microscopy images verified vesicle formation in the presence of AMG. Vesicles with entrapped AMG were isolated from the solution by centrifugation, and vesicle lamellarity was identified using fluorescence laser confocal microscopy. The kinetics of starch hydrolysis by AMG was modeled for two different systems, free enzyme in aqueous solution and entrapped enzyme within vesicles in aqueous suspension. For the free enzyme system, intrinsic kinetics were described by a Michaelis-Menten kinetic model with product inhibition. The kinetic constants, Vmax and Km, were determined by initial velocity measurements, and Ki was obtained by fitting the model to experimental data of glucose concentration-time curves. Predicted concentration-time curves using these kinetic constants were in good agreement with experimental measurements. In the case of the vesicles, the time-dependence of product (glucose formation was experimentally determined and simulated by considering the kinetic behavior of the enzyme and the permeation of substrate into the vesicle. Experimental results demonstrated that entrapped enzymes were much more stable than free enyzme. The entrapped enzyme could be recycled with retention of 60% activity after 3 cycles. These methodologies can be useful in evaluating other liposomal catalysis operations.

  15. The endoplasmic reticulum stress response in disease ...

    African Journals Online (AJOL)

    Rafael Vincent M. Manalo

    2017-07-12

    Jul 12, 2017 ... Review. The endoplasmic reticulum stress response in disease pathogenesis and pathophysiology .... This is an open access article under the CC BY-NC-ND license ... chain binding protein (BIP); however, ER stress permits the release, .... drugs designed to alleviate it often cause more harm long-term.

  16. Responsive Polydiacetylene Vesicles for Biosensing Microorganisms

    Directory of Open Access Journals (Sweden)

    Estelle Lebègue

    2018-02-01

    Full Text Available Polydiacetylene (PDA inserted in films or in vesicles has received increasing attention due to its property to undergo a blue-to-red colorimetric transition along with a change from non-fluorescent to fluorescent upon application of various stimuli. In this review paper, the principle for the detection of various microorganisms (bacteria, directly detected or detected through the emitted toxins or through their DNA, and viruses and of antibacterial and antiviral peptides based on these responsive PDA vesicles are detailed. The analytical performances obtained, when vesicles are in suspension or immobilized, are given and compared to those of the responsive vesicles mainly based on the vesicle encapsulation method. Many future challenges are then discussed.

  17. Spontaneous transfer of gangliotetraosylceramide between phospholipid vesicles

    International Nuclear Information System (INIS)

    Brown, R.E.; Sugar, I.P.; Thompson, T.E.

    1985-01-01

    The transfer kinetics of the neutral glycosphingolipid gangliotetraosylceramide (asialo-GM1) were investigated by monitoring tritiated asialo-GM1 movement from donor to acceptor vesicles. Two different methods were employed to separate donor and acceptor vesicles at desired time intervals. In one method, a negative charge was imparted to dipalmitoylphosphatidylcholine donor vesicles by including 10 mol% dipalmitoylphosphatidic acid. Donors were separated from neutral dipalmitoylphosphatidylcholine acceptor vesicles by ion-exchange chromatography. In the other method, small, unilamellar donor vesicles and large, unilamellar acceptor vesicles were coincubated at 45 degrees C and then separated at desired time intervals by molecular sieve chromatography. The majority of asialo-GM1 transfer to acceptor vesicles occurred as a slow first-order process with a half-time of about 24 days assuming that the relative concentration of asialo-GM1 in the phospholipid matrix was identical in each half of the donor bilayer and that no glycolipid flip-flop occurred. Asialo-GM1 net transfer was calculated relative to that of [ 14 C]cholesteryl oleate, which served as a nontransferable marker in the donor vesicles. A nearly identical transfer half-time was obtained when the phospholipid matrix was changed from dipalmitoylphosphatidylcholine to palmitoyloleoylphosphatidylcholine. Varying the acceptor vesicle concentration did not significantly alter the asialo-GM1 transfer half-time. This result is consistent with a transfer mechanism involving diffusion of glycolipid through the aqueous phase rather than movement of glycolipid following formation of collisional complexes between donor and acceptor vesicles. (Abstract Truncated)

  18. Thermodynamics and kinetics of vesicles formation processes.

    Science.gov (United States)

    Guida, Vincenzo

    2010-12-15

    Vesicles are hollow aggregates, composed of bilayers of amphiphilic molecules, dispersed into and filled with a liquid solvent. These aggregates can be formed either as equilibrium or as out of equilibrium meta-stable structures and they exhibit a rich variety of different morphologies. The surprising richness of structures, the vast range of industrial applications and the presence of vesicles in a number of biological systems have attracted the interest of numerous researchers and scientists. In this article, we review both the thermodynamics and the kinetics aspects of the phenomena of formation of vesicles. We start presenting the thermodynamics of bilayer membranes formation and deformation, with the aim of deriving the conditions for the existence of equilibrium vesicles. Specifically, we use the results from continuum thermodynamics to discuss the possibility of formation of stable equilibrium vesicles, from both mixed amphiphiles and single component systems. We also link the bilayer membrane properties to the molecular structure of the starting amphiphiles. In the second part of this article, we focus on the dynamics and kinetics of vesiculation. We review the process of vesicles formation both from planar lamellar phase under shear and from isotropic micelles. In order to clarify the physical mechanisms of vesicles formation, we continuously draw a parallel between emulsification and vesiculation processes. Specifically, we compare the experimental results, the driving forces and the relative scaling laws identified for the two processes. Describing the dynamics of vesicles formation, we also discuss why non equilibrium vesicles can be formed by kinetics control and why they are meta-stable. Understanding how to control the properties, the stability and the formation process of vesicles is of fundamental importance for a vast number of industrial applications. Copyright © 2009. Published by Elsevier B.V.

  19. The structure of the COPII transport-vesicle coat assembled on membranes.

    Science.gov (United States)

    Zanetti, Giulia; Prinz, Simone; Daum, Sebastian; Meister, Annette; Schekman, Randy; Bacia, Kirsten; Briggs, John A G

    2013-09-17

    Coat protein complex II (COPII) mediates formation of the membrane vesicles that export newly synthesised proteins from the endoplasmic reticulum. The inner COPII proteins bind to cargo and membrane, linking them to the outer COPII components that form a cage around the vesicle. Regulated flexibility in coat architecture is essential for transport of a variety of differently sized cargoes, but structural data on the assembled coat has not been available. We have used cryo-electron tomography and subtomogram averaging to determine the structure of the complete, membrane-assembled COPII coat. We describe a novel arrangement of the outer coat and find that the inner coat can assemble into regular lattices. The data reveal how coat subunits interact with one another and with the membrane, suggesting how coordinated assembly of inner and outer coats can mediate and regulate packaging of vesicles ranging from small spheres to large tubular carriers. DOI:http://dx.doi.org/10.7554/eLife.00951.001.

  20. Vesicles Are Persistent Features of Different Plastids.

    Science.gov (United States)

    Lindquist, Emelie; Solymosi, Katalin; Aronsson, Henrik

    2016-10-01

    Peripheral vesicles in plastids have been observed repeatedly, primarily in proplastids and developing chloroplasts, in which they are suggested to function in thylakoid biogenesis. Previous observations of vesicles in mature chloroplasts have mainly concerned low temperature pretreated plants occasionally treated with inhibitors blocking vesicle fusion. Here, we show that such vesicle-like structures occur not only in chloroplasts and proplastids, but also in etioplasts, etio-chloroplasts, leucoplasts, chromoplasts and even transforming desiccoplasts without any specific pretreatment. Observations are made both in C3 and C4 species, in different cell types (meristematic, epidermis, mesophyll, bundle sheath and secretory cells) and different organs (roots, stems, leaves, floral parts and fruits). Until recently not much focus has been given to the idea that vesicle transport in chloroplasts could be mediated by proteins, but recent data suggest that the vesicle system of chloroplasts has similarities with the cytosolic coat protein complex II system. All current data taken together support the idea of an ongoing, active and protein-mediated vesicle transport not only in chloroplasts but also in other plastids, obviously occurring regardless of chemical modifications, temperature and plastid developmental stage. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. On the Computing Potential of Intracellular Vesicles.

    Science.gov (United States)

    Mayne, Richard; Adamatzky, Andrew

    2015-01-01

    Collision-based computing (CBC) is a form of unconventional computing in which travelling localisations represent data and conditional routing of signals determines the output state; collisions between localisations represent logical operations. We investigated patterns of Ca2+-containing vesicle distribution within a live organism, slime mould Physarum polycephalum, with confocal microscopy and observed them colliding regularly. Vesicles travel down cytoskeletal 'circuitry' and their collisions may result in reflection, fusion or annihilation. We demonstrate through experimental observations that naturally-occurring vesicle dynamics may be characterised as a computationally-universal set of Boolean logical operations and present a 'vesicle modification' of the archetypal CBC 'billiard ball model' of computation. We proceed to discuss the viability of intracellular vesicles as an unconventional computing substrate in which we delineate practical considerations for reliable vesicle 'programming' in both in vivo and in vitro vesicle computing architectures and present optimised designs for both single logical gates and combinatorial logic circuits based on cytoskeletal network conformations. The results presented here demonstrate the first characterisation of intracelluar phenomena as collision-based computing and hence the viability of biological substrates for computing.

  2. MR imaging of the seminal vesicles

    International Nuclear Information System (INIS)

    Edson, S.B.; Hricak, H.; Chun-Fang Chang, Y.

    1987-01-01

    The seminal vesicles of 56 healthy males and 23 males with pathologic conditions were studied with a .35-T magnet and spin-echo (SE) techniques (repetition time/echo time [msec] = 500/30 and 2,000/60). The authors analyzed (1) the size and relative signal intensity of seminal vesicles compared to surrounding fat, muscle, or urine; (2) the effect of aging on the size and signal intensity of the vesicles, and (3) the appearance of the seminal vesicles in different pathologic conditions. In the transverse plane, the normal seminal vesicle measures 31 +- 7 mm in length and 17 +- 4 mm in width. Its size or signal intensity did not change significantly with age. On SE = 500/30 images the seminal vesicles were isointense with muscle; on SE = 2,000/60 images they were isointense or slightly hypointense relative to fat. MR imaging was highly sensitive for displaying seminal vesicle pathology, based on asymmetry in size and changes in signal intensities. MR imaging provides unique information but its role in pathologic conditions needs to be further explored

  3. Cargo Release from Polymeric Vesicles under Shear

    Directory of Open Access Journals (Sweden)

    Yingying Guo

    2018-03-01

    Full Text Available In this paper we study the release of cargo from polymeric nano-carriers under shear. Vesicles formed by two star block polymers— A 12 B 6 C 2 ( A B C and A 12 B 6 A 2 ( A B A —and one linear block copolymer— A 14 B 6 ( A B , are investigated using dissipative particle dynamics (DPD simulations. A - and C -blocks are solvophobic and B -block is solvophilic. The three polymers form vesicles of different structures. The vesicles are subjected to shear both in bulk and between solvophobic walls. In bulk shear, the mechanisms of cargo release are similar for all vesicles, with cargo travelling through vesicle membrane with no preferential release location. When sheared between walls, high cargo release rate is only observed with A B C vesicle after it touches the wall. For A B C vesicle, the critical condition for high cargo release rate is the formation of wall-polymersome interface after which the effect of shear rate in promoting cargo release is secondary. High release rate is achieved by the formation of solvophilic pathway allowing cargo to travel from the vesicle cavity to the vesicle exterior. The results in this paper show that well controlled target cargo release using polymersomes can be achieved with polymers of suitable design and can potentially be very useful for engineering applications. As an example, polymersomes can be used as carriers for surface active friction reducing additives which are only released at rubbing surfaces where the additives are needed most.

  4. Ultrastructral studies of epidermis in acute radiation dermatitis. Basal lamina thickening and coated vesicles. [X-ray

    Energy Technology Data Exchange (ETDEWEB)

    Oguchi, M.; Komura, J.; Ofuji, S.

    1978-06-29

    Fine structural changes of keratinocytes by x-ray were examined in normal skin area around a lesion of Bowen's disease. The area was exposed to about 600 r over 28 days. The findings were: a decreased number of desmosomes and microvilli, formation of cytoplasmic vaculoes with or without membrane, perinuclear aggregation of tonofibrils, intracytoplasmic desmosomes and gap junction, cytoplasmic occurrence of dense bodies, lipid droplet and glycogen particles, changes in mitochondria, endoplasmic reticulum and Golgi complex, and deep invagination of the nuclear membrane. Possible exocytotic nature of coated vesicles in x-ray irradiated keratinocytes is discussed.

  5. 1H nuclear magnetic resonance studies of sarcoplasmic oxygenation in the red cell-perfused rat heart

    OpenAIRE

    Jelicks, L.A.; Wittenberg, B.A.

    1995-01-01

    The proximal histidine N delta H proton of deoxymyoglobin experiences a large hyperfine shift resulting in its 1H nuclear magnetic resonance (NMR) signal appearing at approximately 76 ppm (at 35 degrees C), downfield of the diamagnetic spectral region. 1H NMR of this proton is used to monitor sarcoplasmic oxygen pressure in isolated perfused rat heart. This method monitors intracellular oxygenation in the whole heart and does not reflect oxygenation in a limited region. The deoxymyoglobin res...

  6. Blocking variant surface glycoprotein synthesis alters endoplasmic reticulum exit sites/Golgi homeostasis in Trypanosoma brucei.

    Science.gov (United States)

    Ooi, Cher-Pheng; Smith, Terry K; Gluenz, Eva; Wand, Nadina Vasileva; Vaughan, Sue; Rudenko, Gloria

    2018-06-01

    The predominant secretory cargo of bloodstream form Trypanosoma brucei is variant surface glycoprotein (VSG), comprising ~10% total protein and forming a dense protective layer. Blocking VSG translation using Morpholino oligonucleotides triggered a precise pre-cytokinesis arrest. We investigated the effect of blocking VSG synthesis on the secretory pathway. The number of Golgi decreased, particularly in post-mitotic cells, from 3.5 ± 0.6 to 2.0 ± 0.04 per cell. Similarly, the number of endoplasmic reticulum exit sites (ERES) in post-mitotic cells dropped from 3.9 ± 0.6 to 2.7 ± 0.1 eight hours after blocking VSG synthesis. The secretory pathway was still functional in these stalled cells, as monitored using Cathepsin L. Rates of phospholipid and glycosylphosphatidylinositol-anchor biosynthesis remained relatively unaffected, except for the level of sphingomyelin which increased. However, both endoplasmic reticulum and Golgi morphology became distorted, with the Golgi cisternae becoming significantly dilated, particularly at the trans-face. Membrane accumulation in these structures is possibly caused by reduced budding of nascent vesicles due to the drastic reduction in the total amount of secretory cargo, that is, VSG. These data argue that the total flux of secretory cargo impacts upon the biogenesis and maintenance of secretory structures and organelles in T. brucei, including the ERES and Golgi. © 2018 The Authors. Traffic published by John Wiley & Sons Ltd.

  7. Endoplasmic Reticulum Stress and Associated ROS

    Directory of Open Access Journals (Sweden)

    Hafiz Maher Ali Zeeshan

    2016-03-01

    Full Text Available The endoplasmic reticulum (ER is a fascinating network of tubules through which secretory and transmembrane proteins enter unfolded and exit as either folded or misfolded proteins, after which they are directed either toward other organelles or to degradation, respectively. The ER redox environment dictates the fate of entering proteins, and the level of redox signaling mediators modulates the level of reactive oxygen species (ROS. Accumulating evidence suggests the interrelation of ER stress and ROS with redox signaling mediators such as protein disulfide isomerase (PDI-endoplasmic reticulum oxidoreductin (ERO-1, glutathione (GSH/glutathione disuphide (GSSG, NADPH oxidase 4 (Nox4, NADPH-P450 reductase (NPR, and calcium. Here, we reviewed persistent ER stress and protein misfolding-initiated ROS cascades and their significant roles in the pathogenesis of multiple human disorders, including neurodegenerative diseases, diabetes mellitus, atherosclerosis, inflammation, ischemia, and kidney and liver diseases.

  8. Endoplasmic reticulum stress causes EBV lytic replication

    OpenAIRE

    Taylor, Gwen Marie; Raghuwanshi, Sandeep K.; Rowe, David T.; Wadowsky, Robert M.; Rosendorff, Adam

    2011-01-01

    Endoplasmic reticulum (ER) stress triggers a homeostatic cellular response in mammalian cells to ensure efficient folding, sorting, and processing of client proteins. In lytic-permissive lymphoblastoid cell lines (LCLs), pulse exposure to the chemical ER-stress inducer thapsigargin (TG) followed by recovery resulted in the activation of the EBV immediate-early (BRLF1, BZLF1), early (BMRF1), and late (gp350) genes, gp350 surface expression, and virus release. The protein phosphatase 1 a (PP1a)...

  9. Hybrid, Nanoscale Phospholipid/Block Copolymer Vesicles

    Directory of Open Access Journals (Sweden)

    Bo Liedberg

    2013-09-01

    Full Text Available Hybrid phospholipid/block copolymer vesicles, in which the polymeric membrane is blended with phospholipids, display interesting self-assembly behavior, incorporating the robustness and chemical versatility of polymersomes with the softness and biocompatibility of liposomes. Such structures can be conveniently characterized by preparing giant unilamellar vesicles (GUVs via electroformation. Here, we are interested in exploring the self-assembly and properties of the analogous nanoscale hybrid vesicles (ca. 100 nm in diameter of the same composition prepared by film-hydration and extrusion. We show that the self-assembly and content-release behavior of nanoscale polybutadiene-b-poly(ethylene oxide (PB-PEO/1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylcholine (POPC hybrid phospholipid/block copolymer vesicles can be tuned by the mixing ratio of the amphiphiles. In brief, these hybrids may provide alternative tools for drug delivery purposes and molecular imaging/sensing applications and clearly open up new avenues for further investigation.

  10. Synaptic Vesicle Endocytosis in Different Model Systems

    Directory of Open Access Journals (Sweden)

    Quan Gan

    2018-06-01

    Full Text Available Neurotransmission in complex animals depends on a choir of functionally distinct synapses releasing neurotransmitters in a highly coordinated manner. During synaptic signaling, vesicles fuse with the plasma membrane to release their contents. The rate of vesicle fusion is high and can exceed the rate at which synaptic vesicles can be re-supplied by distant sources. Thus, local compensatory endocytosis is needed to replenish the synaptic vesicle pools. Over the last four decades, various experimental methods and model systems have been used to study the cellular and molecular mechanisms underlying synaptic vesicle cycle. Clathrin-mediated endocytosis is thought to be the predominant mechanism for synaptic vesicle recycling. However, recent studies suggest significant contribution from other modes of endocytosis, including fast compensatory endocytosis, activity-dependent bulk endocytosis, ultrafast endocytosis, as well as kiss-and-run. Currently, it is not clear whether a universal model of vesicle recycling exist for all types of synapses. It is possible that each synapse type employs a particular mode of endocytosis. Alternatively, multiple modes of endocytosis operate at the same synapse, and the synapse toggles between different modes depending on its activity level. Here we compile review and research articles based on well-characterized model systems: frog neuromuscular junctions, C. elegans neuromuscular junctions, Drosophila neuromuscular junctions, lamprey reticulospinal giant axons, goldfish retinal ribbon synapses, the calyx of Held, and rodent hippocampal synapses. We will compare these systems in terms of their known modes and kinetics of synaptic vesicle endocytosis, as well as the underlying molecular machineries. We will also provide the future development of this field.

  11. Hierarchical unilamellar vesicles of controlled compositional heterogeneity.

    Directory of Open Access Journals (Sweden)

    Maik Hadorn

    Full Text Available Eukaryotic life contains hierarchical vesicular architectures (i.e. organelles that are crucial for material production and trafficking, information storage and access, as well as energy production. In order to perform specific tasks, these compartments differ among each other in their membrane composition and their internal cargo and also differ from the cell membrane and the cytosol. Man-made structures that reproduce this nested architecture not only offer a deeper understanding of the functionalities and evolution of organelle-bearing eukaryotic life but also allow the engineering of novel biomimetic technologies. Here, we show the newly developed vesicle-in-water-in-oil emulsion transfer preparation technique to result in giant unilamellar vesicles internally compartmentalized by unilamellar vesicles of different membrane composition and internal cargo, i.e. hierarchical unilamellar vesicles of controlled compositional heterogeneity. The compartmentalized giant unilamellar vesicles were subsequently isolated by a separation step exploiting the heterogeneity of the membrane composition and the encapsulated cargo. Due to the controlled, efficient, and technically straightforward character of the new preparation technique, this study allows the hierarchical fabrication of compartmentalized giant unilamellar vesicles of controlled compositional heterogeneity and will ease the development of eukaryotic cell mimics that resemble their natural templates as well as the fabrication of novel multi-agent drug delivery systems for combination therapies and complex artificial microreactors.

  12. The Cucumber leaf spot virus p25 auxiliary replicase protein binds and modifies the endoplasmic reticulum via N-terminal transmembrane domains

    Energy Technology Data Exchange (ETDEWEB)

    Ghoshal, Kankana [University of British Columbia, Faculty of Land and Food Systems, Vancouver, British Columbia, Canada V6T 1Z4 (Canada); Theilmann, Jane; Reade, Ron; Sanfacon, Helene [Agriculture and Agri-Food Canada Pacific Agri-Food Research Centre, 4200 Hwy 97, Summerland, British Columbia, Canada V0H 1Z0 (Canada); Rochon, D’Ann, E-mail: dann.rochon@agr.gc.ca [University of British Columbia, Faculty of Land and Food Systems, Vancouver, British Columbia, Canada V6T 1Z4 (Canada); Agriculture and Agri-Food Canada Pacific Agri-Food Research Centre, 4200 Hwy 97, Summerland, British Columbia, Canada V0H 1Z0 (Canada)

    2014-11-15

    Cucumber leaf spot virus (CLSV) is a member of the Aureusvirus genus, family Tombusviridae. The auxiliary replicase of Tombusvirids has been found to localize to endoplasmic reticulum (ER), peroxisomes or mitochondria; however, localization of the auxiliary replicase of aureusviruses has not been determined. We have found that the auxiliary replicase of CLSV (p25) fused to GFP colocalizes with ER and that three predicted transmembrane domains (TMDs) at the N-terminus of p25 are sufficient for targeting, although the second and third TMDs play the most prominent roles. Confocal analysis of CLSV infected 16C plants shows that the ER becomes modified including the formation of punctae at connections between ER tubules and in association with the nucleus. Ultrastructural analysis shows that the cytoplasm contains numerous vesicles which are also found between the perinuclear ER and nuclear membrane. It is proposed that these vesicles correspond to modified ER used as sites for CLSV replication. - Highlights: • The CLSV p25 auxiliary replicase targets the endoplasmic reticulum (ER). • Targeting of CLSV p25 is associated with ER restructuring. • Restructuring of the ER occurs during CLSV infection. • CLSV p25 contains 3 predicted transmembrane domains 2 of which are required for ER targeting. • Vesicles derived from the ER may be sites of CLSV replication.

  13. The Cucumber leaf spot virus p25 auxiliary replicase protein binds and modifies the endoplasmic reticulum via N-terminal transmembrane domains

    International Nuclear Information System (INIS)

    Ghoshal, Kankana; Theilmann, Jane; Reade, Ron; Sanfacon, Helene; Rochon, D’Ann

    2014-01-01

    Cucumber leaf spot virus (CLSV) is a member of the Aureusvirus genus, family Tombusviridae. The auxiliary replicase of Tombusvirids has been found to localize to endoplasmic reticulum (ER), peroxisomes or mitochondria; however, localization of the auxiliary replicase of aureusviruses has not been determined. We have found that the auxiliary replicase of CLSV (p25) fused to GFP colocalizes with ER and that three predicted transmembrane domains (TMDs) at the N-terminus of p25 are sufficient for targeting, although the second and third TMDs play the most prominent roles. Confocal analysis of CLSV infected 16C plants shows that the ER becomes modified including the formation of punctae at connections between ER tubules and in association with the nucleus. Ultrastructural analysis shows that the cytoplasm contains numerous vesicles which are also found between the perinuclear ER and nuclear membrane. It is proposed that these vesicles correspond to modified ER used as sites for CLSV replication. - Highlights: • The CLSV p25 auxiliary replicase targets the endoplasmic reticulum (ER). • Targeting of CLSV p25 is associated with ER restructuring. • Restructuring of the ER occurs during CLSV infection. • CLSV p25 contains 3 predicted transmembrane domains 2 of which are required for ER targeting. • Vesicles derived from the ER may be sites of CLSV replication

  14. SARS-coronavirus replication is supported by a reticulovesicular network of modified endoplasmic reticulum.

    Directory of Open Access Journals (Sweden)

    Kèvin Knoops

    2008-09-01

    Full Text Available Positive-strand RNA viruses, a large group including human pathogens such as SARS-coronavirus (SARS-CoV, replicate in the cytoplasm of infected host cells. Their replication complexes are commonly associated with modified host cell membranes. Membrane structures supporting viral RNA synthesis range from distinct spherular membrane invaginations to more elaborate webs of packed membranes and vesicles. Generally, their ultrastructure, morphogenesis, and exact role in viral replication remain to be defined. Poorly characterized double-membrane vesicles (DMVs were previously implicated in SARS-CoV RNA synthesis. We have now applied electron tomography of cryofixed infected cells for the three-dimensional imaging of coronavirus-induced membrane alterations at high resolution. Our analysis defines a unique reticulovesicular network of modified endoplasmic reticulum that integrates convoluted membranes, numerous interconnected DMVs (diameter 200-300 nm, and "vesicle packets" apparently arising from DMV merger. The convoluted membranes were most abundantly immunolabeled for viral replicase subunits. However, double-stranded RNA, presumably revealing the site of viral RNA synthesis, mainly localized to the DMV interior. Since we could not discern a connection between DMV interior and cytosol, our analysis raises several questions about the mechanism of DMV formation and the actual site of SARS-CoV RNA synthesis. Our data document the extensive virus-induced reorganization of host cell membranes into a network that is used to organize viral replication and possibly hide replicating RNA from antiviral defense mechanisms. Together with biochemical studies of the viral enzyme complex, our ultrastructural description of this "replication network" will aid to further dissect the early stages of the coronavirus life cycle and its virus-host interactions.

  15. Location matters: the endoplasmic reticulum and protein trafficking in dendrites

    Directory of Open Access Journals (Sweden)

    Omar A Ramírez

    2011-01-01

    Full Text Available Neurons are highly polarized, but the trafficking mechanisms that operate in these cells and the topological organization of their secretory organelles are still poorly understood. Particularly incipient is our knowledge of the role of the neuronal endoplasmic reticulum. Here we review the current understanding of the endoplasmic reticulum in neurons, its structure, composition, dendritic distribution and dynamics. We also focus on the trafficking of proteins through the dendritic endoplasmic reticulum, emphasizing the relevance of transport, retention, assembly of multi-subunit protein complexes and export. We additionally discuss the roles of the dendritic endoplasmic reticulum in synaptic plasticity.

  16. Fish sarcoplasmic proteins as a high value marine material for wound dressing applications.

    Science.gov (United States)

    Vieira, Sara; Franco, Albina R; Fernandes, Emanuel M; Amorim, Sara; Ferreira, Helena; Pires, Ricardo A; Reis, Rui L; Martins, Albino; Neves, Nuno M

    2018-07-01

    Fish sarcoplasmic proteins (FSP) constitute around 25-30% of the total fish muscle protein. As the FSP are water soluble, FSP were isolated from fresh cod (Gadus morhua) by centrifugation. By SDS-PAGE, it was possible to determine the composition of FSP extracts (FSP-E). The FSP-E undergo denaturation at 44.12 ± 2.34° C, as characterized by differential scanning calorimetry thermograms (DSC). The secondary structure of FSP-E is mainly composed by α-helix structure, as determined by circular dichroism. The cytocompatibility of FSP-E, at concentrations ranging from 5 to 20 mg/mL, was investigated. Concentrations lower than 10 mg/mL have no cytotoxicity cultures of fibroblasts over 72 h. Further on, FSP membranes (FSP-M) were produced by spin coating to evaluate its properties. FSP-M shown having uniform surface as analyzed by Scanning Electron Microscopy (SEM). The relative amount of α-helix structures is higher when compared with the FSP-E. The FSP-M have higher temperature stability than the FSP-E, since they presented a denaturation temperature of 58.88 ± 3.36° C, according to the DSC analysis. FSP-M shown distinctive mechanical properties, with a stiffness of 16.57 ± 3.95 MPa and a yield strength of 23.85 ± 5.97 MPa. Human lung fibroblasts cell lines (MRC-5) were cultured in direct contact with FSP-M, demonstrating its cytocompatibility for 48 h. Based on these results, FSP can be considered a potential biomaterial recovered from nature, for wound dressing applications. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Are calcifying matrix vesicles in atherosclerotic lesions of cellular origin?

    Science.gov (United States)

    Bobryshev, Yuri V; Killingsworth, Murray C; Huynh, Thuan G; Lord, Reginald S A; Grabs, Anthony J; Valenzuela, Stella M

    2007-03-01

    Over recent years, the role of matrix vesicles in the initial stages of arterial calcification has been recognized. Matrix calcifying vesicles have been isolated from atherosclerotic arteries and the biochemical composition of calcified vesicles has been studied. No studies have yet been carried out to examine the fine structure of matrix vesicles in order to visualize the features of the consequent stages of their calcification in arteries. In the present work, a high resolution ultrastructural analysis has been employed and the study revealed that matrix vesicles in human atherosclerotic lesions are heterogeneous with two main types which we classified. Type I calcified vesicles were presented by vesicles surrounded by two electron-dense layers and these vesicles were found to be resistant to the calcification process in atherosclerotic lesions in situ. Type II matrix vesicles were presented by vesicles surrounded by several electron-dense layers and these vesicles were found to represent calcifying vesicles in atherosclerotic lesions. To test the hypothesis that calcification of matrix vesicles surrounded by multilayer sheets may occur simply as a physicochemical process, independently from the cell regulation, we produced multilamellar liposomes and induced their calcification in vitro in a manner similar to that occurring in matrix vesicles in atherosclerotic lesions in situ.

  18. Astrocytic Vesicle Mobility in Health and Disease

    Directory of Open Access Journals (Sweden)

    Robert Zorec

    2013-05-01

    Full Text Available Astrocytes are no longer considered subservient to neurons, and are, instead, now understood to play an active role in brain signaling. The intercellular communication of astrocytes with neurons and other non-neuronal cells involves the exchange of molecules by exocytotic and endocytotic processes through the trafficking of intracellular vesicles. Recent studies of single vesicle mobility in astrocytes have prompted new views of how astrocytes contribute to information processing in nervous tissue. Here, we review the trafficking of several types of membrane-bound vesicles that are specifically involved in the processes of (i intercellular communication by gliotransmitters (glutamate, adenosine 5'-triphosphate, atrial natriuretic peptide, (ii plasma membrane exchange of transporters and receptors (EAAT2, MHC-II, and (iii the involvement of vesicle mobility carrying aquaporins (AQP4 in water homeostasis. The properties of vesicle traffic in astrocytes are discussed in respect to networking with neighboring cells in physiologic and pathologic conditions, such as amyotrophic lateral sclerosis, multiple sclerosis, and states in which astrocytes contribute to neuroinflammatory conditions.

  19. EXTRACELLULAR VESICLES: CLASSIFICATION, FUNCTIONS AND CLINICAL RELEVANCE

    Directory of Open Access Journals (Sweden)

    A. V. Oberemko

    2014-12-01

    Full Text Available This review presents a generalized definition of vesicles as bilayer extracellular organelles of all celular forms of life: not only eu-, but also prokaryotic. The structure and composition of extracellular vesicles, history of research, nomenclature, their impact on life processes in health and disease are discussed. Moreover, vesicles may be useful as clinical instruments for biomarkers, and they are promising as biotechnological drug. However, many questions in this area are still unresolved and need to be addressed in the future. The most interesting from the point of view of practical health care represents a direction to study the effect of exosomes and microvesicles in the development and progression of a particular disease, the possibility of adjusting the pathological process by means of extracellular vesicles of a particular type, acting as an active ingredient. Relevant is the further elucidation of the role and importance of exosomes to the surrounding cells, tissues and organs at the molecular level, the prospects for the use of non-cellular vesicles as biomarkers of disease.

  20. A scenario for a genetically controlled fission of artificial vesicles

    DEFF Research Database (Denmark)

    Bönzli, Eva; Hadorn, Maik; Jørgensen, Mikkel Girke

    2011-01-01

    to vesicles (Hanczyc et al. 2003). In the present work, we developed a scenario how a genetically controlled fission of vesicles may be achieved by the synthesis of a special class of viral proteins within artificial vesicles. Because the authors already have a lot of experience in the water-in-oil emulsion...... be incorporated into vesicles, and therefore allow the synthesis of a large number of proteins (Noireaux et al. 2005). However, vesicle fission remains one of the upcoming challenges in the artificial cell project (Noireaux et al. 2011). So far, vesicle fission is implemented by applying mechanical stress...

  1. Functionalization of Block Copolymer Vesicle Surfaces

    Directory of Open Access Journals (Sweden)

    Wolfgang Meier

    2011-01-01

    Full Text Available In dilute aqueous solutions certain amphiphilic block copolymers self-assemble into vesicles that enclose a small pool of water with a membrane. Such polymersomes have promising applications ranging from targeted drug-delivery devices, to biosensors, and nanoreactors. Interactions between block copolymer membranes and their surroundings are important factors that determine their potential biomedical applications. Such interactions are influenced predominantly by the membrane surface. We review methods to functionalize block copolymer vesicle surfaces by chemical means with ligands such as antibodies, adhesion moieties, enzymes, carbohydrates and fluorophores. Furthermore, surface-functionalization can be achieved by self-assembly of polymers that carry ligands at their chain ends or in their hydrophilic blocks. While this review focuses on the strategies to functionalize vesicle surfaces, the applications realized by, and envisioned for, such functional polymersomes are also highlighted.

  2. Endoplasmic reticulum stress and diabetic retinopathy

    Directory of Open Access Journals (Sweden)

    Toshiyuki Oshitari

    2008-02-01

    Full Text Available Toshiyuki Oshitari1,2, Natsuyo Hata1, Shuichi Yamamoto11Department of Ophthalmology and Visual Science, Chiba University Graduate School of Medicine, Chiba City, Chiba, Japan; 2Department of Ophthalmology, Kimitsu Central Hospital, Kisarazu City, Chiba, JapanAbstract: Endoplasmic reticulum (ER stress is involved in the pathogenesis of several diseases including Alzheimer disease and Parkinson disease. Many recent studies have shown that ER stress is related to the pathogenesis of diabetes mellitus, and with the death of pancreatic β-cells, insulin resistance, and the death of the vascular cells in the retina. Diabetic retinopathy is a major complication of diabetes and results in death of both neural and vascular cells. Because the death of the neurons directly affects visual function, the precise mechanism causing the death of neurons in early diabetic retinopathy must be determined. The ideal therapy for preventing the onset and the progression of diabetic retinopathy would be to treat the factors involved with both the vascular and neuronal abnormalities in diabetic retinopathy. In this review, we present evidence that ER stress is involved in the death of both retinal neurons and vascular cells in diabetic eyes, and thus reducing or blocking ER stress may be a potential therapy for preventing the onset and the progression of diabetic retinopathy.Keywords: endoplasmic reticulum stress, diabetic retinopathy, vascular cell death, neuronal cell death

  3. Irradiation-induced fusion between giant vesicles and photoresponsive large unilamellar vesicles containing malachite green derivative.

    Science.gov (United States)

    Uda, Ryoko M; Yoshikawa, Yuki; Kitaba, Moe; Nishimoto, Noriko

    2018-07-01

    Light-initiated fusion between vesicles has attracted much attention in the research community. In particular, fusion between photoresponsive and non-photoresponsive vesicles has been of much interest in the development of systems for the delivery of therapeutic agents to cells. We have performed fusion between giant vesicles (GVs) and photoresponsive smaller vesicles containing malachite green (MG) derivative, which undergoes ionization to afford a positive charge on the molecule by irradiation. The fusion proceeds as the concentration of GV lipid increases toward equimolarity with the lipid of the smaller vesicle. It is also dependent on the molar percentage of photoionized MG in the lipid of the smaller vesicle. On the other hand, the fusion is hardly affected by the anionic component of the GV. The photoinduced fusion was characterized by two methods, involving the mixing of lipid membranes and of aqueous contents. Fluorescence microscopy revealed that irradiation triggered the fusion of a single GV with the smaller vesicles containing MG. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Direct detection of SERCA calcium transport and small-molecule inhibition in giant unilamellar vesicles

    International Nuclear Information System (INIS)

    Bian, Tengfei; Autry, Joseph M.; Casemore, Denise; Li, Ji; Thomas, David D.; He, Gaohong; Xing, Chengguo

    2016-01-01

    We have developed a charge-mediated fusion method to reconstitute the sarco/endoplasmic reticulum Ca 2+ -ATPase (SERCA) in giant unilamellar vesicles (GUV). Intracellular Ca 2+ transport by SERCA controls key processes in human cells such as proliferation, signaling, and contraction. Small-molecule effectors of SERCA are urgently needed as therapeutics for Ca 2+ dysregulation in human diseases including cancer, diabetes, and heart failure. Here we report the development of a method for efficiently reconstituting SERCA in GUV, and we describe a streamlined protocol based on optimized parameters (e.g., lipid components, SERCA preparation, and activity assay requirements). ATP-dependent Ca 2+ transport by SERCA in single GUV was detected directly using confocal fluorescence microscopy with the Ca 2+ indicator Fluo-5F. The GUV reconstitution system was validated for functional screening of Ca 2+ transport using thapsigargin (TG), a small-molecule inhibitor of SERCA currently in clinical trials as a prostate cancer prodrug. The GUV system overcomes the problem of inhibitory Ca 2+ accumulation for SERCA in native and reconstituted small unilamellar vesicles (SUV). We propose that charge-mediated fusion provides a widely-applicable method for GUV reconstitution of clinically-important membrane transport proteins. We conclude that GUV reconstitution is a technological advancement for evaluating small-molecule effectors of SERCA.

  5. Apoptosis-linked Gene-2 (ALG-2)/Sec31 Interactions Regulate Endoplasmic Reticulum (ER)-to-Golgi Transport

    Science.gov (United States)

    Helm, Jared R.; Bentley, Marvin; Thorsen, Kevin D.; Wang, Ting; Foltz, Lauren; Oorschot, Viola; Klumperman, Judith; Hay, Jesse C.

    2014-01-01

    Luminal calcium released from secretory organelles has been suggested to play a regulatory role in vesicle transport at several steps in the secretory pathway; however, its functional roles and effector pathways have not been elucidated. Here we demonstrate for the first time that specific luminal calcium depletion leads to a significant decrease in endoplasmic reticulum (ER)-to-Golgi transport rates in intact cells. Ultrastructural analysis revealed that luminal calcium depletion is accompanied by increased accumulation of intermediate compartment proteins in COPII buds and clusters of unfused COPII vesicles at ER exit sites. Furthermore, we present several lines of evidence suggesting that luminal calcium affected transport at least in part through calcium-dependent interactions between apoptosis-linked gene-2 (ALG-2) and the Sec31A proline-rich region: 1) targeted disruption of ALG-2/Sec31A interactions caused severe defects in ER-to-Golgi transport in intact cells; 2) effects of luminal calcium and ALG-2/Sec31A interactions on transport mutually required each other; and 3) Sec31A function in transport required luminal calcium. Morphological phenotypes of disrupted ALG-2/Sec31A interactions were characterized. We found that ALG-2/Sec31A interactions were not required for the localization of Sec31A to ER exit sites per se but appeared to acutely regulate the stability and trafficking of the cargo receptor p24 and the distribution of the vesicle tether protein p115. These results represent the first outline of a mechanism that connects luminal calcium to specific protein interactions regulating vesicle trafficking machinery. PMID:25006245

  6. Functional transferred DNA within extracellular vesicles

    International Nuclear Information System (INIS)

    Cai, Jin; Wu, Gengze; Jose, Pedro A.; Zeng, Chunyu

    2016-01-01

    Extracellular vesicles (EVs) are small membrane vesicles including exosomes and shedding vesicles that mediated a cell-to-cell communication. EVs are released from almost all cell types under both physiological and pathological conditions and incorporate nuclear and cytoplasmic molecules for intercellular delivery. Besides protein, mRNA, and microRNA of these molecules, as recent studies show, specific DNA are prominently packaged into EVs. It appears likely that some of exosomes or shedding vesicles, bearing nuclear molecules are released upon bubble-like blebs. Specific interaction of EVs with susceptible recipients performs the uptake of EVs into the target cells, discharging their cargo including nuclear and cytoplasmic macromolecules into the cytosol. These findings expand the nucleic acid content of EVs to include increased levels of specific DNA. Thus, EVs contain a repertoire of genetic information available for horizontal gene transfer and potential use as blood biomarkers for cancer and atherosclerosis. In this review, the focus is on the characteristics, biological functions, and roles in diseases of DNA within EVs. - Highlights: • This review is focused on the DNA within EVs including its characteristics, biological functions, and roles in diseases. • It is clear that DNA within EVs might have important physiological and pathological roles in various diseases. • Knowledge in this area may provides us alternative methods for disease diagnosis or therapy in the future.

  7. Extracellular vesicles: fundamentals and clinical relevance

    Directory of Open Access Journals (Sweden)

    Wael Nassar

    2015-01-01

    Full Text Available All types of cells of eukaryotic organisms produce and release small nanovesicles into their extracellular environment. Early studies have described these vesicles as ′garbage bags′ only to remove obsolete cellular molecules. Valadi and colleagues, in 2007, were the first to discover the capability of circulating extracellular vesicles (EVs to horizontally transfer functioning gene information between cells. These extracellular vesicles express components responsible for angiogenesis promotion, stromal remodeling, chemoresistance, genetic exchange, and signaling pathway activation through growth factor/receptor transfer. EVs represent an important mode of intercellular communication by serving as vehicles for transfer between cells of membrane and cytosolic proteins, lipids, signaling proteins, and RNAs. They contribute to physiology and pathology, and they have a myriad of potential clinical applications in health and disease. Moreover, vesicles can pass the blood-brain barrier and may perhaps even be considered as naturally occurring liposomes. These cell-derived EVs not only represent a central mediator of the disease microenvironment, but their presence in the peripheral circulation may serve as a surrogate for disease biopsies, enabling real-time diagnosis and disease monitoring. In this review, we′ll be addressing the characteristics of different types of extracellular EVs, as well as their clinical relevance and potential as diagnostic markers, and also define therapeutic options.

  8. Functional transferred DNA within extracellular vesicles

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Jin [Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing 400042 (China); Department of Neurology, Jinling Hospital, Nanjing University School of Medicine, Jiangsu Province (China); Wu, Gengze [Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing 400042 (China); Jose, Pedro A. [Division of Nephrology, Department of Medicine and Physiology, University of Maryland, School of Medicine, Baltimore, MD 21201 (United States); Zeng, Chunyu, E-mail: Chunyuzeng01@163.com [Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing 400042 (China)

    2016-11-15

    Extracellular vesicles (EVs) are small membrane vesicles including exosomes and shedding vesicles that mediated a cell-to-cell communication. EVs are released from almost all cell types under both physiological and pathological conditions and incorporate nuclear and cytoplasmic molecules for intercellular delivery. Besides protein, mRNA, and microRNA of these molecules, as recent studies show, specific DNA are prominently packaged into EVs. It appears likely that some of exosomes or shedding vesicles, bearing nuclear molecules are released upon bubble-like blebs. Specific interaction of EVs with susceptible recipients performs the uptake of EVs into the target cells, discharging their cargo including nuclear and cytoplasmic macromolecules into the cytosol. These findings expand the nucleic acid content of EVs to include increased levels of specific DNA. Thus, EVs contain a repertoire of genetic information available for horizontal gene transfer and potential use as blood biomarkers for cancer and atherosclerosis. In this review, the focus is on the characteristics, biological functions, and roles in diseases of DNA within EVs. - Highlights: • This review is focused on the DNA within EVs including its characteristics, biological functions, and roles in diseases. • It is clear that DNA within EVs might have important physiological and pathological roles in various diseases. • Knowledge in this area may provides us alternative methods for disease diagnosis or therapy in the future.

  9. Vesicle dynamics in shear and capillary flows

    International Nuclear Information System (INIS)

    Noguchi, Hiroshi; Gompper, Gerhard

    2005-01-01

    The deformation of vesicles in flow is studied by a mesoscopic simulation technique, which combines multi-particle collision dynamics for the solvent with a dynamically triangulated surface model for the membrane. Shape transitions are investigated both in simple shear flows and in cylindrical capillary flows. We focus on reduced volumes, where the discocyte shape of fluid vesicles is stable, and the prolate shape is metastable. In simple shear flow at low membrane viscosity, the shear induces a transformation from discocyte to prolate with increasing shear rate, while at high membrane viscosity, the shear induces a transformation from prolate to discocyte, or tumbling motion accompanied by oscillations between these two morphologies. In capillary flow, at small flow velocities the symmetry axis of the discocyte is found not to be oriented perpendicular to the cylinder axis. With increasing flow velocity, a transition to a prolate shape occurs for fluid vesicles, while vesicles with shear-elastic membranes (like red blood cells) transform into a coaxial parachute-like shape

  10. Theory of Disk-to-Vesicle Transformation

    Science.gov (United States)

    Li, Jianfeng; Shi, An-Chang

    2009-03-01

    Self-assembled membranes from amphiphilic molecules, such as lipids and block copolymers, can assume a variety of morphologies dictated by energy minimization of system. The membrane energy is characterized by a bending modulus (κ), a Gaussian modulus (κG), and the line tension (γ) of the edge. Two basic morphologies of membranes are flat disks that minimize the bending energy at the cost of the edge energy, and enclosed vesicles that minimize the edge energy at the cost of bending energy. In our work, the transition from disk to vesicle is studied theoretically using the string method, which is designed to find the minimum energy path (MEP) or the most probable transition path between two local minima of an energy landscape. Previous studies of disk-to-vesicle transition usually approximate the transitional states by a series of spherical cups, and found that the spherical cups do not correspond to stable or meta-stable states of the system. Our calculation demonstrates that the intermediate shapes along the MEP are very different from spherical cups. Furthermore, some of these transitional states can be meta-stable. The disk-to-vesicle transition pathways are governed by two scaled parameters, κG/κ and γR0/4κ, where R0 is the radius of the disk. In particular, a meta-stable intermediate state is predicted, which may correspond to the open morphologies observed in experiments and simulations.

  11. Compartmentalization and Transport in Synthetic Vesicles

    Directory of Open Access Journals (Sweden)

    Christine eSchmitt

    2016-02-01

    Full Text Available Nano-scale vesicles have become a popular tool in life sciences. Besides liposomes that are generated from phospholipids of natural origin, polymersomes fabricated of synthetic block copolymers enjoy increasing popularity, as they represent more versatile membrane building blocks that can be selected based on their specific physicochemical properties, like permeability, stability or chemical reactivity.In this review, we focus on the application of simple and nested artificial vesicles in synthetic biology. First, we provide an introduction into the utilization of multi-compartmented vesosomes as compartmentalized nano-scale bioreactors. In the bottom-up development of protocells from vesicular nano-reactors, the specific exchange of pathway intermediates across compartment boundaries represents a bottleneck for future studies. To date, most compartmented bioreactors rely on unspecific exchange of substrates and products. This is either based on changes in permeability of the coblock polymer shell by physicochemical triggers or by the incorporation of unspecific porin proteins into the vesicle membrane. Since the incorporation of membrane transport proteins into simple and nested artificial vesicles offers the potential for specific exchange of substances between subcompartments, it opens new vistas in the design of protocells. Therefore we devote the main part of the review to summarize the technical advances in the use of phospholipids and block copolymers for the reconstitution of membrane proteins.

  12. The Bretherton Problem for a Vesicle

    Science.gov (United States)

    Barakat, Joseph; Spann, Andrew; Shaqfeh, Eric

    2016-11-01

    The motion of a lipid bilayer vesicle through a circular tube is investigated by singular perturbation theory in the limit of vanishing clearance. The vesicle is treated as a sac of fluid enclosed by a thin, elastic sheet that admits a bending stiffness. It is assumed that the vesicle is axisymmetric and swollen to a near-critical volume such that the clearance "e" between the membrane and the tube wall is very small. In this limit, bending resistance is of negligible importance compared to the isotropic tension, allowing the vesicle to be treated as a "no-slip bubble." The effective membrane tension is found to scale inversely with "e" raised to the 3/2 power with a comparatively weak Marangoni gradient. The extra pressure drop is found to have a leading contribution due to the cylindrical midsection, which scales inversely with "e," as well as a correction due to the end caps, which scales inversely with the square root of "e." The apparent viscosity is predicted as a unique function of the geometry. The theory exhibits excellent agreement with a simplified, "quasi-parallel" theory and with direct numerical simulations using the boundary element method. The results of this work are compared to those for bubbles, rigid particles, and red blood cells in confined flows.

  13. Nanoplasmonic ruler to measure lipid vesicle deformation

    Czech Academy of Sciences Publication Activity Database

    Jackman, J.A.; Špačková, Barbora; Linardy, E.; Kim, M.C.; Yoon, B.K.; Homola, Jiří; Cho, N.J.

    2016-01-01

    Roč. 52, č. 1 (2016), s. 76-79 ISSN 1359-7345 R&D Projects: GA ČR(CZ) GBP205/12/G118 Institutional support: RVO:67985882 Keywords : nanomaterial * silicon * lipid vesicle Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 6.319, year: 2016

  14. Study of the plant COPII vesicle coat subunits by functional complementation of yeast Saccharomyces cerevisiae mutants.

    Directory of Open Access Journals (Sweden)

    Johan-Owen De Craene

    Full Text Available The formation and budding of endoplasmic reticulum ER-derived vesicles depends on the COPII coat protein complex that was first identified in yeast Saccharomyces cerevisiae. The ER-associated Sec12 and the Sar1 GTPase initiate the COPII coat formation by recruiting the Sec23-Sec24 heterodimer following the subsequent recruitment of the Sec13-Sec31 heterotetramer. In yeast, there is usually one gene encoding each COPII protein and these proteins are essential for yeast viability, whereas the plant genome encodes multiple isoforms of all COPII subunits. Here, we used a systematic yeast complementation assay to assess the functionality of Arabidopsis thaliana COPII proteins. In this study, the different plant COPII subunits were expressed in their corresponding temperature-sensitive yeast mutant strain to complement their thermosensitivity and secretion phenotypes. Secretion was assessed using two different yeast cargos: the soluble α-factor pheromone and the membranous v-SNARE (vesicle-soluble NSF (N-ethylmaleimide-sensitive factor attachment protein receptor Snc1 involved in the fusion of the secretory vesicles with the plasma membrane. This complementation study allowed the identification of functional A. thaliana COPII proteins for the Sec12, Sar1, Sec24 and Sec13 subunits that could represent an active COPII complex in plant cells. Moreover, we found that AtSec12 and AtSec23 were co-immunoprecipitated with AtSar1 in total cell extract of 15 day-old seedlings of A. thaliana. This demonstrates that AtSar1, AtSec12 and AtSec23 can form a protein complex that might represent an active COPII complex in plant cells.

  15. Single-vesicle imaging reveals different transport mechanisms between glutamatergic and GABAergic vesicles.

    Science.gov (United States)

    Farsi, Zohreh; Preobraschenski, Julia; van den Bogaart, Geert; Riedel, Dietmar; Jahn, Reinhard; Woehler, Andrew

    2016-02-26

    Synaptic transmission is mediated by the release of neurotransmitters, which involves exo-endocytotic cycling of synaptic vesicles. To maintain synaptic function, synaptic vesicles are refilled with thousands of neurotransmitter molecules within seconds after endocytosis, using the energy provided by an electrochemical proton gradient. However, it is unclear how transmitter molecules carrying different net charges can be efficiently sequestered while maintaining charge neutrality and osmotic balance. We used single-vesicle imaging to monitor pH and electrical gradients and directly showed different uptake mechanisms for glutamate and γ-aminobutyric acid (GABA) operating in parallel. In contrast to glutamate, GABA was exchanged for protons, with no other ions participating in the transport cycle. Thus, only a few components are needed to guarantee reliable vesicle filling with different neurotransmitters. Copyright © 2016, American Association for the Advancement of Science.

  16. Endoplasmic reticulum involvement in yeast cell death

    International Nuclear Information System (INIS)

    Nicanor Austriaco, O.

    2012-01-01

    Yeast cells undergo programed cell death (PCD) with characteristic markers associated with apoptosis in mammalian cells including chromatin breakage, nuclear fragmentation, reactive oxygen species generation, and metacaspase activation. Though significant research has focused on mitochondrial involvement in this phenomenon, more recent work with both Saccharomyces cerevisiae and Schizosaccharomyces pombe has also implicated the endoplasmic reticulum (ER) in yeast PCD. This minireview provides an overview of ER stress-associated cell death (ER-SAD) in yeast. It begins with a description of ER structure and function in yeast before moving to a discussion of ER-SAD in both mammalian and yeast cells. Three examples of yeast cell death associated with the ER will be highlighted here including inositol starvation, lipid toxicity, and the inhibition of N-glycosylation. It closes by suggesting ways to further examine the involvement of the ER in yeast cell death.

  17. Endoplasmic Reticulum-Plasma Membrane Contact Sites.

    Science.gov (United States)

    Saheki, Yasunori; De Camilli, Pietro

    2017-06-20

    The endoplasmic reticulum (ER) has a broad localization throughout the cell and forms direct physical contacts with all other classes of membranous organelles, including the plasma membrane (PM). A number of protein tethers that mediate these contacts have been identified, and study of these protein tethers has revealed a multiplicity of roles in cell physiology, including regulation of intracellular Ca 2+ dynamics and signaling as well as control of lipid traffic and homeostasis. In this review, we discuss the cross talk between the ER and the PM mediated by direct contacts. We review factors that tether the two membranes, their properties, and their dynamics in response to the functional state of the cell. We focus in particular on the role of ER-PM contacts in nonvesicular lipid transport between the two bilayers mediated by lipid transfer proteins.

  18. Endoplasmic reticulum: ER stress regulates mitochondrial bioenergetics

    Science.gov (United States)

    Bravo, Roberto; Gutierrez, Tomás; Paredes, Felipe; Gatica, Damián; Rodriguez, Andrea E.; Pedrozo, Zully; Chiong, Mario; Parra, Valentina; Quest, Andrew F.G.; Rothermel, Beverly A.; Lavandero, Sergio

    2014-01-01

    Endoplasmic reticulum (ER) stress activates an adaptive unfolded protein response (UPR) that facilitates cellular repair, however, under prolonged ER stress, the UPR can ultimately trigger apoptosis thereby terminating damaged cells. The molecular mechanisms responsible for execution of the cell death program are relatively well characterized, but the metabolic events taking place during the adaptive phase of ER stress remain largely undefined. Here we discuss emerging evidence regarding the metabolic changes that occur during the onset of ER stress and how ER influences mitochondrial function through mechanisms involving calcium transfer, thereby facilitating cellular adaptation. Finally, we highlight how dysregulation of ER–mitochondrial calcium homeostasis during prolonged ER stress is emerging as a novel mechanism implicated in the onset of metabolic disorders. PMID:22064245

  19. Endoplasmic Reticulum (ER Stress and Endocrine Disorders

    Directory of Open Access Journals (Sweden)

    Daisuke Ariyasu

    2017-02-01

    Full Text Available The endoplasmic reticulum (ER is the organelle where secretory and membrane proteins are synthesized and folded. Unfolded proteins that are retained within the ER can cause ER stress. Eukaryotic cells have a defense system called the “unfolded protein response” (UPR, which protects cells from ER stress. Cells undergo apoptosis when ER stress exceeds the capacity of the UPR, which has been revealed to cause human diseases. Although neurodegenerative diseases are well-known ER stress-related diseases, it has been discovered that endocrine diseases are also related to ER stress. In this review, we focus on ER stress-related human endocrine disorders. In addition to diabetes mellitus, which is well characterized, several relatively rare genetic disorders such as familial neurohypophyseal diabetes insipidus (FNDI, Wolfram syndrome, and isolated growth hormone deficiency type II (IGHD2 are discussed in this article.

