WorldWideScience

Sample records for sandy soil stabilized

  1. Microstructure characteristics of cement-stabilized sandy soil using nanosilica

    Directory of Open Access Journals (Sweden)

    Asskar Janalizadeh Choobbasti

    2017-10-01

    Full Text Available An experimental program was conducted to explore the impact of nanosilica on the microstructure and mechanical characteristics of cemented sandy soil. Cement agent included Portland cement type II. Cement content was 6% by weight of the sandy soil. Nanosilica was added in percentages of 0%, 4%, 8% and 12% by weight of cement. Cylindrical samples were prepared with relative density of 80% and optimum water content and cured for 7 d, 28 d and 90 d. Microstructure characteristics of cement-nanosilica-sand mixtures after 90 d of curing have been explored using atomic force microscopy (AFM, scanning electron microscopy (SEM and X-ray diffraction (XRD tests. Effects of curing time on microstructure properties of cemented sandy soil samples with 0% and 8% nanosilica have been investigated using SEM test. Unconfined compression test (for all curing times and compaction test were also performed. The SEM and AFM tests results showed that nanosilica contributes to enhancement of cemented sandy soil through yielding denser, more uniform structure. The XRD test demonstrated that the inclusion of nanosilica in the cemented soil increases the intensity of the calcium silicate hydrate (CSH peak and decreases the intensity of the calcium hydroxide (CH peak. The results showed that adding optimum percentages of nanosilica to cement-stabilized sandy soil enhances its mechanical and microstructure properties.

  2. Stability Behavior and Thermodynamic States of Iron and Manganese in Sandy Soil Aquifer, Manukan Island, Malaysia

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Chin Yik, E-mail: cy_lin_ars@hotmail.com [Universiti Malaysia Sabah, School of Science and Technology (Malaysia); Abdullah, Mohd. Harun [Universiti Malaysia Sabah, Water Research Unit, School of Science and Technology (Malaysia); Musta, Baba; Praveena, Sarva Mangala [Universiti Malaysia Sabah, School of Science and Technology (Malaysia); Aris, Ahmad Zaharin [Universiti Putra Malaysia, Faculty of Environmental Studies (Malaysia)

    2011-03-15

    A total of 20 soil samples were collected from 10 boreholes constructed in the low lying area, which included ancillary samples taken from the high elevation area. Redox processes were investigated in the soil as well as groundwater in the shallow groundwater aquifer of Manukan Island, Sabah, Malaysia. Groundwater samples (n = 10) from each boreholes were also collected in the low lying area to understand the concentrations and behaviors of Fe and Mn in the dissolved state. This study strives to obtain a general understanding of the stability behaviors on Fe and Mn at the upper unsaturated and the lower-saturated soil horizons in the low lying area of Manukan Island as these elements usually play a major role in the redox chemistry of the shallow groundwater. Thermodynamic calculations using PHREEQC showed that the groundwater samples in the study area are oversaturated with respect to goethite, hematite, Fe(OH){sub 3} and undersaturated with respect to manganite and pyrochroite. Low concentrations of Fe and Mn in the groundwater might be probably due to the lack of minerals of iron and manganese oxides, which exist in the sandy aquifer. In fact, high organic matters that present in the unsaturated horizon are believed to be responsible for the high Mn content in the soil. It was observed that the soil samples collected from high elevation area (BK) comprises considerable amount of Fe in both unsaturated (6675.87 mg/kg) and saturated horizons (31440.49 mg/kg) compared to the low Fe content in the low lying area. Based on the stability diagram, the groundwater composition lies within the stability field for Mn{sup 2+} and Fe{sup 2+} under suboxic condition and very close to the FeS/Fe{sup 2+} stability boundary. This study also shows that both pH and Eh values comprise a strong negative value thus suggesting that the redox potential is inversely dependent on the changes of pH.

  3. Stability Behavior and Thermodynamic States of Iron and Manganese in Sandy Soil Aquifer, Manukan Island, Malaysia

    International Nuclear Information System (INIS)

    Lin, Chin Yik; Abdullah, Mohd. Harun; Musta, Baba; Praveena, Sarva Mangala; Aris, Ahmad Zaharin

    2011-01-01

    A total of 20 soil samples were collected from 10 boreholes constructed in the low lying area, which included ancillary samples taken from the high elevation area. Redox processes were investigated in the soil as well as groundwater in the shallow groundwater aquifer of Manukan Island, Sabah, Malaysia. Groundwater samples (n = 10) from each boreholes were also collected in the low lying area to understand the concentrations and behaviors of Fe and Mn in the dissolved state. This study strives to obtain a general understanding of the stability behaviors on Fe and Mn at the upper unsaturated and the lower-saturated soil horizons in the low lying area of Manukan Island as these elements usually play a major role in the redox chemistry of the shallow groundwater. Thermodynamic calculations using PHREEQC showed that the groundwater samples in the study area are oversaturated with respect to goethite, hematite, Fe(OH) 3 and undersaturated with respect to manganite and pyrochroite. Low concentrations of Fe and Mn in the groundwater might be probably due to the lack of minerals of iron and manganese oxides, which exist in the sandy aquifer. In fact, high organic matters that present in the unsaturated horizon are believed to be responsible for the high Mn content in the soil. It was observed that the soil samples collected from high elevation area (BK) comprises considerable amount of Fe in both unsaturated (6675.87 mg/kg) and saturated horizons (31440.49 mg/kg) compared to the low Fe content in the low lying area. Based on the stability diagram, the groundwater composition lies within the stability field for Mn 2+ and Fe 2+ under suboxic condition and very close to the FeS/Fe 2+ stability boundary. This study also shows that both pH and Eh values comprise a strong negative value thus suggesting that the redox potential is inversely dependent on the changes of pH.

  4. Assessment of structural stability of a degraded sandy clay loam soil ...

    African Journals Online (AJOL)

    The effects of bare, two legumes and four grasses cover treatments on the structural stability of a sandy clay loam Ultisol were studied within a two year period. The experiment was of a randomised complete block design with seven treatments. The legume treatments were Centrosema pubescens (Ce) and Pueraria ...

  5. Microstructure and stability of two sandy loam soils with different soil management

    NARCIS (Netherlands)

    Bouma, J.

    1969-01-01

    A practical problem initiated this study. In the Haarlemmermeer, a former lake reclaimed about 1850, several farmers had difficulties with soil structure. Land, plowed in autumn, was very wet in spring. Free water was sometimes present on the soil surface. Planting and seeding were long delayed in

  6. Effect of Stabilized Zero-Valent Iron Nanoparticles on Nitrate Removal from Sandy Soil

    Directory of Open Access Journals (Sweden)

    F. Nooralivand

    2016-02-01

    Full Text Available Introduction: During the recent decades, the use of N fertilizers has undeniable development regardless of their effects on the soil and environment. Increasing nitrate ion concentration in soil solution and then, leaching it into groundwater causes increase nitrate concentration in the water and raise the risk suffering from the people to some diseases. World health organization recommended maximum concentration level for nitrate and nitrite in the drinking water 50 and 3 mg/l, respectively. There are different technologies for the removal of nitrate ions from aqueous solution. The conventional methods are ion exchange, biological denitrification, reverse osmosis and chemical reduction. Using nanoscale Fe0 particles compared to other methods of nitrate omission was preferred because of; its high surface area, more reactive, lower cost and higher efficiency. More studies on the reduction of nitrate by zero-valent iron nanoparticles have been in aqueous solutions or in the soil in batch scale. Nanoparticles surface modified with poly-electrolytes, surfactants and polymers cause colloidal stability of the particles against the forces of attraction between particles and increases nanoparticle transport in porous media. The objectives of this study were to synthesize carboxymethyl cellulose stabilized zero-valent iron nanoparticles and consideration of their application for nitrate removal from sandy soil. Materials and Methods: The nanoparticles were synthesized in a lab using borohydride reduction method and their morphological characteristics were examined via scanning electron microscopy (SEM, X-ray diffraction (XRD and Fourier Transmission Infrared Spectroscopy (FTIR. Experiments were conducted on packed sand column (40 cm length and 2.5 cm inner diameter under conditions of different nanoparticle concentration (1, 2, and 3 g1-1and high initial NO3- concentration (150, 250, and 350 mgl-1. Homogeneous soil column was filled with the wet packed

  7. Effect of cement injection on sandy soil slope stability, case study: slope in Petang district, Badung regency

    Science.gov (United States)

    Arya, I. W.; Wiraga, I. W.; GAG Suryanegara, I.

    2018-01-01

    Slope is a part of soil topography formed due to elevation difference from two soil surface. Landslides is frequently occur in natural slope, it is because shear force is greater than shear strength in the soil. There are some factor that influence slope stability such as: rain dissipation, vibration from earthquake, construction and crack in the soil. Slope instability can cause risk in human activity or even threaten human lives. Every years in rainy season, landslides always occur in Indonesia. In 2016, there was some landslide occurred in Bali. One of the most damaging is landslide in Petang district, Badung regency. This landslide caused main road closed entirely. In order to overcome and prevent landslide, a lot of method have been practiced and still looking for more sophisticated method for forecasting slope stability. One of the method to strengthen soil stability is filling the soil pores with some certain material. Cement is one of the material that can be used to fill the soil pores because when it is in liquid form, it can infiltrate into soil pores and fill the gap between soil particles. And after it dry, it can formed a bond with soil particle so that soil become stronger and the slope as well. In this study, it will use experimental method, slope model in laboratory to simulate a real slope behavior in the field. The first model is the slope without any addition of cement. This model will be become a benchmark for the other models. The second model is a slope with improved soil that injects the slope with cement. Injection of cement is done with varying interval distance of injection point is 5 cm and 10 cm. Each slope model will be given a load until the slope collapses. The slope model will also be analyzed with slope stability program. The test results on the improved slope models will be compared with unimproved slope. In the initial test will consist of 3 model. First model is soil without improvement or cement injection, second model is soil

  8. Olive mill wastewater stabilization in open-air ponds: impact on clay-sandy soil.

    Science.gov (United States)

    Jarboui, Raja; Sellami, Fatma; Kharroubi, Adel; Gharsallah, Néji; Ammar, Emna

    2008-11-01

    The aim of this work was to study the natural biodegradation of the stored olive mill wastewater (OMW) in ponds and the infiltration as well as the impact on soil of the effluent in the evaporation pond used for the storage over the past eight years. For this, two approaches were considered. First, a laboratory-scale column was used for the infiltration of OMW through soil (clay and sand) to predict the effect of the clayey soil in reducing OMW pollution. Second, the ponds including the effluent annually stored and having this clayey structure were investigated. At the laboratory-scale, a modification of OMW contents was noticed, with the elimination of 95% of total suspended solids (TSS), 60% of chemical oxygen demand (COD), 40% of total organic carbon (TOC), 50% of total P, 50% of phenols and 40% of minerals (K+, Mg++ and Na+). The experimented soil was able to restrain the considerable effects of OMW pollution. In the ponds, the granulometric characteristics, the physico-chemical and the biological parameters of the soil profile from the contaminated pond were compared to those of a control soil, located near the contaminated pond. Property modifications of the contaminated soil were noted, especially pH, electrical conductivity, COD and microflora. These changes can be explained by the infiltration of OMW constituents, which were noticed in the soil layers, especially phenolic compounds that have a negative effect on the ground water.

  9. Structural stability and hydraulic conductivity of Nkpologu sandy ...

    African Journals Online (AJOL)

    vincent

    ABSTRACT. Studies were conducted in the runoff plots at the University of Nigeria Nsukka Teaching and Resesarch. Farm in 2010 and 2011 to monitor the changes in structural stability and saturated hydraulic conductivity. (Ksat) of Nkpologu sandy loam soil under different cover management practices. The management ...

  10. Structural Stability and Hydraulic Conductivity Of Nkpologu Sandy ...

    African Journals Online (AJOL)

    Studies were conducted in the runoff plots at the University of Nigeria Nsukka Teaching and Resesarch Farm in 2010 and 2011 to monitor the changes in structural stability and saturated hydraulic conductivity (Ksat) of Nkpologu sandy loam soil under different cover management practices. The management practices were ...

  11. Radon emanation coefficients in sandy soils

    International Nuclear Information System (INIS)

    Holy, K.; Polaskova, A.; Baranova, A.; Sykora, I.; Hola, O.

    1998-01-01

    In this contribution the results of the study of an influence of the water content on the emanation coefficient for two sandy soil samples are reported. These samples were chosen on the because of the long-term continual monitoring of the 222 Rn concentration just in such types of soils and this radon concentration showed the significant variations during a year. These variations are chiefly given in connection with the soil moisture. Therefore, the determination of the dependence of the emanation coefficient of radon on the water content can help to evaluate the influence of the soil moisture variations of radon concentrations in the soil air. The presented results show that the emanation coefficient reaches the constant value in the wide interval of the water content for both sandy soil samples. Therefore, in the common range of the soil moisture (5 - 20 %) it is impossible to expect the variations of the radon concentration in the soil air due to the change of the emanation coefficient. The expressive changes of the radon concentration in the soil air can be observed in case of the significant decrease of the emanation coefficient during the soil drying when the water content decreases under 5 % or during the complete filling of the soil pores by the water. (authors)

  12. Improvements in Soil Carbon and Nitrogen Capacities after Shrub Planting to Stabilize Sand Dunes in China’s Horqin Sandy Land

    Directory of Open Access Journals (Sweden)

    Yuqiang Li

    2017-04-01

    Full Text Available Caragana microphylla, a native perennial leguminous shrub, is widely used for desertification control in China’s Horqin Sandy Land. We investigated the effects of afforestation using C. microphylla in areas with fixed and active dunes on soil carbon (C and nitrogen (N storage in the soil total and light-fraction (LF organic matter. Compared to the values in the control areas, soil organic carbon (SOC storage to a depth of 100 cm increased by 88%, 74%, and 145% at 9, 15, and 31 years after shrub planting, respectively; the corresponding values were 68%, 61%, and 195% for total nitrogen (TN storage, 109%, 199%, and 202% for LF organic carbon storage, and 203%, 337%, and 342% for LF nitrogen storage. The soil light-fraction (LF organic matter contributed significantly to total SOC and TN storage, despite the low proportion of total soil mass accounted for by the LF dry matter. Thus, afforestation using C. microphylla was an effective way to sequester C and to restore degraded soils, but the process was slow; it would take more than 100 years to fully restore SOC storage in active dunes through afforestation with C. microphylla in the Horqin Sandy Land.

  13. Effects of soil amendment on soil characteristics and maize yield in Horqin Sandy Land

    Science.gov (United States)

    Zhou, L.; Liu, J. H.; Zhao, B. P.; Xue, A.; Hao, G. C.

    2016-08-01

    A 4-year experiment was conducted to investigate the inter-annual effects of sandy soil amendment on maize yield, soil water storage and soil enzymatic activities in sandy soil in Northeast China in 2010 to 2014. We applied the sandy soil amendment in different year, and investigated the different effects of sandy soil amendment in 2014. There were six treatments including: (1) no sandy soil amendment application (CK); (2) one year after applying sandy soil amendment (T1); (3) two years after applying sandy soil amendment(T2); (4) three years after applying sandy soil amendment(T3); (5)four years after applying sandy soil amendment(T4); (6) five years after applying sandy soil amendment (T5). T refers to treatment, and the number refers to the year after application of the sandy soil amendment. Comparing with CK, sandy soil amendments improved the soil water storage, soil urease, invertase, and catalase activity in different growth stages and soil layers, the order of soil water storage in all treatments roughly performed: T3 > T5 > T4 > T2 > T1 > CK. the order of soil urease, invertase, and catalase activity in all treatments roughly performed: T5 > T3 > T4 > T2 > T1 > CK. Soil application of sandy soil amendment significantly (p≤⃒0.05) increased the grain yield and biomass yield by 22.75%-41.42% and 29.92%-45.45% respectively, and maize yield gradually increased with the years go by in the following five years. Sandy soil amendment used in poor sandy soil had a positive effect on soil water storage, soil enzymatic activities and maize yield, after five years applied sandy soil amendment (T5) showed the best effects among all the treatments, and deserves further research.

  14. BACTERIOPHAGE TRANSPORT IN SANDY SOIL AND FRACTURED TUFF

    Science.gov (United States)

    Bacteriophage transport was investigated in laboratory column experiments using sandy soil, a controlled field study in a sandy wash, and laboratory experiments using fractured rock. In the soil columns, the phage MS-2 exhibited significant dispersion and was excluded from 35 to ...

  15. effect of tractor forward speed on sandy loam soil physical ...

    African Journals Online (AJOL)

    Dr Obe

    . 51. EFFECT OF TRACTOR FORWARD SPEED ON SANDY LOAM. SOIL PHYSICAL CONDITIONS DURING TILLAGE. I.E. Ahaneku and O. A. Ogunjirin ..... efficiency of a pulling machine. Figure 3 shows the relationship between speed and.

  16. Stability analysis of sandy slope considering anisotropy effect in ...

    Indian Academy of Sciences (India)

    This paper aims to investigate the effect of anisotropy of shear strength parameter on the stability of a sandy slope by performing the limit equilibrium analysis. Because of scarcity of mathematical equation for anisotropic friction angle of sand, at first, all results of principal stress rotation tests are processed by artificial neural ...

  17. FIELD SAMPLING OF RESIDUAL AVIATION GASOLINE IN SANDY SOIL

    Science.gov (United States)

    Two complimentary field sampling methods for the determination of residual aviation gasoline content in the contaminated capillary fringe of a fine, uniform, sandy soil were investigated. The first method featured filed extrusion of core barrels into pint size Mason jars, while ...

  18. Effect of increasing biochar application rate on soil hydraulic properties of an artificial sandy soil

    Science.gov (United States)

    Lopez, V.; Ghezzehei, T. A.

    2013-12-01

    Biochar, a product of the pyrolysis of biomass, has become an increasingly studied subject of interest as an agricultural soil amendment to address issues of carbon emission, population density, and food scarcity. Biochar has been reported to increase content and retention of nutrients, pH, cation-exchange capacity, vegetative growth, microbial community, and carbon sequestration. A number of studies addressing the usefulness of biochar as a soil amendment have focused on chemical and biological properties, disregarding the effects on soil physical properties of amended soil. Aside from biochar, lime (calcium carbonate) addition to soils has also been utilized in agricultural practices, typically to raise the pH value of acidic soils, increase microbial activity, and enhance soil stability and productivity as a result. Both biochar and lime amendments may be beneficial in increasing the soil physical properties, particularly through the formation of aggregates. In previous studies an increase in soil particle aggregates resulted in higher rates of biological activity, infiltration rates, pore space, and aeration, all of which are a measure of soil quality. While the effectiveness of biochar and lime as soil amendments has been independently documented, their combined effectiveness on soil physical properties is less understood. This study aims to provide a further understanding on the effect of increasing biochar application rate on soil particle aggregation and hydraulic properties of a low reactive pre-limed artificial sandy soil with and without microbial communities. Microbial communities are known to increase soil aggregates by acting as cementing agents. Understanding the impact of biochar addition on soil physical properties will have implications in the development of sustainable agricultural practices, especially in systems undergoing climate stress and intensive agriculture.

  19. Remediation of Diesel Fuel Contaminated Sandy Soil using Ultrasonic Waves

    Directory of Open Access Journals (Sweden)

    Wulandari P.S.

    2010-01-01

    Full Text Available Ultrasonic cleaning has been used in industry for some time, but the application of ultrasonic cleaning in contaminated soil is just recently received considerable attention, it is a very new technique, especially in Indonesia. An ultrasonic cleaner works mostly by energy released from the collapse of millions of microscopic cavitations near the dirty surface. This paper investigates the use of ultrasonic wave to enhance remediation of diesel fuel contaminated sandy soil considering the ultrasonic power, soil particle size, soil density, water flow rate, and duration of ultrasonic waves application.

  20. Respirable dust and quartz exposure from three South African farms with sandy, sandy loam, and clay soils.

    Science.gov (United States)

    Swanepoel, Andrew J; Kromhout, Hans; Jinnah, Zubair A; Portengen, Lützen; Renton, Kevin; Gardiner, Kerry; Rees, David

    2011-07-01

    To quantify personal time-weighted average respirable dust and quartz exposure on a sandy, a sandy loam, and a clay soil farm in the Free State and North West provinces of South Africa and to ascertain whether soil type is a determinant of exposure to respirable quartz. Three farms, located in the Free State and North West provinces of South Africa, had their soil type confirmed as sandy, sandy loam, and clay; and, from these, a total of 298 respirable dust and respirable quartz measurements were collected between July 2006-November 2009 during periods of major farming operations. Values below the limit of detection (LOD) (22 μg · m(-3)) were estimated using multiple 'imputation'. Non-parametric tests were used to compare quartz exposure from the three different soil types. Exposure to respirable quartz occurred on all three farms with the highest individual concentration measured on the sandy soil farm (626 μg · m(-3)). Fifty-seven, 59, and 81% of the measurements on the sandy soil, sandy loam soil, and clay soil farm, respectively, exceeded the American Conference of Governmental Industrial Hygienists (ACGIH) threshold limit value (TLV) of 25 μg · m(-3). Twelve and 13% of respirable quartz concentrations exceeded 100 μg · m(-3) on the sandy soil and sandy loam soil farms, respectively, but none exceeded this level on the clay soil farm. The proportions of measurements >100 μg · m(-3) were not significantly different between the sandy and sandy loam soil farms ('prop.test'; P = 0.65), but both were significantly larger than for the clay soil farm ('prop.test'; P = 0.0001). The percentage of quartz in respirable dust was determined for all three farms using measurements > the limit of detection. Percentages ranged from 0.5 to 94.4% with no significant difference in the median quartz percentages across the three farms (Kruskal-Wallis test; P = 0.91). This study demonstrates that there is significant potential for over-exposure to respirable quartz in

  1. Measured and Estimated Volatilisation of Naphthalene from a Sandy Soil

    DEFF Research Database (Denmark)

    Lindhardt, Bo; Christensen, Thomas Højlund

    1994-01-01

    the soil was modelled by the numerical code RIOCATS assuming instantaneous equilibrium of naphthalene between soil air, soil water and soil solids. The latter equilibrium was described by a linear or a Freundlich isotherm experimentally determined for the actual soil. The model generally overestimated......The non-steady-state fluxes of naphthalene from an artificially contaminated sandy soil at different water contents were measured in the laboratory, at 10°C. The soil contained 1.1% of organic carbon and the water content varied between 2.8 and 14% w/w. The diffusive flux of naphthalene from...... the fluxes by a factor of 1.5 to 6.4. The largest deviation between predicted and observed dynamic fluxes was found at high water contents. For the cover soil, half-life times of 1 to 2 days were estimated by the model for naphthalene degradation....

  2. Stability of aggregates of some weathered soils in south-eastern ...

    Indian Academy of Sciences (India)

    *According to Soil Survey Staff (1999), S = sand, SCL = sandy clay loam, SL = sandy loam, CL = clay loam, C = clay,. SC = sandy clay. Two textures in the same location means ..... Principal component analysis of aggregate stability indices after varimax rotation using. MWDw component. Components. Soil properties. 1. 2. 3.

  3. Parameters of the occurrence of internal erosion processes in salty-sandy soils

    Directory of Open Access Journals (Sweden)

    Gajić Grozdana

    2005-01-01

    Full Text Available The study was aimed at defining the conditions of the occurrence of internal erosion in silty-sandy soils. The susceptibility of this soil to internal erosion depends on the porosity, particle-size composition and hydro-geo-mechanical parameters. Internal erosion stability was analyzed by the introduction of the coefficient of particle composition as the critical particle-size condition, which is in fact the coefficient of internal erosion (Kue. Based on the study results, mathematical models and the functional correlation between water regime and resistant characteristics of silty-sandy soils, we defined the parameters of the occurrence of initial internal erosion and analyzed the effects of the practical application of the study results.

  4. Effect of Particle Size and Soil Compaction on Gas Transport Parameters in Variably Saturated, Sandy Soils

    DEFF Research Database (Denmark)

    Hamamoto, Shoichiro; Møldrup, Per; Kawamoto, Ken

    2009-01-01

    The soil gas diffusion coefficient (Dp) and air permeability (ka) and their dependency on soil air content ( ) control gas diffusion and advection in soils. This study investigated the effects of average particle size (D50) and dry bulk density ( b) on Dp and ka for six sandy soils under variably...

  5. GEOTECHNICAL PROPERTIES OF SANDY SOIL CONTAMINATED WITH INDUSTRIAL WASTEWATER

    Directory of Open Access Journals (Sweden)

    MAHDI O. KARKUSH

    2017-12-01

    Full Text Available The present work is devoted for studying the geotechnical and chemical properties of intact and contaminated sandy soil samples. The soil samples were obtained from Al-Kufa city that is located in the south-west of Iraq. The contaminant is a by-product industrial wastewater disposed from the refinery that supplies fuel for the thermal electricity power plant. The intact sandy soil samples were contaminated in the laboratory with four percentages of 10, 20, 40 and 100% of the weight of distilled water used in the soaking process and the soaking process continued for thirty days. The results of tests showed a slight increase in both liquid limit and particle size and a significant increase in the optimum moisture content with increasing the percentages of the contaminant. However, with increasing the percentages of the contaminant, there was a slight decrease in the specific gravity and maximum dry unit weight. In addition, there was a considerable decrease in the angle of internal friction and the coefficient of permeability. The angle of internal friction of contaminated soil samples decreased by 18 to 26% with increasing the contaminant percentage from 10 to 100%. The cohesion of soil samples decreased by 7 to 33% with increasing the contaminant percentage, this conclusion is limited to the soil samples contaminated with 10, 20 and 40%, but the cohesion of soil sample contaminated with 100 % of industrial wastewater increased by 7%.

  6. Sandy Soil Microaggregates: Rethinking Our Understanding of Hydraulic Function

    Energy Technology Data Exchange (ETDEWEB)

    Paradiś, Ashley; Brueck, Christopher; Meisenheimer, Douglas; Wanzek, Thomas; Dragila, Maria Ines

    2017-01-01

    This study investigated the peculiar structure of microaggregates in coarse sandy soils that exhibit only external porosity and investigated their control on soil hydrology. The microstructure underpins a hydrologic existence that differs from finer textured soils where aggregates have internal porosity. Understanding the impact of these microaggregates on soil hydrology will permit improved agricultural irrigation management and estimates associated with ecosystem capacity and resiliency. Microstructure was investigated using a digital microscope, and aspects of the structure were quantified by sedimentation and computed microtomography. Sandy soil microaggregates were observed to be comprised of a solid sand-grain core that is coated with fines, presumably cemented by organic media. This microstructure leads to three distinct water pools during drainage: capillary water, followed by thick films (1–20 μm) enveloping the outer surfaces of the crusted microaggregates, followed by adsorbed thin films (<1 μm). The characteristics of the thick films were investigated using an analytical model. These films may provide as much as 10 to 40% saturation in the range of plant-available water. Using lubrication theory, it was predicted that thick film drainage follows a power law function with an exponent of 2. Thick films may also have a role in the geochemical evolution of soils and in ecosystem function because they provide contiguous water and gas phases at relatively high moisture contents. And, because the rough outer crust of these microaggregates can provide good niches for microbial activity, biofilm physics will dominate thick film processes, and consequently hydrologic, biologic, and geochemical functions for coarse sandy soils.

  7. Deep Compaction Control of Sandy Soils

    Directory of Open Access Journals (Sweden)

    Bałachowski Lech

    2015-02-01

    Full Text Available Vibroflotation, vibratory compaction, micro-blasting or heavy tamping are typical improvement methods for the cohesionless deposits of high thickness. The complex mechanism of deep soil compaction is related to void ratio decrease with grain rearrangements, lateral stress increase, prestressing effect of certain number of load cycles, water pressure dissipation, aging and other effects. Calibration chamber based interpretation of CPTU/DMT can be used to take into account vertical and horizontal stress and void ratio effects. Some examples of interpretation of soundings in pre-treated and compacted sands are given. Some acceptance criteria for compaction control are discussed. The improvement factors are analysed including the normalised approach based on the soil behaviour type index.

  8. EFFECTS OF ALKALINE SANDY LOAM ON SULFURIC SOIL ACIDITY AND SULFIDIC SOIL OXIDATION

    Directory of Open Access Journals (Sweden)

    Patrick S. Michael

    2015-08-01

    Full Text Available  In poor soils, addition of alkaline sandy loam containing an adequate proportion of sand, silt and clay would add value by improving the texture, structure and organic matter (OM for general use of the soils. In acid sulfate soils (ASS, addition of alkaline sandy would improve the texture and leach out salts as well as add a sufficient proportion of OM for vegetation establishment. In this study, addition of alkaline sandy loam into sulfuric soil effectively increased the pH, lowered the redox and reduced the sulfate content, the magnitude of the effects dependent on moisture content. Addition of alkaline sandy loam in combination with OM was highly effective than the effects of the lone alkaline sandy loam. When alkaline sandy was added alone or in combination with OM into sulfidic soil, the effects on pH and the redox were similar as in the sulfuric soil but the effect on sulfate content was variable. The effects under aerobic conditions were higher than under anaerobic conditions. The findings of this study have important implications for the general management of ASS where lime availability is a concern and its application is limited.International Journal of Environment Volume-4, Issue-3, June-August 2015Page: 42-54

  9. Experimental investigation on compaction properties of sandy soils

    International Nuclear Information System (INIS)

    Mujtaba, H.; Farooq, K.

    2014-01-01

    In this research, an effort has been made to develop a correlation between standard and modified proctor compaction test parameters, i.e., maximum dry unit weight (gamma dmax) and optimum moisture content (OMC) of sandy soils. Standard and modified proctor along with classification tests were carried out on hundred and twenty sandy soil samples with different grain size distributions. Based on the test results, the soil samples were classified into various groups of medium to fine sand with non-plastic fines up to 45%. Regression analyses were performed on the experimental data and correlations were proposed to express modified Proctor parameters (gamma dmod and OMC mod) in term of standard Proctor test parameters (gamma dstd and OMC std). The validation of the proposed predictive correlations was done by using test results of another set of sandy soil samples not used in the development of the correlations. The results of the analyses showed that variation between experimental and predicted values of gamma dmod is within +- 4 % confidence interval and that of OMC mod is within +- 2.0 %. Further, based on the test results, an effort has been made to investigate the effect of fines (finer than 75 mu m) on compaction characteristics. It was observed that gamma dmax both in case of standard and modified proctor increases with increase in fines content up to 35% and beyond that it decreases. However, the value of OMC in both the cases decreases with increase in fine content. The correlations proposed in this paper may be very useful during the project preliminary/ pre-feasibility stages in the field of Geotechnical Engineering. (author)

  10. Phosphorus distribution in sandy soil profile under drip irrigation system

    International Nuclear Information System (INIS)

    El-Gendy, R.W.; Rizk, M.A.; Abd El Moniem, M.; Abdel-Aziz, H.A.; Fahmi, A.E.

    2009-01-01

    This work aims at to studying the impact of irrigation water applied using drip irrigation system in sandy soil with snap bean on phosphorus distribution. This experiment was carried out in soils and water research department farm, nuclear research center, atomic energy authority, cairo, Egypt. Snap bean was cultivated in sandy soil and irrigated with 50,37.5 and 25 cm water in three water treatments represented 100, 75 and 50% ETc. Phosphorus distribution and direction of soil water movement had been detected in three sites on the dripper line (S1,S2 and S3 at 0,12.5 and 25 cm distance from dripper). Phosphorus fertilizer (super phosphate, 15.5% P 2 O 5 in rate 300 kg/fed)was added before cultivation. Neutron probe was used to detect the water distribution and movement at the three site along soil profile. Soil samples were collected before p-addition, at end developing, mid, and late growth stages to determine residual available phosphorus. The obtained data showed that using 50 cm water for irrigation caused an increase in P-concentration till 75 cm depth in the three sites of 100% etc treatment, and covered P-requirements of snap bean for all growth stages. As for 37.5 and 25 cm irrigation water cannot cover all growth stages for P-requirements of snap bean. It could be concluded that applied irrigation water could drive the residual P-levels till 75 cm depth in the three sites. Yield of the crop had been taken as an indicator as an indicator profile. Yield showed good response according to water quantities and P-transportation within the soil profile

  11. Fine-scale spatial distribution of plants and resources on a sandy soil in the Sahel

    NARCIS (Netherlands)

    Rietkerk, M.G.; Ouedraogo, T.; Kumar, L.; Sanou, S.; Langevelde, F. van; Kiema, A.; Koppel, J. van de; Andel, J. van; Hearne, J.; Skidmore, A.K.; Ridder, N. de; Stroosnijder, L.; Prins, H.H.T.

    2002-01-01

    We studied fine-scale spatial plant distribution in relation to the spatial distribution of erodible soil particles, organic matter, nutrients and soil water on a sandy to sandy loam soil in the Sahel. We hypothesized that the distribution of annual plants would be highly spatially autocorrelated

  12. Effects of plant cover on soil N mineralization during the growing season in a sandy soil

    Science.gov (United States)

    Yao, Y.; Shao, M.; Wei, X.; Fu, X.

    2017-12-01

    Soil nitrogen (N) mineralization and its availability plays a vital role in regulating ecosystem productivity and C cycling, particularly in semiarid and desertified ecosystems. To determine the effect of plant cover on N turnover in a sandy soil ecosystem, we measured soil N mineralization and inorganic N pools in soil solution during growing season in a sandy soil covered with various plant species (Artemisia desertorum, Salix psammophila, and Caragana korshinskii). A bare sandy soil without any plant was selected as control. Inorganic N pools and N mineralization rates decreased overtime during the growing season, and were not affected by soil depth in bare land soils, but were significantly higher at the 0-10 cm layer than those at the 10-20 cm soil layer under any plant species. Soil inorganic N pool was dominated by ammonium, and N mineralization was dominated by nitrification regardless of soil depth and plant cover. Soils under C. korshinskii have significant higher inorganic N pools and N mineralization rate than soils under bare land and A. desertorum and S. psammophila, and the effects of plant cover were greater at the 0-10 cm soil layer than at the 10-20 cm layer. The effects of C. korshinskii on soil inorganic N pools and mineralization rate varied with the stage of growing season, with greater effects on N pools in the middle growing season, and greater effects on mineralization rate at the last half of the growing season. The results from this study indicate that introduction of C. korshinskii has the potential to increase soil N turnover and availability in sandy soils, and thus to decrease N limitation. Caragana korshinskii is therefore recommend for the remediation of the desertified land.

  13. Effects of soil moisture content and temperature on methane uptake by grasslands on sandy soils.

    NARCIS (Netherlands)

    Pol-Van Dasselaar, van den A.; Beusichem, van M.L.; Oenema, O.

    1998-01-01

    Aerobic grasslands may consume significant amounts of atmospheric methane (CH4). We aimed (i) to assess the spatial and temporal variability of net CH4 fluxes from grasslands on aerobic sandy soils, and (ii) to explain the variability in net CH4 fluxes by differences in soil moisture content and

  14. Water management in sandy soil using neutron scattering method

    International Nuclear Information System (INIS)

    Mohamed, K.M.

    2011-01-01

    This study was carried out during 2008/2009 at the Experimental Field of Soil and Water Research Department, Nuclear Research Center, Atomic Energy Authority, Inshas in a newly reclaimed sandy soil. The aims of this work are,- determine soil moisture tension within the active root zone and - detecting the behavior of soil moisture within the active root zoon by defines the total hydraulic potential within the soil profile to predict both of actual evapotranspiration and rate of moisture depletion This work also is aimed to study soil water distribution under drip irrigation system.- reducing water deep percolation under the active root depth.This study included two factors, the first one is the irrigation intervals, and the second one is the application rate of organic manure. Irrigation intervals were 5, 10 and 15 days, besides three application rates of organic manure (0 m 3 /fed, 20 m 3 /fed. and 30 m 3 /fed.) in -three replicates under drip irrigation system, Onion was used as an indicator plant. Obtained data show, generally, that neutron scattering technique and soil moisture retention curve model helps more to study the water behavior in the soil profile.Application of organic manure and irrigation to field capacity is a good way to minimize evapotranspiration and deep percolation, which was zero mm/day in the treated treatments.The best irrigation interval for onion plant, in the studied soil, was 5 days with 30m 3 /fad. an application rate of organic manure.Parameter α of van Genuchent's 1980 model was affected by the additions of organic manure, which was decreased by addition of organic manure decreased it. Data also showed that n parameter was decreased by addition of organic manure Using surfer program is a good tool to describe the water distribution in two directions (vertical and horizontal) through soil profile.

  15. Effects Of Mixtures Of Pig Manure And Sandy Soil On The Growth Of ...

    African Journals Online (AJOL)

    A study was carried out to evaluate the effects of mixtures of various levels of pig manure with sandy soil on the growth of tomato (Lycopersicon esculentum Mill) seedlings. Pig manure was mixed with sandy soil at the rates of 0, 25, 50, 75 and 100% respectively on volume/volume basis of the dry materials, the treatments ...

  16. Migration of cesium-137 through sandy soil layer effect of fine silt on migration

    International Nuclear Information System (INIS)

    Ohnuki, Toshihiko; Wadachi, Yoshiki

    1983-01-01

    The migration of 137 Cs through sandy soil layer was studied with consideration of the migration of fine silt by column method. It was found that a portion of fine silt migrated through the soil layer accompanying with 137 Cs. The mathematical migration model of 137 Cs involved the migration of fine silt through such soil layer was presented. This model gave a good accordance between calculated concentration distribution curve in sandy soil layer and effluent curve and observed those. So, this model seems to be advanced one for evaluating migration of 137 Cs in sandy soil layer with silt. (author)

  17. Impact of Sewage Sludge on Water Movement in Calcareous Sandy Soils

    Directory of Open Access Journals (Sweden)

    A.M. AI-Omran

    1997-01-01

    Full Text Available The present study was undertaken to investigate the changes in soil physical properties and their effect on water movement under ponded irrigation. Sewage sludge was applied to 10 cm soil depth at rates of 0.25. 75  and 100 Mg-ha-1 to two disturbed soils differing in CaCO3 content. The results showed that cumulative infiltration (1 decreased with an increase in sewage sludge rates. Basic infiltration for slightly calcareous sandy soil was higher than that of moderately calcareous sandy soil, laboratory measurements showed an exponential decrease in saturated hydraulic conductivity and an increase in available water capacity with an increase in sewage sludge rates. For both soils, water diffusivity (D(Q decreased with an increase in sewage sludge rates. The (oral values of slightly calcareous sandy soils were higher than those of moderately calcareous sandy soils.

  18. Grassland management, soil biota and ecosystem services in sandy soils

    NARCIS (Netherlands)

    Eekeren, van N.J.M.

    2010-01-01

    Recent legislative restrictions on the use of fertilizers and irrigation, and a quest for sustainable farming systems have drawn renewed attention to the functioning of the soil and the ecosystem services it provides. Soil biota play an important role in the provision of these ecosystem services,

  19. Influence of biochar on the physical, chemical and retention properties of an amended sandy soil

    Science.gov (United States)

    Baiamonte, Giorgio; De Pasquale, Claudio; Parrino, Francesco; Crescimanno, Giuseppina

    2017-04-01

    Soil porosity plays an important role in soil-water retention and water availability to crops, potentially affecting both agricultural practices and environmental sustainability. The pore structure controls fluid flow and transport through the soil, as well as the relationship between the properties of individual minerals and plants. Moreover, the anthropogenic pressure on soil properties has produced numerous sites with extensive desertification process close to residential areas. Biochar (biologically derived charcoal) is produced by pyrolysis of biomasses under low oxygen conditions, and it can be applied for recycling organic waste in soils and increase soil fertility, improving soil structure and enhancing soil water storage and soil water movement. Soil application of biochar might have agricultural, environmental and sustainability advantages over the use of organic manures or compost, as it is a porous material with a high inner surface area. The main objectives of the present study were to investigate the possible application of biochar from forest residues, derived from mechanically chipped trunks and large branches of Abies alba M., Larix decidua Mill., Picea excelsa L., Pinus nigra A. and Pinus sylvestris L. pyrolysed at 450 °C for 48h, to improve soil structural and hydraulic properties (achieving a stabilization of soil). Different amount of biochar were added to a desertic sandy soil, and the effect on soil porosity water retention and water available to crops were investigated. The High Energy Moisture Characteristic (HEMC) technique was applied to investigate soil-water retention at high-pressure head levels. The adsorption and desorption isotherms of N2 on external surfaces were also determined in order to investigate micro and macro porosity ratio. Both the described model of studies on adsorption-desorption experiments with the applied isotherms model explain the increasing substrate porosity with a particular attention to the macro and micro

  20. Electrical Resistivity Based Empirical Model For Delineating Some Selected Soil Properties On Sandy-Loam Soil

    Directory of Open Access Journals (Sweden)

    Joshua

    2015-08-01

    Full Text Available Electrical Resistivity ER survey was conducted on a Sandy-loam soil with a view to evaluate some selected soil properties. Electrical Resistivity was measured from the soil surface at 0 0.3 m ER30 and 0 0.9 m ER90 soil depths using multi-electrode Wenner array and Miller 400D resistance meter. Soil samples were collected to a depth 0.3 m at points where ER was measured and analyzed for properties such as Organic Matter OM Cation Exchange Capacity CEC Soil Water Content SWC Sand Silt and Clay contents using standard methods. The results indicated that lower ER areas exhibit higher content of soil properties than higher ER areas. The ER90 correlates insignificantly to the soil properties while ER30 correlates significantly to the soil properties except clay r 0.63 - 0.75. The relationship between ER30 and soil properties were best fitted to multiple linear regression R2 0.90 and Boltzmann distribution R2 0.80 - 0.84. The study indicates the ability of ER to delineate some soil properties influencing yield on sandy-loam soil. This will help farmers take decisions that can improve yields.

  1. Travel of pollution, and purification en route, in sandy soils

    Science.gov (United States)

    Baars, J. K.

    1957-01-01

    The travel of pollution in sandy soils, and the extent to which purification takes place en route, are discussed, with special reference to the possible contamination of ground water—a problem which is of particular importance in the Netherlands, where the water-supply for many of the large towns is drawn from the water underneath the dunes. Specifically, two types of soil pollution are considered: (a) severe pollution of the surface layers with matter concentrated in a small volume of water (e.g., faecal matter from pit privies at camping-sites); and (b) moderate pollution of the surface layers with matter contained in large quantities of water (e.g., organic matter and bacteria in river water used for the artificial recharge of ground water). It is shown that in both these types of pollution the self-purification is sufficient to prevent contamination of the ground water, provided that the soil is very fine and—in the case of the first type—dry and well aerated, and provided that the ground-water level is not too high or the rate of infiltration too great. PMID:13472428

  2. Phosphorus fractions in sandy soils of vineyards in southern Brazil

    Directory of Open Access Journals (Sweden)

    Djalma Eugênio Schmitt

    2013-04-01

    Full Text Available Phosphorus (P applications to vineyards can cause P accumulation in the soil and maximize pollution risks. This study was carried out to quantify the accumulation of P fractions in sandy soils of vineyards in southern Brazil. Soil samples (layers 0-5, 6-10 and 11-20 cm were collected from a native grassland area and two vineyards, after 14 years (vineyard 1 and 30 years (vineyard 2 of cultivation, in Santana do Livramento, southern Brazil, and subjected to chemical fractionation of P. Phosphorus application, especially to the 30-year-old vineyard 2, increased the inorganic P content down to a depth of 20 cm, mainly in the labile fractions extracted by anion-exchange resin and NaHCO3, in the moderately labile fraction extracted by 0.1 and 0.5 mol L-1 NaOH, and in the non-labile fraction extracted by 1 mol L-1 HCl, indicating the possibility of water eutrophication. Phosphorus application and grapevine cultivation time increased the P content in the organic fraction extracted by NaHCO3 from the 0-5 cm layer, and especially in the moderately labile fraction extracted by 0.1 mol L-1 NaOH, down to a depth of 20 cm.

  3. Migration characteristics of cobalt-60 through sandy soil in high pH solution

    International Nuclear Information System (INIS)

    Ohnuki, Toshihiko

    1992-01-01

    Migration characteristics of 60 Co through sandy soil in high pH solution has been investigated by both column and batch techniques. The association of 60 Co with the sandy soil and its components were studied by sequential extraction techniques. The concentration profile of 60 Co in the sandy soil column was composed of two exponential curves showing that 60 Co would consist of immobile and mobile fractions. The immobile 60 Co was retained by the sandy soil and was distributed near the top. Though the mobile 60 Co was little sorbed by soil and migrated through the soil column, maximum concentration of 60 Co in the effluents decreased slightly with increasing path length of the soil column. The sequential extraction of 60 Co from the sandy soil and from its components showed that 60 Co was sorbed by both manganese oxide and clay minerals. And manganese oxide is one of the responsible soil components for the observed decrease in the maximum concentration of 60 Co in the effluents. Although the content of manganese oxide in the sandy soil was 0.13%, manganese oxide is the important component to prevent from the migration of 60 Co in the high pH solution. (author)

  4. Field sampling of residual aviation gasoline in sandy soil

    International Nuclear Information System (INIS)

    Ostendorf, D.W.; Hinlein, E.S.; Yuefeng, Xie; Leach, L.E.

    1991-01-01

    Two complementary field sampling methods for the determination of residual aviation gasoline content in the contaminated capillary fringe of a fine, uniform, sandy soil were investigated. The first method featured field extrusion of core barrels into pint-size Mason jars, while the second consisted of laboratory partitioning of intact stainless steel core sleeves. Soil samples removed from the Mason jars (in the field) and sleeve segments (in the laboratory) were subjected to methylene chloride extraction and gas chromatographic analysis to compare their aviation gasoline content. The barrel extrusion sampling method yielded a vertical profile with 0.10m resolution over an essentially continuous 5.0m interval from the ground surface to the water table. The sleeve segment alternative yielded a more resolved 0.03m vertical profile over a shorter 0.8m interval through the capillary fringe. The two methods delivered precise estimates of the vertically integrated mass of aviation gasoline at a given horizontal location, and a consistent view of the vertical profile as well. In the latter regard, a 0.2m thick lens of maximum contamination was found in the center of the capillary fringe, where moisture filled all voids smaller than the mean pore size. The maximum peak was resolved by the core sleeve data, but was partially obscured by the barrel extrusion observations, so that replicate barrels or a half-pint Mason jar size should be considered for data supporting vertical transport analyses in the absence of sleeve partitions

  5. Validation of regression models for nitrate concentrations in the upper groundwater in sandy soils

    NARCIS (Netherlands)

    Sonneveld, M.P.W.; Brus, D.J.; Roelsma, J.

    2010-01-01

    For Dutch sandy regions, linear regression models have been developed that predict nitrate concentrations in the upper groundwater on the basis of residual nitrate contents in the soil in autumn. The objective of our study was to validate these regression models for one particular sandy region

  6. Trade-offs between soil hydrology and plant disease effects after biochar amendment in sandy soil

    Science.gov (United States)

    Verheijen, Frank; Silva, Flavio; Amaro, Antonio; Pinto, Gloria; Mesquita, Raquel; Jesus, Claudia; Alves, Artur; Keizer, Jacob

    2015-04-01

    Biochar can affect multiple soil-based ecosystem services to varying extents, leading to trade-offs. Improvements in plant-available water have predominantly been found at high biochar application rates in sandy soils. Reductions in plant diseases after biochar application have been found in various horticultural plants, and trees such as maple and oak, mostly at relatively low biochar application rates. Serious damage to Eucalyptus globulus has been reported since 1999 when frequent and severe defoliation of young trees was observed, and eucalypts are the major tree species in commercial forestry plantations of Portugal, forming an important economic activity. Here we investigated simultaneous effects on plant available water and on disease suppression of eucalypt, in a completely randomised full factorial greenhouse pot experiment, using a range of woody feedstock biochar concentrations in sandy soil. Treatments included plant inoculation with the fungus Neofusicoccum kwambonambiense and cycles of acute drought stress. Preliminary results showed delayed wilting for plants treated with 3-6% biochar, but also increased stem lesion length. These results suggest a trade-off between effects on water availability and disease for Eucalyptus globulus plants in the selected sandy soil amended with this specific biochar, at the selected application rates.

  7. Projectile Penetration into Sandy Soil Confined by a Honeycomb-Like Structure

    Directory of Open Access Journals (Sweden)

    Weiming Luo

    2017-01-01

    Full Text Available HPS (Honeycomb-like Protective Structure is a newly proposed protective structure filled with sandy soil. In order to investigate the penetration resistance of the structure, numerical simulations based on SPH method had been carried out by using LS-DYNA, which are corresponding to the experiments. The calibrated model leads to reasonable predictions of the dynamic responses and damage modes of the HPS. More situations were carried out taking factors influencing the penetration into consideration, including point of impact, angle of impact, and projectile caliber. Penetration mode was established by analyzing the energy dissipation and investigating the mechanism from the phenomenological viewpoint. Simulation results show that the resisting forces and the torque that act on the long rod projectile would be greater than those acting on the short one when instability occurred. Besides, approximate 45° angle of impact was formed in the case of off-axis, which has a certain influence on the ballistic stability, resulting in more kinetic energy of projectile dissipating in HPS and less depth of penetration. The kinetic energy of projectile dissipated in sandy soil largely and the strip slightly, and the former was greater than the sum of the latter.

  8. Thermomechanical Behavior of Energy Pile Embedded in Sandy Soil

    Directory of Open Access Journals (Sweden)

    Xu Huang

    2018-01-01

    Full Text Available The traditional energy pile (solid energy pile has been implemented for decades. However, the design of different kinds of energy piles is still not well understood. In this study, a series of model tests were performed on an aluminum pipe energy pile (PEP in dry sandy soil to investigate the thermal effects on the mechanical behaviors of pipe energy pile. The thermal responses of the PEP were also analyzed. Steady temperatures of the PEP under different working conditions were also compared with that of the solid energy pile. Different loading tests were carried out on four pipe energy piles under three different temperatures of 5, 35, and 50°C, respectively. The bearing capacity change can be interpreted through the load-displacement curves. Experiment results were also compared with the solid energy pile to evaluate bearing capacities of the PEP and the solid energy pile under different temperature conditions. The mobilized shaft resistance was also calculated and compared with the solid energy pile data and the results show that the PEP has a similar load transfer mechanism with the solid energy pile. It could also be found that, for PEPs under working load, plastic displacement would appear after a whole heating cycle.

  9. Structural stability and hydraulic conductivity of Nkpologu sandy ...

    African Journals Online (AJOL)

    vincent

    orchard soil (POS), bush fallow (FS) and bare fallow (BF.) . Collected soil samples were air dried, passed through 2mm ... months Some scholars (Agboola and Corey,. 1973; Woomer and Ingram, 1990) opined that the fertility ... which has been under bush fallow for more than. 7 years. A soil under pineapple orchard soil.

  10. Testing the effect of a microbial-based soil amendment on aggregate stability and erodibility

    DEFF Research Database (Denmark)

    Malozo, Mponda; Iversen, Bo Vangsø; Heckrath, Goswin Johann

    Minimizing soil erosion is essential for maintaining proper soil quality and thus preserving soil productivity. The erodibility of a soil is closely linked to its structural stability as well as its infiltrability. This study focuses on testing the effect of two different soil amendments on soil...... aggregate stability and erodibility. Two commercial products, gypsum and a microbial-based solution were used for the experiment and were tested on two Danish sandy loamy soils as well on a sandy soil from Tanzania. The carrier of the microbial-based product, a glycerol solution, was tested as well....... In the laboratory, soils were treated with the soil amendments in a two-step procedure at controlled water contents following aerobic incubation in closed containers. Water-aggregate stability and clay dispersion were measured on soil aggregates less than 8 mm in diameter. Aggregate stability was measured...

  11. Lasting effects of soil health improvements with management changes in cotton-based cropping systems in a sandy soil

    Science.gov (United States)

    The soil microbial component is essential for sustainable agricultural systems and soil health. This study evaluated the lasting impacts of 5 years of soil health improvements from alternative cropping systems compared to intensively tilled continuous cotton (Cont. Ctn) in a low organic matter sandy...

  12. Contribution of individual sorbents to the control of heavy metal activity in sandy soil

    NARCIS (Netherlands)

    Weng, L.; Temminghoff, E.J.M.; Riemsdijk, van W.H.

    2001-01-01

    A multisurface model is used to evaluate the contribution of various sorption surfaces to the control of heavy metal activity in sandy soil samples at pH 3.7-6.1 with different sorbent contents. This multisurface model considers soil as a set of independent sorption surfaces, i.e. organic matter

  13. Amelioration of sandy soils in drought stricken areas through use of ...

    African Journals Online (AJOL)

    ACSS

    Soil moisture shortage is a major limiting factor to agricultural production in eastern Africa, in view of increased drought incidences and seasonal rainfall variability. This study evaluated the potential for Ca-bentonite (a 2:1 clay mineral) as a possible amendment for increased moisture retention by sandy soils in drought ...

  14. Factors affecting N immobilisation/mineralisation kinetics for cellulose-, glucose- and straw-amended sandy soils

    NARCIS (Netherlands)

    Vinten, A.J.A.; Whitmore, A.P.; Bloem, J.; Howard, R.; Wright, F.

    2002-01-01

    The kinetics of nitrogen immobilization/mineralization for cellulose-, glucose- and straw-amended sandy soils were investigated in a series of laboratory incubations. Three Scottish soils expected to exhibit a range of biological activity were used: aloamy sand, intensively cropped horticultural

  15. Estimating water retention curves and strength properties of unsaturated sandy soils from basic soil gradation parameters

    Science.gov (United States)

    Wang, Ji-Peng; Hu, Nian; François, Bertrand; Lambert, Pierre

    2017-07-01

    This study proposed two pedotransfer functions (PTFs) to estimate sandy soil water retention curves. It is based on the van Genuchten's water retention model and from a semiphysical and semistatistical approach. Basic gradation parameters of d60 as particle size at 60% passing and the coefficient of uniformity Cu are employed in the PTFs with two idealized conditions, the monosized scenario and the extremely polydisperse condition, satisfied. Water retention tests are carried out on eight granular materials with narrow particle size distributions as supplementary data of the UNSODA database. The air entry value is expressed as inversely proportional to d60 and the parameter n, which is related to slope of water retention curve, is a function of Cu. The proposed PTFs, although have fewer parameters, have better fitness than previous PTFs for sandy soils. Furthermore, by incorporating with the suction stress definition, the proposed pedotransfer functions are imbedded in shear strength equations which provide a way to estimate capillary induced tensile strength or cohesion at a certain suction or degree of saturation from basic soil gradation parameters. The estimation shows quantitative agreement with experimental data in literature, and it also explains that the capillary-induced cohesion is generally higher for materials with finer mean particle size or higher polydispersity.

  16. Stability analysis of sandy slope considering anisotropy effect in ...

    Indian Academy of Sciences (India)

    Studying the role of anisotropy in response to geotechnical structure requires the constitutive model which comprehensively accounts the effect of anisotropy on the mechanical behavior of soil. Casagrande & Carillo (1944) have presented a closed-form equation for relating between the soil cohesion in Mohr–Columb ...

  17. Assessment of grass root effects on soil piping in sandy soils using the pinhole test

    Science.gov (United States)

    Bernatek-Jakiel, Anita; Vannoppen, Wouter; Poesen, Jean

    2017-10-01

    Soil piping is an important land degradation process that occurs in a wide range of environments. Despite an increasing number of studies on this type of subsurface erosion, the impact of vegetation on piping erosion is still unclear. It can be hypothesized that vegetation, and in particular plant roots, may reduce piping susceptibility of soils because roots of vegetation also control concentrated flow erosion rates or shallow mass movements. Therefore, this paper aims to assess the impact of grass roots on piping erosion susceptibility of a sandy soil. The pinhole test was used as it provides quantitative data on pipeflow discharge, sediment concentration and sediment discharge. Tests were conducted at different hydraulic heads (i.e., 50 mm, 180 mm, 380 mm and 1020 mm). Results showed that the hydraulic head was positively correlated with pipeflow discharge, sediment concentration and sediment discharge, while the presence of grass roots (expressed as root density) was negatively correlated with these pipeflow characteristics. Smaller sediment concentrations and sediment discharges were observed in root-permeated samples compared to root-free samples. When root density exceeds 0.5 kg m- 3, piping erosion rates decreased by 50% compared to root-free soil samples. Moreover, if grass roots are present, the positive correlation between hydraulic head and both sediment discharge and sediment concentration is less pronounced, demonstrating that grass roots become more effective in reducing piping erosion rates at larger hydraulic heads. Overall, this study demonstrates that grass roots are quite efficient in reducing piping erosion rates in sandy soils, even at high hydraulic head (> 1 m). As such, grass roots may therefore be used to efficiently control piping erosion rates in topsoils.

  18. Use of dolomite phosphate rock (DPR) fertilizers to reduce phosphorus leaching from sandy soil

    International Nuclear Information System (INIS)

    There is increasing concern over P leaching from sandy soils applied with water-soluble P fertilizers. Laboratory column leaching experiments were conducted to evaluate P leaching from a typical acidic sandy soil in Florida amended with DPR fertilizers developed from dolomite phosphate rock (DPR) and N-Viro soil. Ten leaching events were carried out at an interval of 7 days, with a total leaching volume of 1183 mm equivalent to the mean annual rainfall of this region during the period of 2001-2003. Leachates were collected and analyzed for total P and inorganic P. Phosphorus in the leachate was dominantly reactive, accounting for 67.7-99.9% of total P leached. Phosphorus leaching loss mainly occurred in the first three leaching events, accounting for 62.0-98.8% of the total P leached over the whole period. The percentage of P leached (in the total P added) from the soil amended with water-soluble P fertilizer was higher than those receiving the DPR fertilizers. The former was up to 96.6%, whereas the latter ranged from 0.3% to 3.8%. These results indicate that the use of N-Viro-based DPR fertilizers can reduce P leaching from sandy soils. - Fertilizers developed from dolomite phosphate rock (DPR) reduce phosphorus leaching from sandy soil

  19. Sub-Soiling and Genotype Selection Improves Populus Productivity Grown on a North Carolina Sandy Soil

    Directory of Open Access Journals (Sweden)

    Shawn Dayson Shifflett

    2016-03-01

    Full Text Available This study reports the stem volume of 10 Populus genotypes in a randomized split-plot design with different tillage treatments (disking versus sub-soiling after two years of growth. Height, diameter at breast height (DBH, stem aboveground volume index, survival, Melampsora rust resistance, leaf area index (LAI, chlorophyll content, and foliar nitrogen concentration (Foliar N were measured to identify how tillage treatments might alter poplar growth. Stem volume index and LAI were positively correlated and differed significantly among tillage treatments, taxa, and genotypes. Melampsora rust resistance was also positively correlated with volume index, but significant differences were only detected among taxa and genotypes. Foliar N and chlorophyll did not correlate to stem volume for genotypes or tillage treatments. Overall, sub-soiling yielded 37% more estimated volume compared to disking. Within the sub-soiled treatments, four genotypes (140, 176, 185, and 356 had high survival (>80% and produced substantial stem volume (>32 dm3·tree−1. These findings show that tillage practices do impact poplar stem volumes after two years and that sub-soiling improves productivity for poplar short rotation woody crops on loamy fine-sandy soils.

  20. Structural stability and hydraulic conductivity of Nkpologu sandy ...

    African Journals Online (AJOL)

    vincent

    2008-04-12

    Apr 12, 2008 ... therefore faced with inherent risks resulting to marked variations in seasonal and annual food supply. Cassava crops can relatively adapt to marginal soils and erratic rainfall conditions compared with other crops and have the capability of maintaining continuity of supply throughout the year. The need to ...

  1. Structural stability and hydraulic conductivity of Nkpologu sandy ...

    African Journals Online (AJOL)

    vincent

    Obiefuna J.C., IbeawuchI I.I., Okoli A.N. and Alagba R.A.. Federal University of Technology Owerri Nigeria. E-mail: juliusobiefuna@yahoo.com. ABSTRACT. Seed bed preparation as the post land clearing operation, is crucial as a sustainable soil resource base for crop production in the rainforest agroecology. The study ...

  2. Structural stability and hydraulic conductivity of Nkpologu sandy ...

    African Journals Online (AJOL)

    vincent

    and 1:1 N soil-KCl with glass electrode pH meter. (Mclean, 1982). Organic carbon determination. Organic carbon content of the samples was determined by the chromic modified Walkley-. Black method (Nelson and Sommers, 1982). Cation exchange capacity (CEC) and Effective cation exchange capacity (ECEC).

  3. Stability analysis of sandy slope considering anisotropy effect in ...

    Indian Academy of Sciences (India)

    1Faculty of Engineering, Azarbaijan Shahid Madani University, ... 2School of Civil Engineering, Iran University of Science and Technology, ..... material. 4.3 Stability analysis result. For each analysis case with specified geometrical configuration for slope, a wide range of slip surfaces are considered by establishing a grid of ...

  4. Plant functional diversity enhances associations of soil fungal diversity with vegetation and soil in the restoration of semiarid sandy grassland.

    Science.gov (United States)

    Zuo, Xiaoan; Wang, Shaokun; Lv, Peng; Zhou, Xin; Zhao, Xueyong; Zhang, Tonghui; Zhang, Jing

    2016-01-01

    The trait-based approach shows that plant functional diversity strongly affects ecosystem properties. However, few empirical studies show the relationship between soil fungal diversity and plant functional diversity in natural ecosystems. We investigated soil fungal diversity along a restoration gradient of sandy grassland (mobile dune, semifixed dune, fixed dune, and grassland) in Horqin Sand Land, northern China, using the denaturing gradient gel electrophoresis of 18S rRNA and gene sequencing. We also examined associations of soil fungal diversity with plant functional diversity reflected by the dominant species' traits in community (community-weighted mean, CWM) and the dispersion of functional trait values (FD is). We further used the structure equation model (SEM) to evaluate how plant richness, biomass, functional diversity, and soil properties affect soil fungal diversity in sandy grassland restoration. Soil fungal richness in mobile dune and semifixed dune was markedly lower than those of fixed dune and grassland (P functional diversity explained nearly 70% variances of soil fungal richness. Strong association of soil fungal richness with the dominant species in the community supported the mass ratio hypothesis. Our results clearly highlight the role of plant functional diversity in enhancing associations of soil fungal diversity with community structure and soil properties in sandy grassland ecosystems.

  5. Optimising crude oil biodegradation in a sandy loam soil using a ...

    African Journals Online (AJOL)

    The impacts of addition of cow dung and poultry manure alone and in combination with surfactants and/or alternate carbon substrates on crude oil biodegradation in a sandy loam soil were investigated. At a 1.0% (w/w) concentration of the mixture of cow dung and poultry manure, addition of the alternate carbon substrates ...

  6. Vegetation impact on the hydrology of an aeolian sandy soil in a continental climate

    Czech Academy of Sciences Publication Activity Database

    Lichner, Ľ.; Hallett, P. D.; Orfánus, T.; Czachor, H.; Rajkai, K.; Šír, Miloslav; Tesař, Miroslav

    2010-01-01

    Roč. 3, č. 4 (2010), s. 413-420 ISSN 1936-0584 R&D Projects: GA MŠk MEB0808114 Institutional research plan: CEZ:AV0Z20600510 Keywords : sandy soil * water repellency * plant cover * sorptivity * hydraulic conductivity Subject RIV: DA - Hydrology ; Limnology Impact factor: 1.835, year: 2010

  7. Effect of Tractor Forward Speed on Sandy Loam Soil Physical ...

    African Journals Online (AJOL)

    Results indicate significant differences in soil physical conditions arising from different levels of tractor forward speed. A forward speed of approximately 7km/h resulted in appreciable amelioration of soil structure as reflected in improvements in the soil strength properties and maximum reduction in clod mean weight ...

  8. Cementation in a matrix of loose sandy soil using biological ...

    African Journals Online (AJOL)

    Man-made materials varying from cement-based to chemical-based have been injected into soils to improve their engineering properties (shear strength, compressibility, permeability, bearing capacity etc.). Soil type in general plays important role in determination of treatment material and method. Materials used for soil ...

  9. Characterization, desorption, and mining of phosphorus in noncalcareous sandy soils

    NARCIS (Netherlands)

    Koopmans, G.F.

    2004-01-01

    In areas with intensive livestock farming, soils have been enriched with phosphorus (P), following heavy applications of animal manure. These soils are a risk for nearby surface waters, as the leaching of P from these soils contributes to eutrophication of these surface waters. This study was set up

  10. Proposals of SPT-CPT and DPL-CPT correlations for sandy soils in Brazil

    Directory of Open Access Journals (Sweden)

    Mirella Dalvi dos Santos

    2017-12-01

    Full Text Available Field tests in geotechnical engineering are fundamental for identification of the underground conditions. The standard penetration test (SPT is the most commonly used geotechnical approach. There has been an increase both in the use and application of the in situ tests: cone penetration test (CPT and dynamic probing (DP. Several empirical SPT-CPT and dynamic probing light (DPL-CPT correlations for sandy soils have been discussed in the literature. New SPT-CPT and DPL-CPT correlations for the sandy soils of the city of Vitoria, in the southeast of Brazil, are suggested in this paper. Statistical analyses to evaluate the quality of the data used are performed, and the suggested correlations are validated with several previous published datasets. The paper also provides some insights into SPT-CPT correlations and soil characteristics (i.e. the mean particle size and the fines fraction of the soil.

  11. Soil resistance and resilience to mechanical stresses for three differently managed sandy loam soils

    DEFF Research Database (Denmark)

    Arthur, Emmanuel; Schjønning, Per; Møldrup, Per

    2012-01-01

    measurements were done at −1000 hPa and in the air dried state. Soil cores were subjected to uniaxial confined compression (200 kPa) followed by a period of natural recovery and wet–dry or freeze–thaw cycles. The MFC soil displayed greater tensile strength, specific rupture energy and friability at both soil...... carbon (CCCair permeability (ka), void ratio (e) and air-filled porosity (ε) as functional indicators and to characterise aggregate stability, strength and friability. Aggregate tensile strength...... the compression index and a proposed functional index,was significantly greater for theMFC soil compared to the other two soils. The change in compression index with initial void ratio was significantly less for the MFC than the other soils. Plastic reorganisation of the soil particles immediately after...

  12. Metal redistribution by surface casting of four earthworm species in sandy and loamy clay soils.

    Science.gov (United States)

    Zorn, Mathilde I; van Gestel, Cornelis A M; Eijsackers, Herman J P

    2008-12-01

    Bioturbation of metal contaminated soils contributes considerably to redistribution and surfacing of contaminated soil from deeper layers. To experimentally measure the contribution of Allolobophora chlorotica, Aporrectodea caliginosa, Lumbricus rubellus and L. terrestris to soil surface casting, a time-course experiment was performed under laboratory conditions. Earthworms were incubated in perspex columns filled with sandy soil (2% organic matter, 2.9% clay) or loamy clay soil (15% organic matter, 20% clay), and surface casts were collected after up to 80 days. On the sandy soil, A. caliginosa and L. rubellus brought approximately 7.1-16 g dry wt. casts/g fresh wt. earthworm to the surface, which is significantly more than A. chlorotica and L. terrestris (2.5-5.0 g dry wt./g fresh wt.). A. caliginosa was the only species that produced significantly more surface casts in the sandy soil than in the loamy clay soil. In the loamy clay soil, no differences in biomass-corrected casting rates were found among the species. Surface casting rates tended to decrease after 20 days. Considering the densities of the different species in a Dutch floodplain area Afferdensche and Deestsche Waarden, surface cast production is estimated to amount to 2.0 kg dry soil/m2 after 80 days, which could be extrapolated to 2.7-9.1 kg/m2 per year. These amounts correspond to a surface deposition of a layer of approximately 1.9-6.5 mm/year, which is of the same order or even slightly higher than the sedimentation rate and much higher than the amount of soil brought to the soil surface by bioturbating small mammals.

  13. 15N Isotopic Study on Decomposition of Organic Residues Incorporated into Alluvial and Sandy Saline Soils

    International Nuclear Information System (INIS)

    El-Kholi, A. F.; Galal, Y. G. M.

    2004-01-01

    Incubation experiment was conducted to study the effect of the nitrogenous fertilizer on the decomposition and mineralization of organic residues (soybean powdered forage) as well as the release of the soil inorganic nitrogen. This technique was carried out using two types of soils, one is alluvial and the other is saline sandy soil collected from Fayoum governorate. Soybean forage has an organic carbon 23.1%, total N 1.6% and C/N ratio 14.4. Regarding the effect of incubation period on the two soil samples, the evolved NH 4 -N was generally reached its highest peak after 30-45 days, in the presence of either the added 15 No3-fertilizer solely or in combination with soybean forage. Reversible trend was occurred with regard to the evolved No3-N. The highest peak of evolved No3-N recorded in unfertilized control, as compared to 15 No3-N treatment, at 30 day incubation period indicated that the addition of labeled mineral fertilizer had appreciably enhanced the immobilization process. Net nitrification revealed that it was the highest in unfertilized control soil where it was significantly decreased in the treated two soil samples. Gross mineralization as affected by the addition of soybean forage in combination with labeled mineral fertilizer had been promoted by 75% in the alluvial soil and by 18% in the sandy saline soil, as compared with the soil samples received 15 No3-fertilizer only. Gross immobilization, in soil samples received 15 No3-fertilizer plus soybean forage had surpassed those received 15 No3-fertilizer only by 16% in the alluvial soil and by 25% in the sandy saline soil. (Authors)

  14. Study of sandy soil grain-size distribution on its deformation properties

    Science.gov (United States)

    Antropova, L. B.; Gruzin, A. V.; Gildebrandt, M. I.; Malaya, L. D.; Nikulina, V. B.

