WorldWideScience

Sample records for sandia steam explosion

  1. Steam refining as an alternative to steam explosion.

    Science.gov (United States)

    Schütt, Fokko; Westereng, Bjørge; Horn, Svein J; Puls, Jürgen; Saake, Bodo

    2012-05-01

    In steam pretreatment the defibration is usually achieved by an explosion at the end of the treatment, but can also be carried out in a subsequent refiner step. A steam explosion and a steam refining unit were compared by using the same raw material and pretreatment conditions, i.e. temperature and time. Smaller particle size was needed for the steam explosion unit to obtain homogenous slurries without considerable amounts of solid chips. A higher amount of volatiles could be condensed from the vapour phase after steam refining. The results from enzymatic hydrolysis showed no significant differences. It could be shown that, beside the chemical changes in the cell wall, the decrease of the particle size is the decisive factor to enhance the enzymatic accessibility while the explosion effect is not required.

  2. Pretreatment of Corn Stalk by Steam Explosion

    Institute of Scientific and Technical Information of China (English)

    邵自强; 田永生; 谭惠民

    2003-01-01

    A steam explosion pretreatment, which is one of the best ways of pretreating plant stalk, is applied at various severities to corn stalk. It could effectively modify the super-molecular structure of corn stalk and defibrating corn stalk into individual components. The relationship between yield of reducing sugar and the operating conditions, including temperature, pressure of steam explosion pretreatment and acidity, is also established. Experimental results prove that the steam explosion substantially increases the yield of reducing sugar, and the optimal condition for steam explosion is as follows: the pressure is 2.0 MPa, the pressure-retaining time 300 s, the initial acid concentration 1% and the acid treatment time 24 h.

  3. Development of explosive event scale model testing capability at Sandia`s large scale centrifuge facility

    Energy Technology Data Exchange (ETDEWEB)

    Blanchat, T.K.; Davie, N.T.; Calderone, J.J. [and others

    1998-02-01

    Geotechnical structures such as underground bunkers, tunnels, and building foundations are subjected to stress fields produced by the gravity load on the structure and/or any overlying strata. These stress fields may be reproduced on a scaled model of the structure by proportionally increasing the gravity field through the use of a centrifuge. This technology can then be used to assess the vulnerability of various geotechnical structures to explosive loading. Applications of this technology include assessing the effectiveness of earth penetrating weapons, evaluating the vulnerability of various structures, counter-terrorism, and model validation. This document describes the development of expertise in scale model explosive testing on geotechnical structures using Sandia`s large scale centrifuge facility. This study focused on buried structures such as hardened storage bunkers or tunnels. Data from this study was used to evaluate the predictive capabilities of existing hydrocodes and structural dynamics codes developed at Sandia National Laboratories (such as Pronto/SPH, Pronto/CTH, and ALEGRA). 7 refs., 50 figs., 8 tabs.

  4. A real explosion: the requirement of steam explosion pretreatment.

    Science.gov (United States)

    Yu, Zhengdao; Zhang, Bailiang; Yu, Fuqiang; Xu, Guizhuan; Song, Andong

    2012-10-01

    The severity factor is a common term used in steam explosion (SE) pretreatment that describes the combined effects of the temperature and duration of the pretreatment. However, it ignores the duration of the explosion process. This paper describes a new parameter, the explosion power density (EPD), which is independent of the severity factor. Furthermore, we present the adoption of a 5m(3) SE model for a catapult explosion mode, which completes the explosion within 0.0875 s. The explosion duration ratio of this model to a conventional model of the same volume is 1:123. The comparison between the two modes revealed a qualitative change by explosion speed, demonstrating that this real explosion satisfied the two requirements of consistency, and suggested a guiding mechanism for the design of SE devices.

  5. INFLUENCE OF STEAM EXPLOSION ON THECRYSTALLINITY OF CELLULOSE FIBER

    OpenAIRE

    Jacquet, Nicolas; Vanderghem, Caroline; Danthine, Sabine; Blecker, Christophe; Richel, Aurore

    2014-01-01

    The aim of the present study is to compare the effect of different steam explosion treatments on crystallinity properties of a pure bleached cellulose. Steam explosion process is composed of two distinct stages: vapocracking and explosive decompression. The treatment intensities is determined by a severity factor, established by a correlation between temperature process and retention time. The results show that steam explosion treatment has an impact on the crystallinity properties of pure ce...

  6. Lower head integrity under steam explosion loads

    Energy Technology Data Exchange (ETDEWEB)

    Theofanous, T.G.; Yuen, W.W.; Angelini, S.; Freeman, K.; Chen, X.; Salmassi, T. [Center for Risk Studies and Safety, Univ. of California, Santa Barbara, CA (United States); Sienicki, J.J.

    1998-01-01

    Lower head integrity under steam explosion loads in an AP600-like reactor design is considered. The assessment is the second part of an evaluation of the in-vessel retention idea as a severe accident management concept, the first part (DOE/ID-10460) dealing with thermal loads. The assessment is conducted in terms of the Risk Oriented Accident Analysis Methodology (ROAAM), and includes the comprehensive evaluation of all relevant severe accident scenarios, melt conditions and timing of release from the core region, fully 3D mixing and explosion wave dynamics, and lower head fragility under local, dynamic loading. All of these factors and brought together in a ROAAM Probabilistic Framework to evaluate failure likelihood. The conclusion is that failure is `physically unreasonable`. (author)

  7. Five-component propagation model for steam explosion analysis

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Y.; Moriyama, Kiyofumi; Park, H.S.; Maruyama, Yu; Sugimoto, Jun [Severe Accident Research Laboratory, Japan Atomic Energy Research Institute, Tokai, Ibaraki (Japan)

    1999-07-01

    A five-field simulation code JASMINE-pro has been developed at JAERI for the calculation of the propagation and explosion phase of steam explosions. The basic equations and the constitutive relationships specifically utilized in the propagation models in the code are introduced in this paper. Some calculations simulating the KROTOS 1D and 2D steam explosion experiments are also stated in the paper to show the present capability of the code. (author)

  8. SG (steam generator) tube repair by explosive welding

    Energy Technology Data Exchange (ETDEWEB)

    Helmley, J.M. (Babcock and Wilcox Co., Lynchburg, VA (United States))

    1993-03-01

    Traditional joining techniques have limitations for bonding the ends of repair sleeves inside PWR cracked steam generator tubes. Explosive (kinetic) welding has been used as a successful alternative in over 5000 defective tubes. (author).

  9. Mandarin peel wastes pretreatment with steam explosion for bioethanol production.

    Science.gov (United States)

    Boluda-Aguilar, María; García-Vidal, Lidia; González-Castañeda, Fayiny Del Pilar; López-Gómez, Antonio

    2010-05-01

    The mandarin (Citrus reticulata L.) citrus peel wastes (MCPW) were studied for bioethanol production, obtaining also as co-products: d-limonene, galacturonic acid, and citrus pulp pellets (CPP). The steam explosion pretreatment was analysed at pilot plant level to decrease the hydrolytic enzymes requirements and to separate and recover the d-limonene. The effect of steam explosion on MCPW lignocellulosic composition was analyzed by means thermogravimetric analysis. The d-limonene contents and their influence on ethanol production have been also studied, while concentration of sugars, galacturonic acid and ethanol have been analysed to measure the saccharification and fermentation (HF and SSF) processes efficiency obtained by MCPW steam explosion pretreatment. Ethanol contents of 50-60L/1000kg raw MCPW can be obtained and CPP yields can be regulated by means the control of enzymes dose and the steam explosion pretreatment which can significantly reduce the enzymes requirements.

  10. STEAM EXPLOSION : PROCESS AND IMPACT ON LIGNOCELLULOSIC MATERIAL

    OpenAIRE

    Jacquet, Nicolas; Vanderghem, Caroline; Danthine, Sabine; Blecker, Christophe; Paquot, Michel

    2012-01-01

    Steam explosion is a thermomechanochemical process which allows the breakdown of lignocellulosic structural components by steam heating, hydrolysis of glycosidic bonds by organic acid formed during the process and shearing forces due to the expansion of the moisture. The process is composed of two distinct stages: vapocracking and explosive decompression. Cumul effects of both phases include modification of the physical properties of the material (specific surface area, water retention capaci...

  11. Optimization of steam explosion pretreatment. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Foody, P.

    1980-04-01

    Different operating conditions are required to optimize the yield from each of the various fractions in the substrate. Xylose recovery is maximized at short cooking times whereas maximum lignin recovery requires much longer cooking times. Peak glucose yield and rumen digestibility occur at intermediate times. If process conditions are set for maximum glucose yield we have achieved a yield of 68% of the theoretical, based on an average of a dozen substrates tested. Individual results ranged from 46 to 87%. If the process is optimized for maximum total sugars (i.e. glucose plus xylose) we have obtained an average yield of 60%, with a range of 31 to 75%. With rumen microflora, the average value of the in-vitro cellulose digestibility was 82%, with a range of 41 to 90%. The optimum operating conditions for total sugars are a pressure of 500 to 550 psig with a cooking time of 40 to 50 seconds and 35% starting moisture content. Particle size is not a significant factor, nor is pre-steaming or use of a constricting die in the gun nozzle. High quality lignin can be extracted with 80% yield. The Iotech lignin is very soluble, has a low molecular weight and is reactive. The unique properties of the lignin derive from the explosion at the end of the pretreatment. A lignin formaldehyde resin has been successfully formulated and tested. It represents a high value utilization of the lignin byproduct with immediate market potential. A detailed engineering design of the process gives an estimated operating cost of $7.50/OD ton of biomass. At this low cost, the Iotech process achieves many important pretreatment goals in a single step. The substrate has been sterilized; it has been pulverized into a powder; the cellulose has been accessible; and a highly reactive lignin fraction can be recovered and utilized.

  12. Effect of Steam Explosion Pretreatment on Bamboo for Enzymatic Hydrolysis and Ethanol Fermentation

    OpenAIRE

    Zhiqiang Li; Benhua Fei; Zehui Jiang

    2014-01-01

    Based on the steam explosion pretreatment that has been applied to other types of lignocellulosic biomass, the steam explosion pretreatment of bamboo, along with a study of the chemical compositions and enzymatic hydrolyzability of substrates, was conducted. The results show that steam explosion pretreatment can greatly enhance the cellulose-to-glucose conversion yield after enzymatic hydrolysis, which is sometimes affected by bamboo age and steam explosion conditions. When the steam explosio...

  13. Estimation of ex-vessel steam explosion pressure loads

    Energy Technology Data Exchange (ETDEWEB)

    Leskovar, Matjaz [Jozef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana (Slovenia)], E-mail: matjaz.leskovar@ijs.si; Ursic, Mitja [Jozef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana (Slovenia)

    2009-11-15

    An ex-vessel steam explosion may occur when, during a severe reactor accident, the reactor vessel fails and the molten core pours into the water in the reactor cavity. A steam explosion is a fuel coolant interaction process where the heat transfer from the melt to water is so intense and rapid that the timescale for heat transfer is shorter than the timescale for pressure relief. This can lead to the formation of shock waves and production of missiles that may endanger surrounding structures. A strong enough steam explosion in a nuclear power plant could jeopardize the containment integrity and so lead to a direct release of radioactive material to the environment. In this article, different scenarios of ex-vessel steam explosions in a typical pressurized water reactor cavity are analyzed with the code MC3D, which is being developed for the simulation of fuel-coolant interactions. A parametric study was performed varying the location of the melt release (central, right and left side melt pour), the cavity water subcooling, the primary system overpressure at vessel failure and the triggering time for explosion calculations. The main purpose of the study was to establish the influence of the varied parameters on the fuel-coolant interaction behaviour, to determine the most challenging cases and to estimate the expected pressure loadings on the cavity walls. For the most explosive central, right side and left side melt pour scenarios a detailed analysis of the explosion simulation results was performed. The study shows that for some ex-vessel steam explosion scenarios higher pressure loads are predicted than obtained in the OECD programme SERENA phase 1.

  14. Steam explosion pretreatment of softwood: the effect of the explosive decompression on enzymatic digestibility

    OpenAIRE

    Pielhop, Thomas; Amgarten, Janick; von Rohr, Philipp Rudolf; Studer, Michael H.

    2016-01-01

    Background Steam explosion pretreatment has been examined in many studies for enhancing the enzymatic digestibility of lignocellulosic biomass and is currently the most common pretreatment method in commercial biorefineries. The information available about the effect of the explosive decompression on the biochemical conversion is, however, very limited, and no studies prove that the latter is actually enhanced by the explosion. Hence, it is of great value to discern between the effect of the ...

  15. STEAM EXPLOSION PULPING OF OIL PALM EMPTY FRUIT BUNCH FIBER

    Directory of Open Access Journals (Sweden)

    Xiwen Wang,

    2012-01-01

    Full Text Available Steam explosion pulping was evaluated for oil palm empty fruit bunches fiber. The fiber morphology was observed by SEM and TEM. Results indicated that lignin was molten and the cell wall damaged after the steam explosion pulping and that the fiber was partly separated at the same time. The results of handsheet tests showed that the steam exploded pulp had a high yield (78.2%, good physical properties (especially for ring crush 8.6 N•m/g, and low effluent load (SS=910 mg/L; BOD5=3952 mg/L; CODCr=8140 mg/L. The SEP pulp from oil palm EFB fiber was very suitable for packaging paper when combined with American OCC pulp.

  16. Aluminum-Enhanced Underwater Electrical Discharges for Steam Explosion Triggering

    Energy Technology Data Exchange (ETDEWEB)

    HOGELAND, STEVE R.; NELSON, LLOYD S.; ROTH, THOMAS CHRISTOPHER

    1999-07-01

    For a number of years, we have been initiating steam explosions of single drops of molten materials with pressure and flow (bubble growth) transients generated by discharging a capacitor bank through gold bridgewires placed underwater. Recent experimental and theoretical advances in the field of steam explosions, however, have made it important to substantially increase these relatively mild transients in water without using high explosives, if possible. To do this with the same capacitor bank, we have discharged similar energies through tiny strips of aluminum foil submerged in water. By replacing the gold wires with the aluminum strips, we were able to add the energy of the aluminum-water combustion to that normally deposited electrically by the bridgewire explosion in water. The chemical enhancement of the explosive characteristics of the discharges was substantial: when the same electrical energies were discharged through the aluminum strips, peak pressures increased as much as 12-fold and maximum bubble volumes as much as 5-fold above those generated with the gold wires. For given weights of aluminum, the magnitudes of both parameters appeared to exceed those produced by the underwater explosion of equivalent weights of high explosives.

  17. Study on premixing phase of steam explosion at JAERI

    Energy Technology Data Exchange (ETDEWEB)

    Yamano, Norihiro; Moriyama, Kiyofumi; Maruyama, Yu; Park, H.; Yang, Y.; Sugimoto, Jun [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-01-01

    Melt jet breakup (MJB) and fragmentation has been studied in the frame of ALPHA program. In the first two experiments of MJB series, jet of molten lead-bismuth eutectic alloy was released into a deep pool of saturated water. Steam generation rate was measured and correlated with the jet behavior observed by a high-speed camera. The jet breakup length and debris size distribution were also evaluated. In parallel with the experimental study, JASMINE code has been developed for the simulation of steam explosion. The melt jet breakup model and the particle breakup model in the code were tested by analyzing FARO-L14 and ALPHA MJB experiments. (author)

  18. INFLUENCE OF STEAM EXPLOSION PRETREATMENT ON THE COMPOSITION AND STRUCTURE OF WHEAT STRAW

    OpenAIRE

    Li Cui; Zhong Liu; Chuanling Si,; Lanfeng Hui; Neng Kang,; Ting Zhao

    2012-01-01

    Steam explosion pretreatment of wheat straw can solubilize a significant portion of the hemicellulosic component and enhance the enzymatic digestibility of the remaining cellulose for fermentation into ethanol. In this work, wheat straw was pretreated by steam explosion using different steam temperatures and retention times, and the chemical compositions of the raw and steam-exploded wheat straw were analyzed. Results showed that the content of hemicellulose decreased sharply at higher steam ...

  19. INFLUENCE OF STEAM EXPLOSION ON CRYSTALLINITY PROPERTIES OF PURE CELLULOSE FIBER

    OpenAIRE

    Jacquet, Nicolas; Vanderghem, Caroline; Danthine, Sabine; Blecker, Christophe; Paquot, Michel

    2012-01-01

    The aim of the present study is to compare the effect of different steam explosion treatments on crystallinity properties of a pure bleached cellulose. Steam explosion process is composed of two distinct stages: vapocracking and explosive decompression. The treatment intensities is determined by a severity factor, established by a correlation between temperature process and retention time. The results show that steam explosion treatment has an impact on the crystallinity properties of pure ce...

  20. Steam Explosions in Slurry-fed Ceramic Melters

    Energy Technology Data Exchange (ETDEWEB)

    Carter, J.T.

    2001-03-28

    This report assesses the potential and consequences of a steam explosion in Slurry Feed Ceramic Melters (SFCM). The principles that determine if an interaction is realistically probable within a SFCM are established. Also considered are the mitigating effects due to dissolved, non-condensable gas(es) and suspended solids within the slurry feed, radiation, high glass viscosity, and the existence of a cold cap. The report finds that, even if any explosion were to occur, however, it would not be large enough to compromise vessel integrity.

  1. Assessment of steam explosion impact on KNGR plant

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Moon Kyu; Park, Soo Yong; Park, Ik Kyu

    1999-03-01

    In present day light water reactors, if complete and prolonged failure of normal and emergency coolant flow occurs, fission product decay heat could cause melting of the reactor fuel. If the molten fuel mass accumulates it may relocate into reactor lower plenum and if the lower head fails it may eventually be brought into the reactor cavity. In such course of core melt relocation, the opportunity for fuel-coolant interactions (FCI) arises as the core melt relocates into water pool in reactor vessel as well as in reactor cavity and also, as a consequence of implementing accident management strategies involving water addition to a degraded or molten core. This report presents the methodologies and their results for assessment of steam explosion impact on KNGR plant integrity. Both in-vessel and ex-vessel phenomena are addressed. For in-vessel steam explosion, TRACER-II code is used for assessment of pressure load, while bounding calculations are applied for ex-vessel analysis. Analysis shows that the integrity of reactor pressure vessel lower head is preserved during the in-vessel event and the probability that the containment integrity is challenged is very low, even when ex-vessel steam explosion is allowed due to reactor vessel failure. (Author). 15 refs., 2 tabs., 4 figs.

  2. In-vessel coolability and steam explosion in Nordic BWRs

    Energy Technology Data Exchange (ETDEWEB)

    Ma, W.; Li, L.; Hansson, R.; Villanueva, W.; Kudinov, P.; Manickam, L.; Tran, C.-T. (Royal Institute of Technology (KTH) (Sweden))

    2011-05-15

    The objective of this research is to reduce the uncertainty in quantification of steam explosion risk and in-vessel coolability in the Nordic BWR plants which employ cavity flooding as severe accident management (SAM) strategy. To quantify the coolability of debris bed packed with irregular particles, the friction laws of fluid flow in particulate beds packed with non-spherical particles were investigated on the POMECO-FL test facility, and the experimental data suggest that the Ergun equation is applicable if the effective particle diameter of the particles is represented by the equivalent diameter of the particles, which is the product of Sauter mean diameter and shape factor of the particles. One-way coupling analysis between PECM model for melt pool heat transfer and ANSYS thermo-structural mechanics was performed to analyze the vessel creep, and the results revealed two different modes of vessel failure: a 'ballooning' of the vessel bottom and a 'localized creep' concentrated within the vicinity of the top surface of the melt pool. Single-droplet steam explosion experiments were carried out by using oxidic mixture of WO{sub 3}-CaO, and the results show an apparent difference in steam explosion energetics between the eutectic and non-eutectic melts at low melt superheat (100 deg. C). (Author)

  3. Enhancement of enzymatic saccharification of Eucalyptus globulus: steam explosion versus steam treatment.

    Science.gov (United States)

    Martin-Sampedro, Raquel; Revilla, Esteban; Villar, Juan C; Eugenio, Maria E

    2014-09-01

    Steam explosion and steam pre-treatment have proved capable of enhancing enzymatic saccharification of lignocellulosic materials. However, until now, these methods had not been compared under the same operational conditions and using the same raw material. Both pre-treatments lead to increased yields in the saccharification of Eucalyptus globulus; but results have been better with steam pre-treatments, despite the more accessible surface of exploded samples. The reason for this finding could be enzymatic inhibition: steam explosion causes a more extensive extraction of hemicelluloses and releases a greater amount of degradation products which can inhibit enzymatic action. Enzymatic inhibition is also dependent on the amount and chemical structure of lignin, which was also a contributing factor to the lower enzymatic yields obtained with the most severe pre-treatment. Thus, the highest yields (46.7% glucose and 73.4% xylose yields) were obtained after two cycle of steam treatment, of 5 and 3 min, at 183°C.

  4. In-vessel coolability and steam explosion in Nordic BWRs

    Energy Technology Data Exchange (ETDEWEB)

    Ma, W.; Hansson, R.; Li, L.; Kudinov, P.; Cadinu, F.; Tran, C-.T. (Royal Institute of Technology (KTH), Stockholm (Sweden))

    2010-05-15

    The INCOSE project is to reduce the uncertainty in quantification of steam explosion risk and in-vessel coolability in Nordic BWR plants with the cavity flooding as a severe accident management (SAM) measure. During 2009 substantial advances and new insights into physical mechanisms were gained for studies of: (i) in-vessel corium coolability - development of the methodologies to assess the efficiency of the control rod guide tube (CRGT) cooling as a potential SAM measure; (ii) debris bed coolability - characterization of the effective particle diameter of multi-size particles and qualification of friction law for two-phase flow in the beds packed with multi-size particles; and (iii) steam explosion - investigation of the effect of binary oxides mixture's properties on steam explosion. An approach for coupling of ECM/PECM models with RELAP5 was developed to enhance predictive fidelity for melt pool heat transfer. MELCOR was employed to examine the CRGT cooling efficiency by considering an entire accident scenario, and the simulation results show that the nominal flowrate (approx10kg/s) of CRGT cooling is sufficient to maintain the integrity of the vessel in a BWR of 3900 MWth, if the water injection is activated no later than 1 hour after scram. The POMECO-FL experimental data suggest that for a particulate bed packed with multi-size particles, the effective particle diameter can be represented by the area mean diameter of the particles, while at high velocity (Re>7) the effective particle diameter is closer to the length mean diameter. The pressure drop of two-phase flow through the particulate bed can be predicted by Reed's model. The steam explosion experiments performed at high melt superheat (>200oC) using oxidic mixture of WO3-CaO didn't detect an apparent difference in steam explosion energetics and preconditioning between the eutectic and noneutectic melts. This points out that the next step of MISTEE experiment will be conducted at lower

  5. Effect of Steam Explosion Pretreatment on Bamboo for Enzymatic Hydrolysis and Ethanol Fermentation

    Directory of Open Access Journals (Sweden)

    Zhiqiang Li

    2014-12-01

    Full Text Available Based on the steam explosion pretreatment that has been applied to other types of lignocellulosic biomass, the steam explosion pretreatment of bamboo, along with a study of the chemical compositions and enzymatic hydrolyzability of substrates, was conducted. The results show that steam explosion pretreatment can greatly enhance the cellulose-to-glucose conversion yield after enzymatic hydrolysis, which is sometimes affected by bamboo age and steam explosion conditions. When the steam explosion pretreatment conditions were 2.0 MPa (pressure and 4 min (time, the cellulose-to-glucose conversion yield of 2-year-old bamboo substrate was 62.5%. However, the cellulose-to-glucose conversion yield of bamboo substrates after direct (without steam explosion pretreatment sodium chlorite/acetic acid delignification was 93.1%. Fermentation of enzymatic hydrolyzates with Saccharomyces cerevisiae resulted in about 88.1% to 96.2% of the corresponding theoretical ethanol yield after 24 h.

  6. Application of steam explosion for the pretreatment of the lignocellulosic raw materials

    OpenAIRE

    Jacquet, Nicolas; Vanderghem, Caroline; Blecker, Christophe; Paquot, Michel

    2010-01-01

    Application of steam explosion for the pretreatment of the lignocellulosic raw materials. Steam explosion is a thermomechanochemical process which allows the breakdown of lignocellulosic structural components by steam heating, hydrolysis of glycosidic bonds by organic acid formed during the process and shearing forces due to the expansion of the moisture. The process is composed of two distinct stages: vapocracking and explosive decompression. Cumul effects of both phases include modification...

  7. Ex-vessel Steam Explosion Analysis for Pressurized Water Reactor and Boiling Water Reactor

    OpenAIRE

    Matjaž Leskovar; Mitja Uršič

    2016-01-01

    A steam explosion may occur during a severe accident, when the molten core comes into contact with water. The pressurized water reactor and boiling water reactor ex-vessel steam explosion study, which was carried out with the multicomponent three-dimensional Eulerian fuel–coolant interaction code under the conditions of the Organisation for Economic Co-operation and Development (OECD) Steam Explosion Resolution for Nuclear Applications project reactor exercise, is presented and discussed. In ...

  8. INTEGRATION OF KRAFT PULPING ON A FOREST BIOREFINERY BY THE ADDITION OF A STEAM EXPLOSION PRETREATMENT

    OpenAIRE

    Raquel Martin-Sampedro; Maria E. Eugenio; Esteban Revilla; Juan A. Martin; J. Carlos Villar

    2011-01-01

    Steam explosion has been proposed for a wide range of lignocellulosic applications, including fractionation of biomass, pre-treatment of biomass for ethanol production, or as an alternative to conventional mechanical pulping. Nevertheless, a steam explosion process could also be used as pretreatment before chemical pulping, expecting a reduction in cooking time due to the open structure of the exploded chips. Thus, to evaluate the effect of steam explosion as a pretreatment in the kraft pulpi...

  9. Ethanol production from steam-explosion pretreated wheat straw.

    Science.gov (United States)

    Ballesteros, Ignacio; Negro, Ma José; Oliva, José Miguel; Cabañas, Araceli; Manzanares, Paloma; Ballesteros, Mercedes

    2006-01-01

    Bioconversion of cereal straw to bioethanol is becoming an attractive alternative to conventional fuel ethanol production from grains. In this work, the best operational conditions for steam-explosion pretreatment of wheat straw for ethanol production by a simultaneous saccharification and fermentation process were studied, using diluted acid [H2SO4 0.9% (w/w)] and water as preimpregnation agents. Acid- or water-impregnated biomass was steam-exploded at different temperatures (160-200 degrees C) and residence times (5, 10, and 20 min). Composition of solid and filtrate obtained after pretreatment, enzymatic digestibility and ethanol production of pretreated wheat straw at different experimental conditions was analyzed. The best pretreatment conditions to obtain high conversion yield to ethanol (approx 80% of theoretical) of cellulose-rich residue after steam-explosion were 190 degrees C and 10 min or 200 degrees C and 5 min, in acid-impregnated straw. However, 180 degrees C for 10 min in acid-impregnated biomass provided the highest ethanol yield referred to raw material (140 L/t wheat straw), and sugars recovery yield in the filtrate (300 g/kg wheat straw).

  10. The steam explosion potential for an unseated SRS reactor septifoil

    Energy Technology Data Exchange (ETDEWEB)

    Allison, D.K.; Hyder, M.L.; Yau, W.W.F. (Westinghouse Savannah River Co., Aiken, SC (United States)); Smith, D.C. (Science Applications International Corp., Albuquerque, NM (United States))

    1992-01-01

    Control rods in the Savannah River Site's K Reactor are contained within housings composed of seven channels ( septifoils''). Each septifoil is suspended from the top of the reactor and is normally seated on an upflow pin that channels coolant to the septifoil. Forced flow to the septifoil would be eliminated in the unlikely event of a septifoil unseated upon installation, i.e., if the septifoil is not aligned with its upflow pin. If this event were not detected, control rod melting and the interaction of molten metal with water might occur. This paper describes a methodology used to address the issue of steam explosions that might arise by this mechanism. The probability of occurrence of a damaging steam explosion given an unseated septifoil was found to be extremely low. The primary reasons are: (1) the high probability that melting will not occur, (2) the possibility of material holdup by contact with the outer septifoil housing, (3) the relative shallowness of the pool 'Of water into which molten material might fall, (4) the probable absence of a trigger, and (5) the relatively large energy release required to damage a nearby fuel assembly. The methodology is based upon the specification of conditions prevailing within the septifoil at the time molten material is expected to contact water, and upon information derived from the available experimental data base, supplemented by recent prototypic experiments.

  11. The steam explosion potential for an unseated SRS reactor septifoil

    Energy Technology Data Exchange (ETDEWEB)

    Allison, D.K.; Hyder, M.L.; Yau, W.W.F. [Westinghouse Savannah River Co., Aiken, SC (United States); Smith, D.C. [Science Applications International Corp., Albuquerque, NM (United States)

    1992-09-01

    Control rods in the Savannah River Site`s K Reactor are contained within housings composed of seven channels (``septifoils``). Each septifoil is suspended from the top of the reactor and is normally seated on an upflow pin that channels coolant to the septifoil. Forced flow to the septifoil would be eliminated in the unlikely event of a septifoil unseated upon installation, i.e., if the septifoil is not aligned with its upflow pin. If this event were not detected, control rod melting and the interaction of molten metal with water might occur. This paper describes a methodology used to address the issue of steam explosions that might arise by this mechanism. The probability of occurrence of a damaging steam explosion given an unseated septifoil was found to be extremely low. The primary reasons are: (1) the high probability that melting will not occur, (2) the possibility of material holdup by contact with the outer septifoil housing, (3) the relative shallowness of the pool `Of water into which molten material might fall, (4) the probable absence of a trigger, and (5) the relatively large energy release required to damage a nearby fuel assembly. The methodology is based upon the specification of conditions prevailing within the septifoil at the time molten material is expected to contact water, and upon information derived from the available experimental data base, supplemented by recent prototypic experiments.

  12. Technoeconomic study on steam explosion application in biomass processing.

    Science.gov (United States)

    Zimbardi, Francesco; Ricci, Esmeralda; Braccio, Giacobbe

    2002-01-01

    This work is based on the data collected during trials of a continuous steam explosion (SE) plant, with a treatment capacity of about 350 kg/h, including the biomass fractionation section. The energy and water consumption, equipment cost, and manpower needed to run this plant have been used as the base case for a techno-economic evaluation of productive plants. Three processing plant configurations have been considered: (I) SE pretreatment only; (II) SE followed by the hemicellulose extraction; (III) SE followed by the sequential hemicellulose and lignin extractions. The biomass treatment cost has been evaluated as a function of the plant scale. For each configuration, variable and fixed cost breakdown has been detailed in the case of a 50,000 t/y plant.

  13. Effect of chip size on steam explosion pretreatment of softwood.

    Science.gov (United States)

    Ballesteros, I; Oliva, J M; Navarro, A A; González, A; Carrasco, J; Ballesteros, M

    2000-01-01

    Although considerable progress has been made in technology for converting lignocellulosic biomass into ethanol, substantial opportunities still exist to reduce production costs. In biomass pretreatment, reducing milling power is a technological improvement that will substantially lower production costs for ethanol. Improving sugar yield from hemicellulose hydrolysis would also reduce ethanol production costs. Thus, it would be desirable to test innovative pretreatment conditions to improve the economics by reducing electrical power of the milling stage and by optimizing pretreatment recovery of hemicellulose, as well as to enhance cellulose hydrolysis. The objective of this study was to evaluate the effect of chip size (2-5, 5-8, and 8-12 mm) on steam-explosion pretreatment (190 and 210 degrees C, 4 and 8 min) of softwood (Pinus pinaster).

  14. Production of D-lactic acid from sugarcane bagasse using steam-explosion

    Science.gov (United States)

    Sasaki, Chizuru; Okumura, Ryosuke; Asakawa, Ai; Asada, Chikako; Nakamura, Yoshitoshi

    2012-03-01

    This study investigated the production of D-lactic acid from unutilized sugarcane bagasse using steam explosion pretreatment. The optimal steam pressure for a steaming time of 5 min was determined. By enzymatic saccharification using Meicellase, the highest recovery of glucose from raw bagasse, 73.7%, was obtained at a steam pressure of 20 atm. For residue washed with water after steam explosion, the glucose recovery increased up to 94.9% at a steam pressure of 20 atm. These results showed that washing with water is effective in removing enzymatic reaction inhibitors. After steam pretreatment (steam pressure of 20 atm), D-lactic acid was produced by Lactobacillus delbrueckii NBRC 3534 from the enzymatic hydrolyzate of steam-exploded bagasse and washed residue. The conversion rate of D-lactic acid obtained from the initial glucose concentration was 66.6% for the hydrolyzate derived from steam-exploded bagasse and 90.0% for that derived from the washed residue after steam explosion. These results also demonstrated that the hydrolyzate of steam-exploded bagasse (without washing with water) contains fermentation inhibitors and washing with water can remove them.

  15. Vulnerability of a partially flooded PWR reactor cavity to a steam explosion

    Energy Technology Data Exchange (ETDEWEB)

    Cizelj, Leon [' Jozef Stefan' Institute Jamova 39, SI 1000 Ljubljana (Slovenia)]. E-mail: leon.cizelj@ijs.si; Koncar, Bostjan [' Jozef Stefan' Institute Jamova 39, SI 1000 Ljubljana (Slovenia); Leskovar, Matjaz [' Jozef Stefan' Institute Jamova 39, SI 1000 Ljubljana (Slovenia)

    2006-08-15

    When the hot molten core comes into contact with the water in the reactor cavity a steam explosion may occur. A steam explosion is a fuel coolant interaction process where the heat transfer from the melt to water is so intense and rapid that the timescale for heat transfer is shorter than the timescale for pressure relief. This can lead to the formation of shock waves and later, during the expansion of the water vapour, to production of missiles that may endanger surrounding structures. The purpose of the performed analysis is to provide an estimation of the expected pressure loadings on the typical PWR cavity structures during a steam explosion, and to make an assessment of the vulnerabilities of the typical PWR cavity structures to steam explosions. To achieve this, the fit-for-purpose steam explosion model is proposed, followed by comprehensive and reasonably conservative analyses of two typical ex-vessel steam explosion cases differing in the steam explosion energy conversion ratio. In particular, the vulnerability of the surrounding reinforced concrete walls to damage has been sought in both cases.

  16. INFLUENCE OF STEAM EXPLOSION PRETREATMENT ON THE COMPOSITION AND STRUCTURE OF WHEAT STRAW

    Directory of Open Access Journals (Sweden)

    Li Cui,

    2012-07-01

    Full Text Available Steam explosion pretreatment of wheat straw can solubilize a significant portion of the hemicellulosic component and enhance the enzymatic digestibility of the remaining cellulose for fermentation into ethanol. In this work, wheat straw was pretreated by steam explosion using different steam temperatures and retention times, and the chemical compositions of the raw and steam-exploded wheat straw were analyzed. Results showed that the content of hemicellulose decreased sharply at higher steam temperatures and longer retention times; however, the content of lignin changed inconspicuously. After pretreatment, the characteristics of the straw fiber were investigated by studying their proportion of microfibrils, SEM, and FTIR. To assess the differences among various pretreatment parameters, the concentration of the reducing sugar and glucose conversion were determined. The highest reducing sugar concentration and glucose conversion were achieved at the explosion conditions of a pretreatment temperature of 220 ºC and a residence time of 3 min.

  17. Effect of steam explosion on biodegradation of lignin in wheat straw.

    Science.gov (United States)

    Zhang, Lian-Hui; Li, Dong; Wang, Li-Jun; Wang, Ti-Peng; Zhang, Lu; Chen, Xiao Dong; Mao, Zhi-Huai

    2008-11-01

    The effect of steam explosion pretreatment on biodegradation of lignin in wheat straw was studied in this paper. Through experiments and analysis, 0.8MPa operation pressure and 1:20 wheat straw to water ratio are optimum for destroying lignin and the maximum of lignin loss rate is 19.94%. After steam explosion pretreatment, the wheat straw was retted by Trametes versicolor for 40 days. Biodegradation rate of lignin was tested and the maximum of 55.40% lignin loss rate was found on day 30. During the whole process of both steam explosion pretreatment and biodegradation, 75.34% lignin was degraded, without steam explosion the biodegradation of raw material the degradation rate of lignin was 31.23% only. FT-IR spectroscopy, TGA and SEM were used for further validating the results of biodegradation.

  18. Application of steam explosion for the pretreatment of the lignocellulosic raw materials

    OpenAIRE

    Jacquet, Nicolas; Vanderghem, Caroline; Blecker, Christophe; Paquot, Michel

    2010-01-01

    Steam explosion is a thermomechanochemical process which allows the breakdown of lignocellulosic structural components by steam heating, hydrolysis of glycosidic bonds by organic acid formed during the process and shearing forces due to the expansion of the moisture. The process is composed of two distinct stages: vapocracking and explosive decompression. Cumul effects of both phases include modification of the physical properties of the material (specific surface area, water retention capaci...

  19. COMPARISON BETWEEN WET OXIDATION AND STEAM EXPLOSION AS PRETREATMENT METHODS FOR ENZYMATIC HYDROLYSIS OF SUGARCANE BAGASSE

    OpenAIRE

    Carlos Martín; Marcelo Marcet; Anne Belinda Thomsen

    2008-01-01

    Alkaline wet oxidation and steam explosion pretreatments of sugarcane bagasse were compared with regard to biomass fractionation, formation of by-products, and enzymatic convertibility of the pretreated material. Wet oxidation led to the solubilisation of 82% of xylan and 50% of lignin, and to a two-fold increase of cellulose content in the pretreated solids, while steam explosion solubilised only 60% of xylan and 35% of lignin and increased cellulose content in the solid material by one thir...

  20. Anaerobic digestibility and fiber composition of bulrush in response to steam explosion.

    Science.gov (United States)

    Wang, Jin; Yue, Zheng-Bo; Chen, Tian-Hu; Peng, Shu-Chuan; Yu, Han-Qing; Chen, Hong-Zhang

    2010-09-01

    Steam explosion, one potential commercial pretreatment method for lignocellulosic wastes, was used to improve methane production of bulrush. Steam exploded bulrush showed a higher methane yield than the raw sample. The effects of steam pressure, moisture content and residence time on the concentration of neutral detergent fiber (NDF) and methane yield were described using a second order polynomial equation. A minimum NDF content of 30.6% was achieved under pretreatment condition with moisture content of 16.55%, steam pressure of 1.52 MPa and residence time of 5.17 min. A maximum methane yield of 205.3 ml per degradable volatile solid was obtained at 11.0% moisture, 1.72 MPa steam pressure, and 8.14 min residence time. The breakage and disruption of rigid lignin structure by steam explosion was confirmed by thermogravimetric analysis.

  1. Influence of steam explosion pretreatment on the anaerobic digestion of vinegar residue.

    Science.gov (United States)

    Feng, Jiayu; Zhang, Jiyu; Zhang, Jiafu; He, Yanfeng; Zhang, Ruihong; Liu, Guangqing; Chen, Chang

    2016-07-01

    Vinegar residue is the by-product in the vinegar production process. The large amount of vinegar residue has caused a serious environmental problem owing to its acidity and corrosiveness. Anaerobic digestion is an effective way to convert agricultural waste into bioenergy, and a previous study showed that vinegar residue could be treated by anaerobic digestion but still had room to improve digestion efficiency. In this study, steam explosion at pressure of 0.8, 1.2, and 1.5 MPa and residence time of 5, 10, 15, and 20 min were used to pretreat vinegar residue to improve methane production, respectively. Scanning electron microscopy and X-ray diffraction analyses were applied to validate structural changes of vinegar residue after steam explosion. Results showed that steam explosion pretreatment could destroy the structure of lignocellulose by removing the hemicellulose and lignin, and improve the methane yield effectively. Steam explosion-treated vinegar residue at 0.8 MPa for 5 min produced the highest methane yield of 153.58 mL gVS (-1), which was 27.65% (significant, α steam explosion did not influence the stability of anaerobic digestion. This study suggested that steam explosion pretreatment on vinegar residue might be a promising approach and it is worth further study to improve the efficiency of vinegar residue waste utilisation.

  2. Novel pretreatment of steam explosion associated with ammonium chloride preimpregnation.

    Science.gov (United States)

    Chen, Hongzhang; Li, Guanhua; Li, Hongqiang

    2014-02-01

    Improving nitrogen content and enhancing enzymatic hydrolysis are key processes involved in cellulosic ethanol production. Steam explosion (SE) associated with NH4Cl preimpregnation was carried out to investigate effects of the pretreatment on nitrogen content, enzymatic digestibility, and ethanol production. Results showed that nitrogen content in pretreated samples increased, which can be used as nitrogen resource for ethanol fermentation. The highest glucose yield of sample pretreated by 1.4MPa SE with 90g/l NH4Cl preimpregnation was 62.64%, which was 2.1 and 0.2 times higher than that of untreated sample and 1.4MPa SE pretreated sample, respectively. Ethanol yield of sample pretreated by 1.1MPa SE with 135g/l NH4Cl preimpregnation resulted in 1.93 and 0.69 times higher than that of untreated sample and 1.1MPa SE pretreated sample, respectively. This novel pretreatment improved nitrogen content and enhanced enzymatic digestibility under mild conditions, and could be recommended to further industrial application.

  3. Effects of fungal pretreatment and steam explosion pretreatment on enzymatic saccharification of plant biomass.

    Science.gov (United States)

    Sawada, T; Nakamura, Y; Kobayashi, F; Kuwahara, M; Watanabe, T

    1995-12-20

    The effects of consecutive treatments by a lignin-degrading fungus Phanerochaete chrysosporium and by steam explosion for the enzymatic saccharification of plant biomass were studied experimentally, and the optimal operational conditions for obtaining the maximum saccharification were evaluated. Beech wood-meal was treated by the fungus for 98 days and then by high steam temperatures of 170-230 degrees C with steaming times of 0-10 min. The treatment of the wood-meal by fungus prior to steam explosion enhanced the saccharification of wood-meal. The treated wood-meal was separated into holo-cellulose, water soluble material, methanol soluble lignin, and Klason lignin. The saccharification decreased linearly with the increase in the amount of Klason lignin. It was estimated by the equation for the saccharification of exploded wood-meal expressed as a function of steam temperature and steaming time that the maximum saccharification of wood-meal was obtained by consecutive treatments such as fungal treatment for 28 days and then steam explosion at a steam temperature of 215 degrees C and a steaming time of 6.5 min. (c) 1995 John Wiley & Sons, Inc.

  4. Steam-explosion pretreatment for enhancing anaerobic digestion of municipal wastewater sludge.

    Science.gov (United States)

    Dereix, Marcela; Parker, Wayne; Kennedy, Kevin

    2006-05-01

    This study evaluated the use of steam explosion as a pretreatment for municipal wastewater treatment sludges and biosolids as a technique for enhancing biogas generation during anaerobic digestion. Samples of dewatered anaerobic digester effluent (biosolids) and a mixture of thickened waste activated sludge (TWAS) and biosolids were steam-exploded under differing levels of intensity in this study. The results indicate that steam explosion can solublize components of these sludge streams. Increasing the intensity of the steam-explosion pressure and temperature resulted in increased solublization. The steam-explosion pretreatment also increased the bioavailability of sludge components under anaerobic digestion conditions. Increasing the steam-explosion intensity increased the ultimate yield of methane during anaerobic digestion. Batch anaerobic digestion tests suggested that pretreatment at 300 psi was the most optimal condition for enhanced biogas generation while minimizing energy input. Semicontinuous anaerobic digestion revealed that the results that were observed in the batch tests were sustainable in prolonged operation. Semicontinuous digestion of the TWAS/biosolids mixture that was pretreated at 300 psi generated approximately 50% more biogas than the controls. Semicontinuous digestion of the pretreated biosolids resulted in a 3-fold increase in biogas compared with the controls. Based on capillary suction test results, steam-explosion pretreatment at 300 psi improved the dewaterability of the final digested sludge by 32 and 45% for the TWAS/ biosolids mixture and biosolids, respectively, compared with controls. The energy requirements of the nonoptimized steam-explosion process were substantially higher than the additional energy produced from enhanced digestion of the pretreated sludge. Substantial improvements in energy efficiency will be required to make the process viable from an energy perspective.

  5. Comparison between wet oxidation and steam explosion as pretreatment methods for enzymatic hydrolysis of sugarcane bagasse

    DEFF Research Database (Denmark)

    Medina, Carlos Martín; Marcet, M.; Thomsen, Anne Belinda

    2008-01-01

    , and to a two-fold increase of cellulose content in the pretreated solids, while steam explosion solubilised only 60% of xylan and 35% of lignin and increased cellulose content in the solid material by one third. Wet oxidation formed more aliphatic acids and phenolics, and less furan aldehydes in the liquid...... fraction than steam explosion did. A better enzymatic convertibility of cellulose was achieved for the wet-oxidised material (57.4 %) than for the steam-exploded material (48.9 %). Cellulose convertibility was lower for the whole slurry than for the washed solids in both pretreatments, but more...

  6. Effect of steam explosion treatment on barley bran phenolic compounds and antioxidant capacity.

    Science.gov (United States)

    Gong, Lingxiao; Huang, Luolian; Zhang, Ying

    2012-07-25

    A steam explosion pretreatment process followed by methanol extraction has been applied for releasing and extracting phenolic compounds, as well as other effective components, from barley bran. The steam explosion treatment was performed at different temperatures ranging from 210 to 250 °C, with a residence time of 30 s. The effect of residence time was also studied in the range 10 s to 120 s at 220 °C. The extracts were evaluated for their total soluble phenolic content (TSPC) including total free phenolic acids (TFPC) and total soluble conjugates (TSC), identified phenolic acids, total antioxidant capacity (TAC), water-soluble carbohydrates (WSC) and total methanol extracts (TME). High-performance liquid chromatography (HPLC) coupled with a photodiode array detector (PDA) was used in this study for the analysis of p-coumaric acid and ferulic acid in barley bran before and after steam explosion. Our results indicate that TSPC and TAC increased with residence time. They also increased dramatically with temperature up to 220 °C. After steam explosion at 220 °C for 120 s, the TSPC reached 1686.4 gallic acid equivalents mg/100 g dry weight, which was about 9-fold higher than that of the untreated sample. The TSPC and TAC obtained were highly positively correlated (r = 0.918-0.993), which meant that the increase of TAC for the steam explosion pretreated barley bran extracts was due, at least in part, to the increase of TSPC in the methanol soluble fraction. Also, under optimum conditions, the WSC in aqueous solution was 5 times as much as that of the untreated sample, which demonstrated that steam explosion also hydrolyzes carbohydrates into water-soluble sugars. It can be concluded that a proper and reasonable steam explosion pretreatment could be applied to release the bound phenolic compounds and enhance the antioxidant capacity of barley bran extracts.

  7. La steam explosion : application en tant que prétraitement de la matière lignocellulosique

    OpenAIRE

    Jacquet, N.; Vanderghem, C.; Blecker, C.; Paquot, M.

    2010-01-01

    Application of steam explosion for the pretreatment of the lignocellulosic raw materials. Steam explosion is a thermomechanochemical process which allows the breakdown of lignocellulosic structural components by steam heating, hydrolysis of glycosidic bonds by organic acid formed during the process and shearing forces due to the expansion of the moisture. The process is composed of two distinct stages: vapocracking and explosive decompression. Cumul effects of both phases include modification...

  8. Ex-vessel Steam Explosion Analysis for Pressurized Water Reactor and Boiling Water Reactor

    Directory of Open Access Journals (Sweden)

    Matjaž Leskovar

    2016-02-01

    Full Text Available A steam explosion may occur during a severe accident, when the molten core comes into contact with water. The pressurized water reactor and boiling water reactor ex-vessel steam explosion study, which was carried out with the multicomponent three-dimensional Eulerian fuel–coolant interaction code under the conditions of the Organisation for Economic Co-operation and Development (OECD Steam Explosion Resolution for Nuclear Applications project reactor exercise, is presented and discussed. In reactor calculations, the largest uncertainties in the prediction of the steam explosion strength are expected to be caused by the large uncertainties related to the jet breakup. To obtain some insight into these uncertainties, premixing simulations were performed with both available jet breakup models, i.e., the global and the local models. The simulations revealed that weaker explosions are predicted by the local model, compared to the global model, due to the predicted smaller melt droplet size, resulting in increased melt solidification and increased void buildup, both reducing the explosion strength. Despite the lower active melt mass predicted for the pressurized water reactor case, pressure loads at the cavity walls are typically higher than that for the boiling water reactor case. This is because of the significantly larger boiling water reactor cavity, where the explosion pressure wave originating from the premixture in the center of the cavity has already been significantly weakened on reaching the distant cavity wall.

  9. Comparative techno-economic analysis of steam explosion, dilute sulfuric acid, ammonia fiber explosion and biological pretreatments of corn stover.

    Science.gov (United States)

    Baral, Nawa Raj; Shah, Ajay

    2017-05-01

    Pretreatment is required to destroy recalcitrant structure of lignocelluloses and then transform into fermentable sugars. This study assessed techno-economics of steam explosion, dilute sulfuric acid, ammonia fiber explosion and biological pretreatments, and identified bottlenecks and operational targets for process improvement. Techno-economic models of these pretreatment processes for a cellulosic biorefinery of 113.5 million liters butanol per year excluding fermentation and wastewater treatment sections were developed using a modelling software-SuperPro Designer. Experimental data of the selected pretreatment processes based on corn stover were gathered from recent publications, and used for this analysis. Estimated sugar production costs ($/kg) via steam explosion, dilute sulfuric acid, ammonia fiber explosion and biological methods were 0.43, 0.42, 0.65 and 1.41, respectively. The results suggest steam explosion and sulfuric acid pretreatment methods might be good alternatives at present state of technology and other pretreatment methods require research and development efforts to be competitive with these pretreatment methods. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Effect of Multi-Layered Corium Formations on Integrity of Steel Components under Steam Explosion Condition

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seung Hyun; Kim, Tae Hyun; Chang, Yoon-Suk [Kyung Hee University, Yongin (Korea, Republic of); Cho, Yong-Jin [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2016-10-15

    The object of the present study is to examine effect of multi-layered corium formations on the integrity of steel components under a representative steam explosion condition. In this context, multi-layered corium formation conditions are assumed based on a previous study. Subsequently, stress evaluation of steel components is performed by TNT (trinitrotoluene) model for the steam explosion analysis and their results are discussed. In this paper, comparative numerical analyses were carried out to examine effect of the multi-layered corium formations on integrity of steel components under a typical steam explosion condition and the following conclusions were derived. (1) The highest maximum von Mises stress was calculated at RPV. However, stress values of all components did not exceed their yield strengths. (2) Effect of the 3-layer corium formation was higher than 2-layer corium formation. Resulting von Mises stress increased 20% than that of no corium formation and 16% than that of 2-layer corium formation.

  11. Hot water extraction and steam explosion as pretreatments for ethanol production from spruce bark.

    Science.gov (United States)

    Kemppainen, Katariina; Inkinen, Jenni; Uusitalo, Jaana; Nakari-Setälä, Tiina; Siika-aho, Matti

    2012-08-01

    Spruce bark is a source of interesting polyphenolic compounds and also a potential but little studied feedstock for sugar route biorefinery processes. Enzymatic hydrolysis and fermentation of spruce bark sugars to ethanol were studied after three different pretreatments: steam explosion (SE), hot water extraction (HWE) at 80 °C, and sequential hot water extraction and steam explosion (HWE+SE), and the recovery of different components was determined during the pretreatments. The best steam explosion conditions were 5 min at 190 °C without acid catalyst based on the efficiency of enzymatic hydrolysis of the material. However, when pectinase was included in the enzyme mixture, the hydrolysis rate and yield of HWE bark was as good as that of SE and HWE+SE barks. Ethanol was produced efficiently with the yeast Saccharomyces cerevisiae from the pretreated and hydrolysed materials suggesting the suitability of spruce bark to various lignocellulosic ethanol process concepts.

  12. Study on loading coefficient in steam explosion process of corn stalk.

    Science.gov (United States)

    Sui, Wenjie; Chen, Hongzhang

    2015-03-01

    The object of this work was to evaluate the effect of loading coefficient on steam explosion process and efficacy of corn stalk. Loading coefficient's relation with loading pattern and material property was first revealed, then its effect on transfer process and pretreatment efficacy of steam explosion was assessed by established models and enzymatic hydrolysis tests, respectively, in order to propose its optimization strategy for improving the process economy. Results showed that loading coefficient was mainly determined by loading pattern, moisture content and chip size. Both compact loading pattern and low moisture content improved the energy efficiency of steam explosion pretreatment and overall sugar yield of pretreated materials, indicating that they are desirable to improve the process economy. Pretreatment of small chip size showed opposite effects in pretreatment energy efficiency and enzymatic hydrolysis performance, thus its optimization should be balanced in investigated aspects according to further techno-economical evaluation.

