WorldWideScience

Sample records for sar image pairs

  1. An Improved InSAR Image Co-Registration Method for Pairs with Relatively Big Distortions or Large Incoherent Areas

    Directory of Open Access Journals (Sweden)

    Zhenwei Chen

    2016-09-01

    Full Text Available Co-registration is one of the most important steps in interferometric synthetic aperture radar (InSAR data processing. The standard offset-measurement method based on cross-correlating uniformly distributed patches takes no account of specific geometric transformation between images or characteristics of ground scatterers. Hence, it is inefficient and difficult to obtain satisfying co-registration results for image pairs with relatively big distortion or large incoherent areas. Given this, an improved co-registration strategy is proposed in this paper which takes both the geometric features and image content into consideration. Firstly, some geometric transformations including scale, flip, rotation, and shear between images were eliminated based on the geometrical information, and the initial co-registration polynomial was obtained. Then the registration points were automatically detected by integrating the signal-to-clutter-ratio (SCR thresholds and the amplitude information, and a further co-registration process was performed to refine the polynomial. Several comparison experiments were carried out using 2 TerraSAR-X data from the Hong Kong airport and 21 PALSAR data from the Donghai Bridge. Experiment results demonstrate that the proposed method brings accuracy and efficiency improvements for co-registration and processing abilities in the cases of big distortion between images or large incoherent areas in the images. For most co-registrations, the proposed method can enhance the reliability and applicability of co-registration and thus promote the automation to a higher level.

  2. An Improved InSAR Image Co-Registration Method for Pairs with Relatively Big Distortions or Large Incoherent Areas.

    Science.gov (United States)

    Chen, Zhenwei; Zhang, Lei; Zhang, Guo

    2016-09-17

    Co-registration is one of the most important steps in interferometric synthetic aperture radar (InSAR) data processing. The standard offset-measurement method based on cross-correlating uniformly distributed patches takes no account of specific geometric transformation between images or characteristics of ground scatterers. Hence, it is inefficient and difficult to obtain satisfying co-registration results for image pairs with relatively big distortion or large incoherent areas. Given this, an improved co-registration strategy is proposed in this paper which takes both the geometric features and image content into consideration. Firstly, some geometric transformations including scale, flip, rotation, and shear between images were eliminated based on the geometrical information, and the initial co-registration polynomial was obtained. Then the registration points were automatically detected by integrating the signal-to-clutter-ratio (SCR) thresholds and the amplitude information, and a further co-registration process was performed to refine the polynomial. Several comparison experiments were carried out using 2 TerraSAR-X data from the Hong Kong airport and 21 PALSAR data from the Donghai Bridge. Experiment results demonstrate that the proposed method brings accuracy and efficiency improvements for co-registration and processing abilities in the cases of big distortion between images or large incoherent areas in the images. For most co-registrations, the proposed method can enhance the reliability and applicability of co-registration and thus promote the automation to a higher level.

  3. Bistatic SAR: Imagery & Image Products.

    Energy Technology Data Exchange (ETDEWEB)

    Yocky, David A.; Wahl, Daniel E.; Jakowatz, Charles V,

    2014-10-01

    While typical SAR imaging employs a co-located (monostatic) RADAR transmitter and receiver, bistatic SAR imaging separates the transmitter and receiver locations. The transmitter and receiver geometry determines if the scattered signal is back scatter, forward scatter, or side scatter. The monostatic SAR image is backscatter. Therefore, depending on the transmitter/receiver collection geometry, the captured imagery may be quite different that that sensed at the monostatic SAR. This document presents imagery and image products formed from captured signals during the validation stage of the bistatic SAR research. Image quality and image characteristics are discussed first. Then image products such as two-color multi-view (2CMV) and coherent change detection (CCD) are presented.

  4. Convolutional Neural Networks for SAR Image Segmentation

    DEFF Research Database (Denmark)

    Malmgren-Hansen, David; Nobel-Jørgensen, Morten

    2015-01-01

    Segmentation of Synthetic Aperture Radar (SAR) images has several uses, but it is a difficult task due to a number of properties related to SAR images. In this article we show how Convolutional Neural Networks (CNNs) can easily be trained for SAR image segmentation with good results. Besides...

  5. Imaging in severe acute respiratory syndrome (SARS)

    International Nuclear Information System (INIS)

    Antonio, G.E.; Wong, K.T.; Chu, W.C.W.; Hui, D.S.C.; Cheng, F.W.T.; Yuen, E.H.Y.; Chung, S.S.C.; Fok, T.F.; Sung, J.J.Y.; Ahuja, A.T.

    2003-01-01

    Severe acute respiratory syndrome (SARS) is a highly infectious disease caused by a novel coronavirus, and has become pandemic within a short period of time. Imaging plays an important role in the diagnosis, management and follow-up of patients with SARS. The current status of imaging in SARS is presented in this review

  6. Precision Rectification of Airborne SAR Image

    DEFF Research Database (Denmark)

    Dall, Jørgen; Liao, M.; Zhang, Zhe

    1997-01-01

    A simple and direct procedure for the rectification of a certain class of airborne SAR data is presented. The relief displacements of SAR data are effectively removed by means of a digital elevation model and the image is transformed to the ground coordinate system. SAR data from the Danish EMISAR...

  7. Improved SAR Image Coregistration Using Pixel-Offset Series

    KAUST Repository

    Wang, Teng

    2014-03-14

    Synthetic aperture radar (SAR) image coregistration is a key procedure before interferometric SAR (InSAR) time-series analysis can be started. However, many geophysical data sets suffer from severe decorrelation problems due to a variety of reasons, making precise coregistration a nontrivial task. Here, we present a new strategy that uses a pixel-offset series of detected subimage patches dominated by point-like targets (PTs) to improve SAR image coregistrations. First, all potentially coherent image pairs are coregistered in a conventional way. In this step, we propose a coregistration quality index for each image to rank its relative “significance” within the data set and to select a reference image for the SAR data set. Then, a pixel-offset series of detected PTs is made from amplitude maps to improve the geometrical mapping functions. Finally, all images are resampled depending on the pixel offsets calculated from the updated geometrical mapping functions. We used images from a rural region near the North Anatolian Fault in eastern Turkey to test the proposed method, and clear coregistration improvements were found based on amplitude stability. This enhanced the fact that the coregistration strategy should therefore lead to improved InSAR time-series analysis results.

  8. Improved SAR Image Coregistration Using Pixel-Offset Series

    KAUST Repository

    Wang, Teng; Jonsson, Sigurjon; Hanssen, Ramon F.

    2014-01-01

    Synthetic aperture radar (SAR) image coregistration is a key procedure before interferometric SAR (InSAR) time-series analysis can be started. However, many geophysical data sets suffer from severe decorrelation problems due to a variety of reasons, making precise coregistration a nontrivial task. Here, we present a new strategy that uses a pixel-offset series of detected subimage patches dominated by point-like targets (PTs) to improve SAR image coregistrations. First, all potentially coherent image pairs are coregistered in a conventional way. In this step, we propose a coregistration quality index for each image to rank its relative “significance” within the data set and to select a reference image for the SAR data set. Then, a pixel-offset series of detected PTs is made from amplitude maps to improve the geometrical mapping functions. Finally, all images are resampled depending on the pixel offsets calculated from the updated geometrical mapping functions. We used images from a rural region near the North Anatolian Fault in eastern Turkey to test the proposed method, and clear coregistration improvements were found based on amplitude stability. This enhanced the fact that the coregistration strategy should therefore lead to improved InSAR time-series analysis results.

  9. Image based SAR product simulation for analysis

    Science.gov (United States)

    Domik, G.; Leberl, F.

    1987-01-01

    SAR product simulation serves to predict SAR image gray values for various flight paths. Input typically consists of a digital elevation model and backscatter curves. A new method is described of product simulation that employs also a real SAR input image for image simulation. This can be denoted as 'image-based simulation'. Different methods to perform this SAR prediction are presented and advantages and disadvantages discussed. Ascending and descending orbit images from NASA's SIR-B experiment were used for verification of the concept: input images from ascending orbits were converted into images from a descending orbit; the results are compared to the available real imagery to verify that the prediction technique produces meaningful image data.

  10. Deep learning for SAR image formation

    Science.gov (United States)

    Mason, Eric; Yonel, Bariscan; Yazici, Birsen

    2017-04-01

    The recent success of deep learning has lead to growing interest in applying these methods to signal processing problems. This paper explores the applications of deep learning to synthetic aperture radar (SAR) image formation. We review deep learning from a perspective relevant to SAR image formation. Our objective is to address SAR image formation in the presence of uncertainties in the SAR forward model. We present a recurrent auto-encoder network architecture based on the iterative shrinkage thresholding algorithm (ISTA) that incorporates SAR modeling. We then present an off-line training method using stochastic gradient descent and discuss the challenges and key steps of learning. Lastly, we show experimentally that our method can be used to form focused images in the presence of phase uncertainties. We demonstrate that the resulting algorithm has faster convergence and decreased reconstruction error than that of ISTA.

  11. AUTOMATIC COREGISTRATION FOR MULTIVIEW SAR IMAGES IN URBAN AREAS

    Directory of Open Access Journals (Sweden)

    Y. Xiang

    2017-09-01

    Full Text Available Due to the high resolution property and the side-looking mechanism of SAR sensors, complex buildings structures make the registration of SAR images in urban areas becomes very hard. In order to solve the problem, an automatic and robust coregistration approach for multiview high resolution SAR images is proposed in the paper, which consists of three main modules. First, both the reference image and the sensed image are segmented into two parts, urban areas and nonurban areas. Urban areas caused by double or multiple scattering in a SAR image have a tendency to show higher local mean and local variance values compared with general homogeneous regions due to the complex structural information. Based on this criterion, building areas are extracted. After obtaining the target regions, L-shape structures are detected using the SAR phase congruency model and Hough transform. The double bounce scatterings formed by wall and ground are shown as strong L- or T-shapes, which are usually taken as the most reliable indicator for building detection. According to the assumption that buildings are rectangular and flat models, planimetric buildings are delineated using the L-shapes, then the reconstructed target areas are obtained. For the orignal areas and the reconstructed target areas, the SAR-SIFT matching algorithm is implemented. Finally, correct corresponding points are extracted by the fast sample consensus (FSC and the transformation model is also derived. The experimental results on a pair of multiview TerraSAR images with 1-m resolution show that the proposed approach gives a robust and precise registration performance, compared with the orignal SAR-SIFT method.

  12. Automatic Coregistration for Multiview SAR Images in Urban Areas

    Science.gov (United States)

    Xiang, Y.; Kang, W.; Wang, F.; You, H.

    2017-09-01

    Due to the high resolution property and the side-looking mechanism of SAR sensors, complex buildings structures make the registration of SAR images in urban areas becomes very hard. In order to solve the problem, an automatic and robust coregistration approach for multiview high resolution SAR images is proposed in the paper, which consists of three main modules. First, both the reference image and the sensed image are segmented into two parts, urban areas and nonurban areas. Urban areas caused by double or multiple scattering in a SAR image have a tendency to show higher local mean and local variance values compared with general homogeneous regions due to the complex structural information. Based on this criterion, building areas are extracted. After obtaining the target regions, L-shape structures are detected using the SAR phase congruency model and Hough transform. The double bounce scatterings formed by wall and ground are shown as strong L- or T-shapes, which are usually taken as the most reliable indicator for building detection. According to the assumption that buildings are rectangular and flat models, planimetric buildings are delineated using the L-shapes, then the reconstructed target areas are obtained. For the orignal areas and the reconstructed target areas, the SAR-SIFT matching algorithm is implemented. Finally, correct corresponding points are extracted by the fast sample consensus (FSC) and the transformation model is also derived. The experimental results on a pair of multiview TerraSAR images with 1-m resolution show that the proposed approach gives a robust and precise registration performance, compared with the orignal SAR-SIFT method.

  13. Geometric calibration of ERS satellite SAR images

    DEFF Research Database (Denmark)

    Mohr, Johan Jacob; Madsen, Søren Nørvang

    2001-01-01

    Geometric calibration of the European Remote Sensing (ERS) Satellite synthetic aperture radar (SAR) slant range images is important in relation to mapping areas without ground reference points and also in relation to automated processing. The relevant SAR system parameters are discussed...

  14. Attribute Learning for SAR Image Classification

    Directory of Open Access Journals (Sweden)

    Chu He

    2017-04-01

    Full Text Available This paper presents a classification approach based on attribute learning for high spatial resolution Synthetic Aperture Radar (SAR images. To explore the representative and discriminative attributes of SAR images, first, an iterative unsupervised algorithm is designed to cluster in the low-level feature space, where the maximum edge response and the ratio of mean-to-variance are included; a cross-validation step is applied to prevent overfitting. Second, the most discriminative clustering centers are sorted out to construct an attribute dictionary. By resorting to the attribute dictionary, a representation vector describing certain categories in the SAR image can be generated, which in turn is used to perform the classifying task. The experiments conducted on TerraSAR-X images indicate that those learned attributes have strong visual semantics, which are characterized by bright and dark spots, stripes, or their combinations. The classification method based on these learned attributes achieves better results.

  15. AUTOMATIC INTERPRETATION OF HIGH RESOLUTION SAR IMAGES: FIRST RESULTS OF SAR IMAGE SIMULATION FOR SINGLE BUILDINGS

    Directory of Open Access Journals (Sweden)

    J. Tao

    2012-09-01

    Full Text Available Due to the all-weather data acquisition capabilities, high resolution space borne Synthetic Aperture Radar (SAR plays an important role in remote sensing applications like change detection. However, because of the complex geometric mapping of buildings in urban areas, SAR images are often hard to interpret. SAR simulation techniques ease the visual interpretation of SAR images, while fully automatic interpretation is still a challenge. This paper presents a method for supporting the interpretation of high resolution SAR images with simulated radar images using a LiDAR digital surface model (DSM. Line features are extracted from the simulated and real SAR images and used for matching. A single building model is generated from the DSM and used for building recognition in the SAR image. An application for the concept is presented for the city centre of Munich where the comparison of the simulation to the TerraSAR-X data shows a good similarity. Based on the result of simulation and matching, special features (e.g. like double bounce lines, shadow areas etc. can be automatically indicated in SAR image.

  16. CFAR Edge Detector for Polarimetric SAR Images

    DEFF Research Database (Denmark)

    Schou, Jesper; Skriver, Henning; Nielsen, Allan Aasbjerg

    2003-01-01

    Finding the edges between different regions in an image is one of the fundamental steps of image analysis, and several edge detectors suitable for the special statistics of synthetic aperture radar (SAR) intensity images have previously been developed. In this paper, a new edge detector for polar...

  17. Relevant Scatterers Characterization in SAR Images

    Science.gov (United States)

    Chaabouni, Houda; Datcu, Mihai

    2006-11-01

    Recognizing scenes in a single look meter resolution Synthetic Aperture Radar (SAR) images, requires the capability to identify relevant signal signatures in condition of variable image acquisition geometry, arbitrary objects poses and configurations. Among the methods to detect relevant scatterers in SAR images, we can mention the internal coherence. The SAR spectrum splitted in azimuth generates a series of images which preserve high coherence only for particular object scattering. The detection of relevant scatterers can be done by correlation study or Independent Component Analysis (ICA) methods. The present article deals with the state of the art for SAR internal correlation analysis and proposes further extensions using elements of inference based on information theory applied to complex valued signals. The set of azimuth looks images is analyzed using mutual information measures and an equivalent channel capacity is derived. The localization of the "target" requires analysis in a small image window, thus resulting in imprecise estimation of the second order statistics of the signal. For a better precision, a Hausdorff measure is introduced. The method is applied to detect and characterize relevant objects in urban areas.

  18. SIMULATION OF SHIP GENERATED TURBULENT AND VORTICAL WAKE IMAGING BY SAR

    Institute of Scientific and Technical Information of China (English)

    Wang Aiming; Zhu Minhui

    2004-01-01

    Synthetic Aperture Radar (SAR) imaging of ocean surface features is studied. The simulation of the turbulent and vortical features generated by a moving ship and SAR imaging of these wakes is carried out. The turbulent wake damping the ocean surface capillary waves may be partially responsible for the suppression of surface waves near the ship track. The vortex pair generating a change in the lateral flow field behind the ship may be partially responsible for an enhancement of the waves near the edges of the smooth area. These hydrodynamic phenomena as well as the changes of radar backscatter generated by turbulence and vortex are simulated.An SAR imaging model is then used on such ocean surface features to provide SAR images.Comparison of two ships' simulated SAR images shows that the wake features are different for various ship parameters.

  19. ANALYSIS OF MULTIPATH PIXELS IN SAR IMAGES

    Directory of Open Access Journals (Sweden)

    J. W. Zhao

    2016-06-01

    Full Text Available As the received radar signal is the sum of signal contributions overlaid in one single pixel regardless of the travel path, the multipath effect should be seriously tackled as the multiple bounce returns are added to direct scatter echoes which leads to ghost scatters. Most of the existing solution towards the multipath is to recover the signal propagation path. To facilitate the signal propagation simulation process, plenty of aspects such as sensor parameters, the geometry of the objects (shape, location, orientation, mutual position between adjacent buildings and the physical parameters of the surface (roughness, correlation length, permittivitywhich determine the strength of radar signal backscattered to the SAR sensor should be given in previous. However, it's not practical to obtain the highly detailed object model in unfamiliar area by field survey as it's a laborious work and time-consuming. In this paper, SAR imaging simulation based on RaySAR is conducted at first aiming at basic understanding of multipath effects and for further comparison. Besides of the pre-imaging simulation, the product of the after-imaging, which refers to radar images is also taken into consideration. Both Cosmo-SkyMed ascending and descending SAR images of Lupu Bridge in Shanghai are used for the experiment. As a result, the reflectivity map and signal distribution map of different bounce level are simulated and validated by 3D real model. The statistic indexes such as the phase stability, mean amplitude, amplitude dispersion, coherence and mean-sigma ratio in case of layover are analyzed with combination of the RaySAR output.

  20. SAR Image Classification Based on Its Texture Features

    Institute of Scientific and Technical Information of China (English)

    LI Pingxiang; FANG Shenghui

    2003-01-01

    SAR images not only have the characteristics of all-ay, all-eather, but also provide object information which is different from visible and infrared sensors. However, SAR images have some faults, such as more speckles and fewer bands. The authors conducted the experiments of texture statistics analysis on SAR image features in order to improve the accuracy of SAR image interpretation.It is found that the texture analysis is an effective method for improving the accuracy of the SAR image interpretation.

  1. The Radiometric Measurement Quantity for SAR Images

    OpenAIRE

    Döring, Björn J.; Schwerdt, Marco

    2013-01-01

    A Synthetic Aperture Radar (SAR) system measures among other quantities the terrain radar reflectivity. After image calibration, the pixel intensities are commonly expressed in terms of radar cross sections (for point targets) or as backscatter coefficients (for distributed targets), which are directly related. This paper argues that pixel intensities are not generally proportional to radar cross section or derived physical quantities. The paper further proposes to replace the inaccurate term...

  2. Two dimensional estimates from ocean SAR images

    Directory of Open Access Journals (Sweden)

    J. M. Le Caillec

    1996-01-01

    Full Text Available Synthetic Aperture Radar (SAR images of the ocean yield a lot of information on the sea-state surface providing that the mapping process between the surface and the image is clearly defined. However it is well known that SAR images exhibit non-gaussian statistics and that the motion of the scatterers on the surface, while the image is being formed, may yield to nonlinearities. The detection and quantification of these nonlinearities are made possible by using Higher Order Spectra (HOS methods and more specifically, bispectrum estimation. The development of the latter method allowed us to find phase relations between different parts of the image and to recognise their level of coupling, i.e. if and how waves of different wavelengths interacted nonlinearly. This information is quite important as the usual models assume strong nonlinearities when the waves are propagating in the azimuthal direction (i.e. along the satellite track and almost no nonlinearities when propagating in the range direction. In this paper, the mapping of the ocean surface to the SAR image is reinterpreted and a specific model (i.e. a Second Order Volterra Model is introduced. The nonlinearities are thus explained as either produced by a nonlinear system or due to waves propagating into selected directions (azimuth or range and interacting during image formation. It is shown that quadratic nonlinearities occur for waves propagating near the range direction while for those travelling in the azimuthal direction the nonlinearities, when present, are mostly due to wave interactions but are almost completely removed by the filtering effect coming from the surface motion itself (azimuth cut-off. An inherent quadratic interaction filtering (azimuth high pass filter is also present. But some other effects, apparently nonlinear, are not detected with the methods described here, meaning that either the usual relation developed for the Ocean-to-SAR transform is somewhat incomplete

  3. Prototype Theory Based Feature Representation for PolSAR Images

    OpenAIRE

    Huang Xiaojing; Yang Xiangli; Huang Pingping; Yang Wen

    2016-01-01

    This study presents a new feature representation approach for Polarimetric Synthetic Aperture Radar (PolSAR) image based on prototype theory. First, multiple prototype sets are generated using prototype theory. Then, regularized logistic regression is used to predict similarities between a test sample and each prototype set. Finally, the PolSAR image feature representation is obtained by ensemble projection. Experimental results of an unsupervised classification of PolSAR images show that our...

  4. Effect of Antenna Pointing Errors on SAR Imaging Considering the Change of the Point Target Location

    Science.gov (United States)

    Zhang, Xin; Liu, Shijie; Yu, Haifeng; Tong, Xiaohua; Huang, Guoman

    2018-04-01

    Towards spaceborne spotlight SAR, the antenna is regulated by the SAR system with specific regularity, so the shaking of the internal mechanism is inevitable. Moreover, external environment also has an effect on the stability of SAR platform. Both of them will cause the jitter of the SAR platform attitude. The platform attitude instability will introduce antenna pointing error on both the azimuth and range directions, and influence the acquisition of SAR original data and ultimate imaging quality. In this paper, the relations between the antenna pointing errors and the three-axis attitude errors are deduced, then the relations between spaceborne spotlight SAR imaging of the point target and antenna pointing errors are analysed based on the paired echo theory, meanwhile, the change of the azimuth antenna gain is considered as the spotlight SAR platform moves ahead. The simulation experiments manifest the effects on spotlight SAR imaging caused by antenna pointing errors are related to the target location, that is, the pointing errors of the antenna beam will severely influence the area far away from the scene centre of azimuth direction in the illuminated scene.

  5. Polarimetric SAR image classification based on discriminative dictionary learning model

    Science.gov (United States)

    Sang, Cheng Wei; Sun, Hong

    2018-03-01

    Polarimetric SAR (PolSAR) image classification is one of the important applications of PolSAR remote sensing. It is a difficult high-dimension nonlinear mapping problem, the sparse representations based on learning overcomplete dictionary have shown great potential to solve such problem. The overcomplete dictionary plays an important role in PolSAR image classification, however for PolSAR image complex scenes, features shared by different classes will weaken the discrimination of learned dictionary, so as to degrade classification performance. In this paper, we propose a novel overcomplete dictionary learning model to enhance the discrimination of dictionary. The learned overcomplete dictionary by the proposed model is more discriminative and very suitable for PolSAR classification.

  6. Synthetic aperture design for increased SAR image rate

    Science.gov (United States)

    Bielek, Timothy P [Albuquerque, NM; Thompson, Douglas G [Albuqerque, NM; Walker, Bruce C [Albuquerque, NM

    2009-03-03

    High resolution SAR images of a target scene at near video rates can be produced by using overlapped, but nevertheless, full-size synthetic apertures. The SAR images, which respectively correspond to the apertures, can be analyzed in sequence to permit detection of movement in the target scene.

  7. Multi-look polarimetric SAR image filtering using simulated annealing

    DEFF Research Database (Denmark)

    Schou, Jesper

    2000-01-01

    Based on a previously published algorithm capable of estimating the radar cross-section in synthetic aperture radar (SAR) intensity images, a new filter is presented utilizing multi-look polarimetric SAR images. The underlying mean covariance matrix is estimated from the observed sample covariance...

  8. Autofocus algorithm for curvilinear SAR imaging

    Science.gov (United States)

    Bleszynski, E.; Bleszynski, M.; Jaroszewicz, T.

    2012-05-01

    We describe an approach to autofocusing for large apertures on curved SAR trajectories. It is a phase-gradient type method in which phase corrections compensating trajectory perturbations are estimated not directly from the image itself, but rather on the basis of partial" SAR data { functions of the slow and fast times { recon- structed (by an appropriate forward-projection procedure) from windowed scene patches, of sizes comparable to distances between distinct targets or localized features of the scene. The resulting partial data" can be shown to contain the same information on the phase perturbations as that in the original data, provided the frequencies of the perturbations do not exceed a quantity proportional to the patch size. The algorithm uses as input a sequence of conventional scene images based on moderate-size subapertures constituting the full aperture for which the phase corrections are to be determined. The subaperture images are formed with pixel sizes comparable to the range resolution which, for the optimal subaperture size, should be also approximately equal the cross-range resolution. The method does not restrict the size or shape of the synthetic aperture and can be incorporated in the data collection process in persistent sensing scenarios. The algorithm has been tested on the publicly available set of GOTCHA data, intentionally corrupted by random-walk-type trajectory uctuations (a possible model of errors caused by imprecise inertial navigation system readings) of maximum frequencies compatible with the selected patch size. It was able to eciently remove image corruption for apertures of sizes up to 360 degrees.

  9. Guided SAR image despeckling with probabilistic non local weights

    Science.gov (United States)

    Gokul, Jithin; Nair, Madhu S.; Rajan, Jeny

    2017-12-01

    SAR images are generally corrupted by granular disturbances called speckle, which makes visual analysis and detail extraction a difficult task. Non Local despeckling techniques with probabilistic similarity has been a recent trend in SAR despeckling. To achieve effective speckle suppression without compromising detail preservation, we propose an improvement for the existing Generalized Guided Filter with Bayesian Non-Local Means (GGF-BNLM) method. The proposed method (Guided SAR Image Despeckling with Probabilistic Non Local Weights) replaces parametric constants based on heuristics in GGF-BNLM method with dynamically derived values based on the image statistics for weight computation. Proposed changes make GGF-BNLM method adaptive and as a result, significant improvement is achieved in terms of performance. Experimental analysis on SAR images shows excellent speckle reduction without compromising feature preservation when compared to GGF-BNLM method. Results are also compared with other state-of-the-art and classic SAR depseckling techniques to demonstrate the effectiveness of the proposed method.

  10. RESEARCH ON AIRBORNE SAR IMAGING BASED ON ESC ALGORITHM

    Directory of Open Access Journals (Sweden)

    X. T. Dong

    2017-09-01

    Full Text Available Due to the ability of flexible, accurate, and fast obtaining abundant information, airborne SAR is significant in the field of Earth Observation and many other applications. Optimally the flight paths are straight lines, but in reality it is not the case since some portion of deviation from the ideal path is impossible to avoid. A small disturbance from the ideal line will have a major effect on the signal phase, dramatically deteriorating the quality of SAR images and data. Therefore, to get accurate echo information and radar images, it is essential to measure and compensate for nonlinear motion of antenna trajectories. By means of compensating each flying trajectory to its reference track, MOCO method corrects linear phase error and quadratic phase error caused by nonlinear antenna trajectories. Position and Orientation System (POS data is applied to acquiring accuracy motion attitudes and spatial positions of antenna phase centre (APC. In this paper, extend chirp scaling algorithm (ECS is used to deal with echo data of airborne SAR. An experiment is done using VV-Polarization raw data of C-band airborne SAR. The quality evaluations of compensated SAR images and uncompensated SAR images are done in the experiment. The former always performs better than the latter. After MOCO processing, azimuth ambiguity is declined, peak side lobe ratio (PSLR effectively improves and the resolution of images is improved obviously. The result shows the validity and operability of the imaging process for airborne SAR.

  11. Research on Airborne SAR Imaging Based on Esc Algorithm

    Science.gov (United States)

    Dong, X. T.; Yue, X. J.; Zhao, Y. H.; Han, C. M.

    2017-09-01

    Due to the ability of flexible, accurate, and fast obtaining abundant information, airborne SAR is significant in the field of Earth Observation and many other applications. Optimally the flight paths are straight lines, but in reality it is not the case since some portion of deviation from the ideal path is impossible to avoid. A small disturbance from the ideal line will have a major effect on the signal phase, dramatically deteriorating the quality of SAR images and data. Therefore, to get accurate echo information and radar images, it is essential to measure and compensate for nonlinear motion of antenna trajectories. By means of compensating each flying trajectory to its reference track, MOCO method corrects linear phase error and quadratic phase error caused by nonlinear antenna trajectories. Position and Orientation System (POS) data is applied to acquiring accuracy motion attitudes and spatial positions of antenna phase centre (APC). In this paper, extend chirp scaling algorithm (ECS) is used to deal with echo data of airborne SAR. An experiment is done using VV-Polarization raw data of C-band airborne SAR. The quality evaluations of compensated SAR images and uncompensated SAR images are done in the experiment. The former always performs better than the latter. After MOCO processing, azimuth ambiguity is declined, peak side lobe ratio (PSLR) effectively improves and the resolution of images is improved obviously. The result shows the validity and operability of the imaging process for airborne SAR.

  12. SAR image effects on coherence and coherence estimation.

    Energy Technology Data Exchange (ETDEWEB)

    Bickel, Douglas Lloyd

    2014-01-01

    Radar coherence is an important concept for imaging radar systems such as synthetic aperture radar (SAR). This document quantifies some of the effects in SAR which modify the coherence. Although these effects can disrupt the coherence within a single SAR image, this report will focus on the coherence between separate images, such as for coherent change detection (CCD) processing. There have been other presentations on aspects of this material in the past. The intent of this report is to bring various issues that affect the coherence together in a single report to support radar engineers in making decisions about these matters.

  13. Robust tie points selection for InSAR image coregistration

    Science.gov (United States)

    Skanderi, Takieddine; Chabira, Boulerbah; Afifa, Belkacem; Belhadj Aissa, Aichouche

    2013-10-01

    Image coregistration is an important step in SAR interferometry which is a well known method for DEM generation and surface displacement monitoring. A practical and widely used automatic coregistration algorithm is based on selecting a number of tie points in the master image and looking for the correspondence of each point in the slave image using correlation technique. The characteristics of these points, their number and their distribution have a great impact on the reliability of the estimated transformation. In this work, we present a method for automatic selection of suitable tie points that are well distributed over the common area without decreasing the desired tie points' number. First we select candidate points using Harris operator. Then from these points we select tie points depending on their cornerness measure (the highest first). Once a tie point is selected, its correspondence is searched for in the slave image, if the similarity measure maximum is less than a given threshold or it is at the border of the search window, this point is discarded and we proceed to the next Harris point, else, the cornerness of the remaining candidates Harris points are multiplied by a spatially radially increasing function centered at the selected point to disadvantage the points in a neighborhood of a radius determined from the size of the common area and the desired number of points. This is repeated until the desired number of points is selected. Results of an ERS1/2 tandem pair are presented and discussed.

  14. Exploiting Deep Matching and SAR Data for the Geo-Localization Accuracy Improvement of Optical Satellite Images

    Directory of Open Access Journals (Sweden)

    Nina Merkle

    2017-06-01

    Full Text Available Improving the geo-localization of optical satellite images is an important pre-processing step for many remote sensing tasks like monitoring by image time series or scene analysis after sudden events. These tasks require geo-referenced and precisely co-registered multi-sensor data. Images captured by the high resolution synthetic aperture radar (SAR satellite TerraSAR-X exhibit an absolute geo-location accuracy within a few decimeters. These images represent therefore a reliable source to improve the geo-location accuracy of optical images, which is in the order of tens of meters. In this paper, a deep learning-based approach for the geo-localization accuracy improvement of optical satellite images through SAR reference data is investigated. Image registration between SAR and optical images requires few, but accurate and reliable matching points. These are derived from a Siamese neural network. The network is trained using TerraSAR-X and PRISM image pairs covering greater urban areas spread over Europe, in order to learn the two-dimensional spatial shifts between optical and SAR image patches. Results confirm that accurate and reliable matching points can be generated with higher matching accuracy and precision with respect to state-of-the-art approaches.

  15. Wavelet Filter Banks for Super-Resolution SAR Imaging

    Science.gov (United States)

    Sheybani, Ehsan O.; Deshpande, Manohar; Memarsadeghi, Nargess

    2011-01-01

    This paper discusses Innovative wavelet-based filter banks designed to enhance the analysis of super resolution Synthetic Aperture Radar (SAR) images using parametric spectral methods and signal classification algorithms, SAR finds applications In many of NASA's earth science fields such as deformation, ecosystem structure, and dynamics of Ice, snow and cold land processes, and surface water and ocean topography. Traditionally, standard methods such as Fast-Fourier Transform (FFT) and Inverse Fast-Fourier Transform (IFFT) have been used to extract Images from SAR radar data, Due to non-parametric features of these methods and their resolution limitations and observation time dependence, use of spectral estimation and signal pre- and post-processing techniques based on wavelets to process SAR radar data has been proposed. Multi-resolution wavelet transforms and advanced spectral estimation techniques have proven to offer efficient solutions to this problem.

  16. Enhancement of SAR images using fuzzy shrinkage technique

    Indian Academy of Sciences (India)

    This paper presents speckle noise reduction in SAR images using a combination of curvelet and fuzzy logic technique to restore speckle-affected images. This method overcomes the limitation of discontinuity in hard threshold and permanent deviation in soft threshold. First, it decomposes noise image into different ...

  17. SAR image formation with azimuth interpolation after azimuth transform

    Science.gov (United States)

    Doerry,; Armin W. , Martin; Grant D. , Holzrichter; Michael, W [Albuquerque, NM

    2008-07-08

    Two-dimensional SAR data can be processed into a rectangular grid format by subjecting the SAR data to a Fourier transform operation, and thereafter to a corresponding interpolation operation. Because the interpolation operation follows the Fourier transform operation, the interpolation operation can be simplified, and the effect of interpolation errors can be diminished. This provides for the possibility of both reducing the re-grid processing time, and improving the image quality.

  18. Fast Superpixel Segmentation Algorithm for PolSAR Images

    Directory of Open Access Journals (Sweden)

    Zhang Yue

    2017-10-01

    Full Text Available As a pre-processing technique, superpixel segmentation algorithms should be of high computational efficiency, accurate boundary adherence and regular shape in homogeneous regions. A fast superpixel segmentation algorithm based on Iterative Edge Refinement (IER has shown to be applicable on optical images. However, it is difficult to obtain the ideal results when IER is applied directly to PolSAR images due to the speckle noise and small or slim regions in PolSAR images. To address these problems, in this study, the unstable pixel set is initialized as all the pixels in the PolSAR image instead of the initial grid edge pixels. In the local relabeling of the unstable pixels, the fast revised Wishart distance is utilized instead of the Euclidean distance in CIELAB color space. Then, a post-processing procedure based on dissimilarity measure is empolyed to remove isolated small superpixels as well as to retain the strong point targets. Finally, extensive experiments based on a simulated image and a real-world PolSAR image from Airborne Synthetic Aperture Radar (AirSAR are conducted, showing that the proposed algorithm, compared with three state-of-the-art methods, performs better in terms of several commonly used evaluation criteria with high computational efficiency, accurate boundary adherence, and homogeneous regularity.

  19. Multi-image Matching of Airborne SAR Imagery by SANCC

    Directory of Open Access Journals (Sweden)

    DING Hao

    2015-03-01

    Full Text Available In order to improve accuracy of SAR matching, a multi-image matching method based on sum of adaptive normalized cross-correlation (SANCC is proposed. It utilizes geometrical and radiometric information of multi-baselinesynthetic aperture radar (SARimages effectively. Firstly, imaging parameters, platform parameters and approximate digital surface model (DSM are used to predict matching line. Secondly, similarity and proximity in Gestalt theory are introduced to SANCC, and SANCC measures of potential matching points along the matching line are calculated. Thirdly, multi-image matching results and object coordinates of matching points are obtained by winner-take-all (WTA optimization strategy. The approach has been demonstrated with airborne SAR images acquired by a Chinese airborne SAR system (CASMSAR system. The experimental results indicate that the proposed algorithm is effective for providing dense and accuracy matching points, reducing the number of mismatches caused by repeated textures, and offering a better solution to match in poor textured areas.

  20. Restoration of polarimetric SAR images using simulated annealing

    DEFF Research Database (Denmark)

    Schou, Jesper; Skriver, Henning

    2001-01-01

    approach favoring one of the objectives. An algorithm for estimating the radar cross-section (RCS) for intensity SAR images has previously been proposed in the literature based on Markov random fields and the stochastic optimization method simulated annealing. A new version of the algorithm is presented......Filtering synthetic aperture radar (SAR) images ideally results in better estimates of the parameters characterizing the distributed targets in the images while preserving the structures of the nondistributed targets. However, these objectives are normally conflicting, often leading to a filtering...

  1. Synthetic SAR Image Generation using Sensor, Terrain and Target Models

    DEFF Research Database (Denmark)

    Kusk, Anders; Abulaitijiang, Adili; Dall, Jørgen

    2016-01-01

    A tool to generate synthetic SAR images of objects set on a clutter background is described. The purpose is to generate images for training Automatic Target Recognition and Identification algorithms. The tool employs a commercial electromagnetic simulation program to calculate radar cross section...

  2. Enhancement of SAR images using fuzzy shrinkage technique in ...

    Indian Academy of Sciences (India)

    Shivakumara Swamy Puranik Math

    2017-08-03

    Aug 3, 2017 ... not use threshold approach only by proper selection of shrinking parameter the speckle in SAR image is ... but cost estimation of hyper-parameters will be high. The ..... To find the effectiveness of the proposed image in a.

  3. G0-WISHART Distribution Based Classification from Polarimetric SAR Images

    Science.gov (United States)

    Hu, G. C.; Zhao, Q. H.

    2017-09-01

    Enormous scientific and technical developments have been carried out to further improve the remote sensing for decades, particularly Polarimetric Synthetic Aperture Radar(PolSAR) technique, so classification method based on PolSAR images has getted much more attention from scholars and related department around the world. The multilook polarmetric G0-Wishart model is a more flexible model which describe homogeneous, heterogeneous and extremely heterogeneous regions in the image. Moreover, the polarmetric G0-Wishart distribution dose not include the modified Bessel function of the second kind. It is a kind of simple statistical distribution model with less parameter. To prove its feasibility, a process of classification has been tested with the full-polarized Synthetic Aperture Radar (SAR) image by the method. First, apply multilook polarimetric SAR data process and speckle filter to reduce speckle influence for classification result. Initially classify the image into sixteen classes by H/A/α decomposition. Using the ICM algorithm to classify feature based on the G0-Wshart distance. Qualitative and quantitative results show that the proposed method can classify polaimetric SAR data effectively and efficiently.

  4. Spacial Variation in SAR Images of Different Resolution for Agricultural Fields

    DEFF Research Database (Denmark)

    Sandholt, Inge; Skriver, Henning

    1999-01-01

    The spatial variation in two types of Synthetic Aperture Radar (SAR) images covering agricultural fields is analysed. C-band polarimetric SAR data from the Danish airborne SAR, EMISAR, have been compared to space based ERS-1 C-band SAR with respect to scale and effect of polarization. The general...

  5. Space Radar Image of West Texas - SAR scan

    Science.gov (United States)

    1999-01-01

    This radar image of the Midland/Odessa region of West Texas, demonstrates an experimental technique, called ScanSAR, that allows scientists to rapidly image large areas of the Earth's surface. The large image covers an area 245 kilometers by 225 kilometers (152 miles by 139 miles). It was obtained by the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) flying aboard the space shuttle Endeavour on October 5, 1994. The smaller inset image is a standard SIR-C image showing a portion of the same area, 100 kilometers by 57 kilometers (62 miles by 35 miles) and was taken during the first flight of SIR-C on April 14, 1994. The bright spots on the right side of the image are the cities of Odessa (left) and Midland (right), Texas. The Pecos River runs from the top center to the bottom center of the image. Along the left side of the image are, from top to bottom, parts of the Guadalupe, Davis and Santiago Mountains. North is toward the upper right. Unlike conventional radar imaging, in which a radar continuously illuminates a single ground swath as the space shuttle passes over the terrain, a Scansar radar illuminates several adjacent ground swaths almost simultaneously, by 'scanning' the radar beam across a large area in a rapid sequence. The adjacent swaths, typically about 50 km (31 miles) wide, are then merged during ground processing to produce a single large scene. Illumination for this L-band scene is from the top of the image. The beams were scanned from the top of the scene to the bottom, as the shuttle flew from left to right. This scene was acquired in about 30 seconds. A normal SIR-C image is acquired in about 13 seconds. The ScanSAR mode will likely be used on future radar sensors to construct regional and possibly global radar images and topographic maps. The ScanSAR processor is being designed for 1996 implementation at NASA's Alaska SAR Facility, located at the University of Alaska Fairbanks, and will produce digital images from the

  6. SAR Data Fusion Imaging Method Oriented to Target Feature Extraction

    Directory of Open Access Journals (Sweden)

    Yang Wei

    2015-02-01

    Full Text Available To deal with the difficulty for target outlines extracting precisely due to neglect of target scattering characteristic variation during the processing of high-resolution space-borne SAR data, a novel fusion imaging method is proposed oriented to target feature extraction. Firstly, several important aspects that affect target feature extraction and SAR image quality are analyzed, including curved orbit, stop-and-go approximation, atmospheric delay, and high-order residual phase error. Furthermore, the corresponding compensation methods are addressed as well. Based on the analysis, the mathematical model of SAR echo combined with target space-time spectrum is established for explaining the space-time-frequency change rule of target scattering characteristic. Moreover, a fusion imaging strategy and method under high-resolution and ultra-large observation angle range conditions are put forward to improve SAR quality by fusion processing in range-doppler and image domain. Finally, simulations based on typical military targets are used to verify the effectiveness of the fusion imaging method.

  7. Information theoretic bounds for compressed sensing in SAR imaging

    International Nuclear Information System (INIS)

    Jingxiong, Zhang; Ke, Yang; Jianzhong, Guo

    2014-01-01

    Compressed sensing (CS) is a new framework for sampling and reconstructing sparse signals from measurements significantly fewer than those prescribed by Nyquist rate in the Shannon sampling theorem. This new strategy, applied in various application areas including synthetic aperture radar (SAR), relies on two principles: sparsity, which is related to the signals of interest, and incoherence, which refers to the sensing modality. An important question in CS-based SAR system design concerns sampling rate necessary and sufficient for exact or approximate recovery of sparse signals. In the literature, bounds of measurements (or sampling rate) in CS have been proposed from the perspective of information theory. However, these information-theoretic bounds need to be reviewed and, if necessary, validated for CS-based SAR imaging, as there are various assumptions made in the derivations of lower and upper bounds on sub-Nyquist sampling rates, which may not hold true in CS-based SAR imaging. In this paper, information-theoretic bounds of sampling rate will be analyzed. For this, the SAR measurement system is modeled as an information channel, with channel capacity and rate-distortion characteristics evaluated to enable the determination of sampling rates required for recovery of sparse scenes. Experiments based on simulated data will be undertaken to test the theoretic bounds against empirical results about sampling rates required to achieve certain detection error probabilities

  8. An Advanced Rotation Invariant Descriptor for SAR Image Registration

    Directory of Open Access Journals (Sweden)

    Yuming Xiang

    2017-07-01

    Full Text Available The Scale-Invariant Feature Transform (SIFT algorithm and its many variants have been widely used in Synthetic Aperture Radar (SAR image registration. The SIFT-like algorithms maintain rotation invariance by assigning a dominant orientation for each keypoint, while the calculation of dominant orientation is not robust due to the effect of speckle noise in SAR imagery. In this paper, we propose an advanced local descriptor for SAR image registration to achieve rotation invariance without assigning a dominant orientation. Based on the improved intensity orders, we first divide a circular neighborhood into several sub-regions. Second, rotation-invariant ratio orientation histograms of each sub-region are proposed by accumulating the ratio values of different directions in a rotation-invariant coordinate system. The proposed descriptor is composed of the concatenation of the histograms of each sub-region. In order to increase the distinctiveness of the proposed descriptor, multiple image neighborhoods are aggregated. Experimental results on several satellite SAR images have shown an improvement in the matching performance over other state-of-the-art algorithms.

  9. THz-SAR Vibrating Target Imaging via the Bayesian Method

    Directory of Open Access Journals (Sweden)

    Bin Deng

    2017-01-01

    Full Text Available Target vibration bears important information for target recognition, and terahertz, due to significant micro-Doppler effects, has strong advantages for remotely sensing vibrations. In this paper, the imaging characteristics of vibrating targets with THz-SAR are at first analyzed. An improved algorithm based on an excellent Bayesian approach, that is, the expansion-compression variance-component (ExCoV method, has been proposed for reconstructing scattering coefficients of vibrating targets, which provides more robust and efficient initialization and overcomes the deficiencies of sidelobes as well as artifacts arising from the traditional correlation method. A real vibration measurement experiment of idle cars was performed to validate the range model. Simulated SAR data of vibrating targets and a tank model in a real background in 220 GHz show good performance at low SNR. Rapidly evolving high-power terahertz devices will offer viable THz-SAR application at a distance of several kilometers.

  10. Two-dimensional Fast ESPRIT Algorithm for Linear Array SAR Imaging

    Directory of Open Access Journals (Sweden)

    Zhao Yi-chao

    2015-10-01

    Full Text Available The linear array Synthetic Aperture Radar (SAR system is a popular research tool, because it can realize three-dimensional imaging. However, owning to limitations of the aircraft platform and actual conditions, resolution improvement is difficult in cross-track and along-track directions. In this study, a twodimensional fast Estimation of Signal Parameters by Rotational Invariance Technique (ESPRIT algorithm for linear array SAR imaging is proposed to overcome these limitations. This approach combines the Gerschgorin disks method and the ESPRIT algorithm to estimate the positions of scatterers in cross and along-rack directions. Moreover, the reflectivity of scatterers is obtained by a modified pairing method based on “region growing”, replacing the least-squares method. The simulation results demonstrate the applicability of the algorithm with high resolution, quick calculation, and good real-time response.

  11. Potential of TCPInSAR in Monitoring Linear Infrastructure with a Small Dataset of SAR Images: Application of the Donghai Bridge, China

    Directory of Open Access Journals (Sweden)

    Lei Zhang

    2018-03-01

    Full Text Available Reliably monitoring deformation associated with linear infrastructures, such as long-span bridges, is vitally important to assess their structural health. In this paper, we attempt to employ satellite interferometric synthetic aperture radar (InSAR to map the deformation of Donghai Bridge over a half of an annual cycle. The bridge, as the fourth longest cross-sea bridge in the world, located in the north of Hangzhou Bay, East China Sea where the featureless sea surface largely occupied the radar image raises challenges to accurately co-register the coherent points along the bridge. To tackle the issues due to co-registration and the limited number of synthetic aperture radar (SAR images, we adopt the termed temporarily-coherent point (TCP InSAR (TCPInSAR technique to process the radar images. TCPs that are not necessarily coherent during the whole observation period can be identified within every two SAR acquisitions during the co-registration procedure based on the statistics of azimuth and range offsets. In the process, co-registration is performed only using the offsets of these TCPs, leading to improved interferometric phases and the local Delaunay triangulation is used to construct point pairs to reduce the atmospheric artifacts along the bridge. With the TCPInSAR method the deformation rate along the bridge is estimated with no need of phase unwrapping. The achieved result reveals that the Donghai Bridge suffered a line-of-sight (LOS deformation rate up to −2.3 cm/year from January 2009 to July 2009 at the cable-stayed part, which is likely due to the thermal expansion of cables.

  12. A SAR IMAGE REGISTRATION METHOD BASED ON SIFT ALGORITHM

    Directory of Open Access Journals (Sweden)

    W. Lu

    2017-09-01

    Full Text Available In order to improve the stability and rapidity of synthetic aperture radar (SAR images matching, an effective method was presented. Firstly, the adaptive smoothing filtering was employed for image denoising in image processing based on Wallis filtering to avoid the follow-up noise is amplified. Secondly, feature points were extracted by a simplified SIFT algorithm. Finally, the exact matching of the images was achieved with these points. Compared with the existing methods, it not only maintains the richness of features, but a-lso reduces the noise of the image. The simulation results show that the proposed algorithm can achieve better matching effect.

  13. SAR Imaging through the Earth’s Ionosphere

    Science.gov (United States)

    2013-11-06

    Xiaoqing Pi, Anthony Freeman, Bruce Chapman, Paul Rosen, and Zhenhong Li . Imaging ionospheric inhomogeneities using spaceborne synthetic aperture radar. J...resolution SAR phase correction. IEEE Trans. Aerosp. Electron. Syst., 30(3):827–835, 1994. [30] Lianlin Li and Fang Li . Ionosphere tomography based on...Manduchi and G. A. Mian . Accuracy analysis for correlation-based image registartion algorithms. In Proceedings of the 1993 IEEE International

  14. Tie Points Extraction for SAR Images Based on Differential Constraints

    Science.gov (United States)

    Xiong, X.; Jin, G.; Xu, Q.; Zhang, H.

    2018-04-01

    Automatically extracting tie points (TPs) on large-size synthetic aperture radar (SAR) images is still challenging because the efficiency and correct ratio of the image matching need to be improved. This paper proposes an automatic TPs extraction method based on differential constraints for large-size SAR images obtained from approximately parallel tracks, between which the relative geometric distortions are small in azimuth direction and large in range direction. Image pyramids are built firstly, and then corresponding layers of pyramids are matched from the top to the bottom. In the process, the similarity is measured by the normalized cross correlation (NCC) algorithm, which is calculated from a rectangular window with the long side parallel to the azimuth direction. False matches are removed by the differential constrained random sample consensus (DC-RANSAC) algorithm, which appends strong constraints in azimuth direction and weak constraints in range direction. Matching points in the lower pyramid images are predicted with the local bilinear transformation model in range direction. Experiments performed on ENVISAT ASAR and Chinese airborne SAR images validated the efficiency, correct ratio and accuracy of the proposed method.

  15. TIE POINTS EXTRACTION FOR SAR IMAGES BASED ON DIFFERENTIAL CONSTRAINTS

    Directory of Open Access Journals (Sweden)

    X. Xiong

    2018-04-01

    Full Text Available Automatically extracting tie points (TPs on large-size synthetic aperture radar (SAR images is still challenging because the efficiency and correct ratio of the image matching need to be improved. This paper proposes an automatic TPs extraction method based on differential constraints for large-size SAR images obtained from approximately parallel tracks, between which the relative geometric distortions are small in azimuth direction and large in range direction. Image pyramids are built firstly, and then corresponding layers of pyramids are matched from the top to the bottom. In the process, the similarity is measured by the normalized cross correlation (NCC algorithm, which is calculated from a rectangular window with the long side parallel to the azimuth direction. False matches are removed by the differential constrained random sample consensus (DC-RANSAC algorithm, which appends strong constraints in azimuth direction and weak constraints in range direction. Matching points in the lower pyramid images are predicted with the local bilinear transformation model in range direction. Experiments performed on ENVISAT ASAR and Chinese airborne SAR images validated the efficiency, correct ratio and accuracy of the proposed method.

  16. Object Georeferencing in UAV-Based SAR Terrain Images

    Directory of Open Access Journals (Sweden)

    Łabowski Michał

    2016-12-01

    Full Text Available Synthetic aperture radars (SAR allow to obtain high resolution terrain images comparable with the resolution of optical methods. Radar imaging is independent on the weather conditions and the daylight. The process of analysis of the SAR images consists primarily of identifying of interesting objects. The ability to determine their geographical coordinates can increase usability of the solution from a user point of view. The paper presents a georeferencing method of the radar terrain images. The presented images were obtained from the SAR system installed on board an Unmanned Aerial Vehicle (UAV. The system was developed within a project under acronym WATSAR realized by the Military University of Technology and WB Electronics S.A. The source of the navigation data was an INS/GNSS system integrated by the Kalman filter with a feed-backward correction loop. The paper presents the terrain images obtained during flight tests and results of selected objects georeferencing with an assessment of the accuracy of the method.

  17. Imaging manifestations of the cavitation in pulmonary parenchyma of SARS

    International Nuclear Information System (INIS)

    Yuan Chunwang; Zhao Dawei; Wang Wei; Jia Cuiyu; Bai Chunsheng

    2004-01-01

    Objective: To investigate the imaging appearances of cavitation in pulmonary parenchyma and the clinical features of the cases of SARS. Methods: Chest imaging films and clinical data of 180 patients with clinically confirmed SARS were analyzed retrospectively. The imaging manifestations of cavitation and the clinical features of the patients were observed and evaluated. Results: Of 180 patients, cavitations were showed in 5 (2.8%), which were all found through X-ray or CT scanning. Most of them were round or irregular, and had thick wall. The 5 patients all had been in hospital and treated with more dosage antibiotics, antivirus medicines and glucocorticoid for long time, the glucocorticoid was used for 25-65 d, and in the first 10-15 days the dosage was 160-240 mg per day. In hospitalization, one of them had been diagnosed diabetes mellitus, four had increased fasting blood sugar, the counts of white blood cells [(14.1-20.4) x 10 9 /L] increased significantly, the percent of neutrophils might increased also. Meanwhile, there was a continue increase of lactate dehydrogenase (228.00-475.00 U/L), glutamic dehydrogenase (10.08-60.00 U/L) and hydroxybutyrate dehydrogenase (190.00-444.00 U/L) in lab examination. Conclusion: SARS can cause cavitation in pulmonary parenchyma in posterior process of the disease. CT scanning can find the cavitation earlier and accurately, catching the imaging features of them is helpful in differential diagnosis, guiding therapy and estimating prognosis

  18. SAR image regularization with fast approximate discrete minimization.

    Science.gov (United States)

    Denis, Loïc; Tupin, Florence; Darbon, Jérôme; Sigelle, Marc

    2009-07-01

    Synthetic aperture radar (SAR) images, like other coherent imaging modalities, suffer from speckle noise. The presence of this noise makes the automatic interpretation of images a challenging task and noise reduction is often a prerequisite for successful use of classical image processing algorithms. Numerous approaches have been proposed to filter speckle noise. Markov random field (MRF) modelization provides a convenient way to express both data fidelity constraints and desirable properties of the filtered image. In this context, total variation minimization has been extensively used to constrain the oscillations in the regularized image while preserving its edges. Speckle noise follows heavy-tailed distributions, and the MRF formulation leads to a minimization problem involving nonconvex log-likelihood terms. Such a minimization can be performed efficiently by computing minimum cuts on weighted graphs. Due to memory constraints, exact minimization, although theoretically possible, is not achievable on large images required by remote sensing applications. The computational burden of the state-of-the-art algorithm for approximate minimization (namely the alpha -expansion) is too heavy specially when considering joint regularization of several images. We show that a satisfying solution can be reached, in few iterations, by performing a graph-cut-based combinatorial exploration of large trial moves. This algorithm is applied to joint regularization of the amplitude and interferometric phase in urban area SAR images.

  19. Advanced InSAR imaging for dune mapping

    Science.gov (United States)

    Havivi, Shiran; August, Yitzhak; Blumberg, Dan G.; Rotman, Stanley R.

    2015-04-01

    Aeolian morphologies are formed in the presence of sufficient wind energy and available particles. These processes occur naturally or are further enhanced or reduced by human intervention. The dimensions of change are dependent primarily on the wind energy and surface properties. Since the 1970's, remote sensing imagery both optical and radar, are used for documentation and interpretation of the geomorphologic changes of sand dunes. Remote sensing studies of Aeolian morphologies is mostly useful to document major changes, yet, subtle changes, occurring in a period of days or months in scales of centimeters, are very difficult to detect in imagery. Interferometric Synthetic Aperture Radar (InSAR) is an imaging technique for measuring Earth's surface topography and deformation. InSAR images are produced by measuring the radar phase difference between two separated antennas that view the same surface area. Classical InSAR is based on high coherence between two images or more. The output (interferogram) can show subtle changes with an accuracy of several millimeters to centimeters. Very little work has been done on measuring or identifying the changes in dunes using InSAR. The reason is that dunes tend to be less coherent than firm, stable, surfaces. This research aims to demonstrate how interferometric decorrelation, or, coherence change detection, can be used for identifying dune instability. We hypothesize and demonstrate that the loss of radar coherence over time on dunes can be used as an indication of the dune's instability. When SAR images are acquired at sufficiently close intervals one can measure the time it takes to lose coherence and associate this time with geomorphic stability. To achieve our goals, the Nitzanim coastal dunes along the Mediterranean, 40 km south of Tel-Aviv, Israel, were chosen as a case study. The dunes in this area are of varying levels of stability and vegetation cover and have been monitored meteorologically, geomorphologically and

  20. Computing Hypercrossed Complex Pairings in Digital Images

    Directory of Open Access Journals (Sweden)

    Simge Öztunç

    2013-01-01

    Full Text Available We consider an additive group structure in digital images and introduce the commutator in digital images. Then we calculate the hypercrossed complex pairings which generates a normal subgroup in dimension 2 and in dimension 3 by using 8-adjacency and 26-adjacency.

  1. Circular SAR Optimization Imaging Method of Buildings

    Directory of Open Access Journals (Sweden)

    Wang Jian-feng

    2015-12-01

    Full Text Available The Circular Synthetic Aperture Radar (CSAR can obtain the entire scattering properties of targets because of its great ability of 360° observation. In this study, an optimal orientation of the CSAR imaging algorithm of buildings is proposed by applying a combination of coherent and incoherent processing techniques. FEKO software is used to construct the electromagnetic scattering modes and simulate the radar echo. The FEKO imaging results are compared with the isotropic scattering results. On comparison, the optimal azimuth coherent accumulation angle of CSAR imaging of buildings is obtained. Practically, the scattering directions of buildings are unknown; therefore, we divide the 360° echo of CSAR into many overlapped and few angle echoes corresponding to the sub-aperture and then perform an imaging procedure on each sub-aperture. Sub-aperture imaging results are applied to obtain the all-around image using incoherent fusion techniques. The polarimetry decomposition method is used to decompose the all-around image and further retrieve the edge information of buildings successfully. The proposed method is validated with P-band airborne CSAR data from Sichuan, China.

  2. Road detection in SAR images using a tensor voting algorithm

    Science.gov (United States)

    Shen, Dajiang; Hu, Chun; Yang, Bing; Tian, Jinwen; Liu, Jian

    2007-11-01

    In this paper, the problem of the detection of road networks in Synthetic Aperture Radar (SAR) images is addressed. Most of the previous methods extract the road by detecting lines and network reconstruction. Traditional algorithms such as MRFs, GA, Level Set, used in the progress of reconstruction are iterative. The tensor voting methodology we proposed is non-iterative, and non-sensitive to initialization. Furthermore, the only free parameter is the size of the neighborhood, related to the scale. The algorithm we present is verified to be effective when it's applied to the road extraction using the real Radarsat Image.

  3. Scalable Track Detection in SAR CCD Images

    Energy Technology Data Exchange (ETDEWEB)

    Chow, James G [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Quach, Tu-Thach [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-03-01

    Existing methods to detect vehicle tracks in coherent change detection images, a product of combining two synthetic aperture radar images ta ken at different times of the same scene, rely on simple, fast models to label track pixels. These models, however, are often too simple to capture natural track features such as continuity and parallelism. We present a simple convolutional network architecture consisting of a series of 3-by-3 convolutions to detect tracks. The network is trained end-to-end to learn natural track features entirely from data. The network is computationally efficient and improves the F-score on a standard dataset to 0.988, up fr om 0.907 obtained by the current state-of-the-art method.

  4. AN AUTOMATIC OPTICAL AND SAR IMAGE REGISTRATION METHOD USING ITERATIVE MULTI-LEVEL AND REFINEMENT MODEL

    Directory of Open Access Journals (Sweden)

    C. Xu

    2016-06-01

    Full Text Available Automatic image registration is a vital yet challenging task, particularly for multi-sensor remote sensing images. Given the diversity of the data, it is unlikely that a single registration algorithm or a single image feature will work satisfactorily for all applications. Focusing on this issue, the mainly contribution of this paper is to propose an automatic optical-to-SAR image registration method using –level and refinement model: Firstly, a multi-level strategy of coarse-to-fine registration is presented, the visual saliency features is used to acquire coarse registration, and then specific area and line features are used to refine the registration result, after that, sub-pixel matching is applied using KNN Graph. Secondly, an iterative strategy that involves adaptive parameter adjustment for re-extracting and re-matching features is presented. Considering the fact that almost all feature-based registration methods rely on feature extraction results, the iterative strategy improve the robustness of feature matching. And all parameters can be automatically and adaptively adjusted in the iterative procedure. Thirdly, a uniform level set segmentation model for optical and SAR images is presented to segment conjugate features, and Voronoi diagram is introduced into Spectral Point Matching (VSPM to further enhance the matching accuracy between two sets of matching points. Experimental results show that the proposed method can effectively and robustly generate sufficient, reliable point pairs and provide accurate registration.

  5. Fusion method of SAR and optical images for urban object extraction

    Science.gov (United States)

    Jia, Yonghong; Blum, Rick S.; Li, Fangfang

    2007-11-01

    A new image fusion method of SAR, Panchromatic (Pan) and multispectral (MS) data is proposed. First of all, SAR texture is extracted by ratioing the despeckled SAR image to its low pass approximation, and is used to modulate high pass details extracted from the available Pan image by means of the á trous wavelet decomposition. Then, high pass details modulated with the texture is applied to obtain the fusion product by HPFM (High pass Filter-based Modulation) fusion method. A set of image data including co-registered Landsat TM, ENVISAT SAR and SPOT Pan is used for the experiment. The results demonstrate accurate spectral preservation on vegetated regions, bare soil, and also on textured areas (buildings and road network) where SAR texture information enhances the fusion product, and the proposed approach is effective for image interpret and classification.

  6. Segmentation of Polarimetric SAR Images Usig Wavelet Transformation and Texture Features

    Science.gov (United States)

    Rezaeian, A.; Homayouni, S.; Safari, A.

    2015-12-01

    Polarimetric Synthetic Aperture Radar (PolSAR) sensors can collect useful observations from earth's surfaces and phenomena for various remote sensing applications, such as land cover mapping, change and target detection. These data can be acquired without the limitations of weather conditions, sun illumination and dust particles. As result, SAR images, and in particular Polarimetric SAR (PolSAR) are powerful tools for various environmental applications. Unlike the optical images, SAR images suffer from the unavoidable speckle, which causes the segmentation of this data difficult. In this paper, we use the wavelet transformation for segmentation of PolSAR images. Our proposed method is based on the multi-resolution analysis of texture features is based on wavelet transformation. Here, we use the information of gray level value and the information of texture. First, we produce coherency or covariance matrices and then generate span image from them. In the next step of proposed method is texture feature extraction from sub-bands is generated from discrete wavelet transform (DWT). Finally, PolSAR image are segmented using clustering methods as fuzzy c-means (FCM) and k-means clustering. We have applied the proposed methodology to full polarimetric SAR images acquired by the Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) L-band system, during July, in 2012 over an agricultural area in Winnipeg, Canada.

  7. SEGMENTATION OF POLARIMETRIC SAR IMAGES USIG WAVELET TRANSFORMATION AND TEXTURE FEATURES

    Directory of Open Access Journals (Sweden)

    A. Rezaeian

    2015-12-01

    Full Text Available Polarimetric Synthetic Aperture Radar (PolSAR sensors can collect useful observations from earth’s surfaces and phenomena for various remote sensing applications, such as land cover mapping, change and target detection. These data can be acquired without the limitations of weather conditions, sun illumination and dust particles. As result, SAR images, and in particular Polarimetric SAR (PolSAR are powerful tools for various environmental applications. Unlike the optical images, SAR images suffer from the unavoidable speckle, which causes the segmentation of this data difficult. In this paper, we use the wavelet transformation for segmentation of PolSAR images. Our proposed method is based on the multi-resolution analysis of texture features is based on wavelet transformation. Here, we use the information of gray level value and the information of texture. First, we produce coherency or covariance matrices and then generate span image from them. In the next step of proposed method is texture feature extraction from sub-bands is generated from discrete wavelet transform (DWT. Finally, PolSAR image are segmented using clustering methods as fuzzy c-means (FCM and k-means clustering. We have applied the proposed methodology to full polarimetric SAR images acquired by the Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR L-band system, during July, in 2012 over an agricultural area in Winnipeg, Canada.

  8. Synthetic aperture integration (SAI) algorithm for SAR imaging

    Science.gov (United States)

    Chambers, David H; Mast, Jeffrey E; Paglieroni, David W; Beer, N. Reginald

    2013-07-09

    A method and system for detecting the presence of subsurface objects within a medium is provided. In some embodiments, the imaging and detection system operates in a multistatic mode to collect radar return signals generated by an array of transceiver antenna pairs that is positioned across the surface and that travels down the surface. The imaging and detection system pre-processes the return signal to suppress certain undesirable effects. The imaging and detection system then generates synthetic aperture radar images from real aperture radar images generated from the pre-processed return signal. The imaging and detection system then post-processes the synthetic aperture radar images to improve detection of subsurface objects. The imaging and detection system identifies peaks in the energy levels of the post-processed image frame, which indicates the presence of a subsurface object.

  9. On Signal Modeling of Moon-Based Synthetic Aperture Radar (SAR Imaging of Earth

    Directory of Open Access Journals (Sweden)

    Zhen Xu

    2018-03-01

    Full Text Available The Moon-based Synthetic Aperture Radar (Moon-Based SAR, using the Moon as a platform, has a great potential to offer global-scale coverage of the earth’s surface with a high revisit cycle and is able to meet the scientific requirements for climate change study. However, operating in the lunar orbit, Moon-Based SAR imaging is confined within a complex geometry of the Moon-Based SAR, Moon, and Earth, where both rotation and revolution have effects. The extremely long exposure time of Moon-Based SAR presents a curved moving trajectory and the protracted time-delay in propagation makes the “stop-and-go” assumption no longer valid. Consequently, the conventional SAR imaging technique is no longer valid for Moon-Based SAR. This paper develops a Moon-Based SAR theory in which a signal model is derived. The Doppler parameters in the context of lunar revolution with the removal of ‘stop-and-go’ assumption are first estimated, and then characteristics of Moon-Based SAR imaging’s azimuthal resolution are analyzed. In addition, a signal model of Moon-Based SAR and its two-dimensional (2-D spectrum are further derived. Numerical simulation using point targets validates the signal model and enables Doppler parameter estimation for image focusing.

  10. Multi-Pixel Simultaneous Classification of PolSAR Image Using Convolutional Neural Networks

    Science.gov (United States)

    Xu, Xin; Gui, Rong; Pu, Fangling

    2018-01-01

    Convolutional neural networks (CNN) have achieved great success in the optical image processing field. Because of the excellent performance of CNN, more and more methods based on CNN are applied to polarimetric synthetic aperture radar (PolSAR) image classification. Most CNN-based PolSAR image classification methods can only classify one pixel each time. Because all the pixels of a PolSAR image are classified independently, the inherent interrelation of different land covers is ignored. We use a fixed-feature-size CNN (FFS-CNN) to classify all pixels in a patch simultaneously. The proposed method has several advantages. First, FFS-CNN can classify all the pixels in a small patch simultaneously. When classifying a whole PolSAR image, it is faster than common CNNs. Second, FFS-CNN is trained to learn the interrelation of different land covers in a patch, so it can use the interrelation of land covers to improve the classification results. The experiments of FFS-CNN are evaluated on a Chinese Gaofen-3 PolSAR image and other two real PolSAR images. Experiment results show that FFS-CNN is comparable with the state-of-the-art PolSAR image classification methods. PMID:29510499

  11. Detectability Analysis of Road Vehicles in Radarsat-2 Fully Polarimetric SAR Images for Traffic Monitoring

    Directory of Open Access Journals (Sweden)

    Bo Zhang

    2017-02-01

    Full Text Available By acquiring information over a wide area regardless of weather conditions and solar illumination, space-borne Synthetic Aperture Radar (SAR has the potential to be a promising application for traffic monitoring. However, the backscatter character of a vehicle in a SAR image is unstable and varies with image parameters, such as aspect and incidence angle. To investigate vehicle detectability in SAR images for traffic monitoring applications, images of four common types of vehicles in China were acquired using the fully polarimetric (FP SAR of Radarsat-2 in our experiments. Methods for measuring a vehicle’s aspect angle and backscatter intensity are introduced. The experimental FP SAR images are used to analyze the detectability, which is affected by factors such as vehicle size, vehicle shape, and aspect angle. Moreover, a new metric to improve vehicle detectability in FP SAR images is proposed and compared with the well-known intensity metric. The experimental results show that shape is a crucial factor in affecting the backscatter intensity of vehicles, which also oscillates with varying aspect angle. If the size of a vehicle is smaller than the SAR image resolution, using the intensity metric would result in low detectability. However, it could be improved in an FP SAR image by using the proposed metric. Compared with the intensity metric, the overall detectability is improved from 72% to 90% in our experiments. Therefore, this study indicates that FP SAR images have the ability to detect stationary vehicles on the road and are meaningful for traffic monitoring.

  12. Hybrid Geometric Calibration Method for Multi-Platform Spaceborne SAR Image with Sparse Gcps

    Science.gov (United States)

    Lv, G.; Tang, X.; Ai, B.; Li, T.; Chen, Q.