    2018-04-01

    As a rule, new oil and gas fields' development faces the challenges of providing construction objects with material and mineral resources, for example, medium sand soil for buildings and facilities footings of the technological infrastructure under construction. This problem solution seems to lie in a rational usage of the existing environmental resources, soils included. The study was made of a medium sand soil grain-size distribution impact on its deformation properties. Based on the performed investigations, a technique for controlling sandy soil deformation properties was developed.

  15. Regional scale assessment of soil predictors of groundwater phosphate (P) levels in acidic sandy agricultural soils

    Science.gov (United States)

    Mabilde, Lisa

    2016-04-01

    Possible factors affecting the leaching of P to the groundwater in the Belgian sandy area are examined via regression analysis. The main objective is to investigate the dependency of phreatic groundwater phosphate concentrations (Flemish VMM monitoring net, monitoring period 2010-2013) on soil phosphate saturation degree (PSD) (1994-1997 mapping for Flemish Land Agency) (n = 1032). Additionally explored parameters include: depth distributions of Fe- and Al-oxides, sorbed P and phosphate sorption capacity (PSC) and soil pH. Interpolated data of these soil parameters in 3 depth layers (0-30, 30-60, 60-90 cm) were generated by ordinary kriging. Secondly, we assessed the significance of other edaphic factors potentially controlling the groundwater P: topsoil organic carbon content (OC %), soil clay content and fluctuation of the groundwater table. Overall, the mean PSD halved with each 30 cm depth layer (56 > 24 > 13 %) and was correlated to groundwater PO43- level. The statistical significance of the correlation with groundwater PO43- concentrations increased with depth layer. The poor correlation (R2 = 0.01) between PSD and groundwater phosphate concentration indicates that many factors, other than soil P status, control the transport of P from soil solution to the groundwater in Belgian sandy soils. A significant (P<0.01) positive non-linear relationship was found between groundwater PO43-concentration and pHKCl in all three studied depth layers, again increasingly with depth. Within the pH range of the 30-60 cm layer (pHKCl 4.0-5.7) PO4- solubility should increase with pH. Elevated soil OC levels surprisingly co-occurred with low groundwater PO43- concentrations (r = -0.18, P<0.01, n = 191). Groundwater PO43- was furthermore significantly and positively correlated to clay % in both the 0-15 cm (r = 0.15, τ = 0.25, P<0.01, n = 1032) and 60-90 cm (r = 0.13, τ = 0.20, P<0.01, n = 1032) depth increments. These positive correlations were unexpected and could be

  16. Compaction Behaviour of Akure Sandy Clay Loamy Soils | Manuwa ...

    African Journals Online (AJOL)

    The equations were those of power, logarithmic, exponential and linear function with very high values of R2, while the power function seemed to be the best model to describe the behaviour. The soils were very sensitive to water content during the time of compaction. The percentage increase in soil compaction related more ...

  17. Volatilisation of o-Xylene from Sandy Soil

    DEFF Research Database (Denmark)

    Lindhardt, Bo; Christensen, Thomas Højlund; Brun, Adam

    1994-01-01

    The diffusive release of o-xylene from two soils with different contents of organic carbon (1.1 % and 0.11 % TOC) and with two different water contents (app. 5 % w/w and 15 % w/w was studied in the laboratory. The soils were spiked with o-xylene in the laboratory. The fluxes were measured over...

  18. Nitrogen and Carbon Leaching in Repacked Sandy Soil with Added Fine Particulate Biochar

    DEFF Research Database (Denmark)

    Bruun, Esben W.; Petersen, Carsten; Strobel, Bjarne W.

    2012-01-01

    Biochar amendment to soil may affect N turnover and retention, and may cause translocation of dissolved and particulate C. We investigated effects of three fine particulate biochars made of wheat (Triticum aestivum L.) straw (one by slow pyrolysis and two by fast pyrolysis) on N and C leaching from...... repacked sandy soil columns (length: 51 cm). Biochar (2 wt%), ammonium fertilizer (NH4+, amount corresponding to 300 kg N ha-1) and an inert tracer (bromide) were added to a 3-cm top layer of sandy loam, and the columns were then irrigated with constant rate (36 mm d-1) for 15 d. The total amount...... of leachate came to about 3.0 water filled pore volumes (WFPVs). Our study revealed a high mobility of labile C components originating from the fine particulate fast pyrolysis biochar. This finding highlights a potential risk of C leaching coupled with the use of fast pyrolysis biochars for soil amendment...

  19. Phosphorus leaching from a sandy soil in the presence of modified and un-modified adsorbents.

    Science.gov (United States)

    Moharami, Somayeh; Jalali, Mohsen

    2014-10-01

    Phosphorus (P) leaching from a sandy soil was investigated in the presence of modified and unmodified clay minerals and nanoparticles (NPs). Compared with control soil, amended soil with NPs had the highest percentage of P retention than amended soil with clay minerals. Among the adsorbents used, the highest percentage of P retention was produced by Al₂O₃-chitosan while the lowest percentage of P retention was by zeolite. Data measured for P leaching after using adsorbents were used to predict P leaching using transport model. PHREEQC model was able to model P leaching from control and amended soil. After leaching, P values in control and amended soil were fractionated by a sequential extraction procedure. Concentration of P in Ca-bound fraction (HCl-P) after application of modified and unmodified clay minerals and NPs (except TiO₂ and Al₂O₃) increased and decreased, respectively. Saturation indices (SIs) and P speciation were assessed using the Visual MINTEQ version 2.3 program. According to the SIs, leaching P from control and amended soil with different adsorbent was controlled by dissolution of hydroxyapatite. The results indicated that used adsorbents can reduce P leaching from the sandy soil. Thus, retention of P by amended soil reduced a risk in terms of groundwater contamination with P.

  20. Garlic mustard and its effects on soil microbial communities in a sandy pine forest in central Illinois

    Science.gov (United States)

    Alexander B. Faulkner; Brittany E. Pham; Truc-Quynh D. Nguyen; Kenneth E. Kitchell; Daniel S. O' Keefe; Kelly D. McConnaughay; Sherri J. Morris

    2014-01-01

    This study evaluated the impacts of garlic mustard (Alliaria petiolata), an invasive species, on soil microbial community dynamics in a pine plantation on sandy soils in central Illinois. In situ soil carbon dioxide efflux was significantly greater in invaded sites. Similarly, in vitro carbon mineralization was significantly greater for soils...

  1. Assessing soil water repellency of a sandy field with visible near infrared spectroscopy

    DEFF Research Database (Denmark)

    Knadel, Maria; Masís Meléndez, Federico; de Jonge, Lis Wollesen

    2016-01-01

    to its effects on germination, root growth, liquid-vapour dynamics, surface erosion and leaching of chemicals through fingered flow paths. However, common techniques for measuring WR are time-consuming and expensive. Meanwhile, it is well established that visible near infrared (vis-NIR) spectroscopy......, and to evaluate the effect of soil pretreatment on the predictive ability of WR models. A total of 87 soil samples from an agricultural coarse sandy field in Denmark were analysed for SOC, particle size fractions, water content and WR. Soil samples were scanned with a vis-NIR sensor (350-2500 nm) after air...

  2. Fine dust emissions in sandy and silty agricultural soils

    Science.gov (United States)

    Dust emissions from strong winds are common in arid and semi-arid regions and occur under both natural and managed land systems. A portable field wind tunnel has been developed to allow measurements of dust emissions from soil surfaces to test the premise that dust concentrations are highly correlat...

  3. Improvement of Shear Strength of Sandy Soil by Cement Grout with Fly Ash

    Directory of Open Access Journals (Sweden)

    Haifaa Abdulrasool Ali

    2018-12-01

    Full Text Available The effects of the permeation cement grout with fly ash on the sandy soil skeleton were studied in the present work in two phase; first phase the shear strength parameters, and the second phase effect of these grouted materials on volume grouted zone by injection (51 cm³ of slurry in sandy soil placed in steel cylinder model with dimension 15 cm in diameter and 30 cm in height. The soil sample was obtained from Karbala city and it is classified as poorly graded sand (SP according to USCS. The soil samples were improved by cement grout with three percentages weight of water cement ratio (w:c; (0.1w:0.9c, 0.8w:0.2c, and 0.7w:0.3c, while the soil samples were dehydrated for one day curing time. Fly ash class (F was used with cement grout as filler material; it was added to the mixture as a replacement material for cement in weight percentages; 10%, 25% and 40%. According to the results of tests, both shear strength and approximate volume of the effective grouted zone for treated samples soil with cement grout was increased when the water cement ratio decreased. Fly ash with cement grout needs to increase the water demand for the grout mixing to give best results in both shear strength and filling the soil voids.

  4. Distribution of transformed organic matter in structural units of loamy sandy soddy-podzolic soil

    Science.gov (United States)

    Kogut, B. M.; Yashin, M. A.; Semenov, V. M.; Avdeeva, T. N.; Markina, L. G.; Lukin, S. M.; Tarasov, S. I.

    2016-01-01

    The effect of land use types and fertilizing systems on the structural and aggregate composition of loamy sandy soddy-podzolic soil and the quantitative parameters of soil organic matter has been studied. The contribution of soil aggregates 2-1 mm in size to the total Corg reserve in the humus horizon is higher than the contributions of other aggregates by 1.3-4.2 times. Reliable correlations have been revealed between the contents of total (Corg), labile (Clab), and active (C0) organic matter in the soil. The proportion of C0 is 44-70% of Clab extractable by neutral sodium pyrophosphate solution. The contributions of each of the 2-1, 0.5-0.25, and fractions to the total C0 reserve are 14-21%; the contributions of each of the other fractions are 4-12%. The chemically labile and biologically active components of humic substances reflect the quality changes of soil organic matter under agrogenic impacts. A conceptual scheme has been proposed for the subdivision of soil organic matter into the active, slow (intermediate), and passive pools. In the humus horizon of loamy sandy soddy-podzolic soil, the active, slow, and passive pools contain 6-11, 34-65, and 26-94% of the total Corg, respectively.

  5. The influence of clay-to-carbon ratio on soil physical properties in a humid sandy loam soil with contrasting tillage and residue management

    DEFF Research Database (Denmark)

    Getahun, Gizachew Tarekegn; Munkholm, Lars Juhl; Schjønning, Per

    2016-01-01

    Tillage and residue management influence soil organic carbon (SOC) and lead to changes in soil physical behav-iour and functioning. We examined the effect of the clay-to-carbon ratio on soil physical properties in a humid sandy loam soil with contrasting tillage and residue management. Soil was sa...

  6. Mycorrhizal population on various cropping systems on sandy soil in dryland area of North Lombok, Indonesia

    Directory of Open Access Journals (Sweden)

    WAHYU ASTIKO

    2016-01-01

    Full Text Available Abstract. Astiko W, Fauzi MT, Sukartono. 2016. Mycorrhizal population on various cropping systems on sandy soil in dryland area of North Lombok, Indonesia. Nusantara Bioscience 8: 66-70. Inoculation of arbuscular mycorrhizal fungi (AMF on maize in sandy soil is expected to have positive implications for the improvement of AMF population and nutrient uptake. However, how many increases in the AMF population and nutrient uptake in the second cycle of a certain cropping system commonly cultivated by the farmers after growing their corn crop have not been examined. Since different cropping systems would indicate different increases in the populations of AMF and nutrient uptake. This study aimed to determine the population AMF and nutrient uptake on the second cropping cycle of corn-based cropping systems which utilized indigenous mycorrhizal fungi on sandy soil in dryland area of North Lombok, West Nusa Tenggara, Indonesia. For that purpose, an experiment was conducted at the Akar-Akar Village in Bayan Sub-district of North Lombok, designed according to the Randomized Complete Block Design, with four replications and six treatments of cropping cycles (P0 = corn-soybean as a control, in which the corn plants were not inoculated with AMF; P1 = corn-soybean, P2 = corn-peanut, P3 = corn-upland rice, P4 = corn-sorghum, and P5 = corn-corn, in which the first cycle corn plants were inoculated with AMF. The results indicated that the mycorrhizal populations (spore number and infection percentage were highest in the second cycle sorghum, achieving 335% and 226% respectively, which were significantly higher than those in the control. Increased uptake of N, P, K and Ca the sorghum plants at 60 DAS of the second cropping cycle reached 200%; 550%; 120% and 490% higher than in the control. The soil used in this experiment is rough-textured (sandy loam, so it is relatively low in water holding capacity and high porosity.

  7. Uranium partitioning under acidic conditions in a sandy soil aquifer

    International Nuclear Information System (INIS)

    Johnson, W.H.; Serkiz, S.M.; Johnson, L.M.

    1995-01-01

    The partitioning of uranium in an aquifer down gradient of two large mixed waste sites was examined with respect to the solution and soil chemistry (e.g., pH redox potential and contaminant concentration) and aqueous-phase chemical speciation. This involved generation of field-derived, batch sorption, and reactive mineral surface sorption data. Field-derived distribution coefficients for uranium at these waste sites were found to vary between 0.40 and 15,000. Based on thermodynamic speciation modeling and a comparison of field and laboratory data, gibbsite is a potential reactive mineral surface present in modified soils at the sites. Uranium partitioning data are presented from field samples and laboratory studies of background soil and the mineral surface gibbsite. Mechanistic and empirical sorption models fit to the field-derived uranium partitioning data show an improvement of over two orders of magnitude, as measured by the normalized sum of errors squared, when compared with the single K d model used in previous risk work. Models fit to batch sorption data provided a better fit of sorbed uranium than do models fit to the field-derived data

  8. Effect of pore-size distribution on the collapse behaviour of anthropogenic sandy soil deposits

    Directory of Open Access Journals (Sweden)

    Baille Wiebke

    2016-01-01

    Full Text Available In the former open-pit mines of the Lusatian region in Germany, several liquefaction events have occurred during the recent years in the anthropogenic deposits made of very loose sandy soils. These events are related to the rising ground water table after the stop of controlled ground water lowering. The very loose state is due to the formation of sand aggregates (pseudo-grains during the deposition process. The pseudo-grains enclose larger voids of dimension greater than the single sand grain. Wetting induced collapse of the pseudo-grains is presumed to be one of the possible mechanisms triggering liquefaction. In the present study, the effect of larger voids on the wetting induced deformation behaviour of sandy soils is experimentally investigated by laboratory box tests. The deformation field in the sample during wetting was measured using Digital Image Correlation (DIC technique. The results show that the observed deformations are affected by the pore size distribution, thus the amount of voids between the pseudo-grains (macro-void ratio and the voids inside the pseudo-grains (matrix void ratio. The global void ratio of a sandy soil is not sufficient as single state parameter, but the pore size distribution has to be taken into account, experimentally as well as in modelling.

  9. INFLUENCE OF SLUDGE ON SOME TECUCI PLAIN SANDY SOILS FROM GALATI COUNTY

    Directory of Open Access Journals (Sweden)

    Simionică Răzvan

    2017-07-01

    Full Text Available This paper presents some aspects regarding the use of sludge obtained from Tecuci wastewater treatment pilot plant, sludge that was used for the fertilization of some sandy soils of Tecuci Plain, Galati County. To reduce the polluting effect of the sludge that will be used for agriculture and to exploit the nutrients it contains, it is necessary to subject the sludge to a proper treatment, to apply it only on suitable soils in the right doses and at the appropriate periods, at certain recommended crops, and to also ensure the proper control of the environmental quality. This study was in accordance with Order no. 344/2004 for approving the technical norms when active sludge is used in agriculture concerning the environmental protection and, in particular, of soil, of the Romanian Soil Taxonomy System (2012 and Development of Soil Survey Methodology (1987. Fertilization with sludge from the treatment plant was applied on eutric and district psamosoils from Protisoils Class that are characterized by a sandy texture in the upper portion of the profile and a poor supply with chemical elements. Always to be noted that before using the sludge as a fertilizer two processes will be performed such as the limestone amendment of soil and also the fertilization with chemical fertilizers that have an alkalizing action.

  10. Effect of pH on bacteriophage transport through sandy soils

    Science.gov (United States)

    Kinoshita, Takashi; Bales, Roger C.; Maguire, Kimberley M.; Gerba, Charles P.

    1993-01-01

    Effects of pH and hydrophobicity on attachment and detachment of PRD-1 and MS-2 in three different sandy soils were investigated in a series of laboratory-column experiments. Concentrations of the lipid-containing phage PRD-1 decreased 3–4 orders of magnitude during passage through the 10–15-cm-long columns. Attachment of the lipid-containing phage PRD-1 was insensitive to pH and was apparently controlled by hydrophobic interactions in soil media. The less-hydrophobic phage MS-2 acted conservatively; it was not removed in the columns at pH's 5.7–8.0. The sticking efficiency (α) in a colloid-filtration model was between 0.1 and 1 for PRD-1, indicating a relatively high removal efficiency. Phage attachment was reversible, but detachment under steady-state conditions was slow. An increase in pH had a moderate effect on enhancing detachment. Still, these soils should continue to release phage to virus-free water for days to weeks following exposure to virus-containing water. In sandy soils with a mass-fraction organic carbon as low as a few hundredths of a percent, pH changes in the range 5.7–8.0 should have little effect on retention of more-hydrophobic virus (e.g., PRD-1), in that retardation will be dominated by hydrophobic effects. Sharp increases in pH should enhance detachment and transport of virus previously deposited on soil grains. A more hydrophilic virus (e.g., MS-2) will transport as a conservative tracer in low-carbon sandy soil.

  11. Effect of biochar on aerobic processes, enzyme activity, and crop yields in two sandy loam soils

    DEFF Research Database (Denmark)

    Sun, Zhencai; Bruun, Esben; Arthur, Emmanuel

    2014-01-01

    Biochar added to agricultural soils may sequester carbon and improve physico-chemical conditions for crop growth, due to effects such as increased water and nutrient retention in the root zone. The effects of biochar on soil microbiological properties are less certain. We addressed the effects...... of wood-based biochar on soil respiration, water contents, potential ammonia oxidation (PAO), arylsulfatase activity (ASA), and crop yields at two temperate sandy loam soils under realistic field conditions. In situ soil respiration, PAO, and ASA were not significantly different in quadruplicate field...... plots with or without biochar (20 Mg ha−1); however, in the same plots, volumetric water contents increased by 7.5 % due to biochar (P = 0.007). Crop yields (oat) were not significantly different in the first year after biochar application, but in the second year, total yields of spring barley increased...

  12. Biochar Application in Malaysian Sandy and Acid Sulfate Soils: Soil Amelioration Effects and Improved Crop Production over Two Cropping Seasons

    Directory of Open Access Journals (Sweden)

    Theeba Manickam

    2015-12-01

    Full Text Available The use of biochar as an agricultural soil improvement was tested in acid sulfate and sandy soils from Malaysia, cropped with rice and corn. Malaysia has an abundance of waste rice husks that could be used to produce biochar. Rice husk biochar was produced in a gasifier at a local mill in Kelantan as well as in the laboratory using a controlled, specially designed, top lift up draft system (Belonio unit. Rice husk biochar was applied once to both soils at two doses (2% and 5%, in a pot set up that was carried out for two cropping seasons. Positive and significant crop yield effects were observed for both soils, biochars and crops. The yield effects varied with biochar type and dosage, with soil type and over the cropping seasons. The yield increases observed for the sandy soil were tentatively attributed to significant increases in plant-available water contents (from 4%–5% to 7%–8%. The yield effects in the acid sulfate soil were likely a consequence of a combination of (i alleviation of plant root stress by aluminum (Ca/Al molar ratios significantly increased, from around 1 to 3–5 and (ii increases in CEC. The agricultural benefits of rice husk biochar application to Malaysian soils holds promise for its future use.

  13. Is colloid-facilitated phosphorus leaching triggered by phosphorus accumulation in sandy soils?

    Science.gov (United States)

    Siemens, Jan; Ilg, Katrin; Pagel, Holger; Kaupenjohann, Martin

    2008-01-01

    The leaching of colloidal phosphorus (P(coll)) contributes to P losses from agricultural soils. In an irrigation experiment with undisturbed soil columns, we investigated whether the accumulation of P in soils due to excess P additions enhances the leaching of colloids and P(coll) from sandy soils. Furthermore, we hypothesized that large concentrations of P(coll) occur at the onset of leaching events and that P(coll) mobilized from topsoils is retained in subsoils. Soil columns of different P saturation and depth (0-25 and 0-40 cm) were collected at a former disposal site for liquid manure and at the Thyrow fertilization experiment in northeastern Germany. Concentrations of total dissolved P, P(coll), Fe(coll), Al(coll), optical density, zeta potential, pH, and electrical conductivity of the leachates were determined. Colloidal P concentrations ranged from 0.46 to 10 micromol L(-1) and contributed between 1 and 37% to total P leaching. Large P(coll) concentrations leached from the P-rich soil of the manure disposal site were rather related to a large P-content of colloids than to the mobilization of additional colloids. Concentrations of colloids and P(coll) in leachates from P-poor and P-rich columns from Thyrow did not differ significantly. In contrast, accumulation of P in the Werbellin and the Thyrow soil consistently increased dissolved P concentrations to maximum values as high as 300 micromol L(-1). We observed no first-flush of colloids and P(coll) at the beginning of the leaching event. Concentrations of P(coll) leached from 40-cm soil columns were not smaller than those leached from 25-cm columns. Our results illustrate that an accumulation of P in sandy soils does not necessarily lead to an enhanced leaching of colloids and P(coll), because a multitude of factors independent from the P status of soils control the mobility of colloids. In contrast, P accumulation generally increases dissolved P concentrations in noncalcareous soils due to the saturation

  14. Microbial and physical properties as indicators of sandy soil quality under cropland and grassland

    Science.gov (United States)

    Frac, Magdalena; Lipiec, Jerzy; Usowicz, Boguslaw; Oszust, Karolina; Brzezinska, Malgorzata

    2017-04-01

    Land use is one of the key factor driving changes in soil properties influencing on soil health and quality. Microbial diversity and physical properties are sensitive indicators for assessing soil health and quality. The alterations of microbial diversity and physical properties following land use changes have not been sufficiently elucidated, especially for sandy soils. We investigated microbial diversity indicators including fungal communities composition and physical properties of sandy acid soil under cropland and more than 20-yr-old grassland (after cropland) in Trzebieszów, Podlasie Region, Poland (N 51° 59' 24", E 22° 33' 37"). The study included four depths within 0-60 cm. Microbial genetic diversity was assessed by terminal restriction fragment length polymorphism (t-RFLP) analysis, fungal community composition was evaluated by next generation sequencing (NGS) analysis and functional diversity was determined by Biolog EcoPlate method. Overall microbial activity was assessed by soil enzymes (dehydrogenases, β-glucosidase) and respiration test. At the same places soil texture, organic carbon content, pH, bulk density, water holding capacity were determined. Our results showed that grassland soil was characterized by higher activity of soil enzymes than cropland. The average well color development of soil microorganisms, the microbial functional diversity and the number of carbon source utilization were significantly affected by land use type and were differentiated among soil depths. In grassland compared to cropland soil a significant increase of carboxylic acids and decrease of amino acids utilization was observed. The quantitative and qualitative differences were found in community of ammonia oxidizing archaea in cropland and grassland soil. The results of fungal community composition help to explain the soil health of grassland and cropland based on the appearance of phytopathogenic and antagonistic fungi. In general bulk density and field water

  15. Soil moisture-soil temperature interrelationships on a sandy-loam soil exposed to full sunlight

    Science.gov (United States)

    David A. Marquis

    1967-01-01

    In a study of birch regeneration in New Hampshire, soil moisture and temperature were found to be intimately related. Not only does low moisture lead to high temperature, but high temperature undoubtedly accelerates soil drying, setting up a vicious cycle of heating and drying that may prevent seed germination or kill seedlings.

  16. An Experimental Study of Portland Cement and Superfine Cement Slurry Grouting in Loose Sand and Sandy Soil

    Directory of Open Access Journals (Sweden)

    Weijing Yao

    2018-04-01

    Full Text Available Grouting technology is widely applied in the fields of geotechnical engineering in infrastructure. Loose sand and sandy soil are common poor soils in tunnel and foundation treatments. It is necessary to use superfine cement slurry grouting in the micro-cracks of soil. The different effectiveness of Portland cement slurry and superfine cement slurry in sandy soil by the laboratory grouting experiment method were presented in this paper. The grouting situations of superfine cement slurry injected into sand and sandy soil were explored. The investigated parameters were the dry density, wet density, moisture content, internal friction angle, and cohesion force. The results show that the consolidation effect of superfine cement is better than that of Portland cement due to the small size of superfine cement particles. The superfine cement can diffuse into the sand by infiltration, extrusion, and splitting. When the water–cement ratio of superfine cement slurry is less than 2:1 grouting into loose sand, the dry and wet density decrease with the increase in the water–cement ratio, while the moisture content and cohesive force gradually increase. When the water–cement ratio of superfine cement slurry is 1:1 grouting into loose sand and sandy soil, the dry density, wet density, and cohesive force of loose sand are larger than those of sandy soil. The results of the experiment may be relevant for engineering applications.

  17. Grape yield, and must compounds of 'Cabernet Sauvignon' grapevine in sandy soil with potassium contents increasing

    Directory of Open Access Journals (Sweden)

    Marlise Nara Ciotta

    2016-08-01

    Full Text Available ABSTRACT: Content of exchangeable potassium (K in t soil may influence on its content in grapevines leaves, grape yield, as well as, in must composition. The study aimed to assess the interference of exchangeable K content in the soil on its leaf content, production and must composition of 'Cabernet Sauvignon' cultivar. In September 2011, in Santana do Livramento (RS five vineyards with increasing levels of exchangeable K in the soil were selected. In the 2012/13 and 2013/14 harvests, the grape yield, yield components, total K content in the leaves in full bloom and berries veraison were evaluated. Values of total soluble sugar (TSS, pH, total titratable acidity (TTA, total polyphenols and anthocyanins were evaluated in the must. Exchangeable K content increase in soil with sandy surface texture increased its content in leaves collected during full flowering and in berries and must pH; however, it did not affect production of the 'Cabernet Sauvignon'.

  18. Chemically stabilized soils.

    Science.gov (United States)

    2009-12-01

    The objective of this study was to conduct laboratory evaluations to quantify the effects of compaction and moisture conditions on the strength of chemically treated soils typical utilized in pavement construction in Mississippi.

  19. Organic Carbon and Physical Properties in Sandy Soil after Conversion from Degraded Pasture to Eucalyptus in the Brazilian Cerrado

    Directory of Open Access Journals (Sweden)

    Karla Nascimento Sena

    Full Text Available ABSTRACT Soil is currently seen as the most relevant carbon sink and the most effective carbon stabilizer. In contrast, agriculture is the second largest C emitter, after burning of fossil fuels. This organic carbon (OC introduced into the soil, mainly via organic matter (OM, is essential for several soil properties and plays an extremely important role in sandy soils. The objective of this study was to describe the changes in the amounts and pools of OC and the influence thereof on some physical soil properties in areas converted from pasture to eucalyptus. The following areas were analyzed: a degraded pasture (PAST, two areas of pasture-eucalyptus conversion after 2 and 15 years (EU02 and EU15, respectively and a preserved Cerrado area (CER in the east of the state of Mato Grosso do Sul. Soil samples were taken from the 0.00-0.05, 0.05-0.10, and 0.10-0.30 m layers. The OC was measured and analyzed, the carbon pool (CP calculated, aggregate stability, bulk density (BD, and macro- and microporosity determined, and total porosity (TP calculated to analyze the influence of land use on soil properties. The experimental design was completely randomized, and four clusters per area were established, with nine subsampling points, for a total of 36 subsamples per area, organized in 20 × 20 m grids, The soil under natural vegetation (preserved Cerrado was used as a control. The change from CER to commercial cultivation accelerates the process of OC loss (reductions of 25-35 % and reductions in soil physical quality. In the PAST area, OC was reduced by 30 % in the 0.00-0.05 m layer. Cumulative OC and CP were highest in the 0.00-0.05 m layer and decreased in the deeper layers in all land use treatments. Organic C in the 0.10-0.30 m layer was not influenced by land use, indicating the possibility of OC persistence in the soil for longer periods. Macroporosity and total porosity may be considered appropriate in CER and EU15, whereas the conditions for plant

  20. Toluene Removal from Sandy Soils via In Situ Technologies with an Emphasis on Factors Influencing Soil Vapor Extraction

    Directory of Open Access Journals (Sweden)

    Mohammad Mehdi Amin

    2014-01-01

    Full Text Available The integration of bioventing (BV and soil vapor extraction (SVE appears to be an effective combination method for soil decontamination. This paper serves two main purposes: it evaluates the effects of soil water content (SWC and air flow rate on SVE and it investigates the transition regime between BV and SVE for toluene removal from sandy soils. 96 hours after air injection, more than 97% removal efficiency was achieved in all five experiments (carried out for SVE including 5, 10, and 15% for SWC and 250 and 500 mL/min for air flow rate on SVE. The highest removal efficiency (>99.5% of toluene was obtained by the combination of BV and SVE (AIBV: Air Injection Bioventing after 96 h of air injection at a constant flow rate of 250 mL/min. It was found that AIBV has the highest efficiency for toluene removal from sandy soils and can remediate the vadose zone effectively to meet the soil guideline values for protection of groundwater.

  1. [Community structure and diversity of soil arthropods in naturally restored sandy grasslands after grazing].

    Science.gov (United States)

    Liu, Ren-tao; Zhao, Ha-lin; Zhao, Xue-yong

    2010-11-01

    Taking the Naiman Desertification Research Station under Chinese Academy of Sciences as a base, an investigation was conducted on the community structure of soil arthropods in the naturally restored sandy grasslands after different intensity grazing disturbance, with the effects of vegetation and soil on this community structure approached. In the non-grazing grassland, soil arthropods were rich in species and more in individuals, and had the highest diversity. In the restored grassland after light grazing, soil arthropods had the lowest evenness and diversity. In the restored grassland after moderate grazing, the individuals of soil arthropods were lesser but the major groups were more, and the evenness and diversity were higher. In the restored grassland after heavy grazing, the individuals of soil arthropods were more but the major groups were lesser, and the diversity was higher. Plant individuals' number, vegetation height and coverage, and soil alkalinity were the main factors affecting the soil arthropod community in naturally restored grasslands after different intensity grazing disturbance. It was implied that after 12-year exclosure of grassland, soil arthropod community could be recovered to some degree, while grazing disturbance had long-term negative effects on the arthropod community.

  2. Use of neutron scattering meter to detect soil moisture distribution under trickle irrigation system in sandy soil of inshas, Egypt

    International Nuclear Information System (INIS)

    Abd El-moniem, M.; El-gendy, R.W.; Gadalla, A.M.; Hamdy, A.; Zeedan, A.

    2006-01-01

    This study aims to investigate the soil moisture distribution under different quantities of irrigation water in cultivated sandy soil with squash, using drip irrigation system. This study was carried out in Inshas sandy soil at the farm of Soil and Water Research Department, Nuclear Research Centre, Atomic Energy Authority, Egypt. Three rates of applied irrigation water (100, 75 and 50 % ETc) were used. Three sites (0, 12.5 and 25 cm distances from the emitter between drippers and laterals lines) were chosen to measure soil moisture contents (horizontal and vertical directions within the soil depths). The obtained data pointed out that the maximum width, in onion shape of water distribution under drip irrigation system, was at 45 cm depth at 0 site. From the study of soil moisture distribution, the overlapping between each two neighbor drippers played a good role in increasing soil moisture content at the 25 site rather than the rest sites. Water distribution was affected with plant location within the wet area as well as the used irrigation water quantities. Water distribution between drippers and laterals did not differ much approximately. The highest soil moisture depletion was at 12.5 site (between drippers) for 100 and 75 % ETc rather than the rest treatments. 100 % ETc treatment introduced the highest soil moisture depletion in the first stage of plant growth season for the three sites (between drippers and laterals). In the last stage of plant growth season, water re-distribution phenomena resulted from the changeable total hydraulic potential, which played important role for interpretation of results

  3. Toxicity of iron oxide nanoparticles to grass litter decomposition in a sandy soil

    Science.gov (United States)

    Rashid, Muhammad Imtiaz; Shahzad, Tanvir; Shahid, Muhammad; Imran, Muhammad; Dhavamani, Jeyakumar; Ismail, Iqbal M. I.; Basahi, Jalal M.; Almeelbi, Talal

    2017-02-01

    We examined time-dependent effect of iron oxide nanoparticles (IONPs) at a rate of 2000 mg kg-1 soil on Cynodon dactylon litter (3 g kg-1) decomposition in an arid sandy soil. Overall, heterotrophic cultivable bacterial and fungal colonies, and microbial biomass carbon were significantly decreased in litter-amended soil by the application of nanoparticles after 90 and 180 days of incubation. Time dependent effect of nanoparticles was significant for microbial biomass in litter-amended soil where nanoparticles decreased this variable from 27% after 90 days to 49% after 180 days. IONPs decreased CO2 emission by 28 and 30% from litter-amended soil after 90 and 180 days, respectively. These observations indicated that time-dependent effect was not significant on grass-litter carbon mineralization efficiency. Alternatively, nanoparticles application significantly reduced mineral nitrogen content in litter-amended soil in both time intervals. Therefore, nitrogen mineralization efficiency was decreased to 60% after 180 days compared to that after 90 days in nanoparticles grass-litter amended soil. These effects can be explained by the presence of labile Fe in microbial biomass after 180 days in nanoparticles amendment. Hence, our results suggest that toxicity of IONPs to soil functioning should consider before recommending their use in agro-ecosystems.

  4. Estimation of Nitrogen Pools in Irrigated Potato Production on Sandy Soil Using the Model SUBSTOR

    Science.gov (United States)

    Prasad, Rishi; Hochmuth, George J.; Boote, Kenneth J.

    2015-01-01

    Recent increases in nitrate concentrations in the Suwannee River and associated springs in northern Florida have raised concerns over the contributions of non-point sources. The Middle Suwannee River Basin (MSRB) is of special concern because of prevalent karst topography, unconfined aquifers and sandy soils which increase vulnerability of the ground water contamination from agricultural operations- a billion dollar industry in this region. Potato (Solanum tuberosum L.) production poses a challenge in the area due to the shallow root system of potato plants, and low water and nutrient holding capacity of the sandy soils. A four-year monitoring study for potato production on sandy soil was conducted on a commercial farm located in the MSRB to identify major nitrogen (N) loss pathways and determine their contribution to the total environmental N load, using a partial N budget approach and the potato model SUBSTOR. Model simulated environmental N loading rates were found to lie within one standard deviation of the observed values and identified leaching loss of N as the major sink representing 25 to 38% (or 85 to 138 kg ha-1 N) of the total input N (310 to 349 kg ha-1 N). The crop residues left in the field after tuber harvest represented a significant amount of N (64 to 110 kg ha-1N) and posed potential for indirect leaching loss of N upon their mineralization and the absence of subsequent cover crops. Typically, two months of fallow period exits between harvest of tubers and planting of the fall row crop (silage corn). The fallow period is characterized by summer rains which pose a threat to N released from rapidly mineralizing potato vines. Strategies to reduce N loading into the groundwater from potato production must focus on development and adoption of best management practices aimed on reducing direct as well as indirect N leaching losses. PMID:25635904

  5. Estimation of nitrogen pools in irrigated potato production on sandy soil using the model SUBSTOR.

    Directory of Open Access Journals (Sweden)

    Rishi Prasad

    Full Text Available Recent increases in nitrate concentrations in the Suwannee River and associated springs in northern Florida have raised concerns over the contributions of non-point sources. The Middle Suwannee River Basin (MSRB is of special concern because of prevalent karst topography, unconfined aquifers and sandy soils which increase vulnerability of the ground water contamination from agricultural operations--a billion dollar industry in this region. Potato (Solanum tuberosum L. production poses a challenge in the area due to the shallow root system of potato plants, and low water and nutrient holding capacity of the sandy soils. A four-year monitoring study for potato production on sandy soil was conducted on a commercial farm located in the MSRB to identify major nitrogen (N loss pathways and determine their contribution to the total environmental N load, using a partial N budget approach and the potato model SUBSTOR. Model simulated environmental N loading rates were found to lie within one standard deviation of the observed values and identified leaching loss of N as the major sink representing 25 to 38% (or 85 to 138 kg ha(-1 N of the total input N (310 to 349 kg ha(-1 N. The crop residues left in the field after tuber harvest represented a significant amount of N (64 to 110 kg ha(-1 N and posed potential for indirect leaching loss of N upon their mineralization and the absence of subsequent cover crops. Typically, two months of fallow period exits between harvest of tubers and planting of the fall row crop (silage corn. The fallow period is characterized by summer rains which pose a threat to N released from rapidly mineralizing potato vines. Strategies to reduce N loading into the groundwater from potato production must focus on development and adoption of best management practices aimed on reducing direct as well as indirect N leaching losses.

  6. Nitrogen Amendment Stimulated Decomposition of Maize Straw-Derived Biochar in a Sandy Loam Soil: A Short-Term Study.

    Directory of Open Access Journals (Sweden)

    Weiwei Lu

    Full Text Available This study examined the effect of nitrogen (N on biochar stability in relation to soil microbial community as well as biochar labile components using δ13C stable isotope technology. A sandy loam soil under a long-term rotation of C3 crops was amended with biochar produced from maize (a C4 plant straw in absence (BC0 and presence (BCN of N and monitored for dynamics of carbon dioxide (CO2 flux, phospholipid fatty acids (PLFAs profile and dissolved organic carbon (DOC content. N amendment significantly increased the decomposition of biochar during the first 5 days of incubation (P < 0.05, and the proportions of decomposed biochar carbon (C were 2.30% and 3.28% in BC0 and BCN treatments, respectively, during 30 days of incubation. The magnitude of decomposed biochar C was significantly (P < 0.05 higher than DOC in biochar (1.75% and part of relatively recalcitrant biochar C was mineralized in both treatments. N amendment increased soil PLFAs concentration at the beginning of incubation, indicating that microorganisms were N-limited in test soil. Furthermore, N amendment significantly (P < 0.05 increased the proportion of gram-positive (G+ bacteria and decreased that of fungi, while no noticeable changes were observed for gram-negative (G- bacteria and actinobacteria at the early stage of incubation. Our results indicated that N amendment promoted more efficiently the proliferation of G+ bacteria and accelerated the decomposition of relatively recalcitrant biochar C, which in turn reduced the stability of maize straw-derived biochar in test soil.

  7. Litter layer influence on the thermal regime of a sandy soil under a pine forest in mediterranean Portugal

    OpenAIRE

    Andrade, José; Abreu, Francisco

    2004-01-01

    Decomposition of needle litter is a relevant process in applied ecology, namely in the nutrient dynamics of forested ecosystems. Soil temperature strongly influences soil microbian activity. Temperature profiles of a sandy soil (Haplic Podzol) under a pine forest were measured at several depths down to 16 cm, with and without litter layer. Daily cycles were analysed by means of Fourier series. Daily cycles were studied based on data from four days defined according to soil water content....

  8. Sustainable long-term intensive application of manure to sandy soils without phosphorus leaching

    DEFF Research Database (Denmark)

    Asomaning, Samuel K.; Abekoe, Mark K.; Dowuona, G.N.N.

    2015-01-01

    Long-term application of manure to sandy soils to ensure high crop productivity may lead to phosphorus (P) leaching, which, in turn, may deteriorate the quality of recipient waters because of eutrophication. The risk of P leaching depends on contents of aluminum (Al) and iron (Fe) oxides that are......Long-term application of manure to sandy soils to ensure high crop productivity may lead to phosphorus (P) leaching, which, in turn, may deteriorate the quality of recipient waters because of eutrophication. The risk of P leaching depends on contents of aluminum (Al) and iron (Fe) oxides...... that are strong P sorbents and of calcium (Ca) that can form sparingly soluble Ca–P compounds. While P sorption by Al and Fe oxides is limited, the formation of sparingly soluble Ca–P may theoretically continue as long as enough Ca is available, i.e. under such conditions long-term application of manure may...... and uncultivated sites. P fractionation showed that the cultivated top soils were dominated by sparingly soluble Ca–P compounds that accounted for about 70% of the P gain. Thus, the results suggest that intensive crop production under tropical semi-arid conditions may be environmentally sustainable when based...

  9. Influence of manganese fertilizer on efficiency of grapes on sandy soils of the Chechen Republic

    Directory of Open Access Journals (Sweden)

    Batukaev A.A.

    2014-01-01

    Full Text Available As a result of the studies, there has been obtained new information about the manganese influence on productivity of grape plantations, on sandy soils of the Chechen Republic. Manganese fertilizing of 4 kg active ingredient per 1 ha, against the background of nitrogen 90 kg, phosphorus 90 kg and potassium 90 kg/ha, made it into a phase of grape sap flow, which contributes to higher yields, increase of the sugar content of the berries and a significant decrease in juice acidity, in comparison with other options.

  10. Biochar reduces copper toxicity in Chenopodium quinoa Willd. In a sandy soil.

    Science.gov (United States)

    Buss, Wolfram; Kammann, Claudia; Koyro, Hans-Werner

    2012-01-01

    Mining, smelting, land applications of sewage sludge, the use of fungicides containing copper (Cu), and other human activities have led to widespread soil enrichment and contamination with Cu and potentially toxic conditions. Biochar (BC) can adsorb several substances, ranging from herbicides to plant-inhibiting allelochemicals. However, the range of potential beneficial effects on early-stage plant growth with regard to heavy metal toxicity is largely unexplored. We investigated the ameliorating properties of a forestry-residue BC under Cu toxicity conditions on early plant growth. Young quinoa plants () were grown in the greenhouse in the presence of 0, 2, and 4% BC application (w/w) added to a sandy soil with 0, 50, or 200 μg g Cu supplied. The plants without BC showed severe stress symptoms and reduced growth shortly after Cu application of 50 μg g and died at 200 μg Cu g. Increasing BC concentrations in the growth medium significantly increased the plant performance without Cu toxicity or under Cu stress. At the 4% BC application rate, the plants with 200 μg g Cu almost reached the same biomass as in the control treatment. In the presence of BC, less Cu entered the plant tissues, which had reduced Cu concentrations in the order roots, shoots, leaves. The amelioration effect also was reflected in the plant-soil system CO gas exchange, which showed clear signs of improvement with BC presence. The most likely ameliorating mechanisms were adsorption of Cu to negatively charged BC surfaces and an improvement of the water supply. Overall, BC seems to be a beneficial amendment with the potential to ameliorate Cu toxicity in sandy soils. Further research with a broad spectrum of different soil types, BCs, and crop plants is required. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  11. Aggregate-associated carbon and nitrogen in reclaimed sandy loam soils

    Energy Technology Data Exchange (ETDEWEB)

    Wick, A.F.; Stahl, P.D.; Ingram, L.J. [Virginia Polytechnic Institute & State University, Blacksburg, VA (United States)

    2009-11-15

    Minimal research has been conducted on aggregate, C, and N in coarse-textured soils used to reclaim surface coal mine lands. Furthermore, little is known about the contribution different plant communities make to the recovery of aggregation in these soils. Two chronosequences of semiarid reclaimed sites with sandy loam soils were sampled under shrub- and grass-dominated communities. Aggregation, aggregate fractions, and associated C and N were measured. No definitive trends of increasing macroaggregates between sites were observed undershrubs; however, macro- and microaggregation was greater in the 16-yr-old (0.20 and 0.23 kg aggregate kg{sup -1} soil, respectively) than in the 5-yr-old soils (0.02 and 0.08 kg aggregate kg{sup -1} soil, respectively) under grasses. Although C and N concentrations were drastically reduced (50-75%) with mining activity between the <1-yr-old and native soils, aggregate C and N concentrations tinder shrubs and grasses were similar to each other and to the native soils in the 5-yr-old site. Sods under grass in the 16-yr-old site had lower available and aggregate-occluded C and N concentrations than the 5-yr-old site, while C and N concentrations did not change between 5- and 16-yr-old soils under shrubs. Conversely, aggregate C and N pool sizes under shrubs and grasses both increased with site age to conditions similar to those observed in the native soil. Reclaimed shrub site soils had consistently higher C concentrations in the older reclaimed sites (10 and 16 yr old) than the soils under grasses, indicating greater accumulation and retention of C and N in organic material under shrub than grass communities in semiarid reclaimed sites.

  12. Nitrogen uptake efficiency by white cedar under different irrigation and fertilisation strategies on a sandy soil: model calculations

    NARCIS (Netherlands)

    Pronk, A.A.; Heinen, M.; Heuvelink, E.; Challa, H.

    2007-01-01

    A combined conifer growth-soil water balance model was extended and parameterised to simulate the nitrogen (N) dynamics of a common nursery stock system [i.e., white cedar (Thuja occidentalis) grown for 2 years on a sandy soil]. The model was used to explore the effects on N uptake efficiency

  13. Hydrological Components of a Young Loblolly Pine Plantation on a Sandy Soil with Estimates of Water Use and Loss

    Science.gov (United States)

    Deborah A. Abrahamson; Phillip M. Dougherty; Stanley J. Zarnoch

    1998-01-01

    Fertilizer and irrigation treatments were applied in a 7- to l0-year-old loblolly pine (Pinus taeda L.) plantation on a sandy soil near Laurinburg, North Carolina. Rainfall, throughfall, stemflow, and soil water content were measured throughout the study period. Monthly interception losses ranged from 4 to 15% of rainfall. Stemflow ranged from 0.2...

  14. Effect of biochar on the fate of volatile petroleum hydrocarbons in an aerobic sandy soil

    Science.gov (United States)

    Bushnaf, Khaled M.; Puricelli, Sara; Saponaro, Sabrina; Werner, David

    2011-11-01

    Biochar addition to soil is currently being investigated as a novel technology to remediate polluted sites. A critical consideration is the impact of biochar on the intrinsic microbial pollutant degradation, in particular at sites polluted with a mixture of readily biodegradable and more persistent organic pollutants. We therefore studied the impact of biochar (2% on dry weight basis) on the fate of volatile petroleum hydrocarbons in an aerobic sandy soil with batch and column studies. The soil-water partitioning coefficient, K d, was enhanced in the biochar-amended soil up to a factor 36, and petroleum hydrocarbon vapor migration was retarded accordingly. Despite increased sorption, in particular of monoaromatic hydrocarbons, the overall microbial respiration was comparable in the biochar-amended and unamended soil. This was due to more rapid biodegradation of linear, cyclic and branched alkanes in the biochar amended soil. We concluded that the total petroleum hydrocarbon degradation rate was controlled by a factor other than substrate availability and the reduced availability of monoaromatic hydrocarbons in the biochar amended soil led to greater biodegradation of the other petroleum compounds.

  15. Fractionation and mobility of phosphorus in a sandy forest soil amended with biosolids.

    Science.gov (United States)

    Su, Jingjun; Wang, Hailong; Kimberley, Mark O; Beecroft, Katie; Magesan, Guna N; Hu, Chengxiao

    2007-11-01

    Biosolids, i.e., treated sewage sludge, are commonly used as a fertilizer and amendment to improve soil productivity. Application of biosolids to meet the nitrogen (N) requirements of crops can lead to accumulation of phosphorus (P) in soils, which may result in P loss to water bodies. Since 1996, biosolids have been applied to a Pinus radiata D. Don plantation near Nelson City, New Zealand, in an N-deficient sandy soil. To investigate sustainability of the biosolids application programme, a long-term research trial was established in 1997, and biosolids were applied every three years, at three application rates, including control (no biosolids), standard and high treatments, based on total N loading. The objective of this study was to evaluate the effect of repeated application of biosolids on P mobility in the sandy soil. Soil samples were collected in August 2004 from the trial site at depths of 0-10, 10-25, 25-50, 50-75, and 75-100 cm. The soil samples were analysed for total P (TP), plant-available P (Olsen P and Mehlich 3 P), and various P fractions (water-soluble, bioavailable, Fe and Al-bound, Ca-bound, and residual) using a sequential P fractionation procedure. Soil TP and Olsen P in the high biosolids treatment (equivalent to 600 kg N ha(-1) applied every three years) had increased significantly (Psoil of the high treatment had increased significantly only at 0-10 cm. Olsen P appeared to be more sensitive than Mehlich 3 P as an indicator of P movement in a soil profile. Phosphorus fractionation revealed that inorganic P (Al/Fe-bound P and Ca-bound P) and residual P were the main P pools in soil, whereas water-soluble P accounted for approximately 70% of TP in biosolids. Little organic P was found in either the soil or biosolids. Concentrations of water-soluble P, bioavailable inorganic P (NaHCO3 Pi) and potentially bioavailable inorganic P (NaOH Pi) in both 0-10 and 10-25 cm depths were significantly higher in the high biosolids treatment than in the

  16. [Effects of farmland use type and winter irrigation on nitrate accumulation in sandy farmland soil].

    Science.gov (United States)

    Yang, Rong; Su, Yong-zhong

    2009-03-01

    With the sandy farmland in the marginal oasis in middle reaches of Heihe River Basin, Northwest China as test object, this paper studied soil NO3- -N accumulation and leaching under effects of different farmland use type and winter irrigation. The results showed that the mean NO3- -N concentration in 0-300 cm soil profile in different farmlands ranged from 1.27 mg x kg(-1) to 83.60 mg x kg(-1) Soil NO3- -N concentration was higher in 0-40 cm and 135-300 cm layers, but lower in 40-135 cm layer. Greenhouse vegetable field had a significantly higher soil NO3- -N concentration than the other farmland use types. The accumulated amount of soil NO3- -N decreased in the order of greenhouse vegetable field > tomato field > cotton field > seed maize field > maize-wheat rotation field > maize-wheat stripe intercropping field > alfalfa field > jujube plantation. The NO3- -N accumulation in 0-300 cm soil profile in greenhouse vegetable filed reached 2171.45 kg x hm(-2), which would be a serious menace to groundwater quality, followed by tomato field and cotton field. Lesser accumulation of soil NO3- -N was found in seed maize field, maize-wheat intercropping field, maize-wheat rotation field, alfalfa field, and jujube plantation, but its pollution potential would not be neglected. After winter irrigation, soil NO3- -N concentration decreased in 0-80 cm layer but increased in 80-300 cm layer, indicating that winter irrigation caused NO3- -N leaching into deeper soil depth. The leached amount of soil NO3- -N to deeper layers increased with increasing amount of winter irrigation. To mitigate soil NO3- -N leaching and groundwater contamination, a comprehensive consideration should be made on the rational arrangement of farmland use type, proper decrease of planting N-accumulated crops, and reasonable winter irrigation.

  17. Different Behavior of Enteric Bacteria and Viruses in Clay and Sandy Soils after Biofertilization with Swine Digestate

    Science.gov (United States)

    Fongaro, Gislaine; García-González, María C.; Hernández, Marta; Kunz, Airton; Barardi, Célia R. M.; Rodríguez-Lázaro, David

    2017-01-01

    Enteric pathogens from biofertilizer can accumulate in the soil, subsequently contaminating water and crops. We evaluated the survival, percolation and leaching of model enteric pathogens in clay and sandy soils after biofertilization with swine digestate: PhiX-174, mengovirus (vMC0), Salmonella enterica Typhimurium and Escherichia coli O157:H7 were used as biomarkers. The survival of vMC0 and PhiX-174 in clay soil was significantly lower than in sandy soil (iT90 values of 10.520 ± 0.600 vs. 21.270 ± 1.100 and 12.040 ± 0.010 vs. 43.470 ± 1.300, respectively) and PhiX-174 showed faster percolation and leaching in sandy soil than clay soil (iT90 values of 0.46 and 2.43, respectively). S. enterica Typhimurium was percolated and inactivated more slowly than E. coli O157:H7 (iT90 values of 9.340 ± 0.200 vs. 6.620 ± 0.500 and 11.900 ± 0.900 vs. 10.750 ± 0.900 in clay and sandy soils, respectively), such that E. coli O157:H7 was transferred more quickly to the deeper layers of both soils evaluated (percolation). Our findings suggest that E. coli O157:H7 may serve as a useful microbial biomarker of depth contamination and leaching in clay and sandy soil and that bacteriophage could be used as an indicator of enteric pathogen persistence. Our study contributes to development of predictive models for enteric pathogen behavior in soils, and for potential water and food contamination associated with biofertilization, useful for risk management and mitigation in swine digestate recycling. PMID:28197137

  18. Effect of vegetation on infiltration into sandy soils during wet and dry spells

    Science.gov (United States)

    Orfanus, T.; Fodor, N.; Hallett, P. D.; Lichner, L.; Dlapa, P.; Rajkai, K.

    2012-04-01

    Plant cover can influence the hydraulic characteristics of soil considerably. Water repellency, which commonly evolves in sandy soils during longer dry spells, can result in water infiltration retardation. Water infiltration into natural-meadow, pine-forest, glade and fallow sandy soils was evaluated after during several wet and dry spells in respect of: soil porosity, hydraulic conductivity and sorptivity estimated by mini-disc infiltrometer, water drop penetration time, effective contact angle and water repellency index. Bare aeolian sand containing practically no organic matter was taken as etalon material. All materials have similar texture and pore-size distributions but their wettability and hydraulic properties differed considerably. Long dry spells enhanced the infiltration capacity in wettable etalon material because of sorptivity increase. Sorptivities of meadow and fallow soils, however, remained restrained during both, wet and dry seasons either due to higher water content (when wet) or to stronger water repellency (when dry). For this reason no temporal variability of infiltration capacity was observed in these soils unlike the etalon material. It was confirmed (for the fallow soil) that subcritical water repellency can significantly retarded water infiltration. The infiltration rate vs. time relationships measured both in the laboratory and field for the grass site revealed different behaviour in the initial phase of infiltration. In the laboratory, the onset of infiltration depended on the water ponding depth. As is often found in water repellent soil, the infiltration rate increased with time as a result of fingered flow. In the field, infiltration started immediately after the water application. This was the result of temporarily stable wetting patterns observed in all studied water repellent soils. Important founding is also that substantial part (71%) of the hydraulic conductivity variation in meadow soil could be explained by the variation of

  19. Capillary rise simulation of saline waters of different concentrations in sandy soils

    Directory of Open Access Journals (Sweden)

    Natthawit Jitrapinate

    2016-06-01

    Full Text Available Soil salinity causes corrosion of engineering structures worldwide. The main cause of soil salinization is capillary rise of saline groundwater. Soil salinity can be mitigated once the capillary rise of saline groundwater in soils is understood. The objective of this paper is to present experimental results of capillary rising rates of different salt concentration waters in three sandy soils. Each sample comprised of a soil column 300-mm height and 50-mm in diameter steeped in a 25-mm deep saline water pool for a time period to allow for the capillary action to develop. The salinity strength varied from fresh water, EC = 2 dS/m, to medium saline (50, 100, and 150 dS/m, and to high saline water (200 dS/m. It was found that the highest rate of capillary rise occurred in medium saline waters, while the lowest is the fresh water. The very saline water has lower rate than the medium ones but higher than fresh water.

  20. ELASTOPLASTICIDAD DE UN SUELO FRANCO ARENOSO DE SABANA I SANDY LOAM SAVANNA SOIL ELASTOPLASTICITY

    Directory of Open Access Journals (Sweden)

    Américo Hossne García

    2018-04-01

    Full Text Available The knowledge of elastoplastic properties is important for calculating soil elastic and plastic deformations experienced by static or dynamic loads generated, for example, by farm implements and root growth. The objective of this study was to determine the soil elastoplastic parameters: Young’s modulus (E, the shear modulus (G, bulk modulus (K and Poisson’s ratio (υ of a sandy-loam soil from a savanna in Monagas State, Venezuela. Triaxial tests and regression analyses were used to interpret the variance between them. The results show that E varied from 4693.39 to 36669.35 kPa; G from 700 to 5000 kPa; K from 500 to 2000 kPa and υ had a value of 0.50. It is concluded that these soils are incompressible under plastic conditions, i.e. easily deformable. The Poisson’s ratio varied significantly with soil water content. The Young modulus, bulk modulus and the shear modulus showed high variation with respect to water content. Both the Young’s modulus and Poisson’s ratio increased, at low soil water content, with the rise in chamber pressure .

  1. Geotechnical response of pipelines shallowly embedded in clayey and sandy soils

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Jose Renato M.S. [Military Institute of Engineering (IME), Rio de Janeiro, RJ (Brazil); Borges, Ricardo G. [Centro de Pesquisa Leopoldo A. Miguez de Melo (CENPES/PETROBRAS), Rio de Janeiro, RJ (Brazil); Feitoza, Jaquelline; Almeida, Maria C.F.; Almeida, Marcio S.S. [Universidade Federal do Rio de Janeiro (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia

    2009-07-01

    Offshore and onshore pipelines used for oil and gas transportation are often buried to avoid eventual damages and also to provide movement constraint. The soil cover supply resistance against upward and lateral displacements of the pipe caused by thermally-induced axial loading, which can lead to structural buckling. The clear understanding of this behavior is critical for the development of new analysis tools and new design criteria which could minimize future accidents. In this way, research on pipe-soil interaction behavior has been undertaken using both clayey and sandy soils through physical and numerical simulations. This paper is part of a research effort to provide a pipe-soil interaction guideline suitable for application in pipeline design along the Brazilian coast. This work presents a comprehensive set of lateral buckling simulation tests using the COPPE-UFRJ geotechnical centrifuge. The chosen soils are typical of the Brazilian coast and therefore very representative of tropical regions. Physical and numerical results are compared and other research works are considered in order to assess the overall uplift resistance. In flight T-bar and cone penetration tests were undertaken to provide a soil resistance profile which was used to trace dimensionless curves that could be adopted in similar design situations. (author)

  2. Utilization of Sandy Soil as the Primary Raw Material in Production of Unfired Bricks

    Directory of Open Access Journals (Sweden)

    Guilan Tao

    2018-01-01

    Full Text Available In this study, attempts were made to use sandy soil as the main raw material in making unfired bricks. The sprayed-cured brick specimens were tested for compressive and flexural strength, rate of water absorption, percentage of voids, bulk density, freezing/thawing, and water immersion resistance. In addition, the microstructures of the specimens were also studied using scanning electron microscope (SEM and X-ray diffraction (XRD technique. The test results show that unfired brick specimens with the addition of ground-granulated blast-furnace slag (GGBS tend to achieve better mechanical properties when compared with the specimens that added cement alone, with GGBS correcting particle size distribution and contributing to the pozzolanic reactions and the pore-filling effects. The test specimens with the appropriate addition of cement, GGBS, quicklime, and gypsum are dense and show a low water absorption rate, a low percentage of voids, and an excellent freezing/thawing and water immersion resistance. The SEM observation and XRD analysis verify the formation of hydrate products C–S–H and ettringite, providing a better explanation of the mechanical and physical behavior and durability of the derived unfired bricks. The results obtained suggest that there is a technical approach for the high-efficient comprehensive utilization of sandy soil and provide increased economic and environmental benefits.

  3. Calibration Curve of Neutron Moisture Meter for Sandy Soil under Drip Irrigation System

    International Nuclear Information System (INIS)

    Mohammad, Abd El- Moniem M.; Gendy, R. W.; Bedaiwy, M. N.

    2004-01-01

    The aim of this work is to construct a neutron calibration curve in order to be able to use the neutron probe in sandy soils under drip irrigation systems. The experimental work was conducted at the Soil and Water Department of the Nuclear Research Center, Atomic Energy Authority. Three replicates were used along the lateral lines of the drip irrigation system. For each dripper, ten neutron access tubes were installed to 100-cm depth at distances of 5, 15 and 25 cm from the dripper location around the drippers on the lateral line, as well as between lateral lines. The neutron calibrations were determined at 30, 45, and 60-cm depths. Determining coefficients as well as t-test in pairs were employed to detect the accuracy of the calibrations. Results indicated that in order for the neutron calibration curve to express the whole wet area around the emitter; three-access tubes must be installed at distances of 5, 15, and 25 cm from the emitter. This calibration curve will be correlating the average count ratio (CR) at the studied soil depth of the three locations (5, 15, and 25-cm distances from the emitter) to the average moisture content (θ) for this soil depth of the entire wetted area. This procedure should be repeated at different times in order to obtain different θ and C.R values, so that the regression equation of calibration curve at this soil depth can be obtained. To determine the soil moisture content, the average CR of the three locations must be taken and substituted into the regression equation representing the neutron calibration curve. Results taken from access tubes placed at distances of 15 cm from the emitter, showed good agreement with the average calibration curve both for the 45- and the 60-cm depths, suggesting that the 15-cm distance may provide a suitable substitute for the simultaneous use of the three different distances of 5, 15 and 25 cm. However, the obtained results show also that the neutron calibration curves of the 30-cm depth for

  4. Effects of cattle slurry and cultivation on air exchange in sandy and silty soils from northern Norway

    Directory of Open Access Journals (Sweden)

    T.K. HARALDSEN

    2008-12-01

    Full Text Available Gas diffusivity and permeability, and air-filled porosity, were measured in undisturbed soil cores at four water potentials between -1.5 kPa and -60 kPa. Virgin (never ploughed and cultivated sandy and silty soils from two sites in northern Norway were used in the investigation. The cultivated soils had lower air-filled porosity and gas diffusivity than the virgin ones. Application of slurry (50 Mg ha-1 decreased gas diffusivity and changed the relationship between relative diffusivity and air-filled porosity for both the virgin and cultivated sandy soils and the virgin silty soil. The gas permeability of both the virgin and cultivated silty soil was low, and the relative diffusivity at field capacity less than the limit below which plant growth is affected. ;

  5. Bioavailability and chronic toxicity of bismuth citrate to earthworm Eisenia andrei exposed to natural sandy soil.

    Science.gov (United States)

    Omouri, Zohra; Hawari, Jalal; Fournier, Michel; Robidoux, Pierre Yves

    2018-01-01

    The present study describes bioavailability and chronic effects of bismuth to earthworms Eisenia andrei using OECD reproduction test. Adult earthworms were exposed to natural sandy soil contaminated artificially by bismuth citrate. Average total concentrations of bismuth in soil recovered by HNO 3 digestion ranged from 75 to 289mg/kg. Results indicate that bismuth decreased significantly all reproduction parameters of Eisenia andrei at concentrations ≥ 116mg/kg. However, number of hatched cocoons and number of juveniles seem to be more sensitive than total number of cocoons, as determined by IC 50 ; i.e., 182, 123 and > 289mg/kg, respectively. Bismuth did not affect Eisenia andrei growth and survival, and had little effect on phagocytic efficiency of coelomocytes. The low immunotoxicity effect might be explained by the involvement of other mechanisms i.e. bismuth sequestered by metal-binding compounds. After 28 days of exposure bismuth concentrations in earthworms tissue increased with increasing bismuth concentrations in soil reaching a stationary state of 21.37mg/kg dry tissue for 243mg Bi/kg dry soil total content. Data indicate also that after 56 days of incubation the average fractions of bismuth available extracted by KNO 3 aqueous solution in soil without earthworms varied from 0.0051 to 0.0229mg/kg, while in soil with earthworms bismuth concentration ranged between 0.310-1.347mg/kg dry soil. We presume that mucus and chelating agents produced by earthworms and by soil or/and earthworm gut microorganisms could explain this enhancement, as well as the role of dermal and ingestion routes of earthworms uptake to soil contaminant. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Effect of the application of various wastewater sludges on the properties of sandy soil.

    Science.gov (United States)

    Asik, Barış Bülent; Aydinalp, Cumhur; Katkat, Ali Vahap; Sagban, Fatma Olcay Topaç

    2015-02-01

    This research was conducted to determine the effect of various wastewater sludge (domestic type (B), mixture of industry and domestic type (L), aerobic food industry (P), anaerobic food industry (M)) levels on the properties of sandy soil, including pH, electrical conductivity (EC), and the levels of available N (NH4 and NO3) and P, diethylenetriamine pentaaceticacid (DTPA)-extractable microelements and heavy metals. An incubation experiment was performed in which sludges were applied at rates of 0, 40, 80, 120, and 160 tons ha(-1), and the effects on the soil properties were measured over a period of 150 days. Soil pH decreased and electrical conductivity increased with increasing levels of sludge application. The levels of NH4-N, NO3-N, available P, and DTPA-extractable heavy metals also increased with the application rate of the sludge. NO3-N content increased and NH4-N content decreased over time. The most unfavorable effects on soil properties were observed with the B sludge. Other soil characteristics changed according to the sludge properties.

  7. Migration behavior of radionuclides (60Co, 85Sr and 137Cs) in aerated sandy soil layer

    International Nuclear Information System (INIS)

    Ohtsuka, Yoshiro; Takebe, Shinichi

    1990-01-01

    Differences of the migration behavior and desorption process for radionuclides ( 60 Co, 85 Sr and 137 Cs) in aerated sandy soil layer were studied by sprinkle of distilled water into the contaminated soil with above nuclides in column. Influence of difference desorption process on radionuclide migration was examined by changing the volume of distilled water sprinkled like rain on the contaminated soil. Quantity of sprinkled water affected the concentration distribution of each radionuclide in soil layer. Each nuclide migrated deeper in the layer according to the increase of water amount, and especially, migration behavior of 85 Sr was remarkably influenced by water amount. It is observed that as to 85 Sr maximum contamination part in soil layer moved to deeper layer with increase of water amount, and that, as to 60 Co and 137 Cs, it moved almost never. On the other hand, activity concentration of 60 Co or 137 Cs in effluent was rather high (10 -6 μCi/ml) compared with that of 85 Sr, which could not be detected therein. (author)

  8. [Soil sandy desertification and salinization and their interrelationships in Yanghuang irrigated area of Hongsipu, Ningxia of northwest China].

    Science.gov (United States)

    Yang, Xin-guo; Song, Nai-ping

    2011-09-01

    By the methods of controlled and typical sampling, this paper analyzed the texture, salinization characteristics, cation exchange capacity (CEC), and their correlations in the 0-40 cm soil profiles of corn land, medlar land, and non-utilized land in Yanghuang irrigated area of Hongsipu, Northwest China. Under controlled sampling, the salt content in the soil profiles was 0.69-1.30 g x kg(-1) (except in non-utilized land where the 0-10 cm soil salt content was up to 1.74 g x kg(-1)), with no obvious salinization. The sodium adsorption ratio and exchangeable sodium percentage in the 20-40 cm soil layer of medlar land were 12.18 and 14.1%, respectively, and the total content of clay and silt in the 0-40 cm soil profile of medlar land was up to 37.3% whereas that in the 0-20 cm soil layer of corn land was only 13.5%. In the 20-40 cm soil layer of corn land, the indices of sandy desertification and salinization had significant correlations under controlled sampling but no correlations under typical sampling, while the CEC and the sandy desertification and salinization indices had significant correlations under typical sampling. In different land use types in the study area, soil sandy desertification and salinization had complicated interrelationships, and CEC could be used as the indicator for the changes in soil environmental quality.

  9. Leaching and ponding of viral contaminants following land application of biosolids on sandy-loam soil.

    Science.gov (United States)

    Wong, Kelvin; Harrigan, Tim; Xagoraraki, Irene

    2012-12-15

    Much of the land available for application of biosolids is cropland near urban areas. Biosolids are often applied on hay or grassland during the growing season or on corn ground before planting or after harvest in the fall. In this study, mesophilic anaerobic digested (MAD) biosolids were applied at 56,000 L/ha on a sandy-loam soil over large containment lysimeters seeded to perennial covers of orchardgrass (Dactylis glomerata L.), switchgrass (Panicum virgatum), or planted annually to maize (Zea mays L.). Portable rainfall simulators were to maintain the lysimeters under a nearly saturated (90%, volumetric basis) conditions. Lysimeter leachate and surface ponded water samples were collected and analyzed for somatic phage, adenoviruses, and anionic (chloride) and microbial (P-22 bacteriophage) tracers. Neither adenovirus nor somatic phage was recovered from the leachate samples. P-22 bacteriophage was found in the leachate of three lysimeters (removal rates ranged from 1.8 to 3.2 log(10)/m). Although the peak of the anionic tracer breakthrough occurred at a similar pore volume in each lysimeter (around 0.3 pore volume) the peak of P-22 breakthrough varied between lysimeters (worm holes or other natural phenomena. The concentration of viral contaminants collected in ponded surface water ranged from 1 to 10% of the initial concentration in the applied biosolids. The die off of somatic phage and P-22 in the surface water was fit to a first order decay model and somatic phage reached background level at about day ten. In conclusion, sandy-loam soils can effectively remove/adsorb the indigenous viruses leached from the land-applied biosolids, but there is a potential of viral pollution from runoff following significant rainfall events when biosolids remain on the soil surface. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Influence of drainage status on soil and water chemistry, litter decomposition and soil respiration in central Amazonian forests on sandy soils

    Directory of Open Access Journals (Sweden)

    Antônio Ocimar Manzi

    2011-04-01

    Full Text Available Central Amazonian rainforest landscape supports a mosaic of tall terra firme rainforest and ecotone campinarana, riparian and campina forests, reflecting topography-induced variations in soil, nutrient and drainage conditions. Spatial and temporal variations in litter decomposition, soil and groundwater chemistry and soil CO2 respiration were studied in forests on sandy soils, whereas drought sensitivity of poorly-drained valley soils was investigated in an artificial drainage experiment. Slightly changes in litter decomposition or water chemistry were observed as a consequence of artificial drainage. Riparian plots did experience higher litter decomposition rates than campina forest. In response to a permanent lowering of the groundwater level from 0.1 m to 0.3 m depth in the drainage plot, topsoil carbon and nitrogen contents decreased substantially. Soil CO2 respiration decreased from 3.7±0.6 µmol m-2 s-1 before drainage to 2.5±0.2 and 0.8±0.1 µmol m-2 s-1 eight and 11 months after drainage, respectively. Soil respiration in the control plot remained constant at 3.7±0.6 µmol m-2 s-1. The above suggests that more frequent droughts may affect topsoil carbon and nitrogen content and soil respiration rates in the riparian ecosystem, and may induce a transition to less diverse campinarana or short-statured campina forest that covers areas with strongly-leached sandy soil.