  20. Endoplasmic Reticulum (ER) Stress and Endocrine Disorders

    Science.gov (United States)

    Ariyasu, Daisuke; Yoshida, Hiderou; Hasegawa, Yukihiro

    2017-01-01

    The endoplasmic reticulum (ER) is the organelle where secretory and membrane proteins are synthesized and folded. Unfolded proteins that are retained within the ER can cause ER stress. Eukaryotic cells have a defense system called the “unfolded protein response” (UPR), which protects cells from ER stress. Cells undergo apoptosis when ER stress exceeds the capacity of the UPR, which has been revealed to cause human diseases. Although neurodegenerative diseases are well-known ER stress-related diseases, it has been discovered that endocrine diseases are also related to ER stress. In this review, we focus on ER stress-related human endocrine disorders. In addition to diabetes mellitus, which is well characterized, several relatively rare genetic disorders such as familial neurohypophyseal diabetes insipidus (FNDI), Wolfram syndrome, and isolated growth hormone deficiency type II (IGHD2) are discussed in this article. PMID:28208663

  1. Genetically Controlled Fusion, Exocytosis and Fission of Artificial Vesicles

    DEFF Research Database (Denmark)

    Bönzli, Eva; Hadorn, Maik; De Lucrezia, Davide

    if a special class of viral proteins, termed fusogenic peptides, were added to the external medium. In the present work, we intend to develop genetically controlled fusion, fission and exocytosis of vesicles by the synthesis of peptides within vesicles. First, we enclosed synthesized peptides in vesicles...... to induce in a next step fusion of adjacent vesicles, fission and exocytosis of nested vesicles. Second, we will replace the peptides by an enclosed cell-free expression system to internally synthesize fusion peptides. To control the gene expression, different mechanisms are available, e.g. addition...... fusion, fission and exocytosis....

  2. Regulation of endoplasmic reticulum turnover by selective autophagy

    NARCIS (Netherlands)

    Khaminets, Aliaksandr; Heinrich, Theresa; Mari, Muriel; Grumati, Paolo; Huebner, Antje K; Akutsu, Masato; Liebmann, Lutz; Stolz, Alexandra; Nietzsche, Sandor; Koch, Nicole; Mauthe, Mario; Katona, Istvan; Qualmann, Britta; Weis, Joachim; Reggiori, Fulvio; Kurth, Ingo; Hübner, Christian A; Dikic, Ivan

    2015-01-01

    The endoplasmic reticulum (ER) is the largest intracellular endomembrane system, enabling protein and lipid synthesis, ion homeostasis, quality control of newly synthesized proteins and organelle communication. Constant ER turnover and modulation is needed to meet different cellular requirements and

  3. Regulation of endoplasmic reticulum turnover by selective autophagy

    NARCIS (Netherlands)

    Khaminets, Aliaksandr; Heinrich, Theresa; Mari, Muriel; Grumati, Paolo; Huebner, Antje K.; Akutsu, Masato; Liebmann, Lutz; Stolz, Alexandra; Nietzsche, Sandor; Koch, Nicole; Mauthe, Mario; Katona, Istvan; Qualmann, Britta; Weis, Joachim; Reggiori, Fulvio; Kurth, Ingo; Huebner, Christian A.; Dikic, Ivan

    2015-01-01

    The endoplasmic reticulum (ER) is the largest intracellular endomembrane system, enabling protein and lipid synthesis, ion homeostasis, quality control of newly synthesized proteins and organelle communication(1). Constant ER turnover and modulation is needed to meet different cellular requirements

  4. SNX9 - a prelude to vesicle release.

    Science.gov (United States)

    Lundmark, Richard; Carlsson, Sven R

    2009-01-01

    The sorting nexin SNX9 has, in the past few years, been singled out as an important protein that participates in fundamental cellular activities. SNX9 binds strongly to dynamin and is partly responsible for the recruitment of this GTPase to sites of endocytosis. SNX9 also has a high capacity for modulation of the membrane and might therefore participate in the formation of the narrow neck of endocytic vesicles before scission occurs. Once assembled on the membrane, SNX9 stimulates the GTPase activity of dynamin to facilitate the scission reaction. It has also become clear that SNX9 has the ability to activate the actin regulator N-WASP in a membrane-dependent manner to coordinate actin polymerization with vesicle release. In this Commentary, we summarize several aspects of SNX9 structure and function in the context of membrane remodeling, discuss its interplay with various interaction partners and present a model of how SNX9 might work in endocytosis.

  5. Stem cell extracellular vesicles and kidney injury

    OpenAIRE

    Grange, Cristina; Iampietro, Corinne; Bussolati, Benedetta

    2017-01-01

    Extracellular vesicles (EVs) appear as a new promising cell-free therapy for acute and chronic renal diseases. EVs retain characteristics of the cell of origin and those derived from stem cells may mimic their regenerative properties per se. In fact, EVs contain many active molecules such as proteins and RNA species that act on target cells through different mechanisms, stimulating proliferation and angiogenesis and reducing apoptosis and inflammation. There are several reports that demonstra...

  6. Endothelial microparticles: Sophisticated vesicles modulating vascular function

    Science.gov (United States)

    Curtis, Anne M; Edelberg, Jay; Jonas, Rebecca; Rogers, Wade T; Moore, Jonni S; Syed, Wajihuddin; Mohler, Emile R

    2015-01-01

    Endothelial microparticles (EMPs) belong to a family of extracellular vesicles that are dynamic, mobile, biological effectors capable of mediating vascular physiology and function. The release of EMPs can impart autocrine and paracrine effects on target cells through surface interaction, cellular fusion, and, possibly, the delivery of intra-vesicular cargo. A greater understanding of the formation, composition, and function of EMPs will broaden our understanding of endothelial communication and may expose new pathways amenable for therapeutic manipulation. PMID:23892447

  7. High energy irradiation of bacterial membrane vesicles

    International Nuclear Information System (INIS)

    De La Rosa, M.A.M.

    1977-01-01

    The interactions of membrane components and two well-defined transport systems in the E. coli ML 308-225 membrane vesicles with 60 Co gamma radiation were investigated. The results presented show that gamma radiation can monitor membrane components and functions of varying radiosensitivities. The possible application of high-energy radiation as a physical probe of membrane structure and functions is indeed promising

  8. Viscoelastic deformation of lipid bilayer vesicles.

    Science.gov (United States)

    Wu, Shao-Hua; Sankhagowit, Shalene; Biswas, Roshni; Wu, Shuyang; Povinelli, Michelle L; Malmstadt, Noah

    2015-10-07

    Lipid bilayers form the boundaries of the cell and its organelles. Many physiological processes, such as cell movement and division, involve bending and folding of the bilayer at high curvatures. Currently, bending of the bilayer is treated as an elastic deformation, such that its stress-strain response is independent of the rate at which bending strain is applied. We present here the first direct measurement of viscoelastic response in a lipid bilayer vesicle. We used a dual-beam optical trap (DBOT) to stretch 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) giant unilamellar vesicles (GUVs). Upon application of a step optical force, the vesicle membrane deforms in two regimes: a fast, instantaneous area increase, followed by a much slower stretching to an eventual plateau deformation. From measurements of dozens of GUVs, the average time constant of the slower stretching response was 0.225 ± 0.033 s (standard deviation, SD). Increasing the fluid viscosity did not affect the observed time constant. We performed a set of experiments to rule out heating by laser absorption as a cause of the transient behavior. Thus, we demonstrate here that the bending deformation of lipid bilayer membranes should be treated as viscoelastic.

  9. Routes and mechanisms of extracellular vesicle uptake

    Directory of Open Access Journals (Sweden)

    Laura Ann Mulcahy

    2014-08-01

    Full Text Available Extracellular vesicles (EVs are small vesicles released by donor cells that can be taken up by recipient cells. Despite their discovery decades ago, it has only recently become apparent that EVs play an important role in cell-to-cell communication. EVs can carry a range of nucleic acids and proteins which can have a significant impact on the phenotype of the recipient. For this phenotypic effect to occur, EVs need to fuse with target cell membranes, either directly with the plasma membrane or with the endosomal membrane after endocytic uptake. EVs are of therapeutic interest because they are deregulated in diseases such as cancer and they could be harnessed to deliver drugs to target cells. It is therefore important to understand the molecular mechanisms by which EVs are taken up into cells. This comprehensive review summarizes current knowledge of EV uptake mechanisms. Cells appear to take up EVs by a variety of endocytic pathways, including clathrin-dependent endocytosis, and clathrin-independent pathways such as caveolin-mediated uptake, macropinocytosis, phagocytosis, and lipid raft–mediated internalization. Indeed, it seems likely that a heterogeneous population of EVs may gain entry into a cell via more than one route. The uptake mechanism used by a given EV may depend on proteins and glycoproteins found on the surface of both the vesicle and the target cell. Further research is needed to understand the precise rules that underpin EV entry into cells.

  10. Pannexin2 oligomers localize into endosomal vesicles in mammalian cells while Pannexin1 channels traffic to the plasma membrane

    Directory of Open Access Journals (Sweden)

    Daniela eBoassa

    2015-02-01

    Full Text Available Pannexin2 (Panx2 is the largest of three members of the pannexin proteins. Pannexins are topologically related to connexins and innexins, but serve different functional roles than forming gap junctions. We previously showed that pannexins form oligomeric channels but unlike connexins and innexins, they form only single membrane channels. High levels of Panx2 mRNA and protein in the Central Nervous System (CNS have been documented. Whereas Pannexin1 (Panx1 is fairly ubiquitous and Pannexin3 (Panx3 is found in skin and connective tissue, both are fully glycosylated, traffic to the plasma membrane and have functions correlated with extracellular ATP release. Here, we describe trafficking and subcellular localizations of exogenous Panx2 and Panx1 protein expression in MDCK, HeLa and HEK293T cells as well as endogenous Panx1 and Panx2 patterns in the CNS. Panx2 was found in intracellular localizations, was partially N-glycosylated, and localizations were non-overlapping with Panx1. Confocal images of hippocampal sections immunolabeled for the astrocytic protein GFAP, Panx1 and Panx2 demonstrated that the two isoforms, Panx1 and Panx2, localized at different subcellular compartments in both astrocytes and neurons. Using recombinant fusions of Panx2 with appended genetic tags developed for correlated light and electron microscopy and then expressed in different cell lines, we determined that Panx2 is localized in the membrane of intracellular vesicles and not in the endoplasmic reticulum as initially indicated by calnexin colocalization experiments. Dual immunofluorescence imaging with protein markers for specific vesicle compartments showed that Panx2 vesicles are early endosomal in origin. In electron tomographic volumes, cross-sections of these vesicles displayed fine structural details and close proximity to actin filaments. Thus, pannexins expressed at different subcellular compartments likely exert distinct functional roles, particularly in the

  11. Endoplasmic Reticulum Stress in Reproductive Function

    Directory of Open Access Journals (Sweden)

    Kang-sheng LIU

    2016-09-01

    Full Text Available Normal folding requires that unique conditions should be maintained within the endoplasmic reticulum (ER lumen, and nascent proteins are initially bound to Ca2+dependent chaperone proteins. Proteins synthesized in the ER are properly folded with the assistance of ER chaperones. misfolded proteins are disposed by ER-associated protein degradation. Accumulation of misfolded proteins in the ER triggers an adaptive ER stress response, which leads to activation of the unfolded protein response (UPR, a conserved pathway that transmits signals to restore homeostasis or eliminate the irreparably damaged cells. It has been shown that ER stress involves in pathophysiological development of many diseases, including neurological diseases. However, nowadays, a few studies have begun to focus on the possibility that the accumulation of misfolded proteins can also contribute to reproductive diseases. In this article, we mainly introduced the involvement of ER stress response in preimplantation embryos, placental development, intrauterine growth restriction (IUGR and testicular germ cells so as to provide important insights for the molecular mechanisms of ER stress-induced apoptosis in reproductive diseases.

  12. Endoplasmic reticulum proteostasis impairment in aging.

    Science.gov (United States)

    Martínez, Gabriela; Duran-Aniotz, Claudia; Cabral-Miranda, Felipe; Vivar, Juan P; Hetz, Claudio

    2017-08-01

    Perturbed neuronal proteostasis is a salient feature shared by both aging and protein misfolding disorders. The proteostasis network controls the health of the proteome by integrating pathways involved in protein synthesis, folding, trafficking, secretion, and their degradation. A reduction in the buffering capacity of the proteostasis network during aging may increase the risk to undergo neurodegeneration by enhancing the accumulation of misfolded proteins. As almost one-third of the proteome is synthetized at the endoplasmic reticulum (ER), maintenance of its proper function is fundamental to sustain neuronal function. In fact, ER stress is a common feature of most neurodegenerative diseases. The unfolded protein response (UPR) operates as central player to maintain ER homeostasis or the induction of cell death of chronically damaged cells. Here, we discuss recent evidence placing ER stress as a driver of brain aging, and the emerging impact of neuronal UPR in controlling global proteostasis at the whole organismal level. Finally, we discuss possible therapeutic interventions to improve proteostasis and prevent pathological brain aging. © 2017 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  13. Endoplasmic reticulum stress causes EBV lytic replication.

    Science.gov (United States)

    Taylor, Gwen Marie; Raghuwanshi, Sandeep K; Rowe, David T; Wadowsky, Robert M; Rosendorff, Adam

    2011-11-17

    Endoplasmic reticulum (ER) stress triggers a homeostatic cellular response in mammalian cells to ensure efficient folding, sorting, and processing of client proteins. In lytic-permissive lymphoblastoid cell lines (LCLs), pulse exposure to the chemical ER-stress inducer thapsigargin (TG) followed by recovery resulted in the activation of the EBV immediate-early (BRLF1, BZLF1), early (BMRF1), and late (gp350) genes, gp350 surface expression, and virus release. The protein phosphatase 1 a (PP1a)-specific phosphatase inhibitor Salubrinal (SAL) synergized with TG to induce EBV lytic genes; however, TG treatment alone was sufficient to activate EBV lytic replication. SAL showed ER-stress-dependent and -independent antiviral effects, preventing virus release in human LCLs and abrogating gp350 expression in 12-O-tetradecanoylphorbol-13-acetate (TPA)-treated B95-8 cells. TG resulted in sustained BCL6 but not BLIMP1 or CD138 expression, which is consistent with maintenance of a germinal center B-cell, rather than plasma-cell, phenotype. Microarray analysis identified candidate genes governing lytic replication in LCLs undergoing ER stress.

  14. Release of canine parvovirus from endocytic vesicles

    International Nuclear Information System (INIS)

    Suikkanen, Sanna; Antila, Mia; Jaatinen, Anne; Vihinen-Ranta, Maija; Vuento, Matti

    2003-01-01

    Canine parvovirus (CPV) is a small nonenveloped virus with a single-stranded DNA genome. CPV enters cells by clathrin-mediated endocytosis and requires an acidic endosomal step for productive infection. Virion contains a potential nuclear localization signal as well as a phospholipase A 2 like domain in N-terminus of VP1. In this study we characterized the role of PLA 2 activity on CPV entry process. PLA 2 activity of CPV capsids was triggered in vitro by heat or acidic pH. PLA 2 inhibitors inhibited the viral proliferation suggesting that PLA 2 activity is needed for productive infection. The N-terminus of VP1 was exposed during the entry, suggesting that PLA 2 activity might have a role during endocytic entry. The presence of drugs modifying endocytosis (amiloride, bafilomycin A 1 , brefeldin A, and monensin) caused viral proteins to remain in endosomal/lysosomal vesicles, even though the drugs were not able to inhibit the exposure of VP1 N-terminal end. These results indicate that the exposure of N-terminus of VP1 alone is not sufficient to allow CPV to proliferate. Some other pH-dependent changes are needed for productive infection. In addition to blocking endocytic entry, amiloride was able to block some postendocytic steps. The ability of CPV to permeabilize endosomal membranes was demonstrated by feeding cells with differently sized rhodamine-conjugated dextrans together with the CPV in the presence or in the absence of amiloride, bafilomycin A 1 , brefeldin A, or monensin. Dextran with a molecular weight of 3000 was released from vesicles after 8 h of infection, while dextran with a molecular weight of 10,000 was mainly retained in vesicles. The results suggest that CPV infection does not cause disruption of endosomal vesicles. However, the permeability of endosomal membranes apparently changes during CPV infection, probably due to the PLA 2 activity of the virus. These results suggest that parvoviral PLA 2 activity is essential for productive infection and

  15. A novel heterozygous mutation of the WFS1 gene leading to constitutive endoplasmic reticulum stress is the cause of Wolfram syndrome.

    Science.gov (United States)

    Morikawa, Shuntaro; Tajima, Toshihiro; Nakamura, Akie; Ishizu, Katsura; Ariga, Tadashi

    2017-12-01

    Wolfram syndrome (WS) is a disorder characterized by the association of insulin-dependent diabetes mellitus (DM), diabetes insipidus, deafness, and optic nerve atrophy. WS is caused by WFS1 mutations encoding WFS1 protein expressed in endoplasmic reticulum (ER). During ER protein synthesis, misfolded and unfolded proteins accumulate, known as "ER stress". This is attenuated by the unfolded protein response (UPR), which recovers and maintains ER functions. Because WFS1 is a UPR component, mutant WFS1 might cause unresolvable ER stress conditions and cell apoptosis, the major causes underlying WS symptoms. We encountered an 11-month-old Japanese female WS patient with insulin-dependent DM, congenital cataract and severe bilateral hearing loss. Analyze the WFS1 and functional consequence of the patient WFS1 in vitro. The patient WFS1 contained a heterozygous 4 amino acid in-frame deletion (p.N325_I328del). Her mutant WFS1 increased GRP78 and ATF6α promoter activities in the absence of thapsigargin, indicating constitutive ER stress and nuclear factor of activated T-cell reporter activity, reflecting elevated cytosolic Ca 2+ signals. Mutant transfection into cells reduced mRNA expression levels of sarcoplasmic/endoplasmic reticulum Ca 2+ transport ATPase 2b (SERCA2b) compared with wild type. Because SERCA2b is required for ER and cytoplasmic Ca 2+ homeostasis, decreased SERCA2b expression might affect ER Ca 2+ efflux, causing cell apoptosis. A novel heterozygous mutation of WFS1 induced constitutive ER stress through ATF6α activation and ER Ca 2+ efflux, resulting in cell apoptosis. These results provide new insights into the roles of WFS1 in UPR and mechanism of monogenic DM. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. Characterization of yeast extracellular vesicles: evidence for the participation of different pathways of cellular traffic in vesicle biogenesis.

    Directory of Open Access Journals (Sweden)

    Débora L Oliveira

    2010-06-01

    Full Text Available Extracellular vesicles in yeast cells are involved in the molecular traffic across the cell wall. In yeast pathogens, these vesicles have been implicated in the transport of proteins, lipids, polysaccharide and pigments to the extracellular space. Cellular pathways required for the biogenesis of yeast extracellular vesicles are largely unknown.We characterized extracellular vesicle production in wild type (WT and mutant strains of the model yeast Saccharomyces cerevisiae using transmission electron microscopy in combination with light scattering analysis, lipid extraction and proteomics. WT cells and mutants with defective expression of Sec4p, a secretory vesicle-associated Rab GTPase essential for Golgi-derived exocytosis, or Snf7p, which is involved in multivesicular body (MVB formation, were analyzed in parallel. Bilayered vesicles with diameters at the 100-300 nm range were found in extracellular fractions from yeast cultures. Proteomic analysis of vesicular fractions from the cells aforementioned and additional mutants with defects in conventional secretion pathways (sec1-1, fusion of Golgi-derived exocytic vesicles with the plasma membrane; bos1-1, vesicle targeting to the Golgi complex or MVB functionality (vps23, late endosomal trafficking revealed a complex and interrelated protein collection. Semi-quantitative analysis of protein abundance revealed that mutations in both MVB- and Golgi-derived pathways affected the composition of yeast extracellular vesicles, but none abrogated vesicle production. Lipid analysis revealed that mutants with defects in Golgi-related components of the secretory pathway had slower vesicle release kinetics, as inferred from intracellular accumulation of sterols and reduced detection of these lipids in vesicle fractions in comparison with WT cells.Our results suggest that both conventional and unconventional pathways of secretion are required for biogenesis of extracellular vesicles, which demonstrate the

  17. Neuronal Depolarization Drives Increased Dopamine Synaptic Vesicle Loading via VGLUT.

    Science.gov (United States)

    Aguilar, Jenny I; Dunn, Matthew; Mingote, Susana; Karam, Caline S; Farino, Zachary J; Sonders, Mark S; Choi, Se Joon; Grygoruk, Anna; Zhang, Yuchao; Cela, Carolina; Choi, Ben Jiwon; Flores, Jorge; Freyberg, Robin J; McCabe, Brian D; Mosharov, Eugene V; Krantz, David E; Javitch, Jonathan A; Sulzer, David; Sames, Dalibor; Rayport, Stephen; Freyberg, Zachary

    2017-08-30

    The ability of presynaptic dopamine terminals to tune neurotransmitter release to meet the demands of neuronal activity is critical to neurotransmission. Although vesicle content has been assumed to be static, in vitro data increasingly suggest that cell activity modulates vesicle content. Here, we use a coordinated genetic, pharmacological, and imaging approach in Drosophila to study the presynaptic machinery responsible for these vesicular processes in vivo. We show that cell depolarization increases synaptic vesicle dopamine content prior to release via vesicular hyperacidification. This depolarization-induced hyperacidification is mediated by the vesicular glutamate transporter (VGLUT). Remarkably, both depolarization-induced dopamine vesicle hyperacidification and its dependence on VGLUT2 are seen in ventral midbrain dopamine neurons in the mouse. Together, these data suggest that in response to depolarization, dopamine vesicles utilize a cascade of vesicular transporters to dynamically increase the vesicular pH gradient, thereby increasing dopamine vesicle content. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Deformation of phospholipid vesicles in an optical stretcher

    OpenAIRE

    Delabre , Ulysse; Feld , Kasper; Crespo , Eleonore; Whyte , Graeme; Sykes , Cecile; Seifert , Udo; Guck , Jochen

    2015-01-01

    International audience; Phospholipid vesicles are common model systems for cell membranes. Important aspects of the membrane function relate to its mechanical properties. Here we have investigated the deformation behaviour of phospholipid vesicles in a dual-beam laser trap, also called an optical stretcher. This study explicitly makes use of the inherent heating present in such traps to investigate the dependence of vesicle deformation on temperature. By using lasers with different wavelength...

  19. Spin State As a Probe of Vesicle Self-Assembly.

    Science.gov (United States)

    Kim, Sanghoon; Bellouard, Christine; Eastoe, Julian; Canilho, Nadia; Rogers, Sarah E; Ihiawakrim, Dris; Ersen, Ovidiu; Pasc, Andreea

    2016-03-02

    A novel system of paramagnetic vesicles was designed using ion pairs of iron-containing surfactants. Unilamellar vesicles (diameter ≈ 200 nm) formed spontaneously and were characterized by cryogenic transmission electron microscopy, nanoparticle tracking analysis, and light and small-angle neutron scattering. Moreover, for the first time, it is shown that magnetization measurements can be used to investigate self-assembly of such functionalized systems, giving information on the vesicle compositions and distribution of surfactants between the bilayers and the aqueous bulk.

  20. Spin State As a Probe of Vesicle Self-Assembly

    OpenAIRE

    Kim, Sanghoon; Bellouard, Christine; Eastoe, Julian; Canilho, Nadia; Rogers, Sarah E; Ihiawakrim, Dris; Ersen, Ovidiu; Pasc, Andreea

    2016-01-01

    A novel system of paramagnetic vesicles was designed using ion pairs of iron-containing surfactants. Unilamellar vesicles (diameter ≈ 200 nm) formed spontaneously and were characterized by cryogenic transmission electron microscopy, nanoparticle tracking analysis, and light and small-angle neutron scattering. Moreover, for the first time, it is shown that magnetization measurements can be used to investigate self-assembly of such functionalized systems, giving information on the vesicle compo...

  1. ABC Triblock Copolymer Vesicles with Mesh-like Morphology

    Science.gov (United States)

    Zhao, Wei; Russell, Thomas; Grason, Gregory

    2010-03-01

    Polymer vesicles can be made from poly(isoprene-b-styrene-b-2-vinylpyridene) (PI-b-PS-b-P2VP) triblock copolymer under the confinement of anodic aluminum oxide (AAO) membrane. It was found that these vesicles have well-defined, nanoscopic size and a microphase-separated hydrophobic core, comprised of PS and PI blocks. Vesicle formation was tracked using both transmission and scanning electron microscopy. A mesh-like morphology formed in the core at a well-defined composition of three blocks. Confinement played an important role in generating these vesicles with such an unusual morphology.

  2. The International Society for Extracellular Vesicles launches the first massive open online course on extracellular vesicles.

    Science.gov (United States)

    Lässer, Cecilia; Théry, Clotilde; Buzás, Edit I; Mathivanan, Suresh; Zhao, Weian; Gho, Yong Song; Lötvall, Jan

    2016-01-01

    The International Society for Extracellular Vesicles (ISEV) has organised its first educational online course for students and beginners in the field of extracellular vesicles (EVs). This course, "Basics of Extracellular Vesicles," uses recorded lectures from experts in the field and will be open for an unlimited number of participants. The course is divided into 5 modules and can be accessed at www.coursera.org/learn/extracellular-vesicles. The first module is an introduction to the field covering the nomenclature and history of EVs. Module 2 focuses on the biogenesis and uptake mechanisms of EVs, as well as their RNA, protein and lipid cargo. Module 3 covers the collection and processing of cell culture media and body fluids such as blood, breast milk, cerebrospinal fluid and urine prior to isolation of EVs. Modules 4 and 5 present different isolation methods and characterisation techniques utilised in the EV field. Here, differential ultracentrifugation, size-exclusion chromatography, density gradient centrifugation, kit-based precipitation, electron microscopy, cryo-electron microscopy, flow cytometry, atomic-force microscopy and nanoparticle-tracking analysis are covered. This first massive open online course (MOOC) on EVs was launched on 15 August 2016 at the platform "Coursera" and is free of charge.

  3. The International Society for Extracellular Vesicles launches the first massive open online course on extracellular vesicles

    Directory of Open Access Journals (Sweden)

    Cecilia Lässer

    2016-12-01

    Full Text Available The International Society for Extracellular Vesicles (ISEV has organised its first educational online course for students and beginners in the field of extracellular vesicles (EVs. This course, “Basics of Extracellular Vesicles,” uses recorded lectures from experts in the field and will be open for an unlimited number of participants. The course is divided into 5 modules and can be accessed at www.coursera.org/learn/extracellular-vesicles. The first module is an introduction to the field covering the nomenclature and history of EVs. Module 2 focuses on the biogenesis and uptake mechanisms of EVs, as well as their RNA, protein and lipid cargo. Module 3 covers the collection and processing of cell culture media and body fluids such as blood, breast milk, cerebrospinal fluid and urine prior to isolation of EVs. Modules 4 and 5 present different isolation methods and characterisation techniques utilised in the EV field. Here, differential ultracentrifugation, size-exclusion chromatography, density gradient centrifugation, kit-based precipitation, electron microscopy, cryo-electron microscopy, flow cytometry, atomic-force microscopy and nanoparticle-tracking analysis are covered. This first massive open online course (MOOC on EVs was launched on 15 August 2016 at the platform “Coursera” and is free of charge.

  4. Sugar-Decorated Sugar Vesicles : Lectin-Carbohydrate Recognition at the Surface of Cyclodextrin Vesicles

    NARCIS (Netherlands)

    Voskuhl, Jens; Stuart, Marc C. A.; Ravoo, Bart Jan

    2010-01-01

    An artificial glycocalix self-assembles when unilamellar bilayer vesicles of amphiphilic beta-cyclodextrins are decorated with maltose and lactose by host-guest interactions. To this end, maltose and lactose were conjugated with adamantane through a tetra(ethyleneglycol) spacer. Both

  5. Additive effects on the energy barrier for synaptic vesicle fusion cause supralinear effects on the vesicle fusion rate

    DEFF Research Database (Denmark)

    Schotten, Sebastiaan; Meijer, Marieke; Walter, Alexander Matthias

    2015-01-01

    supralinear effects on the fusion rate. To test this prediction experimentally, we developed a method to assess the number of releasable vesicles, rate constants for vesicle priming, unpriming, and fusion, and the activation energy for fusion by fitting a vesicle state model to synaptic responses induced......-linear effects of genetic/pharmacological perturbations on synaptic transmission and a novel interpretation of the cooperative nature of Ca2+-dependent release....

  6. Nonenzymatic glycation of phosphatidylethanolamine in erythrocyte vesicles

    International Nuclear Information System (INIS)

    Patkowska, M.J.; Horowitz, M.I.

    1986-01-01

    Unsealed inside-out and right-side out vesicles were prepared from human red cells. The vesicles were incubated with D-glucose [ 14 C(U)] and sodium cyanoborohydride in phosphate buffer, pH 7.4. After incubation, lipids were extracted with 1-butanol and non-lipid contaminants removed by Sephadex G-25 chromatography. Phosphatidylethanolamine-sorbitol was purified by chromatography on columns of silicic acid and phenylboronate agarose gel. Phospholipase C (B. cereus) liberated phosphoethanolamine-sorbitol (I) which comigrated on TLC with synthetic I prepared by reductive condensation of phosphoethanolamine and D-glucose and also with the product of phospholipase C (B. cereus) hydrolysis of reference phosphatidylethanolamine-sorbitol. Exposure of I to alkaline phosphatase (E. coli) gave P/sub i/ and ethanolamine-sorbitol (II) which comigrated on TLC with synthetic II prepared by reductive condensation of ethanolamine and D-glucose or by phospholipase D hydrolysis of reference phosphatidylethanolamine-sorbitol. These studies demonstrate that vesicular phosphatidylethanolamine can be reductively glycated and illustrate the applicability of both phospholipase C and phospholipase D in characterizing glycated phosphoglycerides

  7. Mechanical collapse of confined fluid membrane vesicles.

    Science.gov (United States)

    Rim, Jee E; Purohit, Prashant K; Klug, William S

    2014-11-01

    Compact cylindrical and spherical invaginations are common structural motifs found in cellular and developmental biology. To understand the basic physical mechanisms that produce and maintain such structures, we present here a simple model of vesicles in confinement, in which mechanical equilibrium configurations are computed by energy minimization, balancing the effects of curvature elasticity, contact of the membrane with itself and the confining geometry, and adhesion. For cylindrical confinement, the shape equations are solved both analytically and numerically by finite element analysis. For spherical confinement, axisymmetric configurations are obtained numerically. We find that the geometry of invaginations is controlled by a dimensionless ratio of the adhesion strength to the bending energy of an equal area spherical vesicle. Larger adhesion produces more concentrated curvatures, which are mainly localized to the "neck" region where the invagination breaks away from its confining container. Under spherical confinement, axisymmetric invaginations are approximately spherical. For extreme confinement, multiple invaginations may form, bifurcating along multiple equilibrium branches. The results of the model are useful for understanding the physical mechanisms controlling the structure of lipid membranes of cells and their organelles, and developing tissue membranes.

  8. Proteomic study of muscle sarcoplasmic proteins using AUT-PAGE/SDS-PAGE as two-dimensional gel electrophoresis.

    Science.gov (United States)

    Picariello, Gianluca; De Martino, Alessandra; Mamone, Gianfranco; Ferranti, Pasquale; Addeo, Francesco; Faccia, Michele; Spagnamusso, Salvatore; Di Luccia, Aldo

    2006-03-20

    In the present study, an alternative procedure for two-dimensional (2D) electrophoretic analysis in proteomic investigation of the most represented basic muscle water-soluble proteins is suggested. Our method consists of Acetic acid-Urea-Triton polyacrylamide gel (AUT-PAGE) analysis in the first dimension and standard sodium dodecyl sulphate polyacrylamide gel (SDS-PAGE) in the second dimension. Although standard two-dimensional Immobilized pH Gradient-Sodium Dodecyl-Sulphate (2D IPG-SDS) gel electrophoresis has been successfully used to study these proteins, most of the water-soluble proteins are spread on the alkaline part of the 2D map and are poorly focused. Furthermore, the similarity in their molecular weights impairs resolution of the classical approach. The addition of Triton X-100, a non-ionic detergent, into the gel induces a differential electrophoretic mobility of proteins as a result of the formation of mixed micelles between the detergent and the hydrophobic moieties of polypeptides, separating basic proteins with a criterion similar to reversed phase chromatography based on their hydrophobicity. The acid pH induces positive net charges, increasing with the isoelectric point of proteins, thus allowing enhanced resolution in the separation. By using 2D AUT-PAGE/SDS electrophoresis approach to separate water-soluble proteins from fresh pork and from dry-cured products, we could spread proteins over a greater area, achieving a greater resolution than that obtained by IPG in the pH range 3-10 and 6-11. Sarcoplasmic proteins undergoing proteolysis during the ripening of products were identified by Matrix Assisted Laser Desorption/Ionization-Time of Flight (MALDI-ToF) mass spectrometry peptide mass fingerprinting in a easier and more effective way. Two-dimensional AUT-PAGE/SDS electrophoresis has allowed to simplify separation of sarcoplasmic protein mixtures making this technique suitable in the defining of quality of dry-cured pork products by immediate

  9. Comparative proteomic analysis of extracellular vesicles isolated by acoustic trapping or differential centrifugation

    NARCIS (Netherlands)

    Rezeli, Melinda; Gidlöf, Olof; Evander, Mikael; Bryl-Górecka, Paulina; Sathanoori, Ramasri; Gilje, Patrik; Pawlowski, Krzysztof; Horvatovich, Péter; Erlinge, David; Marko-Varga, György; Laurell, Thomas

    2016-01-01

    Extracellular vesicles (ECVs), including microparticles (MPs) and exosomes, are submicron membrane vesicles released by diverse cell types upon activation or stress. Circulating ECVs are potential reservoirs of disease biomarkers, and the complexity of these vesicles is significantly lower compared

  10. Getting there: vesicles en route for plant cytokinesis

    NARCIS (Netherlands)

    Ozdoba, A.

    2007-01-01

    In dividing plant cells, membranous vesicles (60-80 nm in diameter) are transported to the site where a new cell wall that separates the daughter cells is formed. In this thesis the physical parameters size and stiffness that vesicles require to reach the forming cell plate were studied. Synthetic

  11. Spontaneous transfer of ganglioside GM1 between phospholipid vesicles

    International Nuclear Information System (INIS)

    Brown, R.E.; Thompson, T.E.

    1987-01-01

    The transfer kinetics of the negatively charged glycosphingolipid II 3 -N-acetylneuraminosyl-gangliotetraosylceramide (GM 1 ) were investigated by monitoring tritiated GM 1 movement between donor and acceptor vesicles. After appropriate incubation times at 45 0 C, donor and acceptor vesicles were separated by molecular sieve chromatography. Donors were small unilamellar vesicles produced by sonication, whereas acceptors were large unilamellar vesicles produced by either fusion or ethanol injection. Initial GM 1 transfer to acceptors followed first-order kinetics with a half-time of about 40 h assuming that GM 1 is present in equal mole fractions in the exterior and interior surfaces of the donor vesicle bilayer and that no glycolipid flip-flop occurs. GM 1 net transfer was calculated relative to that of [ 14 C]cholesteryl oleate, which served as a nontransferable marker in the donor vesicles. Factors affecting the GM 1 interbilayer transfer rate included phospholipid matrix composition, initial GM 1 concentration in donor vesicles, and the GM 1 distribution in donor vesicles with respect to total lipid symmetry. The findings provide evidence that GM 1 is molecularly dispersed at low concentrations within liquid-crystalline phospholipid bilayers

  12. Loading of Vesicles into Soft Amphiphilic Nanotubes using Osmosis

    NARCIS (Netherlands)

    Erne, Petra M.; van Bezouwen, Laura S.; Stacko, Peter; van Dtjken, Derk Jan; Chen, Jiawen; Stuart, Marc C. A.; Boekema, Eghert J.; Feringa, Ben L.

    2015-01-01

    The facile assembly of higher-order nanoarchitectures from simple building blocks is demonstrated by the loading of vesicles into soft amphiphilic nanotubes using osmosis. The nanotubes are constructed from rigid interdigitated bilayers which are capped with vesicles comprising phospholipid-based

  13. Slow sedimentation and deformability of charged lipid vesicles.

    Directory of Open Access Journals (Sweden)

    Iván Rey Suárez

    Full Text Available The study of vesicles in suspension is important to understand the complicated dynamics exhibited by cells in in vivo and in vitro. We developed a computer simulation based on the boundary-integral method to model the three dimensional gravity-driven sedimentation of charged vesicles towards a flat surface. The membrane mechanical behavior was modeled using the Helfrich Hamiltonian and near incompressibility of the membrane was enforced via a model which accounts for the thermal fluctuations of the membrane. The simulations were verified and compared to experimental data obtained using suspended vesicles labelled with a fluorescent probe, which allows visualization using fluorescence microscopy and confers the membrane with a negative surface charge. The electrostatic interaction between the vesicle and the surface was modeled using the linear Derjaguin approximation for a low ionic concentration solution. The sedimentation rate as a function of the distance of the vesicle to the surface was determined both experimentally and from the computer simulations. The gap between the vesicle and the surface, as well as the shape of the vesicle at equilibrium were also studied. It was determined that inclusion of the electrostatic interaction is fundamental to accurately predict the sedimentation rate as the vesicle approaches the surface and the size of the gap at equilibrium, we also observed that the presence of charge in the membrane increases its rigidity.

  14. Model of separated form factors for unilamellar vesicles

    International Nuclear Information System (INIS)

    Kiselev, M.A.; Aksenov, V.L.; Lesieur, P.; Lombardo, D.; Kiselev, A.M.

    2001-01-01

    A new model of separated form factors is proposed for the evaluation of small-angle neutron scattering curves from large unilamellar vesicles. The validity of the model was checked via comparison with the model of a hollow sphere. The model of separated form factors and the hollow sphere model give a reasonable agreement in the evaluation of vesicle parameters

  15. Molecular dynamics simulations of lipid vesicle fusion in atomic detail

    NARCIS (Netherlands)

    Knecht, Volker; Marrink, Siewert-Jan

    The fusion of a membrane-bounded vesicle with a target membrane is a key step in intracellular trafficking, exocytosis, and drug delivery. Molecular dynamics simulations have been used to study the fusion of small unilamellar vesicles composed of a dipalmitoyl-phosphatidylcholine (DPPC)/palmitic

  16. The freezing process of small lipid vesicles at molecular resolution

    NARCIS (Netherlands)

    Risselada, H. Jelger; Marrink, Siewert J.

    2009-01-01

    At present very little is known about the kinetic barriers which a small vesicle will face during the transformation from the liquid-crystalline to the gel phase, and what the structure of frozen vesicles looks like at the molecular level. The formation of gel domains in the strongly curved bilayer

  17. Asymmetric incorporation of Na+, K+-ATPase into phospholipid vesicles

    NARCIS (Netherlands)

    Jackson, R.L.; Verkleij, A.J.; Zoelen, E.J.J. van; Lane, L.K.; Schwartz, A.; Deenen, L.L.M. van

    Purified lamb kidney Na+, K+-ATPase, consisting solely of the Mτ = 95,000 catalytic subunit and the Mτ- 44,000 glycoprotein, was solubilized with Triton X-100 and incorporated into unilamellar phospholipid vesicles. Freeze-fracture electron microscopy of the vesicles showed intramembranous particles

  18. Membrane Protrusion Coarsening and Nanotubulation within Giant Unilamellar Vesicles

    KAUST Repository

    Węgrzyn, Ilona

    2011-11-16

    Hydrophobic side groups on a stimuli-responsive polymer, encapsulated within a single giant unilamellar vesicle, enable membrane attachment during compartment formation at elevated temperatures. We thermally modulated the vesicle through implementation of an IR laser via an optical fiber, enabling localized directed heating. Polymer-membrane interactions were monitored using confocal imaging techniques as subsequent membrane protrusions occurred and lipid nanotubes formed in response to the polymer hydrogel contraction. These nanotubes, bridging the vesicle membrane to the contracting hydrogel, were retained on the surface of the polymer compartment, where they were transformed into smaller vesicles in a process reminiscent of cellular endocytosis. This development of a synthetic vesicle system containing a stimuli-responsive polymer could lead to a new platform for studying inter/intramembrane transport through lipid nanotubes. © 2011 American Chemical Society.

  19. ISEV position paper: extracellular vesicle RNA analysis and bioinformatics

    Directory of Open Access Journals (Sweden)

    Andrew F. Hill

    2013-12-01

    Full Text Available Extracellular vesicles (EVs are the collective term for the various vesicles that are released by cells into the extracellular space. Such vesicles include exosomes and microvesicles, which vary by their size and/or protein and genetic cargo. With the discovery that EVs contain genetic material in the form of RNA (evRNA has come the increased interest in these vesicles for their potential use as sources of disease biomarkers and potential therapeutic agents. Rapid developments in the availability of deep sequencing technologies have enabled the study of EV-related RNA in detail. In October 2012, the International Society for Extracellular Vesicles (ISEV held a workshop on “evRNA analysis and bioinformatics.” Here, we report the conclusions of one of the roundtable discussions where we discussed evRNA analysis technologies and provide some guidelines to researchers in the field to consider when performing such analysis.

  20. Ganglioside GM1 spontaneous transfer between phospholipid vesicles

    International Nuclear Information System (INIS)

    Brown, R.E.; Sugar, I.P.; Thompson, T.E.

    1986-01-01

    The transfer kinetics of the monosiaylated glycosphingolipid, GM 1 , between different size phospholipid vesicles was measured using molecular sieve chromatography. At desired time intervals, small unilamellar donor vesicles were separated from large unilamellar acceptor vesicles by elution from a Sephacryl S-500 column [ 3 H]-GM 1 net transfer was calculated relative to [ 14 C]-cholesteryl oleate, which served as a nontransferable marker in the donor vesicles. The initial GM 1 transfer rate between 1-palmitoyl-2-oleoyl phosphatidylcholine vesicles at 45 0 C deviated slightly from first order kinetics and possessed a half time of 3.6 days. This transfer half time is an order of magnitude shorter than that observed from the desiaylated derivative of GM 1 . The transfer kinetics are consistent with the authors recent electron microscopic results suggesting a molecular distribution of GM 1 in liquid-crystalline phosphatidylcholine bilayers

  1. Interaction of a potyviral VPg with anionic phospholipid vesicles

    International Nuclear Information System (INIS)

    Rantalainen, Kimmo I.; Christensen, Peter A.; Hafren, Anders; Otzen, Daniel E.; Kalkkinen, Nisse; Maekinen, Kristiina

    2009-01-01

    The viral genome-linked protein (VPg) of Potato virus A (PVA) is a multifunctional protein that belongs to a class of intrinsically disordered proteins. Typically, this type of protein gains a more stable structure upon interactions or posttranslational modifications. In a membrane lipid strip overlay binding assay, PVA VPg was found to bind phosphatidylserine (PS), but not phosphatidylcholine (PC). According to circular dichroism spectroscopy, the secondary structure of PVA VPg was stabilized upon interactions with PS and phosphatidylglycerol (PG), but not with PC vesicles. It is possible that this stabilization favored the formation of α-helical structures. Limited tryptic digestion showed that the interaction with anionic vesicles protected certain, otherwise accessible, trypsin cleavage sites. An electron microscopy study revealed that interaction with VPg substantially increased the vesicle diameter and caused the formation of pore or plaque-like electron dense spots on the vesicle surface, which gradually led to disruption of the vesicles.

  2. Low-resolution simulations of vesicle suspensions in 2D

    Science.gov (United States)

    Kabacaoğlu, Gökberk; Quaife, Bryan; Biros, George

    2018-03-01

    Vesicle suspensions appear in many biological and industrial applications. These suspensions are characterized by rich and complex dynamics of vesicles due to their interaction with the bulk fluid, and their large deformations and nonlinear elastic properties. Many existing state-of-the-art numerical schemes can resolve such complex vesicle flows. However, even when using provably optimal algorithms, these simulations can be computationally expensive, especially for suspensions with a large number of vesicles. These high computational costs can limit the use of simulations for parameter exploration, optimization, or uncertainty quantification. One way to reduce the cost is to use low-resolution discretizations in space and time. However, it is well-known that simply reducing the resolution results in vesicle collisions, numerical instabilities, and often in erroneous results. In this paper, we investigate the effect of a number of algorithmic empirical fixes (which are commonly used by many groups) in an attempt to make low-resolution simulations more stable and more predictive. Based on our empirical studies for a number of flow configurations, we propose a scheme that attempts to integrate these fixes in a systematic way. This low-resolution scheme is an extension of our previous work [51,53]. Our low-resolution correction algorithms (LRCA) include anti-aliasing and membrane reparametrization for avoiding spurious oscillations in vesicles' membranes, adaptive time stepping and a repulsion force for handling vesicle collisions and, correction of vesicles' area and arc-length for maintaining physical vesicle shapes. We perform a systematic error analysis by comparing the low-resolution simulations of dilute and dense suspensions with their high-fidelity, fully resolved, counterparts. We observe that the LRCA enables both efficient and statistically accurate low-resolution simulations of vesicle suspensions, while it can be 10× to 100× faster.

  3. Redox regulation of calcium release in skeletal and cardiac muscle

    Directory of Open Access Journals (Sweden)

    CECILIA HIDALGO

    2002-01-01

    Full Text Available In skeletal and cardiac muscle cells, specific isoforms of the Ryanodine receptor channels mediate Ca2+ release from the sarcoplasmic reticulum. These channels are highly susceptible to redox modifications, which regulate channel activity. In this work, we studied the effects of Ca2+ (endogenous agonist and Mg2+ (endogenous inhibitor on the kinetics of Ca2+ release from sarcoplasmic reticulum vesicles isolated from skeletal or cardiac mammalian muscle. Native skeletal vesicles exhibited maximal stimulation of release kinetics by 10-20 µM [Ca2+], whereas in native cardiac vesicles, maximal stimulation of release required only 1 µM [Ca2+]. In 10 µM [Ca2+], free [Mg2+] < 0.1 mM produced marked inhibition of release from skeletal vesicles but free [Mg2+] ­ 0.8 mM did not affect release from cardiac vesicles. Incubation of skeletal or cardiac vesicles with the oxidant thimerosal increased their susceptibility to stimulation by Ca2+ and decreased the inhibitory effect of Mg2+ in skeletal vesicles. Sulfhydryl-reducing agents fully reversed the effects of thimerosal. The endogenous redox species, glutathione disulfide and S-nitrosoglutathione, also stimulated release from skeletal sarcoplasmic reticulum vesicles. In 10 µM [Ca2+], 35S-nitrosoglutathione labeled a protein fraction enriched in release channels through S-glutathiolation. Free [Mg2+] 1 mM or decreasing free [Ca2+] to the nM range prevented this reaction. Possible physiological and pathological consequences of redox modification of release channels on Ca2+ signaling in heart and muscle cells are discussed

  4. A perspective on extracellular vesicles proteomics

    Science.gov (United States)

    Rosa-Fernandes, Livia; Rocha, Victória Bombarda; Carregari, Victor Corasolla; Urbani, Andrea; Palmisano, Giuseppe

    2017-11-01

    Increasing attention has been given to secreted extracellular vesicles (EVs) in the past decades, especially in the portrayal of their molecular cargo and role as messengers in both homeostasis and pathophysiological conditions. This review presents the state-of-the-art proteomic technologies to identify and quantify EVs proteins along with their PTMs, interacting partners and structural details. The rapid growth of mass spectrometry-based analytical strategies for protein sequencing, PTMs and structural characterization has improved the level of molecular details that can be achieve from limited amount of EVs isolated from different biological sources. Here we will provide a perspective view on the achievements and challenges on EVs proteome characterization using mass spectrometry. A detailed bioinformatics approach will help us to picture the molecular fingerprint of EVs and understand better their pathophysiological function.

  5. Gas Vesicle Nanoparticles for Antigen Display

    Directory of Open Access Journals (Sweden)

    Shiladitya DasSarma

    2015-09-01

    Full Text Available Microorganisms like the halophilic archaeon Halobacterium sp. NRC-1 produce gas-filled buoyant organelles, which are easily purified as protein nanoparticles (called gas vesicles or GVNPs. GVNPs are non-toxic, exceptionally stable, bioengineerable, and self-adjuvanting. A large gene cluster encoding more than a dozen proteins has been implicated in their biogenesis. One protein, GvpC, found on the exterior surface of the nanoparticles, can accommodate insertions near the C-terminal region and results in GVNPs displaying the inserted sequences on the surface of the nanoparticles. Here, we review the current state of knowledge on GVNP structure and biogenesis as well as available studies on immunogenicity of pathogenic viral, bacterial, and eukaryotic proteins and peptides displayed on the nanoparticles. Recent improvements in genetic tools for bioengineering of GVNPs are discussed, along with future opportunities and challenges for development of vaccines and other applications.

  6. Morphometric image analysis of giant vesicles

    DEFF Research Database (Denmark)

    Husen, Peter Rasmussen; Arriaga, Laura; Monroy, Francisco

    2012-01-01

    We have developed a strategy to determine lengths and orientations of tie lines in the coexistence region of liquid-ordered and liquid-disordered phases of cholesterol containing ternary lipid mixtures. The method combines confocal-fluorescence-microscopy image stacks of giant unilamellar vesicles...... (GUVs), a dedicated 3D-image analysis, and a quantitative analysis based in equilibrium thermodynamic considerations. This approach was tested in GUVs composed of 1,2-dioleoyl-sn-glycero-3-phosphocholine/1,2-palmitoyl-sn-glycero-3-phosphocholine/cholesterol. In general, our results show a reasonable...... agreement with previously reported data obtained by other methods. For example, our computed tie lines were found to be nonhorizontal, indicating a difference in cholesterol content in the coexisting phases. This new, to our knowledge, analytical strategy offers a way to further exploit fluorescence...

  7. Periodic-cylinder vesicle with minimal energy

    International Nuclear Information System (INIS)

    Xiao-Hua, Zhou

    2010-01-01

    We give some details about the periodic cylindrical solution found by Zhang and Ou-Yang in [1996 Phys. Rev. E 53 4206] for the general shape equation of vesicle. Three different kinds of periodic cylindrical surfaces and a special closed cylindrical surface are obtained. Using the elliptic functions contained in mathematic, we find that this periodic shape has the minimal total energy for one period when the period–amplitude ratio β ≈ 1.477, and point out that it is a discontinuous deformation between plane and this periodic shape. Our results also are suitable for DNA and multi-walled carbon nanotubes (MWNTs). (cross-disciplinary physics and related areas of science and technology)

  8. Methods to isolate extracellular vesicles for diagnosis

    Science.gov (United States)

    Kang, Hyejin; Kim, Jiyoon; Park, Jaesung

    2017-12-01

    Extracellular vesicles (EVs) are small membrane-bound bodies that are released into extracellular space by diverse cells, and are found in body fluids like blood, urine and saliva. EVs contain RNA, DNA and proteins, which can be biomarkers for diagnosis. EVs can be obtained by minimally-invasive biopsy, so they are useful in disease diagnosis. High yield and purity contribute to precise diagnosis of disease, but damaged EVs and impurities can cause confu sed results. However, EV isolation methods have different yields and purities. Furthermore, the isolation method that is most suitable to maximize EV recovery efficiency depends on the experimental conditions. This review focuses on merits and demerits of several types of EV isolation methods, and provides examples of how to diagnose disease by exploiting information obtained by analysis of EVs.

  9. Proteomics of Aggregatibacter actinomycetemcomitans Outer Membrane Vesicles.

    Directory of Open Access Journals (Sweden)

    Thomas Kieselbach

    Full Text Available Aggregatibacter actinomycetemcomitans is an oral and systemic pathogen associated with aggressive forms of periodontitis and with endocarditis. Outer membrane vesicles (OMVs released by this species have been demonstrated to deliver effector proteins such as cytolethal distending toxin (CDT and leukotoxin (LtxA into human host cells and to act as triggers of innate immunity upon carriage of NOD1- and NOD2-active pathogen-associated molecular patterns (PAMPs. To improve our understanding of the pathogenicity-associated functions that A. actinomycetemcomitans exports via OMVs, we studied the proteome of density gradient-purified OMVs from a rough-colony type clinical isolate, strain 173 (serotype e using liquid chromatography-tandem mass spectrometry (LC-MS/MS. This analysis yielded the identification of 151 proteins, which were found in at least three out of four independent experiments. Data are available via ProteomeXchange with identifier PXD002509. Through this study, we not only confirmed the vesicle-associated release of LtxA, and the presence of proteins, which are known to act as immunoreactive antigens in the human host, but we also identified numerous additional putative virulence-related proteins in the A. actinomycetemcomitans OMV proteome. The known and putative functions of these proteins include immune evasion, drug targeting, and iron/nutrient acquisition. In summary, our findings are consistent with an OMV-associated proteome that exhibits several offensive and defensive functions, and they provide a comprehensive basis to further disclose roles of A. actinomycetemcomitans OMVs in periodontal and systemic disease.

  10. Plasma membrane—endoplasmic reticulum contact sites regulate phosphatidylcholine synthesis

    NARCIS (Netherlands)

    Tavassoli, S.; Chao, J.T.; Young, B.P.; Cox, R.C.; Prinz, W.A.; de Kroon, A.I.P.M.; Loewen, C.I.R.