  13. Steam explosion pretreatment for enhancing biogas production of late harvested hay.

    Science.gov (United States)

    Bauer, Alexander; Lizasoain, Javier; Theuretzbacher, Franz; Agger, Jane W; Rincón, María; Menardo, Simona; Saylor, Molly K; Enguídanos, Ramón; Nielsen, Paal J; Potthast, Antje; Zweckmair, Thomas; Gronauer, Andreas; Horn, Svein J

    2014-08-01

    Grasslands are often abandoned due to lack of profitability. Extensively cultivating grassland for utilization in a biogas-based biorefinery concept could mend this problem. Efficient bioconversion of this lignocellulosic biomass requires a pretreatment step. In this study the effect of different steam explosion conditions on hay digestibility have been investigated. Increasing severity in the pretreatment induced degradation of the hemicellulose, which at the same time led to the production of inhibitors and formation of pseudo-lignin. Enzymatic hydrolysis showed that the maximum glucose yields were obtained under pretreatment at 220 °C for 15 min, while higher xylose yields were obtained at 175 °C for 10 min. Pretreatment of hay by steam explosion enhanced 15.9% the methane yield in comparison to the untreated hay. Results indicate that hay can be effectively converted to methane after steam explosion pretreatment.

  14. Chemical-free Extraction of Cotton Stalk Bark Fibers by Steam Flash Explosion

    Directory of Open Access Journals (Sweden)

    Xiuliang Hou

    2014-10-01

    Full Text Available Cotton stalk bark fibers (CSBF were extracted by steam flash explosion, completed within 0.09 s, and the extracted fibers were compared with those obtained by conventional alkaline treatment. Results indicate that the optimum steam pressure was 2.5 MPa when steaming time was set to 2 min for extracting CSBF. Under the optimized conditions, the obtained CSBF had a cellulose content of 72%, length of 48 mm, fineness of 45 dtex, crystallinity index of 68, moisture regain of 8%, water retention of 98%, and tensile strength of 2.4 cN/dtex, which were similar to results obtained by conventional alkaline treatment. Compared with bark of cotton stalks, CSBF had lower moisture regain and water retention, and higher onset decomposition temperature. The results show that moderate steam flash explosion is a chemical-free, quick, and effective method for exploring the industrial applications of bark of cotton stalks as natural cellulose fibers.

  15. Lignin depolymerization/repolymerization and its critical role for delignification of aspen wood by steam explosion.

    Science.gov (United States)

    Li, Jiebing; Henriksson, Gunnar; Gellerstedt, Göran

    2007-11-01

    Steam explosion is an important process for the fractionation of biomass components. In order to understand the behaviour of lignin under the conditions encountered in the steam explosion process, as well as in other types of steam treatment, aspen wood and isolated lignin from aspen were subjected to steam treatment under various conditions. The lignin portion was analyzed using NMR and size exclusion chromatography as major analytical techniques. Thereby, the competition between lignin depolymerization and repolymerization was revealed and the conditions required for these two types of reaction identified. Addition of a reactive phenol, 2-naphthol, was shown to inhibit the repolymerization reaction strongly, resulting in a highly improved delignification by subsequent solvent extraction and an extracted lignin of uniform structure.

  16. Correlations between the disintegration of melt and the measured impulses in steam explosions

    Energy Technology Data Exchange (ETDEWEB)

    Froehlich, G.; Linca, A.; Schindler, M. [Univ. of Stuttgart (Germany)

    1995-09-01

    To find our correlations in steam explosions (melt water interactions) between the measured impulses and the disintegration of the melt, experiments were performed in three configurations i.e. stratified, entrapment and jet experiments. Linear correlations were detected between the impulse and the total surface of the fragments. Theoretical considerations point out that a linear correlation assumes superheating of a water layer around the fragments of a constant thickness during the fragmentation process to a constant temperature (here the homogeneous nucleation temperature of water was assumed) and a constant expansion velocity of the steam in the main expansion time. The correlation constant does not depend on melt temperature and trigger pressure, but it depends on the configuration of the experiment or of a scenario of an accident. Further research is required concerning the correlation constant. For analysing steam explosion accidents the explosivity is introduced. The explosivity is a mass specific impulse. The explosivity is linear correlated with the degree of fragmentation. Knowing the degree of fragmentation with proper correlation constant the explosivity can be calculated and from the explosivity combined with the total mass of fragments the impulse is obtained which can be used to an estimation of the maximum force.

  17. Cavity structural integrity evaluation of steam explosion using LS-DYNA

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dae-Young; Park, Chang-Hwan [FNC Technology Co. Ltd., Yongin (Korea, Republic of); Kim, Kap-sun [KHNP Central Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    For investigating the mechanical response of the newly-designed NPP against an steam explosion, the cavity structural integrity evaluation was performed, in which the mechanical load resulted from a steam explosion in the reactor cavity was calculated. In the evaluation, two kinds of approach were considered, one of which is a deterministic manner and the other is a probabilistic one. In this report, the procedure and the results of the deterministic analysis are presented When entering the severe accident, the core is relocated to the lower head. In this case, an Ex-Vessel Steam Explosion(EVSE) can occur. It can threaten the structural integrity of the cavity due to the load applied to the walls or slabs of the cavity. The large amount of the energy transmitted from interaction between the molten corium and the water causes a dynamic loading onto the concrete walls resulting not only to affect the survivability of the various equipment but also to threaten the integrity of the containment. In this report, the response of the cavity wall structure is analyzed using the nonlinear finite element analysis (FEA) code. The resulting stress and strain of the structure were evaluated by the criteria in NEI07-13. Until now, deterministic analysis was performed via finite element analysis for the dynamic load generated by the steam explosion to investigate the effect on the cavity structure. A deterministic method was used in this study using the specific values of material properties and clearly defined steam explosion pressure curve. The results showed that the rebar and the liner are kept intact even at the high pressure pulse given by the steam explosion. The liner integrity is more critical to judge the preservation of the lean-tightness. In the meantime, there were found cracks in concrete media.

  18. COMPARISON BETWEEN WET OXIDATION AND STEAM EXPLOSION AS PRETREATMENT METHODS FOR ENZYMATIC HYDROLYSIS OF SUGARCANE BAGASSE

    Directory of Open Access Journals (Sweden)

    Carlos Martín

    2008-08-01

    Full Text Available Alkaline wet oxidation and steam explosion pretreatments of sugarcane bagasse were compared with regard to biomass fractionation, formation of by-products, and enzymatic convertibility of the pretreated material. Wet oxidation led to the solubilisation of 82% of xylan and 50% of lignin, and to a two-fold increase of cellulose content in the pretreated solids, while steam explosion solubilised only 60% of xylan and 35% of lignin and increased cellulose content in the solid material by one third. Wet oxidation formed more aliphatic acids and phenolics, and less furan aldehydes in the liquid fraction than steam explosion did. A better enzymatic convertibility of cellulose was achieved for the wet-oxidised material (57.4 % than for the steam-exploded material (48.9 %. Cellulose convertibility was lower for the whole slurry than for the washed solids in both pretreatments, but more significantly in steam explosion. This investigation demonstrates the potential of wet oxidation as a promising pretreatment method for enzyme-based bagasse-to-ethanol processes.

  19. Chemical and physical modification of hemp fibres by steam explosion technology

    Science.gov (United States)

    Sutka, Anna; Kukle, Silvija; Gravitis, Janis; Berzins, Agris

    2013-12-01

    In current research attempt has been made to analyse hemp fibres treated with steam explosion (SE) technology. Disintegration of hemp fibres separated from non-retted, dew-retted and dried stems of hemp ('Purini')[1] by alkali treatment and steam explosion (SE) were investigated. An average intensive SE in combination with the hydro-thermal and alkali after-treatment allows decreasing the diameter of hemp fibres and reduce the concentration of non-celluloses components, among them hemicelluloses, lignin, pectin, waxes and water [1;2].

  20. Analysis of KROTOS KS-2 and KS-4 steam explosion experiments with TEXAS-VI

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Ronghua, E-mail: rhchen@mail.xjtu.edu.cn [State Key Laboratory of Multiphase Flow in Power Engineering, School of Nuclear Science and Technology, Xi’an Jiaotong University, Xi’an 710049 (China); Wang, Jun [Nuclear Engineering and Engineering Physics, College of Engineering, University of Wisconsin Madison, WI 53706 (United States); Su, G.H.; Qiu, Suizheng [State Key Laboratory of Multiphase Flow in Power Engineering, School of Nuclear Science and Technology, Xi’an Jiaotong University, Xi’an 710049 (China); Corradini, M.L., E-mail: Corradini@engr.wisc.edu [Nuclear Engineering and Engineering Physics, College of Engineering, University of Wisconsin Madison, WI 53706 (United States)

    2016-12-01

    Highlights: • The KS-2 and KS-4 steam explosion experiments were analyzed by TEXAS-VI. • The coarse mixing status up to the explosion triggering time was well predicted by TEXAS-VI. • The predicted dynamic explosion pressure was in good agreement with the experimental results. - Abstract: TEXAS-VI is a transient, three-field, one-dimensional mechanistic model for the steam explosion phenomena. A fuel solidification model and associated fragmentation criteria of the solidifying particle for both the mixing phase and explosion phase were developed and incorporated into TEXAS-VI to account for solidification. In the present study, TEXAS-VI was used to analyze the KS-2 and KS-4 steam explosion experiments, which were performed in the KROTOS facility as part of the OECD-SERENA-2 program. In the simulation, the KROTOS experimental facility was modeled as Eulerian control volumes based on the facility geometry. The molten corium jet was divided up into a series of LaGrangian master particles equal to the initial jet diameter. Both the mixing phase and the explosion phase of the experiments were simulated by TEXAS-VI. Comparison to test data indicates that the fuel jet kinematics and the vapor volume during the mixing phase were well predicted by TEXAS-VI. The TEXAS-VI prediction of the dynamic explosion pressure at different axial locations in the test was also in good agreement with the experimental results. The maximum pressure of KS-2 and KS-4 predicted by TEXAS-VI were 16.7 MPa and 41.9 MPa, respectively. The KS-4 maximum steam explosion pressure predicted by TEXAS-VI was higher than that of KS-2, which was consistent with experiment observation. The observed differences of the dynamic explosion pressure between the KS-2 and KS-4 experiments were also successfully simulated by TEXAS-VI. This suggests that TEXAS-VI is able to analyze the effect of prototypic melt compositions on the steam explosion phenomena. Additional benchmarking and evaluations are ongoing.

  1. Simultaneous production of α-cellulose and furfural from bagasse by steam explosion pretreatment

    Directory of Open Access Journals (Sweden)

    Vittaya Punsuvon

    2008-02-01

    Full Text Available Sugar cane bagasse was pretreated by steam explosion for the simultaneous production of furfural and α-cellulose pulp. The components of bagasse were fractionated after steam explosion. The details of the process are as follows. Bagasse was soaked in water for one night and steamed at temperatures varying between 206 and 223 C for 4 minutes. The steam exploded pulp was strained and washed with hot water to yield a liquor rich in hemicellulose-derived mono- and oligosaccharides. The remaining pulp was delignified by alkali for 120 minutes at 170C using, separately, NaOH load of 15, 20 and 25% of weight of the pulp. The delignified pulp was further bleached twice with 4% H2O2 charge of weight of the pulp to produce high α-cellulose pulp. The water liquor was evaporated and further hydrolysed and dehydrated with diluted H2SO4 in a stainless steel reactor to produce furfural. The result shows that the optimal pretreatment of steam explosion for 4 min at 218C leads to the yield of α-cellulose pulp at 193-201 g∙kg-1 of the original bagasse, and that furfural can be produced from xylose present in the liquor with a maximum conversion factor of 0.16.

  2. INTEGRATION OF KRAFT PULPING ON A FOREST BIOREFINERY BY THE ADDITION OF A STEAM EXPLOSION PRETREATMENT

    Directory of Open Access Journals (Sweden)

    Raquel Martin-Sampedro

    2011-02-01

    Full Text Available Steam explosion has been proposed for a wide range of lignocellulosic applications, including fractionation of biomass, pre-treatment of biomass for ethanol production, or as an alternative to conventional mechanical pulping. Nevertheless, a steam explosion process could also be used as pretreatment before chemical pulping, expecting a reduction in cooking time due to the open structure of the exploded chips. Thus, to evaluate the effect of steam explosion as a pretreatment in the kraft pulping of Eucalyptus globulus, steam exploded chips and control chips were subjected to kraft cookings. Steam exploded chips provided pulps with reductions of kappa number by up to 70% with no significant change in viscosity. Therefore, the cooking time could be shortened by 60%, increasing the productivity and obtaining pulps with similar delignification degree to those of the control pulp. Furthermore, not only the production rate could be increased, but also most of the hemicelluloses could be recovered before pulping and converted to a value-added product. Finally, although exploded pulp had inferior mechanical strength, the optical properties, which are more important in eucalyptus pulps, were found to be better.

  3. Fractionation of oil palm frond hemicelluloses by water or alkaline impregnation and steam explosion.

    Science.gov (United States)

    Sabiha-Hanim, Saleh; Mohd Noor, Mohd Azemi; Rosma, Ahmad

    2015-01-22

    Steam explosion of oil palm frond has been carried out under different temperatures between 180 and 210°C for 4 min (severity of 2.96-3.84) after impregnation of the frond chips with water or KOH solution. The effects of impregnation and steam explosion conditions of oil palm fronds on the water soluble fraction and insoluble fraction were investigated. The maximum yield of hemicelluloses in water soluble fractions recovered was 23.49% and 25.33% for water and KOH impregnation, treated with steam explosion at temperature of 210°C (severity of 3.84) with a fractionation efficiency of 77.30% and 83.32%, respectively. Under this condition, the water insoluble fractions contained celluloses at 60.83% and 64.80% for water and KOH impregnation, respectively. The steam explosion temperature of 210°C for 4 min (logR(o) 3.84) was found to be the best condition in the extraction of hemicelluloses from OPF for both types of impregnation.

  4. Steam explosion and its combinatorial pretreatment refining technology of plant biomass to bio-based products.

    Science.gov (United States)

    Chen, Hong-Zhang; Liu, Zhi-Hua

    2015-06-01

    Pretreatment is a key unit operation affecting the refinery efficiency of plant biomass. However, the poor efficiency of pretreatment and the lack of basic theory are the main challenges to the industrial implementation of the plant biomass refinery. The purpose of this work is to review steam explosion and its combinatorial pretreatment as a means of overcoming the intrinsic characteristics of plant biomass, including recalcitrance, heterogeneity, multi-composition, and diversity. The main advantages of the selective use of steam explosion and other combinatorial pretreatments across the diversity of raw materials are introduced. Combinatorial pretreatment integrated with other unit operations is proposed as a means to exploit the high-efficiency production of bio-based products from plant biomass. Finally, several pilot- and demonstration-scale operations of the plant biomass refinery are described. Based on the principle of selective function and structure fractionation, and multi-level and directional composition conversion, an integrated process with the combinatorial pretreatments of steam explosion and other pretreatments as the core should be feasible and conform to the plant biomass refinery concept. Combinatorial pretreatments of steam explosion and other pretreatments should be further exploited based on the type and intrinsic characteristics of the plant biomass used, the bio-based products to be made, and the complementarity of the processes.

  5. Example Calculations of In{sub v}essel Steam Explosions for a Prototypical PWR

    Energy Technology Data Exchange (ETDEWEB)

    Park, Ik Kyu; Hong, Seong Wan [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-05-15

    In this paper, the sample calculation for the in{sub v}essel steam explosions were done by using the MC3D code. The evaluation of the computational code had been done against TROI experiments and the code had been adapted to a PWR ex{sub v}essel steam explosion calculations. MC3D is a code for the calculation of different types of multiphase multi-component flows. It has been built with the fuel-coolant interaction calculations in mind. It is, however, able to calculate very different situations and has a rather wide field of potential applications. MC3D is a set of two fuel-coolant interaction codes with a common numeric solver, one for the premixing phase and one for the explosion phase. In general, the steam explosion simulation with MC3D is being carried out in two steps. In the first step, the distributions of the melt, water, and vapor phases at steam explosion triggering are being calculated with the premixing module. These premixing simulation results present the input for the second step when the escalation and propagation of the steam explosion through the premixture are being calculated with the explosion module. The MC3D premixing model is a six-field application in which the melt is described by three fields. The first one is called 'continuous' and can describe many situations as, e.g., a jet or the melt lying on the bottom of a vessel. The second field corresponds to the droplets issued from the jet fragmentation. This field describes the discontinuous state of the fuel. The third field is optional and describes the fuel fragments issuing from drop fine fragmentation. The remaining three fields are the water, the vapor, and a noncondensable gas. The drop surface area is modeled with a standard interfacial area transport equation. In the explosion model, the continuous phase is not present and only the two fields related to the dispersed fuel are considered

  6. Effect of steam explosion on in vitro gas production kinetics and rumen fermentation profiles of three common straws

    OpenAIRE

    Li Wen He; Qing Xiang Meng; Yong Li; Fei Wang; Li Ping Ren

    2015-01-01

    To investigate the effect of steam explosion on in vitro gas production (GP) and rumen fermentation profiles of common straws, in vitro cultivation was conducted for 96 h with the rumen fluid collected from steers. Different types of straw had various chemical compositions, which were affected by steam explosion (P<0.01). Steam explosion increased (P<0.01) the rate and volume of GP, lag time disappeared and asymptotic GP decreased, which were also affected (P<0.01) by the type of str...

  7. K-FIX(GT): A computer program for modeling the expansion phase of steam explosions within complex three dimensional cavities

    Energy Technology Data Exchange (ETDEWEB)

    Hyder, M.L. [Westinghouse Savannah River Co., Aiken, SC (United States); Farawila, Y.M.; Abdel-Khalik, S.I.; Halvorson, P.J. [Georgia Inst. of Tech., Atlanta, GA (US)

    1992-05-01

    In the development of the Severe Accident Analysis Program for the Savannah River production reactors, it was recognized that certain accidents have the potential for causing damaging steam explosions. The massive SRS reactor buildings are likely to withstand any imaginable steam explosion. However, reactor components and building structures including hatches, ventilation ducts, etc., could be at risk if such an explosion occurred. No tools were available to estimate the effects of such explosions on actual structures. To meet this need, the Savannah River Laboratory contracted with the Georgia Institute of Technology Research Institute for development of a computer-based calculational tool for estimating the effects of steam explosions. The goal for this study was to develop a computer code that could be used parametrically to predict the effects of various steam explosions on their surroundings. This would be able to predict whether a steam explosion of a given magnitude would be likely to fail a particular structure. This would require, of course, that the magnitude of the explosion be specified through some combination of judgment and calculation. The requested code, identified as the K-FIX(GT) code, was developed and delivered by the contractor, along with extensive documentation. The several individual reports that constitute the documentation are each being issued as a separate WSRC report. Documentation includes several model calculations, and representation of these in graphic form. This report gives detailed instructions for the use of the code, including identification of all input parameters required.

  8. K-FIX(GT): A computer program for modeling the expansion phase of steam explosions within complex three dimensional cavities

    Energy Technology Data Exchange (ETDEWEB)

    Hyder, M.L. [Westinghouse Savannah River Co., Aiken, SC (United States); Farawila, Y.M.; Abdel-Khalik, S.I.; Halvorson, P.J. [Georgia Inst. of Tech., Atlanta, GA (US)

    1992-05-01

    In the development of the Severe Accident Analysis Program for the Savannah River production reactors, it was recognized that certain accidents have the potential for causing damaging steam explosions. The massive SRS reactor buildings are likely to withstand any imaginable steam explosion. However, reactor components and building structures including hatches, ventilation ducts, etc., could be at risk if such an explosion occurred. No tools were available to estimate the effects of such explosions on actual structures. To meet this need, the Savannah River Laboratory contracted with the Georgia Institute of Technology Research Institute for development of a computer-based calculational tool for estimating the effects of steam explosions. The goal for this study was to develop a computer code that could be used parametrically to predict the effects of various steam explosions on their surroundings. This would be able to predict whether a steam explosion of a given magnitude would be likely to fail a particular structure. This would require, of course, that the magnitude of the explosion be specified through some combination of judgment and calculation. The requested code, identified as the K-FIX(GT) code, was developed and delivered by the contractor, along with extensive documentation. The several individual reports that constitute the documentation are each being issued as a separate WSRC report. Documentation includes several model calculations, and representation of these in graphic form. This report gives detailed instructions for the use of the code, including identification of all input parameters required.

  9. Littoral blasts: Pumice-water heat transfer and the conditions for steam explosions when pyroclastic flows enter the ocean

    Science.gov (United States)

    Dufek, J.; Manga, M.; Staedter, M.

    2007-11-01

    Steam explosions, or littoral blasts, generated when pyroclastic flows interact with seawater may be a common, although rarely documented, phenomena. The development of steam explosions rather than passive steam production is related to the rate of thermal energy transfer from hot pyroclasts to water. We conduct a series of laboratory experiments to quantify the heat transfer and steam production rates when hot pyroclasts encounter water. Hot pumice (>200°C) rapidly ingests water while remaining at the surface, producing measurable amounts of steam during the process. Approximately 10% of the thermal energy of the pumice particles is partitioned into the production of steam, and smaller particles have greater steam production rates. The laboratory experiments are used to develop a subgrid model for steam production that can be incorporated into a multiphase numerical framework. We use this model to study the critical steam production rates required to initiate explosive events. For conditions typical of many pyroclastic flows, particles smaller than ˜1-5 mm are required to initiate a littoral blast. A second set of two-dimensional numerical simulations is conducted to simulate the 12-13 July Soufrière Hills dome collapse event that reached the sea. The simulations predict that the focus of the blast is likely generated several hundred meters offshore and although the landward directed base surge is primarily dry (water vapor), the area immediately above the blast is steam-rich and may be a likely site for the production of accretionary lapilli.

  10. Effects of a steam explosion pretreatment on sugar production by enzymatic hydrolysis and structural properties of reed straw.

    Science.gov (United States)

    Hu, Qiulong; Su, Xiaojun; Tan, Lin; Liu, Xianghua; Wu, Anjun; Su, Dingding; Tian, Kaizhong; Xiong, Xingyao

    2013-01-01

    Reed lignocellulose was subjected to a steam explosion pretreatment to obtain a high conversion rate of sugar after subsequent enzymatic hydrolysis using a commercial cellulase mixture. Under conditions of differing temperature (200 °C, 220 °C and 240 °C) and residence time (2, 5, and 8 min), the effect of the pretreatment on the sugar yield from enzymatic hydrolysis was studied. The highest respective reducing sugar and glucose yields were 36.14% and 15.35% after 60-h enzymatic hydrolysis of reed straw that had been pretreated with a steam explosion at 220 °C for 5 min. Fourier transform infrared spectrophotometry (FTIR), X-ray diffraction (XRD) and scanning electron microscopy (SEM) were used in this study to comprehensively investigate the steam explosion-induced changes in the organizational structure and morphological properties of reed straw to analyze the reason for the increased sugar yield from enzymatic hydrolysis after the steam explosion.

  11. Influence of steam explosion on physicochemical properties and hydrolysis rate of pure cellulose fibers.

    Science.gov (United States)

    Jacquet, N; Vanderghem, C; Danthine, S; Quiévy, N; Blecker, C; Devaux, J; Paquot, M

    2012-10-01

    The aim of this study is to compare the effect of different steam explosion treatments on the physicochemical properties and the hydrolysis rate of a pure bleached cellulose. The results showed that moderate steam explosion treatments (severity factor below 5.2) did not appear to improve the enzymatic hydrolysis rate of the cellulose fibers. However, characterization of the samples showed a modification of the physicochemical properties of the cellulose, resulting in an increase of the water retention values (WRV) coupled to an increase of the overall crystallinity. For higher treatment intensities, an important thermal degradation of the cellulose was highlighted. This thermal degradation caused an important modification of the cellulose composition which leads to a decrease of the hydrolysis rate. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. [Synergistic mechanism of steam explosion combined with laccase treatment for straw delignification].

    Science.gov (United States)

    Li, Guanhua; Chen, Hongzhang

    2014-06-01

    Components separation is the key technology in biorefinery. Combination of steam explosion and laccase was used, and synergistic effect of the combined pretreatment was evaluated in terms of physical structure, chemical components and extraction of lignin. The results showed that steam explosion can destroy the rigid structure and increase the specific surface area of straw, which facilitated the laccase pretreatment. The laccase pretreatment can modify the lignin structure based on the Fourier transform infrared test, as a result the delignification of straw was enhanced. Nuclei Growth model with a time dependent rate constant can describe the delignification, and the kinetics parameters indicated that the combined pretreatment improved the reaction sites and made the delignification reaction more sensitive to temperature. The combined pretreatment enhanced delignification, and can be a promising technology as an alternative to the existing pretreatment.

  13. Deconstruction of corncob by steam explosion pretreatment: Correlations between sugar conversion and recalcitrant structures.

    Science.gov (United States)

    Zhang, Xin; Yuan, Qipeng; Cheng, Gang

    2017-01-20

    In this work, acid-catalyzed steam explosion was carried out as a pretreatment to hydrolyze hemicellulose and increase the enzymatic digestibility of corncob. Pretreatment conditions were varied to achieve structural alterations in a wide range: type of acids (sulfuric acid and oxalic acid), acid concentration (0.1-1.5wt.%) and pressure (1.0-1.8MPa). The pretreated residues were analyzed by chemical analysis, surface area measurement and x-ray diffraction. Biomass and cellulose crystallinity, lignin content and specific surface area were obtained and their correlations with sugar conversion were compared. The results suggested that these parameters were coupled together and they explained in part the diversity of the literature data that improves understanding of steam explosion pretreatment.

  14. Enzymatic saccharification and bioethanol production from Cynara cardunculus pretreated by steam explosion.

    Science.gov (United States)

    Fernandes, Maria C; Ferro, Miguel D; Paulino, Ana F C; Mendes, Joana A S; Gravitis, Janis; Evtuguin, Dmitry V; Xavier, Ana M R B

    2015-06-01

    The correct choice of the specific lignocellulosic biomass pretreatment allows obtaining high biomass conversions for biorefinery implementations and cellulosic bioethanol production from renewable resources. Cynara cardunculus (cardoon) pretreated by steam explosion (SE) was involved in second-generation bioethanol production using separate hydrolysis and fermentation (SHF) or simultaneous saccharification and fermentation (SSF) processes. Steam explosion pretreatment led to partial solubilisation of hemicelluloses and increased the accessibility of residual polysaccharides towards enzymatic hydrolysis revealing 64% of sugars yield against 11% from untreated plant material. Alkaline extraction after SE pretreatment of cardoon (CSEOH) promoted partial removal of degraded lignin, tannins, extractives and hemicelluloses thus allowing to double glucose concentration upon saccharification step. Bioethanol fermentation in SSF mode was faster than SHF process providing the best results: ethanol concentration 18.7 g L(-1), fermentation efficiency of 66.6% and a yield of 26.6g ethanol/100 g CSEOH or 10.1 g ethanol/100 g untreated cardoon.

  15. Screw extrude steam explosion: a promising pretreatment of corn stover to enhance enzymatic hydrolysis.

    Science.gov (United States)

    Chen, Jingwen; Zhang, Wengui; Zhang, Hongman; Zhang, Qiuxiang; Huang, He

    2014-06-01

    A screw extrude steam explosion (SESE) apparatus was designed and introduced to pretreat corn stover continuously for its following enzymatic hydrolysis. SESE parameters temperature (100, 120, 150°C) and residence time (1, 2, 3min) were investigated. The enzymatic hydrolysis of corn stover pretreated by SESE and steam explosion (SE) process was carried out and analyzed systematically. A serial of analysis methods were established, and the corn stover before/after the pretreatment were characterized by scanning electron microscope (SEM), X-ray Diffraction (XRD) and Thermal Gravity/Derivative Thermal Gravity Analysis (TG/DTG). After treated by SESE pretreatment at the optimum condition (150°C, 2min), the pretreated corn stover exhibited highest enzymatic hydrolysis yield (89%), and rare fermentation inhibitors formed. Characterization results indicated that the highest yield could be attributed to the effective removal of lignin/hemicellulose and destruction of cellulose structure by SESE pretreatment.

  16. Effect of steam explosion on in vitro gas production kinetics and rumen fermentation profiles of three common straws

    Directory of Open Access Journals (Sweden)

    Li Wen He

    2015-12-01

    Full Text Available To investigate the effect of steam explosion on in vitro gas production (GP and rumen fermentation profiles of common straws, in vitro cultivation was conducted for 96 h with the rumen fluid collected from steers. Different types of straw had various chemical compositions, which were affected by steam explosion (P<0.01. Steam explosion increased (P<0.01 the rate and volume of GP, lag time disappeared and asymptotic GP decreased, which were also affected (P<0.01 by the type of straw. The type of straw influenced (P<0.05 the final pH, while steam explosion exerted an effect (P<0.01 on the ammonia-nitrogen concentration. The proportions of individual volatile fatty acid (VFA, except acetate (A, differed (P<0.05 among the feeds. Steam explosion increased total VFA production and the proportion of propionate (P, while decreased the proportions of A, isobutyrate and valerate as well as the ratio A/P (P<0.01. The type of straw had an effect (P<0.05 on the activities of avicelase and carboxymethyl cellulase (CMCase, while steam explosion increased (P<0.01 the activities of avicelase, CMCase, β-glucanase and xylanase. The available energy concentrations and digestibilities differed (P<0.01 in the feeds and were increased (P<0.05 with steam explosion processing. The interaction straw type×treatments was significant (P<0.05 for most monitored parameters. These results suggest that steam explosion could improve rumen fermentability and energy utilisation of straw, being an effective pre-treatment method in feed industry.

  17. An original combined multiphase model of the steam-explosion premixing phase

    OpenAIRE

    Leskovar, Matjaž; Mavko, Borut

    2015-01-01

    In multiphase flow, different distributions can occur that cannot be adequately modeled with just free-surface models or with just multiphase models. Such a distribution of phases occurs for example, in isothermal steam-explosion premixing experiments, where dispersed spheres penetrate the water and the water-air surface remains sharp. A common practice when modeling isothermal premixing experiments is to treat all three phases involved - the water, the air and the spheres phase - equally, wi...

  18. Effect of Steam Explosion Pretreatment on the Specific Methane Yield of Miscanthus x giganteus

    OpenAIRE

    Franz Theuretzbacher; Javier Lizasoain; Simona Menardo; Paal Jahre Nilsen; Andreas Gronauer; Alexander Bauer

    2014-01-01

    A highly promising energy crop for biogas production can be Miscanthus x giganteus. It has multiple advantages, which include low soil requirements and the existence of genotypes adapted to dry conditions in comparison to other energy crops. Miscanthus cannot be used in the biogas plant without a pretreatment due to the recalcitrant nature of lignocelluloses. One of the most efficient pretreatment methods for lignocellulosic biomass is steam explosion. This includes heating the biomass...

  19. Steam Explosion Pretreatment of Cotton Gin Waste for Fuel Ethanol Production

    OpenAIRE

    Jeoh, Tina

    1998-01-01

    Steam Explosion Pretreatment of Cotton Gin Waste for Ethanol Production By Tina Jeoh Foster A. Agblevor, Chair Biological Systems Engineering ABSTRACT The current research investigates the utilization of cotton gin waste as a feedstock to produce a value-added product - fuel ethanol. Cotton gin waste consists of pieces of burs, stems, motes (immature seeds) and cotton fiber, and is considered to be a lignocellulosic material. The three main chemical constituents are ce...

  20. Steam explosion of oilseed rape straw: establishing key determinants of saccharification efficiency.

    Science.gov (United States)

    Wood, Ian P; Elliston, Adam; Collins, Sam R A; Wilson, David; Bancroft, Ian; Waldron, Keith W

    2014-06-01

    Oilseed rape straw was steam exploded into hot water at a range of severities. The residues were fractionated into solid and liquid phases and chemically characterised. The effect of steam explosion on enzymatic hydrolysis of the water-insoluble fractions was investigated by studying initial cellulase binding and hydrolysis yields for different cellulase doses. Time-course data was modelled to establish rate-dependent differences in saccharification as a function of pretreatment severity and associated chemical composition. The study concluded: (1) the initial hydrolysis rate was limited by the amount of (pectic) uronic acid remaining in the substrate; (2) the proportion of rapidly hydrolysable carbohydrate was most closely and positively related to lignin abundance and (3) the final sugar yield most closely related to xylan removal from the substrate. Comparisons between milled and un-milled steam exploded straw highlighted the influence that physical structure has on hydrolysis rates and yields, particularly at low severities.

  1. The use of steam explosion to increase the nutrition available from rice straw.

    Science.gov (United States)

    Li, Bin; Chen, Kunjie; Gao, Xiang; Zhao, Chao; Shao, Qianjun; Sun, Qian; Li, Hua

    2015-01-01

    In the present study, rice straw was pretreated using steam-explosion (ST) technique to improve the enzymatic hydrolysis of potential reducing sugars for feed utilization. The response surface methodology based on central composite design was used to optimize the effects of steam pressure, pressure retention time, and straw moisture content on the yield of reducing sugar. All the investigated variables had significant effects (P pretreatment conditions: steam pressure, 1.54 MPa; pressure retention time, 140.5 Sec; and straw moisture content, 41.6%. The yield after thermal treatment under the same conditions was approximately 16%. Infrared (IR) radiation analysis showed a decrease in the cellulose IR crystallization index. ST noticeably increases reducing sugars in rice straw, and this technique may also be applicable to other cellulose/lignin sources of biomass.

  2. Formation kinetics of potential fermentation inhibitors in a steam explosion process of corn straw.

    Science.gov (United States)

    Zhang, Yuzhen; Wang, Lan; Chen, Hongzhang

    2013-01-01

    The weak acids, furan derivatives, and phenolic compounds formed during lignocellulose pretreatment are potential inhibitors of subsequent enzymatic and microbial processes. In this work, the effects of the steam explosion process on the formation of weak acids, furan derivatives, and phenolic compounds were explored. The correlations of different steam explosion conditions and formation kinetics of degradation products showed that the formation of weak acids and furan derivatives was in the first-order reactions, which are expressed as [Formula: see text]. The formation of weak acids and furan derivatives increases with pretreatment temperature and time. On the other hand, the formation of phenolic compounds showed typical characteristics of continuous reaction, expressed as [Formula: see text]. The formation was affected by the active energies in two stages, temperature and time, and thus existed at extreme value. This work revealed the formation rules of weak acids, furan derivatives, and phenolic compounds in a steam explosion process and provided theoretical guidelines for improving the process and limiting the production of certain inhibitors.

  3. Steam explosion pretreatment of triticale (× Triticosecale Wittmack) straw for sugar production.

    Science.gov (United States)

    Agudelo, Roberto A; García-Aparicio, María P; Görgens, Johann F

    2016-01-25

    Triticale, a non-food based, low-cost and well-adapted crop in marginal lands has been considered as a potential 1G and 2G feedstock for bio-ethanol production. In this work, triticale straw was evaluated as a source of fermentable sugars by combination of uncatalyzed steam explosion and enzymatic hydrolysis. Pretreatment conditions with severities from 3.05 to 4.12 were compared in order to identify conditions that favour the recovery of hemicellulose-derived sugars, cellulose digestibility or the combined sugars yield (CSY) from the pretreatment-enzymatic hydrolysis. Xylose oligosaccharide was the major sugar in hydrolysates from all pretreatment conditions. Maximum hemicellulose-sugars recovery (52% of the feedstock content) was obtained at 200 °C and 5 min. The highest cellulose digestibility (95%) was found at 200 °C - 15 min, although glucose recovery from hydrolysis was maximised at 200 °C - 10 min (digestibility >92%) due to higher mass yield of pretreated solids. The maximum CSY (nearly 77% of theoretical content) was obtained at 200 °C - 5 min. Sugar loss after pretreatment was observed to higher extent at harsher severities. However, the concentrations of sugar degradation products and acetic acid were at levels below tolerance limits of the downstream biological conversions. Steam explosion pretreatment without acid impregnation is a good technology for production of fermentable sugars from triticale straw. This work provides foundation for future autohydrolysis steam explosion optimization studies to enhanced sugars recovery and digestibility of triticale straw.

  4. Effect of steam explosion and enzymatic pre-treatments on pulping and bleaching of Hesperaloe funifera.

    Science.gov (United States)

    Martín-Sampedro, R; Eugenio, M E; Villar, J C

    2012-05-01

    A non-wood raw material with high potential for pulp and paper applications (Hesperaloe funifera) was subjected to a steam explosion pre-treatment, and the subsequent effect of this pretreatment on biopulping and biobleaching was studied. An increase in the delignification rate, bigger than that reported for autohydrolysis and acid hydrolysis pre-treatments, and a reduction in chemical consumption were found during kraft pulping of the exploded samples. However, biopulping with the laccase-mediator system (LMS) did not lead to a reduction in the kappa number in either non-exploded or exploded unbleached pulps. On the other hand, the steam explosion pretreatment boosted the advantages of the LMS pre-treatment (decrease in kappa number and increase in brightness) favored biobleaching, with a 53.1% delignification rate and a final brightness of 67% ISO. Finally, the steam explosion pre-treatment also improved the color properties of the bleached pulp and reduced the hydrogen peroxide consumption by 24.6%.

  5. Effect of double-step steam explosion pretreatment in bioethanol production from softwood.

    Science.gov (United States)

    Cotana, Franco; Cavalaglio, Gianluca; Gelosia, Mattia; Coccia, Valentina; Petrozzi, Alessandro; Nicolini, Andrea

    2014-09-01

    The study investigated the production of bioethanol from softwood, in particular pine wood chip. The steam explosion pretreatment was largely investigated, evaluating also the potential use of a double-step process to increase ethanol production through the use of both solid and liquid fraction after the pretreatment. The pretreatment tests were carried out at different conditions, determining the composition of solid and liquid fraction and steam explosion efficiency. The enzymatic hydrolysis was carried out with Ctec2 enzyme while the fermentation was carried out using Saccharomyces Cerevisiae yeast "red ethanol". It was found that the best experimental result was obtained for a single-step pretreated sample (10.6 g of ethanol/100 g of initial biomass dry basis) for a 4.53 severity. The best double-step overall performance was equal to 8.89 g ethanol/100 g of initial biomass dry basis for a 4.27 severity. The enzymatic hydrolysis strongly depended on the severity of the pretreatment while the fermentation efficiency was mainly influenced by the concentration of the inhibitors. The ethanol enhancing potential of a double-step steam explosion could slightly increase the ethanol production compared to single-step potential.

  6. Integration of a kraft pulping mill into a forest biorefinery: pre-extraction of hemicellulose by steam explosion versus steam treatment.

    Science.gov (United States)

    Martin-Sampedro, Raquel; Eugenio, Maria E; Moreno, Jassir A; Revilla, Esteban; Villar, Juan C

    2014-02-01

    Growing interest in alternative and renewable energy sources has brought increasing attention to the integration of a pulp mill into a forest biorefinery, where other products could be produced in addition to pulp. To achieve this goal, hemicelluloses were extracted, either by steam explosion or by steam treatment, from Eucalyptus globulus wood prior to pulping. The effects of both pre-treatments in the subsequent kraft pulping and paper strength were evaluated. Results showed a similar degree of hemicelluloses extraction with both options (32-67% of pentosans), which increased with the severity of the conditions applied. Although both pre-treatments increased delignification during pulping, steam explosion was significantly better: 12.9 kappa number vs 22.6 for similar steam unexploded pulps and 40.7 for control pulp. Finally, similar reductions in paper strength were found regardless of the type of treatment and conditions assayed, which is attributed to the increase of curled and kinked fibers.

  7. Dilute acid pretreatment of black spruce using continuous steam explosion system.

    Science.gov (United States)

    Fang, Haixia; Deng, James; Zhang, Tony

    2011-02-01

    The pretreatment of lignocellulosic materials prior to the enzymatic hydrolysis is essential to the sugar yield and bioethanol production. Dilute acid hydrolysis of black spruce softwood chip was performed in a continuous high temperature reactor followed with steam explosion and mechanical refining. The acid-soaked wood chips were pretreated under different feeding rates (60 and 92 kg/h), cooking screw rotation speeds (7.2 and 14.4 rpm), and steam pressures (12 and 15 bar). The enzymatic hydrolysis was carried out on the acid-insoluble fraction of pretreated material. At lower feeding rate, the pretreatment at low steam pressure and short retention time favored the recovery of hemicellulose. The pretreatment at high steam pressure and longer retention time recovered less hemicellulose but improved the enzymatic accessibility. As a result, the overall sugar yields became similar no matter what levels of the retention time or steam pressure. Comparing with lower feeding rate, higher feeding rate resulted in consistently higher glucose yield in both liquid fraction after pretreatment and that released after enzymatic hydrolysis.

  8. Ex-Vessel corium coolability and steam explosion energetics in nordic light water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Dinh, T.N.; Ma, W.M.; Karbojian, A.; Kudinov, P.; Tran, C.T.; Hansson, C.R. [Royal Institute of Technology (KTH), (Sweden)

    2008-03-15

    This report presents advances and insights from the KTH's study on corium pool heat transfer in the BWR lower head; debris bed formation; steam explosion energetics; thermal hydraulics and coolability in bottom-fed and heterogeneous debris beds. Specifically, for analysis of heat transfer in a BWR lower plenum an advanced threedimensional simulation tool was developed and validated, using a so-called effective convectivity approach and Fluent code platform. An assessment of corium retention and coolability in the reactor pressure vessel (RPV) lower plenum by means of water supplied through the Control Rod Guide Tube (CRGT) cooling system was performed. Simulant material melt experiments were performed in an intermediate temperature range (1300-1600K) on DEFOR test facility to study formation of debris beds in high and low subcooled water pools characteristic of in-vessel and ex-vessel conditions. Results of the DEFOR-E scoping experiments and related analyses strongly suggest that porous beds formed in ex-vessel from a fragmented high-temperature debris is far from homogeneous. Calculation results of bed thermal hydraulics and dryout heat flux with a two-dimensional thermal-hydraulic code give the first basis to evaluate the extent by which macro and micro inhomogeneity can enhance the bed coolability. The development and validation of a model for two-phase natural circulation through a heated porous medium and its application to the coolability analysis of bottom-fed beds enables quantification of the significant effect of dryout heat flux enhancement (by a factor of 80-160%) due to bottom coolant injection. For a qualitative and quantitative understanding of steam explosion, the SHARP system and its image processing methodology were used to characterize the dynamics of a hot liquid (melt) drop fragmentation and the volatile liquid (coolant) vaporization. The experimental results provide a basis to suggest that the melt drop preconditioning is instrumental to

  9. Steam explosion and new production processes for pulping industry: technical and economical feasibility; Steam explosion e nuovi processi di produzione cartaria: fattibilita` tecnico-economica

    Energy Technology Data Exchange (ETDEWEB)

    Viggiano, D. [ENEA, Centro Ricerche Trisaia, Rotondella, Matera (Italy). Dipt. Energia; Bramanti, O. [ENEA, Centro Ricerche Trisaia, Rotondella, Matera (Italy). Dipt. Innovazione

    1998-05-01

    Pulping and paper industry traditionally uses wood as the main raw material for its production processes. Thus, the global increasing of paper and pulp yield has causes so a depletion work of natural wood resources that the environment balances are weakened. About conversion technologies, the most important developments are carried out by the Companies from Sweden, Finland, Norway and Canada, where industrial management has chosen production processes anti pollution (soda-sulphate) in the place of those more dangerous (bi-sulphate). The international research and development activities are focused, at the same time, on new conversion processes and renewable resources in the last time shows to meet three different needs: 1. anti pollution laws; 2. public opinion for the environment policy; 3. market competitors. The present work offers a technical and economical assessment of industrial application of steam-explosion process and non-wood biomass (C{sub 4}, C{sub 5}). Then, the authors propose the introduction of the steam-explosion technology in pulping industry in order to obtain technical and economical advantages. [Italiano] Il comparto industriale cartario impiega per tradizione secolare il legno come principale materia prima all`interno dei cicli tecnologici di produzione. Cio` ha determinato un incremento produttivo di paste e di carta a cui si e` accompagnata una crescente opera di deforestazione ed una serie di conseguenti squilibri ecologici. A fronte di tali interventi di distruzione `programmata`, dal punto di vista delle tecnologie di trasformazione, va rilevato che i processi produttivi hanno subito una reale evoluzione nei Paesi maggiormente sensibili ai problemi ambientali come Svezia, Finlandia, Norvegia e Canada, ove gli imprenditori del setttore hanno abbandonato i processi a maggior impatto ambientale, come quelli al bisolfito, per adottarne alcuni meno inquinanti, come quello alla soda-solfato. Negli ultimi anni gli sforzi della ricerca

  10. Enhanced the enzymatic hydrolysis efficiency of wheat straw after combined steam explosion and laccase pretreatment.

    Science.gov (United States)

    Qiu, Weihua; Chen, Hongzhang

    2012-08-01

    Laccase, capable of selectively degrading lignin while keeping cellulose intact, has been widely applied for the modification and bio-bleaching of pulp. In this study Sclerotium sp. laccase (MSLac) was employed in combination with steam explosion to evaluate the effect of this treatment on cellulose hydrolysis. Combined steam explosion with laccase pretreatment enhanced the cellulose conversion rate of wheat straw no matter in the case of successive (MSLac-Cel) and simultaneous (MSLac+Cel) MSLac and cellulase hydrolysis. The highest cellulose conversion rate of 84.23% was obtained when steam-exploded wheat straw (SEWS) (1.3 MPa, 5 min) was treated by MSLac+Cel at a laccase loading of 0.55 U g(-1) substrate. FT-IR and SEM analyses indicated that MSLac oxidized the phenol and changed electron configuration of the ring, which contributed to loosening the compact wrap of lignin-carbohydrate complex and consequently enhancing the enzymatic hydrolysis efficiency of cellulose. This article provided a promising method for lignocellulose bio-pretreatment.

  11. Physicochemical characterization of wet microalgal cells disrupted with instant catapult steam explosion for lipid extraction.

    Science.gov (United States)

    Cheng, Jun; Huang, Rui; Li, Tao; Zhou, Junhu; Cen, Kefa

    2015-09-01

    Instant catapult steam explosion (ICSE) was employed to disrupt wet microalgal cells for efficient lipid extraction. Physicochemical properties of exploded cells were investigated through SEM, TEM, FTIR, and TGA. The exploded cells increased in fractal dimension (1.53-1.65) when preheat time was prolonged from 0 min to 5 min and in surface pore area when steam pressure was increased. Meanwhile, the exploded cells decreased in mean size (1.69-1.44 μm) when the filling ratio of wet microalgal biomass in the preheat chamber decreased (75-12.5%). Flash evaporation and volume expansion exploded the cell walls and released the cytoplasm of the microalgal cells. These phenomena decreased the carbohydrate content and increased the lipid content in the exploded biomass. However, ICSE treatment did not change the lipid compositions in the microalgal cells. Using isopropanol as a cosolvent significantly increased the yield of lipids extracted with hexane from the exploded wet microalgal biomass.

  12. An experimental approach to constrain steam explosions at Solfatara volcano, Campi Flegrei

    Science.gov (United States)

    Montanaro, C.; Scheu, B.; Mayer, K.; Orsi, G.; Dingwell, D. B.

    2013-12-01

    The Solfatara crater is a highly active hydrothermal site of Campi Flegrei caldera, one of the most dangerous volcanic areas in the world extending to the west of the city of Naples. Currently Campi Flegrei is in a phase of volcanic unrest. Since 2006 an increase of the degassing activity, especially in the Pisciarelli field (SE of Solfatara crater), has been recorded. In addition ground uplift at increasing rates (about 1 cm/month), with a relatively low seismic activity, is observed in the nearby area of Pozzuoli [Osservatorio Vesuviano bulletins]. This ongoing phase of unrest, as most of the last unrest episodes, is thought to be driven by the complex interaction between a deep magmatic source and the shallow hydrothermal system [Orsi et al., 1999]. In a such active hydrothermal and magmatic site steam-driven explosive eruptions (phreatic or hydrothermal) are likely to occur representing a potential hazard especially as they are difficult to predict in terms of timing and magnitude. Here we present an experimental approach based on a rapid decompression experiments to investigate different scenarios likely for steam explosions in the Solfatara area. The setup allows producing fragmentation from a combination of Argon gas overpressure and steam flashing within the connected pore space of the tested samples at varying PT-conditions and varying gas-to-liquid ratios. The experimental conditions used in this case study are mimicking those of a mixing zone present at the base of the hydrothermal system below Solfatara; here at a depth between 1000 and 1500 m (15-25 MPa) the temperature conditions range between 270°C and 375°C [Caliro et al., 2007]. Neapolitan Yellow Tuff is used as sample material for the study as it is the stratigraphic unit of the expected source region for steam explosions [Orsi et al. 1996]. Sensors monitor temperature and pressure evolution during experiments, allowing to determine the speed of fragmentation of the samples. A high-speed camera

  13. Steam explosion pretreatment of oil palm empty fruit bunches (EFB) using autocatalytic hydrolysis: A biorefinery approach.

    Science.gov (United States)

    Medina, Jesus David Coral; Woiciechowski, Adenise; Zandona Filho, Arion; Nigam, Poonam Singh; Ramos, Luiz Pereira; Soccol, Carlos Ricardo

    2016-01-01

    The oil palm empty fruit bunches (EFB) are an attractive source of carbon for the production of biochemical products, therefore, the aim of this work is to analyze the effect of the steam explosion (SE) pretreatment under autocatalytic conditions on EFB using a full experimental design. Temperature and reaction time were the operational variables studied. The EFB treated at 195°C for 6 min showed an increase of 34.69% in glycan (mostly cellulose), and a reduction of 68.12% in hemicelluloses, with increased enzymatic digestibility to 33% producing 4.2 g L(-1) of glucose. Scanning electron micrographs of the steam treated EFB exhibited surface erosion and an increased fiber porosity. Fourier transform infrared spectroscopy showed the solubilization of hemicellulose and modification of cellulose in treated EFB.

  14. Effect of Steam Explosion Pretreatment on the Specific Methane Yield of Miscanthus x giganteus

    Directory of Open Access Journals (Sweden)

    Franz Theuretzbacher

    2014-03-01

    Full Text Available A highly promising energy crop for biogas production can be Miscanthus x giganteus. It has multiple advantages, which include low soil requirements and the existence of genotypes adapted to dry conditions in comparison to other energy crops. Miscanthus cannot be used in the biogas plant without a pretreatment due to the recalcitrant nature of lignocelluloses. One of the most efficient pretreatment methods for lignocellulosic biomass is steam explosion. This includes heating the biomass at high temperature values, followed by mechanical disruption of the biomass fibres by a rapid pressure drop. The objective of this study is to analyse the effect of the steam explosion pretreatment on the specific biogas and methane production of miscanthus. In addition methane hectare yields are calculated and compared to those of maize. Steam explosion pretreatment was carried out in a laboratory scale facility in Ĺs, Norway. The miscanthus was mixed with water and heated up to the desired temperature. After a defined pretreatment time the pressure in the reaction vessel was reduced rapidly, which caused the liquid water to vaporize immediately. The material was cooled down in a flushing tank and was then stored at 5°C until further analytical procedures. Pretreatment temperatures were 190°C and 210°C; holding times were 5, 10 and 15 minutes. Determination of the specific methane yield was done in triplicate using batch tests according to VDI 4630. The material was inoculated with the liquid fermentation residue of a biogas plant. The produced gas was collected in eudiometers and then analysed for the CH4 and CO2 content.

  15. Effect of Steam Explosion Pretreatment on the Specific Methane Yield of Miscanthus x giganteus

    Directory of Open Access Journals (Sweden)

    Franz Theuretzbacher

    2014-05-01

    Full Text Available A highly promising energy crop for biogas production can be Miscanthus x giganteus. It has multiple advantages, which include low soil requirements and the existence of genotypes adapted to dry conditions in comparison to other energy crops. Miscanthus cannot be used in the biogas plant without a pretreatment due to the recalcitrant nature of lignocelluloses. One of the most efficient pretreatment methods for lignocellulosic biomass is steam explosion. This includes heating the biomass at high temperature values, followed by mechanical disruption of the biomass fibres by a rapid pressure drop. The objective of this study is to analyse the effect of the steam explosion pretreatment on the specific biogas and methane production of miscanthus. In addition methane hectare yields are calculated and compared to those of maize. Steam explosion pretreatment was carried out in a laboratory scale facility in Ĺs, Norway. The miscanthus was mixed with water and heated up to the desired temperature. After a defined pretreatment time the pressure in the reaction vessel was reduced rapidly, which caused the liquid water to vaporize immediately. The material was cooled down in a flushing tank and was then stored at 5°C until further analytical procedures. Pretreatment temperatures were 190°C and 210°C; holding times were 5, 10 and 15 minutes. Determination of the specific methane yield was done in triplicate using batch tests according to VDI 4630. The material was inoculated with the liquid fermentation residue of a biogas plant. The produced gas was collected in eudiometers and then analysed for the CH4 and CO2 content. 