  11. Irradiated Sewage Sludge for Production of Fennel Plants in Sandy Soil

    International Nuclear Information System (INIS)

    El-Motaium, R. A.; Abo El-Seoud, M. A.

    2004-01-01

    Irradiated sewage sludge (SS) has proved to be a useful organic fertilizer particularly for sandy soil. The objective of this study is to compare the response of fennel (Foeniculum vulgare L.) plants growing in sandy soil to different fertilizer regimes, organic vs. mineral. In a field experiment four levels (20, 40, 60, 80 t/ha) of irradiated and non-irradiated sewage sludge were incorporated into sandy soil, in addition to the control treatment (mineral fertilizer). Samples analysis included the biomass production at the vegetative and flowering stages, chlorophyll content, total and reducing sugars and heavy metals content of the shoots. The data indicate that the biomass production has dramatically increased as the sludge application rate increased in both irradiated and non-irradiated plots. However, the increase was significantly higher under all irradiated treatments than the corresponding rates of non-irradiated treatments at both the vegetative and flowering stages. Also, the biomass production at all levels of application was higher than the control, receiving mineral fertilizer. At the vegetative stage, the biomass values ranged from 3.1 g/plant for the control to 10.2 and 34.1 g/plant at 80 t/ha for non-irradiated and irradiated sewage sludge, respectively. Whereas, at the flowering stage the values ranged from 9.8 g/plant for the control to 23.9 and 65.1 g/plant at 80 t/ha for non-irradiated and irradiated sewage sludge, respectively. Total sugars, reducing sugar, non-reducing sugar, and chlorophyll content has increased as the sludge application rate increased. At 80t/ha application rate of irradiated sludge, the reducing sugars content was 29.39 mg/g DW at the vegetative stage and 37.85 mg/g DW at the flowering stage. Reducing sugars recorded lower values in the control plants, 14.54 mg/g DW at the vegetative stage and 18.78 mg/g DW at the flowering stage. Heavy metals (Zn, Fe, Pb, Cd) of the shoots was also determined. Sewage sludge was a good

  12. Influence of legume crops on content of organic carbon in sandy soil

    Directory of Open Access Journals (Sweden)

    Hajduk Edmund

    2015-06-01

    Full Text Available The paper presents the results of a 3-year field experiment designed to evaluate the content of organic carbon in brown soil (Haplic Cambisol Dystric developed from a light loamy sand under legumes cultivation. Experimental factors were: species of legume crop (colorful-blooming pea (Pisum sativum, chickling vetch (Lathyrus sativus, narrow-leafed lupin (Lupinus angustifolius, methods of legumes tillage (legumes in pure culture and in mixture with naked oats and mineral N fertilization (0, 30, 60, 90 kg N·ha−1. Cultivation of legumes on sandy soil did not result in an increase of organic carbon content in the soil after harvest as compared to the initial situation, i.e. 7.39 vs. 7.76 g·kg−1 dry matter (DM, on average, respectively. However, there was the beneficial effect of this group of plants on soil abundance in organic matter, the manifestation of which was higher content of organic carbon in soils after legume harvest as compared to soils with oats grown (7.21 g·kg−1 DM, on average. Among experimental crops, cultivation of pea exerted the most positive action to organic carbon content (7.58 g·kg−1, after harvest, on average, whereas narrow-leaved lupin had the least effect on organic carbon content (7.23 g·kg−1, on average. Pure culture and greater intensity of legume cultivation associated with the use of higher doses of mineral nitrogen caused less reduction in organic carbon content in soils after harvest.

  13. Plant uptake and soil retention of phthalic acid applied to Norfolk sandy loam

    International Nuclear Information System (INIS)

    Dorney, J.R.; Weber, J.B.; Overcash, M.R.; Strek, H.J.

    1985-01-01

    Plant uptake and soil retention of 14 C carboxyl-labeled phthalic acid were studied at application rates of 0.6, 6.0, 60.0, and 600.0 ppm (soil dry weight) to Norfolk sandy loam (Typic Paleudult, fine loamy, kaolinitic, thermic). Height and dry weight of corn (Zea mays L. Pioneer 3368A) (21 day), tall fescue (Festuca arundinacea Schreb. Kentucky 31) (45 day) immature soybean (Glycine max (L.) Merr. Altoona) (21 day) plant, mature soybean plant, and mature wheat (Triticum aestivum L. Butte) straw were not affected by phthalic acid applied to soil. In addition, soybean seed and wheat seed dry weight were unaffected. Immature wheat (40 day) height decreased at the 600 ppm rate. Plant uptake of phthalic acid ranged from 0 to 23 ppm and was significantly above background for all plants and plant materials except soybean pods. Fescue and immature plants exhibited the highest concentration of phthalic acid while mature wheat plants and wheat seeds exhibited the least. Most of the phthalic acid volatilized or was decomposed from the soil by the end of the study; an average of only 5.7% of the originally applied chemical was recovered in both soil or plants. An average of 0.02% of the originally applied phthalic acid leached out of the treated zone. Considering the low toxicity of phthalic acid and its relatively rapid disappearance from soil, it is unlikely to become a health hazard from contaminated plants. However, plant uptake of other toxic organics could potentially become a hazard on soils treated with sludge containing significant quantities of these substances

  14. Laboratory and field study of the performance of helical piles in sandy soil

    Directory of Open Access Journals (Sweden)

    Farhad Nabizadeh

    2016-12-01

    Full Text Available Developing different method in construction of deep footing plays a major role in optimized and economized performing of civil projects especially in problematic soils. One of the common types of deep footing is helical piles which have several advantages such as fast procedure, useful in different soil types, performing without noise and vibration, effective in pressure and tension and etc. In this paper, the performance of 1-helix & 2-helixes and 3-helixes in an un-grouted and grouted with the field and laboratory studies are discussed. Field studies include of helical piles behavior in sand. Laboratory tests with physical FCV modeling is also carried out on the soil of the site. Grouting effect on helical piles resistance is evaluated. Comparison load test results with analytical method were compared. Results show that performance cylindrical in sandy soils in helical piles is not suitable and increasing helical number pile capacity is decreases. Also, after grouting helical pile with three helixes increases more resistant compare to one helix and double helixes.

  15. Uncertainty of Deardorff’s soil moisture model based on continuous TDR measurements for sandy loam soil

    Directory of Open Access Journals (Sweden)

    Brandyk Andrzej

    2016-03-01

    Full Text Available Knowledge on soil moisture is indispensable for a range of hydrological models, since it exerts a considerable influence on runoff conditions. Proper tools are nowadays applied in order to gain in-sight into soil moisture status, especially of uppermost soil layers, which are prone to weather changes and land use practices. In order to establish relationships between meteorological conditions and topsoil moisture, a simple model would be required, characterized by low computational effort, simple structure and low number of identified and calibrated parameters. We demonstrated, that existing model for shallow soils, considering mass exchange between two layers (the upper and the lower, as well as with the atmosphere and subsoil, worked well for sandy loam with deep ground water table in Warsaw conurbation. GLUE (Generalized Likelihood Uncertainty Estimation linked with GSA (Global Sensitivity Analysis provided for final determination of parameter values and model confidence ranges. Including the uncertainty in a model structure, caused that the median soil moisture solution of the GLUE was shifted from the one optimal in deterministic sense. From the point of view of practical model application, the main shortcoming were the underestimated water exchange rates between the lower soil layer (ranging from the depth of 0.1 to 0.2 m below ground level and subsoil. General model quality was found to be satisfactory and promising for its utilization for establishing measures to regain retention in urbanized conditions.

  16. Biochar application does not improve the soil hydrological function of a sandy soil

    NARCIS (Netherlands)

    Jeffery, S.; Meinders, M.B.C.; Stoof, C.R.; Bezemer, T.M.; Van de Voorde, T.F.J.; Mommer, Liesje; Van Groenigen, J.W.

    2015-01-01

    Biochar application to soil is currently being widely posited as a means to improve soil quality and thereby increase crop yield. Next to beneficial effects on soil nutrient availability and retention, biochar is assumed to improve soil water retention. However, evidence for such an effect in the

  17. A mathematical approach to comparing environmental and economic goals in dairy farming on sandy soils in the Netherlands

    NARCIS (Netherlands)

    Ven, van de G.W.J.

    1996-01-01


    A Dairy Farming Model was developed to screen the potentials for development of dairy farming on sandy soils in the Netherlands with respect to environmental, agro-technical and economic demands. The Dairy Farming Model consists of technical coefficient generators (TGC models) and an

  18. Woodland dynamics as a result of settlement relocation on Pleistocene sandy soils in The Netherlands (200 BC – 1400 AD).

    NARCIS (Netherlands)

    Groenewoudt, B.; Spek, Mattheus

    2015-01-01

    In this paper we investigate the potential of charcoal kilns as indicators (proxy data) of the interaction between settlement dynamics and the history of woodland presence, composition and structure. The results demonstrate that in our research area (Pleistocene sandy soils of the Netherlands)

  19. Tomato nitrogen accumulation and fertilizer use efficiency on a sandy soil, as affected by nitrogen rate and irrigation scheduling

    NARCIS (Netherlands)

    Zotarelli, L.; Dukes, M.D.; Scholberg, J.M.S.; Munoz-Carpena, R.; Icerman, J.

    2009-01-01

    Tomato production systems in Florida are typically intensively managed with high inputs of fertilizer and irrigation and on sandy soils with low inherent water and nutrient retention capacities; potential nutrient leaching losses undermine the sustainability of such systems. The objectives of this

  20. Effect of oil pollution on function of sandy soils in protected deserts and investigation of their improvement guidelines (case study: Kalmand area, Iran).

    Science.gov (United States)

    Saberian, Mohammad; Khabiri, Mohammad Mehdi

    2018-02-01

    Soil pollution is one of the most dangerous sorts of environmental pollutions because of waste materials, fossil fuels, etc. Unfortunately in developing countries, there are very few arrangements to prevent soil pollution due to the fossil fuels and to improve polluted soil. In this research, influences of gas oil on properties of Kalmand protected area's sandy soil near Yazd, Iran, were studied. It was found that gas oil constituted 5.25% of soil weight in the refueling station in the region. Therefore, cleaning and strengthening of the soil by adding cement rather than expensive and complicated methods were the most important goals of this research. First, the influence of gas oil on soil properties was studied, and to improve the soil, different percentages of ordinary portland cement were added to the polluted sand to study the improved soil properties using laboratory tests. It was found that unconfined compressive strength, cohesion, and angle of internal friction of sample with 16% cement and 8% gas oil after 28 days of curing were higher than those of the specimen of 6% cement and 14% gas oil, at 4.6, 5.4, and 1.3 times, respectively. Moreover, based on falling head tests it was observed that permeability of the stabilized specimens decreased substantially. From SEM tests, fewer voids were observed in the stabilized samples, which led to less pollutant penetration into the soil. According to EDX, although dangerous elements in the contaminated specimen made up 3.99% of the specimen total weight, addition of cement introduced considerable amounts of elements that are vital for pozzolanic reactions. Therefore, it can be concluded that addition of cement to the gas oil-polluted soil not only can improve geotechnical properties of the soil and reduce its permeability, but also is very efficient for environmental issues.

  1. Assessment of trace element stabilization in soil

    OpenAIRE

    Kumpiene, Jurate

    2005-01-01

    The thesis deals with the remediation of trace element contaminated soil by the chemical stabilization technique. The objective is to complement the knowledge about possibilities of applying the stabilization either (1) as an alternate soil remediation method to excavation and landfilling or (2) for a pre-treatment of contaminated soil before landfilling. The work is based on two case studies of the stabilization of 1) Cr, Cu, As, and Zn contaminated soil using metallic iron and 2) Pb and Cu ...

  2. Soil water retention, air flow and pore structure characteristics after corn cob biochar application to a tropical sandy loam

    DEFF Research Database (Denmark)

    Amoakwah, Emmanuel; Frimpong, Kwame Agyei; Okae-Anti, D

    2017-01-01

    Soil structure is a key soil physical property that affects soil water balance, gas transport, plant growth and development, and ultimately plant yield. Biochar has received global recognition as a soil amendment with the potential to ameliorate the structure of degraded soils. We investigated how...... corn cob biochar contributed to changes in soil water retention, air flow by convection and diffusion, and derived soil structure indices in a tropical sandy loam. Intact soil cores were taken from a field experiment that had plots without biochar (CT), and plots each with 10 t ha− 1 (BC-10), 20 t ha...... to significant increase in soil water retention compared to the CT and BC-10 as a result of increased microporosity (pores biochar had minimal impact. No significant influence of biochar was observed for ka and Dp/D0 for the BC treatments compared to the CT despite...

  3. Percolation and transport in a sandy soil under a natural hydraulic gradient

    Science.gov (United States)

    Green, C.T.; Stonestrom, David A.; Bekins, B.A.; Akstin, K.C.; Schulz, M.S.

    2005-01-01

    [1] Unsaturated flow and transport under a natural hydraulic gradient in a Mediterranean climate were investigated with a field tracer experiment combined with laboratory analyses and numerical modeling. Bromide was applied to the surface of a sandy soil during the dry season. During the subsequent rainy season, repeated sediment sampling tracked the movement of bromide through the profile. Analysis of data on moisture content, matric pressure, unsaturated hydraulic conductivity, bulk density, and soil texture and structure provides insights into parameterization and use of the advective-dispersive modeling approach. Capturing the gross features of tracer and moisture movement with model simulations required an order-of-magnitude increase in laboratory-measured hydraulic conductivity. Wetting curve characteristics better represented field results, calling into question the routine estimation of hydraulic characteristics based only on drying conditions. Measured increases in profile moisture exceeded cumulative precipitation in early winter, indicating that gains from dew drip can exceed losses from evapotranspiration during periods of heavy ("Tule") fog. A single-continuum advective-dispersive modeling approach could not reproduce a peak of bromide that was retained near the soil surface for over 3 years. Modeling of this feature required slow exchange of solute at a transfer rate of 0.5-1 ?? 10-4 d-1 with an immobile volume approaching the residual moisture content.

  4. Cations extraction of sandy-clay soils from cavado valley, portugal, using sodium salts solutions

    Directory of Open Access Journals (Sweden)

    Silva João Eudes da

    2002-01-01

    Full Text Available Cases of contamination by metals in the water wells of the Cavado Valley in north-west Portugal can be attributed to the heavy leaching of clay soils due to an excess of nitrogen resulting from the intensive use of fertilisers in agricultural areas. This work focuses on the natural weathering characteristics of soils, particularly the clay material, through the study of samples collected near the River Cavado. Samples taken from various sites, after physico-chemical characterisation, were subjected to clay dissolution tests, using sodium salts of different ionic forces, to detect the relationship between certain physico-chemical parameters of water, such as pH, nitrate, chloride and sulphate content, in the dissolution of clay and the subsequent extraction of such cations as Al, Fe and K. In acidic sandy clay soils, the mineralogical composition of which was characterised by a predominance of quartz, micas, kaolinite and K-feldspars, decreases of the clay material/water pH ratio increases dissolution of the micaceous and K-feldspars phases. The presence of nitrates in the aqueous solution apparently advanced the extraction of all three cations Al, Fe and K. The specific surface area of the clay material showed a significant correlation with the main kinetic parameters of cation extraction.

  5. Effect of potassium fertilizers on 137Cs transfer from sandy soddy-podzolic soil to plants

    International Nuclear Information System (INIS)

    Belova, N.V.; Sanzharova, N.I.; Shishulina, M.V.; Moiseenko, F.V.; Vorob'eva, L.A.

    2009-01-01

    The purpose of the work is to study the behavior of potassium in sandy soddy podzolic soil and its influence on the availability of 137 Cs to plants of winter rye and lupine when applying various doses of potassium fertilizers (PF) and turf-manure compost (TMC). A many-years stationary experiment was established in the Bryansk region in 1986-1988 on soddy podzolic soil contaminated by the accident at the Chernobyl Power Station. The influence of fertilizer was studied in 4-field crop rotation in an experimental plot: seeded fallow (lupine, bird's-foot) – winter rye – potato – spring grains. Potassium and mineral fertilizers were applied. It was shown that the application of potassium fertilizers (from 0 to 180 kg/ha) increased the content of exchangeable potassium in the soil by 1.7-2-7 times and its mobility by 2.5-4.0 times which resulted in a decrease of 137Cs transfer to plants by 5.8-14 times. The inverse proportional relationship was found between the potassium mobility and the content of its mobile form and the accumulation coefficient of 137Cs by lupine and wheat rye plants. A linear relationship was reveled between the accumulation coefficient of 137Cs and the content of exchangeable radionuclide

  6. Effect of soil pH on sorption of salinomycin in clay and sandy soils

    African Journals Online (AJOL)

    use

    such as water solubility, soil pH, volatility, and sorption, influence antibiotic transport in soils. Typical manure may also contain high levels of ammonia that would tend to increase the pH of soil solution, thus affecting the. *Corresponding author. E- mail: jayashree.ramaswamy@gmail. com. sorption of certain compounds.

  7. Biochar effects on wet and dry regions of the soil water retention curve of a sandy loam

    DEFF Research Database (Denmark)

    Arthur, Emmanuel; Moldrup, Per; Sun, Zhencai

    2014-01-01

    Reported beneficial effects of biochar on soil physical properties and processes include decreased soil density, and increased soil water transport, water holding capacity and retention (mainly for the wet region). Research is limited on biochar effects on the full soil water retention curve (wet...... and dry regions) for a given soil and biochar amendment scenarios. This study evaluates how biochar applied to a sandy loam field at rates from 0 to 50 Mg ha−1 yr–1 in 2011, 2012, or both years (2011+2012) influences the full water retention curve. Inorganic fertilizer and pig slurry were added to all...... treatments. Six months after the last biochar application, intact and disturbed soil samples were collected for analyses. Soil water retention was measured from −1 kPa to −100 kPa using tension tables and ceramic plates and from −10 MPa to −480 MPa using a Vapor Sorption Analyzer. Soil specific area...

  8. Characterization of biomass residues and their amendment effects on water sorption and nutrient leaching in sandy soil.

    Science.gov (United States)

    Wang, Letian; Tong, Zhaohui; Liu, Guodong; Li, Yuncong

    2014-07-01

    In this study, we evaluated the efficiency of two types of biomass residues (fermentation residues from a bioethanol process, FB; brown mill residues from a papermaking process, BM) as amendments for a sandy soil. The characteristics of these residues including specific surface areas, morphologies and nutrient sorption capacity were measured. The effects of biorefinery residues on water and nutrient retention were investigated in terms of different particle sizes and loadings. The results indicated that bio-based wastes FB and BM were able to significantly improve water and nutrient retention of sandy soil. The residues with larger surface areas had better water and nutrient retention capability. Specifically, in the addition of 10% loading, FB and BM was able to improve water retention by approximately 150% and 300%, while reduce 99% of ammonium and phosphate concentration in the leachate compare to the soil control, respectively. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Biofuel components change the ecology of bacterial volatile petroleum hydrocarbon degradation in aerobic sandy soil

    International Nuclear Information System (INIS)

    Elazhari-Ali, Abdulmagid; Singh, Arvind K.; Davenport, Russell J.; Head, Ian M.; Werner, David

    2013-01-01

    We tested the hypothesis that the biodegradation of volatile petroleum hydrocarbons (VPHs) in aerobic sandy soil is affected by the blending with 10 percent ethanol (E10) or 20 percent biodiesel (B20). When inorganic nutrients were scarce, competition between biofuel and VPH degraders temporarily slowed monoaromatic hydrocarbon degradation. Ethanol had a bigger impact than biodiesel, reflecting the relative ease of ethanol compared to methyl ester biodegradation. Denaturing gradient gel electrophoresis (DGGE) of bacterial 16S rRNA genes revealed that each fuel mixture selected for a distinct bacterial community, each dominated by Pseudomonas spp. Despite lasting impacts on soil bacterial ecology, the overall effects on VHP biodegradation were minor, and average biomass yields were comparable between fuel types, ranging from 0.40 ± 0.16 to 0.51 ± 0.22 g of biomass carbon per gram of fuel carbon degraded. Inorganic nutrient availability had a greater impact on petroleum hydrocarbon biodegradation than fuel composition. Highlights: ► The effect of 10% ethanol or 20% biodiesel on the biodegradability of volatile petroleum hydrocarbons in soil was investigated. ► Competition for scarce inorganic nutrients between biofuel and VPH degraders slowed monoaromatic hydrocarbon degradation. ► Biofuel effects were transitional. ► Each fuel selected for a distinct predominant bacterial community. ► All bacterial communities were dominated by Pseudomonas spp. - Blending of petroleum with ethanol or biodiesel changes the fuel degrading soil bacterial community structure, but the long-term effects on fuel biodegradability are minor.

  10. Biofuel components change the ecology of bacterial volatile petroleum hydrocarbon degradation in aerobic sandy soil.

    Science.gov (United States)

    Elazhari-Ali, Abdulmagid; Singh, Arvind K; Davenport, Russell J; Head, Ian M; Werner, David

    2013-02-01

    We tested the hypothesis that the biodegradation of volatile petroleum hydrocarbons (VPHs) in aerobic sandy soil is affected by the blending with 10 percent ethanol (E10) or 20 percent biodiesel (B20). When inorganic nutrients were scarce, competition between biofuel and VPH degraders temporarily slowed monoaromatic hydrocarbon degradation. Ethanol had a bigger impact than biodiesel, reflecting the relative ease of ethanol compared to methyl ester biodegradation. Denaturing gradient gel electrophoresis (DGGE) of bacterial 16S rRNA genes revealed that each fuel mixture selected for a distinct bacterial community, each dominated by Pseudomonas spp. Despite lasting impacts on soil bacterial ecology, the overall effects on VHP biodegradation were minor, and average biomass yields were comparable between fuel types, ranging from 0.40 ± 0.16 to 0.51 ± 0.22 g of biomass carbon per gram of fuel carbon degraded. Inorganic nutrient availability had a greater impact on petroleum hydrocarbon biodegradation than fuel composition. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Geophysical Methods for Monitoring Soil Stabilization Processes

    Science.gov (United States)

    Soil stabilization involves methods used to turn unconsolidated and unstable soil into a stiffer, consolidated medium that could support engineered structures, alter permeability, change subsurface flow, or immobilize contamination through mineral precipitation. Among the variety...

  12. Thallium dynamics in contrasting light sandy soils-Soil vulnerability assessment to anthropogenic contamination

    Czech Academy of Sciences Publication Activity Database

    Vaněk, A.; Chrastný, V.; Komárek, M.; Galušková, I.; Drahota, Petr; Grygar, Tomáš; Tejnecký, V.; Drábek, O.

    2010-01-01

    Roč. 173, 1/3 (2010), s. 717-723 ISSN 0304-3894 Institutional research plan: CEZ:AV0Z30130516; CEZ:AV0Z40320502 Keywords : thallium * soil * LMWOA * retention * mobility Subject RIV: DF - Soil Science Impact factor: 3.723, year: 2010

  13. Compost amendment of sandy soil affects soil properties and greenhouse tomato productivity

    DEFF Research Database (Denmark)

    Arthur, Emmanuel; Cornelis, W.; Razzaghi, Fatemeh

    2012-01-01

    in a greenhouse using soil samples from the field and vegetative and yield parameters (plant height, stem diameter, leaf number, and fruit yield), water productivity, and harvest index were evaluated. All compost types significantly increased soil total carbon, total nitrogen, pH, electrical conductivity...

  14. Field Performance of Nine Soil Water Content Sensors on a Sandy Loam Soil in New Brunswick, Maritime Region, Canada

    Science.gov (United States)

    Chow, Lien; Xing, Zisheng; Rees, Herb W.; Meng, Fanrui; Monteith, John; Stevens, Lionel

    2009-01-01

    An in situ field test on nine commonly-used soil water sensors was carried out in a sandy loam soil located in the Potato Research Center, Fredericton, NB (Canada) using the gravimetric method as a reference. The results showed that among the tested sensors, regardless of installation depths and soil water regimes, CS615, Trase, and Troxler performed the best with the factory calibrations, with a relative root mean square error (RRMSE) of 15.78, 16.93, and 17.65%, and a r2 of 0.75, 0.77, and 0.65, respectively. TRIME, Moisture Point (MP917), and Gopher performed slightly worse with the factory calibrations, with a RRMSE of 45.76, 26.57, and 20.41%, and a r2 of 0.65, 0.72, and 0.78, respectively, while the Gypsum, WaterMark, and Netafim showed a frequent need for calibration in the application in this region. PMID:22291570

  15. Zinc oxide nanoparticles affect carbon and nitrogen mineralization of Phoenix dactylifera leaf litter in a sandy soil.

    Science.gov (United States)

    Rashid, Muhammad Imtiaz; Shahzad, Tanvir; Shahid, Muhammad; Ismail, Iqbal M I; Shah, Ghulam Mustafa; Almeelbi, Talal

    2017-02-15

    We investigated the impact of zinc oxide nanoparticles (ZnO NPs; 1000mgkg -1 soil) on soil microbes and their associated soil functions such as date palm (Phoenix dactylifera) leaf litter (5gkg -1 soil) carbon and nitrogen mineralization in mesocosms containing sandy soil. Nanoparticles application in litter-amended soil significantly decreased the cultivable heterotrophic bacterial and fungal colony forming units (cfu) compared to only litter-amended soil. The decrease in cfu could be related to lower microbial biomass carbon in nanoparticles-litter amended soil. Likewise, ZnO NPs also reduced CO 2 emission by 10% in aforementioned treatment but this was higher than control (soil only). Labile Zn was only detected in the microbial biomass of nanoparticles-litter applied soil indicating that microorganisms consumed this element from freely available nutrients in the soil. In this treatment, dissolved organic carbon and mineral nitrogen were 25 and 34% lower respectively compared to litter-amended soil. Such toxic effects of nanoparticles on litter decomposition resulted in 130 and 122% lower carbon and nitrogen mineralization efficiency respectively. Hence, our results entail that ZnO NPs are toxic to soil microbes and affect their function i.e., carbon and nitrogen mineralization of applied litter thus confirming their toxicity to microbial associated soil functions. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. [Effects of soil properties on the stabilization process of cadmium in Cd alone and Cd-Pb contaminated soils].

    Science.gov (United States)

    Wu, Man; Xu, Ming-Gang; Zhang, Wen-Ju; Wu, Hai-Wen

    2012-07-01

    In order to clarify the effects of soil properties on the stabilization process of the cadmium (Cd) added, 11 different soils were collected and incubated under a moisture content of 65%-70% at 25 degrees C. The changes of available Cd contents with incubation time (in 360 days) in Cd and Cd-Pb contaminated treatments were determined. The stabilization process was simulated using dynamic equations. The results showed that after 1.0 mg x kg(-1) Cd or 500 mg x kg(-1) Pb + 1.0 mg x kg(-1) Cd were added into the soil, the available Cd content decreased rapidly during the first 15 days, and then the decreasing rate slowed down, with an equilibrium content reached after 60 days' incubation. In Cd-Pb contaminated soils, the presence of Pb increased the content of available Cd. The stabilization process of Cd could be well described by the second-order equation and the first order exponential decay; meanwhile, dynamic parameters including equilibrium content and stabilization velocity were used to characterize the stabilization process of Cd. These two key dynamic parameters were significantly affected by soil properties. Correlation analysis and stepwise regression suggested that high pH and high cation exchange capacity (CEC) significantly retarded the availability of Cd. High pH had the paramount effect on the equilibrium content. The stabilization velocity of Cd was influenced by the soil texture. It took shorter time for Cd to get stabilized in sandy soil than in the clay.

  17. Study on headland-bay sandy coast stability in South China coasts

    Science.gov (United States)

    Yu, Ji-Tao; Chen, Zi-Shen

    2011-03-01

    Headland-bay beach equilibrium planform has been a crucial problem abroad to long-term sandy beach evolution and stabilization, extensively applied to forecast long-term coastal erosion evolvement and the influences of coastal engineering as well as long-term coastal management and protection. However, little concern focuses on this in China. The parabolic relationship is the most widely used empirical relationship for determining the static equilibrium shape of headland-bay beaches. This paper utilizes the relation to predict and classify 31 headland-bay beaches and concludes that these bays cannot achieve the ultimate static equilibrium planform in South China. The empirical bay equation can morphologically estimate beach stabilization state, but it is just a referential predictable means and is difficult to evaluate headland-bay shoreline movements in years and decades. By using Digital Shoreline Analysis System suggested by USGS, the rates of shoreline recession and accretion of these different headland-bay beaches are quantitatively calculated from 1990 to 2000. The conclusions of this paper include that (a) most of these 31 bays maintain relatively stable and the rates of erosion and accretion are relatively large with the impact of man-made constructions on estuarine within these bays from 1990 to 2000; (b) two bays, Haimen Bay and Hailingshan Bay, originally in the quasi-static equilibrium planform determined by the parabolic bay shape equation, have been unstable by the influence of coastal engineering; and (c) these 31 bays have different recession and accretion characters occurring in some bays and some segments. On the one hand, some bays totally exhibit accretion, but some bays show erosion on the whole. Shanwei Bay, Houmen Bay, Pinghai Bay and Yazhou Bay have the similar planforms, characterized by less accretion on the sheltering segment and bigger accretion on the transitional and tangential segments. On the other hand, different segments of some

  18. Irrigation and fertigation scheduling under drip irrigation for maize crop in sandy soil

    Science.gov (United States)

    Ibrahim, Mahmoud M.; El-Baroudy, Ahmed A.; Taha, Ahmed M.

    2016-01-01

    Field experiments was conducted to determine the best irrigation scheduling and the proper period for injecting fertilizers through drip irrigation water in a sandy soil to optimize maize yield and water productivity. Four irrigation levels (0.6, 0.8, 1.0 and 1.2) of the crop evapotranspiration and two fertigation periods (applying the recommended fertilizer dose in 60 and 80% of the irrigation time) were applied in a split-plot design, in addition to a control treatment which represented conventional irrigation and fertilization of maize in the studied area. The results showed that increasing the irrigation water amount and the fertilizer application period increased vegetative growth and yield. The highest grain yield and the lowest one were obtained under the treatment at 1.2 and of 0.6 crop evapotranspiration, respectively. The treatment at 0.8 crop evapotranspiration with fertilizer application in 80% of the irrigation time gave the highest water productivity (1.631 kg m-3) and saved 27% of the irrigation water compared to the control treatment. Therefore, this treatment is recommended to irrigate maize crops because of the water scarcity conditions of the studied area.

  19. Differences in nitrogen cycling and soil mineralisation between a eucalypt plantation and a mixed eucalypt and #Acacia mangium# plantation on a sandy tropical soil

    OpenAIRE

    Tchichelle, Sogni Viviane; Epron, Daniel; Mialoundama, Fidèle; Koutika, Lydie-Stella; Harmand, Jean-Michel; Bouillet, Jean-Pierre; Mareschal, Louis

    2017-01-01

    Sustainable wood production requires appropriate management of commercial forest plantations. Establishment of industrial eucalypt plantations on poor sandy soils leads to a high loss of nutrients including nitrogen (N) after wood harvesting. An ecological intensification of eucalypt plantations was tested with the replacement of half of the Eucalyptus urophylla × E. grandis by Acacia mangium in the eucalypt monoculture to sustain soil fertility through enhancement of the N biological cycle. ...

  20. REGULATION OF deflationary stability OF Polissya agrolandscapes soil cover

    Directory of Open Access Journals (Sweden)

    Barvinskyi A.V.

    2017-08-01

    Full Text Available In the Ukrainian Polissya soil cover is dominated by sod-podzolic soils, that due tolight particle size distribution and relatively small amount of humus, have weak aggregationand low resistance to deflation processes. Soil deflation here is often in the spring, when arable land have the lowest level of vegetation protection.Drywall southeast winds dry up much upper layers of soil, destroy its structure and cause local deflation, particularly in the areas of drained peat and mineral soils of sandyand sandy-loamygranulometric composition.Display of local deflation on the same land for several years, leading to significant loss of soil. The intensity of these hazards depends largely deflationary stability of the soil, of which the main criterion in the literature defined mechanical strength (cohesion of soil aggregates and main indicator - content in soil aggregates with a diameter greater than 1 mm. Based on experimental data obtained in the Kyiv Polissya proven ability to adjust the deflationarydurability of sod-podzolic sandy-loamy soils by rational combining fertilizer plants and chemical reclamation.Increasing the strength of the structure at the joint application of lime and fertilizers due, based on a close correlation, positive changes in soil absorbing complex caused by calcium of lime and humus content increase and improve its quality composition: accumulationof calcium humates that play a leading role in grouting units. In addition, liming of unsaturated bases soils prevents the destruction and removal of these most valuable in agriculturally parts thereof: silt fraction.When applying lime on organo-mineral background of relative content increased by 8,2-18,4%, and the application of some fertilizers - on the contrary, decreased by 10,2%. Liming of acid soils increases the "grain rate structuring" at 0,3-0,6% compared to organo-mineral background, while the separate application of fertilizers reduces it to 2,1-2,7%. Comparison of

  1. Aggregate stability in soils cultivated with eucalyptus

    Directory of Open Access Journals (Sweden)

    Junior Cesar Avanzi

    2011-01-01

    Full Text Available The objective of this work was to evaluate the aggregate stability of tropical soils under eucalyptus plantation and native vegetation, and assess the relationships between aggregate stability and some soil chemical and physical properties. Argisols, Cambisol, Latosols and Plinthosol within three eucalyptus-cultivated regions, in the states of Espírito Santo, Rio Grande do Sul and Minas Gerais, Brazil, were studied. For each region, soils under native vegetation were compared to those under minimum tillage with eucalyptus cultivation. The aggregate stability was measured using the high-energy moisture characteristic (HEMC technique, i.e., the moisture release curve at very low suctions. This method compares the resistance of aggregates to slaking on a relative scale from zero to one. Thus, the aggregate stability from different soils and management practices can be directly compared. The aggregate stability ratio was greater than 50% for all soils, which shows that the aggregate stability index is high, both in eucalyptus and native vegetation areas. This suggests that soil management adopted for eucalyptus cultivation does not substantially modify this property. In these soils, the aggregate stability ratio does not show a good relationship with clay or soil organic matter contents. However, soil organic matter shows a positive relationship with clay content and cation exchange capacity.

  2. Effect of soil pH on sorption of salinomycin in clay and sandy soils ...

    African Journals Online (AJOL)

    Desorption of salinomycin with methanol over a 72 h period was 70% with a phosphate buffer (pH 7). Since the phosphate buffer would mimic, to some extent, the quality of water flowing through field soils containing various salts, it was concluded that salinomycin could pose ...

  3. Phosphorus application to cotton enhances growth, yield, and quality characteristics on a sandy loam soil

    International Nuclear Information System (INIS)

    Ahmad, M.; Ranjha, A.M.

    2009-01-01

    Phosphorus (P) is the second most limiting nutrient in cotton (Gossypium hirsutum L.) production after nitrogen. Under wheat-cotton cropping system of Pakistan most of the farmers apply P fertilizer only to wheat crop. A field experiment was conducted to evaluate the effect of fertilizer P on the growth, yield and fibre quality of cotton on a sandy loam calcareous soil at farmer's field in cotton growing area of district Khanewal, Punjab. Five levels of P (0, 17, 26, 34 and 43 kg P ha /sup -1/) along with 120 kg N and 53 kg K ha/sup -1/ were applied. The response of cotton growth parameters was greater than quality components to P addition in calcareous soil. There was significant increase in the growth and yield parameters with each additional rate of P. The response of number of bolls per plant, boll weight and seed cotton yield was to the tune of 88.23, 16.82 and 42%, respectively at P application rate of 34 kg ha/sup -1/. Cotton quality components (lint %age, fiber length and fiber strength) improved from 2 to 5% where 43 kg P ha/sup -1/ was added. The lint and seed P concentration was little affected by P application as compared to stem and leaves showing its essentiality for cell division and development of meristematic tissue. Phosphorus use, thus not only valuable for wheat crop but also its application to cotton crop is of vital importance in improving both lint yield and quality. (author)

  4. Peculiarities of pulse crops mineral feeding on sod-podzolic sandy soils contaminated with radionuclides

    International Nuclear Information System (INIS)

    Timofeev, S.F.; Sedukova, G.V.; Demidovich, S.A.

    2010-01-01

    In the conditions of the Republic of Belarus there was analyzed the influence of mineral fertilizers of leguminius crops (blue lupine (Lupinus angustifolius) of Gelena variety and field pea (Pisum arvense) of Alex variety) on yielding capacity, grain and green mass quality, and parameters transit of 137Cs and 90Sr radionuclides into leguminous products. In course of the experiment there were analyzed six variants of mineral fertilizer application P30K30; P30K90; P30K120; P60K60; P60K90; and P60K120. Variant without any fertilizers was as control. Double superphosphate (46% of P2O5) and potash chloride (60% of K2O) were applied as mineral fertilizers. Research results showed that application of phosphate-potassium fertilizers on sod-podzolic sandy soils moderately supplied with phosphate and potassium made it possible to increase pea and lupine yield. The highest efficiency of application of phosphate-potassium fertilizers was in the ratio of 1 (ðá2ð×5) : 2 (ðÜ2ð×) provided. Fertilizer system did not render substantial influence on indexes of nutritive value of green mass of pea and lupine. There was marked a tendency of increasing of phosphorous in lupine grain after its application in dose of P60. Mineral fertilizer application made it possible to lower 137Cs transit from soil into lupine green mass in 2 times and seeds ÔÇô in 1,5 times. Application of potassium fertilizer in dose of 120 kg/ha proved to be the most efficient for the lowering of 137Cs accumulation in products of the analyzed crops

  5. Stabilization of soil using plastic waste

    International Nuclear Information System (INIS)

    Khan, S.A.

    2005-01-01

    The economy in a soil stabilization project depends on the cost of the stabilizing material. Cheaper the stabilizing material, lesser will be the project cost. Specially manufactured geotextiles are successfully being used for soil stabilization, but the cost is higher. In this study, the cuttings of the waste polyethylene shopper bags have been used to stabilize the soil. The polyethylene shopper bags are transformed to cuttings for easy mixing with the soil by conventional methods. The plastic cuttings acted similar to the non-woven geotextile fibers. Different quantities of the shopper bag cuttings were mixed with the soil. The soil was compacted in the California Bearing Ratio (CBR) test molds according to the British Standards. CBR values of the soil with varying quantities of the plastic cuttings were determined both for the un-soaked and soaked conditions. The tests showed significant increase in the CBR values of the stabilized soil under un-soaked conditions. However, the improvement in the CBR values under the soaked condition was comparatively lesser than that of the un-soaked condition. This method of stabilization proved economical due to low cost of the waste shopper bags. (author)

  6. Partitioning of organic matter and heavy metals in a sandy soil: Effects of extracting solution, solid to liquid ratio and pH

    NARCIS (Netherlands)

    Fest, P.M.J.; Temminghoff, E.J.M.; Comans, R.N.J.; Riemsdijk, van W.H.

    2008-01-01

    In sandy soils the behavior of heavy metals is largely controlled by soil organic matter (solid and dissolved organic matter; SOC and DOC). Therefore, knowledge of the partitioning of organic matter between the solid phase and soil solution is essential for adequate predictions of the total

  7. Mineral N dynamics, leaching and nitrous oxide losses under maize following two-year improved fallows on a sandy loam soil in Zimbabwe

    NARCIS (Netherlands)

    Chikowo, R.; Mapfumo, P.; Nyamugafata, P.; Giller, K.E.

    2004-01-01

    The fate of the added N on a sandy loam soil was determined in an improved fallow - maize sequence field experiment in Zimbabwe. Pre-season mineral N was determined in 20 cm sections to 120 cm depth by soil auguring in seven land use systems. Thereafter, sequential soil auguring was done at two-week

  8. Response of corn silage (Zea mays L.) to zinc fertilization on a sandy soil under field and

    OpenAIRE

    Saad Drissi; Abdelhadi Aït Houssa; Ahmed Bamouh; Mohamed Benbella

    2017-01-01

    The purpose of the experiments was to evaluate zinc (Zn) fertilization effect on growth, yield and yield components of corn silage grown on a sandy soil under field and outdoor container conditions. Six rates of Zn supply (0 or control; 1.5; 3; 5; 10 and 50 mg kg−1) were tested. They were split at three different times during the growing season: (i) 50% immediately after sowing, (ii) 25% at 4–5 leaf stage and (iii) 25% at 8–9 leaf stage. These Zn rates were applied to the soil surface as a so...

  9. Effects of Nitramine Explosive CL-20 on the Soil Microinvertebrate Community in a Sandy Loam Soil

    Science.gov (United States)

    2013-09-01

    the Effects of Chemical Pollutants on Soil Fauna Communities and Trophic Structure. Environ. Toxicol. Chem. 1993, 12, 1477–1486. Robidoux, P.Y...plastic wrap to facilitate air exchange. All containers were randomly placed in an environment-controlled incubator under a 16 h light , 8 h dark...photoperiod cycle, with a mean photosynthetically active radiation (PAR) light intensity of 12.8  0.7 (standard error) µM m –2 sec –1 (985  52 lux), a

  10. Fruit yield and composition in orange trees cv. 'Lane Late' in response to nitrogen fertilization in Sandy Typic Hapludalf soil

    Directory of Open Access Journals (Sweden)

    Gustavo Brunetto

    Full Text Available ABSTRACT: Little is known about the impact of N fertilization on fruit production and composition in orange groves grown in soils with low or medium organic matter content in Rio Grande do Sul (RS. This study aimed to evaluate how N fertilization of orange trees cv. 'Lane Late' in a sandy soil may interfere in fruit yield and composition of fruit and juice. The experiment was conducted with orange trees cv. 'Lane Late' growing in Sandy Typic Hapludalf soil, in Rosário do Sul (RS. The plants received applications of 0, 20, 40, 60, 80, 100, 120, 140 and 160kg N ha-1. Total N in leaves, number of fruits per plant, yield, fresh weight, fruit diameter, peel thickness, percentage of fruit juice, peel color, juice color, ascorbic acid content, total soluble solids (TSS and total titratable acidity were evaluated in 2010/2011 and 2011/2012 crops. In the first crop, especially yield, number of fruits per plant, TSS content in fruit juice and ratio decreased with increasing N rate applied. However, in the second crop, the total titratable acidity of the fruit juice prominently increased with the dose of N applied. In both crops, results were highly influenced by rainfall distribution, which affect the plant physiology, soil N dynamics and, consequently, probability of response to N applied and the loss of mineral N in the soil.

  11. Agronomic assessment of pyrolysed food waste digestate for sandy soil management.

    Science.gov (United States)

    Opatokun, Suraj Adebayo; Yousef, Lina F; Strezov, Vladimir

    2017-02-01

    The digestate (DFW) of an industrial food waste treatment plant was pyrolysed for production of biochar for its direct application as bio-fertilizer or soil enhancer. Nutrient dynamics and agronomic viability of the pyrolysed food waste digestate (PyD) produced at different temperatures were evaluated using germination index (GI), water retention/availability and mineral sorption as indicators when applied on arid soil. The pyrolysis was found to enrich P, K and other micronutrients in the biochar at an average enrichment factor of 0.87. All PyD produced at different temperatures indicated significantly low phytotoxicity with GI range of 106-168% and an average water retention capacity of 40.2%. Differential thermogravimetric (DTG) thermographs delineated the stability of the food waste digestate pyrolysed at 500 °C (PyD500) against the degradation of the digestate food waste despite the latter poor nutrient sorption potential. Plant available water in soil is 40% when treated with 100 g of digestate per kg soil, whereas PyD500 treated soil indicated minimal effect on plant available water, even with high application rates. However, the positive effects of PyD on GI and the observed enrichment in plant macro and micronutrients suggest potential agronomic benefits for PyD use, in addition to the benefits from energy production from DFW during the pyrolysis process. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Forms and accumulation of copper and zinc in a sandy typic hapludalf soil after long-term application of pig slurry and deep litter

    OpenAIRE

    Tadeu Luis Tiecher; Carlos Alberto Ceretta; Jucinei José Comin; Eduardo Girotto; Alcione Miotto; Marcel Pires de Moraes; Lucas Benedet; Paulo Ademar Avelar Ferreira; Cledimar Rogério Lorenzi; Rafael da Rosa Couto; Gustavo Brunetto

    2013-01-01

    Successive applications of pig slurry and pig deep litter may lead to an accumulation of copper (Cu) and zinc (Zn) fractions in the soil profile. The objective of this study was to evaluate the Cu and Zn forms and accumulation in a Sandy Typic Hapludalf soil after long-term application of pig slurry and deep litter. In March 2010, eight years after initiating an experiment in Braço do Norte, Santa Catarina (SC), Brazil, on a Sandy Typic Hapludalf soil, soil samples were collected from the 0-2...

  13. Improvement of Faba Bean Yield Using Rhizobium/Agrobacterium Inoculant in Low-Fertility Sandy Soil

    Directory of Open Access Journals (Sweden)

    Sameh H. Youseif

    2017-01-01

    Full Text Available Soil fertility is one of the major limiting factors for crop’s productivity in Egypt and the world in general. Biological nitrogen fixation (BNF has a great importance as a non-polluting and a cost-effective way to improve soil fertility through supplying N to different agricultural systems. Faba bean (Vicia faba L. is one of the most efficient nitrogen-fixing legumes that can meet all of their N needs through BNF. Therefore, understanding the impact of rhizobial inoculation and contrasting soil rhizobia on nodulation and N2 fixation in faba bean is crucial to optimize the crop yield, particularly under low fertility soil conditions. This study investigated the symbiotic effectiveness of 17 Rhizobium/Agrobacterium strains previously isolated from different Egyptian governorates in improving the nodulation and N2 fixation in faba bean cv. Giza 843 under controlled greenhouse conditions. Five strains that had a high nitrogen-fixing capacity under greenhouse conditions were subsequently tested in field trials as faba bean inoculants at Ismaillia Governorate in northeast Egypt in comparison with the chemical N-fertilization treatment (96 kg N·ha−1. A starter N-dose (48 kg N·ha−1 was applied in combination with different Rhizobium inoculants. The field experiments were established at sites without a background of inoculation under low fertility sandy soil conditions over two successive winter growing seasons, 2012/2013 and 2013/2014. Under greenhouse conditions, inoculated plants produced significantly higher nodules dry weight, plant biomass, and shoot N-uptake than non-inoculated ones. In the first season (2012/2013, inoculation of field-grown faba bean showed significant improvements in seed yield (3.73–4.36 ton·ha−1 and seed N-yield (138–153 Kg N·ha−1, which were higher than the uninoculated control (48 kg N·ha−1 that produced 2.97 Kg·ha−1 and 95 kg N·ha−1, respectively. Similarly, in the second season (2013

  14. Effects of grazing exclusion on soil properties and on ecosystem carbon and nitrogen storage in a sandy rangeland of Inner Mongolia, northern China.

    Science.gov (United States)

    Chen, Yinping; Li, Yuqiang; Zhao, Xueyong; Awada, Tala; Shang, Wen; Han, Juanjuan

    2012-10-01

    The Horqin sandy rangeland of northern China is a seriously desertified region with a fragile ecology. The sandy alluvial and aeolian sediments have a coarse texture and loose structure and are therefore vulnerable to damage caused by grazing animals and wind erosion. We investigated whether grazing exclusion could enhance ecosystem carbon (C) and nitrogen (N) storage and thereby improve overall soil quality. We compared soil properties, C and N storage in biomass (aboveground and below-ground), and the total and light fraction soil organic matter between adjacent areas with continuous grazing and a 12-year grazing exclosure. The soil silt + clay content, organic C, total Kjeldahl N, available N and K, and cation-exchange capacity were significantly (P grazing exclusion and that vegetation recovers faster than soil. Our results confirmed that the degraded sandy rangeland is recovering and sequestering C after the removal of grazing pressure.

  15. Influence of zeolite and cement additions on mechanical behavior of sandy soil

    Directory of Open Access Journals (Sweden)

    Hossein Mola-Abasi

    2016-10-01

    Full Text Available It is well known that the cemented sand is one of economic and environmental topics in soil stabilization. In this instance, a blend of sand, cement and other materials such as fiber, glass, nanoparticle and zeolite can be commercially available and effectively used in soil stabilization in road construction. However, the influence and effectiveness of zeolite on the properties of cemented sand systems have not been completely explored. In this study, based on an experimental program, the effects of zeolite on the characteristics of cemented sands are investigated. Stabilizing agent includes Portland cement of type II and zeolite. Results show the improvements of unconfined compressive strength (UCS and failure properties of cemented sand when the cement is replaced by zeolite at an optimum proportion of 30% after 28 days. The rate of strength improvement is approximately between 20% and 78%. The efficiency of using zeolite increases with the increases in cement amount and porosity. Finally, a power function of void-cement ratio and zeolite content is demonstrated to be an appropriate method to assess UCS of zeolite-cemented mixtures.

  16. Using Biochar composts for improving sandy vineyard soils while reducing the risk of

    Science.gov (United States)

    Kammann, Claudia; Mengel, Jonathan; Mohr, Julia; Muskat, Stefan; Schmidt, Hans-Peter; Löhnertz, Otmar

    2016-04-01

    In recent years, biochar has increasingly been discussed as an option for sustainable environmentalmanagement, combining C sequestration with the aim of soil fertility improvement. Biochar has shownpositive effects in viticulture before (Genesio et al. 2015) which were largely attributed to improved water supply to the plants. However, in fertile temperate soils, the use of pure, untreated biochar does not guarantee economic benefits on the farm level (Ruysschaert et al., 2016). Hence, recent approaches started introducing biochar in management of nutrient-rich agricultural waste, e.g. in compost production (Kammann et al. 2015). Compost is frequently used in German vineyards for humus buildup and as a slow-release organic fertilizer. This, and increasingly mild, precipitation-rich winters, promoting mineralization, increase the risk of unwanted nitrate leaching losses into surface and ground waters during winter. To investigate if biochar pure, or biochar-compost mixtures and -products may have the potential to reduce nitrate leaching, we set up the following experiment: Either 30 or 60 t ha-1 of the following additives were mixed into the top 30 cm of sandy soil in large (120 L) containers, and planted with oneRiesling grapevine (Clone 198-30 GM) per container: Control (no addition), pure woody biochar, pure compost, biochar-compost (produced from the same organic feedstock than the compost, with 20 vol. - % of a woody biochar added), and pure compost plus pure biochar (same mixing ratio as in the former product). Once monthly, containers were exposed to simulated heavy rainfall that caused drainage. Leachates were collected from an outlet at the bottom of the containers, and analyzed for nutrients. The nutrient-rich additives containing compost all improved grape biomass and yield, most markedly pure compost and biochar-compost; same amendments were not significantly different. However,while the addition of the lower amount (30 t ha-1) of compost reduced nitrate

  17. Effects of organic fertilizers and biochar/organic fertilizer combinations on fertility and organic matter dynamics of a sandy soil in north-west Germany

    Science.gov (United States)

    Greenberg, Isabel; Kaiser, Michael; Polifka, Steven; Wiedner, Katja; Glaser, Bruno; Ludwig, Bernard

    2017-04-01

    content of the water-stable macro- (2 mm - 250 µm) and micro-aggregates (250 - 53 µm) of the treatments receiving 40 t/ha biochar+fertilizer (digestate or mineral), 10 t/ha composted biochar, and compost was increased by 12 to 120% compared to the mineral fertilizer treatment. The magnitude of the demonstrated positive effect of biochar application on crop yield depends on the type and amount of the biochar+organic fertilizer mixture and the cultivated plant species. Besides benefiting biomass production, applications of 10 to 40 t/ha of biochar+fertilizer mixtures seem to result in increased bulk soil and aggregate protected OC contents, indicating a longer lasting positive effect on the OC storage and the structural stability of this sandy soil. Cost/benefit wise, the 10 t/ha composted biochar treatment seems to be most promising for improving soil properties and crop yield, while the compost treatment seems to be the best alternative for sandy soils where biochar is either unavailable or prohibitively expensive.

  18. Factors driving the carbon mineralization priming effect in a sandy loam soil amended with different types of biochar

    Science.gov (United States)

    Cely, P.; Tarquis, A. M.; Paz-Ferreiro, J.; Méndez, A.; Gascó, G.

    2014-06-01

    The effect of biochar on the soil carbon mineralization priming effect depends on the characteristics of the raw materials, production method and pyrolysis conditions. The goal of the present study is to evaluate the impact of three different types of biochar on physicochemical properties and CO2 emissions of a sandy loam soil. For this purpose, soil was amended with three different biochars (BI, BII and BIII) at a rate of 8 wt% and soil CO2 emissions were measured for 45 days. BI is produced from a mixed wood sieving from wood chip production, BII from a mixture of paper sludge and wheat husks and BIII from sewage sludge. Cumulative CO2 emissions of biochars, soil and amended soil were well fit to a simple first-order kinetic model with correlation coefficients (r2) greater than 0.97. Results show a negative priming effect in the soil after addition of BI and a positive priming effect in the case of soil amended with BII and BIII. These results can be related to different biochar properties such as carbon content, carbon aromaticity, volatile matter, fixed carbon, easily oxidized organic carbon or metal and phenolic substance content in addition to surface biochar properties. Three biochars increased the values of soil field capacity and wilting point, while effects over pH and cation exchange capacity were not observed.

  19. Performance of Low-Volume Roads with Wearing Course Layer of Silty Sandy Soil Modified with Rice Husk Ash and Lime

    Energy Technology Data Exchange (ETDEWEB)

    Behak Katz, L.; Musso Laespiga, M.

    2016-07-01

    Rice husk ash (RHA) is a by-product of rice milling. Its use as soil stabilizer is a way to replace the final disposal with environmental benefit. However, RHA is not cementitious itself but when mixed with lime forms cements which improve the soil properties. A research of performance of a silty sandy soil modified with RHA and lime as wearing course layer of low-volume roads was conducted through two full-scale test sections with different pavements built in Artigas, northern Uruguay. The alkaline reactivity of RHA is low because the husk burning is not controlled. The soil-RHA-lime mix design was conducted according to the Thompson’s Method. The pavement test sections were monitored through deflection measures by Benkelman beam and observations of surface condition. The deflections decreased over time in both test sections due to the development of cementation of the study materials. After one year, the dust emission was reduced, the wet skid resistance of pavement surfaces improved and there was not rutting. The researched pavements have had a good performance under the existing traffic and environmental conditions, demonstrating that wearing course layer of silty sand modified with RHA and lime is an alternative to improve the condition of low-volume roads and to replace the final disposal of RHA, with environmental, social and economic benefits. (Author)

  20. Biological soil crusts as soil stabilizers: Chapter 16

    Science.gov (United States)

    Belnap, Jayne; Buedel, Burkhard; Weber, Bettina; Buedel, Burkhard; Belnap, Jayne

    2016-01-01

    Soil erosion is of particular concern in dryland regions, as the sparse cover of vascular plants results in large interspaces unprotected from the erosive forces of wind and water. Thus, most of these soil surfaces are stabilized by physical or biological soil crusts. However, as drylands are extensively used by humans and their animals, these crusts are often disturbed, compromising their stabilizing abilities. As a result, approximately 17.5% of the global terrestrial lands are currently being degraded by wind and water erosion. All components of biocrusts stabilize soils, including green algae, cyanobacteria, fungi, lichens, and bryophytes, and as the biomass of these organisms increases, so does soil stability. In addition, as lichens and bryophytes live atop the soil surface, they provide added protection from raindrop impact that cyanobacteria and fungi, living within the soil, cannot. Much research is still needed to determine the relative ability of individual species and suites of species to stabilize soils. We also need a better understanding of why some individuals or combination of species are better than others, especially as these organisms become more frequently used in restoration efforts.

  1. Effect of Application of Increasing Concentrations of Contaminated Water on the Different Fractions of Cu and Co in Sandy Loam and Clay Loam Soils

    Directory of Open Access Journals (Sweden)

    John Volk

    2016-12-01

    Full Text Available This study aimed to establish the fate of copper (Cu and cobalt (Co in sandy loam and clay loam soils that had been irrigated with increasing concentrations of contaminated water. A sequential extraction procedure was used to determine the fractions of Cu and Co in these soils. The concentration of bioavailable Cu and Co on clay loam was 1.7 times that of sandy loam soil. Cu on sandy loam soil was largely in the organic > residual > exchangeable > water-soluble > carbonate fractions, whereas on clay loam soil the element was largely in organic > exchangeable > residual > carbonate > water-soluble fractions. Co was largely observed in the exchangeable, water-soluble, and carbonate fractions, but with no particular trend observed in both soil types. When crops are grown on sandy soils that have a low capacity to hold heavy metals, the resulting effect would be high uptake of the heavy metals in crop plants. Because the predominant forms of Cu and Co vary in soils, it is expected that the metals will behave differently in the soils.

  2. Stability of pentobarbital in soil.

    Science.gov (United States)

    Bagsby, Chasity; Saha, Anita; Goodin, Granville; Siddiqi, Sheeba; Farone, Mary; Farone, Anthony; Kline, Paul C

    2018-03-04

    Intravenous injection of barbiturates, particularly pentobarbital (5-ethyl-5-pentan-2-yl-1,3-diazinane-2,4,5-trione), is a widely used method to euthanize large animals such as horses. However, one concern with this method is the fate of pentobarbital after the disposal of the carcass. As tissues decompose, pentobarbital may leach into the soil and from there migrate to groundwater. A method using methanol extraction, solid phase concentration, and liquid chromatography (LC/MS) has been developed to measure pentobarbital in soils. Recovery of pentobarbital from soil averaged approximately 85% from different soil types including topsoil, potting soil, sand, stall sweepings, and loam. The method was capable of detecting pentobarbital levels of 0.1 ppm. A calibration curve was constructed with a linear range of 1 ppm to 100 ppm. The limit of quantification was 0.5 ppm. The rate of degradation of pentobarbital in sand, topsoil, and potting soil was measured over a 17-week period. At the end of week 17, approximately 17% of the pentobarbital remained in the sand, 19% remained in the topsoil, and 10% remained in the potting soil. While there was a significant decrease in the pentobarbital recovered from the soil, there were still detectable amounts of pentobarbital present in the soil after 17 weeks. To determine the importance of bacterial degradation, the three soil types were autoclaved before addition of pentobarbital. After autoclaving, no degradation of pentobarbital was observed in sand and one topsoil sample, while there was no difference in the degradation of pentobarbital in autoclaved potting soil versus potting soil that had not undergone autoclaving.

  3. Influence of tebuconazole and copper hydroxide on phosphatase and urease activities in red sandy loam and black clay soils.

    Science.gov (United States)

    Anuradha, B; Rekhapadmini, A; Rangaswamy, V

    2016-06-01

    The efficacy of two selected fungicides i.e., tebuconazole and coppoer hydroxide, was conducted experiments in laboratory and copper hydroxide on the two specific enzymes phosphatase and urease were determined in two different soil samples (red sandy loam and black clay soils) of groundnut (Arachis hypogaea L.) from cultivated fields of Anantapuramu District, Andhra Pradesh. The activities of the selected soil enzymes were determined by incubating the selected fungicides-treated (1.0, 2.5, 5.0, 7.5 and 10.0 kg ha -1 ) and -untreated groundnut soil samples at 10 day intervals. By determining the effective concentration, the rate of selected enzyme activity was estimated by adding the suitable substrate at 10, 20, 30 and 40 days of soil incubation. Both the enzyme activities were increased up to 5.0 kg ha -1 level of fungicide in both soil samples significantly at 10 days of soil incubation and further enhanced up to 20 days of incubation. The activity of the phosphatase and urease decreased progressively at 30 and 40 days of incubation. From overall studies, higher concentrations (7.5 and 10.0 kg ha -1 ) of both tebuconazole and copper hydroxide were toxic to phosphatase and urease activities, respectively, in both soil samples.

  4. Eleven years' effect of conservation practices for temperate sandy loams: I. Soil physical properties and topsoil carbon content

    DEFF Research Database (Denmark)

    Abdollahi, Lotfallah; Getahun, Gizachew Tarekegn; Munkholm, Lars Juhl

    2017-01-01

    (D) and harrowing to a depth of 8 to 10 cm (H). Soil sampling and in-field measurements were performed in autumn 2013 and spring 2014. In the field, soil structure was visually evaluated and penetration resistance (PR) measured. Soil C, wet stability (clay dispersion and wet aggregate stability....... However, H and D in combination with residue retention gave the best structural stability. Residue retention alleviated negative effects of reduced tillage on PR and improved wet stability in the MP treatment at the Foulum site. Clay and SOC correlated well with soil physical parameters, confirming...... their important role in soil structure formation and stabilization. Our study showed benefits of combining key CA elements, although longer-term studies are most likely needed to reveal the full potential....

  5. Seismic Stability of Reinforced Soil Slopes

    DEFF Research Database (Denmark)

    Tzavara, I.; Zania, Varvara; Tsompanakis, Y.

    2012-01-01

    Over recent decades increased research interest has been observed on the dynamic response and stability issues of earth walls and reinforced soil structures. The current study aims to provide an insight into the dynamic response of reinforced soil structures and the potential of the geosynthetics...... of the most significant parameters involved, such as the flexibility of the sliding system, the mechanical properties of the soil and of the geosynthetics material, the frequency content of the excitation and the interface shear strength....

  6. Methodical comparison of neutron depth probes and long-term soil moisture measurements on loess, sandy loess, and boulder clay

    International Nuclear Information System (INIS)

    Neue, H.U.

    1980-01-01

    Three measuring instruments were tested: 0.05 mCi Cf-252, 100 mCi Am-241/Be, 500 mCi Am-241/Be. The advantages - measurement in undisturbed soil profiles, large depths of measurement, reproducibility of measurements in the same place over several years - and the disadvantages - radiation protection, resolution, variations of measured volume in dependence of moisture, background influences etc. - have been critically checked by experiment. In addition, annual soil moisture curves have been measured over two years by parallel use of the free probes on a loess, sandy loess, and boulder clay site. The results were compared and discussed with a view to the soil water dynamics of these sites. (orig./HP) [de

  7. Effects of sandy desertified land rehabilitation on soil carbon sequestration and aggregation in an arid region in China.

    Science.gov (United States)

    Su, Yong Zhong; Wang, Xue Fen; Yang, Rong; Lee, Jaehoon

    2010-11-01

    The rehabilitation of sandy desertified land in semi-arid and arid regions has a great potential to increase carbon sequestration and improve soil quality. Our objective was to investigate the changes in the soil carbon pool and soil properties of surface soil (0-15 cm) under different types of rehabilitation management. Our study was done in the short-term (7 years) and long-term (32 years) desertification control sites in a marginal oasis of northwest China. The different management treatments were: (1) untreated shifting sand land as control; (2) sand-fixing shrubs with straw checkerboards; (3) poplar (Populus gansuensis) shelter forest; and (4) irrigated cropland after leveling sand dune. The results showed that the rehabilitation of severe sandy desertified land resulted in significant increases in soil organic C (SOC), inorganic C, and total N concentrations, as well as enhanced soil aggregation. Over a 7-year period of revegetation and cultivation, SOC concentration in the recovered shrub land, forest land and irrigated cropland increased by 4.1, 14.6 and 11.9 times compared to the control site (shifting sand land), and increased by 11.2, 17.0 and 23.0 times over the 32-year recovery period. Total N, labile C (KMnO(4)-oxidation C), C management index (CMI) and inorganic C (CaCO(3)-C) showed a similar increasing trend as SOC. The increased soil C and N was positively related to the accumulation of fine particle fractions. The accumulation of silt and clay, soil C and CaCO(3) enhanced the formation of aggregates, which was beneficial to mitigate wind erosion. The percentage of >0.25 mm dry aggregates increased from 18.0% in the control site to 20.0-87.2% in the recovery sites, and the mean weight diameter (MWD) of water-stable aggregates significantly increased, with a range of 0.09-0.30 mm at the recovery sites. Long-term irrigation and fertilization led to a greater soil C and N accumulation in cropland than in shrub and forest lands. The amount of soil C

  8. Stabilization of carbon in composts and biochars in relation to carbon sequestration and soil fertility.

    Science.gov (United States)

    Bolan, N S; Kunhikrishnan, A; Choppala, G K; Thangarajan, R; Chung, J W

    2012-05-01

    There have been increasing interests in the conversion of organic residues into biochars in order to reduce the rate of decomposition, thereby enhancing carbon (C) sequestration in soils. However energy is required to initiate the pyrolysis process during biochar production which can also lead to the release of greenhouse gasses. Alternative methods can be used to stabilize C in composts and other organic residues without impacting their quality. The objectives of this study include: (i) to compare the rate of decomposition among various organic amendments and (ii) to examine the effect of clay materials on the stabilization of C in organic amendments. The decomposition of a number of organic amendments (composts and biochars) was examined by monitoring the release of carbon-dioxide using respiration experiments. The results indicated that the rate of decomposition as measured by half life (t(1/2)) varied between the organic amendments and was higher in sandy soil than in clay soil. The half life value ranged from 139 days in the sandy soil and 187 days in the clay soil for poultry manure compost to 9989 days for green waste biochar. Addition of clay materials to compost decreased the rate of decomposition, thereby increasing the stabilization of C. The half life value for poultry manure compost increased from 139 days to 620, 806 and 474 days with the addition of goethite, gibbsite and allophane, respectively. The increase in the stabilization of C with the addition of clay materials may be attributed to the immobilization of C, thereby preventing it from microbial decomposition. Stabilization of C in compost using clay materials did not impact negatively the value of composts in improving soil quality as measured by potentially mineralizable nitrogen and microbial biomass carbon in soil. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Stump sprouting of northern pin oak on nutrient-poor sandy soils in central Wisconsin

    Science.gov (United States)

    Kevin M. Schwartz; Michael C. Demchik

    2013-01-01

    Coppice with two to three reserve trees per acre is the generally accepted practice (GAP) for rotating oak stands on nutrient-poor, sandy sites (colloquially called "scrub oak sites") in Wisconsin. The future stocking of the stand is therefore dependent predominantly on stump sprouts with varying levels of contribution from advance regeneration. Two groups of...

  10. Peat Soil Stabilization using Lime and Cement

    Science.gov (United States)

    Zambri, Nadhirah Mohd; Ghazaly, Zuhayr Md.

    2018-03-01

    This paper presents a study of the comparison between two additive Lime and Cement for treating peat soil in term of stabilization. Peat and organic soils are commonly known for their high compressibility, extremely soft, and low strength. The aim of this paper is to determine the drained shear strength of treated peat soil from Perlis for comparison purposes. Direct Shear Box Test was conducted to obtain the shear strength for all the disturbed peat soil samples. The quick lime and cement was mixed with peat soil in proportions of 10% and 20% of the dry weight peat soil. The experiment results showed that the addition of additives had improved the strength characteristics of peat soil by 14% increment in shear strength. In addition, the mixture of lime with peat soil yield higher result in shear strength compared to cement by 14.07% and 13.5% respectively. These findings indicate that the lime and cement is a good stabilizer for peat soil, which often experienced high amount of moisture content.

  11. Stabilization of carbon in composts and biochars in relation to carbon sequestration and soil fertility

    International Nuclear Information System (INIS)

    Bolan, N.S.; Kunhikrishnan, A.; Choppala, G.K.; Thangarajan, R.; Chung, J.W.

    2012-01-01

    There have been increasing interests in the conversion of organic residues into biochars in order to reduce the rate of decomposition, thereby enhancing carbon (C) sequestration in soils. However energy is required to initiate the pyrolysis process during biochar production which can also lead to the release of greenhouse gasses. Alternative methods can be used to stabilize C in composts and other organic residues without impacting their quality. The objectives of this study include: (i) to compare the rate of decomposition among various organic amendments and (ii) to examine the effect of clay materials on the stabilization of C in organic amendments. The decomposition of a number of organic amendments (composts and biochars) was examined by monitoring the release of carbon-dioxide using respiration experiments. The results indicated that the rate of decomposition as measured by half life (t 1/2 ) varied between the organic amendments and was higher in sandy soil than in clay soil. The half life value ranged from 139 days in the sandy soil and 187 days in the clay soil for poultry manure compost to 9989 days for green waste biochar. Addition of clay materials to compost decreased the rate of decomposition, thereby increasing the stabilization of C. The half life value for poultry manure compost increased from 139 days to 620, 806 and 474 days with the addition of goethite, gibbsite and allophane, respectively. The increase in the stabilization of C with the addition of clay materials may be attributed to the immobilization of C, thereby preventing it from microbial decomposition. Stabilization of C in compost using clay materials did not impact negatively the value of composts in improving soil quality as measured by potentially mineralizable nitrogen and microbial biomass carbon in soil. - Graphical abstract: Stabilization of compost using clay materials (e.g. allophane) enhances carbon sequestration in soils. Highlights: ► Comparison of decomposition rate

  12. Biological soil crust formation under artificial vegetation effect and its properties in the Mugetan sandy land, northeastern Qinghai-Tibet Plateau

    Science.gov (United States)

    Li, Y. F.; Li, Z. W.; Jia, Y. H.; Zhang, K.