    2018-04-01

    Geometric calibration is able to provide high-accuracy geometric coordinates of spaceborne SAR image through accurate geometric parameters in the Range-Doppler model by ground control points (GCPs). However, it is very difficult to obtain GCPs that covering large-scale areas, especially in the mountainous regions. In addition, the traditional calibration method is only used for single platform SAR images and can't support the hybrid geometric calibration for multi-platform images. To solve the above problems, a hybrid geometric calibration method for multi-platform spaceborne SAR images with sparse GCPs is proposed in this paper. First, we calibrate the master image that contains GCPs. Secondly, the point tracking algorithm is used to obtain the tie points (TPs) between the master and slave images. Finally, we calibrate the slave images using TPs as the GCPs. We take the Beijing-Tianjin- Hebei region as an example to study SAR image hybrid geometric calibration method using 3 TerraSAR-X images, 3 TanDEM-X images and 5 GF-3 images covering more than 235 kilometers in the north-south direction. Geometric calibration of all images is completed using only 5 GCPs. The GPS data extracted from GNSS receiver are used to assess the plane accuracy after calibration. The results after geometric calibration with sparse GCPs show that the geometric positioning accuracy is 3 m for TSX/TDX images and 7.5 m for GF-3 images.

  13. The Establishment of the SAR images database System Based on Oracle and ArcSDE

    International Nuclear Information System (INIS)

    Zhou, Jijin; Li, Zhen; Chen, Quan; Tian, Bangsen

    2014-01-01

    Synthetic aperture radar is a kind of microwave imaging system, and has the advantages of multi-band, multi-polarization and multi-angle. At present, there is no SAR images database system based on typical features. For solving problems in interpretation and identification, a new SAR images database system of the typical features is urgent in the current development need. In this article, a SAR images database system based on Oracle and ArcSDE was constructed. The main works involving are as follows: (1) SAR image data was calibrated and corrected geometrically and geometrically. Besides, the fully polarimetric image was processed as the coherency matrix[T] to preserve the polarimetric information. (2) After analyzing multiple space borne SAR images, the metadata table was defined as: IMAGEID; Name of features; Latitude and Longitude; Sensor name; Range and Azimuth resolution etc. (3) Through the comparison between GeoRaster and ArcSDE, result showed ArcSDE is a more appropriate technology to store images in a central database. The System stores and manages multisource SAR image data well, reflects scattering, geometry, polarization, band and angle characteristics, and combines with analysis of the managed objects and service objects of the database as well as focuses on constructing SAR image system in the aspects of data browse and data retrieval. According the analysis of characteristics of SAR images such as scattering, polarization, incident angle and wave band information, different weights can be given to these characteristics. Then an interpreted tool is formed to provide an efficient platform for interpretation

  14. SAR image dataset of military ground targets with multiple poses for ATR

    Science.gov (United States)

    Belloni, Carole; Balleri, Alessio; Aouf, Nabil; Merlet, Thomas; Le Caillec, Jean-Marc

    2017-10-01

    Automatic Target Recognition (ATR) is the task of automatically detecting and classifying targets. Recognition using Synthetic Aperture Radar (SAR) images is interesting because SAR images can be acquired at night and under any weather conditions, whereas optical sensors operating in the visible band do not have this capability. Existing SAR ATR algorithms have mostly been evaluated using the MSTAR dataset.1 The problem with the MSTAR is that some of the proposed ATR methods have shown good classification performance even when targets were hidden,2 suggesting the presence of a bias in the dataset. Evaluations of SAR ATR techniques are currently challenging due to the lack of publicly available data in the SAR domain. In this paper, we present a high resolution SAR dataset consisting of images of a set of ground military target models taken at various aspect angles, The dataset can be used for a fair evaluation and comparison of SAR ATR algorithms. We applied the Inverse Synthetic Aperture Radar (ISAR) technique to echoes from targets rotating on a turntable and illuminated with a stepped frequency waveform. The targets in the database consist of four variants of two 1.7m-long models of T-64 and T-72 tanks. The gun, the turret position and the depression angle are varied to form 26 different sequences of images. The emitted signal spanned the frequency range from 13 GHz to 18 GHz to achieve a bandwidth of 5 GHz sampled with 4001 frequency points. The resolution obtained with respect to the size of the model targets is comparable to typical values obtained using SAR airborne systems. Single polarized images (Horizontal-Horizontal) are generated using the backprojection algorithm.3 A total of 1480 images are produced using a 20° integration angle. The images in the dataset are organized in a suggested training and testing set to facilitate a standard evaluation of SAR ATR algorithms.

  15. Accelerating Spaceborne SAR Imaging Using Multiple CPU/GPU Deep Collaborative Computing

    Directory of Open Access Journals (Sweden)

    Fan Zhang

    2016-04-01

    Full Text Available With the development of synthetic aperture radar (SAR technologies in recent years, the huge amount of remote sensing data brings challenges for real-time imaging processing. Therefore, high performance computing (HPC methods have been presented to accelerate SAR imaging, especially the GPU based methods. In the classical GPU based imaging algorithm, GPU is employed to accelerate image processing by massive parallel computing, and CPU is only used to perform the auxiliary work such as data input/output (IO. However, the computing capability of CPU is ignored and underestimated. In this work, a new deep collaborative SAR imaging method based on multiple CPU/GPU is proposed to achieve real-time SAR imaging. Through the proposed tasks partitioning and scheduling strategy, the whole image can be generated with deep collaborative multiple CPU/GPU computing. In the part of CPU parallel imaging, the advanced vector extension (AVX method is firstly introduced into the multi-core CPU parallel method for higher efficiency. As for the GPU parallel imaging, not only the bottlenecks of memory limitation and frequent data transferring are broken, but also kinds of optimized strategies are applied, such as streaming, parallel pipeline and so on. Experimental results demonstrate that the deep CPU/GPU collaborative imaging method enhances the efficiency of SAR imaging on single-core CPU by 270 times and realizes the real-time imaging in that the imaging rate outperforms the raw data generation rate.

  16. Accelerating Spaceborne SAR Imaging Using Multiple CPU/GPU Deep Collaborative Computing.

    Science.gov (United States)

    Zhang, Fan; Li, Guojun; Li, Wei; Hu, Wei; Hu, Yuxin

    2016-04-07

    With the development of synthetic aperture radar (SAR) technologies in recent years, the huge amount of remote sensing data brings challenges for real-time imaging processing. Therefore, high performance computing (HPC) methods have been presented to accelerate SAR imaging, especially the GPU based methods. In the classical GPU based imaging algorithm, GPU is employed to accelerate image processing by massive parallel computing, and CPU is only used to perform the auxiliary work such as data input/output (IO). However, the computing capability of CPU is ignored and underestimated. In this work, a new deep collaborative SAR imaging method based on multiple CPU/GPU is proposed to achieve real-time SAR imaging. Through the proposed tasks partitioning and scheduling strategy, the whole image can be generated with deep collaborative multiple CPU/GPU computing. In the part of CPU parallel imaging, the advanced vector extension (AVX) method is firstly introduced into the multi-core CPU parallel method for higher efficiency. As for the GPU parallel imaging, not only the bottlenecks of memory limitation and frequent data transferring are broken, but also kinds of optimized strategies are applied, such as streaming, parallel pipeline and so on. Experimental results demonstrate that the deep CPU/GPU collaborative imaging method enhances the efficiency of SAR imaging on single-core CPU by 270 times and realizes the real-time imaging in that the imaging rate outperforms the raw data generation rate.

  17. An Integrated Processing Strategy for Mountain Glacier Motion Monitoring Based on SAR Images

    Science.gov (United States)

    Ruan, Z.; Yan, S.; Liu, G.; LV, M.

    2017-12-01

    Mountain glacier dynamic variables are important parameters in studies of environment and climate change in High Mountain Asia. Due to the increasing events of abnormal glacier-related hazards, research of monitoring glacier movements has attracted more interest during these years. Glacier velocities are sensitive and changing fast under complex conditions of high mountain regions, which implies that analysis of glacier dynamic changes requires comprehensive and frequent observations with relatively high accuracy. Synthetic aperture radar (SAR) has been successfully exploited to detect glacier motion in a number of previous studies, usually with pixel-tracking and interferometry methods. However, the traditional algorithms applied to mountain glacier regions are constrained by the complex terrain and diverse glacial motion types. Interferometry techniques are prone to fail in mountain glaciers because of their narrow size and the steep terrain, while pixel-tracking algorithm, which is more robust in high mountain areas, is subject to accuracy loss. In order to derive glacier velocities continually and efficiently, we propose a modified strategy to exploit SAR data information for mountain glaciers. In our approach, we integrate a set of algorithms for compensating non-glacial-motion-related signals which exist in the offset values retrieved by sub-pixel cross-correlation of SAR image pairs. We exploit modified elastic deformation model to remove the offsets associated with orbit and sensor attitude, and for the topographic residual offset we utilize a set of operations including DEM-assisted compensation algorithm and wavelet-based algorithm. At the last step of the flow, an integrated algorithm combining phase and intensity information of SAR images will be used to improve regional motion results failed in cross-correlation related processing. The proposed strategy is applied to the West Kunlun Mountain and Muztagh Ata region in western China using ALOS

  18. SAR image classification based on CNN in real and simulation datasets

    Science.gov (United States)

    Peng, Lijiang; Liu, Ming; Liu, Xiaohua; Dong, Liquan; Hui, Mei; Zhao, Yuejin

    2018-04-01

    Convolution neural network (CNN) has made great success in image classification tasks. Even in the field of synthetic aperture radar automatic target recognition (SAR-ATR), state-of-art results has been obtained by learning deep representation of features on the MSTAR benchmark. However, the raw data of MSTAR have shortcomings in training a SAR-ATR model because of high similarity in background among the SAR images of each kind. This indicates that the CNN would learn the hierarchies of features of backgrounds as well as the targets. To validate the influence of the background, some other SAR images datasets have been made which contains the simulation SAR images of 10 manufactured targets such as tank and fighter aircraft, and the backgrounds of simulation SAR images are sampled from the whole original MSTAR data. The simulation datasets contain the dataset that the backgrounds of each kind images correspond to the one kind of backgrounds of MSTAR targets or clutters and the dataset that each image shares the random background of whole MSTAR targets or clutters. In addition, mixed datasets of MSTAR and simulation datasets had been made to use in the experiments. The CNN architecture proposed in this paper are trained on all datasets mentioned above. The experimental results shows that the architecture can get high performances on all datasets even the backgrounds of the images are miscellaneous, which indicates the architecture can learn a good representation of the targets even though the drastic changes on background.

  19. High Resolution SAR Imaging Employing Geometric Features for Extracting Seismic Damage of Buildings

    Science.gov (United States)

    Cui, L. P.; Wang, X. P.; Dou, A. X.; Ding, X.

    2018-04-01

    Synthetic Aperture Radar (SAR) image is relatively easy to acquire but difficult for interpretation. This paper probes how to identify seismic damage of building using geometric features of SAR. The SAR imaging geometric features of buildings, such as the high intensity layover, bright line induced by double bounce backscattering and dark shadow is analysed, and show obvious differences texture features of homogeneity, similarity and entropy in combinatorial imaging geometric regions between the un-collapsed and collapsed buildings in airborne SAR images acquired in Yushu city damaged by 2010 Ms7.1 Yushu, Qinghai, China earthquake, which implicates a potential capability to discriminate collapsed and un-collapsed buildings from SAR image. Study also shows that the proportion of highlight (layover & bright line) area (HA) is related to the seismic damage degree, thus a SAR image damage index (SARDI), which related to the ratio of HA to the building occupation are of building in a street block (SA), is proposed. While HA is identified through feature extraction with high-pass and low-pass filtering of SAR image in frequency domain. A partial region with 58 natural street blocks in the Yushu City are selected as study area. Then according to the above method, HA is extracted, SARDI is then calculated and further classified into 3 classes. The results show effective through validation check with seismic damage classes interpreted artificially from post-earthquake airborne high resolution optical image, which shows total classification accuracy 89.3 %, Kappa coefficient 0.79 and identical to the practical seismic damage distribution. The results are also compared and discussed with the building damage identified from SAR image available by other authors.

  20. a Statistical Texture Feature for Building Collapse Information Extraction of SAR Image

    Science.gov (United States)

    Li, L.; Yang, H.; Chen, Q.; Liu, X.

    2018-04-01

    Synthetic Aperture Radar (SAR) has become one of the most important ways to extract post-disaster collapsed building information, due to its extreme versatility and almost all-weather, day-and-night working capability, etc. In view of the fact that the inherent statistical distribution of speckle in SAR images is not used to extract collapsed building information, this paper proposed a novel texture feature of statistical models of SAR images to extract the collapsed buildings. In the proposed feature, the texture parameter of G0 distribution from SAR images is used to reflect the uniformity of the target to extract the collapsed building. This feature not only considers the statistical distribution of SAR images, providing more accurate description of the object texture, but also is applied to extract collapsed building information of single-, dual- or full-polarization SAR data. The RADARSAT-2 data of Yushu earthquake which acquired on April 21, 2010 is used to present and analyze the performance of the proposed method. In addition, the applicability of this feature to SAR data with different polarizations is also analysed, which provides decision support for the data selection of collapsed building information extraction.

  1. Combined DEM Extration Method from StereoSAR and InSAR

    Science.gov (United States)

    Zhao, Z.; Zhang, J. X.; Duan, M. Y.; Huang, G. M.; Yang, S. C.

    2015-06-01

    A pair of SAR images acquired from different positions can be used to generate digital elevation model (DEM). Two techniques exploiting this characteristic have been introduced: stereo SAR and interferometric SAR. They permit to recover the third dimension (topography) and, at the same time, to identify the absolute position (geolocation) of pixels included in the imaged area, thus allowing the generation of DEMs. In this paper, StereoSAR and InSAR combined adjustment model are constructed, and unify DEM extraction from InSAR and StereoSAR into the same coordinate system, and then improve three dimensional positioning accuracy of the target. We assume that there are four images 1, 2, 3 and 4. One pair of SAR images 1,2 meet the required conditions for InSAR technology, while the other pair of SAR images 3,4 can form stereo image pairs. The phase model is based on InSAR rigorous imaging geometric model. The master image 1 and the slave image 2 will be used in InSAR processing, but the slave image 2 is only used in the course of establishment, and the pixels of the slave image 2 are relevant to the corresponding pixels of the master image 1 through image coregistration coefficient, and it calculates the corresponding phase. It doesn't require the slave image in the construction of the phase model. In Range-Doppler (RD) model, the range equation and Doppler equation are a function of target geolocation, while in the phase equation, the phase is also a function of target geolocation. We exploit combined adjustment model to deviation of target geolocation, thus the problem of target solution is changed to solve three unkonwns through seven equations. The model was tested for DEM extraction under spaceborne InSAR and StereoSAR data and compared with InSAR and StereoSAR methods respectively. The results showed that the model delivered a better performance on experimental imagery and can be used for DEM extraction applications.

  2. Discrimination of Oil Slicks and Lookalikes in Polarimetric SAR Images Using CNN

    OpenAIRE

    Guo, Hao; Wu, Danni; An, Jubai

    2017-01-01

    Oil slicks and lookalikes (e.g., plant oil and oil emulsion) all appear as dark areas in polarimetric Synthetic Aperture Radar (SAR) images and are highly heterogeneous, so it is very difficult to use a single feature that can allow classification of dark objects in polarimetric SAR images as oil slicks or lookalikes. We established multi-feature fusion to support the discrimination of oil slicks and lookalikes. In the paper, simple discrimination analysis is used to rationalize a preferred f...

  3. Pixel Classification of SAR ice images using ANFIS-PSO Classifier

    Directory of Open Access Journals (Sweden)

    G. Vasumathi

    2016-12-01

    Full Text Available Synthetic Aperture Radar (SAR is playing a vital role in taking extremely high resolution radar images. It is greatly used to monitor the ice covered ocean regions. Sea monitoring is important for various purposes which includes global climate systems and ship navigation. Classification on the ice infested area gives important features which will be further useful for various monitoring process around the ice regions. Main objective of this paper is to classify the SAR ice image that helps in identifying the regions around the ice infested areas. In this paper three stages are considered in classification of SAR ice images. It starts with preprocessing in which the speckled SAR ice images are denoised using various speckle removal filters; comparison is made on all these filters to find the best filter in speckle removal. Second stage includes segmentation in which different regions are segmented using K-means and watershed segmentation algorithms; comparison is made between these two algorithms to find the best in segmenting SAR ice images. The last stage includes pixel based classification which identifies and classifies the segmented regions using various supervised learning classifiers. The algorithms includes Back propagation neural networks (BPN, Fuzzy Classifier, Adaptive Neuro Fuzzy Inference Classifier (ANFIS classifier and proposed ANFIS with Particle Swarm Optimization (PSO classifier; comparison is made on all these classifiers to propose which classifier is best suitable for classifying the SAR ice image. Various evaluation metrics are performed separately at all these three stages.

  4. Wind mapping offshore in coastal Mediterranean area using SAR images

    DEFF Research Database (Denmark)

    Calaudi, Rosamaria; Arena, Felice; Badger, Merete

    Satellite observations of the ocean surface from Synthetic Aperture Radars (SAR) provide information about the spatial wind variability over large areas. This is of special interest in the Mediterranean, where spatial wind information is only provided by sparse buoys, often with long periods...... of missing data. Here, we focus on evaluating the use of SAR for offshore wind mapping. Preliminary results from the analysis of SAR-based ocean winds in Mediterranean areas show interesting large scale wind flow features consistent with results from previous studies using numerical models and space borne...

  5. RAMP AMM-1 SAR Image Mosaic of Antarctica

    Data.gov (United States)

    National Aeronautics and Space Administration — In 1997, the Canadian RADARSAT-1 satellite was rotated in orbit so that its Synthetic Aperture Radar (SAR) antenna looked south towards Antarctica. This permitted...

  6. 3D Tomographic SAR Imaging in Densely Vegetated Mountainous Rural Areas in China and Sweden

    Science.gov (United States)

    Feng, L.; Muller, J. P., , Prof

    2017-12-01

    3D SAR Tomography (TomoSAR) and 4D SAR Differential Tomography (Diff-TomoSAR) exploit multi-baseline SAR data stacks to create an important new innovation of SAR Interferometry, to unscramble complex scenes with multiple scatterers mapped into the same SAR cell. In addition to this 3-D shape reconstruction and deformation solution in complex urban/infrastructure areas, and recent cryospheric ice investigations, emerging tomographic remote sensing applications include forest applications, e.g. tree height and biomass estimation, sub-canopy topographic mapping, and even search, rescue and surveillance. However, these scenes are characterized by temporal decorrelation of scatterers, orbital, tropospheric and ionospheric phase distortion and an open issue regarding possible height blurring and accuracy losses for TomoSAR applications particularly in densely vegetated mountainous rural areas. Thus, it is important to develop solutions for temporal decorrelation, orbital, tropospheric and ionospheric phase distortion.We report here on 3D imaging (especially in vertical layers) over densely vegetated mountainous rural areas using 3-D SAR imaging (SAR tomography) derived from data stacks of X-band COSMO-SkyMed Spotlight and L band ALOS-1 PALSAR data stacks over Dujiangyan Dam, Sichuan, China and L and P band airborne SAR data (BioSAR 2008 - ESA) in the Krycklan river catchment, Northern Sweden. The new TanDEM-X 12m DEM is used to assist co - registration of all the data stacks over China first. Then, atmospheric correction is being assessed using weather model data such as ERA-I, MERRA, MERRA-2, WRF; linear phase-topography correction and MODIS spectrometer correction will be compared and ionospheric correction methods are discussed to remove tropospheric and ionospheric delay. Then the new TomoSAR method with the TanDEM-X 12m DEM is described to obtain the number of scatterers inside each pixel, the scattering amplitude and phase of each scatterer and finally extract

  7. APPLICATION OF FUSION WITH SAR AND OPTICAL IMAGES IN LAND USE CLASSIFICATION BASED ON SVM

    Directory of Open Access Journals (Sweden)

    C. Bao

    2012-07-01

    Full Text Available As the increment of remote sensing data with multi-space resolution, multi-spectral resolution and multi-source, data fusion technologies have been widely used in geological fields. Synthetic Aperture Radar (SAR and optical camera are two most common sensors presently. The multi-spectral optical images express spectral features of ground objects, while SAR images express backscatter information. Accuracy of the image classification could be effectively improved fusing the two kinds of images. In this paper, Terra SAR-X images and ALOS multi-spectral images were fused for land use classification. After preprocess such as geometric rectification, radiometric rectification noise suppression and so on, the two kind images were fused, and then SVM model identification method was used for land use classification. Two different fusion methods were used, one is joining SAR image into multi-spectral images as one band, and the other is direct fusing the two kind images. The former one can raise the resolution and reserve the texture information, and the latter can reserve spectral feature information and improve capability of identifying different features. The experiment results showed that accuracy of classification using fused images is better than only using multi-spectral images. Accuracy of classification about roads, habitation and water bodies was significantly improved. Compared to traditional classification method, the method of this paper for fused images with SVM classifier could achieve better results in identifying complicated land use classes, especially for small pieces ground features.

  8. Correcting Spatial Variance of RCM for GEO SAR Imaging Based on Time-Frequency Scaling

    Science.gov (United States)

    Yu, Ze; Lin, Peng; Xiao, Peng; Kang, Lihong; Li, Chunsheng

    2016-01-01

    Compared with low-Earth orbit synthetic aperture radar (SAR), a geosynchronous (GEO) SAR can have a shorter revisit period and vaster coverage. However, relative motion between this SAR and targets is more complicated, which makes range cell migration (RCM) spatially variant along both range and azimuth. As a result, efficient and precise imaging becomes difficult. This paper analyzes and models spatial variance for GEO SAR in the time and frequency domains. A novel algorithm for GEO SAR imaging with a resolution of 2 m in both the ground cross-range and range directions is proposed, which is composed of five steps. The first is to eliminate linear azimuth variance through the first azimuth time scaling. The second is to achieve RCM correction and range compression. The third is to correct residual azimuth variance by the second azimuth time-frequency scaling. The fourth and final steps are to accomplish azimuth focusing and correct geometric distortion. The most important innovation of this algorithm is implementation of the time-frequency scaling to correct high-order azimuth variance. As demonstrated by simulation results, this algorithm can accomplish GEO SAR imaging with good and uniform imaging quality over the entire swath. PMID:27428974

  9. Feature Fusion Based Road Extraction for HJ-1-C SAR Image

    Directory of Open Access Journals (Sweden)

    Lu Ping-ping

    2014-06-01

    Full Text Available Road network extraction in SAR images is one of the key tasks of military and civilian technologies. To solve the issues of road extraction of HJ-1-C SAR images, a road extraction algorithm is proposed based on the integration of ratio and directional information. Due to the characteristic narrow dynamic range and low signal to noise ratio of HJ-1-C SAR images, a nonlinear quantization and an image filtering method based on a multi-scale autoregressive model are proposed here. A road extraction algorithm based on information fusion, which considers ratio and direction information, is also proposed. By processing Radon transformation, main road directions can be extracted. Cross interferences can be suppressed, and the road continuity can then be improved by the main direction alignment and secondary road extraction. The HJ-1-C SAR image acquired in Wuhan, China was used to evaluate the proposed method. The experimental results show good performance with correctness (80.5% and quality (70.1% when applied to a SAR image with complex content.

  10. First Image Products from EcoSAR - Osa Peninsula, Costa Rica

    Science.gov (United States)

    Osmanoglu, Batuhan; Lee, SeungKuk; Rincon, Rafael; Fatuyinbo, Lola; Bollian, Tobias; Ranson, Jon

    2016-01-01

    Designed especially for forest ecosystem studies, EcoSAR employs state-of-the-art digital beamforming technology to generate wide-swath, high-resolution imagery. EcoSARs dual antenna single-pass imaging capability eliminates temporal decorrelation from polarimetric and interferometric analysis, increasing the signal strength and simplifying models used to invert forest structure parameters. Antennae are physically separated by 25 meters providing single pass interferometry. In this mode the radar is most sensitive to topography. With 32 active transmit and receive channels, EcoSARs digital beamforming is an order of magnitude more versatile than the digital beamforming employed on the upcoming NISAR mission. EcoSARs long wavelength (P-band, 435 MHz, 69 cm) measurements can be used to simulate data products for ESAs future BIOMASS mission, allowing scientists to develop algorithms before the launch of the satellite. EcoSAR can also be deployed to collect much needed data where BIOMASS satellite wont be allowed to collect data (North America, Europe and Arctic), filling in the gaps to keep a watchful eye on the global carbon cycle. EcoSAR can play a vital role in monitoring, reporting and verification schemes of internationals programs such as UN-REDD (United Nations Reducing Emissions from Deforestation and Degradation) benefiting global society. EcoSAR was developed and flown with support from NASA Earth Sciences Technology Offices Instrument Incubator Program.

  11. Implementation of dictionary pair learning algorithm for image quality improvement

    Science.gov (United States)

    Vimala, C.; Aruna Priya, P.

    2018-04-01

    This paper proposes an image denoising on dictionary pair learning algorithm. Visual information is transmitted in the form of digital images is becoming a major method of communication in the modern age, but the image obtained after transmissions is often corrupted with noise. The received image needs processing before it can be used in applications. Image denoising involves the manipulation of the image data to produce a visually high quality image.

  12. Azimuth Ambiguities Removal in Littoral Zones Based on Multi-Temporal SAR Images

    Directory of Open Access Journals (Sweden)

    Xiangguang Leng

    2017-08-01

    Full Text Available Synthetic aperture radar (SAR is one of the most important techniques for ocean monitoring. Azimuth ambiguities are a real problem in SAR images today, which can cause performance degradation in SAR ocean applications. In particular, littoral zones can be strongly affected by land-based sources, whereas they are usually regions of interest (ROI. Given the presence of complexity and diversity in littoral zones, azimuth ambiguities removal is a tough problem. As SAR sensors can have a repeat cycle, multi-temporal SAR images provide new insight into this problem. A method for azimuth ambiguities removal in littoral zones based on multi-temporal SAR images is proposed in this paper. The proposed processing chain includes co-registration, local correlation, binarization, masking, and restoration steps. It is designed to remove azimuth ambiguities caused by fixed land-based sources. The idea underlying the proposed method is that sea surface is dynamic, whereas azimuth ambiguities caused by land-based sources are constant. Thus, the temporal consistence of azimuth ambiguities is higher than sea clutter. It opens up the possibilities to use multi-temporal SAR data to remove azimuth ambiguities. The design of the method and the experimental procedure are based on images from the Sentinel data hub of Europe Space Agency (ESA. Both Interferometric Wide Swath (IW and Stripmap (SM mode images are taken into account to validate the proposed method. This paper also presents two RGB composition methods for better azimuth ambiguities visualization. Experimental results show that the proposed method can remove azimuth ambiguities in littoral zones effectively.

  13. STUDY ON THE CLASSIFICATION OF GAOFEN-3 POLARIMETRIC SAR IMAGES USING DEEP NEURAL NETWORK

    Directory of Open Access Journals (Sweden)

    J. Zhang

    2018-04-01

    Full Text Available Polarimetric Synthetic Aperture Radar(POLSAR) imaging principle determines that the image quality will be affected by speckle noise. So the recognition accuracy of traditional image classification methods will be reduced by the effect of this interference. Since the date of submission, Deep Convolutional Neural Network impacts on the traditional image processing methods and brings the field of computer vision to a new stage with the advantages of a strong ability to learn deep features and excellent ability to fit large datasets. Based on the basic characteristics of polarimetric SAR images, the paper studied the types of the surface cover by using the method of Deep Learning. We used the fully polarimetric SAR features of different scales to fuse RGB images to the GoogLeNet model based on convolution neural network Iterative training, and then use the trained model to test the classification of data validation.First of all, referring to the optical image, we mark the surface coverage type of GF-3 POLSAR image with 8m resolution, and then collect the samples according to different categories. To meet the GoogLeNet model requirements of 256 × 256 pixel image input and taking into account the lack of full-resolution SAR resolution, the original image should be pre-processed in the process of resampling. In this paper, POLSAR image slice samples of different scales with sampling intervals of 2 m and 1 m to be trained separately and validated by the verification dataset. Among them, the training accuracy of GoogLeNet model trained with resampled 2-m polarimetric SAR image is 94.89 %, and that of the trained SAR image with resampled 1 m is 92.65 %.

  14. Study on the Classification of GAOFEN-3 Polarimetric SAR Images Using Deep Neural Network

    Science.gov (United States)

    Zhang, J.; Zhang, J.; Zhao, Z.

    2018-04-01

    Polarimetric Synthetic Aperture Radar (POLSAR) imaging principle determines that the image quality will be affected by speckle noise. So the recognition accuracy of traditional image classification methods will be reduced by the effect of this interference. Since the date of submission, Deep Convolutional Neural Network impacts on the traditional image processing methods and brings the field of computer vision to a new stage with the advantages of a strong ability to learn deep features and excellent ability to fit large datasets. Based on the basic characteristics of polarimetric SAR images, the paper studied the types of the surface cover by using the method of Deep Learning. We used the fully polarimetric SAR features of different scales to fuse RGB images to the GoogLeNet model based on convolution neural network Iterative training, and then use the trained model to test the classification of data validation.First of all, referring to the optical image, we mark the surface coverage type of GF-3 POLSAR image with 8m resolution, and then collect the samples according to different categories. To meet the GoogLeNet model requirements of 256 × 256 pixel image input and taking into account the lack of full-resolution SAR resolution, the original image should be pre-processed in the process of resampling. In this paper, POLSAR image slice samples of different scales with sampling intervals of 2 m and 1 m to be trained separately and validated by the verification dataset. Among them, the training accuracy of GoogLeNet model trained with resampled 2-m polarimetric SAR image is 94.89 %, and that of the trained SAR image with resampled 1 m is 92.65 %.

  15. Individual Building Extraction from TerraSAR-X Images Based on Ontological Semantic Analysis

    Directory of Open Access Journals (Sweden)

    Rong Gui

    2016-08-01

    Full Text Available Accurate building information plays a crucial role for urban planning, human settlements and environmental management. Synthetic aperture radar (SAR images, which deliver images with metric resolution, allow for analyzing and extracting detailed information on urban areas. In this paper, we consider the problem of extracting individual buildings from SAR images based on domain ontology. By analyzing a building scattering model with different orientations and structures, the building ontology model is set up to express multiple characteristics of individual buildings. Under this semantic expression framework, an object-based SAR image segmentation method is adopted to provide homogeneous image objects, and three categories of image object features are extracted. Semantic rules are implemented by organizing image object features, and the individual building objects expression based on an ontological semantic description is formed. Finally, the building primitives are used to detect buildings among the available image objects. Experiments on TerraSAR-X images of Foshan city, China, with a spatial resolution of 1.25 m × 1.25 m, have shown the total extraction rates are above 84%. The results indicate the ontological semantic method can exactly extract flat-roof and gable-roof buildings larger than 250 pixels with different orientations.

  16. Offshore Wind Resource Estimation in Mediterranean Area Using SAR Images

    DEFF Research Database (Denmark)

    Calaudi, Rosamaria; Arena, Felice; Badger, Merete

    Satellite observations of the ocean surface from Synthetic Aperture Radars (SAR) provide information about the spatial wind variability over large areas. This is of special interest in the Mediterranean, where spatial wind information is only provided by sparse buoys, often with long periods of m...

  17. Mechanisms of SAR Imaging of Shallow Water Topography of the Subei Bank

    Directory of Open Access Journals (Sweden)

    Shuangshang Zhang

    2017-11-01

    Full Text Available In this study, the C-band radar backscatter features of the shallow water topography of Subei Bank in the Southern Yellow Sea are statistically investigated using 25 ENVISAT (Environmental Satellite ASAR (advanced synthetic aperture radar and ERS-2 (European Remote-Sensing Satellite-2 SAR images acquired between 2006 and 2010. Different bathymetric features are found on SAR imagery under different sea states. Under low to moderate wind speeds (3.1~6.3 m/s, the wide bright patterns with an average width of 6 km are shown and correspond to sea surface imprints of tidal channels formed by two adjacent sand ridges, while the sand ridges appear as narrower (only 1 km wide, fingerlike, quasi-linear features on SAR imagery in high winds (5.4~13.9 m/s. Two possible SAR imaging mechanisms of coastal bathymetry are proposed in the case where the flow is parallel to the major axes of tidal channels or sand ridges. When the surface Ekman current is opposite to the mean tidal flow, two vortexes will converge at the central line of the tidal channel in the upper layer and form a convergent zone over the sea surface. Thus, the tidal channels are shown as wide and bright stripes on SAR imagery. For the SAR imaging of sand ridges, all the SAR images were acquired at low tidal levels. In this case, the ocean surface waves are possibly broken up under strong winds when propagating from deep water to the shallower water, which leads to an increase of surface roughness over the sand ridges.

  18. IMAGE ENHANCEMENT AND SPECKLE REDUCTION OF FULL POLARIMETRIC SAR DATA BY GAUSSIAN MARKOV RANDOM FIELD

    Directory of Open Access Journals (Sweden)

    M. Mahdian

    2013-09-01

    Full Text Available In recent years, the use of Polarimetric Synthetic Aperture Radar (PolSAR data in different applications dramatically has been increased. In SAR imagery an interference phenomenon with random behavior exists which is called speckle noise. The interpretation of data encounters some troubles due to the presence of speckle which can be considered as a multiplicative noise affecting all coherent imaging systems. Indeed, speckle degrade radiometric resolution of PolSAR images, therefore it is needful to perform speckle filtering on the SAR data type. Markov Random Field (MRF has proven to be a powerful method for drawing out eliciting contextual information from remotely sensed images. In the present paper, a probability density function (PDF, which is fitted well with the PolSAR data based on the goodness-of-fit test, is first obtained for the pixel-wise analysis. Then the contextual smoothing is achieved with the MRF method. This novel speckle reduction method combines an advanced statistical distribution with spatial contextual information for PolSAR data. These two parts of information are combined based on weighted summation of pixel-wise and contextual models. This approach not only preserves edge information in the images, but also improves signal-to-noise ratio of the results. The method maintains the mean value of original signal in the homogenous areas and preserves the edges of features in the heterogeneous regions. Experiments on real medium resolution ALOS data from Tehran, and also high resolution full polarimetric SAR data over the Oberpfaffenhofen test-site in Germany, demonstrate the effectiveness of the algorithm compared with well-known despeckling methods.

  19. The Generalized Gamma-DBN for High-Resolution SAR Image Classification

    Directory of Open Access Journals (Sweden)

    Zhiqiang Zhao

    2018-06-01

    Full Text Available With the increase of resolution, effective characterization of synthetic aperture radar (SAR image becomes one of the most critical problems in many earth observation applications. Inspired by deep learning and probability mixture models, a generalized Gamma deep belief network (g Γ-DBN is proposed for SAR image statistical modeling and land-cover classification in this work. Specifically, a generalized Gamma-Bernoulli restricted Boltzmann machine (gΓB-RBM is proposed to capture high-order statistical characterizes from SAR images after introducing the generalized Gamma distribution. After stacking the g Γ B-RBM and several standard binary RBMs in a hierarchical manner, a gΓ-DBN is constructed to learn high-level representation of different SAR land-covers. Finally, a discriminative neural network is constructed by adding an additional predict layer for different land-covers over the constructed deep structure. Performance of the proposed approach is evaluated via several experiments on some high-resolution SAR image patch sets and two large-scale scenes which are captured by ALOS PALSAR-2 and COSMO-SkyMed satellites respectively.

  20. Classification of agricultural fields using time series of dual polarimetry TerraSAR-X images

    Directory of Open Access Journals (Sweden)

    S. Mirzaee

    2014-10-01

    Full Text Available Due to its special imaging characteristics, Synthetic Aperture Radar (SAR has become an important source of information for a variety of remote sensing applications dealing with environmental changes. SAR images contain information about both phase and intensity in different polarization modes, making them sensitive to geometrical structure and physical properties of the targets such as dielectric and plant water content. In this study we investigate multi temporal changes occurring to different crop types due to phenological changes using high-resolution TerraSAR-X imagers. The dataset includes 17 dual-polarimetry TSX data acquired from June 2012 to August 2013 in Lorestan province, Iran. Several features are extracted from polarized data and classified using support vector machine (SVM classifier. Training samples and different features employed in classification are also assessed in the study. Results show a satisfactory accuracy for classification which is about 0.91 in kappa coefficient.

  1. A Novel Sidelobe Reduction Algorithm Based on Two-Dimensional Sidelobe Correction Using D-SVA for Squint SAR Images

    Directory of Open Access Journals (Sweden)

    Min Liu

    2018-03-01

    Full Text Available Sidelobe reduction is a very primary task for synthetic aperture radar (SAR images. Various methods have been proposed for broadside SAR, which can suppress the sidelobes effectively while maintaining high image resolution at the same time. Alternatively, squint SAR, especially highly squint SAR, has emerged as an important tool that provides more mobility and flexibility and has become a focus of recent research studies. One of the research challenges for squint SAR is how to resolve the severe range-azimuth coupling of echo signals. Unlike broadside SAR images, the range and azimuth sidelobes of the squint SAR images no longer locate on the principal axes with high probability. Thus the spatially variant apodization (SVA filters could hardly get all the sidelobe information, and hence the sidelobe reduction process is not optimal. In this paper, we present an improved algorithm called double spatially variant apodization (D-SVA for better sidelobe suppression. Satisfactory sidelobe reduction results are achieved with the proposed algorithm by comparing the squint SAR images to the broadside SAR images. Simulation results also demonstrate the reliability and efficiency of the proposed method.

  2. Time domain SAR raw data simulation using CST and image focusing of 3D objects

    Science.gov (United States)

    Saeed, Adnan; Hellwich, Olaf

    2017-10-01

    This paper presents the use of a general purpose electromagnetic simulator, CST, to simulate realistic synthetic aperture radar (SAR) raw data of three-dimensional objects. Raw data is later focused in MATLAB using range-doppler algorithm. Within CST Microwave Studio a replica of TerraSAR-X chirp signal is incident upon a modeled Corner Reflector (CR) whose design and material properties are identical to that of the real one. Defining mesh and other appropriate settings reflected wave is measured at several distant points within a line parallel to the viewing direction. This is analogous to an array antenna and is synthesized to create a long aperture for SAR processing. The time domain solver in CST is based on the solution of differential form of Maxwells equations. Exported data from CST is arranged into a 2-d matrix of axis range and azimuth. Hilbert transform is applied to convert the real signal to complex data with phase information. Range compression, range cell migration correction (RCMC), and azimuth compression are applied in time domain to obtain the final SAR image. This simulation can provide valuable information to clarify which real world objects cause images suitable for high accuracy identification in the SAR images.

  3. The artificial object detection and current velocity measurement using SAR ocean surface images

    Science.gov (United States)

    Alpatov, Boris; Strotov, Valery; Ershov, Maksim; Muraviev, Vadim; Feldman, Alexander; Smirnov, Sergey

    2017-10-01

    Due to the fact that water surface covers wide areas, remote sensing is the most appropriate way of getting information about ocean environment for vessel tracking, security purposes, ecological studies and others. Processing of synthetic aperture radar (SAR) images is extensively used for control and monitoring of the ocean surface. Image data can be acquired from Earth observation satellites, such as TerraSAR-X, ERS, and COSMO-SkyMed. Thus, SAR image processing can be used to solve many problems arising in this field of research. This paper discusses some of them including ship detection, oil pollution control and ocean currents mapping. Due to complexity of the problem several specialized algorithm are necessary to develop. The oil spill detection algorithm consists of the following main steps: image preprocessing, detection of dark areas, parameter extraction and classification. The ship detection algorithm consists of the following main steps: prescreening, land masking, image segmentation combined with parameter measurement, ship orientation estimation and object discrimination. The proposed approach to ocean currents mapping is based on Doppler's law. The results of computer modeling on real SAR images are presented. Based on these results it is concluded that the proposed approaches can be used in maritime applications.

  4. A comparative study on methods of improving SCR for ship detection in SAR image

    Science.gov (United States)

    Lang, Haitao; Shi, Hongji; Tao, Yunhong; Ma, Li

    2017-10-01

    Knowledge about ship positions plays a critical role in a wide range of maritime applications. To improve the performance of ship detector in SAR image, an effective strategy is improving the signal-to-clutter ratio (SCR) before conducting detection. In this paper, we present a comparative study on methods of improving SCR, including power-law scaling (PLS), max-mean and max-median filter (MMF1 and MMF2), method of wavelet transform (TWT), traditional SPAN detector, reflection symmetric metric (RSM), scattering mechanism metric (SMM). The ability of SCR improvement to SAR image and ship detection performance associated with cell- averaging CFAR (CA-CFAR) of different methods are evaluated on two real SAR data.

  5. Ka-band InSAR Imaging and Analysis Based on IMU Data

    Directory of Open Access Journals (Sweden)

    Shi Jun

    2014-02-01

    Full Text Available Compared with other bands, the millimeter wave Interferometric Synthetic Aperture Radar (InSAR has high accuracy and small size, which is a hot topic in InSAR research. On the other hand, shorter wavelength causes difficulties in 2D imaging and interferometric phase extraction. In this study, the imaging and phase performance of the streaming Back Projection (BP method combined with IMU data are analyzed and discussed on the basis of actual Ka-band InSAR data. It is found that because the wavelength of the Ka-band is short, it is more sensitive to the antenna phase-center history. To ensure the phase-preserving capacity, the IMU data must be used with accurate motion error compensation. Furthermore, during data processing, we verify the flat-earth-removing capacity of the BP algorithm that calculates and compensates the master and slave antenna phase centers individually.

  6. Improvement of the Accuracy of InSAR Image Co-Registration Based On Tie Points – A Review

    Directory of Open Access Journals (Sweden)

    Xiaoli Ding

    2009-02-01

    Full Text Available Interferometric Synthetic Aperture Radar (InSAR is a new measurement technology, making use of the phase information contained in the Synthetic Aperture Radar (SAR images. InSAR has been recognized as a potential tool for the generation of digital elevation models (DEMs and the measurement of ground surface deformations. However, many critical factors affect the quality of InSAR data and limit its applications. One of the factors is InSAR data processing, which consists of image co-registration, interferogram generation, phase unwrapping and geocoding. The co-registration of InSAR images is the first step and dramatically influences the accuracy of InSAR products. In this paper, the principle and processing procedures of InSAR techniques are reviewed. One of important factors, tie points, to be considered in the improvement of the accuracy of InSAR image co-registration are emphatically reviewed, such as interval of tie points, extraction of feature points, window size for tie point matching and the measurement for the quality of an interferogram.

  7. Multichannel High Resolution Wide Swath SAR Imaging for Hypersonic Air Vehicle with Curved Trajectory

    Directory of Open Access Journals (Sweden)

    Rui Zhou

    2018-01-01

    Full Text Available Synthetic aperture radar (SAR equipped on the hypersonic air vehicle in near space has many advantages over the conventional airborne SAR. However, its high-speed maneuvering characteristics with curved trajectory result in serious range migration, and exacerbate the contradiction between the high resolution and wide swath. To solve this problem, this paper establishes the imaging geometrical model matched with the flight trajectory of the hypersonic platform and the multichannel azimuth sampling model based on the displaced phase center antenna (DPCA technology. Furthermore, based on the multichannel signal reconstruction theory, a more efficient spectrum reconstruction model using discrete Fourier transform is proposed to obtain the azimuth uniform sampling data. Due to the high complexity of the slant range model, it is difficult to deduce the processing algorithm for SAR imaging. Thus, an approximate range model is derived based on the minimax criterion, and the optimal second-order approximate coefficients of cosine function are obtained using the two-population coevolutionary algorithm. On this basis, aiming at the problem that the traditional Omega-K algorithm cannot compensate the residual phase with the difficulty of Stolt mapping along the range frequency axis, this paper proposes an Exact Transfer Function (ETF algorithm for SAR imaging, and presents a method of range division to achieve wide swath imaging. Simulation results verify the effectiveness of the ETF imaging algorithm.

  8. Multichannel High Resolution Wide Swath SAR Imaging for Hypersonic Air Vehicle with Curved Trajectory.

    Science.gov (United States)

    Zhou, Rui; Sun, Jinping; Hu, Yuxin; Qi, Yaolong

    2018-01-31

    Synthetic aperture radar (SAR) equipped on the hypersonic air vehicle in near space has many advantages over the conventional airborne SAR. However, its high-speed maneuvering characteristics with curved trajectory result in serious range migration, and exacerbate the contradiction between the high resolution and wide swath. To solve this problem, this paper establishes the imaging geometrical model matched with the flight trajectory of the hypersonic platform and the multichannel azimuth sampling model based on the displaced phase center antenna (DPCA) technology. Furthermore, based on the multichannel signal reconstruction theory, a more efficient spectrum reconstruction model using discrete Fourier transform is proposed to obtain the azimuth uniform sampling data. Due to the high complexity of the slant range model, it is difficult to deduce the processing algorithm for SAR imaging. Thus, an approximate range model is derived based on the minimax criterion, and the optimal second-order approximate coefficients of cosine function are obtained using the two-population coevolutionary algorithm. On this basis, aiming at the problem that the traditional Omega-K algorithm cannot compensate the residual phase with the difficulty of Stolt mapping along the range frequency axis, this paper proposes an Exact Transfer Function (ETF) algorithm for SAR imaging, and presents a method of range division to achieve wide swath imaging. Simulation results verify the effectiveness of the ETF imaging algorithm.

  9. Discrimination of Oil Slicks and Lookalikes in Polarimetric SAR Images Using CNN.

    Science.gov (United States)

    Guo, Hao; Wu, Danni; An, Jubai

    2017-08-09

    Oil slicks and lookalikes (e.g., plant oil and oil emulsion) all appear as dark areas in polarimetric Synthetic Aperture Radar (SAR) images and are highly heterogeneous, so it is very difficult to use a single feature that can allow classification of dark objects in polarimetric SAR images as oil slicks or lookalikes. We established multi-feature fusion to support the discrimination of oil slicks and lookalikes. In the paper, simple discrimination analysis is used to rationalize a preferred features subset. The features analyzed include entropy, alpha, and Single-bounce Eigenvalue Relative Difference (SERD) in the C-band polarimetric mode. We also propose a novel SAR image discrimination method for oil slicks and lookalikes based on Convolutional Neural Network (CNN). The regions of interest are selected as the training and testing samples for CNN on the three kinds of polarimetric feature images. The proposed method is applied to a training data set of 5400 samples, including 1800 crude oil, 1800 plant oil, and 1800 oil emulsion samples. In the end, the effectiveness of the method is demonstrated through the analysis of some experimental results. The classification accuracy obtained using 900 samples of test data is 91.33%. It is here observed that the proposed method not only can accurately identify the dark spots on SAR images but also verify the ability of the proposed algorithm to classify unstructured features.

  10. Combining TerraSAR-X and Landsat Images for Emergency Response in Urban Environments

    Directory of Open Access Journals (Sweden)

    Shiran Havivi

    2018-05-01

    Full Text Available Rapid damage mapping following a disaster event, especially in an urban environment, is critical to ensure that the emergency response in the affected area is rapid and efficient. This work presents a new method for mapping damage assessment in urban environments. Based on combining SAR and optical data, the method is applicable as support during initial emergency planning and rescue operations. The study focuses on the urban areas affected by the Tohoku earthquake and subsequent tsunami event in Japan that occurred on 11 March 2011. High-resolution TerraSAR-X (TSX images of before and after the event, and a Landsat 5 image before the event were acquired. The affected areas were analyzed with the SAR data using only one interferometric SAR (InSAR coherence map. To increase the damage mapping accuracy, the normalized difference vegetation index (NDVI was applied. The generated map, with a grid size of 50 m, provides a quantitative assessment of the nature and distribution of the damage. The damage mapping shows detailed information about the affected area, with high overall accuracy (89%, and high Kappa coefficient (82% and, as expected, it shows total destruction along the coastline compared to the inland region.

  11. Random Forests as a tool for estimating uncertainty at pixel-level in SAR image classification

    DEFF Research Database (Denmark)

    Loosvelt, Lien; Peters, Jan; Skriver, Henning

    2012-01-01

    , we introduce Random Forests for the probabilistic mapping of vegetation from high-dimensional remote sensing data and present a comprehensive methodology to assess and analyze classification uncertainty based on the local probabilities of class membership. We apply this method to SAR image data...

  12. SAR Image Simulation of Ship Targets Based on Multi-Path Scattering

    Science.gov (United States)

    Guo, Y.; Wang, H.; Ma, H.; Li, K.; Xia, Z.; Hao, Y.; Guo, H.; Shi, H.; Liao, X.; Yue, H.

    2018-04-01

    Synthetic Aperture Radar (SAR) plays an important role in the classification and recognition of ship targets because of its all-weather working ability and fine resolution. In SAR images, besides the sea clutter, the influence of the sea surface on the radar echo is also known as the so-called multipath effect. These multipath effects will generate some extra "pseudo images", which may cause the distortion of the target image and affect the estimation of the characteristic parameters. In this paper,the multipath effect of rough sea surface and its influence on the estimation of ship characteristic parameters are studied. The imaging of the first and the secondary reflection of sea surface is presented . The artifacts not only overlap with the image of the target itself, but may also appear in the sea near the target area. It is difficult to distinguish them, and this artifact has an effect on the length and width of the ship.

  13. Einstein-Podolsky-Rosen paradox in single pairs of images.

    Science.gov (United States)

    Lantz, Eric; Denis, Séverine; Moreau, Paul-Antoine; Devaux, Fabrice

    2015-10-05

    Spatially entangled twin photons provide a test of the Einstein-Podolsky-Rosen (EPR) paradox in its original form of position (image plane) versus impulsion (Fourier plane). We show that recording a single pair of images in each plane is sufficient to safely demonstrate an EPR paradox. On each pair of images, we have retrieved the fluctuations by subtracting the fitted deterministic intensity shape and then have obtained an intercorrelation peak with a sufficient signal to noise ratio to safely distinguish this peak from random fluctuations. A 95% confidence interval has been determined, confirming a high degree of paradox whatever the considered single pairs. Last, we have verified that the value of the variance of the difference between twin images is always below the quantum (poissonian) limit, in order to ensure the particle character of the demonstration. Our demonstration shows that a single image pattern can reveal the quantum and non-local behavior of light.

  14. SAR and Infrared Image Fusion in Complex Contourlet Domain Based on Joint Sparse Representation

    Directory of Open Access Journals (Sweden)

    Wu Yiquan

    2017-08-01

    Full Text Available To investigate the problems of the large grayscale difference between infrared and Synthetic Aperture Radar (SAR images and their fusion image not being fit for human visual perception, we propose a fusion method for SAR and infrared images in the complex contourlet domain based on joint sparse representation. First, we perform complex contourlet decomposition of the infrared and SAR images. Then, we employ the KSingular Value Decomposition (K-SVD method to obtain an over-complete dictionary of the low-frequency components of the two source images. Using a joint sparse representation model, we then generate a joint dictionary. We obtain the sparse representation coefficients of the low-frequency components of the source images in the joint dictionary by the Orthogonal Matching Pursuit (OMP method and select them using the selection maximization strategy. We then reconstruct these components to obtain the fused low-frequency components and fuse the high-frequency components using two criteria——the coefficient of visual sensitivity and the degree of energy matching. Finally, we obtain the fusion image by the inverse complex contourlet transform. Compared with the three classical fusion methods and recently presented fusion methods, e.g., that based on the Non-Subsampled Contourlet Transform (NSCT and another based on sparse representation, the method we propose in this paper can effectively highlight the salient features of the two source images and inherit their information to the greatest extent.

  15. Assessment of radargrammetric DSMs from TerraSAR-X Stripmap images in a mountainous relief area of the Amazon region

    Science.gov (United States)

    de Oliveira, Cleber Gonzales; Paradella, Waldir Renato; da Silva, Arnaldo de Queiroz

    The Brazilian Amazon is a vast territory with an enormous need for mapping and monitoring of renewable and non-renewable resources. Due to the adverse environmental condition (rain, cloud, dense vegetation) and difficult access, topographic information is still poor, and when available needs to be updated or re-mapped. In this paper, the feasibility of using Digital Surface Models (DSMs) extracted from TerraSAR-X Stripmap stereo-pair images for detailed topographic mapping was investigated for a mountainous area in the Carajás Mineral Province, located on the easternmost border of the Brazilian Amazon. The quality of the radargrammetric DSMs was evaluated regarding field altimetric measurements. Precise topographic field information acquired from a Global Positioning System (GPS) was used as Ground Control Points (GCPs) for the modeling of the stereoscopic DSMs and as Independent Check Points (ICPs) for the calculation of elevation accuracies. The analysis was performed following two ways: (1) the use of Root Mean Square Error (RMSE) and (2) calculations of systematic error (bias) and precision. The test for significant systematic error was based on the Student's-t distribution and the test of precision was based on the Chi-squared distribution. The investigation has shown that the accuracy of the TerraSAR-X Stripmap DSMs met the requirements for 1:50,000 map (Class A) as requested by the Brazilian Standard for Cartographic Accuracy. Thus, the use of TerraSAR-X Stripmap images can be considered a promising alternative for detailed topographic mapping in similar environments of the Amazon region, where available topographic information is rare or presents low quality.

  16. Dictionary Pair Learning on Grassmann Manifolds for Image Denoising.

    Science.gov (United States)

    Zeng, Xianhua; Bian, Wei; Liu, Wei; Shen, Jialie; Tao, Dacheng

    2015-11-01

    Image denoising is a fundamental problem in computer vision and image processing that holds considerable practical importance for real-world applications. The traditional patch-based and sparse coding-driven image denoising methods convert 2D image patches into 1D vectors for further processing. Thus, these methods inevitably break down the inherent 2D geometric structure of natural images. To overcome this limitation pertaining to the previous image denoising methods, we propose a 2D image denoising model, namely, the dictionary pair learning (DPL) model, and we design a corresponding algorithm called the DPL on the Grassmann-manifold (DPLG) algorithm. The DPLG algorithm first learns an initial dictionary pair (i.e., the left and right dictionaries) by employing a subspace partition technique on the Grassmann manifold, wherein the refined dictionary pair is obtained through a sub-dictionary pair merging. The DPLG obtains a sparse representation by encoding each image patch only with the selected sub-dictionary pair. The non-zero elements of the sparse representation are further smoothed by the graph Laplacian operator to remove the noise. Consequently, the DPLG algorithm not only preserves the inherent 2D geometric structure of natural images but also performs manifold smoothing in the 2D sparse coding space. We demonstrate that the DPLG algorithm also improves the structural SIMilarity values of the perceptual visual quality for denoised images using the experimental evaluations on the benchmark images and Berkeley segmentation data sets. Moreover, the DPLG also produces the competitive peak signal-to-noise ratio values from popular image denoising algorithms.

  17. Urban-area extraction from polarimetric SAR image using combination of target decomposition and orientation angle

    Science.gov (United States)

    Zou, Bin; Lu, Da; Wu, Zhilu; Qiao, Zhijun G.

    2016-05-01

    The results of model-based target decomposition are the main features used to discriminate urban and non-urban area in polarimetric synthetic aperture radar (PolSAR) application. Traditional urban-area extraction methods based on modelbased target decomposition usually misclassified ground-trunk structure as urban-area or misclassified rotated urbanarea as forest. This paper introduces another feature named orientation angle to improve urban-area extraction scheme for the accurate mapping in urban by PolSAR image. The proposed method takes randomness of orientation angle into account for restriction of urban area first and, subsequently, implements rotation angle to improve results that oriented urban areas are recognized as double-bounce objects from volume scattering. ESAR L-band PolSAR data of the Oberpfaffenhofen Test Site Area was used to validate the proposed algorithm.

  18. Target discrimination method for SAR images based on semisupervised co-training

    Science.gov (United States)

    Wang, Yan; Du, Lan; Dai, Hui

    2018-01-01

    Synthetic aperture radar (SAR) target discrimination is usually performed in a supervised manner. However, supervised methods for SAR target discrimination may need lots of labeled training samples, whose acquirement is costly, time consuming, and sometimes impossible. This paper proposes an SAR target discrimination method based on semisupervised co-training, which utilizes a limited number of labeled samples and an abundant number of unlabeled samples. First, Lincoln features, widely used in SAR target discrimination, are extracted from the training samples and partitioned into two sets according to their physical meanings. Second, two support vector machine classifiers are iteratively co-trained with the extracted two feature sets based on the co-training algorithm. Finally, the trained classifiers are exploited to classify the test data. The experimental results on real SAR images data not only validate the effectiveness of the proposed method compared with the traditional supervised methods, but also demonstrate the superiority of co-training over self-training, which only uses one feature set.

  19. Discernibility of Burial Mounds in High-Resolution X-Band SAR Images for Archaeological Prospections in the Altai Mountains

    Directory of Open Access Journals (Sweden)

    Timo Balz

    2016-09-01

    Full Text Available The Altai Mountains are a heritage-rich archaeological landscape with monuments in almost every valley. Modern nation state borders dissect the region and limit archaeological landscape analysis to intra-national areas of interest. Remote sensing can help to overcome these limitations. Due to its high precision, Synthetic Aperture Radar (SAR data can be a very useful tool for supporting archaeological prospections, but compared to optical imagery, the detectability of sites of archaeological interest is limited. We analyzed the limitations of SAR using TerraSAR-X images in different modes. Based on ground truth, the discernibility of burial mounds was analyzed in different SAR acquisition modes. We show that very-high-resolution TerraSAR-X staring spotlight images are very well suited for the task, with >75% of the larger mounds being discernible, while in images with a lower spatial resolution only a few large sites can be detected, at rates below 50%.

  20. Fast iterative censoring CFAR algorithm for ship detection from SAR images

    Science.gov (United States)

    Gu, Dandan; Yue, Hui; Zhang, Yuan; Gao, Pengcheng

    2017-11-01

    Ship detection is one of the essential techniques for ship recognition from synthetic aperture radar (SAR) images. This paper presents a fast iterative detection procedure to eliminate the influence of target returns on the estimation of local sea clutter distributions for constant false alarm rate (CFAR) detectors. A fast block detector is first employed to extract potential target sub-images; and then, an iterative censoring CFAR algorithm is used to detect ship candidates from each target blocks adaptively and efficiently, where parallel detection is available, and statistical parameters of G0 distribution fitting local sea clutter well can be quickly estimated based on an integral image operator. Experimental results of TerraSAR-X images demonstrate the effectiveness of the proposed technique.

  1. Extraction of lead and ridge characteristics from SAR images of sea ice

    Science.gov (United States)

    Vesecky, John F.; Smith, Martha P.; Samadani, Ramin

    1990-01-01

    Image-processing techniques for extracting the characteristics of lead and pressure ridge features in SAR images of sea ice are reported. The methods are applied to a SAR image of the Beaufort Sea collected from the Seasat satellite on October 3, 1978. Estimates of lead and ridge statistics are made, e.g., lead and ridge density (number of lead or ridge pixels per unit area of image) and the distribution of lead area and orientation as well as ridge length and orientation. The information derived is useful in both ice science and polar operations for such applications as albedo and heat and momentum transfer estimates, as well as ship routing and offshore engineering.

  2. Feature Matching for SAR and Optical Images Based on Gaussian-Gamma-shaped Edge Strength Map

    Directory of Open Access Journals (Sweden)

    CHEN Min

    2016-03-01

    Full Text Available A matching method for SAR and optical images, robust to pixel noise and nonlinear grayscale differences, is presented. Firstly, a rough correction to eliminate rotation and scale change between images is performed. Secondly, features robust to speckle noise of SAR image are detected by improving the original phase congruency based method. Then, feature descriptors are constructed on the Gaussian-Gamma-shaped edge strength map according to the histogram of oriented gradient pattern. Finally, descriptor similarity and geometrical relationship are combined to constrain the matching processing.The experimental results demonstrate that the proposed method provides significant improvement in correct matches number and image registration accuracy compared with other traditional methods.

  3. Change detection in a time series of polarimetric SAR images

    DEFF Research Database (Denmark)

    Skriver, Henning; Nielsen, Allan Aasbjerg; Conradsen, Knut

    A test statistic for the equality of two or several variance-covariance matrices following the real (as opposed to the complex) Wishart distribution with an associated probability of finding a smaller value of the test statistic is described in the literature [1]. In 2003 we introduced a test...... statistic for the equality of two variance-covariance matrices following the complex Wishart distribution with an associated probability measure [2]. In that paper we also demonstrated the use of the test statistic to change detection over time in both fully polarimetric and azimuthal symmetric SAR data...... positives (postulating a change when there actually is none) and/or false negatives (missing an actual change). Therefore we need to test for equality for all time points simultaneously. In this paper we demonstrate a new test statistic for the equality of several variance-covariance matrices from the real...

  4. Neural network-based feature point descriptors for registration of optical and SAR images

    Science.gov (United States)

    Abulkhanov, Dmitry; Konovalenko, Ivan; Nikolaev, Dmitry; Savchik, Alexey; Shvets, Evgeny; Sidorchuk, Dmitry

    2018-04-01

    Registration of images of different nature is an important technique used in image fusion, change detection, efficient information representation and other problems of computer vision. Solving this task using feature-based approaches is usually more complex than registration of several optical images because traditional feature descriptors (SIFT, SURF, etc.) perform poorly when images have different nature. In this paper we consider the problem of registration of SAR and optical images. We train neural network to build feature point descriptors and use RANSAC algorithm to align found matches. Experimental results are presented that confirm the method's effectiveness.

  5. Probability Density Components Analysis: A New Approach to Treatment and Classification of SAR Images

    Directory of Open Access Journals (Sweden)

    Osmar Abílio de Carvalho Júnior

    2014-04-01

    Full Text Available Speckle noise (salt and pepper is inherent to synthetic aperture radar (SAR, which causes a usual noise-like granular aspect and complicates the image classification. In SAR image analysis, the spatial information might be a particular benefit for denoising and mapping classes characterized by a statistical distribution of the pixel intensities from a complex and heterogeneous spectral response. This paper proposes the Probability Density Components Analysis (PDCA, a new alternative that combines filtering and frequency histogram to improve the classification procedure for the single-channel synthetic aperture radar (SAR images. This method was tested on L-band SAR data from the Advanced Land Observation System (ALOS Phased-Array Synthetic-Aperture Radar (PALSAR sensor. The study area is localized in the Brazilian Amazon rainforest, northern Rondônia State (municipality of Candeias do Jamari, containing forest and land use patterns. The proposed algorithm uses a moving window over the image, estimating the probability density curve in different image components. Therefore, a single input image generates an output with multi-components. Initially the multi-components should be treated by noise-reduction methods, such as maximum noise fraction (MNF or noise-adjusted principal components (NAPCs. Both methods enable reducing noise as well as the ordering of multi-component data in terms of the image quality. In this paper, the NAPC applied to multi-components provided large reductions in the noise levels, and the color composites considering the first NAPC enhance the classification of different surface features. In the spectral classification, the Spectral Correlation Mapper and Minimum Distance were used. The results obtained presented as similar to the visual interpretation of optical images from TM-Landsat and Google Maps.

  6. A neural network detection model of spilled oil based on the texture analysis of SAR image

    Science.gov (United States)

    An, Jubai; Zhu, Lisong

    2006-01-01

    A Radial Basis Function Neural Network (RBFNN) Model is investigated for the detection of spilled oil based on the texture analysis of SAR imagery. In this paper, to take the advantage of the abundant texture information of SAR imagery, the texture features are extracted by both wavelet transform and the Gray Level Co-occurrence matrix. The RBFNN Model is fed with a vector of these texture features. The RBFNN Model is trained and tested by the sample data set of the feature vectors. Finally, a SAR image is classified by this model. The classification results of a spilled oil SAR image show that the classification accuracy for oil spill is 86.2 by the RBFNN Model using both wavelet texture and gray texture, while the classification accuracy for oil spill is 78.0 by same RBFNN Model using only wavelet texture as the input of this RBFNN model. The model using both wavelet transform and the Gray Level Co-occurrence matrix is more effective than that only using wavelet texture. Furthermore, it keeps the complicated proximity and has a good performance of classification.

  7. MREG V1.1 : a multi-scale image registration algorithm for SAR applications.

    Energy Technology Data Exchange (ETDEWEB)

    Eichel, Paul H.

    2013-08-01

    MREG V1.1 is the sixth generation SAR image registration algorithm developed by the Signal Processing&Technology Department for Synthetic Aperture Radar applications. Like its predecessor algorithm REGI, it employs a powerful iterative multi-scale paradigm to achieve the competing goals of sub-pixel registration accuracy and the ability to handle large initial offsets. Since it is not model based, it allows for high fidelity tracking of spatially varying terrain-induced misregistration. Since it does not rely on image domain phase, it is equally adept at coherent and noncoherent image registration. This document provides a brief history of the registration processors developed by Dept. 5962 leading up to MREG V1.1, a full description of the signal processing steps involved in the algorithm, and a user's manual with application specific recommendations for CCD, TwoColor MultiView, and SAR stereoscopy.

  8. Change detection in polarimetric SAR images using complex Wishart distributed matrices

    DEFF Research Database (Denmark)

    Conradsen, Knut; Nielsen, Allan Aasbjerg; Skriver, Henning

    In surveillance it is important to be able to detect natural or man-made changes e.g. based on sequences of satellite or air borne images of the same area taken at different times. The mapping capability of synthetic aperture radar (SAR) is independent of e.g. cloud cover, and thus this technology...... scattering matrix, and after suitable preprocessing the outcome at each picture element (pixel) may be represented as a 3 by 3 Hermitian matrix following a complex Wishart distribution. One approach to solving the change detection problem based on SAR images is therefore to apply suitable statistical tests...... in the complex Wishart distribution. We propose a set-up for a systematic solution to the (practical) problems using the likelihood ratio test statistics. We show some examples based on a time series of images with 1024 by 1024 pixels....

  9. A Basic Fourier Transform Pair for Slant Range-Doppler Modeling of Moving Scatterers for SAR Applications: Theory

    National Research Council Canada - National Science Library

    Sabry, R

    2007-01-01

    Considering the exploitation needs associated with the Synthetic Aperture Radar (SAR) applications involving moving and non-stationary targets, a fundamental spectral domain model for moving point and distribution of scatterers is presented...

  10. Multi-linear sparse reconstruction for SAR imaging based on higher-order SVD

    Science.gov (United States)

    Gao, Yu-Fei; Gui, Guan; Cong, Xun-Chao; Yang, Yue; Zou, Yan-Bin; Wan, Qun

    2017-12-01

    This paper focuses on the spotlight synthetic aperture radar (SAR) imaging for point scattering targets based on tensor modeling. In a real-world scenario, scatterers usually distribute in the block sparse pattern. Such a distribution feature has been scarcely utilized by the previous studies of SAR imaging. Our work takes advantage of this structure property of the target scene, constructing a multi-linear sparse reconstruction algorithm for SAR imaging. The multi-linear block sparsity is introduced into higher-order singular value decomposition (SVD) with a dictionary constructing procedure by this research. The simulation experiments for ideal point targets show the robustness of the proposed algorithm to the noise and sidelobe disturbance which always influence the imaging quality of the conventional methods. The computational resources requirement is further investigated in this paper. As a consequence of the algorithm complexity analysis, the present method possesses the superiority on resource consumption compared with the classic matching pursuit method. The imaging implementations for practical measured data also demonstrate the effectiveness of the algorithm developed in this paper.

  11. Doppler Spectrum-Based NRCS Estimation Method for Low-Scattering Areas in Ocean SAR Images

    Directory of Open Access Journals (Sweden)

    Hui Meng

    2017-02-01

    Full Text Available The image intensities of low-backscattering areas in synthetic aperture radar (SAR images are often seriously contaminated by the system noise floor and azimuthal ambiguity signal from adjacent high-backscattering areas. Hence, the image intensity of low-backscattering areas does not correctly reflect the backscattering intensity, which causes confusion in subsequent image processing or interpretation. In this paper, a method is proposed to estimate the normalized radar cross-section (NRCS of low-backscattering area by utilizing the differences between noise, azimuthal ambiguity, and signal in the Doppler frequency domain of single-look SAR images; the aim is to eliminate the effect of system noise and azimuthal ambiguity. Analysis shows that, for a spaceborne SAR with a noise equivalent sigma zero (NESZ of −25 dB and a single-look pixel of 8 m × 5 m, the NRCS-estimation precision of this method can reach −38 dB at a resolution of 96 m × 100 m. Three examples are given to validate the advantages of this method in estimating the low NRCS and the filtering of the azimuthal ambiguity.

  12. Regional SAR Image Segmentation Based on Fuzzy Clustering with Gamma Mixture Model

    Science.gov (United States)

    Li, X. L.; Zhao, Q. H.; Li, Y.

    2017-09-01

    Most of stochastic based fuzzy clustering algorithms are pixel-based, which can not effectively overcome the inherent speckle noise in SAR images. In order to deal with the problem, a regional SAR image segmentation algorithm based on fuzzy clustering with Gamma mixture model is proposed in this paper. First, initialize some generating points randomly on the image, the image domain is divided into many sub-regions using Voronoi tessellation technique. Each sub-region is regarded as a homogeneous area in which the pixels share the same cluster label. Then, assume the probability of the pixel to be a Gamma mixture model with the parameters respecting to the cluster which the pixel belongs to. The negative logarithm of the probability represents the dissimilarity measure between the pixel and the cluster. The regional dissimilarity measure of one sub-region is defined as the sum of the measures of pixels in the region. Furthermore, the Markov Random Field (MRF) model is extended from pixels level to Voronoi sub-regions, and then the regional objective function is established under the framework of fuzzy clustering. The optimal segmentation results can be obtained by the solution of model parameters and generating points. Finally, the effectiveness of the proposed algorithm can be proved by the qualitative and quantitative analysis from the segmentation results of the simulated and real SAR images.

