WorldWideScience

Sample records for sanitary landfill gas

  1. Research, development and demonstration in the design of sanitary landfill to optimize the generation and capture of compressible gas

    Science.gov (United States)

    Nosanov, M. E.; Teeple, F. E.; Buesch, S. C.

    1982-02-01

    The influences of selected factors on the generation and recovery of methane gas from sanitary landfills were investigated. The factors included encapsulation, shredding, air classifying, moisture, and pH. Facilities consisting of six model sanitary landfill cells, each with a capacity of approximately 450 cubic yards of municipal waste, and auxiliary subsystems were constructed. Municipal waste in each cell is contained in a 30-mil thick polyvinly chloride plastic sheeting forming a virtually gas-tight envelope. Two cells were filled with as-collected urban waste, two with shredded waste, and two with shredded and air classified waste, constituting three pairs of cells. One of each pair is a control cell with the other used as an experimental variable. Systems were provided for adding measured amounts of water, removing and recirculating leachate, and for extracting gas and measuring gas flow. During testing, gas production and internal cell characteristics were measured to determine the effects of mechanical processing, moisture content, and leachate pH.

  2. Development of the utilization of combustible gas produced in existing sanitary landfills: Effects of corrosion at the Mountain View, California landfill gas-recovery plant

    Science.gov (United States)

    1982-10-01

    Corrosion of equipment has occurred at the Mountain View, California Landfill Gas Recovery Plant. Corrosion is most severe on compressor valve seats and cages, tubes in the first and second stages of the interstage gas cooler, and first and second stage piping and liquid separators. Corrosion occurs because the raw landfill gas contains water, carbon dioxide, and oxygen. Some corrosion may also result from trace concentrations of organic acids present in the landfill gas. Corrosion of the third stage compressor, cooler, and piping does not occur because the gas is dehydrated immediately prior to the third stage. Controlling corrosion is necessary to maintain the mechanical integrity of the plant and to keep the cost of the gas competitive with natural gas. Attempts to reduce corrosion rates by injecting a chemical inhibitor have proved only partially successful. Recommendations for dealing with corrosion include earlier dehydration of the gas, selection of special alloys in critical locations, chemical inhibition, and regular plant inspections.

  3. Landfill gas

    Energy Technology Data Exchange (ETDEWEB)

    Willumsen, H. (Crone and Koch, Viborg (Denmark))

    1990-08-01

    In most landfills, the refuse deposit usually has a high content of organic matter consisting of a mixture of household, industrial and garden waste. Immediately after the refuse has been placed in the landfill, aerobic decomposition of the organic waste begins. Once the oxygen has been exhausted, anaerobic decomposition begins. 'Biogas' is produced which has a methane content of approximately 50% and can be used as a fuel. The exploitation of landfill gas for energy purposes was initiated in the USA around 1975 and later in Europe. A landfill gas plant consists of a recovery system and a production system. A recovery system can consist of vertical perforated pipe wells, horizontal perforated pipes or ditches, or membrane covers to collect the generated gas. Under normal conditions it will not be necessary to process the gas except for the removal of water and other impurities (e.g. solid particles) if the gas is to be used in a boiler or engine. In the USA most often only power is produced, whereas in Europe the waste heat is normally exploited, making the plant function as a combined power and heating plant. It is also possible to upgrade the landfill gas to a methane content of nearly 100, after which it can be distributed with natural gas. There are several such plants in the USA. 8 refs., 6 figs., 6 tabs.

  4. Methods of Sensing Land Pollution from Sanitary Landfills

    Science.gov (United States)

    Nosanov, Myron Ellis; Bowerman, Frank R.

    1971-01-01

    Major cities are congested and large sites suitable for landfill development are limited. Methane and other gases are produced at most sanitary landfills and dumps. These gases may migrate horizontally and vertically and have caused fatalities. Monitoring these gases provides data bases for design and construction of safe buildings on and adjacent to landfills. Methods of monitoring include: (1) a portable combustible gas indicator; and (2) glass flasks valved to allow simultaneous exhaust of the flask and aspiration of the sample into the flask. Samples are drawn through tubing from probes as deep as twenty-five feet below the surface.

  5. Development of the utilization of combustible gas produced in existing sanitary landfills: Investigation of effects of air inclusion

    Science.gov (United States)

    1983-01-01

    The effects of nitrogen and oxygen on landfill gas operations are discussed. A combustible gas mixture composed of methane and carbon dioxide is generated in municipal solid waste landfills. A consequence of the collection of this fuel gas is the inclusion of some air in the collected product. The effects include increased collected and purification costs, reduction in the quality of the fuel gas produced, corrosion, explosion hazards, and interference with odorant systems. The scope of such effects was determined by using landfill data of a gas recovery site as a basis. Useful supplemental fuel gas may be recovered despite the inclusion of air. Recommendations are made for establishing limits for nitrogen and oxygen content and minimizing the costs associated with their presence.

  6. Landfill gas from environment to energy

    Energy Technology Data Exchange (ETDEWEB)

    Gendebien, A.; Pauwels, M.; Constant, M.; Ledrut-Damanet, M.J.; Nyns, E.J. [Louvain Univ. (Belgium); Fabry, R.; Ferrero, G.L. [Commission of the European Communities, Brussels (Belgium); Willumsen, H.C.; Butson, J.

    1992-11-01

    Landfill gas is an alternative source of energy which can be commercially exploited wherever municipal solid wastes are disposed of in sanitary landfills. In this context, it was decided to launch a comprehensive study on the subject of energy valorization of landfill gas. The main topics dealt with in the study, which is supported by a comprehensive literature survey and six detailed case-studies, include; (i) the environmental impact of landfill gas, (ii) the process of landfill gas genesis and the technology of landfill gas control by its exploitation, (iii) the monitoring of landfill gas emissions, (iv) the policies and legal aspects of landfill gas in the European Community and in the world, (v) the estimation of landfill gas potentials and economics of landfill gas control and exploitation, (vi) the status of landfill gas exploitation in the European Community and in the world. (authors). refs., figs., tabs.

  7. Ammonia nitrogen desorption from sanitary landfill leachate in filling towers

    OpenAIRE

    Leite,Valderi D.; Barros,Aldre J. M.; Lopes,Wilton S.; Sousa,José T. de

    2014-01-01

    Sanitary landfill leachates present high concentrations of carbonaceous and nitrogenous materials. The crucial point is that carbonaceous materials are of difficult biodegradation, what compromises the performance of biological treatment processes, while nitrogenous materials, such as ammonia nitrogen, probably preclude the use of biological treatments. Therefore, the aim of this work was to study the desorption process of ammonia nitrogen from sanitary landfill leachate in filling towers. De...

  8. Electrochemical treatment of leachates from sanitary landfills

    Directory of Open Access Journals (Sweden)

    ANNABEL FERNANDES

    2013-06-01

    Full Text Available The electrochemical treatment of leachate samples from a Portuguese intermunicipal sanitary landfill was carried out using anodic oxidation. The treatment was performed in a pilot plant that possesses an electrochemical cell, with boron-doped diamond electrodes, working in batch mode with recirculation. The influence of the applied current density and the flow rate on the performance of the electrochemical oxidation was investigated. Current density was decreased by steps, during the degradation, in order to study this effect on the efficiency of the process. For the assays run at equal flow rate and initial current intensity, chemical oxygen demand (COD removal seems to depend mainly on the charge passed and the variation of the current density during the anodic oxidation process can reduce the energetic costs. An increase in the recirculation flow rate leads to an increase in the organic load removal rate and a consequent decrease in the energetic costs, but it decreases the nitrogen removal rate. Also, the bias between dissolved organic carbon and COD removals increases with flow rate, indicating that an increase in recirculation flow rate decreases the mineralization index.

  9. Sanitary Landfill Groundwater Monitoring Report. Second Quarter 1995

    Energy Technology Data Exchange (ETDEWEB)

    Chase, J.A.

    1995-08-01

    This report contains analytical data for samples taken during second quarter 1995 from wells of the LFW series located at the Sanitary Landfill at the Savannah River Site (SRS). The data are submitted in reference to the Sanitary landfill Operating Permit (DWP-087A). The report presents monitoring results that equaled or exceeded the Safe Drinking Water Act final Primary Water Standards (PDWS) or screening levels, established by the US Environmental Protection Agency (Appendix A), the South Carolina final Primary Drinking Water Standard for lead (Appendix A), or the SRS flagging criteria (Appendix B).

  10. Sanitary Landfill groundwater monitoring report. First quarter 1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-05-01

    This report contains analytical data for samples taken during first quarter 1993 from wells of the LFW series located at the Sanitary Landfill at the Savannah River Site. The data are submitted in reference to the Sanitary Landfill Operating Permit (DWP-087A). The report presents monitoring results that equaled or exceeded the Safe Drinking Water Act final Primary Drinking Water Standards (PDWS) or screening levels, established by the US Environmental Protection Agency, the South Carolina final Primary Drinking Water Standards for lead or the SRS flagging criteria.

  11. Sanitary landfill groundwater monitoring report, Third Quarter 1999

    Energy Technology Data Exchange (ETDEWEB)

    Chase, J.

    1999-12-08

    This report contains analytical data for samples taken during Third Quarter 1999 from wells of the LFW series located at the Sanitary Landfill at the Savannah River Site. The data are submitted in reference to the Sanitary Landfill Operating Permit. The report presents monitoring results that equaled or exceeded the Safe Drinking Water Act final Primary Drinking Water Standards or screening levels, established by the U.S. Environmental Protection Agency, the South Carolina final Primary Drinking Water Standard for lead, or the SRS flagging criteria.

  12. International training seminar: high training on sanitary landfills design, Madrid 7-11, April 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-09-01

    The seminar on design of sanitary landfills was articulated in 5 sessions: 1.- Design of sanitary landfills depending on the quality of wastes. 2.- Legal, techniques and administrative aspects of management. 3.- Geotechniques studies 4.- Biogas 5.- Environmental impact of sanitary landfills.

  13. The Application Of Biofilter System For Reduction Of Methane Emissions From Modern Sanitary Landfills

    Science.gov (United States)

    Sung, K.; Park, S.

    2007-12-01

    Increased atmospheric concentrations of greenhouse gases (GHG) caused by anthropogenic activities has been related to global climate change. Methane, the second most important GHG after CO2, is 21 times more effective at trapping heat than CO2. Therefore, methane emission control is of utmost importance for global warming reduction. To minimize leachate production and protect groundwater resources, modern sanitary landfills are equipped with composite covers and gas collection systems. Methane from modern sanitary landfills is vented directly to the atmosphere, except for some of the largest landfills where it is recovered as energy and burned at the site. However, the efficiency of energy recovery systems in larger landfills is reduced as the amount of CH4 generated from landfill begins to decrease. In this study, the performance of a lab-scale model biofilter system was investigated to treat CH4 gas emitted from modern sanitary landfills by conducting batch and column experiments using landfill cover soil amended with earthworm cast as the filter bed medium. From the batch experiments to measure the influence of moisture content and temperature of the filter medium on CH4 removal capacity of a biofilter system, the optimum moisture content and temperature were found to be 10-15% by weight and 25-35°C, respectively. The column experiment was conducted to measure the influence of inlet CH4 concentration and CH4 loading rate on CH4 removal capacity of a biofilter system. As the inlet CH4 concentration decreased, the percentage of CH4 oxidized increased. Up to a CH4 loading rate of 2785 g CH4 m3 h- 1 (EBRT = 7.7 min), the CH4 removal efficiency of the biofilter was able to reach 100%. Based on the results of the study, the installation of a properly managed biofilter system should be capable of achieving a reduction in atmospheric CH4 emissions from modern sanitary landfills at low CH4 generation stage.

  14. Interim Sanitary Landfill Groundwater Monitoring Report (1998 Annual Report)

    Energy Technology Data Exchange (ETDEWEB)

    Wells, D.

    1999-03-18

    The SRS Interim Sanitary Landfill opened in Mid-1992 and operated until 1998 under Domestic Waste Permit No. 025500-1120. Several contaminants have been detected in the groundwater beneath the unit.The well sampling and analyses were conducted in accordance with Procedure 3Q5, Hydrogeologic Data Collection.

  15. Interim Sanitary Landfill Groundwater Monitoring Report. 1997 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-01-01

    Eight wells of the LFW series monitor groundwater quality in the Steed Pond Aquifer (Water Table) beneath the Interim Sanitary Landfill at the Savannah River Site (SRS). These wells are sampled semiannually to comply with the South Carolina Department of Health and Environmental Control Modified Municipal Solid Waste Permit 025500-1120 (formerly dWP-087A) and as part of the SRS Groundwater Monitoring Program.

  16. Phyto cover for Sanitary Landfill Sites: A brief review

    Directory of Open Access Journals (Sweden)

    Bhavya D. Shah

    2017-03-01

    Full Text Available Landfill gases (LFG are produced due to biodegradation of organic fraction of municipal solid waste (MSW when water comes in contact with buried wastes. The conventional clay cover is still practiced to mitigate the percolation of water in landfills in India. Gas extraction systems in landfill for gas collection are used but are much expensive. Thus, “Phytocapping” technique can be one of the alternatives to mitigate landfill gases and to minimize percolation of water into the landfill. Indian plants with locally available soil and municipal solid waste can be tested for the purpose of methane mitigation, heavy metals remediation from leachate. Methane oxidation due to vegetation can be observed compared to non-vegetated landfill. Root zone methane concentrations can be monitored for the plant species.

  17. Barometric pumping of burial trench soil gases into the atmosphere at the 740-G Sanitary Landfill

    Energy Technology Data Exchange (ETDEWEB)

    Wyatt, D.E.; Pirkle, R.J.; Masdea, D.J.

    1992-12-01

    In 1991, a soil gas survey was performed at the Savannah River Site Sanitary Landfill as part of the characterization efforts required under the integrated Resource Conservation and Recovery Act (RCRA) Facility Investigation and Comprehensive Environmental Resource Conservation and Recovery Act (CERCLA) Remedial Investigation (RFI/RI) program. This report details the findings of this survey, which identified several areas of the landfill that were releasing volatile organic compounds to the atmosphere at levels exceeding regulatory standards. Knowledge of the rates of VOC outgassing is necessary to protect site workers, provide input into the human health and environmental risk assessment documents and provide input into the remedial design scenario.

  18. US EPA record of decision review for landfills: Sanitary landfill (740-G), Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    1993-06-01

    This report presents the results of a review of the US Environmental Protection Agency (EPA) Record of Decision System (RODS) database search conducted to identify Superfund landfill sites where a Record of Decision (ROD) has been prepared by EPA, the States or the US Army Corps of Engineers describing the selected remedy at the site. ROD abstracts from the database were reviewed to identify site information including site type, contaminants of concern, components of the selected remedy, and cleanup goals. Only RODs from landfill sites were evaluated so that the results of the analysis can be used to support the remedy selection process for the Sanitary Landfill at the Savannah River Site (SRS).

  19. Characterization and toxicological evaluation of leachate from closed sanitary landfill.

    Science.gov (United States)

    Emenike, Chijioke U; Fauziah, Shahul H; Agamuthu, P

    2012-09-01

    Landfilling is a major option in waste management hierarchy in developing nations. It generates leachate, which has the potential of polluting watercourses. This study analysed the physico-chemical components of leachate from a closed sanitary landfill in Malaysia, in relation to evaluating the toxicological impact on fish species namely Pangasius sutchi S., 1878 and Clarias batrachus L., 1758. The leachate samples were taken from Air Hitam Sanitary Landfill (AHSL) and the static method of acute toxicity testing was experimented on both fish species at different leachate concentrations. Each fish had an average of 1.3 ± 0.2 g wet weight and length of 5.0 ± 0.1 cm. Histology of the fishes was examined by analysing the gills of the response (dead) group, using the Harris haemtoxylin and eosin (H&E) method. Finneys' Probit method was utilized as a statistical tool to evaluate the data from the fish test. The physico-chemical analysis of the leachate recorded pH 8.2 ± 0.3, biochemical oxygen demand 3500 ± 125 mg L(-1), COD 10 234 ± 175 mg L(-1), ammonical nitrogen of 880 ± 74 mg L(-1), benzene 0.22 ± 0.1 mg L(-1) and toluene 1.2 ± 0.4 mg L(-1). The 50% lethality concentration (LC(50)) values calculated after 96 h exposure were 3.2% (v/v) and 5.9% (v/v) of raw leachate on P. sutchi and C. batrachus, respectively. The H&E staining showed denaturation of the nucleus and cytoplasm of the gills of the response groups. Leachate from the sanitary landfill was toxic to both fish species. The P. sutchi and C. batrachus may be used as indicator organisms for leachate pollution in water.

  20. Management of Leadchate from Army Sanitary Landfills.

    Science.gov (United States)

    1986-07-01

    C0ONTAINNENT X x X X X COLLECTION SYSTEM LEACHATE TREATMENTxx -PROCESSES A GAS CONTROL SYSTEMS x x x GROUNDWATER RENOVATION TECHNOLOGIES x x x x 28 5 LEACHATE...Horace R. Collins Director Ohio Div. of Geol. Survey Servicio Geologico de P.R. Fountain Square, Bldg. B Dept. de Recursos Naturales Columbus, OH

  1. MATERIALS FOR THE FINAL COVER OF SANITARY LANDFILLS

    Directory of Open Access Journals (Sweden)

    Davorin Kovačić

    1994-12-01

    Full Text Available The paper deals with the selection of materials for the sea¬ling layer in the final cover of sanitary landfills. The sealing la¬yer is the most critical component of the final cover. Its role is to minimize percolation of water through the final cover. Ma¬terials used for the construction of the sealing layer are either of mineral origin (compacted clay or geosynthetic (geomem¬brane. They are most often used in combination creating com¬posite liners. Recently alternative materials are also used like paper mill sludge or discarded swelling clay.

  2. Sanitary landfill groundwater quality assessment plan Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Wells, D.G.; Cook, J.W.

    1990-06-01

    This assessment monitoring plan has been prepared in accordance with the guidance provided by the SCDHEC in a letter dated December 7, 1989 from Pearson to Wright and a letter dated October 9, 1989 from Keisler to Lindler. The letters are included a Appendix A, for informational purposes. Included in the plan are all of the monitoring data from the landfill monitoring wells for 1989, and a description of the present monitoring well network. The plan proposes thirty-two new wells and an extensive coring project that includes eleven soil borings. Locations of the proposed wells attempt to follow the SCDHEC guidelines and are downgradient, sidegradient and in the heart of suspected contaminant plumes. Also included in the plan is the current Savannah River Site Sampling and Analysis Plan and the well construction records for all of the existing monitoring wells around the sanitary landfill.

  3. Interim sanitary landfill groundwater monitoring report. 1996 Annual report

    Energy Technology Data Exchange (ETDEWEB)

    Bagwell, L.A.

    1997-01-01

    Eight wells of the LFW series monitor groundwater quality in the Steed Pond Aquifer (Water Table) beneath the Interim Sanitary Landfill at the Savannah River Site. These wells are sampled semiannually to comply with the South Carolina Department of Health and Environmental Control Modified Municipal Solid Waste Permit 025500-1120 and as part of the SRS Groundwater Monitoring Program. Trichlorofluoromethane and 1,1,1-trichloroethane were elevated in one sidegradient well and one downgradient well during 1996. Zinc was elevated in three downgradient wells and also was detected in the associated laboratory blanks for two of those wells. Specific conductance was elevated in one background well and one sidegradient well. Barium and copper exceeded standards in one sidegradient well, and dichloromethane (a common laboratory contaminant) was elevated in another sidegradient well. Barium, copper, and dichloromethane were detected in the associated blanks for these wells, also. The groundwater flow direction in the Steed Pond Acquifer (Water Table) beneath the Interim Sanitary Landfill was to the southeast (universal transverse Mercator coordinates). The flow rate in this unit was approximately 210 ft/year during first quarter 1996 and 180 ft/yr during third quarter 1996.

  4. Sanitary landfills. (Latest citations from the EI Compendex*plus database). Published Search

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-04-01

    This bibliography contains citations concerning refuse disposal in sanitary landfills. Among the topics reviewed are site selection criteria, leachate analysis and treatment, and economic and management aspects. Hydrologic studies pertaining to contaminant transport, and the use of liners and covers are discussed. Considerable attention is given to gas generation and recovery, and specific operations are described. Citations pertaining specifically to hazardous and industrial waste materials are excluded. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  5. Mathematical numeric models for assessing the groundwater pollution from Sanitary landfills

    Science.gov (United States)

    Petrov, Vasil; Stoyanov, Nikolay; Sotinev, Petar

    2014-05-01

    Landfills are among the most common sources of pollution in ground water. Their widespread deployment, prolonged usage and the serious damage they cause to all of the elements of the environment are the reasons, which make the study of the problem particularly relevant. Most dangerous of all are the open dumps used until the middle of the twentieth century, from which large amounts of liquid emissions flowed freely (landfill infiltrate). In recent decades, the problem is solved by the construction of sanitary landfills in which they bury waste or solid residue from waste utilization plants. The bottom and the sides of the sanitary landfills are covered with a protective waterproof screen made of clay and polyethylene and the landfill infiltrate is led outside through a drainage system. This method of disposal severely limits any leakage of gas and liquid emissions into the environment and virtually eliminates the possibility of contamination. The main topic in the conducted hydrogeological study was a quantitative assessment of groundwater pollution and the environmental effects of re-landfilling of an old open dump into a new sanitary landfill, following the example of the municipal landfill of Asenovgrad, Bulgaria. The study includes: 1.A set of drilling, geophysical and hydrogeological field and laboratory studies on: -the definition and designation of the spatial limits of the main hydrogeological units; -identification of filtration parameters and migration characteristics of the main hydrogeological units; -clarifying the conditions for the sustentation and drainage of groundwater; -determininng the structure of the filtration field; -identifying and assessing the size and the extent of groundwater contamination from the old open dump . 2.Mathematical numeric models of migration and entry conditions of contaminants below the bottom of the landfill unit, with which the natural protection of the geological environment, the protective effect of the engineering

  6. 简析生活垃圾卫生填埋场封场设计%Closure Design of Domestic Waste Sanitary Landfill Sites

    Institute of Scientific and Technical Information of China (English)

    吴健萍

    2011-01-01

    Functions of closure of domestic waste sanitary landfill sites were sketched. Main contents about closure design were analyzed, including landfill pile shaping, structure determining of closure cover system, collection and drainage of landfill gas, and collection and discharge of rainwater in landfill pile.%简述了生活垃圾卫生填埋场封场的作用,分析了封场设计中堆体整形、封场覆盖系统结构的确定、填埋气体的收集导排、垃圾堆体雨水的收集排放等主要内容.

  7. Sanitary landfill local-scale flow and transport modeling in support of alternative concentrations limit demonstrations, Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, V.A.; Beach, J.A.; Statham, W.H.; Pickens, J.F. [INTERA, Inc., Austin, TX (United States)

    1993-02-19

    The Savannah River Site (SRS) is a Department of Energy (DOE) facility located near Aiken, South Carolina which is currently operated and managed by Westinghouse Savannah River Company (WSRC). The Sanitary Landfill (Sanitary Landfill) at the SRS is located approximately 2,000 feet Northwest of Upper Three Runs Creek (UTRC) on an approximately 70 acre site located south of Road C between the SRS B-Area and UTRC. The Sanitary Landfill has been receiving wastes since 1974 and operates as an unlined trench and fill operation. The original landfill site was 32 acres. This area reached its capacity around 1987 and a Northern Expansion of 16 acres and a Southern Expansion of 22 acres were added in 1987. The Northern Expansion has not been used for waste disposal to date and the Southern Expansion is expected to reach capacity in 1992 or 1993. The waste received at the Sanitary Landfill is predominantly paper, plastics, rubber, wood, metal, cardboard, rags saturated with degreasing solvents, pesticide bags, empty cans, and asbestos in bags. The landfill is not supposed to receive any radioactive wastes. However, tritium has been detected in the groundwater at the site. Gross alpha and gross beta are also evaluated at the landfill. The objectives of this modeling study are twofold: (1) to create a local scale Sanitary Landfill flow model to study hydraulic effects resulting from capping the Sanitary Landfill; and (2) to create a Sanitary Landfill local scale transport model to support ACL Demonstrations for a RCRA Part B Permit Renewal.

  8. Application of Grey Situation Decision-Making Theory in Site Selection of a Waste Sanitary Landfill

    Institute of Scientific and Technical Information of China (English)

    CAO Li-wen; CHENG Yun-huan; ZHANG Jing; ZHOU Xiao-zhi; LIAN Cui-xia

    2006-01-01

    An application of an unequal-weighted multi-objective decision making method in site selection of a waste sanitary landfill is discussed. The eight factors, which affected possible options, were: size and capacity of the landfill, permeability of the stratum, the average difference in elevation between the groundwater level and the bottom of the landfill pit, quality and source of clay, the quality grade of the landfill site, the effect of landfill engineering on nearby residents, distance to the water supply and the water source as well as the cost of construction and waste transport. These are determined, given the conditions of the geological environment, the need for environmental protection and landfill site construction and transportation related to the design and operation of a sanitary landfill. The weights of the eight factors were further investigated based on the difference in their relevance. Combined with practical experience from Xuzhou city (Jiangsu province, China), the objectives, effects and weights of grey decision-making were determined and the process and outcome of the landfill site selection are stated in detail. The decision-making results have been proven to be acceptable and correct. As we show, unequal-weighted multi-objective grey situation decision-mak- ing is characterized by easy calculations and good maneuverability when used in landfill site selection. The number of factors (objectives) affecting the outcome and the quantitative method of qualitative indices can be adjusted on the basis of concrete conditions in landfill site selection. Therefore, unequal-weighted multi-objective grey situation decision making is a feasible method in selecting landfill sites which offers a reference method for landfill site selection elsewhere. It is a useful, rational and scientific exploration in the choice of a landfill site.

  9. Sanitary Landfill Leachate Recycle and Environmental Problems at Selected Army Landfills: Lessons Learned

    Science.gov (United States)

    1986-09-01

    Benson, M. J. Staub , and M. A. Kamlys, Characteristics, Control and Treatment of Leachate at Military Irnstallations, !nterim Report N- 97/ADA097035...D. Smith, R. Pileccia, J. Handy, G. Gerdes, S. Kloster, G. Schanche, _. .1. fJanson, M. J. Staub , and M. A. Kamiya, Characteri.tic.i Control, and...Learned N 1. Do not construct buildings on top of or close to a closed landfill until methane gas production has stopped.... - 2. Note that explosive

  10. Sanitary Landfilling – A Key Component of Waste Management

    OpenAIRE

    Johann Fellner

    2013-01-01

    In many affluent countries waste management is experiencing a fast transition from landfilling to sophisticated recycling and waste to energy plants. Thus, landfilling of waste becomes less important in these countries. The present paper discusses whether a similar development will take place in transition economies, or waste management systems will mainly rely on landfilling in the near future. For this purpose, the current waste management practices and associated environmental impacts as w...

  11. Size-resolved culturable airborne bacteria sampled in rice field, sanitary landfill, and waste incineration sites.

    Science.gov (United States)

    Heo, Yongju; Park, Jiyeon; Lim, Sung-Il; Hur, Hor-Gil; Kim, Daesung; Park, Kihong

    2010-08-01

    Size-resolved bacterial concentrations in atmospheric aerosols sampled by using a six stage viable impactor at rice field, sanitary landfill, and waste incinerator sites were determined. Culture-based and Polymerase Chain Reaction (PCR) methods were used to identify the airborne bacteria. The culturable bacteria concentration in total suspended particles (TSP) was found to be the highest (848 Colony Forming Unit (CFU)/m(3)) at the sanitary landfill sampling site, while the rice field sampling site has the lowest (125 CFU/m(3)). The closed landfill would be the main source of the observed bacteria concentration at the sanitary landfill. The rice field sampling site was fully covered by rice grain with wetted conditions before harvest and had no significant contribution to the airborne bacteria concentration. This might occur because the dry conditions favor suspension of soil particles and this area had limited personnel and vehicle flow. The respirable fraction calculated by particles less than 3.3 mum was highest (26%) at the sanitary landfill sampling site followed by waste incinerator (19%) and rice field (10%), which showed a lower level of respiratory fraction compared to previous literature values. We identified 58 species in 23 genera of culturable bacteria, and the Microbacterium, Staphylococcus, and Micrococcus were the most abundant genera at the sanitary landfill, waste incinerator, and rice field sites, respectively. An antibiotic resistant test for the above bacteria (Micrococcus sp., Microbacterium sp., and Staphylococcus sp.) showed that the Staphylococcus sp. had the strongest resistance to both antibiotics (25.0% resistance for 32 microg ml(-1) of Chloramphenicol and 62.5% resistance for 4 microg ml(-1) of Gentamicin).

  12. Landfill gas management facilities design guidelines

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-03-15

    In British Columbia, municipal solid waste landfills generate over 1000 tonnes of methane per year; landfill gas management facilities are required to improve the environmental performance of solid waste landfills. The aim of this document, developed by the British Columbia Ministry of the Environment, is to provide guidance for the design, installation, and operation of landfill gas management facilities to address odor and pollutant emissions issues and also address health and safety issues. A review of technical experience and best practices in landfill gas management facilities was carried out, as was as a review of existing regulations related to landfill gas management all over the world. This paper provides useful information to landfill owners, operators, and other professionals for the design of landfill gas management facilities which meet the requirements of landfill gas management regulations.

  13. Sanitary Landfill Groundwater Monitoring Report - Fourth Quarter 1998 and 1998 Summary

    Energy Technology Data Exchange (ETDEWEB)

    Chase, J.

    1999-04-09

    A maximum of fifty-three wells of the LFW series monitor groundwater quality in the Steed Pond Aquifer (Water Table) beneath the Sanitary Landfill at the Savannah River Site (SRS). These wells are sampled quarterly to comply with the South Carolina Department of Health and Environmental Control Domestic Water permit and as part of the SRS Groundwater Monitoring Program.

  14. Sanitary Landfill Groundwater Monitoring Report - Fourth Quarter 1998 and 1998 Summary

    Energy Technology Data Exchange (ETDEWEB)

    Chase, J.

    1999-04-09

    A maximum of fifty-three wells of the LFW series monitor groundwater quality in the Steed Pond Aquifer (Water Table) beneath the Sanitary Landfill at the Savannah River Site (SRS). These wells are sampled quarterly to comply with the South Carolina Department of Health and Environmental Control Domestic Water permit and as part of the SRS Groundwater Monitoring Program.

  15. Life cycle analysis of sanitary landfill and incineration of municipal solid waste

    Institute of Scientific and Technical Information of China (English)

    倪晋仁; 韦洪莲; 刘阳生; 赵智杰

    2002-01-01

    Environmental consequences from sanitary landfill as well as incineration with power generation were compared in terms of life cycle analysis (LCA) for Laohukeng Waste-disposal Plant that is under consideration in Shenzhen. A variety of differences will be resulted from the two technologies, from which the primary issue that affects the conclusion is if the compensatory phase in power generation can be properly considered in the boundary definition of LCA. Upon the compensatory phase is taken into account in the landfill system, the negative environmental consequences from the landfill will be more significant than those from the incineration with power generation, although the reversed results can be obtained as the compensatory phase is neglected. In addition, mitigation of environmental impacts through the pollutant treatment in the incineration process will be more effective than in the landfill process.

  16. Evaluation of new location of Isfahan′s sanitary landfill site with Oleckno method

    Directory of Open Access Journals (Sweden)

    Maryam Salimi

    2013-01-01

    Full Text Available Aims: The objective of present study was to evaluate the new location of Isfahan solid waste sanitary landfill using Geographical Information System (GIS based on the Oleckno index method (OIM. Materials and Methods: This study was on the field- and library-based data collection and surveys of relevant data. Assessment parameters included average annual rainfall, soil type and ground water beneath and adjucent to the landfill site. To analyze data, ArcGIS version 9.3 was used. Results: In 2010 the total rainfall in the landfill location was less than 150 mm/year. The soil type was clay loam, and the average distance from the floor of the landfill to the groundwater level was 3-9 meters. As calculated results showed that, the Oleckno index (OI score in the study area was 40. Conclusion: The new Isfahan′s sanitary solid waste landfill site had a good OI and the possibility of contamination of groundwater by leachate production based on this method also was low.

  17. Final Disposal of Solid Waste in Sanitary Landfills and Human Health

    Directory of Open Access Journals (Sweden)

    Gustavo Silveira Graudenz

    2012-06-01

    Full Text Available This article presents a critical review of scientific literature on waste sanitary landfills and its effects on human health, with an approach to the adverse effects that are most commonly associated to living near waste landfills. The health variables included were low birth weight, congenital abnormalities, some types of neoplasms, allergies, asthma and other respiratory diseases using the MEDLINE, LILACS and CAPES’ thesis post graduation database for systematic review. In spite of the fact that some studies indicate positive asssociation between health risks and living close to landfills, the majority of the studies, mainly the most recent ones, do not demonstrate a significant health risk in this condition. Some common limitations and bias of the work in the field are discussed. The lack of direct quantification of exposure, lack of prospective approach and no comparaison of the different types and quality of management of the residues are common limitations to most studies. So far, there is weak evidence to support significant epidemiological health risks associated to landfills. More interdisciplinary research should improve the knoledge of the health risks related to living in the proximity to sanitary landfills.

  18. Preliminary site selection report for the new sanitary landfill at the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    1992-12-01

    The Savannah River Site (SRS) has proposed a new sanitary landfill (NSL) for solid waste. A site selection team, comprised of representatives from Westinghouse Savannah River Company (WSRC) evaluated potential landfill sites. The site selection team conducted an initial screening of SRS to eliminate unsuitable areas. The screening was based on criteria that were principally environmental factors; however, the criteria also included avoiding areas with unacceptable features for construction or operation of the facility. This initial screening identified seven candidate sites for further evaluation.

  19. Partial nitrification for nitrogen removal from sanitary landfill leachate.

    Science.gov (United States)

    Spagni, Alessandro; Psaila, Giuliana; Rizzo, Andrea

    2014-09-19

    Biological nitrogen removal using nitrite as a shortcut has recently been proposed for the treatment of high strength landfill leachate. The aim of this study was to assess the application of the SHARON (Single reactor High activity Ammonium Removal Over Nitrite) process for the partial nitrification of leachate generated in old landfills. Particular attention was given to the start-up phase of the process. This study demonstrated that partial nitrification can be obtained when treating raw leachate after biomass acclimation. Only a fraction (50-70%) of the ammonia present in the leachate can be oxidised due to a limited amount of alkalinity available. Stable nitritation was obtained by applying a hydraulic retention time (HRT) of 4-5 d, which is higher than the values proposed for the effluent of anaerobic digesters. This higher HRT could probably be allowed by the high concentration of free ammonia present in the leachate, which could severely inhibit the growth of nitrite-oxidising bacteria.

  20. Sanitary Landfill Groundwater Monitoring Report. Fourth Quarter 1997 and 1997 Summary

    Energy Technology Data Exchange (ETDEWEB)

    Chase, J. [Westinghouse Savannah River Company, AIKEN, SC (United States)

    1998-02-01

    A maximum of forty-eight wells of the LFW series monitor groundwater quality in the Steed Pond Aquifer (Water Table) beneath the Sanitary Landfill at the Savannah River Site (SRS). These wells are sampled quarterly to comply with the South Carolina Department of Health and Environmental Control Domestic Water Permit DWP-087A and as part of the SRS Groundwater Monitoring Program. Chloroethene (vinyl chloride) and trichloroethylene were the most widespread constituents exceeding standards during 1997. Lead (total recoverable), 1,4-dichlorobenzene, mercury, benzene, dichloromethane (methylene chloride), a common laboratory contaminant, tetrachloroethylene, 1,2-dichloroethane, gross alpha, tritium, and 1.2-dichloropropane also exceeded standards in one or more wells. The groundwater flow direction in the Steed Pond Aquifer (Water Table) beneath the Sanitary Landfill was to the southeast (universal transverse Mercator coordinates). The flow rate in this unit was approximately 139 ft/year during first quarter 1997 and 132 ft/year during fourth quarter.

  1. Sanitary Landfill Groundwater Monitoring Report - Third and Fourth Quarters 2000 and 2000 Summary

    Energy Technology Data Exchange (ETDEWEB)

    Chase, J.A.

    2001-03-07

    A maximum of forty wells of the LFW series monitor groundwater quality in the Steed Pond Aquifer (Water Table) beneath the Sanitary Landfill Area at the Savannah River Site (SRS). These wells are sampled quarterly to comply with the South Carolina Department of Health and Environmental Control Domestic Waste Permit DWP-087A and as part of the Sanitary Landfill Groundwater Quality Assessment Plan. Chloroethene (vinyl chloride) and trichloroethylene were the most widespread constituent exceeding the Final Primary Drinking Water Standards during the calendar year 2000. 1,4-Dichlorobenzene, benzene, dichloromethane (methylene chloride), gross alpha, lead (total recoverable) mercury (total recoverable), thallium (total recoverable), and tritium also exceeded standards in one or more wells. The groundwater flow direction in the Steed Pond Aquifer (Water Table) beneath the Sanitary Landfill is to the southeast (universal transverse Mercator coordinates). The flow rate at this unit was approximately 122.64 ft/year during first quarter 2000 and 132.28 ft/year during fourth quarter 2000.

  2. Sanitary Landfill Groundwater Monitoring Report - Third and Fourth Quarters 2000 and 2000 Summary

    Energy Technology Data Exchange (ETDEWEB)

    Chase, J.A.

    2001-03-07

    A maximum of forty wells of the LFW series monitor groundwater quality in the Steed Pond Aquifer (Water Table) beneath the Sanitary Landfill Area at the Savannah River Site (SRS). These wells are sampled quarterly to comply with the South Carolina Department of Health and Environmental Control Domestic Waste Permit DWP-087A and as part of the Sanitary Landfill Groundwater Quality Assessment Plan. Chloroethene (vinyl chloride) and trichloroethylene were the most widespread constituent exceeding the Final Primary Drinking Water Standards during the calendar year 2000. 1,4-Dichlorobenzene, benzene, dichloromethane (methylene chloride), gross alpha, lead (total recoverable) mercury (total recoverable), thallium (total recoverable), and tritium also exceeded standards in one or more wells. The groundwater flow direction in the Steed Pond Aquifer (Water Table) beneath the Sanitary Landfill is to the southeast (universal transverse Mercator coordinates). The flow rate at this unit was approximately 122.64 ft/year during first quarter 2000 and 132.28 ft/year during fourth quarter 2000.

  3. Conceptual model elaboration for the safety assessment of phosphogypsum use in sanitary landfills

    Energy Technology Data Exchange (ETDEWEB)

    Cota, Stela D.; Braga, Leticia T.P.; Jacomino, Vanusa F., E-mail: sdsc@cdtn.b, E-mail: letsteixeira@gmail.co, E-mail: vmfj@cdtn.b [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2009-07-01

    Phosphogypsum is a by-product of the phosphatic fertilizer production from the beneficiation of phosphate minerals (apatites). Produced in large quantities throughout the world and stored temporally in stacks, the final destination of this product is nowadays a subject of investigation. Due to the presence of radionuclides ({sup 226}Ra, {sup 232}Th and {sup 40}K, mainly), possible applications for the phosphogypsum must be verified for radiological safety. The goal of this paper was to elaborate a representative water flow conceptual model of a sanitary landfill for the safety assessment of the impact of using phosphogypsum as a cover material. For this, the ground water flow in variably saturated conditions and solute transport model HYDRUS-2D has been used for simulating the impact in the saturated zone of potential radionuclides leaching. The conceptual model was developed by collecting and analyzing the data from environmental license documentation of municipal sanitary landfills located on the State of Minas Gerais, Brazil. In order to fulfill the requirements of HDRUS-2D model in terms of the necessary parameters, the physical characteristics and typical configuration of the landfills, as well as the hydrogeological parameters of soils and aquifers related to the local of placement of the landfills, were taken in account for the formulation of the conceptual model. (author)

  4. Study on the Natural Soil Properties Endau Rompin National Park (PETA as Compacted Soil Liner for Sanitary Landfill

    Directory of Open Access Journals (Sweden)

    Zulkifli Ahmad

    2013-11-01

    Full Text Available Abstract: This paper reviews and extends an understanding of a study on potential suitability of the natural soil in Endau Rompin National Park (PETA as a compacted soil liner for sanitary landfill. Since the demand for landfill system becomes obvious so that concerning construction and operation of landfills are increasing. A number of studies have been conducted for the liner system of landfill. Hence, study is required to choose the suitable type of material as liner barrier for the landfill system in term to achieve optimum long term performance. The sanitary landfill plays an important role in the framework of solid waste disposal. The compacted soil liner is a part of a liner structure for landfill to restrict leachate migration from facility into the environment. So that, if the landfill system is not well manage it will contaminate the soil and ground water, thus presenting a risk to human and environmental health. This study, natural soil will be taken from Endau Rompin National Park (PETA, Johor as soil sample for testing. Natural soil is an economy material as a liner system, and it does not decay easily from time to time. So it is an ideal material as a sanitary landfill liner system. In short, the purpose of this study is to compile and organize available information on the use of laboratory testing, as well as providing some guidance on the use of natural soil as barrier layer of landfill and also it suitability of physical and chemical properties natural soil as barrier layer of landfill. Based on the laboratory testing were conducted, found that soil sample taken form Endau Rompin National Park (PETA is suitable as compacted soil liner for sanitary landfill.

  5. Modelization of Biogas production in Sanitary landfills; Modelizacion de la produccion de Biogas en vertederos controlados

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez-Iglesias, J.; Castrillon, L.; Maranon, E.; Sastre, H. [Universidad de Oviedo (Spain)

    2000-07-01

    Amongst all the different alternatives for the eliminator or treatment of MSW (Municipal Solid Waste), sanitary landfills is probably the one that is most widely employed to date, due to its economic advantages. With the coming into effect of the Spanish Containers and Packaging Law, alongside that of the Council Directive 1999/31/CE, concerning waste disposal, this situation will be substantially modified. At the same time, the application of said Directive will influence the amount of biogas generated in landfills. The present research work a study of the influence that the aforementioned Directive will have on the production of biogas in a sanitary landfill which currently disposes of around 400.000 Tm/year of MSW, 52% of which is easily biodegradable organic matter. The model proposed by Marticorena was applied and the kinetic parameters, MPO and d, were experimentally obtained by means of a pilot-plant study of MSW anaerobic degradation, the values employed being 173 Nm3 of biogas/Tm of the organic fraction of MSW for MPO, and 3 years for d. The results obtained in the model are compared with those obtained experimentally at the COGERSA landfill, Asturias, Spain. Twenty wells were chosen to analyse the production of biogas, giving an overall average yield of 70%. In 1999, around 4,100 m''3/h of biogas were extracted at the COGERSA landfill. Application of the model gave an estimation for 1999 of an average production of 5,369 m''3/h giving a maximum yield in the extraction of biogas of around 75%. The difference between the two average yields obtained may be due to the fact that the model only takes into account the easily biodegradable organic fraction, whilst in the landfill, given that more time has passed, other substances with a longer period of degradation, such as paper and cardboard, may also be degraded. (Author) 10 refs.

  6. Evaluation Of Landfill Gas Decay Constant For Municipal Solid Waste Landfills Operated As Bioreactors

    Science.gov (United States)

    Prediction of the rate of gas production from bioreactor landfills is important to optimize energy recovery and to estimate greenhouse gas emissions. Landfill gas (LFG) composition and flow rate were monitored for four years for a conventional and two bioreactor landfill landfil...

  7. Grouting of fly ash in sanitary landfills; Injektering av flygaska i hushaallsavfallsdeponi

    Energy Technology Data Exchange (ETDEWEB)

    Wikman, Karin; Berg, Magnus [AaF-Energi och Miljoe AB, Stockhom (Sweden); Andreas, Lale; Lagerkvist, Anders [Luleaa Univ. of Technology (Sweden); Jannes, Sara; Tham, Gustav [Telge Aatervinning AB, Soedertaelje (Sweden); Sjoeblom, Rolf [Tekedo AB, Nykoeping (Sweden)

    2003-10-01

    The purpose of the study was to investigate the potential for stabilization of sanitary landfills by injecting fly ash. The method is supposed to prevent differential settlements in landfills and by that to counteract damages in the final cover. Injecting fly ash may also affect the chemical development in a positive way and prevent metal leaching. Pilot experiments at the Tveta waste recycling center (Tveta Aatervinningsanlaeggning) have been performed in order to estimate if the grouting technology is a suitable method for sanitary landfills. Fly ashes from the combustion of bio fuels were used in these tests. A literature study and laboratory experiments in order to prepare the field experiments were also part of the project. About 100 tons of ash slurry were injected during the pilot experiments. This corresponds to a filling degree of approximately 12-16 % of the available pores in the landfill body. As a result of the pilot test, the following conclusions can be drawn: Ash can be mixed with water to a pumpable slurry which can be injected without hardening inside the equipment. Neither the waste nor the grouting material caused a backpressure during the injection and nothing indicates that the injected ash deforms the landfilled waste. The ash-water-slurry flows through the voids in the waste easily. Thus, the ash may dispread quite far from the injection holes. Using a more powerful equipment backpressure and movements in the waste might occur. It was not possible to estimate the flow required for backpressure in this study. Large variations are possible but for safety reasons the maximal pressure should be limited with regard to the expected stability in the actual area. The grouted ash will harden within the landfill body within a couple of days. It accumulates in hard but brittle lumps, which may result in an increased stability of the landfill. Further studies are necessary in order to evaluate how the stability is affected and what amounts of ash are

  8. LANDFILL GAS PRETREATMENT FOR FUEL CELL APPLICATIONS

    Science.gov (United States)

    The paper discusses the U.S. EPA's program, underway at International Fuel Cells Corporation, to demonstrate landfill methane control and the fuel cell energy recovery concept. In this program, two critical issues are being addressed: (1) a landfill gas cleanup method that would ...

  9. Ecotoxicological evaluation of leachate from the Limeira sanitary landfill with a view to identifying acute toxicity

    Directory of Open Access Journals (Sweden)

    José Euclides Stipp Paterniani

    2007-12-01

    Full Text Available Final disposal of solid waste is still a cause for serious impacts on the environment. In sanitary landfills, waste undergoes physical, chemical, and biological decomposition, generating biogas and leachate. Leachate is a highly toxic liquid with a very high pollution potential. The purpose of this work is to evaluate toxicity of in natura leachate samples collected from Limeira Sanitary Landfill, in Limeira, SP. The ecotoxicological evaluation comprised acute toxicity assays using as test organisms Daphnia Similis, seeds of Eruca sativa (arugula, and Allium cepa roots (onion. Analyses of color, pH, turbidity, conductivity, hardness, nitrogen, total organic carbon (TOC, adsorbable organic halogen (AOX, and metals were also carried out. The main results for Eruca sativa (arugula and Allium cepa (onion indicated that the diluted leachate 50% presented similar toxicity to the phenol solution of 1000 mg.L-1 for arugula and 2000 mg.L-1 for onion. With the solution of Cr+6 concentrations of 3000 mg.L-1 for arugula and 2000 mg.L-1 for onion were found. For analyses with Daphnia Similis the EC50 was 9.3% on average. This way it was possible to observe that biological tests are necessary to evaluate the pollution in the effluents or water bodies. These tests serve to determine the toxic potential of a chemical agent or complex mixture.

  10. Sanitary landfill groundwater monitoring report. Fourth quarter 1996 and 1996 summary

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-02-01

    A maximum of eighty-nine wells of the LFW series monitor groundwater quality in the Steed Pond Aquifer (Water Table) beneath the Sanitary Landfill at the Savannah River Site (SRS). These wells are sampled quarterly to comply with the South Carolina Department of Health and Environmental Control Domestic Waste Permit DWP-087A and as part of the SRS Groundwater Monitoring Program. Dichloromethane, a common laboratory contaminant, and chloroethene (vinyl chloride) were the most widespread constituents exceeding standards during 1996. Benzene, trichloroethylene, 1,4-dichlorobenzene, 1,1-dichloroethylene, lead (total recoverable), gross alpha, mercury (total recoverable), tetrachloroethylene, fluoride, thallium, radium-226, radium-228, and tritium also exceeded standards in one or more wells. The groundwater flow direction in the Steed Pond Aquifer (Water Table) beneath the Sanitary Landfill was to the southeast (universal transverse Mercator coordinates). The flow rate in this unit was approximately 141 ft/year during first quarter 1996 and 132 ft/year during fourth quarter 1996

  11. Sanitary Landfill Groundwater Monitoring Report, Fourth Quarter 1999 and 1999 Summary

    Energy Technology Data Exchange (ETDEWEB)

    Chase, J.

    2000-03-13

    A maximum of thirty eight-wells of the LFW series monitor groundwater quality in the Steed Pond Aquifer (Water Table) beneath the Sanitary Landfill Area at the Savannah River Site (SRS). These wells are sampled quarterly to comply with the South Carolina Department of Health and Environmental Control Domestic Water Permit DWP-087A and as part of the SRS Groundwater Monitoring Program. Iron (Total Recoverable), Chloroethene (Vinyl Chloride) and 1,1-Dichloroethane were the most widespread constituents exceeding the Final Primary Drinking Water Standards during 1999. Trichloroethylene, 1,1-Dichloroethylene, 1,2-Dichloroethane, 1,4-Dichlorobenzene, Aluminum (Total Recoverable), Benzene, cis-1,2-Dichloroethylene, Dichlorodifluoromethane, Dichloromethane (Methylene Chloride), Gross Alpha, Mercury (Total Recoverable), Nonvolatile Beta, Tetrachloroethylene, Total Organic Halogens, Trichlorofluoromethane, Tritium also exceeded standards in one or more wells. The groundwater flow direction in the Steed Pond Aquifer (Water Table) beneath the Sanitary Landfill is to the southeast (universal transverse Mercator coordinates). The flow rate in this unit was approximately 144.175 ft/year during first quarter 1999 and 145.27 ft/year during fourth quarter 1999.

  12. Children living near a sanitary landfill have increased breath methane and Methanobrevibacter smithii in their intestinal microbiota.

    Science.gov (United States)

    de Araujo Filho, Humberto Bezerra; Carmo-Rodrigues, Mirian Silva; Mello, Carolina Santos; Melli, Lígia Cristina Fonseca Lahoz; Tahan, Soraia; Pignatari, Antonio Carlos Campos; de Morais, Mauro Batista

    2014-01-01

    This study evaluated the breath CH4 excretion and concentration of M. smithii in intestinal microbiota of schoolchildren from 2 slums. One hundred and eleven children from a slum near a sanitary landfill, 35 children of a slum located away from the sanitary landfill, and 32 children from a high socioeconomic level school were included in the study. Real-time PCR was performed to quantify the M. smithii nifH gene and it was present in the microbiota of all the participating children, with higher (P landfill (3.16 × 10(7) CFU/g of feces), comparing with the children from the slum away from the landfill (2.05 × 10(6) CFU/g of feces) and those from the high socioeconomic level group (3.93 × 10(5) CFU/g of feces). The prevalence of children who present breath methane was 53% in the slum near the landfill, 31% in the slum further away from the landfill and, 22% in the high socioeconomic level group. To live near a landfill is associated with higher concentrations of M. smithii in intestinal microbiota, comparing with those who live away from the landfill, regardless of their socioeconomics conditions.

  13. Leachates control in sanitary landfills of urban solid wastes in Gipuzkoa; Control de lixiviados en los vertederos de residuos solidos urbanos de Gipuzkoa

    Energy Technology Data Exchange (ETDEWEB)

    Gomez Martin, M.A.; Antiguedad Auzmendi, I.

    1998-12-01

    The physico-chemical characterization of the leachates from seven sanitary landfills in Gipuzkoa has been studied. Flow rate, temperature and electric conductivity were monitored on line in some cases too. HELP model and other classic methods were applicated to calculate exactly the water balance. The authors conclude suggesting that these studies are essentials to know if the landfills are really sanitary landfills. (Author) 14 refs.

  14. Treatment of leachates of sanitary landfills of urban solid wastes. Tratamiento de lixiviados de vertederos controlados de residuos solidos urbanos

    Energy Technology Data Exchange (ETDEWEB)

    Iza Lopez, J. (Departamento de Ingenieria Quimica y de Medio Ambiente, ETSII, Bilbao (Spain))

    1994-01-01

    The method more used for Urban Solid Wastes is the sanitary landfill. Its management is similar to the industrial process plant. The minimization techniques of wastes are applicated to reduce the environmental impact and to increase the degradation process in order to improve the biogas as alternative energy. This article analyzes the anaerobic digestion, the leachates characterization and treatment of leachates. (Author)

  15. Operating a fuel cell using landfill gas

    Energy Technology Data Exchange (ETDEWEB)

    Trippel, C.E.; Preston, J.L. Jr.; Trocciola, J.; Spiegel, R.

    1996-12-31

    An ONSI PC25{trademark}, 200 kW (nominal capacity) phosphoric acid fuel cell operating on landfill gas is installed at the Town of Groton Flanders Road landfill in Groton, Connecticut. This joint project by the Connecticut Light & Power Company (CL&P) which is an operating company of Northeast Utilities, the Town of Groton, International Fuel Cells (IFC), and the US EPA is intended to demonstrate the viability of installing, operating and maintaining a fuel cell operating on landfill gas at a landfill site. The goals of the project are to evaluate the fuel cell and gas pretreatment unit operation, test modifications to simplify the GPU design and demonstrate reliability of the entire system.

  16. Membrane Fouling in Microfiltration of Sanitary Landfill Leachate for Removals of Colour and Solids

    Institute of Scientific and Technical Information of China (English)

    Emad S.M.Ameen; Abdullrahim Mohd Yusoff; Mohd Razman Salim; Azmi Aris; Aznah Nor Anuar

    2013-01-01

    In this research,the treatability of solids from sanitary landfill leachate by microfiltration membrane was investigated and the fouling of the membrane was carefully studied.Continuous microfiltration process was carried out for 21 h in experimental system involved coagulation with Moringa oleifera followed by filtration using submerged hollow fibre microfiltration membrane (MFM).Coagulation with M.Oleifera,air diffusers and back flush technique were used for preventing or alleviating fouling of the membrane.The hollow fibre MFM showed high removals of 98%,91% and 99% for turbidity,colour and total suspended solids respectively.It was obtained at the beginning of the filtration.However,quality of the filtrate rapidly declined during the filtration process.Fouling was found to proceed according to the classical cake filtration model.Coagulation with M.Oleifera as well asthe back-flush technique could not fully restore the deterioration occurred to the membrane.

  17. Electrochemical treatment of concentrate from reverse osmosis of sanitary landfill leachate.

    Science.gov (United States)

    Labiadh, Lazhar; Fernandes, Annabel; Ciríaco, Lurdes; Pacheco, Maria José; Gadri, Abdellatif; Ammar, Salah; Lopes, Ana

    2016-10-01

    Conventional sanitary landfill leachate treatment has recently been complemented and, in some cases, completely replaced by reverse osmosis technology. Despite the good quality of treated water, the efficiency of the process is low and a large volume of reverse osmosis concentrate has to be either discharged or further treated. In this study, the use of anodic oxidation combined with electro-Fenton processes to treat the concentrate obtained in the reverse osmosis of sanitary landfill leachate was evaluated. The anodic oxidation pretreatment was performed in a pilot plant using an electrochemical cell with boron-doped diamond electrodes. In the electro-Fenton experiments, a boron-doped diamond anode and carbon-felt cathode were used, and the influence of the initial pH and iron concentration were studied. For the experimental conditions, the electro-Fenton assays performed at an initial pH of 3 had higher organic load removal levels, whereas the best nitrogen removal was attained when the electrochemical process was performed at the natural pH of 8.8. The increase in the iron concentration had an adverse impact on treatment under natural pH conditions, but it enhanced the nitrogen removal in the electro-Fenton assays performed at an initial pH of 3. The combined anodic oxidation and electro-Fenton process is useful for treating the reverse osmosis concentrate because it is effective at removing the organic load and nitrogen-containing species. Additionally, this process potentiates the increase in the biodegradability index of the treated effluent.

  18. Engineering geology of landfill gas migration

    Energy Technology Data Exchange (ETDEWEB)

    Tingley, A.C.

    1990-01-01

    This thesis is divided into five chapters: Part one is an introduction to landfill gas, and why it is considered to be a problem. The subject of the migration of the gas is taken further with an examination of the state of art with respect to theories of gas transport mechanisms. A description of work which has previously been carried out upon real soils and landfill sites is included. In part two the technique developed in this research to enable a laboratory examination of real soils is discussed. Experiments are then described which form part of the landfill gas monitoring programme in the field. The whole group of data, collected at a variety of sites, included measurements of meteorological conditions, ground pressures on and off the landfill, and ground gas concentrations. The observations were used to construct a model of ground gas interchange between the landfill and surrounding land. Field pumping trials have been used to confirm these findings. The third part of the thesis is an examination of case histories, presented in order of detail available for each; results of a survey carried out between other county councils in England, and then the results of a survey in the county of Kent. Finally there is a presentation of the detailed histories of the waste disposal sites which have been examined for the purposes of this research. (Author).

  19. ENGINEERING ASPECTS OF LANDFILLING MUNICIPAL SOLID WASTE

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Sanitary landfilling is the most important method of municipalsolid waste disposal in China. Landfill sites are always set up in mountain valley, on plain or beside seashore. A complete landfill consists of base system, cover system, and leachate collection and gas extraction system. This paper reviews the state-of-the-art landfilling technology in China and collection discusses research projects for engineers.

  20. Nitrogen removal optimization in a sequencing batch reactor treating sanitary landfill leachate.

    Science.gov (United States)

    Spagni, Alessandro; Lavagnolo, M Cristina; Scarpa, Carlotta; Vendrame, Paola; Rizzo, Andrea; Luccarini, Luca

    2007-05-01

    Biological nitrogen removal via nitrite may represent a promising process for the optimization of nitrogen removal, in particular in the presence of a low biodegradable COD/TKN ratio. In the present study a lab-scale sequencing batch reactor (SBR) was monitored for approximately 2 years to evaluate the use of dissolved oxygen (DO), pH and oxidation-reduction potential (ORP) as monitoring parameters in order to optimize nitrogen removal via nitrite from leachate generated in old sanitary landfills. The SBR manifested a nitrification efficiency exceeding 99% whereas, due to the low biodegradability of the organic matter presents in the leachates, COD removal reached approximately 40% and the addition of external COD was required to accomplish denitrification process. Moreover, the results demonstrate that DO, pH and ORP are reliable parameters for use in the monitoring of nitritation and denitritation processes in SBRs treating landfill leachates. Through manual modification of the length of the SBR phases to achieve nitrogen removal via nitrite, the nitritation and denitritation processes were rendered unstable leading to the saving of 20% in addition of external COD, almost half the theoretically achievable value. Furthermore, the low dissolved oxygen concentration applied during the oxic phases in an attempt to increase the nitritation process would appear to cause the settling characteristics of the activated sludge to deteriorate.

  1. Environmental impact assessment on the construction and operation of municipal solid waste sanitary landfills in developing countries: China case study.

    Science.gov (United States)

    Yang, Na; Damgaard, Anders; Lü, Fan; Shao, Li-Ming; Brogaard, Line Kai-Sørensen; He, Pin-Jing

    2014-05-01

    An inventory of material and energy consumption during the construction and operation (C&O) of a typical sanitary landfill site in China was calculated based on Chinese industrial standards for landfill management and design reports. The environmental impacts of landfill C&O were evaluated through life cycle assessment (LCA). The amounts of materials and energy used during this type of undertaking in China are comparable to those in developed countries, except that the consumption of concrete and asphalt is significantly higher in China. A comparison of the normalized impact potential between landfill C&O and the total landfilling technology implies that the contribution of C&O to overall landfill emissions is not negligible. The non-toxic impacts induced by C&O can be attributed mainly to the consumption of diesel used for daily operation, while the toxic impacts are primarily due to the use of mineral materials. To test the influences of different landfill C&O approaches on environmental impacts, six baseline alternatives were assessed through sensitivity analysis. If geomembranes and geonets were utilized to replace daily and intermediate soil covers and gravel drainage systems, respectively, the environmental burdens of C&O could be mitigated by between 2% and 27%. During the LCA of landfill C&O, the research scope or system boundary has to be declared when referring to material consumption values taken from the literature; for example, the misapplication of data could lead to an underestimation of diesel consumption by 60-80%.

  2. Landfill gas control facility with automatic wobbe-correction for Gas-Otto-Engines

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, K.; Pauli, H.

    1986-01-01

    In open sanitary landfills large amounts of energy-rich landfillgas is generated. Without a purposeful collection, this gas would escape into the covering layers and into the air and thus burden the environment. In the sanitary landfill of 'Gummersloch' near Berne, the gas is systematically collected and piped to the Senior and Nursing Home of Kuehlewil where it is utilised in a thermal power-coupling facility (heating power station) of the Bernese Power Plants (BKW) to produce power and heat. This plant, with additional equipment for the automatic wobbe-correction, has been in operation for about 2 years and has proved its worth in practical use. By way of the automatic wobbe-correction through the disturbance-variable feed-forward system, the uncontrolled occuring fluctuations of the gas quality are being, up to 40%, so levelled out, that a faultless operation is guaranteed. Actual experiences have confirmed that the adaption to changing gas qualities by means of the constant extended wobbe-index is ideally suited to the use of gas engines.

  3. Environmental impact assessment on the construction and operation of municipal solid waste sanitary landfills in developing countries: China case study

    DEFF Research Database (Denmark)

    Yang, Na; Damgaard, Anders; Lü, Fan

    2014-01-01

    An inventory of material and energy consumption during the construction and operation (C&O) of a typical sanitary landfill site in China was calculated based on Chinese industrial standards for landfill management and design reports. The environmental impacts of landfill C&O were evaluated through...... life cycle assessment (LCA). The amounts of materials and energy used during this type of undertaking in China are comparable to those in developed countries, except that the consumption of concrete and asphalt is significantly higher in China. A comparison of the normalized impact potential between...... of mineral materials. To test the influences of different landfill C&O approaches on environmental impacts, six baseline alternatives were assessed through sensitivity analysis. If geomembranes and geonets were utilized to replace daily and intermediate soil covers and gravel drainage systems, respectively...

  4. Report: the current situation of sanitary landfills in Brazil and the importance of the application of economic models.

    Science.gov (United States)

    Neto, Raul Oliveira; Petter, Carlos Otávio; Cortina, José Luis

    2009-12-01

    We present the development stage of the sanitary landfills in Brazil in the context of urban solid residue management, demonstrating the necessity and importance of the employment of economic models. In the article, a cost estimate model is proposed as the basis for studies to be applied by sector management, including the city council, companies, consultants and engineers, contributing to the choice of new areas, public bids, municipal consortia and private public partnerships.

  5. Report: the current situation of sanitary landfills in Brazil and the importance of the application of economic models

    OpenAIRE

    Oliveira Neto, Raúl; Otávio Petter, Carlos; Cortina Pallás, José Luís

    2009-01-01

    We present the development stage of the sanitary landfills in Brazil in the context of urban solid residue management, demonstrating the necessity and importance of the employment of economic models. In the article, a cost estimate model is proposed as the basis for studies to be applied by sector management, including the city council, companies, consultants and engineers, contributing to the choice of new areas, public bids, municipal consortia and private public partnerships. Peer Re...

  6. FUEL CELL ENERGY RECOVERY FROM LANDFILL GAS

    Science.gov (United States)

    International Fuel Cells Corporation is conducting a US Environmental Protection Agency (EPA) sponsored program to demonstrate energy recovery from landfill gas using a commercial phosphoric acid fuel cell power plant. The US EPA is interested in fuel cells for this application b...

  7. Study of biogas production parameters in the sanitary landfill; Estudio de los parametros que afectan la produccion de biogas en un vertedero controlado

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez Domenech, G.; Gordillo Bolasell, M. A.; Sanchez Ferrer, A.

    2001-07-01

    The following article contents a study about some of the parameters affecting the evolution of the gas production in a sanitary landfill placed in the province of Barcelona. The work is focused on the quality of biogas produced, measured as the percentage of methane and thus its energy profitability. The parameters included in this paper are: -Situation of the gas extraction station -Age of the wastes. -Reinfiltration of concentrated liquid leachate in the considered cell. Among the previous factors, the situation of the gas station and the age of wastes showed a critical influence on the methane content, whereas the use of leachate reinfiltration did not produce significant differences in the quality of biogas in the short-term applications. (Author) 5 refs.

  8. Potential production of electricity from biogas generated in a sanitary landfill

    Directory of Open Access Journals (Sweden)

    Quetzalli Aguilar-Virgen

    2011-08-01

    Full Text Available Energy forms the cornerstone of almost every economic, social and cultural sector in modern societies. Energy is regarded as an irreplaceable ingredient in such societies’ industrial development. The aim of this research was to estimate the generation of biogas in the city of Ensenada’s sanitary landfill to ascertain the amount of energy which could be generated from the solid waste being disposed of. Biogas estimates were conducted in two stages: a waste characterisation study followed by implementing the regulations proposed by SCS Engineers (SCS Engineers, 2009 regarding the Mexican biogas model (version 2.0. The results showed that a large quantity of organic matter (around 70% is a key element in anaerobic degradation of waste. As to energy generation, it is believed that a full 1.90 MW capacity will be reached in 2019. Such energy could increase Ensenada’s current electricity generation capacity by 3.46% and provide 60% of the energy needed for street lighting, thereby leading to USD $1.423 million in savings.

  9. Biogas from sanitary landfills for electricity production; Biogas de rellenos sanitarios para produccion de electricidad

    Energy Technology Data Exchange (ETDEWEB)

    Arvizu F, Jose L; Huacuz V, Jorge M. [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico)

    2003-07-01

    There are many ways to eliminate the municipal solid wastes, but only a few help to treat them and to dispose of them suitably. Some of the forms to avoid the problems that the trash originate are: not to produce it, recycling it in a 100% or creating a fictitious market where its value is equal to or greater than the product that gave origin to it; in any case, these alternatives are not absolutely practical. The trash can be incinerated, be segregated, be recycled partially or also be arranged in sanitary landfills. Anyway, the trash has always existed and it will continue existing for sure. [Spanish] Existen muchas maneras de eliminar los residuos solidos municipales, pero solo unas pocas ayudan a tratarlos y disponerlos adecuadamente. Algunas de las formas para evitar los problemas que ocasiona la basura son: no produciendola, reciclandola en un 100% o creando un mercado ficticio donde su valor sea igual o mayor al del producto que le dio origen; en cualquier caso, estas alternativas no son del todo practicas. La basura tambien se puede incinerar, segregar, reciclar parcialmente o disponer en rellenos sanitarios. De cualquier manera, la basura siempre ha existido y seguramente seguira existiendo.

  10. The use of tritium content as an indicator of the groundwater contamination by sanitary landfills leachates in the region of Belo Horizonte City, Brazil.

    Science.gov (United States)

    Bandeira, J V; Mingote, R M; Baptista, M B; Oliveira, D M; Lima, F P

    2008-01-01

    Tritium content in the leachate of sanitary landfills, in concentrations well above those observed in global precipitation, can be used as a tracer for the evaluation of the contamination of groundwater in piezometers of the landfills and in neighbouring tubular wells. This possibility was first investigated in Brazil for sanitary landfills in the region of Belo Horizonte City. Tritium levels together with the content of metals present in water and the measurement of soil electrical conductivity, proved to be valuable for these studies and also as a tracer for hydrodynamic studies of the surface water in the Ressaca creek.

  11. Methane Gas Utilization Project from Landfill at Ellery (NY)

    Energy Technology Data Exchange (ETDEWEB)

    Pantelis K. Panteli

    2012-01-10

    Landfill Gas to Electric Energy Generation and Transmission at Chautauqua County Landfill, Town of Ellery, New York. The goal of this project was to create a practical method with which the energy, of the landfill gas produced by the decomposing waste at the Chautauqua County Landfill, could be utilized. This goal was accomplished with the construction of a landfill gas to electric energy plant (originally 6.4MW and now 9.6MW) and the construction of an inter-connection power-line, from the power-plant to the nearest (5.5 miles) power-grid point.

  12. Site selection of sanitary landfills on the small island of Mauritius using the analytical hierarchy process multi-criteria method.

    Science.gov (United States)

    Ramjeawon, T; Beerachee, B

    2008-10-01

    This paper focuses on the application of a multi-criteria analysis methodology - the analytical hierarchy process - for the locating of a sanitary landfill on the small island of Mauritius. Four candidate sites were assessed using three main criteria (environmental, technical and socio-economic) and twenty-one sub-criteria. Scores were assigned to each criterion and sub-criterion by stakeholders in the solid waste sector, based on the impact assessment of each site so as to obtain their relative importance. The analytical hierarchy process was then applied, which involved the combination of the weights obtained at the different stages of pair-wise comparisons. The candidate sites were finally ranked to obtain the optimum site. Because of political factors, the second best ranked site was chosen by the authorities for the location of a new landfill on the island. This technique provides a realistic approach for use by small island developing states such as Mauritius for choosing and justifying to all stakeholders the best location for a sanitary landfill site or any other waste management site.