    2013-01-01

    Synthesis of phospholipids, sterols and sphingolipids is thought to occur at contact sites between the endoplasmic reticulum (ER) and other organelles because many lipid-synthesizing enzymes are enriched in these contacts. In only a few cases have the enzymes been localized to contacts in vivo and

  11. Analysis of endoplasmic reticulum of tobacco cells using confocal microscopy

    Czech Academy of Sciences Publication Activity Database

    Radochová, Barbora; Janáček, Jiří; Schwarzerová, K.; Demjénová, E.; Tomori, Z.; Karen, Petr; Kubínová, Lucie

    2005-01-01

    Roč. 24, č. 11 (2005), s. 181-185 ISSN 1580-3139 R&D Projects: GA AV ČR(CZ) KJB6011309 Institutional research plan: CEZ:AV0Z50110509 Keywords : confocal microscopy * endoplasmic reticulum * image analysis Subject RIV: EA - Cell Biology

  12. Seminal vesicle intrafraction motion analysed with cinematic magnetic resonance imaging

    International Nuclear Information System (INIS)

    Gill, Suki; Dang, Kim; Fox, Chris; Bressel, Mathias; Kron, Tomas; Bergen, Noelene; Ferris, Nick; Owen, Rebecca; Chander, Sarat; Tai, Keen Hun; Foroudi, Farshad

    2014-01-01

    This study analyses seminal vesicle displacement relative to the prostate and in relation to treatment time. A group of eleven patients undergoing prostate cancer radiotherapy were imaged with a continuous 3 T cine-MRI in the standard treatment setup position. Four images were recorded every 4 seconds for 15 minutes in the sagittal plane and every 6.5 seconds for 12 minutes in the coronal plane. The prostate gland and seminal vesicles were contoured on each MRI image. The coordinates of the centroid of the prostate and seminal vesicles on each image was analysed for displacement against time. Displacements between the 2.5 percentile and 97.5 percentile (i.e. the 2.5% trimmed range) for prostate and seminal vesicle centroid displacements were measured for 3, 5, 10 and 15 minutes time intervals in the anterior-posterior (AP), left-right (LR) and superior-inferior (SI) directions. Real time prostate and seminal vesicle displacement was compared for individual patients. The 2.5% trimmed range for 3, 5, 10 and 15 minutes for the seminal vesicle centroids in the SI direction measured 4.7 mm; 5.8 mm; 6.5 mm and 7.2 mm respectively. In the AP direction, it was 4.0 mm, 4.5 mm, 6.5 mm, and 7.0 mm. In the LR direction for 3, 5 and 10 minutes; for the left seminal vesicle, it was 2.7 mm, 2.8 mm, 3.4 mm and for the right seminal vesicle, it was 3.4 mm, 3.3 mm, and 3.4 mm. The correlation between the real-time prostate and seminal vesicle displacement varied substantially between patients indicating that the relationship between prostate displacement and seminal vesicles displacement is patient specific with the majority of the patients not having a strong relationship. Our study shows that seminal vesicle motion increases with treatment time, and that the prostate and seminal vesicle centroids do not move in unison in real time, and that an additional margin is required for independent seminal vesicle motion if treatment localisation is to the prostate

  13. Vesicle fusion with bilayer lipid membrane controlled by electrostatic interaction

    Directory of Open Access Journals (Sweden)

    Azusa Oshima

    2017-09-01

    Full Text Available The fusion of proteoliposomes is a promising approach for incorporating membrane proteins in artificial lipid membranes. In this study, we employed an electrostatic interaction between vesicles and supported bilayer lipid membranes (s-BLMs to control the fusion process. We combined large unilamellar vesicles (LUVs containing anionic lipids, which we used instead of proteoliposomes, and s-BLMs containing cationic lipids to control electrostatic interaction. Anionic LUVs were never adsorbed or ruptured on the SiO2 substrate with a slight negative charge, and selectively fused with cationic s-BLMs. The LUVs can be fused effectively to the target position. Furthermore, as the vesicle fusion proceeds and some of the positive charges are neutralized, the attractive interaction weakens and finally the vesicle fusion saturates. In other words, we can control the number of LUVs fused with s-BLMs by controlling the concentration of the cationic lipids in the s-BLMs. The fluidity of the s-BLMs after vesicle fusion was confirmed to be sufficiently high. This indicates that the LUVs attached to the s-BLMs were almost completely fused, and there were few intermediate state vesicles in the fusion process. We could control the position and amount of vesicle fusion with the s-BLMs by employing an electrostatic interaction.

  14. Endoplasmic reticulum-dependent redox reactions control endoplasmic reticulum-associated degradation and pathogen entry.

    Science.gov (United States)

    Walczak, Christopher P; Bernardi, Kaleena M; Tsai, Billy

    2012-04-15

    Protein misfolding within the endoplasmic reticulum (ER) is managed by an ER quality control system that retro-translocates aberrant proteins into the cytosol for proteasomal destruction. This process, known as ER-associated degradation, utilizes the action of ER redox enzymes to accommodate the disulfide-bonded nature of misfolded proteins. Strikingly, various pathogenic viruses and toxins co-opt these redox components to reach the cytosol during entry. These redox factors thus regulate critical cellular homeostasis and host-pathogen interactions. Recent studies identify specific members of the protein disulfide isomerase (PDI) family, which use their chaperone and catalytic activities, in engaging both misfolded ER proteins and pathogens. The precise molecular mechanism by which a dedicated PDI family member disrupts the disulfide bonds in the misfolded ER proteins and pathogens, as well as how they act to unfold these substrates to promote their ER-to-cytosol membrane transport, remain poorly characterized. How PDI family members distinguish folded versus misfolded ER substrates remains enigmatic. What physical characteristics surrounding a substrate's disulfide bond instruct PDI that it is mispaired or native? For the pathogens, as their disulfide bonds normally serve a critical role in providing physical support, what conformational changes experienced in the host enable their disulfide bonds to be disrupted? A combination of more rigorous biochemical and high-resolution structural studies should begin to address these questions.

  15. Formation of Giant Protein Vesicles by a Lipid Cosolvent Method

    DEFF Research Database (Denmark)

    Hansen, Jesper S.; Vararattanavech, Ardcharaporn; Vissing, Thomas

    2011-01-01

    This paper describes a method to create giant protein vesicles (GPVs) of ≥10 μm by solvent‐driven fusion of large vesicles (0.1–0.2 μm) with reconstituted membrane proteins. We found that formation of GPVs proceeded from rotational mixing of protein‐reconstituted large unilamellar vesicles (LUVs)...... of spinach SoPIP2;1 and E. coli AqpZ aquaporins. Our findings show that hydrophobic interactions within the bilayer of formed GPVs are influenced not only by the solvent partitioning propensity, but also by lipid composition and membrane protein isoform....

  16. Generic sorting of raft lipids into secretory vesicles in yeast

    DEFF Research Database (Denmark)

    Surma, Michal A; Klose, Christian; Klemm, Robin W

    2011-01-01

    Previous work has showed that ergosterol and sphingolipids become sorted to secretory vesicles immunoisolated using a chimeric, artificial raft membrane protein as bait. In this study, we have extended this analysis to three populations of secretory vesicles isolated using natural yeast plasma...... a complete lipid overview of the yeast late secretory pathway. We could show that vesicles captured with different baits carry the same cargo and have almost identical lipid compositions; being highly enriched in ergosterol and sphingolipids. This finding indicates that lipid raft sorting is a generic...

  17. Glioblastoma extracellular vesicles: reservoirs of potential biomarkers

    Directory of Open Access Journals (Sweden)

    Redzic JS

    2014-02-01

    Full Text Available Jasmina S Redzic,1 Timothy H Ung,2 Michael W Graner2 1Skaggs School of Pharmacy and Pharmaceutical Sciences, 2Department of Neurosurgery, School of Medicine, University of Colorado Denver, Aurora, CO, USA Abstract: Glioblastoma multiforme (GBM is the most frequent and most devastating of the primary central nervous system tumors, with few patients living beyond 2 years postdiagnosis. The damage caused by the disease and our treatments for the patients often leave them physically and cognitively debilitated. Generally, GBMs appear after very short clinical histories and are discovered by imaging (using magnetic resonance imaging [MRI], and the diagnosis is validated by pathology, following surgical resection. The treatment response and diagnosis of tumor recurrence are also tracked by MRI, but there are numerous problems encountered with these monitoring modalities, such as ambiguous interpretation and forms of pseudoprogression. Diagnostic, prognostic, and predictive biomarkers would be an immense boon in following treatment schemes and in determining recurrence, which often requires an invasive intracranial biopsy to verify imaging data. Extracellular vesicles (EVs are stable, membrane-enclosed, virus-sized particles released from either the cell surface or from endosomal pathways that lead to the systemic release of EVs into accessible biofluids, such as serum/plasma, urine, cerebrospinal fluid, and saliva. EVs carry a wide variety of proteins, nucleic acids, lipids, and other metabolites, with many common features but with enough individuality to be able to identify the cell of origin of the vesicles. These components, if properly interrogated, could allow for the identification of tumor-derived EVs in biofluids, indicating tumor progression, relapse, or treatment failure. That knowledge would allow clinicians to continue with treatment regimens that were actually effective or to change course if the therapies were failing. Here, we review

  18. Myosin XI-dependent formation of tubular structures from endoplasmic reticulum isolated from tobacco cultured BY-2 cells.

    Science.gov (United States)

    Yokota, Etsuo; Ueda, Haruko; Hashimoto, Kohsuke; Orii, Hidefumi; Shimada, Tomoo; Hara-Nishimura, Ikuko; Shimmen, Teruo

    2011-05-01

    The reticular network of the endoplasmic reticulum (ER) consists of tubular and lamellar elements and is arranged in the cortical region of plant cells. This network constantly shows shape change and remodeling motion. Tubular ER structures were formed when GTP was added to the ER vesicles isolated from tobacco (Nicotiana tabacum) cultured BY-2 cells expressing ER-localized green fluorescent protein. The hydrolysis of GTP during ER tubule formation was higher than that under conditions in which ER tubule formation was not induced. Furthermore, a shearing force, such as the flow of liquid, was needed for the elongation/extension of the ER tubule. The shearing force was assumed to correspond to the force generated by the actomyosin system in vivo. To confirm this hypothesis, the S12 fraction was prepared, which contained both cytosol and microsome fractions, including two classes of myosins, XI (175-kD myosin) and VIII (BY-2 myosin VIII-1), and ER-localized green fluorescent protein vesicles. The ER tubules and their mesh-like structures were arranged in the S12 fraction efficiently by the addition of ATP, GTP, and exogenous filamentous actin. The tubule formation was significantly inhibited by the depletion of 175-kD myosin from the S12 fraction but not BY-2 myosin VIII-1. Furthermore, a recombinant carboxyl-terminal tail region of 175-kD myosin also suppressed ER tubule formation. The tips of tubules moved along filamentous actin during tubule elongation. These results indicated that the motive force generated by the actomyosin system contributes to the formation of ER tubules, suggesting that myosin XI is responsible not only for the transport of ER in cytoplasm but also for the reticular organization of cortical ER.

  19. Mobilization of Ca2+ by Cyclic ADP-Ribose from the Endoplasmic Reticulum of Cauliflower Florets1

    Science.gov (United States)

    Navazio, Lorella; Mariani, Paola; Sanders, Dale

    2001-01-01

    The NAD+ metabolite cADP-Rib (cADPR) elevates cytosolic free Ca2+ in plants and thereby plays a central role in signal transduction pathways evoked by the drought and stress hormone abscisic acid. cADPR is known to mobilize Ca2+ from the large vacuole of mature cells. To determine whether additional sites for cADPR-gated Ca2+ release reside in plant cells, microsomes from cauliflower (Brassica oleracea) inflorescences were subfractionated on sucrose density gradients, and the distribution of cADPR-elicited Ca2+ release was monitored. cADPR-gated Ca2+ release was detected in the heavy-density fractions associated with rough endoplasmic reticulum (ER). cADPR-dependent Ca2+ release co-migrated with two ER markers, calnexin and antimycin A-insensitive NADH-cytochrome c reductase activity. To investigate the possibility that contaminating plasma membrane in the ER-rich fractions was responsible for the observed release, plasma membrane vesicles were purified by aqueous two-phase partitioning, everted with Brij-58, and loaded with Ca2+: These vesicles failed to respond to cADPR. Ca2+ release evoked by cADPR at the ER was fully inhibited by ruthenium red and 8-NH2-cADPR, a specific antagonist of cADPR-gated Ca2+ release in animal cells. The presence of a Ca2+ release pathway activated by cADPR at higher plant ER reinforces the notion that, alongside the vacuole, the ER participates in Ca2+ signaling. PMID:11299392

  20. Improved Methods of Producing and Administering Extracellular Vesicles | Poster

    Science.gov (United States)

    An efficient method of producing purified extracellular vesicles (EVs), in conjunction with a method that blocks liver macrophages from clearing EVs from the body, has produced promising results for the use of EVs in cancer therapy.

  1. EVpedia : a community web portal for extracellular vesicles research

    NARCIS (Netherlands)

    Kim, Dae-Kyum; Lee, Jaewook; Kim, Sae Rom; Choi, Dong-Sic; Yoon, Yae Jin; Kim, Ji Hyun; Go, Gyeongyun; Nhung, Dinh; Hong, Kahye; Jang, Su Chul; Kim, Si-Hyun; Park, Kyong-Su; Kim, Oh Youn; Park, Hyun Taek; Seo, Ji Hye; Aikawa, Elena; Baj-Krzyworzeka, Monika; van Balkom, Bas W M; Belting, Mattias; Blanc, Lionel; Bond, Vincent; Bongiovanni, Antonella; Borràs, Francesc E; Buée, Luc; Buzás, Edit I; Cheng, Lesley; Clayton, Aled; Cocucci, Emanuele; Dela Cruz, Charles S; Desiderio, Dominic M; Di Vizio, Dolores; Ekström, Karin; Falcon-Perez, Juan M; Gardiner, Chris; Giebel, Bernd; Greening, David W; Gross, Julia Christina; Gupta, Dwijendra; Hendrix, An; Hill, Andrew F; Hill, Michelle M; Nolte-'t Hoen, Esther; Hwang, Do Won; Inal, Jameel; Jagannadham, Medicharla V; Jayachandran, Muthuvel; Jee, Young-Koo; Jørgensen, Malene; Kim, Kwang Pyo; Kim, Yoon-Keun; Kislinger, Thomas; Lässer, Cecilia; Lee, Dong Soo; Lee, Hakmo; van Leeuwen, Johannes; Lener, Thomas; Liu, Ming-Lin; Lötvall, Jan; Marcilla, Antonio; Mathivanan, Suresh; Möller, Andreas; Morhayim, Jess; Mullier, François; Nazarenko, Irina; Nieuwland, Rienk; Nunes, Diana N; Pang, Ken; Park, Jaesung; Patel, Tushar; Pocsfalvi, Gabriella; Del Portillo, Hernando; Putz, Ulrich; Ramirez, Marcel I; Rodrigues, Marcio L; Roh, Tae-Young; Royo, Felix; Sahoo, Susmita; Schiffelers, Raymond|info:eu-repo/dai/nl/212909509; Sharma, Shivani; Siljander, Pia; Simpson, Richard J; Soekmadji, Carolina; Stahl, Philip; Stensballe, Allan; Stępień, Ewa; Tahara, Hidetoshi; Trummer, Arne; Valadi, Hadi; Vella, Laura J; Wai, Sun Nyunt; Witwer, Kenneth; Yáñez-Mó, María; Youn, Hyewon; Zeidler, Reinhard; Gho, Yong Song; Nolte - t Hoen, Esther|info:eu-repo/dai/nl/261632175

    2014-01-01

    MOTIVATION: Extracellular vesicles (EVs) are spherical bilayered proteolipids, harboring various bioactive molecules. Due to the complexity of the vesicular nomenclatures and components, online searches for EV-related publications and vesicular components are currently challenging. RESULTS: We

  2. EVpedia: a community web portal for extracellular vesicles research

    NARCIS (Netherlands)

    Kim, Dae-Kyum; Lee, Jaewook; Kim, Sae Rom; Choi, Dong-Sic; Yoon, Yae Jin; Kim, Ji Hyun; Go, Gyeongyun; Nhung, Dinh; Hong, Kahye; Jang, Su Chul; Kim, Si-Hyun; Park, Kyong-Su; Kim, Oh Youn; Park, Hyun Taek; Seo, Ji Hye; Aikawa, Elena; Baj-Krzyworzeka, Monika; van Balkom, Bas W. M.; Belting, Mattias; Blanc, Lionel; Bond, Vincent; Bongiovanni, Antonella; Borràs, Francesc E.; Buée, Luc; Buzás, Edit I.; Cheng, Lesley; Clayton, Aled; Cocucci, Emanuele; Dela Cruz, Charles S.; Desiderio, Dominic M.; Di Vizio, Dolores; Ekström, Karin; Falcon-Perez, Juan M.; Gardiner, Chris; Giebel, Bernd; Greening, David W.; Gross, Julia Christina; Gupta, Dwijendra; Hendrix, An; Hill, Andrew F.; Hill, Michelle M.; Nolte-'t Hoen, Esther; Hwang, Do Won; Inal, Jameel; Jagannadham, Medicharla V.; Jayachandran, Muthuvel; Jee, Young-Koo; Jørgensen, Malene; Kim, Kwang Pyo; Kim, Yoon-Keun; Kislinger, Thomas; Lässer, Cecilia; Lee, Dong Soo; Lee, Hakmo; van Leeuwen, Johannes; Lener, Thomas; Liu, Ming-Lin; Lötvall, Jan; Marcilla, Antonio; Mathivanan, Suresh; Möller, Andreas; Morhayim, Jess; Mullier, François; Nazarenko, Irina; Nieuwland, Rienk; Nunes, Diana N.; Pang, Ken; Park, Jaesung; Patel, Tushar; Pocsfalvi, Gabriella; del Portillo, Hernando; Putz, Ulrich; Ramirez, Marcel I.; Rodrigues, Marcio L.; Roh, Tae-Young; Royo, Felix; Sahoo, Susmita; Schiffelers, Raymond; Sharma, Shivani; Siljander, Pia; Simpson, Richard J.; Soekmadji, Carolina; Stahl, Philip; Stensballe, Allan; Stępień, Ewa; Tahara, Hidetoshi; Trummer, Arne; Valadi, Hadi; Vella, Laura J.; Wai, Sun Nyunt; Witwer, Kenneth; Yáñez-Mó, María; Youn, Hyewon; Zeidler, Reinhard; Gho, Yong Song

    2015-01-01

    Extracellular vesicles (EVs) are spherical bilayered proteolipids, harboring various bioactive molecules. Due to the complexity of the vesicular nomenclatures and components, online searches for EV-related publications and vesicular components are currently challenging. We present an improved

  3. Biological properties of extracellular vesicles and their physiological functions

    NARCIS (Netherlands)

    Yáñez-Mó, María; Siljander, Pia R-M; Andreu, Zoraida; Zavec, Apolonija Bedina; Borràs, Francesc E; Buzas, Edit I; Buzas, Krisztina; Casal, Enriqueta; Cappello, Francesco; Carvalho, Joana; Colás, Eva; Cordeiro-da Silva, Anabela; Fais, Stefano; Falcon-Perez, Juan M; Ghobrial, Irene M; Giebel, Bernd; Gimona, Mario; Graner, Michael; Gursel, Ihsan; Gursel, Mayda; Heegaard, Niels H H; Hendrix, An; Kierulf, Peter; Kokubun, Katsutoshi; Kosanovic, Maja; Kralj-Iglic, Veronika; Krämer-Albers, Eva-Maria; Laitinen, Saara; Lässer, Cecilia; Lener, Thomas; Ligeti, Erzsébet; Linē, Aija; Lipps, Georg; Llorente, Alicia; Lötvall, Jan; Manček-Keber, Mateja; Marcilla, Antonio; Mittelbrunn, Maria; Nazarenko, Irina; Nolte-'t Hoen, Esther N M; Nyman, Tuula A; O'Driscoll, Lorraine; Olivan, Mireia; Oliveira, Carla; Pállinger, Éva; Del Portillo, Hernando A; Reventós, Jaume; Rigau, Marina; Rohde, Eva; Sammar, Marei; Sánchez-Madrid, Francisco; Santarém, N; Schallmoser, Katharina; Ostenfeld, Marie Stampe; Stoorvogel, Willem|info:eu-repo/dai/nl/074352385; Stukelj, Roman; Van der Grein, Susanne G|info:eu-repo/dai/nl/412755211; Vasconcelos, M Helena; Wauben, Marca H M|info:eu-repo/dai/nl/112675735; De Wever, Olivier

    2015-01-01

    In the past decade, extracellular vesicles (EVs) have been recognized as potent vehicles of intercellular communication, both in prokaryotes and eukaryotes. This is due to their capacity to transfer proteins, lipids and nucleic acids, thereby influencing various physiological and pathological

  4. Packing states of multilamellar vesicles in a nonionic surfactant system

    DEFF Research Database (Denmark)

    Le, T.D.; Olsson, U.; Mortensen, K.

    2001-01-01

    -alpha(*) phase using the noninvasive small-angle neutron scattering (SANS) technique, one while heating and the other while cooling the sample. Data from the heating and cooling cycles were used to demonstrate reversibility of the system. Three states of packing can be identified from the scattering profiles......Lyotropic lamellar phases under shear flow have been shown to form multilamellar vesicles (MLVs), an onion-like structure. The size of the vesicles is governed by the shear imposed on the sample. Previously, we studied the structural transformation from multilamellar vesicles to lamellae to sponge...... under shear. Here, we focused only in the MLV region, L-alpha(*), of a temperature sensitive surfactant system (C12E4-water) to investigate the packing of multilamellar vesicles as a function of temperature under constant shear. Two sets of temperature scan experiments were performed in the L...

  5. Biogenesis and function of Porphyromonas gingivalis outer membrane vesicles

    Science.gov (United States)

    Xie, H

    2015-01-01

    Porphyromonas gingivalis is one of the keystone pathogens associated with chronic periodontitis. All P. gingivalis strains examined thus far produce outer membrane vesicles. Recent studies have found that vesicles possess some well-known virulence factors of P. gingivalis such as adhesins, toxins and proteolytic enzymes. Carrying most of the characteristic features of their parent P. gingivalis cells, vesicles communicate with host cells and other members of microbial biofilms, resulting in the transmission of virulence factors into these host cells and the formation of pathogenic bacteria-dominated microbial communities. An in-depth understanding of both the nature and role of vesicles in the pathogenicity of P. gingivalis is both important and timely, particularly when speaking of periodontitis and its related systemic effects. PMID:26343879

  6. Integral equation methods for vesicle electrohydrodynamics in three dimensions

    Science.gov (United States)

    Veerapaneni, Shravan

    2016-12-01

    In this paper, we develop a new boundary integral equation formulation that describes the coupled electro- and hydro-dynamics of a vesicle suspended in a viscous fluid and subjected to external flow and electric fields. The dynamics of the vesicle are characterized by a competition between the elastic, electric and viscous forces on its membrane. The classical Taylor-Melcher leaky-dielectric model is employed for the electric response of the vesicle and the Helfrich energy model combined with local inextensibility is employed for its elastic response. The coupled governing equations for the vesicle position and its transmembrane electric potential are solved using a numerical method that is spectrally accurate in space and first-order in time. The method uses a semi-implicit time-stepping scheme to overcome the numerical stiffness associated with the governing equations.

  7. Extracellular vesicles provide a means for tissue crosstalk during exercise

    DEFF Research Database (Denmark)

    Whitham, Martin; Parker, Benjamin L; Friedrichsen, Martin

    2018-01-01

    Exercise stimulates the release of molecules into the circulation, supporting the concept that inter-tissue signaling proteins are important mediators of adaptations to exercise. Recognizing that many circulating proteins are packaged in extracellular vesicles (EVs), we employed quantitative prot...

  8. EVpedia : A community web portal for extracellular vesicles research

    NARCIS (Netherlands)

    Kim, Dae Kyum; Lee, Jaewook; Kim, Sae Rom; Choi, Dong Sic; Yoon, Yae Jin; Kim, Ji Hyun; Go, Gyeongyun; Nhung, Dinh; Hong, Kahye; Jang, Su Chul; Kim, Si Hyun; Park, Kyong Su; Kim, Oh Youn; Park, Hyun Taek; Seo, Ji Hye; Aikawa, Elena; Baj-Krzyworzeka, Monika; Van Balkom, Bas W M; Belting, Mattias; Blanc, Lionel; Bond, Vincent; Bongiovanni, Antonella; Borràs, Francesc E.; Buée, Luc; Buzás, Edit I.; Cheng, Lesley; Clayton, Aled; Cocucci, Emanuele; Dela Cruz, Charles S.; Desiderio, Dominic M.; Di Vizio, Dolores; Ekström, Karin; Falcon-Perez, Juan M.; Gardiner, Chris; Giebel, Bernd; Greening, David W.; Christina Gross, Julia; Gupta, Dwijendra; Hendrix, An; Hill, Andrew F.; Hill, Michelle M.; Nolte-'T Hoen, Esther; Hwang, Do Won; Inal, Jameel; Jagannadham, Medicharla V.; Jayachandran, Muthuvel; Jee, Young Koo; Jørgensen, Malene; Kim, Kwang Pyo; Kim, Yoon Keun; Kislinger, Thomas; Lässer, Cecilia; Lee, Dong Soo; Lee, Hakmo; Van Leeuwen, Johannes; Lener, Thomas; Liu, Ming Lin; Lötvall, Jan; Marcilla, Antonio; Mathivanan, Suresh; Möller, Andreas; Morhayim, Jess; Mullier, Francois; Nazarenko, Irina; Nieuwland, Rienk; Nunes, Diana N.; Pang, Ken; Park, Jaesung; Patel, Tushar; Pocsfalvi, Gabriella; Del Portillo, Hernando; Putz, Ulrich; Ramirez, Marcel I.; Rodrigues, Marcio L.; Roh, Tae Young; Royo, Felix; Sahoo, Susmita; Schiffelers, Raymond; Sharma, Shivani; Siljander, Pia; Simpson, Richard J.; Soekmadji, Carolina; Stahl, Philip; Stensballe, Allan; Stepień, Ewa; Tahara, Hidetoshi; Trummer, Arne; Valadi, Hadi; Vella, Laura J.; Wai, Sun Nyunt; Witwer, Kenneth; Yánez-Mó, Maria; Youn, Hyewon; Zeidler, Reinhard; Gho, Yong Song

    2015-01-01

    Motivation: Extracellular vesicles (EVs) are spherical bilayered proteolipids, harboring various bioactive molecules. Due to the complexity of the vesicular nomenclatures and components, online searches for EV-related publications and vesicular components are currently challenging. Results: We

  9. Understanding crumpling lipid vesicles at the gel phase transition

    Science.gov (United States)

    Hirst, Linda; Ossowski, Adam; Fraser, Matthew

    2011-03-01

    Wrinkling and crumpling transitions in different membrane types have been studied extensively in recent years both theoretically and computationally. There has also been very interesting recent work on defects in liquid crystalline shells. Lipid bilayer vesicles, widely used in biophysical research can be considered as a single layer smectic shell in the liquid crystalline phase. On cooling the lipid vesicle a transition to the gel phase may take place in which the lipid chains tilt and assume a more ordered packing arrangement. We observe large scale morphological changes in vesicles close to this transition point using fluorescence microscopy and investigate the possible mechanisms for this transition. Confocal microscopy is used to map 3D vesicle shape and crumpling length-scales. We also employ the molecular tilt sensitive dye, Laurdan to investigate the role of tilt domain formation on macroscopic structure. Funded by NSF CAREER award (DMR - BMAT #0852791).

  10. ABC triblock copolymer vesicles with mesh-like morphology.

    Science.gov (United States)

    Zhao, Wei; Chen, Dian; Hu, Yunxia; Grason, Gregory M; Russell, Thomas P

    2011-01-25

    Polymer vesicles made from poly(isoprene-b-styrene-b-2-vinyl pyridine) (PI-b-PS-b-P2VP) triblock copolymer confined within the nanopores of an anodic aluminum oxide (AAO) membrane are studied. It was found that these vesicles have well-defined, nanoscopic size, and complex microphase-separated hydrophobic membranes, comprised of the PS and PI blocks, while the coronas are formed by the P2VP block. Vesicle formation was tracked using both transmission and scanning electron microscopy. A mesh-like morphology formed in the membrane at a well-defined composition of the three blocks that can be tuned by changing the copolymer composition. The nanoscale confinement, copolymer composition, and subtle molecular interactions contribute to the generation of these vesicles with such unusual morphologies.

  11. Plasma membrane aquaporins mediates vesicle stability in broccoli.

    Directory of Open Access Journals (Sweden)

    Maria Del Carmen Martínez-Ballesta

    Full Text Available The use of in vitro membrane vesicles is attractive because of possible applications in therapies. Here we aimed to compare the stability and functionality of plasma membrane vesicles extracted from control and salt-treated broccoli. The impact of the amount of aquaporins was related to plasma membrane osmotic water permeability and the stability of protein secondary structure. Here, we describe for first time an increase in plant aquaporins acetylation under high salinity. Higher osmotic water permeability in NaCl vesicles has been related to higher acetylation, upregulation of aquaporins, and a more stable environment to thermal denaturation. Based on our findings, we propose that aquaporins play an important role in vesicle stability.

  12. Assembly of cells and vesicles for organ engineering

    International Nuclear Information System (INIS)

    Taguchi, Tetsushi

    2011-01-01

    The development of materials and technologies for the assembly of cells and/or vesicles is a key for the next generation of tissue engineering. Since the introduction of the tissue engineering concept in 1993, various types of scaffolds have been developed for the regeneration of connective tissues in vitro and in vivo. Cartilage, bone and skin have been successfully regenerated in vitro, and these regenerated tissues have been applied clinically. However, organs such as the liver and pancreas constitute numerous cell types, contain small amounts of extracellular matrix, and are highly vascularized. Therefore, organ engineering will require the assembly of cells and/or vesicles. In particular, adhesion between cells/vesicles will be required for regeneration of organs in vitro. This review introduces and discusses the key technologies and materials for the assembly of cells/vesicles for organ regeneration. (topical review)

  13. Towards traceable size determination of extracellular vesicles

    Directory of Open Access Journals (Sweden)

    Zoltán Varga

    2014-02-01

    Full Text Available Background: Extracellular vesicles (EVs have clinical importance due to their roles in a wide range of biological processes. The detection and characterization of EVs are challenging because of their small size, low refractive index, and heterogeneity. Methods: In this manuscript, the size distribution of an erythrocyte-derived EV sample is determined using state-of-the-art techniques such as nanoparticle tracking analysis, resistive pulse sensing, and electron microscopy, and novel techniques in the field, such as small-angle X-ray scattering (SAXS and size exclusion chromatography coupled with dynamic light scattering detection. Results: The mode values of the size distributions of the studied erythrocyte EVs reported by the different methods show only small deviations around 130 nm, but there are differences in the widths of the size distributions. Conclusion: SAXS is a promising technique with respect to traceability, as this technique was already applied for traceable size determination of solid nanoparticles in suspension. To reach the traceable measurement of EVs, monodisperse and highly concentrated samples are required.

  14. Extracellular vesicles in Alzheimer's disease: friends or foes? Focus on aβ-vesicle interaction.

    Science.gov (United States)

    Joshi, Pooja; Benussi, Luisa; Furlan, Roberto; Ghidoni, Roberta; Verderio, Claudia

    2015-03-03

    The intercellular transfer of amyloid-β (Aβ) and tau proteins has received increasing attention in Alzheimer's disease (AD). Among other transfer modes, Aβ and tau dissemination has been suggested to occur through release of Extracellular Vesicles (EVs), which may facilitate delivery of pathogenic proteins over large distances. Recent evidence indicates that EVs carry on their surface, specific molecules which bind to extracellular Aβ, opening the possibility that EVs may also influence Aβ assembly and synaptotoxicity. In this review we focus on studies which investigated the impact of EVs in Aβ-mediated neurodegeneration and showed either detrimental or protective role for EVs in the pathology.

  15. Inhibition of sarcoplasmic Ca2+-ATPase increases caffeine- and halothane-induced contractures in muscle bundles of malignant hyperthermia susceptible and healthy individuals

    Directory of Open Access Journals (Sweden)

    Roewer Norbert

    2005-06-01

    Full Text Available Abstract Background Malignant hyperthermia (MH is triggered by halogenated anaesthetics and depolarising muscle relaxants, leading to an uncontrolled hypermetabolic state of skeletal muscle. An uncontrolled sarcoplasmic Ca2+ release is mediated via the ryanodine receptor. A compensatory mechanism of increased sarcoplasmic Ca2+-ATPase activity was described in pigs and in transfected cell lines. We hypothesized that inhibition of Ca2+ reuptake via the sarcoplasmic Ca2+-ATPase (SERCA enhances halothane- and caffeine-induced muscle contractures in MH susceptible more than in non-susceptible skeletal muscle. Methods With informed consent, surplus muscle bundles of 7 MHS (susceptible, 7 MHE (equivocal and 16 MHN (non-susceptible classified patients were mounted to an isometric force transducer, electrically stimulated, preloaded and equilibrated. Following 15 min incubation with cyclopiazonic acid (CPA 25 μM, the European MH standard in-vitro-contracture test protocol with caffeine (0.5; 1; 1.5; 2; 3; 4 mM and halothane (0.11; 0.22; 0.44; 0.66 mM was performed. Data as median and quartiles; Friedman- and Wilcoxon-test for differences with and without CPA; p Results Initial length, weight, maximum twitch height, predrug resting tension and predrug twitch height of muscle bundles did not differ between groups. CPA increased halothane- and caffeine-induced contractures significantly. This increase was more pronounced in MHS and MHE than in MHN muscle bundles. Conclusion Inhibition of the SERCA activity by CPA enhances halothane- and caffeine-induced contractures especially in MHS and MHE skeletal muscle and may help for the diagnostic assignment of MH susceptibility. The status of SERCA activity may play a significant but so far unknown role in the genesis of malignant hyperthermia.

  16. CAPS Activity in Priming Vesicle Exocytosis Requires CK2 Phosphorylation*

    OpenAIRE

    Nojiri, Mari; Loyet, Kelly M.; Klenchin, Vadim A.; Kabachinski, Gregory; Martin, Thomas F. J.

    2009-01-01

    CAPS (Ca2+-dependent activator protein for secretion) functions in priming Ca2+-dependent vesicle exocytosis, but the regulation of CAPS activity has not been characterized. Here we show that phosphorylation by protein kinase CK2 is required for CAPS activity. Dephosphorylation eliminated CAPS activity in reconstituting Ca2+-dependent vesicle exocytosis in permeable and intact PC12 cells. Ser-5, -6, and -7 and Ser-1281 were identified by mass spectrometry as the major phosphorylation sites in...

  17. Cystadenoma of the seminal vesicle. A case report

    DEFF Research Database (Denmark)

    Lundhus, E; Bundgaard, N; Sørensen, Flemming Brandt

    1984-01-01

    Cystadenomas of the seminal vesicle are extremely rare benign tumours, which only have been reported seven times earlier in the literature. The first Danish case is reported with discussion of symptomatology, pathology and treatment.......Cystadenomas of the seminal vesicle are extremely rare benign tumours, which only have been reported seven times earlier in the literature. The first Danish case is reported with discussion of symptomatology, pathology and treatment....

  18. Interaction and rheology of vesicle suspensions in confined shear flow

    Science.gov (United States)

    Shen, Zaiyi; Farutin, Alexander; Thiébaud, Marine; Misbah, Chaouqi

    2017-10-01

    Dynamics and rheology of a confined suspension of vesicles (a model for red blood cells) are studied numerically in two dimensions by using an immersed boundary lattice Boltzmann method. We pay particular attention to the link between the spatiotemporal organization and the rheology of the suspension. Besides confinement, we analyze the effect of concentration of the suspension, ϕ (defined as the area fraction occupied by the vesicles in the simulation domain), as well as the viscosity contrast λ (defined as the ratio between the viscosity of the fluid inside the vesicles, ηint, and that of the suspending fluid, ηext). The hydrodynamic interaction between two vesicles is shown to play a key role in determining the spatial organization. For λ =1 , the pair of vesicles settles into an equilibrium state with constant interdistance, which is regulated by the confinement. The equilibrium interdistance increases with the gap between walls, following a linear relationship. However, no stable equilibrium interdistance between two tumbling vesicles is observed for λ =10 . A quite ordered suspension is observed concomitant with the existence of an equilibrium interdistance between a vesicle pair. However, a disordered suspension prevails when no pair equilibrium interdistance exists, as occurs for tumbling vesicles. We then analyze the rheology, focusing on the effective viscosity, denoted as η , as well as on normalized viscosity, defined as [η ] =(η -ηext) /(ηextϕ ) . Ordering of the suspension is accompanied by a nonmonotonic behavior of [η ] with ϕ , while η exhibits plateaus. The nonmonotonic behavior of [η ] is suppressed when a disordered pattern prevails.

  19. Pannexin2 oligomers localize in the membranes of endosomal vesicles in mammalian cells while Pannexin1 channels traffic to the plasma membrane.

    Science.gov (United States)

    Boassa, Daniela; Nguyen, Phuong; Hu, Junru; Ellisman, Mark H; Sosinsky, Gina E

    2014-01-01

    Pannexin2 (Panx2) is the largest of three members of the pannexin proteins. Pannexins are topologically related to connexins and innexins, but serve different functional roles than forming gap junctions. We previously showed that pannexins form oligomeric channels but unlike connexins and innexins, they form only single membrane channels. High levels of Panx2 mRNA and protein in the Central Nervous System (CNS) have been documented. Whereas Pannexin1 (Panx1) is fairly ubiquitous and Pannexin3 (Panx3) is found in skin and connective tissue, both are fully glycosylated, traffic to the plasma membrane and have functions correlated with extracellular ATP release. Here, we describe trafficking and subcellular localizations of exogenous Panx2 and Panx1 protein expression in MDCK, HeLa, and HEK 293T cells as well as endogenous Panx1 and Panx2 patterns in the CNS. Panx2 was found in intracellular localizations, was partially N-glycosylated, and localizations were non-overlapping with Panx1. Confocal images of hippocampal sections immunolabeled for the astrocytic protein GFAP, Panx1 and Panx2 demonstrated that the two isoforms, Panx1 and Panx2, localized at different subcellular compartments in both astrocytes and neurons. Using recombinant fusions of Panx2 with appended genetic tags developed for correlated light and electron microscopy and then expressed in different cell lines, we determined that Panx2 is localized in the membrane of intracellular vesicles and not in the endoplasmic reticulum as initially indicated by calnexin colocalization experiments. Dual immunofluorescence imaging with protein markers for specific vesicle compartments showed that Panx2 vesicles are early endosomal in origin. In electron tomographic volumes, cross-sections of these vesicles displayed fine structural details and close proximity to actin filaments. Thus, pannexins expressed at different subcellular compartments likely exert distinct functional roles, particularly in the nervous system.

  20. Extracellular Membrane Vesicles and Phytopathogenicity of Acholeplasma laidlawii PG8

    Directory of Open Access Journals (Sweden)

    Vladislav M. Chernov

    2012-01-01

    Full Text Available For the first time, the phytopathogenicity of extracellular vesicles of Acholeplasma laidlawii PG8 (a ubiquitous mycoplasma that is one of the five common species of cell culture contaminants and is a causative agent for phytomycoplasmoses in Oryza sativa L. plants was studied. Data on the ability of extracellular vesicles of Acholeplasma laidlawii PG8 to penetrate from the nutrient medium into overground parts of Oryza sativa L. through the root system and to cause alterations in ultrastructural organization of the plants were presented. As a result of the analysis of ultrathin leaf sections of plants grown in medium with A. laidlawii PG8 vesicles, we detected significant changes in tissue ultrastructure characteristic to oxidative stress in plants as well as their cultivation along with bacterial cells. The presence of nucleotide sequences of some mycoplasma genes within extracellular vesicles of Acholeplasma laidlawii PG8 allowed a possibility to use PCR (with the following sequencing to perform differential detection of cells and bacterial vesicles in samples under study. The obtained data may suggest the ability of extracellular vesicles of the mycoplasma to display in plants the features of infection from the viewpoint of virulence criteria—invasivity, infectivity—and toxigenicity—and to favor to bacterial phytopathogenicity.

  1. Active elastohydrodynamics of vesicles in narrow blind constrictions

    Science.gov (United States)

    Fai, T. G.; Kusters, R.; Harting, J.; Rycroft, C. H.; Mahadevan, L.

    2017-11-01

    Fluid-resistance limited transport of vesicles through narrow constrictions is a recurring theme in many biological and engineering applications. Inspired by the motor-driven movement of soft membrane-bound vesicles into closed neuronal dendritic spines, here we study this problem using a combination of passive three-dimensional simulations and a simplified semianalytical theory for the active transport of vesicles forced through constrictions by molecular motors. We show that the motion of these objects is characterized by two dimensionless quantities related to the geometry and to the strength of forcing relative to the vesicle elasticity. We use numerical simulations to characterize the transit time for a vesicle forced by fluid pressure through a constriction in a channel and find that relative to an open channel, transport into a blind end leads to the formation of a smaller forward-flowing lubrication layer that strongly impedes motion. When the fluid pressure forcing is complemented by forces due to molecular motors that are responsible for vesicle trafficking into dendritic spines, we find that the competition between motor forcing and fluid drag results in multistable dynamics reminiscent of the real system. Our study highlights the role of nonlocal hydrodynamic effects in determining the kinetics of vesicular transport in constricted geometries.

  2. Calmodulin stimulation of calcium transport in carrot microsomal vesicles

    International Nuclear Information System (INIS)

    Pierce, W.S.; Sze, H.

    1987-01-01

    ATP-dependent 45 Ca 2+ uptake into microsomal vesicles isolated from cultured carrot cells (Daucus carota Danvers) was stimulated 2-3 fold by 5 ug/ml calmodulin (CaM). Microsomal vesicles separated with a linear sucrose gradient showed two peaks with CaM-stimulated Ca 2+ uptake activities. One peak (at 1.12 g/cc) comigrated with the activity of the antimycin A-insensitive NADH-dependent cytochrome c reductase. This transport activity was enhanced 10-20 fold by 10 mM oxalate and appeared to be associates with vesicles derived primarily from the ER. The other peak of CaM-stimulated Ca 2+ uptake (at 1.17 g/cc) was not affected by oxalate. These vesicles are probably derived from the plasma membrane. Preliminary experiments with the low-density vesicles (ER) vesicles, indicate that inositol-1,4,5-trisphosphate caused a transient reduction in intravesicular Ca 2+ . These results are consistent with the ER being an important site of intracellular Ca 2+ regulation

  3. Bubble-induced microstreaming: guiding and destroying lipid vesicles

    Science.gov (United States)

    Marmottant, Philippe; Hilgenfeldt, Sascha

    2002-11-01

    Micron-sized bubbles respond with strong oscillations when submitted to ultrasound. This has led to their use as echographic contrast enhancers. The large energy and force densities generated by the collapsing bubbles also make them non-invasive mechanical tools: Recently, it has been reported that the interaction of cavitating bubbles with nearby cells can render the latter permeable to large molecules (sonoporation), suggesting prospects for drug delivery and gene transfection. We have developed a laboratory setup that allows for a controlled study of the interaction of single microbubbles with single lipid bilayer vesicles. Substituting vesicles for cell membranes is advantageous because the mechanical properties of vesicles are well-known. Microscopic observations reveal that vesicles near a bubble follow the vivid streaming motion set up by the bubble. The vesicles "bounce" off the bubble, being periodically accelerated towards and away from it, and undergo well-defined shape deformations along their trajectory in accordance with fluid-dynamical theory. Break-up of vesicles could also be observed.

  4. Osteochondritis dissecans (OCD), an endoplasmic reticulum storage disease?

    DEFF Research Database (Denmark)

    Skagen, Peter Storgaard; Horn, T; Kruse, H A

    2011-01-01

    Osteochondritis dissecans (OCD) fragments, cartilage and blood from four patients were used for morphological and molecular analysis. Controls included articular cartilage and blood samples from healthy individuals. Light microscopy and transmission electron microscopy (TEM) showed abnormalities...... in chondrocytes and extracellular matrix of cartilage from OCD patients. Abnormal type II collagen heterofibrils in "bundles" and chondrocytes with abnormal accumulation of matrix proteins in distended rough endoplasmic reticulum were typical findings. Further, Von Kossa staining and TEM showed empty lacunae...... polymorphism was found within the COL2A1 gene for one patient. We suggest that OCD lesions are caused by an alteration in chondrocyte matrix synthesis causing an endoplasmic reticulum storage disease phenotype, which disturbs or abrupts endochondral ossification....

  5. Prediction of endoplasmic reticulum resident proteins using fragmented amino acid composition and support vector machine

    Directory of Open Access Journals (Sweden)

    Ravindra Kumar

    2017-09-01

    Full Text Available Background The endoplasmic reticulum plays an important role in many cellular processes, which includes protein synthesis, folding and post-translational processing of newly synthesized proteins. It is also the site for quality control of misfolded proteins and entry point of extracellular proteins to the secretory pathway. Hence at any given point of time, endoplasmic reticulum contains two different cohorts of proteins, (i proteins involved in endoplasmic reticulum-specific function, which reside in the lumen of the endoplasmic reticulum, called as endoplasmic reticulum resident proteins and (ii proteins which are in process of moving to the extracellular space. Thus, endoplasmic reticulum resident proteins must somehow be distinguished from newly synthesized secretory proteins, which pass through the endoplasmic reticulum on their way out of the cell. Approximately only 50% of the proteins used in this study as training data had endoplasmic reticulum retention signal, which shows that these signals are not essentially present in all endoplasmic reticulum resident proteins. This also strongly indicates the role of additional factors in retention of endoplasmic reticulum-specific proteins inside the endoplasmic reticulum. Methods This is a support vector machine based method, where we had used different forms of protein features as inputs for support vector machine to develop the prediction models. During training leave-one-out approach of cross-validation was used. Maximum performance was obtained with a combination of amino acid compositions of different part of proteins. Results In this study, we have reported a novel support vector machine based method for predicting endoplasmic reticulum resident proteins, named as ERPred. During training we achieved a maximum accuracy of 81.42% with leave-one-out approach of cross-validation. When evaluated on independent dataset, ERPred did prediction with sensitivity of 72.31% and specificity of 83

  6. Comparative Analysis of Membrane Vesicles from Three Piscirickettsia salmonis Isolates Reveals Differences in Vesicle Characteristics.

    Directory of Open Access Journals (Sweden)

    Julia I Tandberg

    Full Text Available Membrane vesicles (MVs are spherical particles naturally released from the membrane of Gram-negative bacteria. Bacterial MV production is associated with a range of phenotypes including biofilm formation, horizontal gene transfer, toxin delivery, modulation of host immune responses and virulence. This study reports comparative profiling of MVs from bacterial strains isolated from three widely disperse geographical areas. Mass spectrometry identified 119, 159 and 142 proteins in MVs from three different strains of Piscirickettsia salmonis isolated from salmonids in Chile (LF-89, Norway (NVI 5692 and Canada (NVI 5892, respectively. MV comparison revealed several strain-specific differences related to higher virulence capability for LF-89 MVs, both in vivo and in vitro, and stronger similarities between the NVI 5692 and NVI 5892 MV proteome. The MVs were similar in size and appearance as analyzed by electron microscopy and dynamic light scattering. The MVs from all three strains were internalized by both commercial and primary immune cell cultures, which suggest a potential role of the MVs in the bacterium's utilization of leukocytes. When MVs were injected into an adult zebrafish infection model, an upregulation of several pro-inflammatory genes were observed in spleen and kidney, indicating a modulating effect on the immune system. The present study is the first comparative analysis of P. salmonis derived MVs, highlighting strain-specific vesicle characteristics. The results further illustrate that the MV proteome from one bacterial strain is not representative of all bacterial strains within one species.

  7. Focus on Extracellular Vesicles: Physiological Role and Signalling Properties of Extracellular Membrane Vesicles

    Directory of Open Access Journals (Sweden)

    Nunzio Iraci

    2016-02-01

    Full Text Available Extracellular vesicles (EVs are a heterogeneous population of secreted membrane vesicles, with distinct biogenesis routes, biophysical properties and different functions both in physiological conditions and in disease. The release of EVs is a widespread biological process, which is conserved across species. In recent years, numerous studies have demonstrated that several bioactive molecules are trafficked with(in EVs, such as microRNAs, mRNAs, proteins and lipids. The understanding of their final impact on the biology of specific target cells remains matter of intense debate in the field. Also, EVs have attracted great interest as potential novel cell-free therapeutics. Here we describe the proposed physiological and pathological functions of EVs, with a particular focus on their molecular content. Also, we discuss the advances in the knowledge of the mechanisms regulating the secretion of EV-associated molecules and the specific pathways activated upon interaction with the target cell, highlighting the role of EVs in the context of the immune system and as mediators of the intercellular signalling in the brain.

  8. Surface glycosylation profiles of urine extracellular vesicles.

    Directory of Open Access Journals (Sweden)

    Jared Q Gerlach

    Full Text Available Urinary extracellular vesicles (uEVs are released by cells throughout the nephron and contain biomolecules from their cells of origin. Although uEV-associated proteins and RNA have been studied in detail, little information exists regarding uEV glycosylation characteristics. Surface glycosylation profiling by flow cytometry and lectin microarray was applied to uEVs enriched from urine of healthy adults by ultracentrifugation and centrifugal filtration. The carbohydrate specificity of lectin microarray profiles was confirmed by competitive sugar inhibition and carbohydrate-specific enzyme hydrolysis. Glycosylation profiles of uEVs and purified Tamm Horsfall protein were compared. In both flow cytometry and lectin microarray assays, uEVs demonstrated surface binding, at low to moderate intensities, of a broad range of lectins whether prepared by ultracentrifugation or centrifugal filtration. In general, ultracentrifugation-prepared uEVs demonstrated higher lectin binding intensities than centrifugal filtration-prepared uEVs consistent with lesser amounts of co-purified non-vesicular proteins. The surface glycosylation profiles of uEVs showed little inter-individual variation and were distinct from those of Tamm Horsfall protein, which bound a limited number of lectins. In a pilot study, lectin microarray was used to compare uEVs from individuals with autosomal dominant polycystic kidney disease to those of age-matched controls. The lectin microarray profiles of polycystic kidney disease and healthy uEVs showed differences in binding intensity of 6/43 lectins. Our results reveal a complex surface glycosylation profile of uEVs that is accessible to lectin-based analysis following multiple uEV enrichment techniques, is distinct from co-purified Tamm Horsfall protein and may demonstrate disease-specific modifications.

  9. Seminal vesicle involvement at salvage radical prostatectomy.

    Science.gov (United States)

    Meeks, Joshua J; Walker, Marc; Bernstein, Melanie; Eastham, James A

    2013-06-01

    To describe the incidence and clinical outcomes of seminal vesicle invasion (SVI) at salvage radical prostatectomy (SRP) and to describe the accuracy of SV biopsy. As SRP is used after biochemical recurrence (BCR) of prostate cancer after radiotherapy (RT) to gain local oncological control. The SVs receive lower doses of radiation from external-beam RT (EBRT) to avoid rectal exposure and are not targeted with brachytherapy (BT) with low-risk prostate cancer. SRP was performed on 206 men with BCR after RT at a tertiary care institution between 1998 and 2011. Post-RT biopsy and SRP specimens were reviewed by a genitourinary pathologist. SVI was detected in 65 (32%) of 206 patients. No difference was found between EBRT alone (65% vs 63%) and BT (29% vs 31%) with or without EBRT in patients with SVI. Men with SVI had higher rates of cT3 disease (20% vs 8%) and Gleason score ≥ 8 at SRP (52% vs 21%). BCR-free survival at 5 years was 18% and 56% in patients with and without SVI (hazard ratio 2.85, 95% confidence interval 1.87-4.36, P < 0.001), yet the rate of local recurrence was low (11%). Prostate cancer was identified in nine of 18 patients who underwent SV biopsy and was the only location of prostate cancer in two patients. SVI is a prognostic indicator for BCR after SRP, but local recurrence in patients with SVI after SRP remains low. We recommend SV biopsy to improve staging and cancer detection in men with BCR after radiotherapy. © 2013 BJU International.

  10. Sugar-based gemini surfactant with a vesicle-to-micelle transition at acidic pH and a reversible vesicle flocculation near neutral pH

    NARCIS (Netherlands)

    Johnsson, M; Wagenaar, A; Engberts, JBFN

    2003-01-01

    A sugar-based (reduced glucose) gemini surfactant forms vesicles in dilute aqueous solution near neutral pH. At lower pH, there is a vesicle-to-micelle transition within a narrow pH region (pH 6.0-5.6). The vesicles are transformed into large cylindrical micelles that in turn are transformed into

  11. Purification of the Membrane Compartment for Endoplasmic Reticulum-associated Degradation of Exogenous Antigens in Cross-presentation.

    Science.gov (United States)

    Imai, Jun; Otani, Mayu; Sakai, Takahiro; Hatta, Shinichi

    2017-08-21

    Dendritic cells (DCs) are highly capable of processing and presenting internalized exogenous antigens upon major histocompatibility class (MHC) I molecules also known as cross-presentation (CP). CP plays an important role not only in the stimulation of naïve CD8 + T cells and memory CD8 + T cells for infectious and tumor immunity but also in the inactivation of self-acting naïve T cells by T cell anergy or T cell deletion. Although the critical molecular mechanism of CP remains to be elucidated, accumulating evidence indicates that exogenous antigens are processed through endoplasmic reticulum-associated degradation (ERAD) after export from non-classical endocytic compartments. Until recently, characterizations of these endocytic compartments were limited because there were no specific molecular markers other than exogenous antigens. The method described here is a new vesicle isolation protocol, which allows for the purification of these endocytic compartments. Using this purified microsome, we reconstituted the ERAD-like transport, ubiquitination, and processing of the exogenous antigen in vitro, suggesting that the ubiquitin-proteasome system processed the exogenous antigen after export from this cellular compartment. This protocol can be further applied to other cell types to clarify the molecular mechanism of CP.

  12. Overall energy conversion efficiency of a photosynthetic vesicle

    Energy Technology Data Exchange (ETDEWEB)

    Sener, Melih [Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, United States; Department of Physics, University of Illinois at Urbana-Champaign, Urbana, United States; Strumpfer, Johan [Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, United States; Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, United States; Singharoy, Abhishek [Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, United States; Hunter, C. Neil [Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom; Schulten, Klaus [Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, United States; Department of Physics, University of Illinois at Urbana-Champaign, Urbana, United States; Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, United States

    2016-08-26

    The chromatophore of purple bacteria is an intracellular spherical vesicle that exists in numerous copies in the cell and that efficiently converts sunlight into ATP synthesis, operating typically under low light conditions. Building on an atomic-level structural model of a low-light-adapted chromatophore vesicle from Rhodobacter sphaeroides, we investigate the cooperation between more than a hundred protein complexes in the vesicle. The steady-state ATP production rate as a function of incident light intensity is determined after identifying quinol turnover at the cytochrome bc1 complex (cytbc1) as rate limiting and assuming that the quinone/quinol pool of about 900 molecules acts in a quasi-stationary state. For an illumination condition equivalent to 1% of full sunlight, the vesicle exhibits an ATP production rate of 82 ATP molecules/s. The energy conversion efficiency of ATP synthesis at illuminations corresponding to 1%–5% of full sunlight is calculated to be 0.12-0.04, respectively. The vesicle stoichiometry, evolutionarily adapted to the low light intensities in the habitat of purple bacteria, is suboptimal for steady-state ATP turnover for the benefit of protection against over-illumination.

  13. Adhesion signals of phospholipid vesicles at an electrified interface.

    Science.gov (United States)

    DeNardis, Nadica Ivošević; Žutić, Vera; Svetličić, Vesna; Frkanec, Ruža

    2012-09-01

    General adhesion behavior of phospholipid vesicles was examined in a wide range of potentials at the mercury electrode by recording time-resolved adhesion signals. It was demonstrated that adhesion-based detection is sensitive to polar headgroups in phospholipid vesicles. We identified a narrow potential window around the point of zero charge of the electrode where the interaction of polar headgroups of phosphatidylcholine vesicles with the substrate is manifested in the form of bidirectional signals. The bidirectional signal is composed of the charge flow due to the nonspecific interaction of vesicle adhesion and spreading and of the charge flow due to a specific interaction of the negatively charged electrode and the most exposed positively charged choline headgroups. These signals are expected to appear only when the electrode surface charge density is less than the surface charge density of the choline groups at the contact interface. In comparison, for the negatively charged phosphatidylserine vesicles, we identified the potential window at the mercury electrode where charge compensation takes place, and bidirectional signals were not detected.