  13. The Peak Pairs algorithm for strain mapping from HRTEM images

    Energy Technology Data Exchange (ETDEWEB)

    Galindo, Pedro L. [Departamento de Lenguajes y Sistemas Informaticos, CASEM, Universidad de Cadiz, Pol. Rio San Pedro s/n. 11510, Puerto Real, Cadiz (Spain)], E-mail: pedro.galindo@uca.es; Kret, Slawomir [Institute of Physics, PAS, AL. Lotnikow 32/46, 02-668 Warsaw (Poland); Sanchez, Ana M. [Departamento de Ciencia de los Materiales e Ing. Metalurgica y Q. Inorganica, Facultad de Ciencias, Universidad de Cadiz, Pol. Rio San Pedro s/n. 11510, Puerto Real, Cadiz (Spain); Laval, Jean-Yves [Laboratoire de Physique du Solide, UPR5 CNRS-ESPCI, Paris (France); Yanez, Andres; Pizarro, Joaquin; Guerrero, Elisa [Departamento de Lenguajes y Sistemas Informaticos, CASEM, Universidad de Cadiz, Pol. Rio San Pedro s/n. 11510, Puerto Real, Cadiz (Spain); Ben, Teresa; Molina, Sergio I. [Departamento de Ciencia de los Materiales e Ing. Metalurgica y Q. Inorganica, Facultad de Ciencias, Universidad de Cadiz, Pol. Rio San Pedro s/n. 11510, Puerto Real, Cadiz (Spain)

    2007-11-15

    Strain mapping is defined as a numerical image-processing technique that measures the local shifts of image details around a crystal defect with respect to the ideal, defect-free, positions in the bulk. Algorithms to map elastic strains from high-resolution transmission electron microscopy (HRTEM) images may be classified into two categories: those based on the detection of peaks of intensity in real space and the Geometric Phase approach, calculated in Fourier space. In this paper, we discuss both categories and propose an alternative real space algorithm (Peak Pairs) based on the detection of pairs of intensity maxima in an affine transformed space dependent on the reference area. In spite of the fact that it is a real space approach, the Peak Pairs algorithm exhibits good behaviour at heavily distorted defect cores, e.g. interfaces and dislocations. Quantitative results are reported from experiments to determine local strain in different types of semiconductor heterostructures.

  14. RESEARCH ON COORDINATE TRANSFORMATION METHOD OF GB-SAR IMAGE SUPPORTED BY 3D LASER SCANNING TECHNOLOGY

    Directory of Open Access Journals (Sweden)

    P. Wang

    2018-04-01

    Full Text Available In the image plane of GB-SAR, identification of deformation distribution is usually carried out by artificial interpretation. This method requires analysts to have adequate experience of radar imaging and target recognition, otherwise it can easily cause false recognition of deformation target or region. Therefore, it is very meaningful to connect two-dimensional (2D plane coordinate system with the common three-dimensional (3D terrain coordinate system. To improve the global accuracy and reliability of the transformation from 2D coordinates of GB-SAR images to local 3D coordinates, and overcome the limitation of traditional similarity transformation parameter estimation method, 3D laser scanning data is used to assist the transformation of GB-SAR image coordinates. A straight line fitting method for calculating horizontal angle was proposed in this paper. After projection into a consistent imaging plane, we can calculate horizontal rotation angle by using the linear characteristics of the structure in radar image and the 3D coordinate system. Aided by external elevation information by 3D laser scanning technology, we completed the matching of point clouds and pixels on the projection plane according to the geometric projection principle of GB-SAR imaging realizing the transformation calculation of GB-SAR image coordinates to local 3D coordinates. Finally, the effectiveness of the method is verified by the GB-SAR deformation monitoring experiment on the high slope of Geheyan dam.

  15. Research on Coordinate Transformation Method of Gb-Sar Image Supported by 3d Laser Scanning Technology

    Science.gov (United States)

    Wang, P.; Xing, C.

    2018-04-01

    In the image plane of GB-SAR, identification of deformation distribution is usually carried out by artificial interpretation. This method requires analysts to have adequate experience of radar imaging and target recognition, otherwise it can easily cause false recognition of deformation target or region. Therefore, it is very meaningful to connect two-dimensional (2D) plane coordinate system with the common three-dimensional (3D) terrain coordinate system. To improve the global accuracy and reliability of the transformation from 2D coordinates of GB-SAR images to local 3D coordinates, and overcome the limitation of traditional similarity transformation parameter estimation method, 3D laser scanning data is used to assist the transformation of GB-SAR image coordinates. A straight line fitting method for calculating horizontal angle was proposed in this paper. After projection into a consistent imaging plane, we can calculate horizontal rotation angle by using the linear characteristics of the structure in radar image and the 3D coordinate system. Aided by external elevation information by 3D laser scanning technology, we completed the matching of point clouds and pixels on the projection plane according to the geometric projection principle of GB-SAR imaging realizing the transformation calculation of GB-SAR image coordinates to local 3D coordinates. Finally, the effectiveness of the method is verified by the GB-SAR deformation monitoring experiment on the high slope of Geheyan dam.

  16. Modulation of Tidal Channel Signatures on SAR Images Over Gyeonggi Bay in Relation to Environmental Factors

    Directory of Open Access Journals (Sweden)

    Tae-Sung Kim

    2018-04-01

    Full Text Available In this study, variations of radar backscatter features of the tidal channel in Gyeonggi Bay in the Eastern Yellow Sea were investigated using spaceborne synthetic aperture radar (SAR images. Consistent quasi-linear bright features appeared on the SAR images. Examining the detailed local bathymetry chart, we found that the features were co-located with the major axis of the tidal channel in the region. It was also shown that modulation of the radar backscatter features changed according to the environmental conditions at the time of imaging. For the statistical analysis, the bathymetric features over the tidal channel were extracted by an objective method. In terms of shape, the extracted features had higher variability in width than in length. The analysis of the variation in intensity with the coinciding bathymetric distribution confirmed that the quasi-linear bright features on the SAR images are fundamentally imprinted due to the surface current convergence and divergence caused by the bathymetry-induced tidal current variation. Furthermore, the contribution of environmental factors to the intensity modulation was quantitatively analyzed. A comparison of the variation in normalized radar cross section (NRCS with tidal current showed a positive correlation only with the perpendicular component of tidal current (r= 0.47. This implies that the modulation in intensity of the tidal channel signatures is mainly affected by the interaction with cross-current flow. On the other hand, the modulation of the NRCS over the tidal channel tended to be degraded as wind speed increased (r= −0.65. Considering the environmental circumstances in the study area, it can be inferred that the imaging capability of SAR for the detection of tidal channel signatures mainly relies on wind speed.

  17. Integrated Shoreline Extraction Approach with Use of Rasat MS and SENTINEL-1A SAR Images

    Science.gov (United States)

    Demir, N.; Oy, S.; Erdem, F.; Şeker, D. Z.; Bayram, B.

    2017-09-01

    Shorelines are complex ecosystems and highly important socio-economic environments. They may change rapidly due to both natural and human-induced effects. Determination of movements along the shoreline and monitoring of the changes are essential for coastline management, modeling of sediment transportation and decision support systems. Remote sensing provides an opportunity to obtain rapid, up-to-date and reliable information for monitoring of shoreline. In this study, approximately 120 km of Antalya-Kemer shoreline which is under the threat of erosion, deposition, increasing of inhabitants and urbanization and touristic hotels, has been selected as the study area. In the study, RASAT pansharpened and SENTINEL-1A SAR images have been used to implement proposed shoreline extraction methods. The main motivation of this study is to combine the land/water body segmentation results of both RASAT MS and SENTINEL-1A SAR images to improve the quality of the results. The initial land/water body segmentation has been obtained using RASAT image by means of Random Forest classification method. This result has been used as training data set to define fuzzy parameters for shoreline extraction from SENTINEL-1A SAR image. Obtained results have been compared with the manually digitized shoreline. The accuracy assessment has been performed by calculating perpendicular distances between reference data and extracted shoreline by proposed method. As a result, the mean difference has been calculated around 1 pixel.

  18. Programmable trigger for electron pairs in ring image Cherenkov counters

    International Nuclear Information System (INIS)

    Glab, J.; Baur, R.; Manner, R.

    1990-01-01

    This paper describes a programmable trigger processor for the recognition of Cherenkov rings in a RICH counter. It identifies open electron pairs and suppresses close conversion and Dalitz pairs within 20 μs. More generally, the system can be used for correlating pixel images with pattern masks in order to locate all relatively well defined patterns of a certain type. The trigger processor consists of a systolic processor array of 160 x 176, i.e., 28,160 identical processing elements (PEs) that filter out open electron pairs, and a pseudo adder array that determines whether there was at least one such pair. The processor array is assembled of 20 x 22 VLSI chips containing 8 x 8 PEs each. The semi-custom chip has been developed in 2 μ CMOS standard cell technology

  19. Accurate Analysis of Target Characteristic in Bistatic SAR Images: A Dihedral Corner Reflectors Case.

    Science.gov (United States)

    Ao, Dongyang; Li, Yuanhao; Hu, Cheng; Tian, Weiming

    2017-12-22

    The dihedral corner reflectors are the basic geometric structure of many targets and are the main contributions of radar cross section (RCS) in the synthetic aperture radar (SAR) images. In stealth technologies, the elaborate design of the dihedral corners with different opening angles is a useful approach to reduce the high RCS generated by multiple reflections. As bistatic synthetic aperture sensors have flexible geometric configurations and are sensitive to the dihedral corners with different opening angles, they specially fit for the stealth target detections. In this paper, the scattering characteristic of dihedral corner reflectors is accurately analyzed in bistatic synthetic aperture images. The variation of RCS with the changing opening angle is formulated and the method to design a proper bistatic radar for maximizing the detection capability is provided. Both the results of the theoretical analysis and the experiments show the bistatic SAR could detect the dihedral corners, under a certain bistatic angle which is related to the geometry of target structures.

  20. SAR Imaging of Ground Moving Targets with Non-ideal Motion Error Compensation(in English

    Directory of Open Access Journals (Sweden)

    Zhou Hui

    2015-06-01

    Full Text Available Conventional ground moving target imaging algorithms mainly focus on the range cell migration correction and the motion parameter estimation of the moving target. However, in real Synthetic Aperture Radar (SAR data processing, non-ideal motion error compensation is also a critical process, which focuses and has serious impacts on the imaging quality of moving targets. Non-ideal motion error can not be compensated by either the stationary SAR motion error compensation algorithms or the autofocus techniques. In this paper, two sorts of non-ideal motion errors that affect the Doppler centroid of the moving target is analyzed, and a novel non-ideal motion error compensation algorithm is proposed based on the Inertial Navigation System (INS data and the range walk trajectory. Simulated and real data processing results are provided to demonstrate the effectiveness of the proposed algorithm.

  1. Polarimetric SAR Image Classification Using Multiple-feature Fusion and Ensemble Learning

    Directory of Open Access Journals (Sweden)

    Sun Xun

    2016-12-01

    Full Text Available In this paper, we propose a supervised classification algorithm for Polarimetric Synthetic Aperture Radar (PolSAR images using multiple-feature fusion and ensemble learning. First, we extract different polarimetric features, including extended polarimetric feature space, Hoekman, Huynen, H/alpha/A, and fourcomponent scattering features of PolSAR images. Next, we randomly select two types of features each time from all feature sets to guarantee the reliability and diversity of later ensembles and use a support vector machine as the basic classifier for predicting classification results. Finally, we concatenate all prediction probabilities of basic classifiers as the final feature representation and employ the random forest method to obtain final classification results. Experimental results at the pixel and region levels show the effectiveness of the proposed algorithm.

  2. Ghost imaging with paired x-ray photons

    Science.gov (United States)

    Schori, A.; Borodin, D.; Tamasaku, K.; Shwartz, S.

    2018-06-01

    We report the experimental observation of ghost imaging with paired x-ray photons, which are generated by parametric downconversion. We use the one-to-one relation between the photon energies and the emission angles and the anticorrelation between the k -vectors of the signal and the idler photons to reconstruct the images of slits with nominally zero background levels. Further extension of our procedure can be used for the observation of various quantum phenomena at x-ray wavelengths.

  3. Discrimination of Different Water Layers with TerraSAR X Images in "La Albufera de Valencia"

    Science.gov (United States)

    García Fernández, M. A.; Miguelsanz Muñoz, P.

    2009-04-01

    To analyze the capabilities of TerraSAR X Strip Map images in order to discriminate different water layers in the "Parque de la Albufera de Valencia", Spain, a test project was carried out. This place is a rice crop area under European and National Agro environmental regulation which obliges to preserve the habitat and to keep the rice plots flooded out of crop season, from October to January

  4. Aliasing effects in digital images of line-pair phantoms

    International Nuclear Information System (INIS)

    Albert, Michael; Beideck, Daniel J.; Bakic, Predrag R.; Maidment, Andrew D.A.

    2002-01-01

    Line-pair phantoms are commonly used for evaluating screen-film systems. When imaged digitally, aliasing effects give rise to additional periodic patterns. This paper examines one such effect that medical physicists are likely to encounter, and which can be used as an indicator of super-resolution

  5. Mapping Winter Wheat with Multi-Temporal SAR and Optical Images in an Urban Agricultural Region.

    Science.gov (United States)

    Zhou, Tao; Pan, Jianjun; Zhang, Peiyu; Wei, Shanbao; Han, Tao

    2017-05-25

    Winter wheat is the second largest food crop in China. It is important to obtain reliable winter wheat acreage to guarantee the food security for the most populous country in the world. This paper focuses on assessing the feasibility of in-season winter wheat mapping and investigating potential classification improvement by using SAR (Synthetic Aperture Radar) images, optical images, and the integration of both types of data in urban agricultural regions with complex planting structures in Southern China. Both SAR (Sentinel-1A) and optical (Landsat-8) data were acquired, and classification using different combinations of Sentinel-1A-derived information and optical images was performed using a support vector machine (SVM) and a random forest (RF) method. The interference coherence and texture images were obtained and used to assess the effect of adding them to the backscatter intensity images on the classification accuracy. The results showed that the use of four Sentinel-1A images acquired before the jointing period of winter wheat can provide satisfactory winter wheat classification accuracy, with an F1 measure of 87.89%. The combination of SAR and optical images for winter wheat mapping achieved the best F1 measure-up to 98.06%. The SVM was superior to RF in terms of the overall accuracy and the kappa coefficient, and was faster than RF, while the RF classifier was slightly better than SVM in terms of the F1 measure. In addition, the classification accuracy can be effectively improved by adding the texture and coherence images to the backscatter intensity data.

  6. Saharasar: An Interactive SAR Image Database for Desert Mapping

    Science.gov (United States)

    Lopez, S.; Paillou, Ph.

    2017-06-01

    We present a dedicated tool for accessing radar images acquired by the ALOS/PALSAR mission over Sahara and Arabia. We developed a dedicated web site, using the Mapserver web mapping server and the Cesium javascript library.

  7. LARGE OIL SPILL CLASSIFICATION USING SAR IMAGES BASED ON SPATIAL HISTOGRAM

    Directory of Open Access Journals (Sweden)

    I. Schvartzman

    2016-06-01

    Full Text Available Among the different types of marine pollution, oil spill is a major threat to the sea ecosystems. Remote sensing is used in oil spill response. Synthetic Aperture Radar (SAR is an active microwave sensor that operates under all weather conditions and provides information about the surface roughness and covers large areas at a high spatial resolution. SAR is widely used to identify and track pollutants in the sea, which may be due to a secondary effect of a large natural disaster or by a man-made one . The detection of oil spill in SAR imagery relies on the decrease of the backscattering from the sea surface, due to the increased viscosity, resulting in a dark formation that contrasts with the brightness of the surrounding area. Most of the use of SAR images for oil spill detection is done by visual interpretation. Trained interpreters scan the image, and mark areas of low backscatter and where shape is a-symmetrical. It is very difficult to apply this method for a wide area. In contrast to visual interpretation, automatic detection algorithms were suggested and are mainly based on scanning dark formations, extracting features, and applying big data analysis. We propose a new algorithm that applies a nonlinear spatial filter that detects dark formations and is not susceptible to noises, such as internal or speckle. The advantages of this algorithm are both in run time and the results retrieved. The algorithm was tested in genesimulations as well as on COSMO-SkyMed images, detecting the Deep Horizon oil spill in the Gulf of Mexico (occurred on 20/4/2010. The simulation results show that even in a noisy environment, oil spill is detected. Applying the algorithm to the Deep Horizon oil spill, the algorithm classified the oil spill better than focusing on dark formation algorithm. Furthermore, the results were validated by the National Oceanic and Atmospheric Administration (NOAA data.

  8. Large Oil Spill Classification Using SAR Images Based on Spatial Histogram

    Science.gov (United States)

    Schvartzman, I.; Havivi, S.; Maman, S.; Rotman, S. R.; Blumberg, D. G.

    2016-06-01

    Among the different types of marine pollution, oil spill is a major threat to the sea ecosystems. Remote sensing is used in oil spill response. Synthetic Aperture Radar (SAR) is an active microwave sensor that operates under all weather conditions and provides information about the surface roughness and covers large areas at a high spatial resolution. SAR is widely used to identify and track pollutants in the sea, which may be due to a secondary effect of a large natural disaster or by a man-made one . The detection of oil spill in SAR imagery relies on the decrease of the backscattering from the sea surface, due to the increased viscosity, resulting in a dark formation that contrasts with the brightness of the surrounding area. Most of the use of SAR images for oil spill detection is done by visual interpretation. Trained interpreters scan the image, and mark areas of low backscatter and where shape is a-symmetrical. It is very difficult to apply this method for a wide area. In contrast to visual interpretation, automatic detection algorithms were suggested and are mainly based on scanning dark formations, extracting features, and applying big data analysis. We propose a new algorithm that applies a nonlinear spatial filter that detects dark formations and is not susceptible to noises, such as internal or speckle. The advantages of this algorithm are both in run time and the results retrieved. The algorithm was tested in genesimulations as well as on COSMO-SkyMed images, detecting the Deep Horizon oil spill in the Gulf of Mexico (occurred on 20/4/2010). The simulation results show that even in a noisy environment, oil spill is detected. Applying the algorithm to the Deep Horizon oil spill, the algorithm classified the oil spill better than focusing on dark formation algorithm. Furthermore, the results were validated by the National Oceanic and Atmospheric Administration (NOAA) data.

  9. Investigation of Joint Visibility Between SAR and Optical Images of Urban Environments

    Science.gov (United States)

    Hughes, L. H.; Auer, S.; Schmitt, M.

    2018-05-01

    In this paper, we present a work-flow to investigate the joint visibility between very-high-resolution SAR and optical images of urban scenes. For this task, we extend the simulation framework SimGeoI to enable a simulation of individual pixels rather than complete images. Using the extended SimGeoI simulator, we carry out a case study using a TerraSAR-X staring spotlight image and a Worldview-2 panchromatic image acquired over the city of Munich, Germany. The results of this study indicate that about 55 % of the scene are visible in both images and are thus suitable for matching and data fusion endeavours, while about 25 % of the scene are affected by either radar shadow or optical occlusion. Taking the image acquisition parameters into account, our findings can provide support regarding the definition of upper bounds for image fusion tasks, as well as help to improve acquisition planning with respect to different application goals.

  10. Deep kernel learning method for SAR image target recognition

    Science.gov (United States)

    Chen, Xiuyuan; Peng, Xiyuan; Duan, Ran; Li, Junbao

    2017-10-01

    With the development of deep learning, research on image target recognition has made great progress in recent years. Remote sensing detection urgently requires target recognition for military, geographic, and other scientific research. This paper aims to solve the synthetic aperture radar image target recognition problem by combining deep and kernel learning. The model, which has a multilayer multiple kernel structure, is optimized layer by layer with the parameters of Support Vector Machine and a gradient descent algorithm. This new deep kernel learning method improves accuracy and achieves competitive recognition results compared with other learning methods.

  11. Aircraft Segmentation in SAR Images Based on Improved Active Shape Model

    Science.gov (United States)

    Zhang, X.; Xiong, B.; Kuang, G.

    2018-04-01

    In SAR image interpretation, aircrafts are the important targets arousing much attention. However, it is far from easy to segment an aircraft from the background completely and precisely in SAR images. Because of the complex structure, different kinds of electromagnetic scattering take place on the aircraft surfaces. As a result, aircraft targets usually appear to be inhomogeneous and disconnected. It is a good idea to extract an aircraft target by the active shape model (ASM), since combination of the geometric information controls variations of the shape during the contour evolution. However, linear dimensionality reduction, used in classic ACM, makes the model rigid. It brings much trouble to segment different types of aircrafts. Aiming at this problem, an improved ACM based on ISOMAP is proposed in this paper. ISOMAP algorithm is used to extract the shape information of the training set and make the model flexible enough to deal with different aircrafts. The experiments based on real SAR data shows that the proposed method achieves obvious improvement in accuracy.

  12. Advanced Interferometric Synthetic Aperture Imaging Radar (InSAR) for Dune Mapping

    Science.gov (United States)

    Havivi, Shiran; Amir, Doron; Schvartzman, Ilan; August, Yitzhak; Mamman, Shimrit; Rotman, Stanely R.; Blumberg, Dan G.

    2016-04-01

    Aeolian morphologies are formed in the presence of sufficient wind energy and available lose particles. These processes occur naturally or are further enhanced or reduced by human intervention. The dimensions of change are dependent primarily on the wind energy and surface properties. Since the 1970s, remote sensing imagery, both optical and radar, have been used for documentation and interpretation of the geomorphologic changes of sand dunes. Remote sensing studies of aeolian morphologies is mostly useful to document major changes, yet, subtle changes, occurring in a period of days or months in scales of centimeters, are very difficult to detect in imagery. Interferometric Synthetic Aperture Radar (InSAR) is an imaging technique for measuring Earth's surface topography and deformation. InSAR images are produced by measuring the radar phase difference between two separated antennas that view the same surface area. Classical InSAR is based on high coherence between two or more images. The output (interferogram) can show subtle changes with an accuracy of several millimeters to centimeters. Very little work has been done on measuring or identifying the changes in dunes using InSAR methods. The reason is that dunes tend to be less coherent than firm, stable, surfaces. This work aims to demonstrate how interferometric decorrelation can be used for identifying dune instability. We hypothesize and demonstrate that the loss of radar coherence over time on dunes can be used as an indication of the dune's instability. When SAR images are acquired at sufficiently close intervals one can measure the time it takes to lose coherence and associate this time with geomorphic stability. To achieve our goals, the coherence change detection method was used, in order to identify dune stability or instability and the dune activity level. The Nitzanim-Ashdod coastal dunes along the Mediterranean, 40 km south of Tel-Aviv, Israel, were chosen as a case study. The dunes in this area are of

  13. Improved SAR Amplitude Image Offset Measurements for Deriving Three-Dimensional Coseismic Displacements

    KAUST Repository

    Wang, Teng; Jonsson, Sigurjon

    2015-01-01

    Offsets of synthetic aperture radar (SAR) images have played an important role in deriving complete three-dimensional (3-D) surface displacement fields in geoscientific applications. However, offset maps often suffer from multiple outliers and patch-like artifacts, because the standard offset-measurement method is a regular moving-window operation that does not consider the scattering characteristics of the ground. Here, we show that by focusing the offset measurements on predetected strong reflectors, the reliability and accuracy of SAR offsets can be significantly improved. Application to the 2011 Van (Turkey) earthquake reveals a clear deformation signal from an otherwise decorrelated interferogram, making derivation of the 3-D coseismic displacement field possible. Our proposed method can improve mapping of coseismic deformation and other ground displacements, such as glacier flow and landslide movement when strong reflectors exist.

  14. Improved SAR Amplitude Image Offset Measurements for Deriving Three-Dimensional Coseismic Displacements

    KAUST Repository

    Wang, Teng

    2015-02-03

    Offsets of synthetic aperture radar (SAR) images have played an important role in deriving complete three-dimensional (3-D) surface displacement fields in geoscientific applications. However, offset maps often suffer from multiple outliers and patch-like artifacts, because the standard offset-measurement method is a regular moving-window operation that does not consider the scattering characteristics of the ground. Here, we show that by focusing the offset measurements on predetected strong reflectors, the reliability and accuracy of SAR offsets can be significantly improved. Application to the 2011 Van (Turkey) earthquake reveals a clear deformation signal from an otherwise decorrelated interferogram, making derivation of the 3-D coseismic displacement field possible. Our proposed method can improve mapping of coseismic deformation and other ground displacements, such as glacier flow and landslide movement when strong reflectors exist.

  15. Performance Analysis of Ship Wake Detection on Sentinel-1 SAR Images

    Directory of Open Access Journals (Sweden)

    Maria Daniela Graziano

    2017-10-01

    Full Text Available A novel technique for ship wake detection has been recently proposed and applied on X-band Synthetic Aperture Radar images provided by COSMO/SkyMed and TerraSAR-X. The approach shows that the vast majority of wake features are correctly detected and validated in critical situations. In this paper, the algorithm was applied to 28 wakes imaged by Sentinel-1 mission with different polarizations and incidence angles with the aim of testing the method’s robustness with reference to radar frequency and resolution. The detection process is properly modified. The results show that the features were correctly classified in 78.5% of cases, whereas false confirmations occur mainly on Kelvin cusps. Finally, the results were compared with the algorithm performance on X-band images, showing that no significant difference arises. In fact, the total false confirmations rate was 15.8% on X-band images and 18.5% on C-band images. Moreover, since the main criticality concerns again the false confirmation of Kelvin cusps, the same empirical criterion suggested for the X-band SAR images yielded a negligible 1.5% of false detection rate.

  16. The Research on Denoising of SAR Image Based on Improved K-SVD Algorithm

    Science.gov (United States)

    Tan, Linglong; Li, Changkai; Wang, Yueqin

    2018-04-01

    SAR images often receive noise interference in the process of acquisition and transmission, which can greatly reduce the quality of images and cause great difficulties for image processing. The existing complete DCT dictionary algorithm is fast in processing speed, but its denoising effect is poor. In this paper, the problem of poor denoising, proposed K-SVD (K-means and singular value decomposition) algorithm is applied to the image noise suppression. Firstly, the sparse dictionary structure is introduced in detail. The dictionary has a compact representation and can effectively train the image signal. Then, the sparse dictionary is trained by K-SVD algorithm according to the sparse representation of the dictionary. The algorithm has more advantages in high dimensional data processing. Experimental results show that the proposed algorithm can remove the speckle noise more effectively than the complete DCT dictionary and retain the edge details better.

  17. Bone scintigraphy in post-SARS patients and compared with magnetic resonance imaging

    International Nuclear Information System (INIS)

    Wang Qian; Huang Lili; Qin Shuling

    2004-01-01

    Objective: To study the characteristics of bone scintigraphy in post-SARS patients and evaluate the usefulness of bone scintigraphy in the prediction of avascular osteonecrosis (AVN) comparing with the MR imaging.. Methods: Our study included 66 patients who were diagnosed as SARS based on the diagnostic criteria issued by the Ministry of Health of China (MHC), including 46 women and 20 men. Their ages ranged from 19 to 63 years (mean, 31.6±0.1 years). All of the patients were treated with methyprednisonlone, rabavirin, broad spectrum antimicrobials and supportive therapy. Dosage of methyprednisonlone was 80∼800 mg/d for 4-72 days. Of them, varied seat of joint pain occurred in 47 patients 3 to 18 weeks after the onset of SARS. Since multiple joints were involved in many patients, bone scintigraphy was performed for screening AVN. The other 19 patients without of evident joint pain were also examined as their demand. Informed consents were obtained in all of the examined patients. No previously joint pain or trauma history was found in this group of patients. Of the 66 patients, planer X-ray was performed in 34 of the symptomatic patients previous to the scintigraphy, but it was negative in all. MR examination was performed in 54 patients before or after the scintigraphy, and the interval between two the tests was average of 8 days (range, 0 to 30 days). In addition, 27 consecutive cases aged lower than 45 years (mean, 40.4±0.8 years) with breast cancer who underwent bone scintigraphy for screening metastastic disease and had negative results were also involved as a control group. Whole body skeletal scintigraphy was performed 3 hours after intravenous administration of technetium-99m methylene-diphosphonate 740 MBq. Increased uptake lesion seen in the limb joints was defined as positive, but 'hot patella' sign was considered to be non diagnostic value. When a lesion was found in the whole body imaging, corresponding regional image was further taken. Two

  18. Image-Word Pairing-Congruity Effect on Affective Responses

    Science.gov (United States)

    Sanabria Z., Jorge C.; Cho, Youngil; Sambai, Ami; Yamanaka, Toshimasa

    The present study explores the effects of familiarity on affective responses (pleasure and arousal) to Japanese ad elements, based on the schema incongruity theory. Print ads showing natural scenes (landscapes) were used to create the stimuli (images and words). An empirical study was conducted to measure subjects' affective responses to image-word combinations that varied in terms of incongruity. The level of incongruity was based on familiarity levels, and was statistically determined by a variable called ‘pairing-congruity status’. The tested hypothesis proposed that even highly familiar image-word combinations, when combined incongruously, would elicit strong affective responses. Subjects assessed the stimuli using bipolar scales. The study was effective in tracing interactions between familiarity, pleasure and arousal, although the incongruous image-word combinations did not elicit the predicted strong effects on pleasure and arousal. The results suggest a need for further research incorporating kansei (i.e., creativity) into the process of stimuli selection.

  19. Decomposition of Polarimetric SAR Images Based on Second- and Third-order Statics Analysis

    Science.gov (United States)

    Kojima, S.; Hensley, S.

    2012-12-01

    There are many papers concerning the research of the decomposition of polerimetric SAR imagery. Most of them are based on second-order statics analysis that Freeman and Durden [1] suggested for the reflection symmetry condition that implies that the co-polarization and cross-polarization correlations are close to zero. Since then a number of improvements and enhancements have been proposed to better understand the underlying backscattering mechanisms present in polarimetric SAR images. For example, Yamaguchi et al. [2] added the helix component into Freeman's model and developed a 4 component scattering model for the non-reflection symmetry condition. In addition, Arii et al. [3] developed an adaptive model-based decomposition method that could estimate both the mean orientation angle and a degree of randomness for the canopy scattering for each pixel in a SAR image without the reflection symmetry condition. This purpose of this research is to develop a new decomposition method based on second- and third-order statics analysis to estimate the surface, dihedral, volume and helix scattering components from polarimetric SAR images without the specific assumptions concerning the model for the volume scattering. In addition, we evaluate this method by using both simulation and real UAVSAR data and compare this method with other methods. We express the volume scattering component using the wire formula and formulate the relationship equation between backscattering echo and each component such as the surface, dihedral, volume and helix via linearization based on second- and third-order statics. In third-order statics, we calculate the correlation of the correlation coefficients for each polerimetric data and get one new relationship equation to estimate each polarization component such as HH, VV and VH for the volume. As a result, the equation for the helix component in this method is the same formula as one in Yamaguchi's method. However, the equation for the volume

  20. A combined use of multispectral and SAR images for ship detection and characterization through object based image analysis

    Science.gov (United States)

    Aiello, Martina; Gianinetto, Marco

    2017-10-01

    Marine routes represent a huge portion of commercial and human trades, therefore surveillance, security and environmental protection themes are gaining increasing importance. Being able to overcome the limits imposed by terrestrial means of monitoring, ship detection from satellite has recently prompted a renewed interest for a continuous monitoring of illegal activities. This paper describes an automatic Object Based Image Analysis (OBIA) approach to detect vessels made of different materials in various sea environments. The combined use of multispectral and SAR images allows for a regular observation unrestricted by lighting and atmospheric conditions and complementarity in terms of geographic coverage and geometric detail. The method developed adopts a region growing algorithm to segment the image in homogeneous objects, which are then classified through a decision tree algorithm based on spectral and geometrical properties. Then, a spatial analysis retrieves the vessels' position, length and heading parameters and a speed range is associated. Optimization of the image processing chain is performed by selecting image tiles through a statistical index. Vessel candidates are detected over amplitude SAR images using an adaptive threshold Constant False Alarm Rate (CFAR) algorithm prior the object based analysis. Validation is carried out by comparing the retrieved parameters with the information provided by the Automatic Identification System (AIS), when available, or with manual measurement when AIS data are not available. The estimation of length shows R2=0.85 and estimation of heading R2=0.92, computed as the average of R2 values obtained for both optical and radar images.

  1. AN EVOLUTIONARY ALGORITHM FOR FAST INTENSITY BASED IMAGE MATCHING BETWEEN OPTICAL AND SAR SATELLITE IMAGERY

    Directory of Open Access Journals (Sweden)

    P. Fischer

    2018-04-01

    Full Text Available This paper presents a hybrid evolutionary algorithm for fast intensity based matching between satellite imagery from SAR and very high-resolution (VHR optical sensor systems. The precise and accurate co-registration of image time series and images of different sensors is a key task in multi-sensor image processing scenarios. The necessary preprocessing step of image matching and tie-point detection is divided into a search problem and a similarity measurement. Within this paper we evaluate the use of an evolutionary search strategy for establishing the spatial correspondence between satellite imagery of optical and radar sensors. The aim of the proposed algorithm is to decrease the computational costs during the search process by formulating the search as an optimization problem. Based upon the canonical evolutionary algorithm, the proposed algorithm is adapted for SAR/optical imagery intensity based matching. Extensions are drawn using techniques like hybridization (e.g. local search and others to lower the number of objective function calls and refine the result. The algorithm significantely decreases the computational costs whilst finding the optimal solution in a reliable way.

  2. A High-precision Motion Compensation Method for SAR Based on Image Intensity Optimization

    Directory of Open Access Journals (Sweden)

    Hu Ke-bin

    2015-02-01

    Full Text Available Owing to the platform instability and precision limitations of motion sensors, motion errors negatively affect the quality of synthetic aperture radar (SAR images. The autofocus Back Projection (BP algorithm based on the optimization of image sharpness compensates for motion errors through phase error estimation. This method can attain relatively good performance, while assuming the same phase error for all pixels, i.e., it ignores the spatial variance of motion errors. To overcome this drawback, a high-precision motion error compensation method is presented in this study. In the proposed method, the Antenna Phase Centers (APC are estimated via optimization using the criterion of maximum image intensity. Then, the estimated APCs are applied for BP imaging. Because the APC estimation equals the range history estimation for each pixel, high-precision phase compensation for every pixel can be achieved. Point-target simulations and processing of experimental data validate the effectiveness of the proposed method.

  3. Monitoring of Building Construction by 4D Change Detection Using Multi-temporal SAR Images

    Science.gov (United States)

    Yang, C. H.; Pang, Y.; Soergel, U.

    2017-05-01

    Monitoring urban changes is important for city management, urban planning, updating of cadastral map, etc. In contrast to conventional field surveys, which are usually expensive and slow, remote sensing techniques are fast and cost-effective alternatives. Spaceborne synthetic aperture radar (SAR) sensors provide radar images captured rapidly over vast areas at fine spatiotemporal resolution. In addition, the active microwave sensors are capable of day-and-night vision and independent of weather conditions. These advantages make multi-temporal SAR images suitable for scene monitoring. Persistent scatterer interferometry (PSI) detects and analyses PS points, which are characterized by strong, stable, and coherent radar signals throughout a SAR image sequence and can be regarded as substructures of buildings in built-up cities. Attributes of PS points, for example, deformation velocities, are derived and used for further analysis. Based on PSI, a 4D change detection technique has been developed to detect disappearance and emergence of PS points (3D) at specific times (1D). In this paper, we apply this 4D technique to the centre of Berlin, Germany, to investigate its feasibility and application for construction monitoring. The aims of the three case studies are to monitor construction progress, business districts, and single buildings, respectively. The disappearing and emerging substructures of the buildings are successfully recognized along with their occurrence times. The changed substructures are then clustered into single construction segments based on DBSCAN clustering and α-shape outlining for object-based analysis. Compared with the ground truth, these spatiotemporal results have proven able to provide more detailed information for construction monitoring.

  4. GOTCHA experience report: three-dimensional SAR imaging with complete circular apertures

    Science.gov (United States)

    Ertin, Emre; Austin, Christian D.; Sharma, Samir; Moses, Randolph L.; Potter, Lee C.

    2007-04-01

    We study circular synthetic aperture radar (CSAR) systems collecting radar backscatter measurements over a complete circular aperture of 360 degrees. This study is motivated by the GOTCHA CSAR data collection experiment conducted by the Air Force Research Laboratory (AFRL). Circular SAR provides wide-angle information about the anisotropic reflectivity of the scattering centers in the scene, and also provides three dimensional information about the location of the scattering centers due to a non planar collection geometry. Three dimensional imaging results with single pass circular SAR data reveals that the 3D resolution of the system is poor due to the limited persistence of the reflectors in the scene. We present results on polarimetric processing of CSAR data and illustrate reasoning of three dimensional shape from multi-view layover using prior information about target scattering mechanisms. Next, we discuss processing of multipass (CSAR) data and present volumetric imaging results with IFSAR and three dimensional backprojection techniques on the GOTCHA data set. We observe that the volumetric imaging with GOTCHA data is degraded by aliasing and high sidelobes due to nonlinear flightpaths and sparse and unequal sampling in elevation. We conclude with a model based technique that resolves target features and enhances the volumetric imagery by extrapolating the phase history data using the estimated model.

  5. Research on a dem Coregistration Method Based on the SAR Imaging Geometry

    Science.gov (United States)

    Niu, Y.; Zhao, C.; Zhang, J.; Wang, L.; Li, B.; Fan, L.

    2018-04-01

    Due to the systematic error, especially the horizontal deviation that exists in the multi-source, multi-temporal DEMs (Digital Elevation Models), a method for high precision coregistration is needed. This paper presents a new fast DEM coregistration method based on a given SAR (Synthetic Aperture Radar) imaging geometry to overcome the divergence and time-consuming problem of the conventional DEM coregistration method. First, intensity images are simulated for two DEMs under the given SAR imaging geometry. 2D (Two-dimensional) offsets are estimated in the frequency domain using the intensity cross-correlation operation in the FFT (Fast Fourier Transform) tool, which can greatly accelerate the calculation process. Next, the transformation function between two DEMs is achieved via the robust least-square fitting of 2D polynomial operation. Accordingly, two DEMs can be precisely coregistered. Last, two DEMs, i.e., one high-resolution LiDAR (Light Detection and Ranging) DEM and one low-resolution SRTM (Shutter Radar Topography Mission) DEM, covering the Yangjiao landslide region of Chongqing are taken as an example to test the new method. The results indicate that, in most cases, this new method can achieve not only a result as much as 80 times faster than the minimum elevation difference (Least Z-difference, LZD) DEM registration method, but also more accurate and more reliable results.

  6. Observation of pressure ridges in SAR images of sea ice: Scattering theory and comparison with observations

    Science.gov (United States)

    Vesecky, J. F.; Daida, J. M.; Shuchman, R. A.; Onstott, R. H.; Camiso, J. C.

    1993-01-01

    Ridges and keels (hummocks and bummocks) in sea ice flows are important in sea ice research for both scientific and practical reasons. Sea ice movement and deformation is driven by internal and external stresses on the ice. Ridges and keels play important roles in both cases because they determine the external wind and current stresses via drag coefficients. For example, the drag coefficient over sea ice can vary by a factor of several depending on the fluid mechanical roughness length of the surface. This roughness length is thought to be strongly dependent on the ridge structures present. Thus, variations in ridge and keel structure can cause gradients in external stresses which must be balanced by internal stresses and possibly fracture of the ice. Ridging in sea ice is also a sign of fracture. In a practical sense, large ridges form the biggest impediment to surface travel over the ice or penetration through sea ice by ice-strengthened ships. Ridges also play an important role in the damage caused by sea ice to off-shore structures. Hence, observation and measurement of sea ice ridges is an important component of sea ice remote sensing. The research reported here builds on previous work, estimating the characteristics of ridges and leads in sea ice from SAR images. Our objective is to develop methods for quantitative measurement of sea ice ridges from SAR images. To make further progress, in particular, to estimate ridge height, a scattering model for ridges is needed. Our research approach for a ridge scattering model begins with a survey of the geometrical properties of ridges and a comparison with the characteristics of the surrounding ice. For this purpose we have used airborne optical laser (AOL) data collected during the 1987 Greenland Sea Experiment. These data were used to generate a spatial wavenumber spectrum for height variance for a typical ridge - the typical ridge is the average over 10 large ridges. Our first-order model radar scattering includes

  7. The Intercomparison of X-Band SAR Images from COSMO‑SkyMed and TerraSAR-X Satellites: Case Studies

    Directory of Open Access Journals (Sweden)

    Simone Pettinato

    2013-06-01

    Full Text Available The analysis of experimental data collected by X-band SAR of COSMO-SkyMed (CSK® and TerraSAR-X (TSX images on the same surface types has shown significant differences in the signal level of the two sensors. In order to investigate the possibility of combining data from the two instruments, a study was carried out by comparing images collected with similar orbital and sensor parameters (e.g., incidence angle, polarization, look angle at approximately the same date on two Italian agricultural test sites. Several homogenous agricultural fields within the observed area common to the two sensors were selected. Some forest plots have also been considered and used as a reference target. Direct comparisons were then performed between CSK and TSX images in different acquisition modes. The analysis carried out on the agricultural fields showed that, in general, the backscattering coefficient is higher in TSX Stripmap images with respect to CSK-Himage (about 3 dB, while CSK-Ping Pong data showed values lower than TSX of about 4.8 dB. Finally, a difference in backscattering of about 2.5 dB was pointed out between CSK-Himage and Ping-Pong images on agricultural fields. These results, achieved on bare soils, have also been compared with simulations performed by using the Advanced Integral Equation Model (AIEM.

  8. Skipping the real world: Classification of PolSAR images without explicit feature extraction

    Science.gov (United States)

    Hänsch, Ronny; Hellwich, Olaf

    2018-06-01

    The typical processing chain for pixel-wise classification from PolSAR images starts with an optional preprocessing step (e.g. speckle reduction), continues with extracting features projecting the complex-valued data into the real domain (e.g. by polarimetric decompositions) which are then used as input for a machine-learning based classifier, and ends in an optional postprocessing (e.g. label smoothing). The extracted features are usually hand-crafted as well as preselected and represent (a somewhat arbitrary) projection from the complex to the real domain in order to fit the requirements of standard machine-learning approaches such as Support Vector Machines or Artificial Neural Networks. This paper proposes to adapt the internal node tests of Random Forests to work directly on the complex-valued PolSAR data, which makes any explicit feature extraction obsolete. This approach leads to a classification framework with a significantly decreased computation time and memory footprint since no image features have to be computed and stored beforehand. The experimental results on one fully-polarimetric and one dual-polarimetric dataset show that, despite the simpler approach, accuracy can be maintained (decreased by only less than 2 % for the fully-polarimetric dataset) or even improved (increased by roughly 9 % for the dual-polarimetric dataset).

  9. Wake Component Detection in X-Band SAR Images for Ship Heading and Velocity Estimation

    Directory of Open Access Journals (Sweden)

    Maria Daniela Graziano

    2016-06-01

    Full Text Available A new algorithm for ship wake detection is developed with the aim of ship heading and velocity estimation. It exploits the Radon transform and utilizes merit indexes in the intensity domain to validate the detected linear features as real components of the ship wake. Finally, ship velocity is estimated by state-of-the-art techniques of azimuth shift and Kelvin arm wavelength. The algorithm is applied to 13 X-band SAR images from the TerraSAR-X and COSMO/SkyMed missions with different polarization and incidence angles. Results show that the vast majority of wake features are correctly detected and validated also in critical situations, i.e., when multiple wake appearances or dark areas not related to wake features are imaged. The ship route estimations are validated with truth-at-sea in seven cases. Finally, it is also verified that the algorithm does not detect wakes in the surroundings of 10 ships without wake appearances.

  10. Accurate Analysis of Target Characteristic in Bistatic SAR Images: A Dihedral Corner Reflectors Case

    Directory of Open Access Journals (Sweden)

    Dongyang Ao

    2017-12-01

    Full Text Available The dihedral corner reflectors are the basic geometric structure of many targets and are the main contributions of radar cross section (RCS in the synthetic aperture radar (SAR images. In stealth technologies, the elaborate design of the dihedral corners with different opening angles is a useful approach to reduce the high RCS generated by multiple reflections. As bistatic synthetic aperture sensors have flexible geometric configurations and are sensitive to the dihedral corners with different opening angles, they specially fit for the stealth target detections. In this paper, the scattering characteristic of dihedral corner reflectors is accurately analyzed in bistatic synthetic aperture images. The variation of RCS with the changing opening angle is formulated and the method to design a proper bistatic radar for maximizing the detection capability is provided. Both the results of the theoretical analysis and the experiments show the bistatic SAR could detect the dihedral corners, under a certain bistatic angle which is related to the geometry of target structures.

  11. Accurate Analysis of Target Characteristic in Bistatic SAR Images: A Dihedral Corner Reflectors Case

    Science.gov (United States)

    Ao, Dongyang; Hu, Cheng; Tian, Weiming

    2017-01-01

    The dihedral corner reflectors are the basic geometric structure of many targets and are the main contributions of radar cross section (RCS) in the synthetic aperture radar (SAR) images. In stealth technologies, the elaborate design of the dihedral corners with different opening angles is a useful approach to reduce the high RCS generated by multiple reflections. As bistatic synthetic aperture sensors have flexible geometric configurations and are sensitive to the dihedral corners with different opening angles, they specially fit for the stealth target detections. In this paper, the scattering characteristic of dihedral corner reflectors is accurately analyzed in bistatic synthetic aperture images. The variation of RCS with the changing opening angle is formulated and the method to design a proper bistatic radar for maximizing the detection capability is provided. Both the results of the theoretical analysis and the experiments show the bistatic SAR could detect the dihedral corners, under a certain bistatic angle which is related to the geometry of target structures. PMID:29271917

  12. Two-Step Single Slope/SAR ADC with Error Correction for CMOS Image Sensor

    Directory of Open Access Journals (Sweden)

    Fang Tang

    2014-01-01

    Full Text Available Conventional two-step ADC for CMOS image sensor requires full resolution noise performance in the first stage single slope ADC, leading to high power consumption and large chip area. This paper presents an 11-bit two-step single slope/successive approximation register (SAR ADC scheme for CMOS image sensor applications. The first stage single slope ADC generates a 3-bit data and 1 redundant bit. The redundant bit is combined with the following 8-bit SAR ADC output code using a proposed error correction algorithm. Instead of requiring full resolution noise performance, the first stage single slope circuit of the proposed ADC can tolerate up to 3.125% quantization noise. With the proposed error correction mechanism, the power consumption and chip area of the single slope ADC are significantly reduced. The prototype ADC is fabricated using 0.18 μm CMOS technology. The chip area of the proposed ADC is 7 μm × 500 μm. The measurement results show that the energy efficiency figure-of-merit (FOM of the proposed ADC core is only 125 pJ/sample under 1.4 V power supply and the chip area efficiency is 84 k μm2·cycles/sample.

  13. Two-step single slope/SAR ADC with error correction for CMOS image sensor.

    Science.gov (United States)

    Tang, Fang; Bermak, Amine; Amira, Abbes; Amor Benammar, Mohieddine; He, Debiao; Zhao, Xiaojin

    2014-01-01

    Conventional two-step ADC for CMOS image sensor requires full resolution noise performance in the first stage single slope ADC, leading to high power consumption and large chip area. This paper presents an 11-bit two-step single slope/successive approximation register (SAR) ADC scheme for CMOS image sensor applications. The first stage single slope ADC generates a 3-bit data and 1 redundant bit. The redundant bit is combined with the following 8-bit SAR ADC output code using a proposed error correction algorithm. Instead of requiring full resolution noise performance, the first stage single slope circuit of the proposed ADC can tolerate up to 3.125% quantization noise. With the proposed error correction mechanism, the power consumption and chip area of the single slope ADC are significantly reduced. The prototype ADC is fabricated using 0.18 μ m CMOS technology. The chip area of the proposed ADC is 7 μ m × 500 μ m. The measurement results show that the energy efficiency figure-of-merit (FOM) of the proposed ADC core is only 125 pJ/sample under 1.4 V power supply and the chip area efficiency is 84 k  μ m(2) · cycles/sample.

  14. Removal of Optically Thick Clouds from Multi-Spectral Satellite Images Using Multi-Frequency SAR Data

    Directory of Open Access Journals (Sweden)

    Robert Eckardt

    2013-06-01

    Full Text Available This study presents a method for the reconstruction of pixels contaminated by optical thick clouds in multi-spectral Landsat images using multi-frequency SAR data. A number of reconstruction techniques have already been proposed in the scientific literature. However, all of the existing techniques have certain limitations. In order to overcome these limitations, we expose the Closest Spectral Fit (CSF method proposed by Meng et al. to a new, synergistic approach using optical and SAR data. Therefore, the term Closest Feature Vector (CFV is introduced. The technique facilitates an elegant way to avoid radiometric distortions in the course of image reconstruction. Furthermore the cloud cover removal is independent from underlying land cover types and assumptions on seasonality, etc. The methodology is applied to mono-temporal, multi-frequency SAR data from TerraSAR-X (X-Band, ERS (C-Band and ALOS Palsar (L-Band. This represents a way of thinking about Radar data not as foreign, but as additional data source in multi-spectral remote sensing. For the assessment of the image restoration performance, an experimental framework is established and a statistical evaluation protocol is designed. The results show the potential of a synergistic usage of multi-spectral and SAR data to overcome the loss of data due to cloud cover.

  15. Phi-s correlation and dynamic time warping - Two methods for tracking ice floes in SAR images

    Science.gov (United States)

    Mcconnell, Ross; Kober, Wolfgang; Kwok, Ronald; Curlander, John C.; Pang, Shirley S.

    1991-01-01

    The authors present two algorithms for performing shape matching on ice floe boundaries in SAR (synthetic aperture radar) images. These algorithms quickly produce a set of ice motion and rotation vectors that can be used to guide a pixel value correlator. The algorithms match a shape descriptor known as the Phi-s curve. The first algorithm uses normalized correlation to match the Phi-s curves, while the second uses dynamic programming to compute an elastic match that better accommodates ice floe deformation. Some empirical data on the performance of the algorithms on Seasat SAR images are presented.

  16. Data Based Parameter Estimation Method for Circular-scanning SAR Imaging

    Directory of Open Access Journals (Sweden)

    Chen Gong-bo

    2013-06-01

    Full Text Available The circular-scanning Synthetic Aperture Radar (SAR is a novel working mode and its image quality is closely related to the accuracy of the imaging parameters, especially considering the inaccuracy of the real speed of the motion. According to the characteristics of the circular-scanning mode, a new data based method for estimating the velocities of the radar platform and the scanning-angle of the radar antenna is proposed in this paper. By referring to the basic conception of the Doppler navigation technique, the mathematic model and formulations for the parameter estimation are firstly improved. The optimal parameter approximation based on the least square criterion is then realized in solving those equations derived from the data processing. The simulation results verified the validity of the proposed scheme.

  17. AN UNSUPERVISED CHANGE DETECTION BASED ON TEST STATISTIC AND KI FROM MULTI-TEMPORAL AND FULL POLARIMETRIC SAR IMAGES

    Directory of Open Access Journals (Sweden)

    J. Q. Zhao

    2016-06-01

    Full Text Available Accurate and timely change detection of Earth’s surface features is extremely important for understanding relationships and interactions between people and natural phenomena. Many traditional methods of change detection only use a part of polarization information and the supervised threshold selection. Those methods are insufficiency and time-costing. In this paper, we present a novel unsupervised change-detection method based on quad-polarimetric SAR data and automatic threshold selection to solve the problem of change detection. First, speckle noise is removed for the two registered SAR images. Second, the similarity measure is calculated by the test statistic, and automatic threshold selection of KI is introduced to obtain the change map. The efficiency of the proposed method is demonstrated by the quad-pol SAR images acquired by Radarsat-2 over Wuhan of China.

  18. Visual analytics for semantic queries of TerraSAR-X image content

    Science.gov (United States)

    Espinoza-Molina, Daniela; Alonso, Kevin; Datcu, Mihai

    2015-10-01

    With the continuous image product acquisition of satellite missions, the size of the image archives is considerably increasing every day as well as the variety and complexity of their content, surpassing the end-user capacity to analyse and exploit them. Advances in the image retrieval field have contributed to the development of tools for interactive exploration and extraction of the images from huge archives using different parameters like metadata, key-words, and basic image descriptors. Even though we count on more powerful tools for automated image retrieval and data analysis, we still face the problem of understanding and analyzing the results. Thus, a systematic computational analysis of these results is required in order to provide to the end-user a summary of the archive content in comprehensible terms. In this context, visual analytics combines automated analysis with interactive visualizations analysis techniques for an effective understanding, reasoning and decision making on the basis of very large and complex datasets. Moreover, currently several researches are focused on associating the content of the images with semantic definitions for describing the data in a format to be easily understood by the end-user. In this paper, we present our approach for computing visual analytics and semantically querying the TerraSAR-X archive. Our approach is mainly composed of four steps: 1) the generation of a data model that explains the information contained in a TerraSAR-X product. The model is formed by primitive descriptors and metadata entries, 2) the storage of this model in a database system, 3) the semantic definition of the image content based on machine learning algorithms and relevance feedback, and 4) querying the image archive using semantic descriptors as query parameters and computing the statistical analysis of the query results. The experimental results shows that with the help of visual analytics and semantic definitions we are able to explain

  19. (Non-) homomorphic approaches to denoise intensity SAR images with non-local means and stochastic distances

    Science.gov (United States)

    Penna, Pedro A. A.; Mascarenhas, Nelson D. A.

    2018-02-01

    The development of new methods to denoise images still attract researchers, who seek to combat the noise with the minimal loss of resolution and details, like edges and fine structures. Many algorithms have the goal to remove additive white Gaussian noise (AWGN). However, it is not the only type of noise which interferes in the analysis and interpretation of images. Therefore, it is extremely important to expand the filters capacity to different noise models present in li-terature, for example the multiplicative noise called speckle that is present in synthetic aperture radar (SAR) images. The state-of-the-art algorithms in remote sensing area work with similarity between patches. This paper aims to develop two approaches using the non local means (NLM), developed for AWGN. In our research, we expanded its capacity for intensity SAR ima-ges speckle. The first approach is grounded on the use of stochastic distances based on the G0 distribution without transforming the data to the logarithm domain, like homomorphic transformation. It takes into account the speckle and backscatter to estimate the parameters necessary to compute the stochastic distances on NLM. The second method uses a priori NLM denoising with a homomorphic transformation and applies the inverse Gamma distribution to estimate the parameters that were used into NLM with stochastic distances. The latter method also presents a new alternative to compute the parameters for the G0 distribution. Finally, this work compares and analyzes the synthetic and real results of the proposed methods with some recent filters of the literature.

  20. An Adaptive Ship Detection Algorithm for Hrws SAR Images Under Complex Background: Application to SENTINEL1A Data

    Science.gov (United States)

    He, G.; Xia, Z.; Chen, H.; Li, K.; Zhao, Z.; Guo, Y.; Feng, P.

    2018-04-01

    Real-time ship detection using synthetic aperture radar (SAR) plays a vital role in disaster emergency and marine security. Especially the high resolution and wide swath (HRWS) SAR images, provides the advantages of high resolution and wide swath synchronously, significantly promotes the wide area ocean surveillance performance. In this study, a novel method is developed for ship target detection by using the HRWS SAR images. Firstly, an adaptive sliding window is developed to propose the suspected ship target areas, based upon the analysis of SAR backscattering intensity images. Then, backscattering intensity and texture features extracted from the training samples of manually selected ship and non-ship slice images, are used to train a support vector machine (SVM) to classify the proposed ship slice images. The approach is verified by using the Sentinl1A data working in interferometric wide swath mode. The results demonstrate the improvement performance of the proposed method over the constant false alarm rate (CFAR) method, where the classification accuracy improved from 88.5 % to 96.4 % and the false alarm rate mitigated from 11.5 % to 3.6 % compared with CFAR respectively.

  1. An Efficient SAR Image Segmentation Framework Using Transformed Nonlocal Mean and Multi-Objective Clustering in Kernel Space

    Directory of Open Access Journals (Sweden)

    Dongdong Yang

    2015-02-01

    Full Text Available Synthetic aperture radar (SAR image segmentation usually involves two crucial issues: suitable speckle noise removing technique and effective image segmentation methodology. Here, an efficient SAR image segmentation method considering both of the two aspects is presented. As for the first issue, the famous nonlocal mean (NLM filter is introduced in this study to suppress the multiplicative speckle noise in SAR image. Furthermore, to achieve a higher denoising accuracy, the local neighboring pixels in the searching window are projected into a lower dimensional subspace by principal component analysis (PCA. Thus, the nonlocal mean filter is implemented in the subspace. Afterwards, a multi-objective clustering algorithm is proposed using the principals of artificial immune system (AIS and kernel-induced distance measures. The multi-objective clustering has been shown to discover the data distribution with different characteristics and the kernel methods can improve its robustness to noise and outliers. Experiments demonstrate that the proposed method is able to partition the SAR image robustly and accurately than the conventional approaches.

  2. STUDY ON LANDSLIDE DISASTER EXTRACTION METHOD BASED ON SPACEBORNE SAR REMOTE SENSING IMAGES – TAKE ALOS PALSAR FOR AN EXAMPLE

    Directory of Open Access Journals (Sweden)

    D. Xue

    2018-04-01

    Full Text Available In this paper, sequence ALOS PALSAR data and airborne SAR data of L-band from June 5, 2008 to September 8, 2015 are used. Based on the research of SAR data preprocessing and core algorithms, such as geocode, registration, filtering, unwrapping and baseline estimation, the improved Goldstein filtering algorithm and the branch-cut path tracking algorithm are used to unwrap the phase. The DEM and surface deformation information of the experimental area were extracted. Combining SAR-specific geometry and differential interferometry, on the basis of composite analysis of multi-source images, a method of detecting landslide disaster combining coherence of SAR image is developed, which makes up for the deficiency of single SAR and optical remote sensing acquisition ability. Especially in bad weather and abnormal climate areas, the speed of disaster emergency and the accuracy of extraction are improved. It is found that the deformation in this area is greatly affected by faults, and there is a tendency of uplift in the southeast plain and western mountainous area, while in the southwest part of the mountain area there is a tendency to sink. This research result provides a basis for decision-making for local disaster prevention and control.

  3. Geocoding of SAR Image Using the Orbit and Attitude Determination of RADARSAT

    Directory of Open Access Journals (Sweden)

    Jin Wook So

    1998-06-01

    Full Text Available The Synthetic Aperture Radar (SAR image and the Digital Elevation Model (DEM of an target area are put into use to generate three dimensional image map. An method of image map generation is explained. The orbit and attitude determination of satellite makes it possible to model signal acquisition configuration precisely, which is a key to mapping image coordinates to geographic coordinates of concerned area. An application is made to RADARSAT in the purpose of testing its validity. To determine the orbit, zero Doppler range is used. And to determine the attitude, Doppler centroid frequency, which is the frequency observed when target is in the center of antenna's view, is used. Conventional geocoding has been performed on the basis of direct method(mapping image coordinates to geographic coordinates, but in this research the inverse method (mapping from geographic coordinates to image coordinates is taken. This paper shows that precise signal acquisition modeling based on the orbit and attitude determination of satellite as a platform leads to a satellite-centered accurate geocoding process. It also shows how to model relative motion between spaceborne radar and target. And the relative motion is described in ECIC (earth-centered initial coordinates using Doppler equation and signal acquisition geometry.

  4. Expressway deformation mapping using high-resolution TerraSAR-X images

    KAUST Repository

    Shi, Xuguo

    2014-01-27

    Monitoring deformation of linear infrastructures such as expressway and railway caused by natural processes or anthropogenic activities is a vital task to ensure the safety of human lives and properties. Interferometric Synthetic Aperture Radar (InSAR) has been widely recognized as an effective technology to carry out large-area surface deformation mapping. However, its application in linear infrastructure deformation monitoring has not been intensively studied till now. In this article, a modified Small BAseline Subset (SBAS) method is proposed to retrieve the deformation patterns of the expressway. In our method, only the point-like targets identified on the expressway were kept in our analysis, and two complementary subsets of interferograms were formed to better separate the signals of height error and deformation from inteferometric phase observations. We successfully applied this method with multitemporal high-resolution TerraSAR-X images to retrieve the spatialoral pattern of surface deformation along the Beian-Heihe expressway that is located in island-permafrost areas and threatened by geohazards. © 2014 Taylor & Francis.

  5. MAXIMUM LIKELIHOOD CLASSIFICATION OF HIGH-RESOLUTION SAR IMAGES IN URBAN AREA

    Directory of Open Access Journals (Sweden)

    M. Soheili Majd

    2012-09-01

    Full Text Available In this work, we propose a state-of-the-art on statistical analysis of polarimetric synthetic aperture radar (SAR data, through the modeling of several indices. We concentrate on eight ground classes which have been carried out from amplitudes, co-polarisation ratio, depolarization ratios, and other polarimetric descriptors. To study their different statistical behaviours, we consider Gauss, log- normal, Beta I, Weibull, Gamma, and Fisher statistical models and estimate their parameters using three methods: method of moments (MoM, maximum-likelihood (ML methodology, and log-cumulants method (MoML. Then, we study the opportunity of introducing this information in an adapted supervised classification scheme based on Maximum–Likelihood and Fisher pdf. Our work relies on an image of a suburban area, acquired by the airborne RAMSES SAR sensor of ONERA. The results prove the potential of such data to discriminate urban surfaces and show the usefulness of adapting any classical classification algorithm however classification maps present a persistant class confusion between flat gravelled or concrete roofs and trees.

  6. Expressway deformation mapping using high-resolution TerraSAR-X images

    KAUST Repository

    Shi, Xuguo; Liao, Mingsheng; Wang, Teng; Zhang, Lu; Shan, Wei; Wang, Chunjiao

    2014-01-01

    Monitoring deformation of linear infrastructures such as expressway and railway caused by natural processes or anthropogenic activities is a vital task to ensure the safety of human lives and properties. Interferometric Synthetic Aperture Radar (InSAR) has been widely recognized as an effective technology to carry out large-area surface deformation mapping. However, its application in linear infrastructure deformation monitoring has not been intensively studied till now. In this article, a modified Small BAseline Subset (SBAS) method is proposed to retrieve the deformation patterns of the expressway. In our method, only the point-like targets identified on the expressway were kept in our analysis, and two complementary subsets of interferograms were formed to better separate the signals of height error and deformation from inteferometric phase observations. We successfully applied this method with multitemporal high-resolution TerraSAR-X images to retrieve the spatialoral pattern of surface deformation along the Beian-Heihe expressway that is located in island-permafrost areas and threatened by geohazards. © 2014 Taylor & Francis.

  7. Improved GO/PO method and its application to wideband SAR image of conducting objects over rough surface

    Science.gov (United States)

    Jiang, Wang-Qiang; Zhang, Min; Nie, Ding; Jiao, Yong-Chang

    2018-04-01

    To simulate the multiple scattering effect of target in synthetic aperture radar (SAR) image, the hybrid method GO/PO method, which combines the geometrical optics (GO) and physical optics (PO), is employed to simulate the scattering field of target. For ray tracing is time-consuming, the Open Graphics Library (OpenGL) is usually employed to accelerate the process of ray tracing. Furthermore, the GO/PO method is improved for the simulation in low pixel situation. For the improved GO/PO method, the pixels are arranged corresponding to the rectangular wave beams one by one, and the GO/PO result is the sum of the contribution values of all the rectangular wave beams. To get high-resolution SAR image, the wideband echo signal is simulated which includes information of many electromagnetic (EM) waves with different frequencies. Finally, the improved GO/PO method is used to simulate the SAR image of targets above rough surface. And the effects of reflected rays and the size of pixel matrix on the SAR image are also discussed.

  8. A New Method Based on Two-Stage Detection Mechanism for Detecting Ships in High-Resolution SAR Images

    Directory of Open Access Journals (Sweden)

    Xu Yongli

    2017-01-01

    Full Text Available Ship detection in synthetic aperture radar (SAR remote sensing images, being a fundamental but challenging problem in the field of satellite image analysis, plays an important role for a wide range of applications and is receiving significant attention in recent years. Aiming at the requirements of ship detection in high-resolution SAR images, the accuracy, the intelligent level, a better real-time operation and processing efficiency, The characteristics of ocean background and ship target in high-resolution SAR images were analyzed, we put forward a ship detection algorithm in high-resolution SAR images. The algorithm consists of two detection stages: The first step designs a pre-training classifier based on improved spectral residual visual model to obtain the visual salient regions containing ship targets quickly, then achieve the purpose of probably detection of ships. In the second stage, considering the Bayesian theory of binary hypothesis detection, a local maximum posterior probability (MAP classifier is designed for the classification of pixels. After the parameter estimation and judgment criterion, the classification of pixels are carried out in the target areas to achieve the classification of two types of pixels in the salient regions. In the paper, several types of satellite image data, such as TerraSAR-X (TS-X, Radarsat-2, are used to evaluate the performance of detection methods. Comparing with classical CFAR detection algorithms, experimental results show that the algorithm can achieve a better effect of suppressing false alarms, which caused by the speckle noise and ocean clutter background inhomogeneity. At the same time, the detection speed is increased by 25% to 45%.

  9. Measurement of pressure ridges in SAR images of sea ice - Preliminary results on scattering theory

    Science.gov (United States)

    Vesecky, J. F.; Smith, M. P.; Daida, J. M.; Samadani, R.; Camiso, J. C.

    1992-01-01

    Sea ice ridges and keels (hummocks and bummocks) are important in sea ice research for both scientific and practical reasons. A long-term objective is to make quantitative measurements of sea ice ridges using synthetic aperture radar (SAR) images. The preliminary results of a scattering model for sea ice ridge are reported. The approach is through the ridge height variance spectrum Psi(K), where K is the spatial wavenumber, and the two-scale scattering model. The height spectrum model is constructed to mimic height statistics observed with an airborne optical laser. The spectrum model is used to drive a two-scale scattering model. Model results for ridges observed at C- and X-band yield normalized radar cross sections that are 10 to 15 dB larger than the observed cross sections of multiyear ice over the range of angles of incidence from 10 to 70 deg.

  10. A Novel Fusion-Based Ship Detection Method from Pol-SAR Images

    Directory of Open Access Journals (Sweden)

    Wenguang Wang

    2015-09-01

    Full Text Available A novel fusion-based ship detection method from polarimetric Synthetic Aperture Radar (Pol-SAR images is proposed in this paper. After feature extraction and constant false alarm rate (CFAR detection, the detection results of HH channel, diplane scattering by Pauli decomposition and helical factor by Barnes decomposition are fused together. The confirmed targets and potential target pixels can be obtained after the fusion process. Using the difference degree of the target, potential target pixels can be classified. The fusion-based ship detection method works accurately by utilizing three different features comprehensively. The result of applying the technique to measured Airborne Synthetic Radar (AIRSAR data shows that the novel detection method can achieve better performance in both ship’s detection and ship’s shape preservation compared to the result of K-means clustering method and the Notch Filter method.

  11. Classification of PolSAR Images Using Multilayer Autoencoders and a Self-Paced Learning Approach

    Directory of Open Access Journals (Sweden)

    Wenshuai Chen

    2018-01-01

    Full Text Available In this paper, a novel polarimetric synthetic aperture radar (PolSAR image classification method based on multilayer autoencoders and self-paced learning (SPL is proposed. The multilayer autoencoders network is used to learn the features, which convert raw data into more abstract expressions. Then, softmax regression is applied to produce the predicted probability distributions over all the classes of each pixel. When we optimize the multilayer autoencoders network, self-paced learning is used to accelerate the learning convergence and achieve a stronger generalization capability. Under this learning paradigm, the network learns the easier samples first and gradually involves more difficult samples in the training process. The proposed method achieves the overall classification accuracies of 94.73%, 94.82% and 78.12% on the Flevoland dataset from AIRSAR, Flevoland dataset from RADARSAT-2 and Yellow River delta dataset, respectively. Such results are comparable with other state-of-the-art methods.

  12. Mapping and monitoring renewable resources with space SAR

    Science.gov (United States)

    Ulaby, F. T.; Brisco, B.; Dobson, M. C.; Moezzi, S.

    1983-01-01

    The SEASAT-A SAR and SIR-A imagery was examined to evaluate the quality and type of information that can be extracted and used to monitor renewable resources on Earth. Two tasks were carried out: (1) a land cover classification study which utilized two sets of imagery acquired by the SEASAT-A SAR, one set by SIR-A, and one LANDSAT set (4 bands); and (2) a change detection to examine differences between pairs of SEASAT-A SAR images and relates them to hydrologic and/or agronomic variations in the scene.