  13. Heavy Metals Exposure and Hygienic Behaviors of Workers in Sanitary Landfill Areas in Southern Thailand

    Directory of Open Access Journals (Sweden)

    Somsiri Decharat

    2016-01-01

    Full Text Available Objectives. The main objective of this study was to assess the cadmium and lead exposure levels in subject workers that work in sanitary landfill areas in southern Thailand. The study evaluated the blood cadmium and lead levels in terms of their possible role in worker contamination and transfer of cadmium and lead to the body. Materials and Methods. A cross-sectional study was conducted with 114 subjects. Whole blood samples were collected to determine cadmium and lead levels by graphite furnaces atomic absorption spectrometer chromium analyzer. Results and Discussion. The mean blood cadmium levels and blood lead levels of subjects workers were 2.95±0.58 μg/L (range 1.58–7.03 μg/L and 8.58±2.58 μg/dL (range 1.98–11.12 μg/dL, respectively. Gender, income, smoked cigarettes, work position, duration of work, personal protective equipment (PPE, and personal hygiene were significantly associated with blood cadmium level and blood lead levels (p<0.001 and p<0.001. A multiple regression model was constructed. Significant predictors of blood cadmium levels and blood lead levels included smoked cigarettes, hours worked per day, days worked per week, duration of work (years, work position, use of PPE (mask and gloves, and personal hygiene behavior (ate snacks or drank water at work and washed hands before lunch. Conclusion. The elevated body burden of toxic metals in the solid waste exposure of subject workers is an indication of occupational metal toxicity associated with personal hygiene practices.

  14. Suggested guidelines for gas emission monitoring at danish landfills

    DEFF Research Database (Denmark)

    Kjeldsen, Peter; Scheutz, Charlotte

    2015-01-01

    Landfill gas is produced on waste disposal sites receiving organic waste resulting in emission of methane. Regulation requires that the landfill gas is managed in order to reduce emissions, but very few suggestions exist to how the landfill gas management activities are monitored, what requirements...... measures to determine the efficiency of the performed emission mitigation is defined. Finally, several principles are presented for how criteria can be developed for when a monitoring program can be terminated....

  15. The Importance of Landfill Gas Policy Measures

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-07-01

    The purpose of this document is to identify and examine global policies, measures, and incentives that appear to be stimulating LFG use. As certain countries have made great advances in LFGE development through effective policies, the intention of this report is to use information from the IEA's Global Renewable Energy and Energy Efficiency Measures and Policies Databases to identify and discuss policies. By consolidating this information and categorising it according to policy type, the attributes that are most appealing or applicable to the circumstances of a particular country or area -- technology demonstration, financial incentives, awareness campaigns, etc. -- are more easily identified. The report begins with background information on LFG and sanitary landfill practices, including a discussion of regional disparities, followed by a description of LFG mitigation technologies. Barriers to LFGE projects are then outlined. An explanation of the importance and effectiveness of policy measures leads into a discussion of types and examples of measures that are being used to overcome these barriers and encourage LFGE development. The report concludes with lessons learned, recommendations for further study, and resources where more information can be found.

  16. Leachate treatment system using constructed wetlands, Town of Fenton sanitary landfill, Broome County, New York. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1993-11-01

    Municipal sanitary landfills generate leachate that New York State regulations require to be collected and treated to avoid contaminating surface water and groundwater. One option for treating leachate is to haul it to municipal wastewater treatment facility. This option may be expensive, may require excessive energy for transportation, and may require pretreatment to protect the receiving facility`s processes. An alternative is on-site treatment and discharge. Personnel from the Town of Fenton, New York; Hawk Engineering, P.C.; Cornell University; and Ithaca College designed, built, and operated a pilot constructed wetland for treating leachate at the Town of Fenton`s municipal landfill. The system, consisting of two overland flow beds and two subsurface flow beds has been effective for 18 months in reducing levels of ammonia (averaging 85% removal by volatilization and denitrification) and total iron (averaging 95% removal by precipitation and sedimentation), two key constituents of the Fenton landfill`s leachate. The system effects these reductions with zero chemical and energy inputs and minimal maintenance. A third key constituent of the leachate, manganese, apparently passes through the beds with minimal removal. Details and wetland considerations are described.

  17. Incorporation of electrochemical advanced oxidation processes in a multistage treatment system for sanitary landfill leachate.

    Science.gov (United States)

    Moreira, Francisca C; Soler, J; Fonseca, Amélia; Saraiva, Isabel; Boaventura, Rui A R; Brillas, Enric; Vilar, Vítor J P

    2015-09-15

    The current study has proved the technical feasibility of including electrochemical advanced oxidation processes (EAOPs) in a multistage strategy for the remediation of a sanitary landfill leachate that embraced: (i) first biological treatment to remove the biodegradable organic fraction, oxidize ammonium and reduce alkalinity, (ii) coagulation of the bio-treated leachate to precipitate humic acids and particles, followed by separation of the clarified effluent, and (iii) oxidation of the resulting effluent by an EAOP to degrade the recalcitrant organic matter and increase its biodegradability so that a second biological process for removal of biodegradable organics and nitrogen content could be applied. The influence of current density on an UVA photoelectro-Fenton (PEF) process was firstly assessed. The oxidation ability of various EAOPs such as electro-Fenton (EF) with two distinct initial total dissolved iron concentrations ([TDI]0), PEF and solar PEF (SPEF) was further evaluated and these processes were compared with their analogous chemical ones. A detailed assessment of the two first treatment stages was made and the biodegradability enhancement during the SPEF process was determined by a Zahn-Wellens test to define the ideal organics oxidation state to stop the EAOP and apply the second biological treatment. The best current density was 200 mA cm(-2) for a PEF process using a BDD anode, [TDI]0 of 60 mg L(-1), pH 2.8 and 20 °C. The relative oxidation ability of EAOPs increased in the order EF with 12 mg [TDI]0 L(-1) < EF with 60 mg [TDI]0 L(-1) < PEF with 60 mg [TDI]0 L(-1) ≤ SPEF with 60 mg [TDI]0 L(-1), using the abovementioned conditions. While EF process was much superior to the Fenton one, the superiority of PEF over photo-Fenton was less evident and SPEF attained similar degradation to solar photo-Fenton. To provide a final dissolved organic carbon (DOC) of 163 mg L(-1) to fulfill the discharge limits into the environment after

  18. Case study: City of Industry landfill gas recovery operation

    Energy Technology Data Exchange (ETDEWEB)

    None

    1981-11-01

    Development of civic, recreation, and conservation facilities throughout a 150-acre site which had been used for waste disposal from 1951 to 1970 is described. The history of the landfill site, the geology of the site, and a test well program to assess the feasibility of recoverying landfill gas economically from the site are discussed. Based on results of the test well program, the City of Industry authorized the design and installation of a full-scale landfill gas recovery system. Design, construction, and operation of the system are described. The landfill gas system provides fuel for use in boilers to meet space heating and hot water demands for site development (MCW)

  19. Identifying suitable sanitary landfill locations in the state of Morelos, México, using a Geographic Information System

    Science.gov (United States)

    Marín, Luis E.; Torres, Vicente; Bolongaro, Andrea; Reyna, José A.; Pohle, O.; Hernández-Espriú, A.; Chavarría, Jerónimo; García-Barrios, R.; Tabla, Hugo Francisco Parra

    GIS is a powerful tool that may help to better manage natural resources. In this paper, we present a GIS model developed for the state of Morelos as an aid to determine whether a potential site, Loma de Mejia, met the Mexican Federal Guidelines. The Mexican Government has established federal guidelines for sanitary landfill site selection (NOM-083-SERMARNAT-2003). These guidelines were translated into a water-based Geographic Information System and applied to the state of Morelos, Mexico. For these examples, we used the SIGAM® (Sistema de Información Geográfico del Agua en México; a water-based GIS for Mexico) which has at least 60 layers from the National Water Commission (CONAGUA), the national mapping agency (INEGI; Instituto Nacional de Estadística, Geografía e Informática), NASA, and academic institutions. Results show that a GIS is a powerful tool that may allow federal, state and municipal policy makers to conduct an initial regional site reconnaissance rapidly. Once potential sites are selected, further characterization must be carried out in order to determine if proposed locations are suitable or not for a sanitary landfill. Based on the SIGAM© software, the Loma de Mejia would not comply with the Mexican Federal Guidelines.

  20. Sustainable sanitary landfills for neglected small cities in developing countries: The semi-mechanized trench method from Villanueva, Honduras

    Energy Technology Data Exchange (ETDEWEB)

    Oakley, Stewart M., E-mail: soakley@csuchico.edu [Department of Civil Engineering, Chico State University, California State University, Chico, CA 95929 (United States); Jimenez, Ramon, E-mail: rjimenez1958@yahoo.com [Public Works, Municipality of Villanueva, Cortes (Honduras)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer Open dumping is the most common form of waste disposal in neglected small cities. Black-Right-Pointing-Pointer Semi-mechanized landfills can be a sustainable option for small cities. Black-Right-Pointing-Pointer We present the theory of design and operation of semi-mechanized landfills. Black-Right-Pointing-Pointer Villanueva, Honduras has operated its semi-mechanized landfill for 15 years. Black-Right-Pointing-Pointer The cost of operation is US$4.60/ton with a land requirement of 0.2m{sup 2}/person-year. - Abstract: Open dumping is the most common practice for the disposal of urban solid wastes in the least developed regions of Africa, Asia and Latin America. Sanitary landfill design and operation has traditionally focused on large cities, but cities with fewer than 50,000 in population can comprise from 6% to 45% of a given country's total population. These thousands of small cities cannot afford to operate a sanitary landfill in the way it is proposed for large cities, where heavy equipment is used to spread and compact the waste in daily cells, and then to excavate, transport and apply daily cover, and leachate is managed with collection and treatment systems. This paper presents an alternative approach for small cities, known as the semi-mechanized trench method, which was developed in Villanueva, Honduras. In the semi-mechanized trench method a hydraulic excavator is used for 1-3 days to dig a trench that will last at least a month before it is filled with waste. Trucks can easily unload their wastes into the trench, and the wastes compact naturally due to semi-aerobic biodegradation, after which the trenches are refilled and covered. The exposed surface area is minimal since only the top surface of the wastes is exposed, the remainder being covered by the sides and bottom of the trench. The surplus material from trench excavation can be valorized for use as engineering fill onsite or off. The landfill in

  1. Impact assessment of concentrate recirculation on the landfill gas production

    Directory of Open Access Journals (Sweden)

    Džolev Nikola M.

    2016-01-01

    Full Text Available This paper explores the impact of concentrate recirculation, as a product of leachate treated by reverse osmosis plant, on the production of landfill gas at the real-scale landfill for municipal solid waste. In an effort to come up with results experimental measurements were carried out at the landfill in Bijeljina. All measurements performed, were divided into 3 groups. The aims of two groups of measurement were to determine landfill gas and methane yield from concentrate and leachate in laboratory conditions (1st group and to find out concentrations of oxidizing matters (COD and BOD5 present in leachate and concentrate at different points of treatment as well as its variability over the time (2nd group which could be used to calculate the potential of landfill gas and methane generation from concentrate by recirculation, theoretically. 3rd group of measurements, carried out in parallel, have goal to determine the quality and quantity of the collected landfill gas at wells throughout the landfill. The results of analysis carried out in this experimental research show the clear evidence of concentrate recirculation impact on methane production by increasing the landfill gas flow, as well as its concentration within the landfill gas composition, at the nearby well. Although results indicated relatively high impact of concentrate recirculation on landfill gas production, comparing to its theoretical potential, the influence on the landfill at whole, is negligible, due to relatively low volumes in recirculation with respect to its size and objectively low potential given by organic matter present in concentrate.

  2. Designing systems for landfill gas migration control in Minnesota

    Energy Technology Data Exchange (ETDEWEB)

    Cannon, J. [Camp, Dresser & McKee, Inc., St. Paul, MN (United States)

    1996-11-01

    Camp, Dresser & McKee (CDM) has designed or is in the process of designing several landfill gas migration control systems in Minnesota. The systems are for both active and closed municipal solid waste landfills. The sites have a variety of covers, including geomembranes, clay caps, and non-engineered soil covers. The control system types include small perimeter systems, full-site systems and phased systems for active sites. Figure 1 shows the locations of the systems CDM is working on in Minnesota. This paper focuses on four sites: Oak Grove Landfill, Hopkins Landfill, Washington County Landfill, and Elk River Landfill. Table 1 provides an outline of the individual site characteristics. The first three sites are closed landfills. The Oak Grove Landfill system was designed and constructed for a group of industries responsible for closure and remedial action. The Hopkins and Washington County landfills are under the control of the Minnesota Pollution Control Agency (MPCA). The MPCA enacted a remedial action program at closed landfills, taking over responsibility for long-term liability under the terms of legally binding agreements negotiated with the site owners. The Elk River Landfill is an active, privately-owned facility. The migration problems and solutions developed for these four landfills are generally descriptive of all the landfills CDM is working on in Minnesota. All landfills have unique characteristics requiring site-specific solutions. CDM, after designing a number of migration control systems in Minnesota, is able to provide a generalized description of design options for specific types of sites. This paper discussions design options used to address different cover types, aesthetic needs, and waste depths, and includes a discussion of design needs for cold climates. A brief case history of the Oak Grove Landfill is included.

  3. Danish landfill gas plants with automatic measuring and regulation system

    Energy Technology Data Exchange (ETDEWEB)

    Willumsen, H. [Danish Land Development Service (Denmark)

    1996-12-31

    The first landfill gas plants in the USA were established on large and deep landfills. A number of wells were made and connected to a horizontal suction pipe through which the gas was sucked from the landfill. Most of the gas extraction systems are still constructed that way. However, control and optimising of the gas extraction can be problematic when a great number of drillings are connected to the same suction pipe. Since 1981 the Danish Ministry of Energy has supported selected research and development projects in connection with extraction and utilisation of landfill gas from Danish landfills, including a pilot plant implemented in 1983. In 1985 a EU-financed demonstration plant was established in Viborg, Denmark. In connection with the pilot and EU demonstration plant an automatic measuring and regulation system was developed to secure optimal gas recovery, identical gas quality and furthermore, it has the advantage of remote monitoring and regulation which save operational costs. The automatic measuring and regulation system is in particular well-suited when the landfill is of a relatively low depth and where regulation of the extraction may cause problems embodied in atmospheric air being sucked down in the landfill causing fluctuation of the gas quality and consequently of the gas quantity. (Author)

  4. Gaseous methyl- and inorganic mercury in landfill gas from landfills in Florida, Minnesota, Delaware, and California

    Science.gov (United States)

    Lindberg, S. E.; Southworth, G.; Prestbo, E. M.; Wallschläger, D.; Bogle, M. A.; Price, J.

    2005-01-01

    Municipal waste landfills contain numerous sources of mercury which could be emitted to the atmosphere. Their generation of methane by anaerobic bacteria suggests that landfills may act as bioreactors for methylated mercury compounds. Since our previous study at a single Florida landfill, gaseous inorganic and methylated mercury species have now been identified and quantified in landfill gas at nine additional municipal landfills in several regions of the US. Total gaseous mercury occurs at concentrations in the μg m-3 range, while methylated compounds occur at concentrations in the ng m-3 range at all but one of the landfill sites. Dimethylmercury is the predominant methylated species, at concentrations up to 100 ng m-3, while monomethyl mercury was generally lower. Limited measurements near sites where waste is exposed for processing (e.g. working face, transfer areas) suggest that dimethylmercury is released during these activities as well. Although increasing amounts of landfill gas generated in the US are flared (which should thermally decompose the organic mercury to inorganic mercury), unflared landfill gas is a potentially important anthropogenic source of methylated mercury emissions to the atmosphere.

  5. Effects of ferric ions on the catalytic ozonation process on sanitary landfill leachates

    Directory of Open Access Journals (Sweden)

    Messias Borges Silva

    2013-04-01

    Full Text Available Leachates exhibiting an unstable ratio of biochemical oxygen demand (BOD and chemical oxygen demand (COD of approximately 0.45 are typical of new landfills in the City of Cachoeira Paulista, Brazil. Although the organic matter portion is bio-treatable, the presence of refractory leached organic material requires unconventional effluent-treatment processes. Leachate treatment with ozone oxidation, in the presence of ferric ions, acts as catalyst in the formation of hydroxyl radicals. Ozone was obtained by corona-discharge from high-purity O2 gas. The treatment was performed in natura in a jacketed borosilicate glass reactor containing 900 ml of leachate. The analyzed response variable was expressed as the concentration of dissolved organic carbon (DOC. In order to determine the optimal proportions to produce the greatest degradation rate for organic materials, variations in experimental O2 flow-fed to the generator, the Fe(iii concentration, and the output of the ozonator were conducted over two experimental runs. Experimental models showed a DOC degradation on the order of 81.25%.

  6. Albany Interim Landfill gas extraction and mobile power system: Using landfill gas to produce electricity. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-06-01

    The Albany Interim Landfill Gas Extraction and Mobile Power System project served three research objectives: (1) determination of the general efficiency and radius of influence of horizontally placed landfill gas extraction conduits; (2) determination of cost and effectiveness of a hydrogen sulfide gas scrubber utilizing Enviro-Scrub{trademark} liquid reagent; and (3) construction and evaluation of a dual-fuel (landfill gas/diesel) 100 kW mobile power station. The horizontal gas extraction system was very successful; overall, gas recovery was high and the practical radius of influence of individual extractors was about 50 feet. The hydrogen sulfide scrubber was effective and its use appears feasible at typical hydrogen sulfide concentrations and gas flows. The dual-fuel mobile power station performed dependably and was able to deliver smooth power output under varying load and landfill gas fuel conditions.

  7. The effect of sanitary landfill leachate aging on the biological treatment and assessment of photoelectrooxidation as a pre-treatment process

    Energy Technology Data Exchange (ETDEWEB)

    Müller, Gabriel Timm [Universidade Estadual do Rio Grande do Sul (UERGS), R. Gal. João Manoel, 50, CEP 90010-030 Porto Alegre, RS (Brazil); Giacobbo, Alexandre [Universidade Federal do Rio Grande do Sul (UFRGS), Av. Bento Gonçalves, 9500, Setor 4, Prédio 74, CEP 91501-970 Porto Alegre, RS (Brazil); Santos Chiaramonte, Edson Abel dos [Universidade Estadual do Rio Grande do Sul (UERGS), R. Gal. João Manoel, 50, CEP 90010-030 Porto Alegre, RS (Brazil); Rodrigues, Marco Antônio Siqueira [Universidade FEEVALE, ICET, RS 239, 2755, CEP 93352-000 Novo Hamburgo, RS (Brazil); Meneguzzi, Alvaro [Universidade Federal do Rio Grande do Sul (UFRGS), Av. Bento Gonçalves, 9500, Setor 4, Prédio 74, CEP 91501-970 Porto Alegre, RS (Brazil); Bernardes, Andréa Moura, E-mail: amb@ufrgs.br [Universidade Federal do Rio Grande do Sul (UFRGS), Av. Bento Gonçalves, 9500, Setor 4, Prédio 74, CEP 91501-970 Porto Alegre, RS (Brazil)

    2015-02-15

    Highlights: • Photoelectrooxidation (PEO) emerges as a new technology for leachate treatment. • Aging of sanitary landfills acts on leachate composition and biodegradability. • PEO is applied as leachate pretreatment before the biological processes. • PEO produced significant changes in the leachate matrix, easing biological process. - Abstract: The sanitary landfill leachate is a dark liquid, of highly variable composition, with recalcitrant features that hamper conventional biological treatment. The physical–chemical characteristics of the leachate along the landfill aging, as well as their effects on the efficiency of the conventional treatment, were evaluated at this paper. The feasibility of photoelectrooxidation process as an alternative technique for treatment of landfill leachates was also determined. Photoelectrooxidation experiments were conducted in a bench-scale reactor. Analysis of the raw leachate revealed many critical parameters demonstrating that the recalcitrance of leachate tends to increase with time, directly influencing the decline in efficiency of the conventional treatment currently employed. The effects of current density and lamp power were investigated. Using a 400 W power lamp and a current density of 31.5 mA cm{sup −2}, 53% and 61% efficiency for the removal of ammoniacal nitrogen and chemical oxygen demand were respectively achieved by applying photoelectrooxidation process. With the removal of these pollutants, downstream biological treatment should be improved. These results demonstrate that photoelectrooxidation is a feasible technique for the treatment of sanitary landfill leachate, even considering this effluent’s high resistance to treatment.

  8. Measurement of representative landfill gas migration samples at landfill perimeters: a case study

    OpenAIRE

    Kiernan, Breda M.; Beirne, Stephen; Fay, Cormac; Diamond, Dermot

    2009-01-01

    This paper describes the development of a fully integrated autonomous system based on existing infrared sensing technology capable of monitoring landfill gas migration (specifically carbon dioxide and methane) at landfill sites. Sampling using the described system was validated against the industry standard, GA2000 Plus hand held device, manufactured by Geotechnical Instruments Inc. As a consequence of repeated sampling during validation experiments, fluctuations in the gas mixtures became ap...

  9. Landfill gas as vehicle fuel; Deponigas som fordonsbraensle

    Energy Technology Data Exchange (ETDEWEB)

    Benjaminsson, Johan; Johansson, Nina; Karlsvaerd, Johan (Grontmij AB, Stockholm (Sweden))

    2010-03-15

    The landfill gas extraction in Sweden 2008 was 370 GWh. Mainly because of lack of available technologies for landfill gas upgrading and high assessed upgrading costs, landfill gas has so far only been used for heating and cogenerations plants (CHP). In recent years, interest has been brought to upgrade landfill gas and this study highlights the possibility of using landfill gas as fuel for vehicles. A decision in investment in an upgrading installation requires a forecast of future gas production and landfill gas extraction. From 2005, dispose of organic waste is prohibited, reducing the number of active landfills and the landfill gas production will go down. Factors such as moisture content, design of the final coverage and landfill gas collection system have a major impact on the extraction. It is therefore difficult to make appropriate predictions of the future gas production. Today's landfill gas extraction is approximately 35% of the landfill gas production and in the light of this, extraction can be in a level comparable to today's at least ten years ahead, provided that the extraction system is being expanded and that measurements are taken to so that landfills should not dry out. In comparison with biogas from anaerobic digestion in a dedicated digester, landfill gas has a high percentage of nitrogen and a content of many contaminants such as organic silicon compounds (siloxanes) and halogenated hydrocarbons (hydrocarbons containing the halogens chlorine, fluorine and bromine). This often requires more treatment and a further separation step. A common method for purification of landfill gas is regenerative adsorption on a dedicated adsorption material. Carbon dioxide is separated by conventional techniques like PSA, water scrubber and membranes. The main barrier to use landfill gas as vehicle fuel is a cost-effective separation of nitrogen that does not generate high methane losses. Nitrogen is separated by PSA or distillation technique (cryogenic

  10. Evolution on qualities of leachate and landfill gas in the semi-aerobic landfill

    Institute of Scientific and Technical Information of China (English)

    HUANG Qifei; YANG Yufei; PANG Xiangrui; WANG Qi

    2008-01-01

    To study the characteristics of stabilization in semi-aerobic landfill, large-scale simulated landfill was constructed based on the semi-aerobic landfill theory. Consequently, the concentrations of chemical oxygen demand (COD), ammonia nitrogen, and nitrite nitrogen, and the pH value in leachate, as well as the component contents of landfill gas composition (methane, carbon dioxide, and oxygen) in landfill were regularly monitored for 52 weeks. The results showed that COD and ammonia concentrations declined rapidly and did not show the accumulating rule like anaerobic landfill, and remained at about 300 and 100 mg/L, respectively, after 48 weeks. Meanwhile, the descending rate reached 98.9% and 96.9%, respectively. Nitrate concentration increased rapidly after 24 weeks and fluctuated between 220-280 mg/L after 43 weeks. The pH values were below 7 during the first 8 weeks and after that leachates appeared to be alkaline. Carbon dioxide was the main composition in landfill gas and its concentration remained at a high level through the whole stabilization process. The average contents of carbon dioxide, oxygen, and methane varied between 19 vol.%-28 vol.%, 2 vol.%-8 vol.%, and 5 vol.%-13 vol.%, respectively. A relative equilibrium was reached after 48 weeks. The highest temperature in the landfill chamber could amount to 75.8 degrees centigrade.

  11. Application of Deuterium and Oxygen-18 to Trace Leachate Movement in Bantar Gebang Sanitary Landfill

    Directory of Open Access Journals (Sweden)

    E.R. Pujiindiyati

    2011-08-01

    Full Text Available Bantar Gebang landfill was constructed in 1986 with total area of 108 ha and approximately 6000 ton/day solid waste is disposed to this landfill. Mostly, the people living surrounding landfill get afraid of impact of the hazardous chemicals produced by waste disposal to their health. The purpose of this investigation was to study the migration of leachate to Cibitung River water and shallow groundwaters near to the river. It is possible to be done because chemical contents and isotopic characteristics of municipal landfill leachate are unique, relative to aqueous media in the most natural environments. Laser absorption method developed by the LGR (Los Gatos Research was used to measure absolute abundances of 2HHO, HH18O and HHO in a number of water samples. In-situ measurements were also conducted as an additional parameter besides their isotopes. The δ2H of the H2O in landfill leachate was significantly enriched, with values of - 22.6 ‰ to + 4.3 ‰. This deuterium enrichment was undoubtedly due to the extensive production of microbial methane within the limited reservoir of the landfill. However, the enriched deuterium value in leachate was not detected in the river which still had depleted values. It was probably caused by the amount of natural water in the river was comparatively large, with respect to limited leachate discarded to the river.The electrical conductivity of the leachate was higher (3200 to 7600 S and the decreasing values were still monitored in the river to approximately 12 km after streaming the landfills. The effect of the high electrical conductivity and enriched deuterium of leachate was not clearly indicated in the groundwater samples which still represented the local precipitation recharge, except a monitoring well located in Bantar Gebang landfill area which has an indication of leachate contamination.

  12. Recovery of landfill gas. Udnyttelse af lossepladsgas; Demonstrationsprojekt: Endelige rapporter

    Energy Technology Data Exchange (ETDEWEB)

    Willumsen, H.C. (Novo Industri A/S, Bagsvaerd (Denmark))

    1989-01-01

    The present report treats of the establishment of a demonstration plant for exploitation of landfill gas, the experience that has been gleaned and the results achieved in this connection. The main objective of the project was to construct a plant which can ensure optimum recovery and exploitation of the landfill gas in small landfills where the filling height is relatively low. Also, the plant should be economically viable. For optimum recovery a special adjustment system was introduced, which has proved very satisfactory, as it has resulted in an increase in the recovered gas volume and ensures a constant methane content. The landfill gas is used in a boiler which supplies heat to Viborg district heating system. Some of the gas is used in a Stirling motor in order to test how this particular motor works on landfill gas. The report contains information about the measuring and registration system of the plant and data derived from the measuring programme. The project has been implemented by Crone Koch in a close cooperation with the owner of the landfill, Viborg Municipality, and the main contractor, A/S Marius Pedersen. The demonstration project has been granted financial support by the Commission of the EEC (Contract no. BM741/83, Recovery of Landfill Gas''), and by the Danish Ministry of Energy. 42 figs., 6 tabs.

  13. Growing trees on completed sanitary landfills. [Nyssa sylvatica, Picea abies, Ginkgo biloba

    Energy Technology Data Exchange (ETDEWEB)

    Leone, I.A.; Gilman, E.F.; Flower, F.B.

    1983-01-01

    A 10-year old completed landfill in New Jersey consisting of 9 m (depth) of refuse covered with 15-25 cm of soil was cleared of debris and vegetation and covered with 30 cm of subsoil and 15-25 cm of topsoil. Nineteen coniferous and broadleaved species were planted on the landfill and on a control site in 1975, and trees were maintained and growth and condition monitored over 4 years. On the basis of shoot length and stem area increase, the most successful of the surviving trees were Nyssa sylvatica, Picea abies and Ginkgo biloba, in decreasing order of tolerance. Tolerance of landfill conditions appeared to be greatest in those species with low water requirements, a slow growth rate, high acid tolerance and a shallow root system. (Refs. 11).

  14. Sustainable sanitary landfills for neglected small cities in developing countries: the semi-mechanized trench method from Villanueva, Honduras.

    Science.gov (United States)

    Oakley, Stewart M; Jimenez, Ramón

    2012-12-01

    Open dumping is the most common practice for the disposal of urban solid wastes in the least developed regions of Africa, Asia and Latin America. Sanitary landfill design and operation has traditionally focused on large cities, but cities with fewer than 50,000 in population can comprise from 6% to 45% of a given country's total population. These thousands of small cities cannot afford to operate a sanitary landfill in the way it is proposed for large cities, where heavy equipment is used to spread and compact the waste in daily cells, and then to excavate, transport and apply daily cover, and leachate is managed with collection and treatment systems. This paper presents an alternative approach for small cities, known as the semi-mechanized trench method, which was developed in Villanueva, Honduras. In the semi-mechanized trench method a hydraulic excavator is used for 1-3 days to dig a trench that will last at least a month before it is filled with waste. Trucks can easily unload their wastes into the trench, and the wastes compact naturally due to semi-aerobic biodegradation, after which the trenches are refilled and covered. The exposed surface area is minimal since only the top surface of the wastes is exposed, the remainder being covered by the sides and bottom of the trench. The surplus material from trench excavation can be valorized for use as engineering fill onsite or off. The landfill in Villanueva has operated for 15 years, using a total land area of approximately 11 ha for a population that grew from 23,000 to 48,000, with a land requirement of 0.2m(2)/person year, a cover to waste ratio of 0.2, and an estimated soil surplus of 298,000 m(3) that is valorized and used onsite. The landfill has been operated solely by the municipality with an operational cost in 2010 estimated at US$4.60 per ton. A modified water balance analysis at Villanueva shows negligible leachate generation from covered trenches and 700 m(3)/yr (60 m(3)/ha yr) from the two open

  15. Fuel Flexibility: Landfill Gas Contaminant Mitigation for Power Generation

    Energy Technology Data Exchange (ETDEWEB)

    Storey, John Morse [ORNL; Theiss, Timothy J [ORNL; Kass, Michael D [ORNL; FINNEY, Charles E A [ORNL; Lewis, Samuel [Oak Ridge National Laboratory (ORNL); Kaul, Brian C [ORNL; Besmann, Theodore M [ORNL; Thomas, John F [ORNL; Rogers, Hiram [ORNL; Sepaniak, Michael [University of Tennessee, Knoxville (UTK)

    2014-04-01

    This research project focused on the mitigation of silica damage to engine-based renewable landfill gas energy systems. Characterization of the landfill gas siloxane contamination, combined with characterization of the silica deposits in engines, led to development of two new mitigation strategies. The first involved a novel method for removing the siloxanes and other heavy contaminants from the landfill gas prior to use by the engines. The second strategy sought to interrupt the formation of hard silica deposits in the engine itself, based on inspection of failed landfill gas engine parts. In addition to mitigation, the project had a third task to develop a robust sensor for siloxanes that could be used to control existing and/or future removal processes.

  16. Exergetic analysis of a power plant using landfill gas

    Energy Technology Data Exchange (ETDEWEB)

    Mert, Mehmet Selcuk [Yalova University, Energy Systems Engineering Department (Turkey)], email: msmert@yalova.edu.tr; Dilmac, Omer Faruk; Ozkan, Semra; Bolat, Esen [Yildiz Technical University Chemical Engineering Department (Turkey)], email: omerfarukdl@yahoo.com, email: ozkans@yildiz.edu.tr, email: ebolat@yildiz.edu.tr; Mert, Hatice Hande [Yalova University, Chemical and Process Engineering Department (Turkey)], email: hndmert@yalova.edu.tr

    2011-07-01

    Landfill gas production results from chemical reactions and anaerobic decomposition of biodegradable organic materials at the municipal waste facility as the putrescible materials begin to break down in the landfill. Using landfill gas in internal combustion engines to produce electricity helps in reducing emissions, protecting the environment and saving energy resources. In order to determine the real thermodynamic efficiency of the system and its components, an exergetic analysis of a power plant using landfill gas as fuel was studied in this article. The mass, energy, and exergy balances were done for each piece of equipment and, based on these parameters, exergy destructions and the improvement potential with respect to the landfill gas compressor and gas engine were determined. The results show that the total exergy destruction was 2305.54 kW, the exergy efficiencies were 85.83% and 40.50%, and the energy efficiencies were 94.40% and 45.61% for the landfill gas compressor and gas engine, respectively.

  17. Comparison Of Four Landfill Gas Models Using Data From Four Danish Landfills

    DEFF Research Database (Denmark)

    Mønster, Jacob G.; Mou, Zishen; Kjeldsen, Peter

    2011-01-01

    , and to compare the four Danish landfill sites. The results show that three of the models generally give similar methane generation output. Only the LandGem model seems to give a much higher methane generation for Danish waste data, most likely due to a low organic fraction. Interpretation of the waste data......Data about type and quantity of waste disposed in four Danish landfills was collected and used on four different landfill gas generation models. This was done to compare the output data in order to evaluate the performance of the four landfill gas models when used on Danish waste types...... and the categorization of the waste play an important role in the methane prediction and combining the model predictions with whole site methane measurements would therefore be advised....

  18. Public concerns about and perceptions of solid waste dump sites and selection of sanitary landfill sites in the West Bank, Palestinian territory.

    Science.gov (United States)

    Al-Khatib, Issam A; Abu Hammad, Ahmad; Sharkas, Othman A; Sato, Chikashi

    2015-04-01

    Palestinian inhabitants have disposed of their solid wastes at open dumpsites over the past 40 years without an adequate solid waste management (SWM) plans. Recently, the Palestinian Authority initiated SWM planning to establish controlled sanitary landfills, based on a participatory approach. The purpose of this study was to assess public concerns about existing solid waste dumpsites and public perceptions of sanitary landfill site selection. The study will also take into consideration the effect of diverse social, economic, and environmental related factors of the inhabitants on sitting suitable landfill sites in three Palestinian districts in the West Bank, namely, "Nablus," "Salfit," and "Ramallah and Al-Bireh." The results of this study showed that 64.9% of the sample population are aware of the problems and potential impacts associated with random dumpsites, and 41.6% think that they are suffering from the dumps. Among the environmental, socioeconomic, and political factors, the environmental factors, air pollution in particular, are thought be the most important consideration in selecting a landfill site. The "fairness in selecting a landfill site" was chosen to be one of the most important socioeconomic factors, possibly as a reaction to the Israeli occupation and subsequent land use restrictions in the West Bank, Palestinian territory.

  19. Gas Production Potential in the Landfill of Tehran by Landfill Methane Outreach Program

    Directory of Open Access Journals (Sweden)

    Pazoki

    2015-10-01

    Full Text Available Background Landfilling is the most common way of municipal solid waste (MSW disposal in Iran. Many countries have targeted landfill methane recovery among greenhouse gas mitigation strategies, since methane is the second most important greenhouse gas after carbon dioxide. Major questions remain with respect to actual methane production rates in field settings as well as the relative mass of methane that is recovered, emitted, oxidized by methanotrophic bacteria, laterally migrated, or temporarily stored within the landfill volume. Landfill gas (LFG consists of 50% - 60 vol% methane and 30% - 40 vol% carbon dioxide as well as trace amounts of numerous chemical compounds such as aromatics, chlorinated organic compounds and sulfur compounds. Landfill methane outreach program (LMOP is a voluntary assistance program which helps reduce methane emissions from landfills by encouraging the recovery and the beneficial use of LFG as an energy resource. Objectives In this study, the volume of LFG of Tehran by landfill methane outreach program (LMOP software was calculated. In addition, the relationship between the time of gas collection system operation and the volume of LFG production was evaluated. Materials and Methods The LMOP software was used. The available information and some presumptions were used to operate the software. The composition of the solid waste collected from the landfill of Tehran had specific details. A large amount of it was organic materials, which was about 67.8%. These materials have a good potential to produce gas. In addition, LMOP Colombia model uses the first-order equations in all the analytical equations. Furthermore, it is assumed that the landfill operation time is 30 years and the process is considered in two conditions; first, the gas was recovered in 2000, and second, the process started in 2015. Results The modeling results showed that for the gas recovery starting in 2000 and 2015, the power generation would be 2

  20. Applications of geotextiles in sanitary landfills; Aplicacion de geotextiles en vertederos

    Energy Technology Data Exchange (ETDEWEB)

    Cuenca Lorenzo, J. L.

    2001-07-01

    This article describes the applications of geo textiles in landfills with protection and filter functions. The usual way of design in many projects is revised in this paper and the needed properties to require to the geotextiles are showed too. Finally, a quality control of these properties which should be run to be sure that a good specified project is being fulfilled. (Author) 3 refs.

  1. Climate co-benefits of energy recovery from landfill gas in developing Asian cities: a case study in Bangkok.

    Science.gov (United States)

    Menikpura, S N M; Sang-Arun, Janya; Bengtsson, Magnus

    2013-10-01

    Landfilling is the most common and cost-effective waste disposal method, and it is widely applied throughout the world. In developing countries in Asia there is currently a trend towards constructing sanitary landfills with gas recovery systems, not only as a solution to the waste problem and the associated local environmental pollution, but also to generate revenues through carbon markets and from the sale of electricity. This article presents a quantitative assessment of climate co-benefits from landfill gas (LFG) to energy projects, based on the case of Bangkok Metropolitan Administration, Thailand. Life cycle assessment was used for estimating net greenhouse gas (GHG) emissions, considering the whole lifespan of the landfill. The assessment found that the total GHG mitigation of the Bangkok project would be 471,763 tonnes (t) of carbon dioxide (CO(2))-equivalents (eq) over its 10-year LFG recovery period.This amount is equivalent to only 12% of the methane (CH(4)) generated over the whole lifespan of the landfill. An alternative scenario was devised to analyse possible improvement options for GHG mitigation through LFG-to-energy recovery projects. This scenario assumes that LFG recovery would commence in the second year of landfill operation and gas extraction continues throughout the 20-year peak production period. In this scenario, GHG mitigation potential amounted to 1,639,450 tCO(2)-eq during the 20-year project period, which is equivalent to 43% of the CH(4) generated throughout the life cycle. The results indicate that with careful planning, there is a high potential for improving the efficiency of existing LFG recovery projects which would enhance climate co-benefits, as well as economic benefits. However, the study also shows that even improved gas recovery systems have fairly low recovery rates and, in consequence, that emissions of GHG from such landfills sites are still considerable.

  2. Effects of landfill gas on subtropical woody plants

    Science.gov (United States)

    Chan, G. Y. S.; Wong, M. H.; Whitton, B. A.

    1991-05-01

    An account is given of the influence of landfill gas on tree growth in the field at Gin Drinkers' Bay (GDB) landfill, Hong Kong, and in the laboratory. Ten species ( Acacia confusa, Albizzia lebbek, Aporusa chinensis, Bombax malabaricum, Castanopsis fissa, Liquidambar formosana, Litsea glutinosa, Machilus breviflora, Pinus elliottii, and Tristania conferta), belonging to eight families, were transplanted to two sites, one with a high concentration of landfill gas in the cover soil (high-gas site, HGS) and the other with a relatively low concentration of gas (low-gas site, LGS). Apart from the gaseous composition, the general soil properties were similar. A strong negative correlation between tree growth and landfill gas concentration was observed. A laboratory study using the simulated landfill gas to fumigate seedlings of the above species showed that the adventitious root growth of Aporusa chinensis, Bombax malabaricum, Machilus breviflora, and Tristania confera was stimulated by the gas, with shallow root systems being induced. Acacia confusa, Albizzia lebbek, and Litsea glutinosa were gas-tolerant, while root growth of Castanopsis fissa, Liquidambar formosana, and Pinus elliottii was inhibited. In most cases, shoot growth was not affected, exceptions being Bombax malabaricum, Liquidambar formosana, and Tristania conferta, where stunted growth and/or reduced foliation was observed. A very high CO2 concentration in cover soil limits the depth of the root system. Trees with a shallow root system become very susceptible to water stress. The effects of low O2 concentration in soil are less important than the effects of high CO2 concentration. Acacia confusa, Albizzia lebbek, and Tristania conferta are suited for growth on subtropical completed landfills mainly due to their gas tolerance and/or drought tolerance.

  3. Methodology for the determination of optimum power of a Thermal Power Plant (TPP) by biogas from sanitary landfill.

    Science.gov (United States)

    Silva, Tiago Rodrigo; Barros, Regina Mambeli; Tiago Filho, Geraldo Lúcio; Dos Santos, Ivan Felipe Silva

    2017-07-01

    This study aimed to determine theoretically, the electrical optimum power of LFG using the maximum net benefit (MNB) methodology, and taking into consideration the economic, demographic, and regional aspects of the Inter municipal Consortium of the Micro-region of the High Sapucaí for Sanitary Landfill (CIMASAS, as acronym in Portuguese), that is located in the southern part of the State of Minas Gerais, Brazil. To this end, the prognosis for a 20-year period of household solid waste generation in this region was estimated and quantified based on population data, in order to estimate the LFG production and the energy that can be generated. From this point, the optimum power for thermal power plant (TPP) by LFG was determined. The results indicated that the landfill in this region could produce more 66,293,282m(3)CH4 (with maximum power of 997kW in 2036) in twenty years and that there would be no economic viability to generate energy from LFG, because the Net Present Value (NPV) would not be positive. The smallest population to that can achieve a minimum attractiveness rate (MAR) of 15% should be 3,700,000 inhabitants under the conditions studied. Considering the Brazilian National Electric Energy Agency (ANEEL) Resolutions, it would be 339,000 inhabitants with an installed power of 440kW. In addition, the outcome of the CIMASAS case-study demonstrated the applicability of MNB methodology for the determination of TPP optimum power. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Application of GIS/AHP in siting sanitary landfill: a case study in Northern Cyprus.

    Science.gov (United States)

    Kara, Can; Doratli, Naciye

    2012-09-01

    The present study utilized a multi-criteria evaluation (MCE) method in a geographical information systems (GIS) environment to evaluate the suitability of potential landfill sites in Northern Cyprus. To determine the most suitable landfill site, one of the MCE techniques, called analytical hierarchy process (AHP), was combined with a GIS to examine 12 criteria: distance from waste generation centres; distance from roads; slope; distance from surface waters; distance from groundwater areas; distance from environmentally sensitive areas; vegetation types; soil productivity; soil permeability; distance from settlements; distance from cultural sites; distance from stone quarries. The relative importance weights of these criteria were estimated using AHP and criteria maps were developed by using GIS spatial analysis. At the final stage two different suitability maps were produced using two different groups of weights. The first group suitability map had 11 052 (ha) with high suitability class, whereas the high suitability areas decreased to 5982 (ha) in the second group. Moreover, the seven potential sites identified within the first group decreased to four in the second suitability map. However, potential sites such as Gungor, Degirmenlik, Kirklar and Cayonu had similarities with higher suitability values and these same locations were regarded as suitable according to the both first and second suitability map results.

  5. Optimisation of sanitary landfill leachate treatment in a sequencing batch reactor.

    Science.gov (United States)

    Spagni, A; Marsili-Libelli, S; Lavagnolo, M C

    2008-01-01

    A bench-scale SBR was operated for almost three years in an attempt to optimise the treatment of leachates generated in old landfill. The results of the first two years were used to design a monitoring and control system based on artificial intelligence concepts. Nitrogen removal was optimized via the nitrite shortcut. Nitrification and N removal were usually higher than 98% and 90%, respectively, whereas COD (of the leachate) removal was approximately 30-40%. The monitoring and control system was demonstrated capable of optimizing process operation, in terms of phase length and external COD addition, to the varying loading conditions. Using the control system developed, a significant improvement of the process was obtained: COD and N load were increased (HRT decrease) and a significant decrease (approximately 34%) of the ratio of COD added to N leachate content was observed.

  6. LCA and economic evaluation of landfill leachate and gas technologies.

    Science.gov (United States)

    Damgaard, Anders; Manfredi, Simone; Merrild, Hanna; Stensøe, Steen; Christensen, Thomas H

    2011-07-01

    Landfills receiving a mix of waste, including organics, have developed dramatically over the last 3-4 decades; from open dumps to engineered facilities with extensive controls on leachate and gas. The conventional municipal landfill will in most climates produce a highly contaminated leachate and a significant amount of landfill gas. Leachate controls may include bottom liners and leachate collection systems as well as leachate treatment prior to discharge to surface water. Gas controls may include oxidizing top covers, gas collection systems with flares or gas utilization systems for production of electricity and heat. The importance of leachate and gas control measures in reducing the overall environmental impact from a conventional landfill was assessed by life-cycle-assessment (LCA). The direct cost for the measures were also estimated providing a basis for assessing which measures are the most cost-effective in reducing the impact from a conventional landfill. This was done by modeling landfills ranging from a simple open dump to highly engineered conventional landfills with energy recovery in form of heat or electricity. The modeling was done in the waste LCA model EASEWASTE. The results showed drastic improvements for most impact categories. Global warming went from an impact of 0.1 person equivalent (PE) for the dump to -0.05 PE for the best design. Similar improvements were found for photochemical ozone formation (0.02 PE to 0.002 PE) and stratospheric ozone formation (0.04 PE to 0.001 PE). For the toxic and spoiled groundwater impact categories the trend is not as clear. The reason for this was that the load to the environment shifted as more technologies were used. For the dump landfill the main impacts were impacts for spoiled groundwater due to lack of leachate collection, 2.3 PE down to 0.4 PE when leachate is collected. However, at the same time, leachate collection causes a slight increase in eco-toxicity and human toxicity via water (0.007 E to 0

  7. Geotechnological characteristics of a sanitary land-fill:three years monitoring the sanitary landfills at Meruelo. Caracteristicas geotecnologicas de un vertedero controlado: tres aos de observacion de movimientos en el vertedero controlado de Meruelo

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-Alciturri, J.M.; Palma, J.H.; Sagaseta, M.; Caizal, J. (Universidad de Cantabria. (Spain))

    1994-01-01

    As a part of research program on geotechnical problems involved in waste disposal, a sanitary landfill has been instrumented in Meruelo, in the region of Cantabria, Spain. It is located in a valley, with an initial retaining dyke whose height is increased by the ''upstream'' method up to a final value of 50 m. At present, the records of three years of monitoring are available, and they are analyzed in this paper. They include surface settlements in points with different thickness of waste (up to 16 m.) and horizontal and vertical movements of the front slope for stability assessment. (Author)

  8. LIQUID NATURAL GAS (LNG): AN ALTERNATIVE FUEL FROM LANDFILL GAS (LFG) AND WASTEWATER DIGESTER GAS

    Energy Technology Data Exchange (ETDEWEB)

    VANDOR,D.

    1999-03-01

    This Research and Development Subcontract sought to find economic, technical and policy links between methane recovery at landfill and wastewater treatment sites in New York and Maryland, and ways to use that methane as an alternative fuel--compressed natural gas (CNG) or liquid natural gas (LNG) -- in centrally fueled Alternative Fueled Vehicles (AFVs).

  9. Recycling potential of urban solid waste destined for sanitary landfills: the case of Indaiatuba, SP, Brazil.

    Science.gov (United States)

    Mancini, Sandro Donnini; Nogueira, Alex Rodrigues; Kagohara, Dennis Akira; Schwartzman, Jonas Age Saide; de Mattos, Tânia

    2007-12-01

    The urban solid waste of the city of Indaiatuba (pop. 175 000), located in the state of São Paulo, was characterized, focusing on the recycling potential. For this purpose, collected waste was subdivided into 27 items, classified by mass and volume. About 90% of this waste was found to be potentially recyclable and only 10% requiring landfilling. The compostable organic matter, in the form of food and garden waste, both with high moisture content (51 and 41%, respectively), represents 54% in mass and 21% in volume. The most common type of plastic in this waste is high density polyethylene, whose estimated disposal is about 5000kgday(-1). A socio-economic analysis of the waste generation indicates that low-income neighbourhoods discard relatively less packaging and more food waste, shoes and construction debris than middle and high income ones, which may be due to low purchasing power and schooling. Our findings indicate that more aluminium and uncoloured polyethylene terephthalate is discarded in the warmest months of the year, probably due to a greater consumption of canned and bottled drinks.

  10. An innovative multistage treatment system for sanitary landfill leachate depuration: Studies at pilot-scale.

    Science.gov (United States)

    Silva, Tânia F C V; Soares, Petrick A; Manenti, Diego R; Fonseca, Amélia; Saraiva, Isabel; Boaventura, Rui A R; Vilar, Vítor J P

    2017-01-15

    In this work, an innovative methodology for the treatment of landfill leachates, after aerobic lagooning, is proposed and adjusted at pilot-scale. This methodology involves an aerobic activated sludge biological pre-oxidation (ASBO), a coagulation/sedimentation step (240mgFe(3+)/L, at pH4.2) and a photo-oxidation through a photo-Fenton (PF) reaction (60mg Fe(2+), at pH2.8) combining solar and artificial light. The ASBO process applied to a leachate after aerobic lagooning, with high organic and nitrogen content (1.1-1.5gC/L; 0.8-3.0gN/L) and low biodegradability (BOD5/COD =0.07-0.13), is capable to oxidise 62-99% of the ammonium nitrogen, consuming only the affluent alkalinity (70-100%). The coagulation/sedimentation stage led to the humic acids precipitation, promoting a marked change in leachate colour, from dark-brown to yellowish-brown (related to fulvic acids), accompanied by a reduction of 60%, 58% and 88% on DOC, COD and TSS, respectively. The PF system promoted the degradation of the recalcitrant organic molecules into more easily biodegradable ones. According to Zahn-Wellens biodegradability test, a leachate with 419mg DOC/L after coagulation, would have to be photo-oxidized until DOC 60%. The PF step cost to treat 100m(3)/day of leachate was 6.41€/m(3), combining 1339m(2) of CPCs with 31 lamps. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Gas exchanges in soybean as affected by landfill biogas atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Marchiol, L.; Zerbi, G. (Univ. di Udine (Italy). Dipt. di Produzione Vegetale e Tecnologie Agrarie); Mori, A.; Leita, L. (Ist. Sperimentale per la Nutrizione delle Piante-Sezione di Gorizia (Italy))

    A problem in the ecological restoration of closed landfills is the production of potentially toxic gases by decomposition of refuse that affects the root system and physiology of plants growing on these sites. The aim of the present study was to assess the effects induced by landfill biogas contamination on gas-exchanges of soybean [Glycine max (L.) Merr.]. Simulated landfill and control gases were supplied to soybean plants under laboratory conditions for 10 d. The composition of the simulated landfill gas used was: 16% O[sub 2], 8% CO[sub 2], 3% CH[sub 4], and 73% N[sub 2]; a control gas was also tested. Photosynthesis and stomatal conductance were significantly affected by the gas treatment after 3 d; in the course of the experiment, biogas treatment progressively reduced A[sub max] in light-saturation curves. The fresh and dry weight, leaf area and leaf chlorophyll content were not affected by the treatment. A metabolic adaptation to the biogas in the roots of treated plants was related to the disappearance of a fraction of the protein pool.

  12. FUEL CELL OPERATION ON LANDFILL GAS AT PENROSE POWER STATION

    Science.gov (United States)

    This demonstration test successfully demonstrated operation of a commercial phosphoric acid fuel cell (FC) on landfill gas (LG) at the Penrose Power Station in Sun Valley, CA. Demonstration output included operation up to 137 kW; 37.1% efficiency at 120 kW; exceptionally low sec...

  13. Removal of hydrogen sulfide gas and landfill leachate treatment using coal bottom ash.

    Science.gov (United States)

    Lin, C Y; Hesu, P H; Yang, D H

    2001-06-01

    Coal bottom ashes produced from three thermal power plants were used in column and batch experiments to investigate the adsorption capacity of the coal ash. Hydrogen sulfide and leachates collected from three sanitary landfill sites were used as adsorbate gas and solutions, respectively. Experimental results showed that coal bottom ash could remove H2S from waste gas or reduce the concentrations of various pollutants in the leachate. Each gram of bottom ash could remove up to 10.5 mg of H2S. In treating the landfill leachate, increasing ash dosage increased the removal efficiency but decreased the adsorption amount per unit mass of ash. For these tested ashes, the removal efficiencies of chemical oxygen demand (COD), NH3-N, total Kjeldhal nitrogen (TKN), P, Fe3+, Mn2+, and Zn2+ were 36.4-50, 24.2-39.4, 27.0-31.1, 82.2-92.9, 93.8-96.5, 93.7-95.4, and 80.5-82.2%, respectively; the highest adsorption capacities for those parameters were 3.5-5.6, 0.22-0.63, 0.36-0.45, 0.027-0.034, 0.050-0.053, 0.029-0.032, and 0.006 mg/g of bottom ash, respectively. The adsorption of pollutants in the leachate conformed to Freundlich's adsorption model.

  14. Landfills

    Data.gov (United States)

    Vermont Center for Geographic Information — This data set defines both current and historic landfills/waste disposal storage sites for the State of Vermont. Historic landfills were identified with the...

  15. The Measurement of Landfill Gas Emissions with the Orbiting Carbon Observatory and CarbonSAT Satellites

    Science.gov (United States)

    Vigil, S. A.; Bovensmann, H.

    2010-12-01

    Landfill gas is a significant contributor to anthropogenic emissions of CH4 and CO2. The U.S. Environmental Protection Agency has estimated the total U.S. 2007 emissions of the CH4 component of landfill gas at 132.9 Tg CO2 Equivalent. This compares to total CH4 emission from all US sources in 2007 at 585.3 Tg CO2 Equivalent. Worldwide CH4 emissions from landfill gas have been estimated at 668 Tg CO2 Equivalent. Satellite remote sensing can also be used to characterize landfill gas emissions. The NASA Orbiting Carbon Observatory (OCO-2) and the proposed CarbonSAT (University of Bremen) satellites are particularly suited for this purpose. The Orbiting Carbon Observatory (OCO) was designed to provided high spatial resolution ( developed countries. In general, landfills in the developed countries have landfill gas control system ground based landfill gas monitoring systems. These ground-based measurements can be used to calibrate OCO-2 and CarbonSAT landfill gas measurements. OCO-2 and CarbonSAT can be used to measure landfill emissions from the large landfills and open dumps of the emerging megacities in the developing world where accurate ground measurements are not available. For example Mexico City generates 26,000 MT of municipal solid waste that is disposed of in two uncontrolled landfills. Similar conditions exist in Asia, Latin America, and Africa. Satellite based measurements of these landfill gas emissions could help prioritize greenhouse gas remediation projects for these countries.

  16. Lateral gas transport in soil adjacent to an old landfill: factors governing gas migration

    DEFF Research Database (Denmark)

    Christophersen, Mette; Kjeldsen, Peter

    2001-01-01

    migration of landfill gas was a very dynamic system and the concentrations of LFG at a specific place and depth changed dramatically within a very short time. The experiments showed that change in barometric pressure was an important factor affecting gas migration at the Skellingsted landfill in Denmark.......Field experiments investigating lateral gas transport in soil adjacent to an old landfill in Denmark during a one-year period were conducted. A significant seasonal variation, with low concentrations of methane and high concentrations of carbon dioxide in the summer, caused by methane oxidation...

  17. Insights into solar photo-Fenton reaction parameters in the oxidation of a sanitary landfill leachate at lab-scale.

    Science.gov (United States)

    Silva, Tânia F C V; Ferreira, Rui; Soares, Petrick A; Manenti, Diego R; Fonseca, Amélia; Saraiva, Isabel; Boaventura, Rui A R; Vilar, Vítor J P

    2015-12-01

    This work evaluates the effect of the main photo-Fenton (PF) reaction variables on the treatment of a sanitary landfill leachate collected at the outlet of a leachate treatment plant, which includes aerated lagooning followed by aerated activated sludge and a final coagulation-flocculation step. The PF experiments were performed in a lab-scale compound parabolic collector (CPC) photoreactor using artificial solar radiation. The photocatalytic reaction rate was determined while varying the total dissolved iron concentration (20-100 mg Fe(2+)/L), solution pH (2.0-3.6), operating temperature (10-50 °C), type of acid used for acidification (H2SO4, HCl and H2SO4 + HCl) and UV irradiance (22-68 W/m(2)). This work also tries to elucidate the role of ferric hydroxides, ferric sulphate and ferric chloride species, by taking advantage of ferric speciation diagrams, in the efficiency of the PF reaction when applied to leachate oxidation. The molar fraction of the most photoactive ferric species, FeOH(2+), was linearly correlated with the PF pseudo-first order kinetic constants obtained at different solution pH and temperature values. Ferric ion speciation diagrams also showed that the presence of high amounts of chloride ions negatively affected the PF reaction, due to the decrease of ferric ions solubility and scavenging of hydroxyl radicals for chlorine radical formation. The increment of the PF reaction rates with temperature was mainly associated with the increase of the molar fraction of FeOH(2+). The optimal parameters for the photo-Fenton reaction were: pH = 2.8 (acidification agent: H2SO4); T = 30 °C; [Fe(2+)] = 60 mg/L and UV irradiance = 44 WUV/m(2), achieving 72% mineralization after 25 kJUV/L of accumulated UV energy and 149 mM of H2O2 consumed.

  18. Estimate the potential production of electricity: a case study of the sanitary landfill of Santo Andre, Sao Paulo, Brazil; Estimativa do potencial de producao de eletricidade: estudo de caso do aterro sanitario de Santo Andre, Sao Paulo, Brasil

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Elissando Rocha da; Moreira, Joao M. L.; Candiani, Giovano [Instituto Federal de Educacao, Ciencia e Tecnologia de Sao Paulo (IFSP), SP (Brazil)

    2010-07-01

    The recovery of the biogas generated from sanitary landfills, associated to its energetic use has been widely discussed. Thus, this paper aims to estimate the potential production of electric energy from sanitary landfill Santo Andre-SP. The biogas production was estimated using the rate of deposition of solid wastes in the landfill, using some mathematical models with parameters suggested by two models: LanGEM-USEPA (conventional landfill) and Word Bank. These results indicate that the potential of biogas production will be approximately 11 x 10{sup 6} Kg of methane/year in 2017 and production of electric energy in that year will be approximately 32,000 MWh, considering an of 75% over collection of biogas. (author)

  19. Estimation of emissions of nonmethane organic compounds from a closed landfill site using a landfill gas emission model

    Energy Technology Data Exchange (ETDEWEB)

    Nwachukwu, A.N. [Williamson Research Centre for Molecular Environmental Sciences, School of Earth, Atmospheric and Environmental Science, University of Manchester M13 9PL (United Kingdom); Diya, A.W. [Health Sciences Research Group, School of Medicine, University of Manchester M13 9PL (United Kingdom)

    2013-07-01

    Nonmethane organic compounds (NMOC) emissions from landfills often constitute significant risks both to human health and the general environment. To date very little work has been done on tracking the emissions of NMOC from landfills. To this end, a concerted effort was made to investigate the total annual mass emission rate of NMOC from a closed landfill site in South Manchester, United Kingdom. This was done by using field estimates of NMOC concentration and the landfill parameters into the Landfill Gas Emission Model embedded in ACTS and RISK software. Two results were obtained: (i) a deterministic outcome of 1.7218 x 10-7 kg/year, which was calculated from mean values of the field estimates of NMOC concentration and the landfill parameters, and (ii) a probabilistic outcome of 1.66 x 10-7 - 1.78 x 10-7 kg/year, which is a range of value obtained after Monte Carlo simulation of the uncertain parameters of the landfill including NMOC concentration. A comparison between these two results suggests that the probabilistic outcome is a more representative and reliable estimate of the total annual mass emission of NMOC especially given the variability of the parameters of the model. Moreover, a comparison of the model result and the safety standard of 5.0 x 10-5 kg/year indicate that the mass emission of NMOC from the studied landfill is significantly less than previously thought. However, given that this can accumulate to a dangerous level over a long period of time (such as the age of this landfill site); it may have started affecting the health of the people living within the vicinity of the landfill. A case is therefore made for more studies to be carried out on the emissions of other gases such as CH4 and CO2 from the studied landfill site, as this would help to understand the synergistic effect of the various gases being emitted from the landfill.

  20. Remote Real-Time Monitoring of Subsurface Landfill Gas Migration

    Directory of Open Access Journals (Sweden)

    Alan F. Smeaton

    2011-06-01

    Full Text Available The cost of monitoring greenhouse gas emissions from landfill sites is of major concern for regulatory authorities. The current monitoring procedure is recognised as labour intensive, requiring agency inspectors to physically travel to perimeter borehole wells in rough terrain and manually measure gas concentration levels with expensive hand-held instrumentation. In this article we present a cost-effective and efficient system for remotely monitoring landfill subsurface migration of methane and carbon dioxide concentration levels. Based purely on an autonomous sensing architecture, the proposed sensing platform was capable of performing complex analytical measurements in situ and successfully communicating the data remotely to a cloud database. A web tool was developed to present the sensed data to relevant stakeholders. We report our experiences in deploying such an approach in the field over a period of approximately 16 months.

  1. Microbial mitigation of greenhouse gas emissions from landfill cover soils

    Science.gov (United States)

    Lee, Sung-Woo

    Landfills are one of the major sources of methane (CH4), a potent greenhouse gas with a global warming potential (GWP) ˜23 times higher than that of carbon dioxide (CO2). Although some effective strategies have been formulated to prevent methane emissions from large landfills, many landfills allow methane to be freely emitted to the atmosphere. In such situations, it is often proposed to stimulate methanotrophs, a group of bacteria that consume methane, in the cover soil to prevent fugitive methane emissions. Several factors, however, must be addressed to make such a biogenic removal mechanism effective. First, methanotrophic activity can be inhibited by nonmethane organic compounds (NMOCs) that are commonly found in landfill soil gas. Second, although methanotrophs can be easily stimulated with the addition of nitrogenous fertilizers, biogenic production of nitrous oxide with a GWP ˜296 times higher than that of carbon dioxide, is also stimulated. To consider these issues, two general areas of research were performed. First, a dimensionless number was developed based on Michaelis-Menten kinetics that describes the effects of the presence of multiple NMOCs on methanotrophic growth and survival. This model was validated via experimental measurements of methanotrophic growth in the presence of varying amounts of NMOCs. Second, the effects of nutrient amendments on methane oxidation and nitrous oxide production were examined by constructing soil microcosms using landfill cover soils. Here, it was shown that the addition of ammonium in the presence of phenylacetylene stimulated methane oxidation but inhibited nitrous oxide production. Furthermore, to understand the methanotrophic community structure and activity in response to these amendments, DNA microarray and transcript analyses were performed. The results indicated the predominance of Type II methanotrophs but that Type I methanotrophs responded more significantly to these amendments. Also, substantial activity

  2. Mswi bottom ash for upgrading of biogas and landfill gas.

    Science.gov (United States)

    Mostbauer, P; Lenz, S; Lechner, P

    2008-07-01

    A new upgrading process for biogas and landfill gas (LFG) has been designed recently by the authors' institute. The process uses the alkalinity of the fine fraction of bottom ash from municipal solid waste incineration (MSWI) for sorbing CO2 and H2S. Results from process development and optimisation are presented in this paper. It is expected that nearly pure CH4 can be produced for substitution of fossil fuels. Simultaneously, the leachability of MSWI bottom ash is clearly reduced.

  3. Detection of gas in landfills using resistivity measurements; Detektering av gas i deponier med resistivitet

    Energy Technology Data Exchange (ETDEWEB)

    Rosqvist, Haakan; Leroux, Virginie; Lindsjoe, Magnus (NSR AB, Helsingborg (Sweden)); Dahlin, Torleif (Lund Univ., LTH (Sweden)); Svensson, Mats; Maansson, Carl-Henrik (Tyrens AB, Stockholm (Sweden))

    2009-05-15

    The main objective with the research project was to develop a methodology to improve the understanding of landfill gas migration in landfills, based on measurements with electrical resistivity. Consequently, the project aimed at an improvement of the utilisation of the energy potential in landfill gas, and to reduce the environmental impact to the atmosphere. Further more, the objective was to improve techniques for investigations of internal structures in landfills. The project also aimed at better understanding of gas migration in the waste body and the mitigation through a landfill cover. Measurements were performed at four landfills; the Biocell reactor (NSR, Helsingborg), the Filborna landfill (NSR, Helsingborg), the Hyllstofta landfill (Naarab, Klippan) and the Flishult landfill (Vetab, Vetlanda). Three dimensional (3D) measurements and analysis were performed. The measurements were repeated in time in order to study changes with time for the resistivity. Supplementary information was created by measurement of other parameters, such as, groundwater table and soil temperature. The results from the resistivity measurements agreed with previous measurements performed at landfills, and thus, the results are therefore regarded as reliable. The measurements showed large temporal and spatial variations, and all of the measurements showed the highest variability near the surface. The results show that the resistivity technique is a powerful tool for investigations of the internal of landfills. Water and gas migration are important features in landfill management and both processes can be detected by using resistivity. Degradation of organic waste results in process with high variability in time and space. Also the degradation rate varies in a landfill and high variability was registered during the resistivity measurements. The high variability in resistivity is likely to be explained by changes in gas pressure and thus indicating gas migration. Therefore, the project

  4. Modelling of landfill gas adsorption with bottom ash for utilization of renewable energy

    Energy Technology Data Exchange (ETDEWEB)

    Miao, Chen

    2011-10-06

    Energy crisis, environment pollution and climate change are the serious challenges to people worldwide. In the 21st century, human being is trend to research new technology of renewable energy, so as to slow down global warming and develop society in an environmentally sustainable method. Landfill gas, produced by biodegradable municipal solid waste in landfill, is a renewable energy source. In this work, landfill gas utilization for energy generation is introduced. Landfill gas is able to produce hydrogen by steam reforming reactions. There is a steam reformer equipment in the fuel cells system. A sewage plant of Cologne in Germany has run the Phosphoric Acid Fuel Cells power station with biogas for more than 50,000 hours successfully. Landfill gas thus may be used as fuel for electricity generation via fuel cells system. For the purpose of explaining the possibility of landfill gas utilization via fuel cells, the thermodynamics of landfill gas steam reforming are discussed by simulations. In practice, the methane-riched gas can be obtained by landfill gas purification and upgrading. This work investigate a new method for upgrading-landfill gas adsorption with bottom ash experimentally. Bottom ash is a by-product of municipal solid waste incineration, some of its physical and chemical properties are analysed in this work. The landfill gas adsorption experimental data show bottom ash can be used as a potential adsorbent for landfill gas adsorption to remove CO{sub 2}. In addition, the alkalinity of bottom ash eluate can be reduced in these adsorption processes. Therefore, the interactions between landfill gas and bottom ash can be explained by series reactions accordingly. Furthermore, a conceptual model involving landfill gas adsorption with bottom ash is developed. In this thesis, the parameters of landfill gas adsorption equilibrium equations can be obtained by fitting experimental data. On the other hand, these functions can be deduced with theoretical approach

  5. Analysis of the role of the sanitary landfill in waste management strategies based upon a review of lab leaching tests and new tools to evaluate leachate production

    Directory of Open Access Journals (Sweden)

    Francesco Lombardi

    2017-08-01

    Full Text Available This paper reviews the role of sanitary landfills in current and future waste management strategies based upon the principles and the goals established by the European Framework Directive on Waste (2008/98/EC. Specific reference is made to studies of our research group regarding new tools developed to evaluate leachate production, taking into account the different characteristics of municipal solid waste (MSW. Laboratory leaching tests and a methodology proposed to interpret the results are described and discussed, as well as tools developed to estimate landfill leachate production. Residual flows produced by mechanical-biological treatment (MBT plants, mainly Solid Recovered Fuel (SRF and Stabilized Organic Waste (SOW, incineration and composting plants are considered in particular. Experimental results showed that the most suitable end-uses or disposal options for the outputs of waste treatment plants are site-specific and should be defined on the basis of a detailed characterization. The application of the model developed to assess landfill leachate production showed a very good agreement with field data.

  6. Engineering geology and ground water considerations for sanitary landfills in Wisconsin-aged morainal deposits of central Indiana

    Energy Technology Data Exchange (ETDEWEB)

    West, T.R.

    1985-01-01

    In the past five years the author has been engaged as an engineering geology consultant concerning a number of existing and proposed landfills, located in the Wisconsin morainal plains of central Indiana. Work has involved the representation of landfill owners in some cases and opposing citizens in others. For each case except one, municipal waste or conventional waste landfills were involved with the other involving hazardous waste disposal. Several major geologic considerations are involved in proper sitting of landfills in this region. These include: (1) Type, nature and stratigraphy of unconsolidated materials; (2) Thickness of unconsolidated material; (3) Type and nature of bedrock below unconsolidated material: (4) Groundwater supplies in vicinity; (5) Topography of site including flood potential; and (6) Groundwater table and water bearing zones involved. Engineering details of landfill construction and monitoring must also be considered in regard to the site geology. Aspects of leachate generation and containment must be addressed as well.

  7. Estimating methane gas generation from Devil's swamp landfill using greenhouse gas emission models

    Science.gov (United States)

    Adeyemi, Ayodeji Thompson

    Greenhouse gas (GHG) has been a key issue in the study, design, and management of landfills. Landfill gas (LFG) is considered either as a significant source of renewable energy (if extracted and processed accordingly) or significant source of pollution and risk (if not mitigated or processed). A municipal solid waste (MSW) landfill emits a significant amount of methane, a potent GHG. Thus, quantification and mitigation of GHG emissions is an important area of study in engineering and other sciences related to landfill technology and management. The present study will focus on estimating methane generation from Devils swamp landfill (DSLF), a closed landfill in Baton Rouge, LA. The landfill operated for 53 years (1940-1993) and contains both industrial and municipal waste products. Since the Clean Air Act of 1963, landfills are now classified as New Source Performance Standard (NSPS) waste (i.e., waste that will decompose to generate LFG). Currently, the DSLF is being used as source of renewable energy through the "Waste to Energy" program. For this study, to estimate the methane potential in the DSLF, it is important to determine the characteristics and classification of the landfill's wastes. The study uses and compares different GHG modeling tools---LandGEM, a multiphase model, and a simple first-order model---to estimate methane gas emission and compare results with the actual emissions from the DSLF. The sensitivity of the methane generation rate was analyzed by the methane generation models to assess the effects of variables such as initial conditions, specific growth rate, and reaction rate constants. The study concludes that methane (L0) and initial organic concentration in waste (k) are the most important parameters when estimating methane generation using the models.