  16. JASMINE-pro: A computer code for the analysis of propagation process in steam explosions. User's manual

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yanhua; Nilsuwankosit, Sunchai; Moriyama, Kiyofumi; Maruyama, Yu; Nakamura, Hideo; Hashimoto, Kazuichiro [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2000-12-01

    A steam explosion is a phenomenon where a high temperature liquid gives its internal energy very rapidly to another low temperature volatile liquid, causing very strong pressure build up due to rapid vaporization of the latter. In the field of light water reactor safety research, steam explosions caused by the contact of molten core and coolant has been recognized as a potential threat which could cause failure of the pressure vessel or the containment vessel during a severe accident. A numerical simulation code JASMINE was developed at Japan Atomic Energy Research Institute (JAERI) to evaluate the impact of steam explosions on the integrity of reactor boundaries. JASMINE code consists of two parts, JASMINE-pre and -pro, which handle the premixing and propagation phases in steam explosions, respectively. JASMINE-pro code simulates the thermo-hydrodynamics in the propagation phase of a steam explosion on the basis of the multi-fluid model for multiphase flow. This report, 'User's Manual', gives the usage of JASMINE-pro code as well as the information on the code structures which should be useful for users to understand how the code works. (author)

  17. Effect of inhibitors released during steam-explosion pretreatment of barley straw on enzymatic hydrolysis.

    Science.gov (United States)

    García-Aparicio, Ma Prado; Ballesteros, Ignacio; González, Alberto; Oliva, José Miguel; Ballesteros, Mercedes; Negro, Ma José

    2006-01-01

    The influence of the liquid fraction (prehydrolysate) generated during steam-explosion pretreatment (210 degrees C, 15 min) of barley straw on the enzymatic hydrolysis was determined. Prehydrolysate was analyzed for degradation compounds and sugars' content and used as a medium for enzymatic hydrolysis tests after pH adjusting to 4.8. Our results show that the presence of the compounds contained in the prehydrolysate strongly affects the hydrolysis step (a 25% decrease in cellulose conversion compared with control). Sugars are shown to be more potent inhibitors of enzymatic hydrolysis than degradation products.

  18. Significance of fluid-structure interaction phenomena for containment response to ex-vessel steam explosions

    Energy Technology Data Exchange (ETDEWEB)

    Almstroem, H.; Sundel, T. (Nat. Defence Res. Establ., Tumba (Sweden)); Frid, W. (Swedish Nuclear Power Inspectorate, SE-10658, Stockholm (Sweden)); Engelbrektson, A. (VBB/SWECO, Box 34044, SE-10026, Stockholm (Sweden))

    1999-05-01

    When studying the structural response of a containment building to ex-vessel steam explosion loads, a two-step procedure is often used. In the first step of this procedure the structures are treated as rigid and the pressure-time history generated by the explosion, at the rigid wall, is calculated. In the second step the calculated pressure is applied to the structures. The obvious weakness of the two-step procedure is that it does not correspond to the real dynamic behaviour of the fluid-structure system. The purpose of this paper is to identify and evaluate the relevant fluid-structure interaction phenomena. This is achieved through direct treatment of the explosion process and the structural response. The predictions of a direct and two-step treatment are compared for a BWR Mark II containment design, consisting of two concentric walls interacting with water masses in the central and annular pools. It is shown that the two-step approach leads to unrealistic energy transfer in the containment system studied and to significant overestimation of the deflection of the containment wall. As regards the pedestal wall, the direct method analysis shows that the flexibility of this wall affects the pressure-time history considerably. Three load types have been identified for this wall namely shock load, water blow as a result of water cavitation, and hydrodynamic load. Reloading impulse due to cavitation phenomena plays an important role as it amounts to [approx]40% of the total impulse load. Investigation of the generality of the cavitation phenomena in the context of ex-vessel steam explosion loads was outside the scope of this work. (orig.) 5 refs.

  19. Significance of fluid-structure interaction phenomena for containment response to ex-vessel steam explosions

    Energy Technology Data Exchange (ETDEWEB)

    Almstroem, H.; Sundel, T. [National Defence Research Establishment, Stockholm (Sweden); Frid, W.; Engelbrektson, A.

    1998-01-01

    When studying the structural response of a containment building to ex-vessel steam explosion loads, a two-step procedure is often used. In the first step of this procedure the structures are treated as rigid and the pressure-time history generated by the explosion at the rigid wall is calculated. In the second step the calculated pressure is applied to the structures. The obvious weakness of the two-step procedure is that it does not correspond to the real dynamic behaviour of the fluid-structure system. The purpose of this paper is to identify and evaluate the relevant fluid-structure interaction phenomena. This is achieved through direct treatment of the explosion process and the structural response. The predictions of a direct and two-step treatment are compared for a BWR Mark II containment design, consisting of two concentric walls interacting with water masses in the central and annular pools. It is shown that the two-step approach leads to unrealistic energy transfer in the containment system studied, and to significant overestimation of the deflection of the containment wall. As regards the pedestal wall, the direct method analysis shows that the flexibility of this wall affects the pressure-time history considerably. Three load types have been identified for this wall namely shock load, water blow as a result of water cavitation, and hydrodynamic load. Reloading impulse due to cavitation phenomena plays an important role as it amounts to about 40% of the total impulse load. Investigation of the generality of the cavitation phenomena in the context of ex-vessel steam explosion loads was outside the scope of this work. (author)

  20. Effects of acid impregnated steam explosion process on xylose recovery and enzymatic conversion of cellulose in corncob.

    Science.gov (United States)

    Fan, Xiaoguang; Cheng, Gang; Zhang, Hongjia; Li, Menghua; Wang, Shizeng; Yuan, Qipeng

    2014-12-19

    Corncob residue is a cellulose-rich byproduct obtained from industrial xylose production via dilute acid hydrolysis processes. Enzymatic hydrolysis of cellulose in acid hydrolysis residue of corncob (AHRC) is often less efficient without further pretreatment. In this work, the process characteristics of acid impregnated steam explosion were studied in conjunction with a dilute acid process, and their effects on physiochemical changes and enzymatic saccharification of corncob residue were compared. With the acid impregnated steam explosion process, both higher xylose recovery and higher cellulose conversion were obtained. The maximum conversion of cellulose in acid impregnated steam explosion residue of corncob (ASERC) reached 85.3%, which was 1.6 times higher than that of AHRC. Biomass compositional analysis showed similar cellulose and lignin content in ASERC and AHRC. XRD analysis demonstrated comparable crystallinity of ASERC and AHRC. The improved enzymatic hydrolysis efficiency was attributed to higher porosity in ASERC, measured by mercury porosimetry.

  1. La steam explosion : application en tant que prétraitement de la matière lignocellulosique

    Directory of Open Access Journals (Sweden)

    Jacquet, N.

    2010-01-01

    Full Text Available Application of steam explosion for the pretreatment of the lignocellulosic raw materials. Steam explosion is a thermomechanochemical process which allows the breakdown of lignocellulosic structural components by steam heating, hydrolysis of glycosidic bonds by organic acid formed during the process and shearing forces due to the expansion of the moisture. The process is composed of two distinct stages: vapocracking and explosive decompression. Cumul effects of both phases include modification of the physical properties of the material (specific surface area, water retention capacities, color, cellulose cristallinity rate,…, hydrolysis of hemicellulosic components (mono- and oligosaccharides released and modification of the chemical structure of lignin. These effects permit the opening of lignocellulosic structures and increase the enzymatic hydrolysis rate of cellulose components in the aim to obtain fermentable sugars used in second generation biofuels or high value-added molecules process.

  2. A review of steam explosions with special emphasis on the Swedish and Finnish BWRs. APRI 4, Phase 2 Report

    Energy Technology Data Exchange (ETDEWEB)

    Sehgal, B.R.; Haraldsson, H.O.; Yang, Z.L. [Sehgal Konsult, Stockholm (Sweden)

    2002-04-01

    The objective of the present study is to perform a critical review of ex-vessel steam explosion in Swedish and Finnish reactor containments in a hypothetical severe accident. The review performed is related to a broader program funded by APRI whose focus is related to severe accidents. A critical review of the current knowledge base on the subject is performed, including those results obtained from other studies and assessments conducted earlier under auspice of APRI. Several limiting mechanisms which may significantly impact the assessment of steam explosion loads are identified, taking into account specific reactor-design features and accident progression scenarios. In addition, generic discussion is provided on the effect of melt physical properties on the steam explosion energetics. Thermal hydraulic conditions of pre-mixture and its explosivity are evaluated using models and methods developed by the researchers at Royal Institute of Technology (RIT). The report includes a wealth of information on details with respect to quantification of vessel melt sources for ex-vessel FCIs; and with respect to the models of steam explosion premixing, triggerability and explosivity employed in the present assessment. These and other models e.g. on vessel failure, melt jet fragmentation etc. are products of the continuing research conducted at the Division of Nuclear Power Safety at RIT. The general conclusion of the present study can be summarized as: Though substantial progress have been made in premixing research verifying the mixing limit concept, there is still a need to improve jet breakup models and validate the existing models against melt jet experiments. The understanding of the triggering mechanisms is still very pool. Though various analytical models have been developed based on the thermal detonation concepts, the need still exists in both experimental and analytical research to understand better the droplet fragmentation during the explosion or propagation phase

  3. Techno-economical study of biogas production improved by steam explosion pretreatment.

    Science.gov (United States)

    Shafiei, Marzieh; Kabir, Maryam M; Zilouei, Hamid; Sárvári Horváth, Ilona; Karimi, Keikhosro

    2013-11-01

    Economic feasibility of steam explosion pretreatment for improvement of biogas production from wheat straw and paper tube residuals was investigated. The process was simulated by Aspen plus ®, and the economical feasibility of five different plant capacities was studied by Aspen Process Economic Analyzer. Total project investment of a plant using paper tube residuals or wheat straw was 63.9 or 61.8 million Euros, respectively. The manufacturing cost of raw biogas for these two feedstocks was calculated to 0.36 or 0.48 €/m(3) of methane, respectively. Applying steam explosion pretreatment resulted in 13% higher total capital investment while significantly improved the economy of the biogas plant and decreased the manufacturing cost of methane by 36%. The sensitivity analysis showed that 5% improvement in the methane yield and 20% decrease in the raw material price resulted in 5.5% and 8% decrease in the manufacturing cost of methane, respectively. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Improve the Anaerobic Biodegradability by Copretreatment of Thermal Alkali and Steam Explosion of Lignocellulosic Waste

    Directory of Open Access Journals (Sweden)

    Muhammad Abdul Hanan Siddhu

    2016-01-01

    Full Text Available Effective alteration of the recalcitrance properties like crystallization of cellulose, lignin shield, and interlinking of lignocellulosic biomass is an ideal way to utilize the full-scale potential for biofuel production. This study exhibited three different pretreatment effects to enhance the digestibility of corn stover (CS for methane production. In this context, steam explosion (SE and thermal potassium hydroxide (KOH-60°C treated CS produced the maximal methane yield of 217.5 and 243.1 mL/gvs, which were 40.0% and 56.4% more than untreated CS (155.4 mL/gvs, respectively. Copretreatment of thermal potassium hydroxide and steam explosion (CPTPS treated CS was highly significant among all treatments and improved 88.46% (292.9 mL/gvs methane yield compared with untreated CS. Besides, CPTPS also achieved the highest biodegradability up to 68.90%. Three kinetic models very well simulated dynamics of methane production yield. Moreover, scanning electron microscopy (SEM, Fourier transform infrared (FTIR, and X-ray diffraction (XRD analyses declared the most effective changes in physicochemical properties after CPTPS pretreatment. Thus, CPTPS might be a promising approach to deconstructing the recalcitrance of lignocellulosic structure to improve the biodegradability for AD.

  5. Combination of steam explosion and laccase-mediator treatments prior to Eucalyptus globulus kraft pulping.

    Science.gov (United States)

    Martín-Sampedro, R; Eugenio, M E; Carbajo, J M; Villar, J C

    2011-07-01

    The effect of a pretreatment consisting of steam explosion (SE) followed by a laccase mediator system (LMS) stage on Eucalyptus globulus kraft pulping has been evaluated and compared with fungal pretreatments. Pretreatment with SE and LMS was more efficient than pretreatments using Pycnoporus sanguineus and Trametes sp. I-62. Steam explosion not only improved the enzyme penetration into the wood chips and shortened the pulping process by 60%, but also extracted around 50% of the hemicelluloses which could be converted into value-added products. The optimal conditions for the LMS treatment were 3h, 3UA/g and 40°C. Compared to SE, the SE/LMS treatment yielded an increase in delignification of 13.9% without affecting pulp properties, provided a similar screened kraft yield, and reduced consumption of chemical reagents Na(2)S and NaOH by 11.5% and 6.3%, respectively. Therefore, SE/LMS is a promising pretreatment for converting the pulp mill into a forest bio-refinery.

  6. Combination of Low-pressure Steam Explosion and Alkaline Peroxide Pretreatment for Separation of Hemicellulose

    Directory of Open Access Journals (Sweden)

    Yang Xing

    2014-04-01

    Full Text Available Low-pressure steam explosion (LPSE combined with alkaline peroxide (AP pretreatment was first employed to separate hemicellulose from Lespedeza stalks. The monosaccharide composition and molecular weight distribution of the obtained hemicellulose fractions were characterized in this study. The results show that the hemicellulose extracted from Lespedeza stalks consisted of xylose, glucose, galactose, and mannose, which was a mixture of arabinoxylans and xyloglucans or β-glucans. The yield of hemicellulose fractions after AP pretreatment ranged from 11.2% (2.5% hydrogen peroxide (H2O2, w/v for 12 h to 12.2% (3.3% H2O2, w/v for 72 h. The molecular weight of hemicellulose decreased from 2,458 g/mol to 1,984 g/mol after AP pretreatment, indicating its degradation reaction. The structure of hemicellulose was analyzed by Fourier transform infrared spectroscopy, proton nuclear magnetic resonance, and heteronuclear single quantum coherence. The AP pretreatment partially cleaved the backbone and the ether linkage between lignin and hemicelluloses. Also, branched-chain α-D-arabinofuranosyl in which β-D-xylose substituted at the C-3 position (monosubstituted was removed, illustrating a partial debranching reaction. Therefore, the combination of low-pressure steam explosion and alkaline peroxide pretreatment (LPSE-AP is an effective pretreatment method to separate hemicellulose from Lespedeza stalk.

  7. Improve the Anaerobic Biodegradability by Copretreatment of Thermal Alkali and Steam Explosion of Lignocellulosic Waste.

    Science.gov (United States)

    Siddhu, Muhammad Abdul Hanan; Li, Jianghao; Zhang, Jiafu; Huang, Yan; Wang, Wen; Chen, Chang; Liu, Guangqing

    2016-01-01

    Effective alteration of the recalcitrance properties like crystallization of cellulose, lignin shield, and interlinking of lignocellulosic biomass is an ideal way to utilize the full-scale potential for biofuel production. This study exhibited three different pretreatment effects to enhance the digestibility of corn stover (CS) for methane production. In this context, steam explosion (SE) and thermal potassium hydroxide (KOH-60°C) treated CS produced the maximal methane yield of 217.5 and 243.1 mL/gvs, which were 40.0% and 56.4% more than untreated CS (155.4 mL/gvs), respectively. Copretreatment of thermal potassium hydroxide and steam explosion (CPTPS) treated CS was highly significant among all treatments and improved 88.46% (292.9 mL/gvs) methane yield compared with untreated CS. Besides, CPTPS also achieved the highest biodegradability up to 68.90%. Three kinetic models very well simulated dynamics of methane production yield. Moreover, scanning electron microscopy (SEM), Fourier transform infrared (FTIR), and X-ray diffraction (XRD) analyses declared the most effective changes in physicochemical properties after CPTPS pretreatment. Thus, CPTPS might be a promising approach to deconstructing the recalcitrance of lignocellulosic structure to improve the biodegradability for AD.

  8. Evaluation of thermal steam-explosion key operation factors to optimize biogas production from biological sludge.

    Science.gov (United States)

    Pérez-Elvira, S I; Sapkaite, I; Fdz-Polanco, F

    2015-01-01

    Thermal steam-explosion is the most extended hydrolysis pretreatment to enhance anaerobic digestion of sludge. Thermal hydrolysis key parameters are temperature (T) and time (t), and the generally accepted values reported from full-scale information are: 150-230 °C and 20-60 min. This study assesses the influence of different temperature-time-flash combinations (110-180 °C, 5-60 min, 1-3 re-flashing) on the anaerobic degradation of secondary sludge through biochemical methane potential (BMP) tests. All the conditions tested presented higher methane production compared to the untreated sludge, and both solubilization (after the hydrolysis) and degradation (by anaerobic digestion) increased linearly when increasing the severity (T-t) of the pretreatment, reaching 40% solubilization and degradation of the particulate matter at 180° C-60 min. However, for the 180 °C temperature, the treatment time impacted negatively on the lag phase. No influence of re-flashing the pretreated matter was observed. In conclusion, thermal steam-explosion at short operation times (5 min) and moderate temperatures (145 °C) seems to be very attractive from a degradation point of view thus presenting a methane production enhancement similar to the one obtained at 180°C and without negative influence of the lag phase.

  9. Production of xylooligosaccharides from the steam explosion liquor of corncobs coupled with enzymatic hydrolysis using a thermostable xylanase.

    Science.gov (United States)

    Teng, Chao; Yan, Qiaojuan; Jiang, Zhengqiang; Fan, Guangsen; Shi, Bo

    2010-10-01

    The production of xylooligosaccharides (XOs) from corncobs was studied using a two-stage process based on a steam explosion pretreatment followed by enzymatic hydrolysis. Corncobs with different chip sizes were subjected to steam explosion under different experimental conditions of temperature and time, namely 188-204 degrees C for 2.5-7.5 min. The results indicate that corncobs were optimally steam exploded at 196 degrees C for 5 min, resulting in hemicellulose recovery of 22.8%. Especially, corncobs with large chip sizes (approximately 100 mm) during steam explosion pretreatment were suitable to produce XOs. Furthermore, a thermostable xylanase from Paecilomyces themophila J18 was used to hydrolyze steam explosion liquor of corncobs (SELC) for the production of XOs. A maximum XOs yield of 28.6 g XOs/100 g xylan in corncobs was achieved and XOs syrup contained more than 90% of xylobiose and xylotriose when the hydrolysis was carried out under the optimized conditions (pH 7.0, 70 degrees C, 7.5 U mL(-1) and 2.5 h). These results suggest that the process might be effective in production of XOs for industrial applications.

  10. Effect of steam explosion pretreatment on treatment with Pleurotus ostreatus for the enzymatic hydrolysis of rice straw.

    Science.gov (United States)

    Taniguchi, Masayuki; Takahashi, Daisuke; Watanabe, Daisuke; Sakai, Kenji; Hoshino, Kazuhiro; Kouya, Tomoaki; Tanaka, Takaaki

    2010-10-01

    The effects of steam explosion (1.5 MPa, 1 min) on the treatment of rice straw with Pleurotus ostreatus were evaluated in terms of the change in composition of the components and the susceptibility to enzymatic hydrolysis. When rice straw was pretreated with a steam explosion prior to biological treatment, the treatment time required for obtaining a 33% net glucose yield was reduced to 36 days from 60 days. The reduction is probably due to loosening of networks of Klason lignin with sugar moieties and partial collapse of the structure during the biological treatment.

  11. Application of high-frame-rate neutron radiography to steam explosion research

    Science.gov (United States)

    Saito, Y.; Mishima, K.; Hibiki, T.; Yamamoto, A.; Sugimoto, J.; Moriyama, K.

    1999-11-01

    To understand the behavior of dispersed molten metal particles dropped into water during the premixing process of steam explosion, experiments were performed by using heated stainless-steel particles simulating dispersed molten metal particles. High-frame-rate neutron radiography was successfully employed for visualization and void fraction measurement. Visualization was conducted by dropping heated stainless-steel particle into heavy water filled in a rectangular tank with the particle diameter (6, 9, and 12 mm) and temperature (600°C, 700°C, 800°C, and 1000°C) as parameters. Steam generation due to direct contact of heated particle and heavy water was successfully visualized by the high-frame-rate neutron radiography at the recording speed of 500 frames/s. From void fraction measurement it was revealed that the amount of generated steam was in proportion to the particle size and temperature. It is suggested that the ambient liquid might be superheated by the particle-liquid contact.

  12. [Phenolic foam prepared by lignin from a steam-explosion derived biorefinery of corn stalk].

    Science.gov (United States)

    Wang, Guanhua; Chen, Hongzhang

    2014-06-01

    To increase the integral economic effectiveness, biorefineries of lignocellulosic materials should not only utilize carbohydrates hydrolyzed from cellulose and hemicellulose but also use lignin. We used steam-exploded corn stalk as raw materials and optimized the temperature and alkali concentration in the lignin extraction process to obtain lignin liquor with higher yield and purity. Then the concentrated lignin liquor was used directly to substitute phenol for phenolic foam preparation and the performances of phenolic foam were characterized by microscopic structure analysis, FTIR, compression strength and thermal conductivity detection. The results indicated that, when steam-exploded corn stalk was extracted at 120 degrees C for 2 h by 1% NaOH with a solid to liquid ratio of 1:10, the extraction yield of lignin was 79.67%. The phenolic foam prepared from the concentrated lignin liquor showed higher apparent density and compression strength with the increasing substitution rate of lignin liquor. However, there were not significant differences of thermal conductivity and flame retardant properties by the addition of lignin, which meant that the phenolic foam substituted by lignin liquor was approved for commercial application. This study, which uses alkali-extracted lignin liquor directly for phenolic foam preparation, provides a relatively simple way for utilization of lignin and finally increases the overall commercial operability ofa lignocellulosic biorefinery derived by steam explosion.

  13. Fractionation of Eucalyptus grandis chips by dilute acid-catalysed steam explosion.

    Science.gov (United States)

    Emmel, Alexandre; Mathias, Alvaro L; Wypych, Fernando; Ramos, Luiz P

    2003-01-01

    Steam explosion of Eucalyptus grandis has been carried out under various pretreatment conditions (200-210 degrees C, 2-5 min) after impregnation of the wood chips with 0.087 and 0.175% (w/w) H2SO4. This study, arranged as a 2(3) factorial design, indicated that pretreatment temperature is the most critical variable affecting the yield of steam-treated fractions. Pretreatment of 0.175% (w/w) H2SO4-impregnated chips at 210 degrees C for 2 min was the best condition for hemicellulose recovery (mostly as xylose) in the water soluble fraction, reaching almost 70% of the corresponding xylose theoretical yield. By contrast, lower pretreatment temperatures of 200 degrees C were enough to yield steam-treated substrates from which a 90% cellulose conversion was obtained in 48 h, using low enzyme loadings of a Celluclast 1.5 1 plus Novozym 188 mixture (Novo Nordisk). Release of water-soluble chromophores was monitored by UV spectroscopy and their concentration increased with pretreatment severity. The yield of alkali-soluble lignin increased at higher levels of acid impregnation and pretreatment temperatures. Thermoanalysis of these lignin fractions indicated a pattern of lignin fragmentation towards greater pretreatment severities but lignin condensation prevailed at the most drastic pretreatment conditions.

  14. Development of a surrogate model for analysis of ex-vessel steam explosion in Nordic type BWRs

    Energy Technology Data Exchange (ETDEWEB)

    Grishchenko, Dmitry, E-mail: dmitry@safety.sci.kth.se; Basso, Simone, E-mail: simoneb@kth.se; Kudinov, Pavel, E-mail: pavel@safety.sci.kth.se

    2016-12-15

    Highlights: • Severe accident. • Steam explosion. • Surrogate model. • Sensitivity study. • Artificial neural networks. - Abstract: Severe accident mitigation strategy adopted in Nordic type Boiling Water Reactors (BWRs) employs ex-vessel core melt cooling in a deep pool of water below reactor vessel. Energetic fuel–coolant interaction (steam explosion) can occur during molten core release into water. Dynamic loads can threaten containment integrity increasing the risk of fission products release to the environment. Comprehensive uncertainty analysis is necessary in order to assess the risks. Computational costs of the existing fuel–coolant interaction (FCI) codes is often prohibitive for addressing the uncertainties, including the effect of stochastic triggering time. This paper discusses development of a computationally efficient surrogate model (SM) for prediction of statistical characteristics of steam explosion impulses in Nordic BWRs. The TEXAS-V code was used as the Full Model (FM) for the calculation of explosion impulses. The surrogate model was developed using artificial neural networks (ANNs) and the database of FM solutions. Statistical analysis was employed in order to treat chaotic response of steam explosion impulse to variations in the triggering time. Details of the FM and SM implementation and their verification are discussed in the paper.

  15. Experimental investigations on the explosivity of steam-driven eruptions: A case study of Solfatara volcano (Campi Flegrei)

    Science.gov (United States)

    Montanaro, Cristian; Scheu, Bettina; Mayer, Klaus; Orsi, Giovanni; Moretti, Roberto; Isaia, Roberto; Dingwell, Donald B.

    2016-11-01

    Steam-driven eruptions, both phreatic and hydrothermal, expel exclusively fragments of non-juvenile rocks disintegrated by the expansion of water as liquid or gas phase. As their violence is related to the magnitude of the decompression work that can be performed by fluid expansion, these eruptions may occur with variable degrees of explosivity. In this study we investigate the influence of liquid fraction and rock petrophysical properties on the steam-driven explosive energy. A series of fine-grained heterogeneous tuffs from the Campi Flegrei caldera were investigated for their petrophysical properties. The rapid depressurization of various amounts of liquid water within the rock pore space can yield highly variable fragmentation and ejection behaviors for the investigated tuffs. Our results suggest that the pore liquid fraction controls the stored explosive energy with an increasing liquid fraction within the pore space increasing the explosive energy. Overall, the energy released by steam flashing can be estimated to be 1 order of magnitude higher than for simple (Argon) gas expansion and may produce a higher amount of fine material even under partially saturated conditions. The energy surplus in the presence of steam flashing leads to a faster fragmentation with respect to gas expansion and to higher ejection velocities imparted to the fragmented particles. Moreover, weak and low permeability rocks yield a maximum fine fraction. Using experiments to unravel the energetics of steam-driven eruptions has yielded estimates for several parameters controlling their explosivity. These findings should be considered for both modeling and evaluation of the hazards associated with steam-driven eruptions.

  16. Steam-driven explosions at Solfatara volcano, Campi Flegrei: new insights from an experimental approach

    Science.gov (United States)

    Montanaro, Cristian; Bettina, Scheu; Klaus, Mayer; Giovanni, Orsi; Moretti, Roberto; Dingwell Donald, B.

    2014-05-01

    The Solfatara crater is a highly active hydrothermal site located in the central part of the Campi Flegrei Caldera (south-central Italy). Campi Flegrei is one of most active calderas in the world, characterized by intense unrest episodes involving massive ground deformation, high seismicity and continuous gas emissions from the Solfatara crater. These episodes are thought to be driven by the complex interaction between a deep magmatic source and a shallow hydrothermal system [Orsi et al., 1999]. The most recent unrest episode started in 2006, exhibiting an increase in the degassing activity, especially in the Pisciarelli field (SE of Solfatara crater). In such an active magmato-hydrothermal system steam-driven explosive eruptions (phreatic or hydrothermal) are a likely potential hazard - one that is difficult to predict in terms of timing and magnitude. Here we present an experimental approach based on a rapid decompression experiments to investigate the different scenarios likely for steam explosions in the Solfatara area. The experimental setup produces fragmentation precipitated by the release of Argon gas overpressure and assisted by water-to-steam flashing within the connected pore space of the tested samples. We have investigated varying P-T conditions and varying gas-to-liquid ratios. The experimental conditions used in this case study mimic those of a mixing zone present at the base of the hydrothermal system below Solfatara at a depth between 1000 and 1500 m (15-25 MPa) and temperatures from 270°C to 300°C [Caliro et al., 2007]. Neapolitan Yellow Tuff is used as sample material for the study as it is the stratigraphic unit expected at this depth in this region [Orsi et al. 1996]. Sensors monitor temperature and pressure evolution during the experiments, enabling the determination of the speed of fragmentation. A high-speed camera (10000 fps) is used to measure the ejection velocities of the gas-particle mixtures. The fragments generated are recovered and

  17. Bench scale steam explosion pretreatment of acid impregnated elephant grass biomass and its impacts on biomass composition, structure and hydrolysis

    NARCIS (Netherlands)

    Kataria, Rashmi; Mol, Annemerel; Schulten, Els; Happel, Anton; Mussatto, Solange I.

    2017-01-01

    In the present study, an acid mediated steam explosion process was evaluated for pretreatment of elephant grass biomass in a bench scale reactor. Different combinations of H2SO4 concentration, reaction time and temperature (leading to different values of combined severity factor - CSF) were used for

  18. Bench scale steam explosion pretreatment of acid impregnated elephant grass biomass and its impacts on biomass composition, structure and hydrolysis

    NARCIS (Netherlands)

    Kataria, Rashmi; Mol, Annemerel; Schulten, Els; Happel, Anton; Mussatto, Solange I.

    2016-01-01

    In the present study, an acid mediated steam explosion process was evaluated for pretreatment of elephant grass biomass in a bench scale reactor. Different combinations of H2SO4 concentration, reaction time and temperature (leading to different values of combined severity fa

  19. Influence of steaming explosion time on the physic-chemical properties of cellulose from Lespedeza stalks (Lespedeza crytobotrya).

    Science.gov (United States)

    Wang, Kun; Jiang, Jian-Xin; Xu, Feng; Sun, Run-Cang

    2009-11-01

    The synergistic effect of steam explosion pretreatment and sodium hydroxide post-treatment of Lespedeza stalks (Lespedeza crytobotrya) has been investigated in this study. In this case, Lespedeza stalks were firstly exploded at a fixed steam pressure (22.5 kg/m(2)) for 2-10 min. Then the steam-exploded Lespedeza stalks was extracted with 1 M NaOH at 50 degrees C for 3 h with a shrub to water ratio of 1:20 (g/ml), which yielded 57.3%, 53.1%, 55.4%, 52.8%, 53.2%, and 56.4% (% dry weight) cellulose rich fractions, comparing to 68.0% from non-steam-exploded material. The content of glucose in cellulose rich residues increased with increment of the steaming time and reached to 94.10% at the most severity. The similar increasing trend occurred during the dissolution of hemicelluloses. It is evident that at shorter steam explosion time, autohydrolysis mainly occurred on the hemicelluloses and the amorphous area of cellulose. The crystalline region of cellulose was depolymerized under a prolonged incubation time. The characteristics of the cellulose rich fractions in terms of FT-IR and CP/MAS (13)C NMR spectroscopy and thermal analysis were discussed, and the surface structure was also investigated by SEM.

  20. On the constitutive description of the microinteractions concept in steam explosions

    Energy Technology Data Exchange (ETDEWEB)

    Chen, X.; Yuen, W.W.; Theofanous, T.G. [Univ. of California, Santa Barbara, CA (United States)

    1995-09-01

    This paper elaborates on the constitutive description of the {open_quotes}microinteraction{close_quotes} model used by the computer code ESPROSE.m to simulate the propagation phase of steam explosions. The approach is based on a series of experiments, in the SIGMA-2000 facility, involving molten drops of tin made to explode under sustained pressure fields; an environment similar to that of a fully-developed large-scale detonation. The experimental ranges cover shock pressures of up to 204 bar, melt temperatures of up to 1800{degrees}C, and series of isothermal runs, using gallium drops, are also included. The results indicate that, to a first approximation, the basic form of the constitutive laws hypothesized in the original formulation of ESPROSE.m is appropriate. Moreover, through detailed comparison of data with numerical experiments, certain parameters appearing in these laws could be identified quantitatively.

  1. Effect of steam explosion and microbial fermentation on cellulose and lignin degradation of corn stover.

    Science.gov (United States)

    Chang, Juan; Cheng, Wei; Yin, Qingqiang; Zuo, Ruiyu; Song, Andong; Zheng, Qiuhong; Wang, Ping; Wang, Xiao; Liu, Junxi

    2012-01-01

    In order to increase nutrient values of corn stover, effects of steam explosion (2.5 MPa, 200 s) and Aspergillus oryzae (A. oryzae) fermentation on cellulose and lignin degradation were studied. The results showed the contents of cellulose, hemicellulose and lignin in the exploded corn stover were 8.47%, 50.45% and 36.65% lower than that in the untreated one, respectively (Pcorn stover (EFCS) were decreased by 24.36% and 69.90%, compared with the untreated one (Pcorn stover. The activities of enzymes in EFCS were increased. The metabolic experiment showed that about 8% EFCS could be used to replace corn meal in broiler diets, which made EFCS become animal feedstuff possible. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Enhancing antioxidant activity and antiproliferation of wheat bran through steam flash explosion.

    Science.gov (United States)

    Chen, Yongsheng; Zhang, Ruiting; Liu, Chong; Zheng, Xueling; Liu, Benguo

    2016-07-01

    The effect of steam flash explosion (SFE), a green processing technology, on the phenolic composition, antioxidant activity and antiproliferation to HepG2 of wheat bran was investigated. Moderate SFE treatment significantly enhanced the total soluble phenolic content of wheat bran. After SFE pretreatment, the free and conjugated ferulic acid content in the wheat bran were significantly increased. Antioxidant activities of SFE treated wheat bran were higher than those untreated wheat bran. The cellular antioxidant and antiproliferative activities of SFE treated wheat bran were also significantly ameliorated. It was suggested that SFE pretreatment could be applied to release the bound phenolic compounds and enhance the antioxidant activities and antiproliferative activities of wheat bran.

  3. Biogas production and saccharification of Salix pretreated at different steam explosion conditions.

    Science.gov (United States)

    Horn, Svein J; Estevez, Maria M; Nielsen, Henrik K; Linjordet, Roar; Eijsink, Vincent G H

    2011-09-01

    Different steam explosion conditions were applied to Salix chips and the effect of this pretreatment was evaluated by running both enzymatic hydrolysis and biogas tests. Total enzymatic release of glucose and xylose increased with pretreatment harshness, with maximum values being obtained after pretreatment for 10 min at 210°C. Harsher pretreatment conditions did not increase glucose release, led to degradation of xylose and to formation of furfurals. Samples pretreated at 220 and 230°C initially showed low production of biogas, probably because of inhibitors produced during the pretreatment, but the microbial community was able to adapt and showed high final biogas production. Interestingly, final biogas yields correlated well with sugar yields after enzymatic hydrolysis, suggesting that at least in some cases a 24h enzymatic assay may be developed as a quick method to predict the effects of pretreatment of lignocellulosic biomass on biogas yields.

  4. Assessment and regression analysis on instant catapult steam explosion pretreatment of corn stover.

    Science.gov (United States)

    Liu, Chen-Guang; Liu, Li-Yang; Zi, Li-Han; Zhao, Xin-Qing; Xu, You-Hai; Bai, Feng-Wu

    2014-08-01

    Instant catapult steam explosion (ICSE) offers enormous physical force on lignocellulosic biomass due to its extremely short depressure duration. In this article, the response surface methodology was applied to optimize the effect of working parameters including pressure, maintaining time and mass loading on the crystallinity index and glucose yield of the pretreated corn stover. It was found that the pressure was of essential importance, which determined the physical force that led to the morphological changes without significant chemical reactions, and on the other hand the maintaining time mainly contributed to the thermo-chemical reactions. Furthermore, the pretreated biomass was assessed by scanning electron microscope, X-ray diffraction and Fourier transform infrared spectra to understand mechanisms underlying the ICSE pretreatment.

  5. Augmented digestion of lignocellulose by steam explosion, acid and alkaline pretreatment methods: a review.

    Science.gov (United States)

    Singh, Joginder; Suhag, Meenakshi; Dhaka, Anil

    2015-03-06

    Lignocellulosic materials can be explored as one of the sustainable substrates for bioethanol production through microbial intervention as they are abundant, cheap and renewable. But at the same time, their recalcitrant structure makes the conversion process more cumbersome owing to their chemical composition which adversely affects the efficiency of bioethanol production. Therefore, the technical approaches to overcome recalcitrance of biomass feedstock has been developed to remove the barriers with the help of pretreatment methods which make cellulose more accessible to the hydrolytic enzymes, secreted by the microorganisms, for its conversion to glucose. Pretreatment of lignocellulosic biomass in cost effective manner is a major challenge to bioethanol technology research and development. Hence, in this review, we have discussed various aspects of three commonly used pretreatment methods, viz., steam explosion, acid and alkaline, applied on various lignocellulosic biomasses to augment their digestibility alongwith the challenges associated with their processing.

  6. Application of Fenton's reaction to steam explosion prehydrolysates from poplar biomass.

    Science.gov (United States)

    Oliva, J M; Manzanares, P; Ballesteros, I; Negro, M J; González, A; Ballesteros, M

    2005-01-01

    The application of Fenton's reaction to enhance the fermentability of prehydrolysates obtained from steam explosion pretreatment of poplar biomass was studied. Reaction conditions of temperature and H2O2 and Fe(II) concentrations were studied. The fermentability of prehydrolysate treated by Fenton's reaction was tested by using different inoculum sizes of thermotolerant strain Kluyveromyces marxianus CECT 10875. The highest percentages of toxic compound degradation (ranging from 71 to 93% removal) were obtained at the highest H2O2 concentration tested (50 mM). However, a negative effect on fermentability was observed at this H2O2 concentration at the lower inoculum loading. An increase in inoculum size to 0.6 g/L resulted in an enhanced ethanol fermentation yield of 95% relative to control.

  7. Pilot-scale study on the acid-catalyzed steam explosion of rice straw using a continuous pretreatment system.

    Science.gov (United States)

    Chen, Wen-Hua; Tsai, Chia-Chin; Lin, Chih-Feng; Tsai, Pei-Yuan; Hwang, Wen-Song

    2013-01-01

    A continuous acid-catalyzed steam explosion pretreatment process and system to produce cellulosic ethanol was developed at the pilot-scale. The effects of the following parameters on the pretreatment efficiency of rice straw feedstocks were investigated: the acid concentration, the reaction temperature, the residence time, the feedstock size, the explosion pressure and the screw speed. The optimal presteaming horizontal reactor conditions for the pretreatment process are as follows: 1.7 rpm and 100-110 °C with an acid concentration of 1.3% (w/w). An acid-catalyzed steam explosion is then performed in the vertical reactor at 185 °C for 2 min. Approximately 73% of the total saccharification yield was obtained after the rice straw was pretreated under optimal conditions and subsequent enzymatic hydrolysis at a combined severity factor of 0.4-0.7. Moreover, good long-term stability and durability of the pretreatment system under continuous operation was observed.

  8. Optimization of uncatalyzed steam explosion pretreatment of rapeseed straw for biofuel production.

    Science.gov (United States)

    López-Linares, Juan C; Ballesteros, Ignacio; Tourán, Josefina; Cara, Cristóbal; Castro, Eulogio; Ballesteros, Mercedes; Romero, Inmaculada

    2015-08-01

    Rapeseed straw constitutes an agricultural residue with great potential as feedstock for ethanol production. In this work, uncatalyzed steam explosion was carried out as a pretreatment to increase the enzymatic digestibility of rapeseed straw. Experimental statistical design and response surface methodology were used to evaluate the influence of the temperature (185-215°C) and the process time (2.5-7.5min). According to the rotatable central composite design applied, 215°C and 7.5min were confirmed to be the optimal conditions, considering the maximization of enzymatic hydrolysis yield as optimization criterion. These conditions led to a maximum yield of 72.3%, equivalent to 81% of potential glucose in pretreated solid. Different configurations for bioethanol production from steam exploded rapeseed straw were investigated using the pretreated solid obtained under optimal conditions as a substrate. As a relevant result, concentrations of ethanol as high as 43.6g/L (5.5% by volume) were obtained as a consequence of using 20% (w/v) solid loading, equivalent to 12.4g ethanol/100g biomass.

  9. Sequential high gravity ethanol fermentation and anaerobic digestion of steam explosion and organosolv pretreated corn stover.

    Science.gov (United States)

    Katsimpouras, Constantinos; Zacharopoulou, Maria; Matsakas, Leonidas; Rova, Ulrika; Christakopoulos, Paul; Topakas, Evangelos

    2017-11-01

    The present work investigates the suitability of pretreated corn stover (CS) to serve as feedstock for high gravity (HG) ethanol production at solids-content of 24wt%. Steam explosion, with and without the addition of H2SO4, and organosolv pretreated CS samples underwent a liquefaction/saccharification step followed by simultaneous saccharification and fermentation (SSF). Maximum ethanol concentration of ca. 76g/L (78.3% ethanol yield) was obtained from steam exploded CS (SECS) with 0.2% H2SO4. Organosolv pretreated CS (OCS) also resulted in high ethanol concentration of ca. 65g/L (62.3% ethanol yield). Moreover, methane production through anaerobic digestion (AD) was conducted from fermentation residues and resulted in maximum methane yields of ca. 120 and 69mL/g volatile solids (VS) for SECS and OCS samples, respectively. The results indicated that the implementation of a liquefaction/saccharification step before SSF employing a liquefaction reactor seemed to handle HG conditions adequately. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Structural alterations, pore generation, and deacetylation of α- and β-chitin submitted to steam explosion.

    Science.gov (United States)

    Tan, Too Shen; Chin, Hui Yen; Tsai, Min-Lang; Liu, Chao-Lin

    2015-05-20

    The purpose of this study was to use an environmentally friendly steam explosion method to achieve α- and β-chitin structural alterations, pore generation, and deacetylation, enhancing the degree of deacetylation (DD) in chitin and extending its applications. The samples of α- and β-chitin possessing various moisture contents that were exploded at 9 kg/cm(2) exhibited higher DDs, lower densities, lower crystallinity and more porous structures compared to unexploded chitin. After explosion, β-chitin exhibited a larger expansion ratio, lower crystallinity and contained a larger proportion of small-sized particles compared to α-chitin. The highest DD values of exploded α- and β-chitin with 75% moisture content were 42.9% and 43.7%, respectively. The exploded chitin samples with lower moisture content exhibited lower DDs, densities, crystallinity indices, smaller particle sizes, and higher expansion ratios than the chitin samples with higher moisture content. The chitin samples with lower moisture content also contained larger and more numerous pores.

  11. Bibliographic over view of the experimental and numerical works in Europe about hypothetical in-vessel steam explosions

    Energy Technology Data Exchange (ETDEWEB)

    Robbe, M.F. [Ecole Centrale de Paris, 92 6 Chatenay Malabry (France)]|[CEA Saclay, Dept. de Mecanique et de Technologie, 91 - Gif-sur-Yvette (France)

    2001-07-01

    The investigation about steam explosion started about 20 years ago in Europe. In a first time, the research was focused on the development of 1-D codes involving simple models: the steady-state code of IKE could only predict the propagation of pressure waves and the first model of the code CULDESAC concerned only perfect gases. In a second time, the work aimed at assessing the sensitivity of the explosion escalation and propagation to different parameters. In the KROTUS test-facility, a large set of tests was realised with various environmental conditions to determine in what conditions a spontaneous or triggered steam explosion is liable to occur. Parametric computations were also carried out in 1-D with the progressively improved versions of the code CULDESAC to understand the conditions necessary for the escalation or the decay of an explosion. The third step could be characterized by the first attempts to validate the numerical tools on experimental data. The experimental results were provided by KROTOS and concerned global measurements at different levels of the test section. These experimental results were compared to the ones computed by the code IDEMO. In parallel with this step relative to the progress in the thermalhydraulic codes, mechanical aspects were dealt with the code CASTEM-PLEXUS and particularly the possibility of a reactor vessel failure in case of a high energy steam explosion. Parametric studies regarding the explosion characteristics were first performed with global initial data and then with local initial data issued from the pre-mixing module of the code MC3D. The current step is largely based on the acquirement of local precise data and the qualification of the codes on the experimental results. The macroscopic scale results in the thermalhydraulic field provided by the KRO'TOS test-facility are going to be completed by the microscopic scale ones of the test-facilities TREPAM and MICROMIS. The mechanical and energetic aspects of the

  12. Ethanol production from sugars obtained during enzymatic hydrolysis of elephant grass (Pennisetum purpureum, Schum.) pretreated by steam explosion.

    Science.gov (United States)

    Scholl, Angélica Luisi; Menegol, Daiane; Pitarelo, Ana Paula; Fontana, Roselei Claudete; Zandoná Filho, Arion; Ramos, Luiz Pereira; Dillon, Aldo José Pinheiro; Camassola, Marli

    2015-09-01

    In this work, steam explosion was used a pretreatment method to improve the conversion of elephant grass (Pennisetum purpureum) to cellulosic ethanol. This way, enzymatic hydrolysis of vaccum-drained and water-washed steam-treated substrates was carried out with Penicillium echinulatum enzymes while Saccharomyces cerevisiae CAT-1 was used for fermentation. After 48 h of hydrolysis, the highest yield of reducing sugars was obtained from vaccum-drained steam-treated substrates that were produced after 10 min at 200 °C (863.42 ± 62.52 mg/g). However, the highest glucose yield was derived from water-washed steam-treated substrates that were produced after 10 min at 190 °C (248.34 ± 6.27 mg/g) and 200 °C (246.00 ± 9.60 mg/g). Nevertheless, the highest ethanol production was obtained from water-washed steam-treated substrates that were produced after 6 min at 200 °C. These data revealed that water washing is a critical step for ethanol production from steam-treated elephant grass and that pretreatment generates a great deal of water soluble inhibitory compounds for hydrolysis and fermentation, which were partly characterized as part of this study.

  13. Ex-vessel coolability and energetics of steam explosions in nordic light water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Park, H.S.; Dinh, T.N. [Royal Institute of Technology (Sweden)

    2007-04-15

    The report summarizes activities conducted at the Division of Nuclear Power Safety, Royal Institute of Technology-Sweden (KTH-NPS) within the ExCoolSe project during the year 2005, which is a transition year for the KTH-NPS program. The ExCoolSe project supported by NKS contributes to the severe accident research at KTH-NPS concurrently supported by APRI, HSK and EU SARNET. The main objective in ExCoolSe project is to scrutinize research on risk-significant safety issues related to severe accident management (SAM) strategy adopted for Nordic BWR plants, namely the Ex-vessel Coolability and Energetic Steam explosion. The work aims to pave way toward building a tangible research framework to tackle these long-standing safety issues. Chapter 1 describes the project objectives and work description. Chapter 2 provides a critical assessment of research results obtained from several past programs at KTH. This includes review of key data, insights and implications from POMECO (Porous Media Coolability) program, COMECO (Corium Melt Coolability) program, SIMECO (Study of In-Vessel Melt Coolability) program, and MISTEE (Micro-Interactions in Steam Explosion Experiments) program. Chapter 3 discusses the rationale of the new research program focusing on the SAM issue resolution. The program emphasizes identification and qualification of physics-based limiting mechanisms for both in-vessel phenomena (melt progression and debris coolability in the lower head, vessel failure), and ex-vessel phenomena. Chapter 4 introduces research results from the newly established DEFOR (Debris Formation) program and the ongoing MISTEE program. The focus of DEFOR is fulfill an apparent gap in the contemporary knowledge of severe accidents, namely mechanisms which govern the debris bed formation and bed characteristics. The later control the debris bed coolability. In the MISTEE program, methods for image synchronization and data processing were developed and tested, which enable processing of

  14. Evaluation of storage methods for the conversion of corn stover biomass to sugars based on steam explosion pretreatment.

    Science.gov (United States)

    Liu, Zhi-Hua; Qin, Lei; Jin, Ming-Jie; Pang, Feng; Li, Bing-Zhi; Kang, Yong; Dale, Bruce E; Yuan, Ying-Jin

    2013-03-01

    Effects of dry and wet storage methods without or with shredding on the conversion of corn stover biomass were investigated using steam explosion pretreatment and enzymatic hydrolysis. Sugar conversions and yields for wet stored biomass were obviously higher than those for dry stored biomass. Shredding reduced sugar conversions compared with non-shredding, but increased sugar yields. Glucan conversion and glucose yield for non-shredded wet stored biomass reached 91.5% and 87.6% after 3-month storage, respectively. Data of micro-structure and crystallinity of biomass indicated that corn stover biomass maintained the flexible and porous structure after wet storage, and hence led to the high permeability of corn stover biomass and the high efficiency of pretreatment and hydrolysis. Therefore, the wet storage methods would be desirable for the conversion of corn stover biomass to fermentable sugars based on steam explosion pretreatment and enzymatic hydrolysis.

  15. Enhancing methane production of corn stover through a novel way: sequent pretreatment of potassium hydroxide and steam explosion.

    Science.gov (United States)

    Li, Jianghao; Zhang, Ruihong; Siddhu, Muhammad Abdul Hanan; He, Yanfeng; Wang, Wen; Li, Yeqing; Chen, Chang; Liu, Guangqing

    2015-04-01

    Getting over recalcitrance of lignocellulose is effective way to fuel production from lignocellulosic biomass. In current work, different pretreatments were applied to enhance the digestibility of corn stover (CS). Results showed that steam explosion (SE)-treated CS produced maximal methane yield (223.2 mL/gvs) at 1.2 MPa for 10 min, which was 55.2% more than untreated (143.8 mL/gvs). Whereas 1.5% KOH-treated CS produced maximum methane yield of 208.6 mL/gvs, and significantly (αpretreatment of potassium hydroxide and steam explosion (SPPE) (1.5% KOH-1.2 MPa, 10 min) achieved a very significant (αpretreat CS in the future AD industry.

  16. Simuliranje izotermnega QUEOS preskusa mešalne faze eksplozije pare Q08: Simulation of the isothermal QUEOS steam-explosion premixing experiment Q08:

    OpenAIRE

    Leskovar, Matjaž; Mavko, Borut

    2002-01-01

    The premixing phase of a steam explosion covers the interaction of the melt jet with the water prior to any steam explosion occuring. To ger a better insight into the hydrodynamic processes during the premixing phase in addition to "hot" premixing experiments, where the water evaporation is significant. "cold" isothermal premixing experiments were also performed. The special feature of isothermal premixing experiments is that three phases are involved - the water, the air and the spheres phas...

  17. Pretreatment efficiency and structural characterization of rice straw by an integrated process of dilute-acid and steam explosion for bioethanol production.

    Science.gov (United States)

    Chen, Wen-Hua; Pen, Ben-Li; Yu, Ching-Tsung; Hwang, Wen-Song

    2011-02-01

    The combined pretreatment of rice straw using dilute-acid and steam explosion followed by enzymatic hydrolysis was investigated and compared with acid-catalyzed steam explosion pretreatment. In addition to measuring the chemical composition, including glucan, xylan and lignin content, changes in rice straw features after pretreatment were investigated in terms of the straw's physical properties. These properties included crystallinity, surface area, mean particle size and scanning electron microscopy imagery. The effect of acid concentration on the acid-catalyzed steam explosion was studied in a range between 1% and 15% acid at 180°C for 2 min. We also investigated the influence of the residence time of the steam explosion in the combined pretreatment and the optimum conditions for the dilute-acid hydrolysis step in order to develop an integrated process for the dilute-acid and steam explosion. The optimum operational conditions for the first dilute-acid hydrolysis step were determined to be 165°C for 2 min with 2% H(2)SO(4) and for the second steam explosion step was to be carried out at 180°C for 20 min; this gave the most favorable combination in terms of an integrated process. We found that rice straw pretreated by the dilute-acid/steam explosions had a higher xylose yield, a lower level of inhibitor in the hydrolysate and a greater degree of enzymatic hydrolysis; this resulted in a 1.5-fold increase in the overall sugar yield when compared to the acid-catalyzed steam explosion.

  18. Effects of steam explosion and co-digestion in the methane production from Salix by mesophilic batch assays.

    Science.gov (United States)

    Estevez, Maria M; Linjordet, Roar; Morken, John

    2012-01-01

    Salix that was steam exploded at different conditions of temperature and time was anaerobically digested in a series of batch tests. Steam explosion proved to be favorable to increase the methane yields up to 50%, with best results obtained for temperatures starting at 210 °C. Batch studies for mixtures of cow manure and steam exploded Salix were performed, with C/N ratios varying from 31 to 56, related to volatile solids (VS) contents from 20 up to 80% of each of the substrates. Methane yields reached 230 mL CH(4)/g VS for the mixtures containing 30% and 40% VS of Salix over the total mixture's VS content (35 and 39 C/N ratio, respectively). A fraction up to 40% in VS from pre-treated Salix provided good methane yields with a faster digestion process.

  19. Comparison of the Effects of Thermal Pretreatment, Steam Explosion and Ultrasonic Disintegration on Digestibility of Corn Stover

    Directory of Open Access Journals (Sweden)

    Andras Dallos

    2016-06-01

    Full Text Available The energy demand of the corn-based bioethanol production could be reduced using the agricultural byproducts as bioenergy feedstock for biogas digesters. The release of lignocellulosic material and therefore the acceleration of degradation processes can be achieved using thermal and mechanical pretreatments, which assist to hydrolyze the cell walls and speed the solubilization of biopolymers in biogas feedstock. This study is focused on liquid hot water, steam explosion and ultrasonic pretreatments of corn stover. The scientific contribution of this paper is a comprehensive comparison of the performance of the pretreatments by fast analytical, biochemical, anaerobic digestibility and biomethane potential tests, extended by energy consumptions and energy balance calculations.The effectiveness of pretreatments was evaluated by means of soluble chemical oxygen demand, biochemical oxygen demand and by the biogas and methane productivities. The results have shown that the thermal pretreatment, steam explosion and ultrasonic irradiation of biogas feedstock disintegrated the lignocellulosic structure, increased and accelerated the methane production and increased the cumulative biogas and methane productivity of corn stover in reference to the control during mesophilic anaerobic digestion.The energy balance demonstrated that there is an economical basis of the application of the liquid hot-compressed water pretreatments in a biogas plant. However, the steam explosion and ultrasonication are energetically not profitable for corn stover pretreatment.