  13. Near Surface Soil Moisture Estimation Using SAR Images: A Case Study in the Mediterranean Area of Catalonia

    Science.gov (United States)

    Reppucci, Antonio; Moreno, Laura

    2010-12-01

    Information on Soil moisture spatial and temporal evolution is of great importance for managing the utilization of soils and vegetation, in particular in environments where the water resources are scarce. In-situ measurement of soil moisture are costly and not able to sample the spatial behaviour of a whole region. Thanks to their all weather capability and wide coverage, Synthetic Aperture Radar (SAR) images offer the opportunity to monitor large area with high resolution. This study presents the results of a project, partially founded by the Catalan government, to improve the monitoring of soil moisture using Earth Observation data. In particular the project is focused on the calibration of existing semi-empirical algorithm in the area of study. This will be done using co-located SAR and in-situ measurements acquired during several field campaigns. Observed deviations between SAR measurements and in-situ measurement are discussed.

  14. Investigation of Slow-Moving Landslides from ALOS/PALSAR Images with TCPInSAR: A Case Study of Oso, USA

    Directory of Open Access Journals (Sweden)

    Qian Sun

    2014-12-01

    Full Text Available Monitoring slope instability is of great significance for understanding landslide kinematics and, therefore, reducing the related geological hazards. In recent years, interferometric synthetic aperture radar (InSAR has been widely applied to this end, especially thanks to the prompt evolution of multi-temporal InSAR (MTInSAR algorithms. In this paper, temporarily-coherent point InSAR (TCPInSAR, a recently-developed MTInSAR technique, is employed to investigate the slow-moving landslides in Oso, U.S., with 13 ALOS/PALSAR images. Compared to other MTInSAR techniques, TCPInSAR can work well with a small amount of data and is immune to unwrapping errors. Furthermore, the severe orbital ramps emanated from the inaccurate determination of the ALOS satellite’s state vector can be jointly estimated by TCPInSAR, resulting in an exhaustive separation between the orbital errors and displacement signals. The TCPInSAR-derived deformation map indicates that the riverside slopes adjacent to the North Fork of the Stillaguamish River, where the 2014 mudslide occurred, were active during 2007 and 2011. Besides, Coal Mountain has been found to be experiencing slow-moving landslides with clear boundaries and considerable magnitudes. The Deer Creek River is also threatened by a potential landslide dam due to the creeps detected in a nearby slope. The slope instability information revealed in this study is helpful to deal with the landslide hazards in Oso.

  15. Polarimetric SAR interferometry-based decomposition modelling for reliable scattering retrieval

    Science.gov (United States)

    Agrawal, Neeraj; Kumar, Shashi; Tolpekin, Valentyn

    2016-05-01

    Fully Polarimetric SAR (PolSAR) data is used for scattering information retrieval from single SAR resolution cell. Single SAR resolution cell may contain contribution from more than one scattering objects. Hence, single or dual polarized data does not provide all the possible scattering information. So, to overcome this problem fully Polarimetric data is used. It was observed in previous study that fully Polarimetric data of different dates provide different scattering values for same object and coefficient of determination obtained from linear regression between volume scattering and aboveground biomass (AGB) shows different values for the SAR dataset of different dates. Scattering values are important input elements for modelling of forest aboveground biomass. In this research work an approach is proposed to get reliable scattering from interferometric pair of fully Polarimetric RADARSAT-2 data. The field survey for data collection was carried out for Barkot forest during November 10th to December 5th, 2014. Stratified random sampling was used to collect field data for circumference at breast height (CBH) and tree height measurement. Field-measured AGB was compared with the volume scattering elements obtained from decomposition modelling of individual PolSAR images and PolInSAR coherency matrix. Yamaguchi 4-component decomposition was implemented to retrieve scattering elements from SAR data. PolInSAR based decomposition was the great challenge in this work and it was implemented with certain assumptions to create Hermitian coherency matrix with co-registered polarimetric interferometric pair of SAR data. Regression analysis between field-measured AGB and volume scattering element obtained from PolInSAR data showed highest (0.589) coefficient of determination. The same regression with volume scattering elements of individual SAR images showed 0.49 and 0.50 coefficients of determination for master and slave images respectively. This study recommends use of

  16. Ship Detection in Gaofen-3 SAR Images Based on Sea Clutter Distribution Analysis and Deep Convolutional Neural Network.

    Science.gov (United States)

    An, Quanzhi; Pan, Zongxu; You, Hongjian

    2018-01-24

    Target detection is one of the important applications in the field of remote sensing. The Gaofen-3 (GF-3) Synthetic Aperture Radar (SAR) satellite launched by China is a powerful tool for maritime monitoring. This work aims at detecting ships in GF-3 SAR images using a new land masking strategy, the appropriate model for sea clutter and a neural network as the discrimination scheme. Firstly, the fully convolutional network (FCN) is applied to separate the sea from the land. Then, by analyzing the sea clutter distribution in GF-3 SAR images, we choose the probability distribution model of Constant False Alarm Rate (CFAR) detector from K-distribution, Gamma distribution and Rayleigh distribution based on a tradeoff between the sea clutter modeling accuracy and the computational complexity. Furthermore, in order to better implement CFAR detection, we also use truncated statistic (TS) as a preprocessing scheme and iterative censoring scheme (ICS) for boosting the performance of detector. Finally, we employ a neural network to re-examine the results as the discrimination stage. Experiment results on three GF-3 SAR images verify the effectiveness and efficiency of this approach.

  17. A novel ship CFAR detection algorithm based on adaptive parameter enhancement and wake-aided detection in SAR images

    Science.gov (United States)

    Meng, Siqi; Ren, Kan; Lu, Dongming; Gu, Guohua; Chen, Qian; Lu, Guojun

    2018-03-01

    Synthetic aperture radar (SAR) is an indispensable and useful method for marine monitoring. With the increase of SAR sensors, high resolution images can be acquired and contain more target structure information, such as more spatial details etc. This paper presents a novel adaptive parameter transform (APT) domain constant false alarm rate (CFAR) to highlight targets. The whole method is based on the APT domain value. Firstly, the image is mapped to the new transform domain by the algorithm. Secondly, the false candidate target pixels are screened out by the CFAR detector to highlight the target ships. Thirdly, the ship pixels are replaced by the homogeneous sea pixels. And then, the enhanced image is processed by Niblack algorithm to obtain the wake binary image. Finally, normalized Hough transform (NHT) is used to detect wakes in the binary image, as a verification of the presence of the ships. Experiments on real SAR images validate that the proposed transform does enhance the target structure and improve the contrast of the image. The algorithm has a good performance in the ship and ship wake detection.

  18. Experimental validation of hyperthermia SAR treatment planning using MR B1+ imaging

    International Nuclear Information System (INIS)

    Berg, Cornelis A T van den; Bartels, Lambertus W; Leeuw, Astrid A C De; Lagendijk, Jan J W; Kamer, Jeroen B Van de

    2004-01-01

    In this paper the concept of using B 1+ imaging as a means to validate SAR models for radiofrequency hyperthermia is presented. As in radiofrequency hyperthermia, in common clinical MR imaging which applies RF frequencies between 64 and 128 MHz, the RF field distribution inside a patient is largely determined by the dielectric distribution of the anatomy. Modern MR imaging techniques allow measurement of the RF magnetic field component B 1+ making it possible to measure at high resolution the dielectric interaction of the RF field with the patient. Given these considerations, we propose to use MR imaging to verify the validity of our dielectric patient model used for SAR models of radiofrequency hyperthermia. The aim of this study was to investigate the feasibility of this concept by performing B 1+ measurements and simulations on cylindrical split phantoms consisting of materials with dielectric properties similar to human tissue types. Important topics of investigation were the accuracy and sensitivity of B 1+ measurements and the validity of the electric model of the MR body coil. The measurements were performed on a clinical 1.5 T MR scanner with its quadrature body coil operating at 64 MHz. It was shown that even small B 1+ variations of 2 to 5% could be measured reliably in the phantom experiments. An electrical model of the transmit coil was implemented on our FDTD-based hyperthermia treatment planning platform and the RF field distributions were calculated assuming an idealized quadrature current distribution in the coil. A quantitatively good correlation between measurements and simulations was found for phantoms consisting of water and oil, while highly conductive phantoms show considerable deviations. However, assuming linear excitation for these conductive phantoms resulted in good correspondence. As an explanation it is suggested that the coil is being detuned due to the inductive nature of the conductive phantoms, breaking up the phase difference of

  19. Bistatic sAR data processing algorithms

    CERN Document Server

    Qiu, Xiaolan; Hu, Donghui

    2013-01-01

    Synthetic Aperture Radar (SAR) is critical for remote sensing. It works day and night, in good weather or bad. Bistatic SAR is a new kind of SAR system, where the transmitter and receiver are placed on two separate platforms. Bistatic SAR is one of the most important trends in SAR development, as the technology renders SAR more flexible and safer when used in military environments. Imaging is one of the most difficult and important aspects of bistatic SAR data processing. Although traditional SAR signal processing is fully developed, bistatic SAR has a more complex system structure, so sign

  20. Coseismic displacements from SAR image offsets between different satellite sensors: Application to the 2001 Bhuj (India) earthquake

    KAUST Repository

    Wang, Teng

    2015-09-05

    Synthetic aperture radar (SAR) image offset tracking is increasingly being used for measuring ground displacements, e.g., due to earthquakes and landslide movement. However, this technique has been applied only to images acquired by the same or identical satellites. Here we propose a novel approach for determining offsets between images acquired by different satellite sensors, extending the usability of existing SAR image archives. The offsets are measured between two multiimage reflectivity maps obtained from different SAR data sets, which provide significantly better results than with single preevent and postevent images. Application to the 2001 Mw7.6 Bhuj earthquake reveals, for the first time, its near-field deformation using multiple preearthquake ERS and postearthquake Envisat images. The rupture model estimated from these cross-sensor offsets and teleseismic waveforms shows a compact fault slip pattern with fairly short rise times (<3 s) and a large stress drop (20 MPa), explaining the intense shaking observed in the earthquake.

  1. Wake-based ship route estimation in high-resolution SAR images

    Science.gov (United States)

    Graziano, M. Daniela; Rufino, Giancarlo; D'Errico, Marco

    2014-10-01

    This paper presents a novel algorithm for wake detection in Synthetic Aperture Radar images of the sea. The algorithm has been conceived as part of a ship traffic monitoring system, in charge of ship detection validation and to estimate ship route features, such as heading and ground speed. In addition, it has been intended to be adequate for inclusion in an automatic procedure without human operator supervision. The algorithm exploits the Radon transform to identify the images ship wake on the basis of the well known theoretical characteristics of the wakes' geometry and components, that are the turbulent wake, the narrow-V wakes, and the Kelvin arms, as well as the typical appearance of such components in Synthetic Aperture Radar images of the sea as bright or dark linear feature. Examples of application to high-resolution X-band Synthetic Aperture Radar products (COSMOSkymed and TerraSAR-X) are reported, both for wake detection and ship route estimation, showing the achieved quality and reliability of wake detection, adequacy to automatic procedures, as well as speed measure accuracy.

  2. A Novel 3D Imaging Method for Airborne Downward-Looking Sparse Array SAR Based on Special Squint Model

    Directory of Open Access Journals (Sweden)

    Xiaozhen Ren

    2014-01-01

    Full Text Available Three-dimensional (3D imaging technology based on antenna array is one of the most important 3D synthetic aperture radar (SAR high resolution imaging modes. In this paper, a novel 3D imaging method is proposed for airborne down-looking sparse array SAR based on the imaging geometry and the characteristic of echo signal. The key point of the proposed algorithm is the introduction of a special squint model in cross track processing to obtain accurate focusing. In this special squint model, point targets with different cross track positions have different squint angles at the same range resolution cell, which is different from the conventional squint SAR. However, after theory analysis and formulation deduction, the imaging procedure can be processed with the uniform reference function, and the phase compensation factors and algorithm realization procedure are demonstrated in detail. As the method requires only Fourier transform and multiplications and thus avoids interpolations, it is computationally efficient. Simulations with point scatterers are used to validate the method.

  3. Automated Waterline Detection in the Wadden Sea Using High-Resolution TerraSAR-X Images

    Directory of Open Access Journals (Sweden)

    Stefan Wiehle

    2015-01-01

    Full Text Available We present an algorithm for automatic detection of the land-water-line from TerraSAR-X images acquired over the Wadden Sea. In this coastal region of the southeastern North Sea, a strip of up to 20 km of seabed falls dry during low tide, revealing mudflats and tidal creeks. The tidal currents transport sediments and can change the coastal shape with erosion rates of several meters per month. This rate can be strongly increased by storm surges which also cause flooding of usually dry areas. Due to the high number of ships traveling through the Wadden Sea to the largest ports of Germany, frequent monitoring of the bathymetry is also an important task for maritime security. For such an extended area and the required short intervals of a few months, only remote sensing methods can perform this task efficiently. Automating the waterline detection in weather-independent radar images provides a fast and reliable way to spot changes in the coastal topography. The presented algorithm first performs smoothing, brightness thresholding, and edge detection. In the second step, edge drawing and flood filling are iteratively performed to determine optimal thresholds for the edge drawing. In the last step, small misdetections are removed.

  4. A Fast Multiple Sampling Method for Low-Noise CMOS Image Sensors With Column-Parallel 12-bit SAR ADCs

    Directory of Open Access Journals (Sweden)

    Min-Kyu Kim

    2015-12-01

    Full Text Available This paper presents a fast multiple sampling method for low-noise CMOS image sensor (CIS applications with column-parallel successive approximation register analog-to-digital converters (SAR ADCs. The 12-bit SAR ADC using the proposed multiple sampling method decreases the A/D conversion time by repeatedly converting a pixel output to 4-bit after the first 12-bit A/D conversion, reducing noise of the CIS by one over the square root of the number of samplings. The area of the 12-bit SAR ADC is reduced by using a 10-bit capacitor digital-to-analog converter (DAC with four scaled reference voltages. In addition, a simple up/down counter-based digital processing logic is proposed to perform complex calculations for multiple sampling and digital correlated double sampling. To verify the proposed multiple sampling method, a 256 × 128 pixel array CIS with 12-bit SAR ADCs was fabricated using 0.18 μm CMOS process. The measurement results shows that the proposed multiple sampling method reduces each A/D conversion time from 1.2 μs to 0.45 μs and random noise from 848.3 μV to 270.4 μV, achieving a dynamic range of 68.1 dB and an SNR of 39.2 dB.

  5. Simulation-Based Evaluation of Light Posts and Street Signs as 3-D Geolocation Targets in SAR Images

    Science.gov (United States)

    Auer, S.; Balss, U.

    2017-05-01

    The assignment of phase center positions (in 2D or 3D) derived from SAR data to physical object is challenging for many man-made structures such as buildings or bridges. In contrast, light poles and traffic signs are promising targets for tasks based on 3-D geolocation as they often show a prominent and spatially isolated appearance. For a detailed understanding of the nature of both targets, this paper presents results of a dedicated simulation case study, which is based on ray tracing methods (simulator RaySAR). For the first time, the appearance of the targets is analyzed in 2D (image plane) and 3D space (world coordinates of scene model) and reflecting surfaces are identified for related dominant image pixels. The case studies confirms the crucial impact of spatial resolution in the context of light poles and traffic signs and the appropriateness of light poles as target for 3-D geolocation in case of horizontal ground surfaces beneath.

  6. SAR Imaging of Wave Tails: Recognition of Second Mode Internal Wave Patterns and Some Mechanisms of their Formation

    Science.gov (United States)

    da Silva, Jose C. B.; Magalhaes, J. M.; Buijsman, M. C.; Garcia, C. A. E.

    2016-08-01

    Mode-2 internal waves are usually not as energetic as larger mode-1 Internal Solitary Waves (ISWs), but they have attracted a great deal of attention in recent years because they have been identified as playing a significant role in mixing shelf waters [1]. This mixing is particularly effective for mode-2 ISWs because the location of these waves in the middle of the pycnocline plays an important role in eroding the barrier between the base of the surface mixed layer and the stratified deep layer below. An urgent problem in physical oceanography is therefore to account for the magnitude and distribution of ISW-driven mixing, including mode-2 ISWs. Several generation mechanisms of mode-2 ISWs have been identified. These include: (1) mode-1 ISWs propagating onshore (shoaling) and entering the breaking instability stage, or propagating over a steep sill; (2) a mode-1 ISW propagating offshore (antishoaling) over steep slopes of the shelf break, and undergoing modal transformation; (3) intrusion of the whole head of a gravity current into a three-layer fluid; (4) impingement of an internal tidal beam on the pycnocline, itself emanating from critical bathymetry; (5) nonlinear disintegration of internal tide modes; (6) lee wave mechanism. In this paper we provide methods to identify internal wave features denominated "Wave Tails" in SAR images of the ocean surface, which are many times associated with second mode internal waves. The SAR case studies that are presented portray evidence of the aforementioned generation mechanisms, and we further discuss possible methods to discriminate between the various types of mode-2 ISWs in SAR images, that emerge from these physical mechanisms. Some of the SAR images correspond to numerical simulations with the MITgcm in fully nonlinear and nonhydrostatic mode and in a 2D configuration with realistic stratification, bathymetry and other environmental conditions.Results of a global survey with some of these observations are presented

  7. 2002/2003 IfSAR data for Southern California: Radar Reflectance Image

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This metadata document describes the collection and processing of topographic elevation point data derived from Interferometric Synthetic Aperture Radar (IfSAR)...

  8. Coral reef detection using SAR/RADARSAT-1 images at Costa dos Corais, PE/AL, Brazil

    Directory of Open Access Journals (Sweden)

    Frederico de Moraes Rudorff

    2008-06-01

    Full Text Available The present work aimed to examine the potentials of SAR RADARSAT-1 images to detect emergent coral reefs at the Environmental Protection Area of "Costa dos Corais". Multi-view filters were applied and tested for speckle noise reduction. A digital unsupervised classification based on image segmentation was performed and the classification accuracy was evaluated by an error matrix built between the SAR image classification and a reference map obtained from a TM Landsat-5 classification. The adaptative filters showed the best results for speckle suppression and border preservation, especially the Kuan, Gamma MAP, Lee, Frost and Enhanced Frost filters. Small similarity and area thresholds (5 and 10, respectively were used for the image segmentation due to the reduced dimensions and the narrow and elongated forms of the reefs. The classification threshold of 99% had a better user's accuracy, but a lower producer's accuracy because it is a more restrictive threshold; therefore, it may be possible that it had a greater omission on reef classification. The results indicate that SAR images have a good potential for the detection of emergent coral reefs.O presente trabalho examinou o potencial de imagens SAR do RADARSAT-1 na detecção de recifes de coral expostos na Área de Proteção Ambiental das Costa dos Corais. Filtros de multi-visada foram aplicados e testados para redução do ruído speckle. Uma classificação não supervisionada baseada em uma imagem segmentada foi realizada e a acurácia da classificação foi avaliada através de uma matriz de erro construída entre a imagem classificada e o mapa de referência. Os filtros adaptativos apresentaram os melhores desempenhos para supressão de speckle e preservação de bordas, especialmente os filtros Kuan, Gamma MAP, Lee, Frost and Enhanced Frost. Os pequenos limiares de similaridade e de área (10 e 5, respectivamente foram melhores devido à forma fina e alongada dos recifes. O limiar de

  9. Oil seepage polarimetric contrast analysis in a time series of TerraSAR-X images

    OpenAIRE

    de Macedo, Carina Regina; Nunziata, Ferdinando; Velotto, Domenico; Migliaccio, Maurizio

    2017-01-01

    Natural hydrocarbon seeps are broadly distributed across the Gulf of Mexico. Such seeps emit oil and gas into the water column, increasing the phytoplankton biomass and impacting regionally the productivity, carbon and nutrient cycling [1]. A fraction of this oil reaches to the sea surface and can be detected by SAR data. Although the ability of SAR data to detect oil features present in ocean's surface is wide exploited in the literature, it is known that the detection of those features is a...

  10. A SAR Observation and Numerical Study on Ocean Surface Imprints of Atmospheric Vortex Streets

    Directory of Open Access Journals (Sweden)

    William G. Pichel

    2008-05-01

    Full Text Available The sea surface imprints of Atmospheric Vortex Street (AVS off Aleutian Volcanic Islands, Alaska were observed in two RADARSAT-1 Synthetic Aperture Radar (SAR images separated by about 11 hours. In both images, three pairs of distinctive vortices shedding in the lee side of two volcanic mountains can be clearly seen. The length and width of the vortex street are about 60-70 km and 20 km, respectively. Although the AVS’s in the two SAR images have similar shapes, the structure of vortices within the AVS is highly asymmetrical. The sea surface wind speed is estimated from the SAR images with wind direction input from Navy NOGAPS model. In this paper we present a complete MM5 model simulation of the observed AVS. The surface wind simulated from the MM5 model is in good agreement with SAR-derived wind. The vortex shedding rate calculated from the model run is about 1 hour and 50 minutes. Other basic characteristics of the AVS including propagation speed of the vortex, Strouhal and Reynolds numbers favorable for AVS generation are also derived. The wind associated with AVS modifies the cloud structure in the marine atmospheric boundary layer. The AVS cloud pattern is also observed on a MODIS visible band image taken between the two RADARSAT SAR images. An ENVISAT advance SAR image taken 4 hours after the second RADARSAT SAR image shows that the AVS has almost vanished.

  11. Bistatic SAR: Proof of Concept.

    Energy Technology Data Exchange (ETDEWEB)

    Yocky, David A.; Doren, Neall E.; Bacon, Terry A.; Wahl, Daniel E.; Eichel, Paul H.; Jakowatz, Charles V,; Delaplain, Gilbert G.; Dubbert, Dale F.; Tise, Bertice L.; White, Kyle R.

    2014-10-01

    Typical synthetic aperture RADAR (SAR) imaging employs a co-located RADAR transmitter and receiver. Bistatic SAR imaging separates the transmitter and receiver locations. A bistatic SAR configuration allows for the transmitter and receiver(s) to be in a variety of geometric alignments. Sandia National Laboratories (SNL) / New Mexico proposed the deployment of a ground-based RADAR receiver. This RADAR receiver was coupled with the capability of digitizing and recording the signal collected. SNL proposed the possibility of creating an image of targets the illuminating SAR observes. This document describes the developed hardware, software, bistatic SAR configuration, and its deployment to test the concept of a ground-based bistatic SAR. In the proof-of-concept experiments herein, the RADAR transmitter will be a commercial SAR satellite and the RADAR receiver will be deployed at ground level, observing and capturing RADAR ground/targets illuminated by the satellite system.

  12. METHODS OF STEREO PAIR IMAGES FORMATION WITH A GIVEN PARALLAX VALUE

    Directory of Open Access Journals (Sweden)

    Viktoriya G. Chafonova

    2014-11-01

    Full Text Available Two new complementary methods of stereo pair images formation are proposed. The first method is based on finding the maximum correlation between the gradient images of the left and right frames. The second one implies the finding of the shift between two corresponding key points of images for a stereo pair found by a detector of point features. These methods give the possibility to set desired values of vertical and horizontal parallaxes for the selected object in the image. Application of these methods makes it possible to measure the parallax values for the objects on the final stereo pair in pixels and / or the percentage of the total image size. It gives the possibility to predict the possible excesses in parallax values while stereo pair printing or projection. The proposed methods are easily automated after object selection, for which a predetermined value of the horizontal parallax will be exposed. Stereo pair images superposition using the key points takes less than one second. The method with correlation application requires a little bit more computing time, but makes it possible to control and superpose undivided anaglyph image. The proposed methods of stereo pair formation can find their application in programs for editing and processing images of a stereo pair, in the monitoring devices for shooting cameras and in the devices for video sequence quality assessment

  13. Ultra Wide X-Band Microwave Imaging of Concealed Weapons and Explosives Using 3D-SAR Technique

    Directory of Open Access Journals (Sweden)

    P. Millot

    2015-01-01

    Full Text Available In order to detect and image concealed weapons and explosives, an electromagnetic imaging tool with its related signal processing is presented. The aim is to penetrate clothes and to find personal-born weapons and explosives under clothes. The chosen UWB frequency range covers the whole X-band. The frequency range is justified after transmission measurements of numerous clothes that are dry or slightly wet. The apparatus and the 3D near-field SAR processor are described. A strategy for contour identification is presented with results of some simulants of weapon and explosive. A conclusion is drawn on the possible future of this technique.

  14. Millimeter wave radar system on a rotating platform for combined search and track functionality with SAR imaging

    Science.gov (United States)

    Aulenbacher, Uwe; Rech, Klaus; Sedlmeier, Johannes; Pratisto, Hans; Wellig, Peter

    2014-10-01

    Ground based millimeter wave radar sensors offer the potential for a weather-independent automatic ground surveillance at day and night, e.g. for camp protection applications. The basic principle and the experimental verification of a radar system concept is described, which by means of an extreme off-axis positioning of the antenna(s) combines azimuthal mechanical beam steering with the formation of a circular-arc shaped synthetic aperture (SA). In automatic ground surveillance the function of search and detection of moving ground targets is performed by means of the conventional mechanical scan mode. The rotated antenna structure designed as a small array with two or more RX antenna elements with simultaneous receiver chains allows to instantaneous track multiple moving targets (monopulse principle). The simultaneously operated SAR mode yields areal images of the distribution of stationary scatterers. For ground surveillance application this SAR mode is best suited for identifying possible threats by means of change detection. The feasibility of this concept was tested by means of an experimental radar system comprising of a 94 GHz (W band) FM-CW module with 1 GHz bandwidth and two RX antennas with parallel receiver channels, placed off-axis at a rotating platform. SAR mode and search/track mode were tested during an outdoor measurement campaign. The scenery of two persons walking along a road and partially through forest served as test for the capability to track multiple moving targets. For SAR mode verification an image of the area composed of roads, grassland, woodland and several man-made objects was reconstructed from the measured data.

  15. Wave directional spectrum from SAR imagery

    Digital Repository Service at National Institute of Oceanography (India)

    Fernandes, A.A.; Sarma, Y.V.B.; Menon, H.B.; Vethamony, P.

    Gaussian smoothed SAR image spectra have been evaluated from 512 x 512 pixel subscenes of image mode ERS-1 SAR scenes off Goa, Visakhapatnam, Paradeep and Portugal. The two recently acquired scenes off Portugal showed the signature of swell...

  16. Exploitation of Amplitude and Phase of Satellite SAR Images for Landslide Mapping: The Case of Montescaglioso (South Italy

    Directory of Open Access Journals (Sweden)

    Federico Raspini

    2015-11-01

    Full Text Available Pre- event and event landslide deformations have been detected and measured for the landslide that occurred on 3 December 2013 on the south-western slope of the Montescaglioso village (Basilicata Region, southern Italy. In this paper, ground displacements have been mapped through an integrated analysis based on a series of high resolution SAR (Synthetic Aperture Radar images acquired by the Italian constellation of satellites COSMO-SkyMed. Analysis has been performed by exploiting both phase (through multi-image SAR interferometry and amplitude information (through speckle tracking techniques of the satellite images. SAR Interferometry, applied to images taken before the event, revealed a general pre-event movement, in the order of a few mm/yr, in the south-western slope of the Montescaglioso village. Highest pre-event velocities, ranging between 8 and 12 mm/yr, have been recorded in the sector of the slope where the first movement of the landslide took place. Speckle tracking, applied to images acquired before and after the event, allowed the retrieval of the 3D deformation field produced by the landslide. It also showed that ground displacements produced by the landslide have a dominant SSW component, with values exceeding 10 m for large sectors of the landslide area, with local peaks of 20 m in its central and deposit areas. Two minor landslides with a dominant SSE direction, which were detected in the upper parts of the slope, likely also occurred as secondary phenomena as consequence of the SSW movement of the main Montescaglioso landslide.

  17. Time Series Analysis OF SAR Image Fractal Maps: The Somma-Vesuvio Volcanic Complex Case Study

    Science.gov (United States)

    Pepe, Antonio; De Luca, Claudio; Di Martino, Gerardo; Iodice, Antonio; Manzo, Mariarosaria; Pepe, Susi; Riccio, Daniele; Ruello, Giuseppe; Sansosti, Eugenio; Zinno, Ivana

    2016-04-01

    The fractal dimension is a significant geophysical parameter describing natural surfaces representing the distribution of the roughness over different spatial scale; in case of volcanic structures, it has been related to the specific nature of materials and to the effects of active geodynamic processes. In this work, we present the analysis of the temporal behavior of the fractal dimension estimates generated from multi-pass SAR images relevant to the Somma-Vesuvio volcanic complex (South Italy). To this aim, we consider a Cosmo-SkyMed data-set of 42 stripmap images acquired from ascending orbits between October 2009 and December 2012. Starting from these images, we generate a three-dimensional stack composed by the corresponding fractal maps (ordered according to the acquisition dates), after a proper co-registration. The time-series of the pixel-by-pixel estimated fractal dimension values show that, over invariant natural areas, the fractal dimension values do not reveal significant changes; on the contrary, over urban areas, it correctly assumes values outside the natural surfaces fractality range and show strong fluctuations. As a final result of our analysis, we generate a fractal map that includes only the areas where the fractal dimension is considered reliable and stable (i.e., whose standard deviation computed over the time series is reasonably small). The so-obtained fractal dimension map is then used to identify areas that are homogeneous from a fractal viewpoint. Indeed, the analysis of this map reveals the presence of two distinctive landscape units corresponding to the Mt. Vesuvio and Gran Cono. The comparison with the (simplified) geological map clearly shows the presence in these two areas of volcanic products of different age. The presented fractal dimension map analysis demonstrates the ability to get a figure about the evolution degree of the monitored volcanic edifice and can be profitably extended in the future to other volcanic systems with

  18. A SAR-ADC using unit bridge capacitor and with calibration for the front-end electronics of PET imaging

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Wei [School of Computer Science and Engineering, Northwestern Polytechnical University, Xi' an 710072, Shaanxi (China); Wei, Tingcun, E-mail: weitc@nwpu.edu.cn [School of Computer Science and Engineering, Northwestern Polytechnical University, Xi' an 710072, Shaanxi (China); Li, Bo; Yang, Lifeng; Xue, Feifei [School of Computer Science and Engineering, Northwestern Polytechnical University, Xi' an 710072, Shaanxi (China); Hu, Yongcai [Institut Pluridisciplinaire Hubert CURIEN, Strasbourg (France)

    2016-05-11

    This paper presents a 12-bit 1 MS/s successive approximation register-analog to digital converter (SAR-ADC) for the 32-channel front-end electronics of CZT-based PET imaging system. To reduce the capacitance mismatch, instead of the fractional capacitor, the unit capacitor is used as the bridge capacitor in the split-capacitor digital to analog converter (DAC) circuit. In addition, in order to eliminate the periodical DNL errors of −1 LSB which often exists in the SAR-ADC using the charge-redistributed DAC, a calibration algorithm is proposed and verified by the experiments. The proposed 12-bit 1 MS/s SAR-ADC is designed and implemented using a 0.35 μm CMOS technology, it occupies only an active area of 986×956 μm{sup 2}. The measurement results show that, at the power supply of 3.3/5.0 V and the sampling rate of 1 MS/s, the ADC with calibration has a signal-to-noise-and-distortion ratio (SINAD) of 67.98 dB, the power dissipation of 5 mW, and a figure of merit (FOM) of 2.44 pJ/conv.-step. This ADC is with the features of high accuracy, low power and small layout area, it is especially suitable to the one-chip integration of the front-end readout electronics.

  19. Using SAR images to delineate ocean oil slicks with a texture-classifying neural network algorithm (TCNNA)

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Pineda, O.; MacDonald, I.R. [Florida State Univ., Tallahassee, FL (United States). Dept. of Oceanography; Zimmer, B. [Texas A and M Univ., Corpus Christi, TX (United States). Dept. of Mathematics and Statistics; Howard, M. [Texas A and M Univ., College Station, TX (United States). Dept. of Oceanography; Pichel, W. [National Oceanic and Atmospheric Administration, Camp Springs, MD (United States). Center for Satellite Applications and Research, National Environmental Satellite, Data and Information Service; Li, X. [National Oceanic and Atmospheric Administration, Camp Springs, MD (United States). Systems Group, National Environmental Satellite, Data and Information

    2009-10-15

    Synthetic aperture radar (SAR) is used to detect surfactant layers produced by floating oil on the ocean surface. This study presented details of a texture-classifying neural network algorithm (TCNNA) designed to process SAR data from a wide selection of beam modes. Patterns from SAR imagery were extracted in a semi-supervised procedure using a combination of edge-detection filters; texture descriptors; collection information; and environmental data. Various natural oil seeps in the Gulf of Mexico were used as case studies. An analysis of the case studies demonstrated that the TCNNA was able to extract targets and rapidly interpret images collected under a range of environmental conditions. Results presented by the TCNNA were used to evaluate the effects of different environmental conditions on the expressions of oil slicks detected by the data. Optimal incidence angle ranges and wind speed ranges for surfactant film detection were also presented. Results obtained by the TCNNA can be stored and manipulated in geographic information system (GIS) data layers. 26 refs., 1 tab., 7 figs.

  20. An Adaptive Moving Target Imaging Method for Bistatic Forward-Looking SAR Using Keystone Transform and Optimization NLCS.

    Science.gov (United States)

    Li, Zhongyu; Wu, Junjie; Huang, Yulin; Yang, Haiguang; Yang, Jianyu

    2017-01-23

    Bistatic forward-looking SAR (BFSAR) is a kind of bistatic synthetic aperture radar (SAR) system that can image forward-looking terrain in the flight direction of an aircraft. Until now, BFSAR imaging theories and methods for a stationary scene have been researched thoroughly. However, for moving-target imaging with BFSAR, the non-cooperative movement of the moving target induces some new issues: (I) large and unknown range cell migration (RCM) (including range walk and high-order RCM); (II) the spatial-variances of the Doppler parameters (including the Doppler centroid and high-order Doppler) are not only unknown, but also nonlinear for different point-scatterers. In this paper, we put forward an adaptive moving-target imaging method for BFSAR. First, the large and unknown range walk is corrected by applying keystone transform over the whole received echo, and then, the relationships among the unknown high-order RCM, the nonlinear spatial-variances of the Doppler parameters, and the speed of the mover, are established. After that, using an optimization nonlinear chirp scaling (NLCS) technique, not only can the unknown high-order RCM be accurately corrected, but also the nonlinear spatial-variances of the Doppler parameters can be balanced. At last, a high-order polynomial filter is applied to compress the whole azimuth data of the moving target. Numerical simulations verify the effectiveness of the proposed method.

  1. An Adaptive Moving Target Imaging Method for Bistatic Forward-Looking SAR Using Keystone Transform and Optimization NLCS

    Directory of Open Access Journals (Sweden)

    Zhongyu Li

    2017-01-01

    Full Text Available Bistatic forward-looking SAR (BFSAR is a kind of bistatic synthetic aperture radar (SAR system that can image forward-looking terrain in the flight direction of an aircraft. Until now, BFSAR imaging theories and methods for a stationary scene have been researched thoroughly. However, for moving-target imaging with BFSAR, the non-cooperative movement of the moving target induces some new issues: (I large and unknown range cell migration (RCM (including range walk and high-order RCM; (II the spatial-variances of the Doppler parameters (including the Doppler centroid and high-order Doppler are not only unknown, but also nonlinear for different point-scatterers. In this paper, we put forward an adaptive moving-target imaging method for BFSAR. First, the large and unknown range walk is corrected by applying keystone transform over the whole received echo, and then, the relationships among the unknown high-order RCM, the nonlinear spatial-variances of the Doppler parameters, and the speed of the mover, are established. After that, using an optimization nonlinear chirp scaling (NLCS technique, not only can the unknown high-order RCM be accurately corrected, but also the nonlinear spatial-variances of the Doppler parameters can be balanced. At last, a high-order polynomial filter is applied to compress the whole azimuth data of the moving target. Numerical simulations verify the effectiveness of the proposed method.

  2. Experimental congruence of interval scale production from paired comparisons and ranking for image evaluation

    Science.gov (United States)

    Handley, John C.; Babcock, Jason S.; Pelz, Jeff B.

    2003-12-01

    Image evaluation tasks are often conducted using paired comparisons or ranking. To elicit interval scales, both methods rely on Thurstone's Law of Comparative Judgment in which objects closer in psychological space are more often confused in preference comparisons by a putative discriminal random process. It is often debated whether paired comparisons and ranking yield the same interval scales. An experiment was conducted to assess scale production using paired comparisons and ranking. For this experiment a Pioneer Plasma Display and Apple Cinema Display were used for stimulus presentation. Observers performed rank order and paired comparisons tasks on both displays. For each of five scenes, six images were created by manipulating attributes such as lightness, chroma, and hue using six different settings. The intention was to simulate the variability from a set of digital cameras or scanners. Nineteen subjects, (5 females, 14 males) ranging from 19-51 years of age participated in this experiment. Using a paired comparison model and a ranking model, scales were estimated for each display and image combination yielding ten scale pairs, ostensibly measuring the same psychological scale. The Bradley-Terry model was used for the paired comparisons data and the Bradley-Terry-Mallows model was used for the ranking data. Each model was fit using maximum likelihood estimation and assessed using likelihood ratio tests. Approximate 95% confidence intervals were also constructed using likelihood ratios. Model fits for paired comparisons were satisfactory for all scales except those from two image/display pairs; the ranking model fit uniformly well on all data sets. Arguing from overlapping confidence intervals, we conclude that paired comparisons and ranking produce no conflicting decisions regarding ultimate ordering of treatment preferences, but paired comparisons yield greater precision at the expense of lack-of-fit.

  3. The retrieval of two-dimensional distribution of the earth's surface aerodynamic roughness using SAR image and TM thermal infrared image

    Institute of Scientific and Technical Information of China (English)

    ZHANG; Renhua; WANG; Jinfeng; ZHU; Caiying; SUN; Xiaomin

    2004-01-01

    After having analyzed the requirement on the aerodynamic earth's surface roughness in two-dimensional distribution in the research field of interaction between land surface and atmosphere, this paper presents a new way to calculate the aerodynamic roughness using the earth's surface geometric roughness retrieved from SAR (Synthetic Aperture Radar) and TM thermal infrared image data. On the one hand, the SPM (Small Perturbation Model) was used as a theoretical SAR backscattering model to describe the relationship between the SAR backscattering coefficient and the earth's surface geometric roughness and its dielectric constant retrieved from the physical model between the soil thermal inertia and the soil surface moisture with the simultaneous TM thermal infrared image data and the ground microclimate data. On the basis of the SAR image matching with the TM image, the non-volume scattering surface geometric information was obtained from the SPM model at the TM image pixel scale, and the ground pixel surface's equivalent geometric roughness-height standard RMS (Root Mean Square) was achieved from the geometric information by the transformation of the typical topographic factors. The vegetation (wheat, tree) height retrieved from spectrum model was also transferred into its equivalent geometric roughness. A completely two-dimensional distribution map of the equivalent geometric roughness over the experimental area was produced by the data mosaic technique. On the other hand, according to the atmospheric eddy currents theory, the aerodynamic surface roughness was iterated out with the atmosphere stability correction method using the wind and the temperature profiles data measured at several typical fields such as bare soil field and vegetation field. After having analyzed the effect of surface equivalent geometric roughness together with dynamic and thermodynamic factors on the aerodynamic surface roughness within the working area, this paper first establishes a scale

  4. Multiple interpretations of a pair of images of a surface

    Science.gov (United States)

    Longuet-Higgins, H. C.

    1988-07-01

    It is known that, if two optical images of a visually textured surface, projected from finitely separated viewpoints, allow more than one three-dimensional interpretation, then the surface must be part of a quadric passing through the two viewpoints. It is here shown that this quadric is either a plane or a ruled surface of a type first considered by Maybank (1985) in a study of ambiguous optic flow fields. In the latter case, three is the maximum number of distinct interpretations that the two images can sustain.

  5. URBAN MODELLING PERFORMANCE OF NEXT GENERATION SAR MISSIONS

    Directory of Open Access Journals (Sweden)

    U. G. Sefercik

    2017-09-01

    Full Text Available In synthetic aperture radar (SAR technology, urban mapping and modelling have become possible with revolutionary missions TerraSAR-X (TSX and Cosmo-SkyMed (CSK since 2007. These satellites offer 1m spatial resolution in high-resolution spotlight imaging mode and capable for high quality digital surface model (DSM acquisition for urban areas utilizing interferometric SAR (InSAR technology. With the advantage of independent generation from seasonal weather conditions, TSX and CSK DSMs are much in demand by scientific users. The performance of SAR DSMs is influenced by the distortions such as layover, foreshortening, shadow and double-bounce depend up on imaging geometry. In this study, the potential of DSMs derived from convenient 1m high-resolution spotlight (HS InSAR pairs of CSK and TSX is validated by model-to-model absolute and relative accuracy estimations in an urban area. For the verification, an airborne laser scanning (ALS DSM of the study area was used as the reference model. Results demonstrated that TSX and CSK urban DSMs are compatible in open, built-up and forest land forms with the absolute accuracy of 8–10 m. The relative accuracies based on the coherence of neighbouring pixels are superior to absolute accuracies both for CSK and TSX.

  6. Ion pair formation in the vacuum ultraviolet region of NO studied by negative ion imaging spectroscopy

    International Nuclear Information System (INIS)

    Hikosaka, Y.; Kaneyasu, T.; Shigemasa, E.

    2007-01-01

    The pair formation of positive and negative fragment ions has been studied in the vacuum ultraviolet region of NO, with negative ion imaging spectroscopy. The negative ion yield curve obtained in the photon energy region of 19-25 eV exhibits many structures which are absent from the photoabsorption spectrum in the same region. The partial yields and asymmetry parameters associated with the dissociations into individual ion pair limits have been extracted from the negative ion images observed. On the basis of these quantities, the assignments for the structures exhibited on the negative ion yield curve are given and the dynamical properties on the ion pair dissociation are discussed

  7. Power Transmission Tower Series Extraction in PolSAR Image Based on Time-Frequency Analysis and A-Contrario Theory

    Directory of Open Access Journals (Sweden)

    Dongqing Peng

    2016-11-01

    Full Text Available Based on Time-Frequency (TF analysis and a-contrario theory, this paper presents a new approach for extraction of linear arranged power transmission tower series in Polarimetric Synthetic Aperture Radar (PolSAR images. Firstly, the PolSAR multidimensional information is analyzed using a linear TF decomposition approach. The stationarity of each pixel is assessed by testing the maximum likelihood ratio statistics of the coherency matrix. Then, based on the maximum likelihood log-ratio image, a Cell-Averaging Constant False Alarm Rate (CA-CFAR detector with Weibull clutter background and a post-processing operator is used to detect point-like targets in the image. Finally, a searching approach based on a-contrario theory is applied to extract the linear arranged targets from detected point-like targets. The experimental results on three sets of PolSAR data verify the effectiveness of this approach.

  8. Split-Plot Designs with Mirror Image Pairs as Subplots

    DEFF Research Database (Denmark)

    Tyssedal, John; Kulahci, Murat; Bisgaard, Soren

    2011-01-01

    In this article we investigate two-level split-plot designs where the sub-plots consist of only two mirror image trials. Assuming third and higher order interactions negligible, we show that these designs divide the estimated effects into two orthogonal sub-spaces, separating sub-plot main effects...... appealing with effects of major interest free from full aliasing assuming that 3rd and higher order interactions are negligible....

  9. SIMULATION-BASED EVALUATION OF LIGHT POSTS AND STREET SIGNS AS 3-D GEOLOCATION TARGETS IN SAR IMAGES

    Directory of Open Access Journals (Sweden)

    S. Auer

    2017-05-01

    Full Text Available The assignment of phase center positions (in 2D or 3D derived from SAR data to physical object is challenging for many man-made structures such as buildings or bridges. In contrast, light poles and traffic signs are promising targets for tasks based on 3-D geolocation as they often show a prominent and spatially isolated appearance. For a detailed understanding of the nature of both targets, this paper presents results of a dedicated simulation case study, which is based on ray tracing methods (simulator RaySAR. For the first time, the appearance of the targets is analyzed in 2D (image plane and 3D space (world coordinates of scene model and reflecting surfaces are identified for related dominant image pixels. The case studies confirms the crucial impact of spatial resolution in the context of light poles and traffic signs and the appropriateness of light poles as target for 3-D geolocation in case of horizontal ground surfaces beneath.

  10. Estimation of the Above Ground Biomass of Tropical Forests using Polarimetric and Tomographic SAR Data Acquired at P Band and 3-D Imaging Techniques

    Science.gov (United States)

    Ferro-Famil, L.; El Hajj Chehade, B.; Ho Tong Minh, D.; Tebaldini, S.; LE Toan, T.

    2016-12-01

    Developing and improving methods to monitor forest biomass in space and time is a timely challenge, especially for tropical forests, for which SAR imaging at larger wavelength presents an interesting potential. Nevertheless, directly estimating tropical forest biomass from classical 2-D SAR images may reveal a very complex and ill-conditioned problem, since a SAR echo is composed of numerous contributions, whose features and importance depend on many geophysical parameters, such has ground humidity, roughness, topography… that are not related to biomass. Recent studies showed that SAR modes of diversity, i.e. polarimetric intensity ratios or interferometric phase centers, do not fully resolve this under-determined problem, whereas Pol-InSAR tree height estimates may be related to biomass through allometric relationships, with, in general over tropical forests, significant levels of uncertainty and lack of robustness. In this context, 3-D imaging using SAR tomography represents an appealing solution at larger wavelengths, for which wave penetration properties ensures a high quality mapping of a tropical forest reflectivity in the vertical direction. This paper presents a series of studies led, in the frame of the preparation of the next ESA mission BIOMASS, on the estimation of biomass over a tropical forest in French Guiana, using Polarimetric SAR Tomographic (Pol-TomSAR) data acquired at P band by ONERA. It is then shown that Pol-TomoSAR significantly improves the retrieval of forest above ground biomass (AGB) in a high biomass forest (200 up to 500 t/ha), with an error of only 10% at 1.5-ha resolution using a reflectivity estimates sampled at a predetermined elevation. The robustness of this technique is tested by applying the same approach over another site, and results show a similar relationship between AGB and tomographic reflectivity over both sites. The excellent ability of Pol-TomSAR to retrieve both canopy top heights and ground topography with an error

  11. Generalized Nonlinear Chirp Scaling Algorithm for High-Resolution Highly Squint SAR Imaging.

    Science.gov (United States)

    Yi, Tianzhu; He, Zhihua; He, Feng; Dong, Zhen; Wu, Manqing

    2017-11-07

    This paper presents a modified approach for high-resolution, highly squint synthetic aperture radar (SAR) data processing. Several nonlinear chirp scaling (NLCS) algorithms have been proposed to solve the azimuth variance of the frequency modulation rates that are caused by the linear range walk correction (LRWC). However, the azimuth depth of focusing (ADOF) is not handled well by these algorithms. The generalized nonlinear chirp scaling (GNLCS) algorithm that is proposed in this paper uses the method of series reverse (MSR) to improve the ADOF and focusing precision. It also introduces a high order processing kernel to avoid the range block processing. Simulation results show that the GNLCS algorithm can enlarge the ADOF and focusing precision for high-resolution highly squint SAR data.

  12. Generalized Nonlinear Chirp Scaling Algorithm for High-Resolution Highly Squint SAR Imaging

    Directory of Open Access Journals (Sweden)

    Tianzhu Yi

    2017-11-01

    Full Text Available This paper presents a modified approach for high-resolution, highly squint synthetic aperture radar (SAR data processing. Several nonlinear chirp scaling (NLCS algorithms have been proposed to solve the azimuth variance of the frequency modulation rates that are caused by the linear range walk correction (LRWC. However, the azimuth depth of focusing (ADOF is not handled well by these algorithms. The generalized nonlinear chirp scaling (GNLCS algorithm that is proposed in this paper uses the method of series reverse (MSR to improve the ADOF and focusing precision. It also introduces a high order processing kernel to avoid the range block processing. Simulation results show that the GNLCS algorithm can enlarge the ADOF and focusing precision for high-resolution highly squint SAR data.

  13. A Methodology to Detect and Update Active Deformation Areas Based on Sentinel-1 SAR Images

    Directory of Open Access Journals (Sweden)

    Anna Barra

    2017-09-01

    Full Text Available This work is focused on deformation activity mapping and monitoring using Sentinel-1 (S-1 data and the DInSAR (Differential Interferometric Synthetic Aperture Radar technique. The main goal is to present a procedure to periodically update and assess the geohazard activity (volcanic activity, landslides and ground-subsidence of a given area by exploiting the wide area coverage and the high coherence and temporal sampling (revisit time up to six days provided by the S-1 satellites. The main products of the procedure are two updatable maps: the deformation activity map and the active deformation areas map. These maps present two different levels of information aimed at different levels of geohazard risk management, from a very simplified level of information to the classical deformation map based on SAR interferometry. The methodology has been successfully applied to La Gomera, Tenerife and Gran Canaria Islands (Canary Island archipelago. The main obtained results are discussed.

  14. Analysis of the fractal dimension of volcano geomorphology through Synthetic Aperture Radar (SAR) amplitude images acquired in C and X band.

    Science.gov (United States)

    Pepe, S.; Di Martino, G.; Iodice, A.; Manzo, M.; Pepe, A.; Riccio, D.; Ruello, G.; Sansosti, E.; Tizzani, P.; Zinno, I.

    2012-04-01

    In the last two decades several aspects relevant to volcanic activity have been analyzed in terms of fractal parameters that effectively describe natural objects geometry. More specifically, these researches have been aimed at the identification of (1) the power laws that governed the magma fragmentation processes, (2) the energy of explosive eruptions, and (3) the distribution of the associated earthquakes. In this paper, the study of volcano morphology via satellite images is dealt with; in particular, we use the complete forward model developed by some of the authors (Di Martino et al., 2012) that links the stochastic characterization of amplitude Synthetic Aperture Radar (SAR) images to the fractal dimension of the imaged surfaces, modelled via fractional Brownian motion (fBm) processes. Based on the inversion of such a model, a SAR image post-processing has been implemented (Di Martino et al., 2010), that allows retrieving the fractal dimension of the observed surfaces, dictating the distribution of the roughness over different spatial scales. The fractal dimension of volcanic structures has been related to the specific nature of materials and to the effects of active geodynamic processes. Hence, the possibility to estimate the fractal dimension from a single amplitude-only SAR image is of fundamental importance for the characterization of volcano structures and, moreover, can be very helpful for monitoring and crisis management activities in case of eruptions and other similar natural hazards. The implemented SAR image processing performs the extraction of the point-by-point fractal dimension of the scene observed by the sensor, providing - as an output product - the map of the fractal dimension of the area of interest. In this work, such an analysis is performed on Cosmo-SkyMed, ERS-1/2 and ENVISAT images relevant to active stratovolcanoes in different geodynamic contexts, such as Mt. Somma-Vesuvio, Mt. Etna, Vulcano and Stromboli in Southern Italy, Shinmoe

  15. WEIBULL MULTIPLICATIVE MODEL AND MACHINE LEARNING MODELS FOR FULL-AUTOMATIC DARK-SPOT DETECTION FROM SAR IMAGES

    Directory of Open Access Journals (Sweden)

    A. Taravat

    2013-09-01

    Full Text Available As a major aspect of marine pollution, oil release into the sea has serious biological and environmental impacts. Among remote sensing systems (which is a tool that offers a non-destructive investigation method, synthetic aperture radar (SAR can provide valuable synoptic information about the position and size of the oil spill due to its wide area coverage and day/night, and all-weather capabilities. In this paper we present a new automated method for oil-spill monitoring. A new approach is based on the combination of Weibull Multiplicative Model and machine learning techniques to differentiate between dark spots and the background. First, the filter created based on Weibull Multiplicative Model is applied to each sub-image. Second, the sub-image is segmented by two different neural networks techniques (Pulsed Coupled Neural Networks and Multilayer Perceptron Neural Networks. As the last step, a very simple filtering process is used to eliminate the false targets. The proposed approaches were tested on 20 ENVISAT and ERS2 images which contained dark spots. The same parameters were used in all tests. For the overall dataset, the average accuracies of 94.05 % and 95.20 % were obtained for PCNN and MLP methods, respectively. The average computational time for dark-spot detection with a 256 × 256 image in about 4 s for PCNN segmentation using IDL software which is the fastest one in this field at present. Our experimental results demonstrate that the proposed approach is very fast, robust and effective. The proposed approach can be applied to the future spaceborne SAR images.

  16. Weibull Multiplicative Model and Machine Learning Models for Full-Automatic Dark-Spot Detection from SAR Images

    Science.gov (United States)

    Taravat, A.; Del Frate, F.

    2013-09-01

    As a major aspect of marine pollution, oil release into the sea has serious biological and environmental impacts. Among remote sensing systems (which is a tool that offers a non-destructive investigation method), synthetic aperture radar (SAR) can provide valuable synoptic information about the position and size of the oil spill due to its wide area coverage and day/night, and all-weather capabilities. In this paper we present a new automated method for oil-spill monitoring. A new approach is based on the combination of Weibull Multiplicative Model and machine learning techniques to differentiate between dark spots and the background. First, the filter created based on Weibull Multiplicative Model is applied to each sub-image. Second, the sub-image is segmented by two different neural networks techniques (Pulsed Coupled Neural Networks and Multilayer Perceptron Neural Networks). As the last step, a very simple filtering process is used to eliminate the false targets. The proposed approaches were tested on 20 ENVISAT and ERS2 images which contained dark spots. The same parameters were used in all tests. For the overall dataset, the average accuracies of 94.05 % and 95.20 % were obtained for PCNN and MLP methods, respectively. The average computational time for dark-spot detection with a 256 × 256 image in about 4 s for PCNN segmentation using IDL software which is the fastest one in this field at present. Our experimental results demonstrate that the proposed approach is very fast, robust and effective. The proposed approach can be applied to the future spaceborne SAR images.

  17. Lagrangian-based Backtracking of Oil Spill Dynamics from SAR Images: Application to Montara Case

    Science.gov (United States)

    Gautama, Budhi Gunadharma; Mercier, Gregoire; Fablet, Ronan; Longepe, Nicolas

    2016-08-01

    Within the framework of INDESO project (Infrastructure Development Space Oceanography), we address the issue of oilspill and aim at developing an operational SAR- based system for monitoring this issue in Indonesian waters from space. In this work, we focus on the backtrack- ing of an oilspill detected from SAR observations. As a case-study, we consider one large oil spill event that happened in Indonesian waters in 2009, referred to as the Montara oilspill. On 21 August 2009, the Montara Wellhead Platform had an uncontrolled release of hydrocarbons from one of the platform wells. It was estimated that 400 barrels (or approximately 64 tonnes) of crude oil were being lost per day. The uncontrolled release continued until 3 November 2009 and response operations continued until 3 December 2009. In this work, we develop a Langragian analysis and associated numerical inversion tools with a view to further analyzing the oil spread due to the Montara Wellhead Platform. Our model relies on a 2D Lagrangian transport model developed by CLS (Collecte Localisation Satellite). Our model involves four main parameters : the weights of wind- related and current-related advection, the origin and the duration of the oil leakage. Given SAR oilspill detections, we propose a numerical inversion of the parameters of the Lagrangian model, so that the simulated drift match the SAR observations of the oil spill. We demonstrate the relevance of the proposed model and numerical scheme for the Montara oilspill and further discuss their operational interest for the space-based oilspill backtracking and forecasting.

  18. A new scheme for urban impervious surface classification from SAR images

    Science.gov (United States)

    Zhang, Hongsheng; Lin, Hui; Wang, Yunpeng

    2018-05-01

    Urban impervious surfaces have been recognized as a significant indicator for various environmental and socio-economic studies. There is an increasingly urgent demand for timely and accurate monitoring of the impervious surfaces with satellite technology from local to global scales. In the past decades, optical remote sensing has been widely employed for this task with various techniques. However, there are still a range of challenges, e.g. handling cloud contamination on optical data. Therefore, the Synthetic Aperture Radar (SAR) was introduced for the challenging task because it is uniquely all-time- and all-weather-capable. Nevertheless, with an increasing number of SAR data applied, the methodology used for impervious surfaces classification remains unchanged from the methods used for optical datasets. This shortcoming has prevented the community from fully exploring the potential of using SAR data for impervious surfaces classification. We proposed a new scheme that is comparable to the well-known and fundamental Vegetation-Impervious surface-Soil (V-I-S) model for mapping urban impervious surfaces. Three scenes of fully polarimetric Radsarsat-2 data for the cities of Shenzhen, Hong Kong and Macau were employed to test and validate the proposed methodology. Experimental results indicated that the overall accuracy and Kappa coefficient were 96.00% and 0.8808 in Shenzhen, 93.87% and 0.8307 in Hong Kong and 97.48% and 0.9354 in Macau, indicating the applicability and great potential of the new scheme for impervious surfaces classification using polarimetric SAR data. Comparison with the traditional scheme indicated that this new scheme was able to improve the overall accuracy by up to 4.6% and Kappa coefficient by up to 0.18.

  19. Novel Polarimetric SAR Interferometry Algorithms, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Polarimetric radar interferometry (PolInSAR) is a new SAR imaging mode that is rapidly becoming an important technique for bare earth topographic mapping, tree...

  20. Global Rapid Flood Mapping System with Spaceborne SAR Data

    Science.gov (United States)

    Yun, S. H.; Owen, S. E.; Hua, H.; Agram, P. S.; Fattahi, H.; Liang, C.; Manipon, G.; Fielding, E. J.; Rosen, P. A.; Webb, F.; Simons, M.

    2017-12-01

    As part of the Advanced Rapid Imaging and Analysis (ARIA) project for Natural Hazards, at NASA's Jet Propulsion Laboratory and California Institute of Technology, we have developed an automated system that produces derived products for flood extent map generation using spaceborne SAR data. The system takes user's input of area of interest polygons and time window for SAR data search (pre- and post-event). Then the system automatically searches and downloads SAR data, processes them to produce coregistered SAR image pairs, and generates log amplitude ratio images from each pair. Currently the system is automated to support SAR data from the European Space Agency's Sentinel-1A/B satellites. We have used the system to produce flood extent maps from Sentinel-1 SAR data for the May 2017 Sri Lanka floods, which killed more than 200 people and displaced about 600,000 people. Our flood extent maps were delivered to the Red Cross to support response efforts. Earlier we also responded to the historic August 2016 Louisiana floods in the United States, which claimed 13 people's lives and caused over $10 billion property damage. For this event, we made synchronized observations from space, air, and ground in close collaboration with USGS and NOAA. The USGS field crews acquired ground observation data, and NOAA acquired high-resolution airborne optical imagery within the time window of +/-2 hours of the SAR data acquisition by JAXA's ALOS-2 satellite. The USGS coordinates of flood water boundaries were used to calibrate our flood extent map derived from the ALOS-2 SAR data, and the map was delivered to FEMA for estimating the number of households affected. Based on the lessons learned from this response effort, we customized the ARIA system automation for rapid flood mapping and developed a mobile friendly web app that can easily be used in the field for data collection. Rapid automatic generation of SAR-based global flood maps calibrated with independent observations from

  1. Which Fault Segments Ruptured in the 2008 Wenchuan Earthquake and Which Did Not? New Evidence from Near‐Fault 3D Surface Displacements Derived from SAR Image Offsets

    KAUST Repository

    Feng, Guangcai; Jonsson, Sigurjon; Klinger, Yann

    2017-01-01

    The 2008 Mw 7.9 Wenchuan earthquake ruptured a complex thrust‐faulting system at the eastern edge of the Tibetan plateau and west of Sichuan basin. Though the earthquake has been extensively studied, several details about the earthquake, such as which fault segments were activated in the earthquake, are still not clear. This is in part due to difficult field access to the fault zone and in part due to limited near‐fault observations in Interferometric Synthetic Aperture Radar (InSAR) observations because of decorrelation. In this study, we address this problem by estimating SAR image offsets that provide near‐fault ground displacement information and exhibit clear displacement discontinuities across activated fault segments. We begin by reanalyzing the coseismic InSAR observations of the earthquake and then mostly eliminate the strong ionospheric signals that were plaguing previous studies by using additional postevent images. We also estimate the SAR image offsets and use their results to retrieve the full 3D coseismic surface displacement field. The coseismic deformation from the InSAR and image‐offset measurements are compared with both Global Positioning System and field observations. The results indicate that our observations provide significantly better information than previous InSAR studies that were affected by ionospheric disturbances. We use the results to present details of the surface‐faulting offsets along the Beichuan fault from the southwest to the northeast and find that there is an obvious right‐lateral strike‐slip component (as well as thrust faulting) along the southern Beichuan fault (in Yingxiu County), which was strongly underestimated in earlier studies. Based on the results, we provide new evidence to show that the Qingchuan fault was not ruptured in the 2008 Wenchuan earthquake, a topic debated in field observation studies, but show instead that surface faulting occurred on a northward extension of the Beichuan fault during

  2. Which Fault Segments Ruptured in the 2008 Wenchuan Earthquake and Which Did Not? New Evidence from Near‐Fault 3D Surface Displacements Derived from SAR Image Offsets

    KAUST Repository

    Feng, Guangcai

    2017-03-15

    The 2008 Mw 7.9 Wenchuan earthquake ruptured a complex thrust‐faulting system at the eastern edge of the Tibetan plateau and west of Sichuan basin. Though the earthquake has been extensively studied, several details about the earthquake, such as which fault segments were activated in the earthquake, are still not clear. This is in part due to difficult field access to the fault zone and in part due to limited near‐fault observations in Interferometric Synthetic Aperture Radar (InSAR) observations because of decorrelation. In this study, we address this problem by estimating SAR image offsets that provide near‐fault ground displacement information and exhibit clear displacement discontinuities across activated fault segments. We begin by reanalyzing the coseismic InSAR observations of the earthquake and then mostly eliminate the strong ionospheric signals that were plaguing previous studies by using additional postevent images. We also estimate the SAR image offsets and use their results to retrieve the full 3D coseismic surface displacement field. The coseismic deformation from the InSAR and image‐offset measurements are compared with both Global Positioning System and field observations. The results indicate that our observations provide significantly better information than previous InSAR studies that were affected by ionospheric disturbances. We use the results to present details of the surface‐faulting offsets along the Beichuan fault from the southwest to the northeast and find that there is an obvious right‐lateral strike‐slip component (as well as thrust faulting) along the southern Beichuan fault (in Yingxiu County), which was strongly underestimated in earlier studies. Based on the results, we provide new evidence to show that the Qingchuan fault was not ruptured in the 2008 Wenchuan earthquake, a topic debated in field observation studies, but show instead that surface faulting occurred on a northward extension of the Beichuan fault during

  3. 基于MRF的多时相SAR影像非监督变化检测%Unsupervised Change Detection in Multitemporal SAR Images Using MRF Models

    Institute of Scientific and Technical Information of China (English)

    江利明; 廖明生; 张路; 林珲

    2007-01-01

    An unsupervised change-detection method that considers the spatial contextual information in a log-ratio difference image generated from multitemporal SAR images is proposed. A Markov random filed (MRF) model is particularly employed to exploit statistical spatial correlation of intensity levels among neighboring pixels. Under the assumption of the independency of pixels and mixed Gaussian distribution in the log-ratio difference image, a stochastic and iterative EM-MPM change-detection algorithm based on an MRF model is developed. The EM-MPM algorithm is based on a maximiser of posterior marginals (MPM) algorithm for image segmentation and an expectation-maximum (EM) algorithm for parameter estimation in a completely automatic way. The experiment results obtained on multitemporal ERS-2 SAR images show the effectiveness of the proposed method.

  4. SARS - Diagnosis

    Indian Academy of Sciences (India)

    SARS - Diagnosis. Mainly by exclusion of known causes of atypical pneumonia; * X ray Chest; * PCR on body fluids- primers defined by WHO centres available from website.-ve result does not exclude SARS. * Sequencing of amplicons; * Viral Cultures – demanding; * Antibody tests.

  5. Imaging Formation Algorithm of the Ground and Space-Borne Hybrid BiSAR Based on Parameters Estimation from Direct Signal

    Directory of Open Access Journals (Sweden)

    Qingjun Zhang

    2014-01-01

    Full Text Available This paper proposes a novel image formation algorithm for the bistatic synthetic aperture radar (BiSAR with the configuration of a noncooperative transmitter and a stationary receiver in which the traditional imaging algorithm failed because the necessary imaging parameters cannot be estimated from the limited information from the noncooperative data provider. In the new algorithm, the essential parameters for imaging, such as squint angle, Doppler centroid, and Doppler chirp-rate, will be estimated by full exploration of the recorded direct signal (direct signal is the echo from satellite to stationary receiver directly from the transmitter. The Doppler chirp-rate is retrieved by modeling the peak phase of direct signal as a quadratic polynomial. The Doppler centroid frequency and the squint angle can be derived from the image contrast optimization. Then the range focusing, the range cell migration correction (RCMC, and the azimuth focusing are implemented by secondary range compression (SRC and the range cell migration, respectively. At last, the proposed algorithm is validated by imaging of the BiSAR experiment configured with china YAOGAN 10 SAR as the transmitter and the receiver platform located on a building at a height of 109 m in Jiangsu province. The experiment image with geometric correction shows good accordance with local Google images.

  6. A model of selective visual attention for a stereo pair of images

    Science.gov (United States)

    Park, Min Chul; Kim, Sung Kyu; Son, Jung-Young

    2005-11-01

    Human visual attention system has a remarkable ability to interpret complex scenes with the ease and simplicity by selecting or focusing on a small region of visual field without scanning the whole images. In this paper, a novel selective visual attention model by using 3D image display system for a stereo pair of images is proposed. It is based on the feature integration theory and locates ROI(region of interest) or FOA(focus of attention). The disparity map obtained from a stereo pair of images is exploited as one of spatial visual features to form a set of topographic feature maps in our approach. Though the true human cognitive mechanism on the analysis and integration process might be different from our assumption the proposed attention system matches well with the results found by human observers.

  7. The Advanced Rapid Imaging and Analysis (ARIA) Project: Providing Standard and On-Demand SAR products for Hazard Science and Hazard Response

    Science.gov (United States)

    Owen, S. E.; Hua, H.; Rosen, P. A.; Agram, P. S.; Webb, F.; Simons, M.; Yun, S. H.; Sacco, G. F.; Liu, Z.; Fielding, E. J.; Lundgren, P.; Moore, A. W.

    2017-12-01

    A new era of geodetic imaging arrived with the launch of the ESA Sentinel-1A/B satellites in 2014 and 2016, and with the 2016 confirmation of the NISAR mission, planned for launch in 2021. These missions assure high quality, freely and openly distributed regularly sampled SAR data into the indefinite future. These unprecedented data sets are a watershed for solid earth sciences as we progress towards the goal of ubiquitous InSAR measurements. We now face the challenge of how to best address the massive volumes of data and intensive processing requirements. Should scientists individually process the same data independently themselves? Should a centralized service provider create standard products that all can use? Are there other approaches to accelerate science that are cost effective and efficient? The Advanced Rapid Imaging and Analysis (ARIA) project, a joint venture co-sponsored by California Institute of Technology (Caltech) and by NASA through the Jet Propulsion Laboratory (JPL), is focused on rapidly generating higher level geodetic imaging products and placing them in the hands of the solid earth science and local, national, and international natural hazard communities by providing science product generation, exploration, and delivery capabilities at an operational level. However, there are challenges in defining the optimal InSAR data products for the solid earth science community. In this presentation, we will present our experience with InSAR users, our lessons learned the advantages of on demand and standard products, and our proposal for the most effective path forward.

  8. Adaptive thresholding algorithm based on SAR images and wind data to segment oil spills along the northwest coast of the Iberian Peninsula

    International Nuclear Information System (INIS)

    Mera, David; Cotos, José M.; Varela-Pet, José; Garcia-Pineda, Oscar

    2012-01-01

    Highlights: ► We present an adaptive thresholding algorithm to segment oil spills. ► The segmentation algorithm is based on SAR images and wind field estimations. ► A Database of oil spill confirmations was used for the development of the algorithm. ► Wind field estimations have demonstrated to be useful for filtering look-alikes. ► Parallel programming has been successfully used to minimize processing time. - Abstract: Satellite Synthetic Aperture Radar (SAR) has been established as a useful tool for detecting hydrocarbon spillage on the ocean’s surface. Several surveillance applications have been developed based on this technology. Environmental variables such as wind speed should be taken into account for better SAR image segmentation. This paper presents an adaptive thresholding algorithm for detecting oil spills based on SAR data and a wind field estimation as well as its implementation as a part of a functional prototype. The algorithm was adapted to an important shipping route off the Galician coast (northwest Iberian Peninsula) and was developed on the basis of confirmed oil spills. Image testing revealed 99.93% pixel labelling accuracy. By taking advantage of multi-core processor architecture, the prototype was optimized to get a nearly 30% improvement in processing time.

  9. Rice status and microwave characteristics: Analysis of rice paddy fields at Kojima Bay [Okayama, Japan] using multi-frequency and polarimetric Pi-SAR radar data images

    International Nuclear Information System (INIS)

    Ishitsuka, N.; Saito, G.; Ouchi, K.; Davidson, G.; Mohri, K.; Uratsuka, S.