    2016-08-01

    Mugetan sandy land is an inland desertification area of about 2,065 km2 in the northeastern Qinghai-Tibet Plateau. In the ecological restoration region of the Mugetan sandy land, different crusts have formed under the action of vegetation in three types of sandy soil (i.e. semi-fixed sand dune, fixed sand dune and ancient fixed aeolian sandy soil). The surface sand particle distribution, mineral component and vegetation composition of moving sand dunes and three types of sandy soil were studied in 2010-2014 to analyze the biological crust formation properties in the Mugetan sandy land and the effects of artificial vegetation. Results from this study revealed that artificial vegetation increases the clay content and encourages the development of biological curst. The fine particles (i.e. clay and humus) of the surface layer of the sand dunes increased more than 15% ten years after the artificial vegetation planting, and further increased up to 20% after one hundred years. The interaction of clay, humus, and other fine particles formed the soil aggregate structure. Meanwhile, under the vegetation effect from the microbes, algae, and moss, the sand particles stuck together and a biological crust formed. The interconnection of the partial crusts caused the sand dunes to gradually be fixed as a whole. Maintaining the integrity of the biological crust plays a vital role in fixing the sand under the crust. The precipitation and temperature conditions in the Mugetan sandy land could satisfy the demand of biological crust formation and development. If rational vegetation measures are adopted in the region with moving sand dunes, the lichen-moss-algae biological curst will form after ten years, but it still takes more time for the sand dunes to reach the nutrient enrichment state. If the biological curst is partly broken due to human activities, reasonable closure and restoration measures can shorten the restoration time of the biological crust.

  13. Investigation of interactive effects on water flow and solute transport in sandy loam soil using time domain reflectometry.

    Science.gov (United States)

    Merdun, Hasan

    2012-01-01

    Surface-applied chemicals move through the unsaturated zone with complex flow and transport processes due to soil heterogeneity and reach the saturated zone, resulting in groundwater contamination. Such complex processes need to be studied by advanced measurement and modeling techniques to protect soil and water resources from contamination. In this study, the interactive effects of factors like soil structure, initial soil water content (SWC), and application rate on preferential flow and transport were studied in a sandy loam field soil using measurement (by time domain reflectometry (TDR)) and modeling (by MACRO and VS2DTI) techniques. In addition, statistical analyses were performed to compare the means of the measured and modeled SWC and EC, and solute transport parameters (pore water velocity and dispersion coefficient) in 12 treatments. Research results showed that even though the effects of soil structural conditions on water and solute transport were not so clear, the applied solution moved lower depths in the profiles of wet versus dry initial SWC and high application rate versus low application rates. The effects of soil structure and initial SWC on water and solute movement could be differentiated under the interactive conditions, but the effects of the application rates were difficult to differentiate under different soil structural and initial SWC conditions. Modeling results showed that MACRO had somewhat better performance than VS2DTI in the estimation of SWC and EC with space and time, but overall both models had relatively low performances. The means of SWC, EC, and solute transport parameters of the 12 treatments were divided into some groups based on the statistical analyses, indicating different flow and transport characteristics or a certain degree nonuniform or preferential flow and transport in the soil. Conducting field experiments with more interactive factors and applying the models with different approaches may allow better understanding

  14. Regional analysis of groundwater phosphate concentrations under acidic sandy soils: Edaphic factors and water table strongly mediate the soil P-groundwater P relation.

    Science.gov (United States)

    Mabilde, Lisa; De Neve, Stefaan; Sleutel, Steven

    2017-12-01

    Historic long-term P application to sandy soils in NW-Europe has resulted in abundant sorption, saturation and eventually leaching of P from soil to the groundwater. Although many studies recognize the control of site-specific factors like soil texture and phosphate saturation degree (PSD), the regional-scaled relevance of effects exerted by single factors controlling P leaching is unclear. Very large observational datasets of soil and groundwater P content are furthermore required to reveal indirect controls of soil traits through mediating soil variables. We explored co-variation of phreatic groundwater orthophosphate (o-P) concentration and soil factors in sandy soils in Flanders, Belgium. Correlation analyses were complemented with an exploratory model derived using 'path analysis'. Data of oxalate-extractable Al, Fe, P and pH KCl , phosphate sorption capacity (PSC) and PSD in three depth layers (0-30, 30-60, 60-90 cm), topsoil SOC, % clay and groundwater depth (fluctuation) were interpolated to predict soil properties on exact locations of a very extensive net of groundwater monitoring wells. The mean PSD was only poorly correlated to groundwater o-P concentration, indicating the overriding control of other factors in the transport of P to the groundwater. A significant (P groundwater o-P concentrations and pH KCl for all depth layers. Likewise, lower SOC% (P groundwater level (MHL or MLL) corresponded (P Groundwater o-P unexpectedly correlated positively to clay% and path analysis indicated this to be an indirect effect of the groundwater level. Path analysis furthermore indicated an important indirect control of pH on groundwater o-P concentrations and a considerable direct effect of P ox, 0-90 , Al ox, 0-90 and MHL. The fact that groundwater o-P concentration was stronger controlled by soil pH and groundwater table depth than by PSD indicates the likely oversimplification of the latter index to measure the long-term potential risk of P leaching

  15. Stabilization of marly soils with portland cement

    Science.gov (United States)

    Piskunov, Maksim; Karzin, Evgeny; Lukina, Valentina; Lukinov, Vitaly; Kholkin, Anatolii

    2017-10-01

    Stabilization of marlous soils with Portland cement will increase the service life of motor roads in areas where marl is used as a local road construction material. The result of the conducted research is the conclusion about the principal possibility of stabilization of marlous soils with Portland cement, and about the optimal percentage of the mineral part and the binding agent. When planning the experiment, a simplex-lattice plan was implemented, which makes it possible to obtain a mathematical model for changing the properties of a material in the form of polynomials of incomplete third order. Brands were determined for compressive strength according to GOST 23558-94 and variants of stabilized soils were proposed for road construction.

  16. Metal redistribution by surface casting of four earthworm species in sandy and loamy clay soils.

    NARCIS (Netherlands)

    Zorn, M.I.; van Gestel, C.A.M.; Eijsackers, H.J.P.

    2008-01-01

    Bioturbation of metal contaminated soils contributes considerably to redistribution and surfacing of contaminated soil from deeper layers. To experimentally measure the contribution of Allolobophora chlorotica, Aporrectodea caliginosa, Lumbricus rubellus and L. terrestris to soil surface casting, a

  17. Rapid Stabilization/Polymerization of Wet Clay Soils; Literature Review

    Science.gov (United States)

    2009-01-15

    Fibre Reinforced Soil." Journal of the Institu- tion of Engineers ( India ), Civil Engineering Division, 83, 135-138. 57. Gow, A. J., Davidson, D. T., and...the Institution of Engineers ( India ) Publication Date: 2002 Purpose of Stabilizer: Stabilizer - Earth Structures Stabilizers Tested: Coir...Purpose of Stabilizer: Stabilizer - Swell potential Stabilizers Tested: Gypsum, lignite , flyash, lime, slime tailings Soil Tested USCS Primary

  18. Seasonal variations measured by TDR and GPR on an anthropogenic sandy soil and the implications for utility detection

    Science.gov (United States)

    Curioni, Giulio; Chapman, David N.; Metje, Nicole

    2017-06-01

    The electromagnetic (EM) soil properties are dynamic variables that can change considerably over time, and they fundamentally affect the performance of Ground Penetrating Radar (GPR). However, long-term field studies are remarkably rare and records of the EM soil properties and their seasonal variation are largely absent from the literature. This research explores the extent of the seasonal variation of the apparent permittivity (Ka) and bulk electrical conductivity (BEC) measured by Time Domain Reflectometry (TDR) and their impact on GPR results, with a particularly important application to utility detection. A bespoke TDR field monitoring station was specifically developed and installed in an anthropogenic sandy soil in the UK for 22 months. The relationship between the temporal variation of the EM soil properties and GPR performance has been qualitatively assessed, highlighting notably degradation of the GPR images during wet periods and a few days after significant rainfall events following dry periods. Significantly, it was shown that by assuming arbitrary average values (i.e. not extreme values) of Ka and BEC which do not often reflect the typical conditions of the soil, it can lead to significant inaccuracies in the estimation of the depth of buried targets, with errors potentially up to approximately 30% even over a depth of 0.50 m (where GPR is expected to be most accurate). It is therefore recommended to measure or assess the soil conditions during GPR surveys, and if this is not possible to use typical wet and dry Ka values reported in the literature for the soil expected at the site, to improve confidence in estimations of target depths.

  19. Deep Soil Recharge in Arid and Semi-Arid Regions: New Evidences in MU-US Sandy Land of China

    Science.gov (United States)

    Cheng, Y.; Yang, W.; Zhan, H.

    2017-12-01

    Precipitation induced recharge is an important source of groundwater budget but it is very difficult to quantify in arid and semiarid regions. In this study, a newly invented lysimeter was used to monitor deep soil recharge (DSR) under 200 cm depth in MU-US sandy land in western China under three kinds of landforms (mobile dune, semi-fixed dune, and fixed dune). We found that the annual DSRs in such three different kinds of landforms varied significantly. Specifically, the annual DSRs were 224.1 mm (50.5% of the annual precipitation), 71.1 mm (50.5% of the annual precipitation), and 1.3 mm (0.3% of the annual precipitation) in mobile dune, semi-fixed dune, and fixed dune, respectively. We also found that vegetation coverage and precipitation pattern significantly affected DSR. A 24-hr precipitation event with the precipitation amount greater than 8 mm was able to infiltrate soil deeper than 200 cm and contributed to ground water recharge directly. Vegetation was a dominant factor influencing infiltration in the fixed sand dune. Our research revealed that precipitation induced DSR in arid and semi-arid regions was a complex process that required long-term monitoring and innovative system analysis of interrelated factors such as precipitation strength and pattern, meteorological parameters, and dynamic soil moisture. Key words: Precipitation pattern, sand dune groundwater, deep soil recharge, infiltration.

  20. Lead and cadmium interactions in Cynodon nlemfuensis and sandy soil subjected to treated wastewater application under greenhouse conditions

    Science.gov (United States)

    Madyiwa, Simon; Chimbari, Moses John; Schutte, Frederik

    Pb and Cd are known to influence each other’s uptake by some plants when the two metals exist in the soil in significant amounts. This influence may be beneficial if it reduces uptake of metal by plants but may be detrimental if it increases uptake of the metal. This study was carried out to investigate the interaction of Pb and Cd in sandy soils and Cynodon nlemfluensis (star grass). Star grass was grown under greenhouse conditions in 33 fertilized pots containing sandy soils. Three weeks after planting the grass the pots were randomly assigned to the following treatments replicated three times; (a) application of three varying concentrations of Pb or Cd in addition to effluent and sludge, (b) application of three varying concentrations of combined Pb and Cd in addition to effluent and sludge, (c) application of water and (d) application of only effluent and sludge. Analysis of grass samples was done 45 and 90 days after addition of Pb and Cd to pots and that of the soil was done 90 days after addition of Pb and Cd to pots. The log normal mean level (in mg/kg) of Pb detected in the soil was 1.75 and that of Cd was 0.057 in mixed treatments while for single treatments the levels were 1.67 for Pb and 0.03 for Cd. The presence of Cd in the soil had no effect on the bio-available level of Pb but Pb significantly ( p < 0.05) increased the bio-available concentration of Cd. The log normal mean levels of Pb in grass re-growth from mixed treatment was 1.68 and that of Cd was 0.57 while the values for single treatments were 1.47 for Pb and 0.31 for Cd. There was no significant change in the level of uptake of Pb between single treatments and mixed treatments. However, Pb significantly increased uptake of Cd in mixed treatments compared to single treatments ( p < 0.05). The results of this study indicate that co-presence of Pb and Cd may have the detrimental effect of increasing uptake of Cd in star grass.

  1. Overall assessment of soil quality on humid sandy loams: Effects of location, rotation and tillage

    DEFF Research Database (Denmark)

    Abdollahi, Lotfollah; Hansen, Elly Møller; Rickson, J.M.

    2015-01-01

    Conservation tillage and diversified crop rotations have been suggested as appropriate alternative soil management systems to sustain soil quality. The purpose of this study was to quantify the effect of implementing three crop rotations (R2–R4) on soil structural changes and the “productivity...... function” of soil. R2 is a winter-dominated crop rotation (winter wheat was the main crop) with straw residues incorporated. R3 is a mix of winter and spring crops with straw residues removed. R4 is the same mix of crops as in R3, but with straw residues incorporated. Three tillage systems were used...... the correlation between the soil quality indices and relative crop yield. Relevant soil properties for calculating the soil quality indices were measured or obtained from previous publications. Crop rotation affected the soil structure and RY. The winter-dominated crop rotation (R2) resulted in the poorest soil...

  2. Bio-chemical properties of sandy calcareous soil treated with rice straw-based hydrogels

    Directory of Open Access Journals (Sweden)

    Houssni El-Saied

    2016-06-01

    The results obtained show that, application of the investigated hydrogels positively affects bio-chemical properties of the soil. These effects are assembled in the following: (a slightly decreasing soil pH, (b increasing cation exchange capacity (CEC of the soil indicating improvement in activating chemical reactions in the soil, (c increasing organic matter (OM, organic carbon, total nitrogen percent in the soil. Because the increase in organic nitrogen surpassed that in organic carbon, a narrower CN ratio of treated soils was obtained. This indicated the mineralization of nitrogen compounds and hence the possibility to save and provide available forms of N to growing plants, (d increasing available N, P and K in treated soil, and (e improving biological activity of the soil expressed as total count of bacteria and counts of Azotobacter sp., phosphate dissolving bacteria (PDB, fungi and actinomycetes/g soil as well as the activity of both dehydrogenase and phosphatase.

  3. Micromorphological characteristics of sandy forest soils recently impacted by wildfires in Russia

    Science.gov (United States)

    Maksimova, Ekaterina; Abakumov, Evgeny

    2017-04-01

    Two fire-affected soils were studied using micromorphological methods. The objective of the paper is to assess and compare fire effects on the micropedological organisation of soils in a forest-steppe zone of central Russia (Volga Basin, Togliatti city). Samples were collected in the green zone of Togliatti city. The results showed that both soils were rich in quartz and feldspar. Mica was highly present in soils affected by surface fires, while calcium carbonates were identified in the soils affected by crown fires. The type of plasma is humus-clay, but the soil assemblage is plasma-silt with a prevalence of silt. Angular and subangular grains are the most dominant soil particulates. No evidence of intensive weathering was detected. There was a decrease in the porosity of soils affected by fires as a consequence of soil pores filled with ash and charcoal.

  4. Method of strengthening and stabilizing compressible soils

    Energy Technology Data Exchange (ETDEWEB)

    Casagrande, L.; Loughney, R.W.

    1968-06-04

    A method and means are described for stabilizing soil, consisting essentially of spacing holes about an area of the soil which is to be strengthened and stabilized. Each hole has placed therein a pipe which may be of approximately 2 to 4 in. in diam. Each pipe is provided with an expandable member capable of being expanded to a diameter of several feet. After the pipe with the expandable member fixed to it is placed in the hole, sand is placed around it, filling the sapce between the exterior walls of the expandable member and the walls of the hole, thus forming a sand drain. Thereafter the expandable member is put under pressure and expanded against the walls of the hole, placing pressure upon the soil and causing the water to be drained therefrom into the sand drains through which it rises to the surface and many be disposed of. (14 claims)

  5. Effect of Three Types of Exogenous Organic Carbon on Soil Organic Matter and Physical Properties of a Sandy Technosol

    Directory of Open Access Journals (Sweden)

    Paul Robin

    2018-04-01

    Full Text Available Technosols made by covering agricultural soils with coastal sediments need additional organic matter (OM to be suitable for agricultural use. Climate change will likely increase the frequency and intensity of droughts in several areas. The choice of the nature and quantity of OM to add depends on dose-response curves for soil quality. This study quantifies the influence of three contrasting organic materials (vermicompost (VF, green waste compost (GWC and dairy manure (DM on four soil properties: soil organic carbon, evaporation rate, bulk density and structural stability. Soil was sampled in April and May 2014 in an artificial crop field of the vegetable production basin of Mont Saint-Michel (France made with sediments from the bay of Mont Saint-Michel in 2013. Increasing the dose of OM increased soil organic carbon from 10 to 45 g C kg−1 dry soil and increased the porosity and the structural stability, thus decreasing compaction. Increasing the dose of OM also decreased the evaporation rate. VF and DM had similar effects, while those of GWC were weaker. Compared to DM, VF had greater biological stability. Therefore, high OM inputs along with soil decompaction can increase drought resistance by increasing rooting depth and water retention.

  6. Structure stability and water retention near saturation characteristics as affected by soil texture, and polyacrylamide concentration

    Science.gov (United States)

    Mamedov, Amrakh I.; Ekberli, Imanverdi A.; Ozturk, Hasan S.; Wagner, Larry E.; Norton, Darrell L.; Levy, Guy J.

    2017-04-01

    Studying the effects of soil properties and amendment application on soil structure stability is important for the development of effective soil management and conservation practices for sustaining semi-arid soil and water quality under climate change scenarios. Two sets of experiments were conducted to evaluate the effects of soil texture and soil amendment polyacrylamide (PAM) rate on soil structural stability expressed in terms of near saturation soil water retention and aggregate stability using the high energy (0-5 J kg-1) moisture characteristic (HEMC) method. Contribution of (i) soil type were assessed using 30 soil samples varying in texture from sandy to clay taken from long term cultivated lands, covering a range of crop and land management practices, and (ii) anionic PAM concentration (0, 10, 25, 50, 100 & 200 mg l-1) were tested on selected loam and clay soils. The water retention curves of slow and fast wetted soil samples were characterized by a modified van Genuchten (1980) model that provides (i) model parameters α and n, which represent the location of the inflection point and the steepness of the S-shaped water retention curves, and (ii) a composite soil structure index (SI =VDP/MS; VDP-volume of drainable pores, MS-modal suction). The studied treatments had, generally, considerable effects on the shape of the water retention curves (α and n). Soil type, PAM concentration and their interaction had significantly effects on the stability indices (SI, VDP and MS) and the model parameters (α and n). The SI and α increased, and ndecreased exponentially with the increase in soil clay content and PAM concentration, but the shape of curves were soil texture and management dependent, since predominant changes were observed in the various range of studied macropores (pore size > 60 μm). An exponential type of relationship existed between SI and α and n. Effect of PAM contribution and wetting condition was more pronounced in the loam soil at low PAM

  7. Effects of grazing strategy on limiting nitrate leaching in grazed grass-clover pastures on coarse sandy soil

    DEFF Research Database (Denmark)

    Hansen, Elly Møller; Eriksen, Jørgen; Søegaard, Karen

    2012-01-01

    Urinations of ruminants on grazed pastures increase the risk of nitrate leaching. The study investigated the effect of reducing the length of the grazing season on nitrate leaching from a coarse sandy, irrigated soil during 2006–2007 and 2007–2008. In both years, precipitation was above the long...... concentrations of 23, 19 and 13 mg/L for an estimated proportion area occupied by urine patches of 0.33, 0.26 and 0.16, respectively. Thus, N concentrations in G and CG exceeded the EU limit of 11.3 mg N/L. Under the prevailing conditions, the time of urination did not appear important. The estimated background...

  8. Straw gasification biochar increases plant available water capacity and plant growth in coarse sandy soil

    DEFF Research Database (Denmark)

    Hansen, Veronika; Hauggaard-Nielsen, Henrik; Petersen, Carsten Tilbæk

    Gasification biochar (GB) contains recalcitrant carbon that can contribute to soil carbon sequestration and soil quality improvement. However, the impact of GB on plant available water capacity (AWC) and plant growth in diverse soil types needs further reserach. A pot experiment with spring barley...

  9. Chemical speciation of heavy metals in sandy soils in relation to availability and mobility

    NARCIS (Netherlands)

    Temminghoff, E.J.M.

    1998-01-01

    The environmental risk of heavy metals which are present in soil at a certain total content is highly dependent on soil properties. Chemical speciation is a comprehensive term for the distribution of heavy metals over all possible chemical forms (species) in soil solution and in the solid

  10. Soil stabilization linked to plant diversity and environmental context in coastal wetlands.

    Science.gov (United States)

    Ford, Hilary; Garbutt, Angus; Ladd, Cai; Malarkey, Jonathan; Skov, Martin W

    2016-03-01

    Plants play a pivotal role in soil stabilization, with above-ground vegetation and roots combining to physically protect soil against erosion. It is possible that diverse plant communities boost root biomass, with knock-on positive effects for soil stability, but these relationships are yet to be disentangled. We hypothesize that soil erosion rates fall with increased plant species richness, and test explicitly how closely root biomass is associated with plant diversity. We tested this hypothesis in salt marsh grasslands, dynamic ecosystems with a key role in flood protection. Using step-wise regression, the influences of biotic (e.g. plant diversity) and abiotic variables on root biomass and soil stability were determined for salt marshes with two contrasting soil types: erosion-resistant clay (Essex, southeast UK) and erosion-prone sand (Morecambe Bay, northwest UK). A total of 132 (30-cm depth) cores of natural marsh were extracted and exposed to lateral erosion by water in a re-circulating flume. Soil erosion rates fell with increased plant species richness ( R 2  = 0.55), when richness was modelled as a single explanatory variable, but was more important in erosion-prone ( R 2  = 0.44) than erosion-resistant ( R 2  = 0.18) regions. As plant species richness increased from two to nine species·m -2 , the coefficient of variation in soil erosion rate decreased significantly ( R 2  = 0.92). Plant species richness was a significant predictor of root biomass ( R 2  = 0.22). Step-wise regression showed that five key variables accounted for 80% of variation in soil erosion rate across regions. Clay-silt fraction and soil carbon stock were linked to lower rates, contributing 24% and 31%, respectively, to variation in erosion rate. In regional analysis, abiotic factors declined in importance, with root biomass explaining 25% of variation. Plant diversity explained 12% of variation in the erosion-prone sandy region. Our study indicates that soil stabilization

  11. Effect of Rice Husk Ash on Soil Stabilization

    OpenAIRE

    Muhammad Qasim; Aroj Bashir; Mubashar Tanvir; Malik Muhammad Anees

    2015-01-01

    The soil frequently is fragile and has low stability in heavy loading. The objective of this study is to review the stabilization of soil using sustainable methods. Some strengthening approaches are available for stabilization of expansive soils. These methods consist of stabilization with soil replacement, chemical additives, moisture control, rewetting, surcharge loading, compaction control and thermal methods. The disadvantages may be associated with all these methods due to ineffectivenes...

  12. The Effects of Land Configuration and Wood-Shavings Mulch on the Properties of a Sandy Loam Soil in Northeast Nigeria. 2. Changes in Physical Properties

    Directory of Open Access Journals (Sweden)

    Chiroma, AM.

    2006-01-01

    Full Text Available Mulching and ridge tillage are proven technologies for improving soil productivity in semi-arid regions. Yet data quantifying the combined influences of these practices are limited. Our objectives were to determine the changes in selected physical properties of a sandy loam after 4-years of annual tillage and wood-shavings mulching. The tillage and wood-shavings treatments consisted of: Flat bed (FB, Open ridge (OR, Tiedridge (TR, FBM, ORM and TRM were same as FB, OR and TR, respectively except that wood-shavings at a rate of 10 t/ha were surface applied ≈ 2 weeks after sowing each year to serve as both a mulch and an organic amendment. At the end of the trial in 2002, bulk density, penetration resistance, total porosity and soil water content from each of 0-0.075, 0.075-0.15 and 0.15-0.30 m depths were determined. Composite samples from the surface (0.075 and 0.075-0.15 m layers from 3 replicates of each treatment were also collected for the determination of wet aggregate stability and from 0-0.15 m and 0.15-0.30 m layers for determination of saturated hydraulic conductivity (Ksat. After 4 years of annual tillage and addition of woodshavings, soil bulk density and penetration resistance were consistently lower and total porosity higher in the FBM, ORM and TRM treatments than in the FB, OR and TR treatments. Penetration resistance in all treatments was strongly related to soil water content. A 'hoe pan' was established below 0.15 m depth beneath the furrows of the ridged treatments. This could be attributed to human traffic during field operations and ponding of water, which occurred in the furrows following heavy rains. Wet aggregate stability estimated as the proportion of aggregates of size > 0.25 mm (macro-aggregates in the 0-0.15 m layer were significantly (P< 0.05 higher under FBM, ORM and TRM than under FB, OR or TR treatments. Ksat was not influenced by either tillage or wood-shavings treatments but were higher for the mulched plots

  13. Seed Burial Depth and Soil Water Content Affect Seedling Emergence and Growth of Ulmus pumila var. sabulosa in the Horqin Sandy Land

    Directory of Open Access Journals (Sweden)

    Jiao Tang

    2016-01-01

    Full Text Available We investigated the effects of seed burial depth and soil water content on seedling emergence and growth of Ulmus pumila var. sabulosa (sandy elm, an important native tree species distributed over the European-Asian steppe. Experimental sand burial depths in the soil were 0.5, 1.0, 1.5, 2.0 and 2.5 cm, and soil water contents were 4%, 8%, 12% and 16% of field capacity. All two-way ANOVA (five sand burial depths and four soil water contents results showed that seed burial depths, soil water content and their interactions significantly affected all the studied plant variables. Most of the times, seedling emergence conditions were greater at the lower sand burial depths (less than 1.0 cm than at the higher (more than 1.0 cm seed burial depths, and at the lower water content (less than 12% than at the higher soil water content. However, high seed burial depths (more than 1.5 cm or low soil water content (less than 12% reduced seedling growth or change in the root/shoot biomass ratios. In conclusion, the most suitable range of sand burial was from 0.5 to 1.0 cm soil depth and soil water content was about 12%, respectively, for the processes of seedling emergence and growth. These findings indicate that seeds of the sandy elm should be kept at rather shallow soil depths, and water should be added up to 12% of soil capacity when conducting elm planting and management. Our findings could help to create a more appropriate sandy elm cultivation and understand sparse elm woodland recruitment failures in arid and semi-arid regions.

  14. Transition from Brittle Failure to Ductile Flow in a Sandy Soil | Gitau ...

    African Journals Online (AJOL)

    Mechanical properties and deviatoric stress-strain relationships of the soil were also established. The specimens were prepared under laboratory conditions where the inter-particle cementation bonds were allowed to form to their natural state. An unsaturated soil mechanics approach was used to define critical state ...

  15. A field wind tunnel study of fine dust emissions in sandy soils

    Science.gov (United States)

    A portable field wind tunnel has been developed to allow measurements of dust emissions from soil surfaces to test the premise that dust concentration and properties are highly correlated with surface soil properties, as modified by crop management system. In this study, we report on the effect of ...

  16. Biodegradation of Jet Fuel in Vented Columns of Water-Unsaturated Sandy Soil

    Science.gov (United States)

    1990-01-01

    photodegradation , volatilization and microbial degradation; however, microbial degradation is the most significant process by which many pesticides are degraded...Biodegradation . 12 Soil Water Content and Pesticide Biodegradation ... ............. . 16 Aeration . . . . . . ................. 18 Soil Venting and... Pesticide Biodegradation While petroleum hydrocarbons and pesticides may differ considerably in chemical composition and structure, they share at least

  17. Phosphorus movement and speciation in a sandy soil profile after long-term animal manure applications

    NARCIS (Netherlands)

    Koopmans, G.F.; Chardon, W.J.; McDowell, R.W.

    2007-01-01

    Long-term application of phosphorus (P) with animal manure in amounts exceeding removal with crops leads to buildup of P in soil and to increasing risk of P loss to surface water and eutrophication. In most manures, the majority of P is held within inorganic forms, but in soil leachates organic P

  18. Enhancing crude oil degradation in a sandy soil: Effects of addition ...

    African Journals Online (AJOL)

    Natural restoration of crude oil polluted soils takes a long time, hence various soil treatments have been used to hasten the process. This study investigated the effects of the addition of poultry manure alone and in combination with surfactant (Goldcrew or Corexit) and/or alternate carbon substrate (glucose or starch) on ...

  19. Reduced nitrogen leaching by intercropping maize with red fescue on sandy soils in North Europe

    DEFF Research Database (Denmark)

    Manevski, Kiril; Børgesen, Christen Duus; Andersen, Mathias Neumann

    2015-01-01

    Aim To study maize (Zea mays L.) growth and soil nitrogen (N) dynamics in monocrop and intercropped systems in a North European climate and soil conditions with the support of a simulation model. Methods Field data for 3 years at two sites/soil types in Denmark and three main factors: (i) cropping...... history (maize or grass-clover), (ii) maize monocrop or intercropped with red fescue (Festuca rubra L.) and (iii) three fertilizer N rates, were used to calibrate and validate the DAISY model for simulation of crop growth and soil N dynamics. Field and model results were used to study the treatment...... N, thereby greatly reducing the N leaching. Conclusions The hypothesis that maize intercropping with fertilizer N rates applicable to monocrop maize decreases N leaching without significant yield loss was largely supported given the effect of cropping history and soil type. The applicability...

  20. Root growth of Lotus corniculatus interacts with P distribution in young sandy soil

    Directory of Open Access Journals (Sweden)

    B. Felderer

    2013-03-01

    Full Text Available Large areas of land are restored with unweathered soil substrates following mining activities in eastern Germany and elsewhere. In the initial stages of colonization of such land by vegetation, plant roots may become key agents in generating soil formation patterns by introducing gradients in chemical and physical soil properties. On the other hand, such patterns may be influenced by root growth responses to pre-existing substrate heterogeneities. In particular, the roots of many plants were found to preferentially proliferate into nutrient-rich patches. Phosphorus (P is of primary interest in this respect because its availability is often low in unweathered soils, limiting especially the growth of leguminous plants. However, leguminous plants occur frequently among the pioneer plant species on such soils, as they only depend on atmospheric nitrogen (N fixation as N source. In this study we investigated the relationship between root growth allocation of the legume Lotus corniculatus and soil P distribution on recently restored land. As test sites, the experimental Chicken Creek Catchment (CCC in eastern Germany and a nearby experimental site (ES with the same soil substrate were used. We established two experiments with constructed heterogeneity, one in the field on the experimental site and the other in a climate chamber. In addition, we conducted high-density samplings on undisturbed soil plots colonized by L. corniculatus on the ES and on the CCC. In the field experiment, we installed cylindrical ingrowth soil cores (4.5 × 10 cm with and without P fertilization around single two-month-old L. corniculatus plants. Roots showed preferential growth into the P-fertilized ingrowth-cores. Preferential root allocation was also found in the climate chamber experiment, where single L. corniculatus plants were grown in containers filled with ES soil and where a lateral portion of the containers was additionally supplied with a range of different P

  1. Root growth of Lotus corniculatus interacts with P distribution in young sandy soil

    Science.gov (United States)

    Felderer, B.; Boldt-Burisch, K. M.; Schneider, B. U.; Hüttl, R. F. J.; Schulin, R.

    2013-03-01

    Large areas of land are restored with unweathered soil substrates following mining activities in eastern Germany and elsewhere. In the initial stages of colonization of such land by vegetation, plant roots may become key agents in generating soil formation patterns by introducing gradients in chemical and physical soil properties. On the other hand, such patterns may be influenced by root growth responses to pre-existing substrate heterogeneities. In particular, the roots of many plants were found to preferentially proliferate into nutrient-rich patches. Phosphorus (P) is of primary interest in this respect because its availability is often low in unweathered soils, limiting especially the growth of leguminous plants. However, leguminous plants occur frequently among the pioneer plant species on such soils, as they only depend on atmospheric nitrogen (N) fixation as N source. In this study we investigated the relationship between root growth allocation of the legume Lotus corniculatus and soil P distribution on recently restored land. As test sites, the experimental Chicken Creek Catchment (CCC) in eastern Germany and a nearby experimental site (ES) with the same soil substrate were used. We established two experiments with constructed heterogeneity, one in the field on the experimental site and the other in a climate chamber. In addition, we conducted high-density samplings on undisturbed soil plots colonized by L. corniculatus on the ES and on the CCC. In the field experiment, we installed cylindrical ingrowth soil cores (4.5 × 10 cm) with and without P fertilization around single two-month-old L. corniculatus plants. Roots showed preferential growth into the P-fertilized ingrowth-cores. Preferential root allocation was also found in the climate chamber experiment, where single L. corniculatus plants were grown in containers filled with ES soil and where a lateral portion of the containers was additionally supplied with a range of different P concentrations. In

  2. Cumulative effects of sewage sludge and effluent mixture application on soil properties of a sandy soil under a mixture of star and kikuyu grasses in Zimbabwe

    Science.gov (United States)

    Madyiwa, S.; Chimbari, M.; Nyamangara, J.; Bangira, C.

    Although sewage effluent and sludge provides nutrients for plant growth, its continual use over extended periods can result in the accumulation of heavy metals in soils and in grass to levels that are detrimental to the food chain. This study was carried in 2001 out at Firle farm, owned by the Municipality of Harare, to assess heavy metal loading on a sandy soil and uptake of the metals by pasture grass consisting of a mixture of Cynodon nlemfuensis (star grass) and Pennisetum clandestinum Chiov (kikuyu grass) following sewage effluent and sludge application for 29 years. Firle Farm receives treated effluent and sludge emanating from domestic and industrial sources. Soil and grass samples were taken from the study area, consisting of 3 ha of non-irrigated area (control) and 1.3 ha of irrigated area. Both the soil and grass samples were tested for Cu, Zn, Ni and Pb using atomic absorption spectrophotometry. Sewage sludge addition resulted in high levels of soil pollution, especially in the 20 cm horizon, in the irrigated area when compared to the control. Grasses took up moderate levels of Cu and Zn, and limited levels of Pb. Nickel was not detectable in grasses despite high levels in the irrigated soil. Copper uptake was several times higher than the suggested potentially toxic level of 12 mg/kg [Soil Science Society of America, Micronutrients in agriculture, second ed., Wisconsin, USA, 1991]. Lead uptake averaged 1.0 mg/kg, which was below 10 mg/kg the suggested limit for agronomic crops [E.M. Seaker, Zinc, copper, cadmium and lead in minespoil, water and plants from reclaimed mine land amended with sewage sludge, 1991]. Cu and Zn showed relatively higher mobility down the soil profile than Ni and Pb. Even then, the concentrations in the lower soil layers were very small, suggesting that the metals were unlikely to contaminate groundwater. There was no direct correlation between metal levels in soils and grasses. It was postulated that it is the bio

  3. Evaluation Of Onion Production On Sandy Soils By Use Of Reduced Tillage And Controlled Traffic Farming With Wide Span Tractors

    Directory of Open Access Journals (Sweden)

    Pedersen Hans Henrik

    2015-09-01

    Full Text Available Growing of vegetables is often characterised by intensive field traffic and use of heavy machines. By implementing controlled traffic farming (CTF, compaction of the growth zone can be avoided. An experiment was established in an onion field on a coarse sandy loam. Treatments were applied in the field that for five years had been managed by seasonal CTF (SCTF, where harvest is performed by random traffic due to lack of suitable harvest machines. The main treatment was compaction with a fully loaded potato harvester. The split treatment in the crossed split plot design was mechanical loosening. Bulk density, macroporosity, penetration resistance, water retention characteristics and yield were measured. Mechanical loosening caused improvements in the physical soil measurements and more roots were found in the upper soil layers. The highest yield was however found in the CTF simulation plots (19% higher than in the SCTF simulated plots. Using wide span tractors as a harvest platform will enable CTF in vegetable production. Avoidance of compaction will enable reduced tillage intensity and productivity can be improved both through higher yield of the area that is cropped and by a larger percentage of fields can be cropped area as less area will be needed for tracks.

  4. Effect of Organic and Inorganic nitrogen Fertilizers on Salinity tolerance in Sorghum Plants Grown in sandy Soil Using N-15

    International Nuclear Information System (INIS)

    Ismail, M.M.

    2011-01-01

    A pot experiment was carried out in the green house to study the effect of compost, farmyard manure (FYM) and/or ammonium sulphate on salinity tolerance and nutrients-uptake by sorghum plants grown on sandy soil using N-15. Nitrogen was added at full dose of 100 mg N/kg soil. In general, dry matter accumulation as well as N, P and K-uptake by root and stalk of sorghum plants were significantly fluctuated between decrease and increase as influenced by the combined effect of water salinity levels and organic nitrogen source. The data showed that the application of organic sources decreased the adverse effect of salinity on dry matter yield of root and stalk of sorghum plants. The lowest dry matter yield was recorded when the plant received mineral fertilizer combined with irrigation of high concentration of diluted sea water. In the same time, root and stalk of sorghum plants were more dependent on N derived from organic sources than those derived from fertilizer. Fertilizer use efficiency (FUE %) was negatively affected by increasing water salinity levels under all treatments of organic and inorganic nitrogen fertilizer

  5. Use of Clay Deposits in Water Management of Calcareous Sandy Soils Under-surface and Sub-surface Drip Irrigation

    International Nuclear Information System (INIS)

    Al-Omran, A.; Falatah, A.; Sheta, A.; Al-Harbi, A.

    2006-01-01

    The objective of this study was to investigate the effect of irrigation (levels and methods) and type of clay deposits on lettuce yield, water use efficiency WUE and the distributions of soil moisture and salts in the root zone of sandy calcareous soils. A field experiment was conducted at the college experimental station in 2002-2003. It consists of three clay deposits, three rates (0, 1.0 and 2.0%), and four total irrigation applied water levels, 360 mm (T1), 520 mm (T2), 635 mm (T3) and 822 mm (T4), using surface and subsurface drip irrigation. Results indicated that yield was significantly increased with the increase of irrigation level, whereas WUE significantly decreased with increase of irrigation level. The average yield increased by 9.30% in a high irrigation level compared to a moderate irrigation level, and decreased by 14.2% at the more stressed irrigation level. WUE decreased by 49.0% at a moderate irrigation level and yield was significantly affected by amendment rates. The difference between surface and subsurface drip on yields and WUE were also significant. Results indicated that the moisture content of the subsurface treated layer increased dramatically, while salts were accumulated at the surface and away from the emitters in subsurface drip irrigation. The advantages of surface drip irrigation were related to the relative decrease in salt accumulation in the root zone area where the plant roots were active and the water content was relatively high. (author)

  6. Nano chitosan-NPK fertilizer enhances the growth and productivity of wheat plants grown in sandy soil

    Energy Technology Data Exchange (ETDEWEB)

    Abdel-Aziz, H.M.M.; Hasaneen, M.N.A.; Ome, A.M.

    2016-11-01

    Nanofertilizers have become a pioneer approach in agriculture research nowadays. In this paper we investigate the delivery of chitosan nanoparticles loaded with nitrogen, phosphorus and potassium (NPK) for wheat plants by foliar uptake. Chiotsan-NPK nanoparticles were easily applied to leaf surfaces and entered the stomata via gas uptake, avoiding direct interaction with soil systems. The uptake and translocation of nanoparticles inside wheat plants was investigated by transmission electron microscopy. The results revealed that nano particles were taken up and transported through phloem tissues. Treatment of wheat plants grown on sandy soil with nano chitosan-NPK fertilizer induced significant increases in harvest index, crop index and mobilization index of the determined wheat yield variables, as compared with control yield variables of wheat plants treated with normal non-fertilized and normal fertilized NPK. The life cycle of the nano-fertilized wheat plants was shorter than normal-fertilized wheat plants with the ratio of 23.5% (130 days compared with 170 days for yield production from date of sowing). Thus, accelerating plant growth and productivity by application of nanofertilizers can open new perspectives in agricultural practice. However, the response of plants to nanofertilizers varies with the type of plant species, their growth stages and nature of nanomaterials. (Author)

  7. Effect of industrial, municipal and agricultural wastes on peanut in lateritic sandy loam soil

    International Nuclear Information System (INIS)

    Sarkar, S.; Khan, A.R.

    2002-06-01

    Modern agriculture, worldwide, depends upon the external application of plant nutrients supplied mostly through chemical fertilizer to meet the crop needs. The natural recycling cannot provide the very large amount of nutrients needed year after year in an intensive cropping system and nutrients being a major constraint harvesting the nutrient energy from biological and industrial waste are of prime importance for maximizing the food grain production in the world. A number of industrial wastes like fly ash from thermal power plants, paper factory sludge from paper factory, sewage sludge from municipal source and farmyard manure from livestock farming are the important waste resources, having potentiality in recycling in agricultural land. When these wastes are recycled through soil for crop production, due to the degradative and assimilative capacity of soil, the pollution hazards of these wastes can be minimized to a greater extent as compared to direct disposing of at the site. Fly ash is a waste product residue resulting from the combustion of pulverised coal in coal-fired power generating station. Physico - chemical analysis of fly ash has revealed the presence of both macro-micro nutrients, which can sustain plant growth. Its application in the agricultural land acts as a liming material and improves crop growth by neutralizing the soil acidity, increasing the water availability for the plants and supplement of nutrients (Adriano et al, 1980, Molliner and Street, 1982, Schnappinger et al, 1975). Application of paper factory sludge has been reported to increase the organic carbon content in soil and nutrient content like P, K, Ca, Mg and micronutrients (Guerini et al, 1994, Muse and Mitchell, 1995). Sludge application also improves the organic carbon content of the soil and availability of nutrients like Ca, K and Mg besides improvement of physical properties (Pitchel and Hayes, 1990). Much is known regarding crop performance and changes in physical and

  8. Soil color indicates carbon and wetlands: developing a color-proxy for soil organic carbon and wetland boundaries on sandy coastal plains in South Africa.

    Science.gov (United States)

    Pretorius, M L; Van Huyssteen, C W; Brown, L R

    2017-10-13

    A relationship between soil organic carbon and soil color is acknowledged-albeit not a direct one. Since heightened carbon contents can be an indicator of wetlands, a quantifiable relationship between color and carbon might assist in determining wetland boundaries by rapid, field-based appraisal. The overarching aim of this initial study was to determine the potential of top soil color to indicate soil organic carbon, and by extension wetland boundaries, on a sandy coastal plain in South Africa. Data were collected from four wetland types in northern KwaZulu-Natal in South Africa. Soil samples were taken to a depth of 300 mm in three transects in each wetland type and analyzed for soil organic carbon. The matrix color was described using a Munsell soil color chart. Various color indices were correlated with soil organic carbon. The relationship between color and carbon were further elucidated using segmented quantile regression. This showed that potentially maximal carbon contents will occur at values of low color indices, and predictably minimal carbon contents will occur at values of low or high color indices. Threshold values can thus be used to make deductions such as "when the sum of dry and wet Value and Chroma values is 9 or more, carbon content will be 4.79% and less." These threshold values can then be used to differentiate between wetland and non-wetland sites with a 70 to 100% certainty. This study successfully developed a quantifiable correlation between color and carbon and showed that wetland boundaries can be determined based thereon.

  9. Seasonal variations in phosphorus fractions in semiarid sandy soils under different vegetation types

    Science.gov (United States)

    Qiong Zhao; Dehui Zeng; Zhiping Fan; Zhanyuan Yu; Yalin Hu; Jianwei Zhang

    2009-01-01

    We investigated the seasonal patterns of soil phosphorus (P) fractions under five vegetation types – Ulmus macrocarpa savanna, grassland, Pinus sylvestris var. mongolica plantation, Pinus tabulaeformis plantation, and Populus simonii plantation ...

  10. Comparative effects of application of coated and non-coated urea in clayey and sandy paddy soil microcosms examined by the 15N tracer technique. 2. Effects on soil microbial biomass N and microbial 15N immobilization

    International Nuclear Information System (INIS)

    Acquaye, Solomon; Inubushi, Kazuyuki

    2004-01-01

    Nitrogen fertilizer and soil types exert an impact on plant and soil microbial biomass (SMB). A 15 N tracer experiment was conducted to compare the effects of the application of controlled-release coated urea (CRCU) and urea on SMB in gley (clayey) and sandy paddy soils. The fertilizers were applied at the rate of 8 g N m -2 for CRCU as deep-side placement and 10 g N m -2 for urea mixed into soil or applied into floodwater. The soil type and soil layer (surface: few millimeter depth of surface soil to include benthic algae; subsurface: 1 to 20 cm depth), but not the fertilizer type, affected the amount of microbial biomass N (B N ). On an area basis, subsurface soil layers contained about 2-3 times the amount of B N in the surface layers. The seasonal average B N amount i.e. at 1 to 20 cm depth, in the gley soil was 1.67 g N m -2 , compared to 1.20 g N m -2 for the sandy soil. The proportion of B N in total soil N was significantly influenced by the soil type and soil layer, and was higher for the surface layers of both soils and subsurface layer of the sandy soil than for the subsurface layer of gley soil. Soil type, soil layer, and fertilizer type significantly influenced the amount of microbial biomass 15 N (B 15N ). Unlike B N , the amount of B 15N was significantly higher in the surface (11.9-177.3 mg N m -2 ) than in the subsurface soil layers (4.8-83.6 mg N m -2 ), especially with urea application between 60 and 120 DAT (days after transplanting). At 30 DAT, the subsurface layer of the sandy soil showed a higher B 15N (218 mg N m -2 ) amount than the surface layer (133.4 mg N m -2 ). Sandy soil (4.8-218 mg N m -2 ) and urea (6.2-218 mg N m -2 ) induced a larger increase of the amount of B 15 N than the gley soil (6.2-83.6 mg N m -2 ) and CRCU (4.8-40 mg Nm -2 ). Again, the sandy soil, surface soil layers, and urea induced a higher proportion (%) of B 15N in B N than the gley soil, subsurface soil layers, and CRCU, respectively. The soil type affected B N

  11. Analysis on soil compressibility changes of samples stabilized with lime

    Directory of Open Access Journals (Sweden)

    Elena-Andreea CALARASU

    2016-12-01

    Full Text Available In order to manage and control the stability of buildings located on difficult foundation soils, several techniques of soil stabilization were developed and applied worldwide. Taking into account the major significance of soil compressibility on construction durability and safety, the soil stabilization with a binder like lime is considered one of the most used and traditional methods. The present paper aims to assess the effect of lime content on soil geotechnical parameters, especially on compressibility ones, based on laboratory experimental tests, for several soil categories in admixture with different lime dosages. The results of this study indicate a significant improvement of stabilized soil parameters, such as compressibility and plasticity, in comparison with natural samples. The effect of lime stabilization is related to an increase of soil structure stability by increasing the bearing capacity.

  12. Isotope fractionation of sandy-soil water during evaporation - an experimental study.

    Science.gov (United States)

    Rao, Wen-Bo; Han, Liang-Feng; Tan, Hong-Bing; Wang, Shuai

    2017-06-01

    Soil samples containing water with known stable isotopic compositions were prepared. The soil water was recovered by using vacuum/heat distillation. The experiments were held under different conditions to control rates of water evaporation and water recovery. Recoveries, δ 18 O and δ 2 H values of the soil water were determined. Analyses of the data using a Rayleigh distillation model indicate that under the experimental conditions only loosely bound water is extractable in cases where the recovery is smaller than 100 %. Due to isotopic exchange between vapour and remaining water in the micro channels or capillaries of the soil matrix, isotopic fractionation may take place under near-equilibrium conditions. This causes the observed relationship between δ 2 H and δ 18 O of the extracted water samples to have a slope close to 8. The results of this study may indicate that, in arid zones when soil that initially contains water dries out, the slope of the relationship between δ 2 H and δ 18 O values should be close to 8. Thus, a smaller slope, as observed by some groundwater and soil water samples in arid zones, may be caused by evaporation of water before the water has entered the unsaturated zone.

  13. Soil Seed Bank and Plant Community Development in Passive Restoration of Degraded Sandy Grasslands

    Directory of Open Access Journals (Sweden)

    Renhui Miao

    2016-06-01

    Full Text Available To evaluate the efficacy of passive restoration on soil seed bank and vegetation recovery, we measured the species composition and density of the soil seed bank, as well as the species composition, density, coverage, and height of the extant vegetation in sites passively restored for 0, 4, 7, and 12 years (S0, S4, S7, and S12 in a degraded grassland in desert land. Compared with S0, three more species in the soil seed bank at depths of 0–30 cm and one more plant species in the community was detected in S12. Seed density within the topsoil (0–5 cm was five times higher in S12 than that in S0. Plant densities in S7 and S12 were triple and quadruple than that in S0. Plant coverage was increased by 1.5 times (S4, double (S7, and triple (S12 compared with S0. Sørensen’s index of similarity in species composition between the soil seed bank and the plant community were high (0.43–0.63, but it was lower in short-term restoration sites (S4 and S7 than that in no and long-term restoration sites (S0 and S12. The soil seed bank recovered more slowly than the plant community under passive restoration. Passive restoration is a useful method to recover the soil seed bank and vegetation in degraded grasslands.

  14. Potential of Using Nanocarbons to Stabilize Weak Soils

    OpenAIRE

    Alsharef, Jamal M. A.; Taha, Mohd Raihan; Firoozi, Ali Akbar; Govindasamy, Panbarasi

    2016-01-01

    Soil stabilization, using a variety of stabilizers, is a common method used by engineers and designers to enhance the properties of soil. The use of nanomaterials for soil stabilization is one of the most active research areas that also encompass a number of disciplines, including civil engineering and construction materials. Soils improved by nanomaterials could provide a novel, smart, and eco- and environment-friendly construction material for sustainability. In this case, carbon nanomateri...

  15. Effects of charcoal-enriched goat manure on soil fertility parameters and growth of pearl millet (Pennisetum glaucum L. in a sandy soil from northern Oman

    Directory of Open Access Journals (Sweden)

    Melanie Willich

    2016-12-01

    Full Text Available The effect of charcoal feeding on manure quality and its subsequent application to enhance soil productivity has received little attention. The objectives of the present study therefore were to investigate the effects of (i charcoal feeding on manure composition, and (ii charcoal-enriched manure application on soil fertility parameters and growth of millet (Pennisetum glaucum L.. To this end, two experiments were conducted: First, a goat feeding trial where goats were fed increasing levels of activated charcoal (AC; 0, 3, 5, 7, and 9% of total ration; second, a greenhouse pot experiment using the manure from the feeding trial as an amendment for a sandy soil from northern Oman. We measured manure C, N, P, and K concentrations, soil fertility parameters and microbial biomass indices, as well as plant yield and nutrient concentrations. Manure C concentration increased significantly (P<0.001 from 45.2% (0% AC to 60.2% (9% AC with increasing dietary AC, whereas manure N, P, and K concentrations decreased (P<0.001 from 0% AC (N: 2.5%, P: 1.5%, K: 0.8% to 9% AC (N: 1.7%, P: 0.8%, K: 0.4%. Soil organic carbon, pH, and microbial biomass N showed a response to AC-enriched manure. Yield of millet decreased slightly with AC enrichment, whereas K uptake was improved with increasing AC. We conclude that AC effects on manure quality and soil productivity depend on dosage of manure and AC, properties of AC, trial duration, and soil type.

  16. Effect of class F fly ash on fine sand compaction through soil stabilization.

    Science.gov (United States)

    Mahvash, Siavash; López-Querol, Susana; Bahadori-Jahromi, Ali

    2017-03-01

    This paper presents the results of an experimental investigation carried out to evaluate the effect of fly ash (FA) on fine sand compaction and its suitability as a material for embankments. The literature review demonstrates the lack of research on stabilization of sandy material using FA. The study is concerned with the role of FA content in stabilized soil physical characteristics. The main aim of this paper is to determine the optimum quantity of FA content for stabilization of this type of soil. This is achieved through particle size distribution and compaction (standard proctor) tests. The sand was stabilized with three proportions of FA (5%, 10% and 15%) and constant cement content of 3% was used as an activator. For better comparison, the sand was also stabilized by 3% cement only so that the effect of FA could be observed more clearly. The results were in line with the literature for other types of soil, i.e. as the % of FA increases, reduction in maximum dry density and higher optimum moisture content were observed.

  17. Effect of organic amendments on nitrate leaching mitigation in a sandy loam soil of Shkodra district, Albania

    Directory of Open Access Journals (Sweden)

    Erdona Demiraj

    2018-03-01

    Full Text Available European lacustrine systems are frequently exposed to nitrate (NO3– pollution causing eutrophication processes. An example of these lakes is Shkodra Lake, a large, shallow lake shared by Albania and Montenegro, in the Balkans Peninsula. Shkodra Lake is a natural sink that collects NO3– from agricultural activities, widely diffused in the surrounding area. The additions of wheat straw and biochar have been suggested to increase soil NO3– retention of agricultural lands. To better understand the role of these two organic soil amendments in mitigating NO3– leaching from arable lands, a pot experiment using a representative sandy loam soil of the Skodra Lake basin was performed. More specifically, a greenhouse experiment with Lolium multiflorum L. and Zea mays L., was carried out for three months, to evaluate the concentrations of NO3–-N in leachate and the cumulative leaching losses of NO3–-N, after wheat straw (10 Mg ha–1 and biochar (10 Mg ha–1 soil addition, under the same rate of NPK fertiliser (300 kg ha–1. The effect of the two organic amendments on nitrate retention, was evaluated according to two methods: i Soil NO3–-N leaching with distilled water; and ii Soil NO3–-N extraction with 2M KCl. The leached NO3–-N and the Potentially Leachable NO3–-N (2M KCl extraction were respectively determined. N uptake by plants, as well as the Nitrogen Use Efficiency were also calculated. A retention effect on nitrate was found in Lolium multiflorum L. and wheat straw treatments compared to control, by reducing leached NO3–-N almost to 35%. In SBFL (soil+biochar+fertiliser+Lolium treatment, biochar effectively reduced the total amount of nitrate in leachate of 27% and 26% compared to SFL (soil+fertiliser+Lolium and SSFL (soil+straw+fertiliser+Lolium treatments, respectively. The potentially leachable NO3–-N was two to four times higher than the leached NO3–-N. The amount of potentially leachable NO3–-N per hectare ranged

  18. Numerical Study on Soil Arching Effects of Stabilizing Piles

    OpenAIRE

    Fan, Fusong; Chen, Guangqi; Hu, Xinli; Wang, Wei

    2015-01-01

    The Soil arching effect, the transfer of soil pressure from the yielding soil to the piles support, is a phenomena commonly encountered in geotechnical engineering for stabilizing landslides. In this paper, the (finite element method) FEM and (discontinuous deformation analysis) DDA were used to study on the soil arching effects of stabilizing piles in landslides. This paper proposes a method for two dimensional numerical simulation to perform three dimensional soil-pile interaction so that t...

  19. Crop residues as driver for N2O emissions from a sandy loam soil

    DEFF Research Database (Denmark)

    Pugesgaard, Siri; Petersen, Søren O.; Chirinda, Ngonidzashe

    2017-01-01

    -term experiment on a loamy sand soil at Foulum in Denmark. All cropping systems included winter wheat, a leguminous crop (faba bean or grass-clover), potato and spring barley grown in different 4-crop rotations varying in strategies for N supply (fertilizer/manure type and rate, use of catch crops and green...

  20. Towards improved nitrogen management in silage maize production on sandy soils

    NARCIS (Netherlands)

    Schroeder, J.

    1998-01-01

    Maize has become a highly appreciated crop in Dutch dairy farming during the last 25 years. The current cropping technique, however, is associated with a low recovery of soil mineral nitrogen (N) and serious losses of N to the environment. This gave rise to the research described in this

  1. Cleansing of sandy soils using attrition; Depollution de sols sablonneux par attrition

    Energy Technology Data Exchange (ETDEWEB)

    Schriker, H. Tiefel [A.K.W. Apparate und Verfahren, Hirschau (Germany); Neesse, T. [Universite d' Erlangen-Nuremberg (Germany)

    2001-03-01

    The attrition process used in soil cleansing has been improved thanks to a combination with classification, dosimetry and integrated measurement processes in order to ensure a constant concentration of solids. Tests have been successfully performed on quartz sands contaminated with mineral oil. Abstract only. (J.S.)

  2. Aeolian sediment mass fluxes on a sandy soil in Central Patagonia

    NARCIS (Netherlands)

    Sterk, G.; Parigiani, J.; Cittadini, E.; Peters, P.; Scholberg, J.; Peri, P.

    2012-01-01

    The climate of Patagonia is semi-arid and characterised by frequent strong winds. Wind erosion is potentially a serious soil degradation process that impacts long-term sustainability of local agricultural systems, but the conditions and the rates of wind erosion in this region have not been

  3. Altered humin compositions under organic and inorganic fertilization on an intensively cultivated sandy loam soil

    Science.gov (United States)

    Humin is the largest and also the least understood fraction of soil organic matter. The humin structure and its correlation with microbiological properties are particularly uncertain. We applied advanced solid-state 13C nuclear magnetic resonance (NMR) spectroscopy to investigate the structural chan...

  4. Complexation with dissolved organic matter and solubility control of heavy metals in sandy soil

    NARCIS (Netherlands)

    Weng, L.; Temminghoff, E.J.M.; Lofts, S.; Tipping, E.; Riemsdijk, van W.H.

    2002-01-01

    The complexation of heavy metals with dissolved organic matter (DOM) in the environment influences the solubility and mobility of these metals. In this paper, we measured the complexation of Cu, Cd, Zn, Ni, and Pb with DOM in the soil solution at pH 3.7-6.1 using a Donnan membrane technique. The

  5. Axial compressive bearing capacity of piles in oil-contaminated sandy soil using FCV

    NARCIS (Netherlands)

    Mohammadi, Amirhossein; Ebadi, Taghi; Eslami, Abolfazl; Zee, van der S.E.A.T.M.

    2018-01-01

    Oil and its derivatives contaminate many soils and not only affect their chemical and biological properties but also their geotechnical properties. As oil contamination may deteriorate the functioning of piles, this paper addresses the effects of oil contamination on soil–pile interactions. Axial

  6. Conservation agriculture improves yield and reduces weeding activity in sandy soils of Cambodia

    Science.gov (United States)

    Intensive tillage in many less-developed countries, including Cambodia have caused significant decline in agriculture’s natural resources and sustainability. With limited available data, long-term conventional tillage system (CT) and conservation agriculture system (CA) can affect changes in soil pr...

  7. Origin and fate of organic matter in sandy soils along a primary vegetation succession

    NARCIS (Netherlands)

    Nierop, K.

    1999-01-01

    Until now little is known about the role vegetation plays in the organic matter formation, particularly at the molecular level. Most ecosystems have a long history, which is unknown or too complex to find distinct relations between vegetation and the chemical composition of soil organic

  8. The influence of clay particles on the hydraulic conductivity of sandy soils

    NARCIS (Netherlands)

    Fahmy, M.I.

    1961-01-01

    The relation between hydraulic conductivity and size of the sand particles and clay content was investigated in artificial mixtures of sand and clay and in natural soils, in four different ways in the laboratory and field.

    In the artificial mixtures coarse aggregates of illitic clay hardly

  9. Growth, Yield and WUE of Drip and Sprinkler Irrigated Okra Grown On Sandy Soil Under Semi-Arid Conditions in Southeast Ghana

    DEFF Research Database (Denmark)

    Plauborg, Finn

    Vegetable production systems at the Keta sand spit, Southeast Ghana, are typically managed with excessive amounts of irrigation water and fertilizers on sandy soils with low inherent water and nutrient retention capacities. The shallow groundwater which is the primary irrigation water resource...... is prone to salinization from the Keta lagoon, the Atlantic Ocean and brackish water underneath (Kortatsi and Agyeku, 1999). To ensure the sustainability of vegetable production at the Keta spit, introduction of water saving irrigation systems and improved irrigation management schemes are important. Thus...... for the drip irrigated okra crop was 269 mm compared to 379 mm for sprinkler. By adopting drip irrigation to okra, the seasonal crop water use could be reduced close to 30 %. From the results it is concluded that on rough textured sandy soil drip irrigation with frequent weekly fertigation resulted...

  10. A Comparative Study of the Soil Fauna in forests and cultivated land on sandy soils in Suriname

    NARCIS (Netherlands)

    Drift, van der J.

    1963-01-01

    1. In the coastal area of Suriname the soil and surface fauna were studied in various types of agricultural land, and compared with the fauna in the adjacent forests. 2. In primeval forest the soil macroarthropods are less numerous than in secondary forest (Formicidae excluded). They range generally

  11. Effects of Monotypic and Binary Mixtures of Metal Oxide Nanoparticles on Microbial Growth in Sandy Soil Collected from Artificial Recharge Sites

    OpenAIRE

    Ko, Kyung-Seok; Ha, Kyoochul; Kong, In Chul

    2015-01-01

    The potential effects of monotypic and binary metal oxide nanoparticles (NPs, ZnO, NiO, Co3O4 and TiO2) on microbial growth were evaluated in sandy soil collected from artificial recharge sites. Microbial growth was assessed based on adenosine triphosphate (ATP) content, dehydrogenase activity (DHA), and viable cell counts (VCC). Microbial growth based on ATP content and VCC showed considerable differences depending on NP type and concentration, whereas DHA did not significantly change. In ge...

  12. Gas Diffusion-Derived Tortuosity Governs Saturated Hydraulic Conductivity in Sandy Soils

    DEFF Research Database (Denmark)

    Masís-Meléndez, F.; Chamindu, Deepagoda; de Jonge, Lis Wollesen

    2014-01-01

    Accurate prediction of saturated hydraulic conductivity (Ksat) is essential for the development of better distributed hydrological models and area-differentiated risk assessment of chemical leaching. The saturated hydraulic conductivity is often estimated from basic soil properties such as particle......, potential relationships between Ksat and Dp/Do were investigated. A total of 84 undisturbed soil cores were extracted from the topsoil of a field site, and Dp/Do and Ksat were measured in the laboratory. Water-induced and solids-induced tortuosity factors were obtained by applying a two-parameter Dp....../Do model to measured data, and subsequently linked to the cementation exponent of the wellestablished Revil and Cathles predictive model for saturated hydraulic conductivity. Furthermore, a two-parameter model, analogue to the Kozeny-Carman equation, was developed for the Ksat - Dp/Do relationships. All 44...

  13. Determination of Selenium Toxicity for Survival and Reproduction of Enchytraeid Worms in a Sandy Loam Soil

    Science.gov (United States)

    2016-07-01

    Environmental Protection Agency (USEPA). Ecological Soil Screening Levels for Selenium, Interim Final; OSWER Directive 9285.7-72; USEPA: Washington, DC...Toxicity Test. In Ecological Effects Test Guidelines; EPA 712-C-96-167; USEPA: Washington, DC, 1996. U.S. Environmental Protection Agency (USEPA...Higashi Teresa W.-M. Fan UNIVERSITY OF KENTUCKY Lexington, KY 40536-0305 Keith Sappington U.S. ENVIRONMENTAL PROTECTION AGENCY Washington

  14. Effects of biochar and manure amendments on water vapor sorption in a sandy loam soil

    DEFF Research Database (Denmark)

    Arthur, Emmanuel; Tuller, Markus; Moldrup, Per

    2015-01-01

    Over the last few years, the application of biochar (BC) as a soil amendment to sequester carbon and mitigate global climate change has received considerable attention. While positive effects of biochar on plant nutrition are well documented, little is known about potential impacts on the physical....... Hysteresis of the water vapor sorption isotherms increased with increasing BC application rates. Biochar age did not significantly affect vapor sorption and SSA....

  15. Phosphatase activity in sandy soil influenced by mycorrhizal and non-mycorrhizal cover crops

    Directory of Open Access Journals (Sweden)

    Alceu Kunze

    2011-06-01

    Full Text Available Cover crops may difffer in the way they affect rhizosphere microbiota nutrient dynamics. The purpose of this study was to evaluate the effect of mycorrhizal and non-mycorrhizal cover crops on soil phosphatase activity and its persistence in subsequent crops. A three-year experiment was carried out with a Typic Quartzipsamment. Treatments were winter species, either mycorrhizal black oat (Avena strigosa Schreb or the non-mycorrhizal species oilseed radish (Raphanus sativus L. var. oleiferus Metzg and corn spurry (Spergula arvensis L.. The control treatment consisted of resident vegetation (fallow in the winter season. In the summer, a mixture of pearl millet (Pennisetum americanum L. with sunnhemp (Crotalaria juncea L. or with soybean (Glycine max L. was sown in all plots. Soil cores (0-10 cm and root samples were collected in six growing seasons (winter and summer of each year. Microbial biomass P was determined by the fumigation-extraction method and phosphatase activity using p-nitrophenyl-phosphate as enzyme substrate. During the flowering stage of the winter cover crops, acid phosphatase activity was 30-35 % higher in soils with the non-mycorrhizal species oilseed radish, than in the control plots, regardless of the amount of P immobilized in microbial biomass. The values of enzyme activity were intermediate in the plots with corn spurry and black oat. Alkaline phosphatase activity was 10-fold lower and less sensitive to the treatments, despite the significant relationship between the two phosphatase activities. The effect of plant species on the soil enzyme profile continued in the subsequent periods, during the growth of mycorrhizal summer crops, after completion of the life cycle of the cover crops.

  16. NUTRIENT RETURN THROUGH LITTERFALL IN A Eucalyptus dunnii Maiden STAND IN SANDY SOIL

    Directory of Open Access Journals (Sweden)

    Aline Aparecida Ludvichak

    Full Text Available ABSTRACT In a forest stand, litterfall is primarily responsible for the retention and return of nutrients to the soil. The objective of this study was to evaluate the return of nutrients through litterfall in a stand of Eucalyptus dunnii in a Pampa biome. For quantification of litterfall, four 420-m2 installments were marked; within each one, four 0.50-m2 collection plots were distributed. For the collection of thick branches, four 7.00-m2 sub-plots were staked out. The collected litterfall was separated into leaf, twig, thick branch, and miscellany fractions for subsequent chemical analysis. The total litterfall measured was 6.99 Mg ha-1 yr-1, and comprised 61.57% leaves, 17.34% twigs, 13.83% thick branches, and 7.26% miscellany. The total amount of macronutrients in the litterfall was 160.22 kg ha-1 yr-1, and the macronutrient transfer order was the same for the leaf, twig, and thick branch fractions (Ca > N > K > Mg > S > P. The total quantity of micronutrients was 7.55 kg ha-1 yr-1, and the transfer order was Mn > Fe > B > Zn > Cu. Maintaining litterfall on the site, especially in degraded or low fertility soils like in the Pampa biome, may contribute to possible improvements in soil characteristics.

  17. In-situ hydrodynamic characterization of a soil by means of an infiltration experiment. Application to a sandy soil in the central zone of Senegal

    International Nuclear Information System (INIS)

    Haverkamp, R.; Hamon, G.; Vauclin, M.; Vachaud, G.

    1979-01-01

    A new method is presented for predicting the hydraulic conductivity curve of an unsaturated soil from the relation between effective pressure and water content and the law of cumulative infiltration. With this method, which is based on the conceptual model proposed by Mualem (1976), it is possible to determine the parameter n as a function of the type of soil by fitting the cumulative infiltration law obtained numerically by solution of the Richards equation to that obtained experimentally. This approach is tested on experimental results obtained using the internal drainage method on sandy soil in the Central Zone of Senegal. It is shown that the moisture profiles calculated with the aid of the predicted hydraulic conductivity curve are in very good agreement with the measured profiles. This method seems well suited for studying the spatial variability of hydrodynamic characteristics since it is simple to set up and precise, and a large number of experiments can be performed in a short space of time. (author)

  18. Soil manganese redox cycling in suboxic zones: Effects on soil carbon stability

    Science.gov (United States)

    Suboxic soil environments contain a disproportionately higher concentration of highly reactive free radicals relative to the surrounding soil matrix, which may have significant implications for soil organic matter cycling and stabilization. This study investigated how Mn-ozidizin...

  19. Response of corn silage (Zea mays L. to zinc fertilization on a sandy soil under field and

    Directory of Open Access Journals (Sweden)

    Saad Drissi

    2017-04-01

    Full Text Available The purpose of the experiments was to evaluate zinc (Zn fertilization effect on growth, yield and yield components of corn silage grown on a sandy soil under field and outdoor container conditions. Six rates of Zn supply (0 or control; 1.5; 3; 5; 10 and 50 mg kg−1 were tested. They were split at three different times during the growing season: (i 50% immediately after sowing, (ii 25% at 4–5 leaf stage and (iii 25% at 8–9 leaf stage. These Zn rates were applied to the soil surface as a solution of Zn sulfate (ZnSO4·7H2O. Zn deficiency symptoms appeared at an earlier stage (4–5 leaf stage as white stripes between the midrib and the margin of leaves for a Zn rate below or equal to 5 mg kg−1. Severity of these symptoms manifested more in container than in field. For both experiments, Zn supply induced a significant increase in stem height and leaf area. Furthermore, in both experiments, control plants showed a notable delay in achieving anthesis, silking, pollination and kernels maturity. The maximum shoot dry weight at harvest was recorded with Zn supply of 5 mg kg−1 in field experiment and 10 mg kg−1 in containers experiment. The shoot dry weight was especially linked to kernels dry weight. This latter was mainly enhanced through two compounds: 1000 kernels dry weight and pollination rate. On the other hand, outdoor container results can be used to help predict field plant responses to Zn except for control treatment.