  20. Efficient and eco-friendly extraction of corn germ oil using aqueous ethanol solution assisted by steam explosion.

    Science.gov (United States)

    Ni, Shuangshuang; Zhao, Wei; Zhang, Yiqi; Gasmalla, Mohammed A A; Yang, Ruijin

    2016-04-01

    An improved aqueous extraction method has been established for extraction of oil from corn germs. This method primarily included steam explosion pretreatment and aqueous ethanol extraction. Process variables such as steam pressure, resident time, particle size and ethanol concentration were investigated. The highest yield of 93.74 % was obtained when ground steam-exploded corn germ (1.3 MPa, 30 s, 30-35 μm particle size) was treated with 30 % (v/v) aqueous ethanol for 2 h, at 60 °C and pH 9.0. The residual oil content in water and sediment phase decreased dramatically to 4 % and 3 %, respectively. The enhancement mechanism of the process induced by steam explosion was analyzed by confocal laser scanning microscope (CLSM). The quality of extracted crude oil was also investigated. The results showed that the quality of extracted oil was superior to commercial oils.

  1. Steam explosion treatment for ethanol production from branches pruned from pear trees by simultaneous saccharification and fermentation.

    Science.gov (United States)

    Sasaki, Chizuru; Okumura, Ryosuke; Asada, Chikako; Nakamura, Yoshitoshi

    2014-01-01

    This study investigated the production of ethanol from unutilized branches pruned from pear trees by steam explosion pretreatment. Steam pressures of 25, 35, and 45 atm were applied for 5 min, followed by enzymatic saccharification of the extracted residues with cellulase (Cellic CTec2). High glucose recoveries, of 93.3, 99.7, and 87.1%, of the total sugar derived from the cellulose were obtained from water- and methanol-extracted residues after steam explosion at 25, 35, and 45 tm, respectively. These values corresponded to 34.9, 34.3, and 27.1 g of glucose per 100 g of dry steam-exploded branches. Simultaneous saccharification and fermentation experiments were done on water-extracted residues and water- and methanol-extracted residues by Kluyveromyces marxianus NBRC 1777. An overall highest theoretical ethanol yield of 76% of the total sugar derived from cellulose was achieved when 100 g/L of water- and methanol-washed residues from 35 atm-exploded pear branches was used as substrate.

  2. The preparation and ethanol fermentation of high-concentration sugars from steam-explosion corn stover.

    Science.gov (United States)

    Xie, Hui; Wang, Fengqin; Yin, Shuangyao; Ren, Tianbao; Song, Andong

    2015-05-01

    In the field of biofuel ethanol, high-concentration- reducing sugars made from cellulosic materials lay the foundation for high-concentration ethanol fermentation. In this study, corn stover was pre-treated in a process combining chemical methods and steam explosion; the cellulosic hydrolyzed sugars obtained by fed-batch saccharification were then used as the carbon source for high-concentration ethanol fermentation. Saccharomyces cerevisiae 1308, Angel yeast, and Issatchenkia orientalis were shake-cultured with Pachysolen tannophilus P-01 for fermentation. Results implied that the ethanol yields from the three types of mixed strains were 4.85 g/100 mL, 4.57 g/100 mL, and 5.02 g/100 mL (separately) at yield rates of 91.6, 89.3, and 92.2%, respectively. Therefore, it was inferred that shock-fermentation using mixed strains achieved a higher ethanol yield at a greater rate in a shorter fermentation period. This study provided a theoretical basis and technical guidance for the fermentation of industrial high-concentrated cellulosic ethanol.

  3. Pilot scale study on steam explosion and mass balance for higher sugar recovery from rice straw.

    Science.gov (United States)

    Sharma, Sandeep; Kumar, Ravindra; Gaur, Ruchi; Agrawal, Ruchi; Gupta, Ravi P; Tuli, Deepak K; Das, Biswapriya

    2015-01-01

    Pretreatment of rice straw on pilot scale steam explosion has been attempted to achieve maximum sugar recovery. Three different reaction media viz. water, sulfuric acid and phosphoric acid (0.5%, w/w) were explored for pretreatment by varying operating temperature (160, 180 and 200°C) and reaction time (5 and 10min). Using water and 0.5% SA showed almost similar sugar recovery (∼87%) at 200 and 180°C respectively. However, detailed studies showed that the former caused higher production of oligomeric sugars (13.56g/L) than the later (3.34g/L). Monomeric sugar, followed the reverse trend (7.83 and 11.62g/L respectively). Higher oligomers have a pronounced effect in reducing enzymatic sugar yield as observed in case of water. Mass balance studies for water and SA assisted SE gave total saccharification yield as 81.8% and 77.1% respectively. However, techno-economical viability will have a trade-off between these advantages and disadvantages offered by the pretreatment medium. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Acetic Acid Catalyzed Steam Explosion for Improving the Sugar Recovery of Wheat Straw

    Directory of Open Access Journals (Sweden)

    Mengru Liu

    2014-06-01

    Full Text Available Acetic acid-catalyzed steam explosion pretreatment was applied to wheat straw at temperatures of 190 and 210 °C for 2, 6, and 10 min of residence time. The effects of pretreatment conditions on the total gravimetric recovery, hemicellulose sugars, glucose content, and yield of the enzymatic hydrolysis of cellulose were studied. The results indicated that the total gravimetric recovery decreases while the solubility of hemicellulose and the yield of cellulose enzymatic hydrolysis increase as the pretreatment severity increases. Pretreatment at 190 °C with a 2-min residence time resulted in the highest total gravimetric recovery, 58.9%. The optimum defiberation, glucose content, and enzymatic hydrolysis yields of 70.4 and 79.6%, respectively, occurred following pretreatment at 210 °C with a 10-min residence time. The optimal pretreatment condition was determined to be 190 °C for 10 min. Under the optimum conditions, the recovery yield of all sugars reached 42.7%. This pretreatment resulted in the highest recovery yield of all sugars.

  5. Use of steam explosion liquor from sugar cane bagasse for lignin peroxidase production by Phanerochaete chrysosporium.

    Science.gov (United States)

    Ferrara, Maria Antonieta; Bon, Elba P S; Araujo Neto, Julio Silva

    2002-01-01

    The possibility of using two by-products of the sugar cane industry, molasses and bagasse steam explosion liquor (SEL), for lignin peroxidase (LiP) production by Phanerochaete chrysosporium was investigated. For comparison, the fungus was initially cultivated in synthetic media containing either glucose, sucrose, xylose, or xylan as sole carbon sources. The effect of veratryl alcohol (VA) was also investigated in relation to the enzyme activity levels. Results showed that sucrose was not metabolized by this fungus, which precluded the use of molasses as a carbon source. Glucose, xylose, and xylan promoted equivalent cell growth. Enzyme levels in the absence of VA were lower than 28 UI/L and in the presence of VA reached 109 IU/L with glucose and 85 IU/L with xylose or xylan. SEL was adequate for P. chrysosporium LiP production as LiP activity reached 90 IU/L. When VA was added to this medium, enzyme concentration increased to 155 IU/L.

  6. Obtaining sugars and natural antioxidants from olive leaves by steam-explosion.

    Science.gov (United States)

    Romero-García, Juan Miguel; Lama-Muñoz, Antonio; Rodríguez-Gutiérrez, Guillermo; Moya, Manuel; Ruiz, Encarnación; Fernández-Bolaños, Juan; Castro, Eulogio

    2016-11-01

    In this work, steam-explosion treatment was evaluated as a procedure to recover sugars and natural antioxidants from olive tree leaves. The treatment was carried out following a Box-Behnken experimental design, with three factors, temperature (180-220°C), process time (2-10min) and milling time (0-15s). Response surface methodology showed that temperature was the most influential factor, followed by process time, while the best results were achieved with whole leaves. The operational conditions for simultaneously maximizing the sugars and natural antioxidants recoveries resulted to be 180°C, 8.3min and whole leaf; under these conditions 18.39g and 1950mg were obtained from 100g dry olive leaves, respectively. This is equivalent to 70% recovery of the initial sugars present in olive leaves, with a very low formation of inhibitory compounds and an important amount of natural products with antioxidant capacity such as oleuropein, hydroxytyrosol and flavonoids. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Innovative assistant extraction of flavonoids from pine (Larix olgensis Henry) needles by high-density steam flash-explosion.

    Science.gov (United States)

    Song, Hongdong; Yang, Ruijin; Zhao, Wei; Katiyo, Wendy; Hua, Xiao; Zhang, Wenbin

    2014-04-30

    High-density steam flash-explosion (HDSF) was first employed to extract flavonoids from pine needles. The HDSF treatment was performed at a steam pressure of 0.5-2.0 MPa for 20-120 s. Scanning electron microscopy and high-performance liquid chromatography combined with photodiode-array detection and electrospray ionization mass spectrometry (HPLC-DAD-ESI-MS) were used to characterize the morphological changes and analyze flavonoids of pine needles before and after HDSF treatment. Our results indicated that, after steam explosion at 1.5 MPa for 60 s, the flavonoids extracted reached 50.8 rutin equivalents mg/g dry weight, which was 2.54-fold as that of the untreated sample. HDSF pretreatment caused the formation of large micropores on the pine needles and production of particles, as well as the removal of wax layers. Compared to microwave-assisted, ultrasound-assisted, and solvent extraction, HDSF pretreatment took only 30 min to reach a maximum yield of 47.0 rutin equivalents mg/g flavonoids extract after pine needles were treated at 1.5 MPa for 80 s. In addition, after HDSF treatment, the aglycones were 3.17 times higher than that of untreated pine needles, while glycosides were lower by 57% (in HPLC-DAD individuals' sum) due to hydrolysis of flavonoids glycosides. It can be concluded that HDSF is a practical pretreatment for extraction of flavonoids and conversion in the healthy food and pharmaceutical industries.

  8. SO2 -catalyzed steam explosion: the effects of different severity on digestibility, accessibility, and crystallinity of lignocellulosic biomass.

    Science.gov (United States)

    Kang, Yuzhi; Bansal, Prabuddha; Realff, Matthew J; Bommarius, Andreas S

    2013-01-01

    Lignocellulosic biomass is the most promising feedstock for biofuels production. To enhance the efficiency of enzymatic hydrolysis, lignocellulosics needs to be pretreated to lower their recalcitrance. SO(2) -catalyzed steam explosion is an efficient and relatively cost-efficient pretreatment method for softwood. This work investigates the effects of steam explosion severity on the digestibility, accessibility, and crystallinity of Loblolly pine. Higher severity was found to increase the accessibility of the feedstock while also promoting nonselective degradation of carbohydrates. The adsorption behavior of Celluclast® enzymes on steam-exploded Loblolly pine (SELP) can be described by a Langmuir isotherm. Cellulose crystallinity was found to first increase and then decrease with increasing pretreatment severity. A linear relationship between initial hydrolysis rates and crystallinity index (CrI) of pretreated Loblolly pine was found; moreover, a strong correlation between X-ray diffraction intensities and initial rates was confirmed. The findings demonstrate the significance of CrI in enzymatic hydrolysis of pretreated lignocellulosic biomass.

  9. Steam explosion triggering phenomena: stainless steel and corium-E simulants studied with a floodable arc melting apparatus. [BWR; PWR

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, L.S.; Buxton, L.D.

    1978-05-01

    Laboratory-scale experiments on the thermal interaction of light water reactor core materials with water have been performed. Samples (10--35 g) of Type 304 stainless steel and Corium-E simulants were each flooded with approximately 1.5 litres of water to determine whether steam explosions would occur naturally. Many of the experiments also employed artificially induced pressure transients in an attempt to initiate steam explosions. Vigorous interactions were not observed when the triggering pulse was not applied, and for stainless steel the triggering pulse initiated only coarse fragmentation. Two-stage, pressure-producing interactions were triggered for an ''oxidic'' Corium-E simulant. An impulse-initiated gas release theory has been simulated to explain the initial sample fragmentation. Although the delayed second stage of the event is not fully understood, it does not appear to be readily explained with classical vapor explosion theory. Rather, some form of metastability of the melt seems to be involved.

  10. Vpliv natančnosti numeričnih metod na rezultate simuliranj mešalne faze parne eksplozije: The influence of the accuracy of numerical methods on steam explosion premixing-phase simulation results:

    OpenAIRE

    Leskovar, Matjaž; Marn, Jure; Mavko, Borut

    2000-01-01

    A steam explosion is a physical event which can occur when two fluids are mixing and the temperature of one fluid is higher than the boiling point of the other. Steam explosions are an important area of study in nuclear engineering because the conditions for a steam explosion are fulfild during some scenaria of severe nuclear reactor accidents, when the molten core comes into contact with the coolant water. Research is mainly focused on the steam-explosion promixing-phase it determines the ex...

  11. Mass balance of pilot-scale pretreatment of sugarcane bagasse by steam explosion followed by alkaline delignification.

    Science.gov (United States)

    Rocha, George J M; Martín, Carlos; da Silva, Vinícius F N; Gómez, Edgardo O; Gonçalves, Adilson R

    2012-05-01

    Five pilot-scale steam explosion pretreatments of sugarcane bagasse followed by alkaline delignification were explored. The solubilised lignin was precipitated with 98% sulphuric acid. Most of the pentosan (82.6%), and the acetyl group fractions were solubilised during pretreatment, while 90.2% of cellulose and 87.0% lignin were recovered in the solid fraction. Approximately 91% of the lignin and 72.5% of the pentosans contained in the steam-exploded solids were solubilised by delignification, resulting in a pulp with almost 90% of cellulose. The acidification of the black liquors allowed recovery of 48.3% of the lignin contained in the raw material. Around 14% of lignin, 22% of cellulose and 26% of pentosans were lost during the process. In order to increase material recovery, major changes, such as introduction of efficient condensers and the reduction in the number of washing steps, should be done in the process setup.

  12. Preparation of Furfural from Sawdust with Steam-explosion Pretreatment%锯木屑蒸汽爆破预处理制备糠醛的研究

    Institute of Scientific and Technical Information of China (English)

    余先纯; 吴瑛; 易雪静; 龚铮午

    2012-01-01

    Furfural was made from sawdust by steam explosion pretreatment and acid hydrolysis in present study. The impacts of temperature, steam pressure, reaction time of steam explosion pretreatment and the ratio of liquid-sawdust on the furfural yield were discussed. The pretreatment was optimized by response surface methodology. The results indicated that the steam explosion pretreatment effectively promoted the degradation of sawdust and resulted in the increase of furfural yield. The furfural yield was 79. 13% when the sawdust with 3: l(mL: g) liquid/solid ratio was treated by steam explosion at 216 ℃ and 1.8 Mpa explosion pressure for 6 min. Compared with the sample without steam explosion pretreatment, only 55. 35% furfural yield was obtained.%以锯木屑为原料,采用蒸汽爆破进行预处理,然后酸催化提取糠醛.探讨了预处理温度、爆破压力、预处理时间及液料比等因素对糠醛得率的影响.采用响应面法建立二次回归模型,并对预处理工艺进行了优化.研究结果表明:预处理能有效的促进锯木屑的降解,提高糠醛的得率.在预处理温度为216℃、爆破压力1.8 MPa、预处理时间6min、液料比3∶1(mL∶g)时,糠醛的得率(79.13%)比相同条件下未进行蒸汽爆破预处理的试样(55.35%)提高了23.78个百分点.

  13. Effect of steam explosion on waste copier paper alone and in a mixed lignocellulosic substrate on saccharification and fermentation.

    Science.gov (United States)

    Elliston, Adam; Wilson, David R; Wellner, Nikolaus; Collins, Samuel R A; Roberts, Ian N; Waldron, Keith W

    2015-01-01

    This study evaluated steam (SE) explosion on the saccharification and simultaneous saccharification and fermentation (SSF) of waste copier paper. SE resulted in a colouration, a reduction in fibre thickness and increased water absorption. Changes in chemical composition were evident at severities greater than 4.24 resulting in a loss of xylose and the production of breakdown products known to inhibit fermentation (particularly formic acid and acetic acid). SE did not improve final yields of glucose or ethanol, and at severities 4.53 and 4.83 reduced yields probably due to the effect of breakdown products and fermentation inhibitors. However, at moderate severities of 3.6 and 3.9 there was an increase in initial rates of hydrolysis which may provide a basis for reducing processing times. Co-steam explosion of waste copier paper and wheat straw attenuated the production of breakdown products, and may also provide a basis for improving SSF of lignocellulose. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. Effect of acid, steam explosion, and size reduction pretreatments on bio-oil production from sweetgum, switchgrass, and corn stover.

    Science.gov (United States)

    Wang, Hui; Srinivasan, Radhakrishnan; Yu, Fei; Steele, Philip; Li, Qi; Mitchell, Brian; Samala, Aditya

    2012-05-01

    Bio-oil produced from biomass by fast pyrolysis has the potential to be a valuable substitute for fossil fuels. In a recent work on pinewood, we found that pretreatment alters the structure and chemical composition of biomass, which influence fast pyrolysis. In this study, we evaluated dilute acid, steam explosion, and size reduction pretreatments on sweetgum, switchgrass, and corn stover feedstocks. Bio-oils were produced from untreated and pretreated feedstocks in an auger reactor at 450 °C. The bio-oil's physical properties of pH, water content, acid value, density, and viscosity were measured. The chemical characteristics of the bio-oils were determined by gas chromatography-mass spectrometry. The results showed that bio-oil yield and composition were influenced by the pretreatment method and feedstock type. Bio-oil yields of 52, 33, and 35 wt% were obtained from medium-sized (0.68-1.532 mm) untreated sweetgum, switchgrass, and corn stover, respectively, which were higher than the yields from other sizes. Bio-oil yields of 56, 46, and 51 wt% were obtained from 1% H(2)SO(4)-treated medium-sized sweetgum, switchgrass, and corn stover, respectively, which were higher than the yields from untreated and steam explosion treatments.

  15. Steam-explosion Pretreatment of Triarrherca sacchariflora%荻的蒸汽爆破预处理研究

    Institute of Scientific and Technical Information of China (English)

    李心收; 刘忠; 惠岚峰

    2016-01-01

    研究了蒸汽爆破预处理对荻化学组成变化以及纤维素酶水解效率的影响,通过扫描电镜(SEM)、X 射线衍射仪(XRD)和红外光谱等分析爆破预处理对荻纤维形态、结构的影响.结果表明:蒸汽爆破预处理后物料中绝大部分半纤维素发生降解,部分木质素降解溶出,纤维素的相对含量有所提高;蒸汽爆破预处理后荻纤维表面和细胞壁受到不同程度的破坏,纤维素绝对结晶度降低,有利于酶水解作用进行;未处理原料的酶水解效率仅为14.38%,,蒸汽爆破预处理后纤维素酶水解效率最高达到了88.95%,.%The effects of steam-explosion pretreatment on the composition and enzymatic hydrolysis efficiency of solid residues of Triarrherca sacchariflora were investigated in the experiments.The fiber shape and structure have been charac-terized with scanning electron microscopy(SEM),as well as infrared and X-ray diffraction(XRD)spectrum methods.The results showed that after the steam explosion pretreatment,most hemicellulose was degraded,a fraction of lignin was also solubilized,and the relative content of cellulose was increased.The fiber surface and cell wall of Triarrherca sacchariflora were broken in various extents and the cellulose crystallinity was reduced,which were helpful to increasing the efficiency of enzymatic hydrolysis.The enzymatic hydrolysis efficiency of the untreated material was only 14.38%,,but the highest enzy-matic hydrolysis efficiency of 88.95%, was obtained after the steam-explosion pretreatment.

  16. Pilot-scale steam explosion for xylose production from oil palm empty fruit bunches and the use of xylose for ethanol production.

    Science.gov (United States)

    Duangwang, Sairudee; Ruengpeerakul, Taweesak; Cheirsilp, Benjamas; Yamsaengsung, Ram; Sangwichien, Chayanoot

    2016-03-01

    Pilot-scale steam explosion equipments were designed and constructed, to experimentally solubilize xylose from oil palm empty fruit bunches (OPEFB) and also to enhance an enzyme accessibility of the residual cellulose pulp. The OPEFB was chemically pretreated prior to steam explosion at saturated steam (SS) and superheated steam (SHS) conditions. The acid pretreated OPEFB gave the highest xylose recovery of 87.58 ± 0.21 g/kg dried OPEFB in the liquid fraction after explosion at SHS condition. These conditions also gave the residual cellulose pulp with high enzymatic accessibility of 73.54 ± 0.41%, which is approximately threefold that of untreated OPEFB. This study has shown that the acid pretreatment prior to SHS explosion is an effective method to enhance both xylose extraction and enzyme accessibility of the exploded OPEFB. Moreover, the xylose solution obtained in this manner could directly be fermented by Candida shehatae TISTR 5843 giving high ethanol yield of 0.30 ± 0.08 g/g xylose.

  17. Steam explosion pretreatment of wheat straw to improve methane yields: investigation of the degradation kinetics of structural compounds during anaerobic digestion.

    Science.gov (United States)

    Theuretzbacher, Franz; Lizasoain, Javier; Lefever, Christopher; Saylor, Molly K; Enguidanos, Ramon; Weran, Nikolaus; Gronauer, Andreas; Bauer, Alexander

    2015-03-01

    Wheat straw can serve as a low-cost substrate for energy production without competing with food or feed production. This study investigated the effect of steam explosion pretreatment on the biological methane potential and the degradation kinetics of wheat straw during anaerobic digestion. It was observed that the biological methane potential of the non steam exploded, ground wheat straw (276 l(N) kg VS(-1)) did not significantly differ from the best steam explosion treated sample (286 l(N) kg VS(-1)) which was achieved at a pretreatment temperature of 140°C and a retention time of 60 min. Nevertheless degradation speed was improved by the pretreatment. Furthermore it was observed that compounds resulting from chemical reactions during the pretreatment and classified as pseudo-lignin were also degraded during the anaerobic batch experiments. Based on the rumen simulation technique, a model was developed to characterise the degradation process.

  18. Steam explosion distinctively enhances biomass enzymatic saccharification of cotton stalks by largely reducing cellulose polymerization degree in G. barbadense and G. hirsutum.

    Science.gov (United States)

    Huang, Yu; Wei, Xiaoyang; Zhou, Shiguang; Liu, Mingyong; Tu, Yuanyuan; Li, Ao; Chen, Peng; Wang, Yanting; Zhang, Xuewen; Tai, Hongzhong; Peng, Liangcai; Xia, Tao

    2015-04-01

    In this study, steam explosion pretreatment was performed in cotton stalks, leading to 5-6 folds enhancements on biomass enzymatic saccharification distinctive in Gossypium barbadense and Gossypium hirsutum species. Sequential 1% H2SO4 pretreatment could further increase biomass digestibility of the steam-exploded stalks, and also cause the highest sugar-ethanol conversion rates probably by releasing less inhibitor to yeast fermentation. By comparison, extremely high concentration alkali (16% NaOH) pretreatment with raw stalks resulted in the highest hexoses yields, but it had the lowest sugar-ethanol conversion rates. Characterization of wall polymer features indicated that biomass saccharification was enhanced with steam explosion by largely reducing cellulose DP and extracting hemicelluloses. It also showed that cellulose crystallinity and arabinose substitution degree of xylans were the major factors on biomass digestibility in cotton stalks. Hence, this study has provided the insights into cell wall modification and biomass process technology in cotton stalks and beyond.

  19. Effect of different steam explosion conditions on methane potential and enzymatic saccharification of birch.

    Science.gov (United States)

    Vivekanand, Vivekanand; Olsen, Elisabeth F; Eijsink, Vincent G H; Horn, Svein J

    2013-01-01

    Birch (Betula pubescens) was steam exploded at 13 different conditions with temperatures ranging from 170 to 230 °C and residence times ranging from 5 to 15 min. Increasing severity in the pretreatment led to degradation of xylan and formation of pseudo-lignin. The effect of the pretreatments was evaluated by running enzymatic saccharification and anaerobic digestion followed by analysis of sugar and methane yields, respectively. Enzymatically released glucose increased with pretreatment severity up to 220 °C for 10 min and levels of solubilized glucose reached 97% of the theoretical maximum. The highest methane yield (369 mL gVS(-1)) was obtained at a severity factor of 4.5 and this yield was 1.8 times higher than the yield from untreated birch. Enzymatic glucose yields and methane yields were generally correlated. The results indicate that steam-exploded birch can be effectively converted to either glucose or methane.

  20. Effect of inhibitors released during steam-explosion treatment of poplar wood on subsequent enzymatic hydrolysis and SSF.

    Science.gov (United States)

    Cantarella, Maria; Cantarella, Laura; Gallifuoco, Alberto; Spera, Agata; Alfani, Francesco

    2004-01-01

    Steam-exploded (SE) poplar wood biomass was hydrolyzed by means of a blend of Celluclast and Novozym cellulase complexes in the presence of the inhibiting compounds produced during the preceding steam-explosion pretreatment process. The SE temperature and time conditions were 214 degrees C and 6 min, resulting in a log R(0) of 4.13. In enzymatic hydrolysis tests at 45 degrees C, the biomass loading in the bioreactor was 100 g(DW)/L (dry weight) and the enzyme-to-biomass ratio 0.06 g/g(DW). The enzyme activities for endo-glucanase, exo-glucanase, and beta-glucosidase were 5.76, 0.55, and 5.98 U/mg, respectively. The inhibiting effects of components released during SE (formic, acetic, and levulinic acids, furfural, 5-hydroxymethyl furfural (5-HMF), syringaldehyde, 4-hydroxy benzaldehyde, and vanillin) were studied at different concentrations in hydrolysis runs performed with rinsed SE biomass as model substrate. Acetic acid (2 g/L), furfural, 5-HMF, syringaldehyde, 4-hydroxybenzaldehyde, and vanillin (0.5 g/L) did not significantly effect the enzyme activity, whereas formic acid (11.5 g/L) inactivated the enzymes and levulinic acid (29.0 g/L) partially affected the cellulase. Synergism and cumulative concentration effects of these compounds were not detected. SSF experiments show that untreated SE biomass during the enzymatic attack gives rise to a nonfermentable hydrolysate, which becomes fermentable when rinsed SE biomass is used. The presence of acetic acid, vanillin, and 5-HMF (0.5 g/L) in SSF of 100 g(DW) /L biomass gave rise to ethanol yields of 84.0%, 73.5%, and 91.0% respectively, with respective lag phases of 42, 39, and 58 h.

  1. Corn stover for biogas production: Effect of steam explosion pretreatment on the gas yields and on the biodegradation kinetics of the primary structural compounds.

    Science.gov (United States)

    Lizasoain, Javier; Trulea, Adrian; Gittinger, Johannes; Kral, Iris; Piringer, Gerhard; Schedl, Andreas; Nilsen, Paal J; Potthast, Antje; Gronauer, Andreas; Bauer, Alexander

    2017-08-12

    This study evaluated the effect of steam explosion on the chemical composition and biomethane potential of corn stover using temperatures ranging between 140 and 220°C and pretreatment times ranging between 2 and 15min. Biodegradation kinetics during the anaerobic digestion of untreated and corn stover, pretreated at two different intensities, 140°C for 5min and 180°C for 5min, were studied in tandem. Results showed that pretreatment at 160°C for 2min improved the methane yield by 22%. Harsher pretreatment conditions led to lower hemicellulose contents and methane yields, as well as higher lignin contents, which may be due to the formation of pseudo-lignin. The biodegradation kinetics trial demonstrated that steam explosion enhances the degradation of structural carbohydrates and acid insoluble lignin. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Steam Explosion Pretreatment and Its Application of Lignocellulose%蒸爆技术及其在植物纤维素资源中的应用简介

    Institute of Scientific and Technical Information of China (English)

    叶红; 李家璜; 陈彪; 欧阳平凯

    2001-01-01

    介绍了蒸爆原理、类型和几种蒸爆工艺条件,以及蒸 爆在植物纤维素水解和制无胶板中的应用。%The theory and types of steam explosion pretreatment were introduced. Several steam explosion processes were introduced. We also introduced its application and described the equipment.

  3. A novel cleaning process for industrial production of xylose in pilot scale from corncob by using screw-steam-explosive extruder.

    Science.gov (United States)

    Zhang, Hong-Jia; Fan, Xiao-Guang; Qiu, Xue-Liang; Zhang, Qiu-Xiang; Wang, Wen-Ya; Li, Shuang-Xi; Deng, Li-Hong; Koffas, Mattheos A G; Wei, Dong-Sheng; Yuan, Qi-Peng

    2014-12-01

    Steam explosion is the most promising technology to replace conventional acid hydrolysis of lignocellulose for biomass pretreatment. In this paper, a new screw-steam-explosive extruder was designed and explored for xylose production and lignocellulose biorefinery at the pilot scale. We investigated the effect of different chemicals on xylose yield in the screw-steam-explosive extrusion process, and the xylose production process was optimized as followings: After pre-impregnation with sulfuric acid at 80 °C for 3 h, corncob was treated at 1.55 MPa with 9 mg sulfuric acid/g dry corncob (DC) for 5.5 min, followed by countercurrent extraction (3 recycles), decoloration (activated carbon dosage 0.07 g/g sugar, 75 °C for 40 min), and ion exchange (2 batches). Using this process, 3.575 kg of crystal xylose was produced from 22 kg corncob, almost 90 % of hemicellulose was released as monomeric sugar, and only a small amount of by-products was released (formic acid, acetic acid, fural, 5-hydroxymethylfurfural, and phenolic compounds were 0.17, 1.14, 0.53, 0.19, and 1.75 g/100 g DC, respectively). All results indicated that the screw-steam-explosive extrusion provides a more effective way to convert hemicellulose into xylose and could be an alternative method to traditional sulfuric acid hydrolysis process for lignocellulose biorefinery.

  4. Pretreatment based on two-step steam explosion combined with an intermediate separation of fiber cells--optimization of fermentation of corn straw hydrolysates.

    Science.gov (United States)

    Zhang, Yuzhen; Fu, Xiaoguo; Chen, Hongzhang

    2012-10-01

    Pretreatment is necessary for lignocellulose to achieve a highly efficient enzymatic hydrolysis and fermentation. However, coincident with pretreatment, compounds inhibiting microorganism growth are formed. Some tissues or cells, such as thin-walled cells that easily hydrolyze, will be excessively degraded because of the structural heterogeneity of lignocellulose, and some inhibitors will be generated under the same pretreatment conditions. Results showed, compared with one-step steam explosion (1.2 MPa/8 min), two-step steam explosion with an intermediate separation of fiber cells (ISFC) (1.1 Mpa/4 min-ISFC-1.2 MPa/4 min) can increase enzymatic hydrolyzation by 12.82%, reduce inhibitor conversion by 33%, and increase fermentation product (2,3-butanediol) conversion by 209%. Thus, the two-step steam explosion with ISFC process is proposed to optimize the hydrolysis process of lignocellulose by modifying the raw material from the origin. This novel process reduces the inhibitor content, promotes the biotransformation of lignocellulose, and simplifies the process of excluding the detoxification unit operation.

  5. Preparation and physicochemical properties of soluble dietary fiber from orange peel assisted by steam explosion and dilute acid soaking.

    Science.gov (United States)

    Wang, Lei; Xu, Honggao; Yuan, Fang; Fan, Rui; Gao, Yanxiang

    2015-10-15

    The coupled pretreatment of orange peel with steam explosion (SE) and sulfuric-acid soaking (SAS) was investigated to enhance the yield and improve the functionality of soluble dietary fiber (SDF). When orange peel was pretreated by SE at 0.8MPa for 7 min, combined with 0.8% SAS, the content of SDF was increased from 8.04% to 33.74% in comparison to the control and SDF prepared with SE-SAS showed the high water solubility, water-holding capacity, oil-holding capacity, swelling capacity, emulsifying activity, emulsion stability and foam stability. SDF from orange peel treated by SE-SAS exhibited significantly (p < 0.05) higher binding capacity for three toxic cations (Pb, As and Cu) and smaller molecular weight (Mw = 174 kDa). Furthermore, differential scanning calorimetry (DSC) measurement showed that SDF from orange peel treated by SE-SAS had a higher peak temperature (170.7 ± 0.4 °C) than that of the untreated sample (163.4 ± 0.3 °C). Scanning electron micrograph (SEM) images demonstrated that the surface of SDF from orange peel treated by SE-SAS was rough and collapsed. It can be concluded that SDF from orange peel treated by SE-SAS has the higher potential to be applied as a functional ingredient in food products.

  6. Impact of milling, enzyme addition, and steam explosion on the solid waste biomethanation of an olive oil production plant.

    Science.gov (United States)

    Donoso-Bravo, Andres; Ortega-Martinez, E; Ruiz-Filippi, G

    2016-02-01

    Anaerobic digestion is a consolidated bioprocess which can be further enhanced by incorporating an upstream pretreatment unit. The olive oil production produces a large amount of solid waste which needs to be properly managed and disposed. Three different pretreatment techniques were evaluated in regard to their impact on the anaerobic biodegradability: manual milling of olive pomace (OP), enzyme maceration, direct enzyme addition, and thermal hydrolysis of two-phase olive mill waste. The Gompertz equation was used to obtain parameters for comparison purposes. A substrate/inoculum ratio 0.5 was found to be the best to be used in anaerobic batch test with olive pomace as substrate. Mechanical pretreatment of OP by milling increases the methane production rate while keeping the maximum methane yield. The enzymatic pretreatment showed different results depending on the chosen pretreatment strategies. After the enzymatic maceration pretreatment, a methane production of 274 ml CH4 g VS added (-1) was achieved, which represents an improvement of 32 and 71 % compared to the blank and control, respectively. The direct enzyme addition pretreatment showed no improvement in both the rate and the maximum methane production. Steam explosion showed no improvement on the anaerobic degradability of two-phase olive mill waste; however, thermal hydrolysis with no rapid depressurization enhanced notoriously both the maximum rate (50 %) and methane yield (70 %).

  7. Impact of co-pretreatment of calcium hydroxide and steam explosion on anaerobic digestion efficiency with corn stover.

    Science.gov (United States)

    Ji, Jinli; Zhang, Jiyu; Yang, Liutianyi; He, Yanfeng; Zhang, Ruihong; Liu, Guangqing; Chen, Chang

    2016-09-29

    Anaerobic digestion (AD) is an effective way to utilize the abundant resource of corn stover (CS). In this light, Ca(OH)2 pretreatment alone, steam explosion (SE) pretreatment alone, and co-pretreatment of Ca(OH)2 and SE were applied to improve the digestion efficiency of CS. Results showed that AD of co-pretreated CS with 1.0% Ca(OH)2 and SE at 1.5 MPa achieved the highest cumulative methane yield of [Formula: see text], which was 61.54% significantly higher (p pretreatment enhanced from 43.03% to 69.52%. Methane yield could be well fitted by the first-order model and the modified Gompertz model. In addition, composition and structural changes of CS after pretreatment were analyzed by a fiber analyzer, scanning electron microscopy, Fourier transform infrared spectroscopy, and X-ray diffraction. The validated results indicated that co-pretreatment of Ca(OH)2 and SE was efficient to improve the digestion performance of CS and might be a suitable method for agricultural waste pretreatment in the future AD industry.

  8. Steam explosion of Brewer's spent grain improves enzymatic digestibility of carbohydrates and affects solubility and stability of proteins.

    Science.gov (United States)

    Kemppainen, K; Rommi, K; Holopainen, U; Kruus, K

    2016-09-01

    Steam explosion was studied as a means to improve the enzymatic digestibility of carbohydrates in Brewer's spent grain, a protein and lipid-rich lignocellulosic by-product of the brewing industry. Having temperature, treatment time and the presence of acid catalyst as variables, a treatment at 200 °C for 10 min without an acid catalyst was found to be the most efficient, dissolving 12.1 % of the dry matter. Mainly oligomeric non-cellulosic glucan and arabinoxylan were dissolved, and the remaining insoluble carbohydrates could be efficiently hydrolysed by an enzyme cocktail (75 % hydrolysis yield). The process also caused partial protein degradation and dissolved over a third of the total nitrogen. Meanwhile, the insoluble protein appeared to become more strongly associated with acid-insoluble lignin. Compositional changes observed in the proteins and carbohydrates were supported by the results of epifluorescence microscopy. The process yielded three chemically different fractions which could serve as biorefinery products or intermediates.

  9. Sandia National Laboratories

    Data.gov (United States)

    Federal Laboratory Consortium — For more than 60 years, Sandia has delivered essential science and technology to resolve the nation's most challenging security issues.Sandia National Laboratories...

  10. Thermal steam explosion pretreatment to enhance anaerobic biodegradability of the solid fraction of pig manure.

    Science.gov (United States)

    Ferreira, L C; Souza, T S O; Fdz-Polanco, F; Pérez-Elvira, S I

    2014-01-01

    The assessment of the biodegradability of thermal steam-exploded pig manure was performed compared to untreated samples. The pre-treatment was performed under different combinations of temperature and time, ranging 150-180 °C and 5-60 min, and used as substrate in a series of batch biochemical methane potential (BMP) tests. Results were analyzed in terms of methane yield, kinetic parameters and severity factor. In all the pre-treatment conditions, methane yield and degradation rates increased when compared to untreated pig slurry. An ANOVA study determined that temperature was the main factor, and the optimum combination of temperature-time of pretreatment was 170 °C -30 min, doubling methane production from 159 to 329 mL CH4/gVSfed. These operation conditions correspond to a severity factor of 3.54, which was considered an upper limit for the pretreatment due to the possible formation of inhibitory compounds, hindering the process if this limit is exceeded.

  11. Ex-vessel coolability and energetics of steam explosions in nordic light water reactors - EXCOOLSE project report 2004

    Energy Technology Data Exchange (ETDEWEB)

    Park, H.S.; Nayak, A.K.; Hansson, R.C.; Sehgal, B.R. [Royal Inst. of Technology, Div. of Nuclear Power Safety (Sweden)

    2005-10-01

    Beyond-the-design-basis accidents, i.e. severe accidents, involve melting of the nuclear reactor core and release of radioactivity. Intensive research has been performed for years to evaluate the consequence of the postulated severe accidents. Severe accidents posed, to the reactor researchers, a most interesting and most difficult set of phenomena to understand, and to predict the consequences, for the various scenarios that could be contemplated. The complexity of the interactions, occurring at such high temperatures ({approx} 2500 deg. C), between different materials, which are changing phases and undergoing chemical reactions, is simply indescribable with the accuracy that one may desire. Thus, it is a wise approach to pursue research on SA phenomena until the remaining uncertainty in the predicted consequence, or the residual risk, can be tolerated. In the PRE-DELI-MELT project at NKS, several critical issues on the core melt loadings in the BWR and PWR reactor containments were identified. Many of Nordic nuclear power plants, particularly in boiling water reactors, adopted the Severe Accident Management Strategy (SAMS) which employed the deep subcooled water pool in lower dry-well. The success of this SAMS largely depends on the issues of steam explosions and formation of debris bed and its coolability. From the suggestions of the PRE-DELI-MELT project, a series of research plan was proposed to investigate the remaining issues specifically on the ex-vessel coolability of corium during severe accidents; (a) ex-vessel coolability of the melt or particulate debris, and (b) energetics and debris characteristics of fuel-coolant interactions endangering the integrity of the reactor containments. (au)

  12. 竹质纤维的蒸汽爆破预处理研究%Study on steam explosion pretreatment of bamboo lignocellulose

    Institute of Scientific and Technical Information of China (English)

    李定国; 王树东; 吴志庄; 詹鹏; 张林; 陈介南; 何钢

    2013-01-01

    The effects of steam explosion on bamboo pretreatment were examined.In terms of effectiveness for steam explosion,after the raw materials were ground to 0.5~1.0 cm,the explosion reduced sugar yield was 6.85%.The moisture content of 10% was favorable for the degradation of hemicellulose and partial removal of lignin in the process of steam explosion,thus producing the highest reduced sugar yield of 7.95%.Along with the increases in explosion pressure and duration,the reduced sugar yield substantially and gradually increased,but under severe explosion conditions (pressure > 3.5 MPa,time > 240 s),the reduced sugar yield declined,with corresponding degradation of hemicellulose,cellulose,and lignin.The steam explosion pressure was shown to be more significant than duration on explosion effect,therefore high temperature and short time (180s) are preferred for good treatment effect.The scanning electron microscopy (SEM) shows that the extent of damage to lignocellulose structure increased gradually with the increases of explosion pressure and duration,the lignocellulose structure changed from dense to loose and porous,and even to honeycomb-like.%考察了蒸汽爆破法对竹子进行预处理效果的影响.结果表明:爆破原料粉碎至0.5~1.0 cm可得爆破还原糖得率为6.85%,原料含水率为10%时可有效促进半纤维素在蒸汽爆破过程中降解和去除部分木质素,得到还原糖得率最高,为7.95%;随着爆破压力增加和保压时间延长,爆破还原糖得率大体上逐渐提高,而剧烈的爆破条件(压力> 3.5 MPa、时间>240 s)下,还原糖得率会有所下降,半纤维素、纤维素、木质素有相应的降解,同时实验证实汽爆压力对爆破效果更为显著,好的处理效果应以高温短时间(180 s)为佳;电镜扫描(SEM)表明竹纤维木质素结构随着压力的增高、保压时间延长其被破坏程度逐渐加深,纤维素结构由致密变得疏松多孔,甚至呈蜂窝状.

  13. Research on steam explosion processing of rice straw feed%水稻秸秆饲料的汽爆加工工艺研究

    Institute of Scientific and Technical Information of China (English)

    李彬; 高翔; 孙倩; 李骅; 陈坤杰

    2013-01-01

    To improve rice straw feed polysaccharide absorption rate,a central composed regression experiment was designed for studying the effects of steam explosion pressure,holding pressure time and straw moisture content on the enzymatic hydrolysis reducing sugar yield of steam explosion rice straw.The results showed that steam explosion pressure,pressure maintaining time and straw moisture content had significant effect on the yield of reducing sugar of steam explosion rice straw.With the pressure and pressure maintaining time increasing,the yield of reducing sugar significantly increased.When the straw moisture content increased,the yield of reducing sugar significantly decreased.In the steam pressure of 1.6 MPa,holding pressure time of 140 s and moisture content of 40% conditions,the yield of enzymatic hydrolysis reducing sugar of steam-exploded rice straw was up to 34.3%.With comparison of microwave radiation,sodium hydroxide Alkalization,ammonia ammonification,urea ammonification,and thermal spray processing,the steam explosion pretreatment could get the highest reducing sugar yield of rice straw,which is 2.14 times amounts of the thermal spray processing.%为了提高水稻秸秆饲料的纤维成分吸收率,采用一次回归中心组合正交旋转试验,研究了汽爆压力、保持压力时间和秸秆含水率对秸秆酶解还原糖产量的影响.结果表明:汽爆压力、保持压力的时间和秸秆含水率对水稻秸秆酶解还原糖产量有显著影响.随着压力和保压时间的增加,酶解还原糖产量明显增加;而随着秸秆含水率的升高,酶解还原糖产量降低.在蒸汽压力1.6 MPa,保持压力时间140 s,含水率40%的工艺条件下,水稻秸秆酶解还原糖产量最高,为34.3%.与微波辐射、氢氧化钠碱化、氨水氨化、尿素氨化以及热喷等处理和加工方法相比,汽爆处理的水稻秸秆酶解还原糖产量最高,是热喷处理的2.14倍.

  14. Ethanol from lignocellulosic biomasses; Etanolo da biomasse lignocellulosiche. Produzione di etanolo da paglia di grano mediante pretrattamento di steam explosion, idrolisi enzimatica e fermentazione

    Energy Technology Data Exchange (ETDEWEB)

    Ricci, E.; Viola, E.; Zimbardi, F.; Braccio, G. [ENEA, Divisione Fonti Rinnovabili di Energia, Centro Ricerche Trisaia, Policoro, Matera (Italy); Cuna, D. [Faucitano Srl, Milan (Italy)

    2001-07-01

    In this report are presented results achieved on the process optimisation of bioethanol production from wheat straw, carried out within the ENEA's project of biomass exploitation for renewable energy. The process consists of three main steps: 1) biomass pretreatment by means of steam explosion; 2) enzymatic hydrolysis of the cellulose fraction; 3) fermentation of glucose. To perform the hydrolysis step, two commercial enzymatic mixtures have been employed, mainly composed by {beta}-glucosidase (cellobiase), endo-glucanase and exo-glucanase. The ethanologenic yeast Saccharomyces cerevisiae has been used to ferment the glucose in he hydrolyzates. Hydrolysis yield of 97% has been obtained with steam exploded wheat straw treated at 220{sup 0}C for 3 minutes and an enzyme to substrate ratio of 4%. It has been pointed out the necessity of washing with water the pretreated what straw, in order to remove the biomass degradation products, which have shown an inhibition effect on the yeast. At the best process conditions, a fermentation yield of 95% has been achieved. In the Simultaneous Saccharification and Fermentation process, a global conversion of 92% has been obtained, which corresponds to the production of about 170 grams of ethanol per kilogram of exploded straw. [Italian] Si riportano i risultati di un'attivita' di ricerca finalizzata all'ottimizzazione del processo di produzione di etanolo da paglia di grano. Il processo esaminato consta di un pretrattamento mediante steam explosion della paglia, seguito da idrolisi enzimatica della cellulosa e fermentazione del glucosio ottenuto. Per effettuare l'idrolisi sono stati utilizzati due preparati enzimatici disponibili commercialmente, costituiti da {beta}-glucosidasi, endo-glucanasi ed eso-glucanasi. Per la fermentazione del glucosio negli idrolizzati e' stato impiegato il lievito Saccharomyces cerevisae. E' stata raggiunta un'efficienza massima di idrolisi del 97% utilizzando

  15. 蒸汽爆破改性处理对麦秸板性能的影响%Effect of Steam Explosion Modification on Properties of Strawboard

    Institute of Scientific and Technical Information of China (English)

    付顺鑫; 韩广萍; 程万里

    2011-01-01

    Wheat straw was modified through steam explosion treatment to remove the wax and silicon on the outer surfaces of the raw material which was the major bonding barrier when glued with water-soluble adhesives. Results showed that steam explosion treatment improved all the panel properties in bending, internal bond (lB) strength, and thickness swelling (TS). The IB value of the board made from the straws pretreated at a steam temperature of 190 degrees C and a retention time of 3 min was nearly nine times higher than that of the control. The modulus of rupture (MOR) and modulus of elasticity (MOE) of the boards at the modification condition of 190 degrees C and 2 min were nearly three times and twice as high as不the values of the control, respectively, and the TS was only a quarter of the control' s. Therefore, steam explosion modifcation can be one of the effective approaches for upgrading the performances of strawboard.%通过蒸汽爆破技术对麦秸原料进行处理,去除了麦秸表面的蜡质和硅等胶合阻碍成分,解决了农作物秸秆共有的胶合难的问题.研究结果表明,蒸汽爆破处理对于麦秸板的内结合强度、静曲强度、弹性模量和吸水厚度膨胀率都有显著改善.用在190℃、3 min蒸汽爆破条件下处理的麦秸制成的板材,其内结合强度约是未处理板材的10倍.在190℃、2min的改性条件下,板材的静曲强度大约是未处理板材的3倍,弯曲弹性模量约为未处理板材的2倍,吸水厚度膨胀率仅是未处理板材的1/4.蒸汽爆破改性处理是提高麦秸板性能的有效途径之一.

  16. Effect of the steam explosion pretreatment on enzymatic hydrolysis of eucalyptus wood and sweet sorghum baggages; Efecto del pretratamiento con explosion por vapor en la hidrolisis enzimatica de madera de eucalipto y bagazo de sorgo

    Energy Technology Data Exchange (ETDEWEB)

    Negro, M. J.; Martinez, J. M.; Manero, J.; Saez, F.; Martin, C.

    1991-07-01

    The effect of steam explosion treatment on the enzymatic hydrolysis yield of two different lignocellulosic substrates is studied. Raw materials have been pretreated in a pilot plant designed to work in batch and equipped with a reactor vessel of 2 1 working volume where biomass was heated at the desired temperature and then exploded and recovered in a cyclone. Temperatures from 190 to 230 degree celsius and reaction times from 2 to 8 min. have been assayed. The efficiency of the steam explosion treatment has been evaluated on the composition of the lignocellulosic materials as well as on their enzymatic hydrolysis yield using a cellulolytic complex from T. reesel. Results show a high solubilization rate of hemicelluloses and variable losses of cellulose and lignin depending on the conditions tested. Enzymatic hydrolysis yields of both substrates experimented remarkable increments, corresponding the highest values obtained to 210 degree celsius; 2 min. and 21O degree celsius; 4 min. for sorghum bagasse and eucalyptus wood respectively. (Author) 13 refs.

  17. Effect of Degradation Compounds from Steam Explosion Pretreatment of Popular Biomass on Kluyveromyces marxianus; Efecto de los productos de degradacion originados en la explosion por vapor de biomasa de chopo sobre Kluyveromyces marxianus

    Energy Technology Data Exchange (ETDEWEB)

    Oliva Dominguez, J. M.

    2003-07-01

    The Simultaneous Saccharificationa and Fermentation (SSF) process has been suggested as one of the most promising methods to obtain ethanol from lignocellulose. This SSF process requires a previous pretreatment step in order to increase accessibility of cellulose to enzymatic hydrolysis. Auto hydrolysis steam explosion pretreatment has been recognised as a cost-effective method for p retreating lignocellulosic biomass. During the steam explosion pretreatment of lignocellulose substrates various toxic compounds, that could inhibit microbial fermentation, are formed. These inhibitor compounds belong to three major groups: weak acids, furans and phenolic compounds. In this study, the filtrate from steam-pretreated poplar was analysed to identify degradation compounds. The effect of identified compounds on growth and ethanol production by Kluyveromyces marxianus CECT 10875 was tested in experiments where those compounds were added individually or in combination to a synthetic medium. The level of inhibition on yeast strain growth and ethanolic fermentation was determined. The effect of initial pH on toxicity of organic acids and assimilation of these compounds by the yeast was also studied. At concentrations found in the pre hydrolysate none of individual compounds significantly effect the fermentation. For all tested compounds ethanol production was inhibited to a lesser extent than growth. Finally, different detoxification methods were applied to the liquid fraction in order to use it as fermentation broth. the detoxification methods included: treatment with alkali (sodium hydroxide or calcium hydroxide), evaporation (25%, 50% or 75% of the initial volume), advanced oxidation process (Fenton's reaction) and detoxification with zeolites. The changes in the concentration of toxic compounds were determined and the fermentability of the detoxified liquid fraction was assayed after applying those detoxification methods. (Author)

  18. Steam-explosion mitigation with polymer and surfactant additives; Mitigation de l`explosion-vapeur par ajout de polymeres et d`agents tensio-actifs

    Energy Technology Data Exchange (ETDEWEB)

    Pineau, D.; Ranval, W.

    1996-02-01

    Vapor explosion (or MFCI for Molten Fuel-Coolant Interaction) is a phenomenon in which a hot liquid rapidly transfers its internal energy into a surrounding colder and more volatile liquid (the coolant) which vaporization is violent. One of the simplest coolant is water. However it was noticed that some particular additives in water could have a mitigative effect on this phenomenon. This paper deals with the description of polymeric and/or surfactant solutions and their ability to suppress vapor explosion. (authors). 24 refs., 5 figs.

  19. Effects of steam-explosion pretreatment on chemical constitute and fiber conformation of bamboo%蒸汽爆破预处理对毛竹化学组成和纤维形态的影响

    Institute of Scientific and Technical Information of China (English)

    关莹; 高慧; 张龙娃

    2012-01-01

    Steam-explosion pretreatment technology was used for pretreating the bamboo in this paper. The difference of the chemical composition and fiber morphology of bamboo before and after the explosion was studied, and the degraded products were analyzed by using the gas chromatography-mass spectrometry (GC-MS). Results showed: (l)After steam-explosion pretreatment, holocellulose content was substantially reduced, while cellulose content was relatively increased and the lignin content had a little change; (2)After steam-explosion pretreatment, the fiber length was reduced; others were some debris and cracks on the fiber surface, and the crystal-linity of the cellulose were increased obviously after steam-explosion; (3) Thirty-two compounds were identified in the steam-explosion liquid of bamboo extracted by ethyl acetate, and diethyl-pentanedioic acid ester was the main compound.%以毛竹为研究对象,采用蒸汽爆破法进行预处理并对爆破前后化学组成和纤维形态的变化进行分析,以及GC-MS技术对爆破后的降解产物进行鉴定.结果表明:(1)蒸汽爆破预处理使得半纤维素含量大幅度降低,纤维素含量相对增加,木质素含量稍有变化;(2)爆破后纤维长度降低,纤维表面明显有碎片和裂纹,爆破后的纤维相对结晶度明显提高;(3)毛竹爆破液的乙酸乙酯萃取物中,共鉴别出以戊二酸二乙酯为主的32种化合物.

  20. Isolation and structural characterization of sugarcane bagasse lignin after dilute phosphoric acid plus steam explosion pretreatment and its effect on cellulose hydrolysis.

    Science.gov (United States)

    Zeng, Jijiao; Tong, Zhaohui; Wang, Letian; Zhu, J Y; Ingram, Lonnie

    2014-02-01

    The structure of lignin after dilute phosphoric acid plus steam explosion pretreatment process of sugarcane bagasse in a pilot scale and the effect of the lignin extracted by ethanol on subsequent cellulose hydrolysis were investigated. The lignin structural changes caused by pretreatment were identified using advanced nondestructive techniques such as gel permeation chromatography (GPC), quantitative (13)C, and 2-D nuclear magnetic resonance (NMR). The structural analysis revealed that ethanol extractable lignin preserved basic lignin structure, but had relatively lower amount of β-O-4 linkages, syringyl/guaiacyl units ratio (S/G), p-coumarate/ferulate ratio, and other ending structures. The results also indicated that approximately 8% of mass weight was extracted by pure ethanol. The bagasse after ethanol extraction had an approximate 22% higher glucose yield after enzyme hydrolysis compared to pretreated bagasse without extraction. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Structural characterization and physicochemical properties of protein extracted from soybean meal assisted by steam flash-explosion with dilute acid soaking.