  8. Electrical Characters of Sanitary Landfill Border%卫生垃圾填埋场边界的地电特性研究

    Institute of Scientific and Technical Information of China (English)

    叶腾飞; 董路; 龚育龄; 汤洪志; 刘玉强

    2011-01-01

    研究卫生垃圾填埋场边界的地电特性,界定卫生垃圾填埋场边界有助于场地环境的维护和管理,采用电阻率二维层析成像技术中的3种装置排列(测深、温纳、偶极-偶极)对小型卫生垃圾填埋场模型进行对比测量,通过电阴率二维层析成像技术对填埋场边界的地电特性进行分析研究.研究结果表明,在测深和温纳两种装置排列,不能进行精确定位;而偶极-偶极的反演图象中可以界定垃圾填埋场的侧向和底部边界,其误差小于5%.%To determine the boundary of a sanitary landfill more accurately, this paper introduces a technology, namely 2D electric resistivity tomography (ERT). Thus, a comparative survey was conducted, in which electrical characters of the landfill border were measured with three arrays such as sounding array, Wenner array and dipole-dipole array respectively. Result showed that dipole-dipole array is more accurate with an error lower than 5% in determining the landfill boundary,being useful in defining the landfill's lateral and bottom boundary.

  9. Comparison of green-house gas emission reductions and landfill gas utilization between a landfill system and an incineration system.

    Science.gov (United States)

    Haibin Han; Jisheng Long; Shude Li; Guangren Qian

    2010-04-01

    Electricity generation and greenhouse gas (GHG) reductions were researched by making comparisons between municipal solid waste (MSW) landfill and incineration systems with three different electricity generation efficiencies - 10%, 21%, and 24.7%. For MSW landfill systems, it is shown that the total electricity generation is 198,747 MWh, and the total GHG emission reduction is 1,386,081 tonne CO( 2) during a 21-year operation period. For incineration systems, the total electricity generation is 611,801 MWh, and the total GHG emission reduction is 1,339,158 tonne CO(2) during a 10-year operation period even if the electricity generation efficiency is only 10%. It is also shown that electricity generation increases quicker than the GHG emission reductions with the increase of electricity generation efficiency. However, incineration systems show great superiority in LFG utilisation and GHG emission reductions.

  10. SLIPPAGE SOLUTION OF GAS PRESSURE DISTRIBUTION IN PROCESS OF LANDFILL GAS SEEPAGE

    Institute of Scientific and Technical Information of China (English)

    XUE Qiang; FENG Xia-ting; LIANG Bing

    2005-01-01

    A mathematical model of landfill gas migration was established under presumption of the effect of gas slippage. The slippage solutions to the nonlinear mathematical model were accomplished by the perturbation and integral transformation method. The distribution law of gas pressure in landfill site was presented under the conditions of considering and neglecting slippage effect. Sensitivity of the model input parameters was analyzed. The model solutions were compared to observation values.Results show that gas slippage effect has a large impact on gas pressure distribution.Landfill gas pressure and pressure gradient considering slippage effect is lower than that neglecting slippage effect, with reasonable agreement between model solution and measured data. It makes clear that the difference between considering and neglecting slippage effect is obvious and the effects of coupling cannot be ignored. The theoretical basis is provided for engineering design of security control and decision making of gas exploitation in landfill site. The solutions give scientific foundation to analyzing well test data in the process of low-permeability oil gas reservoir exploitation.

  11. Feasibility study: utilization of landfill gas for a vehicle fuel system, Rossman's landfill, Clackamas County, Oregon

    Energy Technology Data Exchange (ETDEWEB)

    None

    1981-01-01

    In 1978, a landfill operator in Oregon became interested in the technical and economic feasibility of recovering the methane generated in the landfill for the refueling of vehicles. DOE awarded a grant for a site-specific feasibility study of this concept. This study investigated the expected methane yield and the development of a conceptual gas-gathering system; gas processing, compressing, and storage systems; and methane-fueled vehicle systems. Cost estimates were made for each area of study. The results of the study are presented. Reasoning that gasoline prices will continue to rise and that approximately 18,000 vehicles in the US have been converted to operate on methane, a project is proposed to use this landfill as a demonstration site to produce and process methane and to fuel a fleet (50 to 400) vehicles with the gas produced in order to obtain performance and economic data on the systems used from gas collection through vehicle operation. (LCL)

  12. Emission Control and Utilization of Landfill Gas in Ningbo Waste Landfill Site%宁波市垃圾填埋场填埋气体排放控制及利用研究

    Institute of Scientific and Technical Information of China (English)

    王斌

    2013-01-01

    Taking Ningbo city as an example,the treatment measures of unorganized emission of odor landfill gas from domestic waste sanitary landfill site were discussed,for instance,ordered collection and incineration-power generation.It could treat greenhouse gases such as CH4 effectively to make the pollutions control,and use waste heat to produce electricity.Thus it would achieve energy-saving and emission-reduction.%以宁波市为例,探讨了生活垃圾卫生填埋场产生的无组织排放的异味填埋气体有序收集及焚烧发电的处理措施,既有效处理了CH4等温室气体,使污染排放得到有效控制,又利用余热发电,实现节能减排.

  13. Bioreactor landfill

    Institute of Scientific and Technical Information of China (English)

    WANG Hao; XING Kai; Anthony Adzomani

    2004-01-01

    Following the population expansion, there is a growing threat brought by municipal solid waste (MSW) against environment and human health. Sanitary landfill is the most important method of MSW disposal in China. In contrast to the conventional landfill, this paper introduces a new technique named bioreactor landfill (BL). Mechanisms, operation conditions as well as the advantages and disadvantages of BL are also discussed in this paper.

  14. Assessing Emissions of Volatile Organic Componds from Landfills Gas

    Directory of Open Access Journals (Sweden)

    Fahime Khademi

    2016-01-01

    Full Text Available Background: Biogas is obtained by anaerobic decomposition of organic wastes buried materials used to produce electricity, heat and biofuels. Biogas is at the second place for power generation after hydropower and in 2000 about 6% of the world power generation was allocated to biogas. Biogas is composed of 40–45 vol% CO2, 55–65 vol% CH4, and about 1% non-methaneVOCs, and non-methane volatile organic compounds. Emission rates are used to evaluate the compliance with landfill gas emission regulations by the United States Environmental Protection Agency (USEPA. BTEX comounds affect the air quality and may be harmful to human health. Benzene, toluene, ethylbenzene and xylene isomers that are generally called BTEX compounds are the most abundant VOCs in biogas. Methods: Sampling of VOCs in biogas vents was operated passively or with Tedlar bags. 20 samples were collected from 40 wells of old and new biogas sites of Shiraz’ landfill. Immediately after sampling, the samples were transferred to the laboratory. Analysis of the samples was performed with GC-MS. Results: The results showed that in the collection of the old and new biogas sites, the highest concentration of VOCs was observed in toluene (0.85ppm followed by benzene (0.81ppm, ethylbenzene (0.13ppm and xylene (0.08ppm. Conclusion: The results of the study showed that in all samples, most available compounds in biogas vents were aromatic hydrocarbon compounds.These compounds’ constituents originate from household hazardous waste materials deposited in the landfill or from biological/chemical decomposition processes within the landfill.

  15. Feasibility of landfill gas as a liquefied natural gas fuel source for refuse trucks.

    Science.gov (United States)

    Zietsman, Josias; Bari, Muhammad Ehsanul; Rand, Aaron J; Gokhale, Bhushan; Lord, Dominique; Kumar, Sunil

    2008-05-01

    The purpose of this paper is to develop a methodology to evaluate the feasibility of using landfill gas (LFG) as a liquefied natural gas (LNG) fuel source for heavy-duty refuse trucks operating on landfills. Using LFG as a vehicle fuel can make the landfills more self-sustaining, reduce their dependence on fossil fuels, and reduce emissions and greenhouse gases. Acrion Technologies Inc. in association with Mack Trucks Inc. developed a technology to generate LNG from LFG using the CO2 WASH process. A successful application of this process was performed at the Eco Complex in Burlington County, PA. During this application two LNG refuse trucks were operated for 600 hr each using LNG produced from gases from the landfill. The methodology developed in this paper can evaluate the feasibility of three LFG options: doing nothing, electricity generation, and producing LNG to fuel refuse trucks. The methodology involved the modeling of several components: LFG generation, energy recovery processes, fleet operations, economic feasibility, and decision-making. The economic feasibility considers factors such as capital, maintenance, operational, and fuel costs, emissions and tax benefits, and the sale of products such as surplus LNG and food-grade carbon dioxide (CO2). Texas was used as a case study. The 96 landfills in Texas were prioritized and 17 landfills were identified that showed potential for converting LFG to LNG for use as a refuse truck fuel. The methodology was applied to a pilot landfill in El Paso, TX. The analysis showed that converting LFG to LNG to fuel refuse trucks proved to be the most feasible option and that the methodology can be applied for any landfill that considers this option.

  16. Innovative technologies of liquid media treatment in the system of ecological and sanitary-hygienic control of waste landfills

    Directory of Open Access Journals (Sweden)

    Shevchenko Andrey

    2017-01-01

    Full Text Available The article focuses on the scientific and practical aspects of establishing a comprehensive system of environmental compliance for industrial and household waste landfills, including the system of industrial and environmental monitoring and control, modern innovations in the field of instrumental-analytical control of the state of environmental components, new methods of neutralization of complex industrial pollution. Priority is given to wastewater treatment from toxic compounds coming from the surface and drainage water seepage of landfill sites into surface and underground water sources.

  17. Estimation of emissions of nonmethane organic compounds from a closed landfill site using a landfill gas emission model

    Directory of Open Access Journals (Sweden)

    A. N. Nwachukwu, A. W. Diya

    2013-01-01

    Full Text Available Nonmethane organic compounds (NMOC emissions from landfills often constitute significant risks both to human health and the general environment. To date very little work has been done on tracking the emissions of NMOC from landfills. To this end, a concerted effort was made to investigate the total annual mass emission rate of NMOC from a closed landfill site in South Manchester, United Kingdom. This was done by using field estimates of NMOC concentration and the landfill parameters into the Landfill Gas Emission Model embedded in ACTS and RISK software. Two results were obtained: (i a deterministic outcome of 1.7218 x 10-7 kg/year, which was calculated from mean values of the field estimates of NMOC concentration and the landfill parameters, and (ii a probabilistic outcome of 1.66 x 10-7 - 1.78 x 10-7 kg/year, which is a range of value obtained after Monte Carlo simulation of the uncertain parameters of the landfill including NMOC concentration. A comparison between these two results suggests that the probabilistic outcome is a more representative and reliable estimate of the total annual mass emission of NMOC especially given the variability of the parameters of the model. Moreover, a comparison of the model result and the safety standard of 5.0 x 10-5 kg/year indicate that the mass emission of NMOC from the studied landfill is significantly less than previously thought. However, given that this can accumulate to a dangerous level over a long period of time (such as the age of this landfill site; it may have started affecting the health of the people living within the vicinity of the landfill. A case is therefore made for more studies to be carried out on the emissions of other gases such as CH4 and CO2 from the studied landfill site, as this would help to understand the synergistic effect of the various gases being emitted from the landfill.

  18. Modeling lateral gas transport in soil adjacent to an old landfill

    DEFF Research Database (Denmark)

    Poulsen, T.G.; Christophersen, Mette; Moldrup, P.

    2001-01-01

    Lateral migration of landfill gases in soils surrounding old (closed) municipal landfills can lead to explosion hazards and damage to vegetation. Landfill gas production and migration is controlled by microbial activity and soil physical properties such as gas (air) permeability, gas diffusivity....... An empirical expression for calculating methane oxidation rate as a function of soil temperature was developed using site-specific measurements of methane oxidation rate. The transport and degradation parameter expressions were incorporated into a numerical model for simulating landfill gas transport, using...... soil-water content, temperature, and soil organic matter content as measured input parameters (functions of time and soil depth). Previous measurements of landfill gas (CO2 and CH4) concentrations and fluxes in the agricultural field soil conducted over a period of one year were used to calibrate...

  19. Promotion of landfill gas recovering in Denmark; Fremme af lossepladsgas-udnyttelse i Danmark

    Energy Technology Data Exchange (ETDEWEB)

    Willumsen, H.C.

    1998-12-01

    The primary objective for the Danish Energy Agency with this project has been to increase the number of landfill gas plants in Denmark where the gas may used for energy purposes. This will fulfil some of the aims in Energy 21 where landfill gas is one of the possibilities in the area of biomass. The recovery and utilisation of landfill gas and the replacement of fossil fuels with CO{sub 2} neutral energy sources will mean a reduction of emission of methane and a reduction of greenhouse gases. The report contains investigations of a number of landfills in Denmark. For each landfill is listed the size, amount of waste, and type of waste. From these figures are made an estimate of the gas production over the next 20 years. (SM)

  20. Utilization of biogas from sanitary landfill for generation of electrical energy in Sao Paulo: a case study; Aproveitamento do biogas proveniente de aterro sanitario para geracao de energia eletrica em Sao Paulo: estudo de caso

    Energy Technology Data Exchange (ETDEWEB)

    Garcilasso, Vanessa Pecora; Coelho, Suani Teixeira Coelho [Centro Nacional de Referencia em Biomassa (CENBIO), Sao Paulo, SP (Brazil); Velazquez, Silvia Maria Stortini Gonzalez [Universitaria Presbiteriana Mackenzie, Sao Paulo, SP (Brazil)

    2010-07-01

    Utilization of the biogas proceeding from urban solid residues for electricity generation: case study in Sao Paulo. The biogas, generated from organic matter degradation, is composed by a mixture of gases, the main components being carbon dioxide and methane, which is a greenhouse effect gas with global warming potential around 21 times greater when compared to CO{sub 2}. Biogas production is possible from a great variety of organic residues such as urban solid residues, residues from agricultural and livestock activities, swine livestock, sewage mud, among others. The sanitary landfills may count on techniques of capture of the produced biogas and its later burning in flare, where the methane is transformed in CO{sub 2}, minimizing the environmental impact. Besides the opportunity of reducing the environmental damages, biogas can also be used as fuel for generating electricity, thus adding environmental gain and reduction of costs, due to the diminishing of purchase of the energy consumed in the concessionaire. In this context, this article presents the project of utilization of biogas proceeding from urban solid residues for electricity generation and gas illumination, developed by CENBIO. This project is currently in development and the obtained results will provide technical and economic subsidies for its replication. (author)

  1. Analysis of a landfill gas to energy system at the municipal solid waste landfill in Gaziantep, Turkey.

    Science.gov (United States)

    Tercan, Safak Hengirmen; Cabalar, Ali Firat; Yaman, Gokhan

    2015-08-01

    This paper presents an analysis of the electricity generation from municipal solid waste (MSW), via landfill gas valorization technology, at the landfill of Gaziantep City, Turkey. Rapid increase in population, and industrial developments, throughout the world including Turkey results in larger amount of waste materials generated, increased need for energy, and adverse affects on the environment and human health. Turkey plans to produce 1/3 of its electricity demand using renewable energy sources by the year of 2023. It is recommended to use each year around 25 million tonnes of the MSW generated nationwide for a renewable energy supply. In this study, a concise summary of current status of electricity generation from a MSW landfill gas plant (via biogas harnessing) located in Gaziantep City was analyzed as a case study.

  2. Tapping Landfill Gas to Provide Significant Energy Savings and Greenhouse Gas Reductions - Case Study

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-04-30

    BroadRock Renewables, LLC built two high efficiency electricity generating facilities that utilize landfill gas in California and Rhode Island. The two projects received a total of $25 million in U.S. Department of Energy funding from the American Recovery and Reinvestment Act (ARRA) of 2009. Private-sector cost share for the projects totaled approximately $186 million.

  3. Optimizing gas extraction at landfills in Denmark; Optimering af gasindvinding pae deponeringsanlaeg i Danmark

    Energy Technology Data Exchange (ETDEWEB)

    Willumsen, H.C. [LFG Consult (Denmark)

    2005-07-01

    In landfills which contain organic material and anaerobic decomposition takes place, and landfill gas (LFG) is produced. The LFG contains approximately 50% methane, which contributes to the greenhouse effect when emitting from the landfill. Approximately 19% of the greenhouse gases in the atmosphere are methane, and around 8% of this is emission from landfills. This means that roughly 1.5% of the global warming is related to emission from landfills. Extraction of LFG for energy purposes was started 30 years ago in USA. In Denmark 26 LFG plants have been established since 1985. The gas is utilized for CHP or pure power production in gas engine/generator units. In some cases the LFG is used in gas burners in connection with boilers for district heating systems. 24 million m{sup 3} was recovered in 2004, which is equivalent to a reduction of CO{sub 2} of 160.000 tons CO{sub 2}/year. (BA)

  4. Bioenergy recovery from landfill gas: A case study in China

    Institute of Scientific and Technical Information of China (English)

    Wei WANG; Yuxiang LUO; Zhou DENG

    2009-01-01

    Landfill gas (LFG) utilization which means a synergy between environmental protection and bioenergy recovery was investigated in this study. Pressure swing adsorption technology was used in LFG purification, and laboratory experiment, pilot-scale test, and on-site demon-stration were carried out in Shenzhen, China. In the laboratory experiment, A-type carbon molecular sieve was selected as the adsorbent by comparison of several other adsorbents. The oPtimal adsorption pressure and adsorp-tion time were 0.25 MPa and 2 min, respectively, under which the product generation rate was 4.5 m3/h and the methane concentration was above 90%. The process and optimization of the pilot-scale test were also reported in the paper. The product gas was of high quality compared with the National Standard of Compressed Natural Gas as Vehicle Fuel (GB 18047-2000), when the air concentration in feed gas was under 10.96%. The demonstration project was composed of a collection system, production system,and utilization system. The drive performance, environ-mental protection performance, and economic feasibility of the product gas -- as alternative fuel in passenger car,truck, and bulldozer-were tested, showing the feasibility technology for LFG utilization.

  5. Long and short term pump testing for landfill gas wells

    Energy Technology Data Exchange (ETDEWEB)

    Stevens, D.W.; Fleming, I.R. [Saskatchewan Univ., Saskatoon, SK (Canada). Dept. of Civil and Geological Engineering

    2009-07-01

    A study was conducted to evaluate vertical well designs drilled into existing landfills as part of a landfill gas collection retrofitting project. Well designs and construction techniques were compared in relation to pneumatic efficiency and the capacity of each well. The aim of the study was to devise a method of evaluating well efficiency and long-term performance. Short-term, single well step-drawdown tests were conducted. Long-term pumping from the entire well field was conducted using different flow rate control approaches. Flow rates were measured at several different system pressures. Data were then compared with drawdown flow rate data from the short-term tests. The study proved that the single well short-term tests accurately predicted the long-term performance of the well field. The study also demonstrated that there was no apparent relationship between well productivity and the length of the screened zone, the diameter of the well, or the diameter of the borehole. No relationship was observed between well performance and the capital costs of individual wells.

  6. Landfill Gas Energy Cost Model Version 3.0 (LFGcost-Web V3 ...

    Science.gov (United States)

    To help stakeholders estimate the costs of a landfill gas (LFG) energy project, in 2002, LMOP developed a cost tool (LFGcost). Since then, LMOP has routinely updated the tool to reflect changes in the LFG energy industry. Initially the model was designed for EPA to assist landfills in evaluating the economic and financial feasibility of LFG energy project development. In 2014, LMOP developed a public version of the model, LFGcost-Web (Version 3.0), to allow landfill and industry stakeholders to evaluate project feasibility on their own. LFGcost-Web can analyze costs for 12 energy recovery project types. These project costs can be estimated with or without the costs of a gas collection and control system (GCCS). The EPA used select equations from LFGcost-Web to estimate costs of the regulatory options in the 2015 proposed revisions to the MSW Landfills Standards of Performance (also known as New Source Performance Standards) and the Emission Guidelines (herein thereafter referred to collectively as the Landfill Rules). More specifically, equations derived from LFGcost-Web were applied to each landfill expected to be impacted by the Landfill Rules to estimate annualized installed capital costs and annual O&M costs of a gas collection and control system. In addition, after applying the LFGcost-Web equations to the list of landfills expected to require a GCCS in year 2025 as a result of the proposed Landfill Rules, the regulatory analysis evaluated whether electr

  7. From a Literature Review to an Alternative Treatment System for Landfill Gas and Leachate

    Directory of Open Access Journals (Sweden)

    Tao Huang

    2012-12-01

    Full Text Available This paper provides an alternative treatment system for landfill gas and leachate control in order to reduce the energy consumption and disposal cost, using the recycled landfill gas as the combustion promoter for incineration of the leachate. This study starts by providing a literature review to summarize and analyze different approaches being applied to landfill leachate treatment. Subsequently, a conceptual prototype is proposed, which can be built using existing technology by means of technical possibility analysis, whilst economic benefits could be returned through preliminary comparison. With the proposed introduction of a “waste treatment park”, this alternative treatment system could provide a template for leachate and landfill gas control. This study may provide an insight for landfill operators and engineers to promote the transformation from the conceptual framework to the real achievement. Finally, the limitations of the conceptual model and analysis are discussed, laying a foundation for further work.

  8. Landfill gas (LFG) processing via adsorption and alkanolamine absorption

    Energy Technology Data Exchange (ETDEWEB)

    Gaur, Ankur; Park, Jin-Won; Song, Ho-Jun; Park, Jong-Jin [Department of Chemical and Biomolecular Engineering, Yonsei University, 134 Shinchon-dong, Seodaemun-gu, Seoul 120-749 (Korea); Maken, Sanjeev [Department of Chemistry, Deenbandhu Chhotu Ram University of Science and Technology, Murthal-131 039, Haryana (India)

    2010-06-15

    Landfill gas (LFG) was upgraded to pure methane using the adsorption and absorption processes. Different toxic compounds like aromatics and chlorinated compounds were removed using granular activated carbon. The activated carbon adsorbed toxic trace components in the following order: carbon tetrachloride > toluene > chloroform > xylene > ethylbenzene > benzene > trichloroethylene {approx} tetrachloroethylene. After removing all trace components, the gas was fed to absorption apparatus for the removal of carbon dioxide (CO{sub 2}). Two alkanolamines, monoethanol amine (MEA) and diethanol amine (DEA) were used for the removal of CO{sub 2} from LFG. The maximum CO{sub 2} loading is obtained for 30 wt.% MEA which is around 2.9 mol L{sup -} {sup 1} of absorbent solution whereas for same concentration of DEA it is around 1.66 mol L {sup -} {sup 1} of solution. 30 wt% MEA displayed a higher absorption rate of around 6.64 x 10{sup -} {sup 5} mol L{sup -} {sup 1} min{sup -} {sup 1}. DEA displayed a higher desorption rate and a better cyclic capacity as compared to MEA. Methane obtained from this process can be further used in the natural gas network for city. (author)

  9. Greenhouse gas emissions from landfill leachate treatment plants: A comparison of young and aged landfill

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiaojun, E-mail: xjwang@iue.ac.cn [Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021 (China); Jia, Mingsheng, E-mail: msjia@iue.ac.cn [Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021 (China); Chen, Xiaohai, E-mail: cxiaoh_xm@126.com [Xiamen City Environmental Sanitation Management Department, Xiamen 361000 (China); Xu, Ying, E-mail: yxu@iue.ac.cn [Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021 (China); Lin, Xiangyu, E-mail: xylin@iue.ac.cn [Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021 (China); Kao, Chih Ming, E-mail: jkao@mail.nsysu.edu.tw [Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan (China); Chen, Shaohua, E-mail: shchen@iue.ac.cn [Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021 (China)

    2014-07-15

    Highlights: • Young and aged leachate works accounted for 89.1% and 10.9% of 33.35 Gg CO{sub 2} yr{sup −1}. • Fresh leachate owned extremely low ORP and high organic matter content. • Strong CH{sub 4} emissions occurred in the fresh leachate ponds, but small in the aged. • N{sub 2}O emissions became dominant in the treatment units of both systems. • 8.45–11.9% of nitrogen was removed as the form of N{sub 2}O under steady-state. - Abstract: With limited assessment, leachate treatment of a specified landfill is considered to be a significant source of greenhouse gas (GHG) emissions. In our study, the cumulative GHG emitted from the storage ponds and process configurations that manage fresh or aged landfill leachate were investigated. Our results showed that strong CH{sub 4} emissions were observed from the fresh leachate storage pond, with the fluxes values (2219–26,489 mg C m{sup −2} h{sup −1}) extremely higher than those of N{sub 2}O (0.028–0.41 mg N m{sup −2} h{sup −1}). In contrast, the emission values for both CH{sub 4} and N{sub 2}O were low for the aged leachate tank. N{sub 2}O emissions became dominant once the leachate entered the treatment plants of both systems, accounting for 8–12% of the removal of N-species gases. Per capita, the N{sub 2}O emission based on both leachate treatment systems was estimated to be 7.99 g N{sub 2}O–N capita{sup −1} yr{sup −1}. An increase of 80% in N{sub 2}O emissions was observed when the bioreactor pH decreased by approximately 1 pH unit. The vast majority of carbon was removed in the form of CO{sub 2}, with a small portion as CH{sub 4} (<0.3%) during both treatment processes. The cumulative GHG emissions for fresh leachate storage ponds, fresh leachate treatment system and aged leachate treatment system were 19.10, 10.62 and 3.63 Gg CO{sub 2} eq yr{sup −1}, respectively, for a total that could be transformed to 9.09 kg CO{sub 2} eq capita{sup −1} yr{sup −1}.

  10. Sensitivity analysis of the leaching rate parameter in assessing the environmental risk of phosphogypsum application in sanitary landfills

    Energy Technology Data Exchange (ETDEWEB)

    Marchesi, Marcos Vinicius A.; Hama, Naruhiko; Jacomino, Vanusa M.F.; Ladeira, Ana Claudia Q.; Cota, Stela D.S., E-mail: mvmarchesi@hotmail.com, E-mail: sdsc@cdtn.br, E-mail: vmfj@cdtn.br, E-mail: ana.ladeira@cdtn.br, E-mail: naruhikohama@hotmail.com [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2013-07-01

    The attack with sulfuric acid to phosphate rock produces both phosphoric acid, basic raw material in the manufacture of fertilizers, as a by-product called phosphogypsum. Phosphogypsum is composed mostly of calcium sulfate dihydrated, but may have high levels of impurities from the phosphate rock matrix as a series of natural radionuclides, and heavy metals (e.g. Cd, Zn) and metalloids (e.g. , As and Se). Although it is used for agricultural purposes and more recently in construction, in Brazil the generation rate estimated at six million tons per year is much higher than the amount spent on existing alternatives, and therefore mostly deposited in piles in the same place production, causing thereby the risk of contamination of soil and water resources of the region and providing risk to human health. Taken into account the need to find alternative arrangements for phosphogypsum and reduce the impact generated by its contaminants, this study aims to analyze the sensitivity of the leaching rate parameter in the environmental risk evaluation of the application of phosphogypsum in landfills through mathematical modeling, where it is evaluated the concentration of heavy metals and radionuclides in the layer of the soil under the clay layer of the landfill.

  11. Determination of the coefficient of uranium and thorium distribution in phosphogypsum for their use in sanitary landfills

    Energy Technology Data Exchange (ETDEWEB)

    Marchesi, Marcos Vinicius A.; Hama, Naruhiko; Jacomino, Vanusa M. F.; Ladeira, Ana Claudia Q.; Cota, Stela D. S., E-mail: mvmarchesi@hotmail.com, E-mail: sdsc@cdtn.br, E-mail: vmfj@cdtn.br, E-mail: ana.ladeira@cdtn.br, E-mail: naruhikohama@hotmail.com [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil); Nascimento, Marcos Roberto Lopes do; Taddei, Maria Helena, E-mail: pmarcos@cnen.gov.br, E-mail: mhtaddei@cnen.gov.br [Comissao Nacional de Energia Nuclear (LAPOC/CNEN), Pocos de Caldas, MG (Brazil). Laboratorio de Pocos de Caldas

    2013-07-01

    Phosphogypsum is a byproduct from the production of phosphoric acid, and contain radionuclides, heavy metals and metalloids from phosphate rock. It represents a risk to the environment if improperly stored. Because it is composed mainly of dihydrated calcium sulphate, phosphogypsum can be used in anaerobic environments such as those found in landfills to accelerate microbial processes of decomposition of municipal solid waste and thus increase the life of these facilities. One of the options of your application being studied is the use of phosphogypsum replacing the covers of soil/clay in landfills. Besides reducing the demand for soil and clay, this application would be an alternative to disposal of the waste, since the alternatives are not sufficient for more than five million tons produced per year in Brazil. To ensure the safety of this application, the potential environmental impact of contaminants in phosphogypsum should be evaluated. The rate of leaching of contaminants are being studied by determining the coefficient of distribution of the contaminants in the phosphogypsum. Batch tests were performed by mixing different proportions of slurry and phosphogypsum. This work presents the results for the chain of uranium and natural thorium.

  12. Thermal inactivation of Bacillus anthracis surrogate spores in a bench-scale enclosed landfill gas flare.

    Science.gov (United States)

    Tufts, Jenia A McBrian; Rosati, Jacky A

    2012-02-01

    A bench-scale landfill flare system was designed and built to test the potential for landfilled biological spores that migrate from the waste into the landfill gas to pass through the flare and exit into the environment as viable. The residence times and temperatures of the flare were characterized and compared to full-scale systems. Geobacillus stearothermophilus and Bacillus atrophaeus, nonpathogenic spores that may serve as surrogates for Bacillus anthracis, the causative agent for anthrax, were investigated to determine whether these organisms would be inactivated or remain viable after passing through a simulated landfill flare. High concentration spore solutions were aerosolized, dried, and sent through a bench-scale system to simulate the fate of biological weapon (BW)-grade spores in a landfill gas flare. Sampling was conducted downstream of the flare using a bioaerosol collection device containing sterile white mineral oil. The samples were cultured, incubated for seven days, and assessed for viability. Results showed that the bench-scale system exhibited good similarity to the real-world conditions of an enclosed standard combustor flare stack with a single orifice, forced-draft diffusion burner. All spores of G. stearothermophilus and B. atrophaeus were inactivated in the flare, indicating that spores that become re-entrained in landfill gas may not escape the landfill as viable, apparently becoming completely inactivated as they exit through a landfill flare.

  13. Investigation of Integrated Subsurface Processing of Landfill Gas and Carbon Sequestration, Johnson County, Kansas

    Energy Technology Data Exchange (ETDEWEB)

    K. David Newell; Timothy R. Carr

    2007-03-31

    The Johnson County Landfill in Shawnee, KS is operated by Deffenbaugh Industries and serves much of metropolitan Kansas City. Refuse, which is dumped in large plastic-underlined trash cells covering several acres, is covered over with shale shortly after burial. The landfill waste, once it fills the cell, is then drilled by Kansas City LFG, so that the gas generated by anaerobic decomposition of the refuse can be harvested. Production of raw landfill gas from the Johnson County landfill comes from 150 wells. Daily production is approximately 2.2 to 2.5 mmcf, of which approximately 50% is methane and 50% is carbon dioxide and NMVOCs (non-methane volatile organic compounds). Heating value is approximately 550 BTU/scf. A upgrading plant, utilizing an amine process, rejects the carbon dioxide and NMVOCs, and upgrades the gas to pipeline quality (i.e., nominally a heating value >950 BTU/scf). The gas is sold to a pipeline adjacent to the landfill. With coal-bearing strata underlying the landfill, and carbon dioxide a major effluent gas derived from the upgrading process, the Johnson County Landfill is potentially an ideal setting to study the feasibility of injecting the effluent gas in the coals for both enhanced coalbed methane recovery and carbon sequestration. To these ends, coals below the landfill were cored and then were analyzed for their thickness and sorbed gas content, which ranged up to 79 scf/ton. Assuming 1 1/2 square miles of land (960 acres) at the Johnson County Landfill can be utilized for coalbed and shale gas recovery, the total amount of in-place gas calculates to 946,200 mcf, or 946.2 mmcf, or 0.95 bcf (i.e., 985.6 mcf/acre X 960 acres). Assuming that carbon dioxide can be imbibed by the coals and shales on a 2:1 ratio compared to the gas that was originally present, then 1682 to 1720 days (4.6 to 4.7 years) of landfill carbon dioxide production can be sequestered by the coals and shales immediately under the landfill. Three coal--the Bevier

  14. Physical-chemical and bacteriological aspects of the groundwater in the sanitary landfills in the metropolitan region of Londrina, Paraná, Brazil

    Directory of Open Access Journals (Sweden)

    Luiz Henrique Dall´Antonia

    2006-02-01

    Full Text Available A detailed study of the physical-chemical and bacteriological qualities of the subterranean water at sanitary landfills in the Metropolitan Region of Londrina (PR, was carried out. The field of twelve wells that reach the groundwater as well as the emergence of the watertable of the Periquitos River, were also monitored. The results of the analyses of 120 samples of the collected water were compared to the permissible maximum values for human consumption according to the Federal Legislation in Brazil. Total excrements were found around 3,1 NMP/100mL (Well 4 and 120330 NMP/100mL (Periquitos River and fecal matter between 0 and 4100 NMP/100mL (Periquitos River. Such values were associated to the contamination caused by the presence of animals from neighbor properties, feeding themselves in that region. The pH, turbidity, COD and BOD were among the values expected, except for the conductivity that showed to be altered.

  15. Bench scale model studies on sanitary landfill leachate treatment with M. oleifera seed extract and hollow fibre micro-filtration membrane

    Directory of Open Access Journals (Sweden)

    S. A. Muyibi

    2002-10-01

    Full Text Available A laboratory-based study using a Bench Scale model of four unit operations made up of coagulation (using Moringa oleifera seed extract as a coagulant, flocculation, sedimentation and micro-filtration, have been adopted to treat the leachate from Air Hitman Sanitary Landfill at Puchong in Malaysia. M. oleifera dosages of 150 and 175 mg/L had achieved 43.8% Cadmium removal, 21.2% Total Chromium removal, 66.8% Lead removal and 16% Iron removal. It also removed 55.4% of Total Suspended Solids, 10% of Total Dissolved Solids and 24.2% of Volatile Suspended Solids. Micro-filtration hollow fibre membrane decreased the turbidity, total suspended solids, total dissolved solids, volatile suspended solids, and organic matter in the leachate by 98.3%, 96.7%, 20.8%, 36.6% and 21.9% respectively. Overall heavy metals removal after micro-filtration using hollow fibre membrane was 94% for Cadmium, 29.8% for Total Chromium, 73.2% for Lead, and 18.3% for Iron. The results have shown that M. oleifera is a promising natural polymer for removing heavy metals from leachates and may be used as a pre-treatment to eliminate a portion of the toxic heavy metals, which limits the activity of micro organisms in the leachates.

  16. Greenhouse gas emissions through cap barriers of landfills

    Energy Technology Data Exchange (ETDEWEB)

    Gourc, J.P.; Staub, M.; Simonin, R. [Grenoble Univ. (France). LTHE

    2009-07-01

    A study was conducted to examine the environmental impacts of landfill cap covers used to produce biogas. The sensitivity of the environmental performance of landfills on biogas collection and recovery systems as well as on cap cover characteristics was investigated. The study examined both soil and geosynthetic landfill cap covers used to maintain impermeability at landfill sites as well as to enable biogas recovery. Two types of cap cover were discussed: (1) a cover that enabled passive wetting of the landfill wastes through rainfall; and (2) an impermeable cap used to control leachate recirculation. The environmental impacts of both caps were discussed. The study showed that landfill cap covers are a significant means of sequestering greenhouse gases (GHGs).

  17. Observations from using models to fit the gas production of varying volume test cells and landfills.

    Science.gov (United States)

    Lamborn, Julia

    2012-12-01

    Landfill operators are looking for more accurate models to predict waste degradation and landfill gas production. The simple microbial growth and decay models, whilst being easy to use, have been shown to be inaccurate. Many of the newer and more complex (component) models are highly parameter hungry and many of the required parameters have not been collected or measured at full-scale landfills. This paper compares the results of using different models (LANDGEM, HBM, and two Monod models developed by the author) to fit the gas production of laboratory scale, field test cell and full-scale landfills and discusses some observations that can be made regarding the scalability of gas generation rates. The comparison of these results show that the fast degradation rate that occurs at laboratory scale is not replicated at field-test cell and full-scale landfills. At small scale, all the models predict a slower rate of gas generation than actually occurs. At field test cell and full-scale a number of models predict a faster gas generation than actually occurs. Areas for future work have been identified, which include investigations into the capture efficiency of gas extraction systems and into the parameter sensitivity and identification of the critical parameters for field-test cell and full-scale landfill predication.

  18. POSTCLOSURE GROUNDWATER REMEDIATION AND MONITORING AT THE SANITARY LANDFILL, SAVANNAH RIVER SITE TRANSITIONING TO MONITORED NATURAL ATTENUATION

    Energy Technology Data Exchange (ETDEWEB)

    Ross, J; Walt Kubilius, W; Thomas Kmetz, T; D Noffsinger, D; Karen M Adams, K

    2006-11-17

    Resource Conservation and Recovery Act (RCRA) requirements for hazardous waste facilities include 30 years of post-closure monitoring. The use of an objective-based monitoring strategy allows for a significant reduction in the amount of groundwater monitoring required, as the groundwater remediation transitions from an active biosparging system to monitored natural attenuation. The lifecycle of groundwater activities at the landfill has progressed from detection monitoring and plume characterization, to active groundwater remediation, and now to monitored natural attenuation and postclosure monitoring. Thus, the objectives of the groundwater monitoring have changed accordingly. Characterization monitoring evaluated what biogeochemical natural attenuation processes were occurring and determined that elevated levels of radium were naturally occurring. Process monitoring of the biosparging system required comprehensive sampling network up- and down-gradient of the horizontal wells to verify its effectiveness. Currently, the scope of monitoring and reporting can be significantly reduced as the objective is to demonstrate that the alternate concentration limits (ACL) are being met at the point of compliance wells and the maximum contaminant level (MCL) is being met at the surface water point of exposure. The proposed reduction is estimated to save about $2M over the course of the remaining 25 years of postclosure monitoring.

  19. Gas breakthrough and emission through unsaturated compacted clay in landfill final cover

    Energy Technology Data Exchange (ETDEWEB)

    Ng, C.W.W.; Chen, Z.K.; Coo, J.L. [Department of Civil and Environmental Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon (Hong Kong); Chen, R., E-mail: chenrui1005@hotmail.com [Shenzhen Key Laboratory of Urban and Civil Engineering for Disaster Prevention and Mitigation, Harbin Institute of Technology Shenzhen Graduate School, Shenzhen 518055 (China); Zhou, C. [Department of Civil and Environmental Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon (Hong Kong)

    2015-10-15

    Highlights: • Explore feasibility of unsaturated clay as a gas barrier in landfill cover. • Gas breakthrough pressure increases with clay thickness and degree of saturation. • Gas emission rate decreases with clay thickness and degree of saturation. • A 0.6 m-thick clay layer may be sufficient to meet gas emission rate limit. - Abstract: Determination of gas transport parameters in compacted clay plays a vital role for evaluating the effectiveness of soil barriers. The gas breakthrough pressure has been widely studied for saturated swelling clay buffer commonly used in high-level radioactive waste disposal facility where the generated gas pressure is very high (in the order of MPa). However, compacted clay in landfill cover is usually unsaturated and the generated landfill gas pressure is normally low (typically less than 10 kPa). Furthermore, effects of clay thickness and degree of saturation on gas breakthrough and emission rate in the context of unsaturated landfill cover has not been quantitatively investigated in previous studies. The feasibility of using unsaturated compacted clay as gas barrier in landfill covers is thus worthwhile to be explored over a wide range of landfill gas pressures under various degrees of saturation and clay thicknesses. In this study, to evaluate the effectiveness of unsaturated compacted clay to minimize gas emission, one-dimensional soil column tests were carried out on unsaturated compacted clay to determine gas breakthrough pressures at ultimate limit state (high pressure range) and gas emission rates at serviceability limit state (low pressure range). Various degrees of saturation and thicknesses of unsaturated clay sample were considered. Moreover, numerical simulations were carried out using a coupled gas–water flow finite element program (CODE-BRIGHT) to better understand the experimental results by extending the clay thickness and varying the degree of saturation to a broader range that is typical at different

  20. Microbial methane oxidation processes and technologies for mitigation of landfill gas emissions

    DEFF Research Database (Denmark)

    Scheutz, Charlotte; Kjeldsen, Peter; Bogner, J.E.;

    2009-01-01

    utilizing oxygen that diffuses into the cover layer from the atmosphere. The methane oxidation process, which is governed by several environmental factors, can be exploited in engineered systems developed for methane emission mitigation. Mathematical models that account for methane oxidation can be used...... to predict methane emissions from landfills. Additional research and technology development is needed before methane mitigation technologies utilizing microbial methane oxidation processes can become commercially viable and widely deployed.......Landfill gas containing methane is produced by anaerobic degradation of organic waste. Methane is a strong greenhouse gas and landfills are one of the major anthropogenic sources of atmospheric methane. Landfill methane may be oxidized by methanotrophic microorganisms in soils or waste materials...

  1. Recovery Act: Brea California Combined Cycle Electric Generating Plant Fueled by Waste Landfill Gas

    Energy Technology Data Exchange (ETDEWEB)

    Galowitz, Stephen

    2012-12-31

    The primary objective of the Project was to maximize the productive use of the substantial quantities of waste landfill gas generated and collected at the Olinda Landfill near Brea, California. An extensive analysis was conducted and it was determined that utilization of the waste gas for power generation in a combustion turbine combined cycle facility was the highest and best use. The resulting Project reflected a cost effective balance of the following specific sub-objectives: • Meeting the environmental and regulatory requirements, particularly the compliance obligations imposed on the landfill to collect, process and destroy landfill gas • Utilizing proven and reliable technology and equipment • Maximizing electrical efficiency • Maximizing electric generating capacity, consistent with the anticipated quantities of landfill gas generated and collected at the Olinda Landfill • Maximizing equipment uptime • Minimizing water consumption • Minimizing post-combustion emissions • The Project produced and will produce a myriad of beneficial impacts. o The Project created 360 FTE construction and manufacturing jobs and 15 FTE permanent jobs associated with the operation and maintenance of the plant and equipment. o By combining state-of-the-art gas clean up systems with post combustion emissions control systems, the Project established new national standards for best available control technology (BACT). o The Project will annually produce 280,320 MWh’s of clean energy o By destroying the methane in the landfill gas, the Project will generate CO2 equivalent reductions of 164,938 tons annually. The completed facility produces 27.4 MWnet and operates 24 hours a day, seven days a week.

  2. [On-site measurement of landfill gas yield and verification of IPCC model].

    Science.gov (United States)

    Luo, Yu-Xiang; Wang, Wei; Gao, Xing-Bao

    2009-11-01

    In order to obtain the accurate yield of landfill gas in Yulongkeng Landfill, Shenzhen, improved pumping test was conducted. The methane production rates of the influence region were figured out as 14.67 x 10(-5), 9.46 x 10(-5), 9.55 x 10(-5), and 4.28 x 10(-5) m3/(t x h), respectively. According to the methane production rate, the whole methane yield of Yulongkeng Landfill in 2005 was 322 m3/h, which indicated that Yulongkeng Landfill had went into stationary phase and the recycle of landfill gas was not valuable. IPCC model was verified by the measured data. Degradation half life of the waste was the key parameter concerned to the prediction accuracy of IPCC model. In China, the degradable waste in municipal solid waste was mainly kitchen waste leading to a short degradation period, which caused the degradation half life was shorter than the proposed value in IPCC model. For the improvement in prediction accuracy of landfill gas yield, the model parameters should be adopted reasonably based on a full survey of waste characterization in China, which will boost the applicability of IPCC model.

  3. Recovery Act: Johnston Rhode Island Combined Cycle Electric Generating Plant Fueled by Waste Landfill Gas

    Energy Technology Data Exchange (ETDEWEB)

    Galowitz, Stephen

    2013-06-30

    The primary objective of the Project was to maximize the productive use of the substantial quantities of waste landfill gas generated and collected at the Central Landfill in Johnston, Rhode Island. An extensive analysis was conducted and it was determined that utilization of the waste gas for power generation in a combustion turbine combined cycle facility was the highest and best use. The resulting project reflected a cost effective balance of the following specific sub-objectives. 1) Meet environmental and regulatory requirements, particularly the compliance obligations imposed on the landfill to collect, process and destroy landfill gas. 2) Utilize proven and reliable technology and equipment. 3) Maximize electrical efficiency. 4) Maximize electric generating capacity, consistent with the anticipated quantities of landfill gas generated and collected at the Central Landfill. 5) Maximize equipment uptime. 6) Minimize water consumption. 7) Minimize post-combustion emissions. To achieve the Project Objective the project consisted of several components. 1) The landfill gas collection system was modified and upgraded. 2) A State-of-the Art gas clean up and compression facility was constructed. 3) A high pressure pipeline was constructed to convey cleaned landfill gas from the clean-up and compression facility to the power plant. 4) A combined cycle electric generating facility was constructed consisting of combustion turbine generator sets, heat recovery steam generators and a steam turbine. 5) The voltage of the electricity produced was increased at a newly constructed transformer/substation and the electricity was delivered to the local transmission system. The Project produced a myriad of beneficial impacts. 1) The Project created 453 FTE construction and manufacturing jobs and 25 FTE permanent jobs associated with the operation and maintenance of the plant and equipment. 2) By combining state-of-the-art gas clean up systems with post combustion emissions control

  4. Methylated mercury species in municipal waste landfill gas sampled in Florida, USA

    Science.gov (United States)

    Lindberg, S. E.; Wallschläger, D.; Prestbo, E. M.; Bloom, N. S.; Price, J.; Reinhart, D.

    Mercury-bearing material has been placed in municipal landfills from a wide array of sources including fluorescent lights, batteries, electrical switches, thermometers, and general waste. Despite its known volatility, persistence, and toxicity in the environment, the fate of mercury in landfills has not been widely studied. The nature of landfills designed to reduce waste through generation of methane by anaerobic bacteria suggests the possibility that these systems might also serve as bioreactors for the production of methylated mercury compounds. The toxicity of such species mandates the need to determine if they are emitted in municipal landfill gas (LFG). In a previous study, we had measured levels of total gaseous mercury (TGM) in LFG in the μg/m 3 range in two Florida landfills, and elevated levels of monomethyl mercury (MMM) were identified in LFG condensate, suggesting the possible existence of gaseous organic Hg compounds in LFG. In the current study, we measured TGM, Hg 0, and methylated mercury compounds directly in LFG from another Florida landfill. Again, TGM was in the μg/m 3 range, MMM was found in condensate, and this time we positively identified dimethyl mercury (DMM) in the LGF in the ng/m 3 range. These results identify landfills as a possible anthropogenic source of DMM emissions to air, and may help explain the reports of MMM in continental rainfall.

  5. The Use of Biofilter to Reduce Atmospheric Global Warming Gas (CH4) Eemissions from Landfills

    Science.gov (United States)

    Park, S.; Thomas, J. C.; Brown, K. W.; Sung, K.

    2001-12-01

    The emission of greenhouse gasses resulting from anthropogenic activities is increasing the atmospheric concentration of these gases, which can influence the climatic system by changing the temperature, precipitation, wind and other climate factors. Methane (CH4) is a very potent greenhouse gas and CH4 emission from landfills in US has been reported as 37% of total anthropogenic source of CH4 emission. Properly designed soil biofilters may reduce atmospheric CH4 emissions from landfills and help reduce the accumulation of greenhouse gasses in the atmosphere. Biofilter performance was tested under a variety of environmental and design conditions. The results showed that biofilters have the potential to reduce CH4 emissions from landfills by as much as 83%. A quadratic equation was developed to describe the dependence of methane oxidation rate in a sandy loam textured soil as a function of soil temperature, soil moisture and ammonium nitrogen concentration. Using this equation and the averaged soil temperature and moisture contents, and census data for the largest cities of each of the 48 contiguous states, oxidation rates was calculated. A methane emission model was also developed to estimate the methane emission from municipal waste landfills with different covers. Older landfills with soil covers emitted an average of 83% of the generated CH4. Landfills with RCRA covers emitted 90% of the generated CH4 without biofilters and only 10% with biofilters. Thus, the installation of properly sized biofilters should significantly reduce atmospheric CH4 emissions from landfills.

  6. Gas Transport Parameters for Landfill Final Cover Soil: Measurements and Model Modification by Dry Bulk Density

    Science.gov (United States)

    Wickramarachchi, P. N.; Kawamoto, K.; Hamamoto, S.; Nagamori, M.; Moldrup, P.; Komatsu, T.

    2011-12-01

    Landfill sites have been emerging in greenhouse warming scenarios as a significant source of atmospheric methane (CH4). Until recently, landfill management strategies have mainly addressed the problem of preventing groundwater contamination and reduction of leachate generation. Being one of the largest sources of anthropogenic CH4 emission, the final cover system should also be designed for minimizing the greenhouse gases migration into the atmosphere or the areas surrounding the landfill while securing the hydraulic performance. Compared to the intensive research efforts on hydraulic performances of landfill final cover soil, few studies about gas transport characteristics of landfill cover soils have been done. However, recent soil-gas studies implied that the effects of soil physical properties such as bulk density (i.e., compaction level), soil particle size are key parameters to understand landfill gaseous performance. The gas exchange through the final cover soils is controlled by advective and diffusive gas transport. Air permeability (ka) governs the advective gas transport while the soil-gas diffusion coefficient (Dp) governs diffusive gas transport. In this study, the effects of compaction level and particle size fraction effects on ka and Dp for landfill final cover soil was investigated. The disturbed soil samples were taken from landfill final cover in Japan. A compaction tests were performed for the soil samples with two different size fractions (content , the soil samples were repacked into soil cores (i.d. 15-cm, length 12-cm, 2120 cm3) at two different compaction levels [(MP):2700 kN/m2 and (SP):600 kN/m2]. After the compaction tests, ka and Dp were measured and then samples were saturated and subsequently drained at different soil-water matric potential of 0.98, 2.94, 9.81, 1235 kPa and with air-dried and oven-dried conditions. Results showed that measured Dp and ka values for the coarser (content. Further, compaction effort was much significant

  7. DEMONSTRATION OF FUEL CELLS TO RECOVER ENERGY FROM LANDFILL GAS: PHASE II. PRETREATMENT SYSTEM PERFORMANCE MEASUREMENT

    Science.gov (United States)

    The report describes Phase II of a demonstration of the utilization of commercial phosphoric acid fuel cells to recover energy from landfill gas. This phase consisted primarily of the construction and testing of a Gas Pretreatment Unit (GPU) whose function is to remove those impu...

  8. Estimation of the mass-balance of selected metals in four sanitary landfills in Western Norway, with emphasis on the heavy metal content of the deposited waste and the leachate.

    Science.gov (United States)

    Øygard, Joar Karsten; Måge, Amund; Gjengedal, Elin

    2004-07-01

    A worst-case simulation of the mass-balance for metals in the waste deposited during 1 year and the levels of cadmium (Cd), lead (Pb), mercury (Hg), chromium (Cr) and iron (Fe) in the leachate was calculated for four sanitary landfills in Western Norway. Estimates of the levels of metal content in mixed municipal solid waste (MSW) were found by using recent literature values calculated in a mass-balance study at a Norwegian waste incinerator plant. Leachate from the landfills were sampled and analyzed monthly during 1 year, and from these measurements the total annual discharge of the selected metals through the leachate was determined. The levels of the measured heavy metals in the leachate were low. For Cd less than 0.06%, for Pb less than 0.01% and for Hg less than 0.02% of the estimated year's deposited mass of metals were leached from the landfills during the year of investigation. The high retention of these metals are most likely due to sulfide precipitation, but also due to the immobile condition of the metals in their original deposited solid state (plastics, ceramics, etc.). The percentage of Cr leached was relatively higher, but less than 1.0% per year. The mass balance of Fe suggests that this element is more mobile under the prevailing conditions. The percentage of Fe leached varied and was estimated to be between 1.9% and 18%. The present study clearly supports the theory that MSW only to a small extent will lead to discharge of metals if deposited at well-constructed sanitary landfills with top layers.

  9. Experimental Study on Compactness of Clay Liners in Sanitary Landfill%卫生填埋场黏土衬层密实性试验研究

    Institute of Scientific and Technical Information of China (English)

    龚育龄; 叶腾飞; 董路; 汤洪志

    2011-01-01

    开展卫生填埋场中的黏土衬层密实性试验研究对填埋场的工程设计和后期运营具有现实意义.黏土压实的直接影响之一就是孔隙率的减小,并改变黏土的电阻率,为高密度电阻率法在衬层密实性中的调查研究提供了前提条件和物理基础.文章采用高密度电阻率法三种装置(测深、温纳、偶极-偶极)进行对比测量,通过电阻率成像技术对压实黏土的电性特征进行分析研究,确定了偶极-偶极装置反演精度较高.研究结果表明,渗透系数K为1.0×10-6cm/s的电阻率为40 Ω·m左右;K为1.0×10-6 cm/s的电阻率为30 Ω·m左右;K为1.0×10-7 cm/s的电阻率为20 Ω·m左右.%The study on density of clay liners is helpful for design and post-operation of the sanitary landfill. Resistivity change is one of direct impacts of decreasing porosity in compacted clay. The difference of resistivity would provide preconditions and physical basis for high density resistivity method. Three arrays including sounding array, Wenner array and dipole-dipole array were implemented and compared using electrical resistivity tomography technology. Electrical character of the compacted clay was investigated through the performance of resistivity tomography technology, and the inverse results of dipole-dipole array are more accurate. Results indicate that resistivity is about 40 ft'm at hydraulic conductivity of l.OxlO^cm/s, resistivity is about 30 ft*m at hydraulic conductivity of l.OxlO"6 cm/s and resistivity is about 20 ft*m at hydraulic conductivity of 1.0x10-7 cm/s.

  10. ELECTRIC POWER GENERATION USING A PHOSPHORIC ACID FUEL CELL ON A MUNICIPAL SOLID WASTE LANDFILL GAS STREAM

    Science.gov (United States)

    The report gives results of tests to verify the performance of a landfill gas pretreatment unit (GPU) and a phorsphoric acid fuel cell system. The complete system removes contaminants from landfill gas and produces electricity for on-site use or connection to an electric grid. Th...

  11. Landfill is an important atmospheric mercury emission source

    Institute of Scientific and Technical Information of China (English)

    FENG Xinbin; TANG Shunlin; LI Zhonggen; WANG Shaofeng; LIANG Lian

    2004-01-01

    Since municipal wastes contain refuses with high mercury contents, incineration of municipal wastes becomes the major anthropogenic atmospheric mercury emission source. In China, landfills are however the main way to dispose of municipal wastes. Total gaseous mercury (TGM) concentrations in landfill gas of Gaoyan sanitary landfill located in suburb of Guiyang City were monitored using a high temporal resolved automated mercury analyzer, and mono-methylmercury (MMHg) and dimethylmercury (DMHg) concentrations in landfill gas were also measured using GC coupled with the cold vapor atomic fluorescence (CVAFS) method. Meanwhile, the TGM exchange fluxes between exposed waste and air and the soil surface of the landfill and air, were measured using low Hg blank quartz flux chamber coupled with high temporal resolved automated mercury analyzer technique. TGM concentrations in landfill gas from half year filling area averaged out at 665.52±291.25 ng/m3, which is comparable with TGM concentrations from flue gas of a small coal combustion boiler in Guiyang. The average MMHg and DMHg concentrations averaged out at 2.06±1.82 ng/m3 and 9.50±5.18 ng/m3, respectively. It is proven that mercury emission is the predominant process at the surfaces of both exposed wastes and soil of landfill. Landfills are not only TGM emission source, but also methylmercury emission source to the ambient air. There are two ways to emit mercury to the air from landfills, one is with the landfill gas through landfill gas duct, and the other through soil/air exchange. The Hg emission processes from landfills are controlled by meteorological parameters.

  12. Relating landfill gas emissions to atmospheric pressure using numerical modeling and state-space analysis

    DEFF Research Database (Denmark)

    Poulsen, T.G.; Christophersen, Mette; Moldrup, P.

    2003-01-01

    were applied: (I) State-space analysis was used to identify relations between gas flux and short-term (hourly) variations in atmospheric pressure. (II) A numerical gas transport model was fitted to the data and used to quantify short-term impacts of variations in atmospheric pressure, volumetric soil......-water content, soil gas permeability, soil gas diffusion coefficients, and biological CH4 degradation rate upon landfill gas concentration and fluxes in the soil. Fluxes and concentrations were found to be most sensitive to variations in volumetric soil water content, atmospheric pressure variations and gas...... permeability whereas variations in CH4 oxidation rate and molecular coefficients had less influence. Fluxes appeared to be most sensitive to atmospheric pressure at intermediate distances from the landfill edge. Also overall CH4 fluxes out of the soil over longer periods (years) were largest during periods...

  13. Application of close-range aerial infrared thermography to detect landfill gas emissions: a case study

    Science.gov (United States)

    Tanda, G.; Migliazzi, M.; Chiarabini, V.; Cinquetti, P.

    2017-01-01

    Monitoring waste disposal sites is important to check that the produced biogas, potentially explosive, is properly collected by the biogas extraction system of the landfill site and to evaluate the residual biogas flow escaping from upper surface of the landfill. As the biogas migrates to the surface, the soil through which it flows is expected to reach a higher temperature than the surrounding environment; thus, measuring the thermal footprint of the landfill soil surface could allow the detection of biogas leakages and spots suitable for the gas extraction. Close-range aerial infrared thermography is an innovative approach able to identify thermal anomalies with a good resolution over a large region of the landfill surface. A simple procedure to deduce the biogas flow rate emerging from the soil into the atmosphere, based on infrared thermography measurements, is presented. The approach has been applied to a case study concerning a large landfill located in Genoa (Italy). Aerial infrared photographs taken during different days and seasons showed the presence of thermal anomalies over regions along the peripheral boundary of the landfill still not interested in biogas extraction.

  14. Removal of halogenated organic compounds in landfill gas by top covers containing zero-valent iron

    DEFF Research Database (Denmark)

    Scheutz, Charlotte; Winther, K.; Kjeldsen, Peter

    2000-01-01

    Transformation of gaseous CCl3F and CCl4 by zero-valent iron was studied in systems unsaturated with water under anaerobic conditionssin an N2 gas and in a landfill gas atmosphere. The transformation was studied in batch as well as flow-through column tests. In both systems, the transformation...... process of the compounds was pseudo-firstorder. Transformation rate constants, referring to the water phase and normalized to 1 m2 iron surface/mL, of up to 1100 mL m-2 h-1 (batch) and 200 mL m-2 h-1 (flowthrough) were found. The transformation was strongly dependent on pH and the presence of oxygen....... During continuous aerobic conditions, the transformation of CCl3F decreased toward zero. Model calculations show that use of zero-valent iron in landfill top covers is a potential treatment technology for emission reduction of halogenated trace compounds from landfills....

  15. Effectiveness of compacted soil liner as a gas barrier layer in the landfill final cover system.

    Science.gov (United States)

    Moon, Seheum; Nam, Kyoungphile; Kim, Jae Young; Hwan, Shim Kyu; Chung, Moonkyung

    2008-01-01

    A compacted soil liner (CSL) has been widely used as a single barrier layer or a part of composite barrier layer in the landfill final cover system to prevent water infiltration into solid wastes for its acceptable hydraulic permeability. This study was conducted to test whether the CSL was also effective in prohibiting landfill gas emissions. For this purpose, three different compaction methods (i.e., reduced, standard, and modified Proctor methods) were used to prepare the soil specimens, with nitrogen as gas, and with water and heptane as liquid permeants. Measured gas permeability ranged from 2.03 x 10(-10) to 4.96 x 10(-9) cm(2), which was a magnitude of two or three orders greater than hydraulic permeability (9.60 x 10(-13) to 1.05 x 10(-11) cm(2)). The difference between gas and hydraulic permeabilities can be explained by gas slippage, which makes gas more permeable, and by soil-water interaction, which impedes water flow and then makes water less permeable. This explanation was also supported by the result that a liquid permeability measured with heptane as a non-polar liquid was similar to the intrinsic gas permeability. The data demonstrate that hydraulic requirement for the CSL is not enough to control the gas emissions from a landfill.

  16. The new Waste Law: Challenging opportunity for future landfill operation in Indonesia.

    Science.gov (United States)

    Meidiana, Christia; Gamse, Thomas

    2011-01-01

    The Waste Law No. 18/2008 Article 22 and 44 require the local governments to run environmentally sound landfill. Due to the widespread poor quality of waste management in Indonesia, this study aimed to identify the current situation by evaluating three selected landfills based on the ideal conditions of landfill practices, which are used to appraise the capability of local governments to adapt to the law. The results indicated that the local governments have problems of insufficient budget, inadequate equipment, uncollected waste and unplanned future landfill locations. All of the selected landfills were partially controlled landfills with open dumping practices predominating. In such inferior conditions the implementation of sanitary landfill is not necessarily appropriate. The controlled landfill is a more appropriate solution as it offers lower investment and operational costs, makes the selection of a new landfill site unnecessary and can operate with a minimum standard of infrastructure and equipment. The sustainability of future landfill capacity can be maintained by utilizing the old landfill as a profit-oriented landfill by implementing a landfill gas management or a clean development mechanism project. A collection fee system using the pay-as-you-throw principle could increase the waste income thereby financing municipal solid waste management.

  17. Development of an innovative uav-mountd screening tool for landfill gas emisiions

    DEFF Research Database (Denmark)

    Fjelsted, L.; Thomasen, T. B.; Valbjørn, I. L.

    2015-01-01

    Identification of landfill gas emission hot spots are potentially a very time consuming process, and the use of an Unmanned Aerial Vehicle (UAV) based screening tool could be an effective investigation strategy. In this study, the potential use of a long-wave thermal infrared camera...

  18. Development of an innovative uav-mounted screening tool for landfill gas emissions

    DEFF Research Database (Denmark)

    Fjelsted, Lotte; Thomasen, T. B.; Valbjørn, I. L.

    2015-01-01

    Identification of landfill gas emission hot spots are potentially a very time consuming process, and the use of an Unmanned Aerial Vehicle (UAV) based screening tool could be an effective investigation strategy. In this study, the potential use of a long-wave thermal infrared camera...

  19. Lateral gas transport in soil adjacent to an old landfill: factors governing emissions and methane oxidation

    DEFF Research Database (Denmark)

    Christophersen, Mette; Kjeldsen, Peter; Holst, Helle

    2001-01-01

    Field investigations of lateral gas transport and subsequent emissions in soil adjacent to an old landfill in Denmark have been conducted during a one-year period. A significant seasonal variation in the emissions with high carbon dioxide and low methane fluxes in the summer (May to October...

  20. DEMONSTRATION OF FUEL CELLS TO RECOVER ENERGY FROM LANDFILL GAS - PHASE I FINAL REPORT: CONCEPTUAL STUDY

    Science.gov (United States)

    The report discusses results of a conceptual design, cost, and evaluation study of energy recovery from landfill gas using a commercial phosphoric acid fuel cell power plant. The conceptual design of the fuel cell energy recovery system is described, and its economic and environm...

  1. Evaluation and application of site-specific data to revise the first-order decay model for estimating landfill gas generation and emissions at Danish landfills

    DEFF Research Database (Denmark)

    Mou, Zishen; Scheutz, Charlotte; Kjeldsen, Peter

    2015-01-01

    Methane (CH4) generated from low-organic waste degradation at four Danish landfills was estimated by three first-order decay (FOD) landfill gas (LFG) generation models (LandGEM, IPCC, and Afvalzorg). Actual waste data from Danish landfills were applied to fit model (IPCC and Afvalzorg) required...... categories. In general, the single-phase model, LandGEM, significantly overestimated CH4 generation, because it applied too high default values for key parameters to handle low-organic waste scenarios. The key parameters were biochemical CH4 potential (BMP) and CH4 generation rate constant (k.......Implications: Landfill operators use the first-order decay (FOD) models to estimate methane (CH4) generation. A single-phase model (LandGEM) and a traditional model (IPCC) could result in overestimation when handling a low-organic waste scenario. Site-specific data were important and capable of calibrating key parameter...

  2. Evaluating Gas Emissions From Landfills – Which Methodologies Can Be Used?

    DEFF Research Database (Denmark)

    Kjeldsen, Peter; Scheutz, Charlotte

    2011-01-01

    Many methodologies exist to measure whole landfill methane emission as alternatives to imprecise estimation of the methane emission using existing landfill gas generation models. An overview of the different measurement methodologies is given, and suggestions to the most promising methodologies...... are presented. Methods based on the tracer dilution approach are most promising. However, still some developments are needed, both in respect to the technical implementation, and in respect to the protocols needed to obtain annual emission estimates based on the limited number of measurement campaigns....

  3. Transport and reaction processes affecting the attenuation of landfill gas in cover soils

    DEFF Research Database (Denmark)

    Molins, S.; Mayer, K.U.; Scheutz, Charlotte

    2008-01-01

    of methane, chlorofluorocarbons, and hydrochlorofluorocarbons to the atmosphere. This study was conducted to investigate the effect of oxidation reactions on the overall gas transport regime and to evaluate, the contributions of various gas transport processes on methane attenuation in landfill cover soils....... For this purpose, a reactive transport model that includes advection and the Dusty Gas Model for simulation of multicomponent gas diffusion was used. The simulations are constrained by data from a series of counter-gradient laboratory experiments. Diffusion typically accounts for over 99% of methane emission....... Simulations suggest that production of water or accumulation of exopolymeric substances due to microbially mediated methane oxidation can significantly reduce diffusive fluxes. Assuming a constant rate of methane production within a landfill, reduction of the diffusive transport properties, primarily due...

  4. LCA and economic evaluation of landfill leachate and gas technologies

    DEFF Research Database (Denmark)

    Damgaard, Anders; Manfredi, Simone; Merrild, Hanna Kristina

    2011-01-01

    improvements for most impact categories. Global warming went from an impact of 0.1 person equivalent (PE) for the dump to −0.05 PE for the best design. Similar improvements were found for photochemical ozone formation (0.02 PE to 0.002 PE) and stratospheric ozone formation (0.04 PE to 0.001 PE).For the toxic...... through emissions of treated wastewater to surface waters.The largest environmental improvement with regard to the direct cost of the landfill was the capping and leachate treatment system. The capping, though very cheap to establish, gave a huge benefit in lowered impacts, the leachate collection system...

  5. Evaluation of potential opportunities for electric power generation from landfill gas at “Tsalapitsa”

    Directory of Open Access Journals (Sweden)

    Ganev Ivaylo

    2014-01-01

    Full Text Available Potential opportunities for electric power generation from landfill gas (LFG utilization were estimated for the second largest landfill site in Bulgaria, situated near the city of Plovdiv. The work performed was based on detailed analysis of experimentally obtained and model-predicted features of the “Tsalapitsa” landfill site. The study presents a short description of the site, the global characteristics of the disposed municipal solid waste, and the experimentally obtained methane composition of the LFG. Based on the above described observations, the potential for LFG recovery at “Tsalapitsa” was determined, together with that for electric power generation for the next 25 years. A set of recommendations was then developed regarding the parameters required for the installation of electric power generation from LFG in Plovdiv.

  6. Field-scale treatment of landfill gas with a passive methane oxidizing biofilter

    Energy Technology Data Exchange (ETDEWEB)

    Philopoulos, A. [Alberta Univ., Edmonton, AB (Canada). Dept. of Civil and Environmental Engineering; Felske, C. [Alberta Research Council, Edmonton, AB (Canada); McCartney, D. [Alberta Univ., Edmonton, AB (Canada). Dept. of Civil and Environmental Engineering, Natural Resources Engineering Facility

    2008-09-15

    Municipal solid waste (MSW) landfills produce methane (CH{sub 4}) and carbon dioxide (CO{sub 2}) as a result of the anaerobic biodegradation of organic fractions of waste. This paper provided details of field tests conducted to test 2 approaches that addressed the issue of gases produced at a landfill in Alberta. A CH{sub 4} oxidation layer was applied to replace intermediate and final landfill covers. Landfill gas (LFG) was then trapped using 3 biogenic CH{sub 4} oxidizing biofilters. Mature yard waste was used as a biofilter medium. The LFG was trapped by the liner, accumulated in a collection system, and then passed through the biofilter medium. The study was conducted over a period of 10 months. Results of the study showed that the integration of the biofilter into the landfill cover showed promising results. Low surface emissions were observed in 6 out of 8 monitoring events at 2 of the sites. Low influent LFG fluxes at the third site did not allow for full air sampling analyses to be conducted. 22 refs., 4 tabs., 8 figs.

  7. Greenhouse gas reduction by recovery and utilization of landfill methane and CO{sub 2} technical and market feasibility study, Boului Landfill, Bucharest, Romania. Final report, September 30, 1997--September 19, 1998

    Energy Technology Data Exchange (ETDEWEB)

    Cook, W.J.; Brown, W.R.; Siwajek, L. [Acrion Technologies, Inc., Cleveland, OH (United States); Sanders, W.I. [Power Management Corp., Bellevue, WA (United States); Botgros, I. [Petrodesign, SA, Bucharest (Romania)

    1998-09-01

    The project is a landfill gas to energy project rated at about 4 megawatts (electric) at startup, increasing to 8 megawatts over time. The project site is Boului Landfill, near Bucharest, Romania. The project improves regional air quality, reduces emission of greenhouse gases, controls and utilizes landfill methane, and supplies electric power to the local grid. The technical and economic feasibility of pre-treating Boului landfill gas with Acrion`s new landfill gas cleanup technology prior to combustion for power production us attractive. Acrion`s gas treatment provides several benefits to the currently structured electric generation project: (1) increase energy density of landfill gas from about 500 Btu/ft{sup 3} to about 750 Btu/ft{sup 3}; (2) remove contaminants from landfill gas to prolong engine life and reduce maintenance;; (3) recover carbon dioxide from landfill gas for Romanian markets; and (4) reduce emission of greenhouse gases methane and carbon dioxide. Greenhouse gas emissions reduction attributable to successful implementation of the landfill gas to electric project, with commercial liquid CO{sub 2} recovery, is estimated to be 53 million metric tons of CO{sub 2} equivalent of its 15 year life.