  20. [Mechanisms of grass in slope erosion control in Loess sandy soil region of Northwest China].

    Science.gov (United States)

    Zhao, Chun-Hong; Gao, Jian-En; Xu, Zhen

    2013-01-01

    By adopting the method of simulated precipitation and from the viewpoint of slope hydrodynamics, in combining with the analysis of soil resistance to erosion, a quantitative study was made on the mechanisms of grass in controlling the slope erosion in the cross area of wind-water erosion in Loess Plateau of Northwest China under different combinations of rainfall intensity and slope gradient, aimed to provide basis to reveal the mechanisms of vegetation in controlling soil erosion and to select appropriate vegetation for the soil and water conservation in Loess Plateau. The grass Astragalus adsurgens with the coverage about 40% could effectively control the slope erosion. This grass had an efficiency of more than 70% in reducing sediment, and the grass root had a greater effect than grass canopy. On bare slope and on the slopes with the grass plant or only the grass root playing effect, there existed a functional relation between the flow velocity on the slopes and the rainfall intensity and slope gradient (V = DJ(0.33 i 0.5), where V is flow velocity, D is the comprehensive coefficient which varies with different underlying surfaces, i is rainfall intensity, and J is slope gradient). Both the grass root and the grass canopy could markedly decrease the flow velocity on the slopes, and increase the slope resistance, but the effect of grass root in decreasing flow velocity was greater while the effect in increasing resistance was smaller than that of grass canopy. The effect of grass root in increasing slope resistance was mainly achieved by increasing the sediment grain resistance, while the effect of canopy was mainly achieved by increasing the slope form resistance and wave resistance. The evaluation of the soil resistance to erosion by using a conceptual model of sediment generation by overland flow indicated that the critical shear stress value of bare slope and of the slopes with the grass plant or only the grass root playing effect was 0.533, 1.672 and 0

  1. Grass cover influences hydrophysical parameters and heterogeneity of water flow in a sandy soil

    Czech Academy of Sciences Publication Activity Database

    Lichner, Ľ.; Eldridge, D. J.; Schacht, K.; Zhukova, N.; Holko, L.; Šír, Miloslav; Pecho, Jozef

    2011-01-01

    Roč. 21, č. 6 (2011), s. 719-729 ISSN 1002-0160 R&D Projects: GA MŽP SP/1A6/151/07 Grant - others:Slovak Scientific Grant Agency(SK) VEGA 2/0042/11; Slovak Scientific Grant Agency(SK) VEGA 2/0073/11 Institutional research plan: CEZ:AV0Z20600510; CEZ:AV0Z30420517 Keywords : dye tracing * grassland soil * hydrophobicity * infiltration * preferential flow Subject RIV: DA - Hydrology ; Limnology Impact factor: 1.161, year: 2011

  2. Nitrogen fertilization in the growth phase of 'Chardonnay' and 'Pinot Noir' vines and nitrogen forms in sandy soil of the Pampa Biome

    Directory of Open Access Journals (Sweden)

    Felipe Lorensini

    Full Text Available ABSTRACT Information on nitrogen fertilization in growing vines is still a very limited subject, especially for crops on sandy soils in the Pampa Biome in Rio Grande do Sul, where viticulture has expanded considerably in the last decade. This study aimed to assess the impact of N doses on growth of young plants of Chardonnay and Pinot Noir vines and N forms present in sandy soil in the Pampa Biome. The experiment was conducted from October 2011 to December 2012 in a vineyard in Santana do Livramento, in Southern Rio Grande do Sul State, in soil with 82 g kg-1 clay in the 0-20 cm layer. Vines of Chardonnay and Pinot Noir varieties were subjected to applications of 0, 10, 20, 40, 60, and 80 kg N ha-1 year-1. Total N in leaves, SPAD readings, stem diameter, plant height, and dry matter of the pruned material were evaluated in two growth cycles and three times. Soil samples were collected at 0-10 and 10-20 cm depths at four crop growth stages, in which N-NH4 +, N-NO3 -, and total N were analyzed and the mineral N was calculated. The N levels applied to young vines, although they did not provide relevant changes in the N-NH4 +, N-NO3 -, and mineral N contents in the soil, were able to increase the N content in the leaves, increasing plant vigor. because the reason is that there was an increase in stem diameter, plant height, and dry matter of pruned material in most evaluation periods. These parameters suggest better growth patterns and uniformity of young grapevines with possible positive effects in anticipation of production, demonstrating the importance of nitrogen fertilization strategies to the growing vines in the sandy soil conditions of the Pampa Biome.

  3. Erosion and stability of a mine soil

    International Nuclear Information System (INIS)

    Wu, T.H.; Stadler, A.T.; Low, C.

    1996-01-01

    Mine soils developed from mine spoils commonly have a wide range of particle size. The slopes of old spoil piles usually are marked by gullies due to years of uncontrolled erosion. These characteristics raise questions about applicability of available theories and models for estimating runoff and erosion. An investigation was made to determine whether available erosion models can work for mine soils and can account for gully erosion. The investigation at an abandoned surface mine consisted of measurement of soil and sediment properties, measurement of runoff and erosion, observations of armor by rock fragments on gully floor, and calculations with available theories of sediment transport and slope stability. The results at this site suggest that (1) predictions with the ANSWERS model have about the same accuracy as those made for agricultural lands; (2) armor provided by rock fragments are temporary as they are periodically removed by debris flows; (3) detachment by rainfall impact is the primary cause of erosion on short steep slopes; and (4) a simplified method can be used for estimating erosion on such slopes

  4. Parameterization of albedo, thermal inertia, and surface roughness of desert scrub/sandy soil surface

    Science.gov (United States)

    Otterman, J.; Mccumber, M.

    1986-01-01

    Spectral albedo, A sub n, for the direct solar beam is defined as A sub n (r sub i,s, theta sub 0) = r sub i exp(-s tan theta sub 0)1-I(s) where I(s) is the integral over all reflection angles describing the interception by the absorbing plants of the flux reflected from the soil, r sub i soil reflectance, assumed Lambertian, S the projection on a vertical plane of plants per unit surface area, and theta sub 0 is the solar zenith angle. Hemispheric reflectance for the direct solar beam equals 1-I(s) times the reflectance to the zenith. The values of s of 0.1, 0.2, and 0.3 respectively quantify sparse, moderately dense, and very dense desert scrub. Thin plants are assumed to be of negligible thermal inertia, and thus directly yield the absorbed insolation to the atmosphere. Surface thermal inertia is therefore effectively reduced. The ratio of surface roughness height to plant height is parameterized for sparse, moderately dense, and very dense desert-scrub as a function of s based on data expressing the dependence of this ratio on plant silhouette.

  5. The nitrogen fertilizer utilization and nitrogen balance by winter wheat in sandy soil

    International Nuclear Information System (INIS)

    Kou Changlin; Wang Hengyu

    2003-01-01

    The effects of different fertilization stage on wheat yield, nitrogen uptake, utilization, residue, distribution and nitrogen balance were studied by potted plant experiment. The results showed that the highest yield obtained appeared in the treatment of topdressing on shooting age when 1/2 nitrogen fertilizer applied as base fertilizer. Topdressing on earning stage reached higher yield than that on regreening stage on the case of lower nitrogen applied. There was no difference between these two treatment if higher nitrogen applied. Nitrogen plant uptake in 1/2 nitrogen as topdressing treatment was significantly higher than that of all as base fertilizer, which mainly because of improved efficiency of nitrogen fertilizer. 31.7%-66.8% of residue nitrogen in soil was distributed in 0-40 cm soil layer after harvest and proportion of residue nitrogen in this layer was increased when nitrogen fertilizer applied later. However, in the treatment of all nitrogen applied as base fertilizer and topdressing on regreening stage, proportion of residue nitrogen in the subsoil was higher than topdressing in later state, which in 80-100 cm depth was even exceeded that in the topsoil

  6. evaluation of selected composted organic sources on potato plant grown in sandy soil using nuclear technique

    International Nuclear Information System (INIS)

    Moursy, A.A.A.

    2008-01-01

    the main point of this study is the evaluation of organic compost as a source of nutrient demand by potatoes cultivated in light texture soil under drip irrigation system. the composted materials either applied alone or in combination with mineral fertilizer have an effective role on potato yields and nutrients management under field scale. so, many objectives were achieved. the valuable results obtained in the present study could be summarized as follows: part one: composting experiment contains ph changes of composted materials, EC changes with time, nitrogen content in composted materials, change of c/n ratio with time, organic matter content of the composted materials, phosphorus content in composted materials,. part two: potato field experiment contains .dry matter yield, tuber dry weight, tuber yield, nutrients uptake by potato varieties,. part three contains . application of 15 N isotope dilution technique, nitrogen derived from fertilizer (Ndff), nitrogen derived from organic compost (% Ndf comp),nitrogen derived from soil (% Ndfs), fertilizer use efficiency (% FUE), 15 N recovered by potatoes.

  7. Using N-15 Technique for Assessing Organic.N Turnover in Sandy Soil

    International Nuclear Information System (INIS)

    Soliman, S.; El-Akel, E.A.; Ismail, M.M.; El-Sherbiny, E.; Awad, E.E.

    2008-01-01

    Turnover of organic-N was traced under greenhouse condition. 15 N-labelled wheat and/or soybean residues were used as organic additives which applied individually or in combinations. These residues were applied at rates of 100, 75 and 25μg N g - 1 soil. Also, labelled ammonium sulfate with 2% 15 N atom excess, was applied either alone or in combination with the plant residues, at rates of 100, 75 and 25μg N g - 1 soil as single dose after 10 days from planting. Relative positive effect of the nitrogen plant residues on N-uptake and yield components can be arranged as follows: Soybean > wheat + > soybean > wheat residues. Tracer technique indicated that the mixture of labeled residues and ammonium sulfate at rates of (*50 + 50) and (*25 + 75), was effective on dry matter and N uptake. Effect of organic and inorganic nitrogen sources on portions N derived from residue (Ndfr) and N derived from fertilizer (Ndff) to wheat could be arranged as following: ammonium sulfate > soybean > mixture > wheat. Higher 15 N recovery percentage was noticed in grains as affected by addition of soybean residues combined with ordinary ammonium sulfate at rates of (*25 + 75) and (*50 + 50), respectively

  8. Eleven years' effect of conservation practices for temperate sandy loams: II. Soil pore characteristics

    DEFF Research Database (Denmark)

    Abdollahi, Lotfallah; Munkholm, Lars Juhl

    2017-01-01

    for the first two depths (100-cm3 cores), and air permeability for the 18- to 27-cm depth (250-cm3 cores). Moldboard plowing resulted in the best soil quality at two upper depths with higher total porosity, air-filled porosity, air permeability, and gas diffusivity compared with reduced tillage. For instance...... included the tillage treatments: moldboard plowing to 20-cm depth (MP), harrowing to 8- to 10-cm depth (H) and direct drilling (D). Soil cores were taken from the topsoil (4–8, 12–16, 18–27 cm) in mid-autumn 2013 and early spring 2014. Water retention, air permeability, and gas diffusivity was determined......, the volume of pores > 30 μm was more than 0.03 m3 m-3 larger for MP than for D in spring 2014 at the 4- to 8-cm depth. At the 18- to 27-cm depth, direct drilling resulted in a better air permeability and pore continuity index (e.g., air permeability of 18.2 and 11.2 mm2 for D and MP, respectively at −10 k...

  9. Soil precompression stress, penetration resistance and crop yields in relation to differently-trafficked, temperate-region sandy loam soils

    DEFF Research Database (Denmark)

    Schjønning, Per; Lamandé, Mathieu; Munkholm, Lars Juhl

    2016-01-01

    Compaction of the subsoil due to heavy traffic in moist and wet soil is widespread in modern agriculture. The objective of this study was to quantify the effects from realistic field traffic on soil penetration resistance and barley crop yield for three Luvisols developed from glacial till...... hypothesis of 3 Mg wheel load as an upper threshold for not inducing subsoil compaction was confirmed for the tractor-trailer treatments with repeated wheel passes but not supported for the single-pass machinery. The results call for further studies of the potential for carrying high loads using wide, low......-pressure tyres by crab steering/dog-walk machinery....

  10. Impact of slurry management strategies on potential leaching of nutrients and pathogens in a sandy soil amended with cattle slurry.

    Science.gov (United States)

    Fangueiro, D; Surgy, S; Napier, V; Menaia, J; Vasconcelos, E; Coutinho, J

    2014-12-15

    For farmers, management of cattle slurry (CS) is now a priority, in order to improve the fertilizer value of the slurry and simultaneously minimize its environmental impact. Several slurry pre-treatments and soil application methods to minimize ammonia emissions are now available to farmers, but the impact of such management strategies on groundwater is still unclear. A laboratory experiment was performed over 24 days in controlled conditions, with undisturbed soil columns (sandy soil) in PVC pipes (30 cm high and 5.7 cm in diameter). The treatments considered (4 replicates) were: a control with no amendment (CTR), injection of whole CS (WSI), and surface application of: whole CS (WSS), acidified (pH 5.5) whole CS (AWSS), the liquid fraction obtained by centrifugation of CS (LFS), and acidified (pH 5.5) liquid fraction (ALFS). An amount of CS equivalent to 240 kg N ha(-1) was applied in all treatments. The first leaching event was performed 72 h after application of the treatments and then leaching events were performed weekly to give a total of four irrigation events (IEs). All the leachates obtained were analyzed for mineral and organic nitrogen, electrical conductivity (EC), pH, total carbon, and phosphorus. Total coliforms and Escherichia coli were also quantified in the leachates obtained in the first IE. The results show that both acidification and separation had significant effects on the composition of the leachates: higher NO3(-) concentrations were observed for the LFS and ALFS relative to all the other treatments, throughout the experiment, and lower NO3(-) concentrations were observed for acidified relative to non-acidified treatments at IE2. Acidification of both the LF and WS led to higher NH4(+) concentrations as well as an increase of EC for treatment ALFS relative to the control, in the first IE, and lower pH values in the AWSS. Furthermore, the E. coli and total coliform concentrations in AWSS, LFS, and ALFS were significantly higher than in

  11. Managing compost stability and amendment to soil to enhance soil heating during soil solarization.

    Science.gov (United States)

    Simmons, Christopher W; Guo, Hongyun; Claypool, Joshua T; Marshall, Megan N; Perano, Kristen M; Stapleton, James J; Vandergheynst, Jean S

    2013-05-01

    Soil solarization is a method of soil heating used to eradicate plant pathogens and weeds that involves passive solar heating of moist soil mulched (covered) with clear plastic tarp. Various types of organic matter may be incorporated into soil prior to solarization to increase biocidal activity of the treatment process. Microbial activity associated with the decomposition of soil organic matter may increase temperatures during solarization, potentially enhancing solarization efficacy. However, the level of organic matter decomposition (stability) necessary for increasing soil temperature is not well characterized, nor is it known if various amendments render the soil phytotoxic to crops following solarization. Laboratory studies and a field trial were performed to determine heat generation in soil amended with compost during solarization. Respiration was measured in amended soil samples prior to and following solarization as a function of soil depth. Additionally, phytotoxicity was estimated through measurement of germination and early growth of lettuce seedlings in greenhouse assays. Amendment of soil with 10%(g/g) compost containing 16.9 mg CO2/gdry weight organic carbon resulted in soil temperatures that were 2-4 °C higher than soil alone. Approximately 85% of total organic carbon within the amended soil was exhausted during 22 days of solarization. There was no significant difference in residual respiration with soil depth down to 17.4 cm. Although freshly amended soil proved highly inhibitory to lettuce seed germination and seedling growth, phytotoxicity was not detected in solarized amended soil after 22 days of field solarization. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Post-fire regeneration of vegetation on sandy oligotrophic soil, in Itabaiana, Sergipe, Brazil

    Directory of Open Access Journals (Sweden)

    Túlio Vinicius Paes Dantas

    2015-07-01

    Full Text Available Two models of post-disturbance regeneration of vegetation in areas of oligotrophic soils have been proposed for temperate regions. The first model is characterized by rapid recovery of the floristic composition, due to the fire resistance of plants; while in the second model, the fire causes extensive mortality and the recovery occurs by recruitment from the seed bank. Since these models have been rarely tested in tropical oligotrophic environments, we applied them in the analysis of floristic compositions in three areas with different post-fire regeneration times in Sergipe State, Brazil. The regeneration followed the seed bank recruitment model in places of bare ground, with a progressive increase in plant density and changes in the relative abundance and dominance of the populations along the successional process. The parameters that best allowed the succession evaluation were the floral similarity, plant height and density, which increased as regeneration progressed. The stem diameter and tillering were inconclusive as parameters for assessing the regeneration progress.

  13. Laboratory testing of the Monotonic behavior of partially saturated sandy soil

    Directory of Open Access Journals (Sweden)

    Della Noureddine

    2010-12-01

    Full Text Available

    This paper presents a laboratory study on the influence of the saturation evaluated in term of Skempton's pore pressur coefficientBon the behavior of Chlef sand. The study is based on drained and unnonno drained compression tests which were carried out for Skempton's pore pressure coefficient varying between 13 and 90%.The tests were conducted on medium dense sand samples having an initial relative density Id = 0.50 at an effective stress of 100 kPa. The paper is composed of two parts. The first one presents the characteristics of the sand used in this study. The second provides an analysis of the experimental results and discusses the influence of Skempton's pore pressure coefficient (B on the mechanical characteristics of the sand. The tests show that the increase in the Skempton' S pore pressure coefficient (B reduces the soil dilatancy and amplifies the phase of contractancy and reduces the frictional and characteristic angle of the sand. The residual strength decreases with the increase ininin the Skempton's pore pressure coefficient B.

  14. Wheat Yield Production Grown on Sandy Soil as Fertilized by Different N-Sources Using 15N-Technique

    International Nuclear Information System (INIS)

    Ismail, M. M.; Soliman, S. M.; El-Akel, E. A.; El-Sherbieny, A. E.; Awad, E. A. M.

    2007-01-01

    A pot experiment was carried out to evaluate the ability of some plant residues to meet total N demand of wheat crop in sandy soil and their performance to reduce chemical N fertilizer requirements. Residue-N sources, i.e. soybean and wheat residues were compared to ammonium sulfate as inorganic N source as well as mixtures of residue-N sources and (NH 4 )SO 4 in ratios of (3:1), (1:1) and (1:3), respectively. The nitrogen application rate in all amended pots was kept at 100 mg N pot -1 . The obtained results could be summarized as follows: 1) ry weight of straw and grains of wheat crop was significantly increased this at the addition of nitrogen sources as a result of N-uptake increased. The highest value was observed at the application treatment ratios of (1:1) and (1:3) on the basis of (residue: ammonium sulfate), which can be arranged in this order: Soybean > wheat + soybean > wheat residues. 2) he value of N derived from residues (Ndfr) and fertilizer (Ndff), as well as 15N -recovery ratios can be arranged in this order: Ammonium sulfate > soybean residue > Soybean + wheat residue > wheat residue. 3) he values indicated that 15N -labelled soybean residue in combination with ordinary, ammonium sulfate at the ratios of (*25: 75) and (*50: 50), respectively was found to be effective on 15N -recovery ratios in the straw and grains of wheat crop. 4) he present study indicates that the entire N requirements of wheat crop cannot be met by the separate application of any residue-N source examined.

  15. Stabilization of soil hydraulic properties under a long term no-till system

    Directory of Open Access Journals (Sweden)

    Luis Alberto Lozano

    2014-08-01

    Full Text Available The area under the no-tillage system (NT has been increasing over the last few years. Some authors indicate that stabilization of soil physical properties is reached after some years under NT while other authors debate this. The objective of this study was to determine the effect of the last crop in the rotation sequence (1st year: maize, 2nd year: soybean, 3rd year: wheat/soybean on soil pore configuration and hydraulic properties in two different soils (site 1: loam, site 2: sandy loam from the Argentinean Pampas region under long-term NT treatments in order to determine if stabilization of soil physical properties is reached apart from a specific time in the crop sequence. In addition, we compared two procedures for evaluating water-conducting macroporosities, and evaluated the efficiency of the pedotransfer function ROSETTA in estimating the parameters of the van Genuchten-Mualem (VGM model in these soils. Soil pore configuration and hydraulic properties were not stable and changed according to the crop sequence and the last crop grown in both sites. For both sites, saturated hydraulic conductivity, K0, water-conducting macroporosity, εma, and flow-weighted mean pore radius, R0ma, increased from the 1st to the 2nd year of the crop sequence, and this was attributed to the creation of water-conducting macropores by the maize roots. The VGM model adequately described the water retention curve (WRC for these soils, but not the hydraulic conductivity (K vs tension (h curve. The ROSETTA function failed in the estimation of these parameters. In summary, mean values of K0 ranged from 0.74 to 3.88 cm h-1. In studies on NT effects on soil physical properties, the crop effect must be considered.

  16. Study of the effect of the repeated incorporation of millet straw on the availability of nitrogen in a sandy tropical soil using 15N

    International Nuclear Information System (INIS)

    Guiraud, G.; Ganry, F.; Llimous, Gisele.

    1980-01-01

    In order to maintain the level of organic materials in the sandy soils of Senegal, compost was injected in these soils over a period of four consecutive years. The effects of this injection were studied by carrying out tests in pots with a nitrogen 15 labelled fertilizer. The use of compost significantly increased the amount of organic matter in the soil and led to higher yields. The nitrogen present is used by the culture, but appears to be insufficient. A proportion of this nitrogen is lost. Fertilizers still enable high yields to be maintained. The use of compost, however, enables an irreversible drop in the potential fertility of these soils over a longer term period to be avoided [fr

  17. Untangling the biological contributions to soil stability in semiarid shrublands

    Science.gov (United States)

    Chaudhary, V. Bala; Bowker, Matthew A.; O'Dell, Thomas E.; Grace, James B.; Redman, Andrea E.; Rillig, Matthias C.; Johnson, Nancy C.

    2009-01-01

    Communities of plants, biological soil crusts (BSCs), and arbuscular mycorrhizal (AM) fungi are known to influence soil stability individually, but their relative contributions, interactions, and combined effects are not well understood, particularly in arid and semiarid ecosystems. In a landscape-scale field study we quantified plant, BSC, and AM fungal communities at 216 locations along a gradient of soil stability levels in southern Utah, USA. We used multivariate modeling to examine the relative influences of plants, BSCs, and AM fungi on surface and subsurface stability in a semiarid shrubland landscape. Models were found to be congruent with the data and explained 35% of the variation in surface stability and 54% of the variation in subsurface stability. The results support several tentative conclusions. While BSCs, plants, and AM fungi all contribute to surface stability, only plants and AM fungi contribute to subsurface stability. In both surface and subsurface models, the strongest contributions to soil stability are made by biological components of the system. Biological soil crust cover was found to have the strongest direct effect on surface soil stability (0.60; controlling for other factors). Surprisingly, AM fungi appeared to influence surface soil stability (0.37), even though they are not generally considered to exist in the top few millimeters of the soil. In the subsurface model, plant cover appeared to have the strongest direct influence on soil stability (0.42); in both models, results indicate that plant cover influences soil stability both directly (controlling for other factors) and indirectly through influences on other organisms. Soil organic matter was not found to have a direct contribution to surface or subsurface stability in this system. The relative influence of AM fungi on soil stability in these semiarid shrublands was similar to that reported for a mesic tallgrass prairie. Estimates of effects that BSCs, plants, and AM fungi have

  18. Aggregate stability and soil degradation in the tropics

    International Nuclear Information System (INIS)

    Mbagwu, J.S.C.

    2004-01-01

    Aggregate stability is a measure of the structural stability of soils. Factors that influence aggregate stability are important in evaluating the ease with which soils erode by water and/or wind, the potential of soils to crust and/or seal, soil permeability, quasi-steady state infiltration rates and seedling emergence and in predicting the capacity of soils to sustain long-term crop production. Aggregate stability of soils can be measured by the wet-sieving or raindrop techniques. A reduction in soil aggregate stability implies an increase in soil degradation. Hence aggregate stability and soil degradation are interwoven. The measures used can either be preventive or remedial. Preventive practices minimize the chances of soil degradation occurring or the magnitude or severity of the damage when the degradation manifests. These include in Nigeria, (i) manuring and mulching, (ii) planted fallows and cover crops, (iii) sustainable farming systems, (iv) adequate rotations, (v) home gardens or compound farms, (vi) alley cropping and related agro forestry systems, and (vii) chemical fertilizers which are mainly remedial measures. Because of alterations in soil properties that affect particular land uses, soils may degrade for one crop (maize rather sorghum). As long as some land use is possible soil degradation is not always an absolute concept. Decline in agricultural productivity should be evaluated in terms of inputs such as fertilizer use, water management and tillage methods. We can alleviate some types of soil degradation by use of micronutrients, inorganic fertilizers and organic residues. Soil that responds to management practices cannot be said to be degraded. Since crop growth depends on weather, degraded soils may be more sensitive to harsh weather (e.g. drought, temperature) than undegraded soils. A soil is degraded if its productivity falls below the economic threshold even under favourable weather conditions or with judicious inputs. All human

  19. Geotechnical Properties of Clayey Soil Stabilized with Cement ...

    African Journals Online (AJOL)

    ADOWIE PERE

    2017-12-31

    Dec 31, 2017 ... lime and cement are the two major additives for the stabilization of soils. The cost of the materials has however ... improving additives like cement, and lime, has made the cost of road construction on stabilized soils huge. Thus .... with sugarcane straw ash. American J. Sci. Ind.Res. (2):323-331. Asiagwu, AK ...

  20. Stabilization of Highway Expansive Soils with High Loss on Ignition ...

    African Journals Online (AJOL)

    This study was carried out to evaluate the effect of high loss on ignition content cement kiln dust on the stabilization of highway expansive soils. Laboratory tests were performed on the natural and stabilized soil samples in accordance with BS 1377 (1990) and BS 1924 (1990), respectively. The preliminary investigation ...

  1. Mitigation of Water Stress on Apple Trees under Rotational Irrigation Conditions by Increasing the Application Rate of Organic Fertilizers to Sandy Soils

    Science.gov (United States)

    Hamed, Lamy Mamdoh Mohamed; Ramadan Eid, Abdelraouf; Mohsmed Rabie Abdellatif Abdelaziz, Adel; Fathy Abdelsalam Essa, El-Sayed

    2016-04-01

    Egypt, as part of Mediterranean regions, is characterized by irregular and low rainfall amount which varies between (30-150 mm.year-1), and characterized also by high temperature which increase the rate of evapotranspiration from the cultivated soil. On the other hand, New reclaimed soils are mostly occupies around 84 % of total area of Egypt, which is mainly sandy soils. These soils generally characterized by low water capacity holding, soil organic matter, and weak in nutrients retention. Under these conditions which have a great influence on crop production, there is a great needing to increase the crop water use efficiency and increasing of nutrient retention in sandy soils. In this context, two field experiments were carried out on sand soil located in north Cairo-Egypt at the experimental farm of National Research Center, El-NUBARIA, (latitude 30° 30' N, and longitude 30° 19' E). The effect of compost rates on soil hydraulic characteristics, fruit yields, quality traits, and water use efficiency and productivity of apple tree (Apple Anna Cultivar), was studied under deficit irrigation conditions. Four rates of compost [I1: control, I2: 12 ton.ha-1., I3: 24 ton.ha-1., I4: 36 ton.ha-1. and I5:48 ton.ha-1.] were applied under irrigation frequencies of (IF1 :once per week; IF2 :twice per week, IF3 :three times per week). The obtained results indicated that by increasing the application rate of compost, the available water capacity and saturated water content of sandy soil have been enhanced. In the same time, the fruit yield, quality traits and water productivity were increased by increasing the application rate of compost. It is worthy to mention that the I5IF3 treatment gave the highest values of fruit yield, quality traits and water productivity, whereas I1IF1 treatment gave the lowest values of all the above mentioned variables. As result, for apple cultivation in El-NUBARIA region, the recommended rate of compost is 48 ton.ha-1 and irrigation frequency

  2. Forms and accumulation of copper and zinc in a sandy typic hapludalf soil after long-term application of pig slurry and deep litter

    Directory of Open Access Journals (Sweden)

    Tadeu Luis Tiecher

    2013-06-01

    Full Text Available Successive applications of pig slurry and pig deep litter may lead to an accumulation of copper (Cu and zinc (Zn fractions in the soil profile. The objective of this study was to evaluate the Cu and Zn forms and accumulation in a Sandy Typic Hapludalf soil after long-term application of pig slurry and deep litter. In March 2010, eight years after initiating an experiment in Braço do Norte, Santa Catarina (SC, Brazil, on a Sandy Typic Hapludalf soil, soil samples were collected from the 0-2.5, 2.5-5.0, 5-10 and 10-15 cm layers in treatments consisting of no manure application (control and with applications of pig slurry and deep litter at two levels: the single and double rate of N requirement for maize and black oat succession. The soil was dried, ground in an agate mortar and analyzed for Cu and Zn contents by 0.01 mol L-1 EDTA and chemically fractionated to determine Cu and Zn. The applications of Pig deep litter and slurry at doses equivalent to 90 kg ha-1 N increased the contents of available Cu and Zn in the surface soil layer, if the double of this dose was applied in pig deep litter or double this dose in pig slurry, Cu and Zn migrated to a depth of 15 cm. Copper is accumulated mainly in the organic and residual fractions, and zinc preferentially in the fraction linked to clay minerals, especially in the surface soil layers.

  3. Bioavailability of selenium to forage crops in a sandy loam soil amended with Se-rich plant materials.

    Science.gov (United States)

    Dhillon, S K; Hundal, B K; Dhillon, K S

    2007-01-01

    Greenhouse experiments were conducted to study the bioavailability of selenium (Se) to sorghum (Sorghum bicolor L.), maize (Zea mays L.) and berseem (Trifolium alexandrinum L.) fodders in a sandy loam soil amended with different levels of Se-rich wheat (Triticum aestivum L.) and raya (Brassica juncea L. Czern) straw containing 53.3 and 136.7microg Seg(-1), respectively. Each of the fodder crops was grown after incorporation of Se-rich materials either individually or in a sequence - sorghum-maize-berseem by incorporating Se-rich straws only to the first crop. Application of Se-rich straws to each crop, even at the greatest rate of 1%, did not have any detrimental effect on dry matter yield of different crops. With increase in the level of wheat straw from 0% to 1%, Se content in sorghum and maize plants increased to greatest level of 1.3 and 1.5microg g(-1), respectively, at 0.3% of applied straw and thereafter it decreased consistently. In case of raya straw, the greatest Se content in sorghum (2.3microg g(-1)) and maize (3.0microg g(-1)) was recorded at 0.3% and 0.4% of the applied straw, respectively. Unlike sorghum and maize fodders, Se content in all the four cuts of berseem continued to increase with increase in the level of applied straws and for different cuts of berseem it varied from 1.6 to 2.3 and 3.4 to 4.3microg g(-1) in case of wheat and raya straw, respectively. Similar variations in Se content of different fodder crops were recorded when these were grown in the sequence - sorghum-maize-berseem; but Se content was 2-4 times lower than when each crop was grown with fresh application of Se-rich straw. None of the fodders absorbed Se in levels toxic for animal consumption (>5microg g(-1)) even at the greatest level of applied straw. Of the total Se added through Se-rich straws, utilization of Se was not more than 2% in case of sorghum and maize crops and up to 5% in case of berseem. At the time of sowing of sorghum, hot water soluble Se (HWS-Se) in

  4. Stabilization of expansive soil using bagasse ash & lime | Wubshet ...

    African Journals Online (AJOL)

    7-5 soil on the AASHTO classification was stabilized using 3% lime, 15% bagasse ash and 15% bagasse ash in combination with 3% lime by dry weight of the soil. The effect of the additives on the soil was investigated with respect to plastcity, ...

  5. Irradiated Sewage Sludge for Production of Fennel (Foeniculum vulgare L.) Plants in Sandy Soil 2- Seed production, oil content, oil constituents and heavy metals in seeds

    International Nuclear Information System (INIS)

    El-Motaium, R. A.; Abo-El-Seoud, M. A.

    2007-01-01

    Field experiment was conducted to study the impact of irradiated and non-irradiated sewage sludge applied to sandy soil on fennel plants (Foeniculum vulgare L.) productivity. In this regards, four rates of sewage sludge application were used (20, 40, 60 and 80 ton/ha) in addition to the mineral fertilizer treatment (control). Sandy soil amended with sewage sludge showed a promising effect on fennel seed yield. A linear gradual increase in seeds yield was observed as the sludge application rate increases. Seeds production increased by 41% to 308% over the control at 80 t /ha application rate, for non-irradiated and irradiated sewage sludge treatments, respectively. Irradiated sewage sludge treatments showed higher fennel seed yield than non-irradiated sewage sludge treatments.Volatile oil percent exhibited no observable variation due to the use of sewage sludge. A few and limited fluctuations could be observed. However, total oil content (cc/plot) increased due to the increase in seeds yield. The magnitude of increase in volatile oil production in response to the sewage sludge application was parallel to the increase in seeds yield. The GLC measurements of the fennel volatile oil reveal that, the t-anethole is the predominant fraction. However, fenchone was detected in relatively moderate concentration. The applied sewage sludge treatment induced some variations in fennel volatile oil constituents. The t.anethole is relatively higher in volatile oil obtained from plants grown on sandy soil fertilized with non-irradiated sewage sludge than the one fertilized with irradiated sewage sludge or chemical fertilizer. In the meantime, the obtained increase in t.anethole was accompanied by a decline in fenchone content. Seeds heavy metals (Zn, Fe, Pb, Cd) were determined. Under all sludge application rates iron and zinc concentrations were in the normal plant concentration range whereas, Cd concentrations were traces.

  6. Effect of nutrients and plant growth regulators on growth and yield of black gram in sandy loam soils of Cauvery new delta zone, India

    Directory of Open Access Journals (Sweden)

    S. Marimuthu

    2015-12-01

    Full Text Available Pulse productivity is very low in some of the sandy soil areas where, soils are having poor water and nutrient holding capacity. To improve the pulse productivity, field experiments were conducted at Agricultural Research Station, Tamil Nadu for two consecutive years to study the effect of phosphorus sources (mono- and diammonium phosphate with brassinolide and salicylic acid on growth and yield of black gram in sandy loam soils. The experiment was carried out in a randomized block design with three replications during kharif season. The treatments include 100% recommended dose of NPK along with foliar application of monoammonium phosphate (MAP, diammonium phosphate (DAP, brassinolide (0.25 ppm, and salicylic acid (100 ppm along with the combination of these treatments. TNAU pulse wonder at 5.0 kg ha−1 and TNAU micronutrient mixture (MN at 5 kg ha−1 were also tried. The results revealed that application of 100% recommended dose of NPK + DAP 2% + TNAU pulse wonder 5.0 kg ha−1 was statistically significant and recorded higher plant growth (37.62 cm, number of pods / plant (37.15, yield of black gram (1162 kg ha−1, and benefit cost ratio (2.98 over the other treatments. The lowest black gram yield (730 kg ha−1 was recorded for control.

  7. The use of volcanic ash from the eruption of Mount Kelud in East Java for improving yield of sweet potato grown on a sandy soil

    Directory of Open Access Journals (Sweden)

    H. Melsandi

    2015-07-01

    Full Text Available The purpose of this study was to explore the effect of volcanic ash from the eruption of Mount Kelud and compost on the soil properties and production of sweet potato on a sandy soil. The treatments of this study were (a a combination of and volcanic ash with the proportion of 100: 0, 90:10, 80:20, and 70:30 (% weight, (b the addition of compost (2.5 and 5 t / ha, and (c two varieties of sweet potato (Manohara and Ayamurazaki. The soil used in this study is the topsoil (0-30 cm Psament or sandy Entisol obtained from sweet potato cultivation location in Sumber Pasir Village of Pakis District, South Malang. Ten kilograms of planting medium (soil + volcanic ash for each treatment was placed in a 15 kg plastic pot. Sixteen treatments arranged in a factorial completely randomized design with three replications. The results showed that application of Mount Kelud volcanic ash and compost was able to improve soil permeability, soil pH, organic C, and K-total, but did not significantly affect total N content, available P and K total land. The highest fresh tuber weights of 373.51 g / plant or 19.92 t / ha and 393.09 g / plant or 20.96 t / ha for Manohara and Ayumurazaki varieties, respectively, were observed in the treatment of 10% volcanic ash + 5 t compost / ha. The carbohydrate content of Manohara variety was higher than that of Ayamurazaki variety at each treatment. The highest carbohydrate content of the Manohara variety (23.52% was obtained through application of 20% volcanic ash + 2.5 t compost/ha, while that of the Ayamurazaki variety (22.42% was obtained through application of 30% volcanic ash + 2.5 t/ha.

  8. Acidification of sandy grasslands - consequences for plant diversity

    DEFF Research Database (Denmark)

    Olsson, Pål Axel; Mårtensson, Linda-Maria; Bruun, Hans Henrik

    2009-01-01

    Questions: (1) Does soil acidification in calcareous sandy grasslands lead to loss of plant diversity? (2) What is the relationship between the soil content of lime and the plant availability of mineral nitrogen (N) and phosphorus (P) in sandy grasslands? Location: Sandy glaciofluvial deposits...

  9. Biochar increases plant-available water in a sandy loam soil under an aerobic rice crop system

    NARCIS (Netherlands)

    Melo Carvalho, de M.T.; Holanda Nunes Maia, de A.; Madari, B.E.; Bastiaans, L.; Oort, van P.A.J.; Heinemann, A.B.; Soler da Silva, M.A.; Petter, F.A.; Marimon-Junior, B.H.; Meinke, H.B.

    2014-01-01

    The main objective of this study was to assess the impact of biochar rate (0, 8, 16 and 32 Mg ha-1) on the water retention capacity (WRC) of a sandy loam Dystric Plinthosol. The applied biochar was a by-product of slow pyrolysis (~450 °C) of eucalyptus wood, milled to pass through a 2000 µm sieve

  10. Influence of drainage status on soil and water chemistry, litter decomposition and soil respiration in central Amazonian forests on sandy soils

    NARCIS (Netherlands)

    Berton Zanchi, F.; Waterloo, M.J.; Dolman, A.J.; Groenendijk, M.; Kruijt, B.

    2011-01-01

    Central Amazonian rainforest landscape supports a mosaic of tall terra firme rainforest and ecotone campinarana, riparian and campina forests, reflecting topography-induced variations in soil, nutrient and drainage conditions. Spatial and temporal variations in litter decomposition, soil and

  11. ENVIRONMENTAL EVALUATION FOR UTILIZATION OF ASH IN SOIL STABILIZATION

    Energy Technology Data Exchange (ETDEWEB)

    David J. Hassett; Loreal V. Heebink

    2001-08-01

    The Minnesota Pollution Control Agency (MPCA) approved the use of coal ash in soil stabilization, indicating that environmental data needed to be generated. The overall project goal is to evaluate the potential for release of constituents into the environment from ash used in soil stabilization projects. Supporting objectives are: (1) To ensure sample integrity through implementation of a sample collection, preservation, and storage protocol to avoid analyte concentration or loss. (2) To evaluate the potential of each component (ash, soil, water) of the stabilized soil to contribute to environmental release of analytes of interest. (3) To use laboratory leaching methods to evaluate the potential for release of constituents to the environment. (4) To facilitate collection of and to evaluate samples from a field runoff demonstration effort. The results of this study indicated limited mobility of the coal combustion fly ash constituents in laboratory tests and the field runoff samples. The results presented support previous work showing little to negligible impact on water quality. This and past work indicates that soil stabilization is an environmentally beneficial CCB utilization application as encouraged by the U.S. Environmental Protection Agency. This project addressed the regulatory-driven environmental aspect of fly ash use for soil stabilization, but the demonstrated engineering performance and economic advantages also indicate that the use of CCBs in soil stabilization can and should become an accepted engineering option.

  12. In situ stabilization of trace metals in a copper-contaminated soil using P-spiked Linz-Donawitz slag.

    Science.gov (United States)

    Negim, Osama; Mench, Michel; Bes, Clémence; Motelica-Heino, Mikael; Amin, Fouad; Huneau, Frédéric; Le Coustumer, Philippe

    2012-03-01

    A former wood exploitation revealing high Cu and As concentration of the soils served as a case study for assisted phytoextraction. P-spiked Linz-Donawitz (LD) slag was used as a soil additive to improve physico-chemical soil properties and in situ stabilize Cu and other trace metals in a sandy Cu-contaminated soil (630 mg kg⁻¹ soil). The LD slag was incorporated into the contaminated soil to consist four treatments: 0% (T1), 1% (T2), 2% (T3), and 4% (T4). A similar uncontaminated soil was used as a control (CTRL). After a 1-month reaction period, potted soils were used for a 2-week growth experiment with dwarf beans. Soil pH increased with the incorporation rate of LD slag. Similarly the soil electrical conductivity (EC, in millisiemens per centimetre) is ameliorated. Bean plants grown on the untreated soil (T1) showed a high phytotoxicity. All incorporation rates of LD slag increased the root and shoot dry weight yields compared to the T1. The foliar Ca concentration of beans was enhanced for all LD slag-amended soil, while the foliar Mg, K, and P concentrations were not increased. Foliar Cu, Zn, and Cr concentrations of beans decreased with the LD slag incorporation rate. P-spiked LD slag incorporation into polluted soil allow the bean growth and foliar Ca concentration, but also to reduce foliar Cu concentration below its upper critical value avoiding an excessive soil EC and Zn deficiency. This dual effect can be of interest for soil remediation at larger scale.

  13. Geometric models for lateritic soil stabilized with cement and ...

    African Journals Online (AJOL)

    . Thus this study attempted to investigate into the effects of bagasse ash on compaction and strength characteristics of cement-stabilized lateritic soil and also to develop geometric models. The compaction, California bearing ratio, unconfined ...

  14. Calcium Stabilized And Geogrid Reinforced Soil Structures In Seismic Areas

    International Nuclear Information System (INIS)

    Rimoldi, Pietro; Intra, Edoardo

    2008-01-01

    In many areas of Italy, and particularly in high seismic areas, there is no or very little availability of granular soils: hence embankments and retaining structures are often built using the locally available fine soil. For improving the geotechnical characteristics of such soils and/or for building steep faced structures, there are three possible techniques: calcium stabilization, geogrid reinforcement, and the combination of both ones, that is calcium stabilized and reinforced soil. The present paper aims to evaluate these three techniques in terms of performance, design and construction, by carrying out FEM modeling and stability analyses of the same reference embankments, made up of soil improved with each one of the three techniques, both in static and dynamic conditions. Finally two case histories are illustrated, showing the practical application of the above outlined techniques

  15. Formation and Stability of Microbially Derived Soil Organic Matter

    Science.gov (United States)

    Waldrop, M. P.; Creamer, C.; Foster, A. L.; Lawrence, C. R.; Mcfarland, J. W.; Schulz, M. S.

    2017-12-01

    Soil carbon is vital to soil health, food security, and climate change mitigation, but the underlying mechanisms controlling the stabilization and destabilization of soil carbon are still poorly understood. There has been a conceptual paradigm shift in how soil organic matter is formed which now emphasizes the importance of microbial activity to build stable (i.e. long-lived) and mineral-associated soil organic matter. In this conceptual model, the consumption of plant carbon by microorganisms, followed by subsequent turnover of microbial bodies closely associated with mineral particles, produces a layering of amino acid and lipid residues on the surfaces of soil minerals that remains protected from destabilization by mineral-association and aggregation processes. We tested this new model by examining how isotopically labeled plant and microbial C differ in their fundamental stabilization and destabilization processes on soil minerals through a soil profile. We used a combination of laboratory and field-based approaches to bridge multiple spatial scales, and used soil depth as well as synthetic minerals to create gradients of soil mineralogy. We used Raman microscopy as a tool to probe organic matter association with mineral surfaces, as it allows for the simultaneous quantification and identification of living microbes, carbon, minerals, and isotopes through time. As expected, we found that the type of minerals present had a strong influence on the amount of C retained, but the stabilization of new C critically depends on growth, death, and turnover of microbial cells. Additionally, the destabilization of microbial residue C on mineral surfaces was little affected by flushes of DOC relative to wet-dry cycles alone. We believe this new insight into microbial mechanisms of C stabilization in soils will eventually lead to new avenues for measuring and modeling SOM dynamics in soils, and aid in the management of soil C to mediate global challenges.

  16. Behavior of Stabilized Peat Soils in Unconfined Compression Tests

    OpenAIRE

    Wong L. Sing; Roslan Hashim; Faisal H. Ali

    2008-01-01

    Problem statement: Deep stabilized peat columns were known to be economical at forming foundations to support highway embankments constructed on deep peat land. However, failure in the formation of the columns with adequate strength was often attributed to unsuitable type and insufficient dosage of binder added to the soil. Organic matter in peat was known to impede the cementing process in the soil, thus retarding the early strength gain of stabilized peat. Approach: To evaluate the strength...

  17. Physical-hydraulic properties of a sandy loam typic paleudalf soil under organic cultivation of 'montenegrina' mandarin (Citrus deliciosa Tenore¹

    Directory of Open Access Journals (Sweden)

    Caroline Valverde dos Santos

    2014-12-01

    Full Text Available Citrus plants are the most important fruit species in the world, with emphasis to oranges, mandarins and lemons. In Rio Grande do Sul, Brazil, most fruit production is found on small properties under organic cultivation. Soil compaction is one of the factors limiting production and due to the fixed row placement of this crop, compaction can arise in various manners in the interrows of the orchard. The aim of this study was to evaluate soil physical properties and water infiltration capacity in response to interrow management in an orchard of mandarin (Citrus deliciosa Tenore 'Montenegrina' under organic cultivation. Interrow management was performed through harrowing, logs in em "V", mowing, and cutting/knocking down plants with a knife roller. Soil physical properties were evaluated in the wheel tracks of the tractor (WT, between the wheel tracks (BWT, and in the area under the line projection of the canopy (CLP, with undisturbed soil samples collected in the 0.00-0.15, 0.15-0.30, 0.30-0.45, and 0.45-0.60 m layers, with four replicates. The soil water infiltration test was performed using the concentric cylinder method, with a maximum time of 90 min for each test. In general, soil analysis showed a variation in the physical-hydraulic properties of the Argissolo Vermelho-Amarelo distrófico arênico (sandy loam Typic Paleudalf in the three sampling sites in all layers, regardless of the management procedure in the interrows. Machinery traffic leads to heterogeneity in the soil physical-hydraulic properties in the interrows of the orchard. Soil porosity and bulk density are affected especially in the wheel tracks of the tractor (WT, which causes a reduction in the constant rate of infiltration and in the accumulated infiltration of water in this sampling site. The use of the disk harrow and mower leads to greater harmful effects on the soil, which can interfere with mandarin production.

  18. Geotechnical Properties of Clayey Soil Stabilized with Cement ...

    African Journals Online (AJOL)

    ADOWIE PERE

    2017-12-31

    Dec 31, 2017 ... increase in energy cost since 1970s (Neville, 2000). Much dependence on the use of manufactured soil improving additives like cement, and lime, has made the cost of road construction on stabilized soils huge. Thus, the use of waste materials such as rice husk ash, sawdust ash etc., which are pozzolanic ...

  19. Cement Stabilization of Bama Ridge Soil | Kundiri | Nigerian Journal ...

    African Journals Online (AJOL)

    cm high and it is approximately 50-100 m wide and 350 km long. The non-plastic Bama ridge soil stabilized at 7% could be deemed viable as a good base course material for lightly trafficked highway pavement. Keywords: keyword; keyword; keyword. Nigerian Journal of Soil and Environmental Research Vol. 7 2007: pp.

  20. Enzyme based soil stabilization for unpaved road construction

    Directory of Open Access Journals (Sweden)

    Renjith Rintu

    2017-01-01

    Full Text Available Enzymes as soil stabilizers have been successfully used in road construction in several countries for the past 30 years. However, research has shown that the successful application of these enzymes is case specific, emphasizing that enzyme performance is dependent on subgrade soil type, condition and the type of enzyme used as the stabilizer. A universal standard or a tool for road engineers to assess the performance of stabilized unbound pavements using well-established enzymes is not available to date. The research aims to produce a validated assessment tool which can be used to predict strength enhancement within a generalized statistical framework. The objective of the present study is to identify new materials for developing the assessment tool which supports enzyme based stabilization, as well as to identify the correct construction sequence for such new materials. A series of characterization tests were conducted on several soil types obtained from proposed construction sites. Having identified the suitable soil type to mix with the enzyme, a trial road construction has been performed to investigate the efficiency of the enzyme stabilization along with the correct construction sequence. The enzyme stabilization has showed significant improvement of the road performance as was evidenced from the test results which were based on site soil obtained before and after stabilization. The research will substantially benefit the road construction industry by not only replacing traditional construction methods with economical/reliable approaches, but also eliminating site specific tests required in current practice of enzyme based road construction.

  1. Black carbon yields and types in forest and cultivated sandy soils (Landes de Gascogne, France) as determined with different methods: influence of change in land use

    Energy Technology Data Exchange (ETDEWEB)

    Quenea, K. [UMR CNRS, Paris (France). LBCOP; INRA-CNRS-UPMC, Thjiverval (France). BIOEMCO; Derenne, S.; Largeau, C. [UMR CNRS, Paris (France). LBCOP; Rumpel, C.; Mariotti, A. [INRA-CNRS-UPMC, Thjiverval (France). BIOEMCO; Rouzaud, J.-N. [Laboratoire de Geologie, Paris (France); Gustafsson, O. [Stockholm University (Sweden). Dept. of Applied Environmental Science; Carcaillet, C.C. [Institut de Botanique, Montpelier (France)

    2006-09-15

    Black carbon ( BC ) was isolated from sandy soils of a pine forest reference plot and an adjacent plot used maize cropping since forest clearing 22 years ago. This was performed by: (i) isolation of a refractory organic macromolecular fraction (ROM) using strong hydrolysis followed by chemo-thermal oxidation (CTO) and (ii) direct hand-picking of the untreated soils. Much lower BC contents, ca. x 300, were obtained with the ROM-CTO approach. Experiments on reference chars from the ''international BC-ring trial'' and high resolution, transmission electron microscopy (HRTEM) observations showed that this large difference was not due to BC component losses resulting from the strong hydrolysis during ROM isolation but was due primarily to complete removal of char/charcoal upon CTO. BC is heavily dominated by char/charcoal and soot only affords a very low contribution in both soils. Calculations showed that BC accounts for a substantial part, ca 13% , of total ROM and change in land-use resulted in a large loss of BC relative to the forest soil, ca. 60% after 22 years, thus supporting recent questions raised about BC persistence in soil. (Author)

  2. Monitorization of the unsaturated zone on the sandy soils of Donana National Park; Monitorizacion de la zona no saturada en el entorno del Espacio Natural de Donana

    Energy Technology Data Exchange (ETDEWEB)

    Prados, M. L.; Guardiola-Albert, C.; Vanderlinken, K.; Giraldez, J. V.; Mediavilla, C.

    2010-07-01

    Within the framework of a study into the recharge of the Almonte-Marismas aquifer, we describe the methods used to monitor water flux in the vadose zone at four sites within the Donana National Park and its surroundings. We also provide a description of land use and soil and hydrological conditions at each measurement point. Very frequent observations are required to monitor efficiently the water flux in these well-drained, sandy soils, which undergo considerable oscillations in their usually low water content. To this end we have resorted to inexpensive capacitance probes, installed at different points along the soil profiles in question according mainly to the depth of the water table. We propose a calibration method to increase the accuracy and precision of the probe measurements. Our work has demonstrated that these sensors perform well in monitoring soil water content and also validates both the installation methods used. Data analysis proves that these sensors are very useful for locating the depth of the water table accurately and emphasises the need for specific calibration for each soil in order to obtain the most accurate moisture data. (Author) 10 refs.

  3. New Technique for Soil Reclamation and Conservation: In Situ Stabilization of Trace Elements in Contaminated Soils

    OpenAIRE

    Negim, Osama

    2009-01-01

    The accumulation of toxic metals in the soil is mainly inherited from parent materials or inputs through human activities. New techniques are being developed to remediate trace elements in contaminated soils such as phytoremediation and in situ stabilization. In situ stabilization technique is one of the common practices for reducing negative effects of metals and metalloids such as As, Cr, Cu and Zn in contaminated soils by adding amendments. The application of alkaline materials such as bas...

  4. Soil aggregate stability within morphologically diverse areas

    Czech Academy of Sciences Publication Activity Database

    Jakšík, O.; Kodešová, R.; Kubiš, A.; Stehlíková, I.; Drábek, O.; Kapička, Aleš

    2015-01-01

    Roč. 127, April (2015), s. 287-299 ISSN 0341-8162 R&D Projects: GA MZe QJ1230319 Institutional support: RVO:67985530 Keywords : soil degradation due to erosion * WSA index * coefficients of vulnerability * magnetic susceptibility Subject RIV: DF - Soil Science Impact factor: 2.612, year: 2015

  5. The improvement of multi-contaminated sandy loam soil chemical and biological properties by the biochar, wood ash, and humic substances amendments.

    Science.gov (United States)

    Pukalchik, Maria; Mercl, Filip; Panova, Maria; Břendová, Kateřina; Terekhova, Vera A; Tlustoš, Pavel

    2017-10-01

    Nowadays trace metal contamination of soils represents an important environmental hazard. Nevertheless, the use of some secondary waste products as amendments may restore the common soil functions. This paper focuses on the chemical and biological influence of wood biochar (BC), wood ash (WA) and humic substances (HS), alone and in the mixtures, on a heavily multi-contaminated sandy loam soil. The soil was amended by above-mentioned materials to follow a pH-increasing design (pH Ca from 6.0 to 6.5, 7.0 and 7.5); soil samples were analyzed after 3, 30, and 60 days using a set of variables, namely the plant-available trace element concentrations (Cu, Cd, and Zn), microbial biomass carbon (Cmic), and microbial quotient (qCO 2 ), as well as toxicity to Sinapis alba and Daphnia magna. Wood ash and WA + HS were the most efficient treatments to decrease mobile Cd and Zn concentrations in the soil, while HS, BC, and BC + HS combinations were the most effective in reducing the Cu mobility. The effect of BC and WA on the Cmic and qCO 2 was mostly negative, whereas adding HS markedly increased Cmic and reduced qCO 2 in soil. After amendment applications, the root elongation of mustard was significantly increased in HS and combined treatments (BC + HS, WA + HS). Additionally, BC + HS, WA + HS and WA 8.4% significantly decreased the toxicity of leachates to D. magna to the low-, or non-toxic levels. Our results suggest that the combination of amendments with HS can be a suitable remediation strategy for heavily contaminated soils. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Application of N-modified lignite and activated biochar to increase growth of summer wheat on nutrient-poor sandy soil

    Science.gov (United States)

    Schillem, Steffi; Schneider, Bernd-Uwe; Zeihser, Uwe; Hüttl, Reinhard F.

    2017-04-01

    Land degradation is recognized as the main environmental problem that adversely depletes soil organic carbon (SOC) and nitrogen (SON) stocks, which in turn directly affects the fertility and productivity of soils. Degraded soils and marginal lands are characterized by low fertility, poor physicochemical and biological properties and are almost free of soil organic matter (SOM), limiting their functional properties and, hence, their productivity. To enhance or restore the fertility of these soils, natural soil amendments such as biochar, lignite or humic acids can be added. A greenhouse experiment was carried out to investigate the effect of different application rates (5, 7.5, 11, 15, 28 t ha-1) of N-modified lignite (NL) incorporated in a nutrient-poor sandy soil from a recultivation site on plant growth, water use and nitrogen use efficiency of summer wheat. Additionally activated biochar (BC) was tested to see whether any differences exist between N-modified lignite and activated biochar at the same C-application rates. All variants with soil amendments displayed a much higher grain and straw yield and water use efficiency compared to the control sample. The differences were significant for the 28 t ha-1variant followed by the variant with 5 t ha-1 NL. With the 7.5 t ha-1 NL higher biomasses, water and nitrogen use efficiency could be achieved compared to the variant treated with BC at the same C-content. This study shows that even small amounts of N-modified lignite can increase growth, water and nitrogen use efficiency of summer wheat on marginal lands.

  7. Thermal stability of soils and detectability of intrinsic soil features

    Science.gov (United States)

    Siewert, Christian; Kucerik, Jiri

    2014-05-01

    Soils are products of long term pedogenesis in ecosystems. They are characterized by a complex network of interactions between organic and inorganic constituents, which influence soil properties and functions. However, the interrelations cannot easily be determined. Our search for unifying principles of soil formation focuses on water binding. This approach was derived from water-dependent soil formation. It considers the importance of water binding in theories about the origin of genes, in the structural arrangement and functionality of proteins, and in the co-evolution of organism species and the biosphere during the history of earth. We used thermogravimetry as a primary experimental technique. It allows a simple determi-nation of bound water together with organic and inorganic components in whole soil samples without a special preparation. The primary goal was to search for fingerprinting patterns using dynamics of thermal mass losses (TML) caused by water vaporization from natural soils, as a reference base for soil changes under land use. 301 soil samples were collected in biosphere reserves, national parks and other areas as-sumingly untouched by human activity in Siberia, North and South America, Antarctica, and in several long term agricultural experiments. The results did not support the traditional data evaluation procedures used in classical differ-ential thermogravimetry. For example, peak positions and amplitudes did not provide useful information. In contrast, using thermal mass losses (TML) in prefixed smaller, e.g. 10 °C temperature intervals allowed the determination of the content of carbon, clay, nitrogen and carbonates with high accuracy. However, this approach was applicable for soils and neither for soil-like carbon containing mineral substrates without pedogenetic origin, nor for plant residues or soils containing ashes, cinder, or charcoal. Therefore, intrinsic soil regulation processes are discussed as a possible factor causing

  8. Induced polarization for characterizing and monitoring soil stabilization processes

    Science.gov (United States)

    Saneiyan, S.; Ntarlagiannis, D.; Werkema, D. D., Jr.

    2017-12-01

    Soil stabilization is critical in addressing engineering problems related to building foundation support, road construction and soil erosion among others. To increase soil strength, the stiffness of the soil is enhanced through injection/precipitation of a chemical agents or minerals. Methods such as cement injection and microbial induced carbonate precipitation (MICP) are commonly applied. Verification of a successful soil stabilization project is often challenging as treatment areas are spatially extensive and invasive sampling is expensive, time consuming and limited to sporadic points at discrete times. The geophysical method, complex conductivity (CC), is sensitive to mineral surface properties, hence a promising method to monitor soil stabilization projects. Previous laboratory work has established the sensitivity of CC on MICP processes. We performed a MICP soil stabilization projects and collected CC data for the duration of the treatment (15 days). Subsurface images show small, but very clear changes, in the area of MICP treatment; the changes observed fully agree with the bio-geochemical monitoring, and previous laboratory experiments. Our results strongly suggest that CC is sensitive to field MICP treatments. Finally, our results show that good quality data alone are not adequate for the correct interpretation of field CC data, at least when the signals are low. Informed data processing routines and the inverse modeling parameters are required to produce optimal results.

  9. [Stabilization and long-term effect of chromium contaminated soil].

    Science.gov (United States)

    Wang, Jing; Luo, Qi-Shi; Zhang, Chang-Bo; Tan, Liang; Li, Xu

    2013-10-01

    Short-term (3 d and 28 d) and long-term (1 a) stabilization effects of Cr contaminated soil were investigated through nature curing, using four amendments including ferrous sulfide, ferrous sulfate, zero-valent iron and sodium dithionite. The results indicated that ferrous sulfide and zero-valent iron were not helpful for the stabilization of Cr(VI) when directly used because of their poor solubility and immobility. Ferrous sulfate could effectively and rapidly decrease total leaching Cr and Cr(VI) content. The stabilization effect was further promoted by the generation of iron hydroxides after long-term curing. Sodium dithionite also had positive effect on soil stabilization. Appropriate addition ratio of the two chemicals could help maintain the soil pH in range of 6-8.

  10. Soil stabilization field trial : interim report II.

    Science.gov (United States)

    2002-02-01

    Shrinkage cracks in cement-stabilized bases/subbase can be alleviated by specifying the right cement dosage, or by other additives/procedures that suppress crack susceptibility. A field trial of six 1000 ft sections to investigate several alternative...

  11. Unsaturated hydraulic conductivity of sandy soil columns packed to different bulk densities and water uptake by plantroots

    NARCIS (Netherlands)

    Rossi-Pisa, P.

    1978-01-01

    This paper describes a laboratory metbod used to determine both the soil moisture retention curve and the unsaturated hydraulic conductivity in soil columns under transient flow conditions during evaporation.

  12. High-quality draft genome sequence of Enterobacter sp. Bisph2, a glyphosate-degrading bacterium isolated from a sandy soil of Biskra, Algeria.

    Science.gov (United States)

    Benslama, Ouided; Boulahrouf, Abderrahmane

    2016-06-01

    Enterobacter sp. strain Bisph2 was isolated from a sandy soil from Biskra, Algeria and exhibits glyphosate-degrading activity. Multilocus sequence analysis of the 16S rRNA, rpoB, hsp60, gyrB and dnaJ genes demonstrated that Bisph2 might be a member of a new species of the genus Enterobacter. Genomic sequencing of Bisph2 was used to better clarify the relationships among Enterobacter species. Annotation and analysis of the genome sequence showed that the 5.535.656 bp genome of Enterobacter sp. Bisph2 consists in one chromosome and no detectable plasmid, has a 53.19% GC content and 78% of genes were assigned a putative function. The genome contains four prophages of which 3 regions are intact and no CRISPER was detected. The nucleotide sequence of this genome was deposited into DDBJ/EMBL/GenBank under the accession JXAF00000000.

  13. High-quality draft genome sequence of Enterobacter sp. Bisph2, a glyphosate-degrading bacterium isolated from a sandy soil of Biskra, Algeria

    Directory of Open Access Journals (Sweden)

    Ouided Benslama

    2016-06-01

    Full Text Available Enterobacter sp. strain Bisph2 was isolated from a sandy soil from Biskra, Algeria and exhibits glyphosate-degrading activity. Multilocus sequence analysis of the 16S rRNA, rpoB, hsp60, gyrB and dnaJ genes demonstrated that Bisph2 might be a member of a new species of the genus Enterobacter. Genomic sequencing of Bisph2 was used to better clarify the relationships among Enterobacter species. Annotation and analysis of the genome sequence showed that the 5.535.656 bp genome of Enterobacter sp. Bisph2 consists in one chromosome and no detectable plasmid, has a 53.19% GC content and 78% of genes were assigned a putative function. The genome contains four prophages of which 3 regions are intact and no CRISPER was detected. The nucleotide sequence of this genome was deposited into DDBJ/EMBL/GenBank under the accession JXAF00000000.

  14. Laboratory investigation on streaming potential for sandy soil and weathered rock; Shitsunai jikken ni yoru sashitsu jiban oyobi fuka ganban no ryudo den`i no kento

    Energy Technology Data Exchange (ETDEWEB)

    Sato, H.; Shima, H. [OYO Corp., Tokyo (Japan)

    1996-10-01

    Laboratory experiment on sandy soil and weathered rock was conducted to clarify the generation mechanism of streaming potential due to underground fluid. Streaming potential is caused by underground fluid flow, namely by fluid flow in porous substances as electrokinetic phenomenon. In experiment, Inagi sand, Toyoura sand and strongly decomposed weathered granite were used. In Inagi and Toyoura sands, positive streaming potential was observed downstream in fluid flow. Streaming potential could be nearly determined as primary function of fluid velocity, and generated streaming potential increased with fluid resistivity. Streaming potential was higher in Inagi sand than Toyoura sand, probably depending on hydraulic radius, size of bleeding channel, and conductivity of sand surface. In weathered granite, negative streaming potential was measured. In the case of positive {zeta} potential, negative streaming potential is theoretically generated downstream in fluid flow. This experiment suggested possible generation of negative streaming potential in some kinds of ground. 2 refs., 6 figs., 1 tab.

  15. Incorporated Woodchips as a Novel Intervention to Support Plant Growth through Increased Water Holding Capacity and Nutrient Retention in Sandy Degraded Soils

    Science.gov (United States)

    Menzies, E.; Schneider, R.; Walter, T.

    2017-12-01

    According to the World Wildlife Federation's most recent Plow Print report 53 million acres of temperate, water limited, grasslands across the Great Plains have been converted to agriculture since 2009. This conversion very often begins the process of soil degradation which can lead to desertification and the necessity to convert more land to agriculture. The most common solution to this problem is improved crop efficiency to reduce conversion of grasslands to agriculture while still producing enough food for us all. We suggest that while that may be the beginning of the solution, degraded soils need to be rehabilitated and brought back into production to adequately provide food crops for the increasing population of the globe. Incorporated woodchips can be used to improve the soils' water holding capacity and nutrient (N and P) retention. In a previous study we observed an increase in the gravimetric water content and a decrease in soluble N and P losses when fertilizers were applied in liquid form in soil columns with incorporated woodchips (see attached figure). In this study we examine the availability of the retained water and nutrients to grasses to determine the extent to which this intervention might be used to reestablish plant growth in degraded sandy soils. We also begin examining the quantity of woodchips necessary to retain sufficient water and nutrients to sustain the growth of grasses over the course of a growing season. A laboratory soil column study is currently underway to examine these questions; the results of this study will be presented at the Fall Meeting.

  16. Stabilization of Clay Soil Using Tyre Ash

    Directory of Open Access Journals (Sweden)

    Mahmood Dheyab Ahmed

    2017-06-01

    Full Text Available The planning, designing, construction of excavations and foundations in soft to very soft clay soils are always difficult. They are problematic soil that caused trouble for the structures built on them because of the low shear strength, high water content, and high compressibility. This work investigates the geotechnical behavior of soft clay by using tyre ash material burnt in air. The investigation contains the following tests: physical tests, chemical tests, consolidation test, Compaction tests, shear test, California Bearing Ratio test CBR, and model tests. These tests were done on soil samples prepared from soft clay soil; tyre ash was used in four percentages (2, 4, 6, and 8%. The results of the tests were; The soil samples which gave the value of plasticity test were 2% (25, 4% (25.18, 6% (25.3, and 8% (26.7.The soil samples which gave the value of specific gravity were 2% (2.65, 4% (2.61, 6% (2.5, and 8% (2.36.The value of maximum dry density in a compaction test observed with 2% percentage gave the value 15.8 kN/m3, the 4% gave the value 15.4 kN/m 3 34 , 6% gave 15.3 kN/m 3 and 8%with 15.2 kN/m3 .Samples that gave the values of undrained shear strength test were 2% (55 kN/m 2 , 4% (76 kN/m2 , 6% (109 kN/m 2, and 8% (122 kN/m 2. The best of them is 8%. The sample that gave the best value for swelling test was 8%.The best value for compression index Cc was in 8%.The results of CBR test, were improved in all soil samples. The soil samples which gave the value for CBR were 2% (3.507%, 4% (4.308%, 6% (5.586%, and 8% (9.569%. The best value was obtained from 8%.

  17. Stabilities of ant nests and their adjacent soils

    Science.gov (United States)

    Echezona, B. C.; Igwe, C. A.

    2012-10-01

    Nests habour ants and termites and protect them from harsh environmental conditions. The structural stabilities of nests were studied to ascertain their relative vulnerability to environmental stresses. Arboreal-ant nests were pried from different trees, while epigeous-termite nests were excavated from soil surface within the sample area. Soils without any visible sign of ant or termite activity were also sampled 6 m away from the nests as control. Laboratory analysis result showed that irrespective of the tree hosts, the aggregate stabilities of the ant nests were lower than those of the ground termite, with nests formed on Cola nitida significantly showing lower aggregate stability (19.7%) than other antnest structures. Clay dispersion ratio, moisture content, water stable aggregate class 2.00 mm but path analysis demonstrated that water stable aggregate class <0.25 mm contributed most to the higher aggregate stability of the termite nest than the other nest. Nest aggregates had greater structural stability compared to the control soil. The higher structural stability of termite nests over other nest and soil was considered a better adaptive mechanism against body desiccation.

  18. Effects of Monotypic and Binary Mixtures of Metal Oxide Nanoparticles on Microbial Growth in Sandy Soil Collected from Artificial Recharge Sites.

    Science.gov (United States)

    Ko, Kyung-Seok; Ha, Kyoochul; Kong, In Chul

    2015-11-24

    The potential effects of monotypic and binary metal oxide nanoparticles (NPs, ZnO, NiO, Co₃O₄ and TiO₂) on microbial growth were evaluated in sandy soil collected from artificial recharge sites. Microbial growth was assessed based on adenosine triphosphate (ATP) content, dehydrogenase activity (DHA), and viable cell counts (VCC). Microbial growth based on ATP content and VCC showed considerable differences depending on NP type and concentration, whereas DHA did not significantly change. In general, ZnO NPs showed the strongest effect on microbial growth in all measurements, showing an EC50 value of 10.9 mg/L for ATP content. The ranking (EC50) of NPs based on their effect on microbial growth assessed by ATP content and VCC was ZnO > Co₃O₄ > NiO > TiO₂. Upon exposure to binary NP mixtures, synergistic and additive modes of action were observed for ATP content and VCC, respectively. The ranges of observed (P(O)) and expected (P(E)) activity were 83%-92% and 78%-82% of the control (p-value 0.0010) based on ATP content and 78%-95% and 72%-94% of the control (p-value 0.8813) based on VCC under the tested conditions, respectively. The results indicate that the effects of NP mixtures on microbial growth in the sandy soil matrix were as great, or greater, than those of single NPs. Therefore, understanding the effects of single NPs and NP mixtures is essential for proper ecological risk assessment. Additionally, these findings demonstrate that the evaluation of NP effects may be profoundly influenced by the method of microbial growth measurement.