    Science.gov (United States)

    Zhang, Yanpeng; Yang, Ruijin; Zhang, Weinong; Hu, Zhixiong; Zhao, Wei

    2017-03-15

    The aim of this work was to analyze the influence of steam flash-explosion (SFE) with dilute acid soaking pretreatment on the structural characteristics and physiochemical properties of protein from soybean meal (SBM). The pretreatment led to depolymerisation of soy protein isolate (SPI) and formation of new protein aggregation through non-disulfide covalent bonds, which resulted in broader MW distribution of SPI. The analysis of CD spectroscopy showed that the SFE treatment induced minor changes in secondary structure, however, the intrinsic tryptophan fluorescence revealed that acid soaking and SFE treatment pronouncedly altered the tertiary structure of SPI. The protein zeta potential was shown to be increased after SFE treatment attributed to the changes in protein structure and the covalent coupling between carbohydrate and protein. These results contribute to clarifying the mechanisms of the effect of pretreatment on SPI structure, thus moving further toward implementing SFE in the processing chain of SPI.

  2. Effect of pretreatment severity in continuous steam explosion on enzymatic conversion of wheat straw: Evidence from kinetic analysis of hydrolysis time courses.

    Science.gov (United States)

    Monschein, Mareike; Nidetzky, Bernd

    2016-01-01

    Focusing on continuous steam explosion, the influence of pretreatment severity due to varied acid loading on hydrolysis of wheat straw by Trichoderma reesei cellulases was investigated based on kinetic evaluation of the saccharification of each pretreated substrate. Using semi-empirical descriptors of the hydrolysis time course, key characteristics of saccharification efficiency were captured in a quantifiable fashion. Not only hydrolysis rates per se, but also the transition point of their bi-phasic decline was crucial for high saccharification degree. After 48h the highest saccharification was achieved for substrate pretreated at relatively low severity (1.2% acid). Higher severity increased enzyme binding to wheat straw, but reduced the specific hydrolysis rates. Higher affinity of the lignocellulosic material for cellulases does not necessarily result in increased saccharification, probably because of lignin modifications occurring at high pretreatment severities. At comparable severity, continuous pretreatment produced a substrate more susceptible to enzymatic hydrolysis than the batch process.

  3. Effects of microwave power and microwave irradiation time on pretreatment efficiency and characteristics of corn stover using combination of steam explosion and microwave irradiation (SE-MI) pretreatment.

    Science.gov (United States)

    Pang, Feng; Xue, Shulin; Yu, Shengshuan; Zhang, Chao; Li, Bing; Kang, Yong

    2012-08-01

    The effects of microwave power and microwave irradiation time on pretreatment efficiency and characteristics of corn stover were investigated based on a new process named combination of steam explosion and microwave irradiation (SE-MI) pretreatment. Results showed that with microwave power and microwave irradiation time increasing, glucose and xylose that released into hydrolyzate, as well as enzymatic hydrolysis yields and sugar yields of glucose and xylose were all slightly increased after SE-MI pretreatment. The maximum sugar yield was 72.1 g per 100 g glucose and xylose in feedstock, achieved at 540 W microwave power and 5 min microwave irradiation time. XRD analysis showed that the crystallinity of biomass was 15.6-19.9% lower for SE-MI pretreatment with microwave effect than that without microwave effect. However, low microwave power and short microwave irradiation time were favorable for SE-MI pretreatment considering energy consumption.

  4. Biomass-to-electricity: analysis and optimization of the complete pathway steam explosion--enzymatic hydrolysis--anaerobic digestion with ICE vs SOFC as biogas users.

    Science.gov (United States)

    Santarelli, M; Barra, S; Sagnelli, F; Zitella, P

    2012-11-01

    The paper deals with the energy analysis and optimization of a complete biomass-to-electricity energy pathway, starting from raw biomass towards the production of renewable electricity. The first step (biomass-to-biogas) is based on a real pilot plant located in Environment Park S.p.A. (Torino, Italy) with three main steps ((1) impregnation; (2) steam explosion; (3) enzymatic hydrolysis), completed by a two-step anaerobic fermentation. In the second step (biogas-to-electricity), the paper considers two technologies: internal combustion engines and a stack of solid oxide fuel cells. First, the complete pathway has been modeled and validated through experimental data. After, the model has been used for an analysis and optimization of the complete thermo-chemical and biological process, with the objective function of maximization of the energy balance at minimum consumption. The comparison between ICE and SOFC shows the better performance of the integrated plants based on SOFC.

  5. Biological conversion of forage sorghum biomass to ethanol by steam explosion pretreatment and simultaneous hydrolysis and fermentation at high solid content

    Energy Technology Data Exchange (ETDEWEB)

    Manzanares, Paloma; Ballesteros, Ignacio; Negro, Maria Jose; Oliva, Jose Miguel; Gonzalez, Alberto; Ballesteros, Mercedes [Renewable Energy Department-CIEMAT, Biofuels Unit, Madrid (Spain)

    2012-06-15

    In this work, forage sorghum biomass was studied as feedstock for ethanol production by a biological conversion process comprising the steps of hydrothermal steam explosion pretreatment, enzymatic hydrolysis with commercial enzymes, and fermentation with the yeast Saccharomyces cerevisiae. Steam explosion conditions were optimized using a response surface methodology considering temperature (180-230 C) and time (2-10 min). Sugar recovery in the pretreatment and the enzymatic digestibility of the pretreated solid were used to determine the optimum conditions, i.e., 220 C and 7 min. At these conditions, saccharification efficiency attained 89 % of the theoretical and the recovery of xylose in the prehydrolyzate accounted for 35 % of the amount of xylose present in raw material. Then, a simultaneous hydrolysis and fermentation (SSF) process was tested at laboratory scale on the solid fraction of forage sorghum pretreated at optimum condition, in order to evaluate ethanol production. The effect of the enzyme dose and the supplementation with xylanase enzyme of the cellulolytic enzyme cocktail was studied at increasing solid concentration up to 18 % (w/w) in SSF media. Results show good performance of SSF in all consistencies tested with a significant effect of increasing enzyme load in SSF yield and final ethanol concentration. Xylanase supplementation allows increasing solid concentration up to 18 % (w/w) with good SSF performance and final ethanol content of 55 g/l after 4-5 days. Based on this result, about 190 l of ethanol could be obtained from 1 t of untreated forage sorghum, which means a transformation yield of 85 % of the glucose contained in the feedstock. (orig.)

  6. Sandia OpenSHMEM

    Energy Technology Data Exchange (ETDEWEB)

    2016-03-15

    Sandia OpenSHMEM is an implementation of the OpenSHMEM Standard over the Portals 4 Networking API and the OpenFabrics Interface (OFI). Sandia OpenSHMEM is designed to be a low-overhead implementation of the OpenSHMEM standard which takes advantage of the many features of the Portals 4 specification.

  7. 玉米秸秆稀酸蒸汽爆破协同作用机制研究%Research on Synergism of Acid-catalyzed Steam Explosion of Corn Stalk

    Institute of Scientific and Technical Information of China (English)

    贾天宇; 廖克俭; 佟名友; 王鑫; 李秀铭

    2011-01-01

    以玉米秸秆原料,进行蒸汽爆破处理,比较了水蒸气蒸爆、稀酸和稀酸蒸爆3种预处理方法,通过对3种预处理过程中米秸秆纤维组分变化、纤维素和半纤维素降解产物和玉米秸秆结构分析以及酶解试验,探讨稀酸蒸汽爆破的协同作用机制.结果表明,稀酸蒸爆协同作用包括稀酸的软化和蒸汽爆破的活化两种机制:一是通过稀酸脱除大部分的半纤维素破坏了半纤维素与木质素间的相互作用,软化了纤维组织;二是软化的纤维通过蒸汽爆破冻结其活性纤维素超分子结构,增加了纤维素与纤维素酶的接触面积.%Using corn stalk as raw material, three pretreatments including water vapor steam explosion, dilute acid catalysis and dilute acid-catalyzed steam explosion were carried out in order to investigate.synergy effect of steam explosion and dilute acid catalysis. For the purpose, effects of acid-catalyzed steam explosion on corn stalk were analyzed and characterized, such as composition, structure, property of the matter, forming degradable products after pretreatments and enzymatic hydrolysis. The results show that the positive effect of acid-catalyzed steam explosion attributes to,the synergistic interactions of acid-softening and steam activation. First, the hemicellulose removal with acid can break the interaction between cellulose and ligin, and soften lignocellulosic structure. Second, steam explosion of acid- softened matter can lead to the forming of an active supramolecular structure, which can increase the accessibility of cellulase to celluloses.

  8. Steam explosion pretreatment and zymohydrolysis of corn cobs%蒸汽爆破预处理玉米芯及其酶解工艺研究

    Institute of Scientific and Technical Information of China (English)

    任天宝; 邱盼; 任秀娟; 张安邦; 杨渤; 张东升

    2012-01-01

    以蒸汽爆破预处理后的玉米芯为原料,进行了玉米芯酶解工艺条件的研究.粉碎后的玉米芯在压力2.8 MPa、保压时间240 s条件下蒸汽爆破预处理,在初始固形物含量为14%(w/v),pH 5.0的条件下,分别添加纤维素酶l5 FPA/g(底物)、木聚糖酶225 IU/g(底物),同时添加环境因子MgS040.005 g/g(底物)、Tween-800.001g/g(底物),糖化48 h后,还原糖浓度达到71.81 g/L,糖化率达到80.85%.试验结果表明,蒸汽爆破预处理及添加适量环境因子对玉米芯的糖化效果影响显著.%n this study, Utilizing corn cobs after steam explosion as material to research on enzymatic hydrolysis of corn cobs. The results showed, maintenance pressure time 240 s and steam pressure 2.8 MPa, the initial ratio of solid content was 14% (W/V), added cellulase (15 FPA/g, zy-molyte), xylanase (225 IU/g, zymolyte) under pH 5.0 respectively. Simultaneously the environmental factors(MgSO4 0.005 g/g and Tween-80 0.001 g/g) were added. After 48 hours, the final concentration of reducing sugars was 71.81 g/L and saccharification rate reached 80.85%. This study demonstrated that the steam explosion pretreatment and proper amount of environmental factors could significantly improve the reducing sugars of corn cobs.

  9. Steam Explosion Technology Applied to High-Value Utilization of Herb Medicine Resources%汽爆技术促进中药资源高值化利用

    Institute of Scientific and Technical Information of China (English)

    陈洪章; 彭小伟

    2012-01-01

    汽爆技术在中药资源高值化利用中发挥的作用正在逐渐体现:汽爆处理打破中药植物细胞壁的屏障结构,有利于有效成分的分离提取;汽爆过程物料自体水解发生去糖苷化作用使天然植物中的苷元与糖基分离,提高苷类物质提取和分离效率;汽爆应用于中药炮制和中药脱毒有高效、快速和避免有效成分流失等优点;汽爆处理有利于中药非药用组分如纤维素、半纤维素等的有效分离和利用,联产乙醇、丁醇等能源和化工产品。本文对汽爆技术在中药资源高值化利用中的研究进展进行了综述。%Utilization of herb medicine requires combination of modern and traditional methods to develop new medicines which are high quality, safe, stable and convenient. At the same time, herb medicine resource is an important biomass resources, can be used to replace petroleum, gas and coal resources for energy, materials and chemicals production. Application of modern technology to enhance the value of the herb medicine resources is an important development direction for herb medicine research. The roles of steam explosion technology for high-value utilization of herb medicine resources are gradually exhibiting: steam explosion treatment can break the barriers of herb medicine plant cell wall structure, as a result, it is conducive to separation and extraction of active ingredients from medicine plant; steam explosion is contributed to the deglycosylation of glycosides in the natural plants and improves the efficiency of extraction and separation of aglyeone; steam explosion is used in herb medicine processing and detoxification with several advantages such as efficient, fast, avoiding the loss of active ingredients, etc; steam explosion process is conducive to effective separation and utilization of non-medicinal components such as cellulose and hemieellulose for the production of ethanol, butanol and other energy and chemical products

  10. Microelectronics at Sandia Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, W.J.; Gregory, B.L.; Franzak, E.G.; Hood, J.A.

    1975-12-31

    The microelectronics capability at Sandia Laboratories spans the complete range of component activity from initial design to final assembly into subsystems and systems. Highly reliable, radiation-tolerant devices and integrated circuits can be designed, fabricated, and incorporated into printed circuit assemblies or into thick- or thin-film hybrid microcircuits. Sandia has an experienced staff, exceptional facilities and aggressive on-going programs in all these areas. The authors can marshall a broad range of skills and capabilities to attack and solve problems in design, fabrication, assembly, or production. Key facilities, programs, and capabilities in the Sandia microelectronics effort are discussed in more detail in this booklet.

  11. Inside Sandia, April 1996

    Energy Technology Data Exchange (ETDEWEB)

    Locke, T. [ed.

    1996-04-01

    Brief articles in this issue are entitled: New testing techniques, textiles on the information superhighway, and knowledge preservation; Structural health monitoring techniques and robust analysis tools assess aging and damaged structures; Sandia`s VCSELs (Vertical-Cavity Surface-Emitting Lasers): sparking a laser diode revolution; Fiber-optic instrumentation trims weeks off the wait for cervical cancer test results; DAMA (Demand Activated Manufacturing Architecture) project boosts competitiveness of US textile industry; SEAMIST (Science and Engineering Associates Membrane Instrumentation and Sampling Technique) cuts contamination cleanup costs; RePAVing the roads to the past (Relevant Point of Access Video); and Sandia receives DOE basic energy sciences award for sol-gel achievements.

  12. Sandia QIS Capabilities.

    Energy Technology Data Exchange (ETDEWEB)

    Muller, Richard P. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-07-01

    Sandia National Laboratories has developed a broad set of capabilities in quantum information science (QIS), including elements of quantum computing, quantum communications, and quantum sensing. The Sandia QIS program is built atop unique DOE investments at the laboratories, including the MESA microelectronics fabrication facility, the Center for Integrated Nanotechnologies (CINT) facilities (joint with LANL), the Ion Beam Laboratory, and ASC High Performance Computing (HPC) facilities. Sandia has invested $75 M of LDRD funding over 12 years to develop unique, differentiating capabilities that leverage these DOE infrastructure investments.

  13. Synergistic mechanism of steam explosion combined with laccase treatment for straw delignification%汽爆秸秆漆酶协同作用提取木质素

    Institute of Scientific and Technical Information of China (English)

    李冠华; 陈洪章

    2014-01-01

    组分分离是秸秆炼制的关键技术.本文建立了汽爆耦合漆酶协同作用工艺,研究其对秸秆物理形态、化学组成以及木质素碱提取过程的影响.研究结果表明汽爆破坏秸秆表面致密结构,提高比表面积,促进漆酶对秸秆木质素的氧化作用;红外分析表明,漆酶破坏了汽爆秸秆中半纤维素酯键,且愈创木基吸收峰减弱,漆酶削弱了木质素与纤维素间相互作用;汽爆漆酶协同作用后的秸秆木质素提取率提高约20% (70℃,120 min).Nuclei Growth模型分析温和条件下秸秆木质素提取过程,动力学结果表明,汽爆漆酶协同预处理增加了汽爆秸秆木质素碱提过程中反应起始作用位点,并提高了该过程对温度的敏感性.汽爆-漆酶协同预处理是一种有效的分离木质素的方法,将在木质纤维素原料的生物炼制中发挥重要作用.%Components separation is the key technology in biorefinery.Combination of steam explosion and laccase was used,and synergistic effect of the combined pretreatment was evaluated in terms of physical structure,chemical components and extraction of lignin.The results showed that steam explosion can destroy the rigid structure and increase the specific surface area of straw,which facilitated the laccase pretreatment.The laccase pretreatment can modify the lignin structure based on the Fourier transform infrared test,as a result the delignification of straw was enhanced.Nuclei Growth model with a time dependent rate constant can describe the delignification,and the kinetics parameters indicated that the combined pretreatment improved the reaction sites and made the delignification reaction more sensitive to temperature.The combined pretreatment enhanced delignification,and can be a promising technology as an alternative to the existing pretreatment.

  14. Study on a new furfural preparation process based on steam-explosion way%汽爆法生产糠醛新工艺

    Institute of Scientific and Technical Information of China (English)

    李志松; 朱斌

    2012-01-01

    It was studied that a steam-explosion way instead of an acid hydrolysis step was used in furfural production process. And the optimal parameters were obtained for the new process. Com stalk 20 g was treated by steam-explosion under 1.4 MPa pressure and pressure-maintaining time for 4 min. The obtained material was extracted by 60 mL hot water ( 80 ℃ ) lasting 2 h. Xylose concentration was 9.96 g/L in the extraction water. The extraction ratio of xylose was 2.79%. The extraction water 350 mL, toluene 30 mL and 5% dilute sulfuric acid 10 mL were mixed and treated by reaction distillation under 165℃ for 3h.The furfural yield was 84%. The total mass yield of furfural was 2.2%. The three waste amounts produced from the said process were decreased largely.%研究了用汽爆法取代糠醛生产工艺中的酸解步骤,得出了新工艺的最佳工艺参数。取玉米秸秆20 g在1.4 MPa压力、维压时间4 min下汽爆,所得物料用60 mL热水(80℃)水提2 h,水提液中木糖含量可达9.96g/L,木糖浸出率为2.79%。取350 mL水提液,加入甲苯30 mL、5%稀硫酸10 mL,于165℃反应精馏3 h,糠醛得率可达84%,糠醛总的质量收率为2.2%。结果表明,本工艺产生的三废量大幅减少。

  15. Sandia Strategic Plan 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-01

    Sandia embarked on its first exercise in corporate strategic planning during the winter of 1989. The results of that effort were disseminated with the publication of Strategic Plan 1990. Four years later Sandia conducted their second major planning effort and published Strategic Plan 1994. Sandia`s 1994 planning effort linked very clearly to the Department of Energy`s first strategic plan, Fueling a Competitive Economy. It benefited as well from the leadership of Lockheed Martin Corporation, the management and operating contractor. Lockheed Martin`s corporate success is founded on visionary strategic planning and annual operational planning driven by customer requirements and technology opportunities. In 1996 Sandia conducted another major planning effort that resulted in the development of eight long-term Strategic Objectives. Strategic Plan 1997 differs from its predecessors in that the robust elements of previous efforts have been integrated into one comprehensive body. The changes implemented so far have helped establish a living strategic plan with a stronger business focus and with clear deployment throughout Sandia. The concept of a personal line of sight for all employees to this strategic plan and its objectives, goals, and annual milestones is becoming a reality.

  16. Sandia Strategic Plan 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-01

    Sandia embarked on its first exercise in corporate strategic planning during the winter of 1989. The results of that effort were disseminated with the publication of Strategic Plan 1990. Four years later Sandia conducted their second major planning effort and published Strategic Plan 1994. Sandia`s 1994 planning effort linked very clearly to the Department of Energy`s first strategic plan, Fueling a Competitive Economy. It benefited as well from the leadership of Lockheed Martin Corporation, the management and operating contractor. Lockheed Martin`s corporate success is founded on visionary strategic planning and annual operational planning driven by customer requirements and technology opportunities. In 1996 Sandia conducted another major planning effort that resulted in the development of eight long-term Strategic Objectives. Strategic Plan 1997 differs from its predecessors in that the robust elements of previous efforts have been integrated into one comprehensive body. The changes implemented so far have helped establish a living strategic plan with a stronger business focus and with clear deployment throughout Sandia. The concept of a personal line of sight for all employees to this strategic plan and its objectives, goals, and annual milestones is becoming a reality.

  17. EFFECT OF INHIBITORS ON ENZYMATIC HYDROLYSIS AND SIMULTANEOUS SACCHARIFICATION FERMENTATION FOR LACTIC ACID PRODUCTION FROM STEAM EXPLOSION PRETREATED LESPEDEZA STALKS

    Directory of Open Access Journals (Sweden)

    Yue Feng,

    2012-06-01

    Full Text Available The effects on both cellulose conversion rate and lactic acid yield were studied by adding inhibitors, including formic acid, acetic acid, furfural, and vanillin into the hydrolysate of steam-pretreated Lespedeza stalks. The results suggest that formic acid has a significant influence on the enzyme activity and poisoned bacterial cells, resulting in the reduction of cellulose conversion rate and lactic acid yield by 21% and 16.4%, respectively. Acetic acid showed a strong inhibition on simultaneous saccharification fermentation (SSF process, but little effect on enzymatic hydrolysis. Hydrolysis and SSF were less affected by furfural and vanillin compared with weak acids. The lactic acid yield of Lespedeza stalks rinsed with water increased from 64.0% to 89.4%, and the time to reach the maximum concentration was shortened from 96 hours to 48 hours when compared with the unwashed materials.

  18. 木质纤维原料生产燃料乙醇的蒸汽爆破预处理技术%Steam Explosion Pretreatment of Lignocellulosic Materials for Fuel Ethanol Production

    Institute of Scientific and Technical Information of China (English)

    亢能; 刘忠; 惠岚峰

    2011-01-01

    Steam explosion is a promising biomass pretreatment technology because it could destroy the structure of lignocellulose and improve enzymatic hydrolysis rate. The principles of steam explosion and its influencing factors as well as its effects on the materials and enzymatic hydrolysis were reviewed. In addition, its research directions in the future were also put forward.%蒸汽爆破可破坏木质纤维结构,提高水解速率,是很有前景的生物质预处理技术。介绍了蒸汽爆破预处理的原理、影响因素及蒸汽爆破对底物及其后续酶水解的影响,并指出蒸汽爆破技术未来的研究方向。

  19. Optimization of Steam Explosion Assisted Extraction of Flavonoids from Ginkgo Biloba Leaves by Response Surface Methodology%基于多信号流模型的雷达BIT测试能力分析

    Institute of Scientific and Technical Information of China (English)

    张兵兵; 曾国明; 傅亚; 张茂兰; 宁欣强

    2012-01-01

    多信号模型是一种简单而有效的系统建模表示方法,提出基于多信号流模型的雷达BIT进行验证方法。介绍多信号流模型的定义和表示,分析运用该模型对雷达模块(电路)的建模、相关矩阵简化、对其测试性功能实现原理进行了解析,并以某型雷达截获控制电路为例进行验证。结果表明,多信号模型能给出一个全面的测试性评定结论,对系统测试性分析具有价值。%In this study,Ginkgo Biloba leaves was pretreated by using the newly steam explosion to improve the yield of extraction of flavonoids.Based on the single factor experiments,the effects of steam explosion pressure,temperature and solid-liquid ratio on Ginkgo Biloba leaves were investigated by response surface methodology.A mathematical model was established and analyzed to describe the relationships between the studied factors and the response of the yield of flavonoids.The optimum pretreatment parameters were as follows: Steam explosion pressure of 0.38 MPa,steam explosion time of 235 s,solid-liquid ratio for 1∶15.Under the optimum conditions,the yield of flavonoids was higher about 2.1 fold than that tradition extraction method.

  20. 蒸汽爆破对蔗渣比表面积及接枝丙烯酰胺的影响%Effect of Steam Explosion on the Bagasse Specific Surface Area and the Graft Degree of Bagasse Grafting Acrylamide

    Institute of Scientific and Technical Information of China (English)

    李锦荣; 马年方; 梁磊; 曾建; 王庆福

    2015-01-01

    以蔗渣比表面积为指标,通过单因素实验考查了蒸汽爆破预处理条件如蒸爆压力、保压时间、蔗渣含水率对爆破后蔗渣比表面积的影响。并以蒸爆后的蔗渣为原料,通过接枝共聚合反应制备蔗渣接枝丙烯酰胺,探讨比表面积对蔗渣接枝聚丙烯酰胺接枝率的影响。结果表明,比表面积的增加有助于提高蔗渣接枝丙烯酰胺的接枝率,最佳蒸爆预处理条件为:蒸爆压力2.0 MPa,保压时间60 s,蔗渣含水率25%。%In this paper, the effect of steam explosion pretreatment conditions, such as steam explosion pressure, pressure maintaining time, water content in bagasse, on bagasse specific surface area were investigated through single factor experiment. The bagasse grafting acrylamide was prepared by grafting copolymerization of acrylamide monomer onto the pretreated bagasse, and the effect of surface area of bagasse on the grafting degree were investigated. The results show that the grafting degree is increased with the specific surface area, and the optimized steam explosion pretreatment conditions are as follows: steam explosion pressure of 2.0 MPa, pressure maintaining time of 60 s, bagasse water content of 25%.

  1. Effects of Continuous Steam Explosion on Mechanical Properties of PP/Cotton Stalk Composites%连续式蒸汽爆破对PP/棉杆纤维复合材料力学性能的影响

    Institute of Scientific and Technical Information of China (English)

    曹素娇; 谭斌; 刘树荣; 冯彦洪; 瞿金平

    2011-01-01

    In this paper, with continuous steam exploded cotton stalk as reinforcing fiber, polypropylene (PP)/cotton stalk composites were prepared by compress molding.The effects of steam explosion conditions such as moisture contents and steam explosion times on the mechanical prosperities of the composites were investigated.The results showed that this pretreatment improved the mechanical properties of the composites.Especially, when the water content was 40% and the explosion was twice, the composites performed the best.%以连续式蒸汽爆破预处理的棉杆作为增强纤维,通过模压成型制得聚丙烯(PP)/棉杆纤维复合材料.研究了蒸汽爆破条件中纤维含水量及爆破次数对复合材料力学性能的影响.结果表明,该预处理使复合材料力学性得以改善.当纤维含水量为40%、爆破次数两次时,获得的复合材料综合力学性能最佳.

  2. Impact of steam explosion on the wheat straw lignin structure studied by solution-state nuclear magnetic resonance and density functional methods.

    Science.gov (United States)

    Heikkinen, Harri; Elder, Thomas; Maaheimo, Hannu; Rovio, Stella; Rahikainen, Jenni; Kruus, Kristiina; Tamminen, Tarja

    2014-10-29

    Chemical changes of lignin induced by the steam explosion (SE) process were elucidated. Wheat straw was studied as the raw material, and lignins were isolated by the enzymatic mild acidolysis lignin (EMAL) procedure before and after the SE treatment for analyses mainly by two-dimensional (2D) [heteronuclear single-quantum coherence (HSQC) and heteronuclear multiple-bond correlation (HMBC)] and (31)P nuclear magnetic resonance (NMR). The β-O-4 structures were found to be homolytically cleaved, followed by recoupling to β-5 linkages. The homolytic cleavage/recoupling reactions were also studied by computational methods, which verified their thermodynamic feasibility. The presence of the tricin bound to wheat straw lignin was confirmed, and it was shown to participate in lignin reactions during the SE treatment. The preferred homolytic β-O-4 cleavage reaction was calculated to follow bond dissociation energies: G-O-G (guaiacyl) (69.7 kcal/mol) > G-O-S (syringyl) (68.4 kcal/mol) > G-O-T (tricin) (67.0 kcal/mol).

  3. Evaluation of soluble fraction and enzymatic residual fraction of dilute dry acid, ethylenediamine, and steam explosion pretreated corn stover on the enzymatic hydrolysis of cellulose.

    Science.gov (United States)

    Qin, Lei; Liu, Li; Li, Wen-Chao; Zhu, Jia-Qing; Li, Bing-Zhi; Yuan, Ying-Jin

    2016-06-01

    This study is aimed to examine the inhibition of soluble fraction (SF) and enzymatic residual fraction (ERF) in dry dilute acid (DDA), ethylenediamine (EDA) and steam explosion (SE) pretreated corn stover (CS) on the enzymatic digestibility of cellulose. SF of DDA, EDA and SE pretreated CS has high xylose, soluble lignin and xylo-oligomer content, respectively. SF of EDA pretreated CS leads to the highest inhibition, followed by SE and DDA pretreated CS. Inhibition of ERF of DDA and SE pretreated CS is higher than that of EDA pretreated CS. The inhibition degree (A0/A) of SF is 1.76 and 1.21 times to that of ERF for EDA and SE pretreated CS, respectively. The inhibition degree of ERF is 1.05 times to that of SF in DDA pretreated CS. The quantitative analysis shows that SF of EDA pretreated CS, SF and ERF of SE pretreated CS cause significant inhibition during enzymatic hydrolysis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Industrial-scale steam explosion pretreatment of sugarcane straw for enzymatic hydrolysis of cellulose for production of second generation ethanol and value-added products.

    Science.gov (United States)

    Oliveira, Fernando M V; Pinheiro, Irapuan O; Souto-Maior, Ana M; Martin, Carlos; Gonçalves, Adilson R; Rocha, George J M

    2013-02-01

    Steam explosion at 180, 190 and 200°C for 15min was applied to sugarcane straw in an industrial sugar/ethanol reactor (2.5m(3)). The pretreated straw was delignificated by sodium hydroxide and hydrolyzed with cellulases, or submitted directly to enzymatic hydrolysis after the pretreatment. The pretreatments led to remarkable hemicellulose solubilization, with the maximum (92.7%) for pretreatment performed at 200°C. Alkaline treatment of the pretreated materials led to lignin solubilization of 86.7% at 180°C, and only to 81.3% in the material pretreated at 200°C. All pretreatment conditions led to high hydrolysis conversion of cellulose, with the maximum (80.0%) achieved at 200°C. Delignification increase the enzymatic conversion (from 58.8% in the cellulignin to 85.1% in the delignificated pulp) of the material pretreated at 180°C, but for the material pretreated at 190°C, the improvement was less remarkable, while for the pretreated at 200°C the hydrolysis conversion decreased after the alkaline treatment.

  5. Valorisation of Vietnamese Rice Straw Waste: Catalytic Aqueous Phase Reforming of Hydrolysate from Steam Explosion to Platform Chemicals

    Directory of Open Access Journals (Sweden)

    Cao Huong Giang

    2014-12-01

    Full Text Available A family of tungstated zirconia solid acid catalysts were synthesised via wet impregnation and subsequent thermochemical processing for the transformation of glucose to 5-hydroxymethylfurfural (HMF. Acid strength increased with tungsten loading and calcination temperature, associated with stabilisation of tetragonal zirconia. High tungsten dispersions of between 2 and 7 W atoms·nm−2 were obtained in all cases, equating to sub-monolayer coverages. Glucose isomerisation and subsequent dehydration via fructose to HMF increased with W loading and calcination temperature up to 600 °C, indicating that glucose conversion to fructose was favoured over weak Lewis acid and/or base sites associated with the zirconia support, while fructose dehydration and HMF formation was favoured over Brönsted acidic WOx clusters. Aqueous phase reforming of steam exploded rice straw hydrolysate and condensate was explored heterogeneously for the first time over a 10 wt% WZ catalyst, resulting in excellent HMF yields as high as 15% under mild reaction conditions.

  6. Production of cellulosic ethanol from sugarcane bagasse by steam explosion: Effect of extractives content, acid catalysis and different fermentation technologies.

    Science.gov (United States)

    Neves, P V; Pitarelo, A P; Ramos, L P

    2016-05-01

    The production of cellulosic ethanol was carried out using samples of native (NCB) and ethanol-extracted (EECB) sugarcane bagasse. Autohydrolysis (AH) exhibited the best glucose recovery from both samples, compared to the use of both H3PO4 and H2SO4 catalysis at the same pretreatment time and temperature. All water-insoluble steam-exploded materials (SEB-WI) resulted in high glucose yields by enzymatic hydrolysis. SHF (separate hydrolysis and fermentation) gave ethanol yields higher than those obtained by SSF (simultaneous hydrolysis and fermentation) and pSSF (pre-hydrolysis followed by SSF). For instance, AH gave 25, 18 and 16 g L(-1) of ethanol by SHF, SSF and pSSF, respectively. However, when the total processing time was taken into account, pSSF provided the best overall ethanol volumetric productivity of 0.58 g L(-1) h(-1). Also, the removal of ethanol-extractable materials from cane bagasse had no influence on the cellulosic ethanol production of SEB-WI, regardless of the fermentation strategy used for conversion.

  7. Effect of Steam Explosion and Organosolv Pretreatment on the Hydrolysis of Poplar Substrate%蒸汽爆破和有机溶剂预处理对杨木底物酶水解性质的影响

    Institute of Scientific and Technical Information of China (English)

    亢能; 刘忠; 惠岚峰; 卢秀娟; 苗红

    2012-01-01

    选取三倍体毛白杨为原料,通过分析最优条件下有机溶剂法和蒸汽爆破法预处理后纤维素得率、结晶度指数、木质素含量及酶水解的结果,比较两种预处理工艺对底物性质的影响.结果表明:蒸汽爆破法能脱出部分木质素,而有机溶剂法能使大部分木质素脱除,木质素质量分数比未处理的降低63.34%.与原料相比,经过预处理后,结晶度指数都有所提高,蒸汽爆破预处理后达1.962,有机溶剂法预处理后达1.712.有机溶剂法预处理的样品葡萄糖转化率为81.36%,蒸汽爆破预处理的样品的葡萄糖转化率可达91.29%.%The influences of steam explosion and organosolv pretreatments on the cellulose content, crystallinity index, lignin content and hydrolysis of the triploid populous tomentosa under the optimal conditions were investigated in present study. Their impacts on hydrolysis characterizations of poplar substrate were studied, too. The results indicated that lignin could partly be removed by steam explosion pretreatment. In contrast, organosolv pretreatment can removed more lignin than that by steam explosion. The lignin was 63.34% lower than that of untreated one. The crystallinity index increased to 1.962 after steam explosion and to 1.712 after organosolv pretreatment compared to the raw material. The conversion rate of glucose was 81. 36% after organosolv pretreatment and up to 91. 29% after steam explosion.

  8. Sandia energy titles

    Energy Technology Data Exchange (ETDEWEB)

    Gardner, J.L. (ed.)

    1977-06-01

    This bibliography of reports, periodical arricles, and conference papers represents research carried out by Sandia Laboratories in energy and conservation. Within each of the approximately 300 entries, authors are listed alphabetically in each subject category. The following subjects are covered: Conservation, drilling technology, environment and safety, fossil energy, geothermal energy, nuclear energy, and solar energy. (MCW)

  9. THE MANUFACTURE OF NANOCOMPOSITES POLYVINYL ALCOHOL/CELLULOSE NANOFIBER ISOLATED FROM EMPTY BUNCH FRUIT PALM OIL (Elaeis guineensis Jack WITH STEAM EXPLOSION

    Directory of Open Access Journals (Sweden)

    Dwi Indria Cherlina

    2017-05-01

    Full Text Available ABSTRACT   The manufacture of  nanocomposites polyvinyl alcohol/cellulose nanofiber isolated from empty bunch fruit palm oil has been done. The isolation process was carried out in two stages :  α-cellulose from EBFPO which followed by isolation of CN from  α-cellulose using steam explosion method. The process of α-cellulose hydrolisis was done using  H2C2O4  11%. Nanocomposites PVA/CN were characterized by morphologycal, thermal, and mechanical analysis. FT-IR spectra show C-O-C stretch of cellulose nanofiber at 1059,99 cm-1, which indicated that there are glycoside bonding in  coumpound structure. The peaks near 2900,94 cm-1 and  3348,42 cm-1 are representative of the C-H and OH groups. The result of transmission electron microscopy (TEM image show that diameter of cellulose nanofibre around 44,6 nm. PVA/CN nanocomposites  at the optimum ratio of (80:20% showed the thermal stability around 263,48oC and tensile strength around 17,41 MPa and Young’s Modulus 0,9 GPa, and surface area was smooth and homogen Keywords: Empty Bunch Fruit Palm Oil, α-Cellulose, Cellulose Nanofiber, Nanocomposites,                             Polyvinil Alcohol

  10. Effect of steam explosion pretreatment on dissolution efifciency of poplar chemical composition%蒸汽爆破预处理对杨木化学组分溶出效率的影响

    Institute of Scientific and Technical Information of China (English)

    张中山; 杨桂花; 李蕊; 王强; 陈嘉川

    2016-01-01

    Experimental material polar wood chips were pretreated by steam-explosion. Effect of different impregnation liquid, steam pressure and steam pressure holding time on the dissolution efficiency of semi-cellulose, cellulose and lignin was investigated. Results showed that effect of impregnation liquid of 5% NaOH was better than that of deionized water and aqueous ammonia in the explosion pretreatment process. The optimal steam-explosion pretreatment conditions were impregnation liquid of 5%NaOH, steam pressure of 2.3MPa and steam pressure holding time of 6min, in which higher concentrations and dissolution efifciency of semi-cellulose, cellulose and lignin were obtained and dissolution rates of semi-cellulose, cellulose and lignin were 13.67%, 27.03% and 27.46% respectively.%以速生杨木片为原料,采用蒸汽爆破法对杨木进行预处理,探讨了不同浸渍液、蒸汽压力和保压时间对杨木片中半纤维素、木素和纤维素溶出效率的影响。实验结果表明,在蒸汽爆破预处理过程中,5%NaOH浸渍液对杨木化学组分的溶出效果优于去离子水和氨水。较理想的蒸汽爆破预处理条件为5%NaOH浸渍液,蒸汽压力2.3MPa和保压时间6min,此条件下预处理液中纤维素、半纤维素和木素的含量较高,溶出率分别为13.67%、27.03%和27.46%,溶出效果较理想。

  11. 汽爆预处理青玉米秸秆厌氧发酵特性%Anaerobic fermentation characteristic of green corn straw pretreated by steam explosion

    Institute of Scientific and Technical Information of China (English)

    徐桂转; 范帅尧; 王新锋; 田道盟; 张百良

    2012-01-01

    为了研究青玉米秸秆未汽爆和汽爆预处理后厌氧发酵产沼气特性,该文采用汽爆压力为2.5 MPa,保压时间为90 s,加入质量分数为30%的沼液,未气爆青玉米秸秆的TS(总固体物)质量分数为6%,汽爆预处理青玉米秸秆厌氧发酵的TS质量分数分别为1%、2%、3%、4%、6%、8%、10%和15%,考察了厌氧发酵过程中pH值和产气量随时间和TS质量分数的变化.结果表明:未汽爆秸秆在TS质量分数为6%时能够顺利厌氧发酵,但汽爆秸秆厌氧发酵液极易酸化,且无法调节,适宜的TS质量分数最大为4%:未汽爆秸秆挥发性固体产气率为214.6 mL/g,汽爆秸秆在TS质量分数为3%时产气率最大,为334.8 mL/g,比未处理秸秆提高了56%;未汽爆秸秆的产气速率为3.3 mL/(g·d),汽爆秸秆产气速率随TS质量分数增大而减小,在TS质量分数为1%时最大,为14.8 mL/(g·d).青玉米秸秆经汽爆预处理后其厌氧发酵产沼气的产气率和产气速率大大提高,可以节约发酵时间,缩短发酵周期,有利于秸秆能源化利用的工业化生产.%The anaerobic fermentation characteristic of green corn straw pretreated by steam explosion method was studied. The steam explosion pressure and during time were 2.5 MPa and 90 s. The fermentaion experiments were carried out with 30% (mass percentage) of the biogas slurry. The TS (total solid mass) mass percentages of the steam-exploded straw were 1%, 2%, 3%, 4%, 6%, 8%, 10% respectively, and 15% and that of the green straw without pretreatment was 6%. The pH value, CH4 volume percentage and biogas yield were measured each day. The results showed that, when the TS mass percent was high, the anaerobic fermentation liquid of steam-exploded straw was easily acidificated and the appropriate TS mass percentage was not more than 4%, while fermentation of the unexploded straw could be carried out well under TS mass percentage of 6%. The biogas yield of volatile

  12. Sandia WIPP calibration traceability

    Energy Technology Data Exchange (ETDEWEB)

    Schuhen, M.D. [Sandia National Labs., Albuquerque, NM (United States); Dean, T.A. [RE/SPEC, Inc., Albuquerque, NM (United States)

    1996-05-01

    This report summarizes the work performed to establish calibration traceability for the instrumentation used by Sandia National Laboratories at the Waste Isolation Pilot Plant (WIPP) during testing from 1980-1985. Identifying the calibration traceability is an important part of establishing a pedigree for the data and is part of the qualification of existing data. In general, the requirement states that the calibration of Measuring and Test equipment must have a valid relationship to nationally recognized standards or the basis for the calibration must be documented. Sandia recognized that just establishing calibration traceability would not necessarily mean that all QA requirements were met during the certification of test instrumentation. To address this concern, the assessment was expanded to include various activities.

  13. 响应面法优化玉米秸秆蒸汽爆破预处理条件%Optimizing steam explosion pretreatment conditions of corn stalk by response surface methodology

    Institute of Scientific and Technical Information of China (English)

    任天宝; 马孝琴; 徐桂转; 宋安东; 张百良

    2011-01-01

    在木质纤维素利用研究领域,高浓度还原糖的获得是实现其能源转化的基础.基于Box-Behnken试验设计,选取维压时间、蒸汽压强和碳酸氢铵浓度为主要影响因素,采用响应面分析法优化了玉米秸秆蒸汽爆破预处理的工艺条件,并建立了工艺数学模型.结果表明:最佳蒸汽爆破预处理条件维压时间 227 s,蒸汽压强3.08 MPa,碳酸氢铵2.11%.爆破后的物料经48 h糖化,还原总糖浓度达到60.04 g/L,糖化率达到理论值(71.7 g/L)的83.7%,并验证了数学模型的有效性.试验结果表明蒸汽爆破预处理可以有效提高还原糖浓度.%In the research fields of lignocellulosic materials, their high-concentration reducing sugars production is an important foundation for their energy conversion. Based on Box-Behnken design, maintenance pressure time, steam pressure and ammonium acid carbonate concentration were chosen as the three important factors with three levels. The process conditions of corn stalk steam explosion pretreatment were optimized by response surface methodology, and a mathematical model of a second order quadratic equation was developed for reducing sugar concentration. The results showed that the optimized technological parameters were as follows: maintenance pressure time 227 s, steam pressure 3.08 Mpa, ammonium acid carbonate concentration. 11%. Corn stalk steam explosion pretreatment was saccharified under these conditions for 48h, its reducing sugar concentration was up to 60.04 g/L, and saccharification rate reached 83.7% of its theoretical value(71.7 g/L). The results verified the validity of the mathematical model. This study demonstrates that steam explosion pretreatment can significantly improve reducing sugar concentration .

  14. 蒸汽爆破预处理和微生物发酵对玉米秸秆降解率的影响%Effects of steam explosion and microbial fermentation on corn straw degradation

    Institute of Scientific and Technical Information of China (English)

    常娟; 尹清强; 任天宝; 张百良; 宋安东; 左瑞雨; 卢敏; 刘俊熙

    2011-01-01

    为了提高玉米秸秆的利用效率,首先对玉米秸秆进行蒸汽爆破预处理(压力2.5 Mpa,维压200 s),然后再进行米曲霉发酵,研究物理和生物学处理对秸秆成分及相关酶活变化的影响.结果表明,蒸汽爆破使秸秆中纤维素、半纤维素和木质素的降解率分别达到8.47%、50.45%和36.65%(p<0.05).爆破预处理的秸秆再经米曲霉发酵6 d后,秸秆中纤维素和半纤维素的降解率分别为27.89%和64.80%(p<0.05),发酵秸秆中的滤纸酶、羧甲基纤维素酶、淀粉酶和蛋白酶活力分别达到335.10、1138.92、1954.20和201.99 U/g.爆破预处理后进行米曲霉发酵,对于提高玉米秸秆的降解率具有非常重要的意义.%The effects of steam explosion (2.5 MPa, 200 s) and Aspergillus oryzae fermentation on corn straw degradation were evaluated according to the changes of compositions and enzyme activities in the fermented products.The results showed that the steam explosion pre-treatment for com straw could make the degradation rates of cellose,hemicelluloses and lignin reach to 8.47%, 50.45% and 36.65%, respectively (P<0.05).After pretreated with steam explosion the corn straw was fermented by Aspergillus oryzae for 6 days, the contents of cellulose and hemicellulose in the fermented com straw were decreased by 27.89% and 64.80% respectively, compared with the original corn straw (P<0.05).The filter paper cellulase, CMCase, amylase and protease activities in the fermented products were 335.10,1 138.92, 1954.20 and 201.99 U/g, respectively.Pre-treating with steam explosion and followed by Aspergillus oryzae fermentation seems to be a prospective method for eom straw degradation and application.

  15. Study on Anaerobic Digestion of Steam-explosion Pretreated Cornstalk%蒸汽爆破预处理玉米秸秆厌氧发酵实验研究

    Institute of Scientific and Technical Information of China (English)

    王许涛; 张百良

    2013-01-01

    To study the regularity of anaerobic digestion of steam-explosion pretreated cornstalk and find the new technics improving the biogas production of cornstalk, the cornstalk were pretreated by steam-explosion under the condition of pressure of 2. 0 Mpa for 60 s, 90 s and 120 s. The results showed that at the temperature of 351 , the steam-explosion treated cornstalk was digested more easily than the untreated cornstalk. The untreated cornstalk had a biogas production rate of 296. 8 mL · g-1, and that for treated cornstalk increased by 16. 8% - 63.2%. The largest biogas production rate of 428.5 mL · g-1 could be obtained for treated cornstalk with steam-explosion treating time of 120 s. The methane content in the biogas of pretreated cornstalk was above 60% , the biogas production could reach 80% of total yield within 20 days and no crusting was found in the whole fermentation process. And the fermentation for the pretreated cornstalk was significantly shorter than the untreated.%2.0 Mpa压力下,保留时间60 s,90s和120 s对玉米秸秆汽爆预处理后进行厌氧发酵生产沼气实验,研究汽爆预处理秸秆厌氧发酵规律,探讨提高秸秆厌氧发酵产气量的新工艺.结果表明:蒸汽爆破预处理后的秸秆比未经预处理秸秆中温厌氧发酵的产气量296.8 mL·g-1提高16.8%~63.2%,保压时间为120 s时,秸秆厌氧发酵沼气产量达到最大值428.5 mL·g-1干物质.汽爆处理玉米秸秆厌氧发酵沼气中CH4含量在60%以上,发酵第20d累积产气量达到总产气量的80%,未发生结壳现象,主发酵周期比未汽爆秸秆大大缩短.

  16. Comparison of the susceptibility of two hardwood species, Mimosa scabrella Benth and Eucalyptus viminalis labill, to steam explosion and enzymatic hydrolysis

    Directory of Open Access Journals (Sweden)

    L. P. Ramos

    2000-01-01

    Full Text Available Steam explosion of two hardwood species was carried out with and without addition of sulfuric acid (H2SO4 0.5%, p/v as a pretreatment catalyst. In general, wood chips of Eucalyptus viminalis Labill were shown to be more amenable to pretreatment than chips derived from bolds of Mimosa scabrella Benth (bracatinga. This was apparent from all pretreatment parameters tested including the overall recovery yields of pretreated fractions, carbohydrates (pentoses and hexoses recovered as water-solubles, yield of dehydration by-products and lignin susceptibility to acid hydrolysis. There was no evidence for complete deacetylation of both wood species during pretreatment and lignin appeared to undergo extensive acid hydrolysis at higher pretreatment severities. Steam treatment at 205ºC for 5 min without addition of an acid catalyst was shown to be uncapable of removing the hemicellulose component from bracatinga chips, as determined by chemical analysis of the steam-treated water-insoluble fractions. Nearly 30% of the hemicellulose (xylan found in bracatinga remained unhydrolysed after pretreatment, whereas more than 90% of this component could be removed from eucalypt chips under the same pretreatment conditions. Likewise, pretreatment of eucalypt chips resulted in a more extensive solubilization of glucans (cellulose by acid hydrolysis. Addition of dilute H2SO4 as a pretreatment catalyst generally increased the recovery yield of fermentable sugars in the water-soluble fractions and this effect was more pronounced for the pretreatment of bracatinga chips. Steam-treated substrates produced from bracatinga were also less accessible to enzymatic hydrolysis than those produced from eucalypt chips, regardless of the use of an acid catalyst.Duas espécies de angiospermas foram comparadas em relação à suas susceptibilidades ao pré-tratamento por explosão a vapor. De um modo geral, cavacos industriais de Eucalyptus viminalis Labill apresentaram-se mais

  17. Methane production from steam-exploded bamboo.

    Science.gov (United States)

    Kobayashi, Fumihisa; Take, Harumi; Asada, Chikako; Nakamura, Yoshitoshi

    2004-01-01

    To convert unutilized plant biomass into a useful energy source, methane production from bamboo was investigated using a steam explosion pretreatment. Methane could not be produced from raw bamboo but methane production was enhanced by steam explosion. The maximum amount of methane produced, i.e., about 215 ml, was obtained from 1 g of exploded bamboo at a steam pressure of 3.53 MPa and a steaming time of 5 min. A negative correlation between the amount of methane produced and the amount of Klason lignin was observed in the methane fermentation of steam-exploded bamboo.

  18. 蒸汽爆破玉米秸秆酶解动力学%Kinetics of enzymatic hydrolysis of steam-explosion pretreated corn straw

    Institute of Scientific and Technical Information of China (English)

    任省涛; 程可可; 宋安东; 张建安

    2011-01-01

    为了掌握蒸汽爆破玉米秸秆的酶解特性,研究了不同底物浓度、酶浓度、温度对反应速率的影响.运用米氏方程对酶解动力学过程进行拟合,结果表明,纤维素酶对该玉米秸秆的水解反应在反应前3 h符合一级反应,可用米氏方程对其进行拟合.在转速为120 r/min、酶浓度为1.2 FPU/mL、pH 5.0、温度为45℃时米氏常数K为11.71 g/L,最大反应速率V为1.5 g/(L·h).确立了包括底物浓度、酶浓度、温度在内的酶解动力学模型,该模型适合温度为30℃~50℃.%In order to learn the enzymatic hydrolysis characteristics of steam-explosion pretreated corn straw by cellulase, the effects of substrate concentration, cellulase concentration and temperature were determined. The kinetics of the hydrolysis reaction could be described with the Michealis-Menten equation, and the hydrolysis reaction obeyed the classical first-order reaction rate in the first three hours. In the condition of 45 ℃ and pH 5.0 and the stirring rate 120 r/min, the Michealis constant (Km) and maximum rate ( Vm) for 1.2 FPU/mL of cellulase were 11.71 g/L and 1.5 g/(L·h). The kinetic model, including the parameters such as substrate concentration, enzymatic concentration and temperature, was suit for the hydrolysis reaction under the temperature range from 30 ℃-50 ℃.

  19. 蒸汽爆破提高小麦麸皮中水溶性戊聚糖含量及热重分析%Steam explosion increasing water soluble pentosan content of wheat bran and its thermogravimetric analysis

    Institute of Scientific and Technical Information of China (English)

    贺永惠; 王清华; 黄会丽; 王艳荣; 刘兴友

    2015-01-01

    The experiment was conducted to investigate the effects of steam explosion on water soluble pentosans mass fraction of wheat bran. The common commercial wheat bran was exploded by steam under the conditions as follows: the ratio of water to material was 20%, 30% and 50%, steam retention time was 30, 60 and 120 s per ratio of water to material, and steam pressure was kept at 2.0 MPa. Mass fractions of water soluble pentosans, total pentosan, neutral detergent fiber, acid detergent fiber and hemicellulose, and thermogravimetric curves were analyzed. The results showed that steam explosion could significantly increase the mass fractionof water solublepentosans in wheat bran(P0.05). The mass fractionof totalpentosans could be significantly decreasedin wheat bran by steam explosion(P<0.05), and reduced by 62% (P<0.05) under the conditions of 20% water material ratio, 2.0 MPa steam pressure and 120 s steam retention time compared with untreated wheat bran. Considering the extraction efficiency and energy consumption, the better steam explosion conditions for water soluble pentosans were 30% ratio of water to material and steam processing for 60 s when steam pressure was kept at 2.0 MPa, and under these conditions mass fractionof water solublepentosanscould be increased by 10.8 times (from 1.3% to 13.9%), neutral detergent fiber could be decreased by 17.2% (P<0.05), hemicellulose decreased by 26.7% (P<0.05), activation energy of hemicellulose pyrolysis process increased by 21.5%, initial and end temperature were postponed by 19-30℃, temperature corresponding to maximum weight loss rate took forward by 13℃ and maximum weight loss rate reduced by 43%. This study demonstrates that steam explosion can significantly improve the mass fraction of functional active polysaccharides (water soluble pentosan) in wheat bran, which is helpful for deep processing and utilization of wheat bran.%该试验旨在研究蒸汽爆破对小麦麸皮水溶性戊聚糖含量的影响。选

  20. This is Sandia

    Energy Technology Data Exchange (ETDEWEB)

    1995-02-01

    Sandia is a multiprogram engineering and science laboratory operated for the Department of Energy with major facilities at Albuquerque, New Mexico, and Livermore, California, and a test range near Tonapah, Nevada. It has major research and development responsibilities for nuclear weapons, arms control, energy, the environment, economic competitiveness, and other areas of importance to the needs of the nation. The principal mission is to support national defense policies by ensuring that the nuclear weapon stockpile meets the highest standards of safety, reliability, security, use control, and military performance. This publication gives a brief overview of the multifaceted research programs conducted by the laboratory.