    2003-01-01

    Abstract South-east Asia has a rainy-season at the crop growing period, and it is difficult to observe agricultural land in this season using optical remote sensing. Synthetic Aperture Radar (SAR) can observe the earth's surface without being influenced by of clouds. However, it is less useful for observing agricultural land, because satellite SAR has only one data band. Recently, SAR is able to provide multi band and multi polarimetric data. Pi-SAR, an airborne SAR developed by NASDA and CRL, can provide L and X bands and fully polarimetric data. Rice is the main crop in Asia, and we studied the characteristic microwave scatter on rice paddy fields using Pi-SAR data. Our study area was the rice paddy fields in Kojima reclaimed land in Japan. We had two fully polarimetric data sets from 13 July 1999 and 4 October 2000. First, we processed the color polarimetric composite image. Next we calibrated the phase of each polarimetric data using river area by the Kimura method. After that we performed decomposition analysis and drew polarimetric signatures for understanding the status of rice paddy fields. At the rice planting period, rice paddy fields are filled with water and rice plants are very small. The SAR microwave scatters on water surfaces like a mirror, called 'mirror (or specular) reflection'. This phenomenon makes backscatter a small value at the water-covered area. The image from July is about one month after trans-planting and rice plants are 20-40 cm in height. X-band microwave scatters on the rice surface, but L-band microwave passes through rice bodies and shows mirror refraction on water surfaces. Some strong backscatter occur on rice paddy fields especially VV polarization because of bragg scattering. The fields where bragg scattering returns strong VV scatter because the space between rice stems cause resonation in the L-band wavelength. We can easily understand bragg scatter by using polarimetric data. Using the image from October at

  10. Large scale rock slope release planes imaged by differential ground based InSAR at Randa, Switzerland

    Science.gov (United States)

    Gischig, V.; Loew, S.; Kos, A.; Raetzo, H.

    2009-04-01

    In April and May of 1991 a steep rock slope above the village of Randa (Valais, Switzerland) failed in two events, releasing a total rock volume of 30 million m3. The rock mass behind the back scarp contains several million cubic meters of unstable gneisses and schists which are moving with a maximum rate of about 2 cm/yr. Different geodetic, geotechnical and geophysical techniques were applied to monitor this new instability and to determine its spatial extent. However, the boundaries of the instability could only be roughly estimated so far. For this reason five ground based differential InSAR surveys (GB-DInSAR) were carried out between 2005 and 2007 from the opposite valley flank at a distance to target of 1.3 to 1.9 km. These surveys provide displacements maps of four different time intervals with a spatial resolution of 2 to 6 m and an accuracy of less than 1 mm. These datasets reveal interesting new insights into the spatial distribution of displacements and significantly contribute to the kinematic interpretation of the ongoing movements. We found that the lower boundary of the instability is a narrow rupture plane which coincides with a primary lithological boundary on the slope. The intersection line between this basal rupture plane and the steep rock cliff extents over at least 200 m meters. It is possible to identify this structure on helicopter-based high resolution images and a LiDAR DTM of the failure surface. The eastern boundary of the instability also presents itself as a sharp line separating stable bedrock from a strongly fractured rock mass moving about 1 cm/yr along the line of sight. This lateral release plane is formed by a steeply east dipping tectonic fault plane, with subhorizontal striations and an exposed surface area of about 10'000 square meters. In the north-east of the instability the lateral boundaries crop out on surfaces that have an acute angle to the line of sight or lie in the shadow of the radar. Here the boundaries of the

  11. The geometry of three-dimensional measurement from paired coplanar x-ray images.

    Science.gov (United States)

    Baumrind, S; Moffitt, F H; Curry, S

    1983-10-01

    This article outlines the geometric principles which underlie the process of making craniofacial measurements in three dimensions by combining information from pairs of coplanar x-ray images. The main focus is upon the rationale of the method rather than upon the computational details. We stress particularly the importance of having available accurate measurements as to the relative positions of the x-ray tubes and the film plane. The use of control arrays of radiopaque "points" whose projected images upon the film plane allow the retrospective calculation of the spatial relationship between the x-ray tubes and the film plane is explained. Finally, the question of correcting for movement of the subject between two films of an image pair is considered briefly.

  12. DARK SPOT DETECTION USING INTENSITY AND THE DEGREE OF POLARIZATION IN FULLY POLARIMETRIC SAR IMAGES FOR OIL POLUTION MONITORING

    Directory of Open Access Journals (Sweden)

    F. Zakeri

    2015-12-01

    Full Text Available Oil spill surveillance is of great environmental and economical interest, directly contributing to improve environmental protection. Monitoring of oil spills using synthetic aperture radar (SAR has received a considerable attention over the past few years, notably because of SAR data abilities like all-weather and day-and-night capturing. The degree of polarization (DoP is a less computationally complex quantity characterizing a partially polarized electromagnetic field. The key to the proposed approach is making use of DoP as polarimetric information besides intensity ones to improve dark patches detection as the first step of oil spill monitoring. In the proposed approach first simple intensity threshold segmentation like Otsu method is applied to the image. Pixels with intensities below the threshold are regarded as potential dark spot pixels while the others are potential background pixels. Second, the DoP of potential dark spot pixels is estimated. Pixels with DoP below a certain threshold are the real dark-spot pixels. Choosing the threshold is a critical and challenging step. In order to solve choosing the appropriate threshold, we introduce a novel but simple method based on DoP of potential dark spot pixels. Finally, an area threshold is used to eliminate any remaining false targets. The proposed approach is tested on L band NASA/JPL UAVSAR data, covering the Deepwater Horizon oil spill in the Gulf of Mexico. Comparing the obtained results from the new method with conventional approaches like Otsu, K-means and GrowCut shows better achievement of the proposed algorithm. For instance, mean square error (MSE 65%, Overall Accuracy 20% and correlation 40% are improved.

  13. Dark SPOT Detection Using Intensity and the Degree of Polarization in Fully Polarimetric SAR Images for Oil Polution Monitoring

    Science.gov (United States)

    Zakeri, F.; Amini, J.

    2015-12-01

    Oil spill surveillance is of great environmental and economical interest, directly contributing to improve environmental protection. Monitoring of oil spills using synthetic aperture radar (SAR) has received a considerable attention over the past few years, notably because of SAR data abilities like all-weather and day-and-night capturing. The degree of polarization (DoP) is a less computationally complex quantity characterizing a partially polarized electromagnetic field. The key to the proposed approach is making use of DoP as polarimetric information besides intensity ones to improve dark patches detection as the first step of oil spill monitoring. In the proposed approach first simple intensity threshold segmentation like Otsu method is applied to the image. Pixels with intensities below the threshold are regarded as potential dark spot pixels while the others are potential background pixels. Second, the DoP of potential dark spot pixels is estimated. Pixels with DoP below a certain threshold are the real dark-spot pixels. Choosing the threshold is a critical and challenging step. In order to solve choosing the appropriate threshold, we introduce a novel but simple method based on DoP of potential dark spot pixels. Finally, an area threshold is used to eliminate any remaining false targets. The proposed approach is tested on L band NASA/JPL UAVSAR data, covering the Deepwater Horizon oil spill in the Gulf of Mexico. Comparing the obtained results from the new method with conventional approaches like Otsu, K-means and GrowCut shows better achievement of the proposed algorithm. For instance, mean square error (MSE) 65%, Overall Accuracy 20% and correlation 40% are improved.

  14. Classification of sea-ice types in SAR imagery

    International Nuclear Information System (INIS)

    Baraldi, A.; Parmiggiani, F.

    2001-01-01

    It is presented a supervised three-stage classification (labeling) scheme applied to SAR images of polar regions for detecting different sea-ice types. The three-stage labeling procedure consists of: 1) a speckle noise filtering stage, based on a sequence of contour detection, segmentation and filtering steps, which removes SAR speckle noise (and texture information as well) without losing spatial details; 2) a second stage providing Bayesian, maximum-α-posteriori, hierarchical (coarse-to-fine), adaptive (data-driven) and contextual labeling of piecewise constant intensity images featuring little useful texture information; and 3) an output stage providing a many-to-one relationship between second stage output categories (types or clusters) and desired output classes. Modules 1) and 2), which demonstrated their validity in several applications in the existing literature, are briefly recalled in the current paper. The proposed labeling scheme features some interesting functional properties when applied to sea-ice SAR images: it is easy to use, i.e., it requires minor user interaction, is robust to changes in input conditions and performs better than a non-contextual (per-pixel) classifier. Application results are presented and discussed for a pair of SAR images extracted, respectively, from an ERS-1 scene acquired on November 1992 over the Bellingshausen Sea (Antarctica) and from an ERS-2 scene of the East Greenland Sea acquired on March 1997 when a field experiment by the research vessel Jan Ma yen was conducted in the same area

  15. A MATCHING METHOD TO REDUCE THE INFLUENCE OF SAR GEOMETRIC DEFORMATION

    Directory of Open Access Journals (Sweden)

    C. Gao

    2018-04-01

    Full Text Available There are large geometrical deformations in SAR image, including foreshortening, layover, shade,which leads to SAR Image matching with low accuracy. Especially in complex terrain area, the control points are difficult to obtain, and the matching is difficult to achieve. Considering the impact of geometric distortions in SAR image pairs, a matching algorithm with a combination of speeded up robust features (SURF and summed of normalize cross correlation (SNCC was proposed, which can avoid the influence of SAR geometric deformation. Firstly, SURF algorithm was utilized to predict the search area. Then the matching point pairs was selected based on summed of normalized cross correlation. Finally, false match points were eliminated by the bidirectional consistency. SURF algorithm can control the range of matching points, and the matching points extracted from the deformation area are eliminated, and the matching points with stable and even distribution are obtained. The experimental results demonstrated that the proposed algorithm had high precision, and can effectively avoid the effect of geometric distortion on SAR image matching. Meet accuracy requirements of the block adjustment with sparse control points.

  16. Improved techniques to utilize remotely sensed data from multi-frequency imaging radar polarimeter; Tashuha tahenha SAR data no riyoho no kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Okada, K [Sumitomo Metal Mining Co. Ltd., Osaka (Japan); Maruyama, Y [Earth Remote Sensing Data Analysis Center, Tokyo (Japan); Tapley, I

    1997-05-27

    It was intended to serve for establishing specifications for a next generation SAR such as PALSAR through studying methods for evaluating and utilizing the multi-frequency, multi-polarized wave SAR data. Placing an emphasis on utilization of the NASA`s AIRSAR, identification was made on backscatter amount recorded on the SAR data, terrestrial constitutional substances, patterns of the ground surface, micro-topography and such terrestrial conditions as vegetation and land utilization. Their mutual relationships were also analyzed. A noise reduction method usable on multi-band data can be applied to the AIRSAR data, and can reduce noise effectively. Images with more volume of information can be acquired from multi-band images with the same polarization wave than from multi-polarization wave images with the same band. As a result of estimating terrestrial permitivity by using the method invented by Dubois and van Zyl, most of the subject area is judged to have terrestrial substances dried at the time of having acquired the images. A colluvium rich with exposed rock regions and gravels was identified as an area having higher permitivity than the former area. Images of terrestrial roughness were divided largely into smooth flat lands, sand and gravel distributed regions, exposed rock regions, and plant distributed regions along river basins. 3 refs., 2 figs., 1 tab.

  17. Operational SAR-based sea ice drift monitoring over the Baltic Sea

    Directory of Open Access Journals (Sweden)

    J. Karvonen

    2012-07-01

    Full Text Available An algorithm for computing ice drift from pairs of synthetic aperture radar (SAR images covering a common area has been developed at FMI. The algorithm has been developed based on the C-band SAR data over the Baltic Sea. It is based on phase correlation in two scales (coarse and fine with some additional constraints. The algorithm has been running operationally in the Baltic Sea from the beginning of 2011, using Radarsat-1 ScanSAR wide mode and Envisat ASAR wide swath mode data. The resulting ice drift fields are publicly available as part of the MyOcean EC project. The SAR-based ice drift vectors have been compared to the drift vectors from drifter buoys in the Baltic Sea during the first operational season, and also these validation results are shown in this paper. Also some navigationally useful sea ice quantities, which can be derived from ice drift vector fields, are presented.

  18. Enhancement of Tropical Land Cover Mapping with Wavelet-Based Fusion and Unsupervised Clustering of SAR and Landsat Image Data

    Science.gov (United States)

    LeMoigne, Jacqueline; Laporte, Nadine; Netanyahuy, Nathan S.; Zukor, Dorothy (Technical Monitor)

    2001-01-01

    The characterization and the mapping of land cover/land use of forest areas, such as the Central African rainforest, is a very complex task. This complexity is mainly due to the extent of such areas and, as a consequence, to the lack of full and continuous cloud-free coverage of those large regions by one single remote sensing instrument, In order to provide improved vegetation maps of Central Africa and to develop forest monitoring techniques for applications at the local and regional scales, we propose to utilize multi-sensor remote sensing observations coupled with in-situ data. Fusion and clustering of multi-sensor data are the first steps towards the development of such a forest monitoring system. In this paper, we will describe some preliminary experiments involving the fusion of SAR and Landsat image data of the Lope Reserve in Gabon. Similarly to previous fusion studies, our fusion method is wavelet-based. The fusion provides a new image data set which contains more detailed texture features and preserves the large homogeneous regions that are observed by the Thematic Mapper sensor. The fusion step is followed by unsupervised clustering and provides a vegetation map of the area.

  19. Reference line-pair values of panoramic radiographs using an arch-form phantom stand to assess clinical image quality

    International Nuclear Information System (INIS)

    Choi, Da Hye; Choi, Bo Ram; Huh, Kyung Hoe; Heo, Min Suk; Choi, Soon Chul; Choi, Jin Woo; Yi, Won Jin; Lee, Sam Sun

    2013-01-01

    This study was performed to suggest reference line-pair values of panoramic images with clinically desirable qualities using an arch-form phantom stand. The line-pair test phantom was chosen. A real skull model was selected for setting the arch-form model of the phantom stand. The phantom stand had slits in four regions (incisor, premolar, molar, TMJ). Four raw images of the test phantom in each region and one raw image of the real skull were converted into 50 test phantom images and 50 skull phantom images with various line-pair values. 50 post-processed real skull phantom images were divided into 4 groups and were randomly submitted to 14 evaluators. Image quality was graded on a 4 point scale (1. good, 2. normal, 3. poor but interpretable, and 4. not interpretable). The reference line pair was determined as the first line-pair value scored less than 2 points. The mean scores tended to decrease as the line-pair values increased. The reference line-pair values were 3.19 LP/mm in the incisor, 2.32 LP/mm in the premolar and TMJ, and 1.88 LP/mm in the molar region. Image quality evaluation methods and criteria should be able to assess various regions considering the characteristics of panoramic systems. This study suggested overall and regional reference line-pair values and established a set of standard values for them.

  20. Reference line-pair values of panoramic radiographs using an arch-form phantom stand to assess clinical image quality

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Da Hye; Choi, Bo Ram; Huh, Kyung Hoe; Heo, Min Suk; Choi, Soon Chul [Dept. of Oral and Maxillofacial Radiology and Dental Research Institute, School of Dentistry, Seoul National University, Seoul (Korea, Republic of); Choi, Jin Woo [Dept. of Oral and Maxillofacial Radiology, College of Dentistry, Dankook University, Cheonan (Korea, Republic of); Yi, Won Jin; Lee, Sam Sun [Dept. of Oral and Maxillofacial Radiology, BK21 Craniomaxillofacial Life Science, and Dental Research Institute, School of Dentistry, Seoul National University, Seoul (Korea, Republic of)

    2013-03-15

    This study was performed to suggest reference line-pair values of panoramic images with clinically desirable qualities using an arch-form phantom stand. The line-pair test phantom was chosen. A real skull model was selected for setting the arch-form model of the phantom stand. The phantom stand had slits in four regions (incisor, premolar, molar, TMJ). Four raw images of the test phantom in each region and one raw image of the real skull were converted into 50 test phantom images and 50 skull phantom images with various line-pair values. 50 post-processed real skull phantom images were divided into 4 groups and were randomly submitted to 14 evaluators. Image quality was graded on a 4 point scale (1. good, 2. normal, 3. poor but interpretable, and 4. not interpretable). The reference line pair was determined as the first line-pair value scored less than 2 points. The mean scores tended to decrease as the line-pair values increased. The reference line-pair values were 3.19 LP/mm in the incisor, 2.32 LP/mm in the premolar and TMJ, and 1.88 LP/mm in the molar region. Image quality evaluation methods and criteria should be able to assess various regions considering the characteristics of panoramic systems. This study suggested overall and regional reference line-pair values and established a set of standard values for them.

  1. The Advanced Rapid Imaging and Analysis (ARIA) Project: Status of SAR products for Earthquakes, Floods, Volcanoes and Groundwater-related Subsidence

    Science.gov (United States)

    Owen, S. E.; Yun, S. H.; Hua, H.; Agram, P. S.; Liu, Z.; Sacco, G. F.; Manipon, G.; Linick, J. P.; Fielding, E. J.; Lundgren, P.; Farr, T. G.; Webb, F.; Rosen, P. A.; Simons, M.

    2017-12-01

    The Advanced Rapid Imaging and Analysis (ARIA) project for Natural Hazards is focused on rapidly generating high-level geodetic imaging products and placing them in the hands of the solid earth science and local, national, and international natural hazard communities by providing science product generation, exploration, and delivery capabilities at an operational level. Space-based geodetic measurement techniques including Interferometric Synthetic Aperture Radar (InSAR), differential Global Positioning System, and SAR-based change detection have become critical additions to our toolset for understanding and mapping the damage and deformation caused by earthquakes, volcanic eruptions, floods, landslides, and groundwater extraction. Up until recently, processing of these data sets has been handcrafted for each study or event and has not generated products rapidly and reliably enough for response to natural disasters or for timely analysis of large data sets. The ARIA project, a joint venture co-sponsored by the California Institute of Technology and by NASA through the Jet Propulsion Laboratory, has been capturing the knowledge applied to these responses and building it into an automated infrastructure to generate imaging products in near real-time that can improve situational awareness for disaster response. In addition to supporting the growing science and hazard response communities, the ARIA project has developed the capabilities to provide automated imaging and analysis capabilities necessary to keep up with the influx of raw SAR data from geodetic imaging missions such as ESA's Sentinel-1A/B, now operating with repeat intervals as short as 6 days, and the upcoming NASA NISAR mission. We will present the progress and results we have made on automating the analysis of Sentinel-1A/B SAR data for hazard monitoring and response, with emphasis on recent developments and end user engagement in flood extent mapping and deformation time series for both volcano

  2. Landslide precursory deformation interpretation using ALOS-2/PALSAR-2 InSAR image along Min River in Maoxien, Sichuan Province, China

    Science.gov (United States)

    Sato, H. P.

    2017-12-01

    Maoxien area in Sichuan Province, China has many landslide. For example, landslide (rock avalanche) occurred on the slope in Xinmocun Village in Maoxeien on 24 June 2017. I produced and interpreetd InSAR image using ALOS/PALSAR data observed on 19 Jul 2007-3 Sep 2007 and on 27 Jan 2011-14 Mar 2011, and ALOS-2/PALSAR-2 data observed on 26 Jul 2015-13 Dec 2015 and on 13 Dec 2015-11 Dec 2016. These images give good coherence and it was easy to identify local landslide surface deformation. As a result, e.g., two slopes were estimated to have local landslide surface deformation; one is at 103.936587 deg E and 32.04462 deg N, another is at 103.674754 deg E and 31.852838 N. However, the slope in Xinmocun Village was not identified as landslide precursory deformation. In the poster I will present more InSAR image observed after 11 Dec 2016 and discuss the possibility of local landslide surface deformaton using InSAR image. ALOS/PALSAR and ALOS-2/PALSAR-2 data were provided by JAXA through Landslide Working Group in JAXA and through Special Research 2015-B-02 of Earthquake Research Institute/Tokyo University. This study was supported by KAKENHI (17H02973).

  3. Estimation of Bridge Height over Water from Polarimetric SAR Image Data Using Mapping and Projection Algorithm and De-Orientation Theory

    Science.gov (United States)

    Wang, Haipeng; Xu, Feng; Jin, Ya-Qiu; Ouchi, Kazuo

    An inversion method of bridge height over water by polarimetric synthetic aperture radar (SAR) is developed. A geometric ray description to illustrate scattering mechanism of a bridge over water surface is identified by polarimetric image analysis. Using the mapping and projecting algorithm, a polarimetric SAR image of a bridge model is first simulated and shows that scattering from a bridge over water can be identified by three strip lines corresponding to single-, double-, and triple-order scattering, respectively. A set of polarimetric parameters based on the de-orientation theory is applied to analysis of three types scattering, and the thinning-clustering algorithm and Hough transform are then employed to locate the image positions of these strip lines. These lines are used to invert the bridge height. Fully polarimetric image data of airborne Pi-SAR at X-band are applied to inversion of the height and width of the Naruto Bridge in Japan. Based on the same principle, this approach is also applicable to spaceborne ALOSPALSAR single-polarization data of the Eastern Ocean Bridge in China. The results show good feasibility to realize the bridge height inversion.

  4. Three-dimensional x-ray stereometry from paired coplanar images: a progress report.

    Science.gov (United States)

    Baumrind, S; Moffitt, F H; Curry, S

    1983-10-01

    More than fifty years ago, Broadbent reported the development of a three-dimensional cephalometric method which complexed information from pairs of x-ray images oriented in two planes at right angles to each other. Empirical problems have prevented the routine clinical use of this "biplanar" method, notwithstanding its obvious conceptual brilliance. The present article reports on recent work toward the development of an alternative method of three-dimensional cephalometry in which the two images of each x-ray pair are positioned in the same plane rather than being at right angles to each other. It is believed that this "coplanar" method avoids many of the technical problems that have limited the use of the Broadbent method.

  5. The InSAeS4 Airborne X-Band Interferometric SAR System: A First Assessment on Its Imaging and Topographic Mapping Capabilities

    Directory of Open Access Journals (Sweden)

    Stefano Perna

    2016-01-01

    Full Text Available We present in this work a first assessment of the imaging and topographic mapping capabilities of the InSAeS4 system, which is a single-pass interferometric airborne X-Band Synthetic Aperture Radar (SAR. In particular, we first provide a brief description of the InSAeS4 sensor. Then, we discuss the results of our analysis on the SAR and interferometric SAR products relevant to the first flight-test campaign. More specifically, we have exploited as reference the GPS measurements relevant to nine Corner Reflectors (CRs deployed over the illuminated area during the campaign and a laser scanner Digital Elevation Model (DEM. From the analysis carried out on the CRs we achieved a mean geometric resolution, for the SAR products, of about 0.14 m in azimuth and 0.49 m in range, a positioning misalignment with standard deviation of 0.07 m in range and 0.08 m in azimuth, and a height error with standard deviation of 0.51 m. From the comparison with the laser scanner DEM we estimated a height error with standard deviation of 1.57 m.

  6. Stereo Vision-Based High Dynamic Range Imaging Using Differently-Exposed Image Pair

    Directory of Open Access Journals (Sweden)

    Won-Jae Park

    2017-06-01

    Full Text Available In this paper, a high dynamic range (HDR imaging method based on the stereo vision system is presented. The proposed method uses differently exposed low dynamic range (LDR images captured from a stereo camera. The stereo LDR images are first converted to initial stereo HDR images using the inverse camera response function estimated from the LDR images. However, due to the limited dynamic range of the stereo LDR camera, the radiance values in under/over-exposed regions of the initial main-view (MV HDR image can be lost. To restore these radiance values, the proposed stereo matching and hole-filling algorithms are applied to the stereo HDR images. Specifically, the auxiliary-view (AV HDR image is warped by using the estimated disparity between initial the stereo HDR images and then effective hole-filling is applied to the warped AV HDR image. To reconstruct the final MV HDR, the warped and hole-filled AV HDR image is fused with the initial MV HDR image using the weight map. The experimental results demonstrate objectively and subjectively that the proposed stereo HDR imaging method provides better performance compared to the conventional method.

  7. Three-dimensional cloud characterization from paired whole-sky imaging cameras

    International Nuclear Information System (INIS)

    Allmen, M.; Kegelmeyer, W.P. Jr.

    1994-01-01

    Three-dimensional (3-D) cloud characterization permits the derivation of important cloud geometry properties such as fractional cloudiness, mean cloud and clear length, aspect ratio, and the morphology of cloud cover. These properties are needed as input to the hierarchical diagnosis (HD) and instantaneous radiative transfer (IRF) models, to validate sub-models for cloud occurrence and formation, and to Central Site radiative flux calculations. A full 3-D characterization will eventually require the integration of disparate Cloud and Radiation Testbed (CART) data sources: whole-sky imagers (WSIs), radar, satellites, ceilometers, volume-imaging lidar, and other sensors. In this paper, we demonstrate how an initial 3-D cloud property, cloud base height, can be determined from fusing paired times series of images from two whole-sky imagers

  8. Rigorous accuracy assessment for 3D reconstruction using time-series Dual Fluoroscopy (DF) image pairs

    Science.gov (United States)

    Al-Durgham, Kaleel; Lichti, Derek D.; Kuntze, Gregor; Ronsky, Janet

    2017-06-01

    High-speed biplanar videoradiography, or clinically referred to as dual fluoroscopy (DF), imaging systems are being used increasingly for skeletal kinematics analysis. Typically, a DF system comprises two X-ray sources, two image intensifiers and two high-speed video cameras. The combination of these elements provides time-series image pairs of articulating bones of a joint, which permits the measurement of bony rotation and translation in 3D at high temporal resolution (e.g., 120-250 Hz). Assessment of the accuracy of 3D measurements derived from DF imaging has been the subject of recent research efforts by several groups, however with methodological limitations. This paper presents a novel and simple accuracy assessment procedure based on using precise photogrammetric tools. We address the fundamental photogrammetry principles for the accuracy evaluation of an imaging system. Bundle adjustment with selfcalibration is used for the estimation of the system parameters. The bundle adjustment calibration uses an appropriate sensor model and applies free-network constraints and relative orientation stability constraints for a precise estimation of the system parameters. A photogrammetric intersection of time-series image pairs is used for the 3D reconstruction of a rotating planar object. A point-based registration method is used to combine the 3D coordinates from the intersection and independently surveyed coordinates. The final DF accuracy measure is reported as the distance between 3D coordinates from image intersection and the independently surveyed coordinates. The accuracy assessment procedure is designed to evaluate the accuracy over the full DF image format and a wide range of object rotation. Experiment of reconstruction of a rotating planar object reported an average positional error of 0.44 +/- 0.2 mm in the derived 3D coordinates (minimum 0.05 and maximum 1.2 mm).

  9. Iterative Redeployment of Illumination and Sensing (IRIS): Application to STW-SAR Imaging

    National Research Council Canada - National Science Library

    Marble, Jay; Raich, Raviv; Hero, Alfred O

    2006-01-01

    .... The IRIS algorithm has the following features: (1) use of a sparse Bayesian image model that captures the free-space dominated propagation characteristics of interiors of man-made structures such as caves and residences; (2...

  10. Dual Super-Systolic Core for Real-Time Reconstructive Algorithms of High-Resolution Radar/SAR Imaging Systems

    Science.gov (United States)

    Atoche, Alejandro Castillo; Castillo, Javier Vázquez

    2012-01-01

    A high-speed dual super-systolic core for reconstructive signal processing (SP) operations consists of a double parallel systolic array (SA) machine in which each processing element of the array is also conceptualized as another SA in a bit-level fashion. In this study, we addressed the design of a high-speed dual super-systolic array (SSA) core for the enhancement/reconstruction of remote sensing (RS) imaging of radar/synthetic aperture radar (SAR) sensor systems. The selected reconstructive SP algorithms are efficiently transformed in their parallel representation and then, they are mapped into an efficient high performance embedded computing (HPEC) architecture in reconfigurable Xilinx field programmable gate array (FPGA) platforms. As an implementation test case, the proposed approach was aggregated in a HW/SW co-design scheme in order to solve the nonlinear ill-posed inverse problem of nonparametric estimation of the power spatial spectrum pattern (SSP) from a remotely sensed scene. We show how such dual SSA core, drastically reduces the computational load of complex RS regularization techniques achieving the required real-time operational mode. PMID:22736964

  11. Area-efficient readout with 14-bit SAR-ADC for CMOS image sensors

    Directory of Open Access Journals (Sweden)

    Aziza Sassi Ben

    2016-01-01

    Full Text Available This paper proposes a readout design for CMOS image sensors. It has been squeezed into a 7.5um pitch under a 0.28um 1P3M technology. The ADC performs one 14-bit conversion in only 1.5us and targets a theoretical DNL feature about +1.3/-1 at 14-bit accuracy. Correlated Double Sampling (CDS is performed both in the analog and digital domains to preserve the image quality.

  12. UAVSAR and TerraSAR-X Based InSAR Detection of Localized Subsidence in the New Orleans Area

    Science.gov (United States)

    Blom, R. G.; An, K.; Jones, C. E.; Latini, D.

    2014-12-01

    Vulnerability of the US Gulf coast to inundation has received increased attention since hurricanes Katrina and Rita. Compounding effects of sea level rise, wetland loss, and regional and local subsidence makes flood protection a difficult challenge, and particularly for the New Orleans area. Key to flood protection is precise knowledge of elevations and elevation changes. Analysis of historical and continuing geodetic measurements show surprising complexity, including locations subsiding more rapidly than considered during planning of hurricane protection and coastal restoration projects. Combining traditional, precise geodetic data with interferometric synthetic aperture radar (InSAR) observations can provide geographically dense constraints on surface deformation. The Gulf Coast environment is challenging for InSAR techniques, especially with systems not designed for interferometry. We use two InSAR capable systems, the L- band (24 cm wavelength) airborne JPL/NASA UAVSAR, and the DLR/EADS Astrium spaceborne TerraSAR X-band (3 cm wavelength), and compare results. First, we are applying pair-wise InSAR to the longer wavelength UAVSAR data to detect localized elevation changes potentially impacting flood protection infrastructure from 2009 - 2014. We focus on areas on and near flood protection infrastructure to identify changes indicative of subsidence, structural deformation, and/or seepage. The Spaceborne TerraSAR X-band SAR system has relatively frequent observations, and dense persistent scatterers in urban areas, enabling measurement of very small displacements. We compare L-band UAVSAR results with permanent scatterer (PS-InSAR) and Short Baseline Subsets (SBAS) interferometric analyses of a stack composed by 28 TerraSAR X-band images acquired over the same period. Thus we can evaluate results from the different radar frequencies and analyses techniques. Preliminary results indicate subsidence features potentially of a variety of causes, including ground water

  13. Asymmetrically cut crystal pair as x-ray magnifier for imaging at high intensity laser facilities

    Energy Technology Data Exchange (ETDEWEB)

    Szabo, C. I.; Feldman, U. [Artep Inc., 2922 Excelsior Spring Circle, Ellicott City, Maryland 21042 (United States); Seely, J. F. [Space Science Division, Naval Research Laboratory, Washington, DC 20375-5352 (United States); Curry, J. J.; Hudson, L. T.; Henins, A. [National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States)

    2010-10-15

    The potential of an x-ray magnifier prepared from a pair of asymmetrically cut crystals is studied to explore high energy x-ray imaging capabilities at high intensity laser facilities. OMEGA-EP and NIF when irradiating mid and high Z targets can be a source of high-energy x-rays whose production mechanisms and use as backlighters are a subject of active research. This paper studies the properties and potential of existing asymmetric cut crystal pairs from the National Institute of Standards and Technology (NIST) built in a new enclosure for imaging x-ray sources. The technique of the x-ray magnifier has been described previously. This new approach is aimed to find a design that could be used at laser facilities by magnifying the x-ray source into a screen far away from the target chamber center, with fixed magnification defined by the crystals' lattice spacing and the asymmetry angles. The magnified image is monochromatic and the imaging wavelength is set by crystal asymmetry and incidence angles. First laboratory results are presented and discussed.

  14. Comparing Accuracy of Airborne Laser Scanning and TerraSAR-X Radar Images in the Estimation of Plot-Level Forest Variables

    Directory of Open Access Journals (Sweden)

    Juha Hyyppä

    2010-01-01

    Full Text Available In this study we compared the accuracy of low-pulse airborne laser scanning (ALS data, multi-temporal high-resolution noninterferometric TerraSAR-X radar data and a combined feature set derived from these data in the estimation of forest variables at plot level. The TerraSAR-X data set consisted of seven dual-polarized (HH/HV or VH/VV Stripmap mode images from all seasons of the year. We were especially interested in distinguishing between the tree species. The dependent variables estimated included mean volume, basal area, mean height, mean diameter and tree species-specific mean volumes. Selection of best possible feature set was based on a genetic algorithm (GA. The nonparametric k-nearest neighbour (k-NN algorithm was applied to the estimation. The research material consisted of 124 circular plots measured at tree level and located in the vicinity of Espoo, Finland. There are large variations in the elevation and forest structure in the study area, making it demanding for image interpretation. The best feature set contained 12 features, nine of them originating from the ALS data and three from the TerraSAR-X data. The relative RMSEs for the best performing feature set were 34.7% (mean volume, 28.1% (basal area, 14.3% (mean height, 21.4% (mean diameter, 99.9% (mean volume of Scots pine, 61.6% (mean volume of Norway spruce and 91.6% (mean volume of deciduous tree species. The combined feature set outperformed an ALS-based feature set marginally; in fact, the latter was better in the case of species-specific volumes. Features from TerraSAR-X alone performed poorly. However, due to favorable temporal resolution, satellite-borne radar imaging is a promising data source for updating large-area forest inventories based on low-pulse ALS.

  15. An ice-motion tracking system at the Alaska SAR facility

    Science.gov (United States)

    Kwok, Ronald; Curlander, John C.; Pang, Shirley S.; Mcconnell, Ross

    1990-01-01

    An operational system for extracting ice-motion information from synthetic aperture radar (SAR) imagery is being developed as part of the Alaska SAR Facility. This geophysical processing system (GPS) will derive ice-motion information by automated analysis of image sequences acquired by radars on the European ERS-1, Japanese ERS-1, and Canadian RADARSAT remote sensing satellites. The algorithm consists of a novel combination of feature-based and area-based techniques for the tracking of ice floes that undergo translation and rotation between imaging passes. The system performs automatic selection of the image pairs for input to the matching routines using an ice-motion estimator. It is designed to have a daily throughput of ten image pairs. A description is given of the GPS system, including an overview of the ice-motion-tracking algorithm, the system architecture, and the ice-motion products that will be available for distribution to geophysical data users.

  16. Study on monitoring ecological restoration in Jiuli mining area by SAR image

    Science.gov (United States)

    Wei, Na; Chen, Fu; Tang, Qian

    2011-10-01

    The ecological restoration in mining area is one of the study hot spots in the field of resources and environment at present. The vegetation biomass is used as the ecological restoration evaluation index in mining area in the paper. The synthetic aperture radar image after ecological restoration in mining area is used to classify different kinds of vegetation covers. Integrating the field data and the data of L band, the average total backward scattering coefficient which corresponds to the synthetic aperture radar image is calculated and the relation model between the average total backward scattering coefficient and vegetation biomass is established. At last the vegetation biomass is assessed in Jiuli mining area. The results show that the vegetation biomass characteristics which are assessed by using synthetic aperture radar image data and the field data of vegetation biomass characteristics have better consistency in Jiuli mining area. The effects of ecological restoration can be evaluated by using this relation model effectively and accurately.

  17. Semi-automated procedures for shoreline extraction using single RADARSAT-1 SAR image

    Science.gov (United States)

    Al Fugura, A.'kif; Billa, Lawal; Pradhan, Biswajeet

    2011-12-01

    Coastline identification is important for surveying and mapping reasons. Coastline serves as the basic point of reference and is used on nautical charts for navigation purposes. Its delineation has become crucial and more important in the wake of the many recent earthquakes and tsunamis resulting in complete change and redraw of some shorelines. In a tropical country like Malaysia, presence of cloud cover hinders the application of optical remote sensing data. In this study a semi-automated technique and procedures are presented for shoreline delineation from RADARSAT-1 image. A scene of RADARSAT-1 satellite image was processed using enhanced filtering technique to identify and extract the shoreline coast of Kuala Terengganu, Malaysia. RADSARSAT image has many advantages over the optical data because of its ability to penetrate cloud cover and its night sensing capabilities. At first, speckles were removed from the image by using Lee sigma filter which was used to reduce random noise and to enhance the image and discriminate the boundary between land and water. The results showed an accurate and improved extraction and delineation of the entire coastline of Kuala Terrenganu. The study demonstrated the reliability of the image averaging filter in reducing random noise over the sea surface especially near the shoreline. It enhanced land-water boundary differentiation, enabling better delineation of the shoreline. Overall, the developed techniques showed the potential of radar imagery for accurate shoreline mapping and will be useful for monitoring shoreline changes during high and low tides as well as shoreline erosion in a tropical country like Malaysia.

  18. a Method for the Extraction of Long-Term Deformation Characteristics of Long-Span High-Speed Railway Bridges Using High-Resolution SAR Images

    Science.gov (United States)

    Jia, H. G.; Liu, L. Y.

    2016-06-01

    Natural causes and high-speed train load will result in the structural deformation of long-span bridges, which greatly influence the safety operation of high-speed railway. Hence it is necessary to conduct the deformation monitoring and regular status assessment for long-span bridges. However for some traditional surveying technique, e.g. control-point-based surveying techniques, a lot of human and material resources are needed to perform the long-term monitoring for the whole bridge. In this study we detected the long-term bridge deformation time-series by persistent scatterer interferometric synthetic aperture radar (PSInSAR) technique using the high-resolution SAR images and external digital elevation model. A test area in Nanjing city in China is chosen and TerraSAR-X images and Tandem-X for this area have been used. There is the Dashengguan bridge in high speed railway in this area as study object to evaluate this method. Experiment results indicate that the proposed method can effectively extract the long-term deformation of long-span high-speed railway bridge with higher accuracy.

  19. A METHOD FOR THE EXTRACTION OF LONG-TERM DEFORMATION CHARACTERISTICS OF LONG-SPAN HIGH-SPEED RAILWAY BRIDGES USING HIGH-RESOLUTION SAR IMAGES

    Directory of Open Access Journals (Sweden)

    H. G. Jia

    2016-06-01

    Full Text Available Natural causes and high-speed train load will result in the structural deformation of long-span bridges, which greatly influence the safety operation of high-speed railway. Hence it is necessary to conduct the deformation monitoring and regular status assessment for long-span bridges. However for some traditional surveying technique, e.g. control-point-based surveying techniques, a lot of human and material resources are needed to perform the long-term monitoring for the whole bridge. In this study we detected the long-term bridge deformation time-series by persistent scatterer interferometric synthetic aperture radar (PSInSAR technique using the high-resolution SAR images and external digital elevation model. A test area in Nanjing city in China is chosen and TerraSAR-X images and Tandem-X for this area have been used. There is the Dashengguan bridge in high speed railway in this area as study object to evaluate this method. Experiment results indicate that the proposed method can effectively extract the long-term deformation of long-span high-speed railway bridge with higher accuracy.

  20. On the classification of mixed floating pollutants on the Yellow Sea of China by using a quad-polarized SAR image

    Science.gov (United States)

    Wang, Xiaochen; Shao, Yun; Tian, Wei; Li, Kun

    2018-06-01

    This study explored different methodologies using a C-band RADARSAT-2 quad-polarized Synthetic Aperture Radar (SAR) image located over China's Yellow Sea to investigate polarization decomposition parameters for identifying mixed floating pollutants from a complex ocean background. It was found that solitary polarization decomposition did not meet the demand for detecting and classifying multiple floating pollutants, even after applying a polarized SAR image. Furthermore, considering that Yamaguchi decomposition is sensitive to vegetation and the algal variety Enteromorpha prolifera, while H/A/alpha decomposition is sensitive to oil spills, a combination of parameters which was deduced from these two decompositions was proposed for marine environmental monitoring of mixed floating sea surface pollutants. A combination of volume scattering, surface scattering, and scattering entropy was the best indicator for classifying mixed floating pollutants from a complex ocean background. The Kappa coefficients for Enteromorpha prolifera and oil spills were 0.7514 and 0.8470, respectively, evidence that the composite polarized parameters based on quad-polarized SAR imagery proposed in this research is an effective monitoring method for complex marine pollution.

  1. Mapping ground surface deformation using temporarily coherent point SAR interferometry: Application to Los Angeles Basin

    Science.gov (United States)

    Zhang, L.; Lu, Zhong; Ding, X.; Jung, H.-S.; Feng, G.; Lee, C.-W.

    2012-01-01

    Multi-temporal interferometric synthetic aperture radar (InSAR) is an effective tool to detect long-term seismotectonic motions by reducing the atmospheric artifacts, thereby providing more precise deformation signal. The commonly used approaches such as persistent scatterer InSAR (PSInSAR) and small baseline subset (SBAS) algorithms need to resolve the phase ambiguities in interferogram stacks either by searching a predefined solution space or by sparse phase unwrapping methods; however the efficiency and the success of phase unwrapping cannot be guaranteed. We present here an alternative approach – temporarily coherent point (TCP) InSAR (TCPInSAR) – to estimate the long term deformation rate without the need of phase unwrapping. The proposed approach has a series of innovations including TCP identification, TCP network and TCP least squares estimator. We apply the proposed method to the Los Angeles Basin in southern California where structurally active faults are believed capable of generating damaging earthquakes. The analysis is based on 55 interferograms from 32 ERS-1/2 images acquired during Oct. 1995 and Dec. 2000. To evaluate the performance of TCPInSAR on a small set of observations, a test with half of interferometric pairs is also performed. The retrieved TCPInSAR measurements have been validated by a comparison with GPS observations from Southern California Integrated GPS Network. Our result presents a similar deformation pattern as shown in past InSAR studies but with a smaller average standard deviation (4.6 mm) compared with GPS observations, indicating that TCPInSAR is a promising alternative for efficiently mapping ground deformation even from a relatively smaller set of interferograms.

  2. Bistatic SAR/ISAR/FSR geometry, signal models and imaging algorithms

    CERN Document Server

    Lazarov, Andon Dimitrov

    2013-01-01

    Bistatic radar consists of a radar system which comprises a transmitter and receiver which are separated by a distance comparable to the expected target distance. This book provides a general theoretical description of such bistatic technology in the context of synthetic aperture, inverse synthetic aperture and forward scattering radars from the point of view of analytical geometrical and signal formation as well as processing theory. Signal formation and image reconstruction algorithms are developed with the application of high informative linear frequency and phase code modulating techniques

  3. An Unsupervised Change Detection Method Using Time-Series of PolSAR Images from Radarsat-2 and GaoFen-3.

    Science.gov (United States)

    Liu, Wensong; Yang, Jie; Zhao, Jinqi; Shi, Hongtao; Yang, Le

    2018-02-12

    The traditional unsupervised change detection methods based on the pixel level can only detect the changes between two different times with same sensor, and the results are easily affected by speckle noise. In this paper, a novel method is proposed to detect change based on time-series data from different sensors. Firstly, the overall difference image of the time-series PolSAR is calculated by omnibus test statistics, and difference images between any two images in different times are acquired by R j test statistics. Secondly, the difference images are segmented with a Generalized Statistical Region Merging (GSRM) algorithm which can suppress the effect of speckle noise. Generalized Gaussian Mixture Model (GGMM) is then used to obtain the time-series change detection maps in the final step of the proposed method. To verify the effectiveness of the proposed method, we carried out the experiment of change detection using time-series PolSAR images acquired by Radarsat-2 and Gaofen-3 over the city of Wuhan, in China. Results show that the proposed method can not only detect the time-series change from different sensors, but it can also better suppress the influence of speckle noise and improve the overall accuracy and Kappa coefficient.

  4. Measurement and imaging of infragravity waves in sea ice using InSAR

    Science.gov (United States)

    Mahoney, Andrew R.; Dammann, Dyre O.; Johnson, Mark A.; Eicken, Hajo; Meyer, Franz J.

    2016-06-01

    Using short-temporal baseline interferometric synthetic aperture radar, we capture instantaneous images of a persistent field of infragravity waves propagating through sea ice near Barrow, Alaska, during January 2015. We estimate wave amplitudes to be between 1.2 and 1.8 mm. Curvature of wavefronts is consistent with refraction of waves entering shallow water from a source region north of Barrow. A shallow water wave model indicates that the geometry of the wavefronts is relatively insensitive to the source location, but other evidence suggests the waves may have originated in the North Atlantic, making this perhaps the longest observed propagation path for waves through ice. We also note that steepening of the waves entering shallow water can increase the peak strain by an order of magnitude, suggesting that infragravity waves may play a role in determining the location of the landfast ice edge with respect to water depth.

  5. Design and characterization of a 12-bit 10MS/s 10mW pipelined SAR ADC for CZT-based hard X-ray imager

    Science.gov (United States)

    Xue, F.; Gao, W.; Duan, Y.; Zheng, R.; Hu, Y.

    2018-02-01

    This paper presents a 12-bit pipelined successive approximation register (SAR) ADC for CZT-based hard X-ray Imager. The proposed ADC is comprised of a first-stage 6-bit SAR-based Multiplying Digital Analog Converter (MDAC) and a second-stage 8-bit SAR ADC. A novel MDAC architecture using Vcm-based Switching method is employed to maximize the energy efficiency and improve the linearity of the ADC. Moreover, the unit-capacitor array instead of the binary-weighted capacitor array is adopted to improve the conversion speed and linearity of the ADC in the first-stage MDAC. In addition, a new layout design method for the binary-weighted capacitor array is proposed to reduce the capacitor mismatches and make the routing become easier and less-time-consuming. Finally, several radiation-hardened-by-design technologies are adopted in the layout design against space radiation effects. The prototype chip was fabricated in 0.18 μm mixed-signal 1.8V/3.3V process and operated at 1.8 V supply. The chip occupies a core area of only 0.58 mm2. The proposed pipelined SAR ADC achieves a peak signal-to-noise-and-distortion ratio (SNDR) of 66.7 dB and a peak spurious-free dynamic range (SFDR) of 78.6 dB at 10 MS/s sampling rate and consumes 10 mW. The figure of merit (FOM) of the proposed ADC is 0.56 pJ/conversion-step.

  6. Use of ERS-2 Sar and Landsat TM Images for Geological Mapping and Mineral Exploration Of Sol Hamid Area, South Eastern Desert, Egypt

    International Nuclear Information System (INIS)

    Ramadan, T.M.

    2003-01-01

    Sol hamid area is chiefy occupied by neo proterozoic rocks, partly covered by miocene sediments and recent sand sheets and dunes. The neo proterozoic rocks include ophiolitic ultramafic to mafic rocks, meta volcano-sedimentary rocks, meta volcanics, gabbros-diorite rocks, granodiorites, biotite granites and alkali granites. Magnesite, chromite, iron ores, manganese and barite ore deposits are hosted in different at the study area. ERS-2 SAR data enabled to obtain an image that reveals some buried fluvial features beneath the surface cover of desert sand. These features are not observable in Landsat TM image of similar resolution. In this work, Principal Component Analysis (PCA) technique was used for merging ERS-2 SAR and Landsat TM images to make use of the potential of data fusion technique of image processing in the interpretation of geological features. This procedure has resulted in enhancing subsurface structure such as faults that control distribution of several deposits in the study area. This study represents an example to demonstrate the utility of merging various remote sensing data for exploring mineral deposits in arid region

  7. Detecting Landscape Disturbance at the Nasca Lines Using SAR Data Collected from Airborne and Satellite Platforms

    Directory of Open Access Journals (Sweden)

    Douglas C. Comer

    2017-10-01

    Full Text Available We used synthetic aperture radar (SAR data collected over Peru’s Lines and Geoglyphs of the Nasca and Palpa World Heritage Site to detect and measure landscape disturbance threatening world-renowned archaeological features and ecosystems. We employed algorithms to calculate correlations between pairs of SAR returns, collected at different times, and generate correlation images. Landscape disturbances even on the scale of pedestrian travel are discernible in correlation images generated from airborne, L-band SAR. Correlation images derived from C-band SAR data collected by the European Space Agency’s Sentinel-1 satellites also provide detailed landscape change information. Because the two Sentinel-1 satellites together have a repeat pass interval that can be as short as six days, products derived from their data can not only provide information on the location and degree of ground disturbance, but also identify a time window of about one to three weeks during which disturbance must have occurred. For Sentinel-1, this does not depend on collecting data in fine-beam modes, which generally sacrifice the size of the area covered for a higher spatial resolution. We also report on pixel value stretching for a visual analysis of SAR data, quantitative assessment of landscape disturbance, and statistical testing for significant landscape change.

  8. Graph-based surface reconstruction from stereo pairs using image segmentation

    Science.gov (United States)

    Bleyer, Michael; Gelautz, Margrit

    2005-01-01

    This paper describes a novel stereo matching algorithm for epipolar rectified images. The method applies colour segmentation on the reference image. The use of segmentation makes the algorithm capable of handling large untextured regions, estimating precise depth boundaries and propagating disparity information to occluded regions, which are challenging tasks for conventional stereo methods. We model disparity inside a segment by a planar equation. Initial disparity segments are clustered to form a set of disparity layers, which are planar surfaces that are likely to occur in the scene. Assignments of segments to disparity layers are then derived by minimization of a global cost function via a robust optimization technique that employs graph cuts. The cost function is defined on the pixel level, as well as on the segment level. While the pixel level measures the data similarity based on the current disparity map and detects occlusions symmetrically in both views, the segment level propagates the segmentation information and incorporates a smoothness term. New planar models are then generated based on the disparity layers' spatial extents. Results obtained for benchmark and self-recorded image pairs indicate that the proposed method is able to compete with the best-performing state-of-the-art algorithms.

  9. Pairing images of unhealthy and healthy foods with images of negative and positive health consequences: Impact on attitudes and food choice.

    Science.gov (United States)

    Hollands, Gareth J; Marteau, Theresa M

    2016-08-01

    To examine the impact of presenting images of foods paired with images of positive and negative health consequences of their consumption on food choice and attitudes. Participants (N = 711) were randomly allocated in a 2 × 3 factorial design (Food Type × Affective Valence) to 1 of 6 conditioning procedures that paired images of either energy-dense snack foods or fruit, with (a) images of negative health outcomes, (b) images of positive health outcomes, or (c) a no image control. The primary outcome was food choice assessed postintervention with a behavioral choice task. Secondary outcomes were implicit attitudes (assessed pre- and postintervention) and explicit attitudes (assessed postintervention). Presenting images of negative health outcomes led to more healthy food choices relative to control and positive image conditions, irrespective of whether they were paired with images of energy-dense snack foods or fruit. This relationship was partially mediated by changes in implicit and explicit attitudes. Images of positive health outcomes did not alter food choices. This study replicates and extends previous research showing that presenting images of negative health consequences increases healthy food choices. Because effects were elicited by manipulating affective valence irrespective of paired food type, these results appear more consistent with an explanation based on priming than on evaluative conditioning. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  10. The benefits of paired-agent imaging in molecular-guided surgery: an update on methods and applications (Conference Presentation)

    Science.gov (United States)

    Tichauer, Kenneth M.

    2016-03-01

    One of the major complications with conventional imaging-agent-based molecular imaging, particularly for cancer imaging, is variability in agent delivery and nonspecific retention in biological tissue. Such factors can account to "swamp" the signal arising from specifically bound imaging agent, which is presumably indicative of the concentration of targeted biomolecule. In the 1950s, Pressman et al. proposed a method of accounting for these delivery and retention effects by normalizing targeted antibody retention to the retention of a co-administered "untargeted"/control imaging agent [1]. Our group resurrected the approach within the last 5 years, finding ways to utilize this so-called "paired-agent" imaging approach to directly quantify biomolecule concentration in tissue (in vitro, ex vivo, and in vivo) [2]. These novel paired-agent imaging approaches capable of quantifying biomolecule concentration provide enormous potential for being adapted to and optimizing molecular-guided surgery, which has a principle goal of identifying distinct biological tissues (tumor, nerves, etc…) based on their distinct molecular environment. This presentation will cover the principles and nuances of paired-agent imaging, as well as the current status of the field and future applications. [1] D. Pressman, E. D. Day, and M. Blau, "The use of paired labeling in the determination of tumor-localizing antibodies," Cancer Res, 17(9), 845-50 (1957). [2] K. M. Tichauer, Y. Wang, B. W. Pogue et al., "Quantitative in vivo cell-surface receptor imaging in oncology: kinetic modeling and paired-agent principles from nuclear medicine and optical imaging," Phys Med Biol, 60(14), R239-69 (2015).

  11. Quantifying sub-pixel urban impervious surface through fusion of optical and inSAR imagery

    Science.gov (United States)

    Yang, L.; Jiang, L.; Lin, H.; Liao, M.

    2009-01-01

    In this study, we explored the potential to improve urban impervious surface modeling and mapping with the synergistic use of optical and Interferometric Synthetic Aperture Radar (InSAR) imagery. We used a Classification and Regression Tree (CART)-based approach to test the feasibility and accuracy of quantifying Impervious Surface Percentage (ISP) using four spectral bands of SPOT 5 high-resolution geometric (HRG) imagery and three parameters derived from the European Remote Sensing (ERS)-2 Single Look Complex (SLC) SAR image pair. Validated by an independent ISP reference dataset derived from the 33 cm-resolution digital aerial photographs, results show that the addition of InSAR data reduced the ISP modeling error rate from 15.5% to 12.9% and increased the correlation coefficient from 0.71 to 0.77. Spatially, the improvement is especially noted in areas of vacant land and bare ground, which were incorrectly mapped as urban impervious surfaces when using the optical remote sensing data. In addition, the accuracy of ISP prediction using InSAR images alone is only marginally less than that obtained by using SPOT imagery. The finding indicates the potential of using InSAR data for frequent monitoring of urban settings located in cloud-prone areas.

  12. Imaging the complex geometry of a magma reservoir using FEM-based linear inverse modeling of InSAR data: application to Rabaul Caldera, Papua New Guinea

    Science.gov (United States)

    Ronchin, Erika; Masterlark, Timothy; Dawson, John; Saunders, Steve; Martì Molist, Joan

    2017-06-01

    We test an innovative inversion scheme using Green's functions from an array of pressure sources embedded in finite-element method (FEM) models to image, without assuming an a-priori geometry, the composite and complex shape of a volcano deformation source. We invert interferometric synthetic aperture radar (InSAR) data to estimate the pressurization and shape of the magma reservoir of Rabaul caldera, Papua New Guinea. The results image the extended shallow magmatic system responsible for a broad and long-term subsidence of the caldera between 2007 February and 2010 December. Elastic FEM solutions are integrated into the regularized linear inversion of InSAR data of volcano surface displacements in order to obtain a 3-D image of the source of deformation. The Green's function matrix is constructed from a library of forward line-of-sight displacement solutions for a grid of cubic elementary deformation sources. Each source is sequentially generated by removing the corresponding cubic elements from a common meshed domain and simulating the injection of a fluid mass flux into the cavity, which results in a pressurization and volumetric change of the fluid-filled cavity. The use of a single mesh for the generation of all FEM models avoids the computationally expensive process of non-linear inversion and remeshing a variable geometry domain. Without assuming an a-priori source geometry other than the configuration of the 3-D grid that generates the library of Green's functions, the geodetic data dictate the geometry of the magma reservoir as a 3-D distribution of pressure (or flux of magma) within the source array. The inversion of InSAR data of Rabaul caldera shows a distribution of interconnected sources forming an amorphous, shallow magmatic system elongated under two opposite sides of the caldera. The marginal areas at the sides of the imaged magmatic system are the possible feeding reservoirs of the ongoing Tavurvur volcano eruption of andesitic products on the

  13. SAR processing in the cloud for oil detection in the Arctic

    Science.gov (United States)

    Garron, J.; Stoner, C.; Meyer, F. J.

    2016-12-01

    A new world of opportunity is being thawed from the ice of the Arctic, driven by decreased persistent Arctic sea-ice cover, increases in shipping, tourism, natural resource development. Tools that can automatically monitor key sea ice characteristics and potential oil spills are essential for safe passage in these changing waters. Synthetic aperture radar (SAR) data can be used to discriminate sea ice types and oil on the ocean surface and also for feature tracking. Additionally, SAR can image the earth through the night and most weather conditions. SAR data is volumetrically large and requires significant computing power to manipulate. Algorithms designed to identify key environmental features, like oil spills, in SAR imagery require secondary processing, and are computationally intensive, which can functionally limit their application in a real-time setting. Cloud processing is designed to manage big data and big data processing jobs by means of small cycles of off-site computations, eliminating up-front hardware costs. Pairing SAR data with cloud processing has allowed us to create and solidify a processing pipeline for SAR data products in the cloud to compare operational algorithms efficiency and effectiveness when run using an Alaska Satellite Facility (ASF) defined Amazon Machine Image (AMI). The products created from this secondary processing, were compared to determine which algorithm was most accurate in Arctic feature identification, and what operational conditions were required to produce the results on the ASF defined AMI. Results will be used to inform a series of recommendations to oil-spill response data managers and SAR users interested in expanding their analytical computing power.

  14. Imaging irregular magma reservoirs with InSAR and GPS observations: Application to Kilauea and Copahue volcanoes

    Science.gov (United States)

    Lundgren, P.; Camacho, A.; Poland, M. P.; Miklius, A.; Samsonov, S. V.; Milillo, P.

    2013-12-01

    The availability of synthetic aperture radar (SAR) interferometry (InSAR) data has increased our awareness of the complexity of volcano deformation sources. InSAR's spatial completeness helps identify or clarify source process mechanisms at volcanoes (i.e. Mt. Etna east flank motion; Lazufre crustal magma body; Kilauea dike complexity) and also improves potential model realism. In recent years, Bayesian inference methods have gained widespread use because of their ability to constrain not only source model parameters, but also their uncertainties. They are computationally intensive, however, which tends to limit them to a few geometrically rather simple source representations (for example, spheres). An alternative approach involves solving for irregular pressure and/or density sources from a three-dimensional (3-D) grid of source/density cells. This method has the ability to solve for arbitrarily shaped bodies of constant absolute pressure/density difference. We compare results for both Bayesian (a Markov chain Monte Carlo algorithm) and the irregular source methods for two volcanoes: Kilauea, Hawaii, and Copahue, Argentina-Chile border. Kilauea has extensive InSAR and GPS databases from which to explore the results for the irregular method with respect to the Bayesian approach, prior models, and an extensive set of ancillary data. One caveat, however, is the current restriction in the irregular model inversion to volume-pressure sources (and at a single excess pressure change), which limits its application in cases where sources such as faults or dikes are present. Preliminary results for Kilauea summit deflation during the March 2011 Kamoamoa eruption suggests a northeast-elongated magma body lying roughly 1-1.5 km below the surface. Copahue is a southern Andes volcano that has been inflating since early 2012, with intermittent summit eruptive activity since late 2012. We have an extensive InSAR time series from RADARSAT-2 and COSMO-SkyMed data, although both are

  15. A Performance Comparison Of A CFAR Ship Detection Algorithm Using Envisat, RadarSat, COSMO-SkyMed and Terra SAR-X Images

    Science.gov (United States)

    Lorenzzetti, Joao A.; Paes, Rafael L.; Gheradi, Douglas M.

    2010-04-01

    In this paper we discuss the results of a CFAR ship detection algorithm for a series of SAR images of the Brazilian coast. The following configuration for the CFAR target/buffer/background windows gave the best results: 3x3/5x5/13x13 for a PFA of 0.1% for pixel spacing greater than 50m. For pixel spacing less than 50m, best results were achieved for PFA of 1% and windows sizes of 5x5/7x7/15x15. Results indicate that CFAR as implemented gave good results as measured by the Figure of Merit, as defined by Foulkes and Booth (2000), which varied from 0.79 for CosmoSkymed to 0.88 for Envisat. Results obtained should be taken so far only as an indication of the performance of the implemented CFAR due to the limited sample of images.

  16. Seismic imaging beneath an InSAR anomaly in eastern Washington State: Shallow faulting associated with an earthquake swarm in a low-hazard area

    Science.gov (United States)

    Stephenson, William J.; Odum, Jackson K.; Wicks, Chuck; Pratt, Thomas L.; Blakely, Richard J.

    2016-01-01

    In 2001, a rare swarm of small, shallow earthquakes beneath the city of Spokane, Washington, caused ground shaking as well as audible booms over a five‐month period. Subsequent Interferometric Synthetic Aperture Radar (InSAR) data analysis revealed an area of surface uplift in the vicinity of the earthquake swarm. To investigate the potential faults that may have caused both the earthquakes and the topographic uplift, we collected ∼3  km of high‐resolution seismic‐reflection profiles to image the upper‐source region of the swarm. The two profiles reveal a complex deformational pattern within Quaternary alluvial, fluvial, and flood deposits, underlain by Tertiary basalts and basin sediments. At least 100 m of arching on a basalt surface in the upper 500 m is interpreted from both the seismic profiles and magnetic modeling. Two west‐dipping faults deform Quaternary sediments and project to the surface near the location of the Spokane fault defined from modeling of the InSAR data.

  17. The July 11, 1995 Myanmar-China earthquake: A representative event in the bookshelf faulting system of southeastern Asia observed from JERS-1 SAR images

    Science.gov (United States)

    Ji, Lingyun; Wang, Qingliang; Xu, Jing; Ji, Cunwei

    2017-03-01

    On July 11, 1995, an Mw 6.8 earthquake struck eastern Myanmar near the Chinese border; hereafter referred to as the 1995 Myanmar-China earthquake. Coseismic surface displacements associated with this event are identified from JERS-1 (Japanese Earth Resources Satellite-1) SAR (Synthetic Aperture Radar) images. The largest relative displacement reached 60 cm in the line-of-sight direction. We speculate that a previously unrecognized dextral strike-slip subvertical fault striking NW-SE was responsible for this event. The coseismic slip distribution on the fault planes is inverted based on the InSAR-derived deformation. The results indicate that the fault slip was confined to two lobes. The maximum slip reached approximately 2.5 m at a depth of 5 km in the northwestern part of the focal region. The inverted geodetic moment was approximately Mw = 6.69, which is consistent with seismological results. The 1995 Myanmar-China earthquake is one of the largest recorded earthquakes that has occurred around the "bookshelf faulting" system between the Sagaing fault in Myanmar and the Red River fault in southwestern China.

  18. Detection and 3d Modelling of Vehicles from Terrestrial Stereo Image Pairs

    Science.gov (United States)

    Coenen, M.; Rottensteiner, F.; Heipke, C.

    2017-05-01

    The detection and pose estimation of vehicles plays an important role for automated and autonomous moving objects e.g. in autonomous driving environments. We tackle that problem on the basis of street level stereo images, obtained from a moving vehicle. Processing every stereo pair individually, our approach is divided into two subsequent steps: the vehicle detection and the modelling step. For the detection, we make use of the 3D stereo information and incorporate geometric assumptions on vehicle inherent properties in a firstly applied generic 3D object detection. By combining our generic detection approach with a state of the art vehicle detector, we are able to achieve satisfying detection results with values for completeness and correctness up to more than 86%. By fitting an object specific vehicle model into the vehicle detections, we are able to reconstruct the vehicles in 3D and to derive pose estimations as well as shape parameters for each vehicle. To deal with the intra-class variability of vehicles, we make use of a deformable 3D active shape model learned from 3D CAD vehicle data in our model fitting approach. While we achieve encouraging values up to 67.2% for correct position estimations, we are facing larger problems concerning the orientation estimation. The evaluation is done by using the object detection and orientation estimation benchmark of the KITTI dataset (Geiger et al., 2012).

  19. SAR Subsets for Selected Field Sites, 2007-2010

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: This data set provides Synthetic Aperture Radar (SAR) images for 42 selected sites from various terrestrial ecology and meteorological monitoring networks...

  20. SAR Subsets for Selected Field Sites, 2007-2010

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set provides Synthetic Aperture Radar (SAR) images for 42 selected sites from various terrestrial ecology and meteorological monitoring networks including...

  1. AUTOMATED WETLAND DELINEATION FROM MULTI-FREQUENCY AND MULTI-POLARIZED SAR IMAGES IN HIGH TEMPORAL AND SPATIAL RESOLUTION

    Directory of Open Access Journals (Sweden)

    L. Moser

    2016-06-01

    Full Text Available Water scarcity is one of the main challenges posed by the changing climate. Especially in semi-arid regions where water reservoirs are filled during the very short rainy season, but have to store enough water for the extremely long dry season, the intelligent handling of water resources is vital. This study focusses on Lac Bam in Burkina Faso, which is the largest natural lake of the country and of high importance for the local inhabitants for irrigated farming, animal watering, and extraction of water for drinking and sanitation. With respect to the competition for water resources an independent area-wide monitoring system is essential for the acceptance of any decision maker. The following contribution introduces a weather and illumination independent monitoring system for the automated wetland delineation with a high temporal (about two weeks and a high spatial sampling (about five meters. The similarities of the multispectral and multi-polarized SAR acquisitions by RADARSAT-2 and TerraSAR-X are studied as well as the differences. The results indicate that even basic approaches without pre-classification time series analysis or post-classification filtering are already enough to establish a monitoring system of prime importance for a whole region.

  2. Alteration zone Mapping in the Meiduk and Sar Cheshmeh Porphyry Copper Mining Districts of Iran using Advanced Land Imager (ALI Satellite Data

    Directory of Open Access Journals (Sweden)

    A. Beiranvand Pour

    2015-10-01

    Full Text Available This study evaluates the capability of Earth Observing-1 (EO1 Advanced Land Imager (ALI data for hydrothermal alteration mapping in the Meiduk and Sar Cheshmeh porphyry copper mining districts, SE Iran. Feature-oriented principal components selection, 4/2, 8/9, 5/4 band ratioing were applied to ALI data for enhancing the hydrothermally altered rocks associated with porphyry copper mineralization, lithological units and vegetation. Mixture-tuned matched-filtering (MTMF was tested to discriminate the hydrothermal alteration areas of porphyry copper mineralization from surrounding environment using the shortwave infrared bands of ALI. Results indicate that the tested methods are able to yield spectral information for identifying vegetation, iron oxide/hydroxide and clay minerals, lithological units and the discrimination of hydrothermally altered rocks from unaltered rocks using ALI data.

  3. SAR-Based Wind Resource Statistics in the Baltic Sea

    Directory of Open Access Journals (Sweden)

    Alfredo Peña

    2011-01-01

    Full Text Available Ocean winds in the Baltic Sea are expected to power many wind farms in the coming years. This study examines satellite Synthetic Aperture Radar (SAR images from Envisat ASAR for mapping wind resources with high spatial resolution. Around 900 collocated pairs of wind speed from SAR wind maps and from 10 meteorological masts, established specifically for wind energy in the study area, are compared. The statistical results comparing in situ wind speed and SAR-based wind speed show a root mean square error of 1.17 m s−1, bias of −0.25 m s−1, standard deviation of 1.88 m s−1 and correlation coefficient of R2 0.783. Wind directions from a global atmospheric model, interpolated in time and space, are used as input to the geophysical model function CMOD-5 for SAR wind retrieval. Wind directions compared to mast observations show a root mean square error of 6.29° with a bias of 7.75°, standard deviation of 20.11° and R2 of 0.950. The scale and shape parameters, A and k, respectively, from the Weibull probability density function are compared at only one available mast and the results deviate ~2% for A but ~16% for k. Maps of A and k, and wind power density based on more than 1000 satellite images show wind power density values to range from 300 to 800 W m−2 for the 14 existing and 42 planned wind farms.

  4. SAR Raw Data Generation for Complex Airport Scenes

    Directory of Open Access Journals (Sweden)

    Jia Li

    2014-10-01

    Full Text Available The method of generating the SAR raw data of complex airport scenes is studied in this paper. A formulation of the SAR raw signal model of airport scenes is given. Via generating the echoes from the background, aircrafts and buildings, respectively, the SAR raw data of the unified SAR imaging geometry is obtained from their vector additions. The multipath scattering and the shadowing between the background and different ground covers of standing airplanes and buildings are analyzed. Based on the scattering characteristics, coupling scattering models and SAR raw data models of different targets are given, respectively. A procedure is given to generate the SAR raw data of airport scenes. The SAR images from the simulated raw data demonstrate the validity of the proposed method.

  5. Observation of a Large Landslide on La Reunion Island Using Differential Sar Interferometry (JERS and Radarsat and Correlation of Optical (Spot5 and Aerial Images

    Directory of Open Access Journals (Sweden)

    Christophe Delacourt

    2009-01-01

    Full Text Available Slope instabilities are one of the most important geo-hazards in terms of socio-economic costs. The island of La Réunion (Indian Ocean is affected by constant slope movements and huge landslides due to a combination of rough topography, wet tropical climate and its specific geological context. We show that remote sensing techniques (Differential SAR Interferometry and correlation of optical images provide complementary means to characterize landslides on a regional scale. The vegetation cover generally hampers the analysis of C–band interferograms. We used JERS-1 images to show that the L-band can be used to overcome the loss of coherence observed in Radarsat C-band interferograms. Image correlation was applied to optical airborne and SPOT 5 sensors images. The two techniques were applied to a landslide near the town of Hellbourg in order to assess their performance for detecting and quantifying the ground motion associated to this landslide. They allowed the mapping of the unstable areas. Ground displacement of about 0.5 m yr-1 was measured.