  19. Effect of hydrogel particle additives on water-accessible pore structure of sandy soils: a custom pressure plate apparatus and capillary bundle model.

    Science.gov (United States)

    Wei, Y; Durian, D J

    2013-05-01

    To probe the effects of hydrogel particle additives on the water-accessible pore structure of sandy soils, we introduce a custom pressure plate method in which the volume of water expelled from a wet granular packing is measured as a function of applied pressure. Using a capillary bundle model, we show that the differential change in retained water per pressure increment is directly related to the cumulative cross-sectional area distribution f(r) of the water-accessible pores with radii less than r. This is validated by measurements of water expelled from a model sandy soil composed of 2-mm-diameter glass beads. In particular, it is found that the expelled water is dramatically dependent on sample height and that analysis using the capillary bundle model gives the same pore size distribution for all samples. The distribution is found to be approximately log normal, and the total cross-sectional area fraction of the accessible pore space is found to be f(0)=0.34. We then report on how the pore distribution and total water-accessible area fraction are affected by superabsorbent hydrogel particle additives, uniformly mixed into a fixed-height sample at varying concentrations. Under both fixed volume and free swelling conditions, the total area fraction of water-accessible pore space in a packing decreases exponentially as the gel concentration increases. The size distribution of the pores is significantly modified by the swollen hydrogel particles, such that large pores are clogged while small pores are formed.

  20. EFFECTS OF CULTIVATED BRACHIARIA GRASSES ON SOIL AGGREGATION AND STABILITY IN THE SEMI-ARID TROPICS OF KENYA

    Directory of Open Access Journals (Sweden)

    Elias M. Gichangi

    2016-08-01

    Full Text Available Soil aggregation is a key short term indicators of soil quality attributed to changes in land management. A study was conducted to investigate changes in the size distribution and stability of soil aggregates in a structurally unstable sandy loam soil following cultivation of Brachiaria grass in semi-arid region of Kenya. Brachiaria grass cultivars included Brachiaria decumbens cv. Basilisk, B. brizantha cvs Marandu, MG4, Piata and Xaraes, B. humidicola cv. Llanero and B. hybrid cv. Mulato II which were compared with two locally cultivated forage grasses (Chloris gayana cv. KAT R3 and Pennisetum purpureum cv. Kakamega 1 and a bare plot (negative check. The grass treatments were evaluated with fertilisers application (40 kg P applied at sowing and 50 kg N ha−1 in each wet season and with no fertiliser applications. Aggregate size fractions were isolated using the wet sieving method. Aggregation based on the proportion of small macro-aggregates (250–2000 μm increased in soils cultivated with all grass types compared to the control and was greatest in soils under B. hybrid cv. Mulato II. Aggregate stability in terms of mean weight diameter (MWD differed among the grasses and was highest in soils under cv. Mulato II and cv. Marandu with MWD of 4.49 and 4.31 mm, respectively. Changes in small macro-aggregates fraction was positively correlated with particulate organic matter (POM (r=0.9104, P= 0.001, microbial biomass carbon (MBC (r=0.5474, P= 0.01, soil organic carbon (SOC (r=0.3654, P= 0.05 and root biomass (r=0.4977, P= 0.01. This indicated that the binding agents were important in the aggregation of soils cultivated with Brachiaria grasses.

  1. Distribution Of 15N Fertilizer Added To Sandy Soil Under Drip Irrigation System As Affected By Irrigation Frequencies

    International Nuclear Information System (INIS)

    GADALLA, A.M.; GALAL, Y.G.M.; EL-GENDY, R.W.; ISMAIL, M.M.; EL-DEGWY, S.M.; KASSAB, M.F.

    2009-01-01

    Neutron moisture meter and stable nitrogen isotope ( 15 N) were used to follow horizontal and vertical water movement and N-fertilizer added to soil before and after irrigation. The data indicated that soil moisture distribution and values of total hydraulic potential depend on soil moisture content. Characterization of nitrogen in soil for all sites around the emitter indicated spatial variability with different soil depths due to leaching and volatilization processes. Moreover, water movement and flow direction greatly were characterized by active evaporation depth which was 30 cm.

  2. Iron addition to soil specifically stabilized lignin

    Science.gov (United States)

    Steven J. Hall; Whendee L. Silver; Vitaliy I. Timokhin; Kenneth E. Hammel

    2016-01-01

    The importance of lignin as a recalcitrant constituent of soil organic matter (SOM) remains contested. Associations with iron (Fe) oxides have been proposed to specifically protect lignin from decomposition, but impacts of Fe-lignin interactions on mineralization rates remain unclear. Oxygen (O2) fluctuations characteristic of humid tropical...

  3. Microbial response to salinity stress in a tropical sandy soil amended with native shrub residues or inorganic fertilizer.

    Science.gov (United States)

    Sall, Saïdou Nourou; Ndour, Ndèye Yacine Badiane; Diédhiou-Sall, Siré; Dick, Richard; Chotte, Jean-Luc

    2015-09-15

    Soil degradation and salinization caused by inappropriate cultivation practices and high levels of saltwater intrusion are having an adverse effect on agriculture in Central Senegal. The residues of Piliostigma reticulatum, a local shrub that coexists with crops, were recently shown to increase particulate organic matter and improve soil quality and may be a promising means of alleviating the effects of salinization. This study compared the effects of inorganic fertilizer and P. reticulatum residues on microbial properties and the ability of soil to withstand salinity stress. We hypothesized that soils amended with P. reticulatum would be less affected by salinity stress than soils amended with inorganic fertilizer and control soil. Salinity stress was applied to soil from a field site that had been cultivated for 5 years under a millet/peanut crop rotation when microbial biomass, phospholipid fatty acid (PLFA) community profile, catabolic diversity, microbial activities were determined. Microbial biomass, nitrification potential and dehydrogenase activity were higher by 20%, 56% and 69% respectively in soil with the organic amendment. With salinity stress, the structure and activities of the microbial community were significantly affected. Although the biomass of actinobacteria community increased with salinity stress, there was a substantial reduction in microbial activity in all soils. The soil organically amended was, however, less affected by salinity stress than the control or inorganic fertilizer treatment. This suggests that amendment using P. reticulatum residues may improve the ability of soils to respond to saline conditions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Biomimetic Hydrogel Composites for Soil Stabilization and Contaminant Mitigation.

    Science.gov (United States)

    Zhao, Zhi; Hamdan, Nasser; Shen, Li; Nan, Hanqing; Almajed, Abdullah; Kavazanjian, Edward; He, Ximin

    2016-11-15

    We have developed a novel method to synthesize a hyper-branched biomimetic hydrogel network across a soil matrix to improve the mechanical strength of the loose soil and simultaneously mitigate potential contamination due to excessive ammonium. This method successfully yielded a hierarchical structure that possesses the water retention, ion absorption, and soil aggregation capabilities of plant root systems in a chemically controllable manner. Inspired by the robust organic-inorganic composites found in many living organisms, we have combined this hydrogel network with a calcite biomineralization process to stabilize soil. Our experiments demonstrate that poly(acrylic acid) (PAA) can work synergistically with enzyme-induced carbonate precipitation (EICP) to render a versatile, high-performance soil stabilization method. PAA-enhanced EICP provides multiple benefits including lengthening of water supply time, localization of cementation reactions, reduction of harmful byproduct ammonium, and achievement of ultrahigh soil strength. Soil crusts we have obtained can sustain up to 4.8 × 10 3 kPa pressure, a level comparable to cementitious materials. An ammonium removal rate of 96% has also been achieved. These results demonstrate the potential for hydrogel-assisted EICP to provide effective soil improvement and ammonium mitigation for wind erosion control and other applications.

  5. Interrelationships among geotechnical and leaching properties of a cement-stabilized contaminated soil.

    Science.gov (United States)

    Kogbara, Reginald B

    2017-01-28

    Relationships among selected performance properties have been established using experimental data from a cement-stabilized mixed contaminated soil. The sandy soil was spiked with 3,000 mg/kg each of Cd, Cu, Pb, Ni and Zn, and 10,000 mg/kg of diesel. It was then treated with 5%, 10%, 15%, and 20% dosages of Portland cement. Different water contents were considered for lower dosage mixes. Selected geotechnical and leaching properties were determined on 28-day old samples. These include unconfined compressive strength (UCS), bulk density, porosity, hydraulic conductivity, leachate pH and granular leachability of contaminants. Interrelationships among these properties were deduced using the most reasonable best fits determined by specialized curve fitting software. Strong quadratic and log-linear relationships exist between hydraulic conductivity and UCS, with increasing binder and water contents, respectively. However, the strength of interrelationships between hydraulic conductivity and porosity, UCS and porosity, and UCS and bulk density varies with binder and water contents. Leachate pH and granular leachability of contaminants are best related to UCS and hydraulic conductivity by a power law and an exponential function, respectively. These results suggest how the accuracy of not-easily-measurable performance properties may be constrained from simpler ones. Comparisons with some published performance properties data support this.

  6. Utilization of Agricultural Wastes in Stabilization of Landfill Soil

    Directory of Open Access Journals (Sweden)

    Nidzam Rahmat Mohamad

    2014-01-01

    Full Text Available Palm Oil Fuel Ash (POFA and Rice Husk Ash (RHA are local agricultural waste material from Palm Oil Industry and from Paddy Industry in Malaysia. Currently, the disposal of these ashes from a burning process is a problem to both industries, and hence leads to environmental pollution. The main aim of this research was to investigate the potential of utilizing POFA and RHA as sustainable stabilizer material as partial replacement of traditional one which is lime and Portland Cement (PC. Laboratory investigations were carried out to establish the potential utilization of Malaysian Agricultural wastes POFA and RHA in stabilizing Teluk Kapas Landfill soil. Landfill soil on its own and combination with laterite clay soil were stabilized using POFA or RHA either on its own or in combination with Lime or Portland Cement (PC. The traditional stabilizers of lime or Portland Cement (PC were used as controls. Compacted cylinder test specimens were made at typical stabilizer contents and moist cured for up to 60 days prior to testing for compressive and water absorption tests. The results obtained showed that landfill soil combined with laterite clay (50:50 stabilized with 20% RHA:PC (50:50and POFA: PC (50:50 recorded the highest values of compressive strength compared to the other compositions of stabilizers and soils. However, when the amount of POFA and RHA increased in the system the compressive strength values of the samples tends to increase. These results suggest technological, economic as well as environmental advantages of using POFA and RHA and similar industrial by-products to achieve sustainable infrastructure development with near zero industrial waste.

  7. Soil stabilization field trial : interim report.

    Science.gov (United States)

    2001-04-01

    Shrinkage cracks in cement-stabilized bases/subbase can be alleviated by specifying : the right cement dosage, or by other additives/procedures that suppress crack susceptibility. A field : trial of six 1000 ft test sections to investigate several al...

  8. Soil stabilization field trial : interim report I.

    Science.gov (United States)

    2001-04-01

    Shrinkage cracks in cement-stabilized bases/subbase can be alleviated by specifying the right cement dosage, or by other additives/procedures that suppress crack susceptibility. A field trial of six 1000 ft test sections to investigate several altern...

  9. Soil stabilization field trial : interim report III.

    Science.gov (United States)

    2003-11-01

    Shrinkage cracks in cement-stabilized bases/subbase can be alleviated by specifying the right cement dosage, or by other additives/procedures that suppress crack susceptibility. A field trial of six 1000 ft test sections to investigate several altern...

  10. Shear Strength of Stabilized Kaolin Soil Using Liquid Polymer

    Science.gov (United States)

    Azhar, A. T. S.; Fazlina, M. I. S.; Nizam, Z. M.; Fairus, Y. M.; Hakimi, M. N. A.; Riduan, Y.; Faizal, P.

    2017-08-01

    The purpose of this research is to investigate the suitability of polymer in soil stabilization by examining its strength to withstand compressive strength. Throughout this research study, manufactured polymer was used as a chemical liquid soil stabilizer. The liquid polymer was diluted using a proposed dilution factor of 1 : 3 (1 part polymer: 3 parts distilled water) to preserve the workability of the polymer in kaolin mixture. A mold with a diameter of 50 mm and a height of 100 mm was prepared. Kaolin soil was mixed with different percentages of polymer from 10%, 15%, 20%, 25%, 30% and 35% of the mass of the kaolin clay sample. Kaolin mixtures were tested after a curing period of 3 days, 7 days, 14 days and 28 days respectively. The physical properties were determined by conducting a moisture content test and Atterberg limit test which comprise of liquid limit, plastic limit and shrinkage limit. Meanwhile, the mechanical properties of the soil shear strength were identified through an unconfined compressive strength (UCS) test. Stabilized kaolin soil showed the highest compressive strength value when it was mixed with 35% of polymer compared to other percentages that marked an increment in strength which are 45.72% (3 days), 67.57% (7 days), 81.73% (14 days) and 77.84% (28 days). Hence, the most effective percentage of liquid polymer which should be used to increase the strength of kaolin soil is 35%.

  11. Stability of titania nanoparticles in soil suspensions and transport in saturated homogeneous soil columns

    International Nuclear Information System (INIS)

    Fang Jing; Shan Xiaoquan; Wen Bei; Lin Jinming; Owens, Gary

    2009-01-01

    The stability of TiO 2 nanoparticles in soil suspensions and their transport behavior through saturated homogeneous soil columns were studied. The results showed that TiO 2 could remain suspended in soil suspensions even after settling for 10 days. The suspended TiO 2 contents in soil suspensions after 24 h were positively correlated with the dissolved organic carbon and clay content of the soils, but were negatively correlated with ionic strength, pH and zeta potential. In soils containing soil particles of relatively large diameters and lower solution ionic strengths, a significant portion of the TiO 2 (18.8-83.0%) readily passed through the soils columns, while TiO 2 was significantly retained by soils with higher clay contents and salinity. TiO 2 aggregate sizes in the column outflow significantly increased after passing through the soil columns. The estimated transport distances of TiO 2 in some soils ranged from 41.3 to 370 cm, indicating potential environmental risk of TiO 2 nanoparticles to deep soil layers. - TiO 2 nanoparticles could efficiently suspend in soil suspensions and potentially transport to deeper soil layers

  12. Stability of volatile organics in environmental soil samples. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Maskarinec, M.P.; Bayne, C.K.; Jenkins, R.A.; Johnson, L.H.; Holladay, S.K.

    1992-11-01

    This report focuses on data generated for the purpose of establishing the stability of 19 volatile organic compounds in environmental soil samples. The study was carried out over a 56 day (for two soils) and a 111 day (for one reference soil) time frame and took into account as many variables as possible within the constraints of budget and time. The objectives of the study were: 1) to provide a data base which could be used to provide guidance on pre-analytical holding times for regulatory purposes; and 2) to provide a basis for the evaluation of data which is generated outside of the currently allowable holding times.

  13. Stability of volatile organics in environmental soil samples

    Energy Technology Data Exchange (ETDEWEB)

    Maskarinec, M.P.; Bayne, C.K.; Jenkins, R.A.; Johnson, L.H.; Holladay, S.K.

    1992-11-01

    This report focuses on data generated for the purpose of establishing the stability of 19 volatile organic compounds in environmental soil samples. The study was carried out over a 56 day (for two soils) and a 111 day (for one reference soil) time frame and took into account as many variables as possible within the constraints of budget and time. The objectives of the study were: 1) to provide a data base which could be used to provide guidance on pre-analytical holding times for regulatory purposes; and 2) to provide a basis for the evaluation of data which is generated outside of the currently allowable holding times.

  14. Rapid Soil Stabilization of Soft Clay Soils for Contingency Airfields

    Science.gov (United States)

    2006-12-01

    microfine cement, lime, calcium carbide, sodium silicates, super absorbent polymers, superplasticizers , accelerators, polypropylene fibers, nylon fibers...secondary stabilizers (sodium silicates, superplasticizers , accelerators and absorbent polymers) were all ineffective in strength enhancement of soft clay...polyacrylic acid as well (Karol 2003). 8 2.1.7 Dispersants/ Superplasticizer /Water Reducers Naudts et al. (2002) maintain that dispersants

  15. Effect of Humic Acids and pesticides on Agricultural Soil Structure and Stability and Its Implication on Soil Quality

    Science.gov (United States)

    Gaonkar, O. D.; Nambi, I. M.; G, S. K.

    2016-12-01

    The functional and morphological aspects of soil structure determine the soil quality. The dispersion of colloidal soil particles, especially the clay fraction and rupture of soil aggregates, both of which play an important role in soil structure development, lead to degradation of soil quality. The main objective of this work was to determine the effect of behaviour of soil colloids on the agricultural soil structure and quality. The effect of commercial humic acid, organophosphate pesticides and soil natural organic matter on the electrical and structural properties of the soil colloids was also studied. Agricultural soil, belonging to the sandy loam texture class from northern part of India was considered in this study. In order to understand the changes in the soil quality in the presence and absence of humic acids, the soil fabric and structure was analyzed by X-ray diffraction (XRD), Fourier Transform Infrared (FTIR) Spectroscopy and Scanning Electron Microscopy (SEM). Electrical properties of natural soil colloids in aqueous suspensions were assessed by zeta potential measurements at varying pH values with and without the presence of humic acids and pesticides. The influence of natural organic matter was analyzed by oxidizing the natural soil organic matter with hydrogen peroxide. The zeta potential of the soil colloids was found to be negative in the pH range studied. The results indicated that hydrogen peroxide treatment lead to deflocculation of colloidal soil particles. In addition, the humic acids undergoes effective adsorption onto the soil surface imparting more negative zeta potential to the colloidal soil particles. The soil hydrophilicity decreased in the presence of humic acids which was confirmed by surface free energy determination. Thus, it can be concluded that the presence of humic acids altered the soil fabric and structure, thereby affecting the soil quality. This study assumes significance in understanding the soil aggregation and the

  16. Friability and aggregate stability of loamy soil after 5 years of biochar application

    Science.gov (United States)

    Utomo, Wani; Ganika, Shaory; Wisnubroto, Erwin; Islami, Titiek

    2016-04-01

    The effect of biochar application on soil friability and aggregate stability of loamy soil was studied at Brawijaya University field experimental station, Jatikerto, Malang, Indonesia. The soil has been planted with cassava for 4 years continuously and 1 year planted with maiz. The biochar applied was made from cassava stem and farm yard manure. It was found that biochar application, either made from cassava stem or farm yard manure improved soil qualities. Soil applied with biochar was more friable compared to that of the no biochar soil, although biochar application did not influence Atterberg limits. It seems that the higher friability of biochar applied soil was associated with the higher soil organic matter. It was found that until 5 years application, the biochar treated soil had a higher soil organic matter content. Soil applied with biochar possessed a better soil aggregate stability, both dry and wet stability. This was shown by the higher aggregate mean weight diameter (MWD) of biochar applied soil. The cassava biochar applied soil had MWD of 2.22 mm (dry stability) and 1.56 mm (wet stability), whereas the control soil had MWD of 1.45 mm (dry stability) and 1.25 (wet stability). There was a significant positive correlation between soil friability and dry aggregate stability. The biochar applied soils also had higher soil permeability. Key words: soil qualities, soil physical properties, Atterberg limits, hydraulic conductivity

  17. Study and Estimation of the Ratio of 137CS and 40K Specific Activities in Sandy and Loam Soils

    Directory of Open Access Journals (Sweden)

    Renata Mikalauskienė

    2011-12-01

    Full Text Available The present article describes changes in specific activities and fluctuations in the ratio of natural 40K and artificial 137Cs radionuclides in soil samples taken from different places of Lithuanian territory. The samples of soil have been selected from the districts polluted after the accident in Chernobyl nuclear plant performing nuclear testing operations. The study has established the main physical and chemical properties of soil samples and their impact on the concentration of 40K activities. 137Cs/40K specific activities in soil have been observed under the dry weight of the sample that varied from 0.0034 to 0.0240. The results of the study could be used for establishing and estimating 137Cs and 40K transfer in the system “soil-plant”.Article in Lithuanian

  18. Stabilization of dredged spoils for pavement construction in the ...

    African Journals Online (AJOL)

    However, dredged fine grained sandy soils stockpiled at river banks along the road as wastes may be modified for strength gain to replace the excavated natural soil during road construction. The optimum stabilization conditions of the dredged soils were determined in this study to evaluate the strength improvement for ...

  19. Time-dependent transfer of 54Mn, 60Co, 85Sr and 137Cs from a sandy soil to soybean plants

    International Nuclear Information System (INIS)

    Choi, Yong-Ho; Lim, Kwang-Muk; Jun, In; Keum, Dong-Kwon; Han, Moon-Hee

    2011-01-01

    Greenhouse experiments were performed to investigate the dependence of 54 Mn, 60 Co, 85 Sr and 137 Cs transfer from sandy soil to soybean plants on the growth stage when a radioactive deposition occurs. A solution containing 54 Mn, 60 Co, 85 Sr and 137 Cs was applied onto the soil surfaces in the lysimeters at six different times -2 d before sowing and 13, 40, 61, 82 and 96 d after sowing. Soil-to-plant transfer was quantified with a transfer factor (m 2 kg -1 -dry) specified for the deposition time. The transfer factor values of 54 Mn, 60 Co, 85 Sr and 137 Cs for the seeds were in the range of 1.5×10 -3 -1.0×10 -2 , 4.7×10 -4 -3.2×10 -3 , 5.7×10 -4 -1.0×10 -2 and 3.0×10 -5 -2.7×10 -4 , respectively, for different deposition times. The corresponding values for the leaves were 6.4×10 -3 -3.2×10 -2 , 4.3×10 -4 -2.0×10 -3 , 5.1×10 -3 -5.3×10 -2 and 9.2×10 -5 -1.9×10 -4 , respectively. The values for the seeds were on the whole highest following the middle-growth-stage deposition. After the pre-sowing deposition, the transfer factor values of 54 Mn, 60 Co and 137 Cs for the seeds decreased annually so those in the fourth year were 53%, 75% and 34% of those in the first year, respectively. The present results may be useful for predicting the radionuclide concentrations in soybean plants due to their root uptake following an acute soil-deposition during the vegetation period, and for validating a relevant model. (author)

  20. Soil stabilization with recycled materials improves subgrade performance : research spotlight.

    Science.gov (United States)

    2016-02-29

    The use of recycled materials for subgrade stabilization can provide the support needed for construction vehicle loading and more typical long-term traffic loading. This is a particular need in Michigan due to the prevalence of weak subgrade soils. U...

  1. Enhancement of physical and hydrological properties of a sandy loam soil via application of different biochar particle sizes during incubation period

    Directory of Open Access Journals (Sweden)

    Leila Esmaeelnejad

    2016-06-01

    Full Text Available In spite of many studies that have been carried out, there is a knowledge-gap as to how different sizes of biochars alter soil properties. Therefore, the main objective of this study was to investigate the effects of different sizes of biochars on soil properties. The biochars were produced at two pyrolysis temperatures (350 and 550°C from two feedstocks (rice husk and apple wood chips. Produced biochars were prepared at two diameters (1-2 mm and <1 mm and mixed with soil at a rate of 2% (w/w. Multiple effects of type, temperature and size of biochars were significant, so as the mixture of soil and finer woodchip biochars produced at 550°C had significant effects on all soil properties. Soil aggregation and stabilization of macro-aggregates, values of mean weight diameter and water stable aggregates were improved due to increased soil organic matter as binding agents and microbial biomass. In addition, plant available water capacity, air capacity, S-index, meso-pores and water retention content were significantly increased compared to control. But, saturated hydraulic conductivity (Ks was reduced due to blockage of pores by biochar particles, reduction of pore throat size and available space for flow and also, high field capacity of biochars. So, application of biochar to soil, especially the finest particles of high-tempered woody biochars, can improve physical and hydrological properties of coarse-textured soils and reduce their water drainage by modification of Ks.

  2. Enhancement of physical and hydrological properties of a sandy loam soil via application of different biochar particle sizes during incubation period

    Energy Technology Data Exchange (ETDEWEB)

    Esmaeelnejad, L.; Shorafa, M.; Gorji, M.; Hosseini, S.M.

    2016-11-01

    In spite of many studies that have been carried out, there is a knowledge-gap as to how different sizes of biochars alter soil properties. Therefore, the main objective of this study was to investigate the effects of different sizes of biochars on soil properties. The biochars were produced at two pyrolysis temperatures (350 and 550°C) from two feedstocks (rice husk and apple wood chips). Produced biochars were prepared at two diameters (1-2 mm and <1 mm) and mixed with soil at a rate of 2% (w/w). Multiple effects of type, temperature and size of biochars were significant, so as the mixture of soil and finer woodchip biochars produced at 550°C had significant effects on all soil properties. Soil aggregation and stabilization of macro-aggregates, values of mean weight diameter and water stable aggregates were improved due to increased soil organic matter as binding agents and microbial biomass. In addition, plant available water capacity, air capacity, S-index, meso-pores and water retention content were significantly increased compared to control. But, saturated hydraulic conductivity (Ks) was reduced due to blockage of pores by biochar particles, reduction of pore throat size and available space for flow and also, high field capacity of biochars. So, application of biochar to soil, especially the finest particles of high-tempered woody biochars, can improve physical and hydrological properties of coarse-textured soils and reduce their water drainage by modification of Ks. (Author)

  3. Effects of Soil Bulk Density on Gas Transport Parameters and Pore-Network Properties across a Sandy Field Site

    DEFF Research Database (Denmark)

    Masis Melendez, Federico; de Jonge, Lis Wollesen; Chamindu, T K K Deepagoda

    2015-01-01

    investigated. Interactions with soil organic matter, sand and clay fractions were also examined. Six parameters including Campbell b, the air entry pressure, the diffusive and convective percolation thresholds, and the diffusivity- and air permeability-based pore connectivity indices were determined......The gas diffusion coefficient, air permeability, and their interrelations with air-filled porosity are crucial for characterization of diffusive and convective transport of gases in soils. Variations in soil bulk density can affect water retention, air-filled pore space, pore tortuosity...

  4. Interfacial stability of soil covers on lined surface impoundments

    International Nuclear Information System (INIS)

    Mitchell, D.H.; Gates, T.E.

    1986-04-01

    The factors affecting the interfacial stability of soil covers on geomembranes were examined to determine the maximum stable slopes for soil cover/geomembrane systems. Several instances of instability of soil covers on geomembranes have occurred at tailings ponds, leaving exposed geomembranes with the potential for physical ddamage and possibly chemical and ultraviolet degradation. From an operator's viewpoint, it is desirable to maximize the slope of lined facilities in order to maximize the volume-to-area ratio; however, the likelihood for instability also increases with increasing slope. Frictional data obtained from direct shear tests are compared with stability data obtained using a nine-square-meter (m 2 ) engineering-scale test stand to verify that direct shear test data are valid in slope design calculations. Interfacial frictional data from direct shear tests using high-density polyethylene and a poorly graded sand cover agree within several degrees with the engineering-scale tests. Additional tests with other soils and geomembranes are planned. The instability of soil covers is not always an interfacial problem; soil erosion and limited drainage capacity are additional factors that must be considered in the design of covered slopes. 7 refs., 5 figs., 2 tabs

  5. Impact of human land use on soils and landforms in cultural landscapes on aeolian sandy substrates (Maashorst, SE Netherlands)

    NARCIS (Netherlands)

    van Mourik, J.M.; Seijmonsbergen, A.C.; Slotboom, R.T.; Wallinga, J.

    2012-01-01

    Pollen analysis, soil micromorphology and radiocarbon dating have been the main scientific tools to unlock palaeoecological information from palaeosols during the past decades. In recent years, the application of optically stimulated luminescence (OSL) dating on polycyclic driftsand profiles and

  6. Potential of Using Nanocarbons to Stabilize Weak Soils

    Directory of Open Access Journals (Sweden)

    Jamal M. A. Alsharef

    2016-01-01

    Full Text Available Soil stabilization, using a variety of stabilizers, is a common method used by engineers and designers to enhance the properties of soil. The use of nanomaterials for soil stabilization is one of the most active research areas that also encompass a number of disciplines, including civil engineering and construction materials. Soils improved by nanomaterials could provide a novel, smart, and eco- and environment-friendly construction material for sustainability. In this case, carbon nanomaterials (CNMs have become candidates for numerous applications in civil engineering. The main objective of this paper is to explore improvements in the physical properties of UKM residual soil using small amounts (0.05, 0.075, 0.1, and 0.2% of nanocarbons, that is, carbon nanotube (multiwall carbon nanotube (MWCNTs and carbon nanofibers (CNFs. The parameters investigated in this study include Atterberg’s limits, optimum water content, maximum dry density, specific gravity, pH, and hydraulic conductivity. Nanocarbons increased the pH values from 3.93 to 4.16. Furthermore, the hydraulic conductivity values of the stabilized fine-grained soil samples containing MWCNTs decreased from 2.16E-09 m/s to 9.46E-10 m/s and, in the reinforcement sample by CNFs, the hydraulic conductivity value decreased to 7.44E-10 m/s. Small amount of nanocarbons (MWCNTs and CNFs decreased the optimum moisture content, increased maximum dry density, reduced the plasticity index, and also had a significant effect on its hydraulic conductivity.

  7. Radiological aspects of choice of a system of cultivation of sod-podzolic sandy loam soils with different degree of humidity on lands of Mogilev region contaminated with 137Cs

    International Nuclear Information System (INIS)

    Lazarevich, S.S.; Ermolenko, A.V.; Shapsheeva, T.P.

    2010-01-01

    In the conditions of the Republic of Belarus there were presented data about the influence of technological factors on entry of 137Cs into plant products (grain and green mass). In course of the study there were analyzed the following variants of soil cultivation: moldboard plowing; subsurface chisel soil tillage; subsurface surface soil tillage; minimal tillage. There were presented data on specific activity of 137Cs in plant product samples of oat (Avena sativa) grain; field pea (Pisum arvense L.) and oat mixture grain and green mass; wheat (Triticum aestivum) grain. There were determined the main principles of influence of cultivation systems of sod-podzolic sandy loam soil with different degree of humidity on transition of 137Cs into plants depending on the degree of soil and crop humidity. On the automorphic soil there was revealed a tendency of increased transition of 137Cs into grain and green mass after application of subsurface surface soil tillage system

  8. Response of soil aggregate stability to storage time of soil samples

    International Nuclear Information System (INIS)

    Gerzabek, M.H.; Roessner, H.

    1993-04-01

    The aim of the present study was to investigate the well known phenomenon of changing aggregate stability values as result of soil sample storage. In order to evaluate the impact of soil microbial activity, the soil sample was split into three subsamples. Two samples were sterilized by means of chloroform fumigation and gamma irradiation, respectively. However, the aggregate stability measurements at three different dates were not correlated with the microbial activity (dehydrogenase activity). The moisture content of the aggregate samples seems to be of higher significance. Samples with lower moisture content (range: 0.4 to 1.9%) exhibited higher aggregate stabilities. Thus, airdried aggregate samples without further treatment don't seem to be suitable for standardized stability measurements. (authors)

  9. [Study on composite stabilization of arsenic (As) contaminated soil].

    Science.gov (United States)

    Wang, Hao; Pan, Li-xiang; Zhang, Xiang-yu; Li, Meng; Song, Bao-hua

    2013-09-01

    Since the contaminated soil may contain various kinds of heavy metals, use of single chemical reagent leads to poor remediation and high cost. In this study, soil containing As, Zn, Cd was sampled, and different reagents were selected to carry out the rapid stabilization of contaminated soil. The TCLP (toxicity characteristic leaching procedure) was used to evaluate the leachate toxicity of heavy metals and the results indicated that calcium-containing, sulphur-containing and iron-containing reagents had good performance in reducing the metal mobility. The stabilization efficiency of the six reagents tested ranked in the order of CaO > Na2S > organic sulfur > Chitosan > FeSO4 > (C2H5)2NCS2Na. Two types of reagents (six reagents) were combined based on the target properties of different reagents and the stabilization efficiency was evaluated and analyzed. The results indicated that the composite reagents had higher stabilization efficiency: the efficiency of 3% FeSO4 + 5% CaO was 81.7%, 97.2% and 68.2% for As, Cd and Zn, respectively, and the efficiency of 3% CaO + 5% organic sulfur was 76.6%, 95.7% and 93.8% for these three metals, respectively. Speciation analysis was carried out in this study and the results suggested that it was the change of metals from the exchangeable state to the reduction (for inorganic reagent) or oxidation state (for organic reagent) that caused the soil stabilization and the degree of change determined the stabilization efficiency.

  10. Long-term Stabilization of Deep Soil Carbon revisited: The Meaning of Deep Roots

    Science.gov (United States)

    Gocke, M. I.; Wiesenberg, G. L.

    2016-12-01

    Soils, paleosols and terrestrial sediments represent important carbon (C) pools and serve as archives for studying climate change. Archive functioning relies on chronological integrity of respective units, but incorporation of younger organic matter (OM) by plant roots and associated microorganisms into deep subsoil and soil parent material may reduce reliability of paleoenvironmental records and stability of buried OM. We aimed to elucidate how deep roots alter properties of soils developed in terrestrial sediments. Along a Central-Southeast European transect, soil and underlying loess, sand, and paleosol profiles were excavated in pits of 2-13 m depth. During field campaigns living and ancient, partly calcified roots (rhizoliths) were counted on horizontal levels. X-ray microtomographic scanning of undisturbed samples enabled quantitative assessment of root systems. Roots were collected at several depths together with rhizosphere material in different distances from roots as well as bulk soil/sediment free of visible root remains, and analyzed for bulk elemental composition, molecular composition of OM and 14C ages. Roots or root remains occurred more abundant in paleosols than in sediments. At a Dutch sandy site this could be attributed to high contents of nutritional elements in the buried agricultural soil, providing beneficial conditions for the recent vegetation. At a German site, biopores remaining after root decay contributed considerable portions to macroporosity in sedimentary deep subsoil, potentially promoting water and nutrient infiltration and mobilization. C dynamics were maintained due to renewed root growth and microbial activity. The latter was supported e.g. by the presence of microbial biomarkers millenia after the root's decay. Incorporation of root- and microorganism-derived OM was detected in distances >5 cm from visible root remains. In the long-term C loss occured due to OM mineralization rather than sustainable C sequestration of root

  11. Stability of embankments over cement deep soil mixing columns

    International Nuclear Information System (INIS)

    Morilla Moar, P.; Melentijevic, S.

    2014-01-01

    The deep soil mixing (DSM) is one of the ground improvement methods used for the construction of embankments over soft soils. DSM column-supported embankments are constructed over soft soils to accelerate its construction, improve embankment stability, increase bearing capacity and control of total and differential settlements. There are two traditional design methods, the Japanese (rigid columns) and the scandinavian (soft and semi-rigid columns). Based on Laboratory analysis and numerical analysis these traditional approaches have been questioned by several authors due to its overestimation of the embankment stability considering that the most common failures types are not assumed. This paper presents a brief review of traditional design methods for embankments on DSM columns constructed in soft soils, studies carried out determine the most likely failure types of DSM columns, methods to decrease the overestimation when using limit equilibrium methods and numerical analysis methods that permit detect appropriate failure modes in DSM columns. Finally a case study was assessed using both limited equilibrium and finite element methods which confirmed the overestimation in the factors of safety on embankment stability over DSM columns. (Author)

  12. Bioavailability and stability of mercury sulfide in Armuchee (USA) soil

    International Nuclear Information System (INIS)

    Han, Fengxiang; Shiyab, Safwan; Su, Yi; Monts, David L.; Waggoner, Charles A.; Matta, Frank B.

    2007-01-01

    Because of the adverse effects of elemental mercury and mercury compounds upon human health, the U.S. Department of Energy (DOE) is engaged in an on-going effort to monitor and remediate mercury-contaminated DOE sites. In order to more cost effectively implement those extensive remediation efforts, it is necessary to obtain an improved understanding of the role that mercury and mercury compounds play in the ecosystem. We have conducted pilot scale experiments to study the bioavailability of mercury sulfide in an Armuchee (eastern US ) soil. The effects of plants and incubation time on chemical stability and bioavailability of HgS under simulated conditions of the ecosystem have been examined, as has the dynamics of the dissolution of mercury sulfide by various extractants. The results show that mercury sulfide in contaminated Armuchee soil was still to some extent bioavailable to plants. After planting, soil mercury sulfide is more easily dissolved by both 4 M and 12 M nitric acid than pure mercury sulfide reagent. Dissolution kinetics of soil mercury sulfide and pure chemical reagent by nitric acid are different. Mercury release by EDTA from HgS-contaminated soil increased with time of reaction and soil mercury level. Chelating chemicals increase the solubility and bioavailability of mercury in HgS-contaminated soil. (authors)

  13. Carbon stabilization mechanisms in soils in the Andes

    Science.gov (United States)

    Jansen, Boris; Cammeraat, Erik

    2015-04-01

    The volcanic ash soils of the Andes contain very large stocks of soil organic matter (SOM) per unit area. Consequently, they constitute significant potential sources or sinks of the greenhouse gas CO2. Climate and/or land use change potentially have a strong effect on these large SOM stocks. To clarify the role of chemical and physical stabilisation mechanisms in volcanic ash soils in the montane tropics, we investigated carbon stocks and stabilization mechanisms in the top- and subsoil along an altitudinal transect in the Ecuadorian Andes. The transect encompassed a sequence of paleosols under forest and grassland (páramo), including a site where vegetation cover changed in the last century. We applied selective extraction techniques, performed X-ray diffraction analyses of the clay fraction and estimated pore size distributions at various depths in the top- and subsoil along the transect. In addition, from several soils the molecular composition of SOM was further characterized with depth in the current soil as well as the entire first and the top of the second paleosol using GC/MS analyses of extractable lipids and Pyrolysis-GC/MS analyses of bulk organic matter. Our results show that organic carbon stocks in the mineral soil under forest a páramo vegetation were roughly twice as large as global averages for volcanic ash soils, regardless of whether the first 30cm, 100cm or 200cm were considered. We found the carbon stabilization mechanisms involved to be: i) direct stabilization of SOM in organo-metallic (Al-OM) complexes; ii) indirect protection of SOM through low soil pH and toxic levels of Al; and iii) physical protection of SOM due to a very high microporosity of the soil (Tonneijck et al., 2010; Jansen et al. 2011). When examining the organic carbon at a molecular level, interestingly we found extensive degradation of lignin in the topsoil while extractable lipids were preferentially preserved in the subsoil (Nierop and Jansen, 2009). Both vegetation

  14. Field soil aggregate stability kit for soil quality and rangeland health evaluations

    Science.gov (United States)

    Herrick, J.E.; Whitford, W.G.; de Soyza, A. G.; Van Zee, J. W.; Havstad, K.M.; Seybold, C.A.; Walton, M.

    2001-01-01

    Soil aggregate stability is widely recognized as a key indicator of soil quality and rangeland health. However, few standard methods exist for quantifying soil stability in the field. A stability kit is described which can be inexpensively and easily assembled with minimal tools. It permits up to 18 samples to be evaluated in less than 10 min and eliminates the need for transportation, minimizing damage to soil structure. The kit consists of two 21??10.5??3.5 cm plastic boxes divided into eighteen 3.5??3.5 cm sections, eighteen 2.5-cm diameter sieves with 1.5-mm distance openings and a small spatula used for soil sampling. Soil samples are rated on a scale from one to six based on a combination of ocular observations of slaking during the first 5 min following immersion in distilled water, and the percent remaining on a 1.5-mm sieve after five dipping cycles at the end of the 5-min period. A laboratory comparison yielded a correlation between the stability class and percent aggregate stability based on oven dry weight remaining after treatment using a mechanical sieve. We have applied the method in a wide variety of agricultural and natural ecosystems throughout western North America, including northern Mexico, and have found that it is highly sensitive to differences in management and plant community composition. Although the field kit cannot replace the careful laboratory-based measurements of soil aggregate stability, it can clearly provide valuable information when these more intensive procedures are not possible.

  15. Speciation of organic matter in sandy soil size fractions as revealed by analytical pyrolysis (Py-GC/MS) and FT-IR spectroscopy

    Science.gov (United States)

    Jiménez-Morillo, Nicasio T.; González-Vila, Francisco J.; Jordán, Antonio; Zavala, Lorena M.; de la Rosa, José M.; González-Pérez, José A.

    2015-04-01

    This research deals with the assessment of organic matter structural differences in soil physical fractions before and after lipid extractions. Soil samples were collected in sandy soils, Arenosols (WRB 2006) from the Doñana National Park (SW Spain) under different vegetation cover: cork oak (Quercus suber, QS), eagle fern (Pteridium aquilinum, PA), pine (Pinus pinea, PP) and rockrose (Halimium halimifolium, HH). Two size fractions; coarse (C: 1-2 mm) and fine (F: 0.05-0.25 mm) were studied from each soil. . In addition, the two fractions from each soil were exhaustively Soxhlet extracted with a Dichlorometane-Methanol (3:1) mixture to obtain the lipid-free fractions (LF) from each size fraction (LFC and LFF). The composition of the organic matter at a molecular level in the different soil fractions was approached by analytical pyrolysis (Py-GC/MS) and FT-IR spectroscopy. These techniques are complementary and have been found suitable for the structural characterization of complex organic matrices (Moldoveanu, 1998; Piccolo and Stevenson, 1982); whereas Py-GC/MS provides detailed structural information of individual compounds present and a finger-printing of soil organic matter, FT-IR is informative about major functional groups present. The advantages of these techniques are well known: no need for pretreatment are fast to perform, highly reproducible and only small amount of samples are needed. Soil size fractions show contrasting differences in organic matter content (C 4-7 % and F > 40 %) and conspicuous differences were found in the pyrolysis products released by the fractions studied. The main families of pyrolysis compounds have well defined macromolecular precursors, such as lignin, polypeptides, polysaccharides and lipids (González-Vila et al., 2001). The C fractions yield higher relative abundance of lignin and polysaccharide derived pyrolysis compounds. Regarding the differences in the soil organic matter as affected by the different vegetation covers

  16. Lime stabilization of expansive soil from Sergipe - Brazil

    Directory of Open Access Journals (Sweden)

    Leite Rafaella

    2016-01-01

    Full Text Available Expansive soils are characterized by volumetric changes caused by variations in moisture. They can cause several damages to civil constructions, especially to lightweight structures, including cracks and fissures. Chemical stabilization through addition of lime is one of the most effective techniques used to treat this type of soil. Due to cationic exchanges, lime can significantly reduce swell potential. This research studied a disturbed sample of expansive soil collected in Nossa Senhora do Socorro – Sergipe, Brazil, through the following laboratory tests: sieve and hydrometer tests, Atterberg Limits, compaction, free swell and swell pressure. All direct and indirect methods mentioned in this paper indicated that the natural soil presented high to very high degree of expansion, which reached approximately 20% of free swell and nearly 200 kPa of swell pressure. In order to evaluate the effect of lime, the same tests were conducted in soil-lime mixtures, using lime contents of 3%, 6% and 9%. The results confirmed the efficiency of lime stabilization. It was noted that, as lime content increased, there was reduction of clay fraction and increment of silt fraction; plasticity index decreased to nearly its half; compaction curve was displaced; and free swell and swell pressure reduced significantly.

  17. Fate of Tetrabromobisphenol A (TBBPA) and Formation of Ester- and Ether-Linked Bound Residues in an Oxic Sandy Soil.

    Science.gov (United States)

    Li, Fangjie; Wang, Jiajia; Jiang, Bingqi; Yang, Xue; Nastold, Peter; Kolvenbach, Boris; Wang, Lianhong; Ma, Yini; Corvini, Philippe François-Xavier; Ji, Rong

    2015-11-03

    Bound-residue formation is a major dissipation process of most organic xenobiotics in soil. However, both the formation and nature of bound residues of tetrabromobisphenol A (TBBPA) in soil are unclear. Using a 14C-tracer, we studied the fate of TBBPA in an oxic soil during 143 days of incubation. TBBPA dissipated with a half-life of 14.7 days; at the end of incubation, 19.6% mineralized and 66.5% formed bound residues. Eight extractable metabolites were detected, including TBBPA methyl ethers, single-ring bromophenols, and their methyl ethers. Bound residues (mostly bound to humin) rapidly formed during the first 35 days. The amount of those humin-bound residues then quickly decreased, whereas total bound residues decreased slowly. By contrast, residues bound to humic acids and fulvic acids increased continuously until a plateau was reached. Ester- and ether-linked residues accounted for 9.6-27.0% of total bound residues during the incubation, with ester linkages being predominant. Residues bound via ester linkages consisted of TBBPA, TBBPA monomethyl ether, and an unknown polar compound. Our results indicated that bound-residue formation is the major pathway of TBBPA dissipation in oxic soil and provide first insights into the chemical structure of the reversibly ester-linked bound residues of TBBPA and its metabolites.

  18. Nitrogen mineralization and nitrous oxide emissions in a sandy soil amended with low-phosphorus broiler litter

    Science.gov (United States)

    Recurrent land application of broiler litter in regions with a high concentration of poultry farms result in soils with phosphorus (P) far beyond the agronomic requirement of crops. A new waste treatment technology developed by USDA-ARS, called “Quick Wash”, chemically extracts and recovers P from b...

  19. State-space prediction of field-scale soil water content time series in a sandy loam

    NARCIS (Netherlands)

    Wendroth, O.; Rogasik, H.; Koszinski, S.; Ritsema, C.J.; Dekker, L.W.; Nielsen, D.R.

    1999-01-01

    The description of field soil water content time series can be affected by uncertainty due to measurement errors of the respective state variables, errors due to assumptions underlying the model, and errors in the determination of boundary conditions. In this study, a simple state-equation was

  20. Dynamic compaction with high energy of sandy hydraulic fills

    Directory of Open Access Journals (Sweden)

    Khelalfa Houssam

    2017-09-01

    Full Text Available A case study about the adoption of the dynamic compaction technique with high energy in a sandy hydraulic fill is presented. The feasibility of this technique to ensure the stability of the caisson workshop and to minimize the risk of liquefaction during manufacture. This Article is interested to establish diagnostic of dynamic compaction test, basing on the results of SPT tests and quality control as well as the details of work of compaction and the properties of filling materials. A theory of soil response to a high-energy impact during dynamic compaction is proposed.

  1. Calcium-based stabilizer induced heave in Oklahoma sulfate-bearing soils.

    Science.gov (United States)

    2011-06-01

    The addition of lime stabilizers can create problems in soils containing sulfates. In most cases, lime is mixed with expansive soils rendering them non-expansive; however, when a certain amount of sulfate is present naturally in expansive soils, the ...

  2. Comparison of water distribution mechanisms under two localized irrigation techniques (Drip Irrigation & Buried Diffuser) for one week irrigation period in a sandy soil of southeastern Tunisia

    Science.gov (United States)

    Gasmi, Ines; Kodešová, Radka; Mechergui, Mohamed; Nikodem, Antonín; Moussa, Mohamed

    2017-04-01

    The majority of agricultural ecosystems in the Mediterranean basin of northern Africa suffer from water shortage and positions these regions in a highly vulnerable to climate change. In arid regions of Tunisia and exactly in the Southeastern part, during each growing season, plant productivity in sandy-loamy soils is dramatically reduced by limited availability of soil water and nutrients. Thus, highly permeable soils are unable to retain adequate water and nutrient resource in the plant root zone. Moreover, the investments of supplemental irrigation and agricultural amendments of additional fertilization are not sustainable due to the leaching of water supplies and nutrients, which severely limit agricultural productivity. In addition, inadequate soil water distribution, costly irrigation and fertilization leads to negative responses to plant nutrients added to highly permeable soils. That's why we should use irrigation techniques with high water use efficiency. This paper focuses on the comparison between two localized irrigation techniques which are the Drip Irrigation (DI) and the Buried Diffuser (BD) that has the same flow rates (4 l/h). The BD is buried at 15 cm depths. Experimental data was obtained from Smar-Médenine located in South-East of Tunisia. The water distribution at the soil surface for BD is very important about 195 cm2 while for the DI is about 25.12 cm2. The HYDRUS 2D/3D model helped to evaluate the water distribution and compare the water balance obtained with those two irrigation techniques for one week irrigation period. There is a rapid kinetic which has a duration of 3 hours (irrigation time) and a slow kinetic which is the result of the water distribution in the soil, the plant uptake and the effect of climatic condition. There are two mechanisms that affect the two irrigation techniques: the water distribution and the position of irrigation system. As a result, irrigation with BD goes dipper in the soil. The transmission zone for this

  3. Stability and instability on Maya Lowlands tropical hillslope soils

    Science.gov (United States)

    Beach, Timothy; Luzzadder-Beach, Sheryl; Cook, Duncan; Krause, Samantha; Doyle, Colin; Eshleman, Sara; Wells, Greta; Dunning, Nicholas; Brennan, Michael L.; Brokaw, Nicholas; Cortes-Rincon, Marisol; Hammond, Gail; Terry, Richard; Trein, Debora; Ward, Sheila

    2018-03-01

    Substantial lake core and other evidence shows accelerated soil erosion occurred in the Maya Lowlands of Central America over ancient Maya history from 3000 to 1000 years ago. But we have little evidence of the wider network of the sources and sinks of that eroded sediment cascade. This study begins to solve the mystery of missing soil with new research and a synthesis of existing studies of tropical forest soils along slopes in NW Belize. The research aim is to understand soil formation, long-term human impacts on slopes, and slope stability over time, and explore ecological implications. We studied soils on seven slopes in tropical forest areas that have experienced intensive ancient human impacts and those with little ancient impacts. All of our soil catenas, except for one deforested from old growth two years before, contain evidence for about 1000 years of stable, tropical forest cover since Maya abandonment. We characterized the physical, chemical, and taxonomic characteristics of soils at crest-shoulder, backslopes, footslopes, and depression locations, analyzing typical soil parameters, chemical elements, and carbon isotopes (δ13C) in dated and undated sequences. Four footslopes or depressions in areas of high ancient occupation preserved evidence of buried, clay-textured soils covered by coarser sediment dating from the Maya Classic period. Three footslopes from areas with scant evidence of ancient occupation had little discernable deposition. These findings add to a growing corpus of soil toposequences with similar facies changes in footslopes and depressions that date to the Maya period. Using major elemental concentrations across a range of catenas, we derived a measure (Ca + Mg) / (Al + Fe + Mn) of the relative contributions of autochthonous and allochthonous materials and the relative age of soil catenas. We found very low ratios in clearly older, buried soils in footslopes and depressions and on slopes that had not undergone ancient Maya erosion. We

  4. Highly Organic Soil Stabilization by Using Sugarcane Bagasse Ash (SCBA

    Directory of Open Access Journals (Sweden)

    Abu Talib Mohd Khaidir

    2017-01-01

    Full Text Available The study objective is to develop alternative binders that are environment friendly by utilizing sugarcane bagasse ash (SCBA in the organic soil stabilization. Together with SCBA, Ordinary Portland Cement (OPC, calcium chloride (CaCl2 and silica sand (K7 were used as additives to stabilize the peat. In obtaining the optimal mix design, specimens of stabilized peat were tested in unconfined compression. It was found that stabilized peat comprising 20% and 5% (PCB1-20 and PCB2-5 partial replacement of OPC with SCBA 1 and SCBA 2 attain the maximum unconfined compressive strength (UCS and discovered greater than UCS of peat-cement (PC specimen. At the optimal mix design, the UCS of the stabilized peat specimens increased with increasing of curing time, preloading rate, OPC and K7 dosage. For PCB1-20 mixture, inclusion of a minimum OPC of 300kg/m3 and K7 of 500kg/m3 along with curing under 20kPa pressure is recommendable for the peat stabilization to be effective. However for PCB2-5, it suggested to use more OPC and K7 dosage or alternatively increase the preloading during curing to 40kPa in order to achieve target UCS. It can be concluded that SCBA 1 has better quality than SCBA 2 in peat stabilization especially the contribution made by its fine particle size.

  5. Combined effect of diuron and simazine on photosystem II photochemistry in a sandy soil and soil amended with solid olive-mill waste.

    Science.gov (United States)

    Redondo-Gómez, Susana; Cox, Lucía; Cornejo, Juan; Figueroa, Enrique

    2007-01-01

    Diuron (3-(3,4-dichlorophenyl)- = 1,1-dimethylurea) and simazine (6-chloro-N(2), N(4)-diethyl-1,3,5-triazine-2,4-diamine) are soil-applied herbicides used in olive crops. The objective of this study is to investigate the effect of these herbicides on Photosystem II photochemistry of Olea europaea L., and whether the amendment of soil with an organic waste (OW) from olive oil production industry modifies this effect. For this purpose, herbicide soil adsorption studies, with unamended and OW-amended soil, and chlorophyll fluorescence measurements in adult olive leaves, after one, two and three weeks of soil herbicide treatment and/or OW amendment, were performed. Soil application of these herbicides reduced the efficiency of Photosystem II photochemistry of olive trees due to chronic photoinhibition, and this effect is counterbalanced by the addition of OW to the soil. OW reduces herbicide uptake by the plant due to an increase in herbicide adsorption.

  6. The effect of autumn ridging and inter-row subsoiling on potato tuber yield and quality on a sandy soil in Denmark

    DEFF Research Database (Denmark)

    Henriksen, Jens Christian Martin Bugge; Mølgaard, Jens Peter; Rasmussen, Jesper

    2007-01-01

    Autumn ridging is a modified version of the ridge tillage system. Instead of setting up ridges during the growing season, they are established in autumn and left for the winter. Previous studies have documented positive effects of autumn ridging on potato yield and we hypothesized that subsoiling...... could enhance these effects. To determine the effect of autumn ridging and inter-row subsoiling on potato yield and quality a field experiment was conducted on sandy soil from 2001 to 2003. Autumn ridging resulted in an average total and marketable tuber yield of 25.6 and 9.2 t ha1, which...... was not significantly different from the average total and marketable yield of 25.6 and 8.9 t ha1 with ploughing. However, autumn ridging significantly reduced the incidence of black scurf from 2.5% to 2.2%. Inter-row subsoiling in the growing season significantly increased marketable potato tuber yield from 8.4 to 9...

  7. The influence of interstitial water velocity on the migration of 85Sr and 137Cs in an aerated sandy soil layer

    International Nuclear Information System (INIS)

    Ohnuki, Toshihiko; Takebe, Shinichi; Yamamoto, Tadatoshi; Wadachi, Yoshiki

    1983-01-01

    The influence of interstitial water velocity on the migration of Sr-85 and Cs-137 in an aerated sandy soil layer was studied at different feed water velocities and feed times. As well known, it was found that Sr-85 migrated with interstitial water, but Cs-137 little migrated with interstitial water. The apparent migration velocity for each fraction corresponding to three concentrations (2 x 10 -2 , 1 x 10 -2 and 5 x 10 -3 μCi/g) of Sr-85 was further investigated. At constant interstitial water velocity (1cm/ min), different values were given for the apparent migration velocity of three fractions, and the fraction with thin concentration migrated faster. At constant feeding time (100hr), there was a linear relationship between apparent migration velocity of three fractions and interstitial water velocity, in the range of slow water velocity ( -2 and 5 x 10 -3 μCi/g) and interstitial water velocity, in the range of fast water velocity (> 1cm/min). (author)

  8. Soil Stabilization with Lime for the Construction of Forest Roads

    Directory of Open Access Journals (Sweden)

    Reginaldo Sérgio Pereira

    2018-02-01

    Full Text Available ABSTRACT The mechanical performance of soil stabilization using lime to improve forest roads was assessed. This study was conducted with lateritic soil (LVAd30 using lime content of 2% in the municipality of Niquelândia, Goiás state, Brazil. Geotechnical tests of soil characterization, compaction, and mechanical strength were performed applying different compaction efforts and curing periods. The results showed that lime content significantly changed the mechanical performance of natural soil, increasing its mechanical strength and load-carrying capacity. Compaction effort and curing time provided different responses in the unconfined compressive strength (UCS and California Bearing Ratio (CBR tests. The best UCS value (786.59 kPa for the soil-lime mixture was achieved with modified compaction effort and curing time of 28 days. In the CBR test, soil-lime mixtures compacted at intermediate and modified efforts and cured for 28 days were considered for application as subbase material of flexible road pavements, being a promising alternative for use in layers of forest roads.

  9. Yield and crop growth of table potato affected by different split-N fertigation regimes in sandy soil

    DEFF Research Database (Denmark)

    Zhenjiang, Zhou; Plauborg, Finn; Liu, Fulai

    2018-01-01

    model)-based N fertilization method, as well as three irrigation levels. Results showed that prolonged N fertigation increased yield consistently but N fertigation should be carried out early so that shoot growth is optimized and prolonged N have sufficient time to take effect on tuber yield...... irrigation did not cause reduced soil water content, ratio vegetation index (RVI) and yield, but irrigation efficiency was increased significantly in 2013....

  10. A Laboratory Investigation on Shear Strength Behavior of Sandy Soil: Effect of Glass Fiber and Clinker Residue Content

    Science.gov (United States)

    Bouaricha, Leyla; Henni, Ahmed Djafar; Lancelot, Laurent

    2017-12-01

    A study was undertaken to investigate the shear strength parameters of treated sands reinforced with randomly distributed glass fibers by carrying out direct shear test after seven days curing periods. Firstly, we studied the fiber content and fiber length effect on the peak shear strength on samples. The second part gives a parametric analysis on the effect of glass fiber and clinker residue content on the shear strength parameters for two types of uniform Algerian sands having different particle sizes (Chlef sand and Rass sand) with an average relative density Dr = 50%. Finally, the test results show that the combination of glass fiber and clinker residue content can effectively improve the shear strength parameters of soil in comparison with unreinforced soil. For instance, there is a significant gain for the cohesion and friction angle of reinforced sand of Chlef. Compared to unreinforced sand, the cohesion for sand reinforced with different ratios of clinker residue increased by 4.36 to 43.08 kPa for Chlef sand and by 3.1 to 28.64 kPa for Rass sand. The feature friction angles increased from 38.73° to 43.01° (+4.28°), and after the treatment, clinker residue content of soil evaluated to 5% (WRC = 5%).

  11. A Laboratory Investigation on Shear Strength Behavior of Sandy Soil: Effect of Glass Fiber and Clinker Residue Content

    Directory of Open Access Journals (Sweden)

    Bouaricha Leyla

    2017-12-01

    Full Text Available A study was undertaken to investigate the shear strength parameters of treated sands reinforced with randomly distributed glass fibers by carrying out direct shear test after seven days curing periods. Firstly, we studied the fiber content and fiber length effect on the peak shear strength on samples. The second part gives a parametric analysis on the effect of glass fiber and clinker residue content on the shear strength parameters for two types of uniform Algerian sands having different particle sizes (Chlef sand and Rass sand with an average relative density Dr = 50%. Finally, the test results show that the combination of glass fiber and clinker residue content can effectively improve the shear strength parameters of soil in comparison with unreinforced soil. For instance, there is a significant gain for the cohesion and friction angle of reinforced sand of Chlef. Compared to unreinforced sand, the cohesion for sand reinforced with different ratios of clinker residue increased by 4.36 to 43.08 kPa for Chlef sand and by 3.1 to 28.64 kPa for Rass sand. The feature friction angles increased from 38.73° to 43.01° (+4.28°, and after the treatment, clinker residue content of soil evaluated to 5% (WRC = 5%.

  12. The rhizosphere and PAH amendment mediate impacts on functional and structural bacterial diversity in sandy peat soil

    Energy Technology Data Exchange (ETDEWEB)

    Yrjaelae, Kim, E-mail: kim.yrjala@helsinki.f [Department of Biological and Environmental Sciences, General Microbiology, University of Helsinki, P.O. Box 56, (Biocenter 1C), 00014 Helsinki (Finland); Keskinen, Anna-Kaisa; Akerman, Marja-Leena; Fortelius, Carola [METROPOLIA University of Applied Science, Vantaa (Finland); Sipilae, Timo P. [Department of Biological and Environmental Sciences, General Microbiology, University of Helsinki, P.O. Box 56, (Biocenter 1C), 00014 Helsinki (Finland)

    2010-05-15

    To reveal the degradation capacity of bacteria in PAH polluted soil and rhizosphere we combined bacterial extradiol ring-cleavage dioxygenase and 16S rRNA analysis in Betula pubescens rhizoremediation. Characterisation of the functional bacterial community by RFLP revealed novel environmental dioxygenases, and their putative hosts were studied by 16S rRNA amplification. Plant rhizosphere and PAH amendment effects were detected by the RFLP/T-RFLP analysis. Functional species richness increased in the birch rhizosphere and PAH amendment impacted the compositional diversity of the dioxygenases and the structural 16S rRNA community. A shift from an Acidobacteria and Verrucomicrobia dominated to an Alpha- and Betaproteobacteria dominated community structure was detected in polluted soil. Clone sequence analysis indicated catabolic significance of Burkholderia in PAH polluted soil. These results advance our understanding of rhizoremediation and unveil the extent of uncharacterized functional bacteria to benefit bioremediation by facilitating the development of the molecular tool box to monitor bacterial populations in biodegradation. - The bacterial community analysis using 16S rRNA and extradiol dioxygenase marker genes in rhizoremediation revealed both a rhizosphere and a PAH-pollution effect.

  13. The rhizosphere and PAH amendment mediate impacts on functional and structural bacterial diversity in sandy peat soil

    International Nuclear Information System (INIS)

    Yrjaelae, Kim; Keskinen, Anna-Kaisa; Akerman, Marja-Leena; Fortelius, Carola; Sipilae, Timo P.

    2010-01-01

    To reveal the degradation capacity of bacteria in PAH polluted soil and rhizosphere we combined bacterial extradiol ring-cleavage dioxygenase and 16S rRNA analysis in Betula pubescens rhizoremediation. Characterisation of the functional bacterial community by RFLP revealed novel environmental dioxygenases, and their putative hosts were studied by 16S rRNA amplification. Plant rhizosphere and PAH amendment effects were detected by the RFLP/T-RFLP analysis. Functional species richness increased in the birch rhizosphere and PAH amendment impacted the compositional diversity of the dioxygenases and the structural 16S rRNA community. A shift from an Acidobacteria and Verrucomicrobia dominated to an Alpha- and Betaproteobacteria dominated community structure was detected in polluted soil. Clone sequence analysis indicated catabolic significance of Burkholderia in PAH polluted soil. These results advance our understanding of rhizoremediation and unveil the extent of uncharacterized functional bacteria to benefit bioremediation by facilitating the development of the molecular tool box to monitor bacterial populations in biodegradation. - The bacterial community analysis using 16S rRNA and extradiol dioxygenase marker genes in rhizoremediation revealed both a rhizosphere and a PAH-pollution effect.

  14. Linking soil permeability and soil aggregate stability with root development: a pots experiment (preliminary results)

    Science.gov (United States)

    Vergani, Chiara; Graf, Frank; Gerber, Werner

    2015-04-01

    Quantifying and monitoring the contribution of vegetation to the stability of the slopes is a key issue for implementing effective soil bioengineering measures. This topic is being widely investigated both from the hydrological and mechanical point of view. Nevertheless, due to the high variability of the biological components, we are still far from a comprehensive understanding of the role of plants in slope stabilization, especially if the different succession phases and the temporal development of vegetation is considered. Graf et al., 2014, found within the scope of aggregate stability investigations that the root length per soil volume of alder specimen grown for 20 weeks under laboratory conditions is comparable to the one of 20 years old vegetation in the field. This means that already relatively short time scales can provide meaningful information at least for the first stage of colonization of soil bioengineering measures, which is also the most critical. In the present study we analyzed the effect of root growth on two soil properties critical to evaluate the performance of vegetation in restoring and re-stabilizing slopes: permeability and soil aggregate stability. We set up a laboratory experiment in order to work under controlled conditions and limit as much as possible the natural variability. Alnus incana was selected as the study species as it is widely used in restoration projects in the Alps, also because of its capacity to fix nitrogen and its symbiosis with both ecto and arbuscular mycorrhizal fungi. After the first month of growth in germination pots, we planted one specimen each in big quasi cylindrical pots of 34 cm diameter and 35 cm height. The pots were filled with the soil fraction smaller than 10 mm coming from an oven dried moraine collected in a subalpine landslide area (Hexenrübi catchment, central Switzerland). The targeted dry unit weight was 16 kN/m3. The plants have been maintained at a daily temperature of 25°C and relative

  15. Long-term stabilization of crop residues and soil organic carbon affected by residue quality and initial soil pH.

    Science.gov (United States)

    Wang, Xiaojuan; Butterly, Clayton R; Baldock, Jeff A; Tang, Caixian

    2017-06-01

    Residues differing in quality and carbon (C) chemistry are presumed to contribute differently to soil pH change and long-term soil organic carbon (SOC) pools. This study examined the liming effect of different crop residues (canola, chickpea and wheat) down the soil profile (0-30cm) in two sandy soils differing in initial pH as well as the long-term stability of SOC at the amended layer (0-10cm) using mid-infrared (MIR) and solid-state 13 C nuclear magnetic resonance (NMR) spectroscopy. A field column experiment was conducted for 48months. Chickpea- and canola-residue amendments increased soil pH at 0-10cm in the Podzol by up to 0.47 and 0.36units, and in the Cambisol by 0.31 and 0.18units, respectively, at 48months when compared with the non-residue-amended control. The decomposition of crop residues was greatly retarded in the Podzol with lower initial soil pH during the first 9months. The MIR-predicted particulate organic C (POC) acted as the major C sink for residue-derived C in the Podzol. In contrast, depletion of POC and recovery of residue C in MIR-predicted humic organic C (HOC) were detected in the Cambisol within 3months. Residue types showed little impact on total SOC and its chemical composition in the Cambisol at 48months, in contrast to the Podzol. The final HOC and resistant organic C (ROC) pools in the Podzol amended with canola and chickpea residues were about 25% lower than the control. This apparent priming effect might be related to the greater liming effect of these two residues in the Podzol. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Respuesta del trigo a la fertilización nitrogenada y nitroazufrada en suelos arenosos Wheat response to nitrogen and nitrogen with sulfur fertilization in sandy soils

    Directory of Open Access Journals (Sweden)

    Mirian Barraco

    2009-12-01

    (S additions. However, the available information is not consistent for the diagnosis and analysis of the marginal contribution of S on wheat grain responses in combination with N fertilization. Thus, the objective of this study was to quantify the yield response of dryland wheat crops to N and NS fertilization and to determine the relationship between yield response and several soil properties in sandy soils. The study consisted in 34 field experiments within the semiarid and subhumid sandy pampas region (Argentina managed under no-tillage practices. Three treatments were evaluated: i control (without fertilization, ii 140 kg of N ha-¹ [N-NO3 soil (0-40 cm + N fertilizer], iii 140 kg of N ha-¹ [N-NO3 soil (0- 40 cm + N fertilizer] + 12 kg of S ha-¹. A positive response to N fertilization was observed in every experimental site. Mean grain yield response to the application of N was 949 kg ha-¹. Although the mean grain yield response to S fertilization was 232 kg ha-¹, only 38% of the sites (13 sites showed a significant response to this treatment. Crop response to S fertilization was not related to soil organic matter (p = 0.61, sand content (p = 0.90, soil extractable S-S0(4 ²-(p = 0.29, nor soil N-N0(3 -(p = 0.47 levels. Furthermore, it decreased with increasing maximum grain yields and it was positively related to crop responses to N fertilization. We conclude that in coarse textured soils with significant N limitations, wheat responses to S fertilization are greater and more common in low productivity sites.

  17. An alternative soil nailing system for slope stabilization: Akarpiles

    Science.gov (United States)

    Lim, Chun-Lan; Chan, Chee-Ming

    2017-11-01

    This research proposes an innovative solution for slope stabilization with less environmental footprint: AKARPILES. In Malaysia, landslide has become common civil and environmental problems that cause impacts to the economy, safety and environment. Therefore, effective slope stabilization method helps to improve the safety of public and protect the environment. This study focused on stabilizing surfacial slope failure. The idea of AKARPILES was generated from the tree roots system in slope stabilization. After the piles are installed in the slope and intercepting the slip plane, grout was pumped in and discharged through holes on the piles. The grout then filled the pores in the soil with random flow within the slip zone. SKW mixture was used to simulate the soil slope. There were two designs being proposed in this study and the prototypes were produced by a 3D printer. Trial mix of the grout was carried out to obtain the optimum mixing ratio of bentonite: cement: water. A series of tests were conducted on the single-pile-reinforced slope under vertical slope crest loading condition considering different slope gradients and nail designs. Parameters such as ultimate load, failure time and failure strain were recorded and compared. As comparison with the unreinforced slope, both designs of AKARPILES showed better but different performances in the model tests.

  18. Black carbon and organic matter stabilization in soil

    Science.gov (United States)

    Lehmann, J.; Liang, B.; Sohi, S.; Gaunt, J.