  14. Models for randomly distributed nanoscopic domains on spherical vesicles

    Science.gov (United States)

    Anghel, Vinicius N. P.; Bolmatov, Dima; Katsaras, John

    2018-06-01

    The existence of lipid domains in the plasma membrane of biological systems has proven controversial, primarily due to their nanoscopic size—a length scale difficult to interrogate with most commonly used experimental techniques. Scattering techniques have recently proven capable of studying nanoscopic lipid domains populating spherical vesicles. However, the development of analytical methods able of predicting and analyzing domain pair correlations from such experiments has not kept pace. Here, we developed models for the random distribution of monodisperse, circular nanoscopic domains averaged on the surface of a spherical vesicle. Specifically, the models take into account (i) intradomain correlations corresponding to form factors and interdomain correlations corresponding to pair distribution functions, and (ii) the analytical computation of interdomain correlations for cases of two and three domains on a spherical vesicle. In the case of more than three domains, these correlations are treated either by Monte Carlo simulations or by spherical analogs of the Ornstein-Zernike and Percus-Yevick (PY) equations. Importantly, the spherical analog of the PY equation works best in the case of nanoscopic size domains, a length scale that is mostly inaccessible by experimental approaches such as, for example, fluorescent techniques and optical microscopies. The analytical form factors and structure factors of nanoscopic domains populating a spherical vesicle provide a new and important framework for the quantitative analysis of experimental data from commonly studied phase-separated vesicles used in a wide range of biophysical studies.

  15. Arabinogalactan Proteins Are Involved in Salt-Adaptation and Vesicle Trafficking in Tobacco by-2 Cell Cultures.

    Science.gov (United States)

    Olmos, Enrique; García De La Garma, Jesús; Gomez-Jimenez, Maria C; Fernandez-Garcia, Nieves

    2017-01-01

    Arabinogalactan proteins (AGPs) are a highly diverse family of glycoproteins that are commonly found in most plant species. However, little is known about the physiological and molecular mechanisms of their function. AGPs are involved in different biological processes such as cell differentiation, cell expansion, tissue development and somatic embryogenesis. AGPs are also involved in abiotic stress response such as salinity modulating cell wall expansion. In this study, we describe how salt-adaptation in tobacco BY-2 cell cultures induces important changes in arabinogalactan proteins distribution and contents. Using the immuno-dot blot technique with different anti-AGP antibodies (JIM13, JIM15, and others), we observed that AGPs were highly accumulated in the culture medium of salt-adapted tobacco cells, probably due to the action of phospholipases. We located these AGP epitopes using immunogold labeling in the cytoplasm associated to the endoplasmic reticulum, the golgi apparatus, and vesicles, plasma membrane and tonoplast. Our results show that salt-adaptation induced a significant reduction of the cytoplasm, plasma membrane and tonoplast content of these epitopes. Yariv reagent was added to the control and salt-adapted tobacco cell cultures, leading to cell death induction in control cells but not in salt-adapted cells. Ultrastructural and immunogold labeling revealed that cell death induced by Yariv reagent in control cells was due to the interaction of Yariv reagent with the AGPs linked to the plasma membranes. Finally, we propose a new function of AGPs as a possible sodium carrier through the mechanism of vesicle trafficking from the apoplast to the vacuoles in salt-adapted tobacco BY-2 cells. This mechanism may contribute to sodium homeostasis during salt-adaptation to high saline concentrations.

  16. Acrolein Induces Endoplasmic Reticulum Stress and Causes Airspace Enlargement

    Science.gov (United States)

    Hanaoka, Masayuki; Natarajan, Ramesh; Kraskauskas, Donatas; Voelkel, Norbert F.

    2012-01-01

    Background Given the relative abundance and toxic potential of acrolein in inhaled cigarette smoke, it is surprising how little is known about the pulmonary and systemic effects of acrolein. Here we test the hypothesis whether systemic administration of acrolein could cause endoplasmic reticulum (ER) stress, and lung cell apoptosis, leading to the enlargement of the alveolar air spaces in rats. Methods Acute and chronic effects of intraperitoneally administered acrolein were tested. Mean alveolar airspace area was measured by using light microscopy and imaging system software. TUNEL staining and immunohistochemistry (IHC) for active caspase 3 and Western blot analysis for active caspase 3, and caspase 12 were performed to detect apoptosis. The ER-stress related gene expression in the lungs was determined by Quantitative real-time PCR analysis. Acrolein-protein adducts in the lung tissue were detected by IHC. Results Acute administration of acrolein caused a significant elevation of activated caspase 3, upregulation of VEGF expression and induced ER stress proteins in the lung tissue. The chronic administration of acrolein in rats led to emphysematous lung tissue remodeling. TUNEL staining and IHC for cleaved caspase 3 showed a large number of apoptotic septal cells in the acrolein-treated rat lungs. Chronic acrolein administration cause the endoplasmic reticulum stress response manifested by significant upregulation of ATF4, CHOP and GADd34 expression. In smokers with COPD there was a considerable accumulation of acrolein-protein adducts in the inflammatory, airway and vascular cells. Conclusions Systemic administration of acrolein causes endoplasmic reticulum stress response, lung cell apoptosis, and chronic administration leads to the enlargement of the alveolar air spaces and emphysema in rats. The substantial accumulation of acrolein-protein adducts in the lungs of COPD patients suggest a role of acrolein in the pathogenesis of emphysema. PMID:22675432

  17. Extracellular Vesicles in Brain Tumors and Neurodegenerative Diseases

    Directory of Open Access Journals (Sweden)

    Federica Ciregia

    2017-08-01

    Full Text Available Extracellular vesicles (EVs can be classified into apoptotic bodies, microvesicles (MVs, and exosomes, based on their origin or size. Exosomes are the smallest and best characterized vesicles which derived from the endosomal system. These vesicles are released from many different cell types including neuronal cells and their functions in the nervous system are investigated. They have been proposed as novel means for intercellular communication, which takes part not only to the normal neuronal physiology but also to the transmission of pathogenic proteins. Indeed, exosomes are fundamental to assemble and transport proteins during development, but they can also transfer neurotoxic misfolded proteins in pathogenesis. The present review will focus on their roles in neurological diseases, specifically brain tumors, such as glioblastoma (GBM, neuroblastoma (NB, medulloblastoma (MB, and metastatic brain tumors and chronic neurodegenerative diseases, such as Alzheimer, Parkinson, multiple sclerosis (MS, amyotrophic lateral sclerosis (ALS, Huntington, and Prion diseseases highlighting their involvement in spreading neurotoxicity, in therapeutics, and in pathogenesis.

  18. Irregular bilayer structure in vesicles prepared from Halobacterium cutirubrum lipids

    Science.gov (United States)

    Lanyi, J. K.

    1974-01-01

    Fluorescent probes were used to study the structure of the cell envelope of Halobacterium cutirubrum, and, in particular, to explore the effect of the heterogeneity of the lipids in this organism on the structure of the bilayers. The fluorescence polarization of perylene was followed in vesicles of unfractionated lipids and polar lipids as a function of temperature in 3.4 M solutions of NaCl, NaNO3, and KSCN, and it was found that vesicles of unfractionated lipids were more perturbed by chaotropic agents than polar lipids. The dependence of the relaxation times of perylene on temperature was studied in cell envelopes and in vesicles prepared from polar lipids, unfractionated lipids, and mixtures of polar and neutral lipids.

  19. Met receptor inhibitor SU11274 localizes in the endoplasmic reticulum.

    Science.gov (United States)

    Wiest, Edwin J; Smith, Heather Jensen; Hollingsworth, Michael A

    2018-07-02

    We discovered that SU11274, a class I c-Met inhibitor, fluoresces when excited by 488 nm laser light and showed rapid specific accumulation in distinct subcellular compartments. Given that SU11274 reduces cancer cell viability, we exploited these newly identified spectral properties to determine SU11274 intracellular distribution and accumulation in human pancreatic cancer cells. The aim of the studies reported here was to identify organelle(s) to which SU11274 is trafficked. We conclude that SU11274 rapidly and predominantly accumulates in the endoplasmic reticulum. Copyright © 2018. Published by Elsevier Inc.

  20. Vesicle biomechanics in a time-varying magnetic field.

    Science.gov (United States)

    Ye, Hui; Curcuru, Austen

    2015-01-01

    Cells exhibit distortion when exposed to a strong electric field, suggesting that the field imposes control over cellular biomechanics. Closed pure lipid bilayer membranes (vesicles) have been widely used for the experimental and theoretical studies of cellular biomechanics under this electrodeformation. An alternative method used to generate an electric field is by electromagnetic induction with a time-varying magnetic field. References reporting the magnetic control of cellular mechanics have recently emerged. However, theoretical analysis of the cellular mechanics under a time-varying magnetic field is inadequate. We developed an analytical theory to investigate the biomechanics of a modeled vesicle under a time-varying magnetic field. Following previous publications and to simplify the calculation, this model treated the inner and suspending media as lossy dielectrics, the membrane thickness set at zero, and the electric resistance of the membrane assumed to be negligible. This work provided the first analytical solutions for the surface charges, electric field, radial pressure, overall translational forces, and rotational torques introduced on a vesicle by the time-varying magnetic field. Frequency responses of these measures were analyzed, particularly the frequency used clinically by transcranial magnetic stimulation (TMS). The induced surface charges interacted with the electric field to produce a biomechanical impact upon the vesicle. The distribution of the induced surface charges depended on the orientation of the coil and field frequency. The densities of these charges were trivial at low frequency ranges, but significant at high frequency ranges. The direction of the radial force on the vesicle was dependent on the conductivity ratio between the vesicle and the medium. At relatively low frequencies (biomechanics under a time-varying magnetic field. Biological effects of clinical TMS are not likely to occur via alteration of the biomechanics of brain

  1. The role of the endoplasmic reticulum stress response following cerebral ischemia.

    Science.gov (United States)

    Hadley, Gina; Neuhaus, Ain A; Couch, Yvonne; Beard, Daniel J; Adriaanse, Bryan A; Vekrellis, Kostas; DeLuca, Gabriele C; Papadakis, Michalis; Sutherland, Brad A; Buchan, Alastair M

    2018-06-01

    Background Cornu ammonis 3 (CA3) hippocampal neurons are resistant to global ischemia, whereas cornu ammonis (CA1) 1 neurons are vulnerable. Hamartin expression in CA3 neurons mediates this endogenous resistance via productive autophagy. Neurons lacking hamartin demonstrate exacerbated endoplasmic reticulum stress and increased cell death. We investigated endoplasmic reticulum stress responses in CA1 and CA3 regions following global cerebral ischemia, and whether pharmacological modulation of endoplasmic reticulum stress or autophagy altered neuronal viability . Methods In vivo: male Wistar rats underwent sham or 10 min of transient global cerebral ischemia. CA1 and CA3 areas were microdissected and endoplasmic reticulum stress protein expression quantified at 3 h and 12 h of reperfusion. In vitro: primary neuronal cultures (E18 Wistar rat embryos) were exposed to 2 h of oxygen and glucose deprivation or normoxia in the presence of an endoplasmic reticulum stress inducer (thapsigargin or tunicamycin), an endoplasmic reticulum stress inhibitor (salubrinal or 4-phenylbutyric acid), an autophagy inducer ([4'-(N-diethylamino) butyl]-2-chlorophenoxazine (10-NCP)) or autophagy inhibitor (3-methyladenine). Results In vivo, decreased endoplasmic reticulum stress protein expression (phospho-eIF2α and ATF4) was observed at 3 h of reperfusion in CA3 neurons following ischemia, and increased in CA1 neurons at 12 h of reperfusion. In vitro, endoplasmic reticulum stress inducers and high doses of the endoplasmic reticulum stress inhibitors also increased cell death. Both induction and inhibition of autophagy also increased cell death. Conclusion Endoplasmic reticulum stress is associated with neuronal cell death following ischemia. Neither reduction of endoplasmic reticulum stress nor induction of autophagy demonstrated neuroprotection in vitro, highlighting their complex role in neuronal biology following ischemia.

  2. Kinetic partitioning between aggregation and vesicle permeabilization by modified ADan

    DEFF Research Database (Denmark)

    Nesgaard, Lise W.; Vad, Brian; Christiansen, Gunna

    2009-01-01

    The neurodegenerative illness Familial Danish Dementia (FDD) is linked to formation and aggregation of the 34-residue ADan peptide, whose cytotoxicity may be mediated by membrane interactions. Here we characterize the derived peptide SerADan, in which the two cysteines found in ADan have been....... Aggregation is prevented at neutral/acidic pH and low ionic strength by anionic lipid vesicles. These vesicles are permeabilized by monomeric SerADan assembling on the membrane to form stable beta-sheet structures which are different from the solution aggregates. In contrast, solution ageing of SerADan first...

  3. Lipids, lipid bilayers and vesicles as seen by neutrons

    International Nuclear Information System (INIS)

    Seto, Hideki

    2011-01-01

    Lipid molecules self-assemble into bilayers in water with their hydrocarbon chains facing inward due to their amphiphilic nature. The structural and dynamical properties of lipids and lipid bilayers have been studied by neutron scattering intensively. In this article, 3 topics are shown as typical examples. 1) a time-resolved small-angle neutron scattering on uni-lamellar vesicles composed of deuterated and protonated lipids to determine lipid kinetics, 2) small-angle neutron scattering to investigate spontaneous formation of nanopores on uni-lamellar vesicles, and 3) neutron spin echo study to determine bending modulus of lipid bilayers. (author)

  4. Vesicle interactions with polyamino acids and antibody: in vitro and in vivo studies

    International Nuclear Information System (INIS)

    Dunnick, J.K.; McDougall, I.R.; Aragon, S.; Goris, M.L.; Kriss, J.P.

    1975-01-01

    Artificial spherules or vesicles of 900 A in diameter formed from phosphatidylcholine and gangliosides and enclosing /sup 99m/TcO 4 - (standard preparation) survive intact in the circulation of the mouse. Polyamino acids and protein have been incorporated into and onto the vesicles; such vesicles remain intact as determined by diffusion dialysis studies and by electron paramagnetic resonance studies of vesicles enclosing spin label. In studying the distribution of polyamino acid-vesicles and protein vesicles in vivo, it was found that the latter distribute differently from standard vesicles or free protein alone whereas aromatic polyamino acid-vesicles concentrate in the liver and spleen to a greater extent than standard vesicles. The permeability and stability characteristics of vesicles may be preserved when they are modified by the addition of protein or polyamino acids and that such modification of vesicles may be associated with an alteration of their fate in vivo. The potential exists to use vesicles as carriers of radiopharmaceuticals and other drugs and to direct the vesicles preferentially to tissue targets in vivo. (U.S.)

  5. Induction of cortical endoplasmic reticulum by dimerization of a coatomer-binding peptide anchored to endoplasmic reticulum membranes

    OpenAIRE

    Lavieu, Grégory; Orci, Lelio; Shi, Lei; Geiling, Michael; Ravazzola, Mariella; Wieland, Felix; Cosson, Pierre; Rothman, James E.

    2010-01-01

    Cortical endoplasmic reticulum (cER) is a permanent feature of yeast cells but occurs transiently in most animal cell types. Ist2p is a transmembrane protein that permanently localizes to the cER in yeast. When Ist2 is expressed in mammalian cells, it induces abundant cER containing Ist2. Ist2 cytoplasmic C-terminal peptide is necessary and sufficient to induce cER. This peptide sequence resembles classic coat protein complex I (COPI) coatomer protein-binding KKXX signals, and indeed the dime...

  6. Ghrelin Ameliorates Asthma by Inhibiting Endoplasmic Reticulum Stress.

    Science.gov (United States)

    Fu, Tian; Wang, Lei; Zeng, Qingdi; Zhang, Yan; Sheng, Baowei; Han, Liping

    2017-12-01

    This study aimed to confirm the ameliorative effect of ghrelin on asthma and investigate its mechanism. The murine model of asthma was induced by ovalbumin (OVA) treatment and assessed by histological pathology and airway responsiveness to methacholine. The total and differential leukocytes were counted. Tumor necrosis factor α, interferon γ, interleukin-5 and interleukin-13 levels in bronchoalveolar lavage fluid were quantified by commercial kits. The protein levels in pulmonary tissues were measured by Western blot analysis. Ghrelin ameliorated the histological pathology and airway hyperresponsiveness in the OVA-induced asthmatic mouse model. Consistently, OVA-increased total and differential leukocytes and levels of tumor necrosis factor α, interferon γ, interleukin-5 and interleukin-13 in bronchoalveolar lavage fluid were significantly attenuated by ghrelin. Ghrelin prevented the increased protein levels of the endoplasmic reticulum stress markers glucose regulated protein 78 and CCAAT/enhancer binding protein homologous protein and reversed the reduced levels of p-Akt in asthmatic mice. Ghrelin might prevent endoplasmic reticulum stress activation by stimulating the Akt signaling pathway, which attenuated inflammation and ameliorated asthma in mice. Ghrelin might be a new target for asthma therapy. Copyright © 2017. Published by Elsevier Inc.

  7. Ricin A chain reaches the endoplasmic reticulum after endocytosis

    International Nuclear Information System (INIS)

    Liu Qiong; Zhan Jinbiao; Chen Xinhong; Zheng Shu

    2006-01-01

    Ricin is a potent ribosome inactivating protein and now has been widely used for synthesis of immunotoxins. To target ribosome in the mammalian cytosol, ricin must firstly retrograde transport from the endomembrane system to reach the endoplasmic reticulum (ER) where the ricin A chain (RTA) is recognized by ER components that facilitate its membrane translocation to the cytosol. In the study, the fusion gene of enhanced green fluorescent protein (EGFP)-RTA was expressed with the pET-28a (+) system in Escherichia coli under the control of a T7 promoter. The fusion protein showed a green fluorescence. The recombinant protein can be purified by metal chelated affinity chromatography on a column of NTA. The rabbit anti-GFP antibody can recognize the fusion protein of EGFP-RTA just like the EGFP protein. The cytotoxicity of EGFP-RTA and RTA was evaluated by the MTT assay in HeLa and HEP-G2 cells following fluid-phase endocytosis. The fusion protein had a similar cytotoxicity of RTA. After endocytosis, the subcellular location of the fusion protein can be observed with the laser scanning confocal microscopy and the immuno-gold labeling Electro Microscopy. This study provided important evidence by a visualized way to prove that RTA does reach the endoplasmic reticulum

  8. Variable Stars in Large Magellanic Cloud Globular Clusters. III. Reticulum

    Science.gov (United States)

    Kuehn, Charles A.; Dame, Kyra; Smith, Horace A.; Catelan, Márcio; Jeon, Young-Beom; Nemec, James M.; Walker, Alistair R.; Kunder, Andrea; Pritzl, Barton J.; De Lee, Nathan; Borissova, Jura

    2013-06-01

    This is the third in a series of papers studying the variable stars in old globular clusters in the Large Magellanic Cloud. The primary goal of this series is to look at how the characteristics and behavior of RR Lyrae stars in Oosterhoff-intermediate systems compare to those of their counterparts in Oosterhoff-I/II systems. In this paper we present the results of our new time-series BVI photometric study of the globular cluster Reticulum. We found a total of 32 variables stars (22 RRab, 4 RRc, and 6 RRd stars) in our field of view. We present photometric parameters and light curves for these stars. We also present physical properties, derived from Fourier analysis of light curves, for some of the RR Lyrae stars. We discuss the Oosterhoff classification of Reticulum and use our results to re-derive the distance modulus and age of the cluster. Based on observations taken with the SMARTS 1.3 m telescope operated by the SMARTS Consortium and observations taken at the Southern Astrophysical Research (SOAR) telescope, which is a joint project of the Ministério da Ciência, Tecnologia, e Inovação (MCTI) da República Federativa do Brasil, the U.S. National Optical Astronomy Observatory (NOAO), the University of North Carolina at Chapel Hill (UNC), and Michigan State University (MSU).

  9. Observation of endoplasmic reticulum tubules via TOF-SIMS tandem mass spectrometry imaging of transfected cells.

    Science.gov (United States)

    Chini, Corryn E; Fisher, Gregory L; Johnson, Ben; Tamkun, Michael M; Kraft, Mary L

    2018-02-26

    Advances in three-dimensional secondary ion mass spectrometry (SIMS) imaging have enabled visualizing the subcellular distributions of various lipid species within individual cells. However, the difficulty of locating organelles using SIMS limits efforts to study their lipid compositions. Here, the authors have assessed whether endoplasmic reticulum (ER)-Tracker Blue White DPX ® , which is a commercially available stain for visualizing the endoplasmic reticulum using fluorescence microscopy, produces distinctive ions that can be used to locate the endoplasmic reticulum using SIMS. Time-of-flight-SIMS tandem mass spectrometry (MS 2 ) imaging was used to identify positively and negatively charged ions produced by the ER-Tracker stain. Then, these ions were used to localize the stain and thus the endoplasmic reticulum, within individual human embryonic kidney cells that contained higher numbers of endoplasmic reticulum-plasma membrane junctions on their surfaces. By performing MS 2 imaging of selected ions in parallel with the precursor ion (MS 1 ) imaging, the authors detected a chemical interference native to the cell at the same nominal mass as the pentafluorophenyl fragment from the ER-Tracker stain. Nonetheless, the fluorine secondary ions produced by the ER-Tracker stain provided a distinctive signal that enabled locating the endoplasmic reticulum using SIMS. This simple strategy for visualizing the endoplasmic reticulum in individual cells using SIMS could be combined with existing SIMS methodologies for imaging intracellular lipid distribution and to study the lipid composition within the endoplasmic reticulum.

  10. Primary vesicles, vesicle-rich segregation structures and recognition of primary and secondary porosities in lava flows from the Paraná igneous province, southern Brazil

    Science.gov (United States)

    Barreto, Carla Joana S.; de Lima, Evandro F.; Goldberg, Karin

    2017-04-01

    This study focuses on a volcanic succession of pāhoehoe to rubbly lavas of the Paraná-Etendeka Province exposed in a single road profile in southernmost Brazil. This work provides an integrated approach for examining primary vesicles and vesicle-rich segregation structures at the mesoscopic scale. In addition, this study provides a quantitative analysis of pore types in thin section. We documented distinct distribution patterns of vesicle and vesicle-rich segregation structures according to lava thickness. In compound pāhoehoe lavas, the cooling allows only vesicles (pipe vesicles to be frozen into place. In inflated pāhoehoe lavas, vesicles of different sizes are common, including pipe vesicles, and also segregation structures such as proto-cylinders, cylinders, cylinder sheets, vesicle sheets, and pods. In rubbly lavas, only vesicles of varying sizes occur. Gas release from melt caused the formation of primary porosity, while hydrothermal alteration and tectonic fracturing are the main processes that generated secondary porosity. Although several forms of porosity were created in the basaltic lava flows, the precipitation of secondary minerals within the pores has tended to reduce the original porosities. Late-stage fractures could create efficient channel networks for possible hydrocarbon/groundwater migration and entrapment owing to their ability to connect single pores. Quantitative permeability data should be gathered in future studies to confirm the potential of these lavas for store hydrocarbons or groundwater.

  11. Gel-based phosphoproteomics analysis of sarcoplasmic proteins in postmortem porcine muscle with pH decline rate and time differences

    DEFF Research Database (Denmark)

    Huang, Honggang; Larsen, Martin Røssel; Karlsson, Anders H

    2011-01-01

    phosphorylation in sarcoplasmic proteins from three groups of pigs with different pH decline rates from PM 1 to 24¿h. Globally, the fast pH decline group had the highest phosphorylation level at PM 1¿h, but lowest at 24¿h, whereas the slow pH decline group showed the reverse case. The same pattern was also...... observed in most individual bands in 1-DE. The protein phosphorylation levels of 12 bands were significantly affected by the synergy effects of pH and time (p......Meat quality development is highly influenced by the pH decline caused by the postmortem (PM) glycolysis. Protein phosphorylation is an important mechanism in regulating the activity of glycometabolic enzymes. Here, a gel-based phosphoproteomic study was performed to analyze the protein...

  12. Is contraction-stimulated glucose transport feedforward regulated by Ca2+?

    DEFF Research Database (Denmark)

    Jensen, Thomas Elbenhardt; Angin, Yeliz; Sylow, Lykke

    2014-01-01

    cell types. The literature is contrasted against our recent findings suggesting that SR Ca(2+) release is neither essential nor adequate to stimulate glucose transport in muscle. Instead, feedback signals through AMPK and mechanical stress are likely to account for most of contraction......In many cell types, Ca(2+) signals to increase the movement and surface membrane insertion of vesicles. In skeletal muscle, Ca(2+) is predominantly released from the sarcoplasmic reticulum (SR) to initiate contraction. Sarcoplasmic reticulum Ca(2+) release is widely believed to be a direct......-stimulated glucose transport. A revised working model is proposed, in which muscle glucose transport during contraction is not directly regulated by SR Ca(2+) release but rather responds exclusively to feedback signals activated secondary to cross-bridge cycling and tension development....

  13. MRI, CT and TRUS imaging of seminal vesicle metastasis

    International Nuclear Information System (INIS)

    Larsson, P.; Blomqvist, L.; Norming, U.

    1997-01-01

    We present a case of a testicular germ-cell metastasis in the seminal vesicle. Diagnostic imaging with transrectal ultrasonography (TRUS), CT, and MRI was performed. This case emphasizes the role of MRI in the evaluation of patients with pathology in the pelvic region. (orig.)

  14. Glycosylation of extracellular vesicles : current knowledge, tools and clinical perspectives

    NARCIS (Netherlands)

    Williams, Charles; Royo, Felix; Aizpurua-Olaizola, Oier; Pazos, Raquel; Boons, Geert-Jan; Reichardt, Niels-Christian; Falcon-Perez, Juan M

    2018-01-01

    It is now acknowledged that extracellular vesicles (EVs) are important effectors in a vast number of biological processes through intercellular transfer of biomolecules. Increasing research efforts in the EV field have yielded an appreciation for the potential role of glycans in EV function. Indeed,

  15. Continuous fabrication of polymeric vesicles and nanotubes with fluidic channe

    NARCIS (Netherlands)

    Peng, F.; Deng, N.-N.; Tu, Y.; van Hest, J.C.M.; Wilson, D.A.

    2017-01-01

    Fluidic channels were employed to induce the self-assembly of poly(ethylene glycol)-b-polystyrene into polymeric vesicles and nanotubes. The laminar flow in the device enables controlled diffusion of two miscible liquids at the phase boundary, leading to the formation of homogeneous polymeric

  16. Primary malignancy of seminal vesicle: A rare entity

    Directory of Open Access Journals (Sweden)

    Rajaraman Ramamurthy

    2011-01-01

    Full Text Available We report a rare case of seminal vesicle malignancy (primitive neuro ectodermal tumor in a 40-year-old male patient. He was treated with enbloc resection of the tumor and ureteric reimplantation. In view of the rarity of this entity, management of these tumors should be individualized.

  17. Dynamics of Shape Fluctuations of Quasi-spherical Vesicles Revisited

    DEFF Research Database (Denmark)

    Miao, L.; Lomholt, Michael Andersen; Kleis, J.

    2002-01-01

    In this paper, the dynamics of spontaneous shape fluctuations of a single, giant quasi-spherical vesicle formed from a single lipid species is revisited theoretically. A coherent physical theory for the dynamics is developed based on a number of fundamental principles and considerations, and a sy......In this paper, the dynamics of spontaneous shape fluctuations of a single, giant quasi-spherical vesicle formed from a single lipid species is revisited theoretically. A coherent physical theory for the dynamics is developed based on a number of fundamental principles and considerations...... of the phenomenological constants in a canonical continuum description of fluid lipid-bilayer membranes and shown the consequences of this new interpretation in terms of the characteristics of the dynamics of vesicle shape fluctuations. Moreover, we have used the systematic formulation of our theory as a framework...... against which we have discussed the previously existing theories and their discrepancies. Finally, we have made a systematic prediction about the system-dependent characteristics of the relaxation dynamics of shape fluctuations of quasi-spherical vesicles with a view of experimental studies...

  18. Seminal vesicle abscess causing unilateral hydroureteronephrosis: A case report

    Directory of Open Access Journals (Sweden)

    Vittorio Imperatore

    2017-12-01

    Full Text Available Seminal vesicle abscess (SVA is a rare urologic entity. It mainly occurs in subjects with predisposing factors and may be associated with other urogenital infections. We describe the case of a diabetic subject with SVA associated with funiculitis, epididymitis and obstructive pyelonephritis. Treatment consisted of laparotomic surgical drainage of the abscess and ureteral stent placement.

  19. A Pathogenic Potential of Acinetobacter baumannii-Derived Membrane Vesicles

    Directory of Open Access Journals (Sweden)

    Jong Suk Jin

    2011-12-01

    Full Text Available Acinetobacter baumannii secretes outer membrane vesicles (OMVs. A. baumannii OMVs deliver many virulence factors to host cells and then induce cytotoxicity and innate immune response. OMVs secreted from bacteria contribute directly to host pathology during A. baumannii infection.

  20. Penetration and fusion of phospholipid vesicles by lysozyme

    International Nuclear Information System (INIS)

    Kim, J.; Kim, H.

    1989-01-01

    The lysozyme-induced fusion of phosphatidylserine/phosphatidylethanolamine vesicles as studied at a wide range of pH is found to correlate well with the binding of this protein to the vesicles. An identical 6000 molecular weight segment of lysozyme at the N-terminal region is found to be protected from tryptic digestion when initially incubated with vesicles at several pH values. Only this segment is labeled by dansyl chloride, which is partitioned into the bilayer. These results suggest the penetration of one segment of lysozyme into the bilayer. Photoactivated labeling of the membrane-penetrating segment of lysozyme with 3-(trifluoromethyl)-3-([ 125 I]iodophenyl)diazirine ([ 125 I]TID) and subsequent identification of the labeled residues by Edman degradation and gamma-ray counting indicate that four amino acids from the N-terminal are located outside the hydrophobic core of the bilayer. Although treatment of the membrane-embedded segment with aminopeptidase failed to cleave any amino acids from the N-terminal, it appears that a loop of lysozyme segment near the N-terminal penetrates into the bilayer at acidic pH. A helical wheel diagram shows that the labeling is done mainly on one surface of the alpha-helix. The penetration kinetics as studied by time-dependent [ 125 I]TID labeling coincide with the fusion kinetics, strongly suggesting that the penetration of the lysozyme segment into the vesicles is the cause of the fusion

  1. Penetration and fusion of phospholipid vesicles by lysozyme

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J.; Kim, H. (Korea Advanced Institute of Science and Technology, Seoul)

    1989-10-01

    The lysozyme-induced fusion of phosphatidylserine/phosphatidylethanolamine vesicles as studied at a wide range of pH is found to correlate well with the binding of this protein to the vesicles. An identical 6000 molecular weight segment of lysozyme at the N-terminal region is found to be protected from tryptic digestion when initially incubated with vesicles at several pH values. Only this segment is labeled by dansyl chloride, which is partitioned into the bilayer. These results suggest the penetration of one segment of lysozyme into the bilayer. Photoactivated labeling of the membrane-penetrating segment of lysozyme with 3-(trifluoromethyl)-3-(({sup 125}I)iodophenyl)diazirine (({sup 125}I)TID) and subsequent identification of the labeled residues by Edman degradation and gamma-ray counting indicate that four amino acids from the N-terminal are located outside the hydrophobic core of the bilayer. Although treatment of the membrane-embedded segment with aminopeptidase failed to cleave any amino acids from the N-terminal, it appears that a loop of lysozyme segment near the N-terminal penetrates into the bilayer at acidic pH. A helical wheel diagram shows that the labeling is done mainly on one surface of the alpha-helix. The penetration kinetics as studied by time-dependent ({sup 125}I)TID labeling coincide with the fusion kinetics, strongly suggesting that the penetration of the lysozyme segment into the vesicles is the cause of the fusion.

  2. Removal of Vesicle Structures from Transmission Electron Microscope Images

    DEFF Research Database (Denmark)

    Jensen, Katrine Hommelhoff; Sigworth, Fred; Brandt, Sami Sebastian

    2015-01-01

    In this paper, we address the problem of imaging membrane proteins for single-particle cryo-electron microscopy reconstruction of the isolated protein structure. More precisely, we propose a method for learning and removing the interfering vesicle signals from the micrograph, prior to reconstruct...

  3. Sortilin mediates vascular calcification via its recruitment into extracellular vesicles

    DEFF Research Database (Denmark)

    Goettsch, Claudia; Hutscheson, JD; Aikawa, M

    2016-01-01

    obscure. Here, we have demonstrated that sortilin is a key regulator of smooth muscle cell (SMC) calcification via its recruitment to extracellular vesicles. Sortilin localized to calcifying vessels in human and mouse atheromata and participated in formation of microcalcifications in SMC culture. Sortilin...

  4. Ultrasound-guided seminal vesicle biopsies in prostate cancer

    NARCIS (Netherlands)

    Wymenga, LFA; Duisterwinkel, FJ; Groenier, K; Mensink, HJA

    2000-01-01

    Invasion of prostatic adenocarcinoma into the seminal vesicles (SV) is generally accepted as an index of poor prognosis. The pre-operative identification of SV invasion is an important element in staging since it may alter subsequent treatment decisions. We studied the possibility of diagnosing SV

  5. Transcutol containing vesicles for topical delivery of minoxidil.

    Science.gov (United States)

    Mura, Simona; Manconi, Maria; Valenti, Donatella; Sinico, Chiara; Vila, Amparo Ofelia; Fadda, Anna Maria

    2011-04-01

    The aim of this work was to evaluate the ability of Transcutol (Trc) to produce elastic vesicles with soy lecithin (SL) and study the influence of the obtained vesicles on in vitro (trans)dermal delivery of minoxidil. To this purpose, so-called penetration enhancer-containing vesicles (PEVs) were prepared using Trc aqueous solutions (5-10-20-30% v/v) as hydrophilic phase. SL liposomes, without Trc, were used as control. Prepared formulations were characterized in terms of size distribution, morphology, zeta potential, deformability, and rheological behavior. The influence of the obtained PEVs on (trans)dermal delivery of minoxidil was studied by in vitro diffusion experiments through pig skin. Results showed that all prepared PEVs were able to give good entrapment efficiency (E%≈67) similar to that of conventional liposomes. Trc-containing PEVs showed to be more deformable than liposomes only when minoxidil was loaded in 5 and 10% Trc-containing vesicles. Rheological studies showed that PEVs have higher fluidity than conventional liposomes. All PEVs showed a higher stability than liposomes as shown by studying zeta potential and size distribution during three months. Results of in vitro diffusion experiments showed that Trc-containing PEVs are able to deliver minoxidil to deep skin layers without any transdermal permeation.

  6. Transmembrane topology of the acetylcholine receptor examined in reconstituted vesicles

    International Nuclear Information System (INIS)

    McCrea, P.D.

    1987-01-01

    Each of the five acetylcholine receptor (AChR) subunits, α 2 β-γδ, is believed to have the same number of transmembrane crossing and to share the same general folding pattern. AChR isolated from the electric organ of electric fish is predominantly dimeric. We have used this bridge as a marker for the C-terminus of the δ subunit, and presumably that of the other subunits in addition. The disulfide's accessibility to hydrophilic reductants, principally glutathione (GSH), was tested in a reconstituted vesicle system. The reduction of the δ-δ desulfide, as evidenced by the transition of AChrR dimers to monomers, was quantitatively monitored on velocity sedimentation sucrose gradients. Alternatively, the reduction of δ 2 to δ was followed by employing non-reducing SDS-PAGE. Reductants such as GSH were able to access the bridge in intact right-side-out vesicles. No acceleration of this process was evident when the vesicles were disrupted by freeze-thaw or by detergents. Control experiments which determined the rate of reduction of entrapped diphtheria toxin, or that of 3 H-GSH efflux, demonstrated that intact reconstituted vesicles provide an adequate permeability barrier to GSH access of their intravesicular space

  7. Inflammation leads to distinct populations of extracellular vesicles from microglia

    DEFF Research Database (Denmark)

    Yang, Yiyi; Boza-Serrano, Antonio; Dunning, Christopher J.R.

    2018-01-01

    Background: Activated microglia play an essential role in inflammatory responses elicited in the central nervous system (CNS). Microglia-derived extracellular vesicles (EVs) are suggested to be involved in propagation of inflammatory signals and in the modulation of cell-to-cell communication...

  8. Intermedin inhibits norepinephrine-induced contraction of rat seminal vesicle

    Directory of Open Access Journals (Sweden)

    P.F. Wong

    2014-09-01

    Conclusion: The results demonstrated that the inhibitory action of IMD on NE-induced seminal vesicle contraction was mediated via the ADM receptor(s and the nitric oxide production pathway, partially by the IMD receptor, but not by the CGRP receptor and the cAMP-PKA pathway.

  9. Calcium transport in vesicles energized by cytochrome oxidase

    Energy Technology Data Exchange (ETDEWEB)

    Rosier, Randy N. [Univ. of Rochester, NY (United States)

    1979-01-01

    Experiments on the reconstitution of cytochrome oxidase into phospholipid vesicles were carried out using techniques of selectivity energizing the suspensions with ascorbate and cytochrome c or ascorbate, PMS, and internally trapped cytochrome c. It was found that the K+ selective ionophore valinomycin stimulated the rate of respiration of cytochrome oxidase vesicles regardless of the direction of the K+ flux across the vesicle membranes. The stimulation occurred in the presence of protonophoric uncouplers and in the complete absence of potassium or in detergent-lysed suspensions. Gramicidin had similar effects and it was determined that the ionophores acted by specific interaction with cytochrome oxidase rather than by the previously assumed collapse of membrane potentials. When hydrophobic proteins and appropriate coupling factors were incorporated into the cytochrome oxidase, vesicles phosphorylation of ADP could be coupled to the oxidation reaction of cytochrome oxidase. Relatively low P:O, representing poor coupling of the system, were problematical and precluded measurements of protonmotive force. However the system was used to study ion translocation.

  10. Thermally assisted acoustofluidic separation of extracellular vesicles from cells

    Science.gov (United States)

    Mirtaheri, Elnaz; Dolatmoradi, Ata; Pimentel, Krystine; Bhansali, Shekhar; El-Zahab, Bilal

    2018-02-01

    Extracellular vesicles (EVs) have been gaining increasing attention given their role in communicating information between cells. Composition-based isolation of EVs is particularly of high significance as the proteomic and lipidomic characterization of their cargo could provide valuable clues to the role of EVs in mediating the biology of various conditions. This has, however, proved to be challenging as EVs, despite their abundance, are very small and difficult to be differentiated from the other constituents of host media. In addition, currently available methods like ultracentrifugation and filtration are cumbersome and capable of achieving mostly size-based separations. In this work, we demonstrate the possibility of separating submicron EV-like vesicles from cancer cells using a thermally-assisted acoustophoretic device. In a system composed of MCF-7 breast cancer cells spiked with two different types of same-size vesicles, composition-based isolation of vesicles was shown to be realizable through opposite focusing of the system's components at the node and antinodes of the overlaid ultrasonic standing wave. By proper choice of temperature in the microchannel, we were able to achieve separations with purities exceeding 93%. Furthermore, cells recovered from the channel were shown to be viable after the separation.

  11. Thin film drainage between pre-inflated capsules or vesicles

    Science.gov (United States)

    Keh, Martin; Walter, Johann; Leal, Gary

    2013-11-01

    Capsules and vesicles are often used as vehicles to carry active ingredients or fragrance in drug delivery and consumer products and oftentimes in these applications the particles may be pre-inflated due to the existence of a small osmotic pressure difference between the interior and exterior fluid. We study the dynamics of thin film drainage between capsules and vesicles in flow as it is crucial to fusion and deposition of the particles and, therefore, the stability and effectiveness of the products. Simulations are conducted using a numerical model coupling the boundary integral method for the motion of the fluids and a finite element method for the membrane mechanics. For low capillary numbers, the drainage behavior of vesicles and capsules are approximately the same, and also similar to that of drops as the flow-independent and uniform tension due to pre-inflation dominates. The tension due to deformation caused by flow will become more important as the strength of the external flow (i.e. the capillary number) increases. In this case, the shapes of the thin film region are fundamentally different for capsules and vesicles, and the drainage behavior in both cases differs from a drop. Funded by P&G.

  12. Brivaracetam augments short-term depression and slows vesicle recycling.

    Science.gov (United States)

    Yang, Xiaofeng; Bognar, Joseph; He, Tianyu; Mohammed, Mouhari; Niespodziany, Isabelle; Wolff, Christian; Esguerra, Manuel; Rothman, Steven M; Dubinsky, Janet M

    2015-12-01

    Brivaracetam (BRV) decreases seizure activity in a number of epilepsy models and binds to the synaptic vesicle glycoprotein 2A (SV2A) with a higher affinity than the antiepileptic drug levetiracetam (LEV). Experiments were performed to determine if BRV acted similarly to LEV to induce or augment short-term depression (STD) under high-frequency neuronal stimulation and slow synaptic vesicle recycling. Electrophysiologic field excitatory postsynaptic potential (fEPSP) recordings were made from CA1 synapses in rat hippocampal slices loaded with BRV or LEV during intrinsic activity or with BRV actively loaded during hypertonic stimulation. STD was examined in response to 5 or 40 Hz stimulus trains. Presynaptic release of FM1-43 was visualized using two-photon microscopy to assess drug effects upon synaptic vesicle mobilization. When hippocampal slices were incubated in 0.1-30 μm BRV or 30 μm-1 mm LEV for 3 h, the relative CA1 field EPSPs decreased over the course of a high-frequency train of stimuli more than for control slices. This STD was frequency- and concentration-dependent, with BRV being 100-fold more potent than LEV. The extent of STD depended on the length of the incubation time for both drugs. Pretreatment with LEV occluded the effects of BRV. Repeated hypertonic sucrose treatments and train stimulation successfully unloaded BRV from recycling vesicles and reversed BRVs effects on STD, as previously reported for LEV. At their maximal concentrations, BRV slowed FM1-43 release to a greater extent than in slices loaded with LEV during prolonged stimulation. BRV, similar to LEV, entered into recycling synaptic vesicles and produced a frequency-dependent decrement of synaptic transmission at 100-fold lower concentrations than LEV. In addition, BRV slowed synaptic vesicle mobilization more effectively than LEV, suggesting that these drugs may modify multiple functions of the synaptic vesicle protein SV2A to curb synaptic transmission and limit epileptic activity

  13. Molecular Recognition of Vesicles : Host-Guest Interactions Combined with Specific Dimerization of Zwitterions

    NARCIS (Netherlands)

    Voskuhl, Jens; Fenske, Tassilo; Stuart, Marc C. A.; Wibbeling, Birgit; Schmuck, Carsten; Ravoo, Bart Jan

    2010-01-01

    The aggregation of beta-cyclodextrin vesicles can be induced by an adamantyl-substituted zwitterionic guanidiniocarbonylpyrrole carboxylate guest molecule (1). Upon addition of 1 to the cyclodextrin vesicles at neutral pH, the vesicles aggregate (but do not fuse), as shown by using UV/Vis and

  14. Pulsed-laser polymerization in compartmentalized liquids. 1. Polymerization in vesicles

    NARCIS (Netherlands)

    Jung, M.; Casteren, van I.A.; Monteiro, M.J.; Herk, van A.M.; German, A.L.

    2000-01-01

    Polymerization in vesicles is a novel type of polymerization in heterogeneous media, leading to parachute-like vesicle-polymer hybrid morphologies. To explore the kinetics of vesicle polymerizations and to learn more about the actual locus of polymerization we applied the pulsed-laser polymerization

  15. Seminal vesicle metastasis after partial hepatectomy for hepatocellular carcinoma

    International Nuclear Information System (INIS)

    Gong, Li; Zheng, Minwen; Li, Yanhong; Zhang, Wendong; Bu, Wangjun; Shi, Lifang; Zhang, Wei; Yan, Hong

    2011-01-01

    Metastasis to the seminal vesicle is extremely rare for hepatocellular carcinoma (HCC). To our knowledge, it has been not reported in literature. The purpose of the present paper was to report a case of metastasis to the seminal vesicle after HCC resection, along with its histological features and immunohistochemical characteristics. A 46-year-old Chinese man was admitted to our hospital due to abdominal distension. He had a history of HCC related to hepatitis B virus infection. Moreover, left partial hepatectomy was performed in another hospital 28 months ago, and right partial hepatectomy for HCC recurrence in our hospital 4 months ago. After resection, radiofrequency ablation therapy had been performed. About 27 months after the initial operation, contrast-enhanced computed tomography (CT) of the pelvic cavity revealed a mass with homogeneous enhancement in the seminal vesicle. Transrectal needle biopsy revealed a poorly differentiated adenocarcinoma. Therefore, seminal vesiculectomy was resected. The histological diagnosis of the removed tumor was compatible with the original HCC. Immunohistochemical examination demonstrated that the tumor cells were positive for glypican-3 (GPC3), alpha-fetoprotein (AFP), hepatocyte paraffin-1 (Hep Par 1), cytokeratin 18 (CK 18), and hepatocyte antigen, which confirmed that the seminal vesicle tumor was a metastatic tumor of HCC. However, CT subsequently revealed multiple metastatic foci in the abdominal and pelvic cavities in May 2009 and August 2009, respectively. The seminal vesicle is an extremely rare metastatic site for HCC, and the prognosis is very poor. A combination of clinical and pathological features is necessary for a correct diagnosis, and primary tumor should be excluded before diagnosing metastatic foci

  16. Elastic vesicles for transdermal drug delivery of hydrophilic drugs: a comparison of important physicochemical characteristics of different vesicle types.

    Science.gov (United States)

    Ntimenou, Vassiliki; Fahr, Alfred; Antimisiaris, Sophia G

    2012-08-01

    The aim of this study is to evaluate the influence of different lipid vesicular systems on the skin permeation ability of hydrophilic molecules, and understand if and which vesicle physicochemical properties may be used as predictive tools. Calcein and carboxyfluorescein were used as hydrophilic drug models. All vesicles (conventional liposomes [CLs], transfersomes [TRs] and invasomes [INVs]), were characterized for particle size distribution, zeta-potential, vesicular shape and morphology, encapsulation efficiency, integrity, colloidal stability, elasticity and finally in vitro human skin permeation. Dynamic light scattering (DLS) and cryo-transmission electron microscopy (cryo-TEM) defined that almost all vesicles had spherical structure, low polydispersity (PI Elasticity values (measured by extrusion through membranes) were in the order INVs > TRs > CLs. Three vesicle types were selected (having different elasticity) and in vitro skin permeation experiments demonstrated that calcein permeation was minimal from an aqueous solution, slightly enhanced from CLs, and enhanced by 1.8 and 7.2 times from TRs and INVs, respectively. Permeation and elasticity values were correlated by rank order but not linearly, indicating that elasticity can be used as a crude predictive tool for enhancement of skin transport. Drug encapsulation efficiency was not found to be an important factor in the current study.

  17. Modeling of axonal endoplasmic reticulum network by spastic paraplegia proteins.

    Science.gov (United States)

    Yalçın, Belgin; Zhao, Lu; Stofanko, Martin; O'Sullivan, Niamh C; Kang, Zi Han; Roost, Annika; Thomas, Matthew R; Zaessinger, Sophie; Blard, Olivier; Patto, Alex L; Sohail, Anood; Baena, Valentina; Terasaki, Mark; O'Kane, Cahir J

    2017-07-25

    Axons contain a smooth tubular endoplasmic reticulum (ER) network that is thought to be continuous with ER throughout the neuron; the mechanisms that form this axonal network are unknown. Mutations affecting reticulon or REEP proteins, with intramembrane hairpin domains that model ER membranes, cause an axon degenerative disease, hereditary spastic paraplegia (HSP). We show that Drosophila axons have a dynamic axonal ER network, which these proteins help to model. Loss of HSP hairpin proteins causes ER sheet expansion, partial loss of ER from distal motor axons, and occasional discontinuities in axonal ER. Ultrastructural analysis reveals an extensive ER network in axons, which shows larger and fewer tubules in larvae that lack reticulon and REEP proteins, consistent with loss of membrane curvature. Therefore HSP hairpin-containing proteins are required for shaping and continuity of axonal ER, thus suggesting roles for ER modeling in axon maintenance and function.

  18. Plant transducers of the endoplasmic reticulum unfolded protein response

    KAUST Repository

    Iwata, Yuji; Koizumi, Nozomu

    2012-01-01

    The unfolded protein response (UPR) activates a set of genes to overcome accumulation of unfolded proteins in the endoplasmic reticulum (ER), a condition termed ER stress, and constitutes an essential part of ER protein quality control that ensures efficient maturation of secretory and membrane proteins in eukaryotes. Recent studies on Arabidopsis and rice identified the signaling pathway in which the ER membrane-localized ribonuclease IRE1 (inositol-requiring enzyme 1) catalyzes unconventional cytoplasmic splicing of mRNA, thereby producing the active transcription factor Arabidopsis bZIP60 (basic leucine zipper 60) and its ortholog in rice. Here we review recent findings identifying the molecular components of the plant UPR, including IRE1/bZIP60 and the membrane-bound transcription factors bZIP17 and bZIP28, and implicating its importance in several physiological phenomena such as pathogen response. © 2012 Elsevier Ltd.

  19. Endoplasmic Reticulum Stress-Related Factors Protect against Diabetic Retinopathy

    Directory of Open Access Journals (Sweden)

    Wei-Kun Hu

    2012-01-01

    Full Text Available The endoplasmic reticulum (ER is a principal mediator of signal transduction in the cell, and disruption of its normal function (a mechanism known as ER stress has been associated with the pathogenesis of several diseases. ER stress has been demonstrated to contribute to onset and progression of diabetic retinopathy (DR by induction of multiple inflammatory signaling pathways. Recent studies have begun to describe the gene expression profile of ER stress-related genes in DR; moreover, genes that play a protective role against DR have been identified. P58IPK was determined to be able to reduce retinal vascular leakage under high glucose conditions, thus protecting retinal cells. It has also been found by our lab that ER-associated protein degradation factors exhibit significantly different expression patterns in rat retinas under sustained high glucose conditions. Future research based upon these collective genomic findings will contribute to our overall understanding of DR pathogenesis as well as identify potential therapeutic targets.

  20. Plant transducers of the endoplasmic reticulum unfolded protein response

    KAUST Repository

    Iwata, Yuji

    2012-12-01

    The unfolded protein response (UPR) activates a set of genes to overcome accumulation of unfolded proteins in the endoplasmic reticulum (ER), a condition termed ER stress, and constitutes an essential part of ER protein quality control that ensures efficient maturation of secretory and membrane proteins in eukaryotes. Recent studies on Arabidopsis and rice identified the signaling pathway in which the ER membrane-localized ribonuclease IRE1 (inositol-requiring enzyme 1) catalyzes unconventional cytoplasmic splicing of mRNA, thereby producing the active transcription factor Arabidopsis bZIP60 (basic leucine zipper 60) and its ortholog in rice. Here we review recent findings identifying the molecular components of the plant UPR, including IRE1/bZIP60 and the membrane-bound transcription factors bZIP17 and bZIP28, and implicating its importance in several physiological phenomena such as pathogen response. © 2012 Elsevier Ltd.

  1. How are proteins reduced in the endoplasmic reticulum?

    DEFF Research Database (Denmark)

    Ellgaard, Lars; Sevier, Carolyn S.; Bulleid, Neil J.

    2018-01-01

    The reversal of thiol oxidation in proteins within the endoplasmic reticulum (ER) is crucial for protein folding, degradation, chaperone function, and the ER stress response. Our understanding of this process is generally poor but progress has been made. Enzymes performing the initial reduction...... of client proteins, as well as the ultimate electron donor in the pathway, have been identified. Most recently, a role for the cytosol in ER protein reduction has been revealed. Nevertheless, how reducing equivalents are transferred from the cytosol to the ER lumen remains an open question. We review here...... why proteins are reduced in the ER, discuss recent data on catalysis of steps in the pathway, and consider the implications for redox homeostasis within the early secretory pathway....

  2. Osteochondritis dissecans (OCD), an endoplasmic reticulum storage disease?

    DEFF Research Database (Denmark)

    Skagen, Peter Storgaard; Horn, T; Kruse, H A

    2011-01-01

    in chondrocytes and extracellular matrix of cartilage from OCD patients. Abnormal type II collagen heterofibrils in "bundles" and chondrocytes with abnormal accumulation of matrix proteins in distended rough endoplasmic reticulum were typical findings. Further, Von Kossa staining and TEM showed empty lacunae...... close to mineralized "islands" in the cartilage and hypertrophic chondrocytes containing accumulated matrix proteins. Immunostaining revealed: (1) that types I, II, VI and X collagens and aggrecans were deposited intracellulary and (2) co-localization within the islands of types I, II, X collagens...... and aggrecan indicating that hypertrophic chondrocytes express a phenotype of bone cells during endochondral ossification. Types I, VI and X collagens were also present across the entire dissecates suggesting that chondrocytes were dedifferentiated. DNA sequencings were non-conclusive, only single nucleotide...

  3. Minimal experimental requirements for definition of extracellular vesicles and their functions: a position statement from the International Society for Extracellular Vesicles.

    Science.gov (United States)

    Lötvall, Jan; Hill, Andrew F; Hochberg, Fred; Buzás, Edit I; Di Vizio, Dolores; Gardiner, Christopher; Gho, Yong Song; Kurochkin, Igor V; Mathivanan, Suresh; Quesenberry, Peter; Sahoo, Susmita; Tahara, Hidetoshi; Wauben, Marca H; Witwer, Kenneth W; Théry, Clotilde

    2014-01-01

    Secreted membrane-enclosed vesicles, collectively called extracellular vesicles (EVs), which include exosomes, ectosomes, microvesicles, microparticles, apoptotic bodies and other EV subsets, encompass a very rapidly growing scientific field in biology and medicine. Importantly, it is currently technically challenging to obtain a totally pure EV fraction free from non-vesicular components for functional studies, and therefore there is a need to establish guidelines for analyses of these vesicles and reporting of scientific studies on EV biology. Here, the International Society for Extracellular Vesicles (ISEV) provides researchers with a minimal set of biochemical, biophysical and functional standards that should be used to attribute any specific biological cargo or functions to EVs.

  4. Focus on Extracellular Vesicles: Therapeutic Potential of Stem Cell-Derived Extracellular Vesicles

    Directory of Open Access Journals (Sweden)

    Bin Zhang

    2016-02-01

    Full Text Available The intense research focus on stem and progenitor cells could be attributed to their differentiation potential to generate new cells to replace diseased or lost cells in many highly intractable degenerative diseases, such as Alzheimer disease, multiple sclerosis, and heart diseases. However, experimental and clinical studies have increasingly attributed the therapeutic efficacy of these cells to their secretion. While stem and progenitor cells secreted many therapeutic molecules, none of these molecules singly or in combination could recapitulate the functional effects of stem cell transplantations. Recently, it was reported that extracellular vesicles (EVs could recapitulate the therapeutic effects of stem cell transplantation. Based on the observations reported thus far, the prevailing hypothesis is that stem cell EVs exert their therapeutic effects by transferring biologically active molecules such as proteins, lipids, mRNA, and microRNA from the stem cells to injured or diseased cells. In this respect, stem cell EVs are similar to EVs from other cell types. They are both primarily vehicles for intercellular communication. Therefore, the differentiating factor is likely due to the composition of their cargo. The cargo of EVs from different cell types are known to include a common set of proteins and also proteins that reflect the cell source of the EVs and the physiological or pathological state of the cell source. Hence, elucidation of the stem cell EV cargo would provide an insight into the multiple physiological or biochemical changes necessary to affect the many reported stem cell-based therapeutic outcomes in a variety of experimental models and clinical trials.