  6. Evaluation of the Wishart test statistics for polarimetric SAR data

    DEFF Research Database (Denmark)

    Skriver, Henning; Nielsen, Allan Aasbjerg; Conradsen, Knut

    2003-01-01

    A test statistic for equality of two covariance matrices following the complex Wishart distribution has previously been used in new algorithms for change detection, edge detection and segmentation in polarimetric SAR images. Previously, the results for change detection and edge detection have been...... quantitatively evaluated. This paper deals with the evaluation of segmentation. A segmentation performance measure originally developed for single-channel SAR images has been extended to polarimetric SAR images, and used to evaluate segmentation for a merge-using-moment algorithm for polarimetric SAR data....

  7. Keynote presentation : SAR systems

    NARCIS (Netherlands)

    Halsema, D. van; Otten, M.P.G.; Maas, A.P.M.; Bolt, R.J.; Anitori, L.

    2011-01-01

    Synthetic Aperture Radar (SAR) systems are becoming increasingly important sensors in as well the military environment as in the civilian market. In this keynote presentation an overview will be given over more than 2 decades of SAR system∼ and SAR application development at TNO in the Netherlands.

  8. Estimating Velocities of Glaciers Using Sentinel-1 SAR Imagery

    Science.gov (United States)

    Gens, R.; Arnoult, K., Jr.; Friedl, P.; Vijay, S.; Braun, M.; Meyer, F. J.; Gracheva, V.; Hogenson, K.

    2017-12-01

    In an international collaborative effort, software has been developed to estimate the velocities of glaciers by using Sentinel-1 Synthetic Aperture Radar (SAR) imagery. The technique, initially designed by the University of Erlangen-Nuremberg (FAU), has been previously used to quantify spatial and temporal variabilities in the velocities of surging glaciers in the Pakistan Karakoram. The software estimates surface velocities by first co-registering image pairs to sub-pixel precision and then by estimating local offsets based on cross-correlation. The Alaska Satellite Facility (ASF) at the University of Alaska Fairbanks (UAF) has modified the software to make it more robust and also capable of migration into the Amazon Cloud. Additionally, ASF has implemented a prototype that offers the glacier tracking processing flow as a subscription service as part of its Hybrid Pluggable Processing Pipeline (HyP3). Since the software is co-located with ASF's cloud-based Sentinel-1 archive, processing of large data volumes is now more efficient and cost effective. Velocity maps are estimated for Single Look Complex (SLC) SAR image pairs and a digital elevation model (DEM) of the local topography. A time series of these velocity maps then allows the long-term monitoring of these glaciers. Due to the all-weather capabilities and the dense coverage of Sentinel-1 data, the results are complementary to optically generated ones. Together with the products from the Global Land Ice Velocity Extraction project (GoLIVE) derived from Landsat 8 data, glacier speeds can be monitored more comprehensively. Examples from Sentinel-1 SAR-derived results are presented along with optical results for the same glaciers.

  9. Wave directional spectrum from SAR imagery

    Digital Repository Service at National Institute of Oceanography (India)

    Fernandes, A.A.; Sarma, Y.V.B.; Menon, H.B.; Vethamony, P.

    < 2m and the zero-crossing period during the satellite overpass is small (< 6s, �O�O < 60m). We therefore utilized the visit of one of the authors (Sarma) to the Southampton Oceanographic Centre, U.K., to procure two ERS-1 digital image mode SAR...-dimensional FFT as well as a computer program for downloading SAR data from CCT. Finally we owe a debt of gratitude to J C da Silva, Southampton Oceanographic Centre, U K for sharing some of his SAR data with us. References Allan T. D. (Ed) (1983...

  10. Nonrigid synthetic aperture radar and optical image coregistration by combining local rigid transformations using a Kohonen network.

    Science.gov (United States)

    Salehpour, Mehdi; Behrad, Alireza

    2017-10-01

    This study proposes a new algorithm for nonrigid coregistration of synthetic aperture radar (SAR) and optical images. The proposed algorithm employs point features extracted by the binary robust invariant scalable keypoints algorithm and a new method called weighted bidirectional matching for initial correspondence. To refine false matches, we assume that the transformation between SAR and optical images is locally rigid. This property is used to refine false matches by assigning scores to matched pairs and clustering local rigid transformations using a two-layer Kohonen network. Finally, the thin plate spline algorithm and mutual information are used for nonrigid coregistration of SAR and optical images.

  11. A new image reconstruction method for 3-D PET based upon pairs of near-missing lines of response

    Energy Technology Data Exchange (ETDEWEB)

    Kawatsu, Shoji [Department of Radiology, Kyoritu General Hospital, 4-33 Go-bancho, Atsuta-ku, Nagoya-shi, Aichi 456-8611 (Japan) and Department of Brain Science and Molecular Imaging, National Institute for Longevity Sciences, National Center for Geriatrics and Gerontology, 36-3, Gengo Moriaka-cho, Obu-shi, Aichi 474-8522 (Japan)]. E-mail: b6rgw@fantasy.plala.or.jp; Ushiroya, Noboru [Department of General Education, Wakayama National College of Technology, 77 Noshima, Nada-cho, Gobo-shi, Wakayama 644-0023 (Japan)

    2007-02-01

    We formerly introduced a new image reconstruction method for three-dimensional positron emission tomography, which is based upon pairs of near-missing lines of response. This method uses an elementary geometric property of lines of response, namely that two lines of response which originate from radioactive isotopes located within a sufficiently small voxel, will lie within a few millimeters of each other. The effectiveness of this method was verified by performing a simulation using GATE software and a digital Hoffman phantom.

  12. Real-time 2D/3D registration using kV-MV image pairs for tumor motion tracking in image guided radiotherapy.

    Science.gov (United States)

    Furtado, Hugo; Steiner, Elisabeth; Stock, Markus; Georg, Dietmar; Birkfellner, Wolfgang

    2013-10-01

    Intra-fractional respiratory motion during radiotherapy leads to a larger planning target volume (PTV). Real-time tumor motion tracking by two-dimensional (2D)/3D registration using on-board kilo-voltage (kV) imaging can allow for a reduction of the PTV though motion along the imaging beam axis cannot be resolved using only one projection image. We present a retrospective patient study investigating the impact of paired portal mega-voltage (MV) and kV images on registration accuracy. Material and methods. We used data from 10 patients suffering from non-small cell lung cancer (NSCLC) undergoing stereotactic body radiation therapy (SBRT) lung treatment. For each patient we acquired a planning computed tomography (CT) and sequences of kV and MV images during treatment. We compared the accuracy of motion tracking in six degrees-of-freedom (DOF) using the anterior-posterior (AP) kV sequence or the sequence of kV-MV image pairs. Results. Motion along cranial-caudal direction could accurately be extracted when using only the kV sequence but in AP direction we obtained large errors. When using kV-MV pairs, the average error was reduced from 2.9 mm to 1.5 mm and the motion along AP was successfully extracted. Mean registration time was 188 ms. Conclusion. Our evaluation shows that using kV-MV image pairs leads to improved motion extraction in six DOF and is suitable for real-time tumor motion tracking with a conventional LINAC.

  13. Real-time intensity based 2D/3D registration using kV-MV image pairs for tumor motion tracking in image guided radiotherapy

    Science.gov (United States)

    Furtado, H.; Steiner, E.; Stock, M.; Georg, D.; Birkfellner, W.

    2014-03-01

    Intra-fractional respiratorymotion during radiotherapy is one of themain sources of uncertainty in dose application creating the need to extend themargins of the planning target volume (PTV). Real-time tumormotion tracking by 2D/3D registration using on-board kilo-voltage (kV) imaging can lead to a reduction of the PTV. One limitation of this technique when using one projection image, is the inability to resolve motion along the imaging beam axis. We present a retrospective patient study to investigate the impact of paired portal mega-voltage (MV) and kV images, on registration accuracy. We used data from eighteen patients suffering from non small cell lung cancer undergoing regular treatment at our center. For each patient we acquired a planning CT and sequences of kV and MV images during treatment. Our evaluation consisted of comparing the accuracy of motion tracking in 6 degrees-of-freedom(DOF) using the anterior-posterior (AP) kV sequence or the sequence of kV-MV image pairs. We use graphics processing unit rendering for real-time performance. Motion along cranial-caudal direction could accurately be extracted when using only the kV sequence but in AP direction we obtained large errors. When using kV-MV pairs, the average error was reduced from 3.3 mm to 1.8 mm and the motion along AP was successfully extracted. The mean registration time was of 190+/-35ms. Our evaluation shows that using kVMV image pairs leads to improved motion extraction in 6 DOF. Therefore, this approach is suitable for accurate, real-time tumor motion tracking with a conventional LINAC.

  14. Use of a line-pair resolution phantom for comprehensive quality assurance of electronic portal imaging devices based on fundamental imaging metrics

    International Nuclear Information System (INIS)

    Gopal, Arun; Samant, Sanjiv S.

    2009-01-01

    Image guided radiation therapy solutions based on megavoltage computed tomography (MVCT) involve the extension of electronic portal imaging devices (EPIDs) from their traditional role of weekly localization imaging and planar dose mapping to volumetric imaging for 3D setup and dose verification. To sustain the potential advantages of MVCT, EPIDs are required to provide improved levels of portal image quality. Therefore, it is vital that the performance of EPIDs in clinical use is maintained at an optimal level through regular and rigorous quality assurance (QA). Traditionally, portal imaging QA has been carried out by imaging calibrated line-pair and contrast resolution phantoms and obtaining arbitrarily defined QA indices that are usually dependent on imaging conditions and merely indicate relative trends in imaging performance. They are not adequately sensitive to all aspects of image quality unlike fundamental imaging metrics such as the modulation transfer function (MTF), noise power spectrum (NPS), and detective quantum efficiency (DQE) that are widely used to characterize detector performance in radiographic imaging and would be ideal for QA purposes. However, due to the difficulty of performing conventional MTF measurements, they have not been used for routine clinical QA. The authors present a simple and quick QA methodology based on obtaining the MTF, NPS, and DQE of a megavoltage imager by imaging standard open fields and a bar-pattern QA phantom containing 2 mm thick tungsten line-pair bar resolution targets. Our bar-pattern based MTF measurement features a novel zero-frequency normalization scheme that eliminates normalization errors typically associated with traditional bar-pattern measurements at megavoltage x-ray energies. The bar-pattern QA phantom and open-field images are used in conjunction with an automated image analysis algorithm that quickly computes the MTF, NPS, and DQE of an EPID system. Our approach combines the fundamental advantages of

  15. SAR Ambiguity Study for the Cassini Radar

    Science.gov (United States)

    Hensley, Scott; Im, Eastwood; Johnson, William T. K.

    1993-01-01

    The Cassini Radar's synthetic aperture radar (SAR) ambiguity analysis is unique with respect to other spaceborne SAR ambiguity analyses owing to the non-orbiting spacecraft trajectory, asymmetric antenna pattern, and burst mode of data collection. By properly varying the pointing, burst mode timing, and radar parameters along the trajectory this study shows that the signal-to-ambiguity ratio of better than 15 dB can be achieved for all images obtained by the Cassini Radar.

  16. Estimating Elevation Angles From SAR Crosstalk

    Science.gov (United States)

    Freeman, Anthony

    1994-01-01

    Scheme for processing polarimetric synthetic-aperture-radar (SAR) image data yields estimates of elevation angles along radar beam to target resolution cells. By use of estimated elevation angles, measured distances along radar beam to targets (slant ranges), and measured altitude of aircraft carrying SAR equipment, one can estimate height of target terrain in each resolution cell. Monopulselike scheme yields low-resolution topographical data.

  17. Training Convolutional Neural Networks for Translational Invariance on SAR ATR

    DEFF Research Database (Denmark)

    Malmgren-Hansen, David; Engholm, Rasmus; Østergaard Pedersen, Morten

    2016-01-01

    In this paper we present a comparison of the robustness of Convolutional Neural Networks (CNN) to other classifiers in the presence of uncertainty of the objects localization in SAR image. We present a framework for simulating simple SAR images, translating the object of interest systematically...

  18. Image Registration Methode in Radar Interferometry

    Directory of Open Access Journals (Sweden)

    S. Chelbi

    2015-08-01

    Full Text Available This article presents a methodology for the determination of the registration of an Interferometric Synthetic radar (InSAR pair images with half pixel precision. Using the two superposed radar images Single Look complexes (SLC [1-4], we developed an iterative process to superpose these two images according to their correlation coefficient with a high coherence area. This work concerns the exploitation of ERS Tandem pair of radar images SLC of the Algiers area acquired on 03 January and 04 January 1994. The former is taken as a master image and the latter as a slave image.

  19. 3D OBJECT COORDINATES EXTRACTION BY RADARGRAMMETRY AND MULTI STEP IMAGE MATCHING

    Directory of Open Access Journals (Sweden)

    A. Eftekhari

    2013-09-01

    Full Text Available Nowadays by high resolution SAR imaging systems as Radarsat-2, TerraSAR-X and COSMO-skyMed, three-dimensional terrain data extraction using SAR images is growing. InSAR and Radargrammetry are two most common approaches for removing 3D object coordinate from SAR images. Research has shown that extraction of terrain elevation data using satellite repeat pass interferometry SAR technique due to atmospheric factors and the lack of coherence between the images in areas with dense vegetation cover is a problematic. So the use of Radargrammetry technique can be effective. Generally height derived method by Radargrammetry consists of two stages: Images matching and space intersection. In this paper we propose a multi-stage algorithm founded on the combination of feature based and area based image matching. Then the RPCs that calculate for each images use for extracting 3D coordinate in matched points. At the end, the coordinates calculating that compare with coordinates extracted from 1 meters DEM. The results show root mean square errors for 360 points are 3.09 meters. We use a pair of spotlight TerraSAR-X images from JAM (IRAN in this article.

  20. Use of SAR data for proliferation monitoring

    International Nuclear Information System (INIS)

    Lafitte, M.; Robin, J.P.

    2013-01-01

    Synthetic Aperture Radar (SAR) is an active and coherent system. SAR images are complex data which contain both amplitude and phase information. The analysis of single SAR data required a very good experience and a good understanding of SAR geometry regarding layover, shadowing, texture and speckle. Image analyst can depicts and describes most of the facilities related to nuclear proliferation and weapons of mass destruction (WMD). The Amplitude Change Detection (ACD) technique consists of a combination of two or three SAR amplitude data acquired with similar orbit and frequency parameters on different dates. That technique provides a very good overview of the changes and particularly regarding vehicles activity and constructions ongoing within the area of interest over the monitoring period. One of the particularities of the SAR systems is to be coherent. The phase of a single image is not exploitable. Thus when two or more SAR data have been acquired with identical orbit and frequency parameters, the phases shift are indicators of changes such as structural changes, terrain subsidence or motion. The Multi-Temporal Coherence (MTC) product merged the two type of information previously detailed: the ACD and coherence analysis. It consists of the combination of two amplitude images and the corresponding coherence computed image. The MTC image may highlights changes between two states of a target which on the ACD analysis appeared unchanged. EUSC uses the difference interferometry techniques in order to estimate volumes that have changed between two acquisition dates. The paper is followed by the slides of the presentation. (A.C.)

  1. Federated query services provided by the Seamless SAR Archive project

    Science.gov (United States)

    Baker, S.; Bryson, G.; Buechler, B.; Meertens, C. M.; Crosby, C. J.; Fielding, E. J.; Nicoll, J.; Youn, C.; Baru, C.

    2013-12-01

    The NASA Advancing Collaborative Connections for Earth System Science (ACCESS) seamless synthetic aperture radar (SAR) archive (SSARA) project is a 2-year collaboration between UNAVCO, the Alaska Satellite Facility (ASF), the Jet Propulsion Laboratory (JPL), and OpenTopography at the San Diego Supercomputer Center (SDSC) to design and implement a seamless distributed access system for SAR data and derived data products (i.e. interferograms). A major milestone for the first year of the SSARA project was a unified application programming interface (API) for SAR data search and results at ASF and UNAVCO (WInSAR and EarthScope data archives) through the use of simple web services. A federated query service was developed using the unified APIs, providing users a single search interface for both archives (http://www.unavco.org/ws/brokered/ssara/sar/search). A command line client that utilizes this new service is provided as an open source utility for the community on GitHub (https://github.com/bakerunavco/SSARA). Further API development and enhancements added more InSAR specific keywords and quality control parameters (Doppler centroid, faraday rotation, InSAR stack size, and perpendicular baselines). To facilitate InSAR processing, the federated query service incorporated URLs for DEM (from OpenTopography) and tropospheric corrections (from the JPL OSCAR service) in addition to the URLs for SAR data. This federated query service will provide relevant QC metadata for selecting pairs of SAR data for InSAR processing and all the URLs necessary for interferogram generation. Interest from the international community has prompted an effort to incorporate other SAR data archives (the ESA Virtual Archive 4 and the DLR TerraSAR-X_SSC Geohazard Supersites and Natural Laboratories collections) into the federated query service which provide data for researchers outside the US and North America.

  2. Remote Monitoring of Groundwater Overdraft Using GRACE and InSAR

    Science.gov (United States)

    Scher, C.; Saah, D.

    2017-12-01

    Gravity Recovery and Climate Experiment (GRACE) data paired with radar-derived analyses of volumetric changes in aquifer storage capacity present a viable technique for remote monitoring of aquifer depletion. Interferometric Synthetic Aperture Radar (InSAR) analyses of ground level subsidence can account for a significant portion of mass loss observed in GRACE data and provide information on point-sources of overdraft. This study summed one water-year of GRACE monthly mass change grids and delineated regions with negative water storage anomalies for further InSAR analyses. Magnitude of water-storage anomalies observed by GRACE were compared to InSAR-derived minimum volumetric changes in aquifer storage capacity as a result of measurable compaction at the surface. Four major aquifers were selected within regions where GRACE observed a net decrease in water storage (Central Valley, California; Mekong Delta, Vietnam; West Bank, occupied Palestinian Territory; and the Indus Basin, South Asia). Interferogram imagery of the extent and magnitude of subsidence within study regions provided estimates for net minimum volume of groundwater extracted between image acquisitions. These volumetric estimates were compared to GRACE mass change grids to resolve a percent contribution of mass change observed by GRACE likely due to groundwater overdraft. Interferograms revealed characteristic cones of depression within regions of net mass loss observed by GRACE, suggesting point-source locations of groundwater overdraft and demonstrating forensic potential for the use of InSAR and GRACE data in remote monitoring of aquifer depletion. Paired GRACE and InSAR analyses offer a technique to increase the spatial and temporal resolution of remote applications for monitoring groundwater overdraft in addition to providing a novel parameter - measurable vertical deformation at the surface - to global groundwater models.

  3. SAR Polarimetry

    Science.gov (United States)

    vanZyl, Jakob J.

    2012-01-01

    Radar Scattering includes: Surface Characteristics, Geometric Properties, Dielectric Properties, Rough Surface Scattering, Geometrical Optics and Small Perturbation Method Solutions, Integral Equation Method, Magellan Image of Pancake Domes on Venus, Dickinson Impact Crater on Venus (Magellan), Lakes on Titan (Cassini Radar, Longitudinal Dunes on Titan (Cassini Radar), Rough Surface Scattering: Effect of Dielectric Constant, Vegetation Scattering, Effect of Soil Moisture. Polarimetric Radar includes: Principles of Polarimetry: Field Descriptions, Wave Polarizations: Geometrical Representations, Definition of Ellipse Orientation Angles, Scatter as Polarization Transformer, Scattering Matrix, Coordinate Systems, Scattering Matrix, Covariance Matrix, Pauli Basis and Coherency Matrix, Polarization Synthesis, Polarimeter Implementation.

  4. One-sided imaging of large, dense objects using the 511 keV photons from induced pair production

    Energy Technology Data Exchange (ETDEWEB)

    Tavora, L.M.; Gilboy, W.B.; Morton, E.J. [Univ. of Surrey, Guildford (United Kingdom). Physics Dept.; Morgado, R.E.; Estep, R.J.; Rawool-Sullivan, M. [Los Alamos National Lab., NM (United States)

    1998-03-01

    The use of annihilation photons from photon-induced electron-positron pair production as a means of inspecting objects when only one side is accessible is described. The Z2 dependence of the pair production cross section and the high penetration of 511 keV photons suggest that this method should be capable of localizing high Z materials in lower Z matrices. The experimental results for the dependence of the back streaming photon yield on Z indicate that dynamic ranges of the order of 20 may be obtained for materials with 4 < Z < 82. Results for point to point images obtained in line scans of representative geometries are also shown. Simulation studies based on the EGS4 Monte Carlo code were also performed and their results show an agreement with experimental data of the order of 5%.

  5. One-sided imaging of large, dense objects using the 511 keV photons from induced pair production

    International Nuclear Information System (INIS)

    Tavora, L.M.; Gilboy, W.B.; Morton, E.J.

    1998-03-01

    The use of annihilation photons from photon-induced electron-positron pair production as a means of inspecting objects when only one side is accessible is described. The Z2 dependence of the pair production cross section and the high penetration of 511 keV photons suggest that this method should be capable of localizing high Z materials in lower Z matrices. The experimental results for the dependence of the back streaming photon yield on Z indicate that dynamic ranges of the order of 20 may be obtained for materials with 4 < Z < 82. Results for point to point images obtained in line scans of representative geometries are also shown. Simulation studies based on the EGS4 Monte Carlo code were also performed and their results show an agreement with experimental data of the order of 5%

  6. SAR Target Recognition via Supervised Discriminative Dictionary Learning and Sparse Representation of the SAR-HOG Feature

    Directory of Open Access Journals (Sweden)

    Shengli Song

    2016-08-01

    Full Text Available Automatic target recognition (ATR in synthetic aperture radar (SAR images plays an important role in both national defense and civil applications. Although many methods have been proposed, SAR ATR is still very challenging due to the complex application environment. Feature extraction and classification are key points in SAR ATR. In this paper, we first design a novel feature, which is a histogram of oriented gradients (HOG-like feature for SAR ATR (called SAR-HOG. Then, we propose a supervised discriminative dictionary learning (SDDL method to learn a discriminative dictionary for SAR ATR and propose a strategy to simplify the optimization problem. Finally, we propose a SAR ATR classifier based on SDDL and sparse representation (called SDDLSR, in which both the reconstruction error and the classification error are considered. Extensive experiments are performed on the MSTAR database under standard operating conditions and extended operating conditions. The experimental results show that SAR-HOG can reliably capture the structures of targets in SAR images, and SDDL can further capture subtle differences among the different classes. By virtue of the SAR-HOG feature and SDDLSR, the proposed method achieves the state-of-the-art performance on MSTAR database. Especially for the extended operating conditions (EOC scenario “Training 17 ∘ —Testing 45 ∘ ”, the proposed method improves remarkably with respect to the previous works.

  7. ROADS CENTRE-AXIS EXTRACTION IN AIRBORNE SAR IMAGES: AN APPROACH BASED ON ACTIVE CONTOUR MODEL WITH THE USE OF SEMI-AUTOMATIC SEEDING

    Directory of Open Access Journals (Sweden)

    R. G. Lotte

    2013-05-01

    Full Text Available Research works dealing with computational methods for roads extraction have considerably increased in the latest two decades. This procedure is usually performed on optical or microwave sensors (radar imagery. Radar images offer advantages when compared to optical ones, for they allow the acquisition of scenes regardless of atmospheric and illumination conditions, besides the possibility of surveying regions where the terrain is hidden by the vegetation canopy, among others. The cartographic mapping based on these images is often manually accomplished, requiring considerable time and effort from the human interpreter. Maps for detecting new roads or updating the existing roads network are among the most important cartographic products to date. There are currently many studies involving the extraction of roads by means of automatic or semi-automatic approaches. Each of them presents different solutions for different problems, making this task a scientific issue still open. One of the preliminary steps for roads extraction can be the seeding of points belonging to roads, what can be done using different methods with diverse levels of automation. The identified seed points are interpolated to form the initial road network, and are hence used as an input for an extraction method properly speaking. The present work introduces an innovative hybrid method for the extraction of roads centre-axis in a synthetic aperture radar (SAR airborne image. Initially, candidate points are fully automatically seeded using Self-Organizing Maps (SOM, followed by a pruning process based on specific metrics. The centre-axis are then detected by an open-curve active contour model (snakes. The obtained results were evaluated as to their quality with respect to completeness, correctness and redundancy.

  8. Satellite on-board real-time SAR processor prototype

    Science.gov (United States)

    Bergeron, Alain; Doucet, Michel; Harnisch, Bernd; Suess, Martin; Marchese, Linda; Bourqui, Pascal; Desnoyers, Nicholas; Legros, Mathieu; Guillot, Ludovic; Mercier, Luc; Châteauneuf, François

    2017-11-01

    A Compact Real-Time Optronic SAR Processor has been successfully developed and tested up to a Technology Readiness Level of 4 (TRL4), the breadboard validation in a laboratory environment. SAR, or Synthetic Aperture Radar, is an active system allowing day and night imaging independent of the cloud coverage of the planet. The SAR raw data is a set of complex data for range and azimuth, which cannot be compressed. Specifically, for planetary missions and unmanned aerial vehicle (UAV) systems with limited communication data rates this is a clear disadvantage. SAR images are typically processed electronically applying dedicated Fourier transformations. This, however, can also be performed optically in real-time. Originally the first SAR images were optically processed. The optical Fourier processor architecture provides inherent parallel computing capabilities allowing real-time SAR data processing and thus the ability for compression and strongly reduced communication bandwidth requirements for the satellite. SAR signal return data are in general complex data. Both amplitude and phase must be combined optically in the SAR processor for each range and azimuth pixel. Amplitude and phase are generated by dedicated spatial light modulators and superimposed by an optical relay set-up. The spatial light modulators display the full complex raw data information over a two-dimensional format, one for the azimuth and one for the range. Since the entire signal history is displayed at once, the processor operates in parallel yielding real-time performances, i.e. without resulting bottleneck. Processing of both azimuth and range information is performed in a single pass. This paper focuses on the onboard capabilities of the compact optical SAR processor prototype that allows in-orbit processing of SAR images. Examples of processed ENVISAT ASAR images are presented. Various SAR processor parameters such as processing capabilities, image quality (point target analysis), weight and

  9. A programmable systolic array correlator as a trigger processor for electron pairs in rich (ring image Cherenkov) counters

    Science.gov (United States)

    Männer, R.

    1989-12-01

    This paper describes a systolic array processor for a ring image Cherenkov counter which is capable of identifying pairs of electron circles with a known radius and a certain minimum distance within 15 μs. The processor is a very flexible and fast device. It consists of 128 x 128 processing elements (PEs), where one PE is assigned to each pixel of the image. All PEs run synchronously at 40 MHz. The identification of electron circles is done by correlating the detector image with the proper circle circumference. Circle centers are found by peak detection in the correlation result. A second correlation with a circle disc allows circles of closed electron pairs to be rejected. The trigger decision is generated if a pseudo adder detects at least two remaining circles. The device is controlled by a freely programmable sequencer. A VLSI chip containing 8 x 8 PEs is being developed using a VENUS design system and will be produced in 2μ CMOS technology.

  10. A programmable systolic array correlator as a trigger processor for electron pairs in RICH (ring image Cherenkov) counters

    International Nuclear Information System (INIS)

    Maenner, R.

    1989-01-01

    This paper describes a systolic array processor for a ring image Cherenkov counter which is capable of identifying pairs of electron circles with a known radius and a certain minimum distance within 15 μs. The processor is a very flexible and fast device. It consists of 128x128 processing elements (PEs), where one PE is assigned to each pixel of the image. All PEs run synchronously at 40 MHz. The identification of electron circles is done by correlating the detector image with the proper circle circumference. Circle centers are found by peak detection in the correlation result. A second correlation with a circle disc allows circles of closed electron pairs to be rejected. The trigger decision is generated if a pseudo adder detects at least two remaining circles. The device is controlled by a freely programmable sequencer. A VLSI chip containing 8x8 PEs is being developed using a VENUS design system and will be produced in 2μ CMOS technology. (orig.)

  11. Improved identification of cranial nerves using paired-agent imaging: topical staining protocol optimization through experimentation and simulation

    Science.gov (United States)

    Torres, Veronica C.; Wilson, Todd; Staneviciute, Austeja; Byrne, Richard W.; Tichauer, Kenneth M.

    2018-03-01

    Skull base tumors are particularly difficult to visualize and access for surgeons because of the crowded environment and close proximity of vital structures, such as cranial nerves. As a result, accidental nerve damage is a significant concern and the likelihood of tumor recurrence is increased because of more conservative resections that attempt to avoid injuring these structures. In this study, a paired-agent imaging method with direct administration of fluorophores is applied to enhance cranial nerve identification. Here, a control imaging agent (ICG) accounts for non-specific uptake of the nerve-targeting agent (Oxazine 4), and ratiometric data analysis is employed to approximate binding potential (BP, a surrogate of targeted biomolecule concentration). For clinical relevance, animal experiments and simulations were conducted to identify parameters for an optimized stain and rinse protocol using the developed paired-agent method. Numerical methods were used to model the diffusive and kinetic behavior of the imaging agents in tissue, and simulation results revealed that there are various combinations of stain time and rinse number that provide improved contrast of cranial nerves, as suggested by optimal measures of BP and contrast-to-noise ratio.

  12. Post-Eruptive Inflation of Okmok Volcano, Alaska, from InSAR, 2008–2014

    Directory of Open Access Journals (Sweden)

    Feifei Qu

    2015-12-01

    Full Text Available Okmok, a ~10-km wide caldera that occupies most of the northeastern end of Umnak Island, is one of the most active volcanoes in the Aleutian arc. The most recent eruption at Okmok during July–August 2008 was by far its largest and most explosive since at least the early 19th century. We investigate post-eruptive magma supply and storage at the volcano during 2008–2014 by analyzing all available synthetic aperture radar (SAR images of Okmok acquired during that time period using the multi-temporal InSAR technique. Data from the C-band Envisat and X-band TerraSAR-X satellites indicate that Okmok started inflating very soon after the end of 2008 eruption at a time-variable rate of 48–130 mm/y, consistent with GPS measurements. The “model-assisted” phase unwrapping method is applied to improve the phase unwrapping operation for long temporal baseline pairs. The InSAR time-series is used as input for deformation source modeling, which suggests magma accumulating at variable rates in a shallow storage zone at ~3.9 km below sea level beneath the summit caldera, consistent with previous studies. The modeled volume accumulation in the six years following the 2008 eruption is ~75% of the 1997 eruption volume and ~25% of the 2008 eruption volume.

  13. ARBRES: Light-Weight CW/FM SAR Sensors for Small UAVs

    Directory of Open Access Journals (Sweden)

    Xavier Fabregas

    2013-03-01

    Full Text Available This paper describes a pair of compact CW/FM airborne SAR systems for small UAV-based operation (wingspan of 3.5 m for low-cost testing of innovative SAR concepts. Two different SAR instruments, using the C and X bands, have been developed in the context of the ARBRES project, each of them achieving a payload weight below 5 Kg and a volume of 13.5 dm3 (sensor and controller. Every system has a dual receiving channel which allows operation in interferometric or polarimetric modes. Planar printed array antennas are used in both sensors for easy system integration and better isolation between transmitter and receiver subsystems. First experimental tests on board a 3.2 m wingspan commercial radio-controlled aircraft are presented. The SAR images of a field close to an urban area have been focused using a back-projection algorithm. Using the dual channel capability, a single pass interferogram and Digital Elevation Model (DEM has been obtained which agrees with the scene topography. A simple Motion Compensation (MoCo module, based on the information from an Inertial+GPS unit, has been included to compensate platform motion errors with respect to the nominal straight trajectory.

  14. Post-eruptive inflation of Okmok Volcano, Alaska, from InSAR, 2008–2014

    Science.gov (United States)

    Qu, Feifei; Lu, Zhong; Poland, Michael; Freymueller, Jeffrey T.; Zhang, Qin; Jung, Hyung-Sup

    2016-01-01

    Okmok, a ~10-km wide caldera that occupies most of the northeastern end of Umnak Island, is one of the most active volcanoes in the Aleutian arc. The most recent eruption at Okmok during July-August 2008 was by far its largest and most explosive since at least the early 19th century. We investigate post-eruptive magma supply and storage at the volcano during 2008–2014 by analyzing all available synthetic aperture radar (SAR) images of Okmok acquired during that time period using the multi-temporal InSAR technique. Data from the C-band Envisat and X-band TerraSAR-X satellites indicate that Okmok started inflating very soon after the end of 2008 eruption at a time-variable rate of 48-130 mm/y, consistent with GPS measurements. The “model-assisted” phase unwrapping method is applied to improve the phase unwrapping operation for long temporal baseline pairs. The InSAR time-series is used as input for deformation source modeling, which suggests magma accumulating at variable rates in a shallow storage zone at ~3.9 km below sea level beneath the summit caldera, consistent with previous studies. The modeled volume accumulation in the 6 years following the 2008 eruption is ~75% of the 1997 eruption volume and ~25% of the 2008 eruption volume.

  15. Flood extent and water level estimation from SAR using data-model integration

    Science.gov (United States)

    Ajadi, O. A.; Meyer, F. J.

    2017-12-01

    Synthetic Aperture Radar (SAR) images have long been recognized as a valuable data source for flood mapping. Compared to other sources, SAR's weather and illumination independence and large area coverage at high spatial resolution supports reliable, frequent, and detailed observations of developing flood events. Accordingly, SAR has the potential to greatly aid in the near real-time monitoring of natural hazards, such as flood detection, if combined with automated image processing. This research works towards increasing the reliability and temporal sampling of SAR-derived flood hazard information by integrating information from multiple SAR sensors and SAR modalities (images and Interferometric SAR (InSAR) coherence) and by combining SAR-derived change detection information with hydrologic and hydraulic flood forecast models. First, the combination of multi-temporal SAR intensity images and coherence information for generating flood extent maps is introduced. The application of least-squares estimation integrates flood information from multiple SAR sensors, thus increasing the temporal sampling. SAR-based flood extent information will be combined with a Digital Elevation Model (DEM) to reduce false alarms and to estimate water depth and flood volume. The SAR-based flood extent map is assimilated into the Hydrologic Engineering Center River Analysis System (Hec-RAS) model to aid in hydraulic model calibration. The developed technology is improving the accuracy of flood information by exploiting information from data and models. It also provides enhanced flood information to decision-makers supporting the response to flood extent and improving emergency relief efforts.

  16. Severe acute respiratory syndrome (SARS)

    Science.gov (United States)

    SARS; Respiratory failure - SARS ... Complications may include: Respiratory failure Liver failure Heart failure ... 366. McIntosh K, Perlman S. Coronaviruses, including severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS). ...

  17. Quadrature Slotted Surface Coil Pair for Magnetic Resonance Imaging at 4 Tesla: Phantom Study

    Directory of Open Access Journals (Sweden)

    Solis S.E.

    2012-01-01

    Full Text Available A coil array was composed of two slotted surface coils forming a structure with two plates at 900, each one having 6 circular slots and is introduced in this paper. Numerical simulations of the magnetic field of this coil array were performed at 170 MHz using the finite element method to study its behaviour. This coil array was developed for brain magnetic resonance imaging to be operated at the resonant frequency of 170 MHz in the transceiver mode and quadrature driven. Numerical simulations demonstrated that electromagnetic interaction between the coil elements is negligible, and that the magnetic field showed a good uniformity. Phantom images were acquired with our coil array and standard pulse sequences on a research-dedicated 4 Tesla scanner. In vitro images showed the feasibility of this coil array for standard pulses and high field magnetic resonance imaging.

  18. Investigation on the separability of slums by multi-aspect TerraSAR-X dual-co-polarized high resolution spotlight images based on the multi-scale evaluation of local distributions

    Science.gov (United States)

    Schmitt, Andreas; Sieg, Tobias; Wurm, Michael; Taubenböck, Hannes

    2018-02-01

    Following recent advances in distinguishing settlements vs. non-settlement areas from latest SAR data, the question arises whether a further automatic intra-urban delineation and characterization of different structural types is possible. This paper studies the appearance of the structural type ;slums; in high resolution SAR images. Geocoded Kennaugh elements are used as backscatter information and Schmittlet indices as descriptor of local texture. Three cities with a significant share of slums (Cape Town, Manila, Mumbai) are chosen as test sites. These are imaged by TerraSAR-X in the dual-co-polarized high resolution spotlight mode in any available aspect angle. Representative distributions are estimated and fused by a robust approach. Our observations identify a high similarity of slums throughout all three test sites. The derived similarity maps are validated with reference data sets from visual interpretation and ground truth. The final validation strategy is based on completeness and correctness versus other classes in relation to the similarity. High accuracies (up to 87%) in identifying morphologic slums are reached for Cape Town. For Manila (up to 60%) and Mumbai (up to 54%), the distinction is more difficult due to their complex structural configuration. Concluding, high resolution SAR data can be suitable to automatically trace potential locations of slums. Polarimetric information and the incidence angle seem to have a negligible impact on the results whereas the intensity patterns and the passing direction of the satellite are playing a key role. Hence, the combination of intensity images (brightness) acquired from ascending and descending orbits together with Schmittlet indices (spatial pattern) promises best results. The transfer from the automatically recognized physical similarity to the semantic interpretation remains challenging.

  19. Infrastructure monitoring with spaceborne SAR sensors

    CERN Document Server

    ANGHEL, ANDREI; CACOVEANU, REMUS

    2017-01-01

    This book presents a novel non-intrusive infrastructure monitoring technique based on the detection and tracking of scattering centers in spaceborne SAR images. The methodology essentially consists of refocusing each available SAR image on an imposed 3D point cloud associated to the envisaged infrastructure element and identifying the reliable scatterers to be monitored by means of four dimensional (4D) tomography. The methodology described in this book provides a new perspective on infrastructure monitoring with spaceborne SAR images, is based on a standalone processing chain, and brings innovative technical aspects relative to conventional approaches. The book is intended primarily for professionals and researchers working in the area of critical infrastructure monitoring by radar remote sensing.

  20. Land subsidence caused by the East Mesa geothermal field, California, observed using SAR interferometry

    Science.gov (United States)

    Massonnet, D.; Holzer, T.; Vadon, H.

    1997-01-01

    Interferometric combination of pairs of synthetic aperture radar (SAR) images acquired by the ERS-1 satellite maps the deformation field associated with the activity of the East Mesa geothermal plant, located in southern California. SAR interferometry is applied to this flat area without the need of a digital terrain model. Several combinations are used to ascertain the nature of the phenomenon. Short term interferograms reveal surface phase changes on agricultural fields similar to what had been observed previously with SEASAT radar data. Long term (2 years) interferograms allow the study of land subsidence and improve prior knowledge of the displacement field, and agree with existing, sparse levelling data. This example illustrates the power of the interferometric technique for deriving accurate industrial intelligence as well as its potential for legal action, in cases involving environmental damages. Copyright 1997 by the American Geophysical Union.

  1. Paired-agent fluorescent imaging to detect micrometastases in breast sentinel lymph node biopsy: experiment design and protocol development

    Science.gov (United States)

    Li, Chengyue; Xu, Xiaochun; Basheer, Yusairah; He, Yusheng; Sattar, Husain A.; Brankov, Jovan G.; Tichauer, Kenneth M.

    2018-02-01

    Sentinel lymph node status is a critical prognostic factor in breast cancer treatment and is essential to guide future adjuvant treatment. The estimation that 20-60% of micrometastases are missed by conventional pathology has created a demand for the development of more accurate approaches. Here, a paired-agent imaging approach is presented that employs a control imaging agent to allow rapid, quantitative mapping of microscopic populations of tumor cells in lymph nodes to guide pathology sectioning. To test the feasibility of this approach to identify micrometastases, healthy pig lymph nodes were stained with targeted and control imaging agent solution to evaluate the potential for the agents to diffuse into and out of intact nodes. Aby-029, an anti-EGFR affibody was labeled with IRDye 800CW (LICOR) as targeted agent and IRDye 700DX was hydrolyzed as a control agent. Lymph nodes were stained and rinsed by directly injecting the agents into the lymph nodes after immobilization in agarose gel. Subsequently, lymph nodes were frozen-sectioned and imaged under an 80-um resolution fluorescence imaging system (Pearl, LICOR) to confirm equivalence of spatial distribution of both agents in the entire node. The binding potentials were acquired by a pixel-by-pixel calculation and was found to be 0.02 +/- 0.06 along the lymph node in the absence of binding. The results demonstrate this approach's potential to enhance the sensitivity of lymph node pathology by detecting fewer than 1000 cell in a whole human lymph node.

  2. Design and realization of an active SAR calibrator for TerraSAR-X

    Science.gov (United States)

    Dummer, Georg; Lenz, Rainer; Lutz, Benjamin; Kühl, Markus; Müller-Glaser, Klaus D.; Wiesbeck, Werner

    2005-10-01

    TerraSAR-X is a new earth observing satellite which will be launched in spring 2006. It carries a high resolution X-band SAR sensor. For high image data quality, accurate ground calibration targets are necessary. This paper describes a novel system concept for an active and highly integrated, digitally controlled SAR system calibrator. A total of 16 active transponder and receiver systems and 17 receiver only systems will be fabricated for a calibration campaign. The calibration units serve for absolute radiometric calibration of the SAR image data. Additionally, they are equipped with an extra receiver path for two dimensional satellite antenna pattern recognition. The calibrator is controlled by a dedicated digital Electronic Control Unit (ECU). The different voltages needed by the calibrator and the ECU are provided by the third main unit called Power Management Unit (PMU).

  3. Spaceborne Polarimetric SAR Interferometry: Performance Analysis and Mission Concepts

    Directory of Open Access Journals (Sweden)

    Shane R. Cloude

    2005-12-01

    Full Text Available We investigate multichannel imaging radar systems employing coherent combinations of polarimetry and interferometry (Pol-InSAR. Such systems are well suited for the extraction of bio- and geophysical parameters by evaluating the combined scattering from surfaces and volumes. This combination leads to several important differences between the design of Pol-InSAR sensors and conventional single polarisation SAR interferometers. We first highlight these differences and then investigate the Pol-InSAR performance of two proposed spaceborne SAR systems (ALOS/PalSAR and TerraSAR-L operating in repeat-pass mode. For this, we introduce the novel concept of a phase tube which enables (1 a quantitative assessment of the Pol-InSAR performance, (2 a comparison between different sensor configurations, and (3 an optimization of the instrument settings for different Pol-InSAR applications. The phase tube may hence serve as an interface between system engineers and application-oriented scientists. The performance analysis reveals major limitations for even moderate levels of temporal decorrelation. Such deteriorations may be avoided in single-pass sensor configurations and we demonstrate the potential benefits from the use of future bi- and multistatic SAR interferometers.

  4. Cranial nerve contrast using nerve-specific fluorophores improved by paired-agent imaging with indocyanine green as a control agent

    Science.gov (United States)

    Torres, Veronica C.; Vuong, Victoria D.; Wilson, Todd; Wewel, Joshua; Byrne, Richard W.; Tichauer, Kenneth M.

    2017-09-01

    Nerve preservation during surgery is critical because damage can result in significant morbidity. This remains a challenge especially for skull base surgeries where cranial nerves (CNs) are involved because visualization and access are particularly poor in that location. We present a paired-agent imaging method to enhance identification of CNs using nerve-specific fluorophores. Two myelin-targeting imaging agents were evaluated, Oxazine 4 and Rhodamine 800, and coadministered with a control agent, indocyanine green, either intravenously or topically in rats. Fluorescence imaging was performed on excised brains ex vivo, and nerve contrast was evaluated via paired-agent ratiometric data analysis. Although contrast was improved among all experimental groups using paired-agent imaging compared to conventional, solely targeted imaging, Oxazine 4 applied directly exhibited the greatest enhancement, with a minimum 3 times improvement in CNs delineation. This work highlights the importance of accounting for nonspecific signal of targeted agents, and demonstrates that paired-agent imaging is one method capable of doing so. Although staining, rinsing, and imaging protocols need to be optimized, these findings serve as a demonstration for the potential use of paired-agent imaging to improve contrast of CNs, and consequently, surgical outcome.

  5. Influence of different DEMs on the quality of the InSAR results: case study over Bankya and Mirovo areas

    Science.gov (United States)

    Nikolov, Hristo; Atanasova, Mila

    2017-10-01

    One of the key input parameters in obtaining end products from SAR data is the DEM used during their processing. This holds true especially when persistent scatterers InSAR method should be applied for example to study slow moving landslides or subsidence. Since nowadays most of the raw SAR data are of space borne origin for their correct processing to high precision products for relatively small areas with centimeter accuracy a DEM taking into account the particularities of the local topography is needed. Most of the DEMs used by the SAR processing software such as SRTM or ASTER are obtained by the same type of instrument and present some disagreements with height information acquired by leveling measurements or other geodetic means. This was the motivation for initiating this research - to prove the need of creating and using local DEM in SAR data processing at small scale and to check what the magnitude of the discrepancy between final InSAR products is in both cases where SRTM/ASTER and local DEM has been used. In addition investigated were two scenarios for SAR data processing - one with small baseline between image pairs and one having large baseline image pairs - in order to find out in which case local DEM has bigger impact. In course of this study two reference areas were considered - Bankya village near Sofia (SW region of Bulgaria) and Mirovo salt extraction site (NE region of Bulgaria). The reason those areas were selected lies in the high number of landslides registered and monitored by the competent authorities in the mentioned locations. The significance of the results obtained is witnessed by the fact that both sites we used have been included as reference sites for Bulgaria in the PanGeo EU funded project dealing with delivering information regarding ground instability geohazard as areas prone to subsidence of natural and manmade origin. In the said project largest part of the information has been extracted from Envisat SAR data, but now this

  6. Coseismic displacements from SAR image offsets between different satellite sensors: Application to the 2001 Bhuj (India) earthquake

    KAUST Repository

    Wang, Teng; Wei, Shengji; Jonsson, Sigurjon

    2015-01-01

    preearthquake ERS and postearthquake Envisat images. The rupture model estimated from these cross-sensor offsets and teleseismic waveforms shows a compact fault slip pattern with fairly short rise times (<3 s) and a large stress drop (20 MPa), explaining

  7. Measurements of WDS Objects Found in Images Taken for Detecting CPM Pairs in the LSPM Catalog

    Science.gov (United States)

    Knapp, Wilfried; Nanson, John

    2017-10-01

    During our research for CPM objects in the LSPM catalog so far not included in the WDS catalog part II (Knapp and Nanson 2017) we found by chance a surprisingly large number of WDS objects in the field of view of several images taken for this project. To use the existing image material in the best possible way we decided to take measurements of these objects and to look at other existing catalog data allowing a check for potential common proper motion. This report presents the findings of this research.

  8. An Adaptive Ship Detection Scheme for Spaceborne SAR Imagery

    Directory of Open Access Journals (Sweden)

    Xiangguang Leng

    2016-08-01

    Full Text Available With the rapid development of spaceborne synthetic aperture radar (SAR and the increasing need of ship detection, research on adaptive ship detection in spaceborne SAR imagery is of great importance. Focusing on practical problems of ship detection, this paper presents a highly adaptive ship detection scheme for spaceborne SAR imagery. It is able to process a wide range of sensors, imaging modes and resolutions. Two main stages are identified in this paper, namely: ship candidate detection and ship discrimination. Firstly, this paper proposes an adaptive land masking method using ship size and pixel size. Secondly, taking into account the imaging mode, incidence angle, and polarization channel of SAR imagery, it implements adaptive ship candidate detection in spaceborne SAR imagery by applying different strategies to different resolution SAR images. Finally, aiming at different types of typical false alarms, this paper proposes a comprehensive ship discrimination method in spaceborne SAR imagery based on confidence level and complexity analysis. Experimental results based on RADARSAT-1, RADARSAT-2, TerraSAR-X, RS-1, and RS-3 images demonstrate that the adaptive scheme proposed in this paper is able to detect ship targets in a fast, efficient and robust way.

  9. SAR: Stroke Authorship Recognition

    KAUST Repository

    Shaheen, Sara

    2015-10-15

    Are simple strokes unique to the artist or designer who renders them? If so, can this idea be used to identify authorship or to classify artistic drawings? Also, could training methods be devised to develop particular styles? To answer these questions, we propose the Stroke Authorship Recognition (SAR) approach, a novel method that distinguishes the authorship of 2D digitized drawings. SAR converts a drawing into a histogram of stroke attributes that is discriminative of authorship. We provide extensive classification experiments on a large variety of data sets, which validate SAR\\'s ability to distinguish unique authorship of artists and designers. We also demonstrate the usefulness of SAR in several applications including the detection of fraudulent sketches, the training and monitoring of artists in learning a particular new style and the first quantitative way to measure the quality of automatic sketch synthesis tools. © 2015 The Eurographics Association and John Wiley & Sons Ltd.

  10. Integrating interferometric SAR data with levelling measurements of land subsidence using geostatistics

    NARCIS (Netherlands)

    Zhou, Y.; Stein, A.; Molenaar, M.

    2003-01-01

    Differential Synthetic Aperture Radar (SAR) interferometric (D-InSAR) data of ground surface deformation are affected by several error sources associated with image acquisitions and data processing. In this paper, we study the use of D-InSAR for quantifying land subsidence due to groundwater

  11. Stereographic Targeting in Prostate Radiotherapy: Speed and Precision by Daily Automatic Positioning Corrections Using Kilovoltage/Megavoltage Image Pairs

    International Nuclear Information System (INIS)

    Mutanga, Theodore F.; Boer, Hans C.J. de; Wielen, Gerard J. van der; Wentzler, Davy; Barnhoorn, Jaco; Incrocci, Luca; Heijmen, Ben J.M.

    2008-01-01

    Purpose: A fully automated, fast, on-line prostate repositioning scheme using implanted markers, kilovoltage/megavoltage imaging, and remote couch movements has been developed and clinically applied. The initial clinical results of this stereographic targeting (SGT) method, as well as phantom evaluations, are presented. Methods and Materials: Using the SGT method, portal megavoltage images are acquired with the first two to six monitor units of a treatment beam, immediately followed by acquisition of an orthogonal kilovoltage image without gantry motion. The image pair is automatically analyzed to obtain the marker positions and three-dimensional prostate displacement and rotation. Remote control couch shifts are applied to correct for the displacement. The SGT performance was measured using both phantom images and images from 10 prostate cancer patients treated using SGT. Results: With phantom measurements, the accuracy of SGT was 0.5, 0.2, and 0.3 mm (standard deviation [SD]) for the left-right, craniocaudal, and anteroposterior directions, respectively, for translations and 0.5 o (SD) for the rotations around all axes. Clinically, the success rate for automatic marker detection was 99.5%, and the accuracy was 0.3, 0.5 and 0.8 mm (SD) in the left-right, craniocaudal, and anteroposterior axes. The SDs of the systematic center-of-mass positioning errors (Σ) were reduced from 4.0 mm to <0.5 mm for all axes. The corresponding SD of the random (σ) errors was reduced from 3.0 to <0.8 mm. These small residual errors were achieved with a treatment time extension of <1 min. Conclusion: Stereographic targeting yields systematic and random prostate positioning errors of <1 mm with <1 min of added treatment time

  12. On the imaging of land mines using 3+ - e- pair production

    International Nuclear Information System (INIS)

    Crawford, J.F.; Arkuszewski, J.; Ritt, S.; Suwannakachorn, D.

    1998-01-01

    The problem of disposing of abandoned land mines is very serious in many countries. Anti-personnel land mines (APM's) contain as little as 50 gram or less of explosive, which is enough to take off an adult's foot, or to kill a child. Anti-tank mines (ATM's), designed to penetrate the armour on the bottom of a tank, are much larger. Current techniques of finding them are not adequate. All practical high explosives contain 20% or more of nitrogen, which has a thermal neutron cross section of 75 mbarn, producing γ's of up to 10.8 MeV. The idea of using this property to detect explosives has been tested by others, but because of backgrounds is unable to find anything less than several hundred grams of explosive. The refinement proposed here is to convert the γs, track the resulting e + - e - pairs in MWPC's, and use the information to locate the γ source, i.e. the mine. The directional information provided should reduce the backgrounds considerably. Result of an experimental test are presented, and possibilities for the future discussed. (author)

  13. Retrieval of the ocean wave spectrum in open and thin ice covered ocean waters from ERS Synthetic Aperture Radar images

    International Nuclear Information System (INIS)

    De Carolis, G.

    2001-01-01

    This paper concerns with the task of retrieving ocean wave spectra form imagery provided by space-borne SAR systems such as that on board ERS satellite. SAR imagery of surface wave fields travelling into open ocean and into thin sea ice covers composed of frazil and pancake icefields is considered. The major purpose is to gain insight on how the spectral changes can be related to sea ice properties of geophysical interest such as the thickness. Starting from SAR image cross spectra computed from Single Look Complex (SLC) SAR images, the ocean wave spectrum is retrieved using an inversion procedure based on the gradient descent algorithm. The capability of this method when applied to satellite SAR sensors is investigated. Interest in the SAR image cross spectrum exploitation is twofold: first, the directional properties of the ocean wave spectra are retained; second, external wave information needed to initialize the inversion procedure may be greatly reduced using only information included in the SAR image cross spectrum itself. The main drawback is that the wind waves spectrum could be partly lost and its spectral peak wave number underestimated. An ERS-SAR SLC image acquired on April 10, 1993 over the Greenland Sea was selected as test image. A pair of windows that include open-sea only and sea ice cover, respectively, were selected. The inversions were carried out using different guess wave spectra taken from SAR image cross spectra. Moreover, care was taken to properly handle negative values eventually occurring during the inversion runs. This results in a modification of the gradient descending the technique that is required if a non-negative solution of the wave spectrum is searched for. Results are discussed in view of the possibility of SAR data to detect ocean wave dispersion as a means for the retrieval of ice thickness

  14. Optic disc boundary segmentation from diffeomorphic demons registration of monocular fundus image sequences versus 3D visualization of stereo fundus image pairs for automated early stage glaucoma assessment

    Science.gov (United States)

    Gatti, Vijay; Hill, Jason; Mitra, Sunanda; Nutter, Brian

    2014-03-01

    Despite the current availability in resource-rich regions of advanced technologies in scanning and 3-D imaging in current ophthalmology practice, world-wide screening tests for early detection and progression of glaucoma still consist of a variety of simple tools, including fundus image-based parameters such as CDR (cup to disc diameter ratio) and CAR (cup to disc area ratio), especially in resource -poor regions. Reliable automated computation of the relevant parameters from fundus image sequences requires robust non-rigid registration and segmentation techniques. Recent research work demonstrated that proper non-rigid registration of multi-view monocular fundus image sequences could result in acceptable segmentation of cup boundaries for automated computation of CAR and CDR. This research work introduces a composite diffeomorphic demons registration algorithm for segmentation of cup boundaries from a sequence of monocular images and compares the resulting CAR and CDR values with those computed manually by experts and from 3-D visualization of stereo pairs. Our preliminary results show that the automated computation of CDR and CAR from composite diffeomorphic segmentation of monocular image sequences yield values comparable with those from the other two techniques and thus may provide global healthcare with a cost-effective yet accurate tool for management of glaucoma in its early stage.

  15. Feature learning and change feature classification based on deep learning for ternary change detection in SAR images

    Science.gov (United States)

    Gong, Maoguo; Yang, Hailun; Zhang, Puzhao

    2017-07-01

    Ternary change detection aims to detect changes and group the changes into positive change and negative change. It is of great significance in the joint interpretation of spatial-temporal synthetic aperture radar images. In this study, sparse autoencoder, convolutional neural networks (CNN) and unsupervised clustering are combined to solve ternary change detection problem without any supervison. Firstly, sparse autoencoder is used to transform log-ratio difference image into a suitable feature space for extracting key changes and suppressing outliers and noise. And then the learned features are clustered into three classes, which are taken as the pseudo labels for training a CNN model as change feature classifier. The reliable training samples for CNN are selected from the feature maps learned by sparse autoencoder with certain selection rules. Having training samples and the corresponding pseudo labels, the CNN model can be trained by using back propagation with stochastic gradient descent. During its training procedure, CNN is driven to learn the concept of change, and more powerful model is established to distinguish different types of changes. Unlike the traditional methods, the proposed framework integrates the merits of sparse autoencoder and CNN to learn more robust difference representations and the concept of change for ternary change detection. Experimental results on real datasets validate the effectiveness and superiority of the proposed framework.

  16. Fast, accurate, and robust automatic marker detection for motion correction based on oblique kV or MV projection image pairs

    International Nuclear Information System (INIS)

    Slagmolen, Pieter; Hermans, Jeroen; Maes, Frederik; Budiharto, Tom; Haustermans, Karin; Heuvel, Frank van den

    2010-01-01

    Purpose: A robust and accurate method that allows the automatic detection of fiducial markers in MV and kV projection image pairs is proposed. The method allows to automatically correct for inter or intrafraction motion. Methods: Intratreatment MV projection images are acquired during each of five treatment beams of prostate cancer patients with four implanted fiducial markers. The projection images are first preprocessed using a series of marker enhancing filters. 2D candidate marker locations are generated for each of the filtered projection images and 3D candidate marker locations are reconstructed by pairing candidates in subsequent projection images. The correct marker positions are retrieved in 3D by the minimization of a cost function that combines 2D image intensity and 3D geometric or shape information for the entire marker configuration simultaneously. This optimization problem is solved using dynamic programming such that the globally optimal configuration for all markers is always found. Translational interfraction and intrafraction prostate motion and the required patient repositioning is assessed from the position of the centroid of the detected markers in different MV image pairs. The method was validated on a phantom using CT as ground-truth and on clinical data sets of 16 patients using manual marker annotations as ground-truth. Results: The entire setup was confirmed to be accurate to around 1 mm by the phantom measurements. The reproducibility of the manual marker selection was less than 3.5 pixels in the MV images. In patient images, markers were correctly identified in at least 99% of the cases for anterior projection images and 96% of the cases for oblique projection images. The average marker detection accuracy was 1.4±1.8 pixels in the projection images. The centroid of all four reconstructed marker positions in 3D was positioned within 2 mm of the ground-truth position in 99.73% of all cases. Detecting four markers in a pair of MV images

  17. Mapping tectonic and anthropogenic processes in central California using satellite and airborne InSAR

    Science.gov (United States)

    Liu, Z.; Lundgren, P.; Liang, C.; Farr, T. G.; Fielding, E. J.

    2017-12-01

    The improved spatiotemporal resolution of surface deformation from recent satellite and airborne InSAR measurements provides a great opportunity to improve our understanding of both tectonic and non-tectonic processes. In central California the primary plate boundary fault system (San Andreas fault) lies adjacent to the San Joaquin Valley (SJV), a vast structural trough that accounts for about one-sixth of the United Sates' irrigated land and one-fifth of its extracted groundwater. The central San Andreas fault (CSAF) displays a range of fault slip behavior with creeping in its central segment that decreases towards its northwest and southeast ends, where it transitions to being fully locked. Despite much progress, many questions regarding fault and anthropogenic processes in the region still remain. In this study, we combine satellite InSAR and NASA airborne UAVSAR data to image fault and anthropogenic deformation. The UAVSAR data cover fault perpendicular swaths imaged from opposing look directions and fault parallel swaths since 2009. The much finer spatial resolution and optimized viewing geometry provide important constraints on near fault deformation and fault slip at very shallow depth. We performed a synoptic InSAR time series analysis using Sentinel-1, ALOS, and UAVSAR interferograms. We estimate azimuth mis-registration between single look complex (SLC) images of Sentinel-1 in a stack sense to achieve accurate azimuth co-registration between SLC images for low coherence and/or long interval interferometric pairs. We show that it is important to correct large-scale ionosphere features in ALOS-2 ScanSAR data for accurate deformation measurements. Joint analysis of UAVSAR and ALOS interferometry measurements show clear variability in deformation along the fault strike, suggesting variable fault creep and locking at depth and along strike. In addition to fault creep, the L-band ALOS, and especially ALOS-2 ScanSAR interferometry, show large-scale ground

  18. Monitoring Building Deformation with InSAR: Experiments and Validation

    Science.gov (United States)

    Yang, Kui; Yan, Li; Huang, Guoman; Chen, Chu; Wu, Zhengpeng

    2016-01-01

    Synthetic Aperture Radar Interferometry (InSAR) techniques are increasingly applied for monitoring land subsidence. The advantages of InSAR include high accuracy and the ability to cover large areas; nevertheless, research validating the use of InSAR on building deformation is limited. In this paper, we test the monitoring capability of the InSAR in experiments using two landmark buildings; the Bohai Building and the China Theater, located in Tianjin, China. They were selected as real examples to compare InSAR and leveling approaches for building deformation. Ten TerraSAR-X images spanning half a year were used in Permanent Scatterer InSAR processing. These extracted InSAR results were processed considering the diversity in both direction and spatial distribution, and were compared with true leveling values in both Ordinary Least Squares (OLS) regression and measurement of error analyses. The detailed experimental results for the Bohai Building and the China Theater showed a high correlation between InSAR results and the leveling values. At the same time, the two Root Mean Square Error (RMSE) indexes had values of approximately 1 mm. These analyses show that a millimeter level of accuracy can be achieved by means of InSAR technique when measuring building deformation. We discuss the differences in accuracy between OLS regression and measurement of error analyses, and compare the accuracy index of leveling in order to propose InSAR accuracy levels appropriate for monitoring buildings deformation. After assessing the advantages and limitations of InSAR techniques in monitoring buildings, further applications are evaluated. PMID:27999403

  19. Monitoring Building Deformation with InSAR: Experiments and Validation

    Directory of Open Access Journals (Sweden)

    Kui Yang

    2016-12-01

    Full Text Available Synthetic Aperture Radar Interferometry (InSAR techniques are increasingly applied for monitoring land subsidence. The advantages of InSAR include high accuracy and the ability to cover large areas; nevertheless, research validating the use of InSAR on building deformation is limited. In this paper, we test the monitoring capability of the InSAR in experiments using two landmark buildings; the Bohai Building and the China Theater, located in Tianjin, China. They were selected as real examples to compare InSAR and leveling approaches for building deformation. Ten TerraSAR-X images spanning half a year were used in Permanent Scatterer InSAR processing. These extracted InSAR results were processed considering the diversity in both direction and spatial distribution, and were compared with true leveling values in both Ordinary Least Squares (OLS regression and measurement of error analyses. The detailed experimental results for the Bohai Building and the China Theater showed a high correlation between InSAR results and the leveling values. At the same time, the two Root Mean Square Error (RMSE indexes had values of approximately 1 mm. These analyses show that a millimeter level of accuracy can be achieved by means of InSAR technique when measuring building deformation. We discuss the differences in accuracy between OLS regression and measurement of error analyses, and compare the accuracy index of leveling in order to propose InSAR accuracy levels appropriate for monitoring buildings deformation. After assessing the advantages and limitations of InSAR techniques in monitoring buildings, further applications are evaluated.

  20. Use of time series of optical and SAR images in the estimation of snow cover for the optimization of water use in the Andes of Argentina and Chile

    Science.gov (United States)

    Salinas de Salmuni, Graciela; Cabezas Cartes, Ricardo; Menicocci, Felix

    2014-05-01

    operational application because it is simple and easy to implement. From the analysis of multitemporal study in the region using COSMO SkyMed images, it is observed that the values of wet snow coverage, obtained along the 2012 hydrological cycle, are consistent with the dynamics of the same: The study area has a high rise and steep relief (up to 6400m), therefore the shadows loom large, processing optical and SAR images improve the results. The behavior of the accumulation process (winter) and snowmelt (summer), is influenced by the elevation of the different study areas. A high percentage (49%) of surface snow at higher elevations to 3000 m. This is due to the accumulation of snow increases with elevation, by the combined effect of low temperatures and increased precipitation snowy orographic effect. In studies of wet meadows with optical images, a high correspondence between the spectral classes and vigor of vegetation and soil moisture (seen in the field) so are considered as indicators of degradation of these ecosystems was observed

  1. SAR: Stroke Authorship Recognition

    KAUST Repository

    Shaheen, Sara; Rockwood, Alyn; Ghanem, Bernard

    2015-01-01

    Are simple strokes unique to the artist or designer who renders them? If so, can this idea be used to identify authorship or to classify artistic drawings? Also, could training methods be devised to develop particular styles? To answer these questions, we propose the Stroke Authorship Recognition (SAR) approach, a novel method that distinguishes the authorship of 2D digitized drawings. SAR converts a drawing into a histogram of stroke attributes that is discriminative of authorship. We provide extensive classification experiments on a large variety of data sets, which validate SAR's ability to distinguish unique authorship of artists and designers. We also demonstrate the usefulness of SAR in several applications including the detection of fraudulent sketches, the training and monitoring of artists in learning a particular new style and the first quantitative way to measure the quality of automatic sketch synthesis tools. © 2015 The Eurographics Association and John Wiley & Sons Ltd.

  2. NOAA high resolution sea surface winds data from Synthetic Aperture Radar (SAR) on the RADARSAT-2 satellite

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Synthetic Aperture Radar (SAR)-derived high resolution wind products are calculated from high resolution SAR images of normalized radar cross section (NRCS) of the...

  3. Mapping mountain meadow with high resolution and polarimetric SAR data

    International Nuclear Information System (INIS)

    Tian, Bangsen; Li, Zhen; Xu, Juan; Fu, Sitao; Liu, Jiuli

    2014-01-01

    This paper presents a method to map the large grassland in the eastern margin of the Tibetan Plateau with the high resolution polarimetric SAR (PolSAR) imagery. When PolSAR imagery is used for land cover classification, the brightness of a SAR image is affected by topography due to varying projection between ground and image coordinates. The objective of this paper is twofold: (1) we first extend the theory of SAR terrain correction to the polarimetric case, to utilize the entire available polarimetric signature, where correction is performed explicitly based on a matrix format like covariance matrix. (2) Next, the orthoectified PolSAR is applied to classify mountain meadow and investigate the potential of PolSAR in mapping grassland. In this paper, the gamma naught radiometric correction estimates the local illuminated area at each grid point in the radar geometry. Then, each element of the coherency matrix is divided by the local area to produce a polarimetric product. Secondly, the impact of radiometric correction upon classification accuracy is investigated. A supervised classification is performed on the orthorectified Radarsat-2 PolSAR to map the spatial distribution of meadow and evaluate monitoring capabilities of mountain meadow

  4. Satellite sar detection of hurricane helene (2006)

    DEFF Research Database (Denmark)

    Ju, Lian; Cheng, Yongcun; Xu, Qing

    2013-01-01

    In this paper, the wind structure of hurricane Helene (2006) over the Atlantic Ocean is investigated from a C-band RADARSAT-1 synthetic aperture radar (SAR) image acquired on 20 September 2006. First, the characteristics, e.g., the center, scale and area of the hurricane eye (HE) are determined. ...... observations from the stepped frequency microwave radiometer (SFMR) on NOAA P3 aircraft. All the results show the capability of hurricane monitoring by satellite SAR. Copyright © 2013 by the International Society of Offshore and Polar Engineers (ISOPE)....

  5. Stellwagen Bank National Marine Sanctuary - Synthetic Aperture Radar (SAR) Imagery

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This geodatabase contains Synthetic Aperture Radar images (SAR), which consist of a fine resolution (12.5-50m), two-dimensional radar backscatter map of the...

  6. Context and Quasi-Invariants in Automatic Target Recognition (ATR) with Synthetic Aperture Radar (SAR) Imagery

    National Research Council Canada - National Science Library

    Binford, Thomas

    2000-01-01

    .... Experiments based on conventional recognition techniques were conducted for comparisons. Study of persistent scattering confirms the feasibility of implementing a SAR ATR system using physical image features...

  7. New challenges for a SAR toolbox

    International Nuclear Information System (INIS)

    Loreaux, P.; Quin, G.

    2013-01-01

    High resolution multi-frequency synthetic aperture radar (SAR) imagery, available since early 2008, brings all weather capability and day/night operability in support of safeguards verification. Today, a combined approach of high resolution optical and radar imagery in monitoring exercise would enable looking at any area of interest on daily basis. One of the challenges is the co-registration of SAR images acquired with different acquisition mode and also with different optical images. We show in this paper the on-going research work to find a general co-register method and an automatic tool to detect changes. Before having an operational co-register tool, a method to find automatically tie points between SAR images acquired with different acquisition mode and with optical images has to be developed. Concerning an automatic change detection method we can conclude that the study of the Harmonic mean, Geometric mean and Arithmetic mean, enables several applications like change detection for SAR imagery. Thus, we developed the MAGMA (Method for Arithmetic and Geometric Means Analysis) change detection method. As shown in this paper, the MAGMA method improves the Maximum Likelihood techniques like GLRT, using Information-Theory concepts to detect changes between SAR amplitude images. The major improvement consists in a lower false detection rate, especially in low amplitude areas. The second improvement consists in a better location of the changes in clearly delimited areas, which enables precise interpretations. Results presented here reveal the potential of high resolution radar imagery for a baseline description of some sites, change detection based on repeat pass imagery acquisitions and site specific constraints in coherent change detection due to cover conditions. (A.C.)

  8. Assessing ScanSAR Interferometry for Deformation Studies

    Science.gov (United States)

    Buckley, S. M.; Gudipati, K.