  8. The estimation of methane emissions from landfills with different cover systems

    Science.gov (United States)

    Park, S.; Lee, K.; Sung, K.

    2006-12-01

    Methane is a very potent greenhouse gas, second only to CO2 as an anthropogenic contributor to global warming. Landfills are important anthropogenic source in the CH4 emissions. Microbially mediated CH4 oxidation in landfills with conventional soil covers can serve as an efficient biological sink. Methane from modern sanitary landfills equipped with composite covers and gas collection system is vented directly to the atmosphere, except for some of the largest landfills at which it is collected and burned. However, previous laboratory research has shown that biofilters have the potential to reduce CH4 emissions from landfills with modern composite covers. In this study a CH4 emission model was developed. The model used the calculated CH4 oxidation rates to estimate CH4 emissions from landfills constructed with conventional soil covers, modern composite covers, and modern composite covers plus biofilters. According to the CH4 emission rates predicted by CH4 emission model, it was estimated that 90% of the generated CH4 was emitted to the atmosphere for landfills with modern composite cover. For landfills with modern composite cover plus biofilters, an average of only 9% of the generated CH4 was estimated to be emitted. For landfills with conventional covers, an average of 83% of the generated CH4 was estimated to be emitted. By comparing the CH4 emission rates from three different landfill types, the use of a properly managed biofilter should be an effective technique to reduce CH4 emissions from landfills.

  9. TESTING OF FUEL CELLS TO RECOVER ENERGY FROM LANDFILL GAS: GROTON LANDFILL

    Science.gov (United States)

    The report summarizes the results of follow-on tests following a four-phase EPA program. The environmental impact of widespread use of this concept would be a significant reduction of global warming gas emissions (methane and carbon dioxide). The follow-on testing, conducted by N...

  10. Strategies to Optimize Microbially-Mediated Mitigation of Greenhouse Gas Emissions from Landfill Cover Soils

    Energy Technology Data Exchange (ETDEWEB)

    Jeremy Semrau; Sung-Woo Lee; Jeongdae Im; Sukhwan Yoon; Michael Barcelona

    2010-09-30

    The overall objective of this project, 'Strategies to Optimize Microbially-Mediated Mitigation of Greenhouse Gas Emissions from Landfill Cover Soils' was to develop effective, efficient, and economic methodologies by which microbial production of nitrous oxide can be minimized while also maximizing microbial consumption of methane in landfill cover soils. A combination of laboratory and field site experiments found that the addition of nitrogen and phenylacetylene stimulated in situ methane oxidation while minimizing nitrous oxide production. Molecular analyses also indicated that methane-oxidizing bacteria may play a significant role in not only removing methane, but in nitrous oxide production as well, although the contribution of ammonia-oxidizing archaea to nitrous oxide production can not be excluded at this time. Future efforts to control both methane and nitrous oxide emissions from landfills as well as from other environments (e.g., agricultural soils) should consider these issues. Finally, a methanotrophic biofiltration system was designed and modeled for the promotion of methanotrophic activity in local methane 'hotspots' such as landfills. Model results as well as economic analyses of these biofilters indicate that the use of methanotrophic biofilters for controlling methane emissions is technically feasible, and provided either the costs of biofilter construction and operation are reduced or the value of CO{sub 2} credits is increased, can also be economically attractive.

  11. Characterization of trichloroethylene adsorption onto waste biocover soil in the presence of landfill gas.

    Science.gov (United States)

    He, Ruo; Su, Yao; Kong, Jiaoyan

    2015-09-15

    Waste biocover soils (WBS) have been demonstrated to have great potential in mitigating trichloroethylene (TCE) emission from landfills, due to the relatively high TCE-degrading capacity. In this study, the characteristics of TCE adsorption on WBS in the presence of the major landfill gas components (i.e., CH4 and CO2) were investigated in soil microcosms. The adsorption isotherm of TCE onto WBS was fitted well with linear model within the TCE concentrations of 7000 ppmv. The adsorption capacity of TCE onto WBS was affected by temperature, soil moisture content and particle size, of which, temperature was the dominant factor. The adsorption capacity of TCE onto the experimental materials increased with the increasing organic matter content. A significantly positive correlation was observed between the adsorption capacity of TCE and the organic matter content of experimental materials that had relatively higher organic content (r = 0.988, P = 0.044). To better understand WBS application in practice, response surface methodology was developed to predict TCE adsorption capacity and emissions through WBS in different landfills in China. These results indicated that WBS had high adsorption capacity of TCE in LFG and temperature should be paid more attention to manipulate WBS to reduce TCE emissions from landfills.

  12. Standardization of the Electricity and Economic Potentials of Landfill gas (LFG in Lagos, Nigeria.

    Directory of Open Access Journals (Sweden)

    Christopher N AKUJIEZE

    2014-05-01

    Full Text Available Globally, various practical data and scholarly estimations of the electricity potentials of landfill gas (LFG have been forwarded and these can be juxtaposed for estimations in the megacity called Lagos. The calculated values were between 63.22- 700MW of  derivable electricity. However, in order to limit observable disparities and ambiguities in these derivations and thus allow for more accurate projections, these estimations can be gauged using as template; -stoichiometry, establishing 50% of landfill gas as methane, assuming 50% of this volume as recoverable, and using a proposed engine efficiency of 30%. This standardization projects a theoretical mean achievable electrical power of 121.69 MW for the Lagos area from a population of about 21 million with a generation per capita (GPC of 0.63kg with biodegradable content of about 60%. The yearly electrical energy was placed at 1,066,004.4 MWh with tariff revenue in excess of US$ 106.6 million /yr. An accruing carbon credit of about US$75.59 million /yr is expected from certified emission reduction (CER. The projected derivations can be used as models for evaluation of the landfill gas and electricity potentials in many parts of the world.

  13. Comparison between landfill gas and waste incineration for power generation in Astana, Kazakhstan.

    Science.gov (United States)

    Inglezakis, Vassilis J; Rojas-Solórzano, Luis; Kim, Jong; Aitbekova, Aisulu; Ismailova, Aizada

    2015-05-01

    The city of Astana, the capital of Kazakhstan, which has a population of 804,474, and has been experiencing rapid growth over the last 15 years, generates approximately 1.39 kg capita(-1) day(-1) of municipal solid waste (MSW). Nearly 700 tonnes of MSW are collected daily, of which 97% is disposed of at landfills. The newest landfill was built using modern technologies, including a landfill gas (LFG) collection system.The rapid growth of Astana demands more energy on its path to development, and the viability analysis of MSW to generate electricity is imperative. This paper presents a technical-economic pre-feasibility study comparing landfill including LFG utilization and waste incineration (WI) to produce electricity. The performance of LFG with a reciprocating engine and WI with steam turbine power technologies were compared through corresponding greenhouse gases (GHG) reduction, cost of energy production (CEP), benefit-cost ratio (BCR), net present value (NPV) and internal rate of return (IRR) from the analyses. Results demonstrate that in the city of Astana, WI has the potential to reduce more than 200,000 tonnes of GHG per year, while LFG could reduce slightly less than 40,000 tonnes. LFG offers a CEP 5.7% larger than WI, while the latter presents a BCR two times higher than LFG. WI technology analysis depicts a NPV exceeding 280% of the equity, while for LFG, the NPV is less than the equity, which indicates an expected remarkable financial return for the WI technology and a marginal and risky scenario for the LFG technology. Only existing landfill facilities with a LFG collection system in place may turn LFG into a viable project.

  14. Landfilling: Environmental Issues

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund; Manfredi, Simone; Kjeldsen, Peter

    2011-01-01

    to air, soil and water caused by the processes stabilizing the waste in the landfill. The main factors controlling the actual environmental impacts from the landfilling are: the nature and amount of the waste landfilled, the geological and hydrological setting of the landfill, the landfill technology......, the extent and quality of the technical environmental protection measures introduced, the daily operation and the timescale. This chapter describes the main potential environmental impacts from landfills. The modern landfill is able to avoid most of these impacts. However, in the planning and design...... of landfills it is important to understand the potential environmental impacts, which must be avoided. The emissions of landfill gas and leachate causing most of the environmental risks are described in detail in the chapters addressing specific landfill types: Chapter 10.5 (mineral waste landfill), Chapter 10...

  15. Methane oxidation at low temperatures in soil exposed to landfill gas

    DEFF Research Database (Denmark)

    Christophersen, Mette; Linderød, L.; Jensen, Pernille Erland

    2000-01-01

    to gas recovery at smaller and older landfills in northern Europe. Equations have been developed that describe the dependency of temperature and soil moisture content for each soil. The oxidation rates depended significantly on the soils (and thereby organic matter content), temperature, and soil...... moisture content. Soil moisture was the most important factor. However, high Q(10) values indicate that temperature also was important. The four soils tested had optimum soil moisture content between 11 and 32%. At increasing organic matter content, both the optimal soil moisture content and the maximum...... cannot be extrapolated to soils exposed to high methane concentrations. Four sandy soils with different organic matter content (1-9% w/w) from two landfills in Denmark were investigated in batch experiments in the laboratory to determine the response of methane oxidation at low temperatures and different...

  16. Environmental characterization foundry sands used in sanitary landfills; Caracterizacao ambiental de areias descartadas de fundicao utilizadas na cobertura de residuos em aterros sanitarios

    Energy Technology Data Exchange (ETDEWEB)

    Domingues, L.G.F.; Ferreira, G.C.S.; Pires, M.S.G.; Teixeira, I.; Carnin, R.; Sarro, W.S., E-mail: lucienegferrari@gmail.com [Universidade Estadual de Campinas (UNICAMP), SP (Brazil)

    2016-07-01

    The national solid waste policy recommends reducing solid waste generation and reusing them in different applications. Preliminary studies show that the foundry sand generated from cast metal parts undercut, has excellent applicability in grain size stabilization of soils for geotechnical functions, and therefore, should not be discarded as waste. This study aimed at environmental characterization of two lots of waste foundry sand (WFS), from different industries, to the particle size stabilization of a clayey soil for use in coverage of solid waste in landfills. The methodology included physicochemical characterization tests (grain size, permeability, XRF and heavy metals) and environmental (NBR 10004: 2004, NBR 10005: 2004, NBR 10006: 20004 and acute toxicity with Vibrio fischeri). The results prove the environmental viability of using these lots of WFS as functional material in the composition of landfills. (author)

  17. Minimizing N2O fluxes from full-scale municipal solid waste landfill with properly selected cover soil

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Municipal solid waste landfills emit nitrous oxide (N2O) gas. Assuming that the soil cover is the primary N2O source from landfills,this study tested, during a four-year project, the hypothesis that the proper use of chosen soils with fine texture minimizes N2O emissions. A full-scale sanitary landfill, a full-scale bioreactor landfill and a cell planted with Nerium indicum or Festuca arundinacea Schreb, at the Hangzhou Tianziling landfill in Hangzhou City were the test sites. The N2O emission rates from all test sites were considerably lower than those reported in the published reports. Specifically, the N2O emission rate was dependent on soil water content and nitrate concentrations in the cover soil. The effects of leachate recirculation and irrigation were minimal. Properly chosen cover soils applied to the landfills reduced N2O flux.

  18. Adsorption characteristics of siloxanes in landfill gas by the adsorption equilibrium test

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Sangchul; Namkoong, Wan [Department of Environmental Engineering, Konkuk University, Hwayang-Dong, Gwangjin-Gu, Seoul 143-701 (Korea, Republic of); Kang, Jeong-Hee; Park, Jin-Kyu [Department of Environmental Engineering, Anyang University, Anyang 5-Dong, Manan-Gu, Anyang-Si, Gyeonggi-Do 430-714 (Korea, Republic of); Lee, Namhoon, E-mail: nhlee@anyang.ac.kr [Department of Environmental Engineering, Anyang University, Anyang 5-Dong, Manan-Gu, Anyang-Si, Gyeonggi-Do 430-714 (Korea, Republic of)

    2013-10-15

    Highlights: • Equilibrium test was attempted to evaluate adsorption characteristics of siloxane. • L2 had higher removal efficiency in carbon compared to noncarbon adsorbents. • Total adsorption capacity of siloxane was 300 mg/g by coal activated carbon. • Adsorption characteristics rely on size of siloxane molecule and adsorbent pore. • Conversion of siloxane was caused by adsorption of noncarbon adsorbents. - Abstract: Due to the increase in energy cost by constantly high oil prices and the obligation to reduce greenhouse effect gases, landfill gas is frequently used as an alternative energy source for producing heat and electricity. Most of landfill gas utility facilities, however, are experiencing problems controlling siloxanes from landfill gas as their catalytic oxidizers are becoming fouled by silicon dioxide dust. To evaluate adsorption characteristics of siloxanes, an adsorption equilibrium test was conducted and parameters in the Freundlich and Langmuir isotherms were analyzed. Coconut activated carbon (CA1), coal activated carbon (CA2), impregnated activated carbon (CA3), silicagel (NCA1), and activated alumina (NCA2) were used for the adsorption of the mixed siloxane which contained hexamethyldisiloxane (L2), octamethylcyclotetrasiloxane (D4), and decamethylcyclopentasiloxane (D5). L2 had higher removal efficiency in noncarbon adsorbents compared to carbon adsorbents. The application of Langmuir and Freundlich adsorption isotherm demonstrated that coconut based CA1 and CA3 provided higher adsorption capacity on L2. And CA2 and NCA1 provided higher adsorption capacity on D4 and D5. Based on the experimental results, L2, D4, and D5 were converted by adsorption and desorption in noncarbon adsorbents. Adsorption affinity of siloxane is considered to be affect by the pore size distribution of the adsorbents and by the molecular size of each siloxane.

  19. Landfill gas generation and emission at danish waste disposal sites receiving waste with a low organic waste content

    DEFF Research Database (Denmark)

    Mou, Zishen; Scheutz, Charlotte; Kjeldsen, Peter

    2015-01-01

    two models are multi-phase models, which defines waste fractions into traditional MSW and low-organic waste categories, respectively. Both the LandGEM and the IPCC model estimated significantly larger methane (CH4) generation in comparison to the Afvalzorg model. The Afvalzorg model could better show...... the influence of not only the total disposed waste amount, but also various waste categories, and was found more suitable to estimate LFG generation from landfills receiving low-organic waste. Four major waste categories currently being disposed at Danish landfills (mixed bulky, shredder, dewatered sludge...... results. The LFG generation from four Danish landfills was estimated by the Afvalzorg model using the experimentally based BMP and k values and compared to whole landfill emission rates measured by applying a tracer gas dispersion method. The results showed that the revised modelled LFG generation rates...

  20. Coupling ARB-based biological and photochemical (UV/TiO2 and UV/S2O8(2-)) techniques to deal with sanitary landfill leachate.

    Science.gov (United States)

    Hassan, Muhammad; Wang, Xiaoyuan; Wang, Fei; Wu, Dong; Hussain, Asif; Xie, Bing

    2016-09-12

    The aim of this study was to provide an alternative way to remove bio-refractory organics and ammonical-nitrogen from mature municipal solid waste (MSW) landfill leachate by combining biological and photochemical processes. To achieve this objective, the effectiveness of anoxic aged refuse-based bioreactor (ARB) for biological leachate pretreatment followed by Advanced Oxidation Processes (AOPs) by heterogeneous photocatalysis (TiO2/UV) and persulfate (S2O8(2-)) oxidation were tested. The results obtained after ARB based pre-treatment demonstrated a mean 72%, 81% and 92% degradation of COD, NH4N and TN, respectively. However, this treated leachate cannot be discharged without another treatment; hence, it was further treated by UV-mediated TiO2 photocatalysis and S2O8(2-) oxidation. An average 82% of COD was abated at optimum condition (1gL(-1) TiO2; pH 5) whereas, using an optimum 1.5gL(-1) persulfate at pH 5, 81% COD reduction occurred. Acidic and alkaline pH favored COD and NH4N removal respectively. The results of this study demonstrated that coupling ARB with AOPs is potentially applicable process to deal with bio-recalcitrant compounds present in mature landfill leachate.

  1. On optimization design for a flood intercepting trench of solid waste sanitary landfill in Shaanxi province%陕西省某生活垃圾卫生填埋场泄洪沟设计分析

    Institute of Scientific and Technical Information of China (English)

    赵丰毅; 张莉平; 曹叶; 文国庆; 袁莹

    2012-01-01

    西北地区山谷形垃圾填埋场一般具有汇水面积大、土质疏松、易发生山体垮塌等特点,因而需进行降水拦截导排。以实际工程设计为基点,结合当地条件进行了基本参数的选取、断面比选、出口形式选择、消力区段设计计算等。针对场区地形高差大、坡度陡实际情况,给出了陡坡段消力设计计算的一般方法。%Valley-shaped solid waste sanitary landfill in northwest has generally the characteristics of large catchment area, loose soil and high incidence of mountain collapse, therefore, it is required to discharge the rainfall humanly. Based on the actual engineering design and combined with the local conditions, the selection of basic parameters, the choice of the section, outlet of the ditches and the calculation of hydraulic drop pipeline are discussed. According to the actual situation of high level difference and slope, general design and calculate method on hydraulic drop pipeline in slope area is given, and as well as a summary.

  2. 高安屯卫生填埋场刚性调节池除臭新工艺的应用%Application of Deodorant Technology in Regulating Pond of Gao'antun Waste Sanitary Landfill Site

    Institute of Scientific and Technical Information of China (English)

    王志茹; 彭旭阳; 任丽梅

    2012-01-01

    介绍了北京市朝阳区高安屯填埋场调节池除臭新工艺,即在原有设备基础上增加调节池密闭性,并抽出调节池内部臭气作为火炬助燃空气对调节池臭气进行除臭,实践证明该工艺可有效解决调节池除臭问题,满足GB14554-1993排放要求;且系统运行安全有效、成本较低.%The deodorant technology of regulating pond in Chaoyang District Gao'antun Waste Sanitary Landfill Site of Beijing was introduced. That is to say, the deodorant technology improved the leakproofness of regulating pond based on existing deodorant equipment, and extracted the air inside the regulation pond as combustion air for small torch system to deodorant. The project has been proved that it can effectively solve the deodorant problem for regulation ponds, and meet the emission requirements of GB 14554-1993. The system is safe and effective, and has low costs.

  3. Methane emissions from sanitary landfills in Italy. Evaluation and forecasting; Le emissioni di metano dalle discariche di rifiuti in Italia: stima e scenari futuri

    Energy Technology Data Exchange (ETDEWEB)

    Colombari, F.; De Lauretis, R.; De Stefanis, P.; Gaudioso, D. [ENEA, Centro Ricerche Casaccia, Rome (Italy). Dipt. Ambiente

    1998-07-01

    The report estimates the methane emissions from landfills by three different methodologies derived from IPCC experiences. A detailed evaluation of solid waste production (MSW) composition is shown in order to update results obtained from old researches. Finally it shows a prediction of MSW production from 1996 to 2011 in different scenarios related to MSW management strategies. [Italian] Il rapporto analizza la stima della quantita' di metano generato dalle discariche di rifiuti utilizzando tre differenti metodologie di calcolo, derivanti dalle conoscenze scientifiche dell'IPCC, dopo aver approfondito la composizione dei rifiuti. Riporta infine per il periodo 1996-2011, la stima della produzione e dello smaltimento dei rifiuti e la predisposizione di diversi scenari futuri di emissione del metano, relativi a differenti scelte all'interno del sistema di gestione dei rifiuti.

  4. Energetic use of biogas from sanitary landfill in Brazil: a technical feasibility study, economic and environmental; Do aproveitamento energetico do biogas em aterros sanitarios no Brasil: um estudo de viabilidade tecnica, economica e ambiental

    Energy Technology Data Exchange (ETDEWEB)

    Abreu, Fabio Viana de [Petroleo Brasileiro S.A. (PETROBRAS), Rio de Janeiro, RJ (Brazil)

    2012-07-01

    Power generation through biogas in landfills is a production of clean and renewable energy in order to minimize the global impacts generated by the burning of municipal solid waste. In this article, the operational conditions of biogas are defined, and analyzed the appropriate areas and minimum flow of biogas, in m{sup 3}/h, to enable this type of project. The most significant environmental contribution of this project is to reduce emissions of greenhouse gases (GHG), by converting the methane into carbon dioxide. According to the Clean Development Mechanism (CDM), called developed countries can buy carbon credits from developing countries to meet their environmental goals. This alternative of raising revenue is one of the objects of this study. Are studied energy conversion technologies, with analysis of the best alternative for the conversion of landfill biogas energy. Comparative studies are presented and the results showed that the generating sets, using internal combustion engines (Otto or Diesel cycles) are more viable both technically and economic bias for energy conversion of landfill gas in Brazil through thermoelectric units.

  5. Landfill gas distribution at the base of passive methane oxidation biosystems: Transient state analysis of several configurations.

    Science.gov (United States)

    Ahoughalandari, Bahar; Cabral, Alexandre R

    2017-08-18

    The design process of passive methane oxidation biosystems needs to include design criteria that account for the effect of unsaturated hydraulic behavior on landfill gas migration, in particular, restrictions to landfill gas flow due to the capillary barrier effect, which can greatly affect methane oxidation rates. This paper reports the results of numerical simulations performed to assess the landfill gas flow behavior of several passive methane oxidation biosystems. The concepts of these biosystems were inspired by selected configurations found in the technical literature. We adopted the length of unrestricted gas migration (LUGM) as the main design criterion in this assessment. LUGM is defined as the length along the interface between the methane oxidation and gas distribution layers, where the pores of the methane oxidation layer material can be considered blocked for all practical purposes. High values of LUGM indicate that landfill gas can flow easily across this interface. Low values of LUGM indicate greater chances of having preferential upward flow and, consequently, finding hotspots on the surface. Deficient designs may result in the occurrence of hotspots. One of the designs evaluated included an alternative to a concept recently proposed where the interface between the methane oxidation and gas distribution layers was jagged (in the form of a see-saw). The idea behind this ingenious concept is to prevent blockage of air-filled pores in the upper areas of the jagged segments. The results of the simulations revealed the extent of the capability of the different scenarios to provide unrestricted and conveniently distributed upward landfill gas flow. They also stress the importance of incorporating an appropriate design criterion in the selection of the methane oxidation layer materials and the geometrical form of passive biosystems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Application of portable gas detector in point and scanning method to estimate spatial distribution of methane emission in landfill.

    Science.gov (United States)

    Lando, Asiyanthi Tabran; Nakayama, Hirofumi; Shimaoka, Takayuki

    2017-01-01

    Methane from landfills contributes to global warming and can pose an explosion hazard. To minimize these effects emissions must be monitored. This study proposed application of portable gas detector (PGD) in point and scanning measurements to estimate spatial distribution of methane emissions in landfills. The aims of this study were to discover the advantages and disadvantages of point and scanning methods in measuring methane concentrations, discover spatial distribution of methane emissions, cognize the correlation between ambient methane concentration and methane flux, and estimate methane flux and emissions in landfills. This study was carried out in Tamangapa landfill, Makassar city-Indonesia. Measurement areas were divided into basic and expanded area. In the point method, PGD was held one meter above the landfill surface, whereas scanning method used a PGD with a data logger mounted on a wire drawn between two poles. Point method was efficient in time, only needed one person and eight minutes in measuring 400m(2) areas, whereas scanning method could capture a lot of hot spots location and needed 20min. The results from basic area showed that ambient methane concentration and flux had a significant (pmethane emissions in the expanded area by using Kriging method. The average of estimated flux from scanning method was 71.2gm(-2)d(-1) higher than 38.3gm(-2)d(-1) from point method. Further, scanning method could capture the lower and higher value, which could be useful to evaluate and estimate the possible effects of the uncontrolled emissions in landfill.

  7. Optimization of first order decay gas generation model parameters for landfills located in cold semi-arid climates.

    Science.gov (United States)

    Vu, Hoang Lan; Ng, Kelvin Tsun Wai; Richter, Amy

    2017-08-17

    Canada has one of the highest waste generation rates in the world. Because of high land availability, land disposal rates in the province of Saskatchewan are high compared to the rest of the country. In this study, landfill gas data was collected at semi-arid landfills in Regina and Saskatoon, Saskatchewan, and curve fitting was carried out to find optimal k and Lo or DOC values using LandGEM, Afvalzorg Simple, and IPCC first order decay models. Model parameters at each landfill were estimated and compared using default k and Lo or DOC values. Methane generation rates were substantially overestimated using default values (with percentage errors from 55 to 135%). The mean percentage errors for the optimized k and Lo or DOC values ranged from 11.60% to 19.93% at the Regina landfill, and 1.65% to 10.83% at the Saskatoon landfill. Finally, the effect of different iterative methods on the curve fitting process was examined. The residual sum of squares for each model and iterative approaches were similar, with the exception of iterative method 1 for the IPCC model. The default values in these models fail to represent landfills located in cold semi-arid climates. The use of site specific data, provided enough information is available regarding waste mass and composition, can greatly help to improve the accuracy of these first order decay models. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Using a Gas-Phase Tracer Test to Characterize the Impact of Landfill Gas Generation on Advective-Dispersive Transport of VOCs in the Vadose Zone.

    Science.gov (United States)

    Monger, Gregg R; Duncan, Candice Morrison; Brusseau, Mark L

    2014-12-01

    A gas-phase tracer test (GTT) was conducted at a landfill in Tucson, AZ, to help elucidate the impact of landfill gas generation on the transport and fate of chlorinated aliphatic volatile organic contaminants (VOCs). Sulfur hexafluoride (SF6) was used as the non-reactive gas tracer. Gas samples were collected from a multiport monitoring well located 15.2 m from the injection well, and analyzed for SF6, CH4, CO2, and VOCs. The travel times determined for SF6 from the tracer test are approximately two to ten times smaller than estimated travel times that incorporate transport by only gas-phase diffusion. In addition, significant concentrations of CH4 and CO2 were measured, indicating production of landfill gas. Based on these results, it is hypothesized that the enhanced rates of transport observed for SF6 are caused by advective transport associated with landfill gas generation. The rates of transport varied vertically, which is attributed to multiple factors including spatial variability of water content, refuse mass, refuse permeability, and gas generation.

  9. Assessment of soil-gas and groundwater contamination at the Gibson Road landfill, Fort Gordon, Georgia, 2011

    Science.gov (United States)

    Falls, W. Fred; Caldwell, Andral W.; Guimaraes, Wladmir G.; Ratliff, W. Hagan; Wellborn, John B.; Landmeyer, James E.

    2012-01-01

    Soil-gas and groundwater assessments were conducted at the Gibson Road landfill in 201 to provide screening-level environmental contamination data to supplement the data collected during previous environmental studies at the landfill. Passive samplers were used in both assessments to detect volatile and semivolatile organic compounds and polycyclic aromatic hydrocarbons in soil gas and groundwater. A total of 56 passive samplers were deployed in the soil in late July and early August for the soil-gas assessment. Total petroleum hydrocarbons (TPH) were detected at masses greater than the method detection level of 0.02 microgram in all samplers and masses greater than 2.0 micrograms in 13 samplers. Three samplers located between the landfill and a nearby wetland had TPH masses greater than 20 micrograms. Diesel was detected in 28 of the 56 soil-gas samplers. Undecane, tridecane, and pentadecane were detected, but undecane was the most common diesel compound with 23 detections. Only five detections exceeded a combined diesel mass of 0.10 microgram, including the highest mass of 0.27 microgram near the wetland. Toluene was detected in only five passive samplers, including masses of 0.65 microgram near the wetland and 0.85 microgram on the southwestern side of the landfill. The only other gasoline-related compound detected was octane in two samplers. Naphthalene was detected in two samplers in the gully near the landfill and two samplers along the southwestern side of the landfill, but had masses less than or equal to 0.02 microgram. Six samplers located southeast of the landfill had detections of chlorinated compounds, including one perchloroethene detections (0.04 microgram) and five chloroform detections (0.05 to0.08 microgram). Passive samplers were deployed and recovered on August 8, 2011, in nine monitoring wells along the southwestern, southeastern and northeastern sides of the landfill and down gradient from the eastern corner of the landfill. Six of the nine

  10. Assessment of soil-gas contamination at the 17th Street landfill, Fort Gordon, Georgia, 2011

    Science.gov (United States)

    Falls, W. Fred; Caldwell, Andral W.; Guimaraes, Wladmir G.; Ratliff, W. Hagan; Wellborn, John B.; Landmeyer, James E.

    2012-01-01

    Assessments of contaminants in soil gas were conducted in two study areas at Fort Gordon, Georgia, in July and August of 2011 to supplement environmental contaminant data for previous studies at the 17th Street landfill. The two study areas include northern and eastern parts of the 17th Street landfill and the adjacent wooded areas to the north and east of the landfill. These study areas were chosen because of their close proximity to the surface water in Wilkerson Lake and McCoys Creek. A total of 48 soil-gas samplers were deployed for the July 28 to August 3, 2011, assessment in the eastern study area. The assessment mostly identified detections of total petroleum hydrocarbons (TPH), and gasoline- and diesel-range compounds, but also identified the presence of chlorinated solvents in six samplers, chloroform in three samplers, 2-methyl naphthalene in one sampler, and trimethylbenzene in one sampler. The TPH masses exceeded 0.02 microgram (μg) in all 48 samplers and exceeded 0.9 μg in 24 samplers. Undecane, one of the three diesel-range compounds used to calculate the combined mass for diesel-range compounds, was detected in 17 samplers and is the second most commonly detected compound in the eastern study area, exceeded only by the number of TPH detections. Six samplers had detections of toluene, but other gasoline compounds were detected with toluene in three of the samplers, including detections of ethylbenzene, meta- and para-xylene, and octane. All detections of chlorinated organic compounds had soil-gas masses equal to or less than 0.08 μg, including three detections of trichloroethene, three detections of perchloroethene, three chloroform detections, one 1,4-dichlorobenzene detection, and one 1,1,2-trichloroethane detection. Three methylated compounds were detected in the eastern study area, but were detected at or below method detection levels. A total of 32 soil-gas samplers were deployed for the August 11–24, 2011, assessment in the northern study

  11. Measurements of methane emissions from landfills using mobile plume method with trace gas and cavity ring-down spectroscopy

    Science.gov (United States)

    Mønster, J.; Kjeldsen, P.; Scheutz, C.

    2012-04-01

    Methane is emitted to the atmosphere from both anthropogenic and natural sources. One of the major anthropogenic sources is methane produced by bacteria in anaerobic environments such as rice pads and landfills. Land filling has for many years been the preferred waste disposal method, resulting in a large methane production with a large contribution to the global increase in atmospheric green house gas concentration. Several steps have been taken to reduce the emission of methane from landfills. In order to validate the effect of these steps, a measurement method is needed to quantify methane emissions with a large spatial variation. One method is to use a highly sensitive and fast analytical method, capable of measuring the atmospheric concentration methane downwind from emission areas. Combined with down-wind measurements of a trace gas, emitted at a controlled mass flow rate, the methane emission can be calculated. This method is called the mobile plume method, as the whole plume is measured by doing several transects. In the current study a methane/acetylene analyzer with cavity ring-down spectroscopy detection (Picarro, G2203) was used to estimate methane from a number of Danish landfills. We measured at both active and closed landfills and investigated the difference in methane emission. At landfills where the emissions could have more than one origin, the source strength of the different emission areas was determined by accurate trace gas positioning and choosing appropriate wind speed and measurement distance. To choose these factors, we addressed the uncertainties and limitations of the method with respect to the configuration of the trace gas bottles and the distance between the emission area and the measurement points. Composting of organic material in large piles was done at several of the investigated landfills and where possible, the methane emission from this partly anaerobic digestion was measured as a separate emission.

  12. Evaluation of aerated biofilter systems for microbial methane oxidation of poor landfill gas.

    Science.gov (United States)

    Haubrichs, R; Widmann, R

    2006-01-01

    In the long-term, landfills are producing landfill gas (LFG) with low calorific values. Therefore, the utilization of LFG in combined heat and power plants (CHP) is limited to a certain period of time. A feasible method for LFG treatment is microbial CH(4) oxidation. Different materials were tested in actively aerated lab-scale bio-filter systems with a volume of 0.167 m(3). The required oxygen for the microbial CH(4) oxidation was provided through perforated probes, which distributed ambient air into the filter material. Three air input levels were installed along the height of the filter, each of them adjusted to a particular flow rate. During the tests, stable degradation rates of around 28 g/(m(3) h) in a fine-grained compost material were observed at a CH(4) inlet concentration of 30% over a period of 148 days. Compared with passive (not aerated) tests, the CH(4) oxidation rate increased by a factor of 5.5. Therefore, the enhancement of active aeration on the microbial CH(4) oxidation was confirmed. At a O(2)/CH(4) ratio of 2.5, nearly 100% of the CH(4) load was decomposed. By lowering the ratio from 2.5 to 2, the efficiency fell to values from 88% to 92%. By varying the distribution to the three air input levels, the CH(4) oxidation process was spread more evenly over the filter volume.

  13. Pretreated Landfill Gas Conversion Process via a Catalytic Membrane Reactor for Renewable Combined Fuel Cell-Power Generation

    Directory of Open Access Journals (Sweden)

    Zoe Ziaka

    2013-01-01

    Full Text Available A new landfill gas-based reforming catalytic processing system for the conversion of gaseous hydrocarbons, such as incoming methane to hydrogen and carbon oxide mixtures, is described and analyzed. The exit synthesis gas (syn-gas is fed to power effectively high-temperature fuel cells such as SOFC types for combined efficient electricity generation. The current research work is also referred on the description and design aspects of permreactors (permeable reformers carrying the same type of landfill gas-reforming reactions. Membrane reactors is a new technology that can be applied efficiently in such systems. Membrane reactors seem to perform better than the nonmembrane traditional reactors. The aim of this research includes turnkey system and process development for the landfill-based power generation and fuel cell industries. Also, a discussion of the efficient utilization of landfill and waste type resources for combined green-type/renewable power generation with increased processing capacity and efficiency via fuel cell systems is taking place. Moreover, pollution reduction is an additional design consideration in the current catalytic processors fuel cell cycles.

  14. Sustainable Approach for Landfill Management at Final Processing Site Cikundul in Sukabumi City, Indonesia

    Directory of Open Access Journals (Sweden)

    Sri Darwati

    2012-01-01

    Full Text Available The main problem of landfill management in Indonesia is the difficulty in getting a location for Final Processing Sites (FPS due to limited land and high land prices. Besides, about 95% of existing landfills are uncontrolled dumping sites, which could potentially lead to water, soil and air pollution. Based on data from the Ministry of Environment (2010, The Act of the Republic of Indonesia Number 18 Year 2008 Concerning Solid Waste Management, prohibits open dumping at final processing sites and in ratification, the Local Governments have to convert the open dump sites into controlled or sanitary landfill. The Research Institute for Human Settlements has been conducting multi-year researches related to the rehabilitation of dumpsites toward sustainable landfill. The research methods are literature reviews, experiments, laboratory analysis and field observations. A pilot model of dumpsite rehabilitation was carried out in 2010 at the Final Processing Site at Cikundul in Sukabumi City, consisting of (1 mining landfill (2 construction of landfill cells in a former mining area with a semi aerobic landfill and an anaerobic landfill and (3 landfill operations using decomposed material from landfill mining as a soil cover. The purpose of the study is to develop a sustainable approach for landfill management and rehabilitation through landfill mining and implementation of semi aerobic landfill. Findings in the construction of landfill mining indicate that (1 the construction of landfill mining is constrained by leachate that is trapped in a pile of waste, therefore, the leachate needs to be pumped to leachate treatment installations, (2 the volume of waste excavation is expanding due to the high plastic content of about 26% in landfills (3 the potency of decomposed materials from landfill mining is 40–83% for landfill operations or greening.. The performance of landfill systems shows that leachate quality of semi aerobic landfill tends to be lower

  15. In-Situ Quantification of Methanotrophic Activity in a Landfill Cover Soil Using Gas Push-Pull Tests

    Science.gov (United States)

    Gomez, K. E.; Gonzalez-Gil, G.; Schroth, M. H.; Zeyer, J.

    2007-12-01

    Landfills are both a major anthropogenic source and a sink for the greenhouse gas CH4. Methanogenic bacteria produce CH4 during the anaerobic digestion of landfill waste, whereas, methanotrophic bacteria consume CH4 as it is transported through a landfill cover soil. Methanotrophs are thought to be ubiquitous in soils, but typically exist in large numbers at oxic/anoxic interfaces, close to anaerobic methane sources but exposed to oxygen required for metabolism. Accurate in-situ quantification of the sink strength of methanotrophs in landfill cover soils is needed for global carbon balances and for local emissions mitigation strategies. We measured in-situ CH4 concentrations at 30, 60, and 100 cm depth at 18 evenly spaced locations across a landfill cover soil. Furthermore, we performed Gas Push-Pull Tests (GPPTs) to estimate in-situ rates of methanotrophic activity in the cover soil. The GPPT is a gas-tracer test in which a gas mixture containing CH4, O2, and non-reactive tracer gases is injected (pushed) into the soil followed by extraction (pull) from the same location. Quantification of CH4 oxidation rates is based upon comparison of the breakthrough curves of CH4 and tracer gases. We present the results of a series of GPPTs conducted at two locations in the cover soil to assess the feasibility and reproducibility of this technique to quantify methanotrophic activity. Additional GPPTs were performed with a methanotrophic inhibitor in the injection gas mixture to confirm the appropriate choice of tracers to quantify CH4 oxidation. Estimated CH4 oxidation rate constants indicate that the cover soil contains a highly active methanotrophic community.

  16. Greenhouse gas emissions from two-stage landfilling of municipal solid waste

    Science.gov (United States)

    Zhang, Yuanyuan; Yue, Dongbei; Nie, Yongfeng

    2012-08-01

    Simulations were conducted to investigate greenhouse gas emissions from aerobic pretreatment and subsequent landfilling. The flows in carbon balance, such as gas, leachate, and solid phases, were considered in the simulations. The total amount of CO2 eq. decreased as organic removal efficiency (ORE) increased. At ORE values of 0, 0.30, 0.41, and 0.54, the total amounts of CO2 eq. were 2614, 2326, 2075, and 1572 kg CO2 eq. per one ton dry matter, respectively; gas accounted for the main contribution to the total amount. The reduction in CO2 eq. from leachate was the primary positive contribution, accounting for 356%, 174%, and 100% of total reduction at ORE values of 0.30, 0.41, and 0.54, respectively. The CO2 eq. from energy consumption was the negative contribution to total reduction, but this contribution is considerably lower than that from gas. Aerobic pretreatment shortened the lag time of biogas production by 74.1-97.0%, and facilitated the transfer of organic carbon in solid waste from uncontrolled biogas and highly polluting leachate to aerobically generated CO2.

  17. Treatment of a sanitary landfill leachate using combined solar photo-Fenton and biological immobilized biomass reactor at a pilot scale.

    Science.gov (United States)

    Vilar, Vítor J P; Rocha, Elisangela M R; Mota, Francisco S; Fonseca, Amélia; Saraiva, Isabel; Boaventura, Rui A R

    2011-04-01

    A solar photo-Fenton process combined with a biological nitrification and denitrification system is proposed for the decontamination of a landfill leachate in a pilot plant using photocatalytic (4.16 m(2) of Compound Parabolic Collectors - CPCs) and biological systems (immobilized biomass reactor). The optimum iron concentration for the photo-Fenton reaction of the leachate is 60 mg Fe(2+) L(-1). The organic carbon degradation follows a first-order reaction kinetics (k = 0.020 L kJ(UV)(-1), r(0) = 12.5 mg kJ(UV)(-1)) with a H(2)O(2) consumption rate of 3.0 mmol H(2)O(2) kJ(UV)(-1). Complete removal of ammonium, nitrates and nitrites of the photo-pre-treated leachate was achieved by biological denitrification and nitrification, after previous neutralization/sedimentation of iron sludge (40 mL of iron sludge per liter of photo-treated leachate after 3 h of sedimentation). The optimum C/N ratio obtained for the denitrification reaction was 2.8 mg CH(3)OH per mg N-NO(3)(-), consuming 7.9 g/8.2 mL of commercial methanol per liter of leachate. The maximum nitrification rate obtained was 68 mg N-NH(4)(+) per day, consuming 33 mmol (1.3 g) of NaOH per liter during nitrification and 27.5 mmol of H(2)SO(4) per liter during denitrification. The optimal phototreatment energy estimated to reach a biodegradable effluent, considering Zahn-Wellens, respirometry and biological oxidation tests, at pilot plant scale, is 29.2 kJ(UV) L(-1) (3.3 h of photo-Fenton at a constant solar UV power of 30 W m(-2)), consuming 90 mM of H(2)O(2) when used in excess, which means almost 57% mineralization of the leachate, 57% reduction of polyphenols concentration and 86% reduction of aromatic content. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Comparison between controlled landfill reactor and conditioned landfill bioreactor

    Institute of Scientific and Technical Information of China (English)

    LUO Feng; CHEN Wan-zhi; SONG Fu-zhong; LI Xiao-peng; ZHANG Guo-qing

    2004-01-01

    Bioreactor landfills allow a more active landfill management that recognizes the biological, chemical and physical processes involved in a landfill environment. The results of laboratory-scale simulators of landfill reactors treating municipal solid wastes were studied, the effect of solid waste size, leachate recirculation, nutrient balance, pH value, moisture content and temperature on the rate of municipal solid waste(MSW) biodegradation were determined, and it indicated the optimum pH value, moisture content and temperature can used to decompose MSW. The results of waste biodegradation were compared with that of the simulators of the leachate-recirculated landfill and conservative sanitary landfill. In the control experiment the antitheses of a decreasing trend of the organic load, measured as biological oxygen demand and chemical oxygen demand, was shown, and heavy metals concentration was observed. An obvious enhancement of effective disposal from simulator of conservative sanitary landfill(CSL), to that of leachate-recirculated landfill(LRL) and to that of conditioned bioreactor landfill(CBL) would be noted, through displaying the compared results of solid waste settlement, heavy metal concentration in leachate, methane production rate, biogas composition, BOD and COD as well as their ratio.

  19. Contact Group Landfill Gas: Report of the regional meetings on 9 November 1993 in Apeldoorn, Netherlands, and 11 November 1993 in Meteren, Netherlands. Contactgroep Stortgas: Verslag van de regionale bijeenkomsten op 9 november 1993 in Apeldoorn en 11 november 1993 in Meteren

    Energy Technology Data Exchange (ETDEWEB)

    1993-12-01

    By the Consultancy Centre Landfill Gas the Contact Group Landfill Gas was established for energy utilities, landfill gas managers and exploiters of landfill gas installations. The meetings held so far are reported. During the meetings lectures on the landfill gas potential in the Netherlands, on Waste Disposal Regulations, and on the formation of dioxins in the landfill gas combustion process were presented. Summaries of these lectures can be found in this report. Also reports are given of visits to landfill gas projects. The projects are briefly described. 4 figs., 1 tab.

  20. Numerical modelling of methane oxidation efficiency and coupled water-gas-heat reactive transfer in a sloping landfill cover.

    Science.gov (United States)

    Feng, S; Ng, C W W; Leung, A K; Liu, H W

    2017-10-01

    Microbial aerobic methane oxidation in unsaturated landfill cover involves coupled water, gas and heat reactive transfer. The coupled process is complex and its influence on methane oxidation efficiency is not clear, especially in steep covers where spatial variations of water, gas and heat are significant. In this study, two-dimensional finite element numerical simulations were carried out to evaluate the performance of unsaturated sloping cover. The numerical model was calibrated using a set of flume model test data, and was then subsequently used for parametric study. A new method that considers transient changes of methane concentration during the estimation of the methane oxidation efficiency was proposed and compared against existing methods. It was found that a steeper cover had a lower oxidation efficiency due to enhanced downslope water flow, during which desaturation of soil promoted gas transport and hence landfill gas emission. This effect was magnified as the cover angle and landfill gas generation rate at the bottom of the cover increased. Assuming the steady-state methane concentration in a cover would result in a non-conservative overestimation of oxidation efficiency, especially when a steep cover was subjected to rainfall infiltration. By considering the transient methane concentration, the newly-modified method can give a more accurate oxidation efficiency. Copyright © 2017. Published by Elsevier Ltd.

  1. Mitigation of methane emissions in a pilot-scale biocover system at the AV Miljø Landfill, Denmark: 1. System design and gas distribution

    DEFF Research Database (Denmark)

    Cassini, Filippo; Scheutz, Charlotte; Skov, Bent Henning

    2017-01-01

    Greenhouse gas mitigation at landfills by methane oxidation in engineered biocover systems is believed to be a cost effective technology, but so far a full quantitative evaluation of the efficiency of the technology in full scale has only been carried out in a few cases. A third generation semi......-passive biocover system was constructed at the AV Miljø Landfill, Denmark. The biocover system was fed by landfill gas pumped out of three leachate collection wells. An innovative gas distribution system was used to overcome the commonly observed surface emission hot spot areas resulting from an uGreenhouse gas...... mitigation at landfills by methane oxidation in engineered biocover systems is believed to be a cost effective technology, but so far a full quantitative evaluation of the efficiency of the technology in full scale has only been carried out in a few cases. A third generation semi-passive biocover system...

  2. Use of gas push-pull tests for the measurement of methane oxidation in different landfill cover soils.

    Science.gov (United States)

    Streese-Kleeberg, Jan; Rachor, Ingke; Gebert, Julia; Stegmann, Rainer

    2011-05-01

    In order to optimise methane oxidation in landfill cover soils, it is important to be able to accurately quantify the amount of methane oxidised. This research considers the gas push-pull test (GPPT) as a possible method to quantify oxidation rates in situ. During a GPPT, a gas mixture consisting of one or more reactive gases (e.g., CH(4), O(2)) and one or more conservative tracers (e.g., argon), is injected into the soil. Following this, the mixture of injected gas and soil air is extracted from the same location and periodically sampled. The kinetic parameters for the biological oxidation taking place in the soil can be derived from the differences in the breakthrough curves. The original method of Urmann et al. (2005) was optimised for application in landfill cover soils and modified to reduce the analytical effort required. Optimised parameters included the flow rate during the injection phase and the duration of the experiment. 50 GPPTs have been conducted at different landfills in Germany during different seasons. Generally, methane oxidation rates ranged between 0 and 150 g m(soil air)(-3)h(-1). At one location, rates up to 440 g m(soil air)(-3)h(-1) were measured under particularly favourable conditions. The method is simple in operation and does not require expensive equipment besides standard laboratory gas chromatographs.

  3. Assessment of soil-gas, seep, and soil contamination at the North Range Road Landfill, Fort Gordon, Georgia, 2008-2009

    Science.gov (United States)

    Landmeyer, James E.; Falls, W. Fred; Ratliff, W. Hagan; Wellborn, John B.

    2011-01-01

    Soil gas, seeps, and soil were assessed for contaminants at the North Range Road Landfill at Fort Gordon, Georgia, from October 2008 to September 2009. The assessment included delineating organic contaminants present in soil-gas samples beneath the area estimated to be the landfill and in water samples collected from three seeps at the base of the landfill. Inorganic contaminants were determined in three seep samples and in soil samples. This assessment was conducted to provide environmental contamination data to Fort Gordon pursuant to requirements for the Resource Conservation and Recovery Act Part B Hazardous Waste Permit process.

  4. Cryogenic Heat-Exchanger Design for Freeze-out Removal of Carbon Dioxide from Landfill Gas

    Science.gov (United States)

    Chang, Ho-Myung; Chung, Myung Jin; Park, Seong Bum

    A cryogenic heat exchanger to remove carbon dioxide from landfill gas (LFG) is proposed and designed for applications to LNG production in distributed-scale. Since the major components of LFG are methane and carbon dioxide, CO2 removal is a significant pre-process in the liquefaction systems. A new and simple approach is proposed to directly remove carbon dioxide as frost on the surface wall along the cooling passage in a liquefying heat exchanger and to install two identical heat exchangers in parallel for alternative switching. As a first step of feasibility study, combined heat and mass transfer analysis is performed on the freeze-out process of CO2 in a counterflow heat exchanger, where CH4-CO2 mixture is cooled below its frost temperature in thermal contact with cold refrigerant. Engineering correlations for the analogy of heat and mass transfer are incorporated into numerical heat exchanger analysis with detailed fluid properties. The developed analytical model is used to estimate the distribution of CO2 accumulation and the required heat exchanger size with latent thermal load for the cryogenic CO2 removal in various operating conditions.

  5. Modified landfill gas generation rate model of first-order kinetics and two-stage reaction

    Institute of Scientific and Technical Information of China (English)

    Jiajun CHEN; Hao WANG; Na ZHANG

    2009-01-01

    This investigation was carried out to establish a new domestic landfill gas (LFG) generation rate model that takes into account the impact ofleachate recirculation. The first-order kinetics and two-stage reaction (FKTSR) model of the LFG generation rate includes mechanisms of the nutrient balance for biochemical reaction in two main stages. In this study, the FKTSR model was modified by the introduction of the outflow function and the organic acid conversion coefficient in order to represent the in-situ condition of nutrient loss through leachate. Laboratory experiments were carried out to simulate the impact of leachate recirculation and verify the modified FKTSR model. The model calibration was then calculated by using the experimental data. The results suggested that the new model was in line with the experimental data. The main parameters of the modified FKTSR model, including the LFG production potential (L0), the reaction rate constant in the first stage (K1), and the reaction rate constant in the second stage (K2) of 64.746 L, 0.202 d-1, and 0.338 d-1,respectively, were comparable to the old ones of 42.069 L,0.231 d-1, and 0.231 d-1. The new model is better able to explain the mechanisms involved in LFG generation.

  6. Methane Emissions from Landfill: Isotopic Evidence for Low Percentage of Oxidation from Gas Wells, Active and Closed Cells

    Science.gov (United States)

    Lowry, David; Fisher, Rebecca; Zazzeri, Giulia; al-Shalaan, Aalia; France, James; Lanoisellé, Mathias; Nisbet, Euan

    2017-04-01

    Large landfill sites remain a significant source of methane emissions in developed and developing countries, with a global estimated flux of 29 Tg / yr in the EDGAR 2008 database. This is significantly lower than 20 years ago due to the introduction of gas extraction systems, but active cells still emit significant amounts of methane before the gas is ready for extraction. Historically the methane was either passively oxidized through topsoil layers or flared. Oxidation is still the primary method of methane removal in many countries, and covered, remediated cells across the world continue to emit small quantities of methane. The isotopic signatures of methane from landfill gas wells, and that emitted from active and closed cells have been characterized for more than 20 UK landfills since 2011, with more recent work in Kuwait and Hong Kong. Since 2013 the emission plumes have been identified by a mobile measurement system (Zazzeri et al., 2015). Emissions in all 3 countries have a characteristic δ13C signature of -58 ± 3 ‰ dominated by emissions from the active cells, despite the hot, dry conditions of Kuwait and the hot, humid conditions of Hong Kong. Gas well samples define a similar range. Surface emissions from closed cells and closed landfills are mostly in the range -56 to -52 ‰Ṫhese are much more depleted values than those observed in the 1990s (up to -35 ) when soil oxidation was the dominant mechanism of methane removal. Calculations using isotopic signatures of the amount of methane oxidised in these closed areas before emission to atmosphere range from 5 to 15%, but average less than 10%, and are too small to calculate from the high-emitting active cells. Compared to other major methane sources, landfills have the most consistent isotopic signature globally, and are distinct from the more 13C-enriched natural gas, combustion and biomass burning sources. Zazzeri, G. et al. (2015) Plume mapping and isotopic characterization of anthropogenic methane

  7. Methane elimination methods on landfills

    OpenAIRE

    Ponikvar, Martin

    2008-01-01

    Increase in substance and energy exploitation from waste which reduces the greenhouse gas emissions are one of the main goals of environmental protection. Slovenian legislation defines that in case captured landfill gas cannot be used for energy acquisition, incineration on the landfill itself or some other equivalent procedure must be used to prevent gas emissions into the air. The graduation thesis is based on existing municipal landfill Volče where suitable gas elimination is yet to be arr...

  8. Study of the environmental effects of sanitary landfill in Pinto, Madrid (Spain); Estudio de la influencia del vertedero de residuos solidos urbanos de Pinto (Comunidad de Madrid) y su entorno

    Energy Technology Data Exchange (ETDEWEB)

    Dorronsoro, J.L.; Carreras, N.; Sanchez, D.M.; Quejido, A.; Sanchez, M.; Herranz, I.; Fernandez, M.E.

    1996-10-01

    Here we report the results obtained in the studies of the environmental affection of a municipal solid waste (MSW) Landfill (Pinto, spain). For this purpose samples of waters, soils, sediments, vegetation and leachates were analyzed during three years (1990-1993). The results do not indicate environmental affection, due to the favourable situation (low permeability and runoff and low population density) of the landfill.

  9. Methodology for environmental diagnosis of sanitary landfills: Data during 2003; Metodologia de diagnostico ambiental de vertederos como herramienta en la planificacion ambiental. Datos obtenidos en el Observatorio sobre Vertederos de residuos de 2003

    Energy Technology Data Exchange (ETDEWEB)

    Uriarte, J.

    2003-07-01

    Lack of data regarding environmental matters in relation to the great majority of MSW landfills throughout Spanish territory makes it difficult to consider them suitable for exploitation or territorial expansion required for different activities demanded by society. The environmental risk of a landfill must be minimised with the help of environmental planning tools. One of these tools is based on the environmental diagnosis and characterisation of the areas affected by the solid waste deposit.. Diagnosis by means of quantifiable environmental indexes helped us in our work to determine the priorities for the environmental control of certain Spanish landfills. This diagnosis was used for creating the Observatory on Solid Waste Landfills, organized by ATEGRUS (Spanish Technical Association for Waste Management) in 2003 and presented at ATEGRUS 30th Annual conference on Controlled Landfills. (Author)

  10. Well-to-Wheels analysis of landfill gas-based pathways and their addition to the GREET model.

    Energy Technology Data Exchange (ETDEWEB)

    Mintz, M.; Han, J.; Wang, M.; Saricks, C.; Energy Systems

    2010-06-30

    Today, approximately 300 million standard cubic ft/day (mmscfd) of natural gas and 1600 MW of electricity are produced from the decomposition of organic waste at 519 U.S. landfills (EPA 2010a). Since landfill gas (LFG) is a renewable resource, this energy is considered renewable. When used as a vehicle fuel, compressed natural gas (CNG) produced from LFG consumes up to 185,000 Btu of fossil fuel and generates from 1.5 to 18.4 kg of carbon dioxide-equivalent (CO{sub 2}e) emissions per million Btu of fuel on a 'well-to-wheel' (WTW) basis. This compares with approximately 1.1 million Btu and 78.2 kg of CO{sub 2}e per million Btu for CNG from fossil natural gas and 1.2 million Btu and 97.5 kg of CO{sub 2}e per million Btu for petroleum gasoline. Because of the additional energy required for liquefaction, LFG-based liquefied natural gas (LNG) requires more fossil fuel (222,000-227,000 Btu/million Btu WTW) and generates more GHG emissions (approximately 22 kg CO{sub 2}e /MM Btu WTW) if grid electricity is used for the liquefaction process. However, if some of the LFG is used to generate electricity for gas cleanup and liquefaction (or compression, in the case of CNG), vehicle fuel produced from LFG can have no fossil fuel input and only minimal GHG emissions (1.5-7.7 kg CO{sub 2}e /MM Btu) on a WTW basis. Thus, LFG-based natural gas can be one of the lowest GHG-emitting fuels for light- or heavy-duty vehicles. This report discusses the size and scope of biomethane resources from landfills and the pathways by which those resources can be turned into and utilized as vehicle fuel. It includes characterizations of the LFG stream and the processes used to convert low-Btu LFG into high-Btu renewable natural gas (RNG); documents the conversion efficiencies and losses of those processes, the choice of processes modeled in GREET, and other assumptions used to construct GREET pathways; and presents GREET results by pathway stage. GREET estimates of well-to-pump (WTP

  11. Landfill Top Covers

    DEFF Research Database (Denmark)

    Scheutz, Charlotte; Kjeldsen, Peter

    2011-01-01

    the landfill section has been filled or several years later depending on the settlement patterns. Significant differential settlements may disturb the functioning of the top cover. The specific design of the cover system depends on the type of waste landfilled (municipal, hazardous, or inert waste...... such as lowpermeability clay soils and geomembranes are required. The avoidance of water input to organic waste may impede the microbial stabilization processes including gas generation. Therefore watertight top covers may be in conflict with the purposes of reactor landfills (see Chapter 10.6). At some sites covers...... sometimes are made to include components for recirculation of landfill leachate (see Section 10.9.2 for more details). The top cover is an important factor in the water management of landfills. Details about water infiltration through top covers and its influence on the hydrology of the landfill is covered...

  12. Emission model for landfills with mechanically-biologically pretreated waste, with the emphasis on modelling the gas balance; Emissionsprognosemodell fuer Deponien mit mechanisch-biologisch vorbehandelten Abfaellen - Schwerpunkt: Modellierung des Gashaushaltes

    Energy Technology Data Exchange (ETDEWEB)

    Danhamer, H.

    2001-07-01

    The objective of this work was to determine influence factors on processes going on in landfills with mechanically-biologically pretreated waste (MBP-landfills) in order to predict emissions. For this purpose a computer based model has been developed. The model allows to simulate the gas, water and heat balance as well as settlement processes and was called DESIM2005 (version MB). It is based on theoretical modeling approaches as well as data from lab and reactor experiments. The main focus of model application was to determine factors influencing the gas phase and the emissions of landfill gas and methane during operation and aftercare of MBP-landfills. By performing simulations the effects of changing parameters for the processes gas transport and biological degradation as well as the effects of different qualities in waste pretreatment and of varying landfill operation techniques were investigated. Possibilities for increasing the environmental sustainability of landfills containing mechanically-biologically pretreated waste were shown. (orig.)

  13. Experiences of closing in sanitary landfills with geosynthetics clay liners and geocomposites drainage products in Spain and Portugal; Experiencias de sellado de vertederos con geocompuestos impermeabilizantes y drenantes en Espana y Portugal

    Energy Technology Data Exchange (ETDEWEB)

    Abad, P. L.

    2002-07-01

    Since the EC presents the Directive 1999/31 in reference with waste disposal, most of od landfills are closing and new landfills according with this directive are constructing. For this landfill closures, the best experienced solution, not only technically, even financially, is the use of geo synthetics clay liners and geo composites drainage products. Installation facilities are cheaper and the installation times are reduced, even slope stability are improved with this solution. The experience obtained during last years in Spain and Portugal are the purpose of this article. (Author)

  14. Assessment of soil-gas, soil, and water contamination at the former hospital landfill, Fort Gordon, Georgia, 2009-2010

    Science.gov (United States)

    Falls, Fred W.; Caldwell, Andral W.; Guimaraes, Wladmir B.; Ratliff, W. Hagan; Wellborn, John B.; Landmeyer, James E.

    2011-01-01

    Soil gas, soil, and water were assessed for organic and inorganic constituents at the former hospital landfill located in a 75-acre study area near the Dwight D. Eisenhower Army Medical Center, Fort Gordon, Georgia, from April to September 2010. Passive soil-gas samplers were analyzed to evaluate organic constituents in the hyporheic zone of a creek adjacent to the landfill and soil gas within the estimated boundaries of the former landfill. Soil and water samples were analyzed to evaluate inorganic constituents in soil samples, and organic and inorganic constituents in the surface water of a creek adjacent to the landfill, respectively. This assessment was conducted to provide environmental constituent data to Fort Gordon pursuant to requirements of the Resource Conservation and Recovery Act Part B Hazardous Waste Permit process. Results from the hyporheic-zone assessment in the unnamed tributary adjacent to the study area indicated that total petroleum hydrocarbons and octane were the most frequently detected organic compounds in groundwater beneath the creek bed. The highest concentrations for these compounds were detected in the upstream samplers of the hyporheic-zone study area. The effort to delineate landfill activity in the study area focused on the western 14 acres of the 75-acre study area where the hyporheic-zone study identified the highest concentrations of organic compounds. This also is the part of the study area where a debris field also was identified in the southern part of the 14 acres. The southern part of this 14-acre study area, including the debris field, is steeper and not as heavily wooded, compared to the central and northern parts. Fifty-two soil-gas samplers were used for the July 2010 soil-gas survey in the 14-acre study area and mostly detected total petroleum hydrocarbons, and gasoline and diesel compounds. The highest soil-gas masses for total petroleum hydrocarbons, diesel compounds, and the only valid detection of perchloroethene

  15. DETERMINATON OF ORGANIC MATTER PRESENT IN URBAN WASTE RESIDUE FROM A SANITARY LANDFILL USING THERMOGRAVIMETRIC CURVES: THE CASE OF SÃO CARLOS = DETERMINAÇÃO POR TERMOGRAVIMETRIA (TG DA MATÉRIA ORGÂNICA PRESENTE EM AMOSTRA DE RESÍDUO SÓLIDO URBANO DE ATERRO SANITÁRIO: O CASO DE SÃO CARLOS

    Directory of Open Access Journals (Sweden)

    Valdir Schalch

    2008-01-01

    Full Text Available The excessive amount of household waste produced by the population is generally deposited in sanitary landfills. Most of this waste is composed of organic matter, followed by paper and cardboard, plastic, metal and others. After the waste is covered with soil in the landfill, the organic matter begins to decompose, producing several organic compounds, among them the organic acids and acetates. Thermal analysis and Atomic Absorption Spectrometry, which are Analytic Chemistry resources, as well as the dust x-rays method of analysis, were used in this study to identify the amount of organic matter, the kind of residue, and the metals present in a sample from a sanitary landfill. The results of the Thermogravimetric (TG analysis curves generated information about dehydration, thermal stability, thermal decomposition, and the amount of organic matter present in urban solid waste that had been deposited in the landfill for four years. = A quantidade excessiva de resíduo sólido domiciliar gerado pela população é em geral disposta em aterros sanitários. A maior parte desse resíduo é constituída de matéria orgânica seguido de papel e papelão, plástico, metal e outros. Após a cobertura do lixo com terra nos aterros, a matéria orgânica começa a se decompor gerando diversos compostos entre eles os ácidos orgânicos e acetatos. A Análise Térmica e a Espectrometria de Absorção Atômica, que são recursos da Química Analítica, bem como a análise de raios X método de pó foram usadas neste trabalho, visando identificar a quantidade de matéria orgânica, o tipo de resíduo final e a presença de metais em amostra retirada de aterro sanitário. O resultado da análise Termogravimétrica (TG forneceu informações sobre a desidratação, estabilidade térmica, decomposição térmica e a quantidade de matéria orgânica presente no resíduo sólido urbano (RSU, após quatro anos de disposição no aterro sanitário de São Carlos, SP.

  16. Mathematical modelization of physical process of biogas migration in sanitary landfills of urban solid wastes; Modelizacion matematica del proceso fisico de migracion del biogas en vertederos controlados de R.S.U

    Energy Technology Data Exchange (ETDEWEB)

    Maranon Maison, E.; Sastre Andres, H.; Martin Gonzalez, S.

    1997-09-01

    An analysis of the laws that govern the biogas movements inside the landfill is carried out. The mathematical equations needed to resolve the problem are studied. Then, a model is defined and used to calculate the biogas movements in several situations. The results obtained are contrasted with data from the bibliography and with tests carried out at the La Zoreda, Landfill (Asturias Spain). (Author) 11 refs.

  17. Pilot scale evaluation of the BABIU process--upgrading of landfill gas or biogas with the use of MSWI bottom ash.

    Science.gov (United States)

    Mostbauer, P; Lombardi, L; Olivieri, T; Lenz, S

    2014-01-01

    Biogas or landfill gas can be converted to a high-grade gas rich in methane with the use of municipal solid waste incineration bottom ash as a reactant for fixation of CO2 and H2S. In order to verify results previously obtained at a laboratory scale with 65-90 kg of bottom ash (BA), several test runs were performed at a pilot scale, using 500-1000 kg of bottom ash and up to 9.2 Nm(3)/h real landfill gas from a landfill in the Tuscany region (Italy). The input flow rate was altered. The best process performance was observed at a input flow rate of 3.7 Nm(3)/(htBA). At this flow rate, the removal efficiencies for H2S were approximately 99.5-99%. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. USING LANDFILL GAS IN FUEL CELLS - A STEP CLOSER TO COMMERICAL REALITY

    Science.gov (United States)

    The article discusses Phase II and Phase III results of a U.S. EPA program underway at International Fuel Cells Corporation. The program involves controlling methane emissions from landfills using a fuel cell. The fuel cell would reduce air emissions affecting global warming, aci...

  19. Microbial Methane Oxidation Processes and Technologies for Mitigation of Landfill Gas Emissions

    Science.gov (United States)

    The aim of this paper is to review the present knowledge regarding the microbial methane oxidation in natural or engineered landfill environments with focus on process understanding, engineering experiences and modeling. This review includes seven sections. First, the methane oxidation is put in con...

  20. Lateral gas transport in soil adjacent to an old landfill: factors governing emissions and methane oxidation

    DEFF Research Database (Denmark)

    Christophersen, Mette; Kjeldsen, Peter; Holst, Helle;

    2001-01-01

    influence on the fluxes, as did the distance from the landfill border, temperature, barometric pressure and the pressure gradient. Statistical analyses proved that soil moisture described the largest part of the variation. No methane at all emitted during the summer. Calculations and isotope analyses showed...

  1. 2D Time-lapse Resistivity Monitoring of an Organic Produced Gas Plume in a Landfill using ERT.

    Science.gov (United States)

    Amaral, N. D.; Mendonça, C. A.; Doherty, R.

    2014-12-01

    This project has the objective to study a landfill located on the margins of Tietê River, in São Paulo, Brazil, using the electroresistivity tomography method (ERT). Due to huge organic matter concentrations in the São Paulo Basin quaternary sediments, there is subsurface depth related biogas accumulation (CH4 and CO2), induced by anaerobic degradation of the organic matter. 2D resistivity sections were obtained from a test area since March 2012, a total of 7 databases, being the last one dated from October 2013. The studied line has the length of 56m, the electrode interval is of 2m. In addition, there are two boreholes along the line (one with 3 electrodes and the other one with 2) in order to improve data quality and precision. The boreholes also have a multi-level sampling system that indicates the fluid (gas or water) presence in relation to depth. With our results it was possible to map the gas plume position and its area of extension in the sections as it is a positive resistivity anomaly, with the gas level having approximately 5m depth. With the time-lapse analysis (Matlab script) between the obtained 2D resistivity sections from the site, it was possible to map how the biogas volume and position change in the landfill in relation to time. Our preliminary results show a preferential gas pathway through the subsurface studied area. A consistent relation between the gas depth and obtained microbiological data from archea and bacteria population was also observed.

  2. Quantification of landfill methane using modified Intergovernmental Panel on Climate Change's waste model and error function analysis.

    Science.gov (United States)

    Govindan, Siva Shangari; Agamuthu, P

    2014-10-01

    Waste management can be regarded as a cross-cutting environmental 'mega-issue'. Sound waste management practices support the provision of basic needs for general health, such as clean air, clean water and safe supply of food. In addition, climate change mitigation efforts can be achieved through reduction of greenhouse gas emissions from waste management operations, such as landfills. Landfills generate landfill gas, especially methane, as a result of anaerobic degradation of the degradable components of municipal solid waste. Evaluating the mode of generation and collection of landfill gas has posted a challenge over time. Scientifically, landfill gas generation rates are presently estimated using numerical models. In this study the Intergovernmental Panel on Climate Change's Waste Model is used to estimate the methane generated from a Malaysian sanitary landfill. Key parameters of the model, which are the decay rate and degradable organic carbon, are analysed in two different approaches; the bulk waste approach and waste composition approach. The model is later validated using error function analysis and optimum decay rate, and degradable organic carbon for both approaches were also obtained. The best fitting values for the bulk waste approach are a decay rate of 0.08 y(-1) and degradable organic carbon value of 0.12; and for the waste composition approach the decay rate was found to be 0.09 y(-1) and degradable organic carbon value of 0.08. From this validation exercise, the estimated error was reduced by 81% and 69% for the bulk waste and waste composition approach, respectively. In conclusion, this type of modelling could constitute a sensible starting point for landfills to introduce careful planning for efficient gas recovery in individual landfills.

  3. Using landfill gas as the primary fuel for a 200 WTPD thermal dryer[Held jointly with the 4. Canadian organic residuals and biosolids managment conference

    Energy Technology Data Exchange (ETDEWEB)

    Shulmister, D. [Manattee County, Manatee, FL (United States). Wastewater Division; Monroe, A. [McKim and Creed, Cary, NC (United States)

    2007-07-01

    Although there is no evidence of health problems, there is a growing opposition to class B land application of biosolids in many localities in the United States, resulting in less sites available to dispose of class B biosolids. Manatee County, located on the West Coast of Florida, decided to implement thermal drying of its biosolids. This produced a class A pellet that could be used without restriction as a fertilizer or soil amendment. The dryer will be located at the county's southeast water reclamation facility, adjacent to the county's Lena Road landfill. The methane gas from the landfill will be used as the primary fuel for the dryer. This paper presented how Manatee County, Florida decided to meet its long term biosolids handling and disposal needs. The paper provided background information on Manatee County, Florida. It discussed the reasons for the dryer technology selection, location of the dryer, sizing criteria as well as listing the components of the dryer. The paper also discussed dryer procurement. Other topics that were presented included fuel requirements and an analysis of landfill gas. The County expects to save approximately two million dollars per year by selecting landfill gas from its Lena Road landfill as the primary fuel for the dryer. 5 tabs.