  5. Genetically controlled fusion, exocytosis and fission of artificial vesicles-a roadmap

    DEFF Research Database (Denmark)

    Bönzli, Eva; Hadorn, Maik; de Lucrezia, Davide

    2011-01-01

    were shown to fuse if a special class of viral proteins, termed fusogenic peptides, were added to the external medium (Nomura et al. 2004). In the present work, we intend to develop genetically controlled fusion, fission and exocytosis of vesicles by the synthesis of peptides within vesicles. First, we...... enclosed synthesized peptides in vesicles to induce in a next step fusion of adjacent vesicles, fission and exocytosis of nested vesicles. Second, we will replace the peptides by an enclosed cell-free expression system to internally synthesize fusion peptides. To control the gene expression, different...

  6. Detection of association and fusion of giant vesicles using a fluorescence-activated cell sorter.

    Science.gov (United States)

    Sunami, Takeshi; Caschera, Filippo; Morita, Yuuki; Toyota, Taro; Nishimura, Kazuya; Matsuura, Tomoaki; Suzuki, Hiroaki; Hanczyc, Martin M; Yomo, Tetsuya

    2010-10-05

    We have developed a method to evaluate the fusion process of giant vesicles using a fluorescence-activated cell sorter (FACS). Three fluorescent markers and FACS technology were used to evaluate the extent of association and fusion of giant vesicles. Two fluorescent markers encapsulated in different vesicle populations were used as association markers; when these vesicles associate, the two independent markers should be observed simultaneously in a single detection event. The quenched fluorescent marker and the dequencher, which were encapsulated in separate vesicle populations, were used as the fusion marker. When the internal aqueous solutions mix, the quenched marker is liberated by the dequencher and emits the third fluorescent signal. Although populations of pure POPC vesicles showed no detectable association or fusion, the same populations, oppositely charged by the exogenous addition of charged amphiphiles, showed up to 50% association and 30% fusion upon population analysis of 100,000 giant vesicles. Although a substantial fraction of the vesicles associated in response to a small amount of the charged amphiphiles (5% mole fraction compared to POPC alone), a larger amount of the charged amphiphiles (25%) was needed to induce vesicle fusion. The present methodology also revealed that the association and fusion of giant vesicles was dependent on size, with larger giant vesicles associating and fusing more frequently.

  7. Fusion of Sendai virus with vesicles of oligomerizable lipids: a microcalorimetric analysis of membrane fusion.

    Science.gov (United States)

    Ravoo, B J; Weringa, W D; Engberts, J B

    2000-01-01

    Sendai virus fuses efficiently with small and large unilamellar vesicles of the lipid 1,2-di-n-hexadecyloxypropyl-4- (beta-nitrostyryl) phosphate (DHPBNS) at pH 7.4 and 37 degrees C, as shown by lipid mixing assays and electron microscopy. However, fusion is strongly inhibited by oligomerization of the head groups of DHPBNS in the bilayer vesicles. The enthalpy associated with fusion of Sendai virus with DHPBNS vesicles was measured by isothermal titration microcalorimetry, comparing titrations of Sendai virus into (i) solutions of DHPBNS vesicles (which fuse with the virus) and (ii) oligomerized DHPBNS vesicles (which do not fuse with the virus), respectively. The observed heat effect of fusion of Sendai virus with DHPBNS vesicles is strongly dependent on the buffer medium, reflecting a partial charge neutralization of the Sendai F and HN proteins upon insertion into the negatively-charged vesicle membrane. No buffer effect was observed for the titration of Sendai virus into oligomerized DHPBNS vesicles, indicating that inhibition of fusion is a result of inhibition of insertion of the fusion protein into the target membrane. Fusion of Sendai virus with DHPBNS vesicles is endothermic and entropy-driven. The positive enthalpy term is dominated by heat effects resulting from merging of the protein-rich viral envelope with the lipid vesicle bilayers rather than by the fusion of the viral with the vesicle bilayers per se. Copyright 2000 Academic Press.

  8. Attachment of 99mTc to lipid vesicles containing the lipophilic chelate dipalmitoylphosphatidylethanolamine-DTPA

    International Nuclear Information System (INIS)

    Ahkong, Q.F.; Tilcock, C.

    1992-01-01

    The binding of 99m Tc to negatively-charged and neutral unilamellar lipid vesicles was investigated in the absence and presence of the ligand diethylenetriaminepentaacetic acid (DTPA) covalently attached to the headgroup of phosphatidylethanolamine at the surface of the membrane. Even in the absence of DTPA on the membrane surface, 99m Tc reduced by Sn bound to the membrane surface but rapidly dissociated from the vesicles in the presence of plasma in vitro. When DTPA was present on the membrane surface, dissociation of 99m Tc from the vesicle surface in plasma was much reduced. The dissociation of 99m Tc from the surface of negatively-charged vesicles was less than for neutral vesicles in the absence of ligand but was markedly greater than for vesicles containing the ligand DTPA, suggesting that the binding of 99m Tc to vesicles with surface-attached DTPA could not be explained solely on the basis of the negative charge provided by the DTPA. In vitro experiments using 14 C-labeled lipids as well as in vivo imaging studies indicated that dissociation of 99m Tc from the surface of the vesicle did not arise predominantly because of lipid exchange with plasma components or due to cleavage of Tc-DTPA from the vesicle surface. For vesicles with surface-attached DTPA, 99m Tc dissociation from the vesicle surface in plasma was further reduced by addition of the antioxidant ascorbate. (author)

  9. Ca2+-dependent mobility of vesicles capturing anti-VGLUT1 antibodies

    International Nuclear Information System (INIS)

    Stenovec, Matjaz; Kreft, Marko; Grilc, Sonja; Potokar, Maja; Kreft, Mateja Erdani; Pangrsic, Tina; Zorec, Robert

    2007-01-01

    Several aspects of secretory vesicle cycle have been studied in the past, but vesicle trafficking in relation to the fusion site is less well understood. In particular, the mobility of recaptured vesicles that traffic back toward the central cytoplasm is still poorly defined. We exposed astrocytes to antibodies against the vesicular glutamate transporter 1 (VGLUT1), a marker of glutamatergic vesicles, to fluorescently label vesicles undergoing Ca 2+ -dependent exocytosis and examined their number, fluorescence intensity, and mobility by confocal microscopy. In nonstimulated cells, immunolabeling revealed discrete fluorescent puncta, indicating that VGLUT1 vesicles, which are approximately 50 nm in diameter, cycle slowly between the plasma membrane and the cytoplasm. When the cytosolic Ca 2+ level was raised with ionomycin, the number and fluorescence intensity of the puncta increased, likely because the VGLUT1 epitopes were more accessible to the extracellularly applied antibodies following Ca 2+ -triggered exocytosis. In nonstimulated cells, the mobility of labeled vesicles was limited. In stimulated cells, many vesicles exhibited directional mobility that was abolished by cytoskeleton-disrupting agents, indicating dependence on intact cytoskeleton. Our findings show that postfusion vesicle mobility is regulated and may likely play a role in synaptic vesicle cycle, and also more generally in the genesis and removal of endocytic vesicles

  10. A study of the enhanced sensitizing capacity of a contact allergen in lipid vesicle formulations

    DEFF Research Database (Denmark)

    Simonsson, Carl; Madsen, Jakob Torp; Graneli, Annette

    2011-01-01

    , an indicator of a compounds sensitizing capacity, increased when RBITC was applied in lipid vesicles as compared to an ethanol:water (Et:W) solution. Micro-scale vesicles showed a slightly higher cell proliferative response compared to nano-scale vesicles. TPM imaging revealed that the vesicle formulations...... improved the skin penetration of RBITC compared to the Et:W solution. A strong fluorescent region in the stratum corneum and upper epidermis implies elevated association of RBITC to these skin layers when formulated in lipid vesicles. In conclusion, the results indicate that there could be an elevated risk...... of sensitization when haptens are delivered in vehicles containing lipid vesicles. Although the size of the vesicles seems to be of minor importance, further studies are needed before a more generalized conclusion can be drawn. It is likely that the enhanced sensitizing capacity is a consequence of the improved...

  11. Vesicle dynamics in a confined Poiseuille flow: from steady state to chaos.

    Science.gov (United States)

    Aouane, Othmane; Thiébaud, Marine; Benyoussef, Abdelilah; Wagner, Christian; Misbah, Chaouqi

    2014-09-01

    Red blood cells (RBCs) are the major component of blood, and the flow of blood is dictated by that of RBCs. We employ vesicles, which consist of closed bilayer membranes enclosing a fluid, as a model system to study the behavior of RBCs under a confined Poiseuille flow. We extensively explore two main parameters: (i) the degree of confinement of vesicles within the channel and (ii) the flow strength. Rich and complex dynamics for vesicles are revealed, ranging from steady-state shapes (in the form of parachute and slipper shapes) to chaotic dynamics of shape. Chaos occurs through a cascade of multiple periodic oscillations of the vesicle shape. We summarize our results in a phase diagram in the parameter plane (degree of confinement and flow strength). This finding highlights the level of complexity of a flowing vesicle in the small Reynolds number where the flow is laminar in the absence of vesicles and can be rendered turbulent due to elasticity of vesicles.

  12. Structure formation in binary mixtures of lipids and detergents: self-assembly and vesicle division.

    Science.gov (United States)

    Noguchi, Hiroshi

    2013-01-14

    Self-assembly dynamics in binary surfactant mixtures and structure changes of lipid vesicles induced by detergent solution are studied using coarse-grained molecular simulations. Disk-shaped micelles, the bicelles, are stabilized by detergents surrounding the rim of a bilayer disk of lipids. The self-assembled bicelles are considerably smaller than bicelles formed from vesicle rupture, and their size is determined by the concentrations of lipids and detergents and the interactions between the two species. The detergent-adsorption induces spontaneous curvature of the vesicle bilayer and results in vesicle division into two vesicles or vesicle rupture into worm-like micelles. The division occurs mainly via the inverse pathway of the modified stalk model. For large spontaneous curvature of the monolayers of the detergents, a pore is often opened, thereby leading to vesicle division or worm-like micelle formation.

  13. Lipid vesicle shape analysis from populations using light video microscopy and computer vision.

    Directory of Open Access Journals (Sweden)

    Jernej Zupanc

    Full Text Available We present a method for giant lipid vesicle shape analysis that combines manually guided large-scale video microscopy and computer vision algorithms to enable analyzing vesicle populations. The method retains the benefits of light microscopy and enables non-destructive analysis of vesicles from suspensions containing up to several thousands of lipid vesicles (1-50 µm in diameter. For each sample, image analysis was employed to extract data on vesicle quantity and size distributions of their projected diameters and isoperimetric quotients (measure of contour roundness. This process enables a comparison of samples from the same population over time, or the comparison of a treated population to a control. Although vesicles in suspensions are heterogeneous in sizes and shapes and have distinctively non-homogeneous distribution throughout the suspension, this method allows for the capture and analysis of repeatable vesicle samples that are representative of the population inspected.

  14. The interactions between ionic surfactants and phosphatidylcholine vesicles: Conductometry

    Science.gov (United States)

    Tsao, Heng-Kwong; Tseng, Wen Liang

    2001-11-01

    The interaction between ionic surfactants and phosphatidylcholine vesicles, which are prepared without addition of buffer and salt, is investigated by conductivity measurements. On the basis of the vesicle acting as a trap of charge carriers, the bilayer/aqueous phase partition coefficient K and the surfactant/lipid molar ratio Re of nine surfactants are determined. The thermodynamic consistency is satisfied by the measured parameters. The effects of the alkyl chain length (C10-C16) and ionic head group are then studied. The inverse partition coefficient K-1 is linearly related to the critical micelle concentration. The solubilizing ability Reb is a consequence of the competition between the surfactant incorporation into the bilayer and the formation of micelles. Consequently, the K parameter rises whereas the Reb parameter declines as the chain length is increased. The influence due to addition of salt is also discussed.

  15. Thermal and active fluctuations of a compressible bilayer vesicle

    Science.gov (United States)

    Sachin Krishnan, T. V.; Yasuda, Kento; Okamoto, Ryuichi; Komura, Shigeyuki

    2018-05-01

    We discuss thermal and active fluctuations of a compressible bilayer vesicle by using the results of hydrodynamic theory for vesicles. Coupled Langevin equations for the membrane deformation and the density fields are employed to calculate the power spectral density matrix of membrane fluctuations. Thermal contribution is obtained by means of the fluctuation dissipation theorem, whereas active contribution is calculated from exponentially decaying time correlation functions of active random forces. We obtain the total power spectral density as a sum of thermal and active contributions. An apparent response function is further calculated in order to compare with the recent microrheology experiment on red blood cells. An enhanced response is predicted in the low-frequency regime for non-thermal active fluctuations.

  16. Imaging and Quantification of Extracellular Vesicles by Transmission Electron Microscopy.

    Science.gov (United States)

    Linares, Romain; Tan, Sisareuth; Gounou, Céline; Brisson, Alain R

    2017-01-01

    Extracellular vesicles (EVs) are cell-derived vesicles that are present in blood and other body fluids. EVs raise major interest for their diverse physiopathological roles and their potential biomedical applications. However, the characterization and quantification of EVs constitute major challenges, mainly due to their small size and the lack of methods adapted for their study. Electron microscopy has made significant contributions to the EV field since their initial discovery. Here, we describe the use of two transmission electron microscopy (TEM) techniques for imaging and quantifying EVs. Cryo-TEM combined with receptor-specific gold labeling is applied to reveal the morphology, size, and phenotype of EVs, while their enumeration is achieved after high-speed sedimentation on EM grids.

  17. Importance of vesicle release stochasticity in neuro-spike communication.

    Science.gov (United States)

    Ramezani, Hamideh; Akan, Ozgur B

    2017-07-01

    Aim of this paper is proposing a stochastic model for vesicle release process, a part of neuro-spike communication. Hence, we study biological events occurring in this process and use microphysiological simulations to observe functionality of these events. Since the most important source of variability in vesicle release probability is opening of voltage dependent calcium channels (VDCCs) followed by influx of calcium ions through these channels, we propose a stochastic model for this event, while using a deterministic model for other variability sources. To capture the stochasticity of calcium influx to pre-synaptic neuron in our model, we study its statistics and find that it can be modeled by a distribution defined based on Normal and Logistic distributions.

  18. The Role of Extracellular Vesicles in Bone Metastasis

    Directory of Open Access Journals (Sweden)

    Michela Rossi

    2018-04-01

    Full Text Available Multiple types of cancer have the specific ability to home to the bone microenvironment and cause metastatic lesions. Despite being the focus of intense investigation, the molecular and cellular mechanisms that regulate the metastasis of disseminated tumor cells still remain largely unknown. Bone metastases severely impact quality of life since they are associated with pain, fractures, and bone marrow aplasia. In this review, we will summarize the recent discoveries on the role of extracellular vesicles (EV in the regulation of bone remodeling activity and bone metastasis occurrence. Indeed, it was shown that extracellular vesicles, including exosomes and microvesicles, released from tumor cells can modify the bone microenvironment, allowing the formation of osteolytic, osteosclerotic, and mixed mestastases. In turn, bone-derived EV can stimulate the proliferation of tumor cells. The inhibition of EV-mediated crosstalk between cancer and bone cells could represent a new therapeutic target for bone metastasis.

  19. Lubrication synergy: Mixture of hyaluronan and dipalmitoylphosphatidylcholine (DPPC) vesicles

    DEFF Research Database (Denmark)

    Raj, Akanksha; Wang, Min; Zander, Thomas

    2017-01-01

    consisting of non-homogeneous phospholipid bilayer with hyaluronan/DPPC aggregates on top. The presence of these aggregates generates a long-range repulsive surface force as two such surfaces are brought together. However, the aggregates are easily deformed, partly rearranged into multilayer structures......Phospholipids and hyaluronan have been implied to fulfil important roles in synovial joint lubrication. Since both components are present in synovial fluid, self-assembly structures formed by them should also be present. We demonstrate by small angle X-ray scattering that hyaluronan associates...... with the outer shell of dipalmitoylphophatidylcholine (DPPC) vesicles in bulk solution. Further, we follow adsorption to silica from mixed hyaluronan/DPPC vesicle solution by Quartz Crystal Microbalance with Dissipation measurements. Atomic Force Microscope imaging visualises the adsorbed layer structure...

  20. Pressure exerted by a vesicle on a surface

    International Nuclear Information System (INIS)

    Owczarek, A L; Prellberg, T

    2014-01-01

    Several recent works have considered the pressure exerted on a wall by a model polymer. We extend this consideration to vesicles attached to a wall, and hence include osmotic pressure. We do this by considering a two-dimensional directed model, namely that of area-weighted Dyck paths. Not surprisingly, the pressure exerted by the vesicle on the wall depends on the osmotic pressure inside, especially its sign. Here, we discuss the scaling of this pressure in the different regimes, paying particular attention to the crossover between positive and negative osmotic pressure. In our directed model, there exists an underlying Airy function scaling form, from which we extract the dependence of the bulk pressure on small osmotic pressures. (paper)

  1. Optimized microviscosimeter for detection and characterization of biological vesicles

    International Nuclear Information System (INIS)

    Gaiffe, O; Cretin, B; Boireau, W; Baudouy, J C; Vairac, P

    2008-01-01

    In this paper, we report on studies aimed at sensing the stiffness of biological membranes, in particular in the case of lipidic vesicles. To obtain pertinent results, we have developed and checked a specific sensor based on a vibrating sphere. The near-field acoustic wave generated by this vibrating sphere enables us to characterize biological particles which change the apparent viscosity and density of the surrounding fluid. The microsphere is well suited for very small volumes of liquid (typically about a few microlitres). The experimental results demonstrate the high sensitivity of the sensor to small variations of the composition of the aqueous media, particularly in the case of various populations of lipidic nanoparticles. Finally, this microviscosimeter demonstrates its ability to discriminate the population of vesicles on the basis of their global viscous properties

  2. A Phase of Liposomes with Entangled Tubular Vesicles

    Science.gov (United States)

    Chiruvolu, Shivkumar; Warriner, Heidi E.; Naranjo, Edward; Idziak, Stefan H. J.; Radler, Joachim O.; Plano, Robert J.; Zasadzinski, Joseph A.; Safinya, Cyrus R.

    1994-11-01

    An equilibrium phase belonging to the family of bilayer liposomes in ternary mixtures of dimyristoylphosphatidylcholine (DMPC), water, and geraniol (a biological alcohol derived from oil-soluble vitamins that acts as a cosurfactant) has been identified. Electron and optical microscopy reveal the phase, labeled Ltv, to be composed of highly entangled tubular vesicles. In situ x-ray diffraction confirms that the tubule walls are multilamellar with the lipids in the chain-melted state. Macroscopic observations show that the Ltv phase coexists with the well-known L_4 phase of spherical vesicles and a bulk L_α phase. However, the defining characteristic of the Ltv phase is the Weissenberg rod climbing effect under shear, which results from its polymer-like entangled microstructure.

  3. Phosphoproteins in extracellular vesicles as candidate markers for breast cancer

    OpenAIRE

    Chen, I-Hsuan; Xue, Liang; Hsu, Chuan-Chih; Paez, Juan Sebastian Paez; Pan, Li; Andaluz, Hillary; Wendt, Michael K.; Iliuk, Anton B.; Zhu, Jian-Kang; Tao, W. Andy

    2017-01-01

    Protein phosphorylation is a major regulatory mechanism for many cellular functions, but no phosphoprotein in biofluids has been developed for disease diagnosis because of the presence of active phosphatases. This study presents a general strategy to isolate and identify phosphoproteins in extracellular vesicles (EVs) from human plasma as potential markers to differentiate disease from healthy states. We identified close to 10,000 unique phosphopeptides in EVs from small volumes of plasma sam...

  4. The role of extracellular vesicles in phenotypic cancer transformation:

    OpenAIRE

    Kralj-Iglič, Veronika; Ogorevc, Eva; Veranič, Peter

    2013-01-01

    Background. Cancer has traditionally been considered as a disease resulting from gene mutations. New findings in biology are challenging gene-centered explanations of cancer progression and redirecting them to the non-genetic origins of tumorigenicity. It has become clear that intercellular communication plays a crucial role in cancer progression. Among the most intriguing ways of intercellular communication is that via extracellular vesicles (EVs). EVs are membrane structures released from v...

  5. Dimensional characterization of extracellular vesicles using atomic force microscopy

    International Nuclear Information System (INIS)

    Sebaihi, N; De Boeck, B; Pétry, J; Yuana, Y; Nieuwland, R

    2017-01-01

    Extracellular vesicles (EV) are small biological entities released from cells into body fluids. EV are recognized as mediators in intercellular communication and influence important physiological processes. It has been shown that the concentration and composition of EV in body fluids may differ from healthy subjects to patients suffering from particular disease. So, EV have gained a strong scientific and clinical interest as potential biomarkers for diagnosis and prognosis of disease. Due to their small size, accurate detection and characterization of EV remain challenging. The aim of the presented work is to propose a characterization method of erythrocyte-derived EV using atomic force microscopy (AFM). The vesicles are immobilized on anti-CD235a-modified mica and analyzed by AFM under buffer liquid and dry conditions. EV detected under both conditions show very similar sizes namely ∼30 nm high and ∼90 nm wide. The size of these vesicles remains stable over drying time as long as 7 d at room temperature. Since the detected vesicles are not spherical, EV are characterized by their height and diameter, and not only by the height as is usually done for spherical nanoparticles. In order to obtain an accurate measurement of EV diameters, the geometry of the AFM tip was evaluated to account for the lateral broadening artifact inherent to AFM measurements. To do so, spherical polystyrene (PS) nanobeads and EV were concomitantly deposited on the same mica substrate and simultaneously measured by AFM under dry conditions. By applying this procedure, direct calibration of the AFM tip could be performed together with EV characterization under identical experimental conditions minimizing external sources of uncertainty on the shape and size of the tip, thus allowing standardization of EV measurement. (paper)

  6. Structural Disorder Provides Increased Adaptability for Vesicle Trafficking Pathways

    Science.gov (United States)

    Tompa, Peter

    2013-01-01

    Vesicle trafficking systems play essential roles in the communication between the organelles of eukaryotic cells and also between cells and their environment. Endocytosis and the late secretory route are mediated by clathrin-coated vesicles, while the COat Protein I and II (COPI and COPII) routes stand for the bidirectional traffic between the ER and the Golgi apparatus. Despite similar fundamental organizations, the molecular machinery, functions, and evolutionary characteristics of the three systems are very different. In this work, we compiled the basic functional protein groups of the three main routes for human and yeast and analyzed them from the structural disorder perspective. We found similar overall disorder content in yeast and human proteins, confirming the well-conserved nature of these systems. Most functional groups contain highly disordered proteins, supporting the general importance of structural disorder in these routes, although some of them seem to heavily rely on disorder, while others do not. Interestingly, the clathrin system is significantly more disordered (∼23%) than the other two, COPI (∼9%) and COPII (∼8%). We show that this structural phenomenon enhances the inherent plasticity and increased evolutionary adaptability of the clathrin system, which distinguishes it from the other two routes. Since multi-functionality (moonlighting) is indicative of both plasticity and adaptability, we studied its prevalence in vesicle trafficking proteins and correlated it with structural disorder. Clathrin adaptors have the highest capability for moonlighting while also comprising the most highly disordered members. The ability to acquire tissue specific functions was also used to approach adaptability: clathrin route genes have the most tissue specific exons encoding for protein segments enriched in structural disorder and interaction sites. Overall, our results confirm the general importance of structural disorder in vesicle trafficking and

  7. Transfer of oleic acid between albumin and phospholipid vesicles

    International Nuclear Information System (INIS)

    Hamilton, J.A.; Cistola, D.P.

    1986-01-01

    The net transfer of oleic acid between egg phosphatidylcholine unilamellar vesicles and bovine serum albumin has been monitored by 13 C NMR spectroscopy and 90% isotopically substituted [1- 13 C]oleic acid. The carboxyl chemical shifts of oleic acid bound to albumin were different from those for oleic acid in phospholipid vesicles. Therefore, in mixtures of donor particles, the equilibrium distribution of oleic acid was determined from chemical shift and peak intensity data without separation of donor and acceptor particles. In a system containing equal masses of albumin and phospholipid and a stoichiometry of 4-5 mol of oleic acid per mol of albumin, the oleic acid distribution was pH dependent, with ≥80% of the oleic acid associated with albumin at pH 7.4; association was ≥90% at pH 8.0. Decreasing the pH below 7.4 markedly decreased the proportion of fatty acid bound to albumin. The distribution was reversible with pH and was independent of whether vesicles or albumin acted as a donor. These data suggest that pH may strongly influence the partitioning of fatty acid between cellular membranes and albumin. The 13 C NMR method is also advantageous because it provides information about the structural environments of oleic acid bound to albumin or phospholipid, the ionization state of oleic acid in each environment, and the structural integrity of the vesicles. In addition, minimum and maximum limits for the exchange rates of oleic acid among different environments were obtained from the NMR data

  8. Royal Society Scientific Meeting: Extracellular vesicles in the tumour microenvironment.

    Science.gov (United States)

    Pink, Ryan Charles; Elmusrati, Areeg A; Lambert, Daniel; Carter, David Raul Francisco

    2018-01-05

    Cancer cells do not grow as an isolated homogeneous mass; tumours are, in fact, complex and heterogeneous collections of cancer and surrounding stromal cells, collectively termed the tumour microenvironment. The interaction between cancer cells and stromal cells in the tumour microenvironment has emerged as a key concept in the regulation of cancer progression. Understanding the intercellular dialogue in the tumour microenvironment is therefore an important goal. One aspect of this dialogue that has not been appreciated until recently is the role of extracellular vesicles (EVs). EVs are small vesicles released by cells under both normal and pathological conditions; they can transfer biological molecules between cells leading to changes in phenotype. EVs have emerged as important regulators of biological processes and can be dysregulated in diseases such as cancer; rapidly growing interest in their biology and therapeutic potential led to the Royal Society hosting a Scientific Meeting to explore the roles of EVs in the tumour microenvironment. This cross-disciplinary meeting explored examples of how aberrant crosstalk between tumour and stromal cells can promote cancer progression, and how such signalling can be targeted for diagnostic, prognostic and therapeutic benefit. In this review, and the special edition of Philosophical Transactions of the Royal Society B that follows, we will provide an overview of the content and outcomes of this exciting meeting.This article is part of the discussion meeting issue 'Extracellular vesicles and the tumour microenvironment'. © 2017 The Author(s).

  9. Myeloid extracellular vesicles: messengers from the demented brain

    Directory of Open Access Journals (Sweden)

    Annamaria eNigro

    2016-01-01

    Full Text Available Blood-borne monocyte derived cells play a pivotal, initially unrecognized, role in most central nervous system disorders, including diseases initially classified as purely neurodegenerative (i.e. AD, PD, and ALS. Their trafficking to the brain and spinal cord has been extensively studied in classical neuroinflammatory disorders such as multiple sclerosis. Central nervous system resident myeloid cells, namely microglia and perivascular macrophages, also are in the spotlight of investigations on neurological disorders. Myeloid cells, such as infiltrating macrophages and microglia, have been described as having both protective and destructive features in neurological disorders, thus identification of their functional phenotype during disease evolution would be of paramount importance. Extracellular vesicles, namely exosomes and shed vesicles, are released by virtually any cell type and can be detected and identified in terms of cell origin in biological fluids. They therefore constitute an ideal tool to access information on cells residing in an inaccessible site such as the brain. We will review here available information on extracellular vesicles detection in neurological disorders with special emphasis on neurodegenerative diseases.

  10. Phase separation in artificial vesicles driven by light and curvature

    Science.gov (United States)

    Rinaldin, Melissa; Pomp, Wim; Schmidt, Thomas; Giomi, Luca; Kraft, Daniela; Physics of Life Processes Team; Soft; Bio Mechanics Collaboration; Self-Assembly in Soft Matter Systems Collaboration

    The role of phase-demixing in living cells, leading to the lipid-raft hypothesis, has been extensively studied. Lipid domains of higher lipid chain order are proposed to regulate protein spatial organization. Giant Unilamellar Vesicles provide an artificial model to study phase separation. So far temperature was used to initiate the process. Here we introduce a new methodology based on the induction of phase separation by light. To this aim, the composition of the lipid membrane is varied by photo-oxidation of lipids. The control of the process gained by using light allowed us to observe vesicle shape fluctuations during phase-demixing. The presence of fluctuations near the critical mixing point resembles features of a critical process. We quantitatively analyze these fluctuations using a 2d elastic model, from which we can estimate the material parameters such as bending rigidity and surface tension, demonstrating the non-equilibrium critical behaviour. Finally, I will describe recent attempts toward tuning the membrane composition by controlling the vesicle curvature.

  11. A Hierarchical Convolutional Neural Network for vesicle fusion event classification.

    Science.gov (United States)

    Li, Haohan; Mao, Yunxiang; Yin, Zhaozheng; Xu, Yingke

    2017-09-01

    Quantitative analysis of vesicle exocytosis and classification of different modes of vesicle fusion from the fluorescence microscopy are of primary importance for biomedical researches. In this paper, we propose a novel Hierarchical Convolutional Neural Network (HCNN) method to automatically identify vesicle fusion events in time-lapse Total Internal Reflection Fluorescence Microscopy (TIRFM) image sequences. Firstly, a detection and tracking method is developed to extract image patch sequences containing potential fusion events. Then, a Gaussian Mixture Model (GMM) is applied on each image patch of the patch sequence with outliers rejected for robust Gaussian fitting. By utilizing the high-level time-series intensity change features introduced by GMM and the visual appearance features embedded in some key moments of the fusion process, the proposed HCNN architecture is able to classify each candidate patch sequence into three classes: full fusion event, partial fusion event and non-fusion event. Finally, we validate the performance of our method on 9 challenging datasets that have been annotated by cell biologists, and our method achieves better performances when comparing with three previous methods. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Myosin XI-Dependent Formation of Tubular Structures from Endoplasmic Reticulum Isolated from Tobacco Cultured BY-2 Cells1[W][OA

    Science.gov (United States)

    Yokota, Etsuo; Ueda, Haruko; Hashimoto, Kohsuke; Orii, Hidefumi; Shimada, Tomoo; Hara-Nishimura, Ikuko; Shimmen, Teruo

    2011-01-01

    The reticular network of the endoplasmic reticulum (ER) consists of tubular and lamellar elements and is arranged in the cortical region of plant cells. This network constantly shows shape change and remodeling motion. Tubular ER structures were formed when GTP was added to the ER vesicles isolated from tobacco (Nicotiana tabacum) cultured BY-2 cells expressing ER-localized green fluorescent protein. The hydrolysis of GTP during ER tubule formation was higher than that under conditions in which ER tubule formation was not induced. Furthermore, a shearing force, such as the flow of liquid, was needed for the elongation/extension of the ER tubule. The shearing force was assumed to correspond to the force generated by the actomyosin system in vivo. To confirm this hypothesis, the S12 fraction was prepared, which contained both cytosol and microsome fractions, including two classes of myosins, XI (175-kD myosin) and VIII (BY-2 myosin VIII-1), and ER-localized green fluorescent protein vesicles. The ER tubules and their mesh-like structures were arranged in the S12 fraction efficiently by the addition of ATP, GTP, and exogenous filamentous actin. The tubule formation was significantly inhibited by the depletion of 175-kD myosin from the S12 fraction but not BY-2 myosin VIII-1. Furthermore, a recombinant carboxyl-terminal tail region of 175-kD myosin also suppressed ER tubule formation. The tips of tubules moved along filamentous actin during tubule elongation. These results indicated that the motive force generated by the actomyosin system contributes to the formation of ER tubules, suggesting that myosin XI is responsible not only for the transport of ER in cytoplasm but also for the reticular organization of cortical ER. PMID:21427277

  13. Endoplasmic reticulum protein targeting of phospholamban: a common role for an N-terminal di-arginine motif in ER retention?

    Directory of Open Access Journals (Sweden)

    Parveen Sharma

    2010-07-01

    Full Text Available Phospholamban (PLN is an effective inhibitor of the sarco(endoplasmic reticulum Ca(2+-ATPase, which transports Ca(2+ into the SR lumen, leading to muscle relaxation. A mutation of PLN in which one of the di-arginine residues at positions 13 and 14 was deleted led to a severe, early onset dilated cardiomyopathy. Here we were interested in determining the cellular mechanisms involved in this disease-causing mutation.Mutations deleting codons for either or both Arg13 or Arg14 resulted in the mislocalization of PLN from the ER. Our data show that PLN is recycled via the retrograde Golgi to ER membrane traffic pathway involving COP-I vesicles, since co-immunoprecipitation assays determined that COP I interactions are dependent on an intact di-arginine motif as PLN RDelta14 did not co-precipitate with COP I containing vesicles. Bioinformatic analysis determined that the di-arginine motif is present in the first 25 residues in a large number of all ER/SR Gene Ontology (GO annotated proteins. Mutations in the di-arginine motif of the Sigma 1-type opioid receptor, the beta-subunit of the signal recognition particle receptor, and Sterol-O-acyltransferase, three proteins identified in our bioinformatic screen also caused mislocalization of these known ER-resident proteins.We conclude that PLN is enriched in the ER due to COP I-mediated transport that is dependent on its intact di-arginine motif and that the N-terminal di-arginine motif may act as a general ER retrieval sequence.

  14. Dose-dependent effects of cisplatin on the severity of testicular injury in Sprague Dawley rats: reactive oxygen species and endoplasmic reticulum stress

    Directory of Open Access Journals (Sweden)

    Soni KK

    2016-12-01

    Full Text Available Kiran Kumar Soni,1 Hye Kyung Kim,2 Bo Ram Choi,1 Keshab Kumar Karna,1 Jae Hyung You,1 Jai Seong Cha,1 Yu Seob Shin,1 Sung Won Lee,3 Chul Young Kim,4 Jong Kwan Park1 1Department of Urology, Institute for Medical Sciences, Chonbuk National University Medical School – Biomedical Research and Institute and Clinical Trial Center for Medical Devices, Chonbuk National University Hospital, Jeonju, 2College of Pharmacy, Kyungsung University, Busan, 3Department of Urology, Samsung Medical Center, Samsung Biomedical Research Institute, Sungkyunkwan University Medical School, Seoul, 4College of Pharmacy, Hanyang University, Ansan, Republic of Korea Abstract: Cisplatin (CIS is used in the treatment of cancer, but its nonspecific systemic actions lead to toxic effects on other parts of the body. This study investigated the severity of CIS toxicity by increasing its dose over a constant time period. Sprague Dawley rats were divided into five treatment groups and control group with CIS (2, 4, 6, 8, and 10 mg/kg administered intraperitoneally for 5 days. The body and organs were weighed, epididymal sperm was counted, and sperm motility and sperm apoptosis were evaluated. Blood samples were evaluated for complete blood count, reactive oxygen and nitrogen species, malondialdehyde levels, and total testosterone. The testicular tissue was examined for steroidogenic acute regulatory protein and endoplasmic reticulum stress protein. Epididymal sperm was collected for CatSper Western blot. The toxic effects of different doses of CIS on the testis and kidney were compared histologically. The weights of body, testis, epididymis, prostate, seminal vesicle, and kidney; sperm count; sperm motility; steroidogenic acute regulatory protein level; and epididymal sperm count were significantly lower in the CIS-treated groups than in the control group. In contrast, sperm apoptosis, plasma reactive oxygen and nitrogen species, and malondialdehyde, testosterone, red blood cell

  15. Molecular characterization of exosome-like vesicles from breast cancer cells

    International Nuclear Information System (INIS)

    Kruger, Stefan; Elmageed, Zakaria Y Abd; Hawke, David H; Wörner, Philipp M; Jansen, David A; Abdel-Mageed, Asim B; Alt, Eckhard U; Izadpanah, Reza

    2014-01-01

    Membrane vesicles released by neoplastic cells into extracellular medium contain potential of carrying arrays of oncogenic molecules including proteins and microRNAs (miRNA). Extracellular (exosome-like) vesicles play a major role in cell-to-cell communication. Thus, the characterization of proteins and miRNAs of exosome-like vesicles is imperative in clarifying intercellular signaling as well as identifying disease markers. Exosome-like vesicles were isolated using gradient centrifugation from MCF-7 and MDA-MB 231 cultures. Proteomic profiling of vesicles using liquid chromatography-mass spectrometry (LC-MS/MS) revealed different protein profiles of exosome-like vesicles derived from MCF-7 cells (MCF-Exo) than those from MDA-MB 231 cells (MDA-Exo). The protein database search has identified 88 proteins in MDA-Exo and 59 proteins from MCF-Exo. Analysis showed that among all, 27 proteins were common between the two exosome-like vesicle types. Additionally, MDA-Exo contains a higher amount of matrix-metalloproteinases, which might be linked to the enhanced metastatic property of MDA-MB 231 cells. In addition, microarray analysis identified several oncogenic miRNA between the two types vesicles. Identification of the oncogenic factors in exosome-like vesicles is important since such vesicles could convey signals to non-malignant cells and could have an implication in tumor progression and metastasis

  16. Sch proteins are localized on endoplasmic reticulum membranes and are redistributed after tyrosine kinase receptor activation

    DEFF Research Database (Denmark)

    Lotti, L V; Lanfrancone, L; Migliaccio, E

    1996-01-01

    area of the cell and mostly associated with the cytosolic side of rough endoplasmic reticulum membranes. Upon epidermal growth factor treatment and receptor tyrosine kinase activation, the immunolabeling became peripheral and was found to be associated with the cytosolic surface of the plasma membrane....... The rough endoplasmic reticulum localization of Shc proteins in unstimulated cells and their massive recruitment to the plasma membrane, endocytic structures, and peripheral cytosol following receptor tyrosine kinase activation could account for multiple putative functions of the adaptor protein....

  17. Aggregation and retention of human urokinase type plasminogen activator in the yeast endoplasmic reticulum

    Directory of Open Access Journals (Sweden)

    Smirnov Vladimir N

    2002-10-01

    Full Text Available Abstract Background Secretion of recombinant proteins in yeast can be affected by their improper folding in the endoplasmic reticulum and subsequent elimination of the misfolded molecules via the endoplasmic reticulum associated protein degradation pathway. Recombinant proteins can also be degraded by the vacuolar protease complex. Human urokinase type plasminogen activator (uPA is poorly secreted by yeast but the mechanisms interfering with its secretion are largely unknown. Results We show that in Hansenula polymorpha overexpression worsens uPA secretion and stimulates its intracellular aggregation. The absence of the Golgi modifications in accumulated uPA suggests that aggregation occurs within the endoplasmic reticulum. Deletion analysis has shown that the N-terminal domains were responsible for poor uPA secretion and propensity to aggregate. Mutation abolishing N-glycosylation decreased the efficiency of uPA secretion and increased its aggregation degree. Retention of uPA in the endoplasmic reticulum stimulates its aggregation. Conclusions The data obtained demonstrate that defect of uPA secretion in yeast is related to its retention in the endoplasmic reticulum. Accumulation of uPA within the endoplasmic reticulum disturbs its proper folding and leads to formation of high molecular weight aggregates.

  18. Protein bodies in leaves exchange contents through the endoplasmic reticulum

    Directory of Open Access Journals (Sweden)

    Reza eSaberianfar

    2016-05-01

    Full Text Available Protein bodies (PBs are organelles found in seeds whose main function is the storage of proteins that are used during germination for sustaining growth. PBs can also be induced to form in leaves when foreign proteins are produced at high levels in the endoplasmic reticulum (ER and when fused to one of three tags: Zera®, elastin-like polypeptides (ELP, or hydrophobin-I (HFBI. In this study, we investigate the differences between ELP, HFBI and Zera PB formation, packing, and communication. Our results confirm the ER origin of all three fusion-tag-induced PBs. We show that secretory pathway proteins can be sequestered into all types of PBs but with different patterns, and that different fusion tags can target a specific protein to different PBs. Zera PBs are mobile and dependent on actomyosin motility similar to ELP and HFBI PBs. We show in vivo trafficking of proteins between PBs using GFP photoconversion. We also show that protein trafficking between ELP or HFBI PBs is faster and proteins travel further when compared to Zera PBs. Our results indicate that fusion-tag-induced PBs do not represent terminally stored cytosolic organelles, but that they form in, and remain part of the ER, and dynamically communicate with each other via the ER. We hypothesize that the previously documented PB mobility along the actin cytoskeleton is associated with ER movement rather than independent streaming of detached organelles.

  19. Arachidonoyl-specific diacylglycerol kinase ε and the endoplasmic reticulum

    Directory of Open Access Journals (Sweden)

    Tomoyuki Nakano

    2016-11-01

    Full Text Available The endoplasmic reticulum (ER comprises an interconnected membrane network, which is made up of lipid bilayer and associated proteins. This organelle plays a central role in the protein synthesis and sorting. In addition, it represents the synthetic machinery of phospholipids, the major constituents of the biological membrane. In this process, phosphatidic acid (PA serves as a precursor of all phospholipids, suggesting that PA synthetic activity is closely associated with the ER function. One enzyme responsible for PA synthesis is diacylglycerol kinase (DGK that phosphorylates diacylglycerol (DG to PA. DGK is composed of a family of enzymes with distinct features assigned to each isozyme in terms of structure, enzymology and subcellular localization. Of DGKs, DGKε uniquely exhibits substrate specificity toward arachidonate-containing DG and is shown to reside in the ER. Arachidonic acid, a precursor of bioactive eicosanoids, is usually acylated at the sn-2 position of phospholipids, being especially enriched in phosphoinositide. In this review, we focus on arachidonoyl-specific DGKε with respect to the historical context, molecular basis of the substrate specificity and ER-targeting, and functional implications in the ER.

  20. Dietary toxins, endoplasmic reticulum (ER) stress and diabetes.

    Science.gov (United States)

    Hettiarachchi, Kalindi D; Zimmet, Paul Z; Myers, Mark A

    2008-05-01

    The incidence of Type 1 diabetes has been increasing at a rate too rapid to be due to changes in genetic risk. Instead changes in environmental factors are the likely culprit. The endoplasmic reticulum (ER) plays an important role in the production of newly synthesized proteins and interference with these processes leads to ER stress. The insulin-producing beta cells are particularly prone to ER stress as a result of their heavy engagement in insulin production. Increasing evidence suggests ER stress is central to initiation and progression of Type 1 diabetes. An early environmental exposure, such as toxins and viral infections, can impart a significant physiological load on beta cells to initiate abnormal processing of proinsulin, ER stress and insulin secretory defects. Release of altered proinsulin from the beta cells early in life may trigger autoimmunity in those with genetic susceptibility leading to cytokine-induced nitric oxide production and so exacerbating ER stress in beta cells, ultimately leading to apoptosis of beta cells and diabetes. Here we suggest that ER stress is an inherent cause of beta cell dysfunction and environmental factors, in particular dietary toxins derived from Streptomyces in infected root vegetables, can impart additional stress that aggravates beta cell death and progression to diabetes. Furthermore, we propose that the increasing incidence of Type 1 diabetes may be accounted for by increased dietary exposure to ER-stress-inducing Streptomyces toxins.

  1. Endoplasmic Reticulum Stress, Unfolded Protein Response, and Cancer Cell Fate

    Directory of Open Access Journals (Sweden)

    Marco Corazzari

    2017-04-01

    Full Text Available Perturbation of endoplasmic reticulum (ER homeostasis results in a stress condition termed “ER stress” determining the activation of a finely regulated program defined as unfolded protein response (UPR and whose primary aim is to restore this organelle’s physiological activity. Several physiological and pathological stimuli deregulate normal ER activity causing UPR activation, such as hypoxia, glucose shortage, genome instability, and cytotoxic compounds administration. Some of these stimuli are frequently observed during uncontrolled proliferation of transformed cells, resulting in tumor core formation and stage progression. Therefore, it is not surprising that ER stress is usually induced during solid tumor development and stage progression, becoming an hallmark of such malignancies. Several UPR components are in fact deregulated in different tumor types, and accumulating data indicate their active involvement in tumor development/progression. However, although the UPR program is primarily a pro-survival process, sustained and/or prolonged stress may result in cell death induction. Therefore, understanding the mechanism(s regulating the cell survival/death decision under ER stress condition may be crucial in order to specifically target tumor cells and possibly circumvent or overcome tumor resistance to therapies. In this review, we discuss the role played by the UPR program in tumor initiation, progression and resistance to therapy, highlighting the recent advances that have improved our understanding of the molecular mechanisms that regulate the survival/death switch.

  2. Endoplasmic-reticulum-mediated microtubule alignment governs cytoplasmic streaming.

    Science.gov (United States)

    Kimura, Kenji; Mamane, Alexandre; Sasaki, Tohru; Sato, Kohta; Takagi, Jun; Niwayama, Ritsuya; Hufnagel, Lars; Shimamoto, Yuta; Joanny, Jean-François; Uchida, Seiichi; Kimura, Akatsuki

    2017-04-01

    Cytoplasmic streaming refers to a collective movement of cytoplasm observed in many cell types. The mechanism of meiotic cytoplasmic streaming (MeiCS) in Caenorhabditis elegans zygotes is puzzling as the direction of the flow is not predefined by cell polarity and occasionally reverses. Here, we demonstrate that the endoplasmic reticulum (ER) network structure is required for the collective flow. Using a combination of RNAi, microscopy and image processing of C. elegans zygotes, we devise a theoretical model, which reproduces and predicts the emergence and reversal of the flow. We propose a positive-feedback mechanism, where a local flow generated along a microtubule is transmitted to neighbouring regions through the ER. This, in turn, aligns microtubules over a broader area to self-organize the collective flow. The proposed model could be applicable to various cytoplasmic streaming phenomena in the absence of predefined polarity. The increased mobility of cortical granules by MeiCS correlates with the efficient exocytosis of the granules to protect the zygotes from osmotic and mechanical stresses.

  3. A Molecular Web: Endoplasmic Reticulum Stress, Inflammation and Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Namrata eChaudhari

    2014-07-01

    Full Text Available Execution of fundamental cellular functions demands regulated protein folding homeostasis. Endoplasmic reticulum (ER is an active organelle existing to implement this function by folding and modifying secretory and membrane proteins. Loss of protein folding homeostasis is central to various diseases and budding evidences suggest ER stress as being a major contributor in the development or pathology of a diseased state besides other cellular stresses. The trigger for diseases may be diverse but, inflammation and/or ER stress may be basic mechanisms increasing the severity or complicating the condition of the disease. Chronic ER stress and activation of the unfolded protein response (UPR through endogenous or exogenous insults may result in impaired calcium and redox homeostasis, oxidative stress via protein overload thereby also influencing vital mitochondrial functions. Calcium released from the ER augments the production of mitochondrial Reactive Oxygen Species (ROS. Toxic accumulation of ROS within ER and mitochondria disturb fundamental organelle functions. Sustained ER stress is known to potentially elicit inflammatory responses via UPR pathways. Additionally, ROS generated through inflammation or mitochondrial dysfunction could accelerate ER malfunction. Dysfunctional UPR pathways has been associated with a wide range of diseases including several neurodegenerative diseases, stroke, metabolic disorders, cancer, inflammatory disease, diabetes mellitus, cardiovascular disease and others. In this review we have discussed the UPR signaling pathways, and networking between ER stress induced inflammatory pathways, oxidative stress and mitochondrial signaling events which further induce or exacerbate ER stress.

  4. STIM proteins and the endoplasmic reticulum-plasma membrane junctions.

    Science.gov (United States)

    Carrasco, Silvia; Meyer, Tobias

    2011-01-01

    Eukaryotic organelles can interact with each other through stable junctions where the two membranes are kept in close apposition. The junction that connects the endoplasmic reticulum to the plasma membrane (ER-PM junction) is unique in providing a direct communication link between the ER and the PM. In a recently discovered signaling process, STIM (stromal-interacting molecule) proteins sense a drop in ER Ca(2+) levels and directly activate Orai PM Ca(2+) channels across the junction space. In an inverse process, a voltage-gated PM Ca(2+) channel can directly open ER ryanodine-receptor Ca(2+) channels in striated-muscle cells. Although ER-PM junctions were first described 50 years ago, their broad importance in Ca(2+) signaling, as well as in the regulation of cholesterol and phosphatidylinositol lipid transfer, has only recently been realized. Here, we discuss research from different fields to provide a broad perspective on the structures and unique roles of ER-PM junctions in controlling signaling and metabolic processes.

  5. Hypothalamic endoplasmic reticulum stress of overtrained mice after recovery

    Directory of Open Access Journals (Sweden)

    Ana P. Pinto

    2017-05-01

    Full Text Available Abstract AIMS knowing the relationship between endoplasmic reticulum (ER stress and inflammation and based on the fact that downhill running-based overtraining (OT model increases hypothalamus levels of some pro-inflammatory cytokines, we verified the effects of three OT protocols on the levels of BiP, pIRE-1 (Ser734, pPERK (Thr981, pelF2alpha (Ser52, ATF-6 and GRP-94 proteins in the mouse hypothalamus after two weeks of recovery. METHODS the mice were randomized into control (CT, overtrained by downhill running (OTR/down, overtrained by uphill running (OTR/up and overtrained by running without inclination (OTR groups. After 2-week total recovery period (i.e., week 10, hypothalamus was removed and used for immunoblotting. RESULTS the OTR/down group exhibited high levels of BiP and ATF6. The other OT protocols showed higher levels of pPERK (Th981 and pelf-2alpha (Ser52 when compared with the CT group. CONCLUSION the current results suggest that after a 2-week total recovery period, the overtrained groups increased partially their ER stress protein levels, but without hypothalamic inflammation, which characterizes a physiological condition related to an adaptation mechanism.

  6. The endoplasmic reticulum in plant immunity and cell death.

    Science.gov (United States)

    Eichmann, Ruth; Schäfer, Patrick

    2012-01-01

    The endoplasmic reticulum (ER) is a highly dynamic organelle in eukaryotic cells and a major production site of proteins destined for vacuoles, the plasma membrane, or apoplast in plants. At the ER, these secreted proteins undergo multiple processing steps, which are supervised and conducted by the ER quality control system. Notably, processing of secreted proteins can considerably elevate under stress conditions and exceed ER folding capacities. The resulting accumulation of unfolded proteins is defined as ER stress. The efficiency of cells to re-establish proper ER function is crucial for stress adaptation. Besides delivering proteins directly antagonizing and resolving stress conditions, the ER monitors synthesis of immune receptors. This indicates the significance of the ER for the establishment and function of the plant immune system. Recent studies point out the fragility of the entire system and highlight the ER as initiator of programed cell death (PCD) in plants as was reported for vertebrates. This review summarizes current knowledge on the impact of the ER on immune and PCD signaling. Understanding the integration of stress signals by the ER bears a considerable potential to optimize development and to enhance stress resistance of plants.

  7. The endoplasmic reticulum in plant immunity and cell death

    Directory of Open Access Journals (Sweden)

    Patrick eSchäfer

    2012-08-01

    Full Text Available The endoplasmic reticulum (ER is a highly dynamic organelle in eukaryotic cells and a major production site of proteins destined for vacuoles, the plasma membrane or apoplast in plants. At the ER, these secreted proteins undergo multiple processing steps, which are supervised and conducted by the ER quality control system. Notably, processing of secreted proteins can considerably elevate under stress conditions and exceed ER folding capacities. The resulting accumulation of unfolded proteins is defined as ER stress. The efficiency of cells to re-establish proper ER function is crucial for stress adaptation. Besides delivering proteins directly antagonizing and resolving stress conditions, the ER monitors synthesis of immune receptors. This indicates the significance of the ER for the establishment and function of the plant immune system. Recent studies point out the fragility of the entire system and highlight the ER as initiator of programmed cell death (PCD in plants as was reported for vertebrates. This review summarizes current knowledge on the impact of the ER on immune and PCD signalling. Understanding the integration of stress signals by the ER bears a considerable potential to optimize development and to enhance stress resistance of plants.

  8. Heme oxygenase-1 comes back to endoplasmic reticulum

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hong Pyo [School of Biological Sciences, Ulsan University (Korea, Republic of); Pae, Hyun-Ock [Department of Immunology, Wonkwang University School of Medicine (Korea, Republic of); Back, Sung Hun; Chung, Su Wol [School of Biological Sciences, Ulsan University (Korea, Republic of); Woo, Je Moon [Department of Opthalmology, Ulasn University Hospital (Korea, Republic of); Son, Yong [Department of Anesthesiology and Pain Medicine, Wonkwang University School of Medicine (Korea, Republic of); Chung, Hun-Taeg, E-mail: chung@ulsan.ac.kr [School of Biological Sciences, Ulsan University (Korea, Republic of)

    2011-01-07

    Research highlights: {yields} Although multiple compartmentalization of HO-1 has been documented, the functional implication of this enzyme at these subcellular organelles is only partially elucidated. {yields} HO-1 expression at ER is induced by a diverse set of conditions that cause ER stressors. {yields} CO may induce HO-1 expression in human ECs by activating Nrf2 through PERK phosphorylation in a positive-feedback manner. {yields} ER-residing HO-1 and its cytoprotective activity against ER stress is discussed. -- Abstract: Originally identified as a rate-limiting enzyme for heme catabolism, heme oxygenase-1 (HO-1) has expanded its roles in anti-inflammation, anti-apoptosis and anti-proliferation for the last decade. Regulation of protein activity by location is well appreciated. Even though multiple compartmentalization of HO-1 has been documented, the functional implication of this enzyme at these subcellular organelles is only partially elucidated. In this review we discuss the endoplasmic reticulum (ER)-residing HO-1 and its cytoprotective activity against ER stress.

  9. Homocysteine inhibits hepatocyte proliferation via endoplasmic reticulum stress.

    Directory of Open Access Journals (Sweden)

    Xue Yu

    Full Text Available Homocysteine is an independent risk factor for coronary, cerebral, and peripheral vascular diseases. Recent studies have shown that levels of homocysteine are elevated in patients with impaired hepatic function, but the precise role of homocysteine in the development of hepatic dysfunction is unclear. In this study, we examined the effect of homocysteine on hepatocyte proliferation in vitro. Our results demonstrated that homocysteine inhibited hepatocyte proliferation by up-regulating protein levels of p53 as well as mRNA and protein levels of p21(Cip1 in primary cultured hepatocytes. Homocysteine induced cell growth arrest in p53-positive hepatocarcinoma cell line HepG2, but not in p53-null hepatocarcinoma cell line Hep3B. A p53 inhibitor pifithrin-α inhibited the expression of p21(Cip1 and attenuated homocysteine-induced cell growth arrest. Homocysteine induced TRB3 expression via endoplasmic reticulum stress pathway, resulting in Akt dephosphorylation. Knock-down of endogenous TRB3 significantly suppressed the inhibitory effect of homocysteine on cell proliferation and the phosphorylation of Akt. LiCl reversed homocysteine-mediated cell growth arrest by inhibiting TRB3-mediated Akt dephosphorylation. These results demonstrate that both TRB3 and p21(Cip1 are critical molecules in the homocysteine signaling cascade and provide a mechanistic explanation for impairment of liver regeneration in hyperhomocysteinemia.