  1. Effect of steam explosion pretreatment on ensiling performance of dry corn stover%不同汽爆预处理对干玉米秸秆青贮效果的影响

    Institute of Scientific and Technical Information of China (English)

    贾晶霞; 梁宝忠; 王艳红; 赵永亮; 李建东

    2013-01-01

    Ensiling is an important crop straw feed processing method. It can not only effectively improve the nutritional value of crop straws, but also increase the storage time. Currently the corn and silage corn cultivated areas are 3.35×107 and 2.083×106 hm2 in China. The corn stover (CS) annual production is about 260 million tons. However, due to the requirements of the moisture content and freshness, only the un-harvested or newly harvested CS can be used as ensiling. This limits the operation time of ensiling and the scope of CS. In order to expand the available range of CS and reduce the unnecessary use of additives, the advantages of three straw feed processing methods of silage, microbial silage and steam explosion were studied. On these bases, the feasibility of improving dry CS ensiling performance by steam-explosion pretreatment was tested in this work. First, the dry CS was cut into 3-5 cm, adjusted the moisture content to 50% (w/w) and pretreated under different intensities (0.8-1.4 MPa, 5 min) in a 5 L steam explosion reactor. The steam-exploded CS was water-washed to remove the soluble fraction. Then the structural components of cellulose, hemicellulose and Klason lignin in the solid residual and the soluble sugar, acetic acid and furfural in the water-washed liquor were determined according to the two-step quantitative hydrolysis method recommended by National Renewable Energy Laboratory (NREL). Based on these data, the material recovery ratio was calculated to evaluate the efficiency of steam explosion pretreatment. Then, the pretreated and un-pretreated CS samples were used in ensiling experiments. In addition to water, any microbial inoculants and enzyme was not used. The samples including control samples were added tap water according to the real moisture content and adjusted the final moisture content to 70%(w/w). Each 5 kg sample was loaded in a sealed plastic bag and ensilaged in 15-25℃. Throughout the experiment, silage feed pH value, organic

  2. Report on the treatability study for inerting small quantities of radioactive explosives and explosive components

    Energy Technology Data Exchange (ETDEWEB)

    Loyola, V.M.; Reber, S.D.

    1996-02-01

    As a result of Sandia`s radiation hardening testing on a variety of its explosive components, radioactive waste streams were generated and have to be disposed of as radioactive waste. Due to the combined hazards of explosives and radioactivity, Sandia`s Radioactive and Mixed Waste Management organization did not have a mechanism for disposal of these waste streams. This report documents the study done to provide a method for the removal of the explosive hazard from those waste streams. The report includes the design of the equipment used, procedures followed, results from waste stream analog tests and the results from the actual explosive inerting tests on radioactive samples. As a result of the inerting treatment, the waste streams were rendered non-explosive and, thus, manageable through normal radioactive waste disposal channels.

  3. Sandia Combustion Research Program

    Energy Technology Data Exchange (ETDEWEB)

    Johnston, S.C.; Palmer, R.E.; Montana, C.A. (eds.)

    1988-01-01

    During the late 1970s, in response to a national energy crisis, Sandia proposed to the US Department of Energy (DOE) a new, ambitious program in combustion research. Shortly thereafter, the Combustion Research Facility (CRF) was established at Sandia's Livermore location. Designated a ''user facility,'' the charter of the CRF was to develop and maintain special-purpose resources to support a nationwide initiative-involving US inventories, industry, and national laboratories--to improve our understanding and control of combustion. This report includes descriptions several research projects which have been simulated by working groups and involve the on-site participation of industry scientists. DOE's Industry Technology Fellowship program, supported through the Office of Energy Research, has been instrumental in the success of some of these joint efforts. The remainder of this report presents results of calendar year 1988, separated thematically into eleven categories. Referred journal articles appearing in print during 1988 and selected other publications are included at the end of Section 11. Our traditional'' research activities--combustion chemistry, reacting flows, diagnostics, engine and coal combustion--have been supplemented by a new effort aimed at understanding combustion-related issues in the management of toxic and hazardous materials.

  4. Effect of Steam Explosion Intensity on Xylo-oligosaccharide Production by Enzymatic Hydrolysis of Corncobs%蒸汽爆破强度对玉米芯酶水解制备低聚木糖的影响

    Institute of Scientific and Technical Information of China (English)

    范丽; 徐勇; 勇强; 余世袁

    2012-01-01

    以玉米芯为底物,采用蒸汽爆破预处理与内切木聚糖酶定向酶水解相结合制取低聚木糖。基于高效阴离子交换色谱法对聚合度为2~6的低聚木糖组分的准确定量分析,研究蒸汽爆破预处理反应强度系数及其主要参数(反应温度和维压时间)对玉米芯定向酶水解制取低聚木糖的组成分布及产品得率的影响规律,确立最佳蒸汽爆破预处理条件。蒸汽爆破-定向酶解效果综合评价的结果表明,玉米芯最佳的蒸汽爆破预处理条件是反应强度系数3.76、反应温度200℃、维压时间390s。此时低聚木糖得率可达到最高值20.8%,且主要组分以木三糖、木四糖和木二糖为主,含量分别占总得率的43.5%、21.3%和18.6%。%The production of xylo-oligosaccharides(XOS) from corncobs was performed by steam explosion pre-treatment combined with selectively enzymatic hydrolysis with endo-xylanase.A new precise quantification method for XOS with a degree of polymerization(DP) of 2–6 was developed using high performance anion-exchange chromatography coupled with pulsed amperometric detector(HPAEC-PAD).The effects of pretreatment intensity and major parameters(reaction temperature and reaction time) on the composition distribution and yield of XOS were investigated in order to find optimal steam explosion pretreatment conditions.The results indicated that the optimal explosion intensity factor,temperature and holding time for steam explosion pretreatment of corncobs were 3.76,200 ℃ and 390 s,respectively.Under these conditions,the highest yield of XOS was 20.8%.The resulting product was mainly composed of xylotriose,xylotetraose and xylobiose with a relative content of 43.5%,21.3% and 18.6%,respectively.

  5. 螺杆挤压连续汽爆装置预处理秸秆试验研究%The Experiment of Pretreated Corn Straw by the Device Screw Extrusion and Continuous Steam Explosion

    Institute of Scientific and Technical Information of China (English)

    陈杰; 张秋翔; 蔡纪宁; 李双喜; 冯坤

    2011-01-01

    以玉米秸秆为原料,用螺杆挤压连续汽爆装置进行9组试验,考察了浸渍条件、温度和停留时间对汽爆物组分含量的影响。试验结果表明:从半纤维素水解程度以及汽爆物pH,考察不同浸渍条件的浸渍效果排序为预浸渍〉预喷淋浸渍〉直接喷淋;采用螺杆挤压连续汽爆装置处理玉米秸秆,在直接喷淋3%稀H2SO。溶液、温度170℃、停留时间25min的预处理条件下,半纤维素水解成戊糖的效果最好,戊糖得率最高为7.75%。%Corn straw was used in nine group experiment by the device of screw extrusion and continuous steam explosion. The effects of pretreatment previous immersion, temperature and time were analyzed. Study the effects of different impregnation conditions from the degree of hydrolysis of hemicellulose and steam ordnance pH. The order of the effect of impregnation was: Pre-impregnation superior to pre-spray impregnation to direct spray. Using the device of screw extrusion and continuous steam explosion treated corn straw, the best pretreatment condition is spray 3% H2SO4, temperature 170℃ and time 25 min. In this pretreatment condition, the hydrolysis ofhemicellulose was strong, and the component ofpentaglucose was 7.75%.

  6. An overview of semiconductor bridge, SCB, applications at Sandia National Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Bickes, R.W. Jr.; Grubelich, M.C.; Harris, S.M.; Merson, J.A.; Weinlein, J.H.

    1995-05-01

    The semiconductor bridge, SCB, developed by Sandia National Laboratories is a maturing technology now being used in several applications by Sandia customers. Most applications arose because of a need at the system level to provide explosive assemblies that were light weight, small volume, low cost and required small quantities of electrical energy to function -- for the purposes of this paper we define an explosive assembly to mean the combination of the firing set and an explosive component. As a result, and because conventional firing systems could not meet the stringent size, weight and energy requirements of our customers, we designed and are investigating SCB applications that range from devices for Sandia applications to igniters for fireworks. We present in this paper an overview of SCB technology with specific examples of the system designed for our customers to meet modern requirements that sophisticated explosive systems must satisfy in today`s market environments.

  7. Sandia National Laboratories embraces ISDN

    Energy Technology Data Exchange (ETDEWEB)

    Tolendino, L.F.; Eldridge, J.M.

    1994-08-01

    Sandia National Laboratories (Sandia), a multidisciplinary research and development laboratory located on Kirtland Air Force Base, has embraced Integrated Services Digital Network technology as an integral part of its communication network. Sandia and the Department of Energy`s Albuquerque Operations Office have recently completed the installation of a modernized and expanded telephone system based, on the AT&T 5ESS telephone switch. Sandia is committed to ISDN as an integral part of data communication services, and it views ISDN as one part of a continuum of services -- services that range from ISDN`s asynchronous and limited bandwidth Ethernet (250--1000 Kbps) through full bandwidth Ethernet, FDDI, and ATM at Sonet rates. Sandia has demonstrated this commitment through its use of ISDN data features to support critical progmmmatic services such as access to corporate data base systems. In the future, ISDN will provide enhanced voice, data communication, and video services.

  8. Woody Components and Enzymatic Hydrolysis Property of Tamarix ramosissima under Various Intensity of Steam Explosion%蒸汽爆破预处理对红柳木质组分及酶解性能的影响

    Institute of Scientific and Technical Information of China (English)

    徐红; 徐勇; 勇强; 余世袁

    2012-01-01

    以红柳为材料研究蒸汽爆破预处理强度系数IgR对木质组分和纤维素酶水解性能的影响.结果表明:蒸汽爆破处理对红柳中纤维素和木质素含量的影响并不显著,但是它可以有效破坏红柳的天然物理结构,并且导致大部分半纤维素(木聚糖)产生自水解反应生成单糖和低聚糖溶出,同时产生乙酸、甲酸和糠醛等小分子降解产物.基于纤维素回收率和纤维素酶水解得率分析,在蒸汽爆破强度系数达到4.239时(爆破温度210℃和保温时间10 min)对红柳的预处理效果最佳,汽爆物料中纤维素的含量可达到52.4%,残余木聚糖含量仅为2.01%,并生成0.76%甲酸和3.17%乙酸.采用每克纤维素20.0 FPIU的纤维素酶用量水解5%(w/w)该汽爆红柳物料48 h,纤维素酶水解得率可达到86.6%(未处理的原料仅为15.5%).这表明无化学品添加的蒸汽爆破是适于红柳糖化及生物炼制的一种有效的预处理方法.%It' s essential and important to carry out research on the Tamarix ramosissima high-valued biorefining for promoting national land afforestation, ecological construction and agricultural income as Tamarix ramosissima plant is a kind of aboundant lignocellulosic resources in western China. In this study effects of steam explosion intensity (lgR) on the woody components and cellulose enzymatic hydrolysis performance of Tamarix ramosissima were presented during steam explosion pretreatment( SEP) . The result showed that SEP hardly changed the contents of cellulose and sulfuric acid insoluble lignin in Tamarix ramosissima, however, it could break effectively the native structure of Tamarix ramosissima and promote most xylan to degrade into xylose by its auto-hydrolysis, in which some small molecule derivates came together, such as acetic acid, formic, furfural and so on. In view of the recovery ratio and the enzyme hydrolysis yield of cellulose in Tamarix ramosissima, maximum glucose yields upon

  9. Effect of Pretreatment by Steam Explosion on Degradation of the Banana Stalk Component%蒸汽爆破预处理降解香蕉茎秆纤维素组分的研究

    Institute of Scientific and Technical Information of China (English)

    郑丽丽; 韩冰莹; 盛占武; 陈娇; 李奕星; 赵立欣

    2014-01-01

    分析测试香蕉茎秆总固体含量(TS)和挥发性固体含量(VS)及香蕉茎秆固体剩余物中纤维素、半纤维素、木质素含量;采用蒸汽爆破法对香蕉茎秆进行预处理,探讨不同压力及维压时间下对香蕉茎秆中半纤维素、纤维素、木质素组分的降解程度,分析蒸汽爆破预处理优缺点。试验结果表明,经过蒸汽爆破预处理后,香蕉茎秆的组分被不同程度破坏,当压力为3.5 MPa,维压时间为4 min 时,香蕉茎秆中半纤维素含量由预处理前13.33%降至4.36%,降解率高达67.29%,纤维素含量由48.33%降至39.15%,降解率为18.99%,木质素含量由14.62%降至6.52%,降解率为55.40%,总体含量由76.28%降至50.03%,降解率为34.41%。说明蒸汽爆破技术对香蕉茎秆固体剩余物的预处理效果比较显著,有一定的优越性。%Total solids content (TS) and volatile solids content (VS) of banana stalk were tested, and the content of cellulose, hemicellulose and lignin. Pretreatment banana stalk by steam explosion with different pressures and different time of keeping pressure. Analysis of degradation law of banana stalk hemicellulose, cellulose and lignin content after pretreatment. The samples of the treated and untreated banana stalks were with drawn to determined cellulose, hemicelluloses and lignose contents in dry matter. The results showed that when the explosion pressure was 3.5MPa, the time of maintain steam explosion pressure was 4min, degradation rate of hemicellulose, cellulose and lignin was 67.29%, 18.99%, and 55.40%, degradation rate of the overall content was 34.41%, These results indicate that pretreatment by steam explosion can degrade cellulose of banana stalks, and hemicellulose、 lignin were degraded significantly. The method of steam explosion are further advantages such as environmentally friendly and high-efficiency.

  10. RESEARCH ON PROPERTIES OF PLA/STEAM EXPLOSION PRETREATMENT SISAL COMPOSITF S%蒸汽爆破预处理PLA/剑麻复合材料的性能研究

    Institute of Scientific and Technical Information of China (English)

    张叶青; 冯彦洪; 瞿金平; 何和智; 韩丽燕

    2011-01-01

    对剑麻纤维(SF)进行蒸汽爆破预处理,并与可生物降解材料聚乳酸(PLA)经模压成型制备降解复合材料,研究了混炼温度、SF含量及蒸汽爆破预处理对复合材料力学性能的影响,并通过X射线光电子能谱(XPS)和扫描电子显微镜(SEM)分析了其作用机理.结果表明,蒸汽爆破预处理可提高SF纤维素的含量,增大纤维的比表面积,使复合材料的力学性能得到改善;SF质量分数为50%时,复合材料的综合性能最佳;且随着混炼温度的升高,纤维的分散性变好,复合材料力学性能得到提高,混炼温度为230℃时复合材料的力学性能最佳.%Sisal fiber(SF) was pretreated by steam explosion, the degradation composite were prepared with biodegradable polylactic acid(PLA) by press moulding. The effect of mixing temperatures fiber content and steam explosion pretreatment of SF on the mechanical properties of the composite was investigated, and the mechanism was studied by X-ray photo electron spectroscopy(XPS) and scanning electron micmscope(SEM). The results showed that the content of cellulose and the specific surface area of SF could be increased by steam explosion pretreatment, so that the mechanical properties of composite could be improved. when the mass fraction of SF was 50%, the synthetic properties of the composite were the best, and as the mixing temperature increasing, the dispersion of SF got better, thus the mechanical properties of the composites increased. When the mixing temperature was 230°G, the mechanical properties of the composite were the best.

  11. Influence of Steam Explosion on Physical-Chemical Characteristic of Corn Stalk%蒸汽爆破对玉米秸秆理化特性的影响

    Institute of Scientific and Technical Information of China (English)

    任天宝; 徐桂转; 马孝琴; 于政道; 宋安东; 张百良

    2012-01-01

    在木质纤维素研究领域,对其理化特性进行深入研究有利于资源化开发利用。基于热解实验、傅立叶红外光谱、X射线衍射和扫描电镜分析方法,针对玉米秸秆蒸汽爆破后理化特性的变化进行了研究。结果表明:玉米秸秆蒸汽爆破后热解区域比对照具有更宽的温度范围,最大热分解速率显著提高,反应活化能降低16.25%;木质纤维素特征官能团所对应的特征峰吸收强度差异显著;细胞壁的层次结构破碎化,纤维素结晶度降低14.57%。在此基础上构建了蒸汽爆破过程机理模型。实验结果表明:蒸汽爆破对木质纤维素类材料理化特性的改变有显著影响。%In the research fields of lignocellulosic materials,the physical-chemical properties are an important foundation for the resource conversion.Employing thermal gravimetric analysis,Fourier transform infrared spectroscopy,X-ray diffraction and scanning electron microscopy methods,physical-chemical properties changes of steam exploded corn stalk were studied.The results of analysis showed that pyrolysis region of steam exploded corn stalk had a wider temperature range compared with the control substance,during which the maximum self-heating rate increased significantly and activation energies(E) decreased by 16.25%.The characteristic peak absorption intensity was significantly different.The hierarchical structure of the cell wall was completely destroyed,and crystallinity of lignocellulose decreased by 14.57%.Based on this analysis,a mechanism model of steam explosion pretreatment was constructed.The results indicate that physical-chemical properties of corn stalk are significantly affected by steam explosion pretreatment.

  12. Development of the Sandia Cooler.

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Terry Alan; Koplow, Jeffrey P.; Staats, Wayne Lawrence,; Curgus, Dita Brigitte; Leick, Michael Thomas.; Matthew, Ned Daniel; Zimmerman, Mark D.; Arienti, Marco; Gharagozloo, Patricia E.; Hecht, Ethan S.; Spencer, Nathan A.; Vanness, Justin William.; Gorman, Ryan

    2013-12-01

    This report describes an FY13 effort to develop the latest version of the Sandia Cooler, a breakthrough technology for air-cooled heat exchangers that was developed at Sandia National Laboratories. The project was focused on fabrication, assembly and demonstration of ten prototype systems for the cooling of high power density electronics, specifically high performance desktop computers (CPUs). In addition, computational simulation and experimentation was carried out to fully understand the performance characteristics of each of the key design aspects. This work culminated in a parameter and scaling study that now provides a design framework, including a number of design and analysis tools, for Sandia Cooler development for applications beyond CPU cooling.

  13. Sandia Laboratories energy programs

    Energy Technology Data Exchange (ETDEWEB)

    Lundergan, C.D.; Mead, P.L.; Gillespie, R.S. (eds.)

    1977-03-01

    As one of the multiprogram laboratories of the Energy Research and Development Administration, Sandia Laboratories applies its resources to a number of nationally important programs. About 75 percent of these resources are applied to research and development for national security programs having to do primarily with nuclear weapons--the principal responsibility of the Laboratories. The remaining 25 percent are applied to energy programs and energy-related activities, particularly those requiring resources that are also used in nuclear weapon and other national security programs. Examples of such energy programs and activities are research into nuclear fusion, protection of nuclear materials from theft or diversion, and the disposal of radioactive waste. A number of technologies and disciplines developed for the weapon program are immediately applicable for the development of various energy sources. Instruments developed to detect, measure, and record the detonation of nuclear devices underground, now being used to support the development of in-situ processing of coal and oil shale, are examples. The purpose of this report is to provide an overview of these and other energy programs being conducted by these laboratories in the development of economical and environmentally acceptable alternative energy sources. Energy programs are undertaken when they require capabilities used at the Laboratories for the weapon program, and when they have no adverse effect upon that primary mission. The parallel operation of weapon and energy activities allows optimum use of facilities and other resources.

  14. Effects of Washing Method on Detoxification of Steam Explosion Corn Stalk%洗涤模式对蒸汽爆破玉米秸秆脱毒的影响

    Institute of Scientific and Technical Information of China (English)

    张南南; 赖晨欢; 李鑫; 朱均均; 张管星; 余世袁; 勇强

    2012-01-01

    采用3种洗涤模式对蒸汽爆破预处理玉米秸秆进行脱毒,研究了其酶水解液的乙醇发酵性能,比较了不同用水量下逆流洗涤蒸汽爆破玉米秸秆酶水解液的乙醇发酵性能.结果表明,逆流洗涤脱除主要发酵抑制物的效果最好,批式分次洗涤效果次之,批式洗涤效果最差,3种洗涤方式对主要发酵抑制物乙酸的脱除率分别为100%、92.27%和77.66%.蒸汽爆破玉米秸秆经固液比1∶7.5(g∶ mL)逆流洗涤、酶水解和水解糖液浓缩后被酿酒酵母发酵24 h,糖利用率97.58%,乙醇得率93.74%.%Corn stalk pretreated through steam explosion was detoxified by three washing methods. The effects of different washing methods, as well as water consumption of countercurrent washing on removal of inhibitors and ethanol fermentation of enzymatic hydrolyzate were investigated in present study. The efficiency of detoxification among tested washing methods declined by countercurrent washing, three-stage batch washing and batch washing successively. The sugar consumption and ethanol yield were 97. 58% and 93.74% respectively, when the steam explosion pretreated corn stalk was detoxified by countercurrent washing with solid-liquid ratio 1∶7.5, and the concentrated hydrolyzate was fermented by Saccharomyces cerevisiae for 24 h.

  15. 梓木蒸汽爆破过程传热数值模拟初探%A preliminary study on numerical simulation of heat-transfer mechanism during Catalpa ovata wood steam explosion process

    Institute of Scientific and Technical Information of China (English)

    郝晓峰; 刘文金; 李贤军; 吕建雄; 孙德林; 陈新义

    2014-01-01

    Numerical simulation of heat transfer mechanism during Catalpa ovata wood steam explosion pretreatment was studied by taking into account the effects of internal moisture, moist air and solid wood frame materials on heat transfer. One-dimensional heat transfer mathematical model was established based on Fourier law, the numerical calculation program for this model was compiled based on Finite Difference Scheme and Formula Translator Fortran, and the accuracy of this model was validated by the experiments. The results show that, this model can more accurately reflect the Catalpa ovate wood steam explosion process, and quantitively analyze the variation of temperature and pressure with time in tested wood.%针对梓木蒸汽爆破过程中传热机理的数值模拟进行研究。考虑木材内部水分、湿空气与固相骨架物质的对传热的影响,基于傅里叶导热定律,建立一维梓木爆破过程中传热数学模型,利用有限差分数学思想结合Fortran语言编写该模型数值计算程序,并通过实验验证了模型的准确性。结果表明该模型可以较为准确的反应梓木蒸汽爆破过程中的加热过程,能够定量分析板材内的温度、压力随时间变化的规律。

  16. 玉米秸秆氨化汽爆处理及其固态发酵%Steam-explosion of Ammoniated Corn Straw and Subsequent Solid State Fermentation

    Institute of Scientific and Technical Information of China (English)

    杨雪霞; 陈洪章; 李佐虎

    2001-01-01

    Corn straw was ammoniated and steam-exploded. This pretreatment resulted in degradation of hemicellul- ose and less degradation of cellulose and lignin. In addition, substrate hydrolysis was enhanced, the content of nitrogen was increased. After solid state fermentation of pretreated corn straw, the content of protein was increased and the content of cellulose was reduced. Steam-explosion of ammoniated corn straw is suitable for bioconversion.%在加氨条件下对玉米秸秆进行了汽爆处理(简称氨化汽爆)和固态发酵. 结果表明: 氨化汽爆同样可使秸秆中的半纤维素降解,并使玉米秸秆的酶解率提高到42.97%, 同时可使秸秆的有机氮含量提高1.27倍. 利用氨化汽爆秸秆进行固态发酵,可提高蛋白含量到23.45%,比不加氨汽爆的玉米秸秆提高了1倍. 而加过氧化氢的氨化汽爆不利于微生物发酵.

  17. A Study on Production of Feed From Steam Explosion Pretreated Corn Straw Through Solid State Fermentation%汽爆玉米秸秆固态发酵生产饲料的研究

    Institute of Scientific and Technical Information of China (English)

    杨雪霞; 陈洪章; 李佐虎

    2001-01-01

    The study of producing protein feed with the corn straw crushedvia “steam explosion” pretreatment and fermenled in a soid state optimized the technological conditions. The results showed that the fermentation effects of the steam explosion pretreated corn straw were better than that of the same material untreated. The protein contents of the feed were 16.7%,enzyme activity of FPA was 9.5 U/g.min and the weightlessness rate was 27% after 4 days fermentation under the conditions of 37℃ temperature, solid and liquid of 1∶3 and 4.5% (NH4)2SO4.%以汽爆玉米秸秆为原料,进行固态发酵生产蛋白饲料的研究,优化了发酵的工艺条件。实验结果表明:发酵温度为37℃,固液比为1∶3,培养基中(NH4)2SO4的添加量为4.5%,经过4d发酵,蛋白含量为16.7%,FPA酶活为9.5U/g.min,失重率为27%。汽爆秸秆发酵结果好于未处理的秸秆。

  18. Sandia Technology engineering and science accomplishments

    Energy Technology Data Exchange (ETDEWEB)

    1994-02-01

    This report briefly discusses the following research being conducted at Sandia Laboratories: Advanced Manufacturing -- Sandia technology helps keep US industry in the lead; Microelectronics-Sandia`s unique facilities transform research advances into manufacturable products; Energy -- Sandia`s energy programs focus on strengthening industrial growth and political decisionmaking; Environment -- Sandia is a leader in environmentally conscious manufacturing and hazardous waste reduction; Health Care -- New biomedical technologies help reduce cost and improve quality of health care; Information & Computation -- Sandia aims to help make the information age a reality; Transportation -- This new initiative at the Labs will help improve transportation, safety,l efficiency, and economy; Nonproliferation -- Dismantlement and arms control are major areas of emphasis at Sandia; and Awards and Patents -- Talented, dedicated employees are the backbone of Sandia`s success.

  19. Effects of steam explosion pretreatment on rice straw particleboard%蒸汽爆破预处理对稻草刨花板性能的影响∗

    Institute of Scientific and Technical Information of China (English)

    罗鹏; 杨传民; 赵登辉

    2015-01-01

    Rice straw,whose outer surface was covered with smooth,water-repellent wax layer,has a high con-tent of silica.Conventional urea formaldehyde (UF)cannot be used to make rice straw particleboard.This study adopted steam explosion to pretreat rice straw with temperature being 160 and 170 ℃ and residence time being 2,4,6 min,respectively.Rice straw particleboards were made from steam exploded rice straw with UF.The results showed the steam explosion effectively got rid of the silica and wax layer on the outer surface of rice straw as well as lowered the pH value of rice straw.As intensity of pretreatment increased,the physical and mechanical properties of panel increased.Particleboards made from rice straw pretreated under 160 ℃/6 min, 170 ℃/4 min and 170 ℃/6 min met the strength requirement of GB/T 4897-2003.%稻草 Si O 2含量较高,并且表皮被光滑的斥水性的蜡层所覆盖,无法使用传统的脲醛树脂(UF)制造稻草刨花板.采用蒸汽爆破法预处理稻草,预处理温度分别为160和170℃,时间分别为2,4和6 min.以预处理后的稻草为原料,利用 UF 为胶粘剂制作稻草刨花板.实验结果表明,经过160℃,停留时间为6 min 和170℃,停留时间分别为4与6 min预处理的稻草制备的刨花板的强度性能达到了国标 GB/T 4897-2003的要求.

  20. Research on factors that influence the effect of enzymatic in steam explosion pretreatment%蒸汽爆破预处理中影响酶解效果因素的研究

    Institute of Scientific and Technical Information of China (English)

    高龙; 张秋翔; 李双喜; 蔡纪宁; 吴泽

    2014-01-01

    To increace the enzymatic hydrolyzation and the economic benefit during the process of staw steam blasting for ethanol.The effect of material temperature,outlet diameter,steam blasting times on enzymatic were investigated.The way of increasing enzymatic hydrolyzation was found.The economic pretreatment parameters are optimised in the current condition of enzymes,according to this therory.The impact of material temperature on the enzymatic effect was remarkable.It was more conducive for hydrolysis with higher temperature when the fiber structure was not destroyed and does not produce enzymatic Inhibitor.; the smaller outlet diameter was,the better enzymatic effect got without being blocked.The effect of stream explosive numbers on the pretreatment had a significant impact.%为提高秸秆蒸汽爆破预处理制乙醇的酶解率及经济效益,研究了蒸汽爆破预处理过程中影响酶解效果的物料温度、喷爆出口直径、汽爆次数等因素,以寻找提高酶解效率的方法.试验结果显示,物料温度对酶解效果有显著影响,在不破坏纤维素结构且不产生酶解抑制物的前提下,温度越高越有利于水解;在不致堵塞喷爆口的前提下,喷爆出口直径越小酶解效果越好;汽爆次数对于酶解物料预处理效果有着显著的积极影响.

  1. Regression optimization and structuralanalysis on instaneous steam explosion pretreatment of corn stalk%玉米秸秆瞬间蒸汽爆破预处理的回归优化和结构分析

    Institute of Scientific and Technical Information of China (English)

    刘黎阳; 刘晨光; 孜力汗; 白凤武; 徐友海; 胡世洋

    2014-01-01

    采用响应面法回归分析优化瞬间蒸汽爆破预处理玉米秸秆过程,研究了汽爆压强、维压时间以及填料量三因素对酶解糖产率的影响,基于 Box-Behnken 设计,分析并获得了一个二阶线性方程模型,能够较好地拟合实验值。获取的最优条件为汽爆压强3.5 MPa,维压时间50 s,填料量60 g,此时糖产率达到54.37%,相比于未处理物料,其糖化率提高了1.88倍。采用扫描电镜、X 射线衍射分析以及傅里叶红外光谱对处理前后的物料进行结构和组分分析,与未处理的物料相比,处理后的物料结晶度明显降低,颗粒度减小,可及度显著提高。%This study aimed to perform a response surface methodology (RSM)regression analysis which led to the optimization on the operation condition of instaneous steam explosion pretreatment on corn stalk.The effects of pressure,time and filling quantity on total sugar yield obtained from enzymatic hydrolysis of pretreated corn stalk were investigated.Based on Box-Behnken design,a second order polynomial equation mode was obtained which can fit well the experment values.The optimized conditions for instaneous steam explosion pretreatment were 3.5 MPa for pressure,50 s for time and 60 g for filling quantity with a sugar yield of 54.37%.Compared with the untreated materials,the saccharification rate increased 1.88 times.Compared with the un-treated corn stalk,the pretreated corn stalk was found to be porous,less crystalline and favorable to enzymatic hydrolysis based on the structural and component analyses on the treated and untreated materials by scanning electron microscopy (SEM),X-ray diffraction (XRD)and Fourier transform infrared spectroscopy (FTIR).

  2. 瞬间弹射蒸汽爆破增强离子液体对水稻秸秆的预处理效果%Enhanced effects of ionic liquid pretreatment on rice straw by instant catapult steam explosion

    Institute of Scientific and Technical Information of China (English)

    覃锦程; 郝学密; 刘黎阳; 刘晨光; 白凤武

    2015-01-01

    选取具有不同组分分离效果的离子液体 1-乙基-3-甲基咪唑醋酸盐([Emim]Ac)和 1-乙基-3-甲基咪唑氯盐([Emim]Cl),并联用瞬间弹射蒸汽爆破(instant catapult steam explosion, ICSE)对水稻秸秆进行预处理.离子液体导致了组分的重排,使纤维素更多地暴露于物料表面,同时减弱了木质素对纤维素紧密交联的程度.ICSE的使用提升了离子液体的预处理效果,酶解糖收率比单纯使用离子液体升高了14.83%([Emim]Ac)和13.14%([Emim]Cl),其中ICSE联用[Emim]Ac的糖收率最高达97.00%.采用扫描电镜(SEM)和热重分析仪(TGA)进行物料结构分析,证实了ICSE联用离子液体有助于破坏物料的致密结构,增加无定形区,从而提高酶解糖收率.%In this study, two kinds of ionic liquid, including 1-ethyl-3-methylimidazolium acetate and 1-ethyl-3-methylimidazolium chloride were used to pretreat rice straw with instant catapult steam explosion (ICSE). The rearrangement of components were caused by ionic liquid pretreatment, which made more cellulose exposed at the surface of rice straw and weakened the cross-link between lignin and cellulose. Through enzymatic hydrolysis analysis, ICSE enhanced the effects of ionic liquid pretreatment by improving the sugar yield. Compared with the sugar yield as using ionic liquid alone, the sugar yield as combination of ICSE and ionic liquid increased by 14.83% ([Emim]Ac) and 13.14% ([Emim]Cl). The highest value reached 97.00% under the pretreatment by ICSE combine with [Emim]Ac. The structural changes were also analyzed by scanning electron microscope (SEM) and thermo gravimetric analysis (TGA). The pretreated materials became more porous with larger amorphous region, and consequently the sugar yield raised.

  3. Sandia Combustion Research: Technical review

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-01

    This report contains reports from research programs conducted at the Sandia Combustion Research Facility. Research is presented under the following topics: laser based diagnostics; combustion chemistry; reacting flow; combustion in engines and commercial burners; coal combustion; and industrial processing. Individual projects were processed separately for entry onto the DOE databases.

  4. NMSBA: Sandia Biotech 2016 Report

    Energy Technology Data Exchange (ETDEWEB)

    Ruffing, Anne [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-06-01

    The objective of this project is to modify the FluorAbody plasmid previously developed by Sandia Biotech to include a binding site for biotin by introducing the biotin carboxyl carrier protein (BCCP)and a gold binding protein (GBP) into a loop of the red fluorescent protein (mRFP).

  5. Committee to evaluate Sandia`s risk expertise: Final report. Volume 1: Presentations

    Energy Technology Data Exchange (ETDEWEB)

    Dudley, E.C.

    1998-05-01

    On July 1--2, 1997, Sandia National Laboratories hosted the External Committee to Evaluate Sandia`s Risk Expertise. Under the auspices of SIISRS (Sandia`s International Institute for Systematic Risk Studies), Sandia assembled a blue-ribbon panel of experts in the field of risk management to assess their risk programs labs-wide. Panelists were chosen not only for their own expertise, but also for their ability to add balance to the panel as a whole. Presentations were made to the committee on the risk activities at Sandia. In addition, a tour of Sandia`s research and development programs in support of the US Nuclear Regulatory Commission was arranged. The panel attended a poster session featuring eight presentations and demonstrations for selected projects. Overviews and viewgraphs from the presentations are included in Volume 1 of this report. Presentations are related to weapons, nuclear power plants, transportation systems, architectural surety, environmental programs, and information systems.

  6. Optimization of Enzymatic Hydrolysis Process of Corn Stalk by Water/Ethanol Extraction after Steam Explosion%响应面法优化水/醇处理后汽爆玉米秸秆酶解

    Institute of Scientific and Technical Information of China (English)

    宁欣强; 王远亮; 曾国明

    2011-01-01

    In order to improve the production of reducing sugar yield from corn stalk by water/ethanol extraction after steam explosion, the enzymatic hydrolysis process was optimized. By adopting the response surface methodology, the production of reducing sugar yield can reach 672. 36 mg/g under the following conditions: the substrate mass concentration is 53.28 g/L,the cellulase loading is 53.32 FPU/g and the reaction time is 60. 45 h. Compared with untreated and steam exploded corn stalks, the production of reducing sugar yield increased by 170. 46% and 28. 97% respectively. The chemical composition of untreated/treated corn stalk was investigated and their structures were detected by means of scanning electron microscope (SEM) and X-ray diffraction ( XRD). The results show that the relative content of cellulose in corn stalk treated by water/ethanol extraction increased significantly, and the relative crystallinity was improved, but the changes of structure lead to easier adsorption of the cellulase molecules.%为了提高水/醇处理后汽爆玉米秸秆的酶解还原糖产率,对其酶解条件进行了优化.通过响应面优化法确 定了底物质量浓度为53.28g/L,纤维素酶用量为53.32 FPU/g,酶解时间为60.45 h时,还原糖产率可达672.36mg/g,与秸秆物料及汽爆后物料相比,酶解还原糖产率分别提高了170.46%和28.97%.化学组分及结构形貌分析表明,汽爆水/醇处理后物料纤维素含量显著增加,物料相对结晶度增高,其结构更有利于纤维素酶分子的吸附.

  7. Steam Turbines

    Science.gov (United States)

    1981-01-01

    Turbonetics Energy, Inc.'s steam turbines are used as power generating systems in the oil and gas, chemical, pharmaceuticals, metals and mining, and pulp and paper industries. The Turbonetics line benefited from use of NASA research data on radial inflow steam turbines and from company contact with personnel of Lewis Research Center, also use of Lewis-developed computer programs to determine performance characteristics of turbines.

  8. Effects of neutralizing agents on enzymatic hydrolysis of corn stover pretreated by dilute acid-mediated steam explosion%中和剂对稀酸蒸爆玉米秸秆酶解效果的影响

    Institute of Scientific and Technical Information of China (English)

    张红漫; 赵晶; 林增祥; 黄和

    2011-01-01

    Com stovers pretreated by dilute sulphuric acid-mediated steam explosion were neutralized to pH 5 with Ca(OH) 2, NaOH and NH40H, or alternatively washed with water to the same pH. The cellulose conversion rates by enzymatic hydrolysis under the conditions of solide liquid ratio of 1: 10 and cellulases loading of 14 U/g cellulose were investigated. The results showed that after enzymatic hydrolysis for 72 h, the cellulose conversion rates of the cooresponding samples were up to 91.7%, 80. 7%, 83. 1%and 81.7%, respectively. Meanwhile, the effects of various factors on the efficency of cellulase hysrolysis were also discussed. Considering the cost and following fermentation process, the neutralizing agent NH4OH was the choice for the industrialization production.%以稀酸蒸爆的玉米秸秆为研究对象,考察直接水洗、Ca(OH)2 、NaOH、氨水中和物料至pH 5,在固液比1:10、酶添加量为每克纤维素14 U(滤纸酶活)的酶解条件下对纤维素转化率的影响.结果表明:水洗、Ca(OH)2、NaOH、氨水中和物料酶解72 h后,纤维素转化率分别为91.7%、80.7%、83.1%及81.7%.同时对影响纤维素酶解效率的各种因素进行了探讨.从综合成本及后续发酵过程考虑,用氨水中和稀酸蒸爆物料更适合于工业化生产.

  9. Mobile robotics research at Sandia National Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Morse, W.D.

    1998-09-01

    Sandia is a National Security Laboratory providing scientific and engineering solutions to meet national needs for both government and industry. As part of this mission, the Intelligent Systems and Robotics Center conducts research and development in robotics and intelligent machine technologies. An overview of Sandia`s mobile robotics research is provided. Recent achievements and future directions in the areas of coordinated mobile manipulation, small smart machines, world modeling, and special application robots are presented.

  10. Charter of the Sandia National Laboratories Sandia Postdoctoral Development (SPD) Association.

    Energy Technology Data Exchange (ETDEWEB)

    McBride, Amber Alane Fisher; McBride, Amber Alane Fisher; Rodgers, Theron; Dong, Wen; Juan, Pierre-Alexandre; Barkholtz, Heather; Alley, William Morgan; Wolk, Benjamin Matthew; Vane, Zachary Phillips; Priye, Aashish; Ball, Cameron Scott; McBride, Amber Alane Fisher

    2017-03-01

    The SNL SPD Association represents all personnel that are classified as Postdoctoral Appointees at Sandia National Laboratories. The purpose of the SNL SPD Association is to address the needs and concerns of Postdoctoral Appointees within Sandia National Laboratories.

  11. Steam generators

    Energy Technology Data Exchange (ETDEWEB)

    Beckmann, G.; Gilli, P.V.; Fritz, K.; Lippitsch, J.

    1975-12-02

    A steam generator is disclosed which is particularly adapted to be used in nuclear power plants. A casing is provided with an inlet and outlet to receive and discharge a primary heating fluid from which heat is to be extracted. A pair of tube plates extend across the interior of the casing at the region of the inlet and outlet thereof, and a plurality of tubes extend along the interior of the casing and are connected in parallel between the tube plates with all of the tubes having open ends communicating with the inlet and outlet of the casing so that the primary heating fluid will flow through the interior of the tubes while a fluid in the casing at the exterior of the tubes will extract heat from the primary fluid. The casing has between the tubes at the region of the inlet a superheating chamber and at the region of the outlet a preheating chamber and between the latter chambers an evaporating chamber, the casing receiving water through an inlet at the preheating chamber and discharging superheated steam through an outlet at the superheating chamber. A separator communicates with the evaporating chamber to receive a mixture of steam and water therefrom for separating the steam from the water and for delivering the separated steam to the superheating chamber.

  12. Sandia`s computer support units: The first three years

    Energy Technology Data Exchange (ETDEWEB)

    Harris, R.N. [Sandia National Labs., Albuquerque, NM (United States). Labs. Computing Dept.

    1997-11-01

    This paper describes the method by which Sandia National Laboratories has deployed information technology to the line organizations and to the desktop as part of the integrated information services organization under the direction of the Chief Information officer. This deployment has been done by the Computer Support Unit (CSU) Department. The CSU approach is based on the principle of providing local customer service with a corporate perspective. Success required an approach that was both customer compelled at times and market or corporate focused in most cases. Above all, a complete solution was required that included a comprehensive method of technology choices and development, process development, technology implementation, and support. It is the authors hope that this information will be useful in the development of a customer-focused business strategy for information technology deployment and support. Descriptions of current status reflect the status as of May 1997.

  13. Sandia software guidelines: Software quality planning

    Energy Technology Data Exchange (ETDEWEB)

    1987-08-01

    This volume is one in a series of Sandia Software Guidelines intended for use in producing quality software within Sandia National Laboratories. In consonance with the IEEE Standard for Software Quality Assurance Plans, this volume identifies procedures to follow in producing a Software Quality Assurance Plan for an organization or a project, and provides an example project SQA plan. 2 figs., 4 tabs.

  14. Sandia National Laboratories analysis code data base

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, C.W.

    1994-11-01

    Sandia National Laboratories, mission is to solve important problems in the areas of national defense, energy security, environmental integrity, and industrial technology. The Laboratories` strategy for accomplishing this mission is to conduct research to provide an understanding of the important physical phenomena underlying any problem, and then to construct validated computational models of the phenomena which can be used as tools to solve the problem. In the course of implementing this strategy, Sandia`s technical staff has produced a wide variety of numerical problem-solving tools which they use regularly in the design, analysis, performance prediction, and optimization of Sandia components, systems and manufacturing processes. This report provides the relevant technical and accessibility data on the numerical codes used at Sandia, including information on the technical competency or capability area that each code addresses, code ``ownership`` and release status, and references describing the physical models and numerical implementation.

  15. Sandia concentrator array testing experiences

    Science.gov (United States)

    Gerwin, H. J.; Rogers, C. B.; Beavis, L. C.

    An assortment of PV concentrator modules and arrays have been tested and evaluated at the Sandia outdoor test facility. These test items include actively-cooled parabolic reflector and linear Fresnel lens concentrators, and actively- and passively-cooled point focus collectors. Maximum power efficiencies were measured over a range of sunlight intensities and cell temperatures, then a linear equation relating efficiency to cell temperature and insolation was developed for each module and array by using a multiple linear regression analysis technique on the data. An evaluation of the suitability of Polyvinyl-Butyral (PVB) as a material used to laminate solar cells to glass is presented. Some general observations are made on the accuracy of tracking systems, and the maintenance of these systems.

  16. 稀酸浸渍气爆预处理对纤维素乙醇同步糖化发酵的影响%Influence of dilute acid impregnation/steam-explosion pretreatment on simultaneous saccharification and fermentation of cellulosic ethanol

    Institute of Scientific and Technical Information of China (English)

    赵鹏翔; 吴毅; 李强

    2013-01-01

    Ethanol produced by lignocellulose takes the most attention of the fuel ethanol. The low efficiency of the pretreatment process limits the development of cellulosic ethanol. In this study, the traditional steam explosion pretreatment process is improved by introducing dilute acid impregnation, which enhances the simultaneous saccharification and fermentation (SSF) of cellulosic ethanol effectively. The final ethanol concentration after the SSF using sulfuric acid and acetic acid impregnation reaches 27. 5 g/L and 25. 5 g/L,respectively,which corresponds to 81% and 77% of the theoretical ethanol yield as well. However,by using the traditional steam explosion pretreatment,the final ethanol concentration is only 17.5 g/L, which is 63% of the theoretical ethanol yield. Compared with the traditional steam explosion pretreatment, dilute acid impregnation can effectively improve the result of steam explosion pretreatment and reduce the formation of the inhibitors, thereby increasing the production efficiency and reducing costs. This new method has potential to be applied to the industrialized production of cellulosic ethanol.%纤维素乙醇预处理过程效率偏低是影响纤维素乙醇发展的一个重要因素.通过改进传统蒸汽爆破预处理方法,在蒸汽爆破前加入稀酸浸渍,有效地提高了后续同步糖化发酵的水平.采用硫酸浸渍气爆预处理后的草浆同步糖化发酵乙醇质量浓度达到27.5 g/L,达到葡萄糖乙醇理论产率的81%;采用乙酸浸渍气爆预处理后的草浆同步糖化发酵乙醇质量浓度达到25.5 g/L,达到葡萄糖乙醇理论产率的77%;相比传统气爆草浆用于同步糖化发酵,稀酸预处理能有效地减少抑制物的生成,提高后续直接利用草浆进行同步糖化发酵的水平,从而提高生产效率,降低生产成本,是可应用于工业化纤维素乙醇生产的重要方法.

  17. Sandia`s network for supercomputing `95: Validating the progress of Asynchronous Transfer Mode (ATM) switching

    Energy Technology Data Exchange (ETDEWEB)

    Pratt, T.J.; Vahle, O.; Gossage, S.A.

    1996-04-01

    The Advanced Networking Integration Department at Sandia National Laboratories has used the annual Supercomputing conference sponsored by the IEEE and ACM for the past three years as a forum to demonstrate and focus communication and networking developments. For Supercomputing `95, Sandia elected: to demonstrate the functionality and capability of an AT&T Globeview 20Gbps Asynchronous Transfer Mode (ATM) switch, which represents the core of Sandia`s corporate network, to build and utilize a three node 622 megabit per second Paragon network, and to extend the DOD`s ACTS ATM Internet from Sandia, New Mexico to the conference`s show floor in San Diego, California, for video demonstrations. This paper documents those accomplishments, discusses the details of their implementation, and describes how these demonstrations supports Sandia`s overall strategies in ATM networking.

  18. Building business from technology: The Sandia experience

    Energy Technology Data Exchange (ETDEWEB)

    Traylor, L.B.

    1995-07-01

    This paper describes New Ventures, a new initiative at Sandia National Laboratories that encourages the creation of new businesses based on laboratory technology as a timely, efficient means of technology transfer. Sandia`s New Ventures program has shown that a dedicated effort can produce significant results. In the three years prior to this program`s launch, just two ventures per year on average were created based on laboratory technology. By comparison, the New Ventures program has enabled 20 new ventures in its first nine months of full operation.

  19. Building business from technology: The Sandia experience

    Energy Technology Data Exchange (ETDEWEB)

    Traylor, L.B.

    1995-07-01

    This paper describes New Ventures, a new initiative at Sandia National Laboratories that encourages the creation of new businesses based on laboratory technology as a timely, efficient means of technology transfer. Sandia`s New Ventures program has shown that a dedicated effort can produce significant results. In the three years prior to this program`s launch, just two ventures per year on average were created based on laboratory technology. By comparison, the New Ventures program has enabled 20 new ventures in its first nine months of full operation.

  20. Explosives tester

    Science.gov (United States)

    Haas, Jeffrey S [San Ramon, CA; Howard, Douglas E [Livermore, CA; Eckels, Joel D [Livermore, CA; Nunes, Peter J [Danville, CA

    2011-01-11

    An explosives tester that can be used anywhere as a screening tool by non-technical personnel to determine whether a surface contains explosives. First and second explosives detecting reagent holders and dispensers are provided. A heater is provided for receiving the first and second explosives detecting reagent holders and dispensers.

  1. NNSA Master Asset Map - Sandia National Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Billie, Gepetta S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-01-01

    This report gives information on the following topics related to Sandia National Laboratories: site leadership's vision, condition, footprint management, major gaps and risks, and proposed investment plan.

  2. Sandia Laboratories technical capabilities: computation systems

    Energy Technology Data Exchange (ETDEWEB)

    1977-12-01

    This report characterizes the computation systems capabilities at Sandia Laboratories. Selected applications of these capabilities are presented to illustrate the extent to which they can be applied in research and development programs. 9 figures.

  3. Sandia software guidelines: Volume 5, Tools, techniques, and methodologies

    Energy Technology Data Exchange (ETDEWEB)

    1989-07-01

    This volume is one in a series of Sandia Software Guidelines intended for use in producing quality software within Sandia National Laboratories. This volume describes software tools and methodologies available to Sandia personnel for the development of software, and outlines techniques that have proven useful within the Laboratories and elsewhere. References and evaluations by Sandia personnel are included. 6 figs.

  4. 蒸气爆破预处理芦苇酶解工艺优化及产物分析%Hydrolysate Alalyze and Enzymatic Saccharification Conditions Optimization of Reed by Steam Explosion Pretreatment

    Institute of Scientific and Technical Information of China (English)

    朱作华; 蔡霞; 严理; 李智敏; 谢纯良; 胡镇修; 彭源德

    2015-01-01

    Reed (Phragmites australis)was a kind of alternative raw material for bio-ethanol production. The important parame-ters of influencing enzymatic sacharification for reed were screened by Plackett-Burman design. Furthermore, based on Box-Behnken design, the enzymatic saccharification conditions of reed by steam explosion pretreatment were optimized by response surface methodology, and a mathematial model of a second order quadratic equation was developed for reducing sugar conen-tration. The hydrolysate was alalysed by HPLC. The resutlts suggested that the three important parameters included dilute sul-phuric acid, Tween-80 and manganese sulfate concentration. The optimized technologial parameters were as follows: dilute sulphuric acid concentration 0.88%,、Tween-80 concentration 0.61%, manganese sulfate contration 0.26%. The reducing sugar concentration was up to 45.68 mg/mL. The results verified the validity of the mathematical model. The concentrations of glu-cose and xylose were 21.36 mg/mL and 16.62 mg/mL, respectly. Contents of arabinose, cellobiose and galactose were very low.%芦苇(Phragmites australis)是一种有潜力的能源作物,为优化芦苇酶解糖化工艺,应用Plackett-Burman试验设计筛选影响芦苇酶糖化的重要参数,通过Box-Behnken设计确定重要参数的最佳水平,应用高效液相色谱仪(HPLC)对糖化过程中的单糖种类及含量进行分析.结果表明,影响芦苇酶糖化的重要参数是H2SO4浓度、Tween-80和MnSO4浓度,最佳工艺参数为H2SO4浓度0.88%、表面活性剂Tween-80添加量0.61%、MnSO4添加量0.26%,在此条件下,8~10 h可以完成糖化,总还原糖浓度达到45.68 mg/mL,同时验证了数学模型的有效性, 液相分析表明糖化液中主要的糖种类为葡萄糖和木糖, 其含量分别为21.36、16.62 mg/mL,阿拉伯糖、纤维二糖和半乳糖含量较少.

  5. Steam Drum Design for Direct Steam Generation

    OpenAIRE

    Willwerth, Lisa; Müller, Svenja; Krüger, Joachim; Succo, Manuel; Feldhoff, Jan Fabian; Tiedemann, Jörg; Pandian, Juvaraj; Krüger, Dirk; Hennecke, Klaus

    2016-01-01

    For the direct steam generation in solar fields, the recirculation concept has been demonstrated in several installations. Water masses in the solar field vary during transient phases, such as passing clouds. The volume of the steam drum can serve as a buffer during such transients by taking in excess water and providing water storage. The saturated steam mass flow to the superheating section or the consumer can be maintained almost constant during short transients; therefore the steam drum p...

  6. Pathfinder radar development at Sandia National Laboratories

    Science.gov (United States)

    Castillo, Steven

    2016-05-01

    Since the invention of Synthetic Aperture Radar imaging in the 1950's, users or potential users have sought to exploit SAR imagery for a variety of applications including the earth sciences and defense. At Sandia Laboratories, SAR Research and Development and associated defense applications grew out of the nuclear weapons program in the 1980's and over the years has become a highly viable ISR sensor for a variety of tactical applications. Sandia SAR systems excel where real-­-time, high-­-resolution, all-­-weather, day or night surveillance is required for developing situational awareness. This presentation will discuss the various aspects of Sandia's airborne ISR capability with respect to issues related to current operational success as well as the future direction of the capability as Sandia seeks to improve the SAR capability it delivers into multiple mission scenarios. Issues discussed include fundamental radar capabilities, advanced exploitation techniques and human-­-computer interface (HMI) challenges that are part of the advances required to maintain Sandia's ability to continue to support ever changing and demanding mission challenges.