  4. Impact of intermittent aerations on leachate quality and greenhouse gas reduction in the aerobic-anaerobic landfill method.

    Science.gov (United States)

    Nag, Mitali; Shimaoka, Takayuki; Komiya, Teppei

    2016-09-01

    The aerobic-anaerobic landfill method (AALM) is a novel approach in solid waste management that could shorten the landfill post-closure period and minimize the environmental loads. In this study, the aerobic-anaerobic landfill method was evaluated by using intermittent aeration. In addition, the nitrification-denitrification process was assessed as a means of reducing the emission of greenhouse gases (GHGs) and improving the leachate quality during the degradation of the organic solid waste. The leachate quality and the gas composition in each of the reactors were measured during the experimental period (408days). The aeration process entailed the injection of air into plexiglass cylinders (200cm height×10 cm diameter), filled with fresh organic solid waste collected from a composting plant. Different aeration routines were applied, namely, continuous aeration (aerobic reactor A), aeration for three days/week (aerobic-anaerobic reactor B), aeration for 6h/day (aerobic-anaerobic reactor C), and no aeration (non-aerated reactor D). It was found that aerobic reactor A produced the best results in terms of reduction of GHGs and improvement of the leachate quality. The aerobic-anaerobic reactor C was found to be more effective than reactor B in respect of both the emission of GHGs and the leachate quality; moreover, compared with aerobic reactor A, energy costs were reduced by operating this reactor. The transition period phenomenon was investigated during an intensive seven-day experiment conducted on the discharged leachate obtained from aerobic-anaerobic reactors B and C. The experiment concerned the differences in the composition of the gas during the aeration and the non-aeration periods. It was found that the transition period between the aeration and non-aeration cycles, which followed the simultaneous nitrification-denitrification had a considerable effect on the leachate quality of both the reactors. The results indicated that AALM has the potential to reduce

  5. Effect of nano-ZnO on biogas generation from simulated landfills.

    Science.gov (United States)

    Temizel, İlknur; Emadian, S Mehdi; Di Addario, Martina; Onay, Turgut T; Demirel, Burak; Copty, Nadim K; Karanfil, Tanju

    2017-05-01

    Extensive use of nanomaterials in commercial consumer products and industrial applications eventually leads to their release to the waste streams and the environment. Nano-ZnO is one of the most widely-used nanomaterials (NMs) due to its unique properties. It is also known to impact biological processes adversely. In this study, the effect of nano-ZnO on biogas generation from sanitary landfills was investigated. Two conventional and two bioreactor landfills were operated using real MSW samples at mesophilic temperature (35°C) for a period of about 1year. 100mg nano-ZnO/kg of dry waste was added to the simulated landfill reactors. Daily gas production, gas composition and leachate Zn concentrations were regularly monitored. A model describing the fate of the nano-ZnO was also developed. The results obtained indicated that as much as 99% of the nano-ZnO was retained within the waste matrix for both reactor operation modes. Waste stabilization was faster in simulated landfill bioreactors with and without the addition of nano-ZnO. Moreover, the presence of the nano-ZnO within the waste led to a decrease in biogas production of about 15%, suggesting that the nano-ZnO might have some inhibitory effects on waste stabilization. This reduction can have potentially significant implications on waste stabilization and the use of biogas from landfills as a renewable energy source. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Environmental assessment of gas management options at the Old Ämmässuo landfill (Finland) by means of LCA-modeling (EASEWASTE)

    DEFF Research Database (Denmark)

    Manfredi, Simone; Niskanen, A.; Christensen, Thomas Højlund

    2009-01-01

    option - as it has the highest LEG utilization/energy recovery rates - whereas the worst performance is estimated for the LEG flaring option, as no LEG is here Utilized for energy generation. Therefore, to reduce the environmental burdens caused by the Current gas management strategy, more LEG should......The current landfill gas (LFG) management (based on flaring and utilization for heat generation of the collected gas) and three potential future gas management options (LFG flaring, heat generation and combined heat and power generation) for the Old Ammassuo landfill (Espoo, Finland) were evaluated...... by life-cycle assessment modeling. The evaluation accounts for all resource utilization and emissions to the environment related to the gas generation and management for a life-cycle time horizon of 100 yr. The assessment criteria comprise standard impact categories (global warming, photo-chemical ozone...

  7. Seasonal greenhouse gas emissions (methane, carbon dioxide, nitrous oxide) from engineered landfills: daily, intermediate, and final California cover soils.

    Science.gov (United States)

    Bogner, Jean E; Spokas, Kurt A; Chanton, Jeffrey P

    2011-01-01

    Compared with natural ecosystems and managed agricultural systems, engineered landfills represent a highly managed soil system for which there has been no systematic quantification of emissions from coexisting daily, intermediate, and final cover materials. We quantified the seasonal variability of CH, CO, and NO emissions from fresh refuse (no cover) and daily, intermediate, and final cover materials at northern and southern California landfill sites with engineered gas extraction systems. Fresh refuse fluxes (g m d [± SD]) averaged CH 0.053 (± 0.03), CO 135 (± 117), and NO 0.063 (± 0.059). Average CH emissions across all cover types and wet/dry seasons ranged over more than four orders of magnitude (types, including both final covers, averaging 200 cm) cover materials, below which methanogenesis was well established, the variability in gaseous fluxes was attributable to cover thickness, texture, density, and seasonally variable soil moisture and temperature at suboptimal conditions for CH oxidation. Thin daily covers (30 cm local soil) and fresh refuse generally had the highest CO and NO fluxes, indicating rapid onset of aerobic and semi-aerobic processes in recently buried refuse, with rates similar to soil ecosystems and windrow composting of organic waste. This study has emphasized the need for more systematic field quantification of seasonal emissions from multiple types of engineered covers.

  8. CO2Explorer: Conducting Greenhouse-Gas Measurements of Landfills using a Small Fixed-wing UAV

    Science.gov (United States)

    Hollingsworth, Peter; Allen, Grant; Kabbabe, Khristopher; Pitt, Joseph

    2017-04-01

    Quantifying inventories of Greenhouse gas emissions, primarily Methane and Carbon Dioxide, from distributed sources such as a landfill has historically been undertaken using one of several ground based measurement techniques. These methods are either time and/or resource intensive. As a result regulatory agencies have started looking at the potential of using small-unmanned aircraft to supplement or supplant the current methods. The challenge of using a UAV to perform these tasks is the trade-off between accuracy, operational flexibility and operational productivity. This is driven by the state-of-the-art in measurement instruments, the operating environment at landfills and the regulatory/safety environment surrounding UAV operations. This work describes the development of the operational concept, and associated UAV measurement platform for the CO2Explorer. It looks at the scientific, engineering and possible policy trades and compares the use of small rotary and fixed-wing UAVs from both an operational and measurement perspective. This work also makes recommendations on system development and operation for users lacking in both systems engineering and operational experience.

  9. Landfill Gas Characterization and Leachate Removal at the Alachua County Southwest Landfill, Alachua County, Florida Through Utilization of a Mechanical Gas Collection System

    Science.gov (United States)

    1994-01-01

    0 0 2014 8 0 0 0 0 0 5 5 0 0 02016 3 0 0 0 0 0 2017 2 0 0 0 0 0 2018 1 0 0 0 0 0 * -- - .. 2 Ole>. 018 1 00 0 0 - - -- m- -- - - - m- -141 .-4 t...to the blowers from all three areas as configured now (without HIL) and as predicted by the Scholl Canyon model will be 400 cfa of methane or 404,800...1 2015 0 2016 0 2017 0 2018 0 CHAPTMR 6 CONCWSLIONS In 1991, a decision was made to install a gas collection system at the ACSVLf to prevent gas

  10. Mitigation of methane emissions in a pilot-scale biocover system at the av miljø landfill, denmark: system design and gas distribution

    DEFF Research Database (Denmark)

    Kjeldsen, Peter; Skov, B.; Cassini, Filippo

    2013-01-01

    Greenhouse gas mitigation at landfills by methane oxidation in engineered biocover systems is believed to be a cost effective technology but so far a full quantitative evaluation of the efficiency of the technology in full scale has only been carried out in a few cases. A third generation semi-pa...

  11. Landfill Gas Conversion to LNG and LCO{sub 2}. Phase II Final Report for January 25, 1999 - April 30, 2000

    Energy Technology Data Exchange (ETDEWEB)

    Brown, W. R.; Cook, W. J.; Siwajek, L. A.

    2000-10-20

    This report summarizes work on the development of a process to produce LNG (liquefied methane) for heavy vehicle use from landfill gas (LFG) using Acrion's CO{sub 2} wash process for contaminant removal and CO{sub 2} recovery.

  12. The use of sewage sludges from waste water treatment plants for re-vegetation of sanitary landfills; Aplicacion de lodos de depuradora procedentes de aguas residuales urbanas en la revegetacion de vertederos de RSU

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez, F. I.; Camarero, J. G.; Morenilla Martinez, J. J.; Bernacer Bonora, I.; Herrero Chamorro, O.; Amores Blasco, S.; Fernandez, C.; Codoner, M. A.

    1999-08-01

    The use of forest soil for re vegetating sealed urban landfills is a practice leading to economic and environmental problems. Recently, it has been demonstrated a suitable technique for minimizing soil needs in re-vegetation of closed urban landfill in which, the layer of fertile soil usually added for plants to settle and develop in such degraded substrate is replaced by a layer of the degraded soil amended with anaerobic sewage sludge. In this work we expose the phases and the design for the implementation of a pilot project for the re-vegetation with this procedure of a closed landfill of municipal solid wastes managed by GIRSA, in a collaborative research between CIDE (CSIC-UVEG-GV), Entidad Publica de Saneamiento de Aguas Residuales de la Comunidad Valenciana and DAM, S.L. The closed landfill has a surface of 2,6 ha and its re-vegetation will be carried out by introducing native plants (annuals, bush and trees) after incorporation into the degrades soil of the anaerobic sewage sludge at the single dose of 60 tn/ha. Twelve plots of 20 m by 8 m will be employed to a quarterly research of the effects on the soil and on the introduced vegetation of three doses (0,60, 120 tn/ha) of the anaerobic sewage sludge. (Author) 17 refs.

  13. Application of urban waste water sludge in revegetation of sanitary landfills; Aplicacion de lodos de depuradora procedentes de aguas residuales urbanas en la revegetacion de vertederos de RSU (II)

    Energy Technology Data Exchange (ETDEWEB)

    Ingelmo Sanchez, F.; Garcia Camarero, J.; Morenilla Martinez, J. J.; Bernacer Bonora, I.; Herrero Chamorro, O.; Amores Blasco, S.

    2000-07-01

    The use of forest soil for re vegetating sealed urban landfills is a practice leading to economic and environmental problems. Recently, it has been demonstrated a suitable technique for minimizing soil needs in the re-vegetation of a closed urban landfill which, the layer of fertile soil usually added for plants to settle and develop in such degraded substrate is replaced by a layer of the degraded soil amended with urban anaerobic sewage sludges. In this work we expose the firsts results of a pilot project for the re-vegetation with this procedure of a closed landfill of municipal solid wastes managed by the company Gestion Integral de Residuos in a collaborative research among the Centro de Investigaciones sobre Desertificacion, the Entidad Publica de Saneamiento de Aguas Residuales de la Comunidad Valenciana and the company Depuracion de Aguas del Mediterraneo. The closed landfill has a surface of 2,6 ha and its re-vegetation will be carried out by introducing native plants (annuals, busch and trees) after incorporation into the degraded soil of the anaerobic sewage sludge at the single dose of 60 tn/ha. (Author) 3 refs.

  14. Yolo County controlled landfill project

    Energy Technology Data Exchange (ETDEWEB)

    Augenstein, D. [IEM, Palo Alto, CA (United States); Yazdani, R.; Dahl, K.; Mansoub, A.; Moore, R. [Yolo County Department of Public Works, Davis, CA (United States); Pacey, J. [Emcon, San Mateo, CA (United States)

    1999-07-01

    A new landfill management approach controlled landfilling is being demonstrated by the Yolo County, California Department of Public Works at the Yolo County Central Landfill (YCCL) near Davis. Overall objectives are to obtain earlier and greater methane energy recovery from landfilled waste and to reduce landfill greenhouse gas emissions to near-negligible levels. Methane generation and waste stabilization were accelerated by improving biological conditions within a test cell through carefully controlled additions of water and leachate. A control cell was operated in parallel. Landfill gas capture was maximized, with emissions reduced to minimal levels, by a combination of surface membrane containment, a permeable layer conducting gas to collection points, and operation at slight vacuum. Cells are highly instrumented to determine performance. To date, normalized methane recovery is the highest seen from such a large waste mass, anywhere - about ten times that from conventional landfall practice. The rationale and details of this project, and first three years' results, are summarized. (author)

  15. Landfilling: Hydrology

    DEFF Research Database (Denmark)

    Kjeldsen, Peter; Beaven, R.

    2011-01-01

    Landfill hydrology deals with the presence and movement of water through a landfill. The main objective in landfill hydrology is usually to predict leachate generation, but the presence and movement of water in a landfill also affect the degradation of the waste, the leaching of pollutants...... and the geotechnical stability of the fill. Understanding landfill hydrology is thus important for many aspects of landfill, in particular siting, design and operation. The objective of this chapter is to give a basic understanding of the hydrology of landfills, and to present ways to estimate leachate quantities......-circuiting. In the final section different existing hydrological models for landfills are presented with a special focus on the HELP model. This model is the most widely used tool for the prediction of leachate quantities in landfills, and for the sizing of leachate control and management infrastructure....

  16. Landfilling: Hydrology

    DEFF Research Database (Denmark)

    Kjeldsen, Peter; Beaven, R.

    2011-01-01

    Landfill hydrology deals with the presence and movement of water through a landfill. The main objective in landfill hydrology is usually to predict leachate generation, but the presence and movement of water in a landfill also affect the degradation of the waste, the leaching of pollutants...... and the geotechnical stability of the fill. Understanding landfill hydrology is thus important for many aspects of landfill, in particular siting, design and operation. The objective of this chapter is to give a basic understanding of the hydrology of landfills, and to present ways to estimate leachate quantities......-circuiting. In the final section different existing hydrological models for landfills are presented with a special focus on the HELP model. This model is the most widely used tool for the prediction of leachate quantities in landfills, and for the sizing of leachate control and management infrastructure....

  17. Microbiological indication of municipal solid waste landfill non-stabilization

    Institute of Scientific and Technical Information of China (English)

    ZHOU Qi-xing; SYLVESTER Runyuzi; YU Ji-yu; ZHANG Qian-ru

    2004-01-01

    Accidental collapse resulted from unstable factors is an important technological problem to be solved in sanitary landfill. Microbiological degradation of organic matters in landfilled solid waste are an important unstable factor. A landfill reactor was thus manufactured and installed to examine quantitative and population dynamics of microorganisms during degradation of landfilled solid waste. It was showed that unstable landfill can be reflected and indicated by microbiological features such as rapidly decreased growth amount of microorganisms, no detection of fungi and actinomyces, and changing the dominant population into methanogenic bacteria and Acinotobacter.

  18. Mobile robots for localizing gas emission sources on landfill sites: is bio-inspiration the way to go?

    Science.gov (United States)

    Hernandez Bennetts, Victor; Lilienthal, Achim J; Neumann, Patrick P; Trincavelli, Marco

    2011-01-01

    Roboticists often take inspiration from animals for designing sensors, actuators, or algorithms that control the behavior of robots. Bio-inspiration is motivated with the uncanny ability of animals to solve complex tasks like recognizing and manipulating objects, walking on uneven terrains, or navigating to the source of an odor plume. In particular the task of tracking an odor plume up to its source has nearly exclusively been addressed using biologically inspired algorithms and robots have been developed, for example, to mimic the behavior of moths, dung beetles, or lobsters. In this paper we argue that biomimetic approaches to gas source localization are of limited use, primarily because animals differ fundamentally in their sensing and actuation capabilities from state-of-the-art gas-sensitive mobile robots. To support our claim, we compare actuation and chemical sensing available to mobile robots to the corresponding capabilities of moths. We further characterize airflow and chemosensor measurements obtained with three different robot platforms (two wheeled robots and one flying micro-drone) in four prototypical environments and show that the assumption of a constant and unidirectional airflow, which is the basis of many gas source localization approaches, is usually far from being valid. This analysis should help to identify how underlying principles, which govern the gas source tracking behavior of animals, can be usefully "translated" into gas source localization approaches that fully take into account the capabilities of mobile robots. We also describe the requirements for a reference application, monitoring of gas emissions at landfill sites with mobile robots, and discuss an engineered gas source localization approach based on statistics as an alternative to biologically inspired algorithms.

  19. Mobile Robots for Localizing Gas Emission Sources on Landfill Sites: Is Bio-Inspiration the Way to Go?

    Directory of Open Access Journals (Sweden)

    Victor eHernandez Bennetts

    2012-01-01

    Full Text Available Roboticists often take inspiration from animals for designing sensors, actuators or algorithms that control the behaviour of robots. Bio-inspiration is motivated with the uncanny ability of animals to solve complex tasks like recognizing and manipulating objects, walking on uneven terrains, or navigating to the source of an odour plume. In particular the task of tracking an odour plume up to its source has nearly exclusively been addressed using biologically inspired algorithms and robots have been developed, for example, to mimic the behaviour of moths, dungbeetles, or lobsters. In this paper we argue that biomimetic approaches to gas source localization are of limited use, primarily because animals differ fundamentally in their sensing and actuation capabilities from state-of-the-art gas-sensitive mobile robots. To support our claim, we compare actuation and chemical sensing available to mobile robots to the corresponding capabilities of moths. We further characterize airflow and chemosensor measurements obtained with three different robot platforms (two wheeled robots and one flying micro drone in four prototypical environments and show that the assumption of a constant and unidirectional airflow, which is at the basis of many gas source localization approaches, is usually far from being valid. This analysis should help to identify how underlying principles, which govern the gas source tracking behaviour of animals, can be usefully translated into gas source localization approaches that fully take into account the capabilities of mobile robots. We also describe the requirements for a reference application, monitoring of gas emissions at landfill sites with mobile robots, and discuss an engineered gas source localization approach based on statistics as an alternative to biologically-inspired algorithms.

  20. Ammonia release and conversion in bioreactor landfill simulators

    Energy Technology Data Exchange (ETDEWEB)

    Lubberding, H.; Valencia, R.; Salazar, R.; Lens, P.

    2009-07-01

    Bioreactor landfills are considered to be an improvements to normal sanitary landfills, because the Municipal Solid Waste is stabilised faster and the biogas is produced in a shorter period of time (Valencia et al 2008a, b). In spite of these advantages, it is still difficult to reach within 30 years a safe status of the landfill due to the elevated NH{sub 4}{sup +} levels (up to 3 g/L) in the leachate. (Author)

  1. Evaluation of the Oedometer Tests of Municipal Landfill Waste Material

    Directory of Open Access Journals (Sweden)

    Imre Emőke

    2014-07-01

    Full Text Available The aim of the ongoing research is (i to develop a new biodegradation landfill technique so that the landfill gas production could be controlled and the utilisation of the landfill gas could economically be optimized, (ii to plan the energy utilisation of the landfill including individual and combined solutions (solar, wind, geothermal energy, energy storage using methanol etc.. [1, 2, 3

  2. DEP Reported Sanitary Sewer Overflows

    Data.gov (United States)

    Montgomery County of Maryland — Sanitary sewer overflows reported to the Department of Environmental Protection by the Washington Suburban Sanitary Commission or individuals in the County. Update...

  3. Achieving "Final Storage Quality" of municipal solid waste in pilot scale bioreactor landfills.

    Science.gov (United States)

    Valencia, R; van der Zon, W; Woelders, H; Lubberding, H J; Gijzen, H J

    2009-01-01

    Entombed waste in current sanitary landfills will generate biogas and leachate when physical barriers fail in the future, allowing the intrusion of moisture into the waste mass contradicting the precepts of the sustainability concept. Bioreactor landfills are suggested as a sustainable option to achieve Final Storage Quality (FSQ) status of waste residues; however, it is not clear what characteristics the residues should have in order to stop operation and after-care monitoring schemes. An experiment was conducted to determine the feasibility to achieve FSQ status (Waste Acceptance Criteria of the European Landfill Directive) of residues in a pilot scale bioreactor landfill. The results of the leaching test were very encouraging due to their proximity to achieve the proposed stringent FSQ criterion after 2 years of operation. Furthermore, residues have the same characteristics of alternative waste stabilisation parameters (low BMP, BOD/COD ratio, VS content, SO4(2-)/Cl- ratio) established by other researchers. Mass balances showed that the bioreactor landfill simulator was capable of practically achieving biological stabilisation after 2 years of operation, while releasing approximately 45% of the total available (organic and inorganic) carbon and nitrogen into the liquid and gas phases.

  4. Sanitary effects of fossil fuels; Effets sanitaires des combustibles fossiles

    Energy Technology Data Exchange (ETDEWEB)

    Nifenecker, H. [Centre National de la Recherche Scientifique (IN2P3/CNRS), 38 - Grenoble (France)

    2006-07-01

    In this compilation are studied the sanitary effects of fossil fuels, behavioral and environmental sanitary risks. The risks in connection with the production, the transport and the distribution(casting) are also approached for the oil(petroleum), the gas and the coal. Accidents in the home are evoked. The risks due to the atmospheric pollution are seen through the components of the atmospheric pollution as well as the sanitary effects of this pollution. (N.C.)

  5. Estimation of future methane production from Hellenic landfills

    Energy Technology Data Exchange (ETDEWEB)

    Tsatsarelis, T.; Karagiannidis, A. [Aristotle Univ., Thessaloniki (Greece). Lab. of Heat Transfer and Environmental Engineering

    2009-07-15

    Organic waste decomposition leads to the production of Landfill Gas (LFG). LFG mainly consists of methane (CH{sub 4}) and carbon dioxide (CO{sub 2}). It is common understanding now that LFG should be considered either as a significant source of pollution and risk (if migrating uncontrollably to the air and ground), or as a significant source of renewable energy (if extracted and processed accordingly). There are two possible solutions for dealing with LFG emissions. In the case of low methane ratios, LFG should be extracted and flared or oxidized in biofilters. On the other hand, in the case of high methane content, LFG becomes an evidently valuable energy resource, as it is then able to sustain the fuelling of engines producing electricity and thermal energy. More specifically, it can be used as a supplementary or primary fuel to increase the production of electric power, as a pipeline quality gas and vehicle fuel, or even as a supply of heat and carbon dioxide for greenhouses and various industrial processes. Technologies that utilize LFG include internal combustion engines, gas turbines, fuel cells and boiler systems. The main objective of this research was to predict expected methane generation in Hellenic sanitary landfills, in order to evaluate its potential for energy production and to ensure health and safety in and around these sites on the long term. The study was performed for the period 2008--2028 with the use of a multi-phase model and included a sensitivity analysis in order to determine the impact of certain waste parameters. In this context, two 'extreme' reference scenarios were formulated and assessed, one anticipating fulfillment of the EU landfill directive (which sets limits to the amount of biodegradable and packaging materials to be deposited in sanitary landfills) whereas a second (do-nothing scenario) assuming no such timely compliance. The model used here for methane estimation is a multi-phase model developed by the Norwegian

  6. Intrinsic bioremediation of landfills interim report

    Energy Technology Data Exchange (ETDEWEB)

    Brigmon, R.L. [Westinghouse Savannah River Company, Aiken, SC (United States); Fliermans, C.B.

    1997-07-14

    Intrinsic bioremediation is a risk management option that relies on natural biological and physical processes to contain the spread of contamination from a source. Evidence is presented in this report that intrinsic bioremediation is occurring at the Sanitary Landfill is fundamental to support incorportion into a Corrective Action Plan (CAP).

  7. The use of RPAS in monitoring volume changes, subsidence and gas emissions from a landfill in Veneto Region, North east of Italy.

    Science.gov (United States)

    Busnardo, Enrico; Ravagnan, Riccardo; Castellarin, Nicola; Canella, Claudio; Gandolfo, Luca; Petrillo, Giovanni

    2017-04-01

    Public opinion consider landfills as a problematic waste disposal system. They are perceived as groundwater and air source of pollution, and unfortunately it is true. For this reason, Regional Environmental Agencies (ARPA) need data in order to figure out the potential pollution near landfills. Remotely Piloted Aircraft Systems (RPAS) with specific sensors, could be a better solution than traditional terrestrial sensors. They provide a better sampling at different altitudes. Therefore, a 3D diffusion gas model could be improved. This study case is about a solid urban waste landfill, located on the Venetian Po Plain in the south of the Veneto Region. The "electronic nose" on the RPAS, needs to be stand still at least 15 seconds while sampling. For this reason, in this study case a multicopter RPAS was used. The result was a 3D concentration map of pollutant gases. The map was related with meteorological data from a Regional meteorological station located near the landfill to identify the gas source. In the end, the study about the olfactory impact was made using the OdiGauss model, developed by the Agricultural and Environmental Sciences Department of Udine University. It was also compared with a simulation carried out with CALWin software.

  8. Desempenho operacional e ambiental de unidades de reciclagem e disposição final de resíduos sólidos domésticos financiadas pelo ICMS Ecológico de Minas Gerais Operational and environmental performance of sanitary landfills and recycling facilities supported by the Ecological ICMS in Minas Gerais State, Brazil

    Directory of Open Access Journals (Sweden)

    José Francisco do Prado Filho

    2007-03-01

    Full Text Available Este estudo avalia sistemas de reciclagem e de disposição de resíduos sólidos domésticos que possuem incentivos fiscais definidos pela Lei Estadual nº 13.803/2000 de Minas Gerais. A pesquisa foi desenvolvida por análise de documentação de licenciamento ambiental de aterros sanitários e usinas de reciclagem e compostagem de resíduos financiados pela referida Lei e por visitas às unidades sanitárias, sendo usados os instrumentos metodológicos da agência ambiental do Estado de São Paulo (CETESB que avaliam as condições de instalação e operação desses tipos de empreendimentos. Do estudo, constatou-se que o incentivo de Minas Gerais, definido pela Lei do ICMS Ecológico, traz importantes benefícios ambientais aos municípios, embora ainda seja reduzido o número dos contemplados por esse fomento à gestão dos resíduos sólidos urbanos. Conclui-se, também, que algumas das unidades estudadas apresentam problemas de natureza ambiental e operacional.This paper reports a qualitative assessment made at the sanitary landfill, recycling centers and composting units sponsored by the State Law No 13.803/2000, Minas Gerais, Brazil. The analyses of all the documentation used for the environmental licensing process as well as field trips to sanitary landfills and domestic recycle/composting unities were performed. The IQC and IQR indexes from the São Paulo State Environmental Agency (CETESB were used as quality assessment tools. It is concluded that this State Law (Ecological ICMS Law has been promoting substantial environmental benefits to the local communities, despite it is still small the number of cities which have been attended by this regulation for solid waste management. On the other hand, it can be noticed that some operational and environmental issues remain to be addressed in the visited facilities.

  9. The impact of daily covers on sidewall leakage in landfills

    Energy Technology Data Exchange (ETDEWEB)

    Welker, A. L. [Villanova Univ., Dept. of Civil Engineering, PA (United States)

    2000-09-01

    Typically, sanitary landfills are covered by 15 cm of locally available soil on a daily basis. This practice is intended to limit short term negative effects of the waste material on the above-ground environment such as odor, fire, or vermin attraction. Daily placement of compacted soil creates low hydraulic conductivity stratifying layers within the landfill which, in due course, may result in side-slope seepage, decreased stability and decreased efficiency of methane gas venting. The expense of soil acquisitions and the the diminishing availability of landfill space increases the need for alternative materials to replace the daily cover. This paper examines the the threat of sidewall landfill leakage for a hypothetical landfill with traditional soil cover and an alternative daily cover, to demonstrate that the threat of sidewall leakage is real and can be decreased with the use of alternative material as the daily cover such as crushed glass, sludge from waste-water treatment plants, industrial waste, foams and various geosynthetics. At the same time, results of the modelling study showed that with proper drainage sidewall seepage will not occur even with a daily cover that has a hydraulic conductivity two orders of magnitude smaller than the waste, despite positive pressure building up on top of the daily cover. These results imply that the threat of sidewall leakage is minimal, and while alternative daily cover material would help to reduce it even further, their use is most likely to be the result of economic, not technical, considerations. 12 refs., 3 tabs., 4 figs.

  10. Helium-neon lasers for remote measurements of natural gas leaks

    Science.gov (United States)

    1983-09-01

    A Differential Absorption Lidar (DIAL) system that at a distance of 15 meters can remotely sense natura gas (methane) leaks was developed. The system uses two helium-neon lasers (each emitting a different wavelength), a receiver, and an indium antimonide (InSb) photodetector cooled to 77 K. It is demonstrated the system can defect methane leaks both from an underground gas distribution system, and from sanitary landfills.

  11. Design of Cut-off Ditch at Valley-type Small Waste Sanitary Landfill Site in Southwest China%西南地区山谷型小型垃圾填埋场截洪沟设计

    Institute of Scientific and Technical Information of China (English)

    邹许鑫; 吕燕; 尹滔

    2012-01-01

    对西南地区山谷型小型垃圾填埋场截洪沟设计展开探讨,结合相关规范优选适用于西南地区的截洪沟设计充满度、设计流速、径流系数等关键设计参数,对截洪沟的流量计算、断面选择、沟壁沟底材料及基础设计、出水口及转弯段的设计、整体平面布置等进行讨论,提出三种优化截洪沟断面.通过截洪沟的优化设计可实现清污分流,降低渗滤液产量,减少雨水对垃圾渗滤液收集及处理系统的冲击,降低垃圾渗滤液处理成本,确保垃圾填埋场正常、安全运行.%The design of cut-off ditch at valley-type small landfill site in the southwest China is explored. The design parameters of cut-off ditch applicable to the southwest China, such as design filling degree, design flow, runoff coefficient and other key design parameters are selected according to the related codes. The flow calculation, cross section selection, materials and foundation design for the ditch walls and bottom, design of outlet and curved segment and overall layout are discussed. Three kinds of optimized cross sections of cut-off ditch are proposed. The optimization design of cut-off dilch can achieve the separation of rainwater and sewage, reduce the leachate production, mitigate the impact of rainwater on collection and treatment systems of landfill leachate, thus reducing the treatment cost of landfill leachate and ensuring the normal and safe operation of landfill site.

  12. LANDFILL BIOREACTOR PERFORMANCE, SECOND INTERIM REPORT

    Science.gov (United States)

    A bioreactor landfill is a landfill that is operated in a manner that is expected to increase the rate and extent of waste decomposition, gas generation, and settlement compared to a traditional landfill. This Second Interim Report was prepared to provide an interpretation of fie...

  13. LANDFILL BIOREACTOR PERFORMANCE, SECOND INTERIM REPORT

    Science.gov (United States)

    A bioreactor landfill is a landfill that is operated in a manner that is expected to increase the rate and extent of waste decomposition, gas generation, and settlement compared to a traditional landfill. This Second Interim Report was prepared to provide an interpretation of fie...

  14. Experimental and life cycle assessment analysis of gas emission from mechanically–biologically pretreated waste in a landfill with energy recovery

    Energy Technology Data Exchange (ETDEWEB)

    Di Maria, Francesco, E-mail: francesco.dimaria@unipg.it; Sordi, Alessio; Micale, Caterina

    2013-11-15

    Highlights: • Bio-methane landfill emissions from different period (0, 4, 8, 16 weeks) MTB waste have been evaluated. • Electrical energy recoverable from landfill gas ranges from 11 to about 90 kW h/tonne. • Correlation between oxygen uptake, energy recovery and anaerobic gas production shows R{sup 2} ranging from 0.78 to 0.98. • LCA demonstrate that global impact related to gaseous emissions achieve minimum for 4 week of MBT. - Abstract: The global gaseous emissions produced by landfilling the Mechanically Sorted Organic Fraction (MSOF) with different weeks of Mechanical Biological Treatment (MBT) was evaluated for an existing waste management system. One MBT facility and a landfill with internal combustion engines fuelled by the landfill gas for electrical energy production operate in the waste management system considered. An experimental apparatus was used to simulate 0, 4, 8 and 16 weeks of aerobic stabilization and the consequent biogas potential (Nl/kg) of a large sample of MSOF withdrawn from the full-scale MBT. Stabilization achieved by the waste was evaluated by dynamic oxygen uptake and fermentation tests. Good correlation coefficients (R{sup 2}), ranging from 0.7668 to 0.9772, were found between oxygen uptake, fermentation and anaerobic test values. On the basis of the results of several anaerobic tests, the methane production rate k (year{sup −1}) was evaluated. k ranged from 0.436 to 0.308 year{sup −1} and the bio-methane potential from 37 to 12 N m{sup 3}/tonne, respectively, for the MSOF with 0 and 16 weeks of treatment. Energy recovery from landfill gas ranged from about 11 to 90 kW h per tonne of disposed MSOF depending on the different scenario investigated. Life cycle analysis showed that the scenario with 0 weeks of pre-treatment has the highest weighted global impact even if opposite results were obtained with respect to the single impact criteria. MSOF pre-treatment periods longer than 4 weeks showed rather negligible variation

  15. A review of landfill microbiology research

    Energy Technology Data Exchange (ETDEWEB)

    Archer, D.; Reynolds, P.; Blakey, N.C.

    1995-05-01

    In May 1994 the DTI through ETSU commissioned WRc to undertake a comprehensive review of the landfill microbiology programme to date. The review has attempted to identify remaining gaps in knowledge which are most likely to find application in controlling the production of gas from landfills, and concludes with a list of recommendations for specific landfill process research which is likely to facilitate and optimise energy recovery from landfill. (UK)

  16. Managing the leachate at the regional landfill in Kikinda

    Directory of Open Access Journals (Sweden)

    Marković Sanja

    2016-01-01

    Full Text Available In developed, industrial countries, there is 1.2kg waste per capita, waste being collected and disposed of in regulated, sanitary landfills, which have systems for the protection of groundwater and air from pollutants, in Serbia, the largest number of landfills does not meet even the basic safety criteria for environmental protection. Several municipalities in Serbia began with the organization of the regional waste management system and within that frame, the construction of regional landfills which meet European standards in terms of environmental protection. The paper presents a method of management and use of leachate at the regional waste landfill 'ASA', Kikinda.

  17. Greenhouse gas emissions from municipal solid waste management in Indian mega-cities: a case study of Chennai landfill sites.

    Science.gov (United States)

    Jha, Arvind K; Sharma, C; Singh, Nahar; Ramesh, R; Purvaja, R; Gupta, Prabhat K

    2008-03-01

    Municipal solid waste generation rate is over-riding the population growth rate in all mega-cities in India. Greenhouse gas emission inventory from landfills of Chennai has been generated by measuring the site specific emission factors in conjunction with relevant activity data as well as using the IPCC methodologies for CH4 inventory preparation. In Chennai, emission flux ranged from 1.0 to 23.5mg CH4m(-2)h(-1), 6 to 460microg N2Om(-2)h(-1) and 39 to 906mg CO2m(2)h(-1) at Kodungaiyur and 0.9 to 433mg CH4m(-2)h(-1), 2.7 to 1200microg N2Om(-2)h(-1) and 12.3 to 964.4mg CO2m(-2)h(-1) at Perungudi. CH4 emission estimates were found to be about 0.12Gg in Chennai from municipal solid waste management for the year 2000 which is lower than the value computed using IPCC, 1996 [IPCC, 1996. Report of the 12th session of the intergovernmental panel of climate change, Mexico City, 1996] methodologies.

  18. Assessment of soil-gas, soil, and water contamination at the former 19th Street landfill, Fort Gordon, Georgia, 2009-2010

    Science.gov (United States)

    Falls, W. Fred; Caldwell, Andral W.; Guimaraes, Wladmir B.; Ratliff, W. Hagan; Wellborn, John B.; Landmeyer, James E.

    2011-01-01

    Soil gas, soil, and water were assessed for organic and inorganic constituents at the former 19th Street landfill at Fort Gordon, Georgia, from February to September 2010. Passive soil-gas samplers were analyzed to evaluate organic constituents in the hyporheic zone and flood plain of a creek and soil gas within the estimated boundaries of the former landfill. Soil and water samples were analyzed to evaluate inorganic constituents in soil samples, and organic and inorganic constituents in the surface water of a creek adjacent to the landfill, respectively. This assessment was conducted to provide environmental constituent data to Fort Gordon pursuant to requirements of the Resource Conservation and Recovery Act Part B Hazardous Waste Permit process. The passive soil-gas samplers deployed in the water-saturated hyporheic zone and flood plain of the creek adjacent to the former landfill indicated the presence of total petroleum hydrocarbon (TPH) and octane above method detection levels in groundwater beneath the creek bed and flood plain at all 12 soil-gas sampler locations. The TPH concentrations ranged from 51.4 to 81.4 micrograms per liter. Octane concentrations ranged from 1.78 to 2.63 micrograms per liter. These detections do not clearly identify specific source areas in the former landfill; moreover, detections of TPH and octane in a soil-gas sampler installed at a seep on the western bank of the creek indicated the potential for these constituents to be derived from source areas outside the estimated boundaries of the former landfill. A passive soil-gas sampler survey was conducted in the former landfill from June 30 to July 5, 2010, and involved 56 soil-gas samplers that were analyzed for petroleum and halogenated compounds not classified as chemical agents or explosives. The TPH soil-gas mass exceeded 2.0 micrograms in 21 samplers. Most noticeable are the two sites with TPH detections which are located in and near the hyporheic zone and are likely to affect

  19. Yolo County's Accelerated Anaerobic and Aerobic Composting (Full-Scale Controlled Landfill Bioreactor) Project

    Science.gov (United States)

    Yazdani, R.; Kieffer, J.; Akau, H.; Augenstein, D.

    2002-12-01

    Sanitary landfilling is the dominant method of solid waste disposal in the United States, accounting for about 217 million tons of waste annually (U.S. EPA, 1997) and has more than doubled since 1960. In spite of increasing rates of reuse and recycling, population and economic growth will continue to render landfilling as an important and necessary component of solid waste management. Yolo County Department of Planning and Public Works, Division of Integrated Waste Management is demonstrating a new landfill technology called Bioreactor Landfill to better manage solid waste. In a Bioreactor Landfill, controlled quantities of liquid (leachate, groundwater, gray-water, etc.) are added and recirculated to increase the moisture content of the waste and improve waste decomposition. As demonstrated in a small-scale demonstration project at the Yolo County Central Landfill in 1995, this process significantly increases the biodegradation rate of waste and thus decreases the waste stabilization and composting time (5 to 10 years) relative to what would occur within a conventional landfill (30 to 50 years or more). When waste decomposes anaerobically (in absence of oxygen), it produces landfill gas (biogas). Biogas is primarily a mixture of methane, a potent greenhouse gas, carbon dioxide, and small amounts of Volatile Organic Compounds (VOC's) which can be recovered for electricity or other uses. Other benefits of a bioreactor landfill composting operation include increased landfill waste settlement which increases in landfill capacity and life, improved leachate chemistry, possible reduction of landfill post-closure management time, opportunity to explore decomposed waste for landfill mining, and abatement of greenhouse gases through highly efficient methane capture over a much shorter period of time than is typical of waste management through conventional landfilling. This project also investigates the aerobic decomposition of waste of 13,000 tons of waste (2.5 acre) for

  20. The biological degradation as an energy option, determination of the effects of the aerobic phase on the subsequent production of biogas in a sanitary landfill; La degradacion biologica como una opcion energetica, determinacion de los efectos de la fase aerobia sobre la subsecuente produccion de biogas en un relleno sanitario

    Energy Technology Data Exchange (ETDEWEB)

    Aguilar Juarez, Oscar [Asesoria de Servicios Ambientales del Bajio (ASSB), (Mexico)

    2010-07-01

    The present work deals with the energy evaluation of biological processes as energy source and is based on works concerning laboratory, pilot and field research. The objective of the research is to integrate the effect of the aerobic phase during the process of degradation of organic residues (basically the organic fraction of domestic residues), where the last aim is the biogas production. The usefulness of the results is reflected in the suitable estimation of the filling of a sanitary landfill considering the composition of the residues deposited and the effects that this management will have on the run-up time of the same and the velocity of biogas production. Finally, integrates a reflection on the intrinsic energy implications of the process and of the biogas yielding, which is evaluated as well as energy source. [Spanish] El presente trabajo trata sobre la valoracion energetica de procesos biologicos como fuente de energia y se basa en trabajos de investigacion a nivel de laboratorio, piloto y de campo. El objetivo de la investigacion es integrar el efecto de la fase aerobia durante el proceso de degradacion de residuos organicos (basicamente la fraccion organica de residuos domesticos), donde el fin ultimo es la produccion de biogas. La utilidad de los resultados se refleja en la estimacion adecuada del llenado de un relleno sanitario considerando la composicion de los residuos ahi depositados y los efectos que tendra esta gestion sobre el tiempo de estabilizacion de los mismos y la velocidad de produccion de biogas. Finalmente, se integra una reflexion sobre las implicaciones energeticas intrinsecas al proceso y del rendimiento de biogas, el cual a su vez es valorizado como fuente de energia.

  1. Multistage treatment system for raw leachate from sanitary landfill combining biological nitrification-denitrification/solar photo-Fenton/biological processes, at a scale close to industrial--biodegradability enhancement and evolution profile of trace pollutants.

    Science.gov (United States)

    Silva, Tânia F C V; Silva, M Elisabete F; Cunha-Queda, A Cristina; Fonseca, Amélia; Saraiva, Isabel; Sousa, M A; Gonçalves, C; Alpendurada, M F; Boaventura, Rui A R; Vilar, Vítor J P

    2013-10-15

    A multistage treatment system, at a scale close to the industrial, was designed for the treatment of a mature raw landfill leachate, including: a) an activated sludge biological oxidation (ASBO), under aerobic and anoxic conditions; b) a solar photo-Fenton process, enhancing the bio-treated leachate biodegradability, with and without sludge removal after acidification; and c) a final polishing step, with further ASBO. The raw leachate was characterized by a high concentration of humic substances (HS) (1211 mg CHS/L), representing 39% of the dissolved organic carbon (DOC) content, and a high nitrogen content, mainly in the form of ammonium nitrogen (>3.8 g NH4(+)-N/L). In the first biological oxidation step, a 95% removal of total nitrogen and a 39% mineralization in terms of DOC were achieved, remaining only the recalcitrant fraction, mainly attributed to HS (57% of DOC). Under aerobic conditions, the highest nitrification rate obtained was 8.2 mg NH4(+)-N/h/g of volatile suspended solids (VSS), and under anoxic conditions, the maximum denitrification rate obtained was 5.8 mg (NO2(-)-N + NO3(-)-N)/h/g VSS, with a C/N consumption ratio of 2.4 mg CH3OH/mg (NO2(-)-N + NO3(-)-N). The precipitation of humic acids (37% of HS) after acidification of the bio-treated leachate corresponds to a 96% DOC abatement. The amount of UV energy and H2O2 consumption during the photo-Fenton reaction was 30% higher in the experiment without sludge removal and, consequently, the reaction velocity was 30% lower. The phototreatment process led to the depletion of HS >80%, of low-molecular-weight carboxylate anions >70% and other organic micropollutants, thus resulting in a total biodegradability increase of >70%. The second biological oxidation allowed to obtain a final treated leachate in compliance with legal discharge limits regarding water bodies (with the exception of sulfate ions), considering the experiment without sludge. Finally, the high efficiency of the overall treatment

  2. LANDFILL LEACHATES PRETREATMENT BY OZONATION

    Directory of Open Access Journals (Sweden)

    Jacek Leszczyński

    2016-06-01

    Full Text Available In this paper, the application of ozonation processes for stabilized landfill leachate treatment was investigated. The leachate came from a municipal sanitary landfill located nearby Bielsk Podlaski. The average values of its main parameters were: pH 8.23; COD 870 mgO2/dm3; BOD 90 mgO2/dm3; NH4+ 136.2 mgN/dm3; UV254 absorbance 0.312 and turbidity 14 NTU. The ozone dosages used were in the range of 115.5 to 808.5 mgO3/dm3 of the leachate. The maximum COD, color and UV254 absorbance removal wa.5 mgO3/dm3. After oxidation, the ratio of BOD/COD was increased from 0.1 up to 0.23.

  3. LANDFILL OPERATION FOR CARBON SEQUESTRATION AND MAXIMUM METHANE EMISSION CONTROL

    Energy Technology Data Exchange (ETDEWEB)

    Don Augenstein

    1999-01-11

    ''Conventional'' waste landfills emit methane, a potent greenhouse gas, in quantities such that landfill methane is a major factor in global climate change. Controlled landfilling is a novel approach to manage landfills for rapid completion of total gas generation, maximizing gas capture and minimizing emissions of methane to the atmosphere. With controlled landfilling, methane generation is accelerated and brought to much earlier completion by improving conditions for biological processes (principally moisture levels) in the landfill. Gas recovery efficiency approaches 100% through use of surface membrane cover over porous gas recovery layers operated at slight vacuum. A field demonstration project's results at the Yolo County Central Landfill near Davis, California are, to date, highly encouraging. Two major controlled landfilling benefits would be the reduction of landfill methane emissions to minuscule levels, and the recovery of greater amounts of landfill methane energy in much shorter times than with conventional landfill practice. With the large amount of US landfill methane generated, and greenhouse potency of methane, better landfill methane control can play a substantial role in reduction of US greenhouse gas emissions.

  4. Quantification of methane emissions from danish landfills

    DEFF Research Database (Denmark)

    Scheutz, Charlotte; Mønster, Jacob; Kjeldsen, Peter

    2013-01-01

    Whole-landfill methane emission was quantified using a tracer technique that combines controlled tracer gas release from the landfill with time-resolved concentration measurements downwind of the landfill using a mobile high-resolution analytical instrument. Methane emissions from 13 Danish...... landfills varied between 2.6 and 60.8 kg CH4 h–1. The highest methane emission was measured at the largest (in terms of disposed waste amounts) of the 13 landfills, whereas the lowest methane emissions (2.6-6.1 kgCH4 h–1) were measured at the older and smaller landfills. At two of the sites, which had gas...... collection, emission measurements showed that the gas collection systems only collected between 30-50% of the methane produced (assuming that the produced methane equalled the sum of the emitted methane and the collected methane). Significant methane emissions were observed from disposed shredder waste...

  5. Numerical Model Study on Working Performance of Seepproof Liner in Sanitary Landfill%卫生填埋场防渗层工作性能的数值模型研究

    Institute of Scientific and Technical Information of China (English)

    刘庭发; 张鹏伟; 胡黎明

    2012-01-01

    The anti-seepage and absorption ability of clay layer are main factors influencing landfill liner working performance. A ID convection-dispersion model was proposed to analyze the influence of permeability coefficient, diffusion coefficient, infiltration intensity, and absorption ability on the breakthrough time and leaching quantity. A 2D numerical model considering soil stratification, inhomogeneity, underground water motion and macro-dispersivity was introduced to reflett practical complex conditions, and parameter sensitivity analysis was conducted. The results show that keeping a relatively low leachate head is of great importance to obtaining well anti-seepage performance and durability of clay liner. The permeability coeffisient of clay liner varies within extensive range because of variation in material character and quality control during construction and the breakthrough time decrease sharply when the permeability coefficient increase by one order of magnitude. A nearly linear relation between breakthrough time and retardation factor can be obtained when the permeability keeps constant. Underground water can severely influence the transportation and distribution of pollutant. The results show that pollutant transport occures mainly in vertical direction when the water level is low. The pollutant concentration in lower layer soil and underground water is much lower because of intense absorption in unsaturated soil above the water level.%粘土衬垫的防渗性能和吸附阻滞性能对卫生填埋场防渗系统工作性能有着重要影响.通过建立一维对流-弥散模型,分析了渗透系数、扩散系数、入渗强度、吸附能力对渗漏量及衬垫击穿时间的影响.考虑实际工程的复杂性,建立能反映土体分层、土体非均质性、地下水运动及宏观弥散等复杂因素影响的污染物运移二维分析模型,并对各参数的敏感性进行分析.计算结果表明,保持填埋场在低渗滤液水位下运

  6. Quantifying capital goods for waste landfilling

    DEFF Research Database (Denmark)

    Brogaard, Line Kai-Sørensen; Stentsøe, Steen; Willumsen, Hans Christian

    2013-01-01

    Materials and energy used for construction of a hill-type landfill of 4 million m3 were quantified in detail. The landfill is engineered with a liner and leachate collections system, as well as a gas collection and control system. Gravel and clay were the most common materials used, amounting...... to approximately 260 kg per tonne of waste landfilled. The environmental burdens from the extraction and manufacturing of the materials used in the landfill, as well as from the construction of the landfill, were modelled as potential environmental impacts. For example, the potential impact on global warming was 2.......5 kg carbon dioxide (CO2) equivalents or 0.32 milli person equivalents per tonne of waste. The potential impacts from the use of materials and construction of the landfill are low-to-insignificant compared with data reported in the literature on impact potentials of landfills in operation...

  7. Technical potential of electricity production from municipal solid waste disposed in the biggest cities in Brazil: landfill gas, biogas and thermal treatment.

    Science.gov (United States)

    de Souza, Samuel Nm; Horttanainen, Mika; Antonelli, Jhonatas; Klaus, Otávia; Lindino, Cleber A; Nogueira, Carlos Ec

    2014-10-01

    This article presents an analysis of possibilities for electrical energy production by using municipal solid waste disposed in the biggest Brazilian cities. Currently, the municipal solid waste in Brazil is collected and disposed of at landfills, but there are also other technologies, which in addition to dealing with the garbage can also provide benefits in terms of energy provision. The following scenarios were studied in this work: electricity production from landfill gas (reference scenario); incineration of all municipal solid waste; anaerobic digestion of organic waste and incineration of refuse-derived fuel fractions after being separated in separation plants. According to this study, the biggest cities in Brazil generate about 18.9 million tonnes of municipal solid waste per year (2011), of which 51.5% is biogenic matter. The overall domestic consumption of electricity is 480,120 GWh y(-1) in Brazil and the municipal solid waste incineration in the 16 largest cities in the country could replace 1.8% of it using incinerators. The city of São Paulo could produce 637 GWh y(-1) with landfill gas, 2368 GWh y(-1) with incineration of municipal solid waste and 1177 GWh y(-1) with incineration of refuse-derived fuel. The latter two scenarios could replace 27% and 13.5% of the residential electrical energy consumption in the city. This shows that thermal treatment might be a viable option of waste-to-energy in Brazil. © The Author(s) 2014.

  8. Biogas movements in sanitary landdfills; Movimiento de biogas en rellenos sanitarios

    Energy Technology Data Exchange (ETDEWEB)

    Vidales A, Humberto

    1988-12-31

    This paper shows a model to study the physical and kinetic equations that determine the movement and diffusion of the biogas in sanitary landfills. This model for biogas flow was made in function of pressure, temperature, waste porosity and permeability, due to a diffusion coefficient of biogas determination 6 refs., 4 figs.

  9. Sanitary hot water; Eau chaude sanitaire

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    Cegibat, the information-recommendation agency of Gaz de France for building engineering professionals, has organized this conference meeting on sanitary hot water to present the solutions proposed by Gaz de France to meet its clients requirements in terms of water quality, comfort, energy conservation and respect of the environment: quantitative aspects of the hot water needs, qualitative aspects, presentation of the Dolce Vita offer for residential buildings, gas water heaters and boilers, combined solar-thermal/natural gas solutions, key-specifications of hot water distribution systems, testimony: implementation of a gas hot water reservoir and two accumulation boilers in an apartment building for young workers. (J.S.)

  10. Biodegradability potential of two experimental landfills in Brazil

    Directory of Open Access Journals (Sweden)

    Vazoller Rosana Filomena

    2001-01-01

    Full Text Available Solid wastes anaerobic biodegradability, methane production potential and microbiological composition of two experimental sanitary landfills in Brazil, running for one year, were evaluated. The two landfills showed a similar organic matter stabilization during the methane production phase, despite the high heterogeneity of the solid wastes. Both landfills presented the same level of methane (around 91.5 L CH4 / kg Volatile Total Solids and organic acids, mainly acetic and butyric acids, in the leachate. Bacterial isolates belonged to genera Megasphaera, Selenomonas, Methanobacterium, Methanobrevibacter and Methanosarcina.

  11. Landfills as a biorefinery to produce biomass and capture biogas.

    Science.gov (United States)

    Bolan, N S; Thangarajan, R; Seshadri, B; Jena, U; Das, K C; Wang, H; Naidu, R

    2013-05-01

    While landfilling provides a simple and economic means of waste disposal, it causes environmental impacts including leachate generation and greenhouse gas (GHG) emissions. With the introduction of gas recovery systems, landfills provide a potential source of methane (CH4) as a fuel source. Increasingly revegetation is practiced on traditionally managed landfill sites to mitigate environmental degradation, which also provides a source of biomass for energy production. Combustion of landfill gas for energy production contributes to GHG emission reduction mainly by preventing the release of CH4 into the atmosphere. Biomass from landfill sites can be converted to bioenergy through various processes including pyrolysis, liquefaction and gasification. This review provides a comprehensive overview on the role of landfills as a biorefinery site by focusing on the potential volumes of CH4 and biomass produced from landfills, the various methods of biomass energy conversion, and the opportunities and limitations of energy capture from landfills.

  12. Incorporating in-cylinder pressure data to predict NO{sub x} emissions from spark-ignition engines fueled with landfill gas/hydrogen mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Kornbluth, Kurt; McCaffrey, Zach; Erickson, Paul A. [Department of Mechanical and Aerospace Engineering, University of California, One Shields Avenue, Davis, CA 95616 (United States)

    2009-11-15

    A 0.745 L 2-cylinder spark-ignition engine was operated with compressed natural gas and with simulated landfill gas (60% CH{sub 4} and 40% CO{sub 2} by volume) containing hydrogen concentrations of 0, 30%, 40%, and 50% (by volume of the CH{sub 4} in the fuel) at constant rpm. This empirical data was compared with predictions from three existing semi-empirical engine models, using a first-law-based finite heat release model to correlate measured in-cylinder pressure data and burn rate for each fuel mixture. Of the three models only a two zone model incorporating thermal and prompt NO{sub x} came within 25% of predicting the measured NO{sub x} emissions. (author)

  13. Ocorrência de bactérias clinicamente relevantes nos resíduos de serviços de saúde em um aterro sanitário brasileiro e perfil de susceptibilidade a antimicrobianos Occurrence of clinically relevant bacteria in health service waste in a Brazilian sanitary landfill and antimicrobial susceptibility profile

    Directory of Open Access Journals (Sweden)

    Thiago César Nascimento

    2009-08-01

    Full Text Available Os resíduos de serviços de saúde suscitam polêmica quanto a importância para a saúde humana, animal e ambiental. Avaliou-se a ocorrência de bactérias clinicamente relevantes na pilha de resíduos de serviços de saúde em um aterro sanitário e seu perfil de susceptibilidade aos antimicrobianos. Alíquotas de chorume foram processadas para isolamento seletivo de Staphylococcus sp, bastonetes Gram negativos da família Enterobacteriaceae e não fermentadores. Resistência bacteriana a todos os antimicrobianos testados foi observada em todos os grupos microbianos, além de resistência a mais de uma droga. Os resultados permitem sugerir que bactérias viáveis nos resíduos de serviços de saúde representam riscos à saúde humana e animal. Além disso, a ocorrência de linhagens multirresistentes sustenta a hipótese dos resíduos de serviços de saúde atuarem como reservatórios de marcadores de resistência, com impacto ambiental. A falta de legislação regional de segregação, tratamento e destino de resíduos podem expor diferentes populações a riscos de transmissão de doenças infecciosas associadas a microrganismos multirresistentes.Health service waste gives rise to controversy regarding its importance for human, animal and environmental health. Occurrences of clinically relevant bacteria in piles of health service waste in a sanitary landfill and their antimicrobial susceptibility profile were evaluated. Aliquots of leachate were processed for selective isolation of Staphylococcus sp, Gram-negative rods of the Enterobacteriaceae family and non-fermenters. Bacterial resistance to all the antimicrobials tested was observed in all microbial groups, including resistance to more than one drug. The results make it possible to suggest that viable bacteria in health service waste represent risks to human and animal health. Furthermore, occurrences of multiresistant strains support the hypothesis that health service waste acts as a

  14. Avaliação dos níveis de metais pesados em efluente líquido percolado do aterro sanitário de Paranavaí, Estado do Paraná, Brasil = Assessment of heavy metal levels in percolated liquid from sanitary landfill in Paranavaí, Paraná State, Brazil

    Directory of Open Access Journals (Sweden)

    Lucila Akiko Nagashima

    2009-01-01

    Full Text Available O percolado pode conter diversas substâncias químicas com características tóxicas, dentre elas os metais pesados oriundos de vários materiais provenientes de indústrias, atividades agrícolas, laboratórios, hospitais, residências. A contaminação pormetais apresenta amplo espectro de toxicidade que inclui efeitos neurotóxicos, hepatóxicos, nefrotóxicos, teratogênicos, carcinogênicos ou mutagênicos. O objetivo deste trabalho foi aavaliação dos níveis de Cd, Cr, Cu, Mn, Ni, Pb e Zn do percolado gerado no aterro sanitário de Paranavaí - PR. As amostras foram coletadas a partir de setembro de 2006 a julho de 2007, em quatro pontos distintos nas lagoas de tratamento. Para detecção dosmetais utilizou-se o espectrofotômetro de absorção atômica com chama. Os resultados foram comparados com os limites máximos de concentração de metais em efluentes líquidos estabelecidos pela Resolução 397/2008 - Conama (BRASIL, 2008. Verificou-se que os níveis dos metais analisados, com exceção do Pb, estão dentro dos limites permissíveispela legislação ambiental.Percolated liquid may contain several chemical substances with toxic characteristics, among them heavy metals from industrial sources, agricultural activities, laboratories, hospitals and residences. Metal contamination presents a wide array of toxicities, such as neurotoxic, hepatotoxic, nephrotoxic, teratogenic, carcinogenic or mutagenic effects. The objective of this work was to assess the levels of Cd, Cr, Cu, Mn, Ni, Pb, and Zn in percolated liquid produced at the sanitary landfill in Paranavaí. The samples were collected from September of 2006 to July of 2007, at fourdistinct places of the treatment lake. An atomic absorption spectrophotometer with a burner was used to detect the metals. The results were compared with the maximum allowed values for metal concentration present in Resolution 397/2008 – Conama (BRAZIL, 2008.It was verified that the level of analyzed

  15. Sanitary costs of osteoarthritis

    Directory of Open Access Journals (Sweden)

    M. Franceschini

    2011-09-01

    Full Text Available Muscoloskeletal disorders are the first cause of disability and the second cause of permanent disablement in Italy. Osteoarthritis is the most frequent rheumatic disease and affects about 4 million Italians. In spite of that, data concerning social costs are lacking. On account of this lack we measured sanitary costs of 314 patients suffering from osteoarthritis. A retrospective, prevalence- based multicentric study was performed using a bottom-up approach. The study period was 12 months and referred to 1999. Eight percent of patients didn’t take any drug for the treatment of osteoarthritis; NSAIDs were prescribed to 86.9% of patients, analgesics to 29.9%, chondroprotective drugs to 7.6%, and gastroprotective drugs to 36.9%. Total sanitary costs came to 455 € / patient / year: 122 € were spent on diagnostics, 293 € on therapy and 40 € on management of drug-related gastropathy. Since the costs of anti-inflammatory drugs came to 30 € we calculated iatrogenic cost factor of 2.3. Moreover, the study supplied interesting informations about prescriptive habits, which differ in Italy from international guidelines for the medical treatment of OA, about patient management, because of hospitalization, which by itself absorbs 1/3 of resources, and about physiotherapy, which costs twice as much as pharmacological therapy. At last, data analysis gave the cue for suggestions on changing patients’ management.

  16. Innovative landfill bioreactor systems for municipal solid waste treatment in East Africa aimed at optimal energy recovery and minimal greenhouse gas emissions

    NARCIS (Netherlands)

    Salukele, F.M.

    2013-01-01

    Landfilling is currently the dominant disposal method for municipal solid waste (MSW) in developing countries. Approximately 50% of the MSW generated in East Africa is disposed in landfills. Low costs and availability of land have made landfilling the most common waste management option in East Afri

  17. Innovative landfill bioreactor systems for municipal solid waste treatment in East Africa aimed at optimal energy recovery and minimal greenhouse gas emissions

    NARCIS (Netherlands)

    Salukele, F.M.

    2013-01-01

    Landfilling is currently the dominant disposal method for municipal solid waste (MSW) in developing countries. Approximately 50% of the MSW generated in East Africa is disposed in landfills. Low costs and availability of land have made landfilling the most common waste management option in East

  18. Geochemical and VOC-constraints on landfill gas age and attenuation characteristics: A case study from a waste disposal facility in Southern California.

    Science.gov (United States)

    Hagedorn, Benjamin; Kerfoot, Henry B; Verwiel, Mark; Matlock, Bruce

    2016-07-01

    In this study, a multi-tracer approach was applied to a complex, methane-impacted site in Southern California to (1) distinguish between natural gas and landfill gas (LFG)-derived methane impacts at site perimeter gas probes, (2) estimate the relative age of the LFG at these probes, and (3) document natural attenuation trends during a 3-year monitoring period. Relationships between methane and ethane values suggest that at the majority of probes, methane is from LFG and not from natural gas and that the relative contribution of LFG methane at these probes has increased over the monitoring period. To evaluate whether LFG is attenuating in the subsurface, the relative age of LFG was estimated by comparing readily degraded VOCs that are major constituents in LFG (toluene in this case) with those resistant to degradation (Freons). Time-series data trends are consistent with several probes being impacted by fresh LFG from recent releases that occurred after the update of the local LFG collection and control system (LFGCCS). Data further indicate some probes to be only affected by legacy LFG from a past release that occurred prior to the LFGCCS update and that, because of a lack of oxygen in the subsurface, had not been fully degraded. The outlined attenuation evaluation methodology is potentially applicable to other sites or even groundwater contaminants; however, the assessment is limited by the degree of homogeneity of the LFG source composition and non-LFG-derived toluene inputs to the analyzed samples.

  19. The influence of the gas flow rate during methane biofiltration on an inorganic packing material

    Energy Technology Data Exchange (ETDEWEB)

    Nikiema, J.; Heitz, M. [Sherbrooke Univ., PQ (Canada). Dept. of Chemical Engineering

    2009-02-15

    Sanitary landfills are a major anthropogenic source of methane (CH{sub 4}), an important greenhouse gas (GHG). In 2005, sanitary landfills contributed nearly 25 per cent of the total atmospheric CH{sub 4} emissions in Canada. In order to address this concern, 52 landfills were equipped with gas collection systems in 2005. This study measured the influence of the gas flow rate (GFR) on CH{sub 4} elimination through biofiltration and estimated the maximum level of GFR that allowed conversions within the biofilter above 90 per cent. Since CH{sub 4} biodegrades in the biofilter due to microbial activity, the efficiency of this bioprocess is affected by the number and type of microorganisms present in the biofilter. This study also compared the performance of the biofilter under different gas flow regimes, at two different phosphorus concentrations. The experiments involved the use of a nitrogen minimal salt nutrient solution, for the biofilter periodic irrigation, in which the nitrogen concentration was maintained at 0.75 g/L, while the phosphorus concentration was 1.5 g/L. The objective was to determine if the phosphorus concentration can modify the influence of the GFR on the biofilter. The results showed that the GFR is an important parameter which affects the biofilter performance. It was concluded that the biofiltration process requires a high phosphorus level in the nutrient solution. 23 refs., 2 tabs., 5 figs.

  20. Nitrogen Removal from Landfill Leachate by Microalgae

    Directory of Open Access Journals (Sweden)

    Sérgio F. L. Pereira

    2016-11-01

    Full Text Available Landfill leachates result from the degradation of solid residues in sanitary landfills, thus presenting a high variability in terms of composition. Normally, these effluents are characterized by high ammoniacal-nitrogen (N–NH4+ concentrations, high chemical oxygen demands and low phosphorus concentrations. The development of effective treatment strategies becomes difficult, posing a serious problem to the environment. Phycoremediation appears to be a suitable alternative for the treatment of landfill leachates. In this study, the potential of Chlorella vulgaris for biomass production and nutrients (mainly nitrogen and phosphorus removal from different compositions of a landfill leachate was evaluated. Since microalgae also require phosphorus for their growth, different loads of this nutrient were evaluated, giving the following N:P ratios: 12:1, 23:1 and 35:1. The results have shown that C. vulgaris was able to grow in the different leachate compositions assessed. However, microalgal growth was higher in the cultures presenting the lowest N–NH4+ concentration. In terms of nutrients uptake, an effective removal of N–NH4+ and phosphorus was observed in all the experiments, especially in those supplied with phosphorus. Nevertheless, N–NO3− removal was considered almost negligible. These promising results constitute important findings in the development of a bioremediation technology for the treatment of landfill leachates.

  1. Nitrogen Removal from Landfill Leachate by Microalgae

    Science.gov (United States)

    Pereira, Sérgio F. L.; Gonçalves, Ana L.; Moreira, Francisca C.; Silva, Tânia F. C. V.; Vilar, Vítor J. P.; Pires, José C. M.

    2016-01-01

    Landfill leachates result from the degradation of solid residues in sanitary landfills, thus presenting a high variability in terms of composition. Normally, these effluents are characterized by high ammoniacal-nitrogen (N–NH4+) concentrations, high chemical oxygen demands and low phosphorus concentrations. The development of effective treatment strategies becomes difficult, posing a serious problem to the environment. Phycoremediation appears to be a suitable alternative for the treatment of landfill leachates. In this study, the potential of Chlorella vulgaris for biomass production and nutrients (mainly nitrogen and phosphorus) removal from different compositions of a landfill leachate was evaluated. Since microalgae also require phosphorus for their growth, different loads of this nutrient were evaluated, giving the following N:P ratios: 12:1, 23:1 and 35:1. The results have shown that C. vulgaris was able to grow in the different leachate compositions assessed. However, microalgal growth was higher in the cultures presenting the lowest N–NH4+ concentration. In terms of nutrients uptake, an effective removal of N–NH4+ and phosphorus was observed in all the experiments, especially in those supplied with phosphorus. Nevertheless, N–NO3− removal was considered almost negligible. These promising results constitute important findings in the development of a bioremediation technology for the treatment of landfill leachates. PMID:27869676

  2. Nitrogen Removal from Landfill Leachate by Microalgae.

    Science.gov (United States)

    Pereira, Sérgio F L; Gonçalves, Ana L; Moreira, Francisca C; Silva, Tânia F C V; Vilar, Vítor J P; Pires, José C M

    2016-11-17

    Landfill leachates result from the degradation of solid residues in sanitary landfills, thus presenting a high variability in terms of composition. Normally, these effluents are characterized by high ammoniacal-nitrogen (N-NH₄⁺) concentrations, high chemical oxygen demands and low phosphorus concentrations. The development of effective treatment strategies becomes difficult, posing a serious problem to the environment. Phycoremediation appears to be a suitable alternative for the treatment of landfill leachates. In this study, the potential of Chlorella vulgaris for biomass production and nutrients (mainly nitrogen and phosphorus) removal from different compositions of a landfill leachate was evaluated. Since microalgae also require phosphorus for their growth, different loads of this nutrient were evaluated, giving the following N:P ratios: 12:1, 23:1 and 35:1. The results have shown that C. vulgaris was able to grow in the different leachate compositions assessed. However, microalgal growth was higher in the cultures presenting the lowest N-NH₄⁺ concentration. In terms of nutrients uptake, an effective removal of N-NH₄⁺ and phosphorus was observed in all the experiments, especially in those supplied with phosphorus. Nevertheless, N-NO₃(-) removal was considered almost negligible. These promising results constitute important findings in the development of a bioremediation technology for the treatment of landfill leachates.

  3. Landfills, Landfills, Published in 2003, Taylor County.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Landfills dataset, was produced all or in part from Published Reports/Deeds information as of 2003. It is described as 'Landfills'. Data by this publisher are...

  4. Determination of nonylphenol isomers in landfill leachate and municipal wastewater using steam distillation extraction coupled with comprehensive two-dimensional gas chromatography/time-of-flight mass spectrometry

    Science.gov (United States)

    Zhang, Caixiang; Eganhouse, Robert P.; Pontolillo, James; Cozzarelli, Isabelle M.; Wang, Yanxin

    2012-01-01

    4-Nonylphenols (4-NPs) are known endocrine disruptors and by-products of the microbial degradation of nonylphenol polyethoxylate surfactants. One of the challenges to understanding the toxic effects of nonylphenols is the large number of isomers that may exist in environmental samples. In order to attribute toxic effects to specific compounds, a method is needed for the separation and quantitation of individual nonylphenol isomers. The pre-concentration methods of solvent sublimation, solid-phase extraction or liquid–liquid extraction prior to chromatographic analysis can be problematic because of co-extraction of thousands of compounds typically found in complex matrices such as municipal wastewater or landfill leachate. In the present study, steam distillation extraction (SDE) was found to be an effective pre-concentration method for extraction of 4-NPs from leachate and wastewater, and comprehensive two-dimensional gas chromatography (GC × GC) coupled with fast mass spectral data acquisition by time-of-flight mass spectrometry (ToFMS) enhanced the resolution and identification of 4-NP isomers. Concentrations of eight 4-NP isomers were determined in leachate from landfill cells of different age and wastewater influent and effluent samples. 4-NP isomers were about 3 times more abundant in leachate from the younger cell than the older one, whereas concentrations in wastewater effluent were either below detection limits or <1% of influent concentrations. 4-NP isomer distribution patterns were found to have been altered following release to the environment. This is believed to reflect isomer-specific degradation and accumulation of 4-NPs in the aquatic environment.