    2007-12-01

    Interaction with minerals is key to stabilization of organic matter in soils. Stabilization is commonly perceived to occur due to entrapment in pore spaces, encapsulation within aggregates or interaction with mineral surfaces. Typically only interactions between organic matter and minerals are considered in such a model. Here we demonstrate that black carbon may act very similar to minerals in soil in that it enhances the stabilization of organic matter. Mineralization of added organic matter was slower and incorporation into intra-aggregate fractions more rapid in the presence of black carbon. Added double-labeled organic matter was recovered in fractions with high amounts of black carbon. Synchrotron-based near-edge x-ray fine structure (NEXAFS) spectroscopy coupled to scanning transmission x-ray microscopy (STXM) suggested a possible interaction of microorganisms with black carbon surfaces and metabolization of residues. These findings suggest a conceptual model that includes carbon-carbon interactions and by-passing for more rapid stabilization of litter into what is commonly interpreted as stable carbon pools.

  19. Stabilization/Solidification Remediation Method for Contaminated Soil: A Review

    Science.gov (United States)

    Tajudin, S. A. A.; Azmi, M. A. M.; Nabila, A. T. A.

    2016-07-01

    Stabilization/Solidification (S/S) is typically a process that involves a mixing of waste with binders to reduce the volume of contaminant leachability by means of physical and chemical characteristics to convert waste in the environment that goes to landfill or others possibly channels. Stabilization is attempts to reduce the solubility or chemical reactivity of the waste by changing the physical and chemical properties. While, solidification attempt to convert the waste into easily handled solids with low hazardous level. These two processes are often discussed together since they have a similar purpose of improvement than containment of potential pollutants in treated wastes. The primary objective of this review is to investigate the materials used as a binder in Stabilization/Solidification (S/S) method as well as the ability of these binders to remediate the contaminated soils especially by heavy metals.

  20. Estimation of Hydraulic properties of a sandy soil using ground-based active and passive microwave remote sensing

    KAUST Repository

    Jonard, François

    2015-06-01

    In this paper, we experimentally analyzed the feasibility of estimating soil hydraulic properties from 1.4 GHz radiometer and 0.8-2.6 GHz ground-penetrating radar (GPR) data. Radiometer and GPR measurements were performed above a sand box, which was subjected to a series of vertical water content profiles in hydrostatic equilibrium with a water table located at different depths. A coherent radiative transfer model was used to simulate brightness temperatures measured with the radiometer. GPR data were modeled using full-wave layered medium Green\\'s functions and an intrinsic antenna representation. These forward models were inverted to optimally match the corresponding passive and active microwave data. This allowed us to reconstruct the water content profiles, and thereby estimate the sand water retention curve described using the van Genuchten model. Uncertainty of the estimated hydraulic parameters was quantified using the Bayesian-based DREAM algorithm. For both radiometer and GPR methods, the results were in close agreement with in situ time-domain reflectometry (TDR) estimates. Compared with radiometer and TDR, much smaller confidence intervals were obtained for GPR, which was attributed to its relatively large bandwidth of operation, including frequencies smaller than 1.4 GHz. These results offer valuable insights into future potential and emerging challenges in the development of joint analyses of passive and active remote sensing data to retrieve effective soil hydraulic properties.

  1. Influence of a Single Soil Surfactant Application on Potato Ridge Moisture Dynamics and Crop Yield in a Water Repellent Sandy Soil

    NARCIS (Netherlands)

    Oostindie, K.; Dekker, L.W.; Wesseling, J.G.; Moore, D.; Ritsema, C.J.

    2012-01-01

    Recent studies in the USA (e.g. Hopkins and Cook, 2005) show that single applications of a particular soil surfactant, IrrigAid Gold (Aquatrols), on potato (Solanum tuberosum L.) crop fields can lead to a more uniform wetting pattern in the potato ridges, higher soil water contents in the ridges

  2. Soil Organic Matter Stabilization via Mineral Interactions in Forest Soils with Varying Saturation Frequency

    Science.gov (United States)

    Possinger, A. R.; Inagaki, T.; Bailey, S. W.; Kogel-Knabner, I.; Lehmann, J.

    2017-12-01

    Soil carbon (C) interaction with minerals and metals through surface adsorption and co-precipitation processes is important for soil organic C (SOC) stabilization. Co-precipitation (i.e., the incorporation of C as an "impurity" in metal precipitates as they form) may increase the potential quantity of mineral-associated C per unit mineral surface compared to surface adsorption: a potentially important and as yet unaccounted for mechanism of C stabilization in soil. However, chemical, physical, and biological characterization of co-precipitated SOM as such in natural soils is limited, and the relative persistence of co-precipitated C is unknown, particularly under dynamic environmental conditions. To better understand the relationships between SOM stabilization via organometallic co-precipitation and environmental variables, this study compares mineral-SOM characteristics across a forest soil (Spodosol) hydrological gradient with expected differences in co-precipitation of SOM with iron (Fe) and aluminum (Al) due to variable saturation frequency. Soils were collected from a steep, well-drained forest soil transect with low, medium, and high frequency of water table intrusion into surface soils (Hubbard Brook Experimental Forest, Woodstock, NH). Lower saturation frequency soils generally had higher C content, C/Fe, C/Al, and other indicators of co-precipitation interactions resulting from SOM complexation, transport, and precipitation, an important process of Spodosol formation. Preliminary Fe X-ray Absorption Spectroscopic (XAS) characterization of SOM and metal chemistry in low frequency profiles suggest co-precipitation of SOM in the fine fraction (soils showed greater SOC mineralization per unit soil C for low saturation frequency (i.e., higher co-precipitation) soils; however, increased mineralization may be attributed to non-mineral associated fractions of SOM. Further work to identify the component of SOM contributing to rapid mineralization using 13C

  3. Soil Organic Matter Stability and Soil Carbon Storage with Changes in Land Use Intensity in Uganda

    Science.gov (United States)

    Tiemann, L. K.; Grandy, S.; Hartter, J.

    2014-12-01

    As the foundation of soil fertility, soil organic matter (SOM) formation and break-down is a critical factor of agroecosystem sustainability. In tropical systems where soils are quickly weathered, the link between SOM and soil fertility is particularly strong; however, the mechanisms controlling the stabilization and destabilization of SOM are not well characterized in tropical soils. In western Uganda, we collected soil samples under different levels of land use intensity including maize fields, banana plantations and inside an un-cultivated native tropical forest, Kibale National Park (KNP). To better understand the link between land use intensity and SOM stability we measured total soil C and N, and respiration rates during a 369 d soil incubation. In addition, we separated soils into particle size fractions, and mineral adsorbed SOM in the silt (2-50 μm ) and clay (fractions was dissociated, purified and chemically characterized via pyrolysis-GC/MS. Cultivated soil C and N have declined by 22 and 48%, respectively, in comparison to uncultivated KNP soils. Incubation data indicate that over the last decade, relatively accessible and labile soil organic carbon (SOC) pools have been depleted by 55-59% in cultivated soils. As a result of this depletion, the chemical composition of SOM has been altered such that clay and silt associated SOM differed significantly between agricultural fields and KNP. In particular, nitrogen containing compounds were in lower abundance in agricultural compared to KNP soils. This suggests that N depletion due to agriculture has advanced to pools of mineral associated organic N that are typically protected from break-down. In areas where land use intensity is relatively greater, increases in polysaccharides and lipids in maize fields compared to KNP indicate increases in microbial residues and decomposition by-products as microbes mine SOM for organic N. Chemical characterization of post-incubation SOM will help us better understand

  4. Hillslope scale temporal stability of soil water storage in diverse soil layers

    Science.gov (United States)

    Jia, Xiaoxu; Shao, Ming'an; Wei, Xiaorong; Wang, Yunqiang

    2013-08-01

    Knowledge of the soil water storage (SWS) of soil profiles on the scale of a hillslope is important for the optimal management of soil water and revegetation on sloping land in semi-arid areas. This study aimed to investigate the temporal stability of SWS profiles (0-1.0, 1.0-2.0, and 2.0-3.0 m) and to identify representative sites for reliably estimating the mean SWS on two adjacent hillslopes of the Loess Plateau in China. We used two indices: the standard deviation of relative difference (SDRD) and the mean absolute bias error (MABE). We also endeavored to identify any correlations between temporal stability and soil, topography, or properties of the vegetation. The SWS of the soil layers was measured using neutron probes on 15 occasions at 59 locations arranged on two hillslopes (31 and 28 locations for hillslope A (HA) and hillslope B (HB), respectively) from 2009 to 2011. The time-averaged mean SWS for the three layers differed significantly (P management of soil water on sloping land on the Loess Plateau.

  5. Stability Analysis of Methane Hydrate-Bearing Soils Considering Dissociation

    Directory of Open Access Journals (Sweden)

    Hiromasa Iwai

    2015-06-01

    Full Text Available It is well known that the methane hydrate dissociation process may lead to unstable behavior such as large ground deformations, uncontrollable gas production, etc. A linear instability analysis was performed in order to investigate which variables have a significant effect on the onset of the instability behavior of methane hydrate-bearing soils subjected to dissociation. In the analysis a simplified viscoplastic constitutive equation is used for the soil sediment. The stability analysis shows that the onset of instability of the material system mainly depends on the strain hardening-softening parameter, the degree of strain, and the permeability for water and gas. Then, we conducted a numerical analysis of gas hydrate-bearing soil considering hydrate dissociation in order to investigate the effect of the parameters on the system. The simulation method used in the present study can describe the chemo-thermo-mechanically coupled behaviors such as phase changes from hydrates to water and gas, temperature changes and ground deformation. From the numerical results, we found that basically the larger the permeability for water and gas is, the more stable the simulation results are. These results are consistent with those obtained from the linear stability analysis.

  6. Development of Low Cost Soil Stabilization Using Recycled Material

    Science.gov (United States)

    Ahmad, F.; Yahaya, A. S.; Safari, A.

    2016-07-01

    Recycled tyres have been used in many geotechnical engineering projects such as soil improvement, soil erosion and slope stability. Recycled tyres mainly in chip and shredded form are highly compressible under low and normal pressures. This characteristic would cause challenging problems in some applications of soil stabilization such as retaining wall and river bank projects. For high tensile stress and low tensile strain the use of fiberglass would be a good alternative for recycled tyre in some cases. To evaluate fiberglass as an alternative for recycled tyre, this paper focused on tests of tensile tests which have been carried out between fiberglass and recycled tyre strips. Fibreglass samples were produced from chopped strand fibre mat, a very low-cost type of fibreglass, which is cured by resin and hardener. Fibreglass samples in the thickness of 1 mm, 2 mm, 3 mm and 4 mm were developed 100 mm x 300 mm pieces. It was found that 3 mm fibreglass exhibited the maximum tensile load (MTL) and maximum tensile stress (MTS) greater than other samples. Statistical analysis on 3 mm fibreglass indicated that in the approximately equal MTL fibreglass samples experienced 2% while tyre samples experienced 33.9% ultimate tensile strain (UTST) respectively. The results also showed an approximately linear relationship between stress and strain for fibreglass samples and Young's modulus (E), ranging from 3581 MPa to 4728 MPa.

  7. Jatropha curcas L. Root Structure and Growth in Diverse Soils

    Directory of Open Access Journals (Sweden)

    Ofelia Andrea Valdés-Rodríguez

    2013-01-01

    Full Text Available Unlike most biofuel species, Jatropha curcas has promise for use in marginal lands, but it may serve an additional role by stabilizing soils. We evaluated the growth and structural responsiveness of young J. curcas plants to diverse soil conditions. Soils included a sand, a sandy-loam, and a clay-loam from eastern Mexico. Growth and structural parameters were analyzed for shoots and roots, although the focus was the plasticity of the primary root system architecture (the taproot and four lateral roots. The sandy soil reduced the growth of both shoot and root systems significantly more than sandy-loam or clay-loam soils; there was particularly high plasticity in root and shoot thickness, as well as shoot length. However, the architecture of the primary root system did not vary with soil type; the departure of the primary root system from an index of perfect symmetry was 14±5% (mean ± standard deviation. Although J. curcas developed more extensively in the sandy-loam and clay-loam soils than in sandy soil, it maintained a consistent root to shoot ratio and root system architecture across all types of soil. This strong genetic determination would make the species useful for soil stabilization purposes, even while being cultivated primarily for seed oil.

  8. Metribuzin transport in undisturbed soil cores under controlled water potential conditions: experiments and modelling to evaluate the risk of leaching in a sandy loam soil profile.

    Science.gov (United States)

    Pot, Valérie; Benoit, Pierre; Le Menn, Mona; Eklo, Ole-Martin; Sveistrup, Tore; Kvaerner, Jens

    2011-04-01

    Mobility of pesticides in soils is often evaluated and characterised in the surface soil layers rather than at different depths where soil characteristics such as soil organic matter, microbial biomass or clay contents can strongly change pesticide behaviour. The objective of this work was to characterise the reactivity of the herbicide metribuzin in three main soil horizons found in the 0-80 cm profile of an alluvial soil of southern Norway under dynamic transport conditions. A laboratory infiltrometer was used to perform percolation experiments in soil cores sampled in the three horizons Ap, Bw and Bw/C, at a fixed matric potential of -10 cm, thus preventing pores of equivalent radii higher than 0.015 cm from contributing to water flow. The physical equilibrium transport model correctly described the transport of water tracer (bromide). The distribution coefficient K(d) values were estimated to be 0.29, 0.17 ± 0.02 and 0.15 ± 0.00 L kg(-1) for horizons Ap, Bw and Bw/C respectively, in close agreement with batch sorption data. Degradation was found only for the surface horizon with a short half-life of about 5 days, in disagreement with longer half-lives found in batch and field degradation data. For all horizons, a kinetic sorption model was needed for better description of metribuzin leaching. Chemical non-equilibrium was greatest in the Bw horizon and lowest in the Bw/C horizon. Overall, metribuzin exhibited a greater mobility in the deeper horizons. The risk of metribuzin transfer to groundwater in such alluvial soils should therefore be considered. Copyright © 2011 Society of Chemical Industry.

  9. Effects of exogenously applied salicylic acid and putrescine alone and in combination with rhizobacteria on the phytoremediation of heavy metals and chickpea growth in sandy soil.

    Science.gov (United States)

    Khan, Naeem; Bano, Asghari

    2018-04-16

    The present attempt was made to study the role of exogenously applied salicylic acid (SA) and putrescine (Put) on the phytoremediation of heavy metals and on the growth parameters of chickpea grown in sandy soil. The SA and Put were applied alone as well as in combination with plant growth promoting rhizobacteria (PGPR). The PGPRs, isolated from the rhizosphere of chickpea, were characterized on the basis of colony morphology and biochemical traits through gram staining, catalase and oxidase tests, and identified by 16S-rRNA gene sequencing as Bacillus subtilis, Bacillus thuringiensis and Bacillus megaterium. The chickpea seeds were soaked in 24 h old fresh cultures of isolates for 2-3 h prior to sowing. The growth regulators (PGRs), SA and Put (150 mg/L), were applied to the seedlings as foliar spray at three-leaf stage. The result revealed that plants treated with SA and Put alone or in combination with PGPRs, significantly enhanced the accumulation of heavy metals in plant shoot. PGPR induces Ni accumulation in sensitive variety and Pb in both the varieties, the PGR in combination augment the bioremediation effects of PGPR and both sensitive and tolerant variety showed significant accumulation of Ni, Cd, and Pb. SA was more effective in accumulating Ni and Cd whereas, significant accumulation of Pb was recorded in Put. PGPRs further augmented the PGRs induced accumulation of heavy metals and macronutrients in chickpea shoot and in rhizosphere. SA increased the proline content of tolerant variety while decreasing the lipid peroxidation and proline content of the sensitive variety but decreased the stimulating effect of PGPR in proline production. Interactive effects of PGPR and PGRs are recommended for inducing phytoremediation in chickpea plants under drought stress.

  10. Common bean growth, N uptake and seed production in sandy loam soil as affected by application of plant residues, nitrogen and irrigation level

    International Nuclear Information System (INIS)

    Abdallah, A.A.G.

    2002-01-01

    Field experiment was conducted at the experimental farm, Inshas, atomic energy authority, egypt. Common bean seeds e.v. Nebrasks were cultivated in sandy loan soil using drip irrigation system prepared for this purpose. Two water regimes, i.e., 100% (793.0 m 3 /fed.) and 65% (513.0 m 3 /fed.) of maximum available water were used in main plots. Where in sub plots two fertilizers types were applied i.e., soybean plant residues which contains N 15 labelled as an organic matter without any addition of any fertilizer and nitrogen as chemical fertilizer without using organic matter. The obtained results indicated that, application of plant residues was superior for total seed yield comparing to nitrogen fertilization treatments. This N source with irrigation level of 793.33 m 3 /fed. had a slight increase in total seed yield comparing with (513.0 m 3 /fed.). Irrigation level of 513.0 m 3 /fed. (65% MAW) as well as application of soybean plant residues showed the highest value of water use efficiency. The highest value of N seed percentage was obtained irrigation level with (513.0 m 3 /fed.). Soybean plant residues improved and increased seeds N content, and total seeds protein content. Both N chemical and irrigation level (65% Maw) recorded highest values with N 15 % atom excess. This result has been obtained at two growth stages and seed yield. The same trend of N 15 % atom excess reflected N utilized with both growth stages and seed yield

  11. The effect of simulated acid rain on the stabilization of cadmium in contaminated agricultural soils treated with stabilizing agents.

    Science.gov (United States)

    Zhu, Hao; Wu, Chunfa; Wang, Jun; Zhang, Xumei

    2018-04-16

    Stabilization technology is one of widely used remediation technologies for cadmium (Cd)-contaminated agricultural soils, but stabilized Cd in soil may be activated again when external conditions such as acid rain occurred. Therefore, it is necessary to study the effect of acid rain on the performance of different stabilizing agents on Cd-polluted agriculture soils. In this study, Cd-contaminated soils were treated with mono-calcium phosphate (MCP), mono-ammonium phosphate (MAP), and artificial zeolite (AZ) respectively and incubated 3 months. These treatments were followed by two types of simulated acid rain (sulfuric acid rain and mixed acid rain) with three levels of acidity (pH = 3.0, 4.0, and 5.6). The chemical forms of Cd in the soils were determined by Tessier's sequential extraction procedure, and the leaching toxicities of Cd in the soils were assessed by toxicity characteristic leaching procedure (TCLP). The results show that the three stabilizing agents could decrease the mobility of Cd in soil to some degree with or without simulated acid rain (SAR) treatment. The stabilization performances followed the order of AZ Acid rain soaking promoted the activation of Cd in stabilized soil, and both anion composition and pH of acid rain were two important factors that influenced the stabilization effect of Cd.

  12. Plume Mitigation for Mars Terminal Landing: Soil Stabilization Project

    Science.gov (United States)

    Hintze, Paul E.

    2014-01-01

    Kennedy Space Center (KSC) has led the efforts for lunar and Martian landing site preparation, including excavation, soil stabilization, and plume damage prediction. There has been much discussion of sintering but until our team recently demonstrated it for the lunar case there was little understanding of the serious challenges. Simplistic sintering creates a crumbly, brittle, weak surface unsuitable for a rocket exhaust plume. The goal of this project is to solve those problems and make it possible to land a human class lander on Mars, making terminal landing of humans on Mars possible for the first time.

  13. Plant stimulation of soil microbial community succession: how sequential expression mediates soil carbon stabilization and turnover

    Energy Technology Data Exchange (ETDEWEB)

    Firestone, Mary [Univ. of California, Berkeley, CA (United States)

    2015-03-31

    It is now understood that most plant C is utilized or transformed by soil microorganisms en route to stabilization. Hence the composition of microbial communities that mediate decomposition and transformation of root C is critical, as are the metabolic capabilities of these communities. The change in composition and function of the C-transforming microbial communities over time in effect defines the biological component of soil C stabilization. Our research was designed to test 2 general hypotheses; the first two hypotheses are discussed first; H1: Root-exudate interactions with soil microbial populations results in the expression of enzymatic capacities for macromolecular, complex carbon decomposition; and H2: Microbial communities surrounding roots undergo taxonomic succession linked to functional gene activities as roots grow, mature, and decompose in soil. Over the term of the project we made significant progress in 1) quantifying the temporal pattern of root interactions with the soil decomposing community and 2) characterizing the role of root exudates in mediating these interactions.

  14. Degradation kinetics of ptaquiloside in soil and soil solution

    DEFF Research Database (Denmark)

    Ovesen, Rikke Gleerup; Rasmussen, Lars Holm; Hansen, Hans Christian Bruun

    2008-01-01

    . Experiments with sterile controls confirmed that nonmicrobial degradation processes constituted more than 90% of the fast degradation and 50% of the slow degradation. The lower nonmicrobial degradation rate observed in the clayey compared with the sandy soil is attributed to a stabilizing effect of PTA......Ptaquiloside (PTA) is a carcinogenic norsesquiterpene glycoside produced in bracken (Pteridium aquilinum (L.) Kuhn), a widespread, aggressive weed. Transfer of PTA to soil and soil solution eventually may contaminate groundwater and surface water. Degradation rates of PTA were quantified in soil...... and soil solutions in sandy and clayey soils subjected to high natural PTA loads from bracken stands. Degradation kinetics in moist soil could be fitted with the sum of a fast and a slow first-order reaction; the fast reaction contributed 20 to 50% of the total degradation of PTA. The fast reaction...

  15. Phyto stabilization of cadmium contaminated soils by Lupinus uncinatus Schldl

    International Nuclear Information System (INIS)

    Ehsan, M.; Santamaria-Delgado, K.; Vazquez-Alarcon, A.; Alderete-Chavez, A.; Cruz de la, N.; Jaen-Contreras, D.; Augustine Molumeli, P.

    2009-01-01

    Phyto remediation offers the benefits of being in situ, low cost and environmentally sustainable. Lupinus species is starting to generate interest for phyto remediation of soils showing intermediate metal pollution. The aim of this study was to explore the accumulating behavior and tolerance of Lupinus uncessant Schldl. towards increasing Cd concentrations in soil. For this purpose the effects of different Cd treatments on plant growth, survival, metal tolerance, Cd accumulation and distribution in various plant organs were investigated. An 18 week pot trial was performed under greenhouse conditions. Cd was added as CdCl 2 .2 1 /2H 2 O at the rate of 0, 3, 6 and 9 mg Cd kg - 1 soil at three different occasions (after 4th, 12th and 15th week of plant growth) with four replicates. The Cd treatments applied, thus, were 9, 18 and 27 mg kg - 1. Cd inhibited plant height and number of leaves and induced a significant change in dry matter yield of roots, stems and leaves. Metal tolerance indices of 88, 82 and 49% were obtained for 9, 18 and 27 mg Cd kg - 1 treatments. The maximal shoot Cd concentration (stem+leaves) of 540 mg Cd kg - 1 dry matter was found at 27 mg Cd kg - 1 treatment. The poor translocation of Cd from roots to shoot was evident from shoot:root ratios <1. The present work is the first report about the growth performance of L. uncinatus under Cd stress, its degree of tolerance and pattern of Cd accumulation in response to varying Cd treatments in soil suggesting the use of L. uncinatus for phyto stabilization and revegetation of Cd polluted soils. (Author)

  16. Stabilization of Horseshoe Lake Road using Geofibers and Soil-Sement

    Science.gov (United States)

    2012-04-03

    One solution to reducing the cost of importing gravel in areas where available soils are predominately silts and : sands is to stabilize the local soils with geofibers and synthetic fluids. There have been several studies which : have evaluated impro...

  17. EVALUATION OF SOLIDIFICATION/STABILIZATION AS A BEST DEMONSTRATED AVAILABLE TECHNOLOGY FOR CONTAMINATED SOILS

    Science.gov (United States)

    This project involved the evaluation of solidification/stabilization technology as a BDAT for contaminated soil. Three binding agents were used on four different synthetically contaminated soils. Performance evaluation data included unconfined compressive strength (UCS) and the T...

  18. Stability of a novel synthetic amorphous manganese oxide in contrasting soils

    Czech Academy of Sciences Publication Activity Database

    Ettler, V.; Knytl, V.; Komárek, M.; Della Puppa, L.; Bordas, F.; Mihaljevič, M.; Klementová, Mariana; Šebek, O.

    2014-01-01

    Roč. 214, FEB (2014), s. 2-9 ISSN 0016-7061 Institutional support: RVO:61388980 Keywords : Amorphous manganese oxide * Stability * Soils * Chemical stabilization * Pollution Subject RIV: CA - Inorganic Chemistry Impact factor: 2.772, year: 2014

  19. Soil Stabilization Methods with Potential for Application at the Nevada National Security Site: A Literature Review

    Energy Technology Data Exchange (ETDEWEB)

    Shillito, Rose [DRI; Fenstermaker, Lynn [DRI

    2014-01-01

    Nuclear testing at the Nevada National Security Site (NNSS) has resulted in large areas of surficial radionuclide-contaminated soils. Much of the radionuclide contamination is found at or near the soil surface, and due to the dry climate setting, and the long half-life of radioactive isotopes, soil erosion poses a long-term health risk at the NNSS. The objective of this literature review is to present a survey of current stabilization methods used for minimizing soil erosion, both by water and wind. The review focuses on in situ uses of fundamental chemical and physical mechanisms for soil stabilization. A basic overview of the physical and chemical properties of soil is also presented to provide a basis for assessing stabilization methods. Some criteria for stabilization evaluation are identified based on previous studies at the NNSS. Although no specific recommendations are presented as no stabilization method, alone or in combination, will be appropriate in all circumstances, discussions of past and current stabilization procedures and specific soil tests that may aid in current or future soil stabilization activities at the NNSS are presented. However, not all Soils Corrective Action Sites (CASs) or Corrective Action Units (CAUs) will require stabilization of surficial radionuclide-contaminated soils. Each Soils CAS or CAU should be evaluated for site-specific conditions to determine if soil stabilization is necessary or practical for a given specific site closure alternative. If stabilization is necessary, then a determination will be made as to which stabilization technique is the most appropriate for that specific site.

  20. Peanut plant growth and yield as influenced by co-inoculation with Bradyrhizobium and some rhizo-microorganisms under sandy loam soil conditions

    Directory of Open Access Journals (Sweden)

    F.Sh.F. Badawi

    2011-06-01

    Full Text Available The ability of tested rhizomicrobial isolates (Serratia marcescens and Trichoderma harzianum along with a strain of root nodule bacteria (Bradyrhizobium spp. to exhibit some PGP-properties was evaluated in vitro conditions. The main PGP-properties, namely the ability to solubilize-P and production of IAA, as well as production of siderophores and HCN were examined. Additionally, field trials were conducted on sandy loam soil at El-Tahrir Province during two successive summer seasons to study the effect of co-inoculation with Bradyrhizobium either individually or together with S. marcescens and/or T. harzianum on nodulation, some plant growth characters, peanut yield and its yield components. The in vitro experiment revealed that all of the tested microorganisms were apparently able to trigger PGP-properties. Phosphate solubilization was the common feature of the employed microorganisms. However, T. harzianum appeared to be superior to other microorganisms, and Bradyrhizobium displayed the lowest capacity. The ability of the microorganisms to produce indole compounds showed that S. marcescens was more effective in IAA production and followed by Bradyrhizobium. Capacity of S. marcescens and T. harzianum to excrete ferric-specific ligands (siderophores and HCN was detected, while Bradyrhizobium failed to produce such compounds. Results of field trials showed that the uninoculated peanut had the least nodulation status, N2-ase activity and all vegetative growth characters in both studied seasons. Bacterization of peanut seeds with bradyrhizobia exerted considerable improvement in number and mass of root nodules, increased the rate of acetylene reduction and all growth characters in comparison to the uninoculated control. The synergy inoculation between bradyrhizobia and any of the tested microorganisms led to further increases of all mentioned characters and strengthened the stimulating effect of the bacterial inoculation. However, the promotive

  1. Assessment of zerovalent iron for stabilization of chromium, copper, and arsenic in soil

    International Nuclear Information System (INIS)

    Kumpiene, Jurate; Ore, Solvita; Renella, Giancarlo; Mench, Michel; Lagerkvist, Anders; Maurice, Christian

    2006-01-01

    Stabilization of soil contaminated with trace elements is a remediation practice that does not reduce the total content of contaminants, but lowers the amounts of mobile and bioavailable fractions. This study evaluated the efficiency of Fe to reduce the mobility and bioavailability of Cr, Cu, As and Zn in a chromated copper arsenate (CCA)-contaminated soil using chemical, biochemical and biotoxicity tests. Contaminated soil was stabilized with 1% iron grit. This treatment decreased As and Cr concentrations in leachates (by 98% and 45%, respectively), in soil pore water (by 99% and 94%, respectively) and in plant shoots (by 84% and 95%, respectively). The stabilization technique also restored most of analyzed soil enzyme activities and reduced microbial toxicity, as evaluated by the BioTox TM test. After stabilization, exchangeable and bioaccessible fractions of Cu remained high, causing some residual toxicity in the treated soil. - Zerovalent iron effectively reduces mobility and bioavailability of As and Cr, but does not adequately stabilize Cu

  2. Expansive soil stabilization with coir waste and lime for flexible pavement subgrade

    Science.gov (United States)

    Narendra Goud, G.; Hyma, A.; Shiva Chandra, V.; Sandhya Rani, R.

    2018-03-01

    Expansive soil properties can be improved by various methods to make it suitable for construction of flexible pavement. The coir pith is the by-product (bio-waste) generated from coir industry during extraction of coir fiber from coconut husk. Openly disposed coir pith can make the surrounding areas unhygienic. This bio-waste can be one of the potential materials to stabilize the expansive soils. In the present study coir pith and lime are used as stabilizers. Different combinations of coir pith contents (1%, 2% and 3%) and lime contents (2%, 3% and 4%)are used to study the behavior of expansive soil. Unconfined compressive strength (UCS) of unstabilized and stabilized soils was determined. Optimum content of coir pith and lime are determined based on UCS of the soil. California bearing ratio of soil determined at optimum contents of coir pith and lime. Flexible pavement layer compositions for two levels of traffic using stabilized soil subgrade.

  3. Investigating local controls on soil moisture temporal stability using an inverse modeling approach

    Science.gov (United States)

    Bogena, Heye; Qu, Wei; Huisman, Sander; Vereecken, Harry

    2013-04-01

    A better understanding of the temporal stability of soil moisture and its relation to local and nonlocal controls is a major challenge in modern hydrology. Both local controls, such as soil and vegetation properties, and non-local controls, such as topography and climate variability, affect soil moisture dynamics. Wireless sensor networks are becoming more readily available, which opens up opportunities to investigate spatial and temporal variability of soil moisture with unprecedented resolution. In this study, we employed the wireless sensor network SoilNet developed by the Forschungszentrum Jülich to investigate soil moisture variability of a grassland headwater catchment in Western Germany within the framework of the TERENO initiative. In particular, we investigated the effect of soil hydraulic parameters on the temporal stability of soil moisture. For this, the HYDRUS-1D code coupled with a global optimizer (DREAM) was used to inversely estimate Mualem-van Genuchten parameters from soil moisture observations at three depths under natural (transient) boundary conditions for 83 locations in the headwater catchment. On the basis of the optimized parameter sets, we then evaluated to which extent the variability in soil hydraulic conductivity, pore size distribution, air entry suction and soil depth between these 83 locations controlled the temporal stability of soil moisture, which was independently determined from the observed soil moisture data. It was found that the saturated hydraulic conductivity (Ks) was the most significant attribute to explain temporal stability of soil moisture as expressed by the mean relative difference (MRD).

  4. Characteristics of soil stability and carbon sequestration under water storage and drainage model

    Science.gov (United States)

    Li, J.; Han, J. C.; Chen, C.; Yang, J. J.

    2017-07-01

    This research was conducted to investigate the influence of saline alkali soil on soil physical properties, stability and organic carbon storage under water storage and drainage, and to provide scientific basis for improving soil quality in Fuping County of Shaanxi Province, China. Saline alkali soil model test was conducted and the process was assessed with two different methods: i) traditional drainage and ecological water storage, measure and analyze 0-30 cm soil bulk density, porosity, field water capacity, mean mass diameter (MWD), geological mean diameter (GMD), stability of water stable aggregate (WASR), aggregate destruction rate (PAD), fractal dimension (D) and; ii) organic carbon storage, comprehensively analyze the relationship between stability index and soil organic carbon. The results show that: (1) compared with traditional drainage treatment, water treatment may effectively reduce the soil bulk density by 1.3%-4.2%, and improve soil porosity and field capacity at the same time; (2) under dry and wet screen treatment, soil stability, the water storing treatment is higher than the drainage treatment. Performance trend of soil MWD and GMD increases with the increase of soil depth. The stability of soil water stable aggregates increased 14.5%-53.4%. The average aggregate destruction rate was 3.2% lower than that of the drainage treatment and the difference is obvious (Pfractal dimension and soil organic carbon storage. The correlation coefficient is, respectively, R2=0.86 and R2=0.94, and the difference is obvious (P<0.05). To sum up, the water storage treatment can effectively improve the soil quality, improve soil stability and soil organic carbon storage, which can be a good control of saline alkali soil.

  5. Stabilization and solidification of chromium-contaminated soil

    Energy Technology Data Exchange (ETDEWEB)

    Cherne, C.A.; Thomson, B.M. [Univ. of New Mexico, Albuquerque, NM (United States). Civil Engineering Dept.; Conway, R. [Sandia National Labs., Albuquerque, NM (United States)

    1997-11-01

    Chromium-contaminated soil is a common environmental problem in the United States as a result of numerous industrial processes involving chromium. Hexavalent chromium [Cr(VI)] is the species of most concern because of its toxicity and mobility in groundwater. One method of diminishing the environmental impact of chromium is to reduce it to a trivalent oxidation state [Cr(III)], in which it is relatively insoluble and nontoxic. This study investigated a stabilization and solidification process to minimize the chromium concentration in the Toxicity Characteristic Leaching Procedure (TCLP) extract and to produce a solidified waste form with a compressive strength in the range of 150 to 300 pounds per square inch (psi). To minimize the chromium in the TCLP extract, the chromium had to be reduced to the trivalent oxidation state. The average used in this study was an alluvium contaminated with chromic and sulfuric acid solutions. The chromium concentration in the in the in situ soil was 1212 milligrams per kilogram (mg/kg) total chromium and 275 mg/kg Cr(VI). The effectiveness of iron, ferrous sulfate to reduce Cr(VI) was tested in batch experiments.

  6. The effect of ascorbic acid-stabilized zero valent iron nanoparticles on the distribution of different forms of cadmium in three spiked soils

    Directory of Open Access Journals (Sweden)

    Mohaddese Savasari

    2017-01-01

    Full Text Available Introduction: Increases in pollution of water resources due to the contaminants have made researchers to develop the various methods in the remediation and the reuses of polluted resources contamination of soils with heavy metals is one of great environmental concerns for the human beings. Cadmium (Cd as a toxic heavy metal is of significant environmental and occupational concern. Contamination of soils with heavy metals is one of great environmental concerns for the human beings. The numbers of sorbents that have been used for Cd (II reductive removal are biopolymers, fly ash, activated carbon, metal oxides, clays, zeolites, dried plant parts, microorganisms, and sewage sludge. However, most of the mentioned sorbents had limitations of cost and durability that call a needed approach by cost effective remediation technique with high efficiency. Application of zero valent iron nanoparticles (ZVINs as a promising technique for remediation of heavy metals are being increasingly considered by researchers. This study was conducted to synthesis and characterize the ZVINs stabilized with ascorbic acid (AAS - ZVIN in aerobic conditions and to assess their ability for removal efficiency of cadmium (Cd from the soils and changes in different fraction of Cd in three spiked soils including sandy, acidity and calcareous soils were also studied. Materials and Methods: The stabilized ZVINs were prepared in cold distilled water by reducing Fe (III to Fe0 using sodium borohydride in the presence of ascorbic acid as stabilizer and reducing agent. The freshly synthesized AAS-ZVIN washed three times and then used for the subsequent analysis. Characterization of the synthesized AAS-ZVIN was carried out by scanning electron microscope (SEM. X-ray diffraction (XRD was performed using a Philips D500 diffract meter with Ni-filtered Cu ka radiation. To determine the availability of Cd, the DTPA-extractable amounts of Cd in the spiked soils so sandy, acid and calcareous

  7. Stability Analysis of the Embankment Model

    Directory of Open Access Journals (Sweden)

    G.S. Gopalakrishna

    2009-01-01

    Full Text Available In analysis of embankment model affected by dynamic force, employment of shaking table is a scientific way in assessment of earthquake behavior. This work focused on saturated loose sandy foundation and enbankment. The results generated through the pore pressure sensors indicated pore water pressure playing main role in creation of liquefaction and stability of the system, and also revealed deformation, settlement, liquefaction intensity and time stability of system in direct correlation with the strength and characteristics of soil. One of the economical methods in stabilization of soil foundation is improvement of some part soil foundation.

  8. Soil stabilization mat for lunar launch/landing site

    Science.gov (United States)

    Acord, Amy L.; Cohenour, Mark W.; Ephraim, Daniel; Gochoel, Dennis; Roberts, Jefferson G.

    1990-01-01

    Facilities which are capable of handling frequent arrivals and departures of spaceships between Earth and a lunar colony are necessary. The facility must be able to provide these services with minimal interruption of operational activity within the colony. The major concerns associated with the space traffic are the dust and rock particles that will be kicked up by the rocket exhaust. As a result of the reduced gravitation of the Moon, these particles scatter over large horizontal distances. This flying debris will not only seriously interrupt the routine operations of the colony, but could cause damage to the equipment and facilities surrounding the launch site. An approach to overcome this problem is presented. A proposed design for a lunar take-off/landing mat is presented. This proposal goes beyond dealing with the usual problems of heat and load resistances associated with take-off and landing, by solving the problem of soil stabilization at the site. Through adequate stabilization, the problem of flying debris is eliminated.

  9. Experimental study on the solidification and influence factors of MSW stabilized soil

    Directory of Open Access Journals (Sweden)

    Wang Zhiping

    2015-01-01

    Full Text Available The effect of kinds and dosage of curing agent on the curing effect and strength characteristics of municipal solid waste (MSW stabilized soil is very obvious. In order to reveal these effects, this paper uses cement, fly ash, lime and gypsum as main curing agent and additives to make MSW stabilized soil samples of different components and contents and its strength is obtained using unconfined compressive strength test. The results showed that the curing age, dosage of cement, fly ash, lime and gypsum have effect on the strengths of stabilized MSW soil. The bigger the content of cement and fly ash, the higher the strength of stabilized soil. But the amount of lime and gypsum has a critical value. Within the critical value, the strength of the stabilized soil increases with the increasing of the content of the additives, and decreases with the increase of the additives content if the content of the additives exceeds the critical value. The curing age has much effect on the strength of the stabilized soil. The strength of the samples for 7 days is far less than that for 28 days. This can be explained that: when the curing agent is added into the stabilized soil, the connection among the particles of the MSW soil is changed from weak connection to bond connection, and therefore the strength of the curing MSW soil is improved.

  10. 30 CFR 816.114 - Revegetation: Mulching and other soil stabilizing practices.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Revegetation: Mulching and other soil stabilizing practices. 816.114 Section 816.114 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND... STANDARDS-SURFACE MINING ACTIVITIES § 816.114 Revegetation: Mulching and other soil stabilizing practices...

  11. 30 CFR 817.114 - Revegetation: Mulching and other soil stabilizing practices.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Revegetation: Mulching and other soil stabilizing practices. 817.114 Section 817.114 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND... STANDARDS-UNDERGROUND MINING ACTIVITIES § 817.114 Revegetation: Mulching and other soil stabilizing...

  12. Plasticity, Swell-Shrink, and Microstructure of Phosphogypsum Admixed Lime Stabilized Expansive Soil

    Directory of Open Access Journals (Sweden)

    Jijo James

    2016-01-01

    Full Text Available The study involved utilization of an industrial waste, Phosphogypsum (PG, as an additive to lime stabilization of an expansive soil. Three lime dosages, namely, initial consumption of lime (ICL, optimum lime content (OLC, and less than ICL (LICL, were identified for the soil under study for stabilizing the soil. Along with lime, varying doses of PG were added to the soil for stabilization. The effect of stabilization was studied by performing index tests, namely, liquid limit, plastic limit, shrinkage limit, and free swell test, on pulverized remains of failed unconfined compression test specimens. The samples were also subjected to a microstructural study by means of scanning electron microscope. Addition of PG to lime resulted in improvement in the plasticity and swell-shrink characteristics. The microstructural study revealed the formation of a dense compact mass of stabilized soil.

  13. Assessment of strength development in stabilized soil with CBR PLUS and silica sand

    Directory of Open Access Journals (Sweden)

    Seyed Esmaeil Mousavi

    2017-08-01

    Full Text Available This paper investigates the potential use of a nano polymer stabilizer, namely CBR PLUS for stabilization of soft clay and formulation of an optimal mix design of stabilized soil with CBR PLUS and silica sand. The highway settlements induced by the soft clay are problematic due to serious damages in the form of cracks and deformation. With respect to this, soil compaction and stabilization is regarded as a viable method to treat shallow soft clayey ground for supporting highway embankment. The objectives of this paper are: i to stabilize the compacted soil with CBR PLUS and silica sand in the laboratory; and ii to evaluate the permeability, strength and California bearing ratio (CBR of the untreated and stabilized soil specimens. The suitability of stabilized soil was examined on the basis of standard Proctor compaction, CBR, unconfined compression, direct shear, and falling head permeability tests. Furthermore, the chemical composition of the materials was determined using X-ray Fluorescence (XRF test. It was found that the optimal mix design of the stabilized soil is 90% clay, 1% CBR PLUS, 9% silica sand. It is further revealed that, stabilization increases the CBR and unconfined compressive strength of the combinations by almost 6-fold and 1.8-fold respectively. In summary, a notable discovery is that the optimum mix design can be sustainably applied to stabilize the shallow clay without failure.

  14. Superfund Innovative Technology Evaluation - Demonstration Bulletin: In-Situ Soil Stabilization

    Science.gov (United States)

    In-situ stabilization technology immobilizes organics and inorganic compounds in wet or dry soils by using reagents (additives) to polymerize with the soils and sludges producing a cement-like mass. Two basic components of this technology are the Geo-Con/DSM Deep Soil Mixing Sy...

  15. Soil aggregate stability and erodibility in different gully sites in parts ...

    African Journals Online (AJOL)

    This paper assesses soil aggregate stability and erodibility in different gully sites in parts of Zaria, Kaduna State, Nigeria with the aim to provide quantitative information on the variation of some soil properties and their interaction with eroding agents and how this affects soil erosion on the sites. The gullies selected are found ...

  16. Evaluation of the effects of enzyme-based liquid chemical stabilizers on subgrade soils

    CSIR Research Space (South Africa)

    Mgangira, Martin B

    2009-07-01

    Full Text Available The purpose of this study was to asses the strength of enzyme treated soil material. Thus the aim of the paper is to present laboratory results on the effects of two enzyme-based liquid chemicals as soil stabilizers. Soil samples were prepared...

  17. Concurrent temporal stability of the apparent electrical conductivity and soil water content

    Science.gov (United States)

    Knowledge of spatio-temporal soil water content (SWC) variability within agricultural fields is useful to improve crop management. Spatial patterns of soil water contents can be characterized using the temporal stability analysis, however high density sampling is required. Soil apparent electrical c...

  18. Time-dependent physicochemical characteristics of Malaysian residual soil stabilized with magnesium chloride solution

    OpenAIRE

    Latifi, Nima; Rashid, Ahmad Safuan A.; Ecemiş, Nurhan; Tahir, Mahmood Md; Marto, Aminaton

    2016-01-01

    The effects of non-traditional additives on the geotechnical properties of tropical soils have been the subject of investigation in recent years. This study investigates the strength development and micro-structural characteristics of tropical residual soil stabilized with magnesium chloride (MgCl2) solution. Unconfined compression strength (UCS) and standard direct shear tests were used to assess the strength and shear properties of the stabilized soil. In addition, the micro-structural char...

  19. Lime-Stabilized Black Cotton Soil and Brick Powder Mixture as Subbase Material

    Directory of Open Access Journals (Sweden)

    S. Srikanth Reddy

    2018-01-01

    Full Text Available Various researchers, for the past few decades, had tried to stabilize black cotton soil using lime for improving its shrinkage and swelling characteristics. But these days, the cost of lime has increased resulting in increase in need for alternative and cost effective waste materials such as fly ash and rice husk ash. Brick powder, one among the alternative materials, is a fine powdered waste that contains higher proportions of silica and is found near brick kilns in rural areas. The objective of the study is to investigate the use of lime-stabilized black cotton soil and brick powder mixture as subbase material in flexible pavements. Black cotton soil procured from the local area, tested for suitability as subbase material, turned out to be unsuitable as it resulted in very less CBR value. Even lime stabilization of black cotton soil under study has not showed up the required CBR value specified for the subbase material of flexible pavement by MORTH. Hence the lime-stabilized black cotton soil is proportioned with brick powder to obtain optimum mixture that yields a better CBR value. The mixture of 20% brick powder and 80% lime-stabilized black cotton soil under study resulted in increase in the CBR value by about 135% in comparison with lime-stabilized black cotton soil. Thus it is promising to use the mixture of brick powder and lime-stabilized black cotton soil as subbase material in flexible pavements.

  20. Long-term manure amendments reduced soil aggregate stability via redistribution of the glomalin-related soil protein in macroaggregates

    Science.gov (United States)

    Xie, Hongtu; Li, Jianwei; Zhang, Bin; Wang, Lianfeng; Wang, Jingkuan; He, Hongbo; Zhang, Xudong

    2015-01-01

    Glomalin-related soil protein (GRSP) contributes to the formation and maintenance of soil aggregates, it is however remains unclear whether long-term intensive manure amendments alter soil aggregates stability and whether GRSP regulates these changes. Based on a three-decade long fertilization experiment in northeast China, this study examined the impact of long-term manure input on soil organic carbon (SOC), total and easily extractable GRSP (GRSPt and GRSPe) and their respective allocations in four soil aggregates (>2000 μm; 2000–250 μm; 250–53 μm; and soil and SOC in each aggregate generally increased with increasing manure input, GRSPt and GRSPe in each aggregate showed varying changes with manure input. Both GRSP in macroaggregates (2000–250 μm) were significantly higher under low manure input, a pattern consistent with changes in soil aggregate stability. Constituting 38~49% of soil mass, macroaggregates likely contributed to the nonlinear changes of aggregate stability under manure amendments. The regulatory process of GRSP allocations in soil aggregates has important implications for manure management under intensive agriculture. PMID:26423355

  1. Spatial Analysis of Soil Salinity and Soil Structural Stability in a Semiarid Region of New South Wales, Australia

    Science.gov (United States)

    Odeh, Inakwu O. A.; Onus, Alex

    2008-08-01

    Salt-affected soils are a major threat to agriculture especially in the semiarid regions of the world. The effective management of these soils requires adequate understanding of not only how water and, hence, solutes are transported within the soil, but also how soil salinity and sodicity spatially interact to determine soil structural breakdown. For sustainable agricultural production, information on quantitative soil quality, such as salinity, is required for effective land management and environmental planning. In this study, quantitative methods for mapping indicators of soil structural stability, namely salinity and sodicity, were developed to assess the effect of these primary indicators on soil structural breakdown. The current levels of soil salinity, as measured by electrical conductivity (EC) of the soil/water suspension, soil sodicity, represented by exchangeable sodium percentage (ESP), and aggregate stability, were assessed. Remote sensing, geographical information system (GIS), and geostatistical techniques—primarily regression-kriging and indicator-kriging—were used to spatially predict the soil sodicity and salinity. The patterns of salinity (EC) and sodicity (ESP > 5%) were identified. The effect of land use on these soil quality indicators was found to be minimal. Co-spatial patterns were elucidated between sodic soils (defined by ESP > 5%) and highly probable mechanically dispersive soils predicted from indicator-kriging of ASWAT scores. It was established that the incorporation of EC with ESP into an objective index, called electrolyte stability index (ESI = ESP/EC), gave a good indication of soil dispersion, although the threshold ESI value below which effective structural breakdown might occur is 0.025, which is twice as small as the expected 0.05. The discrepancies between ESI and ASWAT scores suggest that other soil factors than salinity and sodicity are affecting soil structural breakdown. This calls for further investigation. The study

  2. Microseisms from Superstorm Sandy

    Science.gov (United States)

    Sufri, Oner; Koper, Keith D.; Burlacu, Relu; de Foy, Benjamin

    2014-09-01

    We analyzed and visualized the microseisms generated by Superstorm Sandy as recorded by the Earthscope Transportable Array (TA) during late October through early November of 2012. We applied continuous, frequency-dependent polarization analysis to the data and were able to track the course of Sandy as it approached the Florida coastline and, later, the northeastern coast of the U.S. The energy level of Sandy was roughly comparable to the background microseism level generated by wave-wave interactions in the North Atlantic and North Pacific oceans. The maximum microseismic power and degree of polarization were observed across the TA when Sandy sharply changed its direction to the west-northwest (specifically, towards Long Island, New York) on October 29. The westward turn also briefly changed the dominant microseism period from 5 s to 8 s. We identified three other microseismic source regions during the 18 day observation period. In particular, peak-splitting in the double frequency band and the orientation of the 5 s and 8 s polarization vectors revealed two contemporaneous microseism sources, one in the North Atlantic and one in the Northeast Pacific, for the dates of November 3-4. Predictions of microseismic excitation based on ocean wave models showed consistency with the observed microseismic energy generated by Sandy and other storms.

  3. Biological soil crusts in deserts: A short review of their role in soil fertility, stabilization, and water relations

    Science.gov (United States)

    Belnap, Jayne

    2003-01-01

    Cyanobacteria and cyanolichens dominate most desert soil surfaces as the major component of biological soil crusts (BSC). BSCs contribute to soil fertility in many ways. BSC can increase weathering of parent materials by up to 100 times. Soil surface biota are often sticky, and help retain dust falling on the soil surface; this dust provides many plant-essential nutrients including N, P, K, Mg, Na, Mn, Cu, and Fe. BSCs also provide roughened soil surfaces that slow water runoff and aid in retaining seeds and organic matter. They provide inputs of newly-fixed carbon and nitrogen to soils. They are essential in stabilizing soil surfaces by linking soil particles together with filamentous sheaths, enabling soils to resist both water and wind erosion. These same sheaths are important in keeping soil nutrients from becoming bound into plant-unavailable forms. Experimental disturbances applied in US deserts show soil surface impacts decrease N and C inputs from soil biota by up to 100%. The ability to hold aeolian deposits in place is compromised, and underlying soils are exposed to erosion. While most undisturbed sites show little sediment production, disturbance by vehicles or livestock produces up to 36 times more sediment production, with soil movement initiated at wind velocities well below commonly-occurring wind speeds. Winds across disturbed areas can quickly remove this material from the soil surface, thereby potentially removing much of current and future soil fertility. Thus, reduction in the cover of cyanophytes in desert soils can both reduce fertility inputs and accelerate fertility losses.

  4. Aggregate Stability in Soil with Humic and Histic Horizons in a Toposequence under Araucaria Forest

    Directory of Open Access Journals (Sweden)

    Daniel Hanke

    Full Text Available ABSTRACT Aggregate stability is one of the most important factors in soil conservation and maintenance of soil environmental functions. The objective of this study was to investigate the aggregate stability mechanisms related to chemical composition of organic matter in soil profiles with humic and histic horizons in a toposequence under Araucaria moist forest in southern Brazil. The soils sampled were classified as Humic Hapludox (highest position, Fluvaquentic Humaquepts (lowest slope position, and Typic Haplosaprists (floodplain. The C and N contents were determined in bulk soil samples. The chemical composition of soil organic matter was evaluated by infrared spectroscopy. Aggregate stability was determined by applying increasing levels of ultrasound energy. Carbon content increased from the top of the slope to the alluvial plain. Higher ultrasonic energy values for clay dispersion were observed in the C-rich soils in the lower landscape positions, indicating that organic compounds play an important role in the structural stabilization of these profiles. Both aliphatic and carbohydrate-like structures were pertinent to aggregate stability. In the Oxisol, organo-mineral interaction between carbohydrates and the clay mineral surface was the most important mechanism affecting aggregation. In soils with a higher C content (Humaquepts and Haplosaprists, stabilization is predominantly conferred by the aliphatic groups, which is probably due to the structural protection offered by these hydrophobic organic groups.

  5. In-situ stabilization of mixed waste contaminated soil

    International Nuclear Information System (INIS)

    Siegrist, R.L.; Cline, S.R.; Gilliam, T.M.; Conner, J.R.

    1993-01-01

    A full-scale field demonstration was conducted to evaluate in for stabilizing an inactive RCRA land treatment site at a DOE facility in Ohio. Subsurface silt and clay deposits were contaminated principally with up to 500 mg/kg of trichloroethylene and other halocarbons, but also trace to low levels of Pb, Cr, 235 U, and 99 Tc. In situ solidification was studied in three, 3.1 m diameter by 4.6 m deep columns. During mixing, a cement-based grout was injected and any missions from the mixed region were captured in a shroud and treated by filtration and carbon adsorption. During in situ processing, operation and performance parameters were measured, and soil cores were obtained from a solidified column 15 months later. Despite previous site-specific treatability experience, there were difficulties in selecting a grout with the requisite treatment agents amenable to subsurface injection and at a volume adequate for distribution throughout the mixed region while minimizing volume expansion. observations during the demonstration revealed that in situ solidification was rapidly accomplished (e.g., >90 m 3 /d) with limited emissions of volatile organics (i.e., -6 cm/s vs. 10 -8 cm/s). Leaching tests performed on the treated samples revealed non-detectable to acceptably low concentrations of all target contaminants

  6. Changes of Soil Aggregate Stability as a Result of the Effect of Freeze-thaw Cycles

    Directory of Open Access Journals (Sweden)

    Aneta Žabenská

    2015-01-01

    Full Text Available The objective of the present research was to assess the changes in soil erodibility during the non-vegetation period as one of the factors affecting the snowmelt erosion. The temperature fluctuation was simulated with the use of a climatic chamber ex situ. The soil surface was for simplicity reasons considered without any plant or snow cover. The paper deals with the rate of soil erodibility determination – the soil erodibility should increase due to the decrease of soil aggregate stability depending on the number of freeze-thaw cycles and initial soil moisture. Soil samples (taken from three sites were subjected to freeze-thaw cycles under laboratory conditions. Changes in soil agreggate stability were monitored as one of the main soil characteristics which determine the soil erodibility. Two methods were used to determine the soil macroaggregate stability (soil aggregate fraction 1–2 mm: standard single-sieve method of wet sieving (Kemper and Rosenau, 1986, and dry aggregate analysis using a set of flat sieves with a diameter of 1 mm and 0.5 mm. The results of each method are controversial. Intended hypothesis has not been clearly confirmed.

  7. Changes in land use alter soil quality and aggregate stability in the highlands of northern Ethiopia.

    Science.gov (United States)

    Delelegn, Yoseph T; Purahong, Witoon; Blazevic, Amila; Yitaferu, Birru; Wubet, Tesfaye; Göransson, Hans; Godbold, Douglas L

    2017-10-19

    Land use change alters biodiversity and soil quality and thus affects ecosystem functions. This study investigated the effects of changes in land use on major soil quality indicators. Soil samples were taken from a depth of 0-10 cm (top soil) under four major land uses (cropland, grassland, area exclosure, eucalyptus plantation) with similar land use change histories for analysis, and soil from a nearby natural forest was used as a reference. Land use change from natural forest to cropland and grassland significantly decreased major soil quality indicators such as soil organic C (SOC), total soil N (TSN), molybdate-reactive bicarbonate-extractable P, and arbuscular mycorrhizal fungi (AMF) spore density, but compared to the cropland, change to area exclosure and eucalyptus plantation significantly improved SOC, TSN and soil aggregate stability (SAS). In addition, we assessed the correlation among indicators and found that SOC, TSN and SAS significantly correlate with many other soil quality indicators. The study highlights that the conversion of natural forest to cropland results in decline of soil quality and aggregate stability. However, compared to cropland, application of area exclosure and afforestation on degraded lands restores soil quality and aggregate stability.

  8. The role of curing period on the engineering characteristics of a cement-stabilized soil

    Directory of Open Access Journals (Sweden)

    Athanasopoulou Antonia

    2016-07-01

    Full Text Available Very often, pavements constructed in an economical manner or matching surface elevations of adjacent lanes cannot be designed for the soil conditions of the existing subgrade. Therefore, there is a need to stabilize the soil with an appropriate chemical substance in order to increase its strength to a satisfactory level. For the enhancement of subgrade soil strength characteristics, lime and cement are the most commonly used stabilizers. An experimental program was directed to the evaluation of a clayey soil and its mixtures with different cement contents performing tests on the index properties, the moisture-density relation, the unconfined compressive strength, and linear shrinkage. There is a definite improvement in strength. The time interval used to cure the prepared specimens affected positively both strength and plasticity features of the mixtures. A comparison with mixtures of the same soil with lime has been made, because of the wide use of lime in clay soil stabilization projects.

  9. Water-stability of soil aggregates in relation to selected properties

    International Nuclear Information System (INIS)

    Mbagwu, J.S.C.; Bazzoffi, P.; Unamba Oparah, I.

    1995-03-01

    The stability of soil aggregates in water is an important soil physical property for evaluating the potential of agricultural soils to erode and elucidating the mechanisms of soil erosion. In this study we used aggregates from 15 surface soil samples in Italy to evaluate the influence of intrinsic soil physical, chemical and mineralogical properties on aggregates stability (AS). The aim was to develop a model for predicting AS from a subset of these soil properties. The index of stability used is the mean-weight diameter of water-stable aggregates (MWD). The model developed with soil physical properties alone explained just 42% of variance in MWD and predicted AS in only 20% of test soils. The model developed with mineralogical properties alone explained 70% of variance in MWD and predicted AS in 60% of the test soils. The chemical properties - based model explained 90% of variance in MWD and predicted AS in 80% of the test soils. The best-fit model was developed with soil properties from the physical, chemical and mineralogical subsets. It explained 98% of variance in MWD and predicted AS in 100% of the test soils. This model shows that the most important soil properties which influence the AS of these soils include ratio of total sand to clay, concentrations of iron oxide, magnesium oxide, organic matter, silica/alumina ratio, chlorite, feldspar and muscovite. This indicates that fairly good estimates of the relative stability of these aggregates in water and hence of their potential to erode, requires a knowledge of the physico-chemical and mineralogical properties. (author). 40 refs, 4 tabs

  10. Mechanical Properties of Millet Husk Ash Bitumen Stabilized Soil ...

    African Journals Online (AJOL)

    Akorede

    lateritic soil blocks using Millet Husk Ash (MHA) and Bitumen as additives so as to reduce its high cost and find alternative disposal method for agricultural waste. The lateritic soil samples ... MHA as partial replacement of cement will provide an economic use of by-product and consequently produce a cheaper soil block ...

  11. [Stabilization of Cadmium Contaminated Soils by Ferric Ion Modified Attapulgite (Fe/ATP)--Characterizations and Stabilization Mechanism].

    Science.gov (United States)

    Rong, Yang; Li, Rong-bo; Zhou, Yong-li; Chen, Jing; Wang, Lin-ling; Lu, Xiao-hua

    2015-08-01

    Ferric ion modified attapulgite (Fe/ATP) was prepared by impregnation and its structure and morphology were characterized. The toxicity characteristic leaching procedure (TCLP) was used to evaluate the effect of Cadmium( Cd) stabilization in soil with the addition of attapulgite (ATP) and Fe/ATP. The stabilization mechanism of Cd was further elucidated by comparing the morphologies and structure of ATP and Fe/ATP before and after Cd adsorption. Fe/ATP exhibited much better adsorption capacity than ATP, suggesting different adsorption mechanisms occurred between ATP and Fe/ATP. The leaching concentrations of Cd in soil decreased by 45% and 91% respectively, with the addition of wt. 20% ATP and Fe/ATP. The former was attributed to the interaction between Cd2 and --OH groups by chemical binding to form inner-sphere complexes in ATP and the attachment between Cd2+ and the defect sites in ATP framework. Whereas Cd stabilization with Fe/ATP was resulted from the fact that the active centers (--OH bonds or O- sites) on ATP could react with Fe3+ giving Fe--O--Cd-- bridges, which helped stabilize Cd in surface soil. What'more, the ferric oxides and metal hydroxides on the surface of ATP could interact with Cd, probably by the formation of cadmium ferrite. In conclusion, Fe/ATP, which can be easily prepared, holds promise as a potential low-cost and environmental friendly stabilizing agent for remediation of soil contaminated with heavy metals.

  12. Factors controlling soil organic carbon stability along a temperate forest altitudinal gradient

    Science.gov (United States)

    Tian, Qiuxiang; He, Hongbo; Cheng, Weixin; Bai, Zhen; Wang, Yang; Zhang, Xudong

    2016-01-01

    Changes in soil organic carbon (SOC) stability may alter carbon release from the soil and, consequently, atmospheric CO2 concentration. The mean annual temperature (MAT) can change the soil physico-chemical characteristics and alter the quality and quantity of litter input into the soil that regulate SOC stability. However, the relationship between climate and SOC stability remains unclear. A 500-day incubation experiment was carried out on soils from an 11 °C-gradient mountainous system on Changbai Mountain in northeast China. Soil respiration during the incubation fitted well to a three-pool (labile, intermediate and stable) SOC decomposition model. A correlation analysis revealed that the MAT only influenced the labile carbon pool size and not the SOC stability. The intermediate carbon pool contributed dominantly to cumulative carbon release. The size of the intermediate pool was strongly related to the percentage of sand particle. The decomposition rate of the intermediate pool was negatively related to soil nitrogen availability. Because both soil texture and nitrogen availability are temperature independent, the stability of SOC was not associated with the MAT, but was heavily influenced by the intrinsic processes of SOC formation and the nutrient status. PMID:26733344

  13. Studies on Soil Cements: 1 - Role of Hydrated Lime and Dolomitic Monohydrate in Montmorillonite Stabilization

    OpenAIRE

    Abo El Enein, A. [صلاح عبد الغني ابو العينين

    1982-01-01

    Montmorillonite clay was stabilized by either hydrated lime or the dolomitic monohydrate (Ca(OH)2. MgO) during suspension hydration at 25 and 60°C for 45 days. The distinct phases produced from the hydration of each stabilized clay suspension were identified by means of X-ray diffraction analysis. The role of either Ca(OH)2 and/or MgO in soil stabilization could be clearly understood in order to extend the use of portland cement for the stabilization of montmorillonite to produce soil cements...

  14. Soil Communities Promote Temporal Stability and Species Asynchrony in Experimental Grassland Communities.

    Directory of Open Access Journals (Sweden)

    Sarah Pellkofer

    Full Text Available Over the past two decades many studies have demonstrated that plant species diversity promotes primary productivity and stability in grassland ecosystems. Additionally, soil community characteristics have also been shown to influence the productivity and composition of plant communities, yet little is known about whether soil communities also play a role in stabilizing the productivity of an ecosystem.Here we use microcosms to assess the effects of the presence of soil communities on plant community dynamics and stability over a one-year time span. Microcosms were filled with sterilized soil and inoculated with either unaltered field soil or field soil sterilized to eliminate the naturally occurring soil biota. Eliminating the naturally occurring soil biota not only resulted in lower plant productivity, and reduced plant species diversity, and evenness, but also destabilized the net aboveground productivity of the plant communities over time, which was largely driven by changes in abundance of the dominant grass Lolium perenne. In contrast, the grass and legumes contributed more to net aboveground productivity of the plant communities in microcosms where soil biota had been inoculated. Additionally, the forbs exhibited compensatory dynamics with grasses and legumes, thus lowering temporal variation in productivity in microcosms that received the unaltered soil inocula. Overall, asynchrony among plant species was higher in microcosms where an unaltered soil community had been inoculated, which lead to higher temporal stability in community productivity.Our results suggest that soil communities increase plant species asynchrony and stabilize plant community productivity by equalizing the performance among competing plant species through potential antagonistic and facilitative effects on individual plant species.

  15. Toxicity of RDX, HMX, TNB, 2,4-DNT, and 2,6-DNT to the Earthworm, Eisenia Fetida, in a Sandy Loam Soil

    National Research Council Canada - National Science Library

    Simini, Michael; Checkai, Ronald T; Kuperman, Roman G; Phillips, Carlton T; Kolakowski, Jan E; Kurnas, Carl W; Sunahara, Geoffrey I

    2006-01-01

    ...) for ecological risk assessment of soil contaminants at Superfund sites. Insufficient information existed to generate Eco-SSLs for explosives and related materials in soil. The earthworm (Eisenia fetida...

  16. Spatial Heterogeneity of Soil Nutrients after the Establishment of Caragana intermedia Plantation on Sand Dunes in Alpine Sandy Land of the Tibet Plateau.

    Directory of Open Access Journals (Sweden)

    Qingxue Li

    Full Text Available The Gonghe Basin region of the Tibet Plateau is severely affected by desertification. Compared with other desertified land, the main features of this region is windy, cold and short growing season, resulting in relatively difficult for vegetation restoration. In this harsh environment, identification the spatial distribution of soil nutrients and analysis its impact factors after vegetation establishment will be helpful for understanding the ecological relationship between soil and environment. Therefore, in this study, the 12-year-old C. intermedia plantation on sand dunes was selected as the experimental site. Soil samples were collected under and between shrubs on the windward slopes, dune tops and leeward slopes with different soil depth. Then analyzed soil organic matter (SOM, total nitrogen (TN, total phosphorus (TP, total potassium (TK, available nitrogen (AN, available phosphorus (AP and available potassium (AK. The results showed that the spatial heterogeneity of soil nutrients was existed in C. intermedia plantation on sand dunes. (1 Depth was the most important impact factor, soil nutrients were decreased with greater soil depth. One of the possible reasons is that windblown fine materials and litters were accumulated on surface soil, when they were decomposed, more nutrients were aggregated on surface soil. (2 Topography also affected the distribution of soil nutrients, more soil nutrients distributed on windward slopes. The herbaceous coverage were higher and C. intermedia ground diameter were larger on windward slopes, both of them probably related to the high soil nutrients level for windward slopes. (3 Soil "fertile islands" were formed, and the "fertile islands" were more marked on lower soil nutrients level topography positions, while it decreased towards higher soil nutrients level topography positions. The enrichment ratio (E for TN and AN were higher than other nutrients, most likely because C. intermedia is a leguminous

  17. Spatial Heterogeneity of Soil Nutrients after the Establishment of Caragana intermedia Plantation on Sand Dunes in Alpine Sandy Land of the Tibet Plateau.

    Science.gov (United States)

    Li, Qingxue; Jia, Zhiqing; Zhu, Yajuan; Wang, Yongsheng; Li, Hong; Yang, Defu; Zhao, Xuebin

    2015-01-01

    The Gonghe Basin region of the Tibet Plateau is severely affected by desertification. Compared with other desertified land, the main features of this region is windy, cold and short growing season, resulting in relatively difficult for vegetation restoration. In this harsh environment, identification the spatial distribution of soil nutrients and analysis its impact factors after vegetation establishment will be helpful for understanding the ecological relationship between soil and environment. Therefore, in this study, the 12-year-old C. intermedia plantation on sand dunes was selected as the experimental site. Soil samples were collected under and between shrubs on the windward slopes, dune tops and leeward slopes with different soil depth. Then analyzed soil organic matter (SOM), total nitrogen (TN), total phosphorus (TP), total potassium (TK), available nitrogen (AN), available phosphorus (AP) and available potassium (AK). The results showed that the spatial heterogeneity of soil nutrients was existed in C. intermedia plantation on sand dunes. (1) Depth was the most important impact factor, soil nutrients were decreased with greater soil depth. One of the possible reasons is that windblown fine materials and litters were accumulated on surface soil, when they were decomposed, more nutrients were aggregated on surface soil. (2) Topography also affected the distribution of soil nutrients, more soil nutrients distributed on windward slopes. The herbaceous coverage were higher and C. intermedia ground diameter were larger on windward slopes, both of them probably related to the high soil nutrients level for windward slopes. (3) Soil "fertile islands" were formed, and the "fertile islands" were more marked on lower soil nutrients level topography positions, while it decreased towards higher soil nutrients level topography positions. The enrichment ratio (E) for TN and AN were higher than other nutrients, most likely because C. intermedia is a leguminous shrub.