  10. Mapping organelle motion reveals a vesicular conveyor belt spatially replenishing secretory vesicles in stimulated chromaffin cells.

    Science.gov (United States)

    Maucort, Guillaume; Kasula, Ravikiran; Papadopulos, Andreas; Nieminen, Timo A; Rubinsztein-Dunlop, Halina; Meunier, Frederic A

    2014-01-01

    How neurosecretory cells spatially adjust their secretory vesicle pools to replenish those that have fused and released their hormonal content is currently unknown. Here we designed a novel set of image analyses to map the probability of tracked organelles undergoing a specific type of movement (free, caged or directed). We then applied our analysis to time-lapse z-stack confocal imaging of secretory vesicles from bovine Chromaffin cells to map the global changes in vesicle motion and directionality occurring upon secretagogue stimulation. We report a defined region abutting the cortical actin network that actively transports secretory vesicles and is dissipated by actin and microtubule depolymerizing drugs. The directionality of this "conveyor belt" towards the cell surface is activated by stimulation. Actin and microtubule networks therefore cooperatively probe the microenvironment to transport secretory vesicles to the periphery, providing a mechanism whereby cells globally adjust their vesicle pools in response to secretagogue stimulation.

  11. A novel isolation strategy for obtaining crude membrane vesicles from bovine skim milk

    DEFF Research Database (Denmark)

    Blans, Kristine; Larsen, Lotte Bach; Wiking, Lars

    Bovine milks content of phospholipid membranes have largely been explored in the cream fraction, and known as the milk fat globule membrane that surrounds fat droplets. In skim milk, the population of phospholipid membranes is reported to constitute membrane vesicles with a soluble content known...... is observed all over the gradient. The variety of the membrane vesicles is currently being investigated further by several means. Summary/conclusion: A new procedure for easy and gentle isolation of bovine milk membrane vesicles encompassing ultracentrifugation and size-exclusion chromatography has been...... established. The resulting vesicle isolate exhibits the general membrane vesicle characteristics and provides an appropriate start material from which the variety of milk vesicles can be investigated...

  12. Gold nanoparticles covalently assembled onto vesicle structures as possible biosensing platform

    Directory of Open Access Journals (Sweden)

    M. Fátima Barroso

    2016-05-01

    Full Text Available In this contribution a strategy is shown to covalently immobilize gold nanoparticles (AuNPs onto vesicle bilayers with the aim of using this nanomaterial as platform for the future design of immunosensors. A novel methodology for the self-assembly of AuNPs onto large unilamellar vesicle structures is described. The vesicles were formed with 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC and 1-undecanethiol (SH. After, the AuNPs photochemically synthesized in pure glycerol were mixed and anchored onto SH–DOPC vesicles. The data provided by voltammetry, spectrometry and microscopy techniques indicated that the AuNPs were successfully covalently anchored onto the vesicle bilayer and decorated vesicles exhibit a spherical shape with a size of 190 ± 10 nm. The developed procedure is easy, rapid and reproducible to start designing a possible immunosensor by using environmentally friendly procedures.

  13. Porphyromonas gingivalis Outer Membrane Vesicles Mediate Coaggregation and Piggybacking of Treponema denticola and Lachnoanaerobaculum saburreum

    Directory of Open Access Journals (Sweden)

    Daniel Grenier

    2013-01-01

    Full Text Available Porphyromonas gingivalis sheds outer membrane vesicles that contain several virulence factors, including adhesins. In this study, we investigated the ability of P. gingivalis outer membrane vesicles to mediate the coaggregation and piggybacking of Treponema denticola and Lachnoanaerobaculum saburreum. Marked coaggregation between T. denticola and L. saburreum occurred in the presence of P. gingivalis outer membrane vesicles. Sucrose was an effective chemoattractant for the motile species T. denticola. The addition of outer membrane vesicles to a mixture of T. denticola and L. saburreum significantly increased the number of nonmotile bacteria that migrated into a sucrose-filled capillary tube immersed in the bacterial mixture. Under optimal conditions, the number of nonmotile L. saburreum in the capillary tube increased approximately 5-fold, whereas no increase occurred when boiled vesicles were used. This study showed that P. gingivalis outer membrane vesicles mediate coaggregation between T. denticola and L. saburreum and that nonmotile bacteria can be translocated by piggybacking on spirochetes.

  14. Replication of simulated prebiotic amphiphile vesicles controlled by experimental lipid physicochemical properties

    International Nuclear Information System (INIS)

    Armstrong, Don L; Zidovetzki, Raphael; Markovitch, Omer; Lancet, Doron

    2011-01-01

    We present a new embodiment of the graded autocatalysis replication domain (GARD) for the growth, replication and evolution of lipid vesicles based on a semi-empirical foundation using experimentally measured kinetic values of selected extant lipid species. Extensive simulations using this formalism elucidated the details of the dependence of the replication and properties of the vesicles on the physicochemical properties and concentrations of the lipids, both in the environment and in the vesicle. As expected, the overall concentration and number of amphiphilic components strongly affect average replication time. Furthermore, variations in acyl chain length and unsaturation of vesicles also influence replication rate, as do the relative concentrations of individual lipid types. Understanding of the dependence of replication rates on physicochemical parameters opens a new direction in the study of prebiotic vesicles and lays the groundwork for future studies involving the competition between lipid vesicles for available amphiphilic monomers

  15. Growth and instability of a phospholipid vesicle in a bath of fatty acids

    Science.gov (United States)

    Dervaux, J.; Noireaux, V.; Libchaber, A. J.

    2017-06-01

    Using a microfluidic trap, we study the behavior of individual phospholipid vesicles in contact with fatty acids. We show that spontaneous fatty acids insertion inside the bilayer is controlled by the vesicle size, osmotic pressure difference across the membrane and fatty acids concentration in the external bath. Depending on these parameters, vesicles can grow spherically or become unstable and fragment into several daughter vesicles. We establish the phase diagram for vesicle growth and we derive a simple thermodynamic model that reproduces the time evolution of the vesicle volume. Finally, we show that stable growth can be achieved on an artificial cell expressing a simple set of bacterial cytoskeletal proteins, paving the way toward artificial cell reproduction.

  16. Single-vesicle detection and analysis of peptide-induced membrane permeabilization

    DEFF Research Database (Denmark)

    Kristensen, Kasper; Ehrlich, Nicky; Henriksen, Jonas Rosager

    2015-01-01

    The capability of membrane-active peptides to disrupt phospholipid membranes is often studied by investigating peptide-induced leakage of quenched fluorescent molecules from large unilamellar lipid vesicles. In this article, we explore two fluorescence microscopy-based single-vesicle detection...... methods as alternatives to the quenching-based assays for studying peptide-induced leakage from large unilamellar lipid vesicles. Specifically, we use fluorescence correlation spectroscopy (FCS) to study the leakage of fluorescent molecules of different sizes from large unilamellar lipid vesicles...... dispersed in aqueous solution, and we use confocal imaging of surface-immobilized large unilamellar lipid vesicles to investigate whether there are heterogeneities in leakage between individual vesicles. Of importance, we design an experimental protocol that allows us to quantitatively correlate the results...

  17. Small round blue cell tumor of seminal vesicle in a young patient

    Directory of Open Access Journals (Sweden)

    Adriano A. De Paula

    2006-10-01

    Full Text Available Seminal vesicle tumor is a rare disease with unclear origin. Generally, it is presented as a pelvic mass that can be detected by sonography and digital rectal exam. The authors report a 25-year-old patient with a pelvic mass which the magnetic resonance and surgical specimen reveal a seminal vesicle tumor. Immunohistochemical findings favored a primitive neuroectodermal tumor of the seminal vesicle. Herein, the treatment, histological and histochemical findings of this entity are discussed.

  18. Plasma biomarker discovery in preeclampsia using a novel differential isolation technology for circulating extracellular vesicles.

    Science.gov (United States)

    Tan, Kok Hian; Tan, Soon Sim; Sze, Siu Kwan; Lee, Wai Kheong Ryan; Ng, Mor Jack; Lim, Sai Kiang

    2014-10-01

    To circumvent the complex protein milieu of plasma and discover robust predictive biomarkers for preeclampsia (PE), we investigate if phospholipid-binding ligands can reduce the milieu complexity by extracting plasma extracellular vesicles for biomarker discovery. Cholera toxin B chain (CTB) and annexin V (AV) which respectively binds GM1 ganglioside and phosphatidylserine were used to isolate extracellular vesicles from plasma of PE patients and healthy pregnant women. The proteins in the vesicles were identified using enzyme-linked immunosorbent assay, antibody array, and mass spectrometry. CTB and AV were found to bind 2 distinct groups of extracellular vesicles. Antibody array and enzyme-linked immunosorbent assay revealed that PE patients had elevated levels of CD105, interleukin-6, placental growth factor, tissue inhibitor of metallopeptidase 1, and atrial natriuretic peptide in cholera toxin B- but not AV-vesicles, and elevated levels of plasminogen activator inhibitor-1, pro-calcitonin, S100b, tumor growth factor β, vascular endothelial growth factor receptor 1, brain natriuretic peptide, and placental growth factor in both cholera toxin B- and AV-vesicles. CD9 level was elevated in cholera toxin B-vesicles but reduced in AV vesicles of PE patients. Proteome analysis revealed that in cholera toxin B-vesicles, 87 and 222 proteins were present only in PE patients and healthy pregnant women respectively while in AV-vesicles, 104 and 157 proteins were present only in PE and healthy pregnant women, respectively. This study demonstrated for the first time that CTB and AV bind unique extracellular vesicles, and their protein cargo reflects the disease state of the patient. The successful use of these 2 ligands to isolate circulating plasma extracellular vesicles for biomarker discovery in PE represents a novel technology for biomarker discovery that can be applied to other specialties. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Bell-shaped calcium-response curves of lns(l,4,5)P3- and calcium-gated channels from endoplasmic reticulum of cerebellum

    Science.gov (United States)

    Bezprozvanny, Llya; Watras, James; Ehrlich, Barbara E.

    1991-06-01

    RELEASE of calcium from intracellular stores occurs by two pathways, an inositol 1,4,5-trisphosphate (InsP3)-gated channel1-3 and a calcium-gated channel (ryanodine receptor)4-6. Using specific antibodies, both receptors were found in Purkinje cells of cerebellum7,8. We have now compared the functional properties of the channels corresponding to the two receptors by incorporating endoplasmic reticulum vesicles from canine cerebellum into planar bilayers. InsP3-gated channels were observed most frequently. Another channel type was activated by adenine nucleotides or caffeine, inhibited by ruthenium red, and modified by ryanodine, characteristics of the ryanodine receptor/channel6. The open probability of both channel types displayed a bell-shaped curve for dependence on calcium. For the InsP3-gated channel, the maximum probability of opening occurred at 0.2 µM free calcium, with sharp decreases on either side of the maximum. Maximum activity for the ryanodine receptor/channel was maintained between 1 and 100 µM calcium. Thus, within the physiological range of cytoplasmic calcium, the InsP3-gated channel itself allows positive feed-back and then negative feedback for calcium release, whereas the ryanodine receptor/channel behaves solely as a calcium-activated channel. The existence in the same cell of two channels with different responses to calcium and different ligand sensitivities provides a basis for complex patterns of intracellular calcium regulation.

  20. Synthesis of Copper nanoparticles through vesicle template using gamma irradiation

    International Nuclear Information System (INIS)

    Noor Ezzah Rahimah Ahmad Samsuri

    2012-01-01

    Nano technology has gained attention for its application in life. This study was conducted to produce copper (Cu) nanoparticles using gamma ray irradiation through template vesicles. Cu nanoparticle has a variety of applications such as capacitor materials, catalyst, conductive coating, high thermal conductivity materials as well as lubricant additives. this study used gamma radiation compared to other methods because the use of gamma rays in producing nanoparticle is safer and environmental friendly. The purpose of this study was to see the effects of radiation on the formation of Cu nanoparticles. The radiation dose used was 80 kGy and 100 kGy. The vesicles were formed by mixing water, sodium n-lauroyl sarcosinat hydrated, 1-decanol and polyethylene glycol with certain ratio (85 %: 5 %: 7 %: 3 %). Analysis from the transmission electron microscopy (TEM) showed the production of multilammelar vesicles in size between 30 nm-80 nm. The formation of nanoparticles was analyzed using UV-Vis absorption spectroscopy, X-ray diffraction (XRD) and transmission electron microscopy (TEM). Analysis of UV-Vis absorption spectroscopy showed no resonance peak around 600 nm. XRD analysis confirmed the presence of Cu, Cu 2 O and CuO. Analysis and characterisation using transmission electron microscopy (TEM) also confirmed that nanoparticles were produced with different sizes according to the radiation dose. At the radiation dose of 80 kGy, nanoparticles size is found vary between 30 nm to 90 nm. While at the radiation dose of 100 kGy, nanoparticles size is found vary between 3 nm to 7 nm. From this study it can be concluded that higher radiation dse will produce smaller nanoparticles. (author)

  1. Synaptic vesicle dynamic changes in a model of fragile X.

    Science.gov (United States)

    Broek, Jantine A C; Lin, Zhanmin; de Gruiter, H Martijn; van 't Spijker, Heleen; Haasdijk, Elize D; Cox, David; Ozcan, Sureyya; van Cappellen, Gert W A; Houtsmuller, Adriaan B; Willemsen, Rob; de Zeeuw, Chris I; Bahn, Sabine

    2016-01-01

    Fragile X syndrome (FXS) is a single-gene disorder that is the most common heritable cause of intellectual disability and the most frequent monogenic cause of autism spectrum disorders (ASD). FXS is caused by an expansion of trinucleotide repeats in the promoter region of the fragile X mental retardation gene (Fmr1). This leads to a lack of fragile X mental retardation protein (FMRP), which regulates translation of a wide range of messenger RNAs (mRNAs). The extent of expression level alterations of synaptic proteins affected by FMRP loss and their consequences on synaptic dynamics in FXS has not been fully investigated. Here, we used an Fmr1 knockout (KO) mouse model to investigate the molecular mechanisms underlying FXS by monitoring protein expression changes using shotgun label-free liquid-chromatography mass spectrometry (LC-MS(E)) in brain tissue and synaptosome fractions. FXS-associated candidate proteins were validated using selected reaction monitoring (SRM) in synaptosome fractions for targeted protein quantification. Furthermore, functional alterations in synaptic release and dynamics were evaluated using live-cell imaging, and interpretation of synaptic dynamics differences was investigated using electron microscopy. Key findings relate to altered levels of proteins involved in GABA-signalling, especially in the cerebellum. Further exploration using microscopy studies found reduced synaptic vesicle unloading of hippocampal neurons and increased vesicle unloading in cerebellar neurons, which suggests a general decrease of synaptic transmission. Our findings suggest that FMRP is a regulator of synaptic vesicle dynamics, which supports the role of FMRP in presynaptic functions. Taken together, these studies provide novel insights into the molecular changes associated with FXS.

  2. Endoplasmic reticulum redox state is not perturbed by pharmacological or pathological endoplasmic reticulum stress in live pancreatic β-cells.

    Directory of Open Access Journals (Sweden)

    Irmgard Schuiki

    Full Text Available Accumulation of unfolded, misfolded and aggregated proteins in the endoplasmic reticulum (ER causes ER stress. ER stress can result from physiological situations such as acute increases in secretory protein biosynthesis or pathological conditions that perturb ER homeostasis such as alterations in the ER redox state. Here we monitored ER redox together with transcriptional output of the Unfolded Protein Response (UPR in INS-1 insulinoma cells stably expressing eroGFP (ER-redox-sensor and mCherry protein driven by a GRP78 promoter (UPR-sensor. Live cell imaging, flow cytometry and biochemical characterization were used to examine these parameters in response to various conditions known to induce ER stress. As expected, treatment of the cells with the reducing agent dithiothreitol caused a decrease in the oxidation state of the ER accompanied by an increase in XBP-1 splicing. Unexpectedly however, other treatments including tunicamycin, thapsigargin, DL-homocysteine, elevated free fatty acids or high glucose had essentially no influence on the ER redox state, despite inducing ER stress. Comparable results were obtained with dispersed rat islet cells expressing eroGFP. Thus, unlike in yeast cells, ER stress in pancreatic β-cells is not associated with a more reducing ER environment.

  3. CDIP1-BAP31 Complex Transduces Apoptotic Signals from Endoplasmic Reticulum to Mitochondria under Endoplasmic Reticulum Stress

    Directory of Open Access Journals (Sweden)

    Takushi Namba

    2013-10-01

    Full Text Available Resolved endoplasmic reticulum (ER stress response is essential for intracellular homeostatic balance, but unsettled ER stress can lead to apoptosis. Here, we show that a proapoptotic p53 target, CDIP1, acts as a key signal transducer of ER-stress-mediated apoptosis. We identify B-cell-receptor-associated protein 31 (BAP31 as an interacting partner of CDIP1. Upon ER stress, CDIP1 is induced and enhances an association with BAP31 at the ER membrane. We also show that CDIP1 binding to BAP31 is required for BAP31 cleavage upon ER stress and for BAP31-Bcl-2 association. The recruitment of Bcl-2 to the BAP31-CDIP1 complex, as well as CDIP1-dependent truncated Bid (tBid and caspase-8 activation, contributes to BAX oligomerization. Genetic knockout of CDIP1 in mice leads to impaired response to ER-stress-mediated apoptosis. Altogether, our data demonstrate that the CDIP1/BAP31-mediated regulation of mitochondrial apoptosis pathway represents a mechanism for establishing an ER-mitochondrial crosstalk for ER-stress-mediated apoptosis signaling.

  4. Selective Metal-Ion-Mediated Vesicle Adhesion Based on Dynamic Self-Organization of a Pyrene-Appended Glutamic Acid.

    Science.gov (United States)

    Xing, Pengyao; Wang, Yajie; Yang, Minmin; Zhang, Yimeng; Wang, Bo; Hao, Aiyou

    2016-07-13

    Vesicles with dynamic membranes provide an ideal model system for investigating biological membrane activities, whereby vesicle aggregation behaviors including adhesion, fusion, fission, and membrane contraction/extension have attracted much attention. In this work we utilize an aromatic amino acid (pyrene-appended glutamic acid, PGlu) to prepare nanovesicles that aggregate to form vesicle clusters selectively induced by Fe(3+) or Cu(2+), and the vesicles transform into irregular nano-objects when interacting with Al(3+). Vesicle clusters have better stability than pristine vesicles, which hinders the spontaneous morphological transformation from vesicles into lamellar nanosheets with long incubation period. The difference between complexation of Fe(3+) and Al(3+) with vesicles was studied by various techniques. On the basis of metal ion-vesicle interactions, this self-assembled nanovesicle system also behaves as an effective fluorescent sensor for Fe(3+) and Al(3+), which cause fluorescence quenching and enhanced excimer emission, respectively.

  5. The BAR Domain Protein PICK1 Controls Vesicle Number and Size in Adrenal Chromaffin Cells

    DEFF Research Database (Denmark)

    da Silva Pinheiro, Paulo César; Jansen, Anna M; de Wit, Heidi

    2014-01-01

    , a marker for immature granules. In chromaffin cells isolated from a PICK1 knockout (KO) mouse the amount of exocytosis was reduced, while release kinetics and Ca(2+) sensitivity were unaffected. Vesicle-fusion events had a reduced frequency and released lower amounts of transmitter per vesicle (i...... in vesicle number and size, whereas the fusion competence of generated vesicles was unaffected by the absence of PICK1. Viral rescue experiments demonstrated that long-term re-expression of PICK1 is necessary to restore normal vesicular content and secretion, while short-term overexpression is ineffective...

  6. Chromatic response of polydiacetylene vesicle induced by the permeation of methotrexate.

    Science.gov (United States)

    Shin, Min Jae; Kim, Ye Jin; Kim, Jong-Duk

    2015-07-07

    The noble vesicular system of polydiacetylene showed a red shift using two types of detecting systems. One of the systems involves the absorption of target materials from the outer side of the vesicle, and the other system involves the permeation through the vesicular layers from within the vesicle. The chromatic mixed vesicles of N-(2-aminoethyl)pentacosa-10,12-diynamide (AEPCDA) and dimethyldioctadecylammonium chloride (DODAC) were fabricated by sonication, followed by polymerization by UV irradiation. The stability of monomeric vesicles was observed to increase with the polymerization of the vesicles. Methotrexate was used as a target material. The polymerized mixed vesicles having a blue color were exposed to a concentration gradient of methotrexate, and a red shift was observed indicating the adsorption of methotrexate on the polydiacetylene bilayer. In order to check the chromatic change by the permeation of methotrexate, we separated the vesicle portion, which contained methotrexate inside the vesicle, and checked chromatic change during the permeation of methotrexate through the vesicle. The red shift apparently indicates the disturbance in the bilayer induced by the permeation of methotrexate. The maximum contrast of color appeared at the equal molar ratio of AEPCDA and DODAC, indicating that the formation of flexible and deformable vesicular layers is important for red shift. Therefore, it is hypothesized that the system can be applicable for the chromatic detection of the permeation of methotrexate through the polydiacetylene layer.

  7. Isolation and characterization of urinary extracellular vesicles: implications for biomarker discovery.

    Science.gov (United States)

    Merchant, Michael L; Rood, Ilse M; Deegens, Jeroen K J; Klein, Jon B

    2017-12-01

    Urine is a valuable diagnostic medium and, with the discovery of urinary extracellular vesicles, is viewed as a dynamic bioactive fluid. Extracellular vesicles are lipid-enclosed structures that can be classified into three categories: exosomes, microvesicles (or ectosomes) and apoptotic bodies. This classification is based on the mechanisms by which membrane vesicles are formed: fusion of multivesicular bodies with the plasma membranes (exosomes), budding of vesicles directly from the plasma membrane (microvesicles) or those shed from dying cells (apoptotic bodies). During their formation, urinary extracellular vesicles incorporate various cell-specific components (proteins, lipids and nucleic acids) that can be transferred to target cells. The rigour needed for comparative studies has fueled the search for optimal approaches for their isolation, purification, and characterization. RNA, the newest extracellular vesicle component to be discovered, has received substantial attention as an extracellular vesicle therapeutic, and compelling evidence suggests that ex vivo manipulation of microRNA composition may have uses in the treatment of kidney disorders. The results of these studies are building the case that urinary extracellular vesicles act as mediators of renal pathophysiology. As the field of extracellular vesicle studies is burgeoning, this Review focuses on primary data obtained from studies of human urine rather than on data from studies of laboratory animals or cultured immortalized cells.

  8. Dynamics of coarsening in multicomponent lipid vesicles with non-uniform mechanical properties

    Science.gov (United States)

    Funkhouser, Chloe M.; Solis, Francisco J.; Thornton, K.

    2014-04-01

    Multicomponent lipid vesicles are commonly used as a model system for the complex plasma membrane. One phenomenon that is studied using such model systems is phase separation. Vesicles composed of simple lipid mixtures can phase-separate into liquid-ordered and liquid-disordered phases, and since these phases can have different mechanical properties, this separation can lead to changes in the shape of the vesicle. In this work, we investigate the dynamics of phase separation in multicomponent lipid vesicles, using a model that couples composition to mechanical properties such as bending rigidity and spontaneous curvature. The model allows the vesicle surface to deform while conserving surface area and composition. For vesicles initialized as spheres, we study the effects of phase fraction and spontaneous curvature. We additionally initialize two systems with elongated, spheroidal shapes. Dynamic behavior is contrasted in systems where only one phase has a spontaneous curvature similar to the overall vesicle surface curvature and systems where the spontaneous curvatures of both phases are similar to the overall curvature. The bending energy contribution is typically found to slow the dynamics by stabilizing configurations with multiple domains. Such multiple-domain configurations are found more often in vesicles with spheroidal shapes than in nearly spherical vesicles.

  9. The Influence of Vesicle Shape and Medium Conductivity on Possible Electrofusion under a Pulsed Electric Field.

    Science.gov (United States)

    Liu, Linying; Mao, Zheng; Zhang, Jianhua; Liu, Na; Liu, Qing Huo

    2016-01-01

    The effects of electric field on lipid membrane and cells have been extensively studied in the last decades. The phenomena of electroporation and electrofusion are of particular interest due to their wide use in cell biology and biotechnology. However, numerical studies on the electrofusion of cells (or vesicles) with different deformed shapes are still rare. Vesicle, being of cell size, can be treated as a simple model of cell to investigate the behaviors of cell in electric field. Based on the finite element method, we investigate the effect of vesicle shape on electrofusion of contact vesicles in various medium conditions. The transmembrane voltage (TMV) and pore density induced by a pulsed field are examined to analyze the possibility of vesicle fusion. In two different medium conditions, the prolate shape is observed to have selective electroporation at the contact area of vesicles when the exterior conductivity is smaller than the interior one; selective electroporation is more inclined to be found at the poles of the oblate vesicles when the exterior conductivity is larger than the interior one. Furthermore, we find that when the exterior conductivity is lower than the internal conductivity, the pulse can induce a selective electroporation at the contact area between two vesicles regardless of the vesicle shape. Both of these two findings have important practical applications in guiding electrofusion experiments.

  10. High-speed centrifugation induces aggregation of extracellular vesicles.

    Science.gov (United States)

    Linares, Romain; Tan, Sisareuth; Gounou, Céline; Arraud, Nicolas; Brisson, Alain R

    2015-01-01

    Plasma and other body fluids contain cell-derived extracellular vesicles (EVs), which participate in physiopathological processes and have potential biomedical applications. In order to isolate, concentrate and purify EVs, high-speed centrifugation is often used. We show here, using electron microscopy, receptor-specific gold labelling and flow cytometry, that high-speed centrifugation induces the formation of EV aggregates composed of a mixture of EVs of various phenotypes and morphologies. The presence of aggregates made of EVs of different phenotypes may lead to erroneous interpretation concerning the existence of EVs harbouring surface antigens from different cell origins.

  11. Tension-induced vesicle fusion: pathways and pore dynamics

    DEFF Research Database (Denmark)

    Shillcock, Julian C.

    2008-01-01

    and eventually opens a pore to complete the fusion process. In pathway II, at higher tension, a stalk is formed during the fusion process that is then transformed by transmembrane pore formation into a fusion pore. Whereas the latter pathway II resembles stalk pathways as observed in other simulation studies......, fusion pathway I, which does not involve any stalk formation, has not been described previously to the best of our knowledge. A statistical analysis of the various processes shows that fusion is the dominant pathway for releasing the tension of the vesicles. The functional dependence of the observed...

  12. Extracellular Vesicles in Heart Disease: Excitement for the Future?

    Directory of Open Access Journals (Sweden)

    Kirsty M. Danielson

    2014-01-01

    Full Text Available Extracellular vesicles (EV, including exosomes, microvesicles and apoptotic bodies, are released from numerous cell types and are involved in intercellular communication, physiological functions and the pathology of disease. They have been shown to carry and transfer a wide range of cargo including proteins, lipids and nucleic acids. The role of EVs in cardiac physiology and heart disease is an emerging field that has produced intriguing findings in recent years. This review will outline what is currently known about EVs in the cardiovascular system, including cellular origins, functional roles and utility as biomarkers and potential therapeutics.

  13. High-speed centrifugation induces aggregation of extracellular vesicles

    Directory of Open Access Journals (Sweden)

    Romain Linares

    2015-12-01

    Full Text Available Plasma and other body fluids contain cell-derived extracellular vesicles (EVs, which participate in physiopathological processes and have potential biomedical applications. In order to isolate, concentrate and purify EVs, high-speed centrifugation is often used. We show here, using electron microscopy, receptor-specific gold labelling and flow cytometry, that high-speed centrifugation induces the formation of EV aggregates composed of a mixture of EVs of various phenotypes and morphologies. The presence of aggregates made of EVs of different phenotypes may lead to erroneous interpretation concerning the existence of EVs harbouring surface antigens from different cell origins.

  14. Host cell interactions of outer membrane vesicle-associated virulence factors of enterohemorrhagic Escherichia coli O157: Intracellular delivery, trafficking and mechanisms of cell injury

    Science.gov (United States)

    Greune, Lilo; Jarosch, Kevin-André; Steil, Daniel; Zhang, Wenlan; He, Xiaohua; Lloubes, Roland; Fruth, Angelika; Kim, Kwang Sik; Schmidt, M. Alexander; Dobrindt, Ulrich; Mellmann, Alexander; Karch, Helge

    2017-01-01

    Outer membrane vesicles (OMVs) are important tools in bacterial virulence but their role in the pathogenesis of infections caused by enterohemorrhagic Escherichia coli (EHEC) O157, the leading cause of life-threatening hemolytic uremic syndrome, is poorly understood. Using proteomics, electron and confocal laser scanning microscopy, immunoblotting, and bioassays, we investigated OMVs secreted by EHEC O157 clinical isolates for virulence factors cargoes, interactions with pathogenetically relevant human cells, and mechanisms of cell injury. We demonstrate that O157 OMVs carry a cocktail of key virulence factors of EHEC O157 including Shiga toxin 2a (Stx2a), cytolethal distending toxin V (CdtV), EHEC hemolysin, and flagellin. The toxins are internalized by cells via dynamin-dependent endocytosis of OMVs and differentially separate from vesicles during intracellular trafficking. Stx2a and CdtV-B, the DNase-like CdtV subunit, separate from OMVs in early endosomes. Stx2a is trafficked, in association with its receptor globotriaosylceramide within detergent-resistant membranes, to the Golgi complex and the endoplasmic reticulum from where the catalytic Stx2a A1 fragment is translocated to the cytosol. CdtV-B is, after its retrograde transport to the endoplasmic reticulum, translocated to the nucleus to reach DNA. CdtV-A and CdtV-C subunits remain OMV-associated and are sorted with OMVs to lysosomes. EHEC hemolysin separates from OMVs in lysosomes and targets mitochondria. The OMV-delivered CdtV-B causes cellular DNA damage, which activates DNA damage responses leading to G2 cell cycle arrest. The arrested cells ultimately die of apoptosis induced by Stx2a and CdtV via caspase-9 activation. By demonstrating that naturally secreted EHEC O157 OMVs carry and deliver into cells a cocktail of biologically active virulence factors, thereby causing cell death, and by performing first comprehensive analysis of intracellular trafficking of OMVs and OMV-delivered virulence factors

  15. The cyclic nucleotide gated cation channel AtCNGC10 traffics from the ER via Golgi vesicles to the plasma membrane of Arabidopsis root and leaf cells

    Directory of Open Access Journals (Sweden)

    Andres Marilou A

    2007-09-01

    Full Text Available Abstract Background The cyclic nucleotide-gated ion channels (CNGCs maintain cation homeostasis essential for a wide range of physiological processes in plant cells. However, the precise subcellular locations and trafficking of these membrane proteins are poorly understood. This is further complicated by a general deficiency of information about targeting pathways of membrane proteins in plants. To investigate CNGC trafficking and localization, we have measured Atcngc5 and Atcngc10 expression in roots and leaves, analyzed AtCNGC10-GFP fusions transiently expressed in protoplasts, and conducted immunofluorescence labeling of protoplasts and immunoelectron microscopic analysis of high pressure frozen leaves and roots. Results AtCNGC10 mRNA and protein levels were 2.5-fold higher in roots than leaves, while AtCNGC5 mRNA and protein levels were nearly equal in these tissues. The AtCNGC10-EGFP fusion was targeted to the plasma membrane in leaf protoplasts, and lightly labeled several intracellular structures. Immunofluorescence microscopy with affinity purified CNGC-specific antisera indicated that AtCNGC5 and AtCNGC10 are present in the plasma membrane of protoplasts. Immunoelectron microscopy demonstrated that AtCNGC10 was associated with the plasma membrane of mesophyll, palisade parenchyma and epidermal cells of leaves, and the meristem, columella and cap cells of roots. AtCNCG10 was also observed in the endoplasmic reticulum and Golgi cisternae and vesicles of 50–150 nm in size. Patch clamp assays of an AtCNGC10-GFP fusion expressed in HEK293 cells measured significant cation currents. Conclusion AtCNGC5 and AtCNGC10 are plasma membrane proteins. We postulate that AtCNGC10 traffics from the endoplasmic reticulum via the Golgi apparatus and associated vesicles to the plasma membrane. The presence of the cation channel, AtCNGC10, in root cap meristem cells, cell plate, and gravity-sensing columella cells, combined with the previously reported

  16. Lipolysis Response to Endoplasmic Reticulum Stress in Adipose Cells*

    Science.gov (United States)

    Deng, Jingna; Liu, Shangxin; Zou, Liangqiang; Xu, Chong; Geng, Bin; Xu, Guoheng

    2012-01-01

    In obesity and diabetes, adipocytes show significant endoplasmic reticulum (ER) stress, which triggers a series of responses. This study aimed to investigate the lipolysis response to ER stress in rat adipocytes. Thapsigargin, tunicamycin, and brefeldin A, which induce ER stress through different pathways, efficiently activated a time-dependent lipolytic reaction. The lipolytic effect of ER stress occurred with elevated cAMP production and protein kinase A (PKA) activity. Inhibition of PKA reduced PKA phosphosubstrates and attenuated the lipolysis. Although both ERK1/2 and JNK are activated during ER stress, lipolysis is partially suppressed by inhibiting ERK1/2 but not JNK and p38 MAPK and PKC. Thus, ER stress induces lipolysis by activating cAMP/PKA and ERK1/2. In the downstream lipolytic cascade, phosphorylation of lipid droplet-associated protein perilipin was significantly promoted during ER stress but attenuated on PKA inhibition. Furthermore, ER stress stimuli did not alter the levels of hormone-sensitive lipase and adipose triglyceride lipase but caused Ser-563 and Ser-660 phosphorylation of hormone-sensitive lipase and moderately elevated its translocation from the cytosol to lipid droplets. Accompanying these changes, total activity of cellular lipases was promoted to confer the lipolysis. These findings suggest a novel pathway of the lipolysis response to ER stress in adipocytes. This lipolytic activation may be an adaptive response that regulates energy homeostasis but with sustained ER stress challenge could contribute to lipotoxicity, dyslipidemia, and insulin resistance because of persistently accelerated free fatty acid efflux from adipocytes to the bloodstream and other tissues. PMID:22223650

  17. Full-length Ebola glycoprotein accumulates in the endoplasmic reticulum

    Directory of Open Access Journals (Sweden)

    Bhattacharyya Suchita

    2011-01-01

    Full Text Available Abstract The Filoviridae family comprises of Ebola and Marburg viruses, which are known to cause lethal hemorrhagic fever. However, there is no effective anti-viral therapy or licensed vaccines currently available for these human pathogens. The envelope glycoprotein (GP of Ebola virus, which mediates entry into target cells, is cytotoxic and this effect maps to a highly glycosylated mucin-like region in the surface subunit of GP (GP1. However, the mechanism underlying this cytotoxic property of GP is unknown. To gain insight into the basis of this GP-induced cytotoxicity, HEK293T cells were transiently transfected with full-length and mucin-deleted (Δmucin Ebola GP plasmids and GP localization was examined relative to the nucleus, endoplasmic reticulum (ER, Golgi, early and late endosomes using deconvolution fluorescent microscopy. Full-length Ebola GP was observed to accumulate in the ER. In contrast, GPΔmucin was uniformly expressed throughout the cell and did not localize in the ER. The Ebola major matrix protein VP40 was also co-expressed with GP to investigate its influence on GP localization. GP and VP40 co-expression did not alter GP localization to the ER. Also, when VP40 was co-expressed with the nucleoprotein (NP, it localized to the plasma membrane while NP accumulated in distinct cytoplasmic structures lined with vimentin. These latter structures are consistent with aggresomes and may serve as assembly sites for filoviral nucleocapsids. Collectively, these data suggest that full-length GP, but not GPΔmucin, accumulates in the ER in close proximity to the nuclear membrane, which may underscore its cytotoxic property.

  18. Preconditioning with endoplasmic reticulum stress ameliorates endothelial cell inflammation.

    Science.gov (United States)

    Leonard, Antony; Paton, Adrienne W; El-Quadi, Monaliza; Paton, James C; Fazal, Fabeha

    2014-01-01

    Endoplasmic Reticulum (ER) stress, caused by disturbance in ER homeostasis, has been implicated in several pathological conditions such as ischemic injury, neurodegenerative disorders, metabolic diseases and more recently in inflammatory conditions. Our present study aims at understanding the role of ER stress in endothelial cell (EC) inflammation, a critical event in the pathogenesis of acute lung injury (ALI). We found that preconditioning human pulmonary artery endothelial cells (HPAEC) to ER stress either by depleting ER chaperone and signaling regulator BiP using siRNA, or specifically cleaving (inactivating) BiP using subtilase cytotoxin (SubAB), alleviates EC inflammation. The two approaches adopted to abrogate BiP function induced ATF4 protein expression and the phosphorylation of eIF2α, both markers of ER stress, which in turn resulted in blunting the activation of NF-κB, and restoring endothelial barrier integrity. Pretreatment of HPAEC with BiP siRNA inhibited thrombin-induced IκBα degradation and its resulting downstream signaling pathway involving NF-κB nuclear translocation, DNA binding, phosphorylation at serine536, transcriptional activation and subsequent expression of adhesion molecules. However, TNFα-mediated NF-κB signaling was unaffected upon BiP knockdown. In an alternative approach, SubAB-mediated inactivation of NF-κB was independent of IκBα degradation. Mechanistic analysis revealed that pretreatment of EC with SubAB interfered with the binding of the liberated NF-κB to the DNA, thereby resulting in reduced expression of adhesion molecules, cytokines and chemokines. In addition, both knockdown and inactivation of BiP stimulated actin cytoskeletal reorganization resulting in restoration of endothelial permeability. Together our studies indicate that BiP plays a central role in EC inflammation and injury via its action on NF-κB activation and regulation of vascular permeability.

  19. The Role of Endoplasmic Reticulum Stress in Diabetic Nephropathy.

    Science.gov (United States)

    Fan, Ying; Lee, Kyung; Wang, Niansong; He, John Cijiang

    2017-03-01

    Diabetic nephropathy (DN) has become the leading cause of end-stage renal disease (ESRD) worldwide. Accumulating evidence suggests that endoplasmic reticulum (ER) stress plays a major role in the development and progression of DN. Recent findings suggested that many attributes of DN, such as hyperglycemia, proteinuria, and increased advanced glycation end products and free fatty acids, can all trigger unfolded protein response (UPR) in kidney cells. Herein, we review the current knowledge on the role of ER stress in the setting of kidney injury with a specific emphasis on DN. As maladaptive ER stress response caused by excessively prolonged UPR will eventually cause cell death and increase kidney injury, several ER stress inhibitors have been shown to improve DN in animal models, albeit blocking both adaptive and maladaptive UPR. More recently, reticulon-1A (RTN1A), an ER-associated protein, was shown to be increased in both human and mouse diabetic kidneys. Its expression correlates with the progression of DN, and its polymorphisms are associated with kidney disease in people with diabetes. Increased RTN1A expression heightened the ER stress response and renal cell apoptosis, and conversely reduced RTN1A in renal cells decreased apoptosis and ameliorated kidney injury and DN progression, suggesting that RTN1A may be a novel target to specifically restrain the maladaptive UPR. These findings suggest that ER stress response in renal cells is a key driver of progression of DN and that the inhibition of the unchecked ER stress response in DN, such as by inhibition of RTN1A function, may be a promising therapeutic approach against DN.

  20. The role of endoplasmic reticulum stress in hippocampal insulin resistance.

    Science.gov (United States)

    Sims-Robinson, Catrina; Bakeman, Anna; Glasser, Rebecca; Boggs, Janet; Pacut, Crystal; Feldman, Eva L

    2016-03-01

    Metabolic syndrome, which includes hypertension, hyperglycemia, obesity, insulin resistance, and dyslipidemia, has a negative impact on cognitive health. Endoplasmic reticulum (ER) stress is activated during metabolic syndrome, however it is not known which factor associated with metabolic syndrome contributes to this stress. ER stress has been reported to play a role in the development of insulin resistance in peripheral tissues. The role of ER stress in the development of insulin resistance in hippocampal neurons is not known. In the current study, we investigated ER stress in the hippocampus of 3 different mouse models of metabolic syndrome: the C57BL6 mouse on a high fat (HF) diet; apolipoprotein E, leptin, and apolipoprotein B-48 deficient (ApoE 3KO) mice; and the low density lipoprotein receptor, leptin, and apolipoprotein B-48 deficient (LDLR 3KO) mice. We demonstrate that ER stress is activated in the hippocampus of HF mice, and for the first time, in ApoE 3KO mice, but not LDLR 3KO mice. The HF and ApoE 3KO mice are hyperglycemic; however, the LDLR 3KO mice have normal glycemia. This suggests that hyperglycemia may play a role in the activation of ER stress in the hippocampus. Similarly, we also demonstrate that impaired insulin signaling is only present in the HF and ApoE 3KO mice, which suggests that ER stress may play a role in insulin resistance in the hippocampus. To confirm this we pharmacologically induced ER stress with thapsigargin in human hippocampal neurons. We demonstrate for the first time that thapsigargin leads to ER stress and impaired insulin signaling in human hippocampal neurons. Our results may provide a potential mechanism that links metabolic syndrome and cognitive health. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Efficient encapsulation of antisense oligonucleotides in lipid vesicles using ionizable aminolipids: formation of novel small multilamellar vesicle structures.

    Science.gov (United States)

    Semple, S C; Klimuk, S K; Harasym, T O; Dos Santos, N; Ansell, S M; Wong, K F; Maurer, N; Stark, H; Cullis, P R; Hope, M J; Scherrer, P

    2001-02-09

    Typical methods used for encapsulating antisense oligodeoxynucleotides (ODN) and plasmid DNA in lipid vesicles result in very low encapsulation efficiencies or employ cationic lipids that exhibit unfavorable pharmacokinetic and toxicity characteristics when administered intravenously. In this study, we describe and characterize a novel formulation process that utilizes an ionizable aminolipid (1,2-dioleoyl-3-dimethylammonium propane, DODAP) and an ethanol-containing buffer system for encapsulating large quantities (0.15--0.25 g ODN/g lipid) of polyanionic ODN in lipid vesicles. This process requires the presence of up to 40% ethanol (v/v) and initial formulation at acidic pH values where the DODAP is positively charged. In addition, the presence of a poly(ethylene glycol)-lipid was required during the formulation process to prevent aggregation. The 'stabilized antisense-lipid particles' (SALP) formed are stable on adjustment of the external pH to neutral pH values and the formulation process allows encapsulation efficiencies of up to 70%. ODN encapsulation was confirmed by nuclease protection assays and (31)P NMR measurements. Cryo-electron microscopy indicated that the final particles consisted of a mixed population of unilamellar and small multilamellar vesicles (80--140 nm diameter), the relative proportion of which was dependent on the initial ODN to lipid ratio. Finally, SALP exhibited significantly enhanced circulation lifetimes in mice relative to free antisense ODN, cationic lipid/ODN complexes and SALP prepared with quaternary aminolipids. Given the small particle sizes and improved encapsulation efficiency, ODN to lipid ratios, and circulation times of this formulation compared to others, we believe SALP represent a viable candidate for systemic applications involving nucleic acid therapeutics.

  2. Bicarbonate sulfate exchange in canalicular rat liver plasma membrane vesicles

    International Nuclear Information System (INIS)

    Meier, P.J.; Valantinas, J.; Hugentobler, G.; Rahm, I.

    1987-01-01

    The mechanism(s) and driving forces for biliary excretion of sulfate were investigated in canalicular rat liver plasma membrane vesicles (cLPM). Incubation of cLPM vesicles in the presence of an inside-to-outside (in, out) bicarbonate gradient but not pH or out-to-in sodium gradients, stimulated sulfate uptake 10-fold compared with the absence of bicarbonate and approximately 2-fold above sulfate equilibrium (overshoot). Initial rates of this bicarbonate gradient-driven [ 35 S]-sulfate uptake were saturable with increasing concentrations of sulfate and could be inhibited by probenecid, N-(4-azido-2-nitrophenyl)-2-aminoethylsulfonate, acetazolamide, furosemide, 4-acetamideo-4'-isothiocyanostilbene-2,2'-disulfonic acid, and 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (IC 50 , ∼40 μM). Cisinhibition of initial bicarbonate gradient-stimulated sulfate uptake and transstimulation of sulfate uptake in the absence of bicarbonate were observed with sulfate, thiosulfate, and oxalate but not with chloride, nitrate, phosphate, acetate, lactate, glutamate, aspartate, cholate, taurocholate, dehydrocholate, taurodehydrocholate, and reduced or oxidized glutathione. These findings indicate the presence of a sulfate (oxalate)-bicarbonate anion exchange system in canalicular rat liver plasma membranes. These findings support the concept that bicarbonate-sensitive transport system might play an important role in bile acid-independent canalicular bile formation

  3. Sulfate uptake by crustacean hepatopancreatic brush border membrane vesicles

    International Nuclear Information System (INIS)

    Gerencser, G.A.; Cattey, M.A; Ahearn, G.A.

    1990-01-01

    Purified brush border membrane vesicles (BBMV) were prepared from Atlantic lobster (Homarus americanus) hepatopancreas using differential centrifugation and Mg +2 precipitation techniques. Uptake of 0.1 mM 35 SO 4 -2 was stimulated by pre-loading vesicles with Cl - leading to a transient accumulation of isotope more than twice that at equilibrium. Pre-loading with HCO 3 - or gluconate had no effect on sulfate uptake. No stimulation of 35 SO 4 -2 was observed in the presence of inwardly directed Na + or tetramethylammonium + gradients. Uptake of the divalent anion was strongly stimulated by inwardly directed proton gradients (pH o i ) and markedly inhibited by outwardly directed proton gradients (pH o > pH i ). 35 SO 4 -2 /Cl - exchange was enhanced by imposing a transmembrane inside positive K + diffusion potential and inhibited by a membrane potential of the opposite polarity (K + /valinomycin). Results suggest the presence of a proton-dependent, electrogenic anion antiport mechanism in BBMV isolated from the crustacean hepatopancreas

  4. The computational route from bilayer membranes to vesicle fusion

    International Nuclear Information System (INIS)

    Shillcock, Julian C; Lipowsky, Reinhard

    2006-01-01

    Biological membranes are examples of 'smart' materials whose properties and behaviour emerge from the propagation across many scales of the molecular characteristics of their constituents. Artificial smart materials, such as drug delivery vehicles and biosensors, often rely on modifying naturally occurring soft matter, such as polymers and lipid vesicles, so that they possess useful behaviour. However, the complexity of natural membranes, both in their static properties, exemplified in their phase behaviour, and in their dynamic properties, as in the kinetics of their formation and interactions, hinders their rational modification. Mesoscopic simulations, such as dissipative particle dynamics (DPD), allow in silico experiments to be easily and cheaply performed on complex, soft materials requiring as input only the molecular structure of the constituents at a coarse-grained level. They can therefore act as a guide to experimenters prior to performing costly assays. Additionally, mesoscopic simulations provide the only currently feasible window on the length- and timescales relevant to important biophysical processes such as vesicle fusion. We review here the development of computational models of bilayer membranes, and in particular the use of mesoscopic simulations to follow the molecular rearrangements that occur during membrane fusion

  5. Intracellular vesicle acidification promotes maturation of infectious poliovirus particles.

    Directory of Open Access Journals (Sweden)

    Alexsia L Richards

    Full Text Available The autophagic pathway acts as part of the immune response against a variety of pathogens. However, several pathogens subvert autophagic signaling to promote their own replication. In many cases it has been demonstrated that these pathogens inhibit or delay the degradative aspect of autophagy. Here, using poliovirus as a model virus, we report for the first time bona fide autophagic degradation occurring during infection with a virus whose replication is promoted by autophagy. We found that this degradation is not required to promote poliovirus replication. However, vesicular acidification, which in the case of autophagy precedes delivery of cargo to lysosomes, is required for normal levels of virus production. We show that blocking autophagosome formation inhibits viral RNA synthesis and subsequent steps in the virus cycle, while inhibiting vesicle acidification only inhibits the final maturation cleavage of virus particles. We suggest that particle assembly, genome encapsidation, and virion maturation may occur in a cellular compartment, and we propose the acidic mature autophagosome as a candidate vesicle. We discuss the implications of our findings in understanding the late stages of poliovirus replication, including the formation and maturation of virions and egress of infectious virus from cells.

  6. Rab proteins: The key regulators of intracellular vesicle transport

    International Nuclear Information System (INIS)

    Bhuin, Tanmay; Roy, Jagat Kumar

    2014-01-01

    Vesicular/membrane trafficking essentially regulates the compartmentalization and abundance of proteins within the cells and contributes in many signalling pathways. This membrane transport in eukaryotic cells is a complex process regulated by a large and diverse array of proteins. A large group of monomeric small GTPases; the Rabs are essential components of this membrane trafficking route. Most of the Rabs are ubiquitously expressed proteins and have been implicated in vesicle formation, vesicle motility/delivery along cytoskeleton elements and docking/fusion at target membranes through the recruitment of effectors. Functional impairments of Rabs affecting transport pathways manifest different diseases. Rab functions are accompanied by cyclical activation and inactivation of GTP-bound and GDP-bound forms between the cytosol and membranes which is regulated by upstream regulators. Rab proteins are characterized by their distinct sub-cellular localization and regulate a wide variety of endocytic, transcytic and exocytic transport pathways. Mutations of Rabs affect cell growth, motility and other biological processes. - Highlights: • Rab proteins regulate different signalling pathways. • Deregulation of Rabs is the fundamental causes of a variety of human diseases. • This paper gives potential directions in developing therapeutic targets. • This paper also gives ample directions for modulating pathways central to normal physiology. • These are the huge challenges for drug discovery and delivery in near future

  7. Rab proteins: The key regulators of intracellular vesicle transport

    Energy Technology Data Exchange (ETDEWEB)

    Bhuin, Tanmay [Cell and Developmental Biology Unit, Department of Zoology, The University of Burdwan, Golapbag 713104 (India); Roy, Jagat Kumar, E-mail: jkroy@bhu.ac.in [Cytogenetics Laboratory, Department of Zoology, Banaras Hindu University, Varanasi 221005 (India)

    2014-10-15

    Vesicular/membrane trafficking essentially regulates the compartmentalization and abundance of proteins within the cells and contributes in many signalling pathways. This membrane transport in eukaryotic cells is a complex process regulated by a large and diverse array of proteins. A large group of monomeric small GTPases; the Rabs are essential components of this membrane trafficking route. Most of the Rabs are ubiquitously expressed proteins and have been implicated in vesicle formation, vesicle motility/delivery along cytoskeleton elements and docking/fusion at target membranes through the recruitment of effectors. Functional impairments of Rabs affecting transport pathways manifest different diseases. Rab functions are accompanied by cyclical activation and inactivation of GTP-bound and GDP-bound forms between the cytosol and membranes which is regulated by upstream regulators. Rab proteins are characterized by their distinct sub-cellular localization and regulate a wide variety of endocytic, transcytic and exocytic transport pathways. Mutations of Rabs affect cell growth, motility and other biological processes. - Highlights: • Rab proteins regulate different signalling pathways. • Deregulation of Rabs is the fundamental causes of a variety of human diseases. • This paper gives potential directions in developing therapeutic targets. • This paper also gives ample directions for modulating pathways central to normal physiology. • These are the huge challenges for drug discovery and delivery in near future.

  8. Intraluminal proteome and peptidome of human urinary extracellular vesicles.

    Science.gov (United States)

    Liu, Xinyu; Chinello, Clizia; Musante, Luca; Cazzaniga, Marta; Tataruch, Dorota; Calzaferri, Giulio; James Smith, Andrew; De Sio, Gabriele; Magni, Fulvio; Zou, Hequn; Holthofer, Harry

    2015-06-01

    Urinary extracellular vesicles (UEVs) are a novel source for disease biomarker discovery. However, Tamm-Horsfall protein (THP) is still a challenge for proteomic analysis since it can inhibit detection of low-abundance proteins. Here, we introduce a new approach that does not involve an ultracentrifugation step to enrich vesicles and that reduces the amount of THP to manageable levels. UEVs were dialyzed and ultrafiltered after reduction and alkylation. The retained fraction was digested with trypsin to reduce the remaining THP and incubated with deoxycholate (DOC). The internal peptidome and internal proteome were analyzed by LC-ESI-MS. A total of 942 different proteins and 3115 unique endogenous peptide fragments deriving from 973 different protein isoforms were identified. Around 82% of the key endosomal sorting complex required for transport components of UEVs generation could be detected from the intraluminal content. Our UEVs preparation protocol provides a simplified way to investigate the intraluminal proteome and peptidome, in particular the subpopulation of UEVs of the trypsin-resistant class of exosomes (positive for tumor susceptibility gene101) and eliminates the majority of interfering proteins such as THP. This method allows the possibility to study endoproteome and endopeptidome of UEVs, thus greatly facilitating biomarker discovery. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Vesicle computers: Approximating a Voronoi diagram using Voronoi automata

    International Nuclear Information System (INIS)

    Adamatzky, Andrew; De Lacy Costello, Ben; Holley, Julian; Gorecki, Jerzy; Bull, Larry

    2011-01-01

    Highlights: → We model irregular arrangements of vesicles filled with chemical systems. → We examine influence of precipitation threshold on the system's computational potential. → We demonstrate computation of Voronoi diagram and skeleton. - Abstract: Irregular arrangements of vesicles filled with excitable and precipitating chemical systems are imitated by Voronoi automata - finite-state machines defined on a planar Voronoi diagram. Every Voronoi cell takes four states: resting, excited, refractory and precipitate. A resting cell excites if it has at least one neighbour in an excited state. The cell precipitates if the ratio of excited cells in its neighbourhood versus the number of neighbours exceeds a certain threshold. To approximate a Voronoi diagram on Voronoi automata we project a planar set onto the automaton lattice, thus cells corresponding to data-points are excited. Excitation waves propagate across the Voronoi automaton, interact with each other and form precipitate at the points of interaction. The configuration of the precipitate represents the edges of an approximated Voronoi diagram. We discover the relationship between the quality of the Voronoi diagram approximation and the precipitation threshold, and demonstrate the feasibility of our model in approximating Voronoi diagrams of arbitrary-shaped objects and in constructing a skeleton of a planar shape.

  10. Vesiclepedia: a compendium for extracellular vesicles with continuous community annotation.

    Directory of Open Access Journals (Sweden)

    Hina Kalra

    Full Text Available Extracellular vesicles (EVs are membraneous vesicles released by a variety of cells into their microenvironment. Recent studies have elucidated the role of EVs in intercellular communication, pathogenesis, drug, vaccine and gene-vector delivery, and as possible reservoirs of biomarkers. These findings have generated immense interest, along with an exponential increase in molecular data pertaining to EVs. Here, we describe Vesiclepedia, a manually curated compendium of molecular data (lipid, RNA, and protein identified in different classes of EVs from more than 300 independent studies published over the past several years. Even though databases are indispensable resources for the scientific community, recent studies have shown that more than 50% of the databases are not regularly updated. In addition, more than 20% of the database links are inactive. To prevent such database and link decay, we have initiated a continuous community annotation project with the active involvement of EV researchers. The EV research community can set a gold standard in data sharing with Vesiclepedia, which could evolve as a primary resource for the field.