  5. LANDFILL GAS CONVERSION TO LNG AND LCO{sub 2}. PHASE 1, FINAL REPORT FOR THE PERIOD MARCH 1998-FEBRUARY 1999

    Energy Technology Data Exchange (ETDEWEB)

    COOK,W.J.; NEYMAN,M.; SIWAJEK,L.A.; BROWN,W.R.; VAN HAUWAERT,P.M.; CURREN,E.D.

    1998-02-25

    Process designs and economics were developed to produce LNG and liquid carbon dioxide (CO{sub 2}) from landfill gas (LFG) using the Acrion CO{sub 2} wash process. The patented Acrion CO{sub 2} wash process uses liquid CO{sub 2} to absorb contaminants from the LFG. The process steps are compression, drying, CO{sub 2} wash contaminant removal and CO{sub 2} recovery, residual CO{sub 2} removal and methane liquefaction. Three flowsheets were developed using different residual CO{sub 2} removal schemes. These included physical solvent absorption (methanol), membranes and molecular sieves. The capital and operating costs of the flowsheets were very similar. The LNG production cost was around ten cents per gallon. In parallel with process flowsheet development, the business aspects of an eventual commercial project have been explored. The process was found to have significant potential commercial application. The business plan effort investigated the economics of LNG transportation, fueling, vehicle conversion, and markets. The commercial value of liquid CO{sub 2} was also investigated. This Phase 1 work, March 1998 through February 1999, was funded under Brookhaven National laboratory contract 725089 under the research program entitled ``Liquefied Natural Gas as a Heavy Vehicle Fuel.'' The Phase 2 effort will develop flowsheets for the following: (1) CO{sub 2} and pipeline gas production, with the pipeline methane being liquefied at a peak shaving site, (2) sewage digester gas as an alternate feedstock to LFG and (3) the use of mixed refrigerants for process cooling. Phase 2 will also study the modification of Acrion's process demonstration unit for the production of LNG and a market site for LNG production.

  6. Controlled landfill project, Yolo County, California

    Energy Technology Data Exchange (ETDEWEB)

    Augenstein, D.C.; Benemann, J.R. [Inst. for Environmental Management Inc., Palo Alto, CA (United States); Yazdani, R.; Kieffer, J.; Akau, H. [Yolo County Dept. of Public Works, Woodland, CA (United States)

    2004-07-01

    Controlled bioreactor landfill tests were conducted at the Central Landfill in Yolo County, California to determine how to maximize methane recovery for energy use while minimizing methane emissions to the atmosphere. Landfill gas has the potential to contribute 1 per cent to the total electricity supplies in the United States. The failure to use methane to its potential is due to unpredictability, variability and slow rates of production and low recovery factors of landfill methane. The main challenge lies in accelerating the biological decomposition and treatment of the municipal solid waste (MSW). The breakdown rate of MWS can be increased through the use of basic landfill biochemical engineering methods. This study demonstrated the influence of adding supplemental water and leachate to the MSW. Moisture, temperature and gas pressures were recorded throughout the waste mass. This study also focused on eliminating volatile organic compounds, reducing the costs for post-closure landfill care, improving the economics of scale for energy use, improving leachate quality and reducing the costs for off-site disposal of landfill leachate. It was shown that methane capture was maximized when a surface membrane was placed over a permeable layer and when the bioreactor was operated at a slight vacuum. Accelerated methane production and waste reduction were noted in the enhanced test cell. The first order rate constant for methanogenesis was about 0.45 per year. The control cell stopped producing gas after one year. 12 refs., 4 figs.

  7. GEOTECHNICAL DESIGN OF SOLID WASTE LANDFILL SITES

    Directory of Open Access Journals (Sweden)

    Suat AKBULUT

    2003-02-01

    Full Text Available Solid waste landfills are important engineering structures for protection of wastes, decrease of environmental pollution, and especially prevention of soil and water pollution. Solid wastes should conveniently be maintained in landfill areas to control environmental pollution caused by waste disposals. Until the middle of this century clay liners were used for maintenance of waste disposal, but it was observed that these liner systems were insufficient. Today thinner and less permeable liner systems are constructed by using synthetic materials. In this study, by evaluating the waste landfills, site assessment of landfills and construction of natural and synthetic liner systems were summarized respectively, and especially the design properties of these systems were examined intensively. Also, leachate collection and removal facilities, landfill gas collection unites, and final cover unites were evaluated in a detailed way.

  8. Estudo de compostos orgânicos em lixiviado de aterros sanitários por EFS e CG/EM Study of organic compounds in landfill leachate by SPE and GC/MSD

    Directory of Open Access Journals (Sweden)

    Irajá do Nascimento Filho

    2001-08-01

    Full Text Available The main purpose of this work was the qualitative study of organic compounds in landfill leachate. The samples were collected from a sanitary landfill located at Gravataí, a southern Brazilian city, that receive both, industrial and domestic refuse. The samples were submitted to solid phase extraction (SPE with XAD-4 resin as the stationary phase. The instrumental analysis was performed by Gas Chromatography with a Mass Spectrometry Detector (GC/MSD. The compounds achieved in the SPE extracts were tentatively identified by the GC/MS library. It was found several oxygen and nitrogen compounds like carboxylic acids, ketones, amines and amides. Sulfur compounds and phthalate esters are also identified.

  9. Quantifying capital goods for waste landfilling.

    Science.gov (United States)

    Brogaard, Line K; Stentsøe, Steen; Willumsen, Hans Christian; Christensen, Thomas H

    2013-06-01

    Materials and energy used for construction of a hill-type landfill of 4 million m(3) were quantified in detail. The landfill is engineered with a liner and leachate collections system, as well as a gas collection and control system. Gravel and clay were the most common materials used, amounting to approximately 260 kg per tonne of waste landfilled. The environmental burdens from the extraction and manufacturing of the materials used in the landfill, as well as from the construction of the landfill, were modelled as potential environmental impacts. For example, the potential impact on global warming was 2.5 kg carbon dioxide (CO2) equivalents or 0.32 milli person equivalents per tonne of waste. The potential impacts from the use of materials and construction of the landfill are low-to-insignificant compared with data reported in the literature on impact potentials of landfills in operation. The construction of the landfill is only a significant contributor to the impact of resource depletion owing to the high use of gravel and steel.

  10. Landfill stabilization focus area: Technology summary

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-06-01

    Landfills within the DOE Complex as of 1990 are estimated to contain 3 million cubic meters of buried waste. The DOE facilities where the waste is predominantly located are at Hanford, the Savannah River Site (SRS), the Idaho National Engineering Laboratory (INEL), the Los Alamos National Laboratory (LANL), the Oak Ridge Reservation (ORR), the Nevada Test Site (NTS), and the Rocky Flats Plant (RFP). Landfills include buried waste, whether on pads or in trenches, sumps, ponds, pits, cribs, heaps and piles, auger holes, caissons, and sanitary landfills. Approximately half of all DOE buried waste was disposed of before 1970. Disposal regulations at that time permitted the commingling of various types of waste (i.e., transuranic, low-level radioactive, hazardous). As a result, much of the buried waste throughout the DOE Complex is presently believed to be contaminated with both hazardous and radioactive materials. DOE buried waste typically includes transuranic-contaminated radioactive waste (TRU), low-level radioactive waste (LLW), hazardous waste per 40 CFR 26 1, greater-than-class-C waste per CFR 61 55 (GTCC), mixed TRU waste, and mixed LLW. The mission of the Landfill Stabilization Focus Area is to develop, demonstrate, and deliver safer,more cost-effective and efficient technologies which satisfy DOE site needs for the remediation and management of landfills. The LSFA is structured into five technology areas to meet the landfill remediation and management needs across the DOE complex. These technology areas are: assessment, retrieval, treatment, containment, and stabilization. Technical tasks in each of these areas are reviewed.

  11. Product specific emissions from municipal solid waste landfills

    DEFF Research Database (Denmark)

    Nielsen, Per Henning; Hauschild, Michael Zwicky

    1998-01-01

    For the inventory analysis of environmental impacts associated with products in LCA there is a great need for estimates of emissions from waste products disposed at municipal solid waste landfills (product specific emissions). Since product specific emissions can not be calculated or measured...... directly at the landfills, they must be estimated by modelling of landfill processes. This paper presents a landfill model based on a large number of assumptions and approximations concerning landfill properties, waste product properties and characteristics of various kinds of environmental protection...... systems (e.g. landfill gas combustion units and leachate treatment units). The model is useful for estimation of emissions from waste products disposed in landfills and it has been made operational in the computer tool LCA-LAND presented in a following paper. In the model, waste products are subdivided...

  12. Product specific emissions from municipal solid waste landfills

    DEFF Research Database (Denmark)

    Nielsen, Per Henning; Hauschild, Michael Zwicky

    1998-01-01

    directly at the landfills, they must be estimated by modelling of landfill processes. This paper presents a landfill model based on a large number of assumptions and approximations concerning landfill properties, waste product properties and characteristics of various kinds of environmental protection...... systems (e.g. landfill gas combustion units and leachate treatment units). The model is useful for estimation of emissions from waste products disposed in landfills and it has been made operational in the computer tool LCA-LAND presented in a following paper. In the model, waste products are subdivided......For the inventory analysis of environmental impacts associated with products in LCA there is a great need for estimates of emissions from waste products disposed at municipal solid waste landfills (product specific emissions). Since product specific emissions can not be calculated or measured...

  13. Quantification of methane emissions from 15 Danish landfills using the mobile tracer dispersion method

    Energy Technology Data Exchange (ETDEWEB)

    Mønster, Jacob [Department of Environmental Engineering, Technical University of Denmark, Miljøvej – Building 113, DK-2800 Lyngby (Denmark); Samuelsson, Jerker, E-mail: jerker.samuelsson@fluxsense.se [Chalmers University of Technology/FluxSense AB, SE-41296 Göteborg (Sweden); Kjeldsen, Peter [Department of Environmental Engineering, Technical University of Denmark, Miljøvej – Building 113, DK-2800 Lyngby (Denmark); Scheutz, Charlotte, E-mail: chas@env.dtu.dk [Department of Environmental Engineering, Technical University of Denmark, Miljøvej – Building 113, DK-2800 Lyngby (Denmark)

    2015-01-15

    Highlights: • Quantification of whole landfill site methane emission at 15 landfills. • Multiple on-site source identification and quantification. • Quantified methane emission from shredder waste and composting. • Large difference between measured and reported methane emissions. - Abstract: Whole-site methane emissions from 15 Danish landfills were assessed using a mobile tracer dispersion method with either Fourier transform infrared spectroscopy (FTIR), using nitrous oxide as a tracer gas, or cavity ring-down spectrometry (CRDS), using acetylene as a tracer gas. The landfills were chosen to represent the different stages of the lifetime of a landfill, including open, active, and closed covered landfills, as well as those with and without gas extraction for utilisation or flaring. Measurements also included landfills with biocover for oxidizing any fugitive methane. Methane emission rates ranged from 2.6 to 60.8 kg h{sup −1}, corresponding to 0.7–13.2 g m{sup −2} d{sup −1}, with the largest emission rates per area coming from landfills with malfunctioning gas extraction systems installed, and the smallest emission rates from landfills closed decades ago and landfills with an engineered biocover installed. Landfills with gas collection and recovery systems had a recovery efficiency of 41–81%. Landfills where shredder waste was deposited showed significant methane emissions, with the largest emission from newly deposited shredder waste. The average methane emission from the landfills was 154 tons y{sup −1}. This average was obtained from a few measurement campaigns conducted at each of the 15 landfills and extrapolating to annual emissions requires more measurements. Assuming that these landfills are representative of the average Danish landfill, the total emission from Danish landfills were calculated at 20,600 tons y{sup −1}, which is significantly lower than the 33,300 tons y{sup −1} estimated for the national greenhouse gas inventory for

  14. [Topical problems of sanitary and epidemiologic examination concerning projects of sanitary protection zones in airports].

    Science.gov (United States)

    Isayeva, A M; Zibaryov, E V

    2015-01-01

    The article covers data on major errors in sanitary protection zones specification for civil airports, revealed through sanitary epidemiologic examination. The authors focus attention on necessity to develop unified methodic approach to evaluation of aviation noise effects, when justifying sanitary protection zone of airports and examining sanitary and epidemiologic project documents.

  15. Generating CO(2)-credits through landfill in situ aeration.

    Science.gov (United States)

    Ritzkowski, M; Stegmann, R

    2010-04-01

    Landfills are some of the major anthropogenic sources of methane emissions worldwide. The installation and operation of gas extraction systems for many landfills in Europe and the US, often including technical installations for energy recovery, significantly reduced these emissions during the last decades. Residual landfill gas, however, is still continuously produced after the energy recovery became economically unattractive, thus resulting in ongoing methane emissions for many years. By landfill in situ aeration these methane emissions can be widely avoided both, during the aeration process as well as in the subsequent aftercare period. Based on model calculations and online monitoring data the amount of avoided CO(2-eq). can be determined. For an in situ aerated landfill in northern Germany, acting as a case study, 83-95% (depending on the kind and quality of top cover) of the greenhouse gas emission potential could be reduced under strictly controlled conditions. Recently the United Nations Framework Convention on Climate Change (UNFCCC) has approved a new methodology on the "Avoidance of landfill gas emissions by in situ aeration of landfills" (UNFCCC, 2009). Based on this methodology landfill aeration projects might be considered for generation of Certified Emission Reductions (CERs) in the course of CDM projects. This paper contributes towards an evaluation of the potential of landfill aeration for methane emissions reduction. Copyright 2009 Elsevier Ltd. All rights reserved.

  16. Characterization and Energy Generation of Sharda Landfill at Agra

    Directory of Open Access Journals (Sweden)

    Sohail Ayub

    2014-05-01

    Full Text Available Most of the global municipal solid waste is dumped in non regulated landfills and the generated methane is emitted to the atmosphere which has global warming potential. Some of the modern regulated landfills attempt to capture and utilize landfill gas. An attempt has been made in this study for the recovery of energy potential of Shadra site. This includes different methodologies to determine the feasibility of recovery project. The laboratory results show that the percentage by volume of methane is 51%. The landfill gas (LFG generation is very low (i.e. low-range recovery scenario and it is un-economical to recover such low flow gases produced in landfill. So, this reveals that flaring is only the option to reduce the global warming potential (GWP and also the problems of odour in the vicinity of landfill.

  17. Applying of Electrical Imaging Survey (EIS) to Evaluate Leachate Pollution in Underground Area of Informal Landfill

    DEFF Research Database (Denmark)

    Du, Song; Wang, Di; Mou, Zishen

    2014-01-01

    An informal landfill is an open dump that pollutes the underground environment because it lacks an impervious liner. The leakage of such a landfill is unidirectional and thus difficult to directly test. This study uses electrical imaging survey to evaluate the pollution of the underground...... environment of an informal landfill for municipal solid waste in Beijing. We hypothesize that every location has a specific resistivity resulting from the leachate. We use the membership function of fuzzy mathematics to quantitatively represent the pollution of the underground environment in the sanitary...

  18. Assessment of groundwater contamination by landfill leachate: a case in México.

    Science.gov (United States)

    Reyes-López, Jaime A; Ramírez-Hernández, Jorge; Lázaro-Mancilla, Octavio; Carreón-Diazconti, Concepción; Garrido, Miguel Martín-Loeches

    2008-01-01

    In México, uncontrolled landfills or open-dumps are regularly used as "sanitary landfills". Interactions between landfills/open-dumps and shallow unconfined aquifers have been widely documented. Therefore, evidence showing the occurrence of aquifer contamination may encourage Mexican decision makers to enforce environmental regulations. Traditional methods such as chemical analysis of groundwater, hydrological descriptions, and geophysical studies including vertical electrical sounding (VES) and ground penetrating radar (GPR) were used for the identification and delineation of a contaminant plume in a shallow aquifer. The Guadalupe Victoria landfill located in Mexicali is used as a model study site. This landfill has a shallow aquifer of approximately 1m deep and constituted by silty sandy soil that may favor the transport of landfill leachate. Geophysical studies show a landfill leachate contaminant plume that extends for 20 and 40 m from the SE and NW edges of the landfill, respectively. However, the zone of the leachate's influence stretches for approximately 80 m on both sides of the landfill. Geochemical data corroborates the effects of landfill leachate on groundwater.

  19. Landfilling: Environmental Issues

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund; Manfredi, Simone; Kjeldsen, Peter

    2011-01-01

    Waste disposed of in a landfill is by its nature different from the material found in the surroundings of the landfill and thereby the landfill may potentially affect the surrounding environment. This may be in terms of attracting or repelling flora and fauna from the area and through the emissio...

  20. Landfill leachate treatment in assisted landfill bioreactor

    Institute of Scientific and Technical Information of China (English)

    HE Pin-jing; QU Xian; SHAO Li-ming; LEE Duu-jong

    2006-01-01

    Landfill is the major disposal route of municipal solid waste(MSW) in most Asian countries. Leachate from landfill presents a strong wastewater that needs intensive treatment before discharge. Direct recycling was proposed as an effective alternative for leachate treatment by taking the landfill as a bioreactor. This process was proved not only considerably reducing the pollution potential of leachate, but also enhancing organic degradation in the landfill. However, as this paper shows, although direct leachate recycling was effective in landfilled MSW with low food waste fraction (3.5%, w/w), it failed in MSW containing 54% food waste, as normally noted in Asian countries. The initial acid stuck would inhibit methanogenesis to build up, hence strong leachate was yielded from landfill to threaten the quality of receiving water body. We demonstrated the feasibility to use an assisted bioreactor landfill, with a well-decomposed refuse layer as ex-situ anaerobic digester to reducing COD loading in leachate. By doing so, the refuse in simulated landfill column (2.3 m high) could be stabilized in 30 weeks while the COD in leachate reduced by 95%(61000 mg/L to 3000 mg/L). Meanwhile, the biogas production was considerably enhanced, signaling by the much greater amount and much higher methane content in the biogas.

  1. Detection and quantification of methane leakage from landfills

    Energy Technology Data Exchange (ETDEWEB)

    Ljungberg, Sven-Aake; Maartensson, Stig-Goeran (Univ. of Gaevle, Gaevle (Sweden)); Meijer, Jan-Erik; Rosqvist, Haakan (NSR AB, Helsingborg (Sweden))

    2009-03-15

    The purpose of this project was to detect gas leakage and to measure and quantify methane emission from landfills using modern remote sensing techniques. In this project, a handheld laser instrument and an IR camera were used. The overall objective was to develop cost-effective methods for detecting and quantifying methane emissions from landfills. There are many methods available for measuring the methane concentration in air, both from close-up and from long distances. Combined with the use of a tracer gas, the methane emission from entire landfills can be measured relatively accurately. A number of methods are used to detect leakage from parts of landfill surfaces, but there are few methods for quantifying leakage from sub-zones. Field measurements with the laser instrument and the IR camera were carried out at seven Swedish landfills and two landfills in France. The investigated surfaces at the Swedish landfills were divided into different zones, such as top surface, slope, crest and toe of slope. The field measurements in France were taken over entire landfills. The methane emission varied between the different landfills in the project, and also between the different landfill zones. The results from repeated field measurements indicated that a landfill with a final cap and a successful gas recovery system produces barely measurable emissions. The weak points at a landfill are generally slopes, including crests and toes of slopes. Where the covering of the waste is inadequate, leakage often occurs at lift joints and in areas where waste protrudes through the cover. Other weak points are deficiencies in the gas recovery system. Leachate systems can lead landfill gas and thereby cause methane leakage. Along with wind velocity and variations in atmospheric pressure, moisture content in the ground is an important factor that affects methane emissions from landfill surfaces. Results from field measurements of the same feature/surface at different points in time and

  2. Landfill methane emission mitigation – How to construct and document a full‐scale biocover system

    DEFF Research Database (Denmark)

    Kjeldsen, Peter; Scheutz, Charlotte

    2014-01-01

    Landfills receiving organic wastes produce biogas (landfill gas – LFG) containing methane (CH4). Landfills are significant sources of methane, which contributes to climate change. As an alternative to gas utilization systems or as a follow‐on technology when a gas utilization system gets non...... rate can be obtained in soils, compost and other materials, high enough to significant reduce the methane emission from landfills. The process has been scaled up by DTU Environment to a full‐scale implemented technology at two Danish landfills. Now the Danish government has decided to establish bio...

  3. Composition and source identification of deposits forming in landfill gas (LFG) engines and effect of activated carbon treatment on deposit composition.

    Science.gov (United States)

    Sevimoğlu, Orhan; Tansel, Berrin

    2013-10-15

    Compositions of deposits forming on engines parts operated with landfill gas (LFG) were analyzed. The deposit compositions were compared before and after the installation of activated carbon system for treatment of LFG. Deposits forming on the spark plugs had significantly higher levels of calcium, chromium, and nickel in comparison to those forming on the engine heads. The LFG contained about 9.5 ± 0.4 mg/m(3) total siloxanes, majority of which were octamethylcyclotetrasiloxane (D4) (5.0 ± 0.2 mg/m(3)), decamethylcyclopentasiloxane (D5) (2.9 ± 0.1 mg/m(3)) and hexamethyldisiloxane (L2) (1.6 ± 0.1 mg/m(3)). The samples collected from the engine heads before the activated carbon treatment of LFG had significantly high levels of silicon (149,400 ± 89,900 mg/kg) as well as calcium (70,840 ± 17,750 mg/kg), sulfur (42,500 ± 11,500 mg/kg), and zinc (22,300 ± 7200 mg/kg). After the activated carbon treatment, silicon levels decreased significantly; however, deposits had higher sulfur content (104,560 ± 68,100 mg/kg) indicating that the activated carbon released some sulfur during treatment. The analyses indicate that zinc and calcium originated from the additives in the lube oil while lead, aluminum, copper, nickel, iron, chromium were due to the engine wear.

  4. Landfilling: Concepts and Challenges

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund; Scharff, H.; Hjelmar, O.

    2011-01-01

    Landfilling of waste historically has been the main management route for waste, and in many parts of the world it still is. Landfills have developed from open polluting dumps to modern highly engineered facilities with sophisticated control measures and monitoring routines. However, in spite of all...... new approaches and technological advancement the landfill still is a long lasting accumulation of waste in the environment. Much of current landfill design and technology has been introduced as a reaction to problems encountered at actual landfills. The solution was in many cases sought in isolation...... to understand the concepts, the processes and the long-term aspects of landfilling. This chapter describes the main conceptual aspects of landfilling. The historical development is presented and key issues of time frames, mass balances and technical approaches are discussed. The environmental issues...

  5. Landfill site selection using combination of GIS and fuzzy AHP, a case study: Iranshahr, Iran.

    Science.gov (United States)

    Torabi-Kaveh, M; Babazadeh, R; Mohammadi, S D; Zaresefat, M

    2016-03-09

    One of the most important recent challenges in solid waste management throughout the world is site selection of sanitary landfill. Commonly, because of simultaneous effects of social, environmental, and technical parameters on suitability of a landfill site, landfill site selection is a complex process and depends on several criteria and regulations. This study develops a multi-criteria decision analysis (MCDA) process, which combines geographic information system (GIS) analysis with a fuzzy analytical hierarchy process (FAHP), to determine suitable sites for landfill construction in Iranshahr County, Iran. The GIS was used to calculate and classify selected criteria and FAHP was used to assess the criteria weights based on their effectiveness on selection of potential landfill sites. Finally, a suitability map was prepared by overlay analyses and suitable areas were identified. Four suitability classes within the study area were separated, including high, medium, low, and very low suitability areas, which represented 18%, 15%, 55%, and 12% of the study area, respectively.

  6. Landfill mining: Resource potential of Austrian landfills--Evaluation and quality assessment of recovered municipal solid waste by chemical analyses.

    Science.gov (United States)

    Wolfsberger, Tanja; Aldrian, Alexia; Sarc, Renato; Hermann, Robert; Höllen, Daniel; Budischowsky, Andreas; Zöscher, Andreas; Ragoßnig, Arne; Pomberger, Roland

    2015-11-01

    Since the need for raw materials in countries undergoing industrialisation (like China) is rising, the availability of metal and fossil fuel energy resources (like ores or coal) has changed in recent years. Landfill sites can contain considerable amounts of recyclables and energy-recoverable materials, therefore, landfill mining is an option for exploiting dumped secondary raw materials, saving primary sources. For the purposes of this article, two sanitary landfill sites have been chosen for obtaining actual data to determine the resource potential of Austrian landfills. To evaluate how pretreating waste before disposal affects the resource potential of landfills, the first landfill site has been selected because it has received untreated waste, whereas mechanically-biologically treated waste was dumped in the second. The scope of this investigation comprised: (1) waste characterisation by sorting analyses of recovered waste; and (2) chemical analyses of specific waste fractions for quality assessment regarding potential energy recovery by using it as solid recovered fuels. The content of eight heavy metals and the net calorific values were determined for the chemical characterisation tests. © The Author(s) 2015.

  7. A review on utilization of combustible waste gas (II):Landfill gas,flare gas,associated gas and coalbed methane%可燃废气利用技术研究进展(Ⅱ):填埋气、火炬气、伴生天然气和煤矿瓦斯

    Institute of Scientific and Technical Information of China (English)

    王一坤; 陈国辉; 雷小苗; 王长安; 邓磊; 车得福

    2014-01-01

    The utilization of combustible waste gas is an important way of energy conservation and emission reduction.The progress in utilization technologies of landfill gas,flare gas,associated gas and coalbed methane has been presented.Due to the very low utilization ratio and insufficient resourceful utilization of landfill gas,the waste landfill treatment of which the leachate treatment and efficient LFG extraction and utilization are the key technologies should be widely popularized.Generally,the flare gas is fired to provide heat which is then recycled by waste heat boiler.Sometimes it can be directly burned in gas turbine for power generation.With low yield,the associated gas can be used as the inj ection fluid for oil production,or for field power generation.When the yield is high and stable,the associated gas can be transported by pipe-lines,liquid natural gas (LNG)and compressed natural gas (CNG)ships.The optimal utilization of low concentration coalbed methane is for gas-steam combined cycle power generation,of which the power gen-eration efficiency can reach up to higher than 45%.Usually,the coalbed methane is applied as assistant air in mine-mouth power plants,for the technical requirements and cost of this method are the lowest.%可燃废气利用是实现我国节能减排的重要途径之一。介绍了目前填埋气、火炬气、伴生天然气和煤矿瓦斯几种可燃废气的利用技术和工业应用现状。其中:填埋气的利用率很低,资源化利用技术不足,需大力推广以渗滤液处理、高效LFG抽排及利用为核心的填埋垃圾处理工艺;火炬气通常引入燃油或燃气锅炉加以利用,也可以将火炬气燃烧后利用余热锅炉回收热量,或者作为中等热值的气体,直接引入燃气轮机燃烧发电;伴生天然气的产量不高时,可以将其回注驱油或就地发电,产量高且稳定时,可以采用管道输送、液化天然气(LNG)和压缩天然气(CNG

  8. Initial results of detected methane emissions from landfills in the Los Angeles Basin during the COMEX campaign by the Methane Airborne MAPper (MAMAP) instrument and a greenhouse gas in-situ analyser

    Science.gov (United States)

    Krautwurst, Sven; Gerilowski, Konstantin; Kolyer, Richard; Jonsson, Haflidi; Krings, Thomas; Horstjann, Markus; Leifer, Ira; Vigil, Sam; Buchwitz, Michael; Schüttemeyer, Dirk; Fladeland, Matthew M.; Burrows, John P.; Bovensmann, Heinrich

    2015-04-01

    Methane (CH4) is the second most important anthropogenic greenhouse gas beside carbon dioxide (CO2). Significant contributors to the global methane budget are fugitive emissions from landfills. Due to the growing world population, it is expected that the amount of waste and, therefore, waste disposal sites will increase in number and size in parts of the world, often adjacent growing megacities. Besides bottom-up modelling, a variety of ground based methods (e.g., flux chambers, trace gases, radial plume mapping, etc.) have been used to estimate (top-down) these fugitive emissions. Because landfills usually are large, sometimes with significant topographic relief, vary temporally, and leak/emit heterogeneously across their surface area, assessing total emission strength by ground-based techniques is often difficult. In this work, we show how airborne based remote sensing measurements of the column-averaged dry air mole fraction of CH4 can be utilized to estimate fugitive emissions from landfills in an urban environment by a mass balance approach. Subsequently, these emission rates are compared to airborne in-situ horizontal cross section measurements of CH4 taken within the planetary boundary layer (PBL) upwind and downwind of the landfill at different altitudes immediately after the remote sensing measurements were finished. Additional necessary parameters (e.g., wind direction, wind speed, aerosols, dew point temperature, etc.) for the data inversion are provided by a standard instrumentation suite for atmospheric measurements aboard the aircraft, and nearby ground-based weather stations. These measurements were part of the CO2 and Methane EXperiment (COMEX), which was executed during the summer 2014 in California and was co-funded by the European Space Agency (ESA) and the National Aeronautics and Space Administration (NASA). The remote sensing measurements were taken by the Methane Airborne MAPper (MAMAP) developed and operated by the University of Bremen and

  9. Quantification of methane emissions from 15 Danish landfills using the mobile tracer dispersion method

    DEFF Research Database (Denmark)

    Mønster, Jacob; Samuelsson, Jerker; Kjeldsen, Peter

    2015-01-01

    biocover installed. Landfills with gas collection and recovery systems had a recovery efficiency of 41-81%. Landfills where shredder waste was deposited showed significant methane emissions, with the largest emission from newly deposited shredder waste. The average methane emission from the landfills...

  10. Landfilling of waste: accounting of greenhouse gases and global warming contributions

    DEFF Research Database (Denmark)

    Manfredi, Simone; Tonini, Davide; Christensen, Thomas Højlund

    2009-01-01

    Accounting of greenhouse gas (GHG) emissions from waste landfilling is summarized with the focus on processes and technical data for a number of different landfilling technologies: open dump (which was included as the worst-case-scenario), conventional landfills with flares and with energy recove...

  11. Avaliação dos níveis de metais pesados em efluente líquido percolado do aterro sanitário de Paranavaí, Estado do Paraná, Brasil - DOI: 10.4025/actascihealthsci.v31i1.1154 Assessment of heavy metal levels in percolated liquid from sanitary landfill in Paranavaí, Paraná State, Brazil - DOI: 10.4025/actascihealthsci.v31i1.1154

    Directory of Open Access Journals (Sweden)

    Cynthia Algayer da Silva

    2009-05-01

    Full Text Available O percolado pode conter diversas substâncias químicas com características tóxicas, dentre elas os metais pesados oriundos de vários materiais provenientes de indústrias, atividades agrícolas, laboratórios, hospitais, residências. A contaminação por metais apresenta amplo espectro de toxicidade que inclui efeitos neurotóxicos, hepatóxicos, nefrotóxicos, teratogênicos, carcinogênicos ou mutagênicos. O objetivo deste trabalho foi a avaliação dos níveis de Cd, Cr, Cu, Mn, Ni, Pb e Zn do percolado gerado no aterro sanitário de Paranavaí - PR. As amostras foram coletadas a partir de setembro de 2006 a julho de 2007, em quatro pontos distintos nas lagoas de tratamento. Para detecção dos metais utilizou-se o espectrofotômetro de absorção atômica com chama. Os resultados foram comparados com os limites máximos de concentração de metais em efluentes líquidos estabelecidos pela Resolução 397/2008 - Conama (BRASIL, 2008. Verificou-se que os níveis dos metais analisados, com exceção do Pb, estão dentro dos limites permissíveis pela legislação ambiental.Percolated liquid may contain several chemical substances with toxic characteristics, among them heavy metals from industrial sources, agricultural activities, laboratories, hospitals and residences. Metal contamination presents a wide array of toxicities, such as neurotoxic, hepatotoxic, nephrotoxic, teratogenic, carcinogenic or mutagenic effects. The objective of this work was to assess the levels of Cd, Cr, Cu, Mn, Ni, Pb, and Zn in percolated liquid produced at the sanitary landfill in Paranavaí. The samples were collected from September of 2006 to July of 2007, at four distinct places of the treatment lake. An atomic absorption spectrophotometer with a burner was used to detect the metals. The results were compared with the maximum allowed values for metal concentration present in Resolution 397/2008 – Conama (BRAZIL, 2008. It was verified that the level of

  12. 城市生活垃圾填埋的产气过程实验室模拟%Study on the Generation Process of Landfill Gas by Laboratory Simulation

    Institute of Scientific and Technical Information of China (English)

    刘富强; 唐薇; 聂永丰

    2001-01-01

    The laboratory simulation was adopted to study the generationprocess of landfill gas,and the characteristics of the gas production and gas composition for the typical MSW in China were discussed.Moreover,it is demonstrated that the gas generation amount can be dramatically increased by leachate recharging.%本文探讨了如何在实验室中建立比较符合填埋场实际情况的垃圾填埋模拟实验系统及实验方法;研究了我国以食品垃圾为主要成分的城市垃圾在填埋模拟系统中的产气量和气体组成的变化规律;证明了渗滤液回灌能够明显增加填埋系统的产气量。

  13. Trends in sustainable landfilling in Malaysia, a developing country.

    Science.gov (United States)

    Fauziah, S H; Agamuthu, P

    2012-07-01

    In Malaysia, landfills are being filled up rapidly due to the current daily generation of approximately 30,000 tonnes of municipal solid waste. This situation creates the crucial need for improved landfilling practices, as sustainable landfilling technology is yet to be achieved here. The objective of this paper is to identify and evaluate the development and trends in landfilling practices in Malaysia. In 1970, the disposal sites in Malaysia were small and prevailing waste disposal practices was mere open-dumping. This network of relatively small dumps, typically located close to population centres, was considered acceptable for a relatively low population of 10 million in Malaysia. In the 1980s, a national programme was developed to manage municipal and industrial wastes more systematically and to reduce adverse environmental impacts. The early 1990s saw the privatization of waste management in many parts of Malaysia, and the establishment of the first sanitary landfills for MSW and an engineered landfill (called 'secure landfill' in Malaysia) for hazardous waste. A public uproar in 2007 due to contamination of a drinking water source from improper landfilling practices led to some significant changes in the government's policy regarding the country's waste management strategy. Parliament passed the Solid Waste and Public Cleansing Management (SWPCM) Act 2007 in August 2007. Even though the Act is yet to be implemented, the government has taken big steps to improve waste management system further. The future of the waste management in Malaysia seems somewhat brighter with a clear waste management policy in place. There is now a foundation upon which to build a sound and sustainble waste management and disposal system in Malaysia.

  14. Landfill Top Covers

    DEFF Research Database (Denmark)

    Scheutz, Charlotte; Kjeldsen, Peter

    2011-01-01

    is landscaped in order to fit into the surrounding area/environment or meet specific plans for the final use of the landfill. To fulfill the above listed requirements landfill covers are often multicomponent systems which are placed directly on top of the waste. The top cover may be placed immediately after...... the landfill section has been filled or several years later depending on the settlement patterns. Significant differential settlements may disturb the functioning of the top cover. The specific design of the cover system depends on the type of waste landfilled (municipal, hazardous, or inert waste...... however, top covers may be the only environmental protection measure. In some landfill regulations (for instance the Subtitle D landfills receiving municipal solid waste in the USA) it is required to minimize infiltration into the waste layers. Therefore top covers containing liner components...

  15. Environmental and Geologic Assessment to Locate a Manual Sanitary Refill in the Mene de Mauroa Church, Venezuela

    Directory of Open Access Journals (Sweden)

    Simón E. Morales-Soto

    2016-05-01

    Full Text Available The inadequate disposal of urban wastes is nowadays an environmental issue having a negative impact on several communities. The objective of this investigation is to select the most adequate place to locate a manual sanitary landfill to dump the solid wastes from the Mene de Mauroa (Venezuela church. A total of 19 variables were subjected to a series of evaluations applying the scale and weight method. This method consists of comparing the variables according to their level of priority. The area with the highest score is to be selected as the most adequate area for the sanitary landfill according to a weighting scale of 5 values for the scoring of each variable.

  16. Aerobic landfill bioreactor

    Science.gov (United States)

    Hudgins, Mark P; Bessette, Bernard J; March, John; McComb, Scott T.

    2000-01-01

    The present invention includes a method of decomposing municipal solid waste (MSW) within a landfill by converting the landfill to aerobic degradation in the following manner: (1) injecting air via the landfill leachate collection system (2) injecting air via vertical air injection wells installed within the waste mass; (3) applying leachate to the waste mass using a pressurized drip irrigation system; (4) allowing landfill gases to vent; and (5) adjusting air injection and recirculated leachate to achieve a 40% to 60% moisture level and a temperature between 120.degree. F. and 140.degree. F. in steady state.

  17. Woody plant roots fail to penetrate a clay-lined landfill: Managment implications

    Science.gov (United States)

    Robinson, George R.; Handel, Steven N.

    1995-01-01

    In many locations, regulatory agencies do not permit tree planting above landfills that are sealed with a capping clay, because roots might penetrate the clay barrier and expose landfill contents to leaching. We find, however, no empirical or theoretical basis for this restriction, and instead hypothesize that plant roots of any kind are incapable of penetrating the dense clays used to seal landfills. As a test, we excavated 30 trees and shrubs, of 12 species, growing over a clay-lined municipal sanitary landfill on Staten Island, New York. The landfill had been closed for seven years, and featured a very shallow (10 to 30-cm) soil layer over a 45-cm layer of compacted grey marl (Woodbury series) clay. The test plants had invaded naturally from nearby forests. All plants examined—including trees as tall as 6 m—had extremely shallow root plates, with deformed tap roots that grew entirely above and parallel to the clay layer. Only occasional stubby feeder roots were found in the top 1 cm of clay, and in clay cracks at depths to 6 cm, indicating that the primary impediment to root growth was physical, although both clay and the overlying soil were highly acidic. These results, if confirmed by experimental research should lead to increased options for the end use of many closed sanitary landfills.

  18. Environmental and Geologic Assessment to Locate a Manual Sanitary Refill in the Mene de Mauroa Church, Venezuela

    OpenAIRE

    Simón E. Morales-Soto; Alina Rodríguez-Infante

    2016-01-01

    The inadequate disposal of urban wastes is nowadays an environmental issue having a negative impact on several communities. The objective of this investigation is to select the most adequate place to locate a manual sanitary landfill to dump the solid wastes from the Mene de Mauroa (Venezuela) church. A total of 19 variables were subjected to a series of evaluations applying the scale and weight method. This method consists of comparing the variables according to their level of priority. The ...

  19. Potential for electric power generation and gas lighting through the use of biogas from landfill; Potencial de geracao de energia eletrica e iluminacao a gas por meio do aproveitamento de biogas proveniente de aterro sanitario

    Energy Technology Data Exchange (ETDEWEB)

    Pecora, V.; Figueiredo, N.J.V.; Coelho, S.T. [Universidade de Sao Paulo (CENBIO/USP), SP (Brazil). Inst. de Eletrotecnica e Energia. Centro Nacional de Referencia em Biomassa; Velazquez, S.M.S.G. [Universidade Presbiteriana Mackenzie, Sao Paulo, SP (Brazil). Dept. de Engenharia Mecanica

    2008-07-01

    Global warming has become an important topic of global discussions due to the increasing concentration of greenhouse gases in the atmosphere, coming mainly on the burning of fossil fuels. The search for alternatives that promote the replacement of these fuels by renewable sources has been intensified in recent decades and several studies are being undertaken to ensure, for example, the efficient management and minimization of solid waste, seen as a serious problem of large Brazilians urban centers nowadays. The incorrect final disposal of solid waste entails in uncontrolled emission of gases, generated in its decomposition, and the infiltration of percolated liquid in the soil; resulting on negative impacts on people's health and on the environment, also contributing to the worsening of the greenhouse effect. In this context, this article presents the project of exploitation of biogas from the treatment of urban solid waste for generating electric power and gas lighting, developed by the Brazilian Reference Center on Biomass (CENBIO), at Caieiras Waste Treatment Centre (Essencis CTR - Caieiras). This paper describes the activities developed by CENBIO for determining the potential of electricity generation and gas lighting and, through the results, may be defined other landfills for implementation of a similar project. The use of biogas for energy generation provides the rational use of available sources, reducing dependence on external energy sources and, as the conversion of methane into carbon dioxide, promotes the reduction of emissions of greenhouse gases, since methane has the global warming potential about 20 times higher when compared to carbon dioxide. (author)

  20. LANDFILL OPERATION FOR CARBON SEQUESTRATION AND MAXIMUM METHANE EMISSION CONTROL

    Energy Technology Data Exchange (ETDEWEB)

    Don Augenstein; Ramin Yazdani; Rick Moore; Michelle Byars; Jeff Kieffer; Professor Morton Barlaz; Rinav Mehta

    2000-02-26

    Controlled landfilling is an approach to manage solid waste landfills, so as to rapidly complete methane generation, while maximizing gas capture and minimizing the usual emissions of methane to the atmosphere. With controlled landfilling, methane generation is accelerated to more rapid and earlier completion to full potential by improving conditions (principally moisture, but also temperature) to optimize biological processes occurring within the landfill. Gas is contained through use of surface membrane cover. Gas is captured via porous layers, under the cover, operated at slight vacuum. A field demonstration project has been ongoing under NETL sponsorship for the past several years near Davis, CA. Results have been extremely encouraging. Two major benefits of the technology are reduction of landfill methane emissions to minuscule levels, and the recovery of greater amounts of landfill methane energy in much shorter times, more predictably, than with conventional landfill practice. With the large amount of US landfill methane generated, and greenhouse potency of methane, better landfill methane control can play a substantial role both in reduction of US greenhouse gas emissions and in US renewable energy. The work described in this report, to demonstrate and advance this technology, has used two demonstration-scale cells of size (8000 metric tons [tonnes]), sufficient to replicate many heat and compaction characteristics of larger ''full-scale'' landfills. An enhanced demonstration cell has received moisture supplementation to field capacity. This is the maximum moisture waste can hold while still limiting liquid drainage rate to minimal and safely manageable levels. The enhanced landfill module was compared to a parallel control landfill module receiving no moisture additions. Gas recovery has continued for a period of over 4 years. It is quite encouraging that the enhanced cell methane recovery has been close to 10-fold that experienced with

  1. State of the art design: A closure system for the largest hazardous waste landfill at the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Bartlett, S.F.; Serrato, M.G.; McMullin, S.R.

    1992-12-31

    This paper discusses the cover system proposed for a 55-acre, hazardous waste closure of the sanitary landfill at the Savannah River Site, near Aiken, South Carolina. The proposed cover system has been designed to accommodate a significant amount of post-closure settlement while maintaining a permeability of 1 {times} 10{sup {minus}7} cm/s or less throughout its 30-year, regulatory lifetime. A composite cover consisting of a geomembrane (GM) underlain by a geosynthetic clay liner (GCL) was selected because of its extremely low permeability, ability to elongate without tearing, and capacity to ``self-heal`` if punctured. These characteristics will enable the cover system to accommodate differential settlement without cracking or tearing, this providing long-term protection with minimal maintenance. Also, to improve the ability of the cover system to span voids that may develop in the underlying waste, a geogrid has been included in the foundation layer. A gas vent layer has been included to allow for the safe collection and venting of landfill gases.

  2. State of the art design: A closure system for the largest hazardous waste landfill at the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Bartlett, S.F.; Serrato, M.G.; McMullin, S.R.

    1992-01-01

    This paper discusses the cover system proposed for a 55-acre, hazardous waste closure of the sanitary landfill at the Savannah River Site, near Aiken, South Carolina. The proposed cover system has been designed to accommodate a significant amount of post-closure settlement while maintaining a permeability of 1 [times] 10[sup [minus]7] cm/s or less throughout its 30-year, regulatory lifetime. A composite cover consisting of a geomembrane (GM) underlain by a geosynthetic clay liner (GCL) was selected because of its extremely low permeability, ability to elongate without tearing, and capacity to self-heal'' if punctured. These characteristics will enable the cover system to accommodate differential settlement without cracking or tearing, this providing long-term protection with minimal maintenance. Also, to improve the ability of the cover system to span voids that may develop in the underlying waste, a geogrid has been included in the foundation layer. A gas vent layer has been included to allow for the safe collection and venting of landfill gases.

  3. 准好氧填埋工艺中通气管径对垃圾填埋气(LFG)影响研究及空气热力学计算%Impact of aeration conduit diameter on production of landfill gas in a semi- aerobic landfill

    Institute of Scientific and Technical Information of China (English)

    杜松; 金晶; 牟子申; 王迪; 赵瑞江; 崔宝山

    2011-01-01

    针对我国土地资源有限、垃圾产生量大的特点,准好氧填埋工艺逐渐成为中小型城市治理固体废物污染的首选技术.该工艺中,进入填埋堆体的空气量对垃圾填埋气(LFG)的产生及组分有重要的影响.为了确定准好氧填埋结构中竖直导气管与渗滤液导排主管直径的合理比例,在涿州市生活垃圾处理场建立了中试装置进行模拟准好氧填埋试验,并设置了直径分别为100、150、200ram的三种通气管(以下分别表示为DN100、DN150、DN200)与渗滤液导排管相连接,连续10周监测LFG中O2、CO2和CH4的体积分数,最后用热力学原理对数据进行数学计算和分析.结果表明,DN100填埋装置内,LFG中的O2无论是最终体积分数还是上升趋势都明显高于其他装置,在温室气体减排方面,CH4和CO2也得到了更为有效的抑制.通过理论计算可知,DN100、DN150和DN200的通气管排出气体量比为2:3:4,由于进气情况相同,因此,DN100的通气管向填埋堆体内部传输空气量最多.%Semi-aerobic landlfilling is becoming the main technology to solve the solid waste pollution problem in some medium and small cities in China because of land resource limitation and the large amount of garbage. In this technology, the amount of air which enters the landfill site has great impact on the generation and composition of landfill gas (LFG). We set up pilot plants to simulate semi-aerobic landfill technology at the Zhuozhou municipal solid waste landfill site. Three different diameters of aeration conduits, DN100, DN150 and DN200 ( 100mm, 150mm and 200mm ) were connected to the leachate drainage pipe. The concentration of gases in the LFG was monitored for 10 weeks continuously. The results show that the concentration and the tendency of O2 in LFG coming from the plant with the DN100 aeration conduit are much higher than that from the other two plants. The greenhouse gases CH4 and CO2 have been controlled more

  4. Are closed landfills free of CH_{4} emissions? A case study of Arico's landfill, Tenerife, Canary Islands

    Science.gov (United States)

    Barrancos, José; Cook, Jenny; Phillips, Victoria; Asensio-Ramos, María; Melián, Gladys; Hernández, Pedro A.; Pérez, Nemesio M.

    2016-04-01

    Landfills are authentic chemical and biological reactors that introduce in the environment a wide amount of gas pollutants (CO2, CH4, volatile organic compounds, etc.) and leachates. Even after years of being closed, a significant amount of landfill gas could be released to the atmosphere through the surface in a diffuse form, also known as non-controlled emission. The study of the spatial-temporal distribution of diffuse emissions provides information of how a landfill degassing takes place. The main objective of this study was to estimate the diffuse uncontrolled emission of CH4 into the atmosphere from the closed Arico's landfill (0.3 km2) in Tenerife Island, Spain. To do so, a non-controlled biogenic gas emission survey of nearly 450 sampling sites was carried out during August 2015. Surface gas sampling and surface landfill CO2 efflux measurements were carried out at each sampling site by means of a portable non-dispersive infrared spectrophotometer (NDIR) model LICOR Li800 following the accumulation chamber method. Landfill gases, CO2 and CH4, were analyzed using a double channel VARIAN 4900 micro-GC. The CH4 efflux was computed combining CO2 efflux and CH4/CO2 ratio in the landfill's surface gas. To quantify the total CH4 emission, CH4 efflux contour map was constructed using sequential Gaussian simulation (sGs) as interpolation method. The total diffuse CH4 emission was estimated in 2.2 t d-1, with CH4 efflux values ranging from 0-922 mg m-2 d-1. This type of studies provides knowledge of how a landfill degasses and serves to public and private entities to establish effective systems for extraction of biogas. This aims not only to achieve higher levels of controlled gas release from landfills resulting in a higher level of energy production but also will contribute to minimize air pollution caused by them.

  5. A simple model for the distribution and fate of organic chemicals in a landfill: MOCLA

    DEFF Research Database (Denmark)

    Kjeldsen, Peter; Christensen, Thomas Højlund

    2001-01-01

    of degradation and transformation in the landfill. Local equilibrium is assumed for the distribution of the chemicals in the landfill as expressed by Henry’s Law for the leachate-gas interface, and by the linear partition coefficient based on the waste solid organic carbon content for the waste......A simple mathematical model (MOCLA: Model for Organic Chemicals in Landfills) is presented, describing the distribution of organic chemicals between leachate, gas and solid waste. The model also predicts the fate of the chemicals in terms of emissions with leachate and landfill gas and in terms......-leachate interface. Degradation of the chemicals is expressed as a first order reaction. Annual specific leachate and gas generation data in combination with data on landfill area and volume allow for prediction of main emission routes. Model simulations involving two landfill scenarios for a number of chemicals...

  6. Landfill Site Selection by AHP Based Multi-criteria Decision Making Tool: A Case Study in Kolkata, India

    Science.gov (United States)

    Majumdar, Ankush; Hazra, Tumpa; Dutta, Amit

    2017-07-01

    This work presents a Multi-criteria Decision Making (MCDM) tool to select a landfill site from three candidate sites proposed for Kolkata Municipal Corporation (KMC) area that complies with accessibility, receptor, environment, public acceptability, geological and economic criteria. Analytical Hierarchy Process has been used to solve the MCDM problem. Suitability of the three sites (viz. Natagachi, Gangajoara and Kharamba) as landfills as proposed by KMC has been checked by Landfill Site Sensitivity Index (LSSI) as well as Economic Viability Index (EVI). Land area availability for disposing huge quantity of Municipal Solid Waste for the design period has been checked. Analysis of the studied sites show that they are moderately suitable for landfill facility construction as both LSSI and EVI scores lay between 300 and 750. The proposed approach represents an effective MCDM tool for siting sanitary landfill in growing metropolitan cities of developing countries like India.

  7. Modelling biogas production of solid waste: application of the BGP model to a synthetic landfill

    Science.gov (United States)

    Rodrigo-Ilarri, Javier; Segura-Sobrino, Francisco

    2013-04-01

    Production of biogas as a result of the decomposition of organic matter included on solid waste landfills is still an issue to be understood. Reports on this matter are rarely included on the engineering construction projects of solid waste landfills despite it can be an issue of critical importance while operating the landfill and after its closure. This paper presents an application of BGP (Bio-Gas-Production) model to a synthetic landfill. The evolution in time of the concentrations of the different chemical compounds of biogas is studied. Results obtained show the impact on the air quality of different management alternatives which are usually performed in real landfills.

  8. Analysis of the generation of electric energy through the use of biogas obtained from sanitary fillings in Mexico; Analisis de la generacion de energia electrica a traves de biogas procedente de rellenos sanitarios en Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Cerda Sauvage, Tania Kalinka [Facultad de Ingenieria, Universidad Nacional Autonoma de Mexico, Mexico, D.F. (Mexico)

    2004-06-15

    Through this work a theoretical analysis conducted for the use of biogas obtained from sanitary landfills for the generation of electrical energy is presented, as well as the evaluation of the main elements that limit or favor the development of this technology in our country. In the introductory part of this work are presented some causes considered have favored the development of technologies as the one proposed here. In the first part it is exposed what the biogas is and what conditions are necessary for its production, which explains the production of biogas in the sanitary landfills, in addition, describes the distribution of the solid residues that give raise to the present situation of the sanitary landfills and the biogas production process in these. The work continues with a description of the electrical energy generation process through the gas originated in sanitary landfills, indicating the necessary conditions in order that the filling complies with its basic functions; following our process until obtaining the final item, electrical energy. For the description of the process and to analyze some factors that take part, it is advisable to include the main aspects of a plant located in Monterrey that occupies this technology. This project shows project shows off in a tangible form the barriers that this technology faces, as well as its main advantages and disadvantages. Are exposed the limiting factors of this technology in technological, economic, political and social aspects, the barriers that can and must overcome as well as the reasons that justify the effort to overcome them. Finally are presented the conclusions it arrives, as well as the commentaries and suggestions in respect to the subject. [Spanish] A traves de este trabajo se expone un analisis teorico efectuado al uso de biogas extraido de rellenos sanitarios para la generacion de energia electrica, asi como evaluar los principales elementos que limitan o favorecen el desarrollo de esta

  9. Microbial reduction of methane emissions. Subproject 1: Development of a biofilter system for the degradation of methane, odours and trace gases for actively vented landfills. Subproject 2: Development of a biofilter system for the degradation of methane, odours and trace gases for passively vented landfills. Subproject 3: Planning, development and realisation of medium and large scale biofilter plants at active and passive gas drainage systems. Final report; Mikrobielle Verminderung von Methanemissionen. Teilvorhaben 1: Entwicklung eines Biofilterverfahrens zum Abbau von Methan, Geruechen und Spurengasen bei der aktiven Deponieentgasung. Teilvorhaben 2: Entwicklung eines Biofilterverfahrens zum Abbau von Methan, Geruechen und Spurengasen bei der passiven Deponieentgasung. Teilvorhaben 3: Planung, Entwicklung und Realisation halb- und grosstechnischer Biofilteranlagen an aktiven und passiven Entgasungssystemen. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Stegmann, R.; Streese, J.; Dammann, Bernd; Gebert, J.; Groengroeft, A.; Miehlich, G.; Schulze, H.; Berndt, M.

    2003-07-01

    Old landfills may emit considerable amounts of methane, carbon dioxide and trace gases. However, gas flow rate and methane content are usually too low for energetic utilization or flaring of the landfill gas. Microbial degradation is considered an alternative treatment for the reduction of methane emissions from those sites. The project aimed in the investigation of the suitability of actively vented biofilters for this purpose and the collection of operational experience and dimensioning data for large scale applications of the process. Different experimental plants were operated in laboratory scale (filter volume: 60 L) and container scale (filter volume: 4 m{sup 3}). The laboratory scale plant was operated with synthetic methane, whereas the container scale plant was set up at an old landfill and operated with real landfill gas. For each plant, the gas was diluted with ambient air prior to feeding into the closed biofilters, thus sufficient oxygen for methane oxidation was present throughout the filter material. At first, fine-grained compost as biofilter material was investigated. A biofilter unit of 15 m{sup 3} size containing porous clay pellets as filter material was integrated into the recultivation layer of a Hamburg harbour sludge landfill. The parameters of landfill gas emission as well as the abiotic parameters of biofilter operation were monitored by a high-resolution automatic data collection system and gas distribution and gas emissions via the biofilter surface measured regularly. In addition, microbiological laboratory studies and studies concerning physical questions of biofilter operations were conducted. (orig.)

  10. Use of the Geographic Information System and Analytic Hierarchy Process for Municipal Solid Waste Landfill Site Selection: A Case Study of Najafabad, Iran

    Directory of Open Access Journals (Sweden)

    A. Afzali

    2014-03-01

    Full Text Available Following technological advancements and integrated municipal solid waste management in recent decades, various methods such as recycling, biotreatment, thermal treatment, and sanitary landfills have been developed and employed. Creating sanitary landfills is a major strategy in the integrated solid waste management hierarchy. It is cheaper and thus more common than other disposal methods. Selecting a suitable solid waste landfill site can prevent adverse ecological and socioeconomic effects. Landfill site selection requires the analysis of spatial data, regulations, and accepted criteria. The present study aimed to use the geographic information system and the analytic hierarchy process to identify an appropriate landfill site for municipal solid wastes in Najafabad (Isfahan, Iran. Environmental and socioeconomic criteria were evaluated through different information layers in the Boolean and fuzzy logics. The analytical hierarchy process was applied for weighing the fuzzy information layers. Subsequently, two suitable sites were identified by superimposing the maps from the Boolean and fuzzy logics and considering the minimum required landfill area for 20 years. However, proximity of these two sites to Tiran (a nearby city made them undesirable landfill sites for Najafabad. Therefore, due to the existing restrictions in Najafabad, the possibility of creating landfill sites in common with adjacent cities should be further investigated.

  11. IJER@2014 Page 57 Disposal Criteria of Bhanpur Solid Waste Landfill Site: Investigation and Suggestions

    Directory of Open Access Journals (Sweden)

    Tapas Dasgpta

    2014-03-01

    Full Text Available The solid waste management and design assist waste management officials in developing and encouraging environmentally sound methods for the disposal of "nonhazardous" solid waste. Promulgated under the authority of municipal act, the Municipal Solid Waste Landfill (MSWLF regulation act establish a framework for planning and implementing municipal solid waste landfill programs at the state and local levels. This framework sets minimum standards for protecting human health and the environment, while allowing states to develop more flexible MSWLF criteria. Intension to mitigate or expeditiously remediate potential adverse environmental impacts resulting from municipal landfills. However, other regulations existed prior to the revised MSWLF standards discussed in this module. The promulgation Criteria for Classification of Solid Waste Disposal Facilities and Practices. The established regulatory standards to satisfy the minimum national performance criteria for sanitary landfills governs only those solid waste disposal facilities and practices that do not meet the definition of a MSWLF. Such facilities include waste piles, industrial nonhazardous waste landfills, surface impoundments, and land application units. Environmental Protect Authority (EPA modified address the fact that these non-municipal non-hazardous wastes landfills may receive Conditionally Exempt Small Quantity Generator (CESQG hazardous waste, further clarify that construction and demolition landfills may receive residential lead-based paint waste as Solid Waste Disposal Facilities without for MSWLFs as long as all conditions are met.

  12. Solid waste management in Croatia in response to the European Landfill Directive.

    Science.gov (United States)

    Stanic-Maruna, Ira; Fellner, Johann

    2012-08-01

    The European Landfill Directive 99/31/EC represents the most influential piece of waste legislation on the management of municipal solid waste. In addition to technical standards regarding the design and location of landfills, it calls for a decrease in the amount of biodegradable waste landfilled. In order to meet the reduction targets set in the Landfill Directive, national solid waste strategies need to be changed. This article outlines the impact of the Landfill Directive on the Croatian waste management strategy and discusses the key challenges of its implementation. In addition, three scenarios of future waste management (mechanical biological pre-treatment, waste-to-energy and landfilling) have been investigated and evaluated regarding environmental impacts and affordability. The results of the analysis show that Croatia has transposed the said Directive into its own legislation in an exemplary way. The developed national waste management strategy foresees the set up of a separate collection of recyclables, waste pre-treatment of MSW, as well as the upgrading of existing disposal sites to sanitary landfills. However, the practical progress of carrying out provisions implemented on paper is lagging behind. Concerning the investigated scenarios the results of the evaluation indicate that mechanical biological pre-treatment in conjunction with separate collection of recyclables appears to be the most feasible option (in terms of economic and ecologic parameters). This result is in line with the proposed national waste management strategy.

  13. A framework for assessment and characterisation of municipal solid waste landfill leachate: an application to the Turbhe landfill, Navi Mumbai, India.

    Science.gov (United States)

    Mishra, Harshit; Rathod, Merwan; Karmakar, Subhankar; Kumar, Rakesh

    2016-06-01

    Rapid industrialisation, growing population and changing lifestyles are the root causes for the generation of huge amounts of solid waste in developing countries. In India, disposal of municipal solid waste (MSW) through open dumping is the most common waste disposal method. Unfortunately, leachate generation from landfill is high due to the prolonged and prominent monsoon season in India. As leachate generation rate is high in most of the tropical countries, long-term and extensive monitoring efforts are expected to evaluate actual environmental pollution potential due to leachate contamination. However, the leachate characterisation involves a comprehensive process, which has numerous shortcomings and uncertainties possibly due to the complex nature of landfilling process, heterogeneous waste characteristics, widely varying hydrologic conditions and selection of analytes. In order to develop a sustainable MSW management strategy for protecting the surface and ground water resources, particularly from MSW landfill leachate contamination, assessment and characterisation of leachate are necessary. Numerous studies have been conducted in the past to characterise leachate quality from various municipal landfills; unfortunately, none of these propose a framework or protocol. The present study proposes a generic framework for municipal landfill leachate assessment and characterisation. The proposed framework can be applied to design any type of landfill leachate quality monitoring programme and also to facilitate improved leachate treatment activities. A landfill site located at Turbhe, Navi Mumbai, India, which had not been investigated earlier, has been selected as a case study. The proposed framework has been demonstrated on the Turbhe landfill site which is a comparatively new and the only sanitary landfill in Navi Mumbai.

  14. Sanitary survey rapport 2: Nissum Bredning

    DEFF Research Database (Denmark)

    Larsen, Martin Mørk; Jakobsen, Hans Henrik; Göke, Cordula

    .3and the associated sampling plan are required to be based on so-called ‘sanitary surveys’. A sanitary survey is an assessment of the interactions between potential sources of microbial pollution, climate conditions and oceanography in the area. The EU Commission guidance for making a sanitary...... survey formed the basis for this report. However, in certain cases, the Danish practice for microbiological sampling frequency and classification made previously on the basis of this, as described in ‘muslingebekendtgørelsen’ is summarized in Appendix 13. The report covers production areas P1, P2, P3...... is determined in samples of mussels, etc. taken at different sampling points within each area. The report points to the most precautionary fixed sampling points for future monitoring In summary, the sanitary survey of Nissum Broads identifies an area that in general is a microbial homogeneous, stable...

  15. Performance of bioreactor landfill with waste mined from a dumpsite.

    Science.gov (United States)

    Karthikeyan, Obuli P; Swati, M; Nagendran, R; Joseph, Kurian

    2007-12-01

    Emissions from landfills via leachate and gas are influenced by state and stability of the organic matter in the solid waste and the environmental conditions within the landfill. This paper describes a modified, ecologically sound waste treatment technique, where municipal solid waste is anaerobically treated in a lysimeter-scale landfill bioreactor with leachate recirculation to enhance organic degradation. The results demonstrate a substantial decrease in organic matter (BOD 99%, COD 88% and TOC 81%) and a clear decrease in nutrient concentrations especially ammonia (85%) over a period of 1 year with leachate recirculation.

  16. Sanitary-hygienic and ecological aspects of beryllium production

    Energy Technology Data Exchange (ETDEWEB)

    Dvinskykh, E.M.; Savchuk, V.V.; Sidorov, V.L.; Slobodin, D.B.; Tuzov, Y.V. [Ulba Metallurgical Plant, Ust-Kamenogorsk (Kazakhstan)

    1998-01-01

    The Report describes An organization of sanitary-hygienic and ecological control of beryllium production at Ulba metallurgical plant. It involves: (1) the consideration of main methods for protection of beryllium production personnel from unhealthy effect of beryllium, (2) main kinds of filters, used in gas purification systems at different process areas, (3) data on beryllium monitoring in water, soil, on equipment. This Report also outlines problems connected with designing devices for a rapid analysis of beryllium in air as well as problems of beryllium production on ecological situation in the town. (author)

  17. Influence of Landfill Operation and Tropical Seasonal Variation on Leachate Characteristics: Results from Lysimeter Experiment

    Directory of Open Access Journals (Sweden)

    Islam M. Rafizul

    2012-01-01

    Full Text Available This study demonstrates the influence of lysimeter operational condition and tropical seasonal variation of leachate characteristics generated from municipal solid waste (MSW deposited in landfill lysimeter at KUET campus, Bangladesh. Three different situations of landfill were considered here as well as both the open dump lysimeter-A having a base liner and sanitary landfill lysimeter-B and C at two different types of cap liner were simulated. The leachate characteristics, leachate generation and climatic influence parameter had been continually monitored, from June 2008 to May 2010. This period covers both dry and rainy season. The leachate generation followed the rainfall pattern and the open dump lysimeter-A without top cover was recorded to have the highest leachate generation. Moreover, the open dump lysimeter-A had lower concentration and load of total kjeldahl nitrogen (TKN, ammonia nitrogen (NH4-N and dissolved organic carbon (DOC, while chemical oxygen demand (COD and biological oxygen demand (BOD5 concentration were higher compared with sanitary lysimeter-B and C. On the other hand, sanitary lysimeter-B, not only had lowest leachate generation, but also produced reasonably low COD and BOD5 concentration compared with open dump lysimeter-A. Based on evaluated results, it was also concluded that metal concentrations which were comparatively higher in leachate of open dump lysimeter were Ca and K, however, the heavy metal concentrations of Cd, Cu, Zn and Mn, and those apparently lower were metals of Na, Mg and Fe as well as heavy metals of Cr, Pb and Ni. However, significant release of heavy metals under open dump lysimeter was observed compared to sanitary lysimeter. Moreover, meaningful correlation between DOC and leaching of Cu and Pb was observed. Result reveals that lysimeter operational mode had direct effect on leachate quality. Finally, it can be concluded that the knowledge of leachate quality will be useful in planning and

  18. Turkey Run Landfill Emissions Dataset

    Data.gov (United States)

    U.S. Environmental Protection Agency — landfill emissions measurements for the Turkey run landfill in Georgia. This dataset is associated with the following publication: De la Cruz, F., R. Green, G....

  19. Group-specific quantification of methanotrophs in landfill gas-purged laboratory biofilters by tyramide signal amplification-fluorescence in situ hybridization.

    Science.gov (United States)

    Wang, Hong; Einola, Juha; Heinonen, Mirja; Kulomaa, Markku; Rintala, Jukka

    2008-09-01

    The aim of this study was to quantitatively analyse methanotrophs in two laboratory landfill biofilters at different biofilter depths and at temperatures which mimicked the boreal climatic conditions. Both biofilters were dominated by type I methanotrophs. The biofilter depth profiles showed that type I methanotrophs occurred in the upper layer, where relatively high O(2) and low CH(4) concentrations were present, whereas type II methanotrophs were mostly distributed in the zone with high CH(4) and low O(2) concentrations. The number of type I methanotrophic cells declined when the temperature was raised from 15 degrees C to 23 degrees C, but increased when lowered to 5 degrees C. A slight decrease in type II methanotrophs was also observed when the temperature was raised from 15 degrees C to 23 degrees C, whereas cell numbers remained constant when lowered to 5 degrees C. The results indicated that low temperature conditions favored both type I and type II methanotrophs in the biofilters.

  20. Detection and quantification of methane leakage from landfills

    Energy Technology Data Exchange (ETDEWEB)

    Ljungberg, Sven-Aake; Maartensson, Stig-Goeran (Univ. of Gaevle, Gaevle (Sweden)); Meijer, Jan-Erik; Rosqvist, Haakan (NSR AB, Helsingborg (Sweden))

    2009-03-15

    The purpose of this project was to detect gas leakage and to measure and quantify methane emission from landfills using modern remote sensing techniques. In this project, a handheld laser instrument and an IR camera were used. The overall objective was to develop cost-effective methods for detecting and quantifying methane emissions from landfills. There are many methods available for measuring the methane concentration in air, both from close-up and from long distances. Combined with the use of a tracer gas, the methane emission from entire landfills can be measured relatively accurately. A number of methods are used to detect leakage from parts of landfill surfaces, but there are few methods for quantifying leakage from sub-zones. Field measurements with the laser instrument and the IR camera were carried out at seven Swedish landfills and two landfills in France. The investigated surfaces at the Swedish landfills were divided into different zones, such as top surface, slope, crest and toe of slope. The field measurements in France were taken over entire landfills. The methane emission varied between the different landfills in the project, and also between the different landfill zones. The results from repeated field measurements indicated that a landfill with a final cap and a successful gas recovery system produces barely measurable emissions. The weak points at a landfill are generally slopes, including crests and toes of slopes. Where the covering of the waste is inadequate, leakage often occurs at lift joints and in areas where waste protrudes through the cover. Other weak points are deficiencies in the gas recovery system. Leachate systems can lead landfill gas and thereby cause methane leakage. Along with wind velocity and variations in atmospheric pressure, moisture content in the ground is an important factor that affects methane emissions from landfill surfaces. Results from field measurements of the same feature/surface at different points in time and

  1. Landfill Mining of Shredder Residues

    DEFF Research Database (Denmark)

    Hansen, Jette Bjerre; Hyks, Jiri; Shabeer Ahmed, Nassera

    In Denmark, shredder residues (SR) are classified as hazardous waste and until January 2012 the all SR were landfilled. It is estimated that more than 1.8 million tons of SR have been landfilled in mono cells. This paper describes investigations conducted at two Danish landfills. SR were excavated...

  2. Proposed Expansion of Acme Landfill Operations.

    Science.gov (United States)

    1982-08-01

    decays, it produces bacteria that release gases. Methane develops in phases. Initially, during a phase which can last several days to months, a...90 and 95°F. Another factor which affects landfill gas production is pH. Methanogenic bacteria need a pH near 7.0 to produce optimal amounts of...Los Osos-Millsholm-Los Gatos soil association while the other four sites were located in the Altamont-Diablo-Fontana association. A standard slope

  3. Increasing of the efficiency of energetic production by leachating control and biogas extraction in municipal waste sanitary landfills; Incremento del rendimiento de produccion energetica mediante sistema simultaneo de control de lixiviados y extraccion de biogas en vertederos de R.S.U.