  7. Biomedical engineering at Sandia National Laboratories

    Science.gov (United States)

    Zanner, Mary Ann

    1994-12-01

    The potential exists to reduce or control some aspects of the U.S. health care expenditure without compromising health care delivery by developing carefully selected technologies which impact favorably on the health care system. A focused effort to develop such technologies is underway at Sandia National Laboratories. As a DOE National Laboratory, Sandia possesses a wealth of engineering and scientific expertise that can be readily applied to this critical national need. Appropriate mechanisms currently exist to allow transfer of technology from the laboratory to the private sector. Sandia's Biomedical Engineering Initiative addresses the development of properly evaluated, cost-effective medical technologies through team collaborations with the medical community. Technology development is subjected to certain criteria including wide applicability, earlier diagnoses, increased efficiency, cost-effectiveness and dual-use. Examples of Sandia's medical technologies include a noninvasive blood glucose sensor, computer aided mammographic screening, noninvasive fetal oximetry and blood gas measurement, burn diagnostics and laser debridement, telerobotics and ultrasonic scanning for prosthetic devices. Sandia National Laboratories has the potential to aid in directing medical technology development efforts which emphasize health care needs, earlier diagnosis, cost containment and improvement of the quality of life.

  8. Underground Explosions

    Science.gov (United States)

    2015-09-09

    underground explosions has led to significant progress in the development of geomechanics a science studying mechanical properties of rocks and rock...mining industry. One way to improve methods of fragmentation by explosives involves utilizing the geomechanical properties of the rock massif, in...Geomekhanika krupnomasshtabnykh vzryvov ( Geomechanics of large explosions), Nedra, Moscow, 319 pp. [This book in available in electronic format

  9. Sandia's Z-Backlighter Laser Facility

    Science.gov (United States)

    Rambo, P.; Schwarz, J.; Schollmeier, M.; Geissel, M.; Smith, I.; Kimmel, M.; Speas, C.; Shores, J.; Armstrong, D.; Bellum, J.; Field, E.; Kletecka, D.; Porter, J.

    2016-12-01

    The Z-Backlighter Laser Facility at Sandia National Laboratories was developed to enable high energy density physics experiments in conjunction with the Z Pulsed Power Facility at Sandia National Laboratories, with an emphasis on backlighting. Since the first laser system there became operational in 2001, the facility has continually evolved to add new capability and new missions. The facility currently has several high energy laser systems including the nanosecond/multi-kilojoule Z-Beamlet Laser (ZBL), the sub-picosecond/kilojoule- class Z-Petawatt (ZPW) Laser, and the smaller nanosecond/100 J-class Chaco laser. In addition to these, the backlighting mission requires a regular stream of coated consumable optics such as debris shields and vacuum windows, which led to the development of the Sandia Optics Support Facility to support the unique high damage threshold optical coating needs described.

  10. Sandia Software Guidelines, Volume 2. Documentation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    This volume is one in a series of Sandia Software Guidelines intended for use in producing quality software within Sandia National Laboratories. In consonance with the IEEE Standards for software documentation, this volume provides guidance in the selection of an adequate document set for a software project and example formats for many types of software documentation. A tutorial on life cycle documentation is also provided. Extended document thematic outlines and working examples of software documents are available on electronic media as an extension of this volume.

  11. A case for Sandia investment in complex adaptive systems science and technology.

    Energy Technology Data Exchange (ETDEWEB)

    Colbaugh, Richard; Tsao, Jeffrey Yeenien; Johnson, Curtis Martin; Backus, George A.; Brown, Theresa Jean; Jones, Katherine A.

    2012-05-01

    This white paper makes a case for Sandia National Laboratories investments in complex adaptive systems science and technology (S&T) -- investments that could enable higher-value-added and more-robustly-engineered solutions to challenges of importance to Sandia's national security mission and to the nation. Complex adaptive systems are ubiquitous in Sandia's national security mission areas. We often ignore the adaptive complexity of these systems by narrowing our 'aperture of concern' to systems or subsystems with a limited range of function exposed to a limited range of environments over limited periods of time. But by widening our aperture of concern we could increase our impact considerably. To do so, the science and technology of complex adaptive systems must mature considerably. Despite an explosion of interest outside of Sandia, however, that science and technology is still in its youth. What has been missing is contact with real (rather than model) systems and real domain-area detail. With its center-of-gravity as an engineering laboratory, Sandia's has made considerable progress applying existing science and technology to real complex adaptive systems. It has focused much less, however, on advancing the science and technology itself. But its close contact with real systems and real domain-area detail represents a powerful strength with which to help complex adaptive systems science and technology mature. Sandia is thus both a prime beneficiary of, as well as potentially a prime contributor to, complex adaptive systems science and technology. Building a productive program in complex adaptive systems science and technology at Sandia will not be trivial, but a credible path can be envisioned: in the short run, continue to apply existing science and technology to real domain-area complex adaptive systems; in the medium run, jump-start the creation of new science and technology capability through Sandia's Laboratory Directed Research

  12. Simulation and off-line programming at Sandia`s Intelligent Systems and Robotics Center

    Energy Technology Data Exchange (ETDEWEB)

    Xavier, P.G.; Fahrenholtz, J.C.; McDonald, M. [Sandia National Labs., Albuquerque, NM (United States). Intelligent Systems and Robotics Center] [and others

    1997-11-01

    One role of the Intelligent Robotics and System Center (ISRC) at Sandia National Laboratories is to address certain aspects of Sandia`s mission to design, manufacture, maintain, and dismantle nuclear weapon components. Hazardous materials, devices, and environments are often involved. Because of shrinking resources, these tasks must be accomplished with a minimum of prototyping, while maintaining high reliability. In this paper, the authors describe simulation, off-line programming/planning, and related tools which are in use, under development, and being researched to solve these problems at the ISRC.

  13. SAPLE: Sandia Advanced Personnel Locator Engine.

    Energy Technology Data Exchange (ETDEWEB)

    Procopio, Michael J.

    2010-04-01

    We present the Sandia Advanced Personnel Locator Engine (SAPLE) web application, a directory search application for use by Sandia National Laboratories personnel. SAPLE's purpose is to return Sandia personnel 'results' as a function of user search queries, with its mission to make it easier and faster to find people at Sandia. To accomplish this, SAPLE breaks from more traditional directory application approaches by aiming to return the correct set of results while placing minimal constraints on the user's query. Two key features form the core of SAPLE: advanced search query interpretation and inexact string matching. SAPLE's query interpretation permits the user to perform compound queries when typing into a single search field; where able, SAPLE infers the type of field that the user intends to search on based on the value of the search term. SAPLE's inexact string matching feature yields a high-quality ranking of personnel search results even when there are no exact matches to the user's query. This paper explores these two key features, describing in detail the architecture and operation of SAPLE. Finally, an extensive analysis on logged search query data taken from an 11-week sample period is presented.

  14. Airport testing an explosives detection portal

    Energy Technology Data Exchange (ETDEWEB)

    Rhykerd, C.; Linker, K.; Hannum, D.; Bouchier, F.; Parmeter, J.

    1998-08-01

    At the direction of the US Congress, following the Pan Am 103 and TWA 800 crashes, the Federal Aviation Administration funded development of non-invasive techniques to screen airline passengers for explosives. Such an explosives detection portal, developed at Sandia National Laboratories, was field tested at the Albuquerque International airport in September 1997. During the 2-week field trial, 2,400 passengers were screened and 500 surveyed. Throughput, reliability, maintenance and sensitivity were studied. Follow-up testing at Sandia and at Idaho National Engineering and Environmental Laboratory was conducted. A passenger stands in the portal for five seconds while overhead fans blow air over his body. Any explosive vapors or dislodged particles are collected in vents at the feet. Explosives are removed from the air in a preconcentrator and subsequently directed into an ion mobility spectrometer for detection. Throughput measured 300 passengers per hour. The non-invasive portal can detect subfingerprint levels of explosives residue on clothing. A survey of 500 passengers showed a 97% approval rating, with 99% stating that such portals, if effective, should be installed in airports to improve security. Results of the airport test, as well as operational issues, are discussed.

  15. Liquid explosives

    CERN Document Server

    Liu, Jiping

    2015-01-01

    The book drawing on the author's nearly half a century of energetic materials research experience intends to systematically review the global researches on liquid explosives. The book focuses on the study of the conception, explosion mechanism, properties and preparation of liquid explosives. It provides a combination of theoretical knowledge and practical examples in a reader-friendly style. The book is likely to be interest of university researchers and graduate students in the fields of energetic materials, blasting engineering and mining.

  16. INFLUENCE OF STEAM PRESSURE ON THE PHYSICO-CHEMICAL PROPERTIES OF DEGRADED HEMICELLULOSES OBTAINED FROM STEAM-EXPLODED LESPEDEZA STALKS

    Directory of Open Access Journals (Sweden)

    Kun Wang

    2010-06-01

    Full Text Available Steam explosion pretreatment was used to release hemicelluloses from the stalks of Lespedeza crytobotrya, a potential woody biomass crop. Hemicelluloses from Lespedeza crytobotrya subjected to five different pretreatment severities were extracted with 60% aqueous ethanol solution containing 1% NaOH, characterized by component analysis, gel permeation chromatography (GPC, FT-IR, NMR spectroscopy, and thermal analysis, and compared with hemicelluloses obtained from untreated stalks. It was found that the hemicellulosic fractions mainly consisted of arabinoxylans and β-glucans or xyloglucans. Steam explosion pretreatment yielded noticeable degradation and debranching reactions, illustrated by a linear decrease of molecular weight and Ara/Xyl ratio with increasing severity. For further high-value utilization of the hemicellulosic polymers, steam explosion at 20 or 22.5 kg/m2 for 4 min is promising because of improved extraction efficiency and avoidance of over-drastic degradation of the polymers.

  17. Extraction of protein from high-temperature peanut meal using combination process with steam flash-explosion,alkaline-extraction and acid-precipitation%蒸汽闪爆结合碱溶酸沉法提取高温花生粕中的蛋白质

    Institute of Scientific and Technical Information of China (English)

    章玉清; 杨瑞金; 张文斌; 华霄; 赵伟

    2013-01-01

    以高温花生粕为研究对象,研究了蒸汽闪爆结合碱溶酸沉法提取花生蛋白质的工艺及其产品的功能性质.通过单因素实验和正交实验确定优化的工艺条件为:高温花生粕首先用0.3%的稀硫酸在60℃条件下搅拌浸泡2h;用清水洗去表面稀酸后沥干再进行蒸汽闪爆处理,条件为:爆破压力1.6MPa、维压时间5min;最后采用碱溶酸沉法提取蛋白质,条件为:温度60℃、pH9.5、料水比1∶12(g/mL)、浸提时间为2h.在此工艺条件下,高温花生粕中蛋白质的提取率达到52.6%,比传统碱溶酸沉工艺提高了10.8%,且所得蛋白质产品的持水性、乳化性、起泡性和起泡稳定性有了显著提高,分别增强了67.1%、141.0%、131.3%和107.4%.蒸汽闪爆技术结合碱溶酸沉法适用于从高温花生粕中提取蛋白质,不仅可以提高蛋白质的提取率,而且能够改善产品的功能性质.%A combined process with steam flash-explosion,alkaline-extraction and acid-precipitation was used to extract protein from high-temperature peanut meal.Through single factor and orthogonal test,the optimum conditions were figured out.Firstly,the high-temperature peanut meal was soaked in 0.3% sulfuric acid solution at 60℃ for 2h,then drained it and washed with water to remove the acid solution remained in the surface of the meal.The pretreated meal was treated with steam flash-explosion at 1.6MPa for 5min.The protein in the steam flash-exploded meal was extracted by alkaline-extraction and acid-precipitation process.The optimal condition for alkaline-extraction was solid to water ratio:1∶12(g/mL),pH9.5,60℃ and 2h.Under these conditions,the protein extraction rate reached 52.6%,which was 10.8% higher than conventional alkaline extraction and acid-precipitation process.The water holding capacity,emulsifying activity index,foaming capacity and foaming stability of the protein extracted using this combined process were significantly

  18. 蒸汽与液氨爆破对白酒丢糟稀硫酸降解工艺的影响研究%Effects of steam explosion and liquid ammonia blasting pretreatment on the distiller' s grains' dilute acid degradation

    Institute of Scientific and Technical Information of China (English)

    杨健; 张健; 钟霞; 刘跃红; 吴正云; 张文学; 邓宇; 本田建次

    2012-01-01

    Using selfinade explosive device, this study has researched the effect of Distiller's Grains' dilute acid degradation by steam explosion treatment (temperature:200℃~220℃, pressure: 1.0MPa~4.0MPa, hold time: 5min~20min) and liquid ammonia blasting pretreatment (temperature: 60℃-80℃, pressure: 1.0MPa~4.0MPa, hold time: 10min~30min). Meanwhile, chemical analysis, scanning electron microscope (SEM) and X-ray diffrac-tion(XRD) have been used. The results show that the cellulose, hemicellulose and reducing sugar of dilute acid degradation concentration are 33.42%, 19.03% and 51.92%, respectively when the steam explosion treatment conditions are at 210℃, 2.5MPa for 10min. While the cellulose, hemicellulose and reducing sugar of dilute acid degradation concentration are 19.01%, 32.45% and 48.05%, respectively when the liquid ammonia blasting pretreatment condition is at 70℃, 2.5MPa for 30min. At the same time, the results of SEM and XRD revealed that the morphological structure of distiller's grains are changed more or less that the surface has been ruptured and the space has been increased while the crystallinity of cellulose has been reduced after the steam explosion treatment and liquid ammonia blasting pretreatment, which are benefit for the dilute acid hydrolysis.%以白酒厂丢糟为原料,自制爆破装置,采用化学分析与扫描电镜、X射线衍射相结合的方法,分别研究了蒸汽爆破在温度200℃~220℃,维压时间5min~20min,压力1.0MPa~4.0MPa;液氨爆破在温度60℃~80℃,维压时间10min~30min,压力1.0MPa~4.0MPa的条件下,蒸汽与液氨爆破预处理对丢糟的主要成分与稀硫酸水解还原糖得率的影响.结果表明,当蒸汽爆破条件为温度210℃,时间10min,压力2.5MPa时,处理后物料纤维素含量33.42%,半纤维素19.03%,稀硫酸水解还原糖得率最高51.92%;当液氨爆破条件为温度70℃,时间30min,压力2.5MPa时,处理后物料纤维素含量19.01

  19. Methane Potential and Enzymatic Saccharification of Steam-exploded Bagasse

    National Research Council Canada - National Science Library

    Vivekanand Vivekanand; Elisabeth F. Olsen; Vincent G.H. Eijsink; Svein Jarle Horn

    2014-01-01

    To evaluate the biofuel potential of bagasse, an abundant co-product in sugarcane-based industries, the effect of steam explosion on the efficiency of enzymatic saccharification and anaerobic digestion was studied...

  20. Ethanol production from steam exploded rapeseed straw and the process simulation using artificial neural networks

    DEFF Research Database (Denmark)

    Talebnia, Farid; Mighani, Moein; Rahimnejad, Mostafa

    2015-01-01

    Rapeseed straw was utilized as a cheap raw material for ethanol production. Effects of steam explosion on chemical composition, enzymatic hydrolysis (EH) and simultaneous saccharification and fermentation (SSF) were studied. Changes in the pretreatment conditions showed strong effects...

  1. Explosive containment and propagation evaluations for commonly used handling and storage containers

    Energy Technology Data Exchange (ETDEWEB)

    LeBlanc, R.

    1994-01-01

    A series of explosive tests were performed to establish containment integrity data for commonly used handling and storage containers of energetic materials at Sandia National Laboratories, Albuquerque, N.M. The tests consisted of two phases: (1) each container was tested for explosive integrity and propagation, and (2) the data were used to evaluate a nominal donor-receptor test matrix for verifying the confinement integrity of a typical explosives service locker.

  2. Sandia Agile MEMS Prototyping, Layout Tools, Education and Services Program

    Energy Technology Data Exchange (ETDEWEB)

    Schriner, H.; Davies, B.; Sniegowski, J.; Rodgers, M.S.; Allen, J.; Shepard, C.

    1998-05-01

    Research and development in the design and manufacture of Microelectromechanical Systems (MEMS) is growing at an enormous rate. Advances in MEMS design tools and fabrication processes at Sandia National Laboratories` Microelectronics Development Laboratory (MDL) have broadened the scope of MEMS applications that can be designed and manufactured for both military and commercial use. As improvements in micromachining fabrication technologies continue to be made, MEMS designs can become more complex, thus opening the door to an even broader set of MEMS applications. In an effort to further research and development in MEMS design, fabrication, and application, Sandia National Laboratories has launched the Sandia Agile MEMS Prototyping, Layout Tools, Education and Services Program or SAMPLES program. The SAMPLES program offers potential partners interested in MEMS the opportunity to prototype an idea and produce hardware that can be used to sell a concept. The SAMPLES program provides education and training on Sandia`s design tools, analysis tools and fabrication process. New designers can participate in the SAMPLES program and design MEMS devices using Sandia`s design and analysis tools. As part of the SAMPLES program, participants` designs are fabricated using Sandia`s 4 level polycrystalline silicon surface micromachine technology fabrication process known as SUMMiT (Sandia Ultra-planar, Multi-level MEMS Technology). Furthermore, SAMPLES participants can also opt to obtain state of the art, post-fabrication services provided at Sandia such as release, packaging, reliability characterization, and failure analysis. This paper discusses the components of the SAMPLES program.

  3. Steam Digest 2001

    Energy Technology Data Exchange (ETDEWEB)

    2002-01-01

    Steam Digest 2001 chronicles BestPractices Program's contributions to the industrial trade press for 2001, and presents articles that cover technical, financial and managerial aspects of steam optimization.

  4. Compilation of Sandia Laboratories technical capabilities

    Energy Technology Data Exchange (ETDEWEB)

    Lundergan, C. D.; Mead, P. L. [eds.

    1975-11-01

    This report is a compilation of 17 individual documents that together summarize the technical capabilities of Sandia Laboratories. Each document in this compilation contains details about a specific area of capability. Examples of application of the capability to research and development problems are provided. An eighteenth document summarizes the content of the other seventeen. Each of these documents was issued with a separate report number (SAND 74-0073A through SAND 74-0091, except -0078). (RWR)

  5. Sandia National Laboratories focus issue: introduction.

    Science.gov (United States)

    Boye, Robert

    2014-08-20

    For more than six decades, Sandia has provided the critical science and technology to address the nation's most challenging issues. Our original nuclear weapons mission has been complemented with work in defense systems, energy and climate, as well as international and homeland security. Our vision is to be a premier science and engineering laboratory for technology solutions to the most challenging problems that threaten peace and freedom for our nation and the globe.

  6. Simultaneous saccharification and fermentation of steam-pretreated lespedeza stalks for the production of ethanol

    Institute of Scientific and Technical Information of China (English)

    Jiang Jian-xin; Zhu Li-wei; Wang Kun; Wang Wei-gan

    2006-01-01

    Lespedeza stalks were subjected to steam pretreatment at 210℃ for some steaming time before simultaneous saccharification and fermentation (SSF). Cellulose-derived glucose was extensively utilized by yeast during SSF. The ethanol yields after steam pretreatment of the lespedeza stalks at 210℃ were 59.3%, 72.8% and 62.2% of the theoretically expected values when the steaming times were 2, 4 and 6 min, respectively. The highest yield from α-cellulose was 92.7% of the theoretical value. Steam explosion pretreatment of lespedeza stalks increased ethanol yields by a factor of 4.4, from 16.4% (untreated) to 72.8% (steam explosion pretreated).

  7. Steam Digest Volume IV

    Energy Technology Data Exchange (ETDEWEB)

    None

    2004-07-01

    This edition of the Steam Digest is a compendium of 2003 articles on the technical and financial benefits of steam efficiency, presented by the stakeholders of the U.S. Department of Energy's BestPractices Steam effort.

  8. The Invisibility of Steam

    Science.gov (United States)

    Greenslade, Thomas B., Jr.

    2014-01-01

    Almost everyone "knows" that steam is visible. After all, one can see the cloud of white issuing from the spout of a boiling tea kettle. In reality, steam is the gaseous phase of water and is invisible. What you see is light scattered from the tiny droplets of water that are the result of the condensation of the steam as its temperature…

  9. Lignin isolated from steam-exploded eucalyptus wood chips by phase separation and its affinity to Trichoderma reesei cellulase.

    Science.gov (United States)

    Nonaka, Hiroshi; Kobayashi, Ai; Funaoka, Masamitsu

    2013-07-01

    Steam-exploded eucalyptus wood chips were treated with p-cresol and 72% sulfuric acid at ambient temperature. Steam-exploded lignin was isolated as acetone-soluble and diethyl ether-insoluble compounds from the cresol layer. The lignin extraction yield was only 47%, and the amount of cresol grafted to lignin was much less than that in the case of eucalyptus lignin without steam explosion. Clearly, the steam explosion process depolymerized native lignin, and simultaneously, promoted polymerization via labile benzyl positions. The steam-exploded eucalyptus lignin adsorbed more Trichoderma reesei cellulase; however, its enzymatic activity was less than that of eucalyptus lignin that did not undergo steam explosion. It is evident that pretreatment potentially affects the affinity between lignin and cellulase and the resultant saccharification efficiency. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Effects of pretreatments with steam-explosion using solar energy and microwave irradiation on biogas production of corn stalk%太阳能蒸汽爆破和微波预处理对玉米秸秆产沼气的影响

    Institute of Scientific and Technical Information of China (English)

    刘伟伟; 马欢; 曹成茂; 杨智良; 赵敏晖; 孔晓玲; 胡晓辰

    2012-01-01

    To improve the biogas production efficiency, steam-explosion using solar energy and microwave irradiation were employed as pretreatments for corn stalks in this study. The effects of two pretreatments on biogas production were investigated at 35℃ fermentation temperature. The results showed that with the inoculum of 200 g, fermentation temperature of 35℃ and organic loading rate of 22.6 g/L, two pretreatments could disrupt the rigid structure of corn stalks, which make them expose more accessible surface area of substrate to anaerobic microorganism. The content of cellulose, hemicellulose and lignin of corn stalks pretreated by solar energy steam-explosion and microwave irradiation were reduced by 7.82%, 50.56%, 36.33% and 20.13%, 20.97%, 54.03%, respectively. The total solid (TS) biogas production rate of two pretreated samples were reach to 239.89 and 281.45 mL/g, while the VS (volatile solids) rate were 296.02 and 332.28 mL/g, respectively with solar energy steam-explosion and microwave irradiation pretreatment. Moreover, compared with the control, the average daily biogas yields of two pretreated samples were 320 and 334 mL, which were increased by 15.11% and 20.14%, and the hydraulic retention time (HRT) was decreased by 42.11% and 31.58%. The present work provides a reference for the crop stalks pretreatment and improving the efficiency of biogas plant.%为提高秸秆沼气工程效率,该文以玉米秸秆为原料,分别采用太阳能蒸汽爆破和微波辐射2种方法对其进行预处理,考察中温(35℃)条件下2种预处理方法的产沼气效果.试验结果表明:在接种量200 g、发酵温度35℃、启动负荷22.6 g/L(以总固体TS计)的试验条件下,2种方法均可破坏玉米秸秆原有刚性结构,使其易与厌氧微生物接触而被降解,其纤维素、半纤维素、木质素含量分别降低7.82%、50.56%、36.33%和20.13%、20.97%、54.03%;2种方法预处理后玉米秸秆沼气发酵TS(

  11. A reassessment of the potential for an alpha-mode containment failure and a review of the current understanding of broader fuel-coolant interaction issues. Second steam explosion review group workshop

    Energy Technology Data Exchange (ETDEWEB)

    Basu, S. [Nuclear Regulatory Commission, Washington, DC (United States); Ginsberg, T. [Brookhaven National Lab., Upton, NY (United States)

    1996-08-01

    This report summarizes the review and evaluation by experts of the current understanding of the molten fuel-coolant interaction (FCI) issues covering the complete spectrum of interactions, i.e., from mild quenching to very energetic interactions including those that could lead to the alpha-mode containment failure. Of the eleven experts polled, all but two concluded that the alpha-mode failure issue was resolved from a risk perspective, meaning that this mode of failure is of very low probability, that it is of little or no significance to the overall risk from a nuclear power plant, and that any further reduction in residual uncertainties is not likely to change the probability in an appreciable manner. To a lesser degree, discussions also took place on the broader FCI issues such as mild quenching of core melt during non-explosive FCI, and shock loading of lower head and ex-vessel support structures arising from explosive localized FCIs. These latter issues are relevant with regard to determining the efficacy of certain accident management strategies for operating reactors as well as for advanced light water reactors. The experts reviewed the status of understanding of the FCI phenomena in the context of these broader issues, identified residual uncertainties in the understanding, and recommended future research (both experimental and analytical) to reduce the uncertainties.

  12. Overview of Sandia's electric vehicle battery program

    Science.gov (United States)

    Clark, R. P.

    1993-11-01

    Sandia National Laboratories is actively involved in several projects which are part of an overall Electric Vehicle Battery Program. Part of this effort is funded by the United States Department of Energy/Office of Transportation Technologies (DOE/OTT) and the remainder is funded through the United States Advanced Battery Consortium (USABC). DOE/OTT supported activities include research and development of zinc/air and sodium/sulfur battery technologies as well as double layer capacitor (DLC) R&D. Projects in the USABC funded work include lithium/polymer electrolyte (LPE) R&D, sodium/sulfur activities and battery test and evaluation.

  13. Sandia technology engineering and science accomplishments

    Energy Technology Data Exchange (ETDEWEB)

    1993-03-01

    Sandia is a DOE multiprogram engineering and science laboratory with major facilities at Albuquerque, New Mexico, and Livermore, California, and a test range near Tonapah, Nevada. We have major research and development responsibilities for nuclear weapons, arms control, energy, the environment, economic competitiveness, and other areas of importance to the needs of the nation. Our principal mission is to support national defense policies by ensuring that the nuclear weapon stockpile meets the highest standards of safety, reliability, security, use control, and military performance. Selected unclassified technical activities and accomplishments are reported here. Topics include advanced manufacturing technologies, intelligent machines, computational simulation, sensors and instrumentation, information management, energy and environment, and weapons technology.

  14. Sandia software guidelines. Volume 3. Standards, practices, and conventions

    Energy Technology Data Exchange (ETDEWEB)

    1986-07-01

    This volume is one in a series of Sandia Software Guidelines intended for use in producing quality software within Sandia National Laboratories. In consonance with the IEEE Standard for Software Quality Assurance Plans, this volume identifies software standards, conventions, and practices. These guidelines are the result of a collective effort within Sandia National Laboratories to define recommended deliverables and to document standards, practices, and conventions which will help ensure quality software. 66 refs., 5 figs., 6 tabs.

  15. Site Environmental Report for 2007: Sandia National Laboratories, California

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Barbara L. [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Environmental Management Dept.

    2008-06-01

    Sandia National Laboratories, California (SNL/CA) is a government-owned/contractor-operated laboratory. Sandia Corporation, a Lockheed Martin Company, operates the laboratory for the Department of Energy’s National Nuclear Security Administration (NNSA). The NNSA Sandia Site Office oversees operations at the site, using Sandia Corporation as a management and operating contractor. This Site Environmental Report for 2007 was prepared in accordance with DOE Order 231.1A (DOE 2004a). The report provides a summary of environmental monitoring information and compliance activities that occurred at SNL/CA during calendar year 2007. General site and environmental program information is also included.

  16. Site environmental report for 2003 Sandia National Laboratories, California.

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Barbara L.

    2004-06-01

    Sandia National Laboratories, California (SNL/CA) is a government-owned/contractor-operated laboratory. Sandia Corporation, a Lockheed Martin Company, operates the laboratory for the Department of Energy's (DOE) National Nuclear Security Administration. The DOE Sandia Site Office oversees operations at the site, using Sandia Corporation as a management and operating contractor. This Site Environmental Report for 2003 was prepared in accordance with DOE Order 231.1A. The report provides a summary of environmental monitoring information and compliance activities that occurred at SNL/CA during calendar year 2003. General site and environmental program information is also included.

  17. Site environmental report for 2004 Sandia National Laboratories, California.

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Barbara L. (Sandia National Laboratories, Livermore, CA)

    2005-06-01

    Sandia National Laboratories, California (SNL/CA) is a government-owned/contractor-operated laboratory. Sandia Corporation, a Lockheed Martin Company, operates the laboratory for the Department of Energy's (DOE) National Nuclear Security Administration. The DOE Sandia Site Office oversees operations at the site, using Sandia Corporation as a management and operating contractor. This Site Environmental Report for 2004 was prepared in accordance with DOE Order 231.1A. The report provides a summary of environmental monitoring information and compliance activities that occurred at SNL/CA during calendar year 2004. General site and environmental program information is also included.

  18. Site environmental report for 2005 Sandia National Laboratories, California.

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Barbara L.

    2006-06-01

    Sandia National Laboratories, California (SNL/CA) is a government-owned/contractor-operated laboratory. Sandia Corporation, a Lockheed Martin Company, operates the laboratory for the Department of Energy's (DOE) National Nuclear Security Administration (NNSA). The DOE/NNSA Sandia Site Office (SSO) oversees operations at the site, using Sandia Corporation as a management and operating contractor. This Site Environmental Report for 2005 was prepared in accordance with DOE Order 231.1A. The report provides a summary of environmental monitoring information and compliance activities that occurred at SNL/CA during calendar year 2005. General site and environmental program information is also included.

  19. Site environmental report for 2006 Sandia National Laboratories, California.

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Barbara L.

    2007-06-01

    Sandia National Laboratories, California (SNL/CA) is a government-owned/contractor-operated laboratory. Sandia Corporation, a Lockheed Martin Company, operates the laboratory for the Department of Energy's National Nuclear Security Administration (NNSA). The NNSA Sandia Site Office oversees operations at the site, using Sandia Corporation as a management and operating contractor. This Site Environmental Report for 2006 was prepared in accordance with DOE Order 231.1A (DOE 2004a). The report provides a summary of environmental monitoring information and compliance activities that occurred at SNL/CA during calendar year 2006. General site and environmental program information is also included.

  20. Site environmental report for 2008 Sandia National Laboratories, California.

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Barbara L.

    2009-04-01

    Sandia National Laboratories, California (SNL/CA) is a government-owned/contractor operated laboratory. Sandia Corporation, a Lockheed Martin Company, operates the laboratory for the Department of Energy's National Nuclear Security Administration (NNSA). The NNSA Sandia Site Office oversees operations at the site, using Sandia Corporation as a management and operating contractor. This Site Environmental Report for 2008 was prepared in accordance with DOE Order 231.1A (DOE 2004a). The report provides a summary of environmental monitoring information and compliance activities that occurred at SNL/CA during calendar year 2008. General site and environmental program information is also included.

  1. Teamwork and diversity: A survey at Sandia National Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Apodaca, T.; Berman, M.; Griego, C.; Jansma, R.; Leatherwood, M.; Lovato, L.; Sanchez, A.

    1995-11-01

    In September, 1994, Sandia`s Diversity Leadership and Education Outreach Center arid the Corporate Diversity Team commissioned a Diversity Action Team (DAT-Phase II) to address the area of team- work. The goal of this DAT was to identify ways to capitalize on the diversity of people to enhance team success at Sandia. Given a six- month lifetime and funding levels of 12 hours per person per month, we chose to accomplish our goal by gathering and analyzing data on the performance and diversity of Sandia teams and publishing this report of our findings. The work presented herein builds on earlier work of this team.

  2. Power Supplies for Space Systems Quality Assurance by Sandia Laboratories

    Science.gov (United States)

    Hannigan, R. L.; Harnar, R. R.

    1976-07-01

    The Sandia Laboratories` participation in Quality Assurance programs for Radioisotopic Thermoelectric Generators which have been used in space systems over the past 10 years is summarized. Basic elements of this QA program are briefly described and recognition of assistance from other Sandia organizations is included. Descriptions of the various systems for which Sandia has had the QA responsibility are presented, including SNAP 19 (Nimbus, Pioneer, Viking), SNAP 27 (Apollo), Transit, Multi Hundred Watt (LES 8/9 and MJS), and a new program, High Performance Generator Mod 3. The outlook for Sandia participation in RTG programs for the next several years is noted.

  3. A History of Building 828, Sandia National Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Ullrich, Rebecca

    1999-08-01

    This report documents the history of Building 828 in Sandia National Laboratories' Technical Area I. Building 828 was constructed in 1946 as a mechanical test laboratory for Los Alamos' Z-Division (later Sandia) as it moved to Sandia Base. The building has undergone significant remodeling over the years and has had a variety of occupants. The building was evaluated in compliance with the National Historic Preservation Act, but was not eligible for the National Register of Historic Places. Nevertheless, for many Labs employees, it was a symbol of Sandia's roots in World War II and the Manhattan Project.

  4. Mechanisms of shock-induced reactions in high explosives

    Science.gov (United States)

    Kay, Jeffrey J.

    2017-01-01

    Understanding the mechanisms by which shock waves initiate chemical reactions in explosives is key to understanding their unique and defining property: the ability to undergo rapid explosive decomposition in response to mechanical stimulus. Although shock-induced reactions in explosives have been studied experimentally and computationally for decades, the nature of even the first chemical reactions that occur in response to shock remain elusive. To predictively understand how explosives respond to shock, the detailed sequence of events that occurs - mechanical deformation, energy transfer, bond breakage, and first chemical reactions - must be understood at the quantum-mechanical level. This paper reviews recent work in this field and ongoing experimental and theoretical work at Sandia National Laboratories in this important area of explosive science.

  5. Textile fibers prepared by combined alkali soaking, steam explosion and laccase/mediator treatments to bark of cotton stalks%碱液浸泡-蒸汽闪爆-漆酶介体处理制备棉秆皮纤维

    Institute of Scientific and Technical Information of China (English)

    张莉; 夏胜娟; 马博谋; 廖祥儒; 侯秀良

    2015-01-01

    为了实现棉秆的高效资源化利用,该文提出一种碱液浸泡-蒸汽闪爆-漆酶介体联合处理棉秆皮制备纺织纤维的新方法。研究了浸泡NaOH用量对棉秆皮分离效果的影响以及漆酶介体处理介体种类及用量、漆酶用量对木质素去除的影响。采用扫描电子显微镜、X 射线衍射、热稳定性分析等方法,对比研究了蒸汽闪爆、漆酶介体处理后棉秆皮纤维的化学成分、结构与性能。研究结果表明,碱液浸泡-蒸汽闪爆-漆酶介体处理(NaOH用量10 g/L,介体ABTS用量为棉秆皮纤维干质量的1%,漆酶用量为600 U/g)能制得表面洁净、热稳定性好的棉秆皮纤维,其长度为55.7 mm,细度为28 dtex,长径比为1139,断裂强度为2.97 cN/dtex,纤维素质量分数为78%,结晶指数为67.5,得率为40%,可用于纺织,研究结果为木质纤维素纤维的制备提供参考。%As we all know, burning of cotton stalks will bring serious environment pollution. In order to protect the environment and make efficient utilization of cotton stalks, this paper presented a new method for the preparation of cellulose textile fibers, which could obtain better fibers from bark of cotton stalks. It was reported that natural cellulose fibers from bark of cotton stalks had significantly better mechanical properties than those from other lignocellulosic agricultural byproducts such as rice and wheat straws. Fibers from bark of cotton stalks were used to reinforce thermoplastic composites, but they were difficult to be spun into textile yarns due to their high fineness value and rigidity. However, conventional method of using strong alkaline solution (30-100 g/L NaOH) for extraction of cellulose fibers from lignocellulosic byproducts led to environmental pollution and high cost. In this paper, the new method included 3 combined steps, i.e. alkali soaking, steam explosion and laccase mediator system treatment. Bark of cotton stalks

  6. Nanosatellite program at Sandia National Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Reynolds, D.A.; Kern, J.P.; Schoeneman, J.L.

    1999-11-11

    The concept of building extremely small satellites which, either independently or as a collective, can perform missions which are comparable to their much larger cousins, has fascinated scientists and engineers for several years now. In addition to the now commonplace microelectronic integrated circuits, the more recent advent of technologies such as photonic integrated circuits (PIC's) and micro-electromechanical systems (MEMS) have placed such a goal within their grasp. Key to the acceptance of this technology will be the ability to manufacture these very small satellites in quantity without sacrificing their performance or versatility. In support of its nuclear treaty verification, proliferation monitoring and other remote sensing missions, Sandia National laboratories has had a 35-year history of providing highly capable systems, densely packaged for unintrusive piggyback missions on government satellites. As monitoring requirements have become more challenging and remote sensing technologies become more sophisticated, packaging greater capability into these systems has become a requirement. Likewise, dwindling budgets are pushing satellite programs toward smaller and smaller platforms, reinforcing the need for smaller, cheaper satellite systems. In the next step of its miniaturization plan, Sandia has begun development of technologies for a highly integrated miniature satellite. The focus of this development is to achieve nanosat or smaller dimensions while maintaining significant capability utilizing semiconductor wafer-level integration and, at the same time promoting affordability through modular generic construction.

  7. HyMARC (Sandia) Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Allendorf, Mark D. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Stavila, Vitalie [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Klebanoff, Leonard E. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Kolasinski, Robert [Sandia National Lab. (SNL-CA), Livermore, CA (United States); El Gabaly Marquez, Farid [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Zhou, Xiaowang [Sandia National Lab. (SNL-CA), Livermore, CA (United States); White, James Lawrence [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2017-07-01

    The Sandia HyMARC team continued its development of new synthetic, modeling, and diagnostic tools that are providing new insights into all major classes of storage materials, ranging from relatively simple systems such as PdHx and MgH2, to exceptionally complex ones, such as the metal borohydrides, as well as materials thought to be very well-understood, such as Ti-doped NaAlH4. This unprecedented suite of capabilities, capable of probing all relevant length scales within storage materials, is already having a significant impact, as they are now being used by both Seedling projects and collaborators at other laboratories within HyMARC. We expect this impact to grow as new Seedling projects begin and through collaborations with other scientists outside HyMARC. In the coming year, Sandia efforts will focus on the highest impact problems, in coordination with the other HyMARC National Laboratory partners, to provide the foundational science necessary to accelerate the discovery of new hydrogen storage materials.

  8. Sandia combustion research program: Annual report, 1987

    Energy Technology Data Exchange (ETDEWEB)

    Palmer, R.E.; Sanders, B.R.; Ivanetich, C.A. (eds.)

    1988-01-01

    More than a decade ago, in response to a national energy crisis, Sandia proposed to the US Department of Energy a new, ambitious program in combustion research. Our strategy was to apply the rapidly increasing capabilities in lasers and computers to combustion science and technology. Shortly thereafter, the Combustion Research Facility (CRF) was established at Sandia's Livermore location. Designated a ''User Facility,'' the charter of the CRF was to develop and maintain special-purpose resources to support a nationwide initiative--involving US universities, industry, and national laboratories--to improve our understanding and control of combustion. This report includes descriptions of several research projects which have been stimulated by Working Groups and involve the on-site participation of industry scientists. DOE's Industry Technology Fellowship Program has been instrumental in the success of some of the joint efforts. The remainder of this report presents research results of calendar year 1987, separated thematically into nine categories. Refereed journal articles appearing in print during 1987, along with selected other publications, are included at the end of Section 10. In addition to our ''traditional'' research--chemistry, reacting flow, diagnostics, engine combustion, and coal combustion--you will note continued progress in somewhat recent themes: pulse combustion, high temperature materials, and energetic materials, for example. Moreover, we have just started a small, new effort to understand combustion-related issues in the management of toxic and hazardous materials.

  9. Structure, composition and enzymatic hydrolysis of steam-exploded lespedeza stalks

    Institute of Scientific and Technical Information of China (English)

    Wang Kun; Wang Fang; Jiang Jian-xin; Zhu Li-wei; Fan Hong-zhuai

    2007-01-01

    Pretreatment of lespedeza stalks by steam explosion has been studied. The results indicate that steam-exploded pretreatment has strong effects on physical features, morphology, crystallinity, and composition of lespedeza stalks as shown by scanning electron microscopy (SEM), infrared (IR), and X-ray diffraction spectrometry methods. After steam explosion, the cellulose and lignin contents of lespedeza stalks varied only slightly, but the hemicellulose content had decreased from 29.34% to 7.48%. The cellulose obtained by steam-exploded pretreatment had a higher degree of crystallinity than that of the raw material. At the explosion condition of 2.25 MPa and 4 min, lignocellulose is easier to hydrolyze by enzyme than the original lignocellulose. The concentration of reduced sugar in the hydrolyzate liquid increased from 71.77 to 162.84 g·L-1.

  10. Sandia National Laboratories Institutional Plan: FY 1996--2001

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    Sandia`s Institutional Plan is by necessity a large document. As their missions have grown and diversified over the past decades, the variety of technical and site activities has increased. The programs and activities described here cover an enormous breadth of scientific and technological effort--from the creation of new materials to the development of a Sandia-wide electronic communications system. Today, there are three major themes that greatly influence this work. First, every federally funded institution is being challenged to find ways to become more cost effective, as the US seeks to reduce the deficit and achieve a balanced federal spending plan. Sandia is evaluating its business and operational processes to reduce the overall costs. Second, in response to the Galvin Task Force`s report ``Alternative Futures for the Department of Energy National Laboratories``, Sandia and the Department of Energy are working jointly to reduce the burden of administrative and compliance activities in order to devote more of the total effort to their principal research and development missions. Third, they are reevaluating the match between their missions and the programs they will emphasize in the future. They must demonstrate that Sandia`s roles--in national security, energy security, environmental integrity, and national scientific and technology agenda support--fit their special capabilities and skills and thus ensure their place in these missions for the longer planning horizon. The following areas are covered here: Sandia`s mission; laboratory directives; programmatic activities; technology partnerships and commercialization; Sandia`s resources; and protecting resources and the community.

  11. Sandia Technology: Engineering and science accomplishments, February 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-02-01

    Sandia National Laboratories is one of the Department of Energy`s primary research and development laboratories. Our essential mission is to support the national interests of the US in defense, energy, and the environment. Managed by Martin Marietta Corporation for DOE, Sandia focuses its resources on problems of national interest that require the integration of science and technology for their solution. We all hope that this period of sweeping alterations in international affairs will result in a successful transition from the Cold War to a period of sustainable global security and prosperity. In the meantime, our nation`s interests are best served by continued commitment to Sandia`s traditional responsibilities. Nonetheless, as momentous developments are reshaping the world, Sandia is also changing from its beginning as a closed operation concentrating on classified defense programs, Sandia has become a more accessible resource that focuses on research and development partnerships with industry and universities as a way to ensure continued success in DOE`s evolving core mission area of nuclear weapons, energy, environment, and the basis sciences. Through these collaborative efforts, Sandia and its partners are also benefiting the economic competitiveness of our nation. Sandia places a special emphasis on working with small businesses as both technology transfer partners and suppliers of goods and services. We are also reaching out the the larger community surrounding Sandia, striving to provide technological solution and accurate information to meet community needs. We believe that the dialogue we are creating will benefit Sandia, the community, and the nation. Our goal is to render `` exceptional service in the national interest`` by returning maximum value on the investment in the labs. As you review this document, look for new ways in which Sandia can contribute to the solution of problems facing our nation.

  12. An Isothermal Steam Expander for an Industrial Steam Supplying System

    OpenAIRE

    Chen-Kuang Lin; Guang-Jer Lai; Yoshiyuki Kobayashi; Masahiro Matsuo; Min-Chie Chiu

    2015-01-01

    Steam is an essential medium used in the industrial process. To ensure steam quality, small and middle scale boilers are often adopted. However, because a higher steam pressure (compared to the necessary steam pressure) is generated, the boiler’s steam pressure will be reduced via a pressure regulator before the steam is directed through the process. Unfortunately, pressure is somewhat wasted during the reducing process. Therefore, in order to promote energy efficiency, a pressure regulator i...

  13. Advanced robotic technologies for transfer at Sandia National Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, P.C.

    1994-10-01

    Hazardous operations which have in the past been completed by technicians are under increased scrutiny due to high costs and low productivity associated with providing protective clothing and environments. As a result, remote systems are needed to accomplish many hazardous materials handling tasks such as the clean-up of waste sites in which the exposure of personnel to radiation, chemical, explosive and other hazardous constituents is unacceptable. Computer models augmented by sensing, and structured, modular computing environments are proving effective in automating many unstructured hazardous tasks. Work at Sandia National Laboratories (SNL) has focused on applying flexible automation (robotics) to meet the needs of the U.S. Department of Energy (USDOE). Dismantling facilities, environmental remediation, and materials handling in changing, hazardous environments lead to many technical challenges. Computer planning, monitoring and operator assistance shorten training cycles, reduce errors, and speed execution of operations. Robotic systems that re-use well-understood generic technologies can be much better characterized than robotic systems developed for a particular application, leading to a more reliable and safer systems. Further safety in robotic operations results from use of environmental sensors and knowledge of the task and environment. Collision detection and avoidance is achieved from such sensor integration and model-based control. This paper discusses selected technologies developed at SNL for use within the USDOE complex that have been or are ready for transfer to government and industrial suppliers. These technologies include sensors, sub-systems, and the design philosophy applied to quickly integrate them into a working robotic system. This paper represents the work of many people at the Intelligent Systems and Robotics Center at SNL, to whom the credit belongs.

  14. Niche explosion.

    Science.gov (United States)

    Normark, Benjamin B; Johnson, Norman A

    2011-05-01

    The following syndrome of features occurs in several groups of phytophagous insects: (1) wingless females, (2) dispersal by larvae, (3) woody hosts, (4) extreme polyphagy, (5) high abundance, resulting in status as economic pests, (6) invasiveness, and (7) obligate parthenogenesis in some populations. If extreme polyphagy is defined as feeding on 20 or more families of hostplants, this syndrome is found convergently in several species of bagworm moths, tussock moths, root weevils, and 5 families of scale insects. We hypothesize that extreme polyphagy in these taxa results from "niche explosion", a positive feedback loop connecting large population size to broad host range. The niche explosion has a demographic component (sometimes called the "amplification effect" in studies of pathogens) as well as a population-genetic component, due mainly to the increased effectiveness of natural selection in larger populations. The frequent origins of parthenogenesis in extreme polyphages are, in our interpretation, a consequence of this increased effectiveness of natural selection and consequent reduced importance of sexuality. The niche explosion hypothesis makes detailed predictions about the comparative genomics and population genetics of extreme polyphages and related specialists. It has a number of potentially important implications, including an explanation for the lack of observed trade-offs between generalists and specialists, a re-interpretation of the ecological correlates of parthenogenesis, and a general expectation that Malthusian population explosions may be amplified by Darwinian effects.

  15. Explosive Start

    Institute of Scientific and Technical Information of China (English)

    FRANCISCO; LITTLE

    2006-01-01

    I ducked involuntarily as the first set of explosions went off and made my way in double time to the street corner, where I had spotted an arcade that could be used for shelter. Running quickly in a crouched, military maneuver while inhaling gunpowder fumes, I was totally oblivious to the laughter and head-shaking coming

  16. Sandia`s network for Supercomputing `94: Linking the Los Alamos, Lawrence Livermore, and Sandia National Laboratories using switched multimegabit data service

    Energy Technology Data Exchange (ETDEWEB)

    Vahle, M.O.; Gossage, S.A.; Brenkosh, J.P. [Sandia National Labs., Albuquerque, NM (United States). Advanced Networking Integration Dept.

    1995-01-01

    Supercomputing `94, a high-performance computing and communications conference, was held November 14th through 18th, 1994 in Washington DC. For the past four years, Sandia National Laboratories has used this conference to showcase and focus its communications and networking endeavors. At the 1994 conference, Sandia built a Switched Multimegabit Data Service (SMDS) network running at 44.736 megabits per second linking its private SMDS network between its facilities in Albuquerque, New Mexico and Livermore, California to the convention center in Washington, D.C. For the show, the network was also extended from Sandia, New Mexico to Los Alamos National Laboratory and from Sandia, California to Lawrence Livermore National Laboratory. This paper documents and describes this network and how it was used at the conference.

  17. 1992 DOE/Sandia crystalline photovoltaic technology project review meeting

    Energy Technology Data Exchange (ETDEWEB)

    Maish, A. [ed.

    1992-07-01

    This document serves as the proceedings for the annual project review meeting held by Sandia National Laboratories` Photovoltaic Technology and Photovoltaic Evaluation Departments. It contains information supplied by organizations making presentations at the meeting, which was held July 14--15, 1992 at the Sheraton Old Town Hotel in Albuquerque, New Mexico. Overview sessions covered the Department of Energy (DOE) program, including those at Sandia and the National Renewable Energy Laboratory (NREL), and non-DOE programs, including the EPRI concentrator collector program, The Japanese crystalline silicon program, and some concentrating photovoltaic activities in Europe. Additional sessions included papers on Sandia`s Photovoltaic Device Fabrication Laboratory`s collaborative research, cell processing research, the activities of the participants in the Concentrator Initiative Program, and photovoltaic technology evaluation at Sandia and NREL.

  18. Tonopah test range - outpost of Sandia National Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, L.

    1996-03-01

    Tonopah Test Range is a unique historic site. Established in 1957 by Sandia Corporation, Tonopah Test Range in Nevada provided an isolated place for the Atomic Energy Commission to test ballistics and non-nuclear features of atomic weapons. It served this and allied purposes well for nearly forty years, contributing immeasurably to a peaceful conclusion to the long arms race remembered as the Cold War. This report is a brief review of historical highlights at Tonopah Test Range. Sandia`s Los Lunas, Salton Sea, Kauai, and Edgewood testing ranges also receive abridged mention. Although Sandia`s test ranges are the subject, the central focus is on the people who managed and operated the range. Comments from historical figures are interspersed through the narrative to establish this perspective, and at the end a few observations concerning the range`s future are provided.

  19. Energy technologies at Sandia National Laboratories: Past, Present, Future

    Energy Technology Data Exchange (ETDEWEB)

    1989-08-01

    We at Sandia first became involved with developing energy technology when the nation initiated its push toward energy independence in the early 1970s. That involvement continues to be strong. In shaping Sandia's energy programs for the 1990s, we will build on our track record from the 70s and 80s, a record outlined in this publication. It contains reprints of three issues of Sandia's Lab News that were devoted to our non-nuclear energy programs. Together, they summarize the history, current activities, and future of Sandia's diverse energy concerns; hence my desire to see them in one volume. Written in the fall of 1988, the articles cover Sandia's extremely broad range of energy technologies -- coal, oil and gas, geothermal, solar thermal, photovoltaics, wind, rechargeable batteries, and combustion.

  20. Massively Parallel Computing: A Sandia Perspective

    Energy Technology Data Exchange (ETDEWEB)

    Dosanjh, Sudip S.; Greenberg, David S.; Hendrickson, Bruce; Heroux, Michael A.; Plimpton, Steve J.; Tomkins, James L.; Womble, David E.

    1999-05-06

    The computing power available to scientists and engineers has increased dramatically in the past decade, due in part to progress in making massively parallel computing practical and available. The expectation for these machines has been great. The reality is that progress has been slower than expected. Nevertheless, massively parallel computing is beginning to realize its potential for enabling significant break-throughs in science and engineering. This paper provides a perspective on the state of the field, colored by the authors' experiences using large scale parallel machines at Sandia National Laboratories. We address trends in hardware, system software and algorithms, and we also offer our view of the forces shaping the parallel computing industry.

  1. Sandia Data Archive (SDA) file specifications

    Energy Technology Data Exchange (ETDEWEB)

    Dolan, Daniel H. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Ao, Tommy [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-02-01

    The Sandia Data Archive (SDA) format is a specific implementation of the HDF5 (Hierarchal Data Format version 5) standard. The format was developed for storing data in a universally accessible manner. SDA files may contain one or more data records, each associated with a distinct text label. Primitive records provide basic data storage, while compound records support more elaborate grouping. External records allow text/binary files to be carried inside an archive and later recovered. This report documents version 1.0 of the SDA standard. The information provided here is sufficient for reading from and writing to an archive. Although the format was original designed for use in MATLAB, broader use is encouraged.

  2. Safety Picks up "STEAM"

    Science.gov (United States)

    Roy, Ken

    2016-01-01

    This column shares safety information for the classroom. STEAM subjects--science, technology, engineering, art, and mathematics--are essential for fostering students' 21st-century skills. STEAM promotes critical-thinking skills, including analysis, assessment, categorization, classification, interpretation, justification, and prediction, and are…

  3. Space robotics programs at Sandia National Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Klarer, P.

    1993-01-01

    Existing robotic rover and space satellite technologies at Sandia National Laboratories (SNL), coupled with existing launch vehicles and converted military Multiple Independent Reentry Vehicle (MIRV) technologies, can be applied towards the realization of a robotic lunar rover mission in the near term. SNL`s Advanced Vehicle Development Department has been designing, producing, and operating prototype rover systems at the Robotic Vehicle Range facility since 1984, and has extensive experience with teleoperated and semiautonomous mobile robotic systems. SNL`s Space Systems Directorate has been designing, producing, and operating satellite systems and subsystems in earth orbit for national security missions since the early 1960`s. The facilities and robotic vehicle fleet at SNL`s Robotic Vehicle Range (SNL-RVR) have been used to support technology base development in applications ranging from DoD battlefield and security missions, to multi-agency nuclear emergency response team exercises and the development of a prototype robotic rover for planetary exploration. Recent activities at the SNL-RVR include the Robotic All Terrain Lunar Exploration Rover (RATLER) prototype development program, exploratory studies on a Near Term Lunar Return Mission scenario for small robotic rovers based on existing space hardware technology, and demonstrations of the utility of existing rover technologies for performing remote field geology tasks similar to those envisioned on a robotic lunar rover mission. Specific technologies demonstrated include low data rate teleoperation, multi-vehicle control, remote site and sample inspection, and standard bandwidth stereo vision. The paper describes Sandia National Laboratories` activities in the Space Robotics area, and highlights the laboratory`s supporting technical capabilities.