  11. Electroformation of Giant Vesicles on a Polymer Mesh

    Directory of Open Access Journals (Sweden)

    Yukihisa Okumura

    2011-07-01

    Full Text Available Electroformation of cell-sized lipid membrane vesicles (giant vesicles, GVs from egg yolk phosphatidylcholine under applied electric voltage was examined on a substrate of a polymer mesh placed between two planar indium tin oxide coated glass electrodes. Under appropriate conditions, GVs were formed in good yield on meshes of various polymer materials, namely, hydrophobic poly(propylene, poly(ethylene terephthalate, a carbon fiber/nylon composite, and relatively hydrophilic nylon. Arranging threads in a mesh structure with appropriate openings improved GV formation compared to simply increasing the number of threads. For optimal electroformation of GVs, the size and shape of a mesh opening were crucial. With a too large opening, GV formation deteriorated. When the sides of an opening were partially missing, GV formation did not occur efficiently. With an adequate opening, a deposited lipid solution could fill the opening, and a relatively uniform lipid deposit formed on the surface of threads after evaporation of the solvent. This could supply a sufficient amount of lipids to the opening and also prevent a lipid deposit from becoming too thick for electroformation. As a result, good GV formation was often observed in openings filled with swelled lipid.

  12. Exocytosis from chromaffin cells: hydrostatic pressure slows vesicle fusion

    Science.gov (United States)

    Stühmer, Walter

    2015-01-01

    Pressure affects reaction kinetics because chemical transitions involve changes in volume, and therefore pressure is a standard thermodynamic parameter to measure these volume changes. Many organisms live in environments at external pressures other than one atmosphere (0.1 MPa). Marine animals have adapted to live at depths of over 7000 m (at pressures over 70 MPa), and microorganisms living in trenches at over 110 MPa have been retrieved. Here, kinetic changes in secretion from chromaffin cells, measured as capacitance changes using the patch-clamp technique at pressures of up to 20 MPa are presented. It is known that these high pressures drastically slow down physiological functions. High hydrostatic pressure also affects the kinetics of ion channel gating and the amount of current carried by them, and it drastically slows down synaptic transmission. The results presented here indicate a similar change in volume (activation volume) of 390 ± 57 Å3 for large dense-core vesicles undergoing fusion in chromaffin cells and for degranulation of mast cells. It is significantly larger than activation volumes of voltage-gated ion channels in chromaffin cells. This information will be useful in finding possible protein conformational changes during the reactions involved in vesicle fusion and in testing possible molecular dynamic models of secretory processes. PMID:26009771

  13. Differential Regulation of Synaptic Vesicle Tethering and Docking by UNC-18 and TOM-1.

    Science.gov (United States)

    Gracheva, Elena O; Maryon, Ed B; Berthelot-Grosjean, Martine; Richmond, Janet E

    2010-01-01

    The assembly of SNARE complexes between syntaxin, SNAP-25 and synaptobrevin is required to prime synaptic vesicles for fusion. Since Munc18 and tomosyn compete for syntaxin interactions, the interplay between these proteins is predicted to be important in regulating synaptic transmission. We explored this possibility, by examining genetic interactions between C. elegans unc-18(Munc18), unc-64(syntaxin) and tom-1(tomosyn). We have previously demonstrated that unc-18 mutants have reduced synaptic transmission, whereas tom-1 mutants exhibit enhanced release. Here we show that the unc-18 mutant release defect is associated with loss of two morphologically distinct vesicle pools; those tethered within 25 nm of the plasma membrane and those docked with the plasma membrane. In contrast, priming defective unc-13 mutants accumulate tethered vesicles, while docked vesicles are greatly reduced, indicating tethering is UNC-18-dependent and occurs in the absence of priming. C. elegans unc-64 mutants phenocopy unc-18 mutants, losing both tethered and docked vesicles, whereas overexpression of open syntaxin preferentially increases vesicle docking, suggesting UNC-18/closed syntaxin interactions are responsible for vesicle tethering. Given the competition between vertebrate tomosyn and Munc18, for syntaxin binding, we hypothesized that C. elegans TOM-1 may inhibit both UNC-18-dependent vesicle targeting steps. Consistent with this hypothesis, tom-1 mutants exhibit enhanced UNC-18 plasma membrane localization and a concomitant increase in both tethered and docked synaptic vesicles. Furthermore, in tom-1;unc-18 double mutants the docked, primed vesicle pool is preferentially rescued relative to unc-18 single mutants. Together these data provide evidence for the differential regulation of two vesicle targeting steps by UNC-18 and TOM-1 through competitive interactions with syntaxin.

  14. Composition Effect of the Outer Layer on the Vesicle Fusion Catalyzed by Phospholipase D

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jin Won [Seoul National University, Seoul (Korea, Republic of)

    2014-09-15

    Phospholipase D (PLD) catalyzed the generation of phosphatidic acid (PA) from phosphatidylcholine (PC) at the outer layer of the vesicles prepared through layer by layer via a double emulsion technique. The generation induced a curvature change in the vesicles, which eventually led them to fuse each other. The ratio of two-fattyacid-tail ethanolamine (PE) to one-fatty-acid-tail ethanolamine (PE) was found to acquire the condition where the mixed-phospholipid vesicles were stable identically with pure two-fatty-acid-tail PC. The effect of the outer-layer mixture on the PLD-induced vesicle fusion was investigated using the fluorescence intensity change. 8-Aminonaph- thalene-1,3,6-trisulfonic acid disodium salt (ANTS) and p-Xylene-bis(N-pyridinium bromide) (DPX) were encapsulated in the vesicles, respectively, for the quantification of the fusion. The fluorescence scale was calibrated with the fluorescence of a 1/1 mixture of ANTS and DPX vesicles in NaCl buffer taken as 100% fluorescence (0% fusion) and the vesicles containing both ANTS and DPX as 0% fluorescence (100% fusion), considering the leakage into the medium studied directly in a separate experiment using vesicles containing both ANTS and DPX. The fusion data for each composition were acquired with the subtraction of the leakage from the quenching. From the monitoring, the vesicle fusion caused by the PLD reaction seems dominantly to occur rather than the vesicle lysis, because the composition effect on the fusion was observed identically with that on the change in the vesicle structure. Furthermore, the diameter measurements also support the fusion dominancy.

  15. Endocytic vesicle rupture is a conserved mechanism of cellular invasion by amyloid proteins.

    Science.gov (United States)

    Flavin, William P; Bousset, Luc; Green, Zachary C; Chu, Yaping; Skarpathiotis, Stratos; Chaney, Michael J; Kordower, Jeffrey H; Melki, Ronald; Campbell, Edward M

    2017-10-01

    Numerous pathological amyloid proteins spread from cell to cell during neurodegenerative disease, facilitating the propagation of cellular pathology and disease progression. Understanding the mechanism by which disease-associated amyloid protein assemblies enter target cells and induce cellular dysfunction is, therefore, key to understanding the progressive nature of such neurodegenerative diseases. In this study, we utilized an imaging-based assay to monitor the ability of disease-associated amyloid assemblies to rupture intracellular vesicles following endocytosis. We observe that the ability to induce vesicle rupture is a common feature of α-synuclein (α-syn) assemblies, as assemblies derived from WT or familial disease-associated mutant α-syn all exhibited the ability to induce vesicle rupture. Similarly, different conformational strains of WT α-syn assemblies, but not monomeric or oligomeric forms, efficiently induced vesicle rupture following endocytosis. The ability to induce vesicle rupture was not specific to α-syn, as amyloid assemblies of tau and huntingtin Exon1 with pathologic polyglutamine repeats also exhibited the ability to induce vesicle rupture. We also observe that vesicles ruptured by α-syn are positive for the autophagic marker LC3 and can accumulate and fuse into large, intracellular structures resembling Lewy bodies in vitro. Finally, we show that the same markers of vesicle rupture surround Lewy bodies in brain sections from PD patients. These data underscore the importance of this conserved endocytic vesicle rupture event as a damaging mechanism of cellular invasion by amyloid assemblies of multiple neurodegenerative disease-associated proteins, and suggest that proteinaceous inclusions such as Lewy bodies form as a consequence of continued fusion of autophagic vesicles in cells unable to degrade ruptured vesicles and their amyloid contents.

  16. Methods for the physical characterization and quantification of extracellular vesicles in biological samples.

    Science.gov (United States)

    Rupert, Déborah L M; Claudio, Virginia; Lässer, Cecilia; Bally, Marta

    2017-01-01

    Our body fluids contain a multitude of cell-derived vesicles, secreted by most cell types, commonly referred to as extracellular vesicles. They have attracted considerable attention for their function as intercellular communication vehicles in a broad range of physiological processes and pathological conditions. Extracellular vesicles and especially the smallest type, exosomes, have also generated a lot of excitement in view of their potential as disease biomarkers or as carriers for drug delivery. In this context, state-of-the-art techniques capable of comprehensively characterizing vesicles in biological fluids are urgently needed. This review presents the arsenal of techniques available for quantification and characterization of physical properties of extracellular vesicles, summarizes their working principles, discusses their advantages and limitations and further illustrates their implementation in extracellular vesicle research. The small size and physicochemical heterogeneity of extracellular vesicles make their physical characterization and quantification an extremely challenging task. Currently, structure, size, buoyant density, optical properties and zeta potential have most commonly been studied. The concentration of vesicles in suspension can be expressed in terms of biomolecular or particle content depending on the method at hand. In addition, common quantification methods may either provide a direct quantitative measurement of vesicle concentration or solely allow for relative comparison between samples. The combination of complementary methods capable of detecting, characterizing and quantifying extracellular vesicles at a single particle level promises to provide new exciting insights into their modes of action and to reveal the existence of vesicle subpopulations fulfilling key biological tasks. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Differential regulation of synaptic vesicle tethering and docking by UNC-18 and TOM-1

    Directory of Open Access Journals (Sweden)

    Elena O Gracheva

    2010-10-01

    Full Text Available The assembly of SNARE complexes between syntaxin, SNAP-25 and synaptobrevin is required to prime synaptic vesicles for fusion. Since Munc18 and tomosyn compete for syntaxin interactions, the interplay between these proteins is predicted to be important in regulating synaptic transmission. We explored this possibility, by examining genetic interactions between C. elegans unc-18(Munc18, unc-64(syntaxin and tom-1(tomosyn. We have previously demonstrated that unc-18 mutants have reduced synaptic transmission, whereas tom-1 mutants exhibit enhanced release. Here we show that the unc-18 mutant release defect is associated with loss of two morphologically distinct vesicle pools; those tethered within 25nm of the plasma membrane and those docked with the plasma membrane. In contrast, priming defective unc-13 mutants accumulate tethered vesicles, while docked vesicles are greatly reduced, indicating tethering is UNC-18-dependent and occurs in the absence of priming. C. elegans unc-64 mutants phenocopy unc-18 mutants, losing both tethered and docked vesicles, whereas overexpression of open syntaxin preferentially increases vesicle docking, suggesting UNC-18/closed syntaxin interactions are responsible for vesicle tethering. Given the competition between vertebrate tomosyn and Munc18, for syntaxin binding, we hypothesized that C. elegans TOM-1 may inhibit both UNC-18-dependent vesicle targeting steps. Consistent with this hypothesis, tom-1 mutants exhibit enhanced UNC-18 plasma membrane localization and a concomitant increase in both tethered and docked synaptic vesicles. Furthermore, in tom-1;unc-18 double mutants the docked, primed vesicle pool is preferentially rescued relative to unc-18 single mutants. Together these data provide evidence for the differential regulation of two vesicle targeting steps by UNC-18 and TOM-1 through competitive interactions with syntaxin

  18. Endoplasmic reticulum stress in pathogenesis of diabetic retinopathy and effect of calcium dobesilate

    Institute of Scientific and Technical Information of China (English)

    Yu-Min Gui; Ming Zhao; Jie Ding

    2016-01-01

    Objective:To study the mechanism of endoplasmic reticulum stress in the pathogenesis of diabetic retinopathy and effect of calcium dobesilate.Methods:A total of 120 diabetic retinopathy patients treated in our hospital from January 2010 to September 2015 were enrolled in this article. The serum endoplasmic reticulum stress protein and interleukin protein expression levels were analyzed before and after calcium dobesilate treatment. A total of 55 cases of healthy subjects receiving physical examination in our hospital during the same period were taken as control group.Results:Serum endoplasmic reticulum stress proteins PERK, CHOP and IRE as well as interleukin proteins IL1, IL2, IL6 and IL10 expression significantly increased, serum MDA level significantly increased while SOD, CAT and GSHpx levels significantly decreased in diabetic retinopathy patients, and compared with control group (P<0.01); after calcium dobesilate treatment, above factors were significantly restored (P<0.01).Conclusions: Diabetic retinopathy is closely related to endoplasmic reticulum stress and calcium dobesilate treatment may improve diabetic retinopathy by inhibiting endoplasmic reticulum stress.

  19. Minimal experimental requirements for definition of extracellular vesicles and their functions: a position statement from the International Society for Extracellular Vesicles

    Directory of Open Access Journals (Sweden)

    Jan Lötvall

    2014-12-01

    Full Text Available Secreted membrane-enclosed vesicles, collectively called extracellular vesicles (EVs, which include exosomes, ectosomes, microvesicles, microparticles, apoptotic bodies and other EV subsets, encompass a very rapidly growing scientific field in biology and medicine. Importantly, it is currently technically challenging to obtain a totally pure EV fraction free from non-vesicular components for functional studies, and therefore there is a need to establish guidelines for analyses of these vesicles and reporting of scientific studies on EV biology. Here, the International Society for Extracellular Vesicles (ISEV provides researchers with a minimal set of biochemical, biophysical and functional standards that should be used to attribute any specific biological cargo or functions to EVs.

  20. Frequency-dependent electrodeformation of giant phospholipid vesicles in AC electric field

    Science.gov (United States)

    2010-01-01

    A model of vesicle electrodeformation is described which obtains a parametrized vesicle shape by minimizing the sum of the membrane bending energy and the energy due to the electric field. Both the vesicle membrane and the aqueous media inside and outside the vesicle are treated as leaky dielectrics, and the vesicle itself is modeled as a nearly spherical shape enclosed within a thin membrane. It is demonstrated (a) that the model achieves a good quantitative agreement with the experimentally determined prolate-to-oblate transition frequencies in the kilohertz range and (b) that the model can explain a phase diagram of shapes of giant phospholipid vesicles with respect to two parameters: the frequency of the applied alternating current electric field and the ratio of the electrical conductivities of the aqueous media inside and outside the vesicle, explored in a recent paper (S. Aranda et al., Biophys J 95:L19–L21, 2008). A possible use of the frequency-dependent shape transitions of phospholipid vesicles in conductometry of microliter samples is discussed. PMID:21886342

  1. Nanoparticle orientation to control RNA loading and ligand display on extracellular vesicles for cancer regression

    Science.gov (United States)

    Pi, Fengmei; Binzel, Daniel W.; Lee, Tae Jin; Li, Zhefeng; Sun, Meiyan; Rychahou, Piotr; Li, Hui; Haque, Farzin; Wang, Shaoying; Croce, Carlo M.; Guo, Bin; Evers, B. Mark; Guo, Peixuan

    2018-01-01

    Nanotechnology offers many benefits, and here we report an advantage of applying RNA nanotechnology for directional control. The orientation of arrow-shaped RNA was altered to control ligand display on extracellular vesicle membranes for specific cell targeting, or to regulate intracellular trafficking of small interfering RNA (siRNA) or microRNA (miRNA). Placing membrane-anchoring cholesterol at the tail of the arrow results in display of RNA aptamer or folate on the outer surface of the extracellular vesicle. In contrast, placing the cholesterol at the arrowhead results in partial loading of RNA nanoparticles into the extracellular vesicles. Taking advantage of the RNA ligand for specific targeting and extracellular vesicles for efficient membrane fusion, the resulting ligand-displaying extracellular vesicles were capable of specific delivery of siRNA to cells, and efficiently blocked tumour growth in three cancer models. Extracellular vesicles displaying an aptamer that binds to prostate-specific membrane antigen, and loaded with survivin siRNA, inhibited prostate cancer xenograft. The same extracellular vesicle instead displaying epidermal growth-factor receptor aptamer inhibited orthotopic breast cancer models. Likewise, survivin siRNA-loaded and folate-displaying extracellular vesicles inhibited patient-derived colorectal cancer xenograft.

  2. G protein betagamma-subunits activated by serotonin mediate presynaptic inhibition by regulating vesicle fusion properties.

    Science.gov (United States)

    Photowala, Huzefa; Blackmer, Trillium; Schwartz, Eric; Hamm, Heidi E; Alford, Simon

    2006-03-14

    Neurotransmitters are thought to be released as quanta, where synaptic vesicles deliver packets of neurotransmitter to the synaptic cleft by fusion with the plasma membrane. However, synaptic vesicles may undergo incomplete fusion. We provide evidence that G protein-coupled receptors inhibit release by causing such incomplete fusion. 5-hydroxytryptamine (5-HT) receptor signaling potently inhibits excitatory postsynaptic currents (EPSCs) between lamprey reticulospinal axons and their postsynaptic targets by a direct action on the vesicle fusion machinery. We show that 5-HT receptor-mediated presynaptic inhibition, at this synapse, involves a reduction in EPSC quantal size. Quantal size was measured directly by comparing unitary quantal amplitudes of paired EPSCs before and during 5-HT application and indirectly by determining the effect of 5-HT on the relationship between mean-evoked EPSC amplitude and variance. Results from FM dye-labeling experiments indicate that 5-HT prevents full fusion of vesicles. 5-HT reduces FM1-43 staining of vesicles with a similar efficacy to its effect on the EPSC. However, destaining of FM1-43-labeled vesicles is abolished by lower concentrations of 5-HT that leave a substantial EPSC. The use of a water-soluble membrane impermeant quenching agent in the extracellular space reduced FM1-43 fluorescence during stimulation in 5-HT. Thus vesicles contact the extracellular space during inhibition of synaptic transmission by 5-HT. We conclude that 5-HT, via free Gbetagamma, prevents the collapse of synaptic vesicles into the presynaptic membrane.

  3. The early postnatal pattern of vesicle formation in different regions of the porcien small intestine

    DEFF Research Database (Denmark)

    Elbrønd, Vibeke Sødring; Weström, B.R.

    2007-01-01

    applied to visualize cytoplasmatic subcellular components such as fat (Oil red O) and carbohydrates (PAS). Appearance and morphology of the epithelial vesicles were compared. In the proximal region several small supranuclear and a single large subnuclear electron dense, eosinophilic and PAS+ vesicle were...

  4. Isolation and characterization of urinary extracellular vesicles: implications for biomarker discovery

    NARCIS (Netherlands)

    Merchant, M.L.; Rood, I.M.; Deegens, J.K.J.; Klein, J.B.

    2017-01-01

    Urine is a valuable diagnostic medium and, with the discovery of urinary extracellular vesicles, is viewed as a dynamic bioactive fluid. Extracellular vesicles are lipid-enclosed structures that can be classified into three categories: exosomes, microvesicles (or ectosomes) and apoptotic bodies.

  5. PICK1 deficiency impairs secretory vesicle biogenesis and leads to growth retardation and decreased glucose tolerance

    DEFF Research Database (Denmark)

    Holst, Birgitte; Madsen, Kenneth L; Jansen, Anna M

    2013-01-01

    by electron microscopy showing prominent reduction in secretory vesicle number. Evidence was also obtained for impaired insulin secretion associated with decreased glucose tolerance. PICK1 localized in cells to immature secretory vesicles, and the PICK1 BAR domain was shown by live imaging to associate...

  6. Magnetic resonance of seminal vesicles: a noninvasive study of seminal way

    International Nuclear Information System (INIS)

    Ocantos, J.A.; Rey Valzacchi, G.; Sinclair, M.E.; Loor Guadamud, G.

    2010-01-01

    The magnetic resonance without endorectal coil is an excellent diagnostic tool for studying the entire route of seminal non-invasive way in a single step diagnosis. We call magnetic resonance of seminal vesicles, but includes both the study of the seminal vesicles as the channels of the seminal way. [es

  7. Visualizing the effect of dynamin inhibition on annular gap vesicle formation and fission.

    Science.gov (United States)

    Nickel, Beth; Boller, Marie; Schneider, Kimberly; Shakespeare, Teresa; Gay, Vernon; Murray, Sandra A

    2013-06-15

    Although gap junction plaque assembly has been extensively studied, mechanisms involved in plaque disassembly are not well understood. Disassembly involves an internalization process in which annular gap junction vesicles are formed. These vesicles undergo fission, but the molecular machinery needed for these fissions has not been described. The mechanoenzyme dynamin has been previously demonstrated to play a role in gap junction plaque internalization. To investigate the role of dynamin in annular gap junction vesicle fission, immunocytochemical, time-lapse and transmission electron microscopy were used to analyze SW-13 adrenocortical cells in culture. Dynamin was demonstrated to colocalize with gap junction plaques and vesicles. Dynamin inhibition, by siRNA knockdown or treatment with the dynamin GTPase inhibitor dynasore, increased the number and size of gap junction 'buds' suspended from the gap junction plaques. Buds, in control populations, were frequently released to form annular gap junction vesicles. In dynamin-inhibited populations, the buds were larger and infrequently released and thus fewer annular gap junction vesicles were formed. In addition, the number of annular gap junction vesicle fissions per hour was reduced in the dynamin-inhibited populations. We believe this to be the first report addressing the details of annular gap junction vesicle fissions and demonstrating a role of dynamin in this process. This information is crucial for elucidating the relationship between gap junctions, membrane regulation and cell behavior.

  8. Molecular dynamics simulation of the formation, structure, and dynamics of small phospholipid vesicles

    NARCIS (Netherlands)

    Marrink, SJ; Mark, AE

    2003-01-01

    Here, we use coarse grained molecular dynamics (MD) simulations to study the spontaneous aggregation of dipalmitoylphosphatidylcholine (DPPC) lipids into small unilamellar vesicles. We show that the aggregation process occurs on a nanosecond time scale, with bicelles and cuplike vesicles formed at

  9. Polymerization of styrene in DODAB vesicles : a small-angle neutron scattering study

    NARCIS (Netherlands)

    Jung, M.; Robinson, B.H.; Steytler, D.C.; German, A.L.; Heenan, R.K.

    2002-01-01

    The polymerization of styrene, located in the bilayer of dioctadecyldimethylammonium bromide (DODAB) vesicles, gives rise to phase separation between the growing polymer and the bilayer. The result is a small (20-30 nm) bead of polymer located in the bilayer of each vesicle giving them a

  10. Adrenomedullin increases the short-circuit current in the mouse seminal vesicle: actions on chloride secretion.

    Science.gov (United States)

    Liao, S B; Cheung, K H; O, W S; Tang, Fai

    2014-08-01

    Adrenomedullin (ADM) may regulate seminal vesicle fluid secretion, and this may affect sperm quality. In this study, we investigated the effect of ADM on chloride secretion in the mouse seminal vesicle. The presence of ADM in mouse seminal vesicle was confirmed using immunostaining, and the molecular species was determined using gel filtration chromatography coupled with enzyme-linked assay for ADM. The effects of ADM on chloride secretion were studied by short-circuit current technique in a whole-mount preparation of mouse seminal vesicle in an Ussing chamber. The effects of specific ADM and calcitonin gene-related peptide (CGRP) receptor antagonists were investigated. Whether the ADM effect depended on the cAMP- and/or calcium-activated chloride channel was also studied using specific chloride channel blockers. The results showed that ADM was present in seminal vesicle epithelial cells. The major molecular species was precursor in the mouse seminal vesicle. ADM increased short-circuit current through the calcium-activated chloride channel in mouse seminal vesicle, and CGRP receptor was involved. We conclude that ADM may regulate chloride and fluid secretion from the seminal vesicle, which may affect the composition of the seminal plasma bathing the sperm and, hence, fertility. © 2014 by the Society for the Study of Reproduction, Inc.

  11. Dynamics of fatty acid vesicles in response to pH stimuli

    DEFF Research Database (Denmark)

    Ikari, Keita; Sakuma, Yuka; Jimbo, Takehiro

    2015-01-01

    We investigate the dynamics of decanoic acid/decanoate (DA) vesicles in response to pH stimuli. Two types of dynamic processes induced by the micro injection of NaOH solutions are sequentially observed: deformations and topological transitions. In the deformation stage, DA vesicles show a series...

  12. Impaired recycling of synaptic vesicles after acute perturbation of the presynaptic actin cytoskeleton

    DEFF Research Database (Denmark)

    Shupliakov, Oleg; Bloom, Ona; Gustafsson, Jenny S

    2002-01-01

    Actin is an abundant component of nerve terminals that has been implicated at multiple steps of the synaptic vesicle cycle, including reversible anchoring, exocytosis, and recycling of synaptic vesicles. In the present study we used the lamprey reticulospinal synapse to examine the role of actin ...

  13. Defined DNA-mediated assemblies of gene-expressing giant unilamellar vesicles

    DEFF Research Database (Denmark)

    Hadorn, M.; Boenzli, E.; Sørensen, Kristian T.

    2013-01-01

    The technological aspects of artificial vesicles as prominent cell mimics are evolving toward higher-order assemblies of functional vesicles with tissuelike architectures. Here, we demonstrate the spatially controlled DNA-directed bottom-up synthesis of complex microassemblies and macroassemblies...

  14. Binding and Fusion of Extracellular Vesicles to the Plasma Membrane of Their Cell Targets.

    Science.gov (United States)

    Prada, Ilaria; Meldolesi, Jacopo

    2016-08-09

    Exosomes and ectosomes, extracellular vesicles of two types generated by all cells at multivesicular bodies and the plasma membrane, respectively, play critical roles in physiology and pathology. A key mechanism of their function, analogous for both types of vesicles, is the fusion of their membrane to the plasma membrane of specific target cells, followed by discharge to the cytoplasm of their luminal cargo containing proteins, RNAs, and DNA. Here we summarize the present knowledge about the interactions, binding and fusions of vesicles with the cell plasma membrane. The sequence initiates with dynamic interactions, during which vesicles roll over the plasma membrane, followed by the binding of specific membrane proteins to their cell receptors. Membrane binding is then converted rapidly into fusion by mechanisms analogous to those of retroviruses. Specifically, proteins of the extracellular vesicle membranes are structurally rearranged, and their hydrophobic sequences insert into the target cell plasma membrane which undergoes lipid reorganization, protein restructuring and membrane dimpling. Single fusions are not the only process of vesicle/cell interactions. Upon intracellular reassembly of their luminal cargoes, vesicles can be regenerated, released and fused horizontally to other target cells. Fusions of extracellular vesicles are relevant also for specific therapy processes, now intensely investigated.

  15. Origins of microstructural transformations in charged vesicle suspensions: the crowding hypothesis.

    Science.gov (United States)

    Seth, Mansi; Ramachandran, Arun; Murch, Bruce P; Leal, L Gary

    2014-09-02

    It is observed that charged unilamellar vesicles in a suspension can spontaneously deflate and subsequently transition to form bilamellar vesicles, even in the absence of externally applied triggers such as salt or temperature gradients. We provide strong evidence that the driving force for this deflation-induced transition is the repulsive electrostatic pressure between charged vesicles in concentrated suspensions, above a critical effective volume fraction. We use volume fraction measurements and cryogenic transmission electron microscopy imaging to quantitatively follow both the macroscopic and microstructural time-evolution of cationic diC18:1 DEEDMAC vesicle suspensions at different surfactant and salt concentrations. A simple model is developed to estimate the extent of deflation of unilamellar vesicles caused by electrostatic interactions with neighboring vesicles. It is determined that when the effective volume fraction of the suspension exceeds a critical value, charged vesicles in a suspension can experience "crowding" due to overlap of their electrical double layers, which can result in deflation and subsequent microstructural transformations to reduce the effective volume fraction of the suspension. Ordinarily in polydisperse colloidal suspensions, particles interacting via a repulsive potential transform into a glassy state above a critical volume fraction. The behavior of charged vesicle suspensions reported in this paper thus represents a new mechanism for the relaxation of repulsive interactions in crowded situations.

  16. Silver nanoparticles induce endoplasmatic reticulum stress response in zebrafish

    Energy Technology Data Exchange (ETDEWEB)

    Christen, Verena [University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences, Gründenstrasse 40, CH-4132 Muttenz (Switzerland); Capelle, Martinus [Crucell, P.O. Box 2048, NL-2301 Leiden (Netherlands); Fent, Karl, E-mail: karl.fent@fhnw.ch [University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences, Gründenstrasse 40, CH-4132 Muttenz (Switzerland); Swiss Federal Institute of Technology Zürich, Department of Environmental Systems Science, CH-8092 Zürich (Switzerland)

    2013-10-15

    Silver nanoparticles (AgNPs) find increasing applications, and therefore humans and the environment are increasingly exposed to them. However, potential toxicological implications are not sufficiently known. Here we investigate effects of AgNPs (average size 120 nm) on zebrafish in vitro and in vivo, and compare them to human hepatoma cells (Huh7). AgNPs are incorporated in zebrafish liver cells (ZFL) and Huh7, and in zebrafish embryos. In ZFL cells AgNPs lead to induction of reactive oxygen species (ROS), endoplasmatic reticulum (ER) stress response, and TNF-α. Transcriptional alterations also occur in pro-apoptotic genes p53 and Bax. The transcriptional profile differed in ZFL and Huh7 cells. In ZFL cells, the ER stress marker BiP is induced, concomitant with the ER stress marker ATF-6 and spliced XBP-1 after 6 h and 24 h exposure to 0.5 g/L and 0.05 g/L AgNPs, respectively. This indicates the induction of different pathways of the ER stress response. Moreover, AgNPs induce TNF-α. In zebrafish embryos exposed to 0.01, 0.1, 1 and 5 mg/L AgNPs hatching was affected and morphological defects occurred at high concentrations. ER stress related gene transcripts BiP and Synv are significantly up-regulated after 24 h at 0.1 and 5 mg/L AgNPs. Furthermore, transcriptional alterations occurred in the pro-apoptotic genes Noxa and p21. The ER stress response was strong in ZFL cells and occurred in zebrafish embryos as well. Our data demonstrate for the first time that AgNPs lead to induction of ER stress in zebrafish. The induction of ER stress can have several consequences including the activation of apoptotic and inflammatory pathways. - Highlights: • Effects of silver nanoparticles (120 nm AgNPs) are investigated in zebrafish. • AgNPs induce all ER stress reponses in vitro in zebrafish liver cells. • AgNPs induce weak ER stress in zebrafish embryos. • AgNPs induce oxidative stress and transcripts of pro-apoptosis genes.

  17. Endoplasmic reticulum stress-mediated neuronal apoptosis by acrylamide exposure

    Energy Technology Data Exchange (ETDEWEB)

    Komoike, Yuta, E-mail: komoike@research.twmu.ac.jp; Matsuoka, Masato, E-mail: matsuoka@research.twmu.ac.jp

    2016-11-01

    Acrylamide (AA) is a well-known neurotoxic compound in humans and experimental animals. However, intracellular stress signaling pathways responsible for the neurotoxicity of AA are still not clear. In this study, we explored the involvement of the endoplasmic reticulum (ER) stress response in AA-induced neuronal damage in vitro and in vivo. Exposure of SH-SY5Y human neuroblastoma cells to AA increased the levels of phosphorylated form of eukaryotic translation initiation factor 2α (eIF2α) and its downstream effector, activating transcription factor 4 (ATF4), indicating the induction of the unfolded protein response (UPR) by AA exposure. Furthermore, AA exposure increased the mRNA level of c/EBP homologous protein (CHOP), the ER stress-dependent apoptotic factor, and caused the accumulation of reactive oxygen species (ROS) in SH-SY5Y cells. Treatments of SH-SY5Y cells with the chemical chaperone, 4-phenylbutyric acid and the ROS scavenger, N-acetyl-cysteine reduced the AA-induced expression of ATF4 protein and CHOP mRNA, and resulted in the suppression of apoptosis. In addition, AA-induced eIF2α phosphorylation was also suppressed by NAC treatment. In consistent with in vitro study, exposure of zebrafish larvae at 6-day post fertilization to AA induced the expression of chop mRNA and apoptotic cell death in the brain, and also caused the disruption of brain structure. These findings suggest that AA exposure induces apoptotic neuronal cell death through the ER stress and subsequent eIF2α–ATF4–CHOP signaling cascade. The accumulation of ROS by AA exposure appears to be responsible for this ER stress-mediated apoptotic pathway. - Highlights: • Exposure of SH-SY5Y cells to AA activates the eIF2α–ATF4 pathway of the UPR. • Exposure of SH-SY5Y cells to AA induces the CHOP expression and apoptosis. • Exposure of zebrafish to AA induces the chop expression and apoptosis in the brain. • AA possibly induces apoptotic neuronal cell death through the ER

  18. Silver nanoparticles induce endoplasmatic reticulum stress response in zebrafish

    International Nuclear Information System (INIS)

    Christen, Verena; Capelle, Martinus; Fent, Karl

    2013-01-01

    Silver nanoparticles (AgNPs) find increasing applications, and therefore humans and the environment are increasingly exposed to them. However, potential toxicological implications are not sufficiently known. Here we investigate effects of AgNPs (average size 120 nm) on zebrafish in vitro and in vivo, and compare them to human hepatoma cells (Huh7). AgNPs are incorporated in zebrafish liver cells (ZFL) and Huh7, and in zebrafish embryos. In ZFL cells AgNPs lead to induction of reactive oxygen species (ROS), endoplasmatic reticulum (ER) stress response, and TNF-α. Transcriptional alterations also occur in pro-apoptotic genes p53 and Bax. The transcriptional profile differed in ZFL and Huh7 cells. In ZFL cells, the ER stress marker BiP is induced, concomitant with the ER stress marker ATF-6 and spliced XBP-1 after 6 h and 24 h exposure to 0.5 g/L and 0.05 g/L AgNPs, respectively. This indicates the induction of different pathways of the ER stress response. Moreover, AgNPs induce TNF-α. In zebrafish embryos exposed to 0.01, 0.1, 1 and 5 mg/L AgNPs hatching was affected and morphological defects occurred at high concentrations. ER stress related gene transcripts BiP and Synv are significantly up-regulated after 24 h at 0.1 and 5 mg/L AgNPs. Furthermore, transcriptional alterations occurred in the pro-apoptotic genes Noxa and p21. The ER stress response was strong in ZFL cells and occurred in zebrafish embryos as well. Our data demonstrate for the first time that AgNPs lead to induction of ER stress in zebrafish. The induction of ER stress can have several consequences including the activation of apoptotic and inflammatory pathways. - Highlights: • Effects of silver nanoparticles (120 nm AgNPs) are investigated in zebrafish. • AgNPs induce all ER stress reponses in vitro in zebrafish liver cells. • AgNPs induce weak ER stress in zebrafish embryos. • AgNPs induce oxidative stress and transcripts of pro-apoptosis genes

  19. Role of endoplasmic reticulum stress in the loss of retinal ganglion cells in diabetic retinopathy

    Institute of Scientific and Technical Information of China (English)

    Liping Yang; Lemeng Wu; Dongmei Wang; Ying Li; Hongliang Dou; Mark OMTso; Zhizhong Ma

    2013-01-01

    Endoplasmic reticulum stress is closely involved in the early stage of diabetic retinopathy. In the present study, a streptozotocin-induced diabetic animal model was given an intraperitoneal injection of tauroursodeoxycholic acid. Results from immunofluorescent co-localization experiments showed that both caspase-12 protein and c-Jun N-terminal kinase 1 phosphorylation levels significantly in-creased, which was associated with retinal ganglion celldeath in diabetic retinas. The C/ERB ho-mologous protein pathway directly contributed to glial reactivity, and was subsequently responsible for neuronal loss and vascular abnormalities in diabetic retinopathy. Our experimental findings in-dicate that endoplasmic reticulum stress plays an important role in diabetes-induced retinal neu-ronal loss and vascular abnormalities, and that inhibiting the activation of the endoplasmic reticulum stress pathway provides effective protection against diabetic retinopathy.

  20. v-SNAREs control exocytosis of vesicles from priming to fusion.

    Science.gov (United States)

    Borisovska, Maria; Zhao, Ying; Tsytsyura, Yaroslav; Glyvuk, Nataliya; Takamori, Shigeo; Matti, Ulf; Rettig, Jens; Südhof, Thomas; Bruns, Dieter

    2005-06-15

    SNARE proteins (soluble NSF-attachment protein receptors) are thought to be central components of the exocytotic mechanism in neurosecretory cells, but their precise function remained unclear. Here, we show that each of the vesicle-associated SNARE proteins (v-SNARE) of a chromaffin granule, synaptobrevin II or cellubrevin, is sufficient to support Ca(2+)-dependent exocytosis and to establish a pool of primed, readily releasable vesicles. In the absence of both proteins, secretion is abolished, without affecting biogenesis or docking of granules indicating that v-SNAREs are absolutely required for granule exocytosis. We find that synaptobrevin II and cellubrevin differentially control the pool of readily releasable vesicles and show that the v-SNARE's amino terminus regulates the vesicle's primed state. We demonstrate that dynamics of fusion pore dilation are regulated by v-SNAREs, indicating their action throughout exocytosis from priming to fusion of vesicles.

  1. Folding Up of Gold Nanoparticle Strings into Plasmonic Vesicles for Enhanced Photoacoustic Imaging

    KAUST Repository

    Liu, Yijing

    2015-11-11

    The stepwise self-assembly of hollow plasmonic vesicles with vesicular membranes containing strings of gold nanoparticles (NPs) is reported. The formation of chain vesicles can be controlled by tuning the density of the polymer ligands on the surface of the gold NPs. The strong absorption of the chain vesicles in the near-infrared (NIR) region leads to a much higher efficiency in photoacoustic (PA) imaging than for non-chain vesicles. The chain vesicles were further employed for the encapsulation of drugs and the NIR light triggered release of payloads. This work not only offers a new platform for controlling the hierarchical self-assembly of NPs, but also demonstrates that the physical properties of the materials can be tailored by controlling the spatial arrangement of NPs within assemblies to achieve a better performance in biomedical applications.

  2. Two types of mineral-related matrix vesicles in the bone mineralization of zebrafish

    International Nuclear Information System (INIS)

    Yang, L; Zhang, Y; Cui, F Z

    2007-01-01

    Two types of mineral-related matrix vesicle, multivesicular body (MVB) and monovesicle, were detected in the skeletal bone of zebrafish. Transmission electron microscopy and energy dispersive spectroscopy (EDS) analyses of the vesicular inclusions reveal that both types of vesicles contain calcium and phosphorus, suggesting that these vesicles may be involved in mineral ion delivery for the bone mineralization of zebrafish. However, their size and substructure are quite different. Monovesicles, whose diameter ranges from 100 nm to 550 nm, are similar to the previously reported normal matrix vesicles, while MVBs have a larger size of 700-1000 nm in nominal diameter and possess a substructure that is composed of smaller vesicles with their average size around 100 nm. The presence of mineral-related MVBs, which is first identified in zebrafish bone, indicates that the mineralization-associated transportation process of mineral ions is more complicated than is ordinarily imagined

  3. Two Novel Rab2 Interactors Regulate Dense-core Vesicle Maturation

    Science.gov (United States)

    Ailion, Michael; Hannemann, Mandy; Dalton, Susan; Pappas, Andrea; Watanabe, Shigeki; Hegermann, Jan; Liu, Qiang; Han, Hsiao-Fen; Gu, Mingyu; Goulding, Morgan Q.; Sasidharan, Nikhil; Schuske, Kim; Hullett, Patrick; Eimer, Stefan; Jorgensen, Erik M.

    2014-01-01

    Summary Peptide neuromodulators are released from a unique organelle: the dense-core vesicle. Dense-core vesicles are generated at the trans-Golgi, and then sort cargo during maturation before being secreted. To identify proteins that act in this pathway, we performed a genetic screen in Caenorhabditis elegans for mutants defective in dense-core vesicle function. We identified two conserved Rab2-binding proteins: RUND-1, a RUN domain protein, and CCCP-1, a coiled-coil protein. RUND-1 and CCCP-1 colocalize with RAB-2 at the Golgi, and rab-2, rund-1 and cccp-1 mutants have similar defects in sorting soluble and transmembrane dense-core vesicle cargos. RUND-1 also interacts with the Rab2 GAP protein TBC-8 and the BAR domain protein RIC-19, a RAB-2 effector. In summary, a new pathway of conserved proteins controls the maturation of dense-core vesicles at the trans-Golgi network. PMID:24698274

  4. Development and characterization of nanopore system for nano-vesicle analysis

    Science.gov (United States)

    Goyal, Gaurav

    Nano-vesicles have recently attracted a lot of attention in research and medical communities and are very promising next-generation drug delivery vehicles. This is due to their biocompatibility, biodegradability and their ability to protect drug cargo and deliver it to site-specific locations, while maintaining the desired pharmacokinetic profile. The interaction of these drug loaded vesicles with the recipient cells via adsorption, endocytosis or receptor mediated internalization involve significant bending and deformation and is governed by mechanical properties of the nano-vesicles. Currently, the mechanical characteristics of nano-vesicles are left unexplored because of the difficulties associated with vesicle analysis at sub-100 nm length scale. The need for a complete understanding of nano-vesicle interaction with each other and the recipient cells warrants development of an analytical tool capable of mechanical investigation of individual vesicles at sub-100 nm scale. This dissertation presents investigation of nano-vesicle deformability using resistive pulse sensing and solid-state nanopore devices. The dissertation is divided into four chapters. Chapter 1 discusses the motivation, specific aims and presents an overview of nanoparticle characterization techniques, resistive pulse sensing background and principles, techniques for fabricating solid-state nanopores, as well the deformation behavior of giant vesicles when placed in electric field. Chapter 2 is dedicated to understanding of the scientific principles governing transport of sub-100 nm particles in dilute solutions. We investigated the translocation of rigid nanoparticles through nanopores at salt concentrations exosomes derived from human breast cancer cell line. Exosomes also exhibit co-translocational deformation behavior; however, they appear to be less affected by the deforming force inside the nanopore compared to the DOPC liposomes. We believe, the results of this research will bring about a

  5. Label-free tracking of single extracellular vesicles in a nano-fluidic optical fiber (Conference Presentation)

    Science.gov (United States)

    van der Pol, Edwin; Weidlich, Stefan; Lahini, Yoav; Coumans, Frank A. W.; Sturk, Auguste; Nieuwland, Rienk; Schmidt, Markus A.; Faez, Sanli; van Leeuwen, Ton G.

    2016-03-01

    Background: Extracellular vesicles, such as exosomes, are abundantly present in human body fluids. Since the size, concentration and composition of these vesicles change during disease, vesicles have promising clinical applications, including cancer diagnosis. However, since ~70% of the vesicles have a diameter <70 nm, detection of single vesicles remains challenging. Thus far, vesicles <70 nm have only be studied by techniques that require the vesicles to be adhered to a surface. Consequently, the majority of vesicles have never been studied in their physiological environment. We present a novel label-free optical technique to track single vesicles <70 nm in suspension. Method: Urinary vesicles were contained within a single-mode light-guiding silica fiber containing a 600 nm nano-fluidic channel. Light from a diode laser (660 nm wavelength) was coupled to the fiber, resulting in a strongly confined optical mode in the nano-fluidic channel, which continuously illuminated the freely diffusing vesicles inside the channel. The elastic light scattering from the vesicles, in the direction orthogonal to the fiber axis, was collected using a microscope objective (NA=0.95) and imaged with a home-built microscope. Results: We have tracked single urinary vesicles as small as 35 nm by elastic light scattering. Please note that vesicles are low-refractive index (n<1.4) particles, which we confirmed by combining data on thermal diffusion and light scattering cross section. Conclusions: For the first time, we have studied vesicles <70 nm freely diffusing in suspension. The ease-of-use and performance of this technique support its potential for vesicle-based clinical applications.

  6. Immune responsiveness and incidence of reticulum cell sarcoma in long-term syngeneic radiation chimeras

    International Nuclear Information System (INIS)

    Adorini, L.; Gorini, G.; Covelli, V.; Ballardin, E.; di Michele, A.; Bassani, B.; Metalli, P.; Doria, G.

    1976-01-01

    Long-term syngeneic radiation chimeras displayed a very low incidence of reticulum cell sarcoma as compared with control mice. Immune reactivity of these animals was studied in vivo by anti-dinitrophenyl antibody titer and affinity and in vitro by mitotic responsiveness to phytohemagglutinin, concanavalin A and lipopolysaccharide. Antibody titer and affinity as well as the response to T lectins were found to be increased in chimeras. These results were attributed to increased function of mature T2 cells, which could explain the reduced incidence of reticulum cell sarcoma in chimeras

  7. Maturation arrest of human oocytes at germinal vesicle stage

    Directory of Open Access Journals (Sweden)

    Zhi Qin Chen

    2010-01-01

    Full Text Available Maturation arrest of human oocytes may occur at various stages of the cell cycle. A total failure of human oocytes to complete meiosis is rarely observed during assisted conception cycles. We describe here a case of infertile couples for whom all oocytes repeatedly failed to mature at germinal vesicle (GV stage during in vitro fertilization/Intra cytoplasmic sperm injection (IVF/ICSI. The patient underwent controlled ovarian stimulation followed by oocyte retrieval and IVF/ICSI. The oocytes were stripped off cumulus cells prior to the ICSI procedure and their maturity status was defined. The oocyte maturation was repeatedly arrested at the GV. Oocyte maturation arrest may be the cause of infertility in this couple. The recognition of oocyte maturation arrest as a specific medical condition may contribute to the characterization of the currently known as "oocyte factor." The cellular and genetic mechanisms causing oocyte maturation arrest should be the subject for further investigation.

  8. Phosphoproteins in extracellular vesicles as candidate markers for breast cancer.

    Science.gov (United States)

    Chen, I-Hsuan; Xue, Liang; Hsu, Chuan-Chih; Paez, Juan Sebastian Paez; Pan, Li; Andaluz, Hillary; Wendt, Michael K; Iliuk, Anton B; Zhu, Jian-Kang; Tao, W Andy

    2017-03-21

    The state of protein phosphorylation can be a key determinant of cellular physiology such as early-stage cancer, but the development of phosphoproteins in biofluids for disease diagnosis remains elusive. Here we demonstrate a strategy to isolate and identify phosphoproteins in extracellular vesicles (EVs) from human plasma as potential markers to differentiate disease from healthy states. We identified close to 10,000 unique phosphopeptides in EVs isolated from small volumes of plasma samples. Using label-free quantitative phosphoproteomics, we identified 144 phosphoproteins in plasma EVs that are significantly higher in patients diagnosed with breast cancer compared with healthy controls. Several biomarkers were validated in individual patients using paralleled reaction monitoring for targeted quantitation. This study demonstrates that the development of phosphoproteins in plasma EV as disease biomarkers is highly feasible and may transform cancer screening and monitoring.

  9. Electrogenic sulfate uptake by crustacean hepatopancreatic basolateral membrane vesicles

    International Nuclear Information System (INIS)

    Cattey, M.A.; Gerencser, G.A.; Aheam, G.A.

    1990-01-01

    Basolateral membrane vesicles (BLMV) were isolated from Atlantic lobster (Homarus americanus) hepatopancreas and purified by discontinuous sucrose gradient centrifugation. BLMV prepared in this fashion were osmotically reactive exhibiting linear dependence of vesicular 35 SO 4 -2 uptake to increasing external osmotic pressure with negligible non-specific isotope binding. Under short circuited conditions (valinomycin/K + ) BLMV responded to either a HCO 3 - gradient directed out or equilibrated HCO 3 - (10 mM) by displaying short term accumulation of sulfate above that of equilibrium. Uptake of divalent anion was unaffected by an inwardly directed transmembrane Na + or tetramethylammonium + gradient. 35 SO 4 -2 /HCO 3 - exchange in the presence of valinomycin was stimulated by transient inside positive K + diffusion potentials and inhibited by transient inside negative K + diffusion potentials. The role of electrogenic anion exchange by hepatopancreas BLMV in transcellular sulfate transport is discussed

  10. Stem Cell Extracellular Vesicles: Extended Messages of Regeneration

    Science.gov (United States)

    Riazifar, Milad; Pone, Egest J.; Lötvall, Jan; Zhao, Weian

    2017-01-01

    Stem cells are critical to maintaining steady-state organ homeostasis and regenerating injured tissues. Recent intriguing reports implicate extracellular vesicles (EVs) as carriers for the distribution of morphogens and growth and differentiation factors from tissue parenchymal cells to stem cells, and conversely, stem cell–derived EVs carrying certain proteins and nucleic acids can support healing of injured tissues. We describe approaches to make use of engineered EVs as technology platforms in therapeutics and diagnostics in the context of stem cells. For some regenerative therapies, natural and engineered EVs from stem cells may be superior to single-molecule drugs, biologics, whole cells, and synthetic liposome or nanoparticle formulations because of the ease of bioengineering with multiple factors while retaining superior biocompatibility and biostability and posing fewer risks for abnormal differentiation or neoplastic transformation. Finally, we provide an overview of current challenges and future directions of EVs as potential therapeutic alternatives to cells for clinical applications. PMID:27814025

  11. Giant plasma membrane vesicles: models for understanding membrane organization.

    Science.gov (United States)

    Levental, Kandice R; Levental, Ilya

    2015-01-01

    The organization of eukaryotic membranes into functional domains continues to fascinate and puzzle cell biologists and biophysicists. The lipid raft hypothesis proposes that collective lipid interactions compartmentalize the membrane into coexisting liquid domains that are central to membrane physiology. This hypothesis has proven controversial because such structures cannot be directly visualized in live cells by light microscopy. The recent observations of liquid-liquid phase separation in biological membranes are an important validation of the raft hypothesis and enable application of the experimental toolbox of membrane physics to a biologically complex phase-separated membrane. This review addresses the role of giant plasma membrane vesicles (GPMVs) in refining the raft hypothesis and expands on the application of GPMVs as an experimental model to answer some of key outstanding problems in membrane biology. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Spontaneous vesicle phase formation by pseudogemini surfactants in aqueous solutions.

    Science.gov (United States)

    Sun, Nan; Shi, Lijuan; Lu, Fei; Xie, Shuting; Zheng, Liqiang

    2014-08-14

    The phase behavior of a kind of pseudogemini surfactant in aqueous solutions, formed by the mixture of sodium dodecyl benzene sulfonate (SDBS) and butane-1,4-bis (methylimidazolium bromide) ([mim-C4-mim]Br2) or butane-1,4-bis(methylpyrrolidinium bromide) ([mpy-C4-mpy]Br2) in a molar ratio of 2 : 1, is reported in the present work. When [mim-C4-mim]Br2 or [mpy-C4-mpy]Br2 is mixed with SDBS in aqueous solutions, one cationic [mim-C4-mim]Br2 or [mpy-C4-mpy]Br2 molecule "bridges" two SDBS molecules by noncovalent interactions (e.g. electrostatic, π-π stacking, and σ-π interactions), behaving like a pseudogemini surfactant. Vesicles can be formed by this kind of pseudogemini surfactant, determined by freeze-fracture transmission electron microscopy (FF-TEM) or cryogenic-transmission electron microscopy (cryo-TEM) and dynamic light scattering (DLS). The mixed system of sodium dodecyl sulfate (SDS) with [mim-C4-mim]Br2 or [mpy-C4-mpy]Br2 was also constructed, and only micelles were observed. We infer that a pseudogemini surfactant is formed under the synergic effect of electrostatic, π-π stacking, and σ-π interactions in the SDBS/[mim-C4-mim]Br2/H2O system, while electrostatic attraction and hydrophobic interactions may provide the directional force for vesicle formation in the SDBS/[mpy-C4-mpy]Br2/H2O system.

  13. Development and dosimetric evaluation of radiochromic PCDA vesicle gel dosimeters

    International Nuclear Information System (INIS)

    Sun, P.; Fu, Y.C.; Hu, J.; Hao, N.; Huang, W.; Jiang, B.

    2016-01-01

    The gel dosimeter has the unique capacity in recording radiation dose distribution in three dimensions (3D), which has the specific advantages in dosimetry measurements where steep dose gradients exist, such as in intensity-modulated radiation therapy (IMRT), brachytherapy and so on. Some 3D dosimeters, such as Fricke gel dosimeters, polymer gel dosimeters, the PRESAGE plastic dosimeters and micelle gel dosimeters have appeared recently. However, there are several disadvantages of these 3D dosimeters limit their application in radiotherapy dose verification. In this study, a novel radiochromic gel dosimeter for 3D dose verification of radiotherapy was developed by dispersing nanovesicles self-assembled by 10,12-pentacosadiynoic acid (PCDA) into the tissue equivalence gel matrix. The characteristics of radiochromic PCDA vesicle gel dosimeters were evaluated. The results indicate that these radiochromic gel dosimeters have good linear dose response to X-ray irradiation in the dose range of 2–100 Gy. In addition, the radiochromic gel dosimeters breakthrough the limitations of the existing gel dosimeters such as diffusion effect, post-radiation effect, and poor forming ability. The response of the gel dosimeter does not show any dose rate dependence, energy dependence and temperature effect, and there was no obvious difference in the gel response between single and cumulative dose of fractional irradiation. Hence, the radiochromic PCDA vesicle gel dosimeters developed in this study could be generally applied to 3D dose verification in radiotherapy. - Highlights: • A novel radiochromic gel dosimeter was developed by dispersing PCDA nanovesicles into the tissue equivalence gel matrix. • This nanovesicle overcomes the dose image blurring caused by the diffusion of monomer molecules. • This nanovesicle limits the polymer chain growth, so as to reduce the post-radiation effect. • The gel matrixes possess excellent tissue equivalence and elastic strength, which

  14. Evidence that the effects of phospholipids on the activity of the Ca(2+)-ATPase do not involve aggregation.

    OpenAIRE

    Starling, A P; East, J M; Lee, A G

    1995-01-01

    The Ca(2+)-ATPase of skeletal-muscle sarcoplasmic reticulum, solubilized in monomeric from in C12E8, has been reconstituted by dialysis into sealed vesicles of dioleoyl phosphatidylcholine [di(C18:1)PC], dimyristoleoyl phosphatidylcholine [di(C14:1)PC], dinervonyl phosphatidylcholine [di(C24:1)PC] or dipalmitoyl phosphatidylcholine [di(C16:0)PC] in the gel phase, at a phospholipid/ATPase molar ratio of 10,000: 1. Cross-linking experiments show that ATPase molecules are present in these recons...