    2007-12-01

    There is a trend in civil satellite SAR mission design to implement an imaging strategy that incorporates both stripmap mode and ScanSAR imaging. This represents a compromise between high resolution data collection and a desire for greater spatial coverage and more frequent revisit times. However, mixed mode imaging can greatly reduce the number of stripmap images available for measuring subtle ground deformation. Although ScanSAR-ScanSAR and ScanSAR-stripmap repeat-pass interferometry have been demonstrated, these approaches are infrequently used for single interferogram formation and nonexistent for InSAR time series analysis. For future mission design, e.g., a dedicated US InSAR mission, the effect of various ScanSAR system parameter choices on InSAR time series analysis also remains unexplored. Our objective is to determine the utility of ScanSAR differential interferometry. We will demonstrate the use of ScanSAR interferograms for several previous deformation studies: localized and broad-scale urban land subsidence, tunneling, volcanic surface movements and several examples associated with the seismic cycle. We also investigate the effect of various ScanSAR burst synchronization levels on our ability to detect and make quality measurements of deformation. To avoid the issues associated with Envisat ScanSAR burst alignment and to exploit a decade of InSAR measurements, we simulate ScanSAR data by bursting (throwing away range lines of) ERS-1/2 data. All the burst mode datasets are processed using a Modified SPECAN algorithm. To investigate the effects of burst misalignment, a number of cases with varying degrees of burst overlap are considered. In particular, we look at phase decorrelation as a function of percentage of burst overlap. Coherence clearly reduces as the percentage of overlap decreases and we find a useful threshold of 40-70% burst overlap depending on the study site. In order to get a more generalized understanding for different surface conditions

  9. MULTI-TEMPORAL SAR INTERFEROMETRY FOR LANDSLIDE MONITORING

    Directory of Open Access Journals (Sweden)

    R. Dwivedi

    2016-06-01

    Full Text Available In the past few years, SAR Interferometry specially InSAR and D-InSAR were extensively used for deformation monitoring related applications. Due to temporal and spatial decorrelation in dense vegetated areas, effectiveness of InSAR and D-InSAR observations were always under scrutiny. Multi-temporal InSAR methods are developed in recent times to retrieve the deformation signal from pixels with different scattering characteristics. Presently, two classes of multi-temporal InSAR algorithms are available- Persistent Scatterer (PS and Small Baseline (SB methods. This paper discusses the Stanford Method for Persistent Scatterer (StaMPS based PS-InSAR and the Small Baselines Subset (SBAS techniques to estimate the surface deformation in Tehri dam reservoir region in Uttarkhand, India. Both PS-InSAR and SBAS approaches used sixteen ENVISAT ASAR C-Band images for generating single master and multiple master interferograms stack respectively and their StaMPS processing resulted in time series 1D-Line of Sight (LOS mean velocity maps which are indicative of deformation in terms of movement towards and away from the satellites. From 1D LOS velocity maps, localization of landslide is evident along the reservoir rim area which was also investigated in the previous studies. Both PS-InSAR and SBAS effectively extract measurement pixels in the study region, and the general results provided by both approaches show a similar deformation pattern along the Tehri reservoir region. Further, we conclude that StaMPS based PS-InSAR method performs better in terms of extracting more number of measurement pixels and in the estimation of mean Line of Sight (LOS velocity as compared to SBAS method. It is also proposed to take up a few major landslides area in Uttarakhand for slope stability assessment.

  10. Monitoring of Oil Exploitation Infrastructure by Combining Unsupervised Pixel-Based Classification of Polarimetric SAR and Object-Based Image Analysis

    Directory of Open Access Journals (Sweden)

    Simon Plank

    2014-12-01

    Full Text Available In developing countries, there is a high correlation between the dependence of oil exports and violent conflicts. Furthermore, even in countries which experienced a peaceful development of their oil industry, land use and environmental issues occur. Therefore, independent monitoring of oil field infrastructure may support problem solving. Earth observation data enables fast monitoring of large areas which allows comparing the real amount of land used by the oil exploitation and the companies’ contractual obligations. The target feature of this monitoring is the infrastructure of the oil exploitation, oil well pads—rectangular features of bare land covering an area of approximately 50–60 m × 100 m. This article presents an automated feature extraction procedure based on the combination of a pixel-based unsupervised classification of polarimetric synthetic aperture radar data (PolSAR and an object-based post-classification. The method is developed and tested using dual-polarimetric TerraSAR-X imagery acquired over the Doba basin in south Chad. The advantages of PolSAR are independence of the cloud coverage (vs. optical imagery and the possibility of detailed land use classification (vs. single-pol SAR. The PolSAR classification uses the polarimetric Wishart probability density function based on the anisotropy/entropy/alpha decomposition. The object-based post-classification refinement, based on properties of the feature targets such as shape and area, increases the user’s accuracy of the methodology by an order of a magnitude. The final achieved user’s and producer’s accuracy is 59%–71% in each case (area based accuracy assessment. Considering only the numbers of correctly/falsely detected oil well pads, the user’s and producer’s accuracies increase to even 74%–89%. In an iterative training procedure the best suited polarimetric speckle filter and processing parameters of the developed feature extraction procedure are

  11. Accounting for beta-particle energy loss to cortical bone via paired-image radiation transport (PIRT)

    International Nuclear Information System (INIS)

    Shah, Amish P.; Rajon, Didier A.; Patton, Phillip W.; Jokisch, Derek W.; Bolch, Wesley E.

    2005-01-01

    Current methods of skeletal dose assessment in both medical physics (radionuclide therapy) and health physics (dose reconstruction and risk assessment) rely heavily on a single set of bone and marrow cavity chord-length distributions in which particle energy deposition is tracked within an infinite extent of trabecular spongiosa, with no allowance for particle escape to cortical bone. In the present study, we introduce a paired-image radiation transport (PIRT) model which provides a more realistic three-dimensional (3D) geometry for particle transport in the skeletal site at both microscopic and macroscopic levels of its histology. Ex vivo CT scans were acquired of the pelvis, cranial cap, and individual ribs excised from a 66-year male cadaver (BMI of 22.7 kg m -2 ). For the three skeletal sites, regions of trabecular spongiosa and cortical bone were identified and segmented. Physical sections of interior spongiosa were taken and subjected to microCT imaging. Voxels within the resulting microCT images were then segmented and labeled as regions of bone trabeculae, endosteum, active marrow, and inactive marrow through application of image processing algorithms. The PIRT methodology was then implemented within the EGSNRC radiation transport code whereby electrons of various initial energies are simultaneously tracked within both the ex vivo CT macroimage and the CT microimage of the skeletal site. At initial electron energies greater than 50-200 keV, a divergence in absorbed fractions to active marrow are noted between PIRT model simulations and those estimated under existing techniques of infinite spongiosa transport. Calculations of radionuclide S values under both methodologies imply that current chord-based models may overestimate the absorbed dose to active bone marrow in these skeletal sites by 0% to 27% for low-energy beta emitters ( 33 P, 169 Er, and 177 Lu), by ∼4% to 49% for intermediate-energy beta emitters ( 153 Sm, 186 Re, and 89 Sr), and by ∼14% to

  12. Feature-Based Nonlocal Polarimetric SAR Filtering

    Directory of Open Access Journals (Sweden)

    Xiaoli Xing

    2017-10-01

    Full Text Available Polarimetric synthetic aperture radar (PolSAR images are inherently contaminated by multiplicative speckle noise, which complicates the image interpretation and image analyses. To reduce the speckle effect, several adaptive speckle filters have been developed based on the weighted average of the similarity measures commonly depending on the model or probability distribution, which are often affected by the distribution parameters and modeling texture components. In this paper, a novel filtering method introduces the coefficient of variance ( CV and Pauli basis (PB to measure the similarity, and the two features are combined with the framework of the nonlocal mean filtering. The CV is used to describe the complexity of various scenes and distinguish the scene heterogeneity; moreover, the Pauli basis is able to express the polarimetric information in PolSAR image processing. This proposed filtering combines the CV and Pauli basis to improve the estimation accuracy of the similarity weights. Then, the similarity of the features is deduced according to the test statistic. Subsequently, the filtering is proceeded by using the nonlocal weighted estimation. The performance of the proposed filter is tested with the simulated images and real PolSAR images, which are acquired by AIRSAR system and ESAR system. The qualitative and quantitative experiments indicate the validity of the proposed method by comparing with the widely-used despeckling methods.

  13. Land cover in the Guayas Basin using SAR images from low resolution ASAR Global mode to high resolution Sentinel-1 images

    Science.gov (United States)

    Bourrel, Luc; Brodu, Nicolas; Frappart, Frédéric

    2016-04-01

    Remotely sensed images allow a frequent monitoring of land cover variations at regional and global scale. Recently launched Sentinel-1 satellite offers a global cover of land areas at an unprecedented spatial (20 m) and temporal (6 days at the Equator). We propose here to compare the performances of commonly used supervised classification techniques (i.e., k-nearest neighbors, linear and Gaussian support vector machines, naive Bayes, linear and quadratic discriminant analyzes, adaptative boosting, loggit regression, ridge regression with one-vs-one voting, random forest, extremely randomized trees) for land cover applications in the Guayas Basin, the largest river basin of the Pacific coast of Ecuator (area ~32,000 km²). The reason of this choice is the importance of this region in Ecuatorian economy as its watershed represents 13% of the total area of Ecuador where 40% of the Ecuadorian population lives. It also corresponds to the most productive region of Ecuador for agriculture and aquaculture. Fifty percents of the country shrimp farming production comes from this watershed, and represents with agriculture the largest source of revenue of the country. Similar comparisons are also performed using ENVISAT ASAR images acquired in global mode (1 km of spatial resolution). Accuracy of the results will be achieved using land cover map derived from multi-spectral images.

  14. Crop Classification by Polarimetric SAR

    DEFF Research Database (Denmark)

    Skriver, Henning; Svendsen, Morten Thougaard; Nielsen, Flemming

    1999-01-01

    Polarimetric SAR-data of agricultural fields have been acquired by the Danish polarimetric L- and C-band SAR (EMISAR) during a number of missions at the Danish agricultural test site Foulum during 1995. The data are used to study the classification potential of polarimetric SAR data using...

  15. Sentinel-3 SAR Altimetry Toolbox

    Science.gov (United States)

    Benveniste, Jerome; Lucas, Bruno; DInardo, Salvatore

    2015-04-01

    ) and raster images (JPEG, PNG, etc.). Several kinds of computations can be done within BRAT involving combinations of data fields that the user can save for posterior reuse or using the already embedded formulas that include the standard oceanographic altimetry formulas. The Radar Altimeter Tutorial, that contains a strong introduction to altimetry, showing its applications in different fields such as Oceanography, Cryosphere, Geodesy, Hydrology among others. Included are also "use cases", with step-by-step examples, on how to use the toolbox in the different contexts. The Sentinel-3 SAR Altimetry Toolbox shall benefit from the current BRAT version. While developing the Sentinel-3 SAR Altimetry Toolbox we will revamp of the Graphical User Interface and provide, among other enhancements, support for reading the upcoming S3 datasets and specific "use-cases" for SAR altimetry in order to train the users and make them aware of the great potential of SAR altimetry for coastal and inland applications. As for any open source framework, contributions from users having developed their own functions are welcome. The Kick Off is expected to be happen in Q1 2015 and have the 1st version available before the launch of Sentinel-3.

  16. Alaska Synthetic Aperture Radar (SAR) Facility science data processing architecture

    Science.gov (United States)

    Hilland, Jeffrey E.; Bicknell, Thomas; Miller, Carol L.

    1991-01-01

    The paper describes the architecture of the Alaska SAR Facility (ASF) at Fairbanks, being developed to generate science data products for supporting research in sea ice motion, ice classification, sea-ice-ocean interaction, glacier behavior, ocean waves, and hydrological and geological study areas. Special attention is given to the individual substructures of the ASF: the Receiving Ground Station (RGS), the SAR Processor System, and the Interactive Image Analysis System. The SAR data will be linked to the RGS by the ESA ERS-1 and ERS-2, the Japanese ERS-1, and the Canadian Radarsat.

  17. Segment-based change detection for polarimetric SAR data

    DEFF Research Database (Denmark)

    Skriver, Henning; Nielsen, Allan Aasbjerg; Conradsen, Knut

    2006-01-01

    that is needed compared to single polarisation SAR to provide reliable and robust detection of changes. Polarimetric SAR data will be available from satellites in the near future, e.g. the Japanese ALOS, the Canadian Radarsat-2 and the German TerraSAR-X. An appropriate way of representing multi-look fully...... be split into a number of smaller fields, a building may be removed from or added to some area, hedgerows may be removed/added or other type of vegetated areas may be partly removed or added. In this case, ambiguities may arise when segments have changed shape and extent from one image to another...

  18. InSAR deformation monitoring of high risk landslides

    Science.gov (United States)

    Singhroy, V.; Li, J.

    2013-05-01

    During the past year there were at least twenty five media reports of landslides and seismic activities some fatal, occurring in various areas in Canada. These high risk geohazards sites requires high resolution monitoring both spatially and temporally for mitigation purposes, since they are near populated areas and energy, transportation and communication corridors. High resolution air photos, lidar and satellite images are quite common in areas where the landslides can be fatal. Radar interferometry (InSAR) techniques using images from several radar satellites are increasingly being used in slope stability assessment. This presentation provides examples of using high-resolution (1-3m) frequent revisits InSAR techniques from RADARSAT 2 and TerraSAR X to monitor several types of high-risk landslides affecting transportation and energy corridors and populated areas. We have analyses over 200 high resolution InSAR images over a three year period on geologically different landslides. The high-resolution InSAR images are effective in characterizing differential motion within these low velocity landslides. The low velocity landslides become high risk during the active wet spring periods. The wet soils are poor coherent targets and corner reflectors provide an effective means of InSAR monitoring the slope activities.

  19. Automatic Detection and Positioning of Ground Control Points Using TerraSAR-X Multiaspect Acquisitions

    Science.gov (United States)

    Montazeri, Sina; Gisinger, Christoph; Eineder, Michael; Zhu, Xiao xiang

    2018-05-01

    Geodetic stereo Synthetic Aperture Radar (SAR) is capable of absolute three-dimensional localization of natural Persistent Scatterer (PS)s which allows for Ground Control Point (GCP) generation using only SAR data. The prerequisite for the method to achieve high precision results is the correct detection of common scatterers in SAR images acquired from different viewing geometries. In this contribution, we describe three strategies for automatic detection of identical targets in SAR images of urban areas taken from different orbit tracks. Moreover, a complete work-flow for automatic generation of large number of GCPs using SAR data is presented and its applicability is shown by exploiting TerraSAR-X (TS-X) high resolution spotlight images over the city of Oulu, Finland and a test site in Berlin, Germany.

  20. Preliminary Study of Ground Movement in Prone Landslide Area by Means of MAI InSAR A Case Study: Ciloto, West Java, Indonesia

    Science.gov (United States)

    Hayati, Noorlaila; Riedel, Björn; Niemeier, Wolfgang

    2016-04-01

    Ciloto is one of the most prone landslide hazard areas in Indonesia. Several landslides in 2012 and 2013 had been recorded in Ciloto and damaged infrastructure around the area. Investigating the history of ground movement along slope area before the landslide happened could support the hazard mitigation in the future. Considering to an efficient surveying method, space-borne SAR processing is the one appropriate way to monitor the phenomenon in past years. The purpose of this study is detecting ground movement using multi-temporal synthetic aperture radar images. We use 13 ALOS PALSAR images from 2007 to 2009 with combination Fine Beam Single (FBS) and Fine Beam Double (FBD) polarization to investigate the slow movement on slope topography. MAI (Multiple Aperture Interferometry) InSAR method is used to analyze the ground movement from both line-of-sight and along-track direction. We split the synthetic aperture into two-looking aperture so that along-track displacement could be created by the difference of forward-backward looking interferograms. With integration of both methods, we could more precisely detect the movement in prone landslide area and achieve two measurements produced by the same interferogram. However, InSAR requires smaller baseline and good temporal baseline between master and slave images to avoid decorellation. There are only several pairs that meet the condition of proper length and temporal baseline indeed the location is also on the agriculture area where is mostly covered by vegetation. The result for two years observation shows that there is insignificant slow movement along slope surface in Ciloto with -2 - -7 cm in range looks or line of sight and 9-40 cm in along track direction. Based on geometry SAR , the most visible detecting of displacement is on the north-west area due to utilization of ascending SAR images.

  1. Attenuation-based kV pair selection in dual source dual energy computed tomography angiography of the chest: impact on radiation dose and image quality

    Energy Technology Data Exchange (ETDEWEB)

    Renapurkar, Rahul D.; Azok, Joseph; Lempel, Jason; Karim, Wadih; Graham, Ruffin [Thoracic Imaging, L10, Imaging Institute, Cleveland Clinic, Cleveland, OH (United States); Primak, Andrew [Siemens Medical Solutions, Malvern, PA (United States); Tandon, Yasmeen [Case Western Reserve University-Metro Health Medical Center, Department of Radiology, Cleveland, OH (United States); Bullen, Jennifer [Quantitative Health Sciences, Cleveland Clinic, Cleveland, OH (United States); Dong, Frank [Section of Medical Physics, Cleveland Clinic, Cleveland, OH (United States)

    2017-08-15

    The purpose of this study was to evaluate the impact of attenuation-based kilovoltage (kV) pair selection in dual source dual energy (DSDE)-pulmonary embolism (PE) protocol examinations on radiation dose savings and image quality. A prospective study was carried out on 118 patients with suspected PE. In patients in whom attenuation-based kV pair selection selected the 80/140Sn kV pair, the pre-scan 100/140Sn CTDIvol (computed tomography dose index volume) values were compared with the pre-scan 80/140Sn CTDIvol values. Subjective and objective image quality parameters were assessed. Attenuation-based kV pair selection switched to the 80/140Sn kV pair (''switched'' cohort) in 63 out of 118 patients (53%). The mean 100/140Sn pre-scan CTDIvol was 8.8 mGy, while the mean 80/140Sn pre-scan CTDIvol was 7.5 mGy. The average estimated dose reduction for the ''switched'' cohort was 1.3 mGy (95% CI 1.2, 1.4; p < 0.001), representing a 15% reduction in dose. After adjusting for patient weight, mean attenuation was significantly higher in the ''switched'' vs. ''non-switched'' cohorts in all five pulmonary arteries and in all lobes on iodine maps. This study demonstrates that attenuation-based kV pair selection in DSDE examination is feasible and can offer radiation dose reduction without compromising image quality. (orig.)

  2. Bats and SARS

    Centers for Disease Control (CDC) Podcasts

    Bats are a natural reservoir for emerging viruses, among them henipaviruses and rabies virus variants. Dr. Nina Marano, Chief, Geographic Medicine and Health Promotion Branch, Division of Global Migration and Quarantine, CDC, explains connection between horseshoe bats and SARS coronavirus transmission.

  3. Bats and SARS

    Centers for Disease Control (CDC) Podcasts

    2006-11-08

    Bats are a natural reservoir for emerging viruses, among them henipaviruses and rabies virus variants. Dr. Nina Marano, Chief, Geographic Medicine and Health Promotion Branch, Division of Global Migration and Quarantine, CDC, explains connection between horseshoe bats and SARS coronavirus transmission.  Created: 11/8/2006 by Emerging Infectious Diseases.   Date Released: 11/17/2006.

  4. Data Analytics for SAR

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, David Patrick [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Calef, Matthew Thomas [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-10-02

    We assess the ability of variants of anomalous change detection (ACD) to identify human activity associated with large outdoor music festivals as they are seen from synthetic aperture radar (SAR) imagery collected by the Sentinel-1 satellite constellation. We found that, with appropriate feature vectors, ACD using random-forest machine learning was most effective at identifying changes associated with the human activity.

  5. Characterizing and estimating noise in InSAR and InSAR time series with MODIS

    Science.gov (United States)

    Barnhart, William D.; Lohman, Rowena B.

    2013-01-01

    InSAR time series analysis is increasingly used to image subcentimeter displacement rates of the ground surface. The precision of InSAR observations is often affected by several noise sources, including spatially correlated noise from the turbulent atmosphere. Under ideal scenarios, InSAR time series techniques can substantially mitigate these effects; however, in practice the temporal distribution of InSAR acquisitions over much of the world exhibit seasonal biases, long temporal gaps, and insufficient acquisitions to confidently obtain the precisions desired for tectonic research. Here, we introduce a technique for constraining the magnitude of errors expected from atmospheric phase delays on the ground displacement rates inferred from an InSAR time series using independent observations of precipitable water vapor from MODIS. We implement a Monte Carlo error estimation technique based on multiple (100+) MODIS-based time series that sample date ranges close to the acquisitions times of the available SAR imagery. This stochastic approach allows evaluation of the significance of signals present in the final time series product, in particular their correlation with topography and seasonality. We find that topographically correlated noise in individual interferograms is not spatially stationary, even over short-spatial scales (<10 km). Overall, MODIS-inferred displacements and velocities exhibit errors of similar magnitude to the variability within an InSAR time series. We examine the MODIS-based confidence bounds in regions with a range of inferred displacement rates, and find we are capable of resolving velocities as low as 1.5 mm/yr with uncertainties increasing to ∼6 mm/yr in regions with higher topographic relief.

  6. Unsupervised DInSAR processing chain for multi-scale displacement analysis

    Science.gov (United States)

    Casu, Francesco; Manunta, Michele

    2016-04-01

    Earth Observation techniques can be very helpful for the estimation of several sources of ground deformation due to their characteristics of large spatial coverage, high resolution and cost effectiveness. In this scenario, Differential Synthetic Aperture Radar Interferometry (DInSAR) is one of the most effective methodologies for its capability to generate spatially dense deformation maps at both global and local spatial scale, with centimeter to millimeter accuracy. DInSAR exploits the phase difference (interferogram) between SAR image pairs relevant to acquisitions gathered at different times, but with the same illumination geometry and from sufficiently close flight tracks, whose separation is typically referred to as baseline. Among several, the SBAS algorithm is one of the most used DInSAR approaches and it is aimed at generating displacement time series at a multi-scale level by exploiting a set of small baseline interferograms. SBAS, and generally DInSAR, has taken benefit from the large availability of spaceborne SAR data collected along years by several satellite systems, with particular regard to the European ERS and ENVISAT sensors, which have acquired SAR images worldwide during approximately 20 years. Moreover, since 2014 the new generation of Copernicus Sentinel satellites has started to acquire data with a short revisit time (12 days) and a global coverage policy, thus flooding the scientific EO community with an unprecedent amount of data. To efficiently manage such amount of data, proper processing facilities (as those coming from the emerging Cloud Computing technologies) have to be used, as well as novel algorithms aimed at their efficient exploitation have to be developed. In this work we present a set of results achieved by exploiting a recently proposed implementation of the SBAS algorithm, namely Parallel-SBAS (P-SBAS), which allows us to effectively process, in an unsupervised way and in a limited time frame, a huge number of SAR images

  7. Resolution Enhancement Algorithm for Spaceborn SAR Based on Hanning Function Weighted Sidelobe Suppression

    Science.gov (United States)

    Li, C.; Zhou, X.; Tang, D.; Zhu, Z.

    2018-04-01

    Resolution and sidelobe are mutual restrict for SAR image. Usually sidelobe suppression is based on resolution reduction. This paper provide a method for resolution enchancement using sidelobe opposition speciality of hanning window and SAR image. The method can keep high resolution on the condition of sidelobe suppression. Compare to traditional method, this method can enchance 50 % resolution when sidelobe is -30dB.

  8. SAR Imagery Segmentation by Statistical Region Growing and Hierarchical Merging

    Energy Technology Data Exchange (ETDEWEB)

    Ushizima, Daniela Mayumi; Carvalho, E.A.; Medeiros, F.N.S.; Martins, C.I.O.; Marques, R.C.P.; Oliveira, I.N.S.

    2010-05-22

    This paper presents an approach to accomplish synthetic aperture radar (SAR) image segmentation, which are corrupted by speckle noise. Some ordinary segmentation techniques may require speckle filtering previously. Our approach performs radar image segmentation using the original noisy pixels as input data, eliminating preprocessing steps, an advantage over most of the current methods. The algorithm comprises a statistical region growing procedure combined with hierarchical region merging to extract regions of interest from SAR images. The region growing step over-segments the input image to enable region aggregation by employing a combination of the Kolmogorov-Smirnov (KS) test with a hierarchical stepwise optimization (HSWO) algorithm for the process coordination. We have tested and assessed the proposed technique on artificially speckled image and real SAR data containing different types of targets.

  9. Evaluation of Polarimetric SAR Decomposition for Classifying Wetland Vegetation Types

    Directory of Open Access Journals (Sweden)

    Sang-Hoon Hong

    2015-07-01

    Full Text Available The Florida Everglades is the largest subtropical wetland system in the United States and, as with subtropical and tropical wetlands elsewhere, has been threatened by severe environmental stresses. It is very important to monitor such wetlands to inform management on the status of these fragile ecosystems. This study aims to examine the applicability of TerraSAR-X quadruple polarimetric (quad-pol synthetic aperture radar (PolSAR data for classifying wetland vegetation in the Everglades. We processed quad-pol data using the Hong & Wdowinski four-component decomposition, which accounts for double bounce scattering in the cross-polarization signal. The calculated decomposition images consist of four scattering mechanisms (single, co- and cross-pol double, and volume scattering. We applied an object-oriented image analysis approach to classify vegetation types with the decomposition results. We also used a high-resolution multispectral optical RapidEye image to compare statistics and classification results with Synthetic Aperture Radar (SAR observations. The calculated classification accuracy was higher than 85%, suggesting that the TerraSAR-X quad-pol SAR signal had a high potential for distinguishing different vegetation types. Scattering components from SAR acquisition were particularly advantageous for classifying mangroves along tidal channels. We conclude that the typical scattering behaviors from model-based decomposition are useful for discriminating among different wetland vegetation types.

  10. Playback system designed for X-Band SAR

    International Nuclear Information System (INIS)

    Yuquan, Liu; Changyong, Dou

    2014-01-01

    SAR(Synthetic Aperture Radar) has extensive application because it is daylight and weather independent. In particular, X-Band SAR strip map, designed by Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, provides high ground resolution images, at the same time it has a large spatial coverage and a short acquisition time, so it is promising in multi-applications. When sudden disaster comes, the emergency situation acquires radar signal data and image as soon as possible, in order to take action to reduce loss and save lives in the first time. This paper summarizes a type of X-Band SAR playback processing system designed for disaster response and scientific needs. It describes SAR data workflow includes the payload data transmission and reception process. Playback processing system completes signal analysis on the original data, providing SAR level 0 products and quick image. Gigabit network promises radar signal transmission efficiency from recorder to calculation unit. Multi-thread parallel computing and ping pong operation can ensure computation speed. Through gigabit network, multi-thread parallel computing and ping pong operation, high speed data transmission and processing meet the SAR radar data playback real time requirement

  11. Playback system designed for X-Band SAR

    Science.gov (United States)

    Yuquan, Liu; Changyong, Dou

    2014-03-01

    SAR(Synthetic Aperture Radar) has extensive application because it is daylight and weather independent. In particular, X-Band SAR strip map, designed by Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, provides high ground resolution images, at the same time it has a large spatial coverage and a short acquisition time, so it is promising in multi-applications. When sudden disaster comes, the emergency situation acquires radar signal data and image as soon as possible, in order to take action to reduce loss and save lives in the first time. This paper summarizes a type of X-Band SAR playback processing system designed for disaster response and scientific needs. It describes SAR data workflow includes the payload data transmission and reception process. Playback processing system completes signal analysis on the original data, providing SAR level 0 products and quick image. Gigabit network promises radar signal transmission efficiency from recorder to calculation unit. Multi-thread parallel computing and ping pong operation can ensure computation speed. Through gigabit network, multi-thread parallel computing and ping pong operation, high speed data transmission and processing meet the SAR radar data playback real time requirement.

  12. A NEW SAR CLASSIFICATION SCHEME FOR SEDIMENTS ON INTERTIDAL FLATS BASED ON MULTI-FREQUENCY POLARIMETRIC SAR IMAGERY

    Directory of Open Access Journals (Sweden)

    W. Wang

    2017-11-01

    Full Text Available We present a new classification scheme for muddy and sandy sediments on exposed intertidal flats, which is based on synthetic aperture radar (SAR data, and use ALOS-2 (L-band, Radarsat-2 (C-band and TerraSAR-X (X-band fully polarimetric SAR imagery to demonstrate its effectiveness. Four test sites on the German North Sea coast were chosen, which represent typical surface compositions of different sediments, vegetation, and habitats, and of which a large amount of SAR is used for our analyses. Both Freeman-Durden and Cloude-Pottier polarimetric decomposition are utilized, and an additional descriptor called Double-Bounce Eigenvalue Relative Difference (DERD is introduced into the feature sets instead of the original polarimetric intensity channels. The classification is conducted following Random Forest theory, and the results are verified using ground truth data from field campaigns and an existing classification based on optical imagery. In addition, the use of Kennaugh elements for classification purposes is demonstrated using both fully and dual-polarization multi-frequency and multi-temporal SAR data. Our results show that the proposed classification scheme can be applied for the discrimination of muddy and sandy sediments using L-, C-, and X-band SAR images, while SAR imagery acquired at short wavelengths (C- and X-band can also be used to detect more detailed features such as bivalve beds on intertidal flats.

  13. Ross filter pairs for metal artefact reduction in x-ray tomography: a case study based on imaging and segmentation of metallic implants

    Science.gov (United States)

    Arhatari, Benedicta D.; Abbey, Brian

    2018-01-01

    Ross filter pairs have recently been demonstrated as a highly effective means of producing quasi-monoenergetic beams from polychromatic X-ray sources. They have found applications in both X-ray spectroscopy and for elemental separation in X-ray computed tomography (XCT). Here we explore whether they could be applied to the problem of metal artefact reduction (MAR) for applications in medical imaging. Metal artefacts are a common problem in X-ray imaging of metal implants embedded in bone and soft tissue. A number of data post-processing approaches to MAR have been proposed in the literature, however these can be time-consuming and sometimes have limited efficacy. Here we describe and demonstrate an alternative approach based on beam conditioning using Ross filter pairs. This approach obviates the need for any complex post-processing of the data and enables MAR and segmentation from the surrounding tissue by exploiting the absorption edge contrast of the implant.

  14. Oil Spill detection off the eastern coast of India using Sentinel-1 dual polarimeteric SAR imagery

    Science.gov (United States)

    De, S.; Bhattacharya, A.; Gautam, R.

    2017-12-01

    Among the various Earth observing sensors, the spaceborne Polarimetric Synthetic Aperture Radar (PolSAR) is considered as one of the most flexible and has been widely used in disaster response applications due to its all-weather illumination independent capability. Sentinel-1 is a two-satellite constellation with a C-band polarimetric Synthetic Aperture Radar (PolSAR) sensor, which provides global coverage with a 12-day repeat cycle in the same acquisition geometry, and the possibility of a 3-day repeat imaging in independent geometry, making it ideal for operational geodynamic monitoring. The proposed study aims to detect changes in polarimetric parameters associated with an oil spill event occurred off the coast of Ennore, Tamil Nadu, India (13.228° N Lon: 80.363° E ) on 28 January 2017. The initial spill covered an area of approximately 7.26 sq. km, spreading to an area of 12.56 sq. km. in a single day. The spread was mainly attributed to the strong shore parallel southerly current. To this end, two PolSAR images were used from before and after the event acquired on 17 and 29 January 2017, respectively in dual-polarimetric (VV,VH) interferometric wide swath mode and with same acquisition geometry. The images are first calibrated, co-registered and terrain corrected to make them comparable in a geo-coordinate framework. A refined Lee speckle filter is applied with a 5x5 window to reduce the influence of coherent speckle. The pair of images are then used to generate a hellinger distance based change index corresponding to each polarimetric channel. The indices are then applied as input to a Convolutional Neural Network (CNN) with the objective of discriminating the areas corresponding to changes due to the oil spill, movement of ships, rough ocean surface etc. The final result is a binary change detection map of the oil spill area. The results obtained were compared with that obtained by survey of the affected oil spill area by the Integrated Coastal and Marine

  15. Magnetic resonance image segmentation using semi-automated software for quantification of knee articular cartilage - initial evaluation of a technique for paired scans

    International Nuclear Information System (INIS)

    Brem, M.H.; Lang, P.K.; Neumann, G.; Schlechtweg, P.M.; Yoshioka, H.; Pappas, G.; Duryea, J.; Schneider, E.; Jackson, R.; Yu, J.; Eaton, C.B.; Hennig, F.F.

    2009-01-01

    Software-based image analysis is important for studies of cartilage changes in knee osteoarthritis (OA). This study describes an evaluation of a semi-automated cartilage segmentation software tool capable of quantifying paired images for potential use in longitudinal studies of knee OA. We describe the methodology behind the analysis and demonstrate its use by determination of test-retest analysis precision of duplicate knee magnetic resonance imaging (MRI) data sets. Test-retest knee MR images of 12 subjects with a range of knee health were evaluated from the Osteoarthritis Initiative (OAI) pilot MR study. Each subject was removed from the magnet between the two scans. The 3D DESS (sagittal, 0.456 mm x 0.365 mm, 0.7 mm slice thickness, TR 16.5 ms, TE 4.7 ms) images were obtained on a 3-T Siemens Trio MR system with a USA Instruments quadrature transmit-receive extremity coil. Segmentation of one 3D-image series was first performed and then the corresponding retest series was segmented by viewing both image series concurrently in two adjacent windows. After manual registration of the series, the first segmentation cartilage outline served as an initial estimate for the second segmentation. We evaluated morphometric measures of the bone and cartilage surface area (tAB and AC), cartilage volume (VC), and mean thickness (ThC.me) for medial/lateral tibia (MT/LT), total femur (F) and patella (P). Test-retest reproducibility was assessed using the root-mean square coefficient of variation (RMS CV%). For the paired analyses, RMS CV % ranged from 0.9% to 1.2% for VC, from 0.3% to 0.7% for AC, from 0.6% to 2.7% for tAB and 0.8% to 1.5% for ThC.me. Paired image analysis improved the measurement precision of cartilage segmentation. Our results are in agreement with other publications supporting the use of paired analysis for longitudinal studies of knee OA. (orig.)

  16. Magnetic resonance image segmentation using semi-automated software for quantification of knee articular cartilage - initial evaluation of a technique for paired scans

    Energy Technology Data Exchange (ETDEWEB)

    Brem, M.H. [Brigham and Women' s Hospital, Department of Radiology, Boston, MA (United States); Friedrich-Alexander-University Erlangen Nurenberg, Division of Orthopaedic and Trauma Surgery, Department of Surgery, Erlangen (Germany); Lang, P.K.; Neumann, G.; Schlechtweg, P.M.; Yoshioka, H.; Pappas, G.; Duryea, J. [Brigham and Women' s Hospital, Department of Radiology, Boston, MA (United States); Schneider, E. [LLC, SciTrials, Rocky River, OH (United States); Cleveland Clinic, Imaging Institute, Cleveland, OH (United States); Jackson, R.; Yu, J. [Ohio State University, Diabetes and Metabolism and Radiology, Department of Endocrinology, Columbus, OH (United States); Eaton, C.B. [Center for Primary Care and Prevention and the Warren Alpert Medical School of Brown University, Memorial Hospital of Rhode Island, Providence, RI (United States); Hennig, F.F. [Friedrich-Alexander-University Erlangen Nurenberg, Division of Orthopaedic and Trauma Surgery, Department of Surgery, Erlangen (Germany)

    2009-05-15

    Software-based image analysis is important for studies of cartilage changes in knee osteoarthritis (OA). This study describes an evaluation of a semi-automated cartilage segmentation software tool capable of quantifying paired images for potential use in longitudinal studies of knee OA. We describe the methodology behind the analysis and demonstrate its use by determination of test-retest analysis precision of duplicate knee magnetic resonance imaging (MRI) data sets. Test-retest knee MR images of 12 subjects with a range of knee health were evaluated from the Osteoarthritis Initiative (OAI) pilot MR study. Each subject was removed from the magnet between the two scans. The 3D DESS (sagittal, 0.456 mm x 0.365 mm, 0.7 mm slice thickness, TR 16.5 ms, TE 4.7 ms) images were obtained on a 3-T Siemens Trio MR system with a USA Instruments quadrature transmit-receive extremity coil. Segmentation of one 3D-image series was first performed and then the corresponding retest series was segmented by viewing both image series concurrently in two adjacent windows. After manual registration of the series, the first segmentation cartilage outline served as an initial estimate for the second segmentation. We evaluated morphometric measures of the bone and cartilage surface area (tAB and AC), cartilage volume (VC), and mean thickness (ThC.me) for medial/lateral tibia (MT/LT), total femur (F) and patella (P). Test-retest reproducibility was assessed using the root-mean square coefficient of variation (RMS CV%). For the paired analyses, RMS CV % ranged from 0.9% to 1.2% for VC, from 0.3% to 0.7% for AC, from 0.6% to 2.7% for tAB and 0.8% to 1.5% for ThC.me. Paired image analysis improved the measurement precision of cartilage segmentation. Our results are in agreement with other publications supporting the use of paired analysis for longitudinal studies of knee OA. (orig.)

  17. SAR China Land Mapping Project: Development, Production and Potential Applications

    International Nuclear Information System (INIS)

    Zhang, Lu; Guo, Huadong; Liu, Guang; Fu, Wenxue; Yan, Shiyong; Song, Rui; Ji, Peng; Wang, Xinyuan

    2014-01-01

    Large-area, seamless synthetic aperture radar (SAR) mosaics can reflect overall environmental conditions and highlight general trends in observed areas from a macroscopic standpoint, and effectively support research at the global scale, which is in high demand now across scientific fields. The SAR China Land Mapping Project (SCLM), supported by the Digital Earth Science Platform Project initiated and managed by the Center for Earth Observation and Digital Earth, Chinese Academy of Sciences (CEODE), is introduced in this paper. This project produced a large-area SAR mosaic dataset and generated the first complete seamless SAR map covering the entire land area of China using EnviSat-ASAR images. The value of the mosaic map is demonstrated by some potential applications in studies of urban distribution, rivers and lakes, geologic structures, geomorphology and paleoenvironmental change

  18. Chinese HJ-1C SAR And Its Wind Mapping Capability

    Science.gov (United States)

    Huang, Weigen; Chen, Fengfeng; Yang, Jingsong; Fu, Bin; Chen, Peng; Zhang, Chan

    2010-04-01

    Chinese Huan Jing (HJ)-1C synthetic aperture radar (SAR) satellite has been planed to be launched in 2010. HJ-1C satellite will fly in a sun-synchronous polar orbit of 500-km altitude. SAR will be the only sensor on board the satellite. It operates in S band with VV polarization. Its image mode has the incidence angles 25°and 47°at the near and far sides of the swath respectively. There are two selectable SAR modes of operation, which are fine resolution beams and standard beams respectively. The sea surface wind mapping capability of the SAR has been examined using M4S radar imaging model developed by Romeiser. The model is based on Bragg scattering theory in a composite surface model expansion. It accounts for contributions of the full ocean wave spectrum to the radar backscatter from ocean surface. The model reproduces absolute normalized radar cross section (NRCS) values for wide ranges of wind speeds. The model results of HJ-1C SAR have been compared with the model results of Envisat ASAR. It shows that HJ-1C SAR is as good as Envisat ASAR at sea surface wind mapping.

  19. Integrating Physical and Topographic Information Into a Fuzzy Scheme to Map Flooded Area by SAR

    Directory of Open Access Journals (Sweden)

    Flavia Macina

    2008-07-01

    Full Text Available A flood mapping procedure based on a fuzzy sets theory has been developed. The method is based on the integration of Synthetic Aperture Radar (SAR measurements with additional data on the inundated area, such as a land cover map and a digital elevation model (DEM. The information on land cover has allowed us to account for both specular reflection, typical of open water, and double bounce backscattering, typical of forested and urban areas. DEM has been exploited to include simple hydraulic considerations on the dependence of inundation probability on surface characteristics. Contextual information has been taken into account too. The proposed algorithm has been tested on a flood occurred in Italy on November 1994. A pair of ERS-1 images, collected before and after (three days later the flood, has been used. The results have been compared with the data provided by a ground survey carried out when the flood reached its maximum extension. Despite the temporal mismatch between the survey and the post-inundation SAR image, the comparison has yielded encouraging results, with the 87% of the pixels correctly classified as inundated.

  20. Integrating Physical and Topographic Information Into a Fuzzy Scheme to Map Flooded Area by SAR.

    Science.gov (United States)

    Pierdicca, Nazzareno; Chini, Marco; Pulvirenti, Luca; Macina, Flavia

    2008-07-10

    A flood mapping procedure based on a fuzzy sets theory has been developed. The method is based on the integration of Synthetic Aperture Radar (SAR) measurements with additional data on the inundated area, such as a land cover map and a digital elevation model (DEM). The information on land cover has allowed us to account for both specular reflection, typical of open water, and double bounce backscattering, typical of forested and urban areas. DEM has been exploited to include simple hydraulic considerations on the dependence of inundation probability on surface characteristics. Contextual information has been taken into account too. The proposed algorithm has been tested on a flood occurred in Italy on November 1994. A pair of ERS-1 images, collected before and after (three days later) the flood, has been used. The results have been compared with the data provided by a ground survey carried out when the flood reached its maximum extension. Despite the temporal mismatch between the survey and the post-inundation SAR image, the comparison has yielded encouraging results, with the 87% of the pixels correctly classified as inundated.

  1. Detecting and monitoring UCG subsidence with InSAR

    Energy Technology Data Exchange (ETDEWEB)

    Mellors, R J; Foxall, W; Yang, X

    2012-03-23

    The use of interferometric synthetic aperture radar (InSAR) to measure surface subsidence caused by Underground Coal Gasification (UCG) is tested. InSAR is a remote sensing technique that uses Synthetic Aperture Radar images to make spatial images of surface deformation and may be deployed from satellite or an airplane. With current commercial satellite data, the technique works best in areas with little vegetation or farming activity. UCG subsidence is generally caused by roof collapse, which adversely affects UCG operations due to gas loss and is therefore important to monitor. Previous studies have demonstrated the usefulness of InSAR in measuring surface subsidence related to coal mining and surface deformation caused by a coal mining roof collapse in Crandall Canyon, Utah is imaged as a proof-of-concept. InSAR data is collected and processed over three known UCG operations including two pilot plants (Majuba, South Africa and Wulanchabu, China) and an operational plant (Angren, Uzbekistan). A clear f eature showing approximately 7 cm of subsidence is observed in the UCG field in Angren. Subsidence is not observed in the other two areas, which produce from deeper coal seams and processed a smaller volume. The results show that in some cases, InSAR is a useful tool to image UCG related subsidence. Data from newer satellites and improved algorithms will improve effectiveness.

  2. Mahonian pairs

    OpenAIRE

    Sagan, Bruce E.; Savage, Carla D.

    2012-01-01

    We introduce the notion of a Mahonian pair. Consider the set, P^*, of all words having the positive integers as alphabet. Given finite subsets S,T of P^*, we say that (S,T) is a Mahonian pair if the distribution of the major index, maj, over S is the same as the distribution of the inversion number, inv, over T. So the well-known fact that maj and inv are equidistributed over the symmetric group, S_n, can be expressed by saying that (S_n,S_n) is a Mahonian pair. We investigate various Mahonia...

  3. Stereo Pair: Wellington, New Zealand

    Science.gov (United States)

    2000-01-01

    Wellington, the capital city of New Zealand, is located on the shores of Port Nicholson, a natural harbor at the south end of North Island. The city was founded in 1840 by British emigrants and now has a regional population of more than 400,000 residents. As seen here, the natural terrain imposes strong control over the urban growth pattern (urban features generally appear gray or white in this view). Rugged hills generally rising to 300 meters (1,000 feet) help protect the city and harbor from strong winter windsNew Zealand is seismically active and faults are readily seen in the topography. The Wellington Fault forms the straight northwestern (left) shoreline of the harbor. Toward the southwest (down) the fault crosses through the city, then forms linear canyons in the hills before continuing offshore at the bottom. Toward the northeast (upper right) the fault forms the sharp mountain front along the northern edge of the heavily populated Hutt Valley.This stereoscopic image pair was generated using topographic data from the Shuttle Radar Topography Mission, combined with an enhanced true color Landsat7 satellite image. The topography data are used to create two differing perspectives of a single image, one perspective for each eye. In doing so, each point in the image is shifted slightly, depending on its elevation. When stereoscopically merged, the result is a vertically exaggerated view of the Earth's surface in its full three dimensions.Landsat satellites have provided visible light and infrared images of the Earth continuously since 1972. SRTM topographic data match the 30 meter (99 foot) spatial resolution of most Landsat images and will provide a valuable complement for studying the historic and growing Landsat data archive. The Landsat 7 Thematic Mapper image used here was provided to the SRTM project by the United States Geological Survey, Earth Resources Observation Systems (EROS) data Center, Sioux Falls, South Dakota.Elevation data used in this image

  4. Measurement of Subsidence in the Yangbajain Geothermal Fields from TerraSAR-X

    Science.gov (United States)

    Li, Yongsheng; Zhang, Jingfa; Li, Zhenhong

    2016-08-01

    Yangbajain contains the largest geothermal energy power station in China. Geothermal explorations in Yangbajain first started in 1976, and two plants were subsequently built in 1981 and 1986. A large amount of geothermal fluids have been extracted since then, leading to considerable surface subsidence around the geothermal fields. In this paper, InSAR time series analysis is applied to map the subsidence of the Yangbajain geothermal fields during the period from December 2011 to November 2012 using 16 senses of TerraSAR-X stripmap SAR images. Due to its high resolution and short repeat cycle, TerraSAR-X provides detailed surface deformation information at the Yangbajain geothermal fields.

  5. PHARUS : PHased ARray Universal SAR

    NARCIS (Netherlands)

    Paquay, M.H.A.; Vermeulen, B.C.B.; Koomen, P.J.; Hoogeboom, P.; Snoeij, P.; Pouwels, H.

    1996-01-01

    In the Netherlands, a polarimetric C-band aircraft SAR (Synthetic Aperture Radar) has been developed. The project is called PHARUS, an acronm for PHased ARray Universal SAR. This instrument serves remote sensing applications. The antenna system contains 48 active modules (expandable to 96). A module

  6. How infectious is SARS virus

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. How infectious is SARS virus. Influenza: 1 patient infects ten people. SARS: 1 patient infects 2-4 people. Incubation period 10 days. Are there `silent´ cases ? Is quarantine enough ? How will it behave if and when it returns ?

  7. Permanent scatterer InSAR processing: Forsmark

    International Nuclear Information System (INIS)

    Dehls, John F.

    2006-04-01

    It has been speculated that slow, aseismic movement may be occurring along some of the fracture zones crosscutting the Forsmark area. The purpose of this study is to determine if it is possible to measure such movement using dInSAR. Differential SAR Interferometry (DInSAR) is a technique that compares the phases of multiple radar images of an area to measure surface change. The method has the potential to detect millimetric surface deformation along the sensor - target line-of-sight. Differences in phase between two images are easily viewed by combining, or interfering, the two phase-images. In the resulting image, the waves will either reinforce or cancel one another, depending upon the relative phases. The resulting image is called an interferogram and contains concentric bands of colour, or fringes, that are related to topography and/or surface deformation. New algorithms use many images acquired over a long time period to determine the movement history of individual objects, referred to as permanent scatterers. In the current project, standard PSInSAR processing was performed on 40 ERS-1 and ERS-2 scenes. The total area processed is approximately 1,500 km 2 . Slightly less than 20,000 permanent scatterers were identified.The highest densities were obtained along the coast and on the islands, where natural outcrops are more abundant. Two main classes of objects act as permanent scatterers in this area. The first are natural reflectors, such as rocks. The second are man-made reflectors, such as parts of buildings. Numerous local movements were found in the study area, relating to building subsidence, or compaction of anthropogenic fill. The dataset was divided into three groups for analysis, based upon the location of regional lineaments provided by SKB. Both statistical and geostatistical techniques were used. The median velocity of the three blocks did not differ by more than 0.2 mm/yr. This is not considered significant, given the possible magnitude of errors

  8. Permanent scatterer InSAR processing: Forsmark

    Energy Technology Data Exchange (ETDEWEB)

    Dehls, John F [Geological Survey of Norway, Trondheim (Norway)

    2006-04-15

    It has been speculated that slow, aseismic movement may be occurring along some of the fracture zones crosscutting the Forsmark area. The purpose of this study is to determine if it is possible to measure such movement using dInSAR. Differential SAR Interferometry (DInSAR) is a technique that compares the phases of multiple radar images of an area to measure surface change. The method has the potential to detect millimetric surface deformation along the sensor - target line-of-sight. Differences in phase between two images are easily viewed by combining, or interfering, the two phase-images. In the resulting image, the waves will either reinforce or cancel one another, depending upon the relative phases. The resulting image is called an interferogram and contains concentric bands of colour, or fringes, that are related to topography and/or surface deformation. New algorithms use many images acquired over a long time period to determine the movement history of individual objects, referred to as permanent scatterers. In the current project, standard PSInSAR processing was performed on 40 ERS-1 and ERS-2 scenes. The total area processed is approximately 1,500 km{sup 2}. Slightly less than 20,000 permanent scatterers were identified.The highest densities were obtained along the coast and on the islands, where natural outcrops are more abundant. Two main classes of objects act as permanent scatterers in this area. The first are natural reflectors, such as rocks. The second are man-made reflectors, such as parts of buildings. Numerous local movements were found in the study area, relating to building subsidence, or compaction of anthropogenic fill. The dataset was divided into three groups for analysis, based upon the location of regional lineaments provided by SKB. Both statistical and geostatistical techniques were used. The median velocity of the three blocks did not differ by more than 0.2 mm/yr. This is not considered significant, given the possible magnitude of

  9. The Danish real-time SAR processor: first results

    DEFF Research Database (Denmark)

    Dall, Jørgen; Jørgensen, Jørn Hjelm; Netterstrøm, Anders

    1993-01-01

    A real-time processor (RTP) for the Danish airborne Synthetic Aperture Radar (SAR) has been designed and constructed at the Electromagnetics Institute. The implementation was completed in mid 1992, and since then the RTP has been operated successfully on several test and demonstration flights....... The processor is capable of focusing the entire swath of the raw SAR data into full resolution, and depending on the choice made by the on-board operator, either a high resolution one-look zoom image or a spatially multilooked overview image is displayed. After a brief design review, the paper addresses various...

  10. Elevation Extraction and Deformation Monitoring by Multitemporal InSAR of Lupu Bridge in Shanghai

    Directory of Open Access Journals (Sweden)

    Jingwen Zhao

    2017-08-01

    Full Text Available Monitoring, assessing, and understanding the structural health of large infrastructures, such as buildings, bridges, dams, tunnels, and highways, is important for urban development and management, as the gradual deterioration of such structures may result in catastrophic structural failure leading to high personal and economic losses. With a higher spatial resolution and a shorter revisit period, interferometric synthetic aperture radar (InSAR plays an increasing role in the deformation monitoring and height extraction of structures. As a focal point of the InSAR data processing chain, phase unwrapping has a direct impact on the accuracy of the results. In complex urban areas, large elevation differences between the top and bottom parts of a large structure combined with a long interferometric baseline can result in a serious phase-wrapping problem. Here, with no accurate digital surface model (DSM available, we handle the large phase gradients of arcs in multitemporal InSAR processing using a long–short baseline iteration method. Specifically, groups of interferometric pairs with short baselines are processed to obtain the rough initial elevation estimations of the persistent scatterers (PSs. The baseline threshold is then loosened in subsequent iterations to improve the accuracy of the elevation estimates step by step. The LLL lattice reduction algorithm (by Lenstra, Lenstra, and Lovász is applied in the InSAR phase unwrapping process to rapidly reduce the search radius, compress the search space, and improve the success rate in resolving the phase ambiguities. Once the elevations of the selected PSs are determined, they are used in the following two-dimensional phase regression involving both elevations and deformations. A case study of Lupu Bridge in Shanghai is carried out for the algorithm’s verification. The estimated PS elevations agree well (within 1 m with the official Lupu Bridge model data, while the PS deformation time series

  11. SRTM Stereo Pair: Fiji Islands

    Science.gov (United States)

    2000-01-01

    image pair and viewing them with a stereoscope. When stereoscopically merged, the result is a vertically exaggerated view of the Earth's surface in its full three dimensions.This image was acquired by SRTM aboard the Space Shuttle Endeavour, launched on February 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (about 200 feet) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between the National Aeronautics and Space Administration (NASA), the National Imagery and Mapping Agency (NIMA) of the U.S. Department of Defense (DoD), and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Earth Science Enterprise, Washington, DC.Size: 192 km (119 miles) x 142 km (88 miles) Location: 17.8 deg. South lat., 178.0 deg. East lon. Orientation: North at top Date Acquired: February 19, 2000 Image: NASA/JPL/NIMA

  12. Atmospheric Phase Delay in Sentinel SAR Interferometry

    Science.gov (United States)

    Krishnakumar, V.; Monserrat, O.; Crosetto, M.; Crippa, B.

    2018-04-01

    The repeat-pass Synthetic Aperture Radio Detection and Ranging (RADAR) Interferometry (InSAR) has been a widely used geodetic technique for observing the Earth's surface, especially for mapping the Earth's topography and deformations. However, InSAR measurements are prone to atmospheric errors. RADAR waves traverse the Earth's atmosphere twice and experience a delay due to atmospheric refraction. The two major layers of the atmosphere (troposphere and ionosphere) are mainly responsible for this delay in the propagating RADAR wave. Previous studies have shown that water vapour and clouds present in the troposphere and the Total Electron Content (TEC) of the ionosphere are responsible for the additional path delay in the RADAR wave. The tropospheric refractivity is mainly dependent on pressure, temperature and partial pressure of water vapour. The tropospheric refractivity leads to an increase in the observed range. These induced propagation delays affect the quality of phase measurement and introduce errors in the topography and deformation fields. The effect of this delay was studied on a differential interferogram (DInSAR). To calculate the amount of tropospheric delay occurred, the meteorological data collected from the Spanish Agencia Estatal de Meteorología (AEMET) and MODIS were used. The interferograms generated from Sentinel-1 carrying C-band Synthetic Aperture RADAR Single Look Complex (SLC) images acquired on the study area are used. The study area consists of different types of scatterers exhibiting different coherence. The existing Saastamoinen model was used to perform a quantitative evaluation of the phase changes caused by pressure, temperature and humidity of the troposphere during the study. Unless the phase values due to atmospheric disturbances are not corrected, it is difficult to obtain accurate measurements. Thus, the atmospheric error correction is essential for all practical applications of DInSAR to avoid inaccurate height and deformation

  13. ATMOSPHERIC PHASE DELAY IN SENTINEL SAR INTERFEROMETRY

    Directory of Open Access Journals (Sweden)

    V. Krishnakumar

    2018-04-01

    Full Text Available The repeat-pass Synthetic Aperture Radio Detection and Ranging (RADAR Interferometry (InSAR has been a widely used geodetic technique for observing the Earth’s surface, especially for mapping the Earth’s topography and deformations. However, InSAR measurements are prone to atmospheric errors. RADAR waves traverse the Earth’s atmosphere twice and experience a delay due to atmospheric refraction. The two major layers of the atmosphere (troposphere and ionosphere are mainly responsible for this delay in the propagating RADAR wave. Previous studies have shown that water vapour and clouds present in the troposphere and the Total Electron Content (TEC of the ionosphere are responsible for the additional path delay in the RADAR wave. The tropospheric refractivity is mainly dependent on pressure, temperature and partial pressure of water vapour. The tropospheric refractivity leads to an increase in the observed range. These induced propagation delays affect the quality of phase measurement and introduce errors in the topography and deformation fields. The effect of this delay was studied on a differential interferogram (DInSAR. To calculate the amount of tropospheric delay occurred, the meteorological data collected from the Spanish Agencia Estatal de Meteorología (AEMET and MODIS were used. The interferograms generated from Sentinel-1 carrying C-band Synthetic Aperture RADAR Single Look Complex (SLC images acquired on the study area are used. The study area consists of different types of scatterers exhibiting different coherence. The existing Saastamoinen model was used to perform a quantitative evaluation of the phase changes caused by pressure, temperature and humidity of the troposphere during the study. Unless the phase values due to atmospheric disturbances are not corrected, it is difficult to obtain accurate measurements. Thus, the atmospheric error correction is essential for all practical applications of DInSAR to avoid inaccurate

  14. SAR target recognition using behaviour library of different shapes in different incidence angles and polarisations

    Science.gov (United States)

    Fallahpour, Mojtaba Behzad; Dehghani, Hamid; Jabbar Rashidi, Ali; Sheikhi, Abbas

    2018-05-01

    Target recognition is one of the most important issues in the interpretation of the synthetic aperture radar (SAR) images. Modelling, analysis, and recognition of the effects of influential parameters in the SAR can provide a better understanding of the SAR imaging systems, and therefore facilitates the interpretation of the produced images. Influential parameters in SAR images can be divided into five general categories of radar, radar platform, channel, imaging region, and processing section, each of which has different physical, structural, hardware, and software sub-parameters with clear roles in the finally formed images. In this paper, for the first time, a behaviour library that includes the effects of polarisation, incidence angle, and shape of targets, as radar and imaging region sub-parameters, in the SAR images are extracted. This library shows that the created pattern for each of cylindrical, conical, and cubic shapes is unique, and due to their unique properties these types of shapes can be recognised in the SAR images. This capability is applied to data acquired with the Canadian RADARSAT1 satellite.

  15. Detection of macroalgae blooms by complex SAR imagery

    International Nuclear Information System (INIS)

    Shen, Hui; Perrie, William; Liu, Qingrong; He, Yijun

    2014-01-01

    Highlights: • Complex SAR imagery enables better recognition of macroalgae patches. • Combination of different information in SAR matrix forms new index factors. • Proposed index factors contribute to unsupervised recognition of macroalgae. -- Abstract: Increased frequency and enhanced damage to the marine environment and to human society caused by green macroalgae blooms demand improved high-resolution early detection methods. Conventional satellite remote sensing methods via spectra radiometers do not work in cloud-covered areas, and therefore cannot meet these demands for operational applications. We present a methodology for green macroalgae bloom detection based on RADARSAT-2 synthetic aperture radar (SAR) images. Green macroalgae patches exhibit different polarimetric characteristics compared to the open ocean surface, in both the amplitude and phase domains of SAR-measured complex radar backscatter returns. In this study, new index factors are defined which have opposite signs in green macroalgae-covered areas, compared to the open water surface. These index factors enable unsupervised detection from SAR images, providing a high-resolution new tool for detection of green macroalgae blooms, which can potentially contribute to a better understanding of the mechanisms related to outbreaks of green macroalgae blooms in coastal areas throughout the world ocean

  16. Performance Analysis for Airborne Interferometric SAR Affected by Flexible Baseline Oscillation

    Directory of Open Access Journals (Sweden)

    Liu Zhong-sheng

    2014-04-01

    Full Text Available The airborne interferometric SAR platform suffers from instability factors, such as air turbulence and mechanical vibrations during flight. Such factors cause the oscillation of the flexible baseline, which leads to significant degradation of the performance of the interferometric SAR system. This study is concerned with the baseline oscillation. First, the error of the slant range model under baseline oscillation conditions is formulated. Then, the SAR complex image signal and dual-channel correlation coefficient are modeled based on the first-order, second-order, and generic slant range error. Subsequently, the impact of the baseline oscillation on the imaging and interferometric performance of the SAR system is analyzed. Finally, simulations of the echo data are used to validate the theoretical analysis of the baseline oscillation in the airborne interferometric SAR.

  17. Evaluation of image quality and patient safety: paired inspiratory and expiratory MDCT assessment of tracheobronchomalacia in paediatric patients under general anaesthesia with breath-hold technique

    International Nuclear Information System (INIS)

    Lee, Edward Y.; Bastos, Maria d' Almeida; Stark, Cynthia; Carrier, Maureen; Zurakowski, David; Mason, Keira P.

    2012-01-01

    The purpose of our investigation was to evaluate image quality and patient safety in infants and young children who required general anaesthesia with breath-hold technique for paired inspiratory and expiratory multidetector CT (MDCT) assessment of tracheobronchomalacia (TBM). Our hospital's institutional review board approved the review of radiological and clinical data of a consecutive series of 20 paediatric patients who underwent MDCT under general anaesthesia with breath-hold technique for evaluation of TBM from May 2006 to December 2008. For each MDCT study, two fellowship-trained paediatric radiologists reviewed the inspiratory and expiratory MDCT images in an independent, randomised and blinded fashion for the presence of motion artefact at three anatomic levels (upper, middle and lower central airways). The clinical history and anaesthesia outcome, including the occurrence of any adverse events during or following the MDCT examinations until discharge, were also reviewed and recorded. The study population consisted of 20 infants and young children (13 boys/seven girls, mean age 1.7 ± 1.4 years, age range 11 days to 4 years). The imaging quality of all 20 MDCT studies was diagnostic with no motion artefact in 16 studies (80%) and minimal motion artefact in the remaining four studies (20%). Minor adverse events occurred in three patients (15%) that included one patient (5%) with a brief (<60 s) oxygen desaturation during MDCT study, which resolved with oxygen, and two patients (5%) with either a brief (<60 s) oxygen desaturation (n = 1, 5%) or cough (n = 1, 5%) during recovery period, which were completely resolved with oxygen and dexamethasone, respectively. Diagnostic quality paired inspiratory and expiratory MDCT imaging with breath-hold technique can be safely performed in infants and young children under general anaesthesia for evaluation of TBM.

  18. SAR Imagery Simulation of Ship Based on Electromagnetic Calculations and Sea Clutter Modelling for Classification Applications

    International Nuclear Information System (INIS)

    Ji, K F; Zhao, Z; Xing, X W; Zou, H X; Zhou, S L

    2014-01-01

    Ship detection and classification with space-borne SAR has many potential applications within the maritime surveillance, fishery activity management, monitoring ship traffic, and military security. While ship detection techniques with SAR imagery are well established, ship classification is still an open issue. One of the main reasons may be ascribed to the difficulties on acquiring the required quantities of real data of vessels under different observation and environmental conditions with precise ground truth. Therefore, simulation of SAR images with high scenario flexibility and reasonable computation costs is compulsory for ship classification algorithms development. However, the simulation of SAR imagery of ship over sea surface is challenging. Though great efforts have been devoted to tackle this difficult problem, it is far from being conquered. This paper proposes a novel scheme for SAR imagery simulation of ship over sea surface. The simulation is implemented based on high frequency electromagnetic calculations methods of PO, MEC, PTD and GO. SAR imagery of sea clutter is modelled by the representative K-distribution clutter model. Then, the simulated SAR imagery of ship can be produced by inserting the simulated SAR imagery chips of ship into the SAR imagery of sea clutter. The proposed scheme has been validated with canonical and complex ship targets over a typical sea scene

  19. Monitoring of land subsidence in Ravenna Municipality using two different DInSAR techniques: comparison and discussion of the results.

    Science.gov (United States)

    Fiaschi, Simone; Di Martire, Diego; Tessitore, Serena; Achilli, Vladimiro; Ahmed, Ahmed; Borgstrom, Sven; Calcaterra, Domenico; Fabris, Massimo; Ramondini, Massimo; Serpelloni, Enrico; Siniscalchi, Valeria; Floris, Mario

    2015-04-01

    Land subsidence affecting the Ravenna Municipality (Emilia Romagna Region, NE Italy) is one of the best example on how the exploitation of natural resources can affect the environment and the territory. In fact, the pumping of groundwater and the extraction of gas from both on and off-shore reservoirs, started in the 1950s, have caused a strong land subsidence affecting most of the Emilia Romagna territory but in particular the Adriatic Sea coastline near Ravenna. In such area the current subsidence rate, even if lower than in the past, can reach the -2cm/y. Local Authorities have monitored this phenomenon over the years with different techniques: spirit levelling, GPS surveys and, more recently, Interferometric Synthetic Aperture Radar (InSAR) techniques, confirming the critical situation of land subsidence risk. In this work, we present the comparison between the results obtained with two different DInSAR techniques applied to the study of the land subsidence in the Ravenna territory: the Small Baseline Subset (SBAS) and the Coherent Pixel Technique (CPT) techniques. The SBAS works on SARscape software and is based on the Berardino et al., 2002 algorithm. This technique relies on the combination of differential interferograms created from stacks of SAR image pairs that have small temporal and perpendicular baselines. Thanks to the application of several interferograms for every single image, it is possible to obtain high spatial coherence, high data density and more effective error reduction. This allows us to obtain mean velocity maps with good data density even over non-urbanized territories. For the CPT we used the SUBsoft processor based on the algorithm implemented by Mora et al., 2003. CPT is able to extract from a stack of differential interferograms the deformation evolution over wide areas during large time spans. The processing scheme is composed of three main steps: a) the generation of the best interferogram set among all the available images of the

  20. METH-33 - Performance assessment for the high resolution and wide swath (HRWS) post-Sentinel-1 SAR system

    DEFF Research Database (Denmark)

    Zonno, Mariantonietta; Maria J., Sanjuan-Ferrer,; Lopez-Dekker, Paco

    The next generation, post-Sentinel-1, ESA’s C-band synthetic aperture radar (SAR) system is conceived to provide simultaneously high azimuth resolution and wide swath width (HRWS).There are different ways in which the imaging capabilities of the HRWS SAR system can be exploited, which translate...... or numerical models and, if these are not available, real SAR images as well as numerical algorithms and some explicit simulations of the data and of the inversion process are employed. The tool uses as input the HRWS SAR instrument performance for the different applicable modes and produces as output results...

  1. Early appearance of SARS on chest CT scan

    International Nuclear Information System (INIS)

    Cheng Xiaoguang; Feng Suchen; Xia Guoguang; Zhao Tao; Gu Xiang; Qu Hui

    2003-01-01

    Objective: To evaluate the early appearance of SARS on chest CT scan and its role in the early diagnosis. Methods: Forty cases of SARS in keeping with the criteria of the Ministry of Health had chest CT scans within 7 days of onset of symptoms, and CR chest X-ray films were available as well. These chest X-rays and CT images were retrospectively reviewed to determine if there were any abnormalities on the images. The lesions on the chest CT images were then further analyzed in terms of the number, location, size, and density. Results: Positive abnormalities on chest CT scans were revealed in all 40 SARS cases. Positive findings on CR chest films were showed in only 25 cases, equivocal in 6, and normal in 9 cases. The main abnormalities seen on CT and X-rays were pulmonary infiltrations varied markedly in severity. 70 % cases had 1 or 2 lesions on chest CT scan, 30 % cases had 3 or more lesions. The lesions seen on chest CT scan tended to be ground-glass opacification, sometimes with consolidation which was very faint and inhomogeneous, easily missed on chest X-rays. Typically the lesions were located in the periphery of the lung, or both central and peripheral lung, but very rare in a pure central location. They were commonly in the shape of patch or ball. Conclusions: Chest CT scan is much more sensitive in detecting the lesions of the lung in SARS. The early appearance of SARS on chest CT scan is characteristic but non-specific, indicating that chest CT scan plays a very important role in the early diagnosis and differential diagnosis of SARS

  2. The Performance Analysis Based on SAR Sample Covariance Matrix

    Directory of Open Access Journals (Sweden)

    Esra Erten

    2012-03-01

    Full Text Available Multi-channel systems appear in several fields of application in science. In the Synthetic Aperture Radar (SAR context, multi-channel systems may refer to different domains, as multi-polarization, multi-interferometric or multi-temporal data, or even a combination of them. Due to the inherent speckle phenomenon present in SAR images, the statistical description of the data is almost mandatory for its utilization. The complex images acquired over natural media present in general zero-mean circular Gaussian characteristics. In this case, second order statistics as the multi-channel covariance matrix fully describe the data. For practical situations however, the covariance matrix has to be estimated using a limited number of samples, and this sample covariance matrix follow the complex Wishart distribution. In this context, the eigendecomposition of the multi-channel covariance matrix has been shown in different areas of high relevance regarding the physical properties of the imaged scene. Specifically, the maximum eigenvalue of the covariance matrix has been frequently used in different applications as target or change detection, estimation of the dominant scattering mechanism in polarimetric data, moving target indication, etc. In this paper, the statistical behavior of the maximum eigenvalue derived from the eigendecomposition of the sample multi-channel covariance matrix in terms of multi-channel SAR images is simplified for SAR community. Validation is performed against simulated data and examples of estimation and detection problems using the analytical expressions are as well given.

  3. Methods of evaluating the effects of coding on SAR data

    Science.gov (United States)

    Dutkiewicz, Melanie; Cumming, Ian

    1993-01-01

    It is recognized that mean square error (MSE) is not a sufficient criterion for determining the acceptability of an image reconstructed from data that has been compressed and decompressed using an encoding algorithm. In the case of Synthetic Aperture Radar (SAR) data, it is also deemed to be insufficient to display the reconstructed image (and perhaps error image) alongside the original and make a (subjective) judgment as to the quality of the reconstructed data. In this paper we suggest a number of additional evaluation criteria which we feel should be included as evaluation metrics in SAR data encoding experiments. These criteria have been specifically chosen to provide a means of ensuring that the important information in the SAR data is preserved. The paper also presents the results of an investigation into the effects of coding on SAR data fidelity when the coding is applied in (1) the signal data domain, and (2) the image domain. An analysis of the results highlights the shortcomings of the MSE criterion, and shows which of the suggested additional criterion have been found to be most important.