  18. Agronomic performance and chemical response of sunflower (Helianthus annuus L. to some organic nitrogen sources and conventional nitrogen fertilizers under sandy soil conditions

    Directory of Open Access Journals (Sweden)

    Ramadan, Mohamed Fawzy

    2009-03-01

    Full Text Available Sunflower (Helianthus annuus L. is an option for oilseed production, particularly in dry land areas due to good root system development. In this study, two field experiments were performed in the El-Khattara region (Sharkia Governorate, Egypt during the 2005 season. The objective of this research was to determine the effect of organicnitrogen (ON sources and their combinations as well as to compare the effect of ON and ammonium sulfate (AS as a conventional fertilizer added individually or in combination on growth, yield components, oil percentage and the uptake of some macronutrients by sunflowers grown on sandy soil. The treatments of chicken manure (CM and a mixture of farmyard manure (FYM with CM were superior to the other treatments and gave the highest yield, dry matter yield, NPK uptake by plants at all growth stages along with seed yield at the mature stage. The effect of the different ON on crop yield and its components may follow the order; CM> palma residues (PR> FYM. This was more emphasized when the materials were mixed with AS at a ratio of 3:1 and 1:1. The uptake of nitrogen (N, phosphorus (P and potassium (K by plants was affected by the addition of different N sources and treatments. The highest nutrient content and uptake by straw were obtained when treated with CM followed by PR at all growth stages, while it was PR followed by CM for seeds. Oil recovery was shown to respond to the N supply and the changes in individual fatty acids were not statistically different. However, it seems that the application of organic fertilizers resulted in an increase in total unsaturated fatty acids compared to the control.El girasol (Helianthus annuus es una opción para la producción de semillas oleaginosas, en particular en terrenos arenosos debido al buen desarrollo de sus raíces. En este trabajo, dos estudios de campo fueron realizados en la región de El-Ishattara (Sharkia Governorate, Egypt durante la estación 2005. El efecto de

  19. LOW COST SOLIDIFICATION/STABILIZATION TREATMENT FOR SOILS CONTAMINATED WITH DIOXIN, PCP AND CREOSOTE

    Science.gov (United States)

    The USEPA's NRMRL conducted successful treatability tests of innovative solidification/stabilization (S/S) formulations to treat soils contaminated with dioxins, pentachlorophenol (PCP), and creosote from four wood preserving sites. Formulations developed during these studies wer...

  20. Engineering properties of stabilized subgrade soils for implementation of the AASHTO 2002 pavement design guide.

    Science.gov (United States)

    2009-06-01

    A comprehensive laboratory study was undertaken to determine engineering properties of cementitiously stabilized common subgrade soils in Oklahoma for the design of roadway pavements in accordance with the AASHTO 2002 Mechanistic-Empirical Pavement D...

  1. Rapid stabilization of thawing soils For enhanced vehicle mobility: a field demonstration project

    Science.gov (United States)

    1999-02-01

    Thawing soil presents a formidable challenge for vehicle operations cross-country and on unsurfaced roads. To mitigate the problem, a variety of stabilization techniques were evaluated for their suitability for rapid employment to enhance military ve...

  2. Computer aided modeling of soil mix designs to predict characteristics and properties of stabilized road bases.

    Science.gov (United States)

    2009-07-01

    "Considerable data exists for soils that were tested and documented, both for native properties and : properties with pozzolan stabilization. While the data exists there was no database for the Nebraska : Department of Roads to retrieve this data for...

  3. Fiber Reinforcement for Rapid Stabilization of Soft Clay Soils

    National Research Council Canada - National Science Library

    Rafalko, Susan D; Brandon, Thomas L; Filz, George M; Mitchell, James K

    2008-01-01

    .... Over the past 60 years, cement and lime have been the most effective stabilizers for road and airfield applications, although recent developments show promise from nontraditional stabilizers, such as reinforcing fibers...

  4. Long-term rice cultivation stabilizes soil organic carbon and promotes soil microbial activity in a salt marsh derived soil chronosequence

    Science.gov (United States)

    Wang, Ping; Liu, Yalong; Li, Lianqing; Cheng, Kun; Zheng, Jufeng; Zhang, Xuhui; Zheng, Jinwei; Joseph, Stephen; Pan, Genxing

    2015-01-01

    Soil organic carbon (SOC) sequestration with enhanced stable carbon storage has been widely accepted as a very important ecosystem property. Yet, the link between carbon stability and bio-activity for ecosystem functioning with OC accumulation in field soils has not been characterized. We assessed the changes in microbial activity versus carbon stability along a paddy soil chronosequence shifting from salt marsh in East China. We used mean weight diameter, normalized enzyme activity (NEA) and carbon gain from straw amendment for addressing soil aggregation, microbial biochemical activity and potential C sequestration, respectively. In addition, a response ratio was employed to infer the changes in all analyzed parameters with prolonged rice cultivation. While stable carbon pools varied with total SOC accumulation, soil respiration and both bacterial and fungal diversity were relatively constant in the rice soils. Bacterial abundance and NEA were positively but highly correlated to total SOC accumulation, indicating an enhanced bio-activity with carbon stabilization. This could be linked to an enhancement of particulate organic carbon pool due to physical protection with enhanced soil aggregation in the rice soils under long-term rice cultivation. However, the mechanism underpinning these changes should be explored in future studies in rice soils where dynamic redox conditions exist. PMID:26503629

  5. Long-term rice cultivation stabilizes soil organic carbon and promotes soil microbial activity in a salt marsh derived soil chronosequence.

    Science.gov (United States)

    Wang, Ping; Liu, Yalong; Li, Lianqing; Cheng, Kun; Zheng, Jufeng; Zhang, Xuhui; Zheng, Jinwei; Joseph, Stephen; Pan, Genxing

    2015-10-27

    Soil organic carbon (SOC) sequestration with enhanced stable carbon storage has been widely accepted as a very important ecosystem property. Yet, the link between carbon stability and bio-activity for ecosystem functioning with OC accumulation in field soils has not been characterized. We assessed the changes in microbial activity versus carbon stability along a paddy soil chronosequence shifting from salt marsh in East China. We used mean weight diameter, normalized enzyme activity (NEA) and carbon gain from straw amendment for addressing soil aggregation, microbial biochemical activity and potential C sequestration, respectively. In addition, a response ratio was employed to infer the changes in all analyzed parameters with prolonged rice cultivation. While stable carbon pools varied with total SOC accumulation, soil respiration and both bacterial and fungal diversity were relatively constant in the rice soils. Bacterial abundance and NEA were positively but highly correlated to total SOC accumulation, indicating an enhanced bio-activity with carbon stabilization. This could be linked to an enhancement of particulate organic carbon pool due to physical protection with enhanced soil aggregation in the rice soils under long-term rice cultivation. However, the mechanism underpinning these changes should be explored in future studies in rice soils where dynamic redox conditions exist.

  6. Stabilization techniques for reactive aggregate in soil-cement base course : technical summary.

    Science.gov (United States)

    2003-01-01

    The objectives of this research are 1) to identify the mineralogical properties of soil-cement bases which have heaved or can potentially heave, 2) to simulate expansion of cement-stabilized soil in the laboratory, 3) to correlate expansion with the ...

  7. Is it real or apparent increased aggregate stability sometimes found in burned soils?

    Directory of Open Access Journals (Sweden)

    V. Arcenegui

    2013-05-01

    Full Text Available The increase in soil aggregate stability observed in many cases after burning is discussed in this paper. Soil samples under pine forest from two Mediterranean areas were collected for this experiment: acid soils from El Algibe Range (Los Alcornocales Natural Park, Cádiz, Southern Spain and calcareous soils of Sierra de la Grana (Alicante, Eastern Spain. In each case, soil aggregates (2 to 0.25 mm were selected and exposed to temperatures of 200, 250, 300, 500 and 700 oC during a 20-minutes period. In both cases weight loss after volatilization of substances and a significant destruction of aggregates with increasing temperature were observed. For acid soils, where organic matter is the main cementing agent, destruction of aggregates with temperature was more intense. Water repellency induced by combustion increased between 200 and 250 oC, also the remaining aggregates remaining increased within the initial size fraction after heating, increasing its stability. For temperatures above 300 oC, water repellency disappeared, although an increase in aggregate stability was observed, possibly due to changes in the mineral soil fraction. Therefore, it is concluded that burning may destroy part of the aggregates by combustion of organic matter, so selecting stable aggregates. Water repellency and transformations of soil minerals contribute to increased stability in selected aggregates.

  8. Influence of Soil Humic and Fulvic Acid on the Activity and Stability of Lysozyme and Urease

    NARCIS (Netherlands)

    Li, Yan; Tan, WenFeng; Koopal, Luuk K.; Wang, MingXia; Liu, Fan; Norde, Willem

    2013-01-01

    Humic substances (HS), including humic acids (HA) and fulvic acids (FA), are important components of soil systems. HS form strong complexes with oppositely charged proteins, which will lead to changes in the enzyme activity. The effect of soil HS on the activity and stability of two enzymes was

  9. Influence of soil humic and fulvic acid on the activity and stability of lysozyme and urease

    NARCIS (Netherlands)

    Li, Y.; Tan, W.; Koopal, L.K.; Wang, M.; Liu, Fan; Norde, W.

    2013-01-01

    Humic substances (HS), including humic acids (HA) and fulvic acids (FA), are important components of soil systems. HS form strong complexes with oppositely charged proteins, which will lead to changes in the enzyme activity. The effect of soil HS on the activity and stability of two enzymes was

  10. Acidification of sandy grasslands - consequences for plant diversity

    DEFF Research Database (Denmark)

    Olsson, Pål Axel; Mårtensson, Linda-Maria; Bruun, Hans Henrik

    2009-01-01

    Questions: (1) Does soil acidification in calcareous sandy grasslands lead to loss of plant diversity? (2) What is the relationship between the soil content of lime and the plant availability of mineral nitrogen (N) and phosphorus (P) in sandy grasslands? Location: Sandy glaciofluvial deposits...... in south-eastern Sweden covered by xeric sand calcareous grasslands (EU habitat directive 6120). Methods: Soil and vegetation were investigated in most of the xeric sand calcareous grasslands in the Scania region (136 sample plots distributed over four or five major areas and about 25 different sites......). Environmental variables were recorded at each plot, and soil samples were analysed for exchangeable P and N, as well as limestone content and pH. Data were analysed with regression analysis and canonical correspondence analysis. Results: Plant species richness was highest on weakly acid to slightly alkaline...

  11. Cohesive Soil Stabilized Using Sewage Sludge Ash/Cement and Nano Aluminum Oxide

    Directory of Open Access Journals (Sweden)

    Huan-Lin Luo

    2012-03-01

    Full Text Available In order to improve soft soil strength, a mixture of incinerated sewage sludge ash (SSA and cement was applied as a soil stabilizer. The intended mix ratio for SSA and cement was 3:1. A-6 clay was selected as the untreated soil. In this study, 15% of clay soil was replaced by SSA/cement to produce the treated soil specimens. Then, four different volumes, namely 0, 1, 2, and 3%, of nano-Al2O3 were mixed with the treated soil as an additive. Tests such as compaction, pH values, Atterberg limits, unconfined compressive strength (UCS, swell potential, California bearing ratio (CBR, and permeability were performed. The results indicate that both UCSs and CBR values of untreated soil were greatly improved by the use of 15% SSA/cement. Moreover, a 1% addition of nano-Al2O3 enhanced the treated soil in terms of both UCS and CBR values. Furthermore, the swell potential was effectively reduced by the use of 15% SSA/cement as compared with untreated soil and the 1% nano-Al2O3 additive fraction offered the best performance. From this study, we conclude that 15% of SSA/cement replacement could effectively stabilize A-6 clay soil, and 1% of nano-Al2O3 additive may be the optimum amount to add to the soil.

  12. Biological soil crusts exhibit a dynamic response to seasonal rain and release from grazing with implications for soil stability

    Science.gov (United States)

    Jimenez, Aguilar A.; Huber-Sannwald, E.; Belnap, J.; Smart, D.R.; Arredondo, Moreno J.T.

    2009-01-01

    In Northern Mexico, long-term grazing has substantially degraded semiarid landscapes. In semiarid systems, ecological and hydrological processes are strongly coupled by patchy plant distribution and biological soil crust (BSC) cover in plant-free interspaces. In this study, we asked: 1) how responsive are BSC cover/composition to a drying/wetting cycle and two-year grazing removal, and 2) what are the implications for soil erosion? We characterized BSC morphotypes and their influence on soil stability under grazed/non-grazed conditions during a dry and wet season. Light- and dark-colored cyanobacteria were dominant at the plant tussock and community level. Cover changes in these two groups differed after a rainy season and in response to grazing removal. Lichens with continuous thalli were more vulnerable to grazing than those with semi-continuous/discontinuous thalli after the dry season. Microsites around tussocks facilitated BSC colonization compared to interspaces. Lichen and cyanobacteria morphotypes differentially enhanced resistance to soil erosion; consequently, surface soil stability depends on the spatial distribution of BSC morphotypes, suggesting soil stability may be as dynamic as changes in the type of BSC cover. Longer-term spatially detailed studies are necessary to elicit spatiotemporal dynamics of BSC communities and their functional role in biotically and abiotically variable environments. ?? 2009 Elsevier Ltd.

  13. Effect of adding natural pozzolana on geotechnical properties of lime-stabilized clayey soil

    Directory of Open Access Journals (Sweden)

    Aref al-Swaidani

    2016-10-01

    Full Text Available Clayey soils in Syria cover a total area of more than 20,000 km2 of the country, most of which are located in the southwestern region. In many places of the country, the clayey soils caused severe damage to infrastructures. Extensive studies have been carried out on the stabilization of clayey soils using lime. Syria is rich in both lime and natural pozzolana. However, few works have been conducted to investigate the influence of adding natural pozzolana on the geotechnical properties of lime-treated clayey soils. The aim of this paper is to understand the effect of adding natural pozzolana on some geotechnical properties of lime-stabilized clayey soils. Natural pozzolana and lime are added to soil within the range of 0%–20% and 0%–8%, respectively. Consistency, compaction, California bearing ratio (CBR and linear shrinkage properties are particularly investigated. The test results show that the investigated properties of lime-treated clayey soils can be considerably enhanced when the natural pozzolana is added as a stabilizing agent. Analysis results of scanning electron microscopy (SEM and energy-dispersive X-ray spectroscopy (EDX show significant changes in the microstructure of the treated clayey soil. A better flocculation of clayey particles and further formation of cementing materials in the natural pozzolana-lime-treated clayey soil are clearly observed.

  14. CEMENT STABILIZATION OF THE CENTRAL RIFT VALLEY SOILS ...

    African Journals Online (AJOL)

    The design criteria of a soil-cement mixture requires attainment of a mmimum unconfined compressive strength va11 e of 1.4 MPa. In this 1tudy a silty soil of known physical properties is mixed with different per- centages of portland cement and the engineering proper- ties of the mixture are closely inveltigated in the labora-.

  15. Cement stabilization of the Central Rift Valley soils in Ethiopia ...

    African Journals Online (AJOL)

    The design criteria of a soil-cement mixture requires attainment of a mmimum unconfined compressive strength va11 e of 1.4 MPa. In this 1tudy a silty soil of known physical properties is mixed with different percentages of portland cement and the engineering properties of the mixture are closely inveltigated in the laboratory ...

  16. Geotechnical properties of clayey soil stabilized with cement ...

    African Journals Online (AJOL)

    The study was conducted to investigate the different effects of cement-sawdust ash and cement on a clayey soil sampled from Mandate Lodge, Landmark University, Omu-Aran, Nigeria. The binder mix of cementsawdust ash (CSDA) was mixed in a ratio of 1:1. The CSDA and cement were added to the soil samples at ...

  17. the potential of alginic acid and polygal for soil stabilization

    African Journals Online (AJOL)

    user

    1985-09-01

    Sep 1, 1985 ... ped-size and structure also reflect in the liquid and plastic limits of the soil. Such a change can be caused by mixing the soil with an additive. [8,9) such as the alginic acid and polygal and the results of such an investigation are reported in this paper. Atterberg limits, compaction and strength properties are ...

  18. Mechanical properties of millet husk ash bitumen stabilized soil block

    African Journals Online (AJOL)

    This study presents an investigation into the improvement of strength and durability properties of lateritic soil blocks using Millet Husk Ash (MHA) and Bitumen as additives so as to reduce its high cost and find alternative disposal method for agricultural waste. The lateritic soil samples were selected and treated with 0%, ...

  19. Experimental characterization of clay soils behavior stabilized by ...

    African Journals Online (AJOL)

    In this work, we propose to use both PVC and HDPE polymers such additions in cohesive soils to determine their influence on the physical and mechanical properties of soil-polymer material in function of time, which should insure some optimal period of life. For this purpose, different tests including Atterberg Limits, ...

  20. Anaerobic microsites have an unaccounted role in soil carbon stabilization.

    Science.gov (United States)

    Keiluweit, Marco; Wanzek, Tom; Kleber, Markus; Nico, Peter; Fendorf, Scott

    2017-11-24

    Soils represent the largest carbon reservoir within terrestrial ecosystems. The mechanisms controlling the amount of carbon stored and its feedback to the climate system, however, remain poorly resolved. Global carbon models assume that carbon cycling in upland soils is entirely driven by aerobic respiration; the impact of anaerobic microsites prevalent even within well-drained soils is missed within this conception. Here, we show that anaerobic microsites are important regulators of soil carbon persistence, shifting microbial metabolism to less efficient anaerobic respiration, and selectively protecting otherwise bioavailable, reduced organic compounds such as lipids and waxes from decomposition. Further, shifting from anaerobic to aerobic conditions leads to a 10-fold increase in volume-specific mineralization rate, illustrating the sensitivity of anaerobically protected carbon to disturbance. The vulnerability of anaerobically protected carbon to future climate or land use change thus constitutes a yet unrecognized soil carbon-climate feedback that should be incorporated into terrestrial ecosystem models.

  1. Effect of Simulated Weathering and Aging of TNT in Amended Sandy Loam Soil on Toxicity to the Enchytraeid Worm, Enchytreaeus Crypticus

    Science.gov (United States)

    2006-05-01

    Checkai, R.T.; Wentsel, R.S. 1993. Toxicity of selected munitions and munition-contaminated soil on the earthworm ( Eisenia foetida ). pp 1-22...earthworms Eisenia andrei and Lumbricus terrestris exposed to TNT contaminated soils (Johnson et al., 2000; Renoux et al., 2000; Robidoux et al., 2000...TNT metabolites in the earthworm Eisenia andrei exposed to amended forest soil. Chemosphere 55, pp 1339-1348. Linz, D.G.; Nakles, D.V., Eds. 1997

  2. Sorbent amendment as a remediation strategy to reduce PFAS mobility and leaching in a contaminated sandy soil from a Norwegian firefighting training facility.

    Science.gov (United States)

    Hale, Sarah E; Arp, Hans Peter H; Slinde, Gøril Aasen; Wade, Emma Jane; Bjørseth, Kamilla; Breedveld, Gijs D; Straith, Bengt Fredrik; Moe, Kamilla Grotthing; Jartun, Morten; Høisæter, Åse

    2017-03-01

    Aqueous film-forming foams (AFFF) containing poly- and perfluoroalkyl substances (PFAS) used for firefighting have led to the contamination of soil and water at training sites. The unique physicochemical properties of PFAS results in environmental persistency, threatening water quality and making remediation of such sites a necessity. This work investigated the role of sorbent amendment to PFAS contaminated soils in order to immobilise PFAS and reduce mobility and leaching to groundwater. Soil was sampled from a firefighting training facility at a Norwegian airport and total and leachable PFAS concentrations were quantified. Perfluorooctanesulfonic acid (PFOS) was the most dominant PFAS present in all soil samples (between 9 and 2600 μg/kg). Leaching was quantified using a one-step batch test with water (L/S 10). PFOS concentrations measured in leachate water ranged between 1.2 μg/L and 212 μg/L. Sorbent amendment (3%) was tested by adding activated carbon (AC), compost soil and montmorillonite to selected soils. The extent of immobilisation was quantified by measuring PFAS concentrations in leachate before and after amendment. Leaching was reduced between 94 and 99.9% for AC, between 29 and 34% for compost soil and between 28 and 40% for the montmorillonite amended samples. Sorbent + soil/water partitioning coefficients (K D ) were estimated following amendment and were around 8 L/kg for compost soil and montmorillonite amended soil and ranged from 1960 to 16,940 L/kg for AC amended soil. The remediation of AFFF impacted soil via immobilisation of PFAS following sorbent amendment with AC is promising as part of an overall remediation strategy. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Soil phosphorus fractions in sandy soils amended with cattle manure for long periods Frações de fósforo em solos arenosos adubados com esterco por longos períodos

    Directory of Open Access Journals (Sweden)

    Sandra Regina da Silva Galvão

    2009-06-01

    Full Text Available Phosphorus fractions were determined in soil samples from areas fertilized or not with farmyard cattle manure (FYM and in samples of FYM used in the semi-arid region of Paraiba state, Brazil. Soil samples were taken from the 0-20; 20-40 and 40-60 cm layers of 18 cultivated areas, which, according to interviews with farmers, had been treated with 12 to 20 t ha-1 FYM annually, for the past 2 to 40 years. Soil samples were also collected from four unfertilized pasture areas as controls. Phosphorus in the soil samples was sequentially extracted with water (Pw, resin (Pres, NaHCO3 (Pi bic and Po bic, NaOH (Pi hid and Po hid, H2SO4 (Pacid and, finally, by digestion with H2SO4/H2O2 (Presd. Nine FYM samples were extracted with water, resin, Mehlich-1, H2SO4, NaOH or digestion with H2SO4/H2O2, not sequentially, and the extracts analyzed for P. The sampled areas had homogeneous, sandy and P-deficient soils; increases in total soil P (Pt above the mean value of the control areas (up to 274 mg kg-1 in the 0-20 cm layer of the most P-enriched samples were therefore attributed to FYM applications, which was the only external P input in the region. Regression analysis was used to study the relationship between soil P fractions and Pt. The Pacid fraction, related to Ca-P forms, showed the greatest increases (p Frações de P foram quantificadas em amostras de solo obtidas em áreas não adubadas e adubadas com esterco bovino e em amostras do esterco utilizado na região agreste do estado da Paraíba, Brasil. As amostras de solo foram coletadas nas camadas de 0-20, 20-40 e 40- 60 cm em 18 áreas agrícolas que, pelos históricos levantados junto aos agricultores, vinham recebendo entre 12 e 20 Mg ha-1 de esterco anualmente, por períodos variando entre 2 e 40 anos. Como controle, foram retiradas amostras de solo em quatro áreas sob pastagem sem histórico de adubação. O P nas amostras de solo foi sequencialmente extraído com água (Pw, resina (Pres, NaHCO3

  4. A Novel Method to Quantify Soil Aggregate Stability by Measuring Aggregate Bond Energies

    Science.gov (United States)

    Efrat, Rachel; Rawlins, Barry G.; Quinton, John N.; Watts, Chris W.; Whitmore, Andy P.

    2016-04-01

    Soil aggregate stability is a key indicator of soil quality because it controls physical, biological and chemical functions important in cultivated soils. Micro-aggregates are responsible for the long term sequestration of carbon in soil, therefore determine soils role in the carbon cycle. It is thus vital that techniques to measure aggregate stability are accurate, consistent and reliable, in order to appropriately manage and monitor soil quality, and to develop our understanding and estimates of soil as a carbon store to appropriately incorporate in carbon cycle models. Practices used to assess the stability of aggregates vary in sample preparation, operational technique and unit of results. They use proxies and lack quantification. Conflicting results are therefore drawn between projects that do not provide methodological or resultant comparability. Typical modern stability tests suspend aggregates in water and monitor fragmentation upon exposure to an un-quantified amount of ultrasonic energy, utilising a laser granulometer to measure the change in mean weight diameter. In this project a novel approach has been developed based on that of Zhu et al., (2009), to accurately quantify the stability of aggregates by specifically measuring their bond energies. The bond energies are measured operating a combination of calorimetry and a high powered ultrasonic probe, with computable output function. Temperature change during sonication is monitored by an array of probes which enables calculation of the energy spent heating the system (Ph). Our novel technique suspends aggregates in heavy liquid lithium heteropolytungstate, as opposed to water, to avoid exposing aggregates to an immeasurable disruptive energy source, due to cavitation, collisions and clay swelling. Mean weight diameter is measured by a laser granulometer to monitor aggregate breakdown after successive periods of calculated ultrasonic energy input (Pi), until complete dispersion is achieved and bond

  5. [Impact of land use type on stability and organic carbon of soil aggregates in Jinyun Mountain].

    Science.gov (United States)

    Li, Jian-Lin; Jiang, Chang-Sheng; Hao, Qing-Ju

    2014-12-01

    Soil aggregates have the important effect on soil fertility, soil quality and the sustainable utilization of soil, and they are the mass bases of water and fertilizer retention ability of soil and the supply or release of soil nutrients. In this paper, in order to study the impact of land use type on stability and organic carbon of soil aggregates in Jinyun Mountain, we separated four land use types of soil, which are woodland, abandoned land, orchard and sloping farmland by wet sieving method, then we got the proportion of large macroaggregates (> 2 mm), small macroaggregates (0.25-2 mm), microaggregates (53 μm-0.25 mm) and silt + clay (soil depth of 0-60 cm and calculated the total content of organic carbon of all aggregates fraction in each soil. The results showed that reclamation of woodland will lead to fragmentation of macroaggregates and deterioration of soil structure, and the proportion of macroaggrgates (> 0.25 mm) were 44.62% and 32.28% respectively in the soils of orchard and sloping farmland, which reduced 38.58% (P soil fraction from silt + clay to large macroaggregates and small macroaggregates, so it will improve the soil structure. MWD (mean weight diameter) and GMD (geometric mean diameter) are important indicators of evaluating the stability of soil aggregates. We found the MWD and GWD in soil depth of 0-60 cm in orchards and sloping farmland were significantly lower than those in woodland (P will lead to the decrease of stability of soil aggregates, and they will be separated more easily by water. However, after changing the sloping farmland to abandoned land will enhance the stability of soil aggregates, and improve the ability of soil to resist external damage. The organic carbon content in each soil aggregate of four land use types decreased with the increase of soil depth. In soil depth of 0-60 cm, the storage of organic carbon of large macroaggregates in each soil are in orders of woodland (14.98 Mg x hm(-2)) > abandoned land (8.71 Mg x

  6. On the formation of periodic sandy mounds

    Science.gov (United States)

    Porcile, Gaetano; Blondeaux, Paolo; Vittori, Giovanna

    2017-08-01

    Le Bot and Trentesaux (Marine Geology 211, 2004) surveyed the periodic morphological patterns which are present in the English Channel close to the strait of Calais-Dover, where the shortage of sand does not allow the formation of typical sand waves (tidal dunes). The field observations show that, for similar hydrodynamic and morphodynamic conditions, the crest-to-crest distance of the observed sandy mounds is larger than the wavelength of the sand waves which form where sand is abundant. The present contribution describes an idealized model able to predict the hydrodynamics and the morphodynamics of the interaction of tidal currents with large scale bedforms such as sand waves and sandy mounds in sand-starved environments. Indeed, when the availability of sand is limited, classical morphodynamic stability analyses cannot be applied for two main reasons. First, part of the rigid substratum becomes bared when bedforms appear and the bed profile is no longer sinusoidal. Second, the formulae commonly used to quantify sand transport are no longer valid when sandy mounds alternate with a rigid substratum. In accordance with the field observations, the analysis shows that the bedforms which appear when the rigid substratum is bared (sandy mounds) are longer than those which form in a rich sand environment (sand waves).

  7. Monitoring fire impacts in soil water repellency and structure stability during 6 years

    Directory of Open Access Journals (Sweden)

    A.J. Gordillo-Rivero

    2013-05-01

    Full Text Available Wildfires induce a series of soil changes affecting their physical and chemical properties and the hydrological and erosive response. Two of the properties that are commonly affected by burning are soil water repellency and structural stability. This paper carries out the study and monitoring of water repellency and soil structural stability during a period of 6 years after fire in calcareous soils of southern Spain in different aggregate size fractions (<2, 1-2, 0.5-1 and 0.25-0.5 mm. During this time, it was observed that both properties showed different tendencies in different aggregate size fractions. It was observed that water repellency increased after fire especially in the finer fractions (0.25-0.5 mm. Structural stability increased significantly after the fire and was progressively reduced during the experimental period.

  8. Stabilize lead and cadmium in contaminated soils using hydroxyapatite and potassium chloride.

    Science.gov (United States)

    Wang, Li; Li, Yonghua; Li, Hairong; Liao, Xiaoyong; Wei, Binggan; Ye, Bixiong; Zhang, Fengying; Yang, Linsheng; Wang, Wuyi; Krafft, Thomas

    2014-12-01

    Combination of hydroxyapatite (HAP) and potassium chloride (KCl) was used to stabilize lead and cadmium in contaminated mining soils. Pot experiments of chilli (Capsicum annuum) and rape (Brassica rapachinensis) were used to evaluate the stabilization efficiency. The results were the following: (1) the optimal combination decreased the leachable lead by 83.3 and 97.27 %, and decreased leachable cadmium by 57.82 and 35.96% for soil HF1 and soil HF2, respectively; (2) the total lead and cadmium concentrations in both plants decreased 69 and 44 %, respectively; (3) The total lead and cadmium concentrations in the edible parts of both vegetables also decreased significantly. This study reflected that potassium chloride can improve the stabilization efficiency of hydroxyapatite, and the combination of hydroxyapatite and potassium chloride can be effectively used to remediate lead and cadmium contaminated mining soil.

  9. Water stability of soil aggregates in different systems of Chernozem tillage

    Directory of Open Access Journals (Sweden)

    Jaroslava Bartlová

    2011-01-01

    Full Text Available Effects of various agrotechnical measures on macrostructural changes in the ploughing layer and subsoil were studied within the period of 2008–2010. Soil macrostructure was evaluated on the base of water stability of soil aggregates. Altogether three variants of soil tillage were established, viz. ploughing to the depth of 0.22 m (Variant 1, deep soil loosening to the depth of 0.35–0.40 m (Variant 2, and shallow tillage to the depth of 0.15 m (Variant 3. Experiments were established on a field with Modal Chernozem in the locality Hrušovany nad Jevišovkou (maize-growing region, altitude of 210 m, average annual sum of precipitation 461 mm. In the first experimental year, winter rape was the cultivated crop and it was followed by winter wheat, maize and spring wheat in subsequent years. The aim of this study was to evaluate effects of different methods of tillage on water stability of soil aggregates and on yields of individual crops. An overall analysis of results revealed a positive effect of cultivation without ploughing on water stability of soil aggregates. In the variant with ploughing was found out a statistically significant decrease of this stability. At the same time it was also found out that both minimum tillage and deep soil loosening showed a positive effect on yields of crops under study (above all of maize and winter wheat.

  10. Utilization of air pollution control residues for the stabilization/solidification of trace element contaminated soil.

    Science.gov (United States)

    Travar, I; Kihl, A; Kumpiene, J

    2015-12-01

    The aim of this study was to evaluate the stabilization/solidification (S/S) of trace element-contaminated soil using air pollution control residues (APCRs) prior to disposal in landfill sites. Two soil samples (with low and moderate concentrations of organic matter) were stabilized using three APCRs that originated from the incineration of municipal solid waste, bio-fuels and a mixture of coal and crushed olive kernels. Two APCR/soil mixtures were tested: 30% APCR/70% soil and 50% APCR/50% soil. A batch leaching test was used to study immobilization of As and co-occurring metals Cr, Cu, Pb and Zn. Solidification was evaluated by measuring the unconfined compression strength (UCS). Leaching of As was reduced by 39-93% in APCR/soil mixtures and decreased with increased amounts of added APCR. Immobilization of As positively correlated with the amount of Ca in the APCR and negatively with the amount of soil organic matter. According to geochemical modelling, the precipitation of calcium arsenate (Ca3(AsO4)2/4H2O) and incorporation of As in ettringite (Ca6Al2(SO4)3(OH)12 · 26H2O) in soil/APCR mixtures might explain the reduced leaching of As. A negative effect of the treatment was an increased leaching of Cu, Cr and dissolved organic carbon. Solidification of APCR/soil was considerably weakened by soil organic matter.

  11. Testing Single and Combinations of Amendments for Stabilization of Metals in Contrasting Extremely Contaminated Soils

    Directory of Open Access Journals (Sweden)

    Siebielec G.

    2013-04-01

    Full Text Available Metals can be stabilized by soil amendments that increase metals adsorption or alter their chemical forms. Such treatments may limit the risk related to the contamination through reduction of metal transfer to the food chain (reduction of metal uptake by plants and its availability to soil organisms and metals migration within the environment. There is a need for experiments comparing various soil amendments available at reasonable amounts under similar environmental conditions. The other question is whether all components of soil environment or soil functions are similarly protected after remediation treatment. We conducted a series of pot studies to test some traditional and novel amendments and their combinations. The treatments were tested for several highly Zn/Cd/Pb contaminated soils. Among traditional amendments composts were the most effective – they ensured plant growth, increased soil microbial activity, reduced Cd in earthworms, reduced Pb bioaccessibility and increased share of unavailable forms of Cd and Pb.

  12. Stabilization of As-, Pb-, and Cu-contaminated soil using calcined oyster shells and steel slag.

    Science.gov (United States)

    Moon, Deok Hyun; Wazne, Mahmoud; Cheong, Kyung Hoon; Chang, Yoon-Young; Baek, Kitae; Ok, Yong Sik; Park, Jeong-Hun

    2015-07-01

    In this study, As-, Pb-, and Cu-contaminated soil was stabilized using calcined oyster shells (COS) and steel slag (SS). The As-contaminated soil was obtained from a timber mill site where chromate copper arsenate (CCA) was used as a preservative. On the other hand, Pb- and Cu-contaminated soil was obtained from a firing range. These two soils were thoroughly mixed to represent As-, Pb-, and Cu-contaminated soil. Calcined oyster shells were obtained by treating waste oyster shells at a high temperature using the calcination process. The effectiveness of stabilization was evaluated by 1-N HCl extraction for As and 0.1-N HCl extraction for Pb and Cu. The treatment results showed that As, Pb, and Cu leachability were significantly reduced upon the combination treatment of COS and SS. The sole treatment of SS (10 wt%) did not show effective stabilization. However, the combination treatment of COS and SS showed a significant reduction in As, Pb, and Cu leachability. The best stabilization results were obtained from the combination treatment of 15 wt% COS and 10 wt% SS. The SEM-EDX results suggested that the effective stabilization of As was most probably achieved by the formation of Ca-As and Fe-As precipitates. In the case of Pb and Cu, stabilization was most probably associated with the formation of pozzolanic reaction products such as CSHs and CAHs.

  13. [Effects of loess soil stabilization on Lolium perenne L. growth and root activity].

    Science.gov (United States)

    Liu, Yue-mei; Zhang, Xing-chang; Wang, Dan-dan

    2011-10-01

    Taking the loess soils with bulk density 1.2 g cm(-3), 1.3 g cm(-3), and 1.4 g cm(-3) from Ansai, Shaanxi Province as test objects, a pot experiment was conducted to study the effects of different amendment amount of soil stabilizer (EN-1 stabilizer) on the growth and root activity of ryegrass (Lolium perenne L.). Within the range of the bulk densities, the leaf chlorophyll content, root activity, root/shoot ratio, root biomass, and plant biomass of L. perenne all decreased with increasing soil bulk density, and were higher under the amendment of EN-1 stabilizer, as compared with the control. With increasing amendment amount of EN-1 stabilizer, the leaf chlorophyll content, root activity, root/shoot ratio, root biomass, and plant biomass had a trend of increased first and decreased then. Soil bulk density and stabilizer amendment amount had significant interactive effect on the root biomass and plant biomass. Overall, the values of the test indices were the highest under 1.3 g cm(-3) soil bulk density and 0.15% EN-1 stabilizer amendment amount.

  14. Transport of MS2 phage, Escherichia coli, Clostridium perfringens, Cryptosporidium parvum and Giardia intestinalis in a gravel and a sandy soil : additions and corrections

    NARCIS (Netherlands)

    Hijnen, W.A.M.; Medema, Gerriet Jan; Brouwer-Hanzens, Anke J.; Charles, Katrina J.

    2006-01-01

    To define protection zones around groundwater abstraction wells and safe setback distances for artificial recharge systems in water treatment, quantitative information is needed about the removal of micro-organisms during soil passage. Column experiments were conducted using natural soil and water

  15. Transport of MS2 phage, Escherichia coli, Clostridium perfringens, Cryptosporidium parvum and Giardia intestinalis in a gravel and a sandy soil

    NARCIS (Netherlands)

    Hijnen, W.A.M.; Medema, Gerriet Jan; Brouwer-Hanzens, Anke J.; Charles, Katrina J.

    To define protection zones around groundwater abstraction wells and safe setback distances for artificial recharge systems in water treatment, quantitative information is needed about the removal of micro-organisms during soil passage. Column experiments were conducted using natural soil and water

  16. Soil aggregate stability as an indicator for eco-engineering effectiveness?

    Science.gov (United States)

    Graf, Frank

    2015-04-01

    Eco-engineering aims at stabilising soil and slopes by applying technical and biological measures. Engineering structures are commonly well defined, immediately usable and operative, and their stability effects quantifiable and verifiable. Differently, the use of plants requires more restrictive boundary conditions and the protection potential is rarely easily calculable and develop-ing as a function of growth rate. Although the use of vegetation is widely appreciated and their stabilising effect recognised, there is an increasing demand on sound facts on its efficiency, in particular, in relation to time. Conclusively, a certain necessity has been recognised to monitor, assess and quantify the effectiveness of ecological restora-tion measures in order to facilitate the transfer of technology and knowledge. Recent theoretical models emphasize the im-portance of taking an integrated monitoring approach that considers multiple variables. However, limited financial and time resources often prevent such comprehensive assessments. A solution to this problem may be to use integrated indicators that reflect multiple aspects and, therefore, allow extensive information on ecosystem status to be gathered in a relatively short time. Among various other indicators, such as fractal dimension of soil particle size distribution or microbiological parameters, soil aggregate stability seems the most appropriate indicator with regard to protecting slopes from superficial soil failure as it is critical to both plant growth and soil structure. Soil aggregation processes play a crucial role in re-establishing soil structure and function and, conclusively, for successful and sustainable re-colonisation. Whereas the key role of soil aggregate stability in ecosystem functioning is well known concerning water, gas, and nutrient fluxes, only limited information is available with regard to soil mechanical and geotechnical aspects. Correspondingly, in the last couple of years several studies

  17. Long-Term benefits of stabilizing soil subgrades.

    Science.gov (United States)

    2002-06-01

    The main intent of this study was an attempt to address questions concerning bearing strengths, longevity, durability, structural credit, economics, and performance of pavements resting on soil subgrades mixed with chemical admixtures. In-depth field...

  18. Stability of aged bound residues of methyl parathion in soil

    International Nuclear Information System (INIS)

    Helling, C.S.; Gerstl, Z.; Kloskowski, R.

    1986-01-01

    Mineralization of bound 14 C-methyl parathion (MP) was demonstrated, indirectly by 14 CO 2 loss exceeding that which could derive from extractable MP residues, and directly by incubation of extracted soil. Amendment of the soil with sludge and with low to moderate rates of five soil fumigants and sterilants greatly enhanced 14 CO 2 loss; a high rate of HgCl 2 reduced mineralization. Asparagine and glucose amendments (incubated 78 days) caused a 10% increase in 14 CO 2 loss; 14 C-asparagine and 14 C-glucose were degraded, yielding 25% and 38% bound residue, respectively. When glucose, sludge or HgCl 2 was added to aged MP residues (after 145 days incubation), the amendments did not accelerate mineralization during a subsequent 33-day incubation period. Radioactivity after 178 days was 9% extractable, 58% in fulvic acid, 17% in humic acid and 16% in humin, in control soil and in amended soil. Methyl parathion degraded during high-temperature distillation, which technique also failed to yield identifiable volatile 14 C products (except 14 CO 2 ) from bound MP. However, extraction with supercritical methanol solubilized 38% of residual 14 C; parent MP was identified at a level of 0.6 μg per gram soil. (author)

  19. Soil aggregate stabilization and carbon sequestration: Feedbacks through organomineral associations

    Energy Technology Data Exchange (ETDEWEB)

    Jastrow, J.D.; Miller, R.M.

    1996-12-31

    Primary production (specifically, the rate and quality of C transfer below ground) and soil microbial activity (specifically, the rates of C transformation and decay) are recognized as the overall biological processes governing soil organic C (SOC) dynamics. These two processes and, hence, SOC cycling and storage are controlled by complex underlying biotic and abiotic interactions and feedbacks, most of which can be tied in one way or another to the influences of the five state factors related to soil formation, and many of which are sensitive to management practices. Overall, C input rates and quality are largely dependent on climate (especially temperature and precipitation), vegetation type and landscape, soil type, and management practices. Decomposition processes and turnover rates, however, are greatly influenced by climate, the type and quality of organic matter (e.g., N content and the ratios of C:N and lignin:N), chemical or physicochemical associations of organic matter (OM) with soil mineral components, and the location of OM within the soil.

  20. Stabilizing effect of biochar on soil extracellular enzymes after a denaturing stress.

    Science.gov (United States)

    Elzobair, Khalid A; Stromberger, Mary E; Ippolito, James A

    2016-01-01

    Stabilizing extracellular enzymes may maintain enzymatic activity while protecting enzymes from proteolysis and denaturation. A study determined whether a fast pyrolysis hardwood biochar (CQuest™) would reduce evaporative losses, subsequently stabilizing soil extracellular enzymes and prohibiting potential enzymatic activity loss following a denaturing stress (microwaving). Soil was incubated in the presence of biochar (0%, 1%, 2%, 5%, or 10% by wt.) for 36 days and then exposed to microwave energies (0, 400, 800, 1600, or 3200 J g(-1) soil). Soil enzymes (β-glucosidase, β-d-cellobiosidase, N-acetyl-β-glucosaminidase, phosphatase, leucine aminopeptidase, β-xylosidase) were analyzed by fluorescence-based assays. Biochar amendment reduced leucine aminopeptidase and β-xylosidase potential activity after the incubation period and prior to stress exposure. The 10% biochar rate reduced soil water loss at the lowest stress level (400 J microwave energy g(-1) soil). Enzyme stabilization was demonstrated for β-xylosidase; intermediate biochar application rates prevented a complete loss of this enzyme's potential activity after soil was exposed to 400 (1% biochar treatment) or 1600 (5% biochar treatment) J microwave energy g(-1) soil. Remaining enzyme potential activities were not affected by biochar, and activities decreased with increasing stress levels. We concluded that biochar has the potential to reduce evaporative soil water losses and stabilize certain extracellular enzymes where activity is maintained after a denaturing stress; this effect was biochar rate and enzyme dependent. While biochar may reduce the potential activity of certain soil extracellular enzymes, this phenomenon was not universal as the majority of enzymes assayed in this study were unaffected by exposure to biochar. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Stabilization

    Directory of Open Access Journals (Sweden)

    Muhammad H. Al-Malack

    2016-07-01

    Full Text Available Fuel oil flyash (FFA produced in power and water desalination plants firing crude oils in the Kingdom of Saudi Arabia is being disposed in landfills, which increases the burden on the environment, therefore, FFA utilization must be encouraged. In the current research, the effect of adding FFA on the engineering properties of two indigenous soils, namely sand and marl, was investigated. FFA was added at concentrations of 5%, 10% and 15% to both soils with and without the addition of Portland cement. Mixtures of the stabilized soils were thoroughly evaluated using compaction, California Bearing Ratio (CBR, unconfined compressive strength (USC and durability tests. Results of these tests indicated that stabilized sand mixtures could not attain the ACI strength requirements. However, marl was found to satisfy the ACI strength requirement when only 5% of FFA was added together with 5% of cement. When the FFA was increased to 10% and 15%, the mixture’s strength was found to decrease to values below the ACI requirements. Results of the Toxicity Characteristics Leaching Procedure (TCLP, which was performed on samples that passed the ACI requirements, indicated that FFA must be cautiously used in soil stabilization.

  2. Engineered biochar from microwave-assisted catalytic pyrolysis of switchgrass for increasing water-holding capacity and fertility of sandy soil

    International Nuclear Information System (INIS)

    Mohamed, Badr A.; Ellis, Naoko; Kim, Chang Soo; Bi, Xiaotao; Emam, Ahmed El-raie

    2016-01-01

    Engineered biochars produced from microwave-assisted catalytic pyrolysis of switchgrass have been evaluated in terms of their ability on improving water holding capacity (WHC), cation exchange capacity (CEC) and fertility of loamy sand soil. The addition of K 3 PO 4 , clinoptilolite and/or bentonite as catalysts during the pyrolysis process increased biochar surface area and plant nutrient contents. Adding biochar produced with 10 wt.% K 3 PO 4 + 10 wt.% clinoptilolite as catalysts to the soil at 2 wt% load increased soil WHC by 98% and 57% compared to the treatments without biochar (control) and with 10 wt.% clinoptilolite, respectively. Synergistic effects on increased soil WHC were manifested for biochars produced from combinations of two additives compared to single additive, which may be the result of increased biochar microporosity due to increased microwave heating rate. Biochar produced from microwave catalytic pyrolysis was more efficient in increasing the soil WHC due to its high porosity in comparison with the biochar produced from conventional pyrolysis at the same conditions. The increases in soil CEC varied widely compared to the control soil, ranging from 17 to 220% for the treatments with biochars produced with 10 wt% clinoptilolite at 400 °C, and 30 wt% K 3 PO 4 at 300 °C, respectively. Strong positive correlations also exist among soil WHC with CEC and biochar micropore area. Biochar from microwave-assisted catalytic pyrolysis appears to be a novel approach for producing biochar with high sorption affinity and high CEC. These catalysts remaining in the biochar product would provide essential nutrients for the growth of bioenergy and food crops. - Highlights: • High quality biochar was made by catalytic pyrolysis in a microwave reactor. • High heating rate and good biochar quality were achieved using K 3 PO 4 and clinoptilolite mixture. • Biochars showed significant increase in soil WHC and CEC. • Microwave catalytic pyrolysis can produce

  3. Mechanical Properties of Millet Husk Ash Bitumen Stabilized Soil Block

    Directory of Open Access Journals (Sweden)

    M. T. Abdulwahab

    2017-06-01

    Full Text Available This study presents an investigation into the improvement of strength and durability properties of lateritic soil blocks using Millet Husk Ash (MHA and Bitumen as additives so as to reduce its high cost and find alternative disposal method for agricultural waste. The lateritic soil samples were selected and treated with 0%, 10%, 15%, 20%, 30%, 40% and 50% of MHA by weight of laterite. The lateritic soil-MHA mixture was later admixed with 0%, 2%, 4%, 6%, 8%, 10%, 12% and 14% cut-back bitumen solution by weight of laterite. Both the natural lateritic soil, lateritic and MHA, and the blend of Soil, MHA and Bitumen were first subjected to physical and chemical analysis using X-Ray Fluorescence (XRF and Scanning Electromagnetic Machine (SEM to determine their engineering properties followed by the performance test on bricks cast with varying quantities of the additives. A total of one hundred and ninety two (192 cubes were tested for moisture absorption, erodability and compressive strength tests. The result of the test showed that MHA and Bitumen acted as pozzolana in performance test on the soil blocks. Up to 30% MHA – laterite and 20% MHA admixed with 8% laterite were found to give optimum compressive strength of 10.8N/mm2 and 10.9N/mm2 for the bricks produced. The result also showed that about 50% MHA blended with 14% Bitumen solution ensured water tight bricks. Thus the use of MHA as partial replacement of cement will provide an economic use of by-product and consequently produce a cheaper soil block construction without comprising its strength.

  4. Heavy metal stabilization in contaminated soil by treatment with calcined cockle shell.

    Science.gov (United States)

    Islam, Mohammad Nazrul; Taki, Golam; Nguyen, Xuan Phuc; Jo, Young-Tae; Kim, Jun; Park, Jeong-Hun

    2017-03-01

    In several previous studies, the efficacy of various liming waste materials on the immobilization of heavy metals has been tested and it was found that soils contaminated with heavy metals can be stabilized using this technique. Since lime (CaO) has been identified as the main phase of calcined cockle shell (CCS), it was hypothesized that CCS could be used as a soil amendment to immobilize heavy metals in soil. However, to date, no studies have been conducted using CCS. In this study, the effectiveness of CCS powder on the immobilization of Cd, Pb, and Zn in mine tailing soil was evaluated. After 28 days of incubation, the treated soil samples were exposed to weathering (four cycles of freezing-thawing and four cycles of wetting-drying) for 8 days before being subjected to a leaching test. The results of this study revealed that the soil pH increased from 7.5 to 12.2 with the addition of 5% CCS. A similar soil pH was obtained when the soil was amended with 5% pure CaO. By leaching with 0.1 M HCl, extracted Cd, Pb, and Zn were reduced by up to 85, 85, and 91%, respectively. Therefore, CCS is suggested as a low-cost lime-based soil amendment for stabilizing heavy metals in abandoned mining sites.

  5. Engineered biochar from microwave-assisted catalytic pyrolysis of switchgrass for increasing water-holding capacity and fertility of sandy soil.

    Science.gov (United States)

    Mohamed, Badr A; Ellis, Naoko; Kim, Chang Soo; Bi, Xiaotao; Emam, Ahmed El-Raie

    2016-10-01

    Engineered biochars produced from microwave-assisted catalytic pyrolysis of switchgrass have been evaluated in terms of their ability on improving water holding capacity (WHC), cation exchange capacity (CEC) and fertility of loamy sand soil. The addition of K3PO4, clinoptilolite and/or bentonite as catalysts during the pyrolysis process increased biochar surface area and plant nutrient contents. Adding biochar produced with 10wt.% K3PO4+10 wt.% clinoptilolite as catalysts to the soil at 2wt% load increased soil WHC by 98% and 57% compared to the treatments without biochar (control) and with 10wt.% clinoptilolite, respectively. Synergistic effects on increased soil WHC were manifested for biochars produced from combinations of two additives compared to single additive, which may be the result of increased biochar microporosity due to increased microwave heating rate. Biochar produced from microwave catalytic pyrolysis was more efficient in increasing the soil WHC due to its high porosity in comparison with the biochar produced from conventional pyrolysis at the same conditions. The increases in soil CEC varied widely compared to the control soil, ranging from 17 to 220% for the treatments with biochars produced with 10wt% clinoptilolite at 400°C, and 30wt% K3PO4 at 300°C, respectively. Strong positive correlations also exist among soil WHC with CEC and biochar micropore area. Biochar from microwave-assisted catalytic pyrolysis appears to be a novel approach for producing biochar with high sorption affinity and high CEC. These catalysts remaining in the biochar product would provide essential nutrients for the growth of bioenergy and food crops. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. The Strength Behaviour of Lime Stabilized Organic Clay Soil Modified by Catalyst Additeives

    Directory of Open Access Journals (Sweden)

    Khitam Abdulhussein Saeed

    2016-12-01

    Full Text Available The organic clay soil can be found in many large size reclaimed lands. These soils present enormously high settlement potential and low strength that needs to be improved by means of effective ground improvement techniques. One of the low cost techniques is to modify the soil with lime in-situ to make it suitable for construction and allow it to increase in strength by pozzolanic reactions between lime and clay minerals. Lime is known to be an effective stabilization material for clayey soil. Nevertheless, its effectiveness may be less with organic clay due to low effective strength properties. Thus, this study concerns the addition of catalyst i.e. zeolite which may improve the performance of lime stabilization to accelerate lime-organic clay reactions. The unconfined compressive test (UCT is conducted on remoulded samples (38mm x 80mm for 0, 7, 14 , 28, and 90 days of curing period. The addition of synthetic zeolite in lime-organic stabilized soil has increased the soil strength by 185% at 90 days curing period at the design mix of organic clay + 10% lime +10% zeolite. The higher value of UCS indicates that zeolite is an effective catalyst to enhance lime stabilization.

  7. [Stabilization Treatment of Pb and Zn in Contaminated Soils and Mechanism Studies].

    Science.gov (United States)

    Xie, Wei-qiang; Li, Xiao-mingi; Chen, Can; Chen, Xun-feng; Zhong, Yu; Zhong, Zhen-yu; Wan, Yong; Wang, Yan

    2015-12-01

    In the present work, the combined application of potassium dihydrogen phosphate, quick lime and potassium chloride was used to immobilize the Pb and Zn in contaminated soils. The efficiency of the process was evaluated through leaching tests and Tessier sequential extraction procedure. The mechanism of stabilization was analyzed by X-ray diffraction (XRD) and scanning electron microscope (SEM) to reveal the mechanism of stabilization. The results showed that the stabilizing efficiency of Pb contaminated soils was above 80% and the leaching concentrations of Pb, Zn were far below the threshold when the ratio of exogenous P and soil (mol · mol⁻¹) was 2:1-4: 1, the dosing ratio of CaO was 0.1%-0.5% ( mass fraction) and the dosage of potassium chloride was 0.02-0. 04 mol. Meanwhile, Pb and Zn in soil were transformed from the exchangeable fraction into residual fraction, which implied that the migration of Pb, Zn in soil could be confined by the stabilization treatment. XRD and SEM analysis revealed that Ca-P-Pb precipitation, lead orthophosphate [PbHP0₄, Pb₃ (PO₄)₂], pyromorphite (Pb-PO₄-Cl/OH) and mixed heavy metal deposits (Fe-PO₄- Ca-Pb-Zn-OH) could be formed after solidification/stabilization in which Pb and Zn could be wrapped up to form a solidified composition and to prevent leaching.

  8. Stabilization of the As-contaminated soil from the metal mining areas in Korea.

    Science.gov (United States)

    Ko, Myoung-Soo; Kim, Ju-Yong; Bang, Sunbeak; Lee, Jin-Soo; Ko, Ju-In; Kim, Kyoung-Woong

    2012-01-01

    The stabilization efficiencies of arsenic (As) in contaminated soil were evaluated using various additives such as limestone, steel mill slag, granular ferric hydroxide (GFH), and mine sludge collected from an acid mine drainage treatment system. The soil samples were collected from the Chungyang area, where abandoned Au-Ag mines are located. Toxicity characteristic leaching procedure, synthetic precipitation leaching procedure, sequential extraction analysis, aqua regia digestion, cation exchange capacity, loss on ignition, and particle size distribution were conducted to assess the physical and chemical characteristics of highly arsenic-contaminated soils. The total concentrations of arsenic in the Chungyang area soil ranged up to 145 mg/kg. After the stabilization tests, the removal percentages of dissolved As(III) and As(V) were found to differ from the additives employed. Approximately 80 and 40% of the As(V) and As(III), respectively, were removed with the use of steel mill slag. The addition of limestone had a lesser effect on the removal of arsenic from solution. However, more than 99% of arsenic was removed from solution within 24 h when using GFH and mine sludge, with similar results observed when the contaminated soils were stabilized using GFH and mine sludge. These results suggested that GFH and mine sludge may play a significant role on the arsenic stabilization. Moreover, this result showed that mine sludge can be used as a suitable additive for the stabilization of arsenic.

  9. Incorporation of bitumen and calcium silicate in cement and lime stabilized soil blocks

    Science.gov (United States)

    Kwan, W. H.; Cheah, C. B.; Ramli, M.; Al-Sakkaf, Y. K.

    2017-04-01

    Providing affordable housing is the most critical problem in many of the developing countries. Using earth materials in building construction is one of the feasible methods to address this issue and it can be a way towards sustainable construction as well. However, the published information on the stabilized soil blocks is limited. Therefore, the present study is conducted to examine the characterization of the soils and engineering properties of the stabilized soil blocks. Four types of stabilizer were used in the study, namely; cement, slaked lime, bitumen emulsion and calcium silicate. Cement and slaked lime were added at different percentages in the range of 5% to 15%, with interval of 2.5%. The percentage was determined based on weight of soil. Meanwhile, bitumen emulsion and calcium silicate were incorporated at various percentages together with 10% of cement. Dosage of bitumen emulsion is in the range of 2% to 10% at interval of 2% while calcium silicate was incorporated at 0.50%, 0.75%, 1.00%, 1.25%, 1.50% and 2.00%. Results show that cement is the most viable stabilizer for the soil block among all stabilizers in this study. The bulk density, optimum moisture content and compressive strengths were increased with the increasing cement content. The most suitable cement content was 10% added at moisture content of 12%. Lime, bitumen and calcium contents were recommended at 5.0%, 6.0% and 1.25%, respectively.

  10. A coexisting fungal-bacterial community stabilizes soil decomposition activity in a microcosm experiment.

    Directory of Open Access Journals (Sweden)

    Masayuki Ushio

    Full Text Available How diversity influences the stability of a community function is a major question in ecology. However, only limited empirical investigations of the diversity-stability relationship in soil microbial communities have been undertaken, despite the fundamental role of microbial communities in driving carbon and nutrient cycling in terrestrial ecosystems. In this study, we conducted a microcosm experiment to investigate the relationship between microbial diversity and stability of soil decomposition activities against changes in decomposition substrate quality by manipulating microbial community using selective biocides. We found that soil respiration rates and degradation enzyme activities by a coexisting fungal and bacterial community (a taxonomically diverse community are more stable against changes in substrate quality (plant leaf materials than those of a fungi-dominated or a bacteria-dominated community (less diverse community. Flexible changes in the microbial community composition and/or physiological state in the coexisting community against changes in substrate quality, as inferred by the soil lipid profile, may be the mechanism underlying this positive diversity-stability relationship. Our experiment demonstrated that the previously found positive diversity-stability relationship could also be valid in the soil microbial community. Our results also imply that the functional/taxonomic diversity and community ecology of soil microbes should be incorporated into the context of climate-ecosystem feedbacks. Changes in substrate quality, which could be induced by climate change, have impacts on decomposition process and carbon dioxide emission from soils, but such impacts may be attenuated by the functional diversity of soil microbial communities.

  11. An innovative method for the solidification/stabilization of PAHs-contaminated soil using sulfonated oil.

    Science.gov (United States)

    Ma, Fujun; Wu, Bin; Zhang, Qian; Cui, Deshan; Liu, Qingbing; Peng, Changsheng; Li, Fasheng; Gu, Qingbao

    2018-02-15

    Stabilization/solidification (S/S) has been successfully employed in many superfund sites contaminated with organic materials. However, this method's long-term effectiveness has not been fully evaluated and the increase in soil volume following treatment is unfavorable to follow-up disposal. The present study developed a novel method for the S/S of PAHs-contaminated soil with the facilitation of sulfonated oil (SO). Adding SO significantly improved the unconfined compressive strength (UCS) values of Portland cement and activated carbon (PC-AC) treated soil samples, and the UCS values of the soil sample treated with 0.02% of SO were up to 2.3 times higher than without SO addition. When the soil was treated with PC-AC-SO, the PAHs leaching concentrations were 14%-25% of that in leachates of the control soil, and high molecular weight PAHs including benzo(a)pyrene were rarely leached. Freeze/thaw durability tests reveal that the leachability of PAHs was not influenced by freeze-thaw cycles. The UCS values of PC-AC-SO treated soil samples were 2.2-3.4 times greater than those of PC-AC treated soil samples after 12 freeze-thaw cycles. The PC-AC-SO treated soils resist disintegration better when compared to the PC-AC treated soils. The SEM micrographs reveal that the soils' compactness was significantly improved when treated with SO. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Role of water repellency in aggregate stability of cultivated soils under simulated raindrop impact

    Science.gov (United States)

    Kořenková, Lucia; Matúš, Peter

    2015-07-01

    Soil aggregate stability (AS) is an important indicator of soil physical quality. For the purpose of this research it was hypothesized that particular properties such as water repellency (WR) influence soil aggregation and AS. Directly after sampling, WR was detected for three soils, after a week of air-drying two of these soils still showed some resistance to penetration by a water drop placed on the surface (WDPT test). The study examines AS of air-dried texturally different aggregates of size 0.25-0.5 mm taken from surface layers (5-15 cm depth) of six agriculturally used soils. The procedure involves exposure of soil aggregates to direct impact of water drops. Results showed that soil AS increases in order: cutanic Luvisol (siltic) Chernozem < calcic mollic Fluvisol < mollic grumic Vertisol (pellic) < mollic Fluvisol (calcaric) < gleyic Fluvisol (eutric). Gradual increase in AS can be explained by the increase in soil organic matter content and its hydrophobic properties. Although WR has been most commonly observed in soils under forests and grass cover, the results confirmed that cultivated soils may also create water-stable aggregates, especially in the case when their organic matter induces WR under particular moisture conditions.

  13. Rice (Oryza sativa L) plantation affects the stability of biochar in paddy soil

    Science.gov (United States)

    Wu, Mengxiong; Feng, Qibo; Sun, Xue; Wang, Hailong; Gielen, Gerty; Wu, Weixiang

    2015-05-01

    Conversion of rice straw into biochar for soil amendment appears to be a promising method to increase long-term carbon sequestration and reduce greenhouse gas (GHG) emissions. The stability of biochar in paddy soil, which is the major determining factor of carbon sequestration effect, depends mainly on soil properties and plant functions. However, the influence of plants on biochar stability in paddy soil remains unclear. In this study, bulk and surface characteristics of the biochars incubated without rice plants were compared with those incubated with rice plants using a suite of analytical techniques. Results showed that although rice plants had no significant influence on the bulk characteristics and decomposition rates of the biochar, the surface oxidation of biochar particles was enhanced by rice plants. Using 13C labeling we observed that rice plants could significantly increase carbon incorporation from biochar into soil microbial biomass. About 0.047% of the carbon in biochar was incorporated into the rice plants during the whole rice growing cycle. These results inferred that root exudates and transportation of biochar particles into rice plants might decrease the stability of biochar in paddy soil. Impact of plants should be considered when predicting carbon sequestration potential of biochar in soil systems.

  14. Integrating plant litter quality, soil organic matter stabilization, and the carbon saturation concept.

    Science.gov (United States)

    Castellano, Michael J; Mueller, Kevin E; Olk, Daniel C; Sawyer, John E; Six, Johan

    2015-09-01

    Labile, 'high-quality', plant litters are hypothesized to promote soil organic matter (SOM) stabilization in mineral soil fractions that are physicochemically protected from rapid mineralization. However, the effect of litter quality on SOM stabilization is inconsistent. High-quality litters, characterized by high N concentrations, low C/N ratios, and low phenol/lignin concentrations, are not consistently stabilized in SOM with greater efficiency than 'low-quality' litters characterized by low N concentrations, high C/N ratios, and high phenol/lignin concentrations. Here, we attempt to resolve these inconsistent results by developing a new conceptual model that links litter quality to the soil C saturation concept. Our model builds on the Microbial Efficiency-Matrix Stabilization framework (Cotrufo et al., 2013) by suggesting the effect of litter quality on SOM stabilization is modulated by the extent of soil C saturation such that high-quality litters are not always stabilized in SOM with greater efficiency than low-quality litters. © 2015 John Wiley & Sons Ltd.

  15. Evaluation of phosphate fertilizers for the stabilization of cadmium in highly contaminated soils

    International Nuclear Information System (INIS)

    Thawornchaisit, Usarat; Polprasert, Chongrak

    2009-01-01

    The efficiency of three phosphate fertilizers including triple superphosphate (TSP), diammonium phosphate (DAP), and phosphate rock (PR) as stabilizing agents of cadmium-contaminated soils has been assessed in this study. Two types of assessment criteria, (a) the reduction of leachable cadmium concentration; and (b) the changes in Cd association with specific operational soil fraction based on the sequential extraction data, are used in the evaluation of stabilization performance of each fertilizer. Results of the study showed that after the 60-day stabilization, the leachable concentrations of Cd in PR-, DAP- and TSP- treated soils reduced from 306 mg/kg (the control) to 140, 34, and 12 mg/kg with the stabilization efficiency as TSP>DAP>PR. Results from the assessment of Cd speciation via sequential extraction procedure revealed that the soluble-exchangeable fraction and the surface adsorption fraction of Cd in the soils treated with PO 4 fertilizers, especially with TSP, have been reduced considerably. In addition, it is found that the reduction was correspondingly related with the increase of more stable forms of cadmium: the metal bound to manganese oxides and the metal bound to crystalline iron oxides. Treatment efficiency increased as the phosphate dose (based on the molar ratio of PO 4 /Cd) increased. In addition, it was observed that stabilization was most effective when using the molar ratio of PO 4 /Cd at 2:1 and at least 21-day and 28-day stabilization time for TSP and DAP, respectively.

  16. Identification and stabilization methods for problematic silt soils : a laboratory evaluation of modification and stabilization additives.

    Science.gov (United States)

    2003-07-01

    The instability and pumping response of non-plastic, high silt (and fine sand) soils was investigated. Common reagents, i.e., lime, lime-fly ash, Portland cement, and slag cement were included as admixtures with three high silt (and fine sand) soils....

  17. Engineered biochar from microwave-assisted catalytic pyrolysis of switchgrass for increasing water-holding capacity and fertility of sandy soil

    Energy Technology Data Exchange (ETDEWEB)

    Mohamed, Badr A. [Department of Chemical and Biological Engineering, University of British Columbia, Vancouver BC V6T 1Z3 (Canada); Agricultural Engineering Department, Cairo University, Giza (Egypt); Ellis, Naoko [Department of Chemical and Biological Engineering, University of British Columbia, Vancouver BC V6T 1Z3 (Canada); Kim, Chang Soo [Department of Chemical and Biological Engineering, University of British Columbia, Vancouver BC V6T 1Z3 (Canada); Clean Energy Research Center, Korea Institute of Science and Technology, 14 gil 5 Hwarang-no Seongbuk-gu, Seoul 136-791 (Korea, Republic of); Bi, Xiaotao, E-mail: tony.bi@ubc.ca [Department of Chemical and Biological Engineering, University of British Columbia, Vancouver BC V6T 1Z3 (Canada); Emam, Ahmed El-raie [Agricultural Engineering Department, Cairo University, Giza (Egypt)

    2016-10-01

    Engineered biochars produced from microwave-assisted catalytic pyrolysis of switchgrass have been evaluated in terms of their ability on improving water holding capacity (WHC), cation exchange capacity (CEC) and fertility of loamy sand soil. The addition of K{sub 3}PO{sub 4}, clinoptilolite and/or bentonite as catalysts during the pyrolysis process increased biochar surface area and plant nutrient contents. Adding biochar produced with 10 wt.% K{sub 3}PO{sub 4} + 10 wt.% clinoptilolite as catalysts to the soil at 2 wt% load increased soil WHC by 98% and 57% compared to the treatments without biochar (control) and with 10 wt.% clinoptilolite, respectively. Synergistic effects on increased soil WHC were manifested for biochars produced from combinations of two additives compared to single additive, which may be the result of increased biochar microporosity due to increased microwave heating rate. Biochar produced from microwave catalytic pyrolysis was more efficient in increasing the soil WHC due to its high porosity in comparison with the biochar produced from conventional pyrolysis at the same conditions. The increases in soil CEC varied widely compared to the control soil, ranging from 17 to 220% for the treatments with biochars produced with 10 wt% clinoptilolite at 400 °C, and 30 wt% K{sub 3}PO{sub 4} at 300 °C, respectively. Strong positive correlations also exist among soil WHC with CEC and biochar micropore area. Biochar from microwave-assisted catalytic pyrolysis appears to be a novel approach for producing biochar with high sorption affinity and high CEC. These catalysts remaining in the biochar product would provide essential nutrients for the growth of bioenergy and food crops. - Highlights: • High quality biochar was made by catalytic pyrolysis in a microwave reactor. • High heating rate and good biochar quality were achieved using K{sub 3}PO{sub 4} and clinoptilolite mixture. • Biochars showed significant increase in soil WHC and CEC.

  18. STABILIZATION OF EXPANSIVE SOIL USING BAGASSE ASH & LIME

    African Journals Online (AJOL)

    tekimerry

    Keywords: Expansive soil, bagasse ash, lime, plasticity, compaction and strength characteristics. INTRODUCTION. Expansive clays are known to exhibits dual .... Variations of plasticity index with the addition of 3% lime, 15% bagasse ash and 3% lime in combination with/plus 15% bagasse ash are presented in Fig. 1.

  19. Laboratory investigation of TerraZyme as a soil stabilizer

    Science.gov (United States)

    Yusoff, Siti Aimi Nadia Mohd; Azmi, Mastura; Ramli, Harris; Bakar, Ismail; Wijeyesekera, D. C.; Zainorabidin, Adnan

    2017-10-01

    In this study, a laboratory investigation was conducted to examine the performance of TerraZyme on different soil types. Laterite and kaolin were treated with 2% and 5% TerraZyme to determine changes in the soils' geotechnical properties. The obtained results were analysed and investigated in terms of compaction, Unconfined Compressive Strength (UCS) and California Bearing Ratio (CBR). The changes in geotechnical properties of the stabilised and unstabilised soils were monitored after curing periods of 0, 7, 15, 21 and 30 days. Changes in compaction properties, UCS and CBR were observed. It was found that laterite with 5% TerraZyme gave a higher maximum dry density (MDD) and decreased the optimum moisture content (OMC). For kaolin, a different TerraZyme percentage did not show any effect on both MDD and OMC. For strength properties, it was found that 2% TerraZyme showed the greatest change in UCS over a 30-day curing period. The CBR value of stabilised kaolin with 2% TerraZyme gave a higher CBR value than the kaolin treated with 5% TerraZyme. It was also found that laterite treated with TerraZyme gave a higher CBR value. Lastly, it can be concluded that TerraZyme is not suitable for stabilising kaolin; TerraZyme requires a cohesive soil to achieve a better performance.

  20. experimental characterization of clay soils behavior stabilized by ...

    African Journals Online (AJOL)

    S. Rehab Bekkouche, G. Boukhatem

    2016-09-01

    Sep 1, 2016 ... Civil Engineering Departm. 2. Civil Engineering Departm. Received: 03 June 2016 / Accepted: 30 Au. ABSTRACT. In this work, we propose to use both PVC soils to determine their influence on the p material in function of time, which shou purpose, different tests including Atterber and swelling pressure ...