  15. Vesicle Motion during Sustained Exocytosis in Chromaffin Cells: Numerical Model Based on Amperometric Measurements.

    Directory of Open Access Journals (Sweden)

    Daungruthai Jarukanont

    Full Text Available Chromaffin cells release catecholamines by exocytosis, a process that includes vesicle docking, priming and fusion. Although all these steps have been intensively studied, some aspects of their mechanisms, particularly those regarding vesicle transport to the active sites situated at the membrane, are still unclear. In this work, we show that it is possible to extract information on vesicle motion in Chromaffin cells from the combination of Langevin simulations and amperometric measurements. We developed a numerical model based on Langevin simulations of vesicle motion towards the cell membrane and on the statistical analysis of vesicle arrival times. We also performed amperometric experiments in bovine-adrenal Chromaffin cells under Ba2+ stimulation to capture neurotransmitter releases during sustained exocytosis. In the sustained phase, each amperometric peak can be related to a single release from a new vesicle arriving at the active site. The amperometric signal can then be mapped into a spike-series of release events. We normalized the spike-series resulting from the current peaks using a time-rescaling transformation, thus making signals coming from different cells comparable. We discuss why the obtained spike-series may contain information about the motion of all vesicles leading to release of catecholamines. We show that the release statistics in our experiments considerably deviate from Poisson processes. Moreover, the interspike-time probability is reasonably well described by two-parameter gamma distributions. In order to interpret this result we computed the vesicles' arrival statistics from our Langevin simulations. As expected, assuming purely diffusive vesicle motion we obtain Poisson statistics. However, if we assume that all vesicles are guided toward the membrane by an attractive harmonic potential, simulations also lead to gamma distributions of the interspike-time probability, in remarkably good agreement with experiment. We

  16. Vesicle Motion during Sustained Exocytosis in Chromaffin Cells: Numerical Model Based on Amperometric Measurements.

    Science.gov (United States)

    Jarukanont, Daungruthai; Bonifas Arredondo, Imelda; Femat, Ricardo; Garcia, Martin E

    2015-01-01

    Chromaffin cells release catecholamines by exocytosis, a process that includes vesicle docking, priming and fusion. Although all these steps have been intensively studied, some aspects of their mechanisms, particularly those regarding vesicle transport to the active sites situated at the membrane, are still unclear. In this work, we show that it is possible to extract information on vesicle motion in Chromaffin cells from the combination of Langevin simulations and amperometric measurements. We developed a numerical model based on Langevin simulations of vesicle motion towards the cell membrane and on the statistical analysis of vesicle arrival times. We also performed amperometric experiments in bovine-adrenal Chromaffin cells under Ba2+ stimulation to capture neurotransmitter releases during sustained exocytosis. In the sustained phase, each amperometric peak can be related to a single release from a new vesicle arriving at the active site. The amperometric signal can then be mapped into a spike-series of release events. We normalized the spike-series resulting from the current peaks using a time-rescaling transformation, thus making signals coming from different cells comparable. We discuss why the obtained spike-series may contain information about the motion of all vesicles leading to release of catecholamines. We show that the release statistics in our experiments considerably deviate from Poisson processes. Moreover, the interspike-time probability is reasonably well described by two-parameter gamma distributions. In order to interpret this result we computed the vesicles' arrival statistics from our Langevin simulations. As expected, assuming purely diffusive vesicle motion we obtain Poisson statistics. However, if we assume that all vesicles are guided toward the membrane by an attractive harmonic potential, simulations also lead to gamma distributions of the interspike-time probability, in remarkably good agreement with experiment. We also show that

  17. 4-Phenylbutyric Acid Reveals Good Beneficial Effects on Vital Organ Function via Anti-Endoplasmic Reticulum Stress in Septic Rats.

    Science.gov (United States)

    Liu, Liangming; Wu, Huiling; Zang, JiaTao; Yang, Guangming; Zhu, Yu; Wu, Yue; Chen, Xiangyun; Lan, Dan; Li, Tao

    2016-08-01

    Sepsis and septic shock are the common complications in ICUs. Vital organ function disorder contributes a critical role in high mortality after severe sepsis or septic shock, in which endoplasmic reticulum stress plays an important role. Whether anti-endoplasmic reticulum stress with 4-phenylbutyric acid is beneficial to sepsis and the underlying mechanisms are not known. Laboratory investigation. State Key Laboratory of Trauma, Burns and Combined Injury. Sprague-Dawley rats. Using cecal ligation and puncture-induced septic shock rats, lipopolysaccharide-treated vascular smooth muscle cells, and cardiomyocytes, effects of 4-phenylbutyric acid on vital organ function and the relationship with endoplasmic reticulum stress and endoplasmic reticulum stress-mediated inflammation, apoptosis, and oxidative stress were observed. Conventional treatment, including fluid resuscitation, vasopressin, and antibiotic, only slightly improved the hemodynamic variable, such as mean arterial blood pressure and cardiac output, and slightly improved the vital organ function and the animal survival of septic shock rats. Supplementation of 4-phenylbutyric acid (5 mg/kg; anti-endoplasmic reticulum stress), especially administered at early stage, significantly improved the hemodynamic variables, vital organ function, such as liver, renal, and intestinal barrier function, and animal survival in septic shock rats. 4-Phenylbutyric acid application inhibited the endoplasmic reticulum stress and endoplasmic reticulum stress-related proteins, such as CCAAT/enhancer-binding protein homologous protein in vital organs, such as heart and superior mesenteric artery after severe sepsis. Further studies showed that 4-phenylbutyric acid inhibited endoplasmic reticulum stress-mediated cytokine release, apoptosis, and oxidative stress via inhibition of nuclear factor-κB, caspase-3 and caspase-9, and increasing glutathione peroxidase and superoxide dismutase expression, respectively. Anti

  18. Polymer Vesicles as Robust Scaffolds for the Directed Assembly of Highly Crystalline Nanocrystals †

    KAUST Repository

    Wang, Mingfeng

    2009-12-15

    We report the incorporation of various inorganic nanoparticles (NPs) (PbS, LaOF, LaF3, and TiO2, each capped by oleic acid, and CdSe/ZnS core/shell QDs capped by trioctylphosphine oxide) into vesicles (d = 70-150 nm) formed by a sample of poly(styrene-b-acrylic acid) (PS4o4-b-PAA 62, where the subscripts refer to the degree of polymerization) in mixtures of tetrahydrofuran (THF), dioxane, and water. The block copolymer formed mixtures of crew-cut micelles and vesicles with some enhancement of the vesicle population when the NPs were present. The vesicle fraction could be isolated by selective sedimentation via centrifugation, followed by redispersion in water. The NPs appeared to be incorporated into the PAA layers on the internal and external walls of the vesicles (strongly favoring the former). NPs on the exterior surface of the vesicles could be removed completely by treating the samples with a solution of ethylenediaminetetraacetate (EDTA) in water. The triangular nanoplatelets of LaF3 behaved differently. Stacks of these platelets were incorporated into solid colloidal entities, similar in size to the empty vesicles that accompanied them, during the coassembly as water was added to the polymer/LaF3/THF/ dioxane mixture. © 2009 American Chemical Society.

  19. EVpedia: an integrated database of high-throughput data for systemic analyses of extracellular vesicles

    Directory of Open Access Journals (Sweden)

    Dae-Kyum Kim

    2013-03-01

    Full Text Available Secretion of extracellular vesicles is a general cellular activity that spans the range from simple unicellular organisms (e.g. archaea; Gram-positive and Gram-negative bacteria to complex multicellular ones, suggesting that this extracellular vesicle-mediated communication is evolutionarily conserved. Extracellular vesicles are spherical bilayered proteolipids with a mean diameter of 20–1,000 nm, which are known to contain various bioactive molecules including proteins, lipids, and nucleic acids. Here, we present EVpedia, which is an integrated database of high-throughput datasets from prokaryotic and eukaryotic extracellular vesicles. EVpedia provides high-throughput datasets of vesicular components (proteins, mRNAs, miRNAs, and lipids present on prokaryotic, non-mammalian eukaryotic, and mammalian extracellular vesicles. In addition, EVpedia also provides an array of tools, such as the search and browse of vesicular components, Gene Ontology enrichment analysis, network analysis of vesicular proteins and mRNAs, and a comparison of vesicular datasets by ortholog identification. Moreover, publications on extracellular vesicle studies are listed in the database. This free web-based database of EVpedia (http://evpedia.info might serve as a fundamental repository to stimulate the advancement of extracellular vesicle studies and to elucidate the novel functions of these complex extracellular organelles.

  20. Effect of Gamma Radiation on Amino Acid Based Vesicle Carrying Radiosensitizer

    International Nuclear Information System (INIS)

    Nur Ratasha Alia Mohd Rosli; Faizal Mohamed; Muhammad Amir Syafiq Mohd Sah; Irman Abdul Rahman

    2014-01-01

    Vesicles has been developed and studied to be used as a medium to transport radiosensitizer in treating cancer cells by increasing its sensitivity effectively towards the radiation given during radiotherapy. This study was conducted to investigate the effect of gamma radiation on amino acid-based vesicle carrying radiosensitizer. Amino acid based vesicles carrying radiosensitizer were synthesized using sonication method with sodium N-lauroylsarcosinate hydrate and decanol being the primary surfactant, while hydrogen peroxide and sodium hyaluronate as the encapsulated radiosensitizer. The synthesized vesicle was then irradiated at radiation doses equivalent to those given during radiotherapy. Irradiated vesicle carrying radiosensitizer were then characterized using Transmission Electron Microscopy (TEM), Fourier Transform Infrared Spectroscopy (FTIR) and Polarized Light Microscope. Results obtained shows that there were no significant changes in morphology and molecular conformation of the synthesized vesicle after irradiation. Even at higher radiation dose of 100 Gray and 200 Gray, the results remained unchanged. This indicates that the synthesized vesicle carrying radiosensitizer is morphologically and spectroscopically stable even at high radiation doses. (author)

  1. An AFM-based pit-measuring method for indirect measurements of cell-surface membrane vesicles

    International Nuclear Information System (INIS)

    Zhang, Xiaojun; Chen, Yuan; Chen, Yong

    2014-01-01

    Highlights: • Air drying induced the transformation of cell-surface membrane vesicles into pits. • An AFM-based pit-measuring method was developed to measure cell-surface vesicles. • Our method detected at least two populations of cell-surface membrane vesicles. - Abstract: Circulating membrane vesicles, which are shed from many cell types, have multiple functions and have been correlated with many diseases. Although circulating membrane vesicles have been extensively characterized, the status of cell-surface membrane vesicles prior to their release is less understood due to the lack of effective measurement methods. Recently, as a powerful, micro- or nano-scale imaging tool, atomic force microscopy (AFM) has been applied in measuring circulating membrane vesicles. However, it seems very difficult for AFM to directly image/identify and measure cell-bound membrane vesicles due to the similarity of surface morphology between membrane vesicles and cell surfaces. Therefore, until now no AFM studies on cell-surface membrane vesicles have been reported. In this study, we found that air drying can induce the transformation of most cell-surface membrane vesicles into pits that are more readily detectable by AFM. Based on this, we developed an AFM-based pit-measuring method and, for the first time, used AFM to indirectly measure cell-surface membrane vesicles on cultured endothelial cells. Using this approach, we observed and quantitatively measured at least two populations of cell-surface membrane vesicles, a nanoscale population (<500 nm in diameter peaking at ∼250 nm) and a microscale population (from 500 nm to ∼2 μm peaking at ∼0.8 μm), whereas confocal microscopy only detected the microscale population. The AFM-based pit-measuring method is potentially useful for studying cell-surface membrane vesicles and for investigating the mechanisms of membrane vesicle formation/release

  2. Squamous cell carcinoma of the seminal vesicle. Review of the related literature and case report

    Directory of Open Access Journals (Sweden)

    V. B. Matveev

    2015-01-01

    Full Text Available Seminal vesicle tumors are very rare malignancies which are not diagnosed in daily clinical oncology practice. Primary malignant tumors in seminal vesicle are difficult to define due to the lack of specific symptoms in the early stages of the disease. Another obstacle of proper diagnosis is the frequent invasion of tumors of the surrounding organs, especially the prostate, rectum and bladder which is difficult to differentiate. Very often seminal vesicle tumors are difficult to detect. Digital rectal examination as well as transrectal ultrasound scan (US could reveal a bulky mass in the retrovesical space. Computed tomography and magnetic resonance imaging (MRI are the main diagnostic methods which could help to reveal pathologic masses in the region of seminal vesicles. Levels of prostate-specific antigen, carcinoembryonic antigen and tumor markers specific for colorectal cancer are negative in seminal vesicle tumors.The world experience of treating seminal vesicle tumors is very limited. There is paucity of data regarding appropriate choice of surgical approach and further treatment strategy and most of the time the treatment is individualized and based on very scarce information. At the same time surgical approach may vary significantly from vesiculectomy to pelvic exenteration. Possibility of using any regimens of adjuvant radiation therapy, chemotherapy or hormone therapy is highly debatable. However, aggressive surgical approach with radical tumor removal followed by extended lymphodissection shows the most favorable results in survival of patients suffering from seminal vesicle cancer.Squamous cell carcinoma of the seminal vesicles is presumed to be an extremely rare disease as there are only 3 reports of it in the world literature. We report a case of patient B. suffering from squamous cell carcinoma of the right seminal vesicle whom we conducted an aggressive surgical approach – prostatovesiculectomy followed by resection of the

  3. A study of the enhanced sensitizing capacity of a contact allergen in lipid vesicle formulations

    International Nuclear Information System (INIS)

    Simonsson, Carl; Madsen, Jakob Torp; Graneli, Annette; Andersen, Klaus E.; Karlberg, Ann-Therese; Jonsson, Charlotte A.; Ericson, Marica B.

    2011-01-01

    The growing focus on nanotechnology and the increased use of nano-sized structures, e.g. vesicles, in topical formulations has led to safety concerns. We have investigated the sensitizing capacity and penetration properties of a fluorescent model compound, rhodamine B isothiocyanate (RBITC), when administered in micro- and nano-scale vesicle formulations. The sensitizing capacity of RBITC was studied using the murine local lymph node assay (LLNA) and the skin penetration properties were compared using diffusion cells in combination with two-photon microscopy (TPM). The lymph node cell proliferation, an indicator of a compounds sensitizing capacity, increased when RBITC was applied in lipid vesicles as compared to an ethanol:water (Et:W) solution. Micro-scale vesicles showed a slightly higher cell proliferative response compared to nano-scale vesicles. TPM imaging revealed that the vesicle formulations improved the skin penetration of RBITC compared to the Et:W solution. A strong fluorescent region in the stratum corneum and upper epidermis implies elevated association of RBITC to these skin layers when formulated in lipid vesicles. In conclusion, the results indicate that there could be an elevated risk of sensitization when haptens are delivered in vehicles containing lipid vesicles. Although the size of the vesicles seems to be of minor importance, further studies are needed before a more generalized conclusion can be drawn. It is likely that the enhanced sensitizing capacity is a consequence of the improved penetration and increased formation of hapten-protein complexes in epidermis when RBITC is delivered in ethosomal formulations. - Graphical Abstract: Display Omitted

  4. Effects of ginger extract on smooth muscle activity of sheep reticulum and rumen

    Directory of Open Access Journals (Sweden)

    Amin Mamaghani

    2013-06-01

    Full Text Available Reticulorumen hypomotility leads to the impaired physiologic functions of the digestive tract. Prokinetic action of ginger has been demonstrated in the laboratory animals and human. The aim of this study was to evaluate the effect of hydroalcoholic extract of ginger on contraction and motility of reticulum and rumen of ruminants. Collected samples of reticulum and rumen from eight sheep were investigated in vitro. The extract at the concentration of 0.1 and 1.0 mg L-1 had no effect on any preparations. Contraction of reticulum and rumen preparations was occurred at 10.0 and 100 mg L-1 concentrations (p < 0.05. Concentration of 1000 mg L-1 caused a relaxation in preparations contracted with 10.0 and 100 mg L-1. Likewise, the concentration of 1000 mg L-1 significantly (p < 0.05 inhibited ACh-induced contraction in both tissues. Six sheep were involved in electromyographic study. Administration of 40 mg kg-1 of the extract increased the overall frequency of contractions of the reticulum and rumen at the subsequent three days with the prominent increase at the second day (p < 0.05. Results of in vitro study indicated that hydroalcoholic extract of ginger contained spasmogenic and spasmolytic constituents. The results in vivo study represented evidences that the extract may have stimulant effect on reticulorumen motility in 40 mg kg-1 concentration.

  5. A lentivirally delivered photoactivatable GFP to assess continuity in the endoplasmic reticulum of neurones and glia

    Czech Academy of Sciences Publication Activity Database

    Jones, V. C.; Rodríguez Arellano, Jose Julio; Verkhratsky, Alexei; Jones, O. T.

    2009-01-01

    Roč. 458, č. 4 (2009), s. 809-818 ISSN 0031-6768 R&D Projects: GA ČR GA305/08/1384 Institutional research plan: CEZ:AV0Z50390512 Keywords : endoplasmic reticulum * calcium store * neurone Subject RIV: FH - Neurology Impact factor: 3.695, year: 2009

  6. Regulation of calcium release from the endoplasmic reticulum by the serine hydrolase ABHD2.

    Science.gov (United States)

    Yun, Bogeon; Lee, HeeJung; Powell, Roger; Reisdorph, Nichole; Ewing, Heather; Gelb, Michael H; Hsu, Ku-Lung; Cravatt, Benjamin F; Leslie, Christina C

    2017-09-02

    The serine hydrolase inhibitors pyrrophenone and KT195 inhibit cell death induced by A23187 and H 2 O 2 by blocking the release of calcium from the endoplasmic reticulum and mitochondrial calcium uptake. The effect of pyrrophenone and KT195 on these processes is not due to inhibition of their known targets, cytosolic phospholipase A 2 and α/β-hydrolase domain-containing (ABHD) 6, respectively, but represent off-target effects. To identify targets of KT195, fibroblasts were treated with KT195-alkyne to covalently label protein targets followed by click chemistry with biotin azide, enrichment on streptavidin beads and tryptic peptide analysis by mass spectrometry. Although several serine hydrolases were identified, α/β-hydrolase domain-containing 2 (ABHD2) was the only target in which both KT195 and pyrrophenone competed for binding to KT195-alkyne. ABHD2 is a serine hydrolase with a predicted transmembrane domain consistent with its pull-down from the membrane proteome. Subcellular fractionation showed localization of ABHD2 to the endoplasmic reticulum but not to mitochondria or mitochondrial-associated membranes. Knockdown of ABHD2 with shRNA attenuated calcium release from the endoplasmic reticulum, mitochondrial calcium uptake and cell death in fibroblasts stimulated with A23187. The results describe a novel mechanism for regulating calcium transfer from the endoplasmic reticulum to mitochondria that involves the serine hydrolase ABHD2. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Chlorhexidine-induced apoptosis or necrosis in L929 fibroblasts: A role for endoplasmic reticulum stress

    International Nuclear Information System (INIS)

    Faria, Gisele; Cardoso, Cristina R.B.; Larson, Roy E.; Silva, Joao S.; Rossi, Marcos A.

    2009-01-01

    Chlorhexidine (CHX), widely used as antiseptic and therapeutic agent in medicine and dentistry, has a toxic effect both in vivo and in vitro. The intrinsic mechanism underlying CHX-induced cytotoxicity in eukaryotic cells is, however, still unknown. A recent study from our laboratory has suggested that CHX may induce death in cultured L929 fibroblasts via endoplasmic reticulum (ER) stress. This hypothesis was further tested by means of light and electron microscopy, quantification of apoptosis and necrosis by flow cytometry, fluorescence visualization of the cytoskeleton and endoplasmic reticulum, and evaluation of the expression of 78-kDa glucose-regulated protein 78 (Grp78), a marker of activation of the unfolded protein response (UPR) in cultured L929 fibroblasts. Our finding showing increased Grp 78 expression in CHX-treated cells and the results of flow cytometry, cytoskeleton and endoplasmic reticulum fluorescence visualization, and scanning and transmission electron microscopy allowed us to suggest that CHX elicits accumulation of proteins in the endoplasmic reticulum, which causes ER overload, resulting in ER stress and cell death either by necrosis or apoptosis. It must be pointed out, however, that this does not necessarily mean that ER stress is the only way that CHX kills L929 fibroblasts, but rather that ER stress is an important target or indicator of cell death induced by this drug

  8. The endoplasmic reticulum is a hub to sort proteins toward unconventional traffic pathways and endosymbiotic organelles.

    Science.gov (United States)

    Bellucci, Michele; De Marchis, Francesca; Pompa, Andrea

    2017-12-18

    The discovery that much of the extracellular proteome in eukaryotic cells consists of proteins lacking a signal peptide, which cannot therefore enter the secretory pathway, has led to the identification of alternative protein secretion routes bypassing the Golgi apparatus. However, proteins harboring a signal peptide for translocation into the endoplasmic reticulum can also be transported along these alternative routes, which are still far from being well elucidated in terms of the molecular machineries and subcellular/intermediate compartments involved. In this review, we first try to provide a definition of all the unconventional protein secretion pathways in eukaryotic cells, as those pathways followed by proteins directed to an 'external space' bypassing the Golgi, where 'external space' refers to the extracellular space plus the lumen of the secretory route compartments and the inner space of mitochondria and plastids. Then, we discuss the role of the endoplasmic reticulum in sorting proteins toward unconventional traffic pathways in plants. In this regard, various unconventional pathways exporting proteins from the endoplasmic reticulum to the vacuole, plasma membrane, apoplast, mitochondria, and plastids are described, including the short routes followed by the proteins resident in the endoplasmic reticulum. © The Author(s) 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  9. Shear-induced formation of vesicles in membrane phases: Kinetics and size selection mechanisms, elasticity versus surface tension

    Science.gov (United States)

    Courbin, L.; Panizza, P.

    2004-02-01

    Multilamellar vesicles can be formed upon shearing lamellar phases (Lα) and phase-separated lamellar-sponge (Lα/L3) mixtures. In the first case, the vesicle volume fraction is always 100% and the vesicle size is monitored by elasticity (“onion textures”). In the second system the vesicle volume fraction can be tuned from 0 to 100% and the mean size results from a balance between capillary and viscous forces (“Taylor droplets”). However, despite these differences, in both systems we show that the formation of vesicles is a strain-controlled process monitored by a universal primary buckling instability of the lamellae.

  10. Intact deposition of cationic vesicles on anionic cellulose fibers: Role of vesicle size, polydispersity, and substrate roughness studied via streaming potential measurements.

    Science.gov (United States)

    Kumar, Abhijeet; Gilson, Laurent; Henrich, Franziska; Dahl, Verena; Kleinen, Jochen; Gambaryan-Roisman, Tatiana; Venzmer, Joachim

    2016-07-01

    Understanding the mechanism of intact vesicle deposition on solid surfaces is important for effective utilization of vesicles as active ingredient carriers in applications such as drug delivery and fabric softening. In this study, the deposition of large (davg=12μm) and small (davg=0.27μm) cationic vesicles of ditallowethylester dimethylammonium chloride (DEEDMAC) on smooth and rough anionic cellulose fibers is investigated. The deposition process is studied quantitatively using streaming potential measurements and spectrophotometric determination of DEEDMAC concentrations. Natural and regenerated cellulose fibers, namely cotton and viscose, having rough and smooth surfaces, respectively, are used as adsorbents. Equilibrium deposition data and profiles of substrate streaming potential variation with deposition are used to gain insights into the fate of vesicles upon deposition and the deposition mechanism. Intact deposition of DEEDMAC vesicles is ascertained based on streaming potential variation with deposition in the form of characteristic saturating profiles which symbolize particle-like deposition. The same is also confirmed by confocal fluorescence microscopy. Substrate roughness is found to considerably influence the deposition mechanism which, in a novel application of electrokinetic methods, is elucidated via streaming potential measurements. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Dynamic assembly of MinD on phospholipid vesicles regulated by ATP and MinE

    OpenAIRE

    Hu, Zonglin; Gogol, Edward P.; Lutkenhaus, Joe

    2002-01-01

    Selection of the division site in Escherichia coli is regulated by the min system and requires the rapid oscillation of MinD between the two halves of the cell under the control of MinE. In this study we have further investigated the molecular basis for this oscillation by examining the interaction of MinD with phospholipid vesicles. We found that MinD bound to phospholipid vesicles in the presence of ATP and, upon binding, assembled into a well-ordered helical array that deformed the vesicle...

  12. Fusion of Sendai Virus with Vesicles of Oligomerizable Lipids: A Micro Calorimetric Analysis of Membrane Fusion

    OpenAIRE

    Ravoo, Bart Jan; Weringa, Wilke D.; Engberts, Jan B.F.N.

    2000-01-01

    Sendai virus fuses efficiently with small and large unilamellar vesicles of the lipid 1,2-di-n-hexadecyloxypropyl-4-(beta-nitrostyryl) phosphate (DHPBNS) at pH 7.4 and 37°C, as shown by lipid mixing assays and electron microscopy. However, fusion is strongly inhibited by oligomerization of the head groups of DHPBNS in the bilayer vesicles. The enthalpy associated with fusion of Sendai virus with DHPBNS vesicles was measured by isothermal titration microcalorimetry, comparing titrations of Sen...

  13. Peripheral primitive neuroectodermal tumor of seminal vesicles: Is there a role for relatively aggressive treatment modalities?

    Directory of Open Access Journals (Sweden)

    Alessandro Crestani

    2014-12-01

    Full Text Available A 50 year old white man received an incidental ultrasound diagnosis of hypoechoic mass interesting the right seminal vesicle. A CT scan showed the presence of a 7.8 cm roundish cyst, originating from the right seminal vesicle. He had been followed by the removal of the right seminal vesicle and both the cystic lesion. The histological findings of the specimen documented the presence of small round cells compatible with Ewing’s sarcoma/PPNET. The patient received also adjuvant chemotherapy and radiation treatment. After 10 years, the follow-up is still negative.

  14. Unconditionally energy stable numerical schemes for phase-field vesicle membrane model

    Science.gov (United States)

    Guillén-González, F.; Tierra, G.

    2018-02-01

    Numerical schemes to simulate the deformation of vesicles membranes via minimizing the bending energy have been widely studied in recent times due to its connection with many biological motivated problems. In this work we propose a new unconditionally energy stable numerical scheme for a vesicle membrane model that satisfies exactly the conservation of volume constraint and penalizes the surface area constraint. Moreover, we extend these ideas to present an unconditionally energy stable splitting scheme decoupling the interaction of the vesicle with a surrounding fluid. Finally, the well behavior of the proposed schemes are illustrated through several computational experiments.

  15. A novel isolation strategy for obtaining crude membrane vesicles from bovine skim milk

    DEFF Research Database (Denmark)

    Blans, Kristine; Larsen, Lotte Bach; Wiking, Lars

    2014-01-01

    as exosomes and microvesicles. These vesicles contain various types of RNAs and proteins, suggested to transfer health-promoting messages from mother to offspring. However, the variety of the vesicles in milk is less understood and, additionally, complicated by the complexity of more pronounced milk...... components. Here we present a novel strategy for a short, gentle and non-denaturing isolation of skim milk-derived membrane vesicles. Methods: Untreated fresh bovine milk was defatted to remove milk fat globules. The resulting skim milk was subjected to ultracentrifugation. The resulting ochre...

  16. Tributyltin induces apoptotic signaling in hepatocytes through pathways involving the endoplasmic reticulum and mitochondria

    International Nuclear Information System (INIS)

    Grondin, Melanie; Marion, Michel; Denizeau, Francine; Averill-Bates, Diana A.

    2007-01-01

    Tri-n-butyltin is a widespread environmental toxicant, which accumulates in the liver. This study investigates whether tri-n-butyltin induces pro-apoptotic signaling in rat liver hepatocytes through pathways involving the endoplasmic reticulum and mitochondria. Tri-n-butyltin activated the endoplasmic reticulum pathway of apoptosis, which was demonstrated by the activation of the protease calpain, its translocation to the plasma membrane, followed by cleavage of the calpain substrates, cytoskeletal protein vinculin, and caspase-12. Caspase-12 is localized to the cytoplasmic side of the endoplasmic reticulum and is involved in apoptosis mediated by the endoplasmic reticulum. Tri-n-butyltin also caused translocation of the pro-apoptotic proteins Bax and Bad from the cytosol to mitochondria, as well as changes in mitochondrial membrane permeability, events which can activate the mitochondrial death pathway. Tri-n-butyltin induced downstream apoptotic events in rat hepatocytes at the nuclear level, detected by chromatin condensation and by confocal microscopy using acridine orange. We investigated whether the tri-n-butyltin-induced pro-apoptotic events in hepatocytes could be linked to perturbation of intracellular calcium homeostasis, using confocal microscopy. Tri-n-butyltin caused changes in intracellular calcium distribution, which were similar to those induced by thapsigargin. Calcium was released from a subcellular compartment, which is likely to be the endoplasmic reticulum, into the cytosol. Cytosolic acidification, which is known to trigger apoptosis, also occurred and involved the Cl - /HCO 3 - exchanger. Pro-apoptotic events in hepatocytes were inhibited by the calcium chelator, Bapta-AM, and by a calpain inhibitor, which suggests that changes in intracellular calcium homeostasis are involved in tri-n-butyltin-induced apoptotic signaling in rat hepatocytes

  17. Formation of Kinetically Trapped Nanoscopic Unilamellar Vesicles from Metastable Nanodiscs

    Energy Technology Data Exchange (ETDEWEB)

    Nieh, Mu-Ping [Univ. of Connecticut, Storrs, CT (United States). Inst. of Materials Science, Dept. of Chemical, Materials & Biomolecular Engineering; Dolinar, Paul [Univ. of Ottawa, ON (Canada); Kucerka, Norbert [National Research Council, Chalk River, ON (Canada). Chalk River Lab., Canadian Neutron Beam Centre; Comenius Univ., Bratislava (Slovakia). Dept. of Physical Chemistry of Drugs; Kline, Steven R. [National Inst. of Standards and Technology (NIST), Gaithersburg, MD (United States); Debeer-Schmitt, Lisa M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Neutron Scattering Science Division; Littrell, Kenneth C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Neutron Scattering Science Division; Katsaras, John [National Research Council, Chalk River, ON (Canada). Chalk River Lab., Canadian Neutron Beam Centre; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Neutron Scattering Science Division; Brock Univ., St. Catharines, ON (Canada). Dept. of Physics; Univ. of Guelph, ON (Canada). Guelph-Waterloo Physics Inst.

    2011-09-27

    Zwitterionic long-chain lipids (e.g., dimyristoyl phosphatidylcholine, DMPC) spontaneously form onion-like, thermodynamically stable structures in aqueous solutions (commonly known as multilamellar vesicles, or MLVs). It has also been reported that the addition of zwitterionic short-chain (i.e., dihexanoyl phosphatidylcholine, DHPC) and charged long-chain (i.e., dimyristoyl phosphatidylglycerol, DMPG) lipids to zwitterionic long-chain lipid solutions results in the formation of unilamellar vesicles (ULVs). Here, we report a kinetic study on lipid mixtures composed of DMPC, DHPC, and DMPG. Two membrane charge densities (i.e., [DMPG]/[DMPC] = 0.01 and 0.001) and two solution salinities (i.e., [NaCl] = 0 and 0.2 M) are investigated. Upon dilution of the high-concentration samples at 50 °C, thermodynamically stable MLVs are formed, in the case of both weakly charged and high salinity solution mixtures, implying that the electrostatic interactions between bilayers are insufficient to cause MLVs to unbind. Importantly, in the case of these samples small angle neutron scattering (SANS) data show that, initially, nanodiscs (also known as bicelles) or bilayered ribbons form at low temperatures (i.e., 10 °C), but transform into uniform size, nanoscopic ULVs after incubation at 10 °C for 20 h, indicating that the nanodisc is a metastable structure. The instability of nanodiscs may be attributed to low membrane rigidity due to a reduced charge density and high salinity. Moreover, the uniform-sized ULVs persist even after being heated to 50 °C, where thermodynamically stable MLVs are observed. This result clearly demonstrates that these ULVs are kinetically trapped, and that the mechanical properties (e.g., bending rigidity) of 10 C nanodiscs favor the formation of nanoscopic ULVs over that of MLVs. From a practical point of view, this method of forming uniform-sized ULVs may lend itself to their mass production, thus making them economically feasible for medical

  18. Photoinduced bimolecular electron transfer kinetics in small unilamellar vesicles

    International Nuclear Information System (INIS)

    Choudhury, Sharmistha Dutta; Kumbhakar, Manoj; Nath, Sukhendu; Pal, Haridas

    2007-01-01

    Photoinduced electron transfer (ET) from N,N-dimethylaniline to some coumarin derivatives has been studied in small unilamellar vesicles (SUVs) of the phospholipid, DL-α-dimyristoyl-phosphatidylcholine, using steady-state and time-resolved fluorescence quenching, both below and above the phase transition temperature of the vesicles. The primary interest was to examine whether Marcus inversion [H. Sumi and R. A. Marcus, J. Chem. Phys. 84, 4894 (1986)] could be observed for the present ET systems in these organized assemblies. The influence of the topology of SUVs on the photophysical properties of the reactants and consequently on their ET kinetics has also been investigated. Absorption and fluorescence spectral data of the coumarins in SUVs and the variation of their fluorescence decays with temperature indicate that the dyes are localized in the bilayer of the SUVs. Time-resolved area normalized emission spectra analysis, however, reveals that the dyes are distributed in two different microenvironments in the SUVs, which we attribute to the two leaflets of the bilayer, one toward bulk water and the other toward the inner water pool. The microenvironments in the two leaflets are, however, not indicated to be that significantly different. Time-resolved anisotropy decays were biexponential for all the dyes in SUVs, and this has been interpreted in terms of the compound motion model according to which the dye molecules can experience a fast wobbling-in-cone type of motion as well as a slow overall rotating motion of the cone containing the molecule. The expected bimolecular diffusion-controlled rates in SUVs, as estimated by comparing the microviscosities in SUVs (determined from rotational correlation times) and that in acetonitrile solution, are much slower than the observed fluorescence quenching rates, suggesting that reactant diffusion (translational) does not play any role in the quenching kinetics in the present systems. Accordingly, clear inversions are

  19. Formation of Kinetically Trapped Nanoscopic Unilamellar Vesicles from Metastable Nanodiscs

    International Nuclear Information System (INIS)

    Nieh, Mu-Ping; Dolinar, Paul; Kucerka, Norbert; Kline, Steven R.; Debeer-Schmitt, Lisa M.; Littrell, Ken; Katsaras, John

    2011-01-01

    Zwitterionic long-chain lipids (e.g., dimyristoyl phosphatidylcholine, DMPC) spontaneously form onion-like, thermodynamically stable structures in aqueous solutions (commonly known as multilamellar vesicles, or MLVs). It has also been reported that the addition of zwitterionic short-chain (i.e., dihexanoyl phosphatidylcholine, DHPC) and charged long-chain (i.e., dimyristoyl phosphatidylglycerol, DMPG) lipids to zwitterionic long-chain lipid solutions results in the formation of unilamellar vesicles (ULVs). Here, we report a kinetic study on lipid mixtures composed of DMPC, DHPC, and DMPG. Two membrane charge densities (i.e., (DMPG)/(DMPC) = 0.01 and 0.001) and two solution salinities (i.e., (NaCl) = 0 and 0.2 M) are investigated. Upon dilution of the high-concentration samples at 50 C, thermodynamically stable MLVs are formed, in the case of both weakly charged and high salinity solution mixtures, implying that the electrostatic interactions between bilayers are insufficient to cause MLVs to unbind. Importantly, in the case of these samples small angle neutron scattering (SANS) data show that, initially, nanodiscs (also known as bicelles) or bilayered ribbons form at low temperatures (i.e., 10 C), but transform into uniform size, nanoscopic ULVs after incubation at 10 C for 20 h, indicating that the nanodisc is a metastable structure. The instability of nanodiscs may be attributed to low membrane rigidity due to a reduced charge density and high salinity. Moreover, the uniform-sized ULVs persist even after being heated to 50 C, where thermodynamically stable MLVs are observed. This result clearly demonstrates that these ULVs are kinetically trapped, and that the mechanical properties (e.g., bending rigidity) of 10 C nanodiscs favor the formation of nanoscopic ULVs over that of MLVs. From a practical point of view, this method of forming uniform-sized ULVs may lend itself to their mass production, thus making them economically feasible for medical applications that

  20. Morphological changes in vesicles and release of an encapsulated compound triggered by a photoresponsive Malachite Green leuconitrile derivative.

    Science.gov (United States)

    Uda, Ryoko M; Hiraishi, Eri; Ohnishi, Ryo; Nakahara, Yoshio; Kimura, Keiichi

    2010-04-20

    Photoinduced morphological changes in phosphatidylcholine vesicles are triggered by a Malachite Green leuconitrile derivative dissolved in the lipidic membrane, and are observed at Malachite Green derivative/lipid ratios Malachite Green derivative is a photoresponsive compound that undergoes ionization to afford a positive charge on the molecule by UV irradiation. The Malachite Green derivative exhibits amphiphilicity when ionized photochemically, whereas it behaves as a lipophilic compound under dark conditions. Cryo-transmission electron microscopy was used to determine vesicle morphology. The effects of the Malachite Green derivative on vesicles were studied by dynamic light scattering and fluorescence resonance energy transfer. Irradiation of vesicles containing the Malachite Green derivative induces nonspherical vesicle morphology, fusion of vesicles, and membrane solubilization, depending on conditions. Furthermore, irradiation of the Malachite Green derivative induces the release of a vesicle-encapsulated compound.

  1. Self-assembly of star micelle into vesicle in solvents of variable quality: the star micelle retains its core-shell nanostructure in the vesicle.

    Science.gov (United States)

    Liu, Nijuan; He, Qun; Bu, Weifeng

    2015-03-03

    Intra- and intermolecular interactions of star polymers in dilute solutions are of fundamental importance for both theoretical interest and hierarchical self-assembly into functional nanostructures. Here, star micelles with a polystyrene corona and a small ionic core bearing platinum(II) complexes have been regarded as a model of star polymers to mimic their intra- and interstar interactions and self-assembled behaviors in solvents of weakening quality. In the chloroform/methanol mixture solvents, the star micelles can self-assemble to form vesicles, in which the star micelles shrink significantly and are homogeneously distributed on the vesicle surface. Unlike the morphological evolution of conventional amphiphiles from micellar to vesicular, during which the amphiphilic molecules are commonly reorganized, the star micelles still retain their core-shell nanostructures in the vesicles and the coronal chains of the star micelle between the ionic cores are fully interpenetrated.

  2. Extracellular Vesicles as Biomarkers and Therapeutics in Dermatology: A Focus on Exosomes.

    Science.gov (United States)

    McBride, Jeffrey D; Rodriguez-Menocal, Luis; Badiavas, Evangelos V

    2017-08-01

    Extracellular vesicles (exosomes, microvesicles, and apoptotic bodies) are ubiquitous in human tissues, circulation, and body fluids. Of these vesicles, exosomes are of growing interest among investigators across multiple fields, including dermatology. The characteristics of exosomes, their associated cargo (nucleic acids, proteins, and lipids), and downstream functions are vastly different, depending on the cell origin. Here, we review concepts in extracellular vesicle biology, with a focus on exosomes, highlighting recent studies in the field of dermatology. Furthermore, we highlight emerging technical issues associated with isolating and measuring exosomes. Extracellular vesicles, including exosomes, have immediate potential for serving as biomarkers and therapeutics in dermatology over the next decade. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  3. Structure of clathrin-coated vesicles from small-angle scattering experiments

    DEFF Research Database (Denmark)

    Pedersen, J.S.

    1993-01-01

    Previously published small-angle neutron and X-ray scattering data from coated vesicles, reassembled coats, and stripped vesicles have been analyzed in terms of one common model. The neutron data sets include contrast variation measurements at three different D2O solvent concentrations. The model...... used for interpreting the data has spherical symmetry and explicitly takes into account polydispersity, which is described by a Gaussian distribution. A constant thickness of the clathrin coats is assumed. The fitting of the model shows that the coated vesicles consist of a low-density outer protein....... Thus, the membrane and the high-density protein shell overlap in space, which shows that the lipid membrane contains protein. The molecular mass of the average particle is 27 x 10(6) Da. The coated vesicles consist, on average, of approximately 85% protein and 15% lipids. About 40% of the protein mass...

  4. Polymer Vesicles as Robust Scaffolds for the Directed Assembly of Highly Crystalline Nanocrystals †

    KAUST Repository

    Wang, Mingfeng; Zhang, Meng; Siegers, Conrad; Scholes, Gregory D.; Winnik, Mitchell A.

    2009-01-01

    population when the NPs were present. The vesicle fraction could be isolated by selective sedimentation via centrifugation, followed by redispersion in water. The NPs appeared to be incorporated into the PAA layers on the internal and external walls

  5. Primary leiomyosarcoma of the seminal vesicle: Case report and review of the literature

    International Nuclear Information System (INIS)

    Cauvin, Cécile; Moureau-Zabotto, Laurence; Chetaille, Bruno; Hilgers, Werner; Denoux, Yves; Jacquemier, Jocelyne; Guiramand, Jérôme; Sarran, Anthony; Bertucci, François

    2011-01-01

    Primary leiomyosarcoma of the seminal vesicle is exceedingly rare. We report a case of a 59-year-old man with tumour detected by rectal symptoms and ultrasonography. Computed tomography and magnetic resonance imaging suggested an origin in the right seminal vesicle. Transperineal biopsy of the tumour revealed leiomyosarcoma. A radical vesiculo-prostactectomy with bilateral pelvic lymphadenectomy was performed. Pathological examination showed a grade 2 leiomyosarcoma of the seminal vesicle. The patient received adjuvant radiotherapy. He developed distant metastases 29 months after diagnosis, and received chemotherapy. Metastatic disease was controlled by second-line gemcitabine-docetaxel combination. Fifty-one months after diagnosis of the primary tumour, and 22 months after the first metastases, the patient is alive with excellent performance status, and multiple asymptomatic stable lung and liver lesions. We report the eighth case of primary leiomyosarcoma of the seminal vesicle and the first one with a so long follow-up

  6. Primary leiomyosarcoma of the seminal vesicle: case report and review of the literature.

    Science.gov (United States)

    Cauvin, Cécile; Moureau-Zabotto, Laurence; Chetaille, Bruno; Hilgers, Werner; Denoux, Yves; Jacquemier, Jocelyne; Guiramand, Jérôme; Sarran, Anthony; Bertucci, François

    2011-07-29

    Primary leiomyosarcoma of the seminal vesicle is exceedingly rare. We report a case of a 59-year-old man with tumour detected by rectal symptoms and ultrasonography. Computed tomography and magnetic resonance imaging suggested an origin in the right seminal vesicle. Transperineal biopsy of the tumour revealed leiomyosarcoma. A radical vesiculo-prostactectomy with bilateral pelvic lymphadenectomy was performed. Pathological examination showed a grade 2 leiomyosarcoma of the seminal vesicle. The patient received adjuvant radiotherapy. He developed distant metastases 29 months after diagnosis, and received chemotherapy. Metastatic disease was controlled by second-line gemcitabine-docetaxel combination. Fifty-one months after diagnosis of the primary tumour, and 22 months after the first metastases, the patient is alive with excellent performance status, and multiple asymptomatic stable lung and liver lesions. We report the eighth case of primary leiomyosarcoma of the seminal vesicle and the first one with a so long follow-up.

  7. Primary leiomyosarcoma of the seminal vesicle: Case report and review of the literature

    Directory of Open Access Journals (Sweden)

    Guiramand Jérôme

    2011-07-01

    Full Text Available Abstract Background Primary leiomyosarcoma of the seminal vesicle is exceedingly rare. Case Presentation We report a case of a 59-year-old man with tumour detected by rectal symptoms and ultrasonography. Computed tomography and magnetic resonance imaging suggested an origin in the right seminal vesicle. Transperineal biopsy of the tumour revealed leiomyosarcoma. A radical vesiculo-prostactectomy with bilateral pelvic lymphadenectomy was performed. Pathological examination showed a grade 2 leiomyosarcoma of the seminal vesicle. The patient received adjuvant radiotherapy. He developed distant metastases 29 months after diagnosis, and received chemotherapy. Metastatic disease was controlled by second-line gemcitabine-docetaxel combination. Fifty-one months after diagnosis of the primary tumour, and 22 months after the first metastases, the patient is alive with excellent performance status, and multiple asymptomatic stable lung and liver lesions. Conclusions We report the eighth case of primary leiomyosarcoma of the seminal vesicle and the first one with a so long follow-up.

  8. Reactions of the hydrated electron with pyrene in lipid bilayer vesicles

    International Nuclear Information System (INIS)

    Schnecke, W.; Graetzel, M.; Henglein, A.

    1977-01-01

    Pyrene and some pyrene derivatives were solubilized in bilayer vesicles of lecithin and the rates of lecithin and the rates of reaction with the hydrated electron investigated. The concentration of the vesicles was 1.3 x 10 -7 M, that of pyrene 10 -6 - 10 -4 M. The rate constant decreases with increasing pyrene concentration. The effect is explained by the highly inhomogeneous distribution of pyrene molecules in the solutions. Only those pyrene molicules are reactive that reside close to the outer surface of the vesicles. The anions of pyrene formed disappear in a second order process. It is concluded that the anions are rapidly detached from their vesicular carriers and react with each other in the aqueous phase. Fluorescence, light scattering and electron microscopic investigations were also carried out to obtain information about the properties of the vesicles used. (orig.) [de

  9. Bile salt-induced cholesterol crystal formation from model bile vesicles: a time course study

    NARCIS (Netherlands)

    van de Heijning, B. J.; Stolk, M. F.; van Erpecum, K. J.; Renooij, W.; Groen, A. K.; vanBerge-Henegouwen, G. P.

    1994-01-01

    Precipitation of cholesterol crystals from vesicles is an important step in the pathogenesis of cholesterol gallstones. Little is known, however, about the kinetics and the mechanisms involved in cholesterol crystallization. Therefore, the time course of cholesterol crystal precipitation and lipid

  10. Dynamic light scattering for the characterization and counting of extracellular vesicles: a powerful noninvasive tool

    Science.gov (United States)

    Palmieri, Valentina; Lucchetti, Donatella; Gatto, Ilaria; Maiorana, Alessandro; Marcantoni, Margherita; Maulucci, Giuseppe; Papi, Massimiliano; Pola, Roberto; De Spirito, Marco; Sgambato, Alessandro

    2014-09-01

    Extracellular vesicles (EVs) are cell-to-cell shuttles that have recently drawn interest both as drug delivery platforms and disease biomarkers. Despite the increasingly recognized relevance of these vesicles, their detection, and characterization still have several technical drawbacks. In this paper, we accurately assess the size distribution and concentration of EVs by using a high-throughput non-perturbative technique such as Dynamic Light Scattering (DLS). The vesicle radii distribution, as further confirmed by Atomic Force Microscopy experiments, ranges from 10 to 80 nm and appears very asymmetric towards larger radii with a main peak at roughly 30 nm. By combining DLS and Bradford assay, we also demonstrate the feasibility of recovering the concentration and its distribution of proteins contained inside vesicles. The sensitivity of our approach allows to detect protein concentrations as low as 0.01 mg/ml.

  11. The parachute morphology as equilibrium morphology of vesicle-polymer hybrids?

    NARCIS (Netherlands)

    Jung, M.; Hubert, D.H.W.; Herk, van A.M.; German, A.L.

    2000-01-01

    Polymerisation in vesicles leads to novel polymer colloid morphologies. Two morphologies are currently reported: the triple-shell and the parachute morphology. The termodynamic analysis of these two morphologies, presented here, stresses the importance of considering interfacial energies between

  12. Heterogeneous vesicles in mucous epithelial cells of posterior esophagus of Chinese giant salamander (Andrias davidianus

    Directory of Open Access Journals (Sweden)

    H. Zhang

    2015-08-01

    Full Text Available The Chinese giant salamander belongs to an old lineage of salamanders and endangered species. Many studies of breeding and disease regarding this amphibian had been implemented. However, the studies on the ultrastructure of this amphibian are rare. In this work, we provide a histological and ultrastructural investigation on posterior esophagus of Chinese giant salamander. The sections of amphibian esophagus were stained by hematoxylin & eosin (H&E. Moreover, the esophageal epithelium was observed by transmission electron microscopy (TEM. The results showed that esophageal epithelium was a single layer epithelium, which consisted of mucous cells and columnar cells. The esophageal glands were present in submucosa. The columnar cells were ciliated. According to the diverging ultrastructure of mucous vesicles, three types of mucous cells could be identified in the esophageal mucosa: i electron-lucent vesicles mucous cell (ELV-MC; ii electron-dense vesicles mucous cell (EDV-MC; and iii mixed vesicles mucous cell (MV-MC.

  13. Vesicle fusion observed by content transfer across a tethered lipid bilayer.

    Science.gov (United States)

    Rawle, Robert J; van Lengerich, Bettina; Chung, Minsub; Bendix, Poul Martin; Boxer, Steven G

    2011-10-19

    Synaptic transmission is achieved by exocytosis of small, synaptic vesicles containing neurotransmitters across the plasma membrane. Here, we use a DNA-tethered freestanding bilayer as a target architecture that allows observation of content transfer of individual vesicles across the tethered planar bilayer. Tethering and fusion are mediated by hybridization of complementary DNA-lipid conjugates inserted into the two membranes, and content transfer is monitored by the dequenching of an aqueous content dye. By analyzing the diffusion profile of the aqueous dye after vesicle fusion, we are able to distinguish content transfer across the tethered bilayer patch from vesicle leakage above the patch. Copyright © 2011 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  14. Applying extracellular vesicles based therapeutics in clinical trials - an ISEV position paper

    NARCIS (Netherlands)

    Lener, Thomas; Gimona, Mario; Aigner, Ludwig; Börger, Verena; Buzas, Edit; Camussi, Giovanni; Chaput, Nathalie; Chatterjee, Devasis; Court, Felipe A; Del Portillo, Hernando A; O'Driscoll, Lorraine; Fais, Stefano; Falcon-Perez, Juan M; Felderhoff-Mueser, Ursula; Fraile, Lorenzo; Gho, Yong Song; Görgens, André; Gupta, Ramesh C; Hendrix, An; Hermann, Dirk M; Hill, Andrew F; Hochberg, Fred; Horn, Peter A; de Kleijn, Dominique; Kordelas, Lambros; Kramer, Boris W; Krämer-Albers, Eva-Maria; Laner-Plamberger, Sandra; Laitinen, Saara; Leonardi, Tommaso; Lorenowicz, Magdalena J; Lim, Sai Kiang; Lötvall, Jan; Maguire, Casey A; Marcilla, Antonio; Nazarenko, Irina; Ochiya, Takahiro; Patel, Tushar; Pedersen, Shona; Pocsfalvi, Gabriella; Pluchino, Stefano; Quesenberry, Peter; Reischl, Ilona G; Rivera, Francisco J; Sanzenbacher, Ralf; Schallmoser, Katharina; Slaper-Cortenbach, Ineke; Strunk, Dirk; Tonn, Torsten; Vader, Pieter; van Balkom, Bas W M; Wauben, Marca|info:eu-repo/dai/nl/112675735; Andaloussi, Samir El; Théry, Clotilde; Rohde, Eva; Giebel, Bernd

    2015-01-01

    Extracellular vesicles (EVs), such as exosomes and microvesicles, are released by different cell types and participate in physiological and pathophysiological processes. EVs mediate intercellular communication as cell-derived extracellular signalling organelles that transmit specific information

  15. Size control of giant unilamellar vesicles prepared from inverted emulsion droplets.

    Science.gov (United States)

    Nishimura, Kazuya; Suzuki, Hiroaki; Toyota, Taro; Yomo, Tetsuya

    2012-06-15

    The production of giant lipid vesicles with controlled size and structure will be an important technology in the design of quantitative biological assays in cell-mimetic microcompartments. For establishing size control of giant vesicles, we investigated the vesicle formation process, in which inverted emulsion droplets are transformed into giant unilamellar vesicles (GUVs) when they pass through an oil/water interface. The relationship between the size of the template emulsion and the converted GUVs was studied using inverted emulsion droplets with a narrow size distribution, which were prepared by microfluidics. We successfully found an appropriate centrifugal acceleration condition to obtain GUVs that had a desired size and narrow-enough size distribution with an improved yield so that emulsion droplets can become the template for GUVs. Crown Copyright © 2012. Published by Elsevier Inc. All rights reserved.

  16. Heat Profiling of Three-Dimensionally Optically Trapped Gold Nanoparticles using Vesicle Cargo Release

    DEFF Research Database (Denmark)

    Kyrsting, Anders; Bendix, Pól Martin; Stamou, Dimitrios

    2011-01-01

    Irradiated metallic nanoparticles hold great promise as heat transducers in photothermal applications such as drug delivery assays or photothermal therapy. We quantify the temperature increase of individual gold nanoparticles trapped in three dimensions near lipid vesicles exhibiting temperature...

  17. Regulatory Multidimensionality of Gas Vesicle Biogenesis in Halobacterium salinarum NRC-1

    Directory of Open Access Journals (Sweden)

    Andrew I. Yao

    2011-01-01

    Full Text Available It is becoming clear that the regulation of gas vesicle biogenesis in Halobacterium salinarum NRC-1 is multifaceted and appears to integrate environmental and metabolic cues at both the transcriptional and posttranscriptional levels. The mechanistic details underlying this process, however, remain unclear. In this manuscript, we quantify the contribution of light scattering made by both intracellular and released gas vesicles isolated from Halobacterium salinarum NRC-1, demonstrating that each form can lead to distinct features in growth curves determined by optical density measured at 600 nm (OD600. In the course of the study, we also demonstrate the sensitivity of gas vesicle accumulation in Halobacterium salinarum NRC-1 on small differences in growth conditions and reevaluate published works in the context of our results to present a hypothesis regarding the roles of the general transcription factor tbpD and the TCA cycle enzyme aconitase on the regulation of gas vesicle biogenesis.

  18. A practical guide to giant vesicles. Probing the membrane nanoregime via optical microscopy

    International Nuclear Information System (INIS)

    Dimova, Rumiana; Aranda, Said; Bezlyepkina, Natalya; Nikolov, Vesselin; Riske, Karin A; Lipowsky, Reinhard

    2006-01-01

    Research on giant vesicles is becoming increasingly popular. Giant vesicles provide model biomembrane systems for systematic measurements of mechanical and rheological properties of bilayers as a function of membrane composition and temperature, as well as hydrodynamic interactions. Membrane response to external factors (for example electric fields, ions and amphiphilic molecules) can be directly visualized under the microscope. In this paper we review our current understanding of lipid bilayers as obtained from studies on giant unilamellar vesicles. Because research on giant vesicles increasingly attracts the interest of scientists from various backgrounds, we also try to provide a concise introduction for newcomers in the field. Finally, we summarize some recent developments on curvature effects induced by polymers, domain formation in membranes and shape transitions induced by electric fields

  19. Small unilamellar vesicles as reagents: a chemically defined, quantitative assay for lectins

    Energy Technology Data Exchange (ETDEWEB)

    Rando, R.R.

    1981-01-01

    Samll unilamellar vesicles containing synthetic glycolipids can be prepared. These vesicles are aggregated by the appropriate lectin (Orr et al., 1979; Rando and Bangerter, 1979; Slama and Rando, 1980). It is shown here that extent of aggregation of these vesicles as measured by light scattering at 360 nm, is, under certain conditions, linear with amount of lectin added. This forms the basis of a rapid and simple quantitative assay for lectins using the modified vesicles as a defined chemical substrate. The assay is sensitive to lectin concentrations in the low ..mu..g range. The assay is applied here to studies on concanavalin A, Ricinus communis agglutinin and the ..cap alpha..-fucosyl binding lectin from Ulex europaeus (Type I).

  20. Statistical Modelling of Synaptic Vesicles Distribution and Analysing their Physical Characteristics

    DEFF Research Database (Denmark)

    Khanmohammadi, Mahdieh

    transmission electron microscopy is used to acquire images from two experimental groups of rats: 1) rats subjected to a behavioral model of stress and 2) rats subjected to sham stress as the control group. The synaptic vesicle distribution and interactions are modeled by employing a point process approach......This Ph.D. thesis deals with mathematical and statistical modeling of synaptic vesicle distribution, shape, orientation and interactions. The first major part of this thesis treats the problem of determining the effect of stress on synaptic vesicle distribution and interactions. Serial section...... on differences of statistical measures in section and the same measures in between sections. Three-dimensional (3D) datasets are reconstructed by using image registration techniques and estimated thicknesses. We distinguish the effect of stress by estimating the synaptic vesicle densities and modeling...