    Energy Technology Data Exchange (ETDEWEB)

    Martinez Carrillo, J.

    2000-07-01

    A new practice have been introduced to combat the problems in dual extraction, leachate and biogas, where the leachate is pumped directly from the gas extraction well. Using dual extraction, leachate levels can be kept to a minimum, LFG extraction increased and methane content improved for electricity production. (Author)

  4. Production and the application of anaerobic granular sludge produced by landfill

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Sludge granulation is considered to be the most critical parameter governing successful operation of an upflow anaerobic sludge blanket and expanded granular sludge bed (EGSB) reactors. Pre-granulated seeding sludge could greatly reduce the required start-up time. Two lab-scale and a pilot-scale EGSB reactors were operated to treat Shaoxing Wastewater Treatment Plant containing wastewater from real engineering printing and dyeing with high pH and sulfate concentration. The microbiological structure and the particle size distribution in aerobic excess sludge, sanitary landfill sludge digested for one year, and the granular sludge of EGSB reactor after 400 d of operation were analyzed through scanning electron microscopy (SEM) and sieves. The lab-scale EGSB reactor seeded with anaerobic sludge after digestion for one year in landfill showed obviously better total chemical oxygen demand (TCOD) removal efficiency than one seeded with aerobic excess sludge after cation polyacrylamide flocculation-concentration and dehydration. The TCOD removed was 470.8 mg/L in pilot scale EGSB reactor at short hydraulic retention time of 15 h. SEM of sludge granules showed that the microbiological structure of the sludge from different sources showed some differences. SEM demonstrated that Methanobacterium sp. was present in the granules of pilot-scale EGSB and the granular sludge produced by landfill contained a mixture of anaerobic/anoxic organisms in abundance. The particle size distribution in EGSB demonstrated that using anaerobic granular sludge produced by sanitary landfill as the seeding granular sludge was feasible.

  5. Landfilling of waste: accounting of greenhouse gases and global warming contributions.

    Science.gov (United States)

    Manfredi, Simone; Tonini, Davide; Christensen, Thomas H; Scharff, Heijo

    2009-11-01

    Accounting of greenhouse gas (GHG) emissions from waste landfilling is summarized with the focus on processes and technical data for a number of different landfilling technologies: open dump (which was included as the worst-case-scenario), conventional landfills with flares and with energy recovery, and landfills receiving low-organic-carbon waste. The results showed that direct emissions of GHG from the landfill systems (primarily dispersive release of methane) are the major contributions to the GHG accounting, up to about 1000 kg CO(2)-eq. tonne( -1) for the open dump, 300 kg CO(2)-eq. tonne( -1) for conventional landfilling of mixed waste and 70 kg CO(2)-eq. tonne(-1) for low-organic-carbon waste landfills. The load caused by indirect, upstream emissions from provision of energy and materials to the landfill was low, here estimated to be up to 16 kg CO(2)-eq. tonne(-1). On the other hand, utilization of landfill gas for electricity generation contributed to major savings, in most cases, corresponding to about half of the load caused by direct GHG emission from the landfill. However, this saving can vary significantly depending on what the generated electricity substitutes for. Significant amounts of biogenic carbon may still be stored within the landfill body after 100 years, which here is counted as a saved GHG emission. With respect to landfilling of mixed waste with energy recovery, the net, average GHG accounting ranged from about -70 to 30 kg CO(2)-eq. tonne(- 1), obtained by summing the direct and indirect (upstream and downstream) emissions and accounting for stored biogenic carbon as a saving. However, if binding of biogenic carbon was not accounted for, the overall GHG load would be in the range of 60 to 300 kg CO(2)-eq. tonne( -1). This paper clearly shows that electricity generation as well as accounting of stored biogenic carbon are crucial to the accounting of GHG of waste landfilling.

  6. Field assessment of semi-aerobic condition and the methane correction factor for the semi-aerobic landfills provided by IPCC guidelines.

    Science.gov (United States)

    Jeong, Sangjae; Nam, Anwoo; Yi, Seung-Muk; Kim, Jae Young

    2015-02-01

    According to IPCC guidelines, a semi-aerobic landfill site produces one-half of the amount of CH4 produced by an equally-sized anaerobic landfill site. Therefore categorizing the landfill type is important on greenhouse gas inventories. In order to assess semi-aerobic condition in the sites and the MCF value for semi-aerobic landfill, landfill gas has been measured from vent pipes in five semi-aerobically designed landfills in South Korea. All of the five sites satisfied requirements of semi-aerobic landfills in 2006 IPCC guidelines. However, the ends of leachate collection pipes which are main entrance of air in the semi-aerobic landfill were closed in all five sites. The CH4/CO2 ratio in landfill gas, indicator of aerobic and anaerobic decomposition, ranged from 1.08 to 1.46 which is higher than the values (0.3-1.0) reported for semi-aerobic landfill sites and is rather close to those (1.0-2.0) for anaerobic landfill sites. The low CH4+CO2% in landfill gas implied air intrusion into the landfill. However, there was no evidence that air intrusion has caused by semi-aerobic design and operation. Therefore, the landfills investigated in this study are difficult to be classified as semi-aerobic landfills. Also MCF of 0.5 may significantly underestimate methane emissions compared to other researches. According to the carbon mass balance analyses, the higher MCF needs to be proposed for semi-aerobic landfills. Consequently, methane emission estimate should be based on field evaluation for the semi-aerobically designed landfills. Copyright © 2015. Published by Elsevier Ltd.

  7. Aeration of the teuftal landfill: Field scale concept and lab scale simulation.

    Science.gov (United States)

    Ritzkowski, Marco; Walker, Beat; Kuchta, Kerstin; Raga, Roberto; Stegmann, Rainer

    2016-09-01

    Long lasting post-closure care (PCC) is often the major financial burden for operators of municipal solid waste (MSW) landfills. Beside costs for the installation and maintenance of technical equipment and barriers, in particular long term treatment of leachate and landfill gas has to be paid from capital surplus. Estimations based on laboratory experiments project time periods of many decades until leachate quality allows for direct discharge (i.e. no need for further purification). Projections based on leachate samples derived from the last 37years for 35 German landfills confirm these assumption. Moreover, the data illustrate that in particular ammonium nitrogen concentrations are likely to fall below limit values only after a period of 300years. In order to avoid long lasting PCC the operator of Teuftal landfill, located in the Swiss canton Bern, decided to biologically stabilize the landfill by means of a combined in situ aeration and moisturization approach. In December 2014 the aeration started at a landfill section containing approximately 30% of the total landfill volume. From summer 2016 onwards the remaining part of the landfill will be aerated. Landfill aeration through horizontal gas and leachate drains is carried out for the first time in field scale in Europe. The technical concept is described in the paper. Parallel to field scale aeration, investigations for the carbon and nitrogen turnover are carried out by means of both simulated aerated landfills and simulated anaerobic landfills. The results presented in this paper demonstrate that aeration is capable to enhance, both carbon mobilization and discharge via the gas phase. This effect comes along with a significant increase in bio-stabilization of the waste organic fraction, which positively affects the landfill emission behavior in the long run. In terms of leachate pollution reduction it could be demonstrated that the organic load decrease fast and widely independent of the adjusted aeration

  8. Co-generation potentials of municipal solid waste landfills in Serbia

    Directory of Open Access Journals (Sweden)

    Bošković Goran B.

    2016-01-01

    Full Text Available Waste management in the Republic of Serbia is based on landfilling. As a result of such year-long practice, a huge number of municipal waste landfills has been created where landfill gas has been generated. Landfill gas, which is essentially methane (50-55% and carbon dioxide (40-45% (both GHGs, has a great environmental impact which can be reduced by using landfill gas in cogeneration plants to produce energy. The aim of this paper is to determine economic and environmental benefits from such energy production. For that purpose, the database of cogeneration potentials (CP of 51 landfills in the Republic of Serbia (RS was created. Amount of landfill gas generated at each municipal landfill was calculated by applying a first order decay equation which requires the data about solid waste production and composition and about some landfill characteristics. For all landfills, which have over 100,000 m3 each, a techno-economic analysis about building a CHP plant was conducted. The results have shown, that the total investment in 14 CHP plants with payback period of less than 7 years amounts € 11,721,288. The total nominal power of these plants is 7 MW of electrical power and 7.9 MW of thermal power, and an average payback period is about 61 months. In addition, using landfill biogas as energy source in proposed plants would reduce methane emission for 161,000 tons of CO2 equivalent per year. [Projekat Ministarstva nauke Republike Srbije, br. III 42013: Research of cogeneration potential of municipal and industrial energy power plant in Republic of Serbia and opportunities for rehabilitation of existing and construction of new cogeneration plants

  9. 21 CFR 1210.14 - Sanitary inspection of plants.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Sanitary inspection of plants. 1210.14 Section... FEDERAL IMPORT MILK ACT Inspection and Testing § 1210.14 Sanitary inspection of plants. The sanitary conditions of any plant handling milk or cream any part of which is to be shipped or transported into...

  10. 21 CFR 1210.11 - Sanitary inspection of dairy farms.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Sanitary inspection of dairy farms. 1210.11... UNDER THE FEDERAL IMPORT MILK ACT Inspection and Testing § 1210.11 Sanitary inspection of dairy farms. The sanitary conditions of any dairy farm producing milk or cream to be shipped or transported...

  11. The impact of municipal solid waste landfills in Suceava County on air quality

    Directory of Open Access Journals (Sweden)

    Dumitru MIHĂILĂ

    2014-08-01

    Full Text Available The location of municipal solid waste (MSW landfills in inappropriate places is a serious risk to the quality of all environmental factors. These waste disposal sites can become major sources of air quality deterioration through emissions of toxic gas resulted from anaerobic decomposition of organic waste. The paper discusses in detail the qualitative and quantitative effects of municipal waste landfills of the main urban settlements in Suceava County (Suceava City municipal landfill and Gura Humorului, Rădăuţi, Siret, Câmpulung Moldovenesc, Fălticeni and Vatra Dornei urban waste landfills on air quality. The dispersion of methane emitted from the largest MSW landfill in the county, the Suceava municipal landfill respectively, is also presented, taking into account seasonal, daytime and nighttime meteorological parameters

  12. Evaluation of simultaneous biodegradation of methane and toluene in landfill covers.

    Science.gov (United States)

    Su, Yao; Zhang, Xuan; Wei, Xiao-Meng; Kong, Jiao-Yan; Xia, Fang-Fang; Li, Wei; He, Ruo

    2014-06-15

    The biodegradation of CH4 and toluene in landfill cover soil (LCS) and waste biocover soil (WBS) was investigated with a serial toluene concentration in the headspace of landfill cover microcosms in this study. Compared with the LCS sample, the higher CH4 oxidation activity and toluene-degrading capacity occurred in the WBS sample. The co-existence of toluene in landfill gas would positively or negatively affect CH4 oxidation, mainly depending on the toluene concentrations and exposure time. The nearly complete inhibition of toluene on CH4 oxidation was observed in the WBS sample at the toluene concentration of ∼ 80,000 mg m(-3), which was about 10 times higher than that in the LCS sample. The toluene degradation rates in both landfill covers fitted well with the Michaelis-Menten model. These findings showed that WBS was a good alternative landfill cover material to simultaneously mitigate emissions of CH4 and toluene from landfills to the atmosphere.

  13. [Safety and electromagnetic compatibility in sanitary field].

    Science.gov (United States)

    Bini, M; Feroldi, P; Ferri, C; Ignesti, A; Olmi, R; Priori, S; Riminesi, C; Tobia, L

    2012-01-01

    In sanitary field and especially in a hospital, multiple sources of non ionizing radiation are used for diagnostic and therapeutic aims. In sanitary sector both workers and users are present at the same time, and in some cases general population could need higher protection than workers in relationship to the exposition to electromagnetic fields. In order to protect health and safety of patients, general population and workers of hospitals and with the aim to identify, analyze, evaluate and study its level of significance, electrical, magnetic and electromagnetic sources Research Italian project Si.C.E.O. (Safety And Electromagnetic Compatibility In Sanitary Field) was instituted. Target of our research project was to deepen risk of exposition elements with analysis of outdoor (e.g. power lines, transmission cabinets) and indoor (e.g. equipment for physical therapy) sources, located in sanitary structures and to verify the level exposition of workers and common population end the respect of specific regulation, and finally to define technical and organizational measures really useful for protection and reduction of risk.

  14. Sanitary technology. Special issue; Sanitairtechniek. Themanummer

    Energy Technology Data Exchange (ETDEWEB)

    Lodder, H. [Deerns Raadgevende Ingenieurs, Rijswijk (Netherlands); De Veer, T. [PWN Waterleidingbedrijf Noord-Holland, Velserbroek (Netherlands); Korstanje, H.; De Gids, Ph. K. [LegioFreeWaterSystems, Wijk bij Duurstede (Netherlands); Lansbergen, A. [Itho, Schiedam (Netherlands); Scheffer, W.J.H. [UNETO-VNI, Zoetermeer (Netherlands); Van Wolferen, H. [TNO Milieu en Energie, Apeldoorn (Netherlands); Donker, H. [Kemper Nederland, Groenlo (Netherlands); Engelenburg, M. [ATECA, Den Haag (Netherlands); Wolters, J. [Tour en Andersson, Alphen aan den Rijn (Netherlands); Doldersum, R.H. [De Melker Sanitairtechniek, Veenendaal (Netherlands)

    2007-09-15

    In 11 articles attention is paid to several aspects of sanitary technology, in particular the prevention and control of legionella in heating systems and water supply installations. [Dutch] In 11 artikelen wordt aandacht besteed aan verschillende aspecten m.b.t. sanitaire techniek, in het bijzonder legionella preventie en beheer in verwarmingssystemen en leidingwaterinstallaties.

  15. 21 CFR 110.35 - Sanitary operations.

    Science.gov (United States)

    2010-04-01

    ..., when cleaning is necessary to protect against the introduction of microorganisms into food, all food... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Sanitary operations. 110.35 Section 110.35 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD...

  16. [Sanitary-hygienic assessment of microbial biofertilizer].

    Science.gov (United States)

    Arkhipchenko, N A; Akhtemava, G A; Lebedeva, T V; Voronina, A A; Makhan'kova, T I; Pavlova, M M; Shteĭntsaĭg, T A

    1991-10-01

    Biological treatment of sewage from pig-breeding complexes allowed to produce microbial biomass and primary sediments. The mixture of these components (1:1) after rendering harmless and drying out become the high effective biofertilizer. The results of chronic experiment on sanitary status of soil (microbial and helminthological indexes) under this biofertilizer usage are discussed, and the harmlessness of it is demonstrated.

  17. N 2O emissions at municipal solid waste landfill sites: Effects of CH 4 emissions and cover soil

    Science.gov (United States)

    Zhang, Houhu; He, Pinjing; Shao, Liming

    Municipal solid waste landfills are the significant anthropogenic sources of N 2O due to the cooxidation of ammonia by methane-oxidizing bacteria in cover soils. Such bacteria could be developed through CH 4 fumigation, as evidenced by both laboratory incubation and field measurement. During a 10-day incubation with leachate addition, the average N 2O fluxes in the soil samples, collected from the three selected landfill covers, were multiplied by 1.75 ( p landfill sites, N 2O fluxes in two landfill sites were significantly correlated with the variations of the CH 4 emissions without landfill gas recovery ( p landfill gas recovery in another landfill site ( p > 0.05). The annual average N 2O flux was 176 ± 566 μg N 2O-N m -2 h -1 ( p landfill site, which was 72% ( p landfill sites, respectively. The magnitude order of N 2O emissions in three landfill sites was also coincident by the results of laboratory incubation, suggesting the sandy soil cover could mitigate landfill N 2O emissions.

  18. Closed landfills to solar energy power plants: Estimating the solar potential of closed landfills in California

    Science.gov (United States)

    Munsell, Devon R.

    Solar radiation is a promising source of renewable energy because it is abundant and the technologies to harvest it are quickly improving. An ongoing challenge is to find suitable and effective areas to implement solar energy technologies without causing ecological harm. In this regard, one type of land use that has been largely overlooked for siting solar technologies is closed or soon to be closed landfills. Utilizing Geographic Information System (GIS) based solar modeling; this study makes an inventory of solar generation potential for such sites in the state of California. The study takes account of various site characteristics in relation to the siting needs of photovoltaic (PV) geomembrane and dish-Stirling technologies (e.g., size, topography, closing date, solar insolation, presence of landfill gas recovery projects, and proximity to transmission grids and roads). This study reaches the three principal conclusions. First, with an estimated annual solar electricity generation potential of 3.7 million megawatt hours (MWh), closed or soon to be closed landfill sites could provide an amount of power significantly larger than California's current solar electric generation. Secondly, the possibility of combining PV geomembrane, dish-Stirling, and landfill gas (LFG) to energy technologies at particular sites deserves further investigation. Lastly, there are many assumptions, challenges, and limitations in conducting inventory studies of solar potential for specific sites, including the difficulty in finding accurate data regarding the location and attributes of potential landfills to be analyzed in the study. Furthermore, solar modeling necessarily simplifies a complex phenomenon, namely incoming solar radiation. Additionally, site visits, while necessary for finding details of the site, are largely impractical for a large scale study.

  19. Health effects of living in the vicinity of the landfills

    Directory of Open Access Journals (Sweden)

    Katarzyna Lar

    2013-12-01

    Full Text Available Landfill sites are the easiest, the cheapest and the most common way of waste management and disposal. In the face of the increasing amount of waste, the dynamics of globalization and urbanization process, waste management is an important issue of ecological policy in highly developed countries. Landfill sites intensify environmental threats for the neighborhood and give rise to toxic substances which impair human health being released from the landfills. These are persistent organic pollutants (POPs, heavy metals and also biological gas, bioaerosols, bacteria and viruses. Scientists have conducted a lot of research to evaluate the impact of landfill sites on human health living in their vicinity. They found increased occurrence of congenital anomalies, increased risk of certain cancers and low birth weight of infants. The results of the studies didn’t deliver absolute proof of relation between the impact of landfill sites on the induction of cancer and other diseases. There is a necessity to conduct further research to evaluate the impact of landfill sites on people health living in the vicinity

  20. Groundwater geochemistry of a municipal landfill in Araras, SP

    Directory of Open Access Journals (Sweden)

    Carlos Frederico de Castro Alves 1

    2014-03-01

    Full Text Available A contaminated area associated with a residential unlined landfill, located in Araras, was investigated. The aim of this work was to develop a hydrogeological and geochemical conceptual model in order to identify the redox zones related to the landfill and to explain the main processes resulting from the impact of leachates on the local groundwaters and soil. The work consisted of a surface geological mapping, geophysical survey with electric tomography, logging of subsoil boreholes, an installation of monitoring wells and soil, gas, leachate and groundwater samples analyses. The results show that the Araras landfill is in the methanogenic phase and promotes alterations in local groundwater quality. The main parameters of environmental interest identified in the leachate were total dissolved solids, biochemical oxygen demand, ammonium, methane, Na, Cl, Fe, Mn, Ba, B, Co and Cd. According to criteria specifically developed for this landfill, the following redox zones were identified in the groundwater: (i aerobic, located upgradient from the landfill; (ii methanogenic, downgradient from the landfill; (iii iron and/or manganese reduction, located between the methanogenic zone and the Araras river. Bypassing the iron and/or manganese redox zone, the existence of a denitrification zone was inferred. Besides the redox reactions in these zones, other processes that mitigate the impact of leachate into groundwater were also discovered: dilution, degradation by the action of surface microorganisms, dispersion, ionic exchange, formation of organic and inorganic complexes, dissolution and precipitation.

  1. Site-specific criteria for the completion of landfill aftercare.

    Science.gov (United States)

    Laner, David; Fellner, Johann; Brunner, Paul H

    2012-09-01

    Municipal solid waste (MSW) landfills need to be managed after closure to assure long-term environmental compatibility. Aftercare can be completed when the authorities consider the landfill not likely to pose a threat to humans and the environment. In this work, a methodology for deriving site-specific aftercare completion criteria is presented and its application is illustrated via a case study. The evaluation method combines models addressing waste emission behavior, long-term barrier performance, and pollutant migration to assess the potential impact of landfill emissions on the environment. Based on the definition of acceptable impact levels at certain points of compliance, scenario- and pollutant-specific aftercare completion criteria are derived. The methodology was applied to a closed MSW landfill in Austria and potential aftercare durations were determined. While landfill gas emissions may become environmentally tolerable within decades at the site, leachate-related aftercare measures were expected to be necessary for centuries (primarily as a result of ammonium). Although the evaluation comes with large uncertainties, it allows for linking aftercare intensity and duration with respect to an environmentally compatible state of the landfill in the absence of aftercare. However, further case studies including regulatory review and acceptance are needed to use the methodology in a decision support tool on aftercare completion.

  2. Reduction of greenhouse gases emissions listed in the Kyoto Protocol by the utilization of landfill gas using solid oxide fuel cells; Reducao das emissoes de gases de efeito estufa listados no protocolo de Quioto pelo aproveitamento do gas gerado em aterros sanitarios utilizando celulas a combustivel de oxido solido. Estudo de caso do aterro municipal de Santo Andre, SP, Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Paris, Alexandre Gellert

    2007-07-01

    In the last few years, the Kyoto Protocol had been a subject very debated, at first, in a restricted niche, manly academics and professionals related to the area of climate changes. On 16th February 2005 the Kyoto Protocol entered into force and with this a lot of publicity all over the world, so today is common to hear about it at the mass communications media. The extension of the subject is broad, this work discuss the utilization of one the Kyoto's flexibility mechanisms, to contribute to financing the use of the landfill gas in the solid oxide fuel cells. Among the three mechanisms presented in the Kyoto Protocol, the clean development mechanism (CDM) in article 12, is the only one that can be implemented by non-Annex I countries, the case of Brazil. In other hand, the issue of solid waste in Brazil is critical. Even being illegal, most of the solid waste goes to uncontrolled areas in open air places 'lixoes', causing degradation of the environment and the communities around this areas, and also emission of green house gases (GHG), deregulating the global climate system. Decontaminate this areas and the construction of landfills to replace than, considering the landfill as a bioreactor, and the utilization of the biogas to generate power can improve nowadays picture that we are facing. The utilization of an innovative alternative technology as the solid oxide fuel cell (SOFC) instead the conventional technologies will be more efficient and environmentally better. Among other barriers the cost is pointed as the biggest. In this context, the SOFC is the most expensive fuel cell, so the utilization of CDM can contribute to finance the application of this technology. Scenarios were made of 250 kW, 500 kW, 1,000 kW, 5,000 kW and 10,000 kW of installed power using biogas from the Municipal Landfill of Santo Andre. The calculations of the emission factor were done ex ante and ex post according to ACM0002. Comparing the costs of the installed power

  3. Residential landfill remedial action construction case history

    Energy Technology Data Exchange (ETDEWEB)

    Creamer, P.D.; Martin, K.E. [RMT, Inc., Madison, WI (United States); Fahrney, J.S. [City of Madison, WI (United States)

    1995-12-31

    The City of Madison - Mineral Point Park is located on Madison`s west side within a well-established neighborhood on approximately 11 acres of open green space, which was formerly the Mineral Point Landfill. In 1994, a comprehensive remedial action construction project was implemented to more effectively extract methane gas and control gas migration, to minimize potential groundwater contamination, and to improve surface water run-off controls. This was accomplished by installing two new gas extraction systems, constructing a 4-foot-thick composite final cover with a geosynthetic subsurface drainage system, and adding 12 feet of relief and a storm sewer system to promote positive surface water drainage. While these features alone are not uncommon to many other landfills, the challenging aspect of this project was to install them in extreme proximity to homes, condominiums, and a school that were quickly developed shortly after the landfill closed. Some of the issues unique to this project due to the residential setting included strict noise, dust, and odor controls, easement negotiations, limited hours of operation, limited material storage areas, utility relocations and crossings, continuous operation of the existing gas extraction system, limited construction access, and increased health and safety concerns for the general public. The need to keep the neighboring residents informed, as well as to address their concerns and requests, was also a critical requirement in both the design and construction phases. This paper will review the design of the remedial action plan and present the construction process, highlighting the constructability issues encountered and the innovative means to overcome them. The program for communication with the neighbors throughout the design and construction phases will also be addressed.

  4. Field assessment of semi-aerobic condition and the methane correction factor for the semi-aerobic landfills provided by IPCC guidelines

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Sangjae [Department of Civil and Environmental Engineering, College of Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-742 (Korea, Republic of); Nam, Anwoo [Korea Environment Corporation, 42 Hwangyeong-ro, Seo-gu, Incheon 404-170 (Korea, Republic of); Yi, Seung-Muk [Department of Environmental Health, School of Public Health, Seoul National University, Seoul 151-742 (Korea, Republic of); Kim, Jae Young, E-mail: jaeykim@snu.ac.kr [Department of Civil and Environmental Engineering, College of Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-742 (Korea, Republic of)

    2015-02-15

    Highlights: • CH{sub 4}/CO{sub 2} and CH{sub 4} + CO{sub 2}% are proposed as indices to evaluate semi-aerobic landfills. • A landfill which CH{sub 4}/CO{sub 2} > 1.0 is difficult to be categorized as semi-aerobic landfill. • Field conditions should be carefully investigated to determine landfill types. • The MCF default value for semi-aerobic landfills underestimates the methane emissions. - Abstract: According to IPCC guidelines, a semi-aerobic landfill site produces one-half of the amount of CH{sub 4} produced by an equally-sized anaerobic landfill site. Therefore categorizing the landfill type is important on greenhouse gas inventories. In order to assess semi-aerobic condition in the sites and the MCF value for semi-aerobic landfill, landfill gas has been measured from vent pipes in five semi-aerobically designed landfills in South Korea. All of the five sites satisfied requirements of semi-aerobic landfills in 2006 IPCC guidelines. However, the ends of leachate collection pipes which are main entrance of air in the semi-aerobic landfill were closed in all five sites. The CH{sub 4}/CO{sub 2} ratio in landfill gas, indicator of aerobic and anaerobic decomposition, ranged from 1.08 to 1.46 which is higher than the values (0.3–1.0) reported for semi-aerobic landfill sites and is rather close to those (1.0–2.0) for anaerobic landfill sites. The low CH{sub 4} + CO{sub 2}% in landfill gas implied air intrusion into the landfill. However, there was no evidence that air intrusion has caused by semi-aerobic design and operation. Therefore, the landfills investigated in this study are difficult to be classified as semi-aerobic landfills. Also MCF of 0.5 may significantly underestimate methane emissions compared to other researches. According to the carbon mass balance analyses, the higher MCF needs to be proposed for semi-aerobic landfills. Consequently, methane emission estimate should be based on field evaluation for the semi-aerobically designed landfills.

  5. Assessment of methane emission and oxidation at Air Hitam Landfill site cover soil in wet tropical climate.

    Science.gov (United States)

    Abushammala, Mohammed F M; Basri, Noor Ezlin Ahmad; Elfithri, Rahmah

    2013-12-01

    Methane (CH₄) emissions and oxidation were measured at the Air Hitam sanitary landfill in Malaysia and were modeled using the Intergovernmental Panel on Climate Change waste model to estimate the CH₄ generation rate constant, k. The emissions were measured at several locations using a fabricated static flux chamber. A combination of gas concentrations in soil profiles and surface CH₄ and carbon dioxide (CO₂) emissions at four monitoring locations were used to estimate the CH₄ oxidation capacity. The temporal variations in CH₄ and CO₂ emissions were also investigated in this study. Geospatial means using point kriging and inverse distance weight (IDW), as well as arithmetic and geometric means, were used to estimate total CH₄ emissions. The point kriging, IDW, and arithmetic means were almost identical and were two times higher than the geometric mean. The CH₄ emission geospatial means estimated using the kriging and IDW methods were 30.81 and 30.49 gm(−2) day(−1), respectively. The total CH₄ emissions from the studied area were 53.8 kg day(−1). The mean of the CH₄ oxidation capacity was 27.5 %. The estimated value of k is 0.138 year(−1). Special consideration must be given to the CH₄ oxidation in the wet tropical climate for enhancing CH₄ emission reduction.

  6. Alternative landfill cover technology demonstration at Kaneohe Marine Corps Base Hawaii

    Energy Technology Data Exchange (ETDEWEB)

    Karr, L.A.; Harre, B. [Naval Facilities Engineering Service Center, Port Hueneme, CA (United States); Hakonson, T.E. [Colorado State Univ., Fort Collins, CO (United States)

    1997-12-31

    Surface covers to control water infiltration to waste buried in landfills will be the remediation alternative of choice for most hazardous and sanitary landfills operated by the Department of Defense. Although surface covers are the least expensive method of remediation for landfills, they can still be expensive solutions. Conventional wisdom suggests that landfill capping technology is well developed as evidenced by the availability of EPA guidance for designing and constructing what has become known as the {open_quotes}RCRA Cap{close_quotes}. In practice, however, very little testing of the RCRA cap, or any other design, has been done to evaluate how effective these designs are in limiting infiltration of water into waste. This paper describes a low cost alternative to the {open_quotes}RCRA Cap{close_quotes} that is being evaluated at Marine Corps Base Hawaii (MCBH) Kaneohe Bay. This study uses an innovative, simple and inexpensive concept to manipulate the fate of water falling on a landfill. The infiltration of water through the cap will be controlled by combining the evaporative forces of vegetation to remove soil water, with engineered structures that limit infiltration of precipitation into the soil. This approach relies on diverting enough of the annual precipitation to runoff, so that the water that does infiltrate into the soil can easily be removed by evapotranspiration.

  7. Registration and optimization of gas production from sealed waste containing units in landfills. Registrering og optimering af gasproduktion fra lukkede affaldsceller i lossepladser

    Energy Technology Data Exchange (ETDEWEB)

    Willumsen, H.C.

    1990-05-15

    The aim was to evaluate the production of biogas from household wastes in order to estimate the feasibility of establishing gas producing systems in connection with Danish municipal refuse dumps. Two sealed units, one containing ordinary (sorted) household waste, the other household waste which included garden rubbish were investigated with this aim in mind. It was found difficult to keep the sealed units and the pump system ''gastight''. An accurate estimation of brutto gas production was not arrived at, partly because one of the units was producing acid and not methane and the other had not reached the methane producing stage at the time. Yet significant, applicable, information as to the microbiological processes was obtained thus validating further research on this subject. (AB) 12 refs.

  8. The Characteristics of Leachate and Groundwater Pollution at Municipal Solid Waste Landfill of Ibb City, Yemen

    Directory of Open Access Journals (Sweden)

    Esmail A. Sabahi

    2009-01-01

    government should do sanitary landfill to prevent further contamination to surface water, groundwater as well as soil.

  9. Landfill Construction and Capacity Expansion

    NARCIS (Netherlands)

    Andre, F.J.; Cerda, E.

    2003-01-01

    We study the optimal capacity and lifetime of landfills taking into account their sequential nature.Such an optimal capacity is characterized by the so-called Optimal Capacity Condition.Particular versions of this condition are obtained for two alternative settings: first, if all the landfills are t

  10. Stabilizing Waste Materials for Landfills

    Science.gov (United States)

    Environmental Science and Technology, 1977

    1977-01-01

    The test procedures used to evaluate the suitability of landfilled materials of varying stability and to determine the leachate from such materials are reviewed. A process for stabilizing a mixture of sulfur dioxide sludge, fly ash, and bottom ash with lime and other additives for deposition in landfills is detailed. (BT)

  11. The seasonal distribution of bioaerosols in municipal landfill sites: a 3-yr study

    Science.gov (United States)

    Huang, Chu-Yun; Lee, Ching-Chang; Li, Fang-Chun; Ma, Yu-Pei; Su, Huey-Jen Jenny

    Landfill is the most common way to dispose waste in many countries, and most landfill sites after closure are often considered for public recreation purposes. It is important that the pollutant levels of closed landfill areas are free of adverse health concerns. However, only limited studies have investigated the airborne biological contamination in closed landfill sites. The objective of this study was to document the bioaerosol levels in a closed landfill site while the temporal, seasonal, and meteorological effects were also taken into accounts. Study site was at one sanitary landfill, taking mostly municipal wastes, in southern Taiwan. Airborne bacteria and fungi were collected on tryptic soy agar (Difco) and malt extract agar (Difco) by a Burkard impactor (Burkard Manufacturing Co. Ltd.) operating at about 10 l m -3 for 30 s. Air samples were collected sequentially in winter, spring, summer and fall in 1998, winter, spring, summer in 1999, as well as summer and fall in 2000. In addition, sampling was conducted in the morning, at noon, in the evening and the following morning during each field assessment. Levels of airborne bacteria and fungi were all far above 10 3 CFU m -3. The concentrations of culturable bacteria and fungi were higher in winter than in other seasons. The difference of bioaerosol level and fungal percentages between the undergoing-closure and closed areas was obvious, and the concentrations were higher in closed area. We therefore recommend that before any complete investigation can be conducted to assure the safety, the closed area of landfill site is probably not ready for immediate public use.

  12. Evaluation of methane emissions from Palermo municipal landfill: Comparison between field measurements and models.

    Science.gov (United States)

    Di Bella, Gaetano; Di Trapani, Daniele; Viviani, Gaspare

    2011-08-01

    Methane (CH(4)) diffuse emissions from Municipal Solid Waste (MSW) landfills represent one of the most important anthropogenic sources of greenhouse gas. CH(4) is produced by anaerobic biodegradation of organic matter in landfilled MSW and constitutes a major component of landfill gas (LFG). Gas recovery is a suitable method to effectively control CH(4) emissions from landfill sites and the quantification of CH(4) emissions represents a good tool to evaluate the effectiveness of a gas recovery system in reducing LFG emissions. In particular, LFG emissions can indirectly be evaluated from mass balance equations between LFG production, recovery and oxidation in the landfill, as well as by a direct approach based on LFG emission measurements from the landfill surface. However, up to now few direct measurements of landfill CH(4) diffuse emissions have been reported in the technical literature. In the present study, both modeling and direct emission measuring methodologies have been applied to the case study of Bellolampo landfill located in Palermo, Italy. The main aim of the present study was to evaluate CH(4) diffuse emissions, based on direct measurements carried out with the flux accumulation chamber (static, non-stationary) method, as well as to obtain the CH(4) contoured flux map of the landfill. Such emissions were compared with the estimate achieved by means of CH(4) mass balance equations. The results showed that the emissions obtained by applying the flux chamber method are in good agreement with the ones derived by the application of the mass balance equation, and that the evaluated contoured flux maps represent a reliable tool to locate areas with abnormal emissions in order to optimize the gas recovery system efficiency.

  13. Livingston Parish Landfill Methane Recovery Project (Feasibility Study)

    Energy Technology Data Exchange (ETDEWEB)

    White, Steven

    2012-11-15

    The Woodside Landfill is owned by Livingston Parish, Louisiana and is operated under contract by Waste Management of Louisiana LLC. This public owner/private operator partnership is commonplace in the solid waste industry today. The landfill has been in operation since approximately 1988 and has a permitted capacity of approximately 41 million cubic yards. Based on an assumed in-place waste density of 0.94 ton per cubic yard, the landfill could have an expected design capacity of 39.3 million tons. The landfill does have an active landfill gas collection and control system (LFGCCS) in place because it meets the minimum thresholds for the New Source Performance Standards (NSPS). The initial LFGCS was installed prior to 2006 and subsequent phases were installed in 2007 and 2010. The Parish received a grant from the United States Department of Energy in 2009 to evaluate the potential for landfill gas recovery and utilization at the Woodside Landfill. This includes a technical and economic feasibility study of a project to install a landfill gas to energy (LFGTE) plant and to compare alternative technologies. The LFGTE plant can take the form of on-site electrical generation, a direct use/medium Btu option, or a high-Btu upgrade technology. The technical evaluation in Section 2 of this report concludes that landfill gas from the Woodside landfill is suitable for recovery and utilization. The financial evaluations in sections 3, 4, and 5 of this report provide financial estimates of the returns for various utilization technologies. The report concludes that the most economically viable project is the Electricity Generation option, subject to the Parish’s ability and willingness to allocate adequate cash for initial capital and/or to obtain debt financing. However, even this option does not present a solid return: by our estimates, there is a 19 year simple payback on the electricity generation option. All of the energy recovery options discussed in this report

  14. [Modern problems of the application of sanitary regulations concerning sanitary protection zones and sanitary classification of enterprises, buildings and other facilities].

    Science.gov (United States)

    Lomtev, A Iu; Eremin, G B; Mozzhukhina, N A; Kombarova, M Iu; Mel'tser, A V; Giul'mamedov, É Iu

    2013-01-01

    In this paper there was performed an analysis of the application of sanitary norms and rules concerning sanitary protective zones and sanitary classification of enterprises, buildings and other facilities, including requirements for the sufficiency and accuracy of information in the performance of projects in sanitary protection zone (SPZ). There is presented an analysis of regulations that set requirements for implementation of mapping works in drafting the SPZ. The design of the SPZ was shown to be, on the one hand, the element of territorial planning subjects of the Russian Federation, on the other hand, the object of capital construction. The substantiations of requirements for graphic and text content, structure, and composition of data, sources of their obtaining, methods of data convergence are reported. There are revealed inconsistencies in Sanitary Regulations and Norms (SanPins) and in their relationship with the Town Planning and Land Code and other laws, and regulations adopted in their development.

  15. Final Environmental Assessment for Sanitary Landfill Expansion on the Tonopah Test Range, NYE County, NV

    Science.gov (United States)

    2007-01-01

    Palma Bureau of Land Management Las Vegas Field Office 4701 N Torrey Pines Dr Las Vegas, NV 89130-2301 Mr. Robert Williams, State Supervisor U.S...Fish and Wildlife Service Nevada Ecological Field Office 1340 Financial Blvd, Ste 234 Reno, NV 89502 Ms. Cynthia Martinez US Fish and

  16. Environmental Assessment for Sanitary Landfill Expansion on the Tonopah Test Range, Nye County, NV

    Science.gov (United States)

    2007-01-01

    Administration 209 E Musser St, Room 200 Carson City, NV 89701-4298 Electronic format Mr. Juan Palma Bureau of Land Management Las Vegas... Ecological Field Office 1340 Financial Blvd, Ste 234 Reno, NV 89502 Ms. Cynthia Martinez US Fish and Wildlife Service Southern Nevada Field Office

  17. Life Cycle Comparison of Waste-to-Energy to Sanitary Landfill

    Science.gov (United States)

    Life cycle assessment (LCA) can be used to evaluate the environmental footprint of products, processes, and services. An LCA allows decision makers to compare products and processes through systematic evaluation of supply chains. Also known as a “cradle-to-grave” approach, LCA ev...

  18. The applications of geotextiles in the sanitary landfills; Aplicaciones de los geotextiles en los vertederos

    Energy Technology Data Exchange (ETDEWEB)

    Morera, J.; Marin, J.

    1999-11-01

    The spillways controlled of Solid Urban Residuals, Industrial Residuals and Industrial Special Residuals should be waterproofed. The waterproofing should be assured, to avoid the possibility of contamination of the aquifer for the filtration of leachates coming from the garbage and rain waters eventually polluted for their contact with the mass of deposited waste already.

  19. Appendices for Fort George G. Meade Active Sanitary Landfill and Clean Fill Dump Remedial Investigation Report

    Science.gov (United States)

    1992-12-01

    FOR THE SPECIFIC TEST bA."E EXCEPT FOR THE FOLLOWING TEST NAMES: PH, COND, TEMP, OILGR, BOD, COD, TOC, HARD, ASBEST , TSS -LAB DOES NOT REQUIRE...ACENAPHTHYLENE. AI4ELNT *ANION ELUENT ANIL ANILINE AI4TRC ANTHRACENE ANTRCN 9-ANTHRACENECARBONITRILE ANTRQO ATHRAQUINONE / 9,10 -ANTHRACENED ONE AS ARSENIC ASBEST ...ANION ELUENT ANTRC ANTHRACENE ACHE ANTICHOLINESTERASE SB ANTIMONY AS ARSENIC ASEXT -ARSENIC, EXTRACTABLE ASTOT *AR.SENIC, TOTAL ASBEST ASBESTOS’ ANTROTJ

  20. Fort George G. Meade Active Sanitary Landfill and Clean Fill Dump, Remedial Investigation Report

    Science.gov (United States)

    1992-12-01

    acceptable. However, the RME exposure yielded an unacceptable cancer risk. Clean Fill Dump A two-phase study was conducted at this site concurrently with...Indian hemp FACU Asclepias syriaca Pink milkweed UP* Aster spp. Asters UNK Cardamine hirsuta Hairy bitter cress FACU Centaurea maculata Batchelor’s...bound excess cancer risk associated with lifetime exposure to 1 mg/kg.day of a compound. There is a 95 percent chance that the actual risk value is

  1. Waste management in the Irkutsk Region, Siberia, Russia: Environmental assessment of current practice focusing on landfilling

    DEFF Research Database (Denmark)

    Starostina, Vlada; Damgaard, Anders; Rechberger, Helmut

    2014-01-01

    The municipal waste management system of the region of Irkutsk is described and a life cycle assessment (LCA) performed to assess the environmental performance of the system. Annually about 500 000 tons of waste are managed. The waste originates from three sources: household waste (27%), commercial...... waste (23%) and office & institutional waste (44%). Other waste of unknown composition constitutes 6%. Only 3% of the waste is recycled; 97% of the municipal waste is disposed of at the old Alexandrovsky landfill. The environmental impact from the current system is dominated by the landfill, which has...... years, the LCA modelling showed that introduction of a new and modern landfill with gas and leachate collection could improve the performance of the waste management system significantly. Collection of landfill gas and utilization for 30 years for electricity production (gas turbine) would reduce...

  2. Turning a Liability into an Asset: Landfill Methane Recovery in India

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-07-01

    Solid waste disposal sites are not often seen as opportunities for energy solutions. The waste that is disposed in open dumps and landfills generates methane and other gases as it decomposes, causing concerns about explosions, odours, and, increasingly, about the contribution of methane to global climate change. However, the liability of landfill gas (LFG) can be turned into an asset. Many countries regularly capture LFG as a strategy to improve landfill safety, generate electricity, reduce greenhouse gas emissions, and to earn carbon emission reduction credits (e.g. 40% for the United States, 25% for Australia). Many projects in developing countries are taking advantage of the United Nations Framework Convention on Climate Change (UNFCCC) Clean Development Mechanism (CDM) to earn carbon credits by capturing and combusting methane (e.g., the Sudokwon Landfill in Republic of South Korea, the Bandeirantes Landfill in Brazil and the Nanjing Tianjingwa Landfill in China). These Landfill Gas to Energy (LFGE) projects provide a valuable service to the environment and a potentially profitable business venture, providing benefits to local and regional communities.

  3. Airborne monitoring of landfills CH_{4} emissions

    Science.gov (United States)

    Gasbarra, Daniele; Gioli, Beniamino; Carlucci, Pantaleone; Magliulo, Vincenzo; Toscano, Piero; Zaldei, Alessandro

    2017-04-01

    The disposal and treatment of waste produces emissions of greenhouse gases (GHGs), which contribute to global climate change. In particular, large quantities of Methane are released in the breakdown of organic matter in landfills. In this work we present a new payload of the Sky Arrow ERA aircraft and an original methodology to compute methane emissions, based on the atmospheric mass budget approach. The payload is presently being used for intensive measurements in the area known as "Terra dei fuochi". In this area, located between the provinces of Naples and Caserta (Southern Italy), urban waste combined with industrial toxic waste has been illegally dumped in old quarries or buried in the nearby countryside for decades. This led to patchy sources of methane, with several hot spots spread over a heterogeneous land. In this context, the use of aircraft allows for the investigation at the landscape as well as at the regional scale, taking into account all sources, including those of small dimensions. The Sky Arrow ERA is equipped with the Mobile Flux Platform, capable of deriving the 3D wind vector at 50 Hz, while CO2 and water vapor densities are measured by an infrared gas analyzer (Licor 7500). A new configuration of the Licor 7700 open path fast methane gas analyzer was developed, based on enclosing the sensor within a cylinder exposed to the external air in-flow. This set-up allows for fast response measurements, while avoiding external modifications, subjected to restrictions. Ambient methane mixing ratios in excess of 7 ppm were measured during landfills overpasses; performing grid flight plans at different heights, to describe a virtual box enclosing the study area, and applying interpolation procedures, it was possible to reconstruct wind components and scalar concentrations in a 5x5 kilometers domain containing 6 different landfills, with a resolution of 50 m horizontal and 20 m vertical. For each flight the methane mass flows along and across the wind

  4. Characterization of thermal properties of municipal solid waste landfills.

    Science.gov (United States)

    Faitli, József; Magyar, Tamás; Erdélyi, Attila; Murányi, Attila

    2015-02-01

    Municipal waste landfills represent not only a source of landfill gases, but a source of thermal energy as well. The heat in landfills is generated by physical, chemical and microbiological processes. The goal of our study was to characterize the thermal properties of municipal solid waste (MSW) samples of the given landfill. A new apparatus was designed and constructed to measure heat flow. A systematic test series of 17 discrete measurements was carried out with municipal waste samples of 1.0-1.7 m(3). The thermal conductivity, heat diffusivity and specific heat capacity of the samples were determined. Analysing the results of the sampling and our experiments it was realized that the theoretical fundaments should be clarified. Two theories were developed for the serial and for the parallel heat flow in three phase disperse systems. The serial and parallel models resulted in different theoretical estimations. The measured thermal conductivity and heat diffusivity were better characterized by the parallel heat flow estimations. The results show that heat can flow parallel in solid, liquid and gas phases. Characterization of thermal properties serves to establish the fundament of heat extraction from municipal waste landfills.

  5. Energetic utilisation of refuse derived fuels from landfill mining.

    Science.gov (United States)

    Rotheut, Martin; Quicker, Peter

    2017-02-19

    The residence of municipal solid waste within a landfill body results in a significant change of material properties. Experiences with the energetic utilisation of the burnable fractions from formerly landfilled waste are hardly documented, the influence of refuse derived fuels (RDF) from such materials on the performance of modern waste-to-energy plants is not sufficiently described in scientific literature. Therefore this study focuses on the energetic utilisation of refuse derived fuel from landfilled waste, processed in a mechanical waste treatment facility, and the impact of the material on the operation of the incineration plant. Additionally, the possibility of direct combustion of non-pre-treated excavated landfill material has been evaluated in the same facility. First, sampling and analysis of the fuel has been carried out. Based on this, a large-scale combustion experiment was planned and conducted in an industrial waste-to-energy plant. Steam mass flow rate, concentration of harmful substances in the raw gas, as well as total emissions of the facility have been monitored in detail. Furthermore, the influence of the landfilled material on the additive consumption has been determined. The combustion residues (bottom ash) were also sampled and analysed. Based on the evaluation of operating data and analysis of both fuel and residue, suitable thermal treatment approaches for the refuse-derived fuel and the non-pre-treated excavated material have been assessed.

  6. LANDFILL OPERATION FOR CARBON SEQUESTRATION AND MAXIMUM METHANE EMISSION CONTROL

    Energy Technology Data Exchange (ETDEWEB)

    Don Augenstein

    2001-02-01

    The work described in this report, to demonstrate and advance this technology, has used two demonstration-scale cells of size (8000 metric tons [tonnes]), sufficient to replicate many heat and compaction characteristics of larger ''full-scale'' landfills. An enhanced demonstration cell has received moisture supplementation to field capacity. This is the maximum moisture waste can hold while still limiting liquid drainage rate to minimal and safely manageable levels. The enhanced landfill module was compared to a parallel control landfill module receiving no moisture additions. Gas recovery has continued for a period of over 4 years. It is quite encouraging that the enhanced cell methane recovery has been close to 10-fold that experienced with conventional landfills. This is the highest methane recovery rate per unit waste, and thus progress toward stabilization, documented anywhere for such a large waste mass. This high recovery rate is attributed to moisture, and elevated temperature attained inexpensively during startup. Economic analyses performed under Phase I of this NETL contract indicate ''greenhouse cost effectiveness'' to be excellent. Other benefits include substantial waste volume loss (over 30%) which translates to extended landfill life. Other environmental benefits include rapidly improved quality and stabilization (lowered pollutant levels) in liquid leachate which drains from the waste.

  7. Onsite survey on the mechanism of passive aeration and air flow path in a semi-aerobic landfill.

    Science.gov (United States)

    Matsuto, Toshihiko; Zhang, Xin; Matsuo, Takayuki; Yamada, Shuhei

    2015-02-01

    The semi-aerobic landfill is a widely accepted landfill concept in Japan because it promotes stabilization of leachates and waste via passive aeration without using any type of mechanical equipment. Ambient air is thought to be supplied to the landfill through a perforated pipe network made of leachate collection pipe laid along the bottom and a vertically erected gas vent. However, its underlying air flow path and driving forces are unclear because empirical data from real-world landfills is inadequate. The objective of this study is to establish scientific evidence about the aeration mechanisms and air flow path by an on-site survey of a full-scale, semi-aerobic landfill. First, all passive vents located in the landfill were monitored with respect to temperature level and gas velocity in different seasons. We found a linear correlation between the outflow rate and gas temperature, suggesting that air flow is driven by a buoyancy force caused by the temperature difference between waste in the landfill and the ambient temperature. Some vents located near the landfill bottom acted as air inflow vents. Second, we conducted a tracer test to determine the air flow path between two vents, by injecting tracer gas from an air sucking vent. The resulting slowly increasing gas concentration at the neighboring vent suggested that fresh air flow passes through the waste layer toward the gas vents from leachate collection pipes, as well as directly flowing through the pipe network. Third, we monitored the temperature of gas flowing out of a vent at night. Since the temperature drop of the gas was much smaller than that of the environment, the air collected at the gas vents was estimated to flow mostly through the waste layer, i.e., the semi-aerobic landfill has considerable aeration ability under the appropriate conditions.

  8. Landfill aeration for emission control before and during landfill mining.

    Science.gov (United States)

    Raga, Roberto; Cossu, Raffaello; Heerenklage, Joern; Pivato, Alberto; Ritzkowski, Marco

    2015-12-01

    The landfill of Modena, in northern Italy, is now crossed by the new high velocity railway line connecting Milan and Bologna. Waste was completely removed from a part of the landfill and a trench for the train line was built. With the aim of facilitating excavation and further disposal of the material extracted, suitable measures were defined. In order to prevent undesired emissions into the excavation area, the aerobic in situ stabilisation by means of the Airflow technology took place before and during the Landfill Mining. Specific project features involved the pneumatic leachate extraction from the aeration wells (to keep the leachate table low inside the landfill and increase the volume of waste available for air migration) and the controlled moisture addition into a limited zone, for a preliminary evaluation of the effects on process enhancement. Waste and leachate were periodically sampled in the landfill during the aeration before the excavation, for quality assessment over time; the evolution of biogas composition in the landfill body and in the extraction system for different plant set-ups during the project was monitored, with specific focus on uncontrolled migration into the excavation area. Waste biological stability significantly increased during the aeration (waste respiration index dropped to 33% of the initial value after six months). Leachate head decreased from 4 to 1.5m; leachate recirculation tests proved the beneficial effects of moisture addition on temperature control, without hampering waste aerobization. Proper management of the aeration plant enabled the minimization of uncontrolled biogas emissions into the excavation area.

  9. [Problems in the further development of postgraduate training in industrial sanitary chemistry for the laboratory physicians of epidemiological health stations].

    Science.gov (United States)

    Makeeva, E P; Soldatenkova, N A

    1991-01-01

    The article narrates on the domain of the sanitary inspection medical laboratory workers' supervision in the field of industrial chemistry and their experience in handling different physical and chemical analysis techniques. It is indicated that sanitary inspection medical laboratory personnel requires constant postgraduate training. Proposed is the respective training programme adopted at the Institute for Postgraduate Training of Physicians, Moscow, which includes samples' selection, physical and chemical analysis testing and application in specific conditions, statistical assessment of the results obtained. The programme also includes the hygienic aspects, e. i. current sanitary control, labour hygiene in different gas discharge-related conditions. Practical training is performed in small groups of 2 or 3 persons, thus facilitating adoption of skills in using various analysis techniques. Initial, current and intermediate control, tests and situational analysis are used in the training process.

  10. Landfill aeration in the framework of a reclamation project in Northern Italy.

    Science.gov (United States)

    Raga, Roberto; Cossu, Raffaello

    2014-03-01

    In situ aeration by means of the Airflow technology was proposed for landfill conditioning before landfill mining in the framework of a reclamation project in Northern Italy. A 1-year aeration project was carried out on part of the landfill with the objective of evaluating the effectiveness of the Airflow technology for landfill aerobization, the evolution of waste biological stability during aeration and the effects on leachate and biogas quality and emissions. The main outcomes of the 1-year aeration project are presented in the paper. The beneficial effect of the aeration on waste biological stability was clear (63% reduction of the respiration index); however, the effectiveness of aeration on the lower part of the landfill is questionable, due to the limited potential for air migration into the leachate saturated layers. During the 1-year in situ aeration project approx. 275 MgC were discharged from the landfill body with the extracted gas, corresponding to 4.6 gC/kgDM. However, due to the presence of anaerobic niches in the aerated landfill, approx. 46% of this amount was extracted as CH4, which is higher than reported in other aeration projects. The O2 conversion quota was lower than reported in other similar projects, mainly due to the higher air flow rates applied. The results obtained enabled valuable recommendations to be made for the subsequent application of the Airflow technology to the whole landfill.

  11. Bio-tarp alternative daily cover prototypes for methane oxidation atop open landfill cells.

    Science.gov (United States)

    Adams, Bryn L; Besnard, Fabien; Bogner, Jean; Hilger, Helene

    2011-05-01

    Final landfill covers are highly engineered to prevent methane release into the atmosphere. However, methane production begins soon after waste placement and is an unaddressed source of emissions. The methane oxidation capacity of methanotrophs embedded in a "bio-tarp" was investigated as a means to mitigate methane release from open landfill cells. The bio-tarp would also serve as an alternative daily cover during routine landfill operation. Evaluations of nine synthetic geotextiles identified two that would likely be suitable bio-tarp components. Pilot tarp prototypes were tested in continuous flow systems simulating landfill gas conditions. Multilayered bio-tarp prototypes consisting of alternating layers of the two geotextiles were found to remove 16% of the methane flowing through the bio-tarp. The addition of landfill cover soil, compost, or shale amendments to the bio-tarp increased the methane removal up to 32%. With evidence of methane removal in a laboratory bioreactor, prototypes were evaluated at a local landfill using flux chambers installed atop intermediate cover at a landfill. The multilayered bio-tarp and amended bio-tarp configurations were all found to decrease landfill methane flux; however, the performance efficacy of bio-tarps was not significantly different from controls without methanotrophs. Because highly variable methane fluxes at the field site likely confounded the test results, repeat field testing is recommended under more controlled flux conditions.

  12. Waste Informatics: Establishing Characteristics of Contemporary U.S. Landfill Quantities and Practices.

    Science.gov (United States)

    Powell, Jon T; Pons, José C; Chertow, Marian

    2016-10-06

    Waste generation is expected to increase in most countries for many decades with landfill disposal still the dominant solid waste management method(1-3). Yet, operational characteristics of landfills are often poorly understood with comparative statistics substantially lacking. Here, we call for a more formal waste informatics to organize and standardize waste management knowledge at multiple spatial scales through analysis of recently reported data from 1232 U.S. landfills and other high resolution data sets. We create the first known estimate of available U.S. municipal waste stocks (8.5 billion tonnes) and go on to resolve these stocks at the county level, reflecting prospective urban mining opportunities. Our analysis of disposal rates and landfill capacities reveals that more than half of U.S. states have more than 25 years of life remaining. We also estimate the gross energy potential of landfill gas in the U.S. (338 billion MJ/yr) by examining 922 operational methane collection systems and demonstrate that the greatest energy recovery opportunities lie at landfills with existing collection systems and energy conversion infrastructure. Finally, we found that the number of landfills reaching the federally defined 30-year postclosure care period will more than triple in the coming two decades, with 264 sites expected by the year 2044, highlighting the need to develop and standardize metrics carefully to define and standardize when it is appropriate to end or scale back long-term landfill monitoring.

  13. Estimating methane emissions from landfills based on rainfall, ambient temperature, and waste composition: The CLEEN model.

    Science.gov (United States)

    Karanjekar, Richa V; Bhatt, Arpita; Altouqui, Said; Jangikhatoonabad, Neda; Durai, Vennila; Sattler, Melanie L; Hossain, M D Sahadat; Chen, Victoria

    2015-12-01

    Accurately estimating landfill methane emissions is important for quantifying a landfill's greenhouse gas emissions and power generation potential. Current models, including LandGEM and IPCC, often greatly simplify treatment of factors like rainfall and ambient temperature, which can substantially impact gas production. The newly developed Capturing Landfill Emissions for Energy Needs (CLEEN) model aims to improve landfill methane generation estimates, but still require inputs that are fairly easy to obtain: waste composition, annual rainfall, and ambient temperature. To develop the model, methane generation was measured from 27 laboratory scale landfill reactors, with varying waste compositions (ranging from 0% to 100%); average rainfall rates of 2, 6, and 12 mm/day; and temperatures of 20, 30, and 37°C, according to a statistical experimental design. Refuse components considered were the major biodegradable wastes, food, paper, yard/wood, and textile, as well as inert inorganic waste. Based on the data collected, a multiple linear regression equation (R(2)=0.75) was developed to predict first-order methane generation rate constant values k as functions of waste composition, annual rainfall, and temperature. Because, laboratory methane generation rates exceed field rates, a second scale-up regression equation for k was developed using actual gas-recovery data from 11 landfills in high-income countries with conventional operation. The Capturing Landfill Emissions for Energy Needs (CLEEN) model was developed by incorporating both regression equations into the first-order decay based model for estimating methane generation rates from landfills. CLEEN model values were compared to actual field data from 6 US landfills, and to estimates from LandGEM and IPCC. For 4 of the 6 cases, CLEEN model estimates were the closest to actual.

  14. PRACTICE REVIEW OF FIVE BIOREACTOR/RECIRCULATION LANDFILLS

    Science.gov (United States)

    Six bioreactor landfills were analyzed to provide a perspective of current practice and technical issues that differentiate bioreactor landfills from conventional landfills. Five of the bioreactor landfills were anaerobic and one was aerated. In one case, nearly identical cells e...

  15. Energy utilization from landfill biogas; Aproveitamento energetico do biogas de aterros sanitarios

    Energy Technology Data Exchange (ETDEWEB)

    Candiani, Giovano [Universidade Federal do ABC, Santo Andre, SP (Brazil). Programa de Pos-Graduacao em Energia; Hoffmann, Gustavo; Silva, Elissandro Rocha da; Moreira, Joao M.L.; Tomioka, Jorge

    2008-07-01

    Landfills for solid waste disposal are used in Brazil and in most of countries in the world. The organic part of the solid wastes produces gas out of the decomposition of its organic content. This gas, named biogas and mostly made of carbon dioxide and methane, may be collected and used as an energy source due the methane presence. In this work we analyze the possible energy utilization of landfill biogas in Brazil in which the organic content of the solid waste is about 60%. The use of biogas as energy source can reduce the greenhouse gas emissions and improve the sanitation conditions of landfills. Moreover, it allows financial gains through selling of energy and carbon credits. In order to make possible the biogas utilization it is necessary to recognize the differences among the many landfills which exist in the country. There are the large and small landfills. The large ones usually have good instrumentation and gas exhaustion systems while the small ones have passive exhaustion systems and very few field instrumentation. The small landfills need to improve their instrumentation system and to incorporate exhaustion systems. (author)

  16. Landfills as sources of polyfluorinated compounds, polybrominated diphenyl ethers and musk fragrances to ambient air

    Science.gov (United States)

    Weinberg, Ingo; Dreyer, Annekatrin; Ebinghaus, Ralf

    2011-02-01

    In order to investigate landfills as sources of polyfluorinated compounds (PFCs), polybrominated diphenyl ethers (PBDEs) and synthetic musk fragrances to the atmosphere, air samples were simultaneously taken at two landfills (one active and one closed) and two reference sites using high volume air samplers. Contaminants were accumulated on glass fiber filters (particle phase) and PUF/XAD-2/PUF cartridges (gas phase), extracted by methyl-tert butyl ether/acetone (neutral PFCs), methanol (ionic PFCs) or hexane/acetone (PBDEs, musk fragrances), and detected by GC-MS (neutral PFCs, PBDEs, musk fragrances) or HPLC-MS/MS (ionic PFCs). Total concentrations ranged from 84 to 706 pg m -3 (volatile PFCs, gas phase), from gas + particle phase) and from 1 to 11 pg m -3 (PBDEs, gas + particle phase). Observed sum concentrations of PFCs and synthetic musk fragrances and partly PBDE concentrations were elevated at landfill sites compared to corresponding reference sites. Concentrations determined at the active landfill were higher than those of the inactive landfill. Overall, landfills can be regarded as a source of synthetic musk fragrances, several PFCs and potentially of PBDEs to ambient air.

  17. [Sanitary-and-epidemiologic examination of the food-products].

    Science.gov (United States)

    Sukhanov, V B; Kerimova, M G; Elizarova, E V

    2011-01-01

    Some aspects of sanitary and epidemiologic examination of food products are considered. The examination is an important part of sanitary and epidemiologic control and surveillance in the sphere of food safety and quality, consumer rights protection, consumer market and human welfare.

  18. Mining the Midden: A Facility for Dynamic Waste Harvesting at the Cedar Hills Regional Landfill

    Science.gov (United States)

    Allan, Aaron

    Mining the Midden intends to re-frame the sanitary landfill as a new typology of public land containing an embodied energy of cultural and material value. By reconnecting the public with the landfill and seriously exposing its layers of history and then digesting both mined and new waste within an industrial facility of materials recovery and plasma gasification technology waste-to-energy plant. The sequence of experience for a public visitor begins where the waste is transformed to energy and flows in the opposite direction of the trash through the facility and then into the active landfill mining operation which is the large site component of the project. The mine is flanked by the visitor path, which is suspended from the soldier piles of the excavation system and allows the visitor to interpret along the 1/3 mile path their personal connection to the waste stream and the consumption patterns which drive our waste. Interpretation results from multi-sensory experience of the open mine and its connection to the processing structure as one hovers above, through moments of seeing through structural glass lagging directly into the sectional cut of the landfill, and through cultural artifacts harvested by landfill archaeologists which are displayed in rhythm with the structure and lagging. The culmination of the prescribed path is a narrow cut which frames the view of Mt. Rainier in the distance and opens up a visual connection with the remaining majority of the landfill which have up to this point been blocked by the small mountain of trash which they just walked up and through. This thesis intends that by confronting people with the juxtapositions of 2 potentially destructive mounds or mountains, and how we as a culture value and protect land while we simultaneously dump our rubbish on other lands, this experience will make the visitor more conscious of ones personal contribution to our culture of disposable commodities.

  19. Inverse Estimation of Temperature Profiles in Landfills Using Heat Recovery Fluids Measurements

    Directory of Open Access Journals (Sweden)

    C. Solisio

    2012-01-01

    Full Text Available In addition to leachate and gas emission analysis, temperature variations in municipal solid waste landfills are routinely monitored for safety and health reasons, such as the increased production of biogas or the danger of spontaneous combustion phenomena if the temperature exceeds 70–75°C. The increasing constraints on greenhouse gas emissions and the convenience of fuel and heat recovery have helped develop a global approach to landfills' operation and maintenance, generally referred to as bioreactor landfill management. The heat recovery piping we are presently designing can be a significant part of this approach. The heat gained by a fluid circulated in a closed network through the landfill is transferred to an external heat exchanger or used directly as warm water. Additionally, it can help reduce landfill temperature levels and control biogas generation. Since the pipes diameter is large enough to allow for a radial temperature gradient, this information can be used for an inverse estimation of the temperature profile in the landfill which constitutes the boundary conditions of the resulting heat transfer problem. In this paper, we describe an algorithm for regularising the resulting ill-posed free boundary estimation problem using sampled data of the heat recovery fluid on exiting the landfill.

  20. Potential application of biocover soils to landfills for mitigating toluene emission.

    Science.gov (United States)

    Su, Yao; Pei, Junshen; Tian, Baohu; Fan, Fengxi; Tang, Mengling; Li, Wei; He, Ruo

    2015-12-15

    Biocover soils have been demonstrated to be a good alternative cover material to mitigate CH4 emission from landfills. To evaluate the potential of biocover soil in mitigating emissions of non-methane volatile organic compounds (NMVOCs) from landfills, simulated cover soil columns with the influx of toluene (chosen as typical of NMVOCs) concentrations of 102-1336 mg m(-3) in the presence or absence of the major landfill gas components (i.e., CH4 and CO2) were conducted in this study. In the two experimental materials (waste biocover soils (WBS) and landfill cover soils (LCS)), higher toluene reduction was observed in WBS with respect to LCS. After the introduction of landfill gas, an increase of microbial diversity and relative abundance of toluene-degrading bacteria and methanotrophs occurred in WBS. To illustrate the role of toluene-degrading activity in mitigating toluene emissions through landfill covers, an analytical model was developed by incorporating the steady-state vapor transport with the first-order kinetics of aerobic biodegradation limited by O2 availability. This study demonstrated that biocover soils have great potential in applying to landfills for mitigating toluene emission to the atmosphere.

  1. Impact of landfill leachate on the groundwater quality: A case study in Egypt

    Directory of Open Access Journals (Sweden)

    Magda M. Abd El-Salam

    2015-07-01

    Full Text Available Alexandria Governorate contracted an international company in the field of municipal solid waste management for the collection, transport and disposal of municipal solid waste. Construction and operation of the sanitary landfill sites were also included in the contract for the safe final disposal of solid waste. To evaluate the environmental impacts associated with solid waste landfilling, leachate and groundwater quality near the landfills were analyzed. The results of physico-chemical analyses of leachate confirmed that its characteristics were highly variable with severe contamination of organics, salts and heavy metals. The BOD5/COD ratio (0.69 indicated that the leachate was biodegradable and un-stabilized. It was also found that groundwater in the vicinity of the landfills did not have severe contamination, although certain parameters exceeded the WHO and EPA limits. These parameters included conductivity, total dissolved solids, chlorides, sulfates, Mn and Fe. The results suggested the need for adjusting factors enhancing anaerobic biodegradation that lead to leachate stabilization in addition to continuous monitoring of the groundwater and leachate treatment processes.

  2. From phytoaccumulation to post-harvest use of water fern for landfill management.

    Science.gov (United States)

    Song, Uhram; Kim, Dae Won; Waldman, Bruce; Lee, Eun Ju

    2016-11-01

    We examined the potential of Azolla japonica as a remediating plant for leachate channels and post-accumulation use as fertilizer for landfill slope. The harvested biomass of Azolla after one month grown in leachate was 254% that of the initial biomass and the predicted annual harvestable biomass of Azolla using a growth model was 32 times that of the initial biomass. Na, Fe, Mn, Mg, and P were accumulated in Azolla at very high concentrations. Such rapid increase of biomass and high accumulation rates suggest that this plant could be an excellent remediating plant. The post-harvest use of Azolla as compost was studied for the management and use of phytoaccumulating Azolla. Metal contents of Azolla compost were below permissible limits for co-composting material. Nitrogen, organic matter, P, and Mg content of the Azolla compost improved the soil condition of the landfill and enhanced ecophysiological responses of the plants. The application of Azolla compost can improve management of sanitary landfills, including the restoration of vegetation. Considering its ease of harvesting, high accumulation rates, harvestable biomass and suitability for composting, Azolla can provide a suitable solution for sustainable management of leachate channels and landfill slopes.

  3. Monitoring fugitive CH4 and CO2 emissions from a closed landfill at Tenerife, Canary Islands

    Science.gov (United States)

    Asensio-Ramos, María; Tompkins, Mitchell R. K.; Turtle, Lara A. K.; García-Merino, Marta; Amonte, Cecilia; Rodrígez, Fátima; Padrón, Eleazar; Melián, Gladys V.; Padilla, Germán; Barrancos, José; Pérez, Nemesio M.