  4. An Isothermal Steam Expander for an Industrial Steam Supplying System

    Directory of Open Access Journals (Sweden)

    Chen-Kuang Lin

    2015-01-01

    Full Text Available Steam is an essential medium used in the industrial process. To ensure steam quality, small and middle scale boilers are often adopted. However, because a higher steam pressure (compared to the necessary steam pressure is generated, the boiler’s steam pressure will be reduced via a pressure regulator before the steam is directed through the process. Unfortunately, pressure is somewhat wasted during the reducing process. Therefore, in order to promote energy efficiency, a pressure regulator is replaced by a steam expander. With this steam expander, the pressure will be transformed into mechanical energy and extracted during the expansion process. A new type of isothermal steam expander for an industrial steam supplying system will be presented in the paper. The isothermal steam expander will improve the energy efficiency of a traditional steam expander by replacing the isentropic process with an isothermal expansion process. With this, steam condensation will decrease, energy will increase, and steam quality will be improved. Moreover, the mathematical model of the isothermal steam expander will be established by using the Schmidt theory, the same principle used to analyze Stirling engines. Consequently, by verifying the correctness of the theoretical model for the isothermal steam expander using experimental data, a prototype of 100 c.c. isothermal steam expander is constructed.

  5. Micromachined sensor and actuator research at Sandia`s Microelectronics Development Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Smith, J.H.

    1996-11-01

    An overview of the surface micromachining program at the Microelectronics Development Laboratory of Sandia National Laboratories is presented. Development efforts are underway for a variety of surface micromachined sensors and actuators for both defense and commercial applications. A technology that embeds micromechanical devices below the surface of the wafer prior to microelectronics fabrication has been developed for integrating microelectronics with surface-micromachined micromechanical devices. The application of chemical-mechanical polishing to increase the manufacturability of micromechanical devices is also presented.

  6. ByLaws for the Governance of the Sandia National Laboratories Sandia Postdoctoral Development (SPD) Association.

    Energy Technology Data Exchange (ETDEWEB)

    McBride, Amber Alane Fisher; McBride, Amber Alane Fisher; Rodgers, Theron; Dong, Wen; Juan, Pierre-Alexandre; Barkholtz, Heather; Alley, William Morgan; Wolk, Benjamin Matthew; Vane, Zachary Phillips; Priye, Aashish; Ball, Cameron Scott

    2017-03-01

    The purpose of this document is to define the rules of governance for the Sandia Postdoctoral Development (SPD) Association. This includes election procedures for filling vacancies on the SPD board, an all-purpose voting procedure, and definitions for the roles and responsibilities of each SPD board member. The voting procedures can also be used to amend the by-laws, as well as to create, dissolve, or consolidate vacant SPD board positions.

  7. Solar steam generation: Steam by thermal concentration

    Science.gov (United States)

    Shang, Wen; Deng, Tao

    2016-09-01

    The solar-driven generation of water steam at 100 °C under one sun normally requires the use of optical concentrators to provide the necessary energy flux. Now, thermal concentration is used to raise the vapour temperature to 100 °C without the need for costly optical concentrators.

  8. Ukraine Steam Partnership

    Energy Technology Data Exchange (ETDEWEB)

    Gurvinder Singh

    2000-02-15

    The Ukraine Steam Partnership program is designed to implement energy efficiency improvements in industrial steam systems. These improvements are to be made by the private plants and local government departments responsible for generation and delivery of energy to end-users. One of the activities planned under this program was to provide a two-day training workshop on industrial steam systems focusing on energy efficiency issues related to the generation, distribution, and consumption of steam. The workshop was geared towards plant managers, who are not only technically oriented, but are also key decision makers in their respective companies. The Agency for Rational Energy Use and Ecology (ARENA-ECO), a non-governmental, not-for-profit organization founded to promote energy efficiency and environmental protection in Ukraine, in conjunction with the Alliance staff in Kiev sent out invitations to potential participants in all the regions of Ukraine. The purpose of this report is the describe the proceedings from the workshop and provide recommendations from the workshop's roundtable discussion. The workshop was broken down into two main areas: (1) Energy efficient boiler house steam generation; and Energy efficient steam distribution and consumption. The workshop also covered the following topics: (1) Ukrainian boilers; (2) Water treatment systems; (3) A profile of UKRESCO (Ukrainian Energy Services Company); (4) Turbine expanders and electricity generation; (5) Enterprise energy audit basics; and (6) Experience of steam use in Donetsk oblast.

  9. Steam generator tube failures

    Energy Technology Data Exchange (ETDEWEB)

    MacDonald, P.E.; Shah, V.N.; Ward, L.W.; Ellison, P.G.

    1996-04-01

    A review and summary of the available information on steam generator tubing failures and the impact of these failures on plant safety is presented. The following topics are covered: pressurized water reactor (PWR), Canadian deuterium uranium (CANDU) reactor, and Russian water moderated, water cooled energy reactor (VVER) steam generator degradation, PWR steam generator tube ruptures, the thermal-hydraulic response of a PWR plant with a faulted steam generator, the risk significance of steam generator tube rupture accidents, tubing inspection requirements and fitness-for-service criteria in various countries, and defect detection reliability and sizing accuracy. A significant number of steam generator tubes are defective and are removed from service or repaired each year. This wide spread damage has been caused by many diverse degradation mechanisms, some of which are difficult to detect and predict. In addition, spontaneous tube ruptures have occurred at the rate of about one every 2 years over the last 20 years, and incipient tube ruptures (tube failures usually identified with leak detection monitors just before rupture) have been occurring at the rate of about one per year. These ruptures have caused complex plant transients which have not always been easy for the reactor operators to control. Our analysis shows that if more than 15 tubes rupture during a main steam line break, the system response could lead to core melting. Although spontaneous and induced steam generator tube ruptures are small contributors to the total core damage frequency calculated in probabilistic risk assessments, they are risk significant because the radionuclides are likely to bypass the reactor containment building. The frequency of steam generator tube ruptures can be significantly reduced through appropriate and timely inspections and repairs or removal from service.

  10. Evaluation of instant catapult steam explosion combined with chemical pretreatments on corn stalk by components and enzymatic hydrolysis analysis%瞬间弹射蒸汽爆破联用化学法预处理玉米秸秆的组分和酶解分析

    Institute of Scientific and Technical Information of China (English)

    刘黎阳; 郝学密; 刘晨光; 白凤武

    2014-01-01

    以瞬间弹射蒸汽爆破(instant catapult steam explosion, ICSE)为基础,联用稀酸法、碱法、氨水法、有机溶剂法以及离子液体法进行预处理,对不同方法采用组分和酶解分析,以探索出一种绿色和高效的预处理方法。ICSE处理后的物料能够显著促进传统的化学预处理过程,其中ICSE与碱法联用预处理的糖收率最高,达到了77.54%,而ICSE与离子液体联用预处理后糖收率比单纯使用离子液体提高了7.78倍,达到了60.04%。选取ICSE与离子液体联用预处理过程作为最优预处理方法,并对其采用傅里叶-红外光谱、X射线晶体衍射和扫描电镜进行表征,经 ICSE 处理后玉米秸秆变得蓬松且不完整,半纤维素组分减少,促进离子液体对于纤维素的溶解;而与离子液体联用预处理后,物料纤维素和木质素相应官能团吸收峰增强,纤维素结晶构型由纤维素-Ⅰ型转变为纤维素-Ⅱ型,结晶指数降低。%Combining with instant catapult steam explosion (ICSE), corn stalk was pretreated by different chemical methods, including dilute acid, sodium hydroxide, aqueous ammonia, organic solvent, and ionic liquid. In order to obtain a green and highly efficient process, materials were analyzed by components and enzymatic hydrolysis analysis. ICSE could significantly prompt the effects of chemical methods on lignocellulose pretreatment. Among these approaches, ICSE combined with sodium hydroxide had the highest glucose yield 77.54%. Meanwhile, compared with the solo ionic liquid pretreated method, ICSE combined with ionic liquid pretreatment increased glucose yield by 7.78 folds, reaching 60.04%. Considering the requirements of efficiency, green process and low energy cost on pretreatment, the method of ICSE plus ionic liquid was selected as the optimal method and materials then were analyzed with Fourier transformed infrared (FT-IR), X-ray diffraction (XRD) and scanning

  11. Phreatic and Hydrothermal Explosions: A Laboratory Approach

    Science.gov (United States)

    Scheu, B.; Dingwell, D. B.

    2010-12-01

    Phreatic eruptions are amongst the most common eruption types on earth. They might be precursory to another type of volcanic eruption but often they stand on their one. Despite being the most common eruption type, they also are one of the most diverse eruptions, in appearance as well as on eruption mechanism. Yet steam is the common fuel behind all phreatic eruptions. The steam-driven explosions occur when water beneath the ground or on the surface is heated by magma, lava, hot rocks, or fresh volcanic deposits (such as ignimbrites, tephra and pyroclastic-flow deposits) and result in crater, tuff rings and debris avalanches. The intense heat of such material may cause water to boil and flash to steam, thereby generating an explosion of steam, water, ash, blocks, and bombs. Another wide and important field affected by phreatic explosions are hydrothermal areas; here phreatic explosions occur every few months creating explosion craters and resemble a significant hazard to hydrothermal power plants. Despite of their hazard potential, phreatic explosions have so far been overlooked by the field of experimental volcanology. A part of their hazard potential in owned by the fact that phreatic explosions are hardly predictable in occurrence time and size as they have manifold triggers (variances in groundwater and heat systems, earthquakes, material fatigue, water level, etc..) A new set of experiments has been designed to focus on this phreatic type of steam explosion, whereas classical phreatomagmatic experiments use molten fuel-coolant interaction (e.g., Zimanowski, et al., 1991). The violent transition of the superheated water to vapour adds another degree of explosivity to the dry magmatic fragmentation, driven mostly by vesicle bursting due to internal gas overpressure. At low water fractions the fragmentation is strongly enforced by the mixture of these two effects and a large fraction of fine pyroclasts are produced, whereas at high water fraction in the sample the

  12. Market Assessment and Commercialization Strategy for the Radial Sandia Cooler

    Energy Technology Data Exchange (ETDEWEB)

    Goetzler, William [Navigant Consulting, Inc., Burlington, MA (United States); Shandross, Richard [Navigant Consulting, Inc., Burlington, MA (United States); Weintraub, Daniel [Navigant Consulting, Inc., Burlington, MA (United States); Young, Jim [Navigant Consulting, Inc., Burlington, MA (United States)

    2014-02-01

    This market assessment and commercialization report characterizes and assesses the market potential of the rotating heat exchanger technology developed at Sandia National Laboratories (SNL), known as the Radial Sandia Cooler. The RSC is a novel, motor-driven, rotating, finned heat exchanger technology. The RSC was evaluated for the residential, commercial, industrial, and transportation markets. Recommendations for commercialization were made based on assessments of the prototype RSC and the Sandia Cooler technology in general, as well as an in-depth analysis of the six most promising products for initial RSC commercialization.

  13. Vibration control for precision manufacturing at Sandia National Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Hinnerichs, T.; Martinez, D. [Sandia National Labs., Albuquerque, NM (United States). Structural Dynamics and Vibration Control Dept.

    1995-04-01

    Sandia National Laboratories performs R and D in structural dynamics and vibration suppression for precision applications in weapon systems, space, underwater, transportation and civil structures. Over the last decade these efforts have expanded into the areas of active vibration control and ``smart`` structures and material systems. In addition, Sandia has focused major resources towards technology to support weapon product development and agile manufacturing capability for defense and industrial applications. This paper will briefly describe the structural dynamics modeling and verification process currently in place at Sandia that supports vibration control and some specific applications of these techniques to manufacturing in the areas of lithography, machine tools and flexible robotics.

  14. Site Environmental Report for 2012 Sandia National Laboratories California

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Barbara L. [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2013-05-01

    Sandia National Laboratories, California (SNL/CA) is a government-owned/contractor-operated laboratory. Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, manages and operates the laboratory for the Department of Energy’s National Nuclear Security Administration (NNSA). The NNSA Sandia Field Office administers the contract and oversees contractor operations at the site. This Site Environmental Report for 2012 was prepared in accordance with DOE Order 231.1B, Environment, Safety and Health Reporting (DOE 2011d). The report provides a summary of environmental monitoring information and compliance activities that occurred at SNL/CA during calendar year 2012. General site and environmental program information is also included.

  15. Site environmental report for 2011. Sandia National Laboratories, California

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Barbara L. [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2012-05-01

    Sandia National Laboratories, California (SNL/CA) is a government-owned/contractoroperated laboratory. Sandia Corporation, a wholly-owned subsidiary of Lockheed Martin Corporation, manages and operates the laboratory for the Department of Energy’s National Nuclear Security Administration (NNSA). The NNSA Sandia Site Office administers the contract and oversees contractor operations at the site. This Site Environmental Report for 2011 was prepared in accordance with DOE Order 231.1B, Environment, Safety and Health Reporting (DOE 2011d). The report provides a summary of environmental monitoring information and compliance activities that occurred at SNL/CA during calendar year 2011. General site and environmental program information is also included.

  16. Incorporating supercritical steam turbines into molten-salt power tower plants :

    Energy Technology Data Exchange (ETDEWEB)

    Pacheco, James Edward; Wolf, Thorsten; Muley, Nishant

    2013-03-01

    Sandia National Laboratories and Siemens Energy, Inc., examined 14 different subcritical and supercritical steam cycles to determine if it is feasible to configure a molten-salt supercritical steam plant that has a capacity in the range of 150 to 200 MWe. The effects of main steam pressure and temperature, final feedwater temperature, and hot salt and cold salt return temperatures were determined on gross and half-net efficiencies. The main steam pressures ranged from 120 bar-a (subcritical) to 260 bar-a (supercritical). Hot salt temperatures of 566 and 600ÀC were evaluated, which resulted in main steam temperatures of 553 and 580ÀC, respectively. Also, the effects of final feedwater temperature (between 260 and 320ÀC) were evaluated, which impacted the cold salt return temperature. The annual energy production and levelized cost of energy (LCOE) were calculated using the System Advisory Model on 165 MWe subcritical plants (baseline and advanced) and the most promising supercritical plants. It was concluded that the supercritical steam plants produced more annual energy than the baseline subcritical steam plant for the same-size heliostat field, receiver, and thermal storage system. Two supercritical steam plants had the highest annual performance and had nearly the same LCOE. Both operated at 230 bar-a main steam pressure. One was designed for a hot salt temperature of 600ÀC and the other 565ÀC. The LCOEs for these plants were about 10% lower than the baseline subcritical plant operating at 120 bar-a main steam pressure and a hot salt temperature of 565ÀC. Based on the results of this study, it appears economically and technically feasible to incorporate supercritical steam turbines in molten-salt power tower plants.

  17. Explosive Pleuritis

    Directory of Open Access Journals (Sweden)

    Jasdeep K Sharma

    2001-01-01

    Full Text Available The objective of the present paper is to describe the clinical and computed tomography features of 'explosive pleuritis', an entity first named by Braman and Donat in 1986, and to propose a case definition. A case report of a previously healthy, 45-year-old man admitted to hospital with acute onset pleuritic chest pain is presented. The patient arrived at the emergency room at 15:00 in mild respiratory distress; the initial chest x-ray revealed a small right lower lobe effusion. The subsequent clinical course in hospital was dramatic. Within 18 h of admission, he developed severe respiratory distress with oxygen desaturation to 83% on room air and dullness of the right lung field. A repeat chest x-ray, taken the morning after admission, revealed complete opacification of the right hemithorax. A computed tomography scan of the thorax demonstrated a massive pleural effusion with compression of pulmonary tissue and mediastinal shift. Pleural fluid biochemical analysis revealed the following concentrations: glucose 3.5 mmol/L, lactate dehydrogenase 1550 U/L, protein 56.98 g/L, amylase 68 U/L and white blood cell count 600 cells/mL. The pleural fluid cultures demonstrated light growth of coagulase-negative staphylococcus and viridans streptococcus, and very light growth of Candida albicans. Cytology was negative for malignant cells. Thoracotomy was performed, which demonstrated a loculated parapneumonic effusion that required decortication. The patient responded favourably to the empirical administration of intravenous levofloxacin and ceftriaxone, and conservative surgical methods in the management of the empyema. This report also discusses the patient's rapidly progressing pleural effusion and offers a potential case definition for explosive pleuritis. Explosive pleuritis is a medical emergency defined by the rapid development of a pleural effusion involving more than 90% of the hemithorax over 24 h, which causes compression of pulmonary tissue and

  18. Impactful times memories of 60 years of shock wave research at Sandia National Laboratories

    CERN Document Server

    Asay, James R; Lawrence, R Jeffery; Sweeney, Mary Ann

    2017-01-01

    This book presents a history of shock compression science, including development of experimental, material modeling, and hydrodynamics code technologies over the past six decades at Sandia National Laboratories. The book is organized into a discussion of major accomplishments by decade with over 900 references, followed by a unique collection of 45 personal recollections detailing the trials, tribulations, and successes of building a world-class organization in the field. It explains some of the challenges researchers faced and the gratification they experienced when a discovery was made. Several visionary researchers made pioneering advances that integrated these three technologies into a cohesive capability to solve complex scientific and engineering problems. What approaches worked, which ones did not, and the applications of the research are described. Notable applications include the turret explosion aboard the USS Iowa and the Shoemaker-Levy comet impact on Jupiter. The personal anecdotes and recollec...

  19. Explosive Pleuritis

    Directory of Open Access Journals (Sweden)

    Satish Kumar

    2012-01-01

    Full Text Available Pleural effusions associated with pneumonia (parapneumonic effusions are one of the most common causes of exudative pleural effusions in the world. Approximately 20 to 40% of patients hospitalized with pneumonia will have an accompanying pleural effusion. The term 'Explosive pleuritis' was originally described by Braman and Donat in 1986 as pleural effusions developing within hours of admission. We report a 38 years old male patient with minimal pleural effusion which progressed rapidly within one day to involve almost whole of the hemithorax. There were multiple loculations on ultrasonography of thorax. Pleural fluid was sero-sanguinous and revealed gram positive diplococcic. The patient improved with antibiotics and pigtail catheter drainage.

  20. Radiation Testing at Sandia National Laboratories: Sandia – JPL Collaboration for Europa Lander

    Energy Technology Data Exchange (ETDEWEB)

    Hattar, Khalid Mikhiel [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Ion Beam Lab.; Olszewska-Wasiolek, Maryla Aleksandra [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Gamma Irradiation Facility

    2017-01-01

    Sandia National Laboratories (SNL) is assisting Jet Propulsion Laboratory in undertaking feasibility studies and performance assessments for the Planetary Protection aspect of the Europa Lander mission. The specific areas of interest for this project are described by task number. This white paper presents the evaluation results for Task 2, Radiation Testing, which was stated as follows: Survey SNL facilities and capabilities for simulating the Europan radiation environment and assess suitability for: A. Testing batteries, electronics, and other component and subsystems B. Exposing biological organisms to assess their survivability metrics.

  1. Sandia Laboratories technical capabilities: design, definition, and fabrication

    Energy Technology Data Exchange (ETDEWEB)

    1976-12-01

    This report characterizes the design definition and fabrication capabilities at Sandia Laboratories. Selected applications of these capabilities are presented to illustrate the extent to which they can be applied in research and development programs. 13 figures.

  2. Sandia National Laboratories corporate mentor program : program review, May 2004.

    Energy Technology Data Exchange (ETDEWEB)

    Tibbetts, Tiffany; Tarro, Talitha; Dudeck, William; Bristol, Colette; Stephens, Jim

    2005-01-01

    The Sandia National Laboratories Corporate Mentor Program provides a mechanism for the development and retention of Sandia's people and knowledge. The relationships formed among staff members at different stages in their careers offer benefits to all. These relationships can provide experienced employees with new ideas and insight and give less experienced employees knowledge of Sandia's culture, strategies, and programmatic direction. The program volunteer coordinators are dedicated to the satisfaction of the participants, who come from every area of Sandia. Since its inception in 1995, the program has sustained steady growth and excellent customer satisfaction. This report summarizes the accomplishments, activities, enhancements, and evaluation data for the Corporate Mentor Program for the 2003/2004 program year ending May 1, 2004.

  3. Site Environmental Report for 2016 Sandia National Laboratories California.

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Barbara L. [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2017-06-01

    Sandia National Laboratories, California (SNL/CA) is a Department of Energy (DOE) facility. The management and operations of the facility are under a contract with the DOE’s National Nuclear Security Administration (NNSA). On May 1, 2017, the name of the management and operating contractor changed from Sandia Corporation to National Technology and Engineering Solutions of Sandia, LLC (NTESS). The DOE, NNSA, Sandia Field Office administers the contract and oversees contractor operations at the site. This Site Environmental Report for 2016 was prepared in accordance with DOE Order 231.1B, Environment, Safety and Health Reporting (DOE 2012). The report provides a summary of environmental monitoring information and compliance activities that occurred at SNL/CA during calendar year 2016, unless noted otherwise. General site and environmental program information is also included.

  4. Leidenfrost explosions

    CERN Document Server

    Moreau, F; Dorbolo, S

    2012-01-01

    We present a fluid dynamics video showing the behavior of Leidenfrost droplets composed by a mixture of water and surfactant (SDS, Sodium Dodecyl sulfate). When a droplet is released on a plate heated above a given temperature a thin layer of vapor isolates the droplet from the plate. The droplet levitates over the plate. This is called the Leidenfrost effect. In this work we study the influence of the addition of a surfactant on the Leidenfrost phenomenon. As the droplet evaporates the concentration of SDS rises up to two orders of magnitude over the Critical Micelle Concentration (CMC). An unexpected and violent explosive behavior is observed. The video presents several explosions taken with a high speed camera (IDT-N4 at 30000 fps). All the presented experiments were performed on a plate heated at 300{\\deg}C. On the other hand, the initial quantity of SDS was tuned in two ways: (i) by varying the initial concentration of SDS and (ii) by varying the initial size of the droplet. By measuring the volume of th...

  5. Super eruption environments make for "super" hydrothermal explosions: Extreme hydrothermal explosions in Yellowstone National Park

    Science.gov (United States)

    Morgan, L. A.; Shanks, W. P.; Pierce, K. L.

    2006-12-01

    Hydrothermal explosions are violent events resulting in the rapid ejection of boiling water, steam, mud, and rock fragments over areas that range from a few meters in diameter up to several kilometers in diameter. Hydrothermal explosions occur where shallow interconnected reservoirs of steam-saturated fluids underlie thermal fields. Sudden reduction in pressure causes the fluids to flash to steam resulting in significant expansion, rock fragmentation, and debris ejection. In Yellowstone, at least 20 large (>100 meters in diameter) hydrothermal explosions have been identified, and the scale of the individual events dwarfs similar features in other hydrothermal and geothermal areas of the world. Large explosions in Yellowstone have occurred over the past 16 ka at an interval of ~1 per every 700 yrs and similar events are likely to occur in the future. Our studies of hydrothermal explosive events indicate: 1) none are associated with magmatic or volcanic events; 2) several have been triggered by seismic events coupled with other processes; 3) lithic clasts and matrix from explosion deposits are extensively altered, indicating long-term, extensive hydrothermal mineralization in areas that were incorporated into the explosion deposit; 4) many lithic clasts in explosion breccia deposits contain evidence of repeated fracturing and cementation; and 4) dimensions of many documented large hydrothermal explosion craters in Yellowstone are similar to the dimensions of currently active geyser basins or thermal areas in Yellowstone. The vast majority of active thermal areas in Yellowstone are characterized by 1) high-temperature hot-water systems in areas of high heat-flow, 2) extensive systems of hot springs, fumaroles, geysers, sinter terraces, mud pots, and, in places, small hydrothermal explosion craters, 3) widespread alteration of host rocks, 4) large areal dimensions (>several 100 m) and 5) intermittent but long-lived activity (40,000 to 300,000 years). Critical

  6. Sandia National Laboratories Institutional Plan: FY 1999-2004

    Energy Technology Data Exchange (ETDEWEB)

    Garber, D.P.

    1999-01-06

    This Institutional Plan is the most comprehensive yearly "snapshot" available of Sandia National Laboratories' major programs, facilities, human resources, and budget. The document also includes overviews of our missions, organization, capabilities, planning functions, milestones, and accomplishments. The document's purpose is to provide the above information to the US Department of Energy, key congressional committees, Sandia management, and other present and potential customers. Chapter 2 presents information about Sandia's mission and summarizes our recent revision of Sandia's Strategic Plan. Chapter 3 presents an overview of Sandia's strategic objectives, chapter 4 lists laboratory goals and milestones for FY 1999, and chapter 5 presents our accomplishments during FY 1998. Chapters 3 through 5 are organized around our eight strategic objectives. The four primary objectives cover nuclear weapons responsibilities, nonproliferation and materials control, energy and critical infrastructures, and emerging national security threats. The major programmatic initiatives are presented in chapter 7. However, the programmatic descriptions in chapter 6 and the Associated funding tables in chapter 9 continue to be presented by DOE Budget and Reporting Code, as in previous Sandia institutional plans. As an aid to the reader, the four primary strategic objectives in chapter 3 are cross-referenced to the program information in chapter 6.

  7. Partnering with Sandia National Laboratories through alliances or consortia

    Energy Technology Data Exchange (ETDEWEB)

    Winchell, B.M.

    1994-12-01

    To better facilitate working with industry, groups of industrial participants, and partners in alliances or consortia, Sandia National Laboratories presents information helpful to those outside groups as to the forms of arrangements that may be used to better facilitate partnering relationships between Sandia National Laboratories and consortia or alliances of outside parties. It is expected that these alliances and consortia will include both large and small for-profit industrial concerns, as well as not-for-profit entities such as universities, institutes, other research facilities, and other nonprofit institutions or consortia containing institutions. The intent of this report is to provide such outside groups with information that will facilitate rapid interactions with Sandia National Laboratories through some of these forms of business which will be discussed in this report. These are not the only approaches to facilitating business interactions with Sandia National Laboratories and it is not intended that this report be legal advice or required approaches to doing business with Sandia National Laboratories. The intent of this report is merely to suggest ways in which Sandia National Laboratories can work with outside parties in the most expeditious manner.

  8. Partnering with Sandia National Laboratories through alliances or consortia

    Energy Technology Data Exchange (ETDEWEB)

    Winchell, B.M.

    1994-04-01

    To better facilitate working with industry, groups of industrial participants, and partners in alliances or consortia, Sandia National laboratories presents information helpful to those outside groups as to the forms of arrangements that may be used to better facilitate partnering relationships between Sandia National Laboratories and consortia or alliances of outside parties. It is expected that these alliances and consortia will include both large and small for-profit industrial concerns, as well as not-for-profit entities such as universities, institutes, other research facilities, and other nonprofit institutions or consortia containing institutions. The intent of this report is to provide such outside groups with information that will facilitate rapid interactions with Sandia National Laboratories through some of these forms of business which will be discussed in this report. These are not the only approaches to facilitating business interactions with Sandia National Laboratories and it is not intended that this report be legal advice or required approaches to doing business with Sandia National Laboratories. The intent of this report is merely to suggest ways in which Sandia National Laboratories can work with outside parties in the most expeditious manner.

  9. Steam pretreatment conditions for effective enzymatic hydrolysis and recovery yields of Eucalyptus viminalis wood chips

    Energy Technology Data Exchange (ETDEWEB)

    Ramos, L.P. (Forest Products Biotechnology, Faculty of Forestry, Univ. of British Columbia, Vancouver, BC (Canada)); Breuil, C. (Forest Products Biotechnology, Faculty of Forestry, Univ. of British Columbia, Vancouver, BC (Canada)); Kushner, D.J. (Dept. of Microbiology, Univ. of Toronto, ON (Canada)); Saddler, J.N. (Forest Products Biotechnology, Faculty of Forestry, Univ. of British Columbia, Vancouver, BC (Canada))

    1992-01-01

    Wood chips from Eucalyptus viminalis were steam treated over a range of temperatures and residence times in the absence or presence of SO[sub 2]. When the substrate was steam treated without explosion, the initial moisture content of the chips had a significant influence on the recovery yield and the degree of enzymatic hydrolysis. Pretreatment by steam explosion showed no variation resulting from differences in the initial moisture content of the chips. SO[sub 2] catalysis was shown to be particulary beneficial for the steam treatment of green chips. More than 95% of the original cellulose could be hydrolysed to glucose with more than 80% of the original pentosan recovered as xylose in the water soluble fraction. This indicated a need for chips with a high enough moisture content necessary to generate enough sulphurous acid from SO[sub 2] to act as an effective catalyst. (orig.)

  10. 2nd Sandia Fracture Challenge Summit: Sandia California's Modeling Approach

    Energy Technology Data Exchange (ETDEWEB)

    Karlson, Kyle N. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Brown, Arthur [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Foulk, James W. [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2015-02-01

    Team Sandia California (Team H) used the Sandia code SIERRA Solid Mechanics: Implicit (SIERRA SM) to model the SFC2 challenge problem. SIERRA SM is a Lagrangian, three-dimensional, implicit code for the analysis of solids and structures. It contains a versatile library of continuum and structural elements, and an extensive library of material models. For all SFC2 related simulations, our team used Q1P0, 8 node hexahedral elements with element side lengths on the order 0.175 mm in failure regions. To model crack initiation and failure, element death removed elements from the simulation according to a continuum damage model. SIERRA SM’s implicit dynamics, implemented with an HHT time integration scheme for numerical damping [1], was used to model the unstable failure modes of the models. We chose SIERRA SM’s isotropic Elasto Viscoplastic material model for our simulations because it contains most of the physics required to accurately model the SFC2 challenge problem such as the flexibility to include temperature and rate dependence for a material.

  11. Noise and vibration investigations of the Sandia National Laboratories Sol se Mete Aerial Cable Facility

    Energy Technology Data Exchange (ETDEWEB)

    Matise, B.K.; Gutman, W.M.; Cunniff, R.A.; Silver, R.J.; Stepp, W.E. [New Mexico State Univ., Las Cruces, NM (United States). Physical Science Lab.

    1994-11-01

    This document is an assessment of the noise, vibration, and overpressure effects and fragmentation hazards of the operation of the Sandia National Laboratories Sol de Mete Aerial Cable Facility (ACF). Major noise sources associated with project operations and considered in this report include rocket motors, chemical explosions, 3-inch gun, 20-mm gun, vehicular traffic, and engines of electricity generators. In addition, construction equipment noise is considered. Noise exposure of ACF personnel is expressed as the equivalent sound level for the 8-hour work day, and is computed by scaling to the proper distance and combining the appropriate noise values for continuously operating equipment such as vehicles and generators. Explosions and gun firings are impulsive events, and overpressures are predicted and expressed as decibel (dB) at the control building, at other nearby facilities, at Sol se Mete. The conclusion reached in the noise analysis is that continuously operating equipment would not produce a serious noise hazard except in the immediate vicinity of the electricity generators and heavy equipment where hearing protection devices should be used. Rocket motors, guns, and detonations of less than 54 kilograms (kg) (120 lb) of explosives would not produce noise levels above the threshold for individual protection at the control building, other nearby test areas, or Sol se Mete Spring. Rare tests involving explosive weights between 54 and 454 kg (120 and 1,000 lb) could produce impulsive noise levels above 140 dB that would require evacuation or other provision for individual hearing protection at the ACF control building and at certain nearby facilities not associated with ACF. Other blast effects including overpressure, ground vibration, and fragmentation produce hazard radii that generally are small than the corresponding noise hazard radius, which is defined as the distance at which the predicted noise level drops to 140 dB.

  12. Explosive Formulation Pilot Plant

    Data.gov (United States)

    Federal Laboratory Consortium — The Pilot Plant for Explosive Formulation supports the development of new explosives that are comprised of several components. This system is particularly beneficial...

  13. Chaotic Explosions

    CERN Document Server

    Altmann, Eduardo G; Tél, Tamás

    2015-01-01

    We investigate chaotic dynamical systems for which the intensity of trajectories might grow unlimited in time. We show that (i) the intensity grows exponentially in time and is distributed spatially according to a fractal measure with an information dimension smaller than that of the phase space,(ii) such exploding cases can be described by an operator formalism similar to the one applied to chaotic systems with absorption (decaying intensities), but (iii) the invariant quantities characterizing explosion and absorption are typically not directly related to each other, e.g., the decay rate and fractal dimensions of absorbing maps typically differ from the ones computed in the corresponding inverse (exploding) maps. We illustrate our general results through numerical simulation in the cardioid billiard mimicking a lasing optical cavity, and through analytical calculations in the baker map.

  14. Development of Binderless Fiberboards from Steam-exploded and Oxidized Oil Palm Wastes

    Directory of Open Access Journals (Sweden)

    Elizabeth Mejía Henao

    2014-04-01

    Full Text Available Binderless fiberboards were made from oil palm (Elaeis guineensis empty fruit bunches with two treatments: steam explosion and Fenton reagent oxidation. Fiberboards were prepared with a targeted density of 1.20 g/cm3 and a thickness of 4 mm. A factorial experimental design 22 with two center repetitions and one repetition was applied for each treatment. The oil palm waste was oxidized with Fenton reagent using a H2O2/Fe2+ ratio of 2%/0.2% to 4%/0.4% and a pressing temperature of 170 to 190 °C. Steam explosion was carried out at a severity factor of 3.5 to 4.0 at the same pressing temperature. Both treatments were examined under two major response variables: mechanical properties (modulus of rupture, MOR, and modulus of elasticity, MOE and physical properties (thickness swelling, TS, and water absorption, WA. Steam-exploded samples developed better physico-mechanical properties than those that underwent Fenton reagent oxidation. The best results were obtained from fiberboards treated with the highest steam explosion design conditions (severity 4 and pressing temperature 190 °C to give optimum values of MOE 3100.09 MPa, MOR 28.49 MPa, TS 11.80%, and WA 22.74%. Binderless fiberboards made from steam explosion-treated pulp satisfied favorably well the Colombian Standard NTC 2261.

  15. Potential for low fracture toughness and lamellar tearing on PWR steam generator and reactor coolant pump supports. Resolution of generic technical activity A-12

    Energy Technology Data Exchange (ETDEWEB)

    Snaider, R.P.; Hodge, J.M.; Levin, H.A.; Zudans, J.J.

    1979-10-01

    This report summarizes work performed by the Nuclear Regulatory Commission staff and its contractor, Sandia Laboratories, in the resolution of Generic Technical Activity A-12, ''Potential for Low Fracture Toughness and Lamellar Tearing in PWR Steam Generator and Reactor Coolant Pump Supports.'' The report describes the technical issues, the technical studies performed by Sandia describes the technical issues, the technical studies performed by Sandia Laboratories, the NRC staff's technical positions based on these studies, and the staff's plan for implementing its technical positions. It also provides recommendations for further work. The complete technical input from Sandia Laboratories is appended to the report.

  16. High performance steam development

    Energy Technology Data Exchange (ETDEWEB)

    Duffy, T.; Schneider, P. [Solar Turbines Inc., San Diego, CA (United States)

    1995-10-01

    Over 30 years ago U.S. industry introduced the world`s highest temperature (1200{degrees}F at 5000 psig) and most efficient power plant, the Eddystone coal-burning steam plant. The highest alloy material used in the plant was 316 stainless steel. Problems during the first few years of operation caused a reduction in operating temperature to 1100{degrees}F which has generally become the highest temperature used in plants around the world. Leadership in high temperature steam has moved to Japan and Europe over the last 30 years.

  17. STEAM GENERATOR GROUP PROJECT

    Energy Technology Data Exchange (ETDEWEB)

    Clark, R. A.; Lewis, M

    1985-09-01

    This report is a summary of progress in the Surry Steam Generator Group Project for 1984. Information is presented on the analysis of two baseline eddy current inspections of the generator. Round robin series of tests using standard in-service inspection techniques are described along with some preliminary results. Observations are reported of degradation found on tubing specimens removed from the generator, and on support plates characterized in-situ. Residual stresses measured on a tubing specimen are reported. Two steam generator repair demonstrations are described; one for antivibration bar replacement, and one on tube repair methods. Chemical analyses are shown for sludge samples removed from above the tube sheet.

  18. Chemical profiling of explosives

    NARCIS (Netherlands)

    Brust, G.M.H.

    2014-01-01

    The primary goal of this thesis is to develop analytical methods for the chemical profiling of explosives. Current methodologies for the forensic analysis of explosives focus on identification of the explosive material. However, chemical profiling of explosives becomes increasingly important, as

  19. Isentropic Compression of Nitroplastized Estane to 40 KBAR on the Sandia Z-Machine

    Science.gov (United States)

    Gustavsen, Rick; Hall, Clint

    2005-07-01

    Nitroplasticized Estane is the plastic binder used to hold HMX grains together in the plastic bonded explosive PBX 9501. As part of an effort to characterize PBX 9501, we isentropically compressed the explosive and its constituents to ˜ 40 kbar on the Sandia Z-Machine. Nitroplasticized Estane binder samples were prepared as follows: A mixture of 49 wt. % Estane^5703 (BF Goodrich), 49 wt. % Nitroplasticizer (a 50/50 eutectic mixture of bis(2,2-dinitropropyl)formal and bis(2,2 dinitropropyl)acetal), and 2 wt. % Irganox^ 1010 stabilizer was prepared as for PBX 9501 binder. Samples were compression molded into 0.1 -- 2 mm thick films at 110^oC. These were then mounted between 6061 Aluminum Z panels and PMMA or LiF VISAR widows. PMMA washers between the panel and window stabilized the binder thickness. Profiles of ramp waves transmitted through several sample thicknesses were measured and compared with a reference profile. A simple analysis of the results indicates that the binder behavior can be described using the Universal Liquid Hugoniot with an ambient sound speed of 1.7 km/s.

  20. Supernova explosions

    CERN Document Server

    Branch, David

    2017-01-01

    Targeting advanced students of astronomy and physics, as well as astronomers and physicists contemplating research on supernovae or related fields, David Branch and J. Craig Wheeler offer a modern account of the nature, causes and consequences of supernovae, as well as of issues that remain to be resolved. Owing especially to (1) the appearance of supernova 1987A in the nearby Large Magellanic Cloud, (2) the spectacularly successful use of supernovae as distance indicators for cosmology, (3) the association of some supernovae with the enigmatic cosmic gamma-ray bursts, and (4) the discovery of a class of superluminous supernovae, the pace of supernova research has been increasing sharply. This monograph serves as a broad survey of modern supernova research and a guide to the current literature. The book’s emphasis is on the explosive phases of supernovae. Part 1 is devoted to a survey of the kinds of observations that inform us about supernovae, some basic interpreta tions of such data, and an overview of t...

  1. Development of Axial Tomography for Steam Explosion Study

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae Young; Seo, Shi Won [HanDong Global University, Pohang (Korea, Republic of); Song, Jin Ho [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    2006-07-01

    Visual understanding of complicated system leads us often to the intuitive enlightenment of the invisible causes of the effect. When it is formulated based on the rigorous mathematics, the produced formula or correlation will be very useful in design and analysis of the engineering system. In this point of view, the tomography technology can be a tool to meet such a purpose. However, the traditional hard ray tomography using high energy radiation cannot meet the case due to heavy shielding structure which obstructs access of the sensing unit to the very complicated and limited space. Therefore, the recent development of the electric tomography is noteworthy in the application to the industrial process monitoring. It has the merit not only of low cost but also of easier access to the limited space than the hard ray tomography.

  2. Sandia SWiFT Site Safe Work Planning Manual.

    Energy Technology Data Exchange (ETDEWEB)

    White, Jonathan

    2016-02-01

    The Department of Energy's Scaled Wind Farm Technology (SWiFT) facility provides research site with multiple wind turbines at a scale useful for the experimental study of wake dynamics, advanced rotor development, turbine control, and advanced sensing for production-scale wind farms. Safety of workers and the public is the top and overriding priority at SWiFT. Central to safe operations are formal planning processes . This manual provides an overview of test planning and work planning processes and requirements in adherence with the Sandia corporate Engineered Safety Work Planning and Control process. It is required reading for all SWiFT site staff, Sandia workers, and collaborators who oversee, conduct, or participate in test activities or who are involved in modifying Sandia SWiFT site assets.

  3. 1993 Site environmental report Sandia National Laboratories, Albuquerque, New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Culp, T.A.; Cheng, C.F.; Cox, W.; Durand, N.; Irwin, M.; Jones, A.; Lauffer, F.; Lincoln, M.; McClellan, Y.; Molley, K. [and others

    1994-11-01

    This 1993 report contains monitoring data from routine radiological and nonradiological environmental surveillance activities. Summaries of significant environmental compliance programs in progress, such as National Environmental Policy Act documentation, environmental permits, environmental restoration, and various waste management programs for Sandia National Laboratories in Albuquerque, New Mexico, are included. The maximum offsite dose impact was calculated to be 0.0016 millirem. The total population within a 50-mile (80 kilometer) radius of Sandia National Laboratories/New Mexico received an estimated collective dose of 0.027 person-rem during 1993 from the laboratories operations, As in the previous year, the 1993 operations at Sandia National Laboratories/New Mexico had no discernible impact on the general public or on the environment. This report is prepared for the U.S. Department of Energy in compliance with DOE Order 5400.1.

  4. 1992 Environmental monitoring report, Sandia National Laboratories, Albuquerque, New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Culp, T.; Cox, W.; Hwang, H.; Irwin, M.; Jones, A.; Matz, B.; Molley, K.; Rhodes, W.; Stermer, D.; Wolff, T.

    1993-09-01

    This 1992 report contains monitoring data from routine radiological and nonradiological environmental surveillance activities. summaries of significant environmental compliance programs in progress, such as National Environmental Policy Act documentation, environmental permits, envirorunental restoration, and various waste management programs for Sandia National Laboratories in Albuquerque, New Mexico, are included. The maximum offsite dose impact was calculated to be 0.0034 millirem. The total population within a 50-mile radius of Sandia National Laboratories/New Mexico received an estimated collective dose of 0.019 person-rem during 1992 from the laboratories` operations. As in the previous year, the 1992 operations at Sandia National Laboratories/New Mexico had no discernible impact on the general public or on the environment.

  5. Nuclear energy related capabilities at Sandia National Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Pickering, Susan Y. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-02-01

    Sandia National Laboratories' technology solutions are depended on to solve national and global threats to peace and freedom. Through science and technology, people, infrastructure, and partnerships, part of Sandia's mission is to meet the national needs in the areas of energy, climate and infrastructure security. Within this mission to ensure clean, abundant, and affordable energy and water is the Nuclear Energy and Fuel Cycle Programs. The Nuclear Energy and Fuel Cycle Programs have a broad range of capabilities, with both physical facilities and intellectual expertise. These resources are brought to bear upon the key scientific and engineering challenges facing the nation and can be made available to address the research needs of others. Sandia can support the safe, secure, reliable, and sustainable use of nuclear power worldwide by incorporating state-of-the-art technologies in safety, security, nonproliferation, transportation, modeling, repository science, and system demonstrations.

  6. Double Shock Experiments on the Sandia Z Machine

    Science.gov (United States)

    Hanshaw, Heath; Knudson, Marcus; Desjarlais, Michael; Lemke, Ray

    2011-06-01

    The double shock layered high-velocity flyer plate is one new capability being developed on Sandia's Z machine. With this technique, dynamic material data at high energy densities can be obtained at points in phase space which lie neither on principal Hugoniots nor on quasi-isentropic ramp curves. For example, the hypothesized HCP to BCC phase transition in beryllium can be measured, as can the high pressure melt curve. Another example is a postulated refreeze of tantalum. We discuss the double shock experiments being performed on Z, including accessible conditions, design and experimental methods, and analysis of results. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  7. Sandia National Laboratories Institutional Plan FY1994--1999

    Energy Technology Data Exchange (ETDEWEB)

    1993-10-01

    This report presents a five year plan for the laboratory. This plan takes advantage of the technical strengths of the lab and its staff to address issues of concern to the nation on a scope much broader than Sandia`s original mission, while maintaining the general integrity of the laboratory. The plan proposes initiatives in a number of technologies which overlap the needs of its customers and the strengths of its staff. They include: advanced manufacturing technology; electronics; information and computational technology; transportation energy technology and infrastructure; environmental technology; energy research and technology development; biomedical systems engineering; and post-cold war defense imperatives.

  8. PDC (polycrystalline diamond compact) bit research at Sandia National Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Finger, J.T.; Glowka, D.A.

    1989-06-01

    From the beginning of the geothermal development program, Sandia has performed and supported research into polycrystalline diamond compact (PDC) bits. These bits are attractive because they are intrinsically efficient in their cutting action (shearing, rather than crushing) and they have no moving parts (eliminating the problems of high-temperature lubricants, bearings, and seals.) This report is a summary description of the analytical and experimental work done by Sandia and our contractors. It describes analysis and laboratory tests of individual cutters and complete bits, as well as full-scale field tests of prototype and commercial bits. The report includes a bibliography of documents giving more detailed information on these topics. 26 refs.

  9. Understanding vented gas explosions

    Energy Technology Data Exchange (ETDEWEB)

    Lautkaski, R. [VTT Energy, Espoo (Finland). Energy Systems

    1997-12-31

    The report is an introduction to vented gas explosions for nonspecialists, particularly designers of plants for flammable gases and liquids. The phenomena leading to pressure generation in vented gas explosions in empty and congested rooms are reviewed. The four peak model of vented gas explosions is presented with simple methods to predict the values of the individual peaks. Experimental data on the external explosion of dust and gas explosions is discussed. The empirical equation relating the internal and external peak pressures in vented dust explosions is shown to be valid for gas explosion tests in 30 m{sup 3} and 550 m{sup 3} chambers. However, the difficulty of predicting the internal peak pressure in large chambers remains. Methods of explosion relief panel design and principles of vent and equipment layout to reduce explosion overpressures are reviewed. (orig.) 65 refs.

  10. 78 FR 64246 - Commerce in Explosives; List of Explosives Materials

    Science.gov (United States)

    2013-10-28

    ... From the Federal Register Online via the Government Publishing Office ] DEPARTMENT OF JUSTICE Bureau of Alcohol, Tobacco, Firearms, and Explosives Commerce in Explosives; List of Explosives Materials AGENCY: Bureau of Alcohol, Tobacco, Firearms, and Explosives (ATF); Department of Justice. ACTION:...

  11. Sandia bicycle commuters group -- pollution prevention at Sandia National Laboratories, New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Wrons, R.

    1998-06-01

    The Sandia Bicycle Commuters Group (SBCG) formed three years ago for the purpose of addressing issues that impact the bicycle commuting option. The meeting that launched the SBCG was scheduled in conjunction with National Bike-to-Work day in May 1995. Results from a survey handed out at the meeting solidly confirmed the issues and that an advocacy group was needed. The purpose statement for the Group headlines its web site and brochure: ``Existing to assist and educate the SNL workforce bicyclist on issues regarding Kirtland Air Force Base (KAFB) access, safety and bicycle-supporting facilities, in order to promote bicycling as an effective and enjoyable means of commuting.`` The SNL Pollution Prevention (P2) Team`s challenge to the SNL workforce is to ``prevent pollution, conserve natural resources, and save money``. In the first winter of its existence, the SBCG sponsored a winter commute contest in conjunction with the City`s Clean Air Campaign (CAC). The intent of the CAC is to promote alternative (to the single-occupant vehicle) commuting during the Winter Pollution Advisory Period (October 1--February 28), when the City runs the greatest risk of exceeding federal pollution limits.

  12. Sandia bicycle commuters group -- pollution prevention at Sandia National Laboratories, New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Wrons, R.

    1998-06-01

    The Sandia Bicycle Commuters Group (SBCG) formed three years ago for the purpose of addressing issues that impact the bicycle commuting option. The meeting that launched the SBCG was scheduled in conjunction with National Bike-to-Work day in May 1995. Results from a survey handed out at the meeting solidly confirmed the issues and that an advocacy group was needed. The purpose statement for the Group headlines its web site and brochure: ``Existing to assist and educate the SNL workforce bicyclist on issues regarding Kirtland Air Force Base (KAFB) access, safety and bicycle-supporting facilities, in order to promote bicycling as an effective and enjoyable means of commuting.`` The SNL Pollution Prevention (P2) Team`s challenge to the SNL workforce is to ``prevent pollution, conserve natural resources, and save money``. In the first winter of its existence, the SBCG sponsored a winter commute contest in conjunction with the City`s Clean Air Campaign (CAC). The intent of the CAC is to promote alternative (to the single-occupant vehicle) commuting during the Winter Pollution Advisory Period (October 1--February 28), when the City runs the greatest risk of exceeding federal pollution limits.

  13. Energy Systems Integration Partnerships: NREL + Sandia + Johnson Controls

    Energy Technology Data Exchange (ETDEWEB)

    2017-04-05

    NREL and Sandia National Laboratories partnered with Johnson Controls to deploy the company's BlueStream Hybrid Cooling System at ESIF's high-performance computing data center to reduce water consumption seen in evaporative cooling towers.

  14. 1995 Site environmental report Sandia National Laboratories, Albuquerque, New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Shyr, L.J.; Duncan, D. [eds.; Sanchez, R.

    1996-09-01

    This 1995 report contains data from routine radiological and non-radiological environmental monitoring activities. Summaries of significant environmental compliance programs in progress, such as National Environmental Policy Act documentation, environmental permits, environmental restoration and various waste management programs at Sandia National Laboratories in Albuquerque, New Mexico, are included.

  15. Site environmental report for 2009 : Sandia National Laboratories, California.

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Barbara L.

    2010-06-01

    Sandia National Laboratories, California (SNL/CA) is a government-owned/contractor-operated laboratory. Sandia Corporation, a Lockheed Martin Company, operates the laboratory for the Department of Energy's National Nuclear Security Administration (NNSA). The NNSA Sandia Site Office oversees operations at the site, using Sandia Corporation as a management and operating contractor. This Site Environmental Report for 2009 was prepared in accordance with DOE Order 231.1A (DOE 2004a). The report provides a summary of environmental monitoring information and compliance activities that occurred at SNL/CA during calendar year 2009. General site and environmental program information is also included. The Site Environmental Report is divided into ten chapters. Chapter 1, the Executive Summary, highlights compliance and monitoring results obtained in 2009. Chapter 2 provides a brief introduction to SNL/CA and the existing environment found on site. Chapter 3 summarizes SNL/CA's compliance activities with the major environmental requirements applicable to site operations. Chapter 4 presents information on environmental management, performance measures, and environmental programs. Chapter 5 presents the results of monitoring and surveillance activities in 2009. Chapter 6 discusses quality assurance. Chapters 7 through 9 provide supporting information for the report and Chapter 10 is the report distribution list.

  16. Evaluation of Strontium Selectivity by Sandia Octahedral Molecular Sieves (SOMS).

    Energy Technology Data Exchange (ETDEWEB)

    Rigali, Mark J.; Stewart, Thomas Austin

    2016-01-01

    Sandia National Laboratories has collaborated with Pleasanton Ridge Research Company (PRRC) to determine whether Sandia Octahedral Molecular Sieves (SOMS) and modified SOMs materials can be synthesized in large batches and produced in granular form. Sandia National Laboratories tested these SOMS and its variants based in aqueous chemical environments for an application-based evaluation of material performance as a sorbent. Testing focused primarily on determining the distribution coefficients (K d ) and chemical selectivity SOMs for alkali earth (Sr) ions in aqueous and dilute seawater solutions. In general the well-crystallized SOMS materials tested exhibited very high K d values (>10 6 ) in distilled water but K d values dropped substantially (%7E10 2 -10 3 ) in the dilute seawater (3%). However, one set of SOMS samples (1.4.2 and 1.4.6) provided by PRRC yielded relatively high K d (approaching 10 4 ) in dilute seawater. Further examination of these samples by scanning electron microscopy (SEM) revealed the presence of at least two phases at least one of which may be accounting for the improved K d values in dilute seawater. Evaluation of Strontium Selectivity by Sandia Octahedral Molecular Sieves (SOMS) January 20, 2016

  17. Power source evaluation capabilities at Sandia National Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Doughty, D.H.; Butler, P.C.

    1996-04-01

    Sandia National Laboratories maintains one of the most comprehensive power source characterization facilities in the U.S. National Laboratory system. This paper describes the capabilities for evaluation of fuel cell technologies. The facility has a rechargeable battery test laboratory and a test area for performing nondestructive and functional computer-controlled testing of cells and batteries.

  18. Sandia National Laboratories, California Environmental Management System program manual

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Barbara L.

    2014-04-01

    The Sandia National Laboratories, California (SNL/CA) Environmental Management System (EMS) Program Manual documents the elements of the site EMS Program. The SNL/CA EMS Program conforms to the International Standard on Environmental Management Systems, ISO 14001:2004 and Department of Energy (DOE) Order 436.1.

  19. Sandia National Laboratories, California Environmental Management System program manual.

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Barbara L.

    2013-04-01

    The Sandia National Laboratories, California (SNL/CA) Environmental Management System (EMS) Program Manual documents the elements of the site EMS Program. The SNL/CA EMS Program conforms to the International Standard on Environmental Management Systems, ISO 14001:2004 and Department of Energy (DOE) Order 436.1.

  20. Wet steam wetness measurement in a 10 MW steam turbine

    Directory of Open Access Journals (Sweden)

    Kolovratník Michal

    2014-03-01

    Full Text Available The aim of this paper is to introduce a new design of the extinction probes developed for