  4. SAR calculation using FDTD simulations

    OpenAIRE

    Ferro, Francisco Nabais; Pinto, Guilherme Taveira; Pinho, Pedro

    2009-01-01

    The main intend of this work, is to determinate the Specific Absorption Rate (SAR) on human head tissues exposed to radiation caused by sources of 900 and 1800MHz, since those are the typical frequencies for mobile communications systems nowadays. In order to determinate the SAR, has been used the FDTD (Finite Difference Time Domain), which is a numeric method in time domain, obtained from the Maxwell equations in differential mode. In order to do this, a computational model from the human he...

  5. Validation and Sensitivity Analysis of 3D Synthetic Aperture Radar (SAR) Imaging of the Interior of Primitive Solar System Bodies: Comets and Asteroids

    Data.gov (United States)

    National Aeronautics and Space Administration — This task will demonstrate that using Radar Reflection Imager Instrument in an orbing platform , we can perform 3D mapping of the Cometary Nucleus. To probe the...

  6. Semi-physical Simulation of the Airborne InSAR based on Rigorous Geometric Model and Real Navigation Data

    Science.gov (United States)

    Changyong, Dou; Huadong, Guo; Chunming, Han; yuquan, Liu; Xijuan, Yue; Yinghui, Zhao

    2014-03-01

    Raw signal simulation is a useful tool for the system design, mission planning, processing algorithm testing, and inversion algorithm design of Synthetic Aperture Radar (SAR). Due to the wide and high frequent variation of aircraft's trajectory and attitude, and the low accuracy of the Position and Orientation System (POS)'s recording data, it's difficult to quantitatively study the sensitivity of the key parameters, i.e., the baseline length and inclination, absolute phase and the orientation of the antennas etc., of the airborne Interferometric SAR (InSAR) system, resulting in challenges for its applications. Furthermore, the imprecise estimation of the installation offset between the Global Positioning System (GPS), Inertial Measurement Unit (IMU) and the InSAR antennas compounds the issue. An airborne interferometric SAR (InSAR) simulation based on the rigorous geometric model and real navigation data is proposed in this paper, providing a way for quantitatively studying the key parameters and for evaluating the effect from the parameters on the applications of airborne InSAR, as photogrammetric mapping, high-resolution Digital Elevation Model (DEM) generation, and surface deformation by Differential InSAR technology, etc. The simulation can also provide reference for the optimal design of the InSAR system and the improvement of InSAR data processing technologies such as motion compensation, imaging, image co-registration, and application parameter retrieval, etc.

  7. Semi-physical Simulation of the Airborne InSAR based on Rigorous Geometric Model and Real Navigation Data

    International Nuclear Information System (INIS)

    Changyong, Dou; Huadong, Guo; Chunming, Han; Yuquan, Liu; Xijuan, Yue; Yinghui, Zhao

    2014-01-01

    Raw signal simulation is a useful tool for the system design, mission planning, processing algorithm testing, and inversion algorithm design of Synthetic Aperture Radar (SAR). Due to the wide and high frequent variation of aircraft's trajectory and attitude, and the low accuracy of the Position and Orientation System (POS)'s recording data, it's difficult to quantitatively study the sensitivity of the key parameters, i.e., the baseline length and inclination, absolute phase and the orientation of the antennas etc., of the airborne Interferometric SAR (InSAR) system, resulting in challenges for its applications. Furthermore, the imprecise estimation of the installation offset between the Global Positioning System (GPS), Inertial Measurement Unit (IMU) and the InSAR antennas compounds the issue. An airborne interferometric SAR (InSAR) simulation based on the rigorous geometric model and real navigation data is proposed in this paper, providing a way for quantitatively studying the key parameters and for evaluating the effect from the parameters on the applications of airborne InSAR, as photogrammetric mapping, high-resolution Digital Elevation Model (DEM) generation, and surface deformation by Differential InSAR technology, etc. The simulation can also provide reference for the optimal design of the InSAR system and the improvement of InSAR data processing technologies such as motion compensation, imaging, image co-registration, and application parameter retrieval, etc

  8. PSP SAR interferometry monitoring of ground and structure deformations applied to archaeological sites

    Science.gov (United States)

    Costantini, Mario; Francioni, Elena; Trillo, Francesco; Minati, Federico; Margottini, Claudio; Spizzichino, Daniele; Trigila, Alessandro; Iadanza, Carla

    2017-04-01

    Archaeological sites and cultural heritage are considered as critical assets for the society, representing not only the history of region or a culture, but also contributing to create a common identity of people living in a certain region. In this view, it is becoming more and more urgent to preserve them from climate changes effect and in general from their degradation. These structures are usually just as precious as fragile: remote sensing technology can be useful to monitor these treasures. In this work, we will focus on ground deformation measurements obtained by satellite SAR interferometry and on the methodology adopted and implemented in order to use the results operatively for conservation policies in a Italian archaeological site. The analysis is based on the processing of COSMO-SkyMed Himage data by the e-GEOS proprietary Persistent Scatterer Pair (PSP) SAR interferometry technology. The PSP technique is a proven SAR interferometry technology characterized by the fact of exploiting in the processing only the relative properties between close points (pairs) in order to overcome atmospheric artefacts (which are one of the main problems of SAR interferometry). Validations analyses [Costantini et al. 2015] settled that this technique applied to COSMO-SkyMed Himage data is able to retrieve very dense (except of course on vegetated or cultivated areas) millimetric deformation measurements with sub-metric localization. Considering the limitations of all the interferometric techniques, in particular the fact that the measurement are along the line of sight (LOS) and the geometric distortions, in order to obtain the maximum information from interferometric analysis, both ascending and descending geometry have been used. The ascending analysis allows selecting measurements points over the top and, approximately, South-West part of the structures, while the descending one over the top and the South-East part of the structures. The interferometric techniques needs

  9. Robust adaptive multichannel SAR processing based on covariance matrix reconstruction

    Science.gov (United States)

    Tan, Zhen-ya; He, Feng

    2018-04-01

    With the combination of digital beamforming (DBF) processing, multichannel synthetic aperture radar(SAR) systems in azimuth promise well in high-resolution and wide-swath imaging, whereas conventional processing methods don't take the nonuniformity of scattering coefficient into consideration. This paper brings up a robust adaptive Multichannel SAR processing method which utilizes the Capon spatial spectrum estimator to obtain the spatial spectrum distribution over all ambiguous directions first, and then the interference-plus-noise covariance Matrix is reconstructed based on definition to acquire the Multichannel SAR processing filter. The performance of processing under nonuniform scattering coefficient is promoted by this novel method and it is robust again array errors. The experiments with real measured data demonstrate the effectiveness and robustness of the proposed method.

  10. Event-related brain potentials to emotional images and gonadal steroid hormone levels in patients with schizophrenia and paired controls.

    Science.gov (United States)

    Champagne, Julie; Mendrek, Adrianna; Germain, Martine; Hot, Pascal; Lavoie, Marc E

    2014-01-01

    Prominent disturbances in the experience, expression, and emotion recognition in patients with schizophrenia have been relatively well documented over the last few years. Furthermore, sex differences in behavior and brain activity, associated with the processing of various emotions, have been reported in the general population and in schizophrenia patients. Others proposed that sex differences should be rather attributed to testosterone, which may play a role in the etiology of schizophrenia. Also, it had been suggested that estradiol may play a protective role in schizophrenia. Surprisingly, few studies investigating this pathology have focused on both brain substrates and gonadal steroid hormone levels, in emotional processing. In the present study, we investigated electrocortical responses related to emotional valence and arousal as well as gonadal steroid hormone levels in patients with schizophrenia. Event-Related Potentials (ERP) were recorded during exposition to emotional pictures in 18 patients with schizophrenia and in 24 control participants paired on intelligence, manual dominance and socioeconomic status. Given their previous sensitivity to emotional and attention processes, the P200, N200 and the P300 were selected for analysis. More precisely, emotional valence generally affects early components (N200), which reflect early process of selective attention, whereas emotional arousal and valence both influences the P300 component, which is related to memory context updating, and stimulus categorization. Results showed that, in the control group, the amplitude of the N200 was significantly more lateralized over the right hemisphere, while there was no such lateralization in patients with schizophrenia. In patients with schizophrenia, significantly smaller anterior P300 amplitude was observed to the unpleasant, compared to the pleasant. That anterior P300 reduction was also correlated with negative symptoms. The N200 and P300 amplitudes were positively

  11. Event-related brain potentials to emotional images and gonadal steroid hormone levels in patients with schizophrenia and paired controls

    Directory of Open Access Journals (Sweden)

    Julie eChampagne

    2014-06-01

    Full Text Available Prominent disturbances in the experience, expression, and emotion recognition in patients with schizophrenia have been relatively well documented over the last few years. Furthermore, sex differences in behavior and brain activity, associated with the processing of various emotions, have been reported in the general population and in schizophrenia patients. Others proposed that sex differences should be rather attributed to testosterone, which may play a role in the etiology of schizophrenia. Also, it had been suggested that estradiol may play a protective role in schizophrenia. Surprisingly, few studies investigating this pathology have focused on both brain substrates and gonadal steroid hormone levels, in emotional processing. In the present study, we investigated electrocortical responses related to emotional valence and arousal as well as gonadal steroid hormone levels in patients with schizophrenia. Event-Related Potentials (ERP were recorded during exposition to emotional pictures in 18 patients with schizophrenia and in 24 control participants paired on intelligence, manual dominance and socioeconomic status. Given their previous sensitivity to emotional and attention processes, the P200, N200 and the P300 were selected for analysis. More precisely, emotional valence generally affects early components (N200, which reflect early process of selective attention, whereas emotional arousal and valence both influences the P300 component, which is related to memory context updating, and stimulus categorization. Results showed that, in the control group, the amplitude of the N200 was significantly more lateralized over the right hemisphere, while there was no such lateralization in patients with schizophrenia. In patients with schizophrenia, significantly smaller anterior P300 amplitude was observed to the unpleasant, compared to the pleasant. That anterior P300 reduction was also correlated with negative symptoms.

  12. High-Level Performance Modeling of SAR Systems

    Science.gov (United States)

    Chen, Curtis

    2006-01-01

    SAUSAGE (Still Another Utility for SAR Analysis that s General and Extensible) is a computer program for modeling (see figure) the performance of synthetic- aperture radar (SAR) or interferometric synthetic-aperture radar (InSAR or IFSAR) systems. The user is assumed to be familiar with the basic principles of SAR imaging and interferometry. Given design parameters (e.g., altitude, power, and bandwidth) that characterize a radar system, the software predicts various performance metrics (e.g., signal-to-noise ratio and resolution). SAUSAGE is intended to be a general software tool for quick, high-level evaluation of radar designs; it is not meant to capture all the subtleties, nuances, and particulars of specific systems. SAUSAGE was written to facilitate the exploration of engineering tradeoffs within the multidimensional space of design parameters. Typically, this space is examined through an iterative process of adjusting the values of the design parameters and examining the effects of the adjustments on the overall performance of the system at each iteration. The software is designed to be modular and extensible to enable consideration of a variety of operating modes and antenna beam patterns, including, for example, strip-map and spotlight SAR acquisitions, polarimetry, burst modes, and squinted geometries.

  13. UTILIZING SAR AND MULTISPECTRAL INTEGRATED DATA FOR EMERGENCY RESPONSE

    Directory of Open Access Journals (Sweden)

    S. Havivi

    2016-06-01

    Full Text Available Satellite images are used widely in the risk cycle to understand the exposure, refine hazard maps and quickly provide an assessment after a natural or man-made disaster. Though there are different types of satellite images (e.g. optical, radar these have not been combined for risk assessments. The characteristics of different remote sensing data type may be extremely valuable for monitoring and evaluating the impacts of disaster events, to extract additional information thus making it available for emergency situations. To base this approach, two different change detection methods, for two different sensor's data were used: Coherence Change Detection (CCD for SAR data and Covariance Equalization (CE for multispectral imagery. The CCD provides an identification of the stability of an area, and shows where changes have occurred. CCD shows subtle changes with an accuracy of several millimetres to centimetres. The CE method overcomes the atmospheric effects differences between two multispectral images, taken at different times. Therefore, areas that had undergone a major change can be detected. To achieve our goals, we focused on the urban areas affected by the tsunami event in Sendai, Japan that occurred on March 11, 2011 which affected the surrounding area, coastline and inland. High resolution TerraSAR-X (TSX and Landsat 7 images, covering the research area, were acquired for the period before and after the event. All pre-processed and processed according to each sensor. Both results, of the optical and SAR algorithms, were combined by resampling the spatial resolution of the Multispectral data to the SAR resolution. This was applied by spatial linear interpolation. A score representing the damage level in both products was assigned. The results of both algorithms, high level of damage is shown in the areas closer to the sea and shoreline. Our approach, combining SAR and multispectral images, leads to more reliable information and provides a

  14. RESOLUTION ENHANCEMENT ALGORITHM FOR SPACEBORN SAR BASED ON HANNING FUNCTION WEIGHTED SIDELOBE SUPPRESSION

    Directory of Open Access Journals (Sweden)

    C. Li

    2018-04-01

    Full Text Available Resolution and sidelobe are mutual restrict for SAR image. Usually sidelobe suppression is based on resolution reduction. This paper provide a method for resolution enchancement using sidelobe opposition speciality of hanning window and SAR image. The method can keep high resolution on the condition of sidelobe suppression. Compare to traditional method, this method can enchance 50 % resolution when sidelobe is −30dB.

  15. Robust Ground Target Detection by SAR and IR Sensor Fusion Using Adaboost-Based Feature Selection

    Directory of Open Access Journals (Sweden)

    Sungho Kim

    2016-07-01

    Full Text Available Long-range ground targets are difficult to detect in a noisy cluttered environment using either synthetic aperture radar (SAR images or infrared (IR images. SAR-based detectors can provide a high detection rate with a high false alarm rate to background scatter noise. IR-based approaches can detect hot targets but are affected strongly by the weather conditions. This paper proposes a novel target detection method by decision-level SAR and IR fusion using an Adaboost-based machine learning scheme to achieve a high detection rate and low false alarm rate. The proposed method consists of individual detection, registration, and fusion architecture. This paper presents a single framework of a SAR and IR target detection method using modified Boolean map visual theory (modBMVT and feature-selection based fusion. Previous methods applied different algorithms to detect SAR and IR targets because of the different physical image characteristics. One method that is optimized for IR target detection produces unsuccessful results in SAR target detection. This study examined the image characteristics and proposed a unified SAR and IR target detection method by inserting a median local average filter (MLAF, pre-filter and an asymmetric morphological closing filter (AMCF, post-filter into the BMVT. The original BMVT was optimized to detect small infrared targets. The proposed modBMVT can remove the thermal and scatter noise by the MLAF and detect extended targets by attaching the AMCF after the BMVT. Heterogeneous SAR and IR images were registered automatically using the proposed RANdom SAmple Region Consensus (RANSARC-based homography optimization after a brute-force correspondence search using the detected target centers and regions. The final targets were detected by feature-selection based sensor fusion using Adaboost. The proposed method showed good SAR and IR target detection performance through feature selection-based decision fusion on a synthetic

  16. Robust Ground Target Detection by SAR and IR Sensor Fusion Using Adaboost-Based Feature Selection

    Science.gov (United States)

    Kim, Sungho; Song, Woo-Jin; Kim, So-Hyun

    2016-01-01

    Long-range ground targets are difficult to detect in a noisy cluttered environment using either synthetic aperture radar (SAR) images or infrared (IR) images. SAR-based detectors can provide a high detection rate with a high false alarm rate to background scatter noise. IR-based approaches can detect hot targets but are affected strongly by the weather conditions. This paper proposes a novel target detection method by decision-level SAR and IR fusion using an Adaboost-based machine learning scheme to achieve a high detection rate and low false alarm rate. The proposed method consists of individual detection, registration, and fusion architecture. This paper presents a single framework of a SAR and IR target detection method using modified Boolean map visual theory (modBMVT) and feature-selection based fusion. Previous methods applied different algorithms to detect SAR and IR targets because of the different physical image characteristics. One method that is optimized for IR target detection produces unsuccessful results in SAR target detection. This study examined the image characteristics and proposed a unified SAR and IR target detection method by inserting a median local average filter (MLAF, pre-filter) and an asymmetric morphological closing filter (AMCF, post-filter) into the BMVT. The original BMVT was optimized to detect small infrared targets. The proposed modBMVT can remove the thermal and scatter noise by the MLAF and detect extended targets by attaching the AMCF after the BMVT. Heterogeneous SAR and IR images were registered automatically using the proposed RANdom SAmple Region Consensus (RANSARC)-based homography optimization after a brute-force correspondence search using the detected target centers and regions. The final targets were detected by feature-selection based sensor fusion using Adaboost. The proposed method showed good SAR and IR target detection performance through feature selection-based decision fusion on a synthetic database generated

  17. Virtual microscopy using whole-slide imaging as an enabler for teledermatopathology: A paired consultant validation study

    Directory of Open Access Journals (Sweden)

    Ayman Al Habeeb

    2012-01-01

    Full Text Available Background: There is a need for telemedicine, particularly in countries with large geographical areas and widely scattered low-density communities as is the case of the Canadian system, particularly if equality of care is to be achieved or the difference gap is to be narrowed between urban centers and more peripheral communities. Aims: 1. To validate teledermatopathology as a diagnostic tool in under-serviced areas; 2. To test its utilization in inflammatory and melanocytic lesions; 3. To compare the impact of 20× (0.5 μm/pixel and 40× (0.25 μm/pixel scans on the diagnostic accuracy. Materials and Methods: A total of 103 dermatopathology cases divided into three arms were evaluated by two pathologists and results compared. The first arm consisted of 79 consecutive routine cases (n=79. The second arm consisted of 12 inflammatory skin biopsies (n=12 and the third arm consisted of 12 melanocytic lesions (n=12. Diagnosis concordance was used to evaluate the first arm. Whereas concordance of preset objective findings were used to evaluate the second and third arms. Results: The diagnostic concordance rate for the first arm was 96%. The concordance rates of the objective findings for the second and third arms were 100%. The image quality was deemed superior to light microscopy for 40× scans. Conclusion: The current scanners produce high-resolution images that are adequate for evaluation of a variety of cases of different complexities.

  18. Stereo Pair, Salt Lake City, Utah

    Science.gov (United States)

    2002-01-01

    The 2002 Winter Olympics are hosted by Salt Lake City at several venues within the city, in nearby cities, and within the adjacent Wasatch Mountains. This image pair provides a stereoscopic map view of north central Utah that includes all of these Olympic sites. In the south, next to Utah Lake, Provo hosts the ice hockey competition. In the north, northeast of the Great Salt Lake, Ogden hosts curling and the nearby Snowbasin ski area hosts the downhill events. In between, southeast of the Great Salt Lake, Salt Lake City hosts the Olympic Village and the various skating events. Further east, across the Wasatch Mountains, the Park City ski resort hosts the bobsled, ski jumping, and snowboarding events. The Winter Olympics are always hosted in mountainous terrain. This view shows the dramatic landscape that makes the Salt Lake City region a world-class center for winter sports.This stereoscopic image was generated by draping a Landsat satellite image over a Shuttle Radar Topography Mission digital elevation model. Two differing perspectives were then calculated, one for each eye. They can be seen in 3-D by viewing the left image with the right eye and the right image with the left eye (cross-eyed viewing or by downloading and printing the image pair and viewing them with a stereoscope. When stereoscopically merged, the result is a vertically exaggerated view of Earth's surface in its full three dimensions.Landsat has been providing visible and infrared views of the Earth since 1972. SRTM elevation data matches the 30-meter (98-foot) resolution of most Landsat images and will substantially help in analyzing the large and growing Landsat image archive, managed by the U.S. Geological Survey (USGS).Elevation data used in this image was acquired by the Shuttle Radar Topography Mission (SRTM) aboard the Space Shuttle Endeavour, launched on Feb. 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR

  19. An image-segmentation-based framework to detect oil slicks from moving vessels in the Southern African oceans using SAR imagery

    CSIR Research Space (South Africa)

    Mdakane, Lizwe W

    2017-06-01

    Full Text Available Oil slick events caused due to bilge leakage/dumps from ships and from other anthropogenic sources pose a threat to the aquatic ecosystem and need to be monitored on a regular basis. An automatic image-segmentation-based framework to detect oil...

  20. 3D Monitoring of Buildings Using TerraSAR-X InSAR, DInSAR and PolSAR Capacities

    Directory of Open Access Journals (Sweden)

    Flora Weissgerber

    2017-09-01

    Full Text Available The rapid expansion of cities increases the need of urban remote sensing for a large scale monitoring. This paper provides greater understanding of how TerraSAR-X (TSX high-resolution abilities enable to reach the spatial precision required to monitor individual buildings, through the use of a 4 year temporal stack of 100 images over Paris (France. Three different SAR modes are investigated for this purpose. First a method involving a whole time-series is proposed to measure realistic heights of buildings. Then, we show that the small wavelength of TSX makes the interferometric products very sensitive to the ordinary building-deformation, and that daily deformation can be measured over the entire building with a centimetric accuracy, and without any a priori on the deformation evolution, even when neglecting the impact of the atmosphere. Deformations up to 4 cm were estimated for the Eiffel Tower and up to 1 cm for other lower buildings. These deformations were analyzed and validated with weather and in situ local data. Finally, four TSX polarimetric images were used to investigate geometric and dielectric properties of buildings under the deterministic framework. Despite of the resolution loss of this mode, the possibility to estimate the structural elements of a building orientations and their relative complexity in the spatial organization are demonstrated.

  1. Improved spatial mapping of rainfall events with spaceborne SAR imagery

    Science.gov (United States)

    Ulaby, F. T.; Brisco, B.; Dobson, C.

    1983-01-01

    The Seasat satellite acquired the first spaceborne synthetic-aperture radar (SAR) images of the earth's surface, in 1978, at a frequency of 1.275 GHz (L-band) in a like-polarization mode at incidence angles of 23 + or - 3 deg. Although this may not be the optimum system configuration for radar remote sensing of soil moisture, interpretation of two Seasat images of Iowa demonstrates the sensitivity of microwave backscatter to soil moisture content. In both scenes, increased image brightness, which represents more radar backscatter, can be related to previous rainfall activity in the two areas. Comparison of these images with ground-based rainfall observations illustrates the increased spatial coverage of the rainfall event that can be obtained from the satellite SAR data. These data can then be color-enhanced by a digital computer to produce aesthetically pleasing output products for the user community.

  2. Use of SPOT and ERS-1 SAR data to study the tectonic and climatic history of arid regions

    Science.gov (United States)

    Farr, Tom G.; Peltzer, Gilles F.

    1993-01-01

    In order to separate the effects of the different tectonic and climatic processes on the shapes of desert piedmonts, a modified conic equation was fitted to digital topographic data for individual alluvial fans in Death Valley (California, U.S.). The topographic data were obtained from a SPOT panchromatic stereo pair and from the airborne interferometric SAR (Synthetic Aperture Radar) (TOPSAR). The conic fit allows parameters for the epex position, slope, and radial curvature to be compared with unit age, uplift rate, and climatic conditions. Preliminary results indicate that slope flattens with age and radial curvature is concave up, but decreases with age. Work is continuing on correlation of fit residuals and apex position with fan unit age. This information will help in the determination of tectonic uplift rates and the climatic history of the western U.S. ERS-1 SAR images were used to study an area of western China where a large strike slip fault crosses a series of alluvial fans and stream valleys. Previous analysis of SPOT panchromatic images of the area shows that offsets fans and streams can be recognized. Measurement of the rate of motion of this fault will help in the overall model of deformation of the Asian tectonic plate in response to the collision of the Indian plate.

  3. A Study on PolInSAR Coherence Based Regression Analysis of Forest Biomass (BARKOT Reserve Forest India), Using RADARSAT-2 Datasets

    Science.gov (United States)

    Singh, J.; Kumar, S.; Kushwaha, S. P. S.

    2015-04-01

    Forests cover 30% of the world's land surface, and are home to around 90% of the world's flora and fauna. They serve as one of the world's largest carbon sinks, absorbing 2.4 million tons of CO2 each year and storing billions more in form of biomass. Around 6 million hectares of forest is lost or changed each year and as much as a fifth of global emissions are estimated to come from deforestation. Hence accurate estimation of forest biophysical variables is necessary as it is a key parameter in determination of forest inventories, vegetation modeling and global carbon cycle. SAR Remote sensing technique is capable of providing accurate and reliable information about forest parameters. The present work aims to explore the potential of C-band Radarsat-2 Polarimetric Interferometric Synthetic Aperture Radar (PolinSAR) technique for developing a relationship between complex coherence and forest aboveground biomass (t/ha). In order to attain our objective Radarsat-2 satellite interferometric pair of 4th March 2013(master image) and 28th March 2013(slave image) were acquired for Barkot Reserve Forest, Dehradun, India. Field inventory was done for 30 plots (31.62m x 31.62m) and tree height and stem diameter were procured for each plot which were later utilized in calculation of aboveground biomass(AGB).Work emphasizes on the application of PolinSAR coherence instead of using SAR backscatter which saturates after a certain value of biomass content. Complex coherence values for different polarization channels were computed with the help of polarimetric interferometric coherence matrix. Retrieved complex coherences were investigated individually and then regression analysis was carried with the field estimated aboveground biomass. R2 value of HV+VH complex coherence component was found to be relatively higher than other polarization channel components

  4. Empirical wind retrieval model based on SAR spectrum measurements

    Science.gov (United States)

    Panfilova, Maria; Karaev, Vladimir; Balandina, Galina; Kanevsky, Mikhail; Portabella, Marcos; Stoffelen, Ad

    The present paper considers polarimetric SAR wind vector applications. Remote-sensing measurements of the near-surface wind over the ocean are of great importance for the understanding of atmosphere-ocean interaction. In recent years investigations for wind vector retrieval using Synthetic Aperture Radar (SAR) data have been performed. In contrast with scatterometers, a SAR has a finer spatial resolution that makes it a more suitable microwave instrument to explore wind conditions in the marginal ice zones, coastal regions and lakes. The wind speed retrieval procedure from scatterometer data matches the measured radar backscattering signal with the geophysical model function (GMF). The GMF determines the radar cross section dependence on the wind speed and direction with respect to the azimuthal angle of the radar beam. Scatterometers provide information on wind speed and direction simultaneously due to the fact that each wind vector cell (WVC) is observed at several azimuth angles. However, SAR is not designed to be used as a high resolution scatterometer. In this case, each WVC is observed at only one single azimuth angle. That is why for wind vector determination additional information such as wind streak orientation over the sea surface is required. It is shown that the wind vector can be obtained using polarimetric SAR without additional information. The main idea is to analyze the spectrum of a homogeneous SAR image area instead of the backscattering normalized radar cross section. Preliminary numerical simulations revealed that SAR image spectral maxima positions depend on the wind vector. Thus the following method for wind speed retrieval is proposed. In the first stage of the algorithm, the SAR spectrum maxima are determined. This procedure is carried out to estimate the wind speed and direction with ambiguities separated by 180 degrees due to the SAR spectrum symmetry. The second stage of the algorithm allows us to select the correct wind direction

  5. Analysis of the Effect of Radio Frequency Interference on Repeat Track Airborne InSAR System

    Directory of Open Access Journals (Sweden)

    Ding Bin

    2012-03-01

    Full Text Available The SAR system operating at low frequency is susceptible to Radio Frequency Interference (RFI from television station, radio station, and some other civil electronic facilities. The presence of RFI degrades the SAR image quality, and obscures the targets in the scene. Furthermore, RFI can cause interferometric phase error in repeat track InSAR system. In order to analyze the effect of RFI on interferometric phase of InSAR, real measured RFI signal are added on cone simulated SAR echoes. The imaging and interferometric processing results of both the RFI-contaminated and raw data are given. The effect of real measured RFI signal on repeat track InSAR system is analyzed. Finally, the imaging and interferometric processing results of both with and without RFI suppressed of the P band airborne repeat track InSAR real data are presented, which demonstrates the efficiency of the RFI suppression method in terms of decreasing the interferometric phase errors caused by RFI.

  6. Satellite SAR interferometric techniques applied to emergency mapping

    Science.gov (United States)

    Stefanova Vassileva, Magdalena; Riccardi, Paolo; Lecci, Daniele; Giulio Tonolo, Fabio; Boccardo Boccardo, Piero; Chiesa, Giuliana; Angeluccetti, Irene

    2017-04-01

    monitoring maps for risk prevention and mitigation purposes. Nevertheless, multi-temporal techniques require large SAR temporal datasets, i.e. 20 and more images. Being the Sentinel-1 missions operational only since April 2014, multi-mission SAR datasets should be therefore exploited to carry out historical analysis.

  7. SAR matrices: automated extraction of information-rich SAR tables from large compound data sets.

    Science.gov (United States)

    Wassermann, Anne Mai; Haebel, Peter; Weskamp, Nils; Bajorath, Jürgen

    2012-07-23

    We introduce the SAR matrix data structure that is designed to elucidate SAR patterns produced by groups of structurally related active compounds, which are extracted from large data sets. SAR matrices are systematically generated and sorted on the basis of SAR information content. Matrix generation is computationally efficient and enables processing of large compound sets. The matrix format is reminiscent of SAR tables, and SAR patterns revealed by different categories of matrices are easily interpretable. The structural organization underlying matrix formation is more flexible than standard R-group decomposition schemes. Hence, the resulting matrices capture SAR information in a comprehensive manner.

  8. Modelling of oil spill frequency, leak sources and contamination probability in the Caspian Sea using multi-temporal SAR images 2006–2010 and stochastic modelling

    Directory of Open Access Journals (Sweden)

    Emil Bayramov

    2016-05-01

    Full Text Available The main goal of this research was to detect oil spills, to determine the oil spill frequencies and to approximate oil leak sources around the Oil Rocks Settlement, the Chilov and Pirallahi Islands in the Caspian Sea using 136 multi-temporal ENVISAT Advanced Synthetic Aperture Radar Wide Swath Medium Resolution images acquired during 2006–2010. The following oil spill frequencies were observed around the Oil Rocks Settlement, the Chilov and Pirallahi Islands: 2–10 (3471.04 sq km, 11–20 (971.66 sq km, 21–50 (692.44 sq km, 51–128 (191.38 sq km. The most critical oil leak sources with the frequency range of 41–128 were observed at the Oil Rocks Settlement. The exponential regression analysis between wind speeds and oil slick areas detected from 136 multi-temporal ENVISAT images revealed the regression coefficient equal to 63%. The regression model showed that larger oil spill areas were observed with decreasing wind speeds. The spatiotemporal patterns of currents in the Caspian Sea explained the multi-directional spatial distribution of oil spills around Oil Rocks Settlement, the Chilov and Pirallahi Islands. The linear regression analysis between detected oil spill frequencies and predicted oil contamination probability by the stochastic model showed the positive trend with the regression coefficient of 30%.

  9. Detection of moving humans in UHF wideband SAR

    Science.gov (United States)

    Sjögren, Thomas K.; Ulander, Lars M. H.; Frölind, Per-Olov; Gustavsson, Anders; Stenström, Gunnar; Jonsson, Tommy

    2014-06-01

    In this paper, experimental results for UHF wideband SAR imaging of humans on an open field and inside a forest is presented. The results show ability to detect the humans and suggest possible ways to improve the results. In the experiment, single channel wideband SAR mode of the UHF UWB system LORA developed by Swedish Defence Research Agency (FOI). The wideband SAR mode used in the experiment was from 220 to 450 MHz, thus with a fractional bandwidth of 0.68. Three humans walking and one stationary were available in the scene with one of the walking humans in the forest. The signature of the human in the forest appeared on the field, due to azimuth shift from the positive range speed component. One human on the field and the one in the forest had approximately the same speed and walking direction. The signatures in the SAR image were compared as a function of integration time based on focusing using the average relative speed of these given by GPS logs. A signal processing gain was obtained for the human in forest until approximately 15 s and 35 s for the human on the field. This difference is likely explained by uneven terrain and trees in the way, causing a non-straight walking path.

  10. Estimating soil moisture using the Danish polarimetric SAR

    DEFF Research Database (Denmark)

    Jiankang, Ji; Thomsen, A.; Skriver, Henning

    1995-01-01

    The results of applying data from the Danish polarimetric SAR (EMISAR) to estimate soil moisture for bare fields are presented. Fully calibrated C-band SAR images for hh, vv and cross polarizations have been used in this study. The measured surface roughness data showed that classical roughness a...... of surface parameters with the bilinear model, the correlation coefficient between the estimated and measured soil moisture, as well as rms height, is about 0.77. To improve the result, the local incidence angles need to be taken into account......The results of applying data from the Danish polarimetric SAR (EMISAR) to estimate soil moisture for bare fields are presented. Fully calibrated C-band SAR images for hh, vv and cross polarizations have been used in this study. The measured surface roughness data showed that classical roughness...... autocorrelation functions (Gaussian and Exponential) were not able to fit natural surfaces well. A Gauss-Exp hybrid model which agreed better with the measured data has been proposed. Theoretical surface scattering models (POM, IEM), as well as an empirical model for retrieval of soil moisture and surface rms...

  11. The best of a BAD situation: Optimising an algorithm to match course resolution SAR vessel detections to sparse AIS data

    CSIR Research Space (South Africa)

    Meyer, Rory GV

    2017-07-01

    Full Text Available The detection and classification of SAR imaged vessels at sea is a valuable ability for organisations interested in the marine environment or marine vessels. Matching the SAR detected vessels to their AIS messages allows vessels to be identified...

  12. Sea ice classification using dual polarization SAR data

    International Nuclear Information System (INIS)

    Huiying, Liu; Huadong, Guo; Lu, Zhang

    2014-01-01

    Sea ice is an indicator of climate change and also a threat to the navigation security of ships. Polarimetric SAR images are useful in the sea ice detection and classification. In this paper, backscattering coefficients and texture features derived from dual polarization SAR images are used for sea ice classification. Firstly, the HH image is recalculated based on the angular dependences of sea ice types. Then the effective gray level co-occurrence matrix (GLCM) texture features are selected for the support vector machine (SVM) classification. In the end, because sea ice concentration can provide a better separation of pancake ice from old ice, it is used to improve the SVM result. This method provides a good classification result, compared with the sea ice chart from CIS

  13. Parametric estimation of time varying baselines in airborne interferometric SAR

    DEFF Research Database (Denmark)

    Mohr, Johan Jacob; Madsen, Søren Nørvang

    1996-01-01

    A method for estimation of time varying spatial baselines in airborne interferometric synthetic aperture radar (SAR) is described. The range and azimuth distortions between two images acquired with a non-linear baseline are derived. A parametric model of the baseline is then, in a least square...... sense, estimated from image shifts obtained by cross correlation of numerous small patches throughout the image. The method has been applied to airborne EMISAR imagery from the 1995 campaign over the Storstrommen Glacier in North East Greenland conducted by the Danish Center for Remote Sensing. This has...... reduced the baseline uncertainties from several meters to the centimeter level in a 36 km scene. Though developed for airborne SAR the method can easily be adopted to satellite data...

  14. Change Detection with Polarimetric SAR Imagery for Nuclear Verification

    International Nuclear Information System (INIS)

    Canty, M.

    2015-01-01

    This paper investigates the application of multivariate statistical change detection with high-resolution polarimetric SAR imagery acquired from commercial satellite platforms for observation and verification of nuclear activities. A prototype software tool comprising a processing chain starting from single look complex (SLC) multitemporal data through to change detection maps is presented. Multivariate change detection algorithms applied to polarimetric SAR data are not common. This is because, up until recently, not many researchers or practitioners have had access to polarimetric data. However with the advent of several spaceborne polarimetric SAR instruments such as the Japanese ALOS, the Canadian Radarsat-2, the German TerraSAR-X, the Italian COSMO-SkyMed missions and the European Sentinal SAR platform, the situation has greatly improved. There is now a rich source of weather-independent satellite radar data which can be exploited for Nuclear Safeguards purposes. The method will also work for univariate data, that is, it is also applicable to scalar or single polarimetric SAR data. The change detection procedure investigated here exploits the complex Wishart distribution of dual and quad polarimetric imagery in look-averaged covariance matrix format in order to define a per-pixel change/no-change hypothesis test. It includes approximations for the probability distribution of the test statistic, and so permits quantitative significance levels to be quoted for change pixels. The method has been demonstrated previously with polarimetric images from the airborne EMISAR sensor, but is applied here for the first time to satellite platforms. In addition, an improved multivariate method is used to estimate the so-called equivalent number of looks (ENL), which is a critical parameter of the hypothesis test. (author)

  15. Beyond PSInSAR: the SQUEESAR Approach

    Science.gov (United States)

    Ferretti, A.; Novali, F.; Fumagalli, A.; Prati, C.; Rocca, F.; Rucci, A.

    2009-12-01

    , however, it was not highlighted how a reliable estimation of the coherence matrix can be carried out on distributed scatterers only, characterized by a sufficient number of looks, sharing the same statistics of the reflectivity values. In this paper, we propose how to estimate reliable coherence values by properly selecting the statistical population used in the estimation. In standard PSInSAR, the so-called amplitude stability index is used as a proxy for temporal phase coherence, here we expand the concept and we show how local amplitude statistics can be successfully exploited to detect distributed scatterers, rather than individual pixels, where reliable statistical parameters can be extracted. As a byproduct of carefully estimating coherence values, we get despeckled amplitude images and filtered interferograms. Coherence matrixes and distributed scatterers, apart from the well-known PS, then become invaluable sources of information that can be “squeezed” to estimate any InSAR parameter of interest (the SqueeSAR concept). Preliminary results on real datasets will be shown using both C-band and X-band SAR data.

  16. Co-localized or randomly distributed? Pair cross correlation of in vivo grown subgingival biofilm bacteria quantified by digital image analysis.

    Directory of Open Access Journals (Sweden)

    Claudia Schillinger

    Full Text Available The polymicrobial nature of periodontal diseases is reflected by the diversity of phylotypes detected in subgingival plaque and the finding that consortia of suspected pathogens rather than single species are associated with disease development. A number of these microorganisms have been demonstrated in vitro to interact and enhance biofilm integration, survival or even pathogenic features. To examine the in vivo relevance of these proposed interactions, we extended the spatial arrangement analysis tool of the software daime (digital image analysis in microbial ecology. This modification enabled the quantitative analysis of microbial co-localization in images of subgingival biofilm species, where the biomass was confined to fractions of the whole-image area, a situation common for medical samples. Selected representatives of the disease-associated red and orange complexes that were previously suggested to interact with each other in vitro (Tannerella forsythia with Fusobacterium nucleatum and Porphyromonas gingivalis with Prevotella intermedia were chosen for analysis and labeled with specific fluorescent probes via fluorescence in situ hybridization. Pair cross-correlation analysis of in vivo grown biofilms revealed tight clustering of F. nucleatum/periodonticum and T. forsythia at short distances (up to 6 µm with a pronounced peak at 1.5 µm. While these results confirmed previous in vitro observations for F. nucleatum and T. forsythia, random spatial distribution was detected between P. gingivalis and P. intermedia in the in vivo samples. In conclusion, we successfully employed spatial arrangement analysis on the single cell level in clinically relevant medical samples and demonstrated the utility of this approach for the in vivo validation of in vitro observations by analyzing statistically relevant numbers of different patients. More importantly, the culture-independent nature of this approach enables similar quantitative analyses for "as

  17. Dynamic changes of serum SARS-Coronavirus IgG, pulmonary function and radiography in patients recovering from SARS after hospital discharge

    Directory of Open Access Journals (Sweden)

    Chen Liangan

    2005-01-01

    Full Text Available Abstract Objective The intent of this study was to examine the recovery of individuals who had been hospitalized for severe acute respiratory syndrome (SARS in the year following their discharge from the hospital. Parameters studied included serum levels of SARS coronavirus (SARS-CoV IgG antibody, tests of lung function, and imaging data to evaluate changes in lung fibrosis. In addition, we explored the incidence of femoral head necrosis in some of the individuals recovering from SARS. Methods The subjects of this study were 383 clinically diagnosed SARS patients in Beijing, China. They were tested regularly for serum levels of SARS-CoV IgG antibody and lung function and were given chest X-rays and/or high resolution computerized tomography (HRCT examinations at the Chinese PLA General Hospital during the 12 months that followed their release from the hospital. Those individuals who were found to have lung diffusion abnormities (transfer coefficient for carbon monoxide [DLCO] Findings Of all the subjects, 81.2% (311 of 383 patients tested positive for serum SARS-CoV IgG. Of those testing positive, 27.3% (85 of 311 patients were suffering from lung diffusion abnormities (DLCO Interpretation The lack of sero-positive SARS-CoV in some individuals suggests that there may have been some misdiagnosed cases among the subjects included in this study. Of those testing positive, the serum levels of SARS-CoV IgG antibody decreased significantly during the 12 months after hospital discharge. Additionally, we found that the individuals who had lung fibrosis showed some spontaneous recovery. Finally, some of the subjects developed femoral head necrosis.

  18. FEM-based linear inverse modeling using a 3D source array to image magma chambers with free geometry. Application to InSAR data from Rabaul Caldera (PNG).

    Science.gov (United States)

    Ronchin, Erika; Masterlark, Timothy; Dawson, John; Saunders, Steve; Martí Molist, Joan

    2015-04-01

    In this study, we present a method to fully integrate a family of finite element models (FEMs) into the regularized linear inversion of InSAR data collected at Rabaul caldera (PNG) between February 2007 and December 2010. During this period the caldera experienced a long-term steady subsidence that characterized surface movement both inside the caldera and outside, on its western side. The inversion is based on an array of FEM sources in the sense that the Green's function matrix is a library of forward numerical displacement solutions generated by the sources of an array common to all FEMs. Each entry of the library is the LOS surface displacement generated by injecting a unity mass of fluid, of known density and bulk modulus, into a different source cavity of the array for each FEM. By using FEMs, we are taking advantage of their capability of including topography and heterogeneous distribution of elastic material properties. All FEMs of the family share the same mesh in which only one source is activated at the time by removing the corresponding elements and applying the unity fluid flux. The domain therefore only needs to be discretized once. This precludes remeshing for each activated source, thus reducing computational requirements, often a downside of FEM-based inversions. Without imposing an a-priori source, the method allows us to identify, from a least-squares standpoint, a complex distribution of fluid flux (or change in pressure) with a 3D free geometry within the source array, as dictated by the data. The results of applying the proposed inversion to Rabaul InSAR data show a shallow magmatic system under the caldera made of two interconnected lobes located at the two opposite sides of the caldera. These lobes could be consistent with feeding reservoirs of the ongoing Tavuvur volcano eruption of andesitic products, on the eastern side, and of the past Vulcan volcano eruptions of more evolved materials, on the western side. The interconnection and

  19. Polarimetric scattering and SAR information retrieval

    CERN Document Server

    Jin, Ya-Qiu

    2013-01-01

    Taking an innovative look at Synthetic Aperture Radar (SAR), this practical reference fully covers new developments in SAR and its various methodologies and enables readers to interpret SAR imagery An essential reference on polarimetric Synthetic Aperture Radar (SAR), this book uses scattering theory and radiative transfer theory as a basis for its treatment of topics. It is organized to include theoretical scattering models and SAR data analysis techniques, and presents cutting-edge research on theoretical modelling of terrain surface. The book includes quantitative app

  20. Stalking SARS: CDC at Work

    Centers for Disease Control (CDC) Podcasts

    2014-05-22

    In this podcast for kids, the Kidtastics talk about the SARS outbreak and how CDC worked to solve the mystery.  Created: 5/22/2014 by National Center for Immunization and Respiratory Diseases (NCIRD).   Date Released: 5/22/2014.

  1. SARS – virus jumps species

    Indian Academy of Sciences (India)

    SARS – virus jumps species. Coronavirus reshuffles genes; Rotteir et al, Rotterdam showed the virus to jump from cats to mouse cells after single gene mutation ? Human disease due to virus jumping from wild or domestic animals; Present favourite animal - the cat; - edible or domestic.

  2. Modeling the Structure of SARS 3a Transmembrane Protein Using a ...

    Indian Academy of Sciences (India)

    Modeling the structure of SARS 3a Transmembrane protein using a ... for the implicit membrane molecular dynamics (MD) simulations. ... The coordinates during the simulation were saved every 500 steps, and were used for analysis. ... the pair list for calculation of nonbonded interactions being updated after every 10 steps.

  3. Research on the method of extracting DEM based on GBInSAR

    Science.gov (United States)

    Yue, Jianping; Yue, Shun; Qiu, Zhiwei; Wang, Xueqin; Guo, Leping

    2016-05-01

    Precise topographical information has a very important role in geology, hydrology, natural resources survey and deformation monitoring. The extracting DEM technology based on synthetic aperture radar interferometry (InSAR) obtains the three-dimensional elevation of the target area through the phase information of the radar image data. The technology has large-scale, high-precision, all-weather features. By changing track in the location of the ground radar system up and down, it can form spatial baseline. Then we can achieve the DEM of the target area by acquiring image data from different angles. Three-dimensional laser scanning technology can quickly, efficiently and accurately obtain DEM of target area, which can verify the accuracy of DEM extracted by GBInSAR. But research on GBInSAR in extracting DEM of the target area is a little. For lack of theory and lower accuracy problems in extracting DEM based on GBInSAR now, this article conducted research and analysis on its principle deeply. The article extracted the DEM of the target area, combined with GBInSAR data. Then it compared the DEM obtained by GBInSAR with the DEM obtained by three-dimensional laser scan data and made statistical analysis and normal distribution test. The results showed the DEM obtained by GBInSAR was broadly consistent with the DEM obtained by three-dimensional laser scanning. And its accuracy is high. The difference of both DEM approximately obeys normal distribution. It indicated that extracting the DEM of target area based on GBInSAR is feasible and provided the foundation for the promotion and application of GBInSAR.

  4. SAR Target Recognition Using the Multi-aspect-aware Bidirectional LSTM Recurrent Neural Networks

    OpenAIRE

    Zhang, Fan; Hu, Chen; Yin, Qiang; Li, Wei; Li, Hengchao; Hong, Wen

    2017-01-01

    The outstanding pattern recognition performance of deep learning brings new vitality to the synthetic aperture radar (SAR) automatic target recognition (ATR). However, there is a limitation in current deep learning based ATR solution that each learning process only handle one SAR image, namely learning the static scattering information, while missing the space-varying information. It is obvious that multi-aspect joint recognition introduced space-varying scattering information should improve ...

  5. Longitudinal Assessment of Renal Perfusion and Oxygenation in Transplant Donor-Recipient Pairs Using Arterial Spin Labeling and Blood Oxygen Level-Dependent Magnetic Resonance Imaging.

    Science.gov (United States)

    Niles, David J; Artz, Nathan S; Djamali, Arjang; Sadowski, Elizabeth A; Grist, Thomas M; Fain, Sean B

    2016-02-01

    The aims of this study were to assess renal function in kidney transplant recipients and their respective donors over 2 years using arterial spin labeling (ASL) and blood oxygen level-dependent (BOLD) magnetic resonance imaging (MRI) and to prospectively evaluate the effect of losartan on functional MRI measures in recipients. The study included 15 matched pairs of renal transplant donors and recipients. Arterial spin labeling and BOLD MRI of the kidneys were performed on donors before transplant surgery (baseline) and on both donors and recipients at 3 months, 1 year, and 2 years after transplant. After 3 months, 7 of the 15 recipients were prescribed 25 to 50 mg/d losartan for the remainder of the study. A linear mixed-effects model was used to evaluate perfusion, R2*, estimated glomerular filtration rate, and fractional excretion of sodium for changes across time or associated with losartan treatment. In donors, cortical perfusion in the remaining kidney decreased by 50 ± 19 mL/min per 100 g (11.8%) between baseline and 2 years (P donors and to 14.6 ± 4.3 mL/min per 1.73 m (33.3%; P donors, and they indicate a potentially beneficial effect of losartan in recipients.

  6. Rapid Flood Map Generation from Spaceborne SAR Observations

    Science.gov (United States)

    Yun, S. H.; Liang, C.; Manipon, G.; Jung, J.; Gurrola, E. M.; Owen, S. E.; Hua, H.; Agram, P. S.; Webb, F.; Sacco, G. F.; Rosen, P. A.; Simons, M.

    2016-12-01

    The Advanced Rapid Imaging and Analysis (ARIA) team has responded to the January 2016 US Midwest Floods along the Mississippi River. Daily teleconferences with FEMA, NOAA, NGA, and USGS, provided information on precipitation and flood crest migration, based on which we coordinated with the Japanese Aerospace Exploration Agency (JAXA) through NASA headquarters for JAXA's ALOS-2 timely tasking over two paths. We produced flood extent maps using ALOS-2 SM3 mode Level 1.5 data that were provided through the International Charter and stored at the US Geological Survey's Hazards Data Distribution System (HDDS) archive. On January 6, the first four frames (70 km x 240 km) were acquired, which included the City of Memphis. We registered post-event SAR images to pre-event images, applied radiometric calibration, took a logarithm of the ratio of the two images. Two thresholds were applied to represent flooded areas that became open water (colored in blue) and flooded areas with tall vegetation (colored in red). The second path was acquired on January 11 further down along the Mississippi River. Seven frames (70 km x 420 km) were acquired and flood maps were created in the similar fashion. The maps were delivered to the FEMA as well as posted on ARIA's public website. The FEMA stated that SAR provides inspection priority for optical imagery and ground response. The ALOS-2 data and the products have been a very important source of information during this response as the flood crest has moved down stream. The SAR data continue to be an important resource during times when optical observations are often not useful. In close collaboration with FEMA and USGS, we also work on other flood events including June 2016 China Floods using European Space Agency's (ESA's) Sentienl-1 data, to produce flood extent maps and identify algorithmic needs and ARIA system's requirements to automate and rapidly produce and deliver flood maps for future events. With the addition of Sentinel-1B

  7. Detection of Oil near Shorelines during the Deepwater Horizon Oil Spill Using Synthetic Aperture Radar (SAR

    Directory of Open Access Journals (Sweden)

    Oscar Garcia-Pineda

    2017-06-01

    Full Text Available During any marine oil spill, floating oil slicks that reach shorelines threaten a wide array of coastal habitats. To assess the presence of oil near shorelines during the Deepwater Horizon (DWH oil spill, we scanned the library of Synthetic Aperture Radar (SAR imagery collected during the event to determine which images intersected shorelines and appeared to contain oil. In total, 715 SAR images taken during the DWH spill were analyzed and processed, with 188 of the images clearly showing oil. Of these, 156 SAR images showed oil within 10 km of the shoreline with appropriate weather conditions for the detection of oil on SAR data. We found detectable oil in SAR images within 10 km of the shoreline from west Louisiana to west Florida, including near beaches, marshes, and islands. The high number of SAR images collected in Barataria Bay, Louisiana in 2010 allowed for the creation of a nearshore oiling persistence map. This analysis shows that, in some areas inside Barataria Bay, floating oil was detected on as many as 29 different days in 2010. The nearshore areas with persistent floating oil corresponded well with areas where ground survey crews discovered heavy shoreline oiling. We conclude that satellite-based SAR imagery can detect oil slicks near shorelines, even in sheltered areas. These data can help assess potential shoreline oil exposure without requiring boats or aircraft. This method can be particularly helpful when shoreline assessment crews are hampered by difficult access or, in the case of DWH, a particularly large spatial and temporal spill extent.

  8. MM wave SAR sensor design: Concept for an airborne low level reconnaissance system

    Science.gov (United States)

    Boesswetter, C.

    1986-07-01

    The basic system design considerations for a high resolution SAR system operating at 35 GHz or 94 GHz are given. First it is shown that only the focussed SAR concept in the side looking configuration matches the requirements and constraints. After definition of illumination geometry and airborne modes the fundamental SAR parameters in range and azimuth direction are derived. A review of the performance parameters of some critical mm wave components (coherent pulsed transmitters, front ends, antennas) establish the basis for further analysis. The power and contrast budget in the processed SAR image shows the feasibility of a 35/94 GHz SAR sensor design. The discussion of the resulting system parameters points out that this unusual system design implies both benefits and new risk areas. One of the benefits besides the compactness of sensor hardware turns out to be the short synthetic aperture length simplifying the design of the digital SAR processor, preferably operating in real time. A possible architecture based on current state-of-the-art correlator hardware is shown. One of the potential risk areas in achieving high resolution SAR imagery in the mm wave frequency band is motion compensation. However, it is shown that the short range and short synthetic aperture lengths ease the problem so that correction of motion induced phase errors and thus focussed synthetic aperture processing should be possible.

  9. Multi-Frequency Polarimetric SAR Classification Based on Riemannian Manifold and Simultaneous Sparse Representation

    Directory of Open Access Journals (Sweden)

    Fan Yang

    2015-07-01

    Full Text Available Normally, polarimetric SAR classification is a high-dimensional nonlinear mapping problem. In the realm of pattern recognition, sparse representation is a very efficacious and powerful approach. As classical descriptors of polarimetric SAR, covariance and coherency matrices are Hermitian semidefinite and form a Riemannian manifold. Conventional Euclidean metrics are not suitable for a Riemannian manifold, and hence, normal sparse representation classification cannot be applied to polarimetric SAR directly. This paper proposes a new land cover classification approach for polarimetric SAR. There are two principal novelties in this paper. First, a Stein kernel on a Riemannian manifold instead of Euclidean metrics, combined with sparse representation, is employed for polarimetric SAR land cover classification. This approach is named Stein-sparse representation-based classification (SRC. Second, using simultaneous sparse representation and reasonable assumptions of the correlation of representation among different frequency bands, Stein-SRC is generalized to simultaneous Stein-SRC for multi-frequency polarimetric SAR classification. These classifiers are assessed using polarimetric SAR images from the Airborne Synthetic Aperture Radar (AIRSAR sensor of the Jet Propulsion Laboratory (JPL and the Electromagnetics Institute Synthetic Aperture Radar (EMISAR sensor of the Technical University of Denmark (DTU. Experiments on single-band and multi-band data both show that these approaches acquire more accurate classification results in comparison to many conventional and advanced classifiers.

  10. Recent Advances In Radar Polarimetry And Polarimetric SAR Interferometry

    Science.gov (United States)

    2007-02-01

    progressing from “Classical X- Ray -Shadow-graphy” toward “functional Magnetic Resonant Imaging (fMRI)”. Classical Amplitude-Only Radar & SAR, and “Scalar...Chipman, R. A, and J. W. Morris, eds. 1990, Polarimetry: Radar, Infrared, Visible, Ultraviolet, X- Ray , Proc. SPIE-1317 ( also see SPIE Proc. 891... Oldenburg Verlag, Munich 1999, 88 p. [173] Mott, H. and W-M. Boerner, 1992, editors, “Radar Polarimetry, SPIE’s Annual Mtg., Polarimetry Conference

  11. Generation and assessment of turntable SAR data for the support of ATR development

    Science.gov (United States)

    Cohen, Marvin N.; Showman, Gregory A.; Sangston, K. James; Sylvester, Vincent B.; Gostin, Lamar; Scheer, C. Ruby

    1998-10-01

    Inverse synthetic aperture radar (ISAR) imaging on a turntable-tower test range permits convenient generation of high resolution two-dimensional images of radar targets under controlled conditions for testing SAR image processing and for supporting automatic target recognition (ATR) algorithm development. However, turntable ISAR images are often obtained under near-field geometries and hence may suffer geometric distortions not present in airborne SAR images. In this paper, turntable data collected at Georgia Tech's Electromagnetic Test Facility are used to begin to assess the utility of two- dimensional ISAR imaging algorithms in forming images to support ATR development. The imaging algorithms considered include a simple 2D discrete Fourier transform (DFT), a 2-D DFT with geometric correction based on image domain resampling, and a computationally-intensive geometric matched filter solution. Images formed with the various algorithms are used to develop ATR templates, which are then compared with an eye toward utilization in an ATR algorithm.

  12. Emergency product generation for disaster management using RISAT and DMSAR quick look SAR processors

    Science.gov (United States)

    Desai, Nilesh; Sharma, Ritesh; Kumar, Saravana; Misra, Tapan; Gujraty, Virendra; Rana, SurinderSingh

    2006-12-01

    Since last few years, ISRO has embarked upon the development of two complex Synthetic Aperture Radar (SAR) missions, viz. Spaceborne Radar Imaging Satellite (RISAT) and Airborne SAR for Disaster Mangement (DMSAR), as a capacity building measure under country's Disaster Management Support (DMS) Program, for estimating the extent of damage over large areas (~75 Km) and also assess the effectiveness of the relief measures undertaken during natural disasters such as cyclones, epidemics, earthquakes, floods and landslides, forest fires, crop diseases etc. Synthetic Aperture Radar (SAR) has an unique role to play in mapping and monitoring of large areas affected by natural disasters especially floods, owing to its unique capability to see through clouds as well as all-weather imaging capability. The generation of SAR images with quick turn around time is very essential to meet the above DMS objectives. Thus the development of SAR Processors, for these two SAR systems poses considerable challenges and design efforts. Considering the growing user demand and inevitable necessity for a full-fledged high throughput processor, to process SAR data and generate image in real or near-real time, the design and development of a generic SAR Processor has been taken up and evolved, which will meet the SAR processing requirements for both Airborne and Spaceborne SAR systems. This hardware SAR processor is being built, to the extent possible, using only Commercial-Off-The-Shelf (COTS) DSP and other hardware plug-in modules on a Compact PCI (cPCI) platform. Thus, the major thrust has been on working out Multi-processor Digital Signal Processor (DSP) architecture and algorithm development and optimization rather than hardware design and fabrication. For DMSAR, this generic SAR Processor operates as a Quick Look SAR Processor (QLP) on-board the aircraft to produce real time full swath DMSAR images and as a ground based Near-Real Time high precision full swath Processor (NRTP). It will

  13. SAR Agriculture Rice Production Estimation (SARPE)

    Science.gov (United States)

    Raimadoya, M.

    2013-12-01

    The study of SAR Agriculture Rice Production Estimation (SARPE) was held in Indonesia on 2012, as part of Asia-Rice Crop Estimation & Monitoring (Asia-RiCE), which is a component for the GEO Global Agricultural Monitoring (GEOGLAM) initiative. The study was expected to give a breakthrough result, by using radar technology and paradigm shift of the standard production estimation system from list frame to area frame approach. This initial product estimation system is expected to be refined (fine tuning) in 2013, by participating as part of Technical Demonstration Site (Phase -1A) of Asia-RICE. The implementation period of this initial study was from the date of March 12 to December 10, 2012. The implementation of the study was done by following the approach of the BIMAS-21 framework, which has been developed since 2008. The results of this study can be briefly divided into two major components, namely: Rice-field Baseline Mapping (PESBAK - Peta Sawah Baku) and Crop Growth Monitoring. Rice-fields were derived from the mapping results of the Ministry of Agriculture (Kemtan), and validated through Student Extension Campaign of the Faculty of Agriculture, Bogor Agricultural University (IPB). While for the crop growth, it was derived from the results of image analysis process. The analysis was done, either on radar/Radarsat-2 (medium resolution) or optical/ MODIS (low resolution), based on the Planting Calendar (KATAM) of Kemtan. In this case, the planting season II/2012-2013 of rice production centers in West Java Province (Karawang, Subang and Indramayu counties). The selection of crop season and county were entirely dependent on the quality of the available PESBAK and procurement process of radar imagery. The PESBAK is still in the form of block instead of fields, so it can not be directly utilized in this study. Efforts to improve the PESBAK can not be optimal because the provided satellite image (ECW format) is not the original one. While the procurement process of

  14. Monitoring the Sumatra volcanic arc with InSAR

    Science.gov (United States)

    Chaussard, E.; Hong, S.; Amelung, F.

    2009-12-01

    The Sumatra volcanic arc is the result of the subduction of the Indo-Australian plate under the Sunda plate. The arc consists of 35 known volcanic centers, subaerials on the west coast of the Sumatra and Andaman Islands and submarines between these islands. Six active centers are known in the Sumatra volcanic arc. Surface deformation in volcanic areas usually indicates movement of magma or hydrothermal fluids at depth. Here we present a satellite-based Interferometric synthetic aperture radar (InSAR) survey of the Sumatra volcanic arc using ALOS data. Spanning the years 2007 to beginning of 2009, our survey reveals the background level of activity of the 35 volcanoes. We processed data from 40 tracks (24 in descending orbit and 16 in ascending orbit) to cover the whole Sumatra arc. In the first results five of these six known active centers show no sign of activity: Dempo, Kaba, Marapi, Talang and Peuet. The remaining active volcano, Mount Kerinci, has an ambiguous signal. We used pair-wise logic and InSAR time series of the available ALOS data to determine if the observed InSAR signal is caused by ground deformation or by atmospheric delays.

  15. SARS and Population Health Technology

    OpenAIRE

    Eysenbach, Gunther

    2003-01-01

    The recent global outbreak of SARS (severe acute respiratory syndrome) provides an opportunity to study the use and impact of public health informatics and population health technology to detect and fight a global epidemic. Population health technology is the umbrella term for technology applications that have a population focus and the potential to improve public health. This includes the Internet, but also other technologies such as wireless devices, mobile phones, smart appliances, or smar...

  16. Improving the extraction of crisis information in the context of flood, fire, and landslide rapid mapping using SAR and optical remote sensing data

    Science.gov (United States)

    Martinis, Sandro; Clandillon, Stephen; Twele, André; Huber, Claire; Plank, Simon; Maxant, Jérôme; Cao, Wenxi; Caspard, Mathilde; May, Stéphane

    2016-04-01

    Optical and radar satellite remote sensing have proven to provide essential crisis information in case of natural disasters, humanitarian relief activities and civil security issues in a growing number of cases through mechanisms such as the Copernicus Emergency Management Service (EMS) of the European Commission or the International Charter 'Space and Major Disasters'. The aforementioned programs and initiatives make use of satellite-based rapid mapping services aimed at delivering reliable and accurate crisis information after natural hazards. Although these services are increasingly operational, they need to be continuously updated and improved through research and development (R&D) activities. The principal objective of ASAPTERRA (Advancing SAR and Optical Methods for Rapid Mapping), the ESA-funded R&D project being described here, is to improve, automate and, hence, speed-up geo-information extraction procedures in the context of natural hazards response. This is performed through the development, implementation, testing and validation of novel image processing methods using optical and Synthetic Aperture Radar (SAR) data. The methods are mainly developed based on data of the German radar satellites TerraSAR-X and TanDEM-X, the French satellite missions Pléiades-1A/1B as well as the ESA missions Sentinel-1/2 with the aim to better characterize the potential and limitations of these sensors and their synergy. The resulting algorithms and techniques are evaluated in real case applications during rapid mapping activities. The project is focussed on three types of natural hazards: floods, landslides and fires. Within this presentation an overview of the main methodological developments in each topic is given and demonstrated in selected test areas. The following developments are presented in the context of flood mapping: a fully automated Sentinel-1 based processing chain for detecting open flood surfaces, a method for the improved detection of flooded vegetation

  17. SARS-related perceptions in Hong Kong.

    Science.gov (United States)

    Lau, Joseph T F; Yang, Xilin; Pang, Ellie; Tsui, H Y; Wong, Eric; Wing, Yun Kwok

    2005-03-01

    To understand different aspects of community responses related to severe acute respiratory syndrome (SARS), 2 population-based, random telephone surveys were conducted in June 2003 and January 2004 in Hong Kong. More than 70% of respondents would avoid visiting hospitals or mainland China to avoid contracting SARS. Most respondents believed that SARS could be transmitted through droplets, fomites, sewage, and animals. More than 90% believed that public health measures were efficacious means of prevention; 40.4% believed that SARS would resurge in Hong Kong; and approximately equals 70% would then wear masks in public places. High percentages of respondents felt helpless, horrified, and apprehensive because of SARS. Approximately 16% showed signs of posttraumatic symptoms, and approximately equals 40% perceived increased stress in family or work settings. The general public in Hong Kong has been very vigilant about SARS but needs to be more psychologically prepared to face a resurgence of the epidemic.

  18. A Multi-Polarization Study on Ship Detection over X-Band Full-Resolution COSMO SkyMed SAR Data

    Science.gov (United States)

    Migliaccio, Maurizio; Nunziata, Ferdinando; Sorrentio, Antonio; Ferrara, Giuseppe

    2011-03-01

    Ship detection over marine Synthetic Aperture Radar (SAR) images is a key application for global monitoring for environment and security. In this paper, a physically-based filter which exploits a proper combination of GK parameters is conceived to unambiguously observe ships over sea surface in HV-polarized Single Look Complex (SLC) SAR data. Experiments accomplished over a meaningful set of X-band SLC CosmoSkyMed StripMap SAR data confirm the physical soundness of the proposed approach.

  19. Helmand river hydrologic studies using ALOS PALSAR InSAR and ENVISAT altimetry

    Science.gov (United States)

    Lu, Zhong; Kim, J.-W.; Lee, H.; Shum, C.K.; Duan, J.; Ibaraki, M.; Akyilmaz, O.; Read, C.-H.

    2009-01-01

    The Helmand River wetland represents the only fresh-water resource in southern Afghanistan and one of the least mapped water basins in the world. The relatively narrow wetland consists of mostly marshes surrounded by dry lands. In this study, we demonstrate the use of the Advanced Land Observing Satellite (ALOS) Phased Array type L-band Synthetic Aperture Radar (PALSAR) Interferometric SAR (InSAR) to detect the changes of the Helmand River wetland water level. InSAR images are combined with the geocentric water level measurements from the retracked high-rate (18-Hz) Environmental Satellite (Envisat) radar altimetry to construct absolute water level changes over the marshes. It is demonstrated that the integration of the altimeter and InSAR can provide spatio-temporal measurements of water level variation over the Helmand River marshes where in situ measurements are absent. ?? Taylor & Francis Group, LLC.

  20. SAR data for the analysis of forest features: current Brazilian experiences

    Directory of Open Access Journals (Sweden)

    Fábio Guimarães Gonçalves

    2007-06-01

    Full Text Available This article presents some applications of airborne polarimetric and/or interferometric microwave data to improve the knowledge of forest structures. Three airborne SAR (Synthetic Aperture Radar experiments were done in the Amazon tropical forest: (a to study the spatial distribution of very large trees (VLTs in the primary forest using local maximum filtering and a series of Markov processes; (b to model the estimation of biomass variations in primary and secondary forests; (c to analyze the retrieval timber volume over selective logging areas. Another experiment (d was to investigate the relation among SAR data and the volumetric configuration in stands of Eucalyptus sp done by an airborne SAR imaging mission in SE-Brazil. To perform the objectives (b, (c and (d we carry out regression techniques, using variables got from multipolarimetric and/or interferometric SAR attributes and biophysical parameters from the forest cover. All data from the experiments were calibrated radiometrically to extract information during digital processing, besides an exhaustive field survey which was done simultaneously to SAR imaging, to know the physiognomy/structure of forest typology and to support the models produced for each case. The results of this series of experiments show advances at the techniques to treat SAR data, focusing on models of stand architecture and forest stock density. This will be helpful to increase the regional inventory and surveying procedures of forest conversion in the Brazilian territory in the near future.

  1. SAR data for the analysis of forest features: current Brazilian experiences

    Directory of Open Access Journals (Sweden)

    Fábio Guimarães Gonçalves

    2006-12-01

    Full Text Available This article presents some applications of airborne polarimetric and/or interferometric microwave data to improve the knowledge of forest structures. Three airborne SAR (Synthetic Aperture Radar experiments were done in the Amazon tropical forest: (a to study the spatial distribution of very large trees (VLTs in the primary forest using local maximum filtering and a series of Markov processes; (b to model the estimation of biomass variations in primary and secondary forests; (c to analyze the retrieval of timber volume over selective logging areas. Another experiment (d was to investigate the relation among SAR data and the volumetric configuration in stands of Eucalyptus sp. done by an airborne SAR imaging mission in SE-Brazil. To perform the objectives (b, (c and (d we carry out regression techniques, using variables got from multipolarimetric and/or interferometric SAR attributes and biophysical parameters from the forest cover. All data from the experiments were calibrated radiometrically to extract information during digital processing, besides an exhaustive field survey which was done simultaneously to SAR imaging, to know the physiognomy/structure of forest typology and to support the models produced for each case. The results of this series of experiments show advances at the techniques to treat SAR data, focusing on models of stand architecture and forest stock density. This will be helpful to increase the regional inventory and surveying procedures of forest conversion in the Brazilian territory in the near future.

  2. Urban Monitoring Based on SENTINEL-1 Data Using Permanent Scatterer Interferometry and SAR Tomography

    Science.gov (United States)

    Crosetto, M.; Budillon, A.; Johnsy, A.; Schirinzi, G.; Devanthéry, N.; Monserrat, O.; Cuevas-González, M.

    2018-04-01

    A lot of research and development has been devoted to the exploitation of satellite SAR images for deformation measurement and monitoring purposes since Differential Interferometric Synthetic Apertura Radar (InSAR) was first described in 1989. In this work, we consider two main classes of advanced DInSAR techniques: Persistent Scatterer Interferometry and Tomographic SAR. Both techniques make use of multiple SAR images acquired over the same site and advanced procedures to separate the deformation component from the other phase components, such as the residual topographic component, the atmospheric component, the thermal expansion component and th