    2017-04-01

    Solid waste must be managed systematically to ensure environmental best practices. One of the ways to manage this huge problem is to systematic dispose waste materials in locations such as landfills. However, landfills could face possible threats to the environment such as groundwater pollution and the release of landfill gases (CH4, volatile organic compounds, etc.) to the atmosphere. These structures should be carefully filled, monitored and maintained while they are active and for up to 30 years after they are closed. Even after years of being closed, a systematically amount of landfill gas could be released to the atmosphere through its surface in a diffuse and fugitive form. During the period 1999-2016, we have studied the spatial-temporal distribution of the surface fugitive emission of CO2 and CH4 into the atmosphere in a cell in the Arico's municipal landfill (0.3 km2) at Tenerife, Canary Islands, Spain. This cell was operative until 2004, when it was filled and closed. Monitoring these diffuse landfill emissions provides information of how the closed landfill is degassing. To do so, we have performed 9 gas emission surveys during the period 1999-2016. Surface landfill CO2 efflux measurements were carried out at around 450 sampling site by means of a portable non-dispersive infrared spectrophotometer (NDIR) model LICOR Li800 following the accumulation chamber method. Landfill gases taken in the chamber were analyzed using a double channel VARIAN 4900 micro-GC. CH4 efflux measurements were computed combining CO2 efflux measurements and CH4/CO2 ratio in the landfill's surface gas. To quantify the total CH4 emission, CH4 efflux contour map was constructed using sequential Gaussian simulation (sGs) as interpolation method. In general, a decrease in the CO2 emission is observed since the cell was closed (2004) to the present. The total CO2 and CH4 diffuse emissions estimated in the 2016 survey were 4.54 ± 0.14 t d-1 and 268.65 ± 17.99 t d-1, respectively

  4. Corrective Action Investigation Plan for Corrective Action Unit 5: Landfills, Nevada Test Site, Nevada (Rev. No.: 0) includes Record of Technical Change No. 1 (dated 9/17/2002)

    Energy Technology Data Exchange (ETDEWEB)

    IT Corporation, Las Vegas, NV

    2002-05-28

    This Corrective Action Investigation Plan contains the U.S. Department of Energy, National Nuclear Security Administration Nevada Operations Office's approach to collect the data necessary to evaluate corrective action alternatives appropriate for the closure of Corrective Action Unit (CAU) 5 under the Federal Facility Agreement and Consent Order. Corrective Action Unit 5 consists of eight Corrective Action Sites (CASs): 05-15-01, Sanitary Landfill; 05-16-01, Landfill; 06-08-01, Landfill; 06-15-02, Sanitary Landfill; 06-15-03, Sanitary Landfill; 12-15-01, Sanitary Landfill; 20-15-01, Landfill; 23-15-03, Disposal Site. Located between Areas 5, 6, 12, 20, and 23 of the Nevada Test Site (NTS), CAU 5 consists of unlined landfills used in support of disposal operations between 1952 and 1992. Large volumes of solid waste were produced from the projects which used the CAU 5 landfills. Waste disposed in these landfills may be present without appropriate controls (i.e., use restrictions, adequate cover) and hazardous and/or radioactive constituents may be present at concentrations and locations that could potentially pose a threat to human health and/or the environment. During the 1992 to 1995 time frame, the NTS was used for various research and development projects including nuclear weapons testing. Instead of managing solid waste at one or two disposal sites, the practice on the NTS was to dispose of solid waste in the vicinity of the project. A review of historical documentation, process knowledge, personal interviews, and inferred activities associated with this CAU identified the following as potential contaminants of concern: volatile organic compounds, semivolatile organic compounds, polychlorinated biphenyls, pesticides, petroleum hydrocarbons (diesel- and gasoline-range organics), Resource Conservation and Recovery Act Metals, plus nickel and zinc. A two-phase approach has been selected to collect information and generate data to satisfy needed resolution

  5. Evaluation of respiration in compost landfill biocovers intended for methane oxidation

    DEFF Research Database (Denmark)

    Scheutz, Charlotte; Pedicone, Alessio; Pedersen, Gitte Bukh

    2011-01-01

    will compete for O2 with other aerobic microorganisms. If the compost is not mature, a significant portion of the O2 diffusing into the compost layer will be consumed by non-methanotrophs, thereby limiting CH4 oxidation. The results of this study however also suggest that the consumption of O2 in the compost......A low-cost alternative approach to reduce landfill gas (LFG) emissions is to integrate compost into the landfill cover design in order to establish a biocover that is optimized for biological oxidation of methane (CH4). A laboratory and field investigation was performed to quantify respiration...... in an experimental compost biocover in terms of oxygen (O2) consumption and carbon dioxide (CO2) production and emission rates. O2 consumption and CO2 production rates were measured in batch and column experiments containing compost sampled from a landfill biowindow at Fakse landfill in Denmark. Column gas...

  6. Estimating water content in an active landfill with the aid of GPR.

    Science.gov (United States)

    Yochim, April; Zytner, Richard G; McBean, Edward A; Endres, Anthony L

    2013-10-01

    Landfill gas (LFG) receives a great deal of attention due to both negative and positive environmental impacts, global warming and a green energy source, respectively. However, predicting the quantity of LFG generated at a given landfill, whether active or closed is difficult due to the heterogeneities present in waste, and the lack of accurate in situ waste parameters like water content. Accordingly, ground penetrating radar (GPR) was evaluated as a tool for estimating in situ water content. Due to the large degree of subsurface heterogeneity and the electrically conductive clay cap covering landfills, both of which affect the transmission of the electromagnetic pulses, there is much scepticism concerning the use of GPR to quantify in situ water content within a municipal landfill. Two landfills were studied. The first landfill was used to develop the measurement protocols, while the second landfill provided a means of confirming these protocols. GPR measurements were initially completed using the surface GPR approach, but the lack of success led to the use of borehole (BH) GPR. Both zero offset profiling (ZOP) and multiple offset gathers (MOG) modes were tried, with the results indicating that BH GPR using the ZOP mode is the most simple and efficient method to measure in situ water content. The best results were obtained at a separation distance of 2m, where higher the water content, smaller the effective separation distance. However, an increase in water content did appear to increase the accuracy of the GPR measurements. For the effective separation distance of 2m at both landfills, the difference between GPR and lab measured water contents were reasonable at 33.9% for the drier landfill and 18.1% for the wetter landfill. Infiltration experiments also showed the potential to measure small increases in water content.

  7. Landfill to Learning Facility

    Science.gov (United States)

    Venner, Laura

    2008-05-01

    Engaging "K-to-Gray” audiences (children, families, and older adults) in scientific exploration and discovery is the main goal of the NJMC Center for Environmental and Scientific Education and the William D. McDowell Observatory located in Lyndhurst, NJ. Perched atop a closed and reclaimed municipal solid waste landfill, our new LEED - certified building (certification pending) and William D. McDowell observatory will bring hands-on scientific experiences to the 25,000 students and 3,000 adults that visit our site from the NY/NJ region each year. Our programs adhere to the New Jersey Core Curriculum Content Standards and are modified for accessibility for the underserved communities that visit us, specifically those individuals that have mobility, sensory, and/or cognitive ability differences. The programs are conducted in a classroom setting and are designed to nourish the individual's inquisitive nature and provide an opportunity to function as a scientist by, making observations, performing experiments and recording data. We have an $850,000, three year NSF grant that targets adults with disabilities and older adults with age related limitations in vision, hearing, cognition and/or mobility. From dip netting in the marsh to astronomical investigation of the cosmos, the MEC/CESE remains committed to reaching the largest audience possible and leaving them with a truly exceptional scientific experience that serves to educate and inspire.

  8. Landfill Gas Energy Project Development Handbook

    Science.gov (United States)

    View handbook that provides an overview of LFG energy project development guidance and presents the technological, economic and regulatory considerations that affect the feasibility and success of these projects.

  9. Short Mountain Landfill gas recovery project

    Energy Technology Data Exchange (ETDEWEB)

    1992-05-01

    The Bonneville Power Administration (BPA), a Federal power marketing agency, has statutory responsibilities to supply electrical power to its utility, industrial, and other customers in the Pacific Northwest. BPA's latest load/resource balance forecast, projects the capability of existing resources to satisfy projected Federal system loads. The forecast indicates a potential resource deficit. The underlying need for action is to satisfy BPA customers' demand for electrical power.

  10. Landfill Gas Electricity Project Interconnection Webinar

    Science.gov (United States)

    This page contains information about a webinar LMOP offered to LMOP Partners to address questions associated with connecting electricity generating systems to the grid during LFG energy project planning and implementation.

  11. Evaluation of an Odour Emission Factor (OEF) to estimate odour emissions from landfill surfaces

    Science.gov (United States)

    Lucernoni, Federico; Tapparo, Federica; Capelli, Laura; Sironi, Selena

    2016-11-01

    Emission factors are fundamental tools for air quality management. Odour Emission Factors (OEFs) can be developed in analogy with the emission factors defined for other chemical compounds, which relate the quantity of a pollutant released to the atmosphere to a given associated activity. Landfills typically represent a common source of odour complaint; for this reason, the development of specific OEFs allowing the estimation of odour emissions from this kind of source would be of great interest both for the landfill design and management. This study proposes an up-to-date methodology for the development of an OEF for the estimation of odour emissions from landfills, thereby focusing on the odour emissions related to the emissions of landfill gas (LFG) from the exhausted landfill surface. The proposed approach is an "indirect" approach based on the quantification of the LFG emissions from methane concentration measurements carried out on an Italian landfill. The Odour Emission Rate (OER) is then obtained by multiplying the emitted gas flow rate by the LFG odour concentration. The odour concentration of the LFG emitted through the landfill surface was estimated by means of an ad hoc correlation investigated between methane concentration and odour concentration. The OEF for the estimation of odour emissions from landfill surfaces was computed, considering the landfill surface as the activity index, as the product between the mean specific LFG flux emitted through the surface resulting from the experimental campaigns, equal to 0.39 l/m2/h, and its odour concentration, which was estimated to be equal to 105‧000 eq. ouE/m3, thus giving an OEF of 0.011 ouE/m2/s. This value, which is considerably lower than those published in previous works, should be considered as an improved estimation based on the most recent developments of the research in the field of odour sampling on surface sources.

  12. Characterization of H2S removal and microbial community in landfill cover soils.

    Science.gov (United States)

    Xia, Fang-Fang; Zhang, Hong-Tao; Wei, Xiao-Meng; Su, Yao; He, Ruo

    2015-12-01

    H2S is a source of odors at landfills and poses a threat to the surrounding environment and public health. In this work, compared with a usual landfill cover soil (LCS), H2S removal and biotransformation were characterized in waste biocover soil (WBS), an alternative landfill cover material. With the input of landfill gas (LFG), the gas concentrations of CH4, CO2, O2, and H2S, microbial community and activity in landfill covers changed with time. Compared with LCS, lower CH4 and H2S concentrations were detected in the WBS. The potential sulfur-oxidizing rate and sulfate-reducing rate as well as the contents of acid-volatile sulfide, SO4(2-), and total sulfur in the WBS and LCS were all increased with the input of LFG. After exposure to LFG for 35 days, the sulfur-oxidizing rate of the bottom layer of the WBS reached 82.5 μmol g dry weight (d.w.)(-1) day(-1), which was 4.3-5.4 times of that of LCS. H2S-S was mainly deposited in the soil covers, while it escaped from landfills to the atmosphere. The adsorption, absorption, and biotransformation of H2S could lead to the decrease in the pH values of landfill covers; especially, in the LCS with low pH buffer capacity, the pH value of the bottom layer dropped to below 4. Pyrosequencing of 16S ribosomal RNA (rRNA) gene showed that the known sulfur-metabolizing bacteria Ochrobactrum, Paracoccus, Comamonas, Pseudomonas, and Acinetobacter dominated in the WBS and LCS. Among them, Comamonas and Acinetobacter might play an important role in the metabolism of H2S in the WBS. These findings are helpful to understand sulfur bioconversion process in landfill covers and to develop techniques for controlling odor pollution at landfills.

  13. Landfilling of waste incineration residues

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund; Astrup, Thomas; Cai, Zuansi

    2002-01-01

    Residues from waste incineration are bottom ashes and air-pollution-control (APC) residues including fly ashes. The leaching of heavy metals and salts from the ashes is substantial and a wide spectrum of leaching tests and corresponding criteria have been introduced to regulate the landfilling...... of the ashes. Leaching test, however, must be selected carefully to provide information relevant for the actual disposal scenario and for evaluating the benefits of pre-treating the residues prior to landfilling. This paper describes research at the Technical University of Denmark addressing some...... of these issues focusing on pH-development in landfilled residues, effects of leaching test conditions on Cr leaching and effects of pre-treatment with FeSO4....

  14. Sustainable treatment of landfill leachate

    Science.gov (United States)

    Kamaruddin, Mohamad Anuar; Yusoff, Mohd. Suffian; Aziz, Hamidi Abdul; Hung, Yung-Tse

    2015-06-01

    Landfill leachate is a complex liquid that contains excessive concentrations of biodegradable and non-biodegradable products including organic matter, phenols, ammonia nitrogen, phosphate, heavy metals, and sulfide. If not properly treated and safely disposed, landfill leachate could be an impending source to surface and ground water contamination as it may percolate throughout soils and subsoils, causing adverse impacts to receiving waters. Lately, various types of treatment methods have been proposed to alleviate the risks of untreated leachate. However, some of the available techniques remain complicated, expensive and generally require definite adaptation during process. In this article, a review of literature reported from 2008 to 2012 on sustainable landfill leachate treatment technologies is discussed which includes biological and physical-chemical techniques, respectively.

  15. Astronomy on a Landfill

    Science.gov (United States)

    Venner, Laura

    2008-09-01

    Engaging "K-to-Gray” audiences (children, families, and older adults) in astronomical activities is one of the main goals of the NJMC Center for Environmental and Scientific Education and the William D. McDowell Observatory located in Lyndhurst, NJ. Perched atop a closed and reclaimed municipal solid waste landfill, our new LEED - certified building (certification pending) and William D. McDowell observatory will assist in bringing the goals of IYA 2009 to the approximately 25,000 students and 15,000 adults that visit our site from the NY/NJ region each year. Diversifying our traditional environmental science offerings, we have incorporated astronomy into our repertoire with "The Sun Through Time” module, which includes storytelling, cultural astronomy, telescope anatomy, and other activities that are based on the electromagnetic spectrum and our current knowledge of the sun. These lessons have also been modified to bring astronomy to underserved communities, specifically those individuals that have dexterity or cognitive ability differences. The program is conducted in a classroom setting and is designed to meet New Jersey Core Curriculum Content Standards. With the installation of our new 20” telescope, students and amateur astronomers will be given the opportunity to perform rudimentary research. In addition, a program is in development that will allow individuals to measure local sky brightness and understand the effects of light pollution on astronomical viewing. Teaching astronomy in an urban setting presents many challenges. All individuals, regardless of ability level or location, should be given the opportunity to be exposed to the wonders of the universe and the MEC/CESE has been successful in providing those opportunities.

  16. Fluxes of methane between landfills and the atmosphere: Natural and engineered controls

    Energy Technology Data Exchange (ETDEWEB)

    Bogner, J. [Argonne National Lab., IL (United States); Meadows, M. [ETSU, Harwell, Oxfordshire (United Kingdom); Czepiel, P. [Harvard Univ., Cambridge, MA (United States)

    1997-08-01

    Field measurement of landfill methane emissions indicates natural variability spanning more than 2 seven orders of magnitude, from approximately 0.0004 to more than 4000 g m{sub -2} day{sup -1}. This wide range reflects net emissions resulting from production (methanogenesis), consumption (methanotrophic oxidation), and gaseous transport processes. The determination of an {open_quotes}average{close_quotes} emission rate for a given field site requires sampling designs and statistical techniques which consider spatial and temporal variability. Moreover, particularly at sites with pumped gas recovery systems, it is possible for methanotrophic microorganisms in aerated cover soils to oxidize all of the methane from landfill sources below and, additionally, to oxidize methane diffusing into cover soils from atmospheric sources above. In such cases, a reversed soil gas concentration gradient is observed in shallow cover soils, indicating bidirectional diffusional transport to the depth of optimum methane oxidation. Rates of landfill methane oxidation from field and laboratory incubation studies range up to 166 g m{sup -2} day{sup -1} among the highest for any natural setting, providing an effective natural control on net emissions. Estimates of worldwide landfill methane emissions to the atmosphere have ranged from 9 to 70 Tg yr{sup -1}, differing mainly in assumed methane yields from estimated quantities of landfilled refuse. At highly controlled landfill sites in developed countries, landfill methane is often collected via vertical wells or horizontal collectors. Recovery of landfill methane through engineered systems can provide both environmental and energy benefits by mitigating subsurface migration, reducing surface emissions, and providing an alternative energy resource for industrial boiler use, on-site electrical generation, or upgrading to a substitute natural gas.

  17. Temporal and spatial pore water pressure distribution surrounding a vertical landfill leachate recirculation well.

    Science.gov (United States)

    Kadambala, Ravi; Townsend, Timothy G; Jain, Pradeep; Singh, Karamjit

    2011-05-01

    Addition of liquids into landfilled waste can result in an increase in pore water pressure, and this in turn may increase concerns with respect to geotechnical stability of the landfilled waste mass. While the impact of vertical well leachate recirculation on landfill pore water pressures has been mathematically modeled, measurements of these systems in operating landfills have not been reported. Pressure readings from vibrating wire piezometers placed in the waste surrounding a liquids addition well at a full-scale operating landfill in Florida were recorded over a 2-year period. Prior to the addition of liquids, measured pore pressures were found to increase with landfill depth, an indication of gas pressure increase and decreasing waste permeability with depth. When liquid addition commenced, piezometers located closer to either the leachate injection well or the landfill surface responded more rapidly to leachate addition relative to those far from the well and those at deeper locations. After liquid addition stopped, measured pore pressures did not immediately drop, but slowly decreased with time. Despite the large pressures present at the bottom of the liquid addition well, much smaller pressures were measured in the surrounding waste. The spatial variation of the pressures recorded in this study suggests that waste permeability is anisotropic and decreases with depth.

  18. Comparison of slope stability in two Brazilian municipal landfills.

    Science.gov (United States)

    Gharabaghi, B; Singh, M K; Inkratas, C; Fleming, I R; McBean, E

    2008-01-01

    The implementation of landfill gas to energy (LFGTE) projects has greatly assisted in reducing the greenhouse gases and air pollutants, leading to an improved local air quality and reduced health risks. The majority of cities in developing countries still dispose of their municipal waste in uncontrolled 'open dumps.' Municipal solid waste landfill construction practices and operating procedures in these countries pose a challenge to implementation of LFGTE projects because of concern about damage to the gas collection infrastructure (horizontal headers and vertical wells) caused by minor, relatively shallow slumps and slides within the waste mass. While major slope failures can and have occurred, such failures in most cases have been shown to involve contributory factors or triggers such as high pore pressures, weak foundation soil or failure along weak geosynthetic interfaces. Many researchers who have studied waste mechanics propose that the shear strength of municipal waste is sufficient such that major deep-seated catastrophic failures under most circumstances require such contributory factors. Obviously, evaluation of such potential major failures requires expert analysis by geotechnical specialists with detailed site-specific information regarding foundation soils, interface shearing resistances and pore pressures both within the waste and in clayey barrier layers or foundation soils. The objective of this paper is to evaluate the potential use of very simple stability analyses which can be used to study the potential for slumps and slides within the waste mass and which may represent a significant constraint on construction and development of the landfill, on reclamation and closure and on the feasibility of a LFGTE project. The stability analyses rely on site-specific but simple estimates of the unit weight of waste and the pore pressure conditions and use "generic" published shear strength envelopes for municipal waste. Application of the slope stability

  19. Gradient packing bed bio-filter for landfill methane mitigation.

    Science.gov (United States)

    Obulisamy, Parthiba Karthikeyan; Sim Yan May, Jane; Rajasekar, Balasubramanian

    2016-10-01

    We assessed the suitability of various biogenic materials for development of a gradient packed bed bio-filter to mitigate the methane (CH4) emission from landfills. Five different biogenic materials (windrow compost-WC; vermicompost-VC; landfill top cover-LTC; landfill bottom soil-LBS; and river soil sediment-SS) were screened. Among these materials, the VC showed a better CH4 oxidation potential (MOP) of 12.6μg CH4 gdw(-1)h(-1). Subsequently, the VC was used as a packing material along with wood chips in proto-type bio-filters. Wood chips were mixed at 5-15% to form three distinct gradients in a test bio-filter. Under the three different CH4 loading rates of 33, 44 and 55 gCH4 m(-3)h(-1), the achieved MOPs were 31, 41, and 47gCH4 m(-3)h(-1), respectively. The gradient packed bed bio-filter is effective for landfill CH4 mitigation than the conventional bio-filter as the latter shows gas channeling effects with poor MOPs.

  20. Landfilling of waste incineration residues

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund; Astrup, Thomas; Cai, Zuansi

    2002-01-01

    Residues from waste incineration are bottom ashes and air-pollution-control (APC) residues including fly ashes. The leaching of heavy metals and salts from the ashes is substantial and a wide spectrum of leaching tests and corresponding criteria have been introduced to regulate the landfilling...... of the ashes. Leaching test, however, must be selected carefully to provide information relevant for the actual disposal scenario and for evaluating the benefits of pre-treating the residues prior to landfilling. This paper describes research at the Technical University of Denmark addressing some...

  1. Characterization, Concentrations and Emission Rates of Volatile Organic Compounds from Two Major Landfill Sites in Kuwait

    Directory of Open Access Journals (Sweden)

    Mohammad AlAhmad

    2012-01-01

    Full Text Available Problem statement: The emission of pollutants from landfill sites in Kuwait is of major concern due to the associated adverse environmental and health impacts. There are 18 landfill sites in Kuwait which are contributing to the emission of atmospheric pollutants including; methane, carbon dioxide and Volatile Organic Compounds (VOCs. Approach: Determine the concentration and composition of VOCs in LFG emissions from two major landfill sites in Kuwait and to investigate the influence of the "In-Situ Aerobic Stabilization" on the reduction of VOCs emission. VOCs samples were collected during an intensive, short-term field sampling campaign conducted in 2010 where 50 individual volatile organic compounds were identified and quantified in landfill gas samples collected from the two landfill sites and the Project Area. Results: The concentration levels of VOCs were found to be significantly different within the same landfill site; however, the average total VOCs emissions were comparable between the two landfill sites. Concentration of total VOCs (i.e., sum of 50 compounds in LFG emissions varied between 9.4-67.2 ppm in Jleeb Al-Shuyoukh landfill site and from 15.4-57.7 ppm in Al-Qurain landfill site. Annual emissions of the well-known five VOCs (i.e., benzene, toluene, ethylbenzene, m-, o- and p-xylenes and styrene were also computed for each vent pipe from Jleeb Al-Shuyoukh landfill using the measured average concentrations and LFG flow rates. The results, if calculated in terms of the average ΣBTEX+S quantity emitted per vent pipe per year, showed that the magnitude of ΣBTEX+S emissions ranged between 0.108 -11.686 g y−1. Conclusion: The results of this pilot project demonstrated that the “in-situ aerobic stabilization method” applied on old solid waste deposits in the project area of Jleeb Al-Shuyoukh landfill can significantly reduce the average VOCs concentration in LFG emissions from high-productivity wells in the project

  2. Mechanism of H2S removal during landfill stabilization in waste biocover soil, an alterative landfill cover.

    Science.gov (United States)

    He, Ruo; Xia, Fang-Fang; Bai, Yun; Wang, Jing; Shen, Dong-Sheng

    2012-05-30

    Hydrogen sulfide (H(2)S) is one of the primary contributors to odors at landfills. The mechanism of waste biocover soil (WBS) for H(2)S removal was investigated in simulated landfill systems with the contrast experiment of a landfill cover soil (LCS). The H(2)S removal efficiency was higher than 90% regardless of the WBS or LCS covers. The input of landfill gas (LFG) could stimulate the growth of aerobic heterotrophic bacteria, actinomycete, sulfate-reducing bacteria (SRB) and sulfur-oxidizing bacteria (SOB) in the WBS cover, while that caused a decrease of 1-2 orders of magnitude in the populations of actinomycete and fungi in the bottom layer of the LCS cover. As H(2)S inputted, the sulfide content in the WBS cover increased and reached the maximum on day 30. In the LCS cover, the highest soil sulfide content was exhibited in the bottom layer during the whole experiment. After exposure to LFG, the lower pH value and higher sulfate content were observed in the top layer of the WBS cover, while there was not a significant difference in different layers of the LCS cover. The results indicated a more rapid biotransformation between sulfide and sulfate occurred in the WBS cover compared to the LCS.

  3. Did state renewable portfolio standards induce technical change in methane mitigation in the U.S. landfill sector?

    Science.gov (United States)

    Delhotal, Katherine Casey

    Landfill gas (LFG) projects use the gas created from decomposing waste, which is approximately 49% methane, and substitute it for natural gas in engines, boilers, turbines, and other technologies to produce energy or heat. The projects are beneficial in terms of increased safety at the landfill, production of a cost-effective source of energy or heat, reduced odor, reduced air pollution emissions, and reduced greenhouse gas emissions. However, landfills sometimes face conflicting policy incentives. The theory of technical change shows that the diffusion of a technology or groups of technologies increases slowly in the beginning and then picks up speed as knowledge and better understanding of using the technology diffuses among potential users. Using duration analysis, data on energy prices, State and Federal policies related to landfill gas, renewable energy, and air pollution, as well as control data on landfill characteristics, I estimate the influence and direction of influence of renewable portfolio standards (RPS). The analysis found that RPS positively influences the diffusion of landfill gas technologies, encouraging landfills to consider electricity generation projects over direct sales of LFG to another facility. Energy price increases or increased revenues for a project are also critical. Barriers to diffusion include air emission permits in non-attainment areas and policies, such as net metering, which promote other renewables over LFG projects. Using the estimates from the diffusion equations, I analyze the potential influence of a Federal RPS as well as the potential interaction with a Federal, market based climate change policy, which will increase the revenue of a project through higher energy sale prices. My analysis shows that a market based climate change policy such as a cap-and-trade or carbon tax scheme would increase the number of landfill gas projects significantly more than a Federal RPS.

  4. Indoor Environmental Conditions and Sanitary Practices in Selected ...

    African Journals Online (AJOL)

    African Journal of Sustainable Development ... Rapidly urbanizing cities are witnessing an increase in Day care centres (DCCs) whose ... Keywords: Day Care Centres, sanitary practices, indoor air quality, children, urban communities ...

  5. Sanitary and Phytosanitary Measures in NAFTA: The Canada Experience

    OpenAIRE

    Terry Norman

    2005-01-01

    Canada's Experience in Implementing the Sanitary and Phytosanitary (SPS) provisions of the North American free trade agreement (NAFTA). The NAFTA has been a major success story for Canada since its entry into force on January 1, 1994.

  6. Methane from landfills in Sweden. Final report; Metan fraan avfallsupplag i Sverige. Slutrapport

    Energy Technology Data Exchange (ETDEWEB)

    Samuelsson, Jerker [Chalmers Univ. of Technology, Goeteborg (Sweden); Galle, Bo; Boerjesson, Gunnar [Linkoeping Univ. (Sweden). Dept. of Water and Environmental Studies

    2006-01-15

    Three years of measurements has been conducted at seven Swedish landfills, quantifying methane emission, methane oxidation and methane production. The measurements reveal a large span between the sites in terms of gas recovery efficiency, 29-78% during normal operation. The fraction of the totally produced methane that is eventually leaking out to the atmosphere, was found to vary between 21-68%. Regarding methane oxidation, the study shows that of the methane going from the landfill interior towards the atmosphere, 6-43% is oxidised to CO{sub 2} in the different landfill cover soils. The highest methane oxidation was found in closed landfills during summertime, and the lowest at active landfills during wintertime, due to the strong temperature dependence of the oxidation. The equipment developed for methane emission measurements is based on time resolved concentration measurements with FTIR spectroscopy in combination with tracer gas releases from the surface of the landfill. The method has proven to be able to state the methane emission from the landfills with high accuracy, {+-}18% of the emission estimate (95% confidence interval). This is in line with what has been achieved in the literature for fugitive emission sources. The system has also proven to be useful for on site leak search. The precision for the methane production measurement was demonstrated to be high, down to {+-}4.2%. This enables trend studies and verification of improvement measures taken at the landfill sites. In terms of absolute accuracy for the production estimate, a 95%-confidence interval of down to (-6.0%, +6.2%) has been achieved. At times of strong methane oxidation the uncertainties increase, particularly if the emission is high. The gas production at the landfill site is therefore preferably measured during autumn-winter-spring when the temperature and the methane oxidation are low. The methane oxidation has been measured by carbon isotope technique, utilising the enrichment in

  7. Charles Dickens and the movement for sanitary reform.

    Science.gov (United States)

    Litsios, Socrates

    2003-01-01

    Charles Dickens's adult life parallels the period when the movement for sanitary reform took root in England. Although he was not one of its leaders, he became in time one of its most outspoken advocates. This essay describes Dickens's growing involvement in the sanitary movement and looks at one of the most important ways he supported it--articles published in his weekly journal Household Words

  8. Use of the landfill water pollution index (LWPI) for groundwater quality assessment near the landfill sites.

    Science.gov (United States)

    Talalaj, Izabela A; Biedka, Pawel

    2016-12-01

    The purpose of the paper is to assess the groundwater quality near the landfill sites using landfill water pollution index (LWPI). In order to investigate the scale of groundwater contamination, three landfills (E, H and S) in different stages of their operation were taken into analysis. Samples of groundwater in the vicinity of studied landfills were collected four times each year in the period from 2004 to 2014. A total of over 300 groundwater samples were analysed for pH, EC, PAH, TOC, Cr, Hg, Zn, Pb, Cd, Cu, as required by the UE legal acts for landfill monitoring system. The calculated values of the LWPI allowed the quantification of the overall water quality near the landfill sites. The obtained results indicated that the most negative impact on groundwater quality is observed near the old Landfill H. Improper location of piezometer at the Landfill S favoured infiltration of run-off from road pavement into the soil-water environment. Deep deposition of the groundwater level at Landfill S area reduced the landfill impact on the water quality. Conducted analyses revealed that the LWPI can be used for evaluation of water pollution near a landfill, for assessment of the variability of water pollution with time and for comparison of water quality from different piezometers, landfills or time periods. The applied WQI (Water Quality Index) can also be an important information tool for landfill policy makers and the public about the groundwater pollution threat from landfill.

  9. Contribution of individual waste fractions to the environmental impacts from landfilling of municipal solid waste

    DEFF Research Database (Denmark)

    Manfredi, Simone; Tonini, Davide; Christensen, Thomas Højlund

    2010-01-01

    PE/tonne). These savings are mostly determined by the waste fractions characterized by a high content of biogenic carbon (paper, organics, other combustible waste). These savings are due to emissions from energy generation avoided by landfill gas utilization, and by the storage of biogenic carbon in the landfill due......A number of LCA-based studies have reported on the environmental performance of landfilling of mixed waste, but little is known about the relative contributions of individual waste fractions to the overall impact potentials estimated for the mixed waste. In this paper, an empirical model has been...... used to estimate the emissions to the environment from landfilling of individual waste fractions. By means of the LCA-model EASEWASTE, the emissions estimated have been used to quantify how much of the overall impact potential for each impact category is to be attributed to the individual waste...

  10. Indirect measurements of field-scale hydraulic conductivity of waste from two landfill sites.

    Science.gov (United States)

    Fleming, I R

    2011-12-01

    Management and prediction of the movement and distribution of fluids in large landfills is important for various reasons. Bioreactor landfill technology shows promise, but in arid or semi-arid regions, the natural content of landfilled waste may be low, thus requiring addition of significant volumes of water. In more humid locations, landfills can become saturated, flooding gas collection systems and causing sideslope leachate seeps or other undesirable occurrences. This paper compares results from two different approaches to monitoring water in waste. At the Brock West Landfill in eastern Canada, positive pore pressures were measured at various depths in saturated waste. The downward seepage flux through the waste is known, thus the vertical saturated hydraulic conductivity of the waste at this landfill was determined to be 3 × 10(-7)cm/s. By comparison, the Spadina Landfill in western Canada is predominantly unsaturated. The infiltration of moisture into the waste was measured using moisture sensors installed in boreholes which determined arrival time for moisture fronts resulting from major precipitation events as well as longer-term change in moisture content resulting from unsaturated drainage during winter when frozen ground prevented infiltration. The unsaturated hydraulic conductivity calculated from these data ranged from approximately 10(-6)cm/s for the slow winter drainage in the absence of significant recharge to 10(-2)cm/s or higher for shallow waste subject to high infiltration through apparent preferential pathways. These two very different approaches to field-scale measurements of vertical hydraulic conductivity provide insight into the nature of fluid movement in saturated and unsaturated waste masses. It is suggested that the principles of unsaturated seepage apply reasonably well for landfilled waste and that the hydraulic behavior of waste is profoundly influenced by the nature and size of voids and by the degree of saturation prevailing in the

  11. Performance evaluation of the bioreactor landfill in treatment and stabilisation of mechanically biologically treated municipal solid waste.

    Science.gov (United States)

    Lakshmikanthan, P; Sivakumar Babu, G L

    2017-03-01

    The potential of bioreactor landfills to treat mechanically biologically treated municipal solid waste is analysed in this study. Developing countries like India and China have begun to investigate bioreactor landfills for municipal solid waste management. This article describes the impacts of leachate recirculation on waste stabilisation, landfill gas generation, leachate characteristics and long-term waste settlement. A small-scale and large-scale anaerobic cell were filled with mechanically biologically treated municipal solid waste collected from a landfill site at the outskirts of Bangalore, India. Leachate collected from the same landfill site was recirculated at the rate of 2-5 times a month on a regular basis for 370 days. The total quantity of gas generated was around 416 L in the large-scale reactor and 21 L in the small-scale reactor, respectively. Differential settlements ranging from 20%-26% were observed at two different locations in the large reactor, whereas 30% of settlement was observed in the small reactor. The biological oxygen demand/chemical oxygen demand (COD) ratio indicated that the waste in the large reactor was stabilised at the end of 1 year. The performance of the bioreactor with respect to the reactor size, temperature, landfill gas and leachate quality was analysed and it was found that the bioreactor landfill is efficient in the treatment and stabilising of mechanically biologically treated municipal solid waste.

  12. Remaining Sites Verification Package for the 1607-F4 Sanitary Sewer System, Waste Site Reclassification Form 2004-131

    Energy Technology Data Exchange (ETDEWEB)

    L. M. Dittmer

    2007-12-03

    The 1607-F4 waste site is the former location of the sanitary sewer system that serviced the former 115-F Gas Recirculation Building. The system included a septic tank, drain field, and associated pipeline that were in use from 1944 to 1965. The 1607-F4 waste site received unknown amounts of sanitary sewage from the 115-F Gas Recirculation Building and may have potentially contained hazardous and radioactive contamination. In accordance with this evaluation, the verification sampling results support a reclassification of this site to Interim Closed Out. The results of verification sampling demonstrated that residual contaminant concentrations do not preclude any future uses and allow for unrestricted use of shallow zone soils. The results also showed that residual contaminant concentrations are protective of groundwater and the Columbia River.

  13. Differences in volatile methyl siloxane (VMS) profiles in biogas from landfills and anaerobic digesters and energetics of VMS transformations

    Energy Technology Data Exchange (ETDEWEB)

    Tansel, Berrin, E-mail: tanselb@fiu.edu; Surita, Sharon C.

    2014-11-15

    Highlights: • In the digester gas, D4 and D5 comprised the 62% and 27% if siloxanes, respectively. • In landfill gas, the bulk of siloxanes were TMSOH (58%) followed by D4 (17%). • Methane utilization may be a possible mechanism for TMSOH formation in the landfills. • The geometric configurations of D4 and D5 molecules make them very stable. - Abstract: The objectives of this study were to compare the types and levels of volatile methyl siloxanes (VMS) present in biogas generated in the anaerobic digesters and landfills, evaluate the energetics of siloxane transformations under anaerobic conditions, compare the conditions in anaerobic digesters and municipal solid waste (MSW) landfills which result in differences in siloxane compositions. Biogas samples were collected at the South District Wastewater Treatment Plant and South Dade Landfill in Miami, Florida. In the digester gas, D4 and D5 comprised the bulk of total siloxanes (62% and 27%, respectively) whereas in the landfill gas, the bulk of siloxanes were trimethylsilanol (TMSOH) (58%) followed by D4 (17%). Presence of high levels of TMSOH in the landfill gas indicates that methane utilization may be a possible reaction mechanism for TMSOH formation. The free energy change for transformation of D5 and D4 to TMSOH either by hydrogen or methane utilization are thermodynamically favorable. Either hydrogen or methane should be present at relatively high concentrations for TMSOH formation which explains the high levels present in the landfill gas. The high bond energy and bond distance of the Si–O bond, in view of the atomic sizes of Si and O atoms, indicate that Si atoms can provide a barrier, making it difficult to break the Si–O bonds especially for molecules with specific geometric configurations such as D4 and D5 where oxygen atoms are positioned inside the frame formed by the large Si atoms which are surrounded by the methyl groups.

  14. Estimating Landfill Methane Oxidation Using the Information of CO2/CH4 Fluxes Measured By the Eddy Covariance Method

    Science.gov (United States)

    Xu, L.; McDermitt, D. K.; Li, J.; Green, R. B.

    2016-12-01

    Methane plays a critical role in the radiation balance and chemistry of the atmosphere. Globally, landfill methane emission contributes about 10-19% of the anthropogenic methane burden into the atmosphere. In the United States, 18% of annual anthropogenic methane emissions come from landfills, which represent the third largest source of anthropogenic methane emissions, behind enteric fermentation and natural gas and oil production. One uncertainty in estimating landfill methane emissions is the fraction of methane oxidized when methane produced under anaerobic conditions passes through the cover soil. We developed a simple stoichiometric model to estimate the landfill methane oxidation fraction when the anaerobic CO2/CH4 production ratio is known. The model predicts a linear relationship between CO2 emission rates and CH4 emission rates, where the slope depends on anaerobic CO2/CH4 production ratio and the fraction of methane oxidized, and the intercept depends on non-methane-dependent oxidation processes. The model was tested with eddy covariance CO2 and CH4 emission rates at Bluff Road Landfill in Lincoln Nebraska. It predicted zero oxidation rate in the northern portion of this landfill where a membrane and vents were present. The zero oxidation rate was expected because there would be little opportunity for methane to encounter oxidizing conditions before leaving the vents. We also applied the model at the Turkey Run Landfill in Georgia to estimate the CH4 oxidation rate over a one year period. In contrast to Bluff Road Landfill, the Turkey Run Landfill did not have a membrane or vents. Instead, methane produced in the landfill had to diffuse through a 0.5 m soil cap before release to the atmosphere. We observed evidence for methane oxidation ranging from about 18% to above 60% depending upon the age of deposited waste material. The model will be briefly described, and results from the two contrasting landfills will be discussed in this presentation.

  15. Environmental assessment of solid waste landfilling technologies by means of LCA-modeling.

    Science.gov (United States)

    Manfredi, Simone; Christensen, Thomas H

    2009-01-01

    By using life cycle assessment (LCA) modeling, this paper compares the environmental performance of six landfilling technologies (open dump, conventional landfill with flares, conventional landfill with energy recovery, standard bioreactor landfill, flushing bioreactor landfill and semi-aerobic landfill) and assesses the influence of the active operations practiced on these performances. The environmental assessments have been performed by means of the LCA-based tool EASEWASTE, whereby the functional unit utilized for the LCA is "landfilling of 1ton of wet household waste in a 10m deep landfill for 100 years". The assessment criteria include standard categories (global warming, nutrient enrichment, ozone depletion, photo-chemical ozone formation and acidification), toxicity-related categories (human toxicity and ecotoxicity) and impact on spoiled groundwater resources. Results demonstrate that it is crucially important to ensure the highest collection efficiency of landfill gas and leachate since a poor capture compromises the overall environmental performance. Once gas and leachate are collected and treated, the potential impacts in the standard environmental categories and on spoiled groundwater resources significantly decrease, although at the same time specific emissions from gas treatment lead to increased impact potentials in the toxicity-related categories. Gas utilization for energy recovery leads to saved emissions and avoided impact potentials in several environmental categories. Measures should be taken to prevent leachate infiltration to groundwater and it is essential to collect and treat the generated leachate. The bioreactor technologies recirculate the collected leachate to enhance the waste degradation process. This allows the gas collection period to be reduced from 40 to 15 years, although it does not lead to noticeable environmental benefits when considering a 100 years LCA-perspective. In order to more comprehensively understand the influence

  16. Imaging and characterization of heterogeneous landfills using geophysical methods

    NARCIS (Netherlands)

    Konstantaki, L.A.

    2016-01-01

    Nowadays many countries use landfilling for the management of their waste or for treating old landfills. Emissions from landfills can be harmful to the environment and to human health, making the stabilization of landfills a priority for the landfill communities. Estimation of the emission potential

  17. Imaging and characterization of heterogeneous landfills using geophysical methods

    NARCIS (Netherlands)

    Konstantaki, L.A.

    2016-01-01

    Nowadays many countries use landfilling for the management of their waste or for treating old landfills. Emissions from landfills can be harmful to the environment and to human health, making the stabilization of landfills a priority for the landfill communities. Estimation of the emission potential

  18. Best Management Practices to Prevent and Control Hydrogen Sulfide and Reduced Sulfur Compound Emissions at Landfills That Dispose of Gypsum Drywall

    Science.gov (United States)

    Hydrogen sulfide (H2S) gas can be emitted from both construction and demolition (C&D) debris and municipal solid waste (MSW) landfills. H2S emissions may be problematic at a landfill as they can cause odor, impact surrounding communities, cause wear or dama...

  19. Analysis of the economic potential of the landfill in the municipality of Chapeco - SC, Brazil; Analise do potencial economico do aterro sanitario do municipio de Chapeco - SC

    Energy Technology Data Exchange (ETDEWEB)

    Cansian, Maricy Moreno, Email: maricymc@gmail.com

    2006-07-01

    This study aims to evaluate the economic and environmental viability of the exploitation of methane gas (CH4) - biogas - concentrated at the bottom of the mountains of waste from landfill Chapeco for power generation. The landfill receives approximately of 80 tons / day, the vast majority of domestic origin.

  20. Environmental assessment of low-organic waste landfill scenarios by means of life-cycle assessment modelling (EASEWASTE).

    Science.gov (United States)

    Manfredi, Simone; Christensen, Thomas H; Scharff, Heijo; Jacobs, Joeri

    2010-02-01

    The environmental performance of two low-organic waste landfill scenarios ('low-organic-energy' and 'low-organic-flare') was developed and compared with two household waste landfill scenarios ('household-energy' and 'household-flare') by means of LCA-modelling. The LCA-modelling was made for 1 tonne of wet waste landfilled and the environmental aspects were evaluated for a 100-year period after disposal. The data utilized in the LCA-calculations to model the first 10-20 years of landfilling of the two low-organic waste scenarios make extensive use of site-specific data from the Nauerna Landfill (The Netherlands), but average data from other comparable, existing landfills were used too. As data from full-scale landfills do not cover more than 30-40 years of landfilling, data from laboratory simulations and accelerated tests of limited scale were also utilized. The life-cycle impact assessments show that the low-organic waste scenarios achieved better environmental performance than the household waste scenarios with regard to both ordinary and toxicity-related environmental impact categories. This indicates that the reduction of organic matter accepted at landfills (as prescribed by the European Union Landfill Directive: Council Directive 1999/31/EC, EU, Brussels, 1999) can be a successful approach to decrease the environmental loads in several impact categories in comparison with landfilling of waste with significant organic content. However, when utilization of landfill gas is accounted for in the life-cycle impact assessment calculation, the small gas generation in low-organic waste landfills reduced the actual potential for energy generation and therefore the environmental savings obtained were reduced proportionally. Groundwater pollution from input of leachate was also evaluated and the WHO (Guidelines for Drinking-water Quality; WHO, Geneva, 2006) guideline for drinking water quality was assumed as reference. The results show that low-organic waste landfills

  1. Methane oxidation and degradation of organic compounds in landfill soil covers

    DEFF Research Database (Denmark)

    Scheutz, Charlotte; Kjeldsen, Peter

    2002-01-01

    High rates of methane oxidation and degradation of the lowed halogenated methanes (TCM and DCM) and HCFCs (HCFC-21 and HCFC-22) were found in an investigation of the oxidation of methane and halogenated organic compunds (HOCs) in landfill gas affected soil. The degradation followed zero-order kin......High rates of methane oxidation and degradation of the lowed halogenated methanes (TCM and DCM) and HCFCs (HCFC-21 and HCFC-22) were found in an investigation of the oxidation of methane and halogenated organic compunds (HOCs) in landfill gas affected soil. The degradation followed zero...

  2. SITE SELECTION OF MUNICIPAL SOLID WASTE LANDFILLS USING ANALYTICAL HIERARCHY PROCESS METHOD IN A GEOGRAPHICAL INFORMATION TECHNOLOGY ENVIRONMENT IN GIROFT

    Directory of Open Access Journals (Sweden)

    H. Javaheri, T. Nasrabadi, M. H. Jafarian, G. R. Rowshan, H. Khoshnam

    2006-07-01

    Full Text Available Municipal solid waste generation is among the most significant sources which threaten the global environmental health. As an ideal selection depends on considering several independent factors concerning land use, socio economy and hydrogeology, the use of a multi criteria evaluation method seems inevitable. Taking benefit of geographic information system as a tool in combination with geographical information technology, equips the spatial decision support systems in appropriate site selection of sanitary landfills. The present study involves a kind of multi criteria evaluation method under the name of weighted linear combination by using geographical information technology as a practical instrument to evaluate the suitability of the vicinity of Giroft city in Kerman province of Iran for landfill. Water permeability, slope, distance from rivers, depth of underground watertable, distance from residential areas, distance from generation centers, general environmental criterion and distance from roads are the criteria which have been taken in to consideration in the process of analyzing. Superposing all of the raster type layers including geomorphologic, hydrologic, humanistic and land use criteria in land suitability, the final zoning of appropriate, fairly appropriate and inappropriate districts have been identified. Considering relative priority of all criteria in comparison with others, a specific weight is designated to each criterion according to their total influence on the whole process of decision making. The results from the application of the presented methodology are zones for landfill with varying zonal land suitability. Finally the zones will be ranked in descending order to indicate the priority of different options in front of the eyes of decision makers. The results achieved by this study may help policy makers of Giroft city by a variety of options for being considered as sanitary landfill locations.

  3. Landfill reduction experience in The Netherlands

    Energy Technology Data Exchange (ETDEWEB)

    Scharff, Heijo, E-mail: h.scharff@afvalzorg.nl

    2014-11-15

    Highlights: • ‘Zero waste’ initiatives never consider risks, side effects or experience of achieved low levels of landfill. • This paper provides insight into what works and what not. • Where strong gradients in regulations and tax occur between countries, waste will find its way to landfills across borders. • Strong landfill reduction can create a fierce competition over the remaining waste to be landfilled resulting in losses. • At some point a public organisation should take responsibility for the operation of a ‘safety net’ in waste management. - Abstract: Modern waste legislation aims at resource efficiency and landfill reduction. This paper analyses more than 20 years of landfill reduction in the Netherlands. The combination of landfill regulations, landfill tax and landfill bans resulted in the desired landfill reduction, but also had negative effects. A fierce competition developed over the remaining waste to be landfilled. In 2013 the Dutch landfill industry generated €40 million of annual revenue, had €58 million annual costs and therefore incurred an annual loss of €18 million. It is not an attractive option to prematurely end business. There is a risk that Dutch landfill operators will not be able to fulfil the financial obligations for closure and aftercare. Contrary to the polluter pays principle the burden may end up with society. EU regulations prohibiting export of waste for disposal are in place. Strong differentials in landfill tax rate between nations have nevertheless resulted in transboundary shipment of waste and in non-compliance with the self-sufficiency and proximity principles. During the transformation from a disposal society to a recycling society, it is important to carefully plan required capacity and to guide the reorganisation of the landfill sector. At some point, it is no longer profitable to provide landfill services. It may be necessary for public organisations or the state to take responsibility for the

  4. Removal and transformation of recalcitrant organic matter from stabilized saline landfill leachates by coagulation-ozonation coupling processes.

    Science.gov (United States)

    Monje-Ramirez, I; Orta de Velásquez, M T

    2004-05-01

    The Bordo Poniente sanitary landfill in Mexico City currently receives 11,500 ton/day of solid wastes. The landfill has been in operation since 1985, in what was formerly Texcoco Lake, now a dried-up lakebed. The physico-chemical characteristics of the leachate generated by this particular landfill are altered by the incorporation of freatic saline water present in the area. This paper reports the results from a study evaluating coagulation and ozonation as alternative processes for removing and transforming recalcitrant organic matter from stabilized saline landfill leachate. Coagulation with ferric sulfate was found to remove up to 67% of COD and 96% of leachate color. The remaining 33% COD was removed with ozone. Recalcitrant organic matter removal by ozonation is limited by the reaction kinetic due mainly to ozone's low reactivity with the organic compounds present in the leachates (amines, amides, alcohols, aliphatic compounds, and carboxylic acids). However, ozone contributes greatly to changing the recalcitrant characteristics of organic matter. Leachate biodegradability was found to be significantly enhanced through ozonation: BOD(5) values reach 265%, and the BOD(5)/COD ratio increases from 0.003 to 0.015. Infrared analysis of ozonated leachates shows that the main by-products of recalcitrant organic matter ozonation are an increase in the hydroxyl and carboxylic groups, and the presence of aldehydes groups.

  5. Bioleach: a mathematical model for the joint evaluation of leachate and biogas production in urban solid waste landfills

    Science.gov (United States)

    Rodrigo-Clavero, Maria-Elena; Rodrigo-Ilarri, Javier

    2017-04-01

    One of the most serious environmental problems in modern societies is the management and disposal of urban solid waste (MSW). Despite the efforts of the administration to promote recycling and reuse policies and energy recovery technologies, nowadays the majority of MSW still is disposed in sanitary landfills. During the phases of operation and post-closure maintenance of any solid waste disposal site, two of the most relevant problems are the production of leachate and the generation of biogas. The leachate and biogas production formation processes occur simultaneously over time and are coupled together through the consumption and/or production of water. However, no mathematical models have been easily identified that allow to the evaluation of the joint production of leachate and biogas, during the operational and the post-closure phase of an urban waste landfill. This paper introduces BIOLEACH, a new mathematical model programmed on a monthly scale, that evaluates the joint production of leachate and biogas applying water balance techniques and considers the management of the landfill as a bioreactor. The application of such a model on real landfills allows to perform an environmentally sustainable management that minimizes the environmental impacts produced being also economically more profitable.

  6. A 3D FINITE ELEMENT ANALYSIS OF INCOMPRESSIBLE FLUID FLOW AND CONTAMINANT TRANSPORT THROUGH A POROUS LANDFILL

    Directory of Open Access Journals (Sweden)

    ADEGUN, I. K.

    2014-08-01

    Full Text Available The paper investigated the flow of incompressible fluid and contaminant transport through a Porous Landfill using a numerical technique. A threedimensional finite element analysis technique was adopted for the solution. The problem was based on the Darcy’s Law and the Advection-Dispersion equation. The solutions of the Darcy’s and Advection-Dispersion equations were generated using Finite Element Analysis Software known as COMSOL Multiphysics. This simulation tool tracked the contaminant transport in the Landfill for 360 days at 10 days interval. It first modeled steady-state fluid flow by employing the Darcy’s Law Application Mode and then followed up with a transient solute-transport simulation by employing the Solute-Transport Application Mode from the Earth Science Module of COMSOL. The solution results obtained from this model were found to be in close agreement with reallife data obtained at the 130- million ton Bukit Tagar Mega Sanitary Landfill site, Selangor near Kuala Lumpur, Malaysia. This showed that the model can effectively predict the trends in the distributions of pollutants from a Municipal Solid Waste Landfill into nearby land and water sources. The model is thus applicable to the issues of environmental protection and safety of groundwater.

  7. Landfilling: Bottom Lining and Leachate Collection

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund; Manfredi, Simone; Kjeldsen, Peter

    2011-01-01

    from entering the groundwater or surface water. The bottom lining system should cover the full footprint area of the landfill, including both the relatively flat bottom and the sideslopes in the case of an excavated configuration. This prevents the lateral migration of leachate from within the landfill...... triple) liners, are extremely effective in preventing leachate from entering into the environment. In addition, the risk of polluting the groundwater at a landfill by any leakage of leachate depends on several factors related to siting of the landfill: distance to the water table, distance to surface...... water bodies, and the properties of the soil beneath the landfill. In addition to the lining and drainage systems described in this chapter, the siting and hydrogeology of the landfill site (Chapter 10.12) and the top cover (Chapter 10.9) are also part of the barrier system, contributing to reducing...

  8. Application of Catalytic Wet Air Oxidation to Treatment of Landfill Leachate on Co/Bi Catalyst

    Institute of Scientific and Technical Information of China (English)

    LI Hai-sheng; LIU Liang; ZHANG Rong; DONG De-ming; LIU Hong-liang; LI Yu

    2004-01-01

    Catalytic wet air oxidation(CWAO) was employed to reduce the organic compounds in landfill leachate and the effects of temperature, oxygen pressure, catalyst dosage, and concentration of the organic compounds on the TOC and CODCr removal rates were studied. The degradation kinetics of landfill leachate was also investigated and an exponential experiential model consisting of four influential factors was established to describe the reduction of the organic compounds in the landfill leachate. Meanwhile, the GC-MS technique was used to detect the components of the organic intermediates for the inference of the decomposition mechanisms of the organic compounds in landfill leachate. The results reveal that the reaction temperature and the catalyst dosage are the most important factors affecting the degradation reaction of the organic compounds and that the principal intermediates confirmed by GC-MS are organic acids at a percentage of more than 88% with no aldehydes or alcohols detected. The decomposition mechanisms of the organic compounds in landfill leachate were inferred based on the GC-MS information as follows: the activated gas phase O2 captured the hydrogen of the organic pollutants to produce free radicals, which then initiated the catalytic reaction. So most of the organic compounds were oxidized into CO2 and H2O ultimately. In general, catalytic wet air oxidation over catalyst Co3O4/Bi2O3 was a very promising technique for the treatment of landfill leachate.

  9. Differentiation of naturally-occurring vs. artificial hydrocarbons in a landfill groundwater investigation

    Energy Technology Data Exchange (ETDEWEB)

    Beaver, J.L.; Hartness, J.A.; Breeding, L.B.; Buchanan, D.M. [Law Environmental, Inc., Kennesaw, GA (United States)

    1994-12-31

    Interpretation of groundwater sampling data at a large municipal/industrial landfill indicates contamination by both artificial and naturally-occurring hydrocarbons. Site hydrogeology consists of three different water bearing zones. The uppermost (shallow) aquifer is an unconfined unit consisting of silt, clay, and sand deposits. An intermediate depth semiconfined aquifer underlies the unconfined unit, and consists of a chert rubble zone and the upper portion of a fractured and solution-enhanced limestone formation. A regionally-extensive organic-rich shale underlies the semiconfined aquifer and separates it from the deep confined aquifer, which also consists of limestone. Groundwater investigations at the landfill have detected chlorinated and non-chlorinated hydrocarbons in the different aquifer intervals. Chlorinated hydrocarbons detected include tetrachloroethene, dichloroethene, and vinyl chloride and occur almost exclusively in the shallow aquifer. Aromatic hydrocarbons detected include benzene, toluene, ethylbenzene, and xylene (BTEX) and-occur in the intermediate and deep aquifers. The landfill was originally interpreted as the source of the contaminants. The observation of free-phase liquid hydrocarbons in the intermediate aquifer at the site, and high dissolved BTEX levels in the deep and intermediate aquifers upgradient of the landfill suggest that the aromatics were derived from a source other than the landfill. A potential source of BTEX contamination may be abandoned (pre-1930) natural gas wells located near the landfill. An additional BTEX source may be the organic-rich shale formation (a documented petroleum source rock).

  10. Congenital anomalies and proximity to landfill sites.

    LENUS (Irish Health Repository)

    Boyle, E

    2004-01-01

    The occurrence of congenital anomalies in proximity to municipal landfill sites in the Eastern Region (counties Dublin, Kildare, Wicklow) was examined by small area (district electoral division), distance and clustering tendancies in relation to 83 landfills, five of which were major sites. The study included 2136 cases of congenital anomaly, 37,487 births and 1423 controls between 1986 and 1990. For the more populous areas of the region 50% of the population lived within 2-3 km of a landfill and within 4-5 km for more rural areas. In the area-level analysis, the standardised prevalence ratios, empirical and full Bayesian modelling, and Kulldorff\\'s spatial scan statistic found no association between the residential area of cases and location of landfills. In the case control analysis, the mean distance of cases and controls from the nearest landfill was similar. The odds ratios of cases compared to controls for increasing distances from all landfills and major landfills showed no significant difference from the baseline value of 1. The kernel and K methods showed no tendency of cases to cluster in relationship to landfills. In conclusion, congenital anomalies were not found to occur more commonly in proximity to municipal landfills.

  11. Landfill Barrier-Overview and Prospect

    Institute of Scientific and Technical Information of China (English)

    Zheng Liange; Zhao Yongsheng

    2000-01-01

    Landfill is the primary method of waste disposal. The increasing attention focused on the effect of landfill on environment prompts the development of environmental sound landfill system. As the key parts of landfill, the barrier system can provide impermeabilization of leachate and prevent biogas from escaping intotheenvironment. In recent years, the technology pertaining the barrier system developed rapidly. In this paper, new materials used in liners and new concept of barrier construction are reviewed; the mechanisms of leachate through clay liner and geomembrane, the calculation of leaks through liner and the effect of freezing/thaw on liner are discussed.

  12. Landfills - LANDFILL_BOUNDARIES_IDEM_IN: Waste Site Boundaries in Indiana (Indiana Department of Environmental Management, Polygon Shapefile)

    Data.gov (United States)

    NSGIC State | GIS Inventory — LANDFILL_BOUNDARIES_IDEM_IN.SHP is a polygon shapefile that contains boundaries for open dump sites, approved landfills, and permitted landfills in Indiana, provided...

  13. [Sanitary regulation in Mexico and the Free Trade Treaty].

    Science.gov (United States)

    Juan-López, M

    1994-01-01

    In this paper are discussed essential issues about the concept, characteristics and general functions of sanitary regulation, as well as the principles and main lines of action contained in the Program of Modernization of the Sanitary Regulation, which is being implemented by the Ministry of Health of Mexico. In addition, some considerations are offered regarding the supporting role of such a program, in the context of the free trade era that Mexico is undergoing. After 40 years of an outdated sanitary regulation based in a non-functional licensing concept, the new and improved scheme relies on several ammendments to the General Health Law. Thus, the present approach, focuses on a set of flexible, simple and efficient rules, strengthened by proven scientific and technical procedures.

  14. Attenuation of Landfill Leachate In Unsaturated Sandstone

    Science.gov (United States)

    Butler, A. P.; Brook, C.; Godley, A.; Lewin, K.; Young, C. P.

    feature of the sequences of porewater concentration profiles is the sharp leading front of the Cl plume. Thus indicating that very little solute dispersion appears to be occurring. This is probably to be due to the relatively uniform particle size of the sand matrix combined with the low moisture content, which has greatly constrained the available pore sizes in which flow occurs. A marked reduction in the mass of the chloride plume has been observed over the last 13 years. Analyses of core sample taken in 2000 show that the Cl profile has continued to lose mass and has now also separated into two peaks. The leading peak was located at a depth of 36 m below ground level (28 m below the base of the landfill) and in line with model predictions. The trailing peak was at a depth of 27 m bgl and was associated with a 0.3 m layer of marl and clay bands. Thus there is an indication that the changes in chloride mass are possibly due to the effects of heterogeneity, although other processes which could account for chloride removal from solution are also under consideration. The location of the TOC front up to 1992 was commensurate with that of Cl, indicating no effective retardation. This is consistent with the very low levels of organic carbon present in the sandstone. However, marked reductions in contaminant mass (substantially greater than those of Cl) have been observed. Analyses of volatile fatty acids has indicated a progressive breakdown of VFA components leading to simpler products so that by 1991 the dominant component was ethanoic acid (56% by mass). By 2000 the entire leading front of the TOC was absent. TOC was only found to be present at relatively low concentrations ( 100 mg.l-1) above the marl/clay band. Analyses of gas concentrations at the site have indicated that there has been a change in the redox potential in the volume of contaminated unsaturated sandstone below the waste cells during the last 10 years. With predominantly anaerobic conditions giving way to

  15. Stable isotope signatures for characterising the biological stability of landfilled municipal solid waste.

    Science.gov (United States)

    Wimmer, Bernhard; Hrad, Marlies; Huber-Humer, Marion; Watzinger, Andrea; Wyhlidal, Stefan; Reichenauer, Thomas G

    2013-10-01

    Stable isotopic signatures of landfill leachates are influenced by processes within municipal solid waste (MSW) landfills mainly depending on the aerobic/anaerobic phase of the landfill. We investigated the isotopic signatures of δ(13)C, δ(2)H and δ(18)O of different leachates from lab-scale experiments, lysimeter experiments and a landfill under in situ aeration. In the laboratory, columns filled with MSW of different age and reactivity were percolated under aerobic and anaerobic conditions. In landfill simulation reactors, waste of a 25year old landfill was kept under aerobic and anaerobic conditions. The lysimeter facility was filled with mechanically shredded fresh waste. After starting of the methane production the waste in the lysimeter containments was aerated in situ. Leachate and gas composition were monitored continuously. In addition the seepage water of an old landfill was collected and analysed periodically before and during an in situ aeration. We found significant differences in the δ(13)C-value of the dissolved inorganic carbon (δ(13)C-DIC) of the leachate between aerobic and anaerobic waste material. During aerobic degradation, the signature of δ(13)C-DIC was mainly dependent on the isotopic composition of the organic matter in the waste, resulting in a δ(13)C-DIC of -20‰ to -25‰. The production of methane under anaerobic conditions caused an increase in δ(13)C-DIC up to values of +10‰ and higher depending on the actual reactivity of the MSW. During aeration of a landfill the aerobic degradation of the remaining organic matter caused a decrease to a δ(13)C-DIC of about -20‰. Therefore carbon isotope analysis in leachates and groundwater can be used for tracing the oxidation-reduction status of MSW landfills. Our results indicate that monitoring of stable isotopic signatures of landfill leachates over a longer time period (e.g. during in situ aeration) is a powerful and cost-effective tool for characterising the biodegradability and

  16. Neural Network Modeling and Prediction of Methane Fraction in Biogas from Landfill Bioreactors

    Directory of Open Access Journals (Sweden)

    A Ghavidel

    2009-09-01

    Full Text Available "n "nBackgrounds and Objectives:A number of different technologies have recently been studied todetermine the best use of biogas, however, to choose optimize technologies of using biogas for energy recovery it is necessary to monitor and predict the methane percentage of biogas. In this study, a method is proposed for predicting the methane fraction in landfill gas originating from Labscalelandfill bioreactors, based on neural network."nMaterials and Methods: In this study, two different systems were applied, to predict the methane fraction in landfill gas as a final product of anaerobic digestion, we used the leachate specifications as input parameters. In system I (C1, the leachate generated from a fresh-waste reactor was drained to recirculation tank, and recycled. In System II (C2, the leachate generated from a fresh waste landfill reactor was fed through a well-decomposed refuse landfill reactor, and at the same time, the leachate generated from a well-decomposed refuse landfill reactor recycled to a fresh waste landfill reactor."nResults: There is very good agreement in the trends between forecasted and measured data. R valuesare 0.999 and 0.997, and the obtained Root mean square error values are 1.098 and 2.387 for training and test data, respectively"nConclusion: The proposed method can significantly predict the methane fraction in landfill gasoriginating and, consequently, neural network can be use to optimize the dimensions of a plant using biogas for energy (i.e. heat and/or electricity recovery and monitoring system.

  17. Estimation of the environmental risk posed by landfills using chemical, microbiological and ecotoxicological testing of leachates.

    Science.gov (United States)

    Matejczyk, Marek; Płaza, Grażyna A; Nałęcz-Jawecki, Grzegorz; Ulfig, Krzysztof; Markowska-Szczupak, Agata

    2011-02-01

    The leachates from 22 municipal solid waste (MSW) landfill sites in Southern Poland were characterized by evaluation of chemical, microbiological and ecotoxicological parameters. Chemical analyses were mainly focused on the identification of the priority hazardous substances according to Directive on Priority Substances, 2008/105/EC (a daughter directive of the WFD) in leachates. As showed, only five substances (Cd, Hg, hexachlorobutadiene, pentachlorobenzene and PAHs) were detected in the leachates. The compounds tested were absent or present at very low concentrations. Among them, only PAHs were found in all samples in the range from 0.057 to 77.2 μg L⁻¹. The leachates were contaminated with bacteria, including aerobic, psychrophilic and mesophilic bacteria, coliform and fecal coliforms, and spore-forming-bacteria, including Clostridium perfringens, and with filamentous fungi. From the analysis of specific microorganism groups (indicators of environmental pollution by pathogenic or opportunistic pathogenic organisms) it can be concluded that the landfill leachates showed sanitary and epidemiological hazard. In the ecotoxicological study, a battery of tests comprised of 5 bioassays, i.e. Microtox(®), Spirotox, Rotoxkit F™, Thamnotoxkit F™ and Daphtoxkit F™ magna was applied. The leachate samples were classified as toxic in 13.6%, highly toxic in 54.6% and very highly toxic in 31.8%. The Spirotox test was the most sensitive bioassay used. The percentage of class weight score was very high - above 60%; these samples could definitely be considered seriously hazardous and acutely toxic to the fauna and microflora. No correlations were found between the toxicity values and chemical parameters. The toxicity of leachate samples cannot be explained by low levels of the priority pollutants. It seems that other kinds of xenobiotics present in the samples at subacute levels gave the high aggregate toxic effect. The chemical, ecotoxicological and microbiological

  18. PROPOSAL OF SANITARY MANAGEMENT OF EDIBLE ECHINODERMS IN SARDINIA

    Directory of Open Access Journals (Sweden)

    G. Terrosu

    2011-01-01

    Full Text Available Sea urchin (Paracentrotus lividus is an edible echinoderm very common in the Mediterranean sea. In the Sardinian gastronomic tradition it represents a product very used in some periods of the year, but in practice the sanitary controls by the competent authorities are very difficult. The Reg. (EC n. 853/2004 provides that, as regards as the control on production, echinoderms are assimilable to live bivalve molluscs, with the exception of the provisions on purification. In this work a proposal for the sanitary management of the phases of gathering, transport and selling of the sea urchins has been studied.

  19. Sanitary Transportation of Human and Animal Food. Final rule.

    Science.gov (United States)

    2016-04-06

    The Food and Drug Administration (FDA or we) is issuing a final rule to establish requirements for shippers, loaders, carriers by motor vehicle and rail vehicle, and receivers engaged in the transportation of food, including food for animals, to use sanitary transportation practices to ensure the safety of the food they transport. This action is part of our larger effort to focus on prevention of food safety problems throughout the food chain and is part of our implementation of the Sanitary Food Transportation Act of 2005 (2005 SFTA) and the Food Safety Modernization Act of 2011 (FSMA).

  20. Quebec inventory of greenhouse gas emissions in 2008 and their evolution since 1990; Inventaire quebecois des emissions de gaz a effet de serre en 2008 et leur evolution depuis 1990

    Energy Technology Data Exchange (ETDEWEB)

    Leblond, V.; Paradis, J.; Bougie, R.; Goulet, M.; Leclerc, N.; Nolet, E.

    2010-11-15

    This document presented an inventory of greenhouse gas (GHG) emissions produced by human activity in Quebec between 1990 and 2008. In 2008, 82.7 Mt of carbon dioxide (CO{sub 2}) equivalent were released in Quebec, which represents a 1.2 percent reduction from 1990 levels. Quebec had the second lowest GHG emissions per capita in 2008 and was 1 of only 3 only provinces in Canada to have a reduction in GHG emissions since 1990. This document also presented data regarding GHG emissions released by sector, notably from industrial combustion such as the TransCanada Energy cogeneration facilities; industrial processes; residential, commercial and institutional buildings; agriculture; sanitary landfills; and electric power production. Quebec's reduction in GHG emissions can be attributed primarily to advances in energy efficiency technology that have been adopted by the industrial sector. In addition, some industrial combustion facilities have been closed and landfill facilities have begun to use systems to capture methane gas. In contrast, automobile traffic increased over the study period, and was responsible for an important increase in GHG emissions since 1990. 6 tabs., 4 figs.

  1. T2LBM Version 1.0: Landfill bioreactor model for TOUGH2

    Energy Technology Data Exchange (ETDEWEB)

    Oldenburg, Curtis M.

    2001-05-22

    The need to control gas and leachate production and minimize refuse volume in landfills has motivated the development of landfill simulation models that can be used by operators to predict and design optimal treatment processes. T2LBM is a module for the TOUGH2 simulator that implements a Landfill Bioreactor Model to provide simulation capability for the processes of aerobic or anaerobic biodegradation of municipal solid waste and the associated flow and transport of gas and liquid through the refuse mass. T2LBM incorporates a Monod kinetic rate law for the biodegradation of acetic acid in the aqueous phase by either aerobic or anaerobic microbes as controlled by the local oxygen concentration. Acetic acid is considered a proxy for all biodegradable substrates in the refuse. Aerobic and anaerobic microbes are assumed to be immobile and not limited by nutrients in their growth. Methane and carbon dioxide generation due to biodegradation with corresponding thermal effects are modeled. The numerous parameters needed to specify biodegradation are input by the user in the SELEC block of the TOUGH2 input file. Test problems show that good matches to laboratory experiments of biodegradation can be obtained. A landfill test problem demonstrates the capabilities of T2LBM for a hypothetical two-dimensional landfill scenario with permeability heterogeneity and compaction.

  2. Quantifying greenhouse gas emissions from waste treatment facilities

    DEFF Research Database (Denmark)

    Mønster, Jacob

    times and the emissions ranged from 2.6 to 60.8 kg methane per hour, with the lowest emissions from the oldest and smallest landfills and the highest emissions from the bigger landfills. It was not possible to correlate the measured emission with a single factor such a landfill age, size or mitigation...... gas, and that this error becomes smaller with increasing measurement distance. A measurement protocol was developed and the methane emission was quantified from a series of landfills with different size, age and gas recovery and mitigation conditions. The landfills were measured between one and four...... actions. As an example the highest emission was measured at a landfill with active methane recovery and utilization. Compared with national and European greenhouse gas reporting schemes the measurement showed a large difference, with reporting ranging a factor of 100 above to a factor of 10 below...

  3. MONITORING APPROACHES FOR BIOREACTOR LANDFILLS - Report

    Science.gov (United States)

    Experimental bioreactor landfill operations at operating Municipal Solid Waste (MSW) landfills can be approved under the research development and demonstration (RD&D) provisions of 30CFR 258.4. To provide a basis for consistent data collection for future decision-making in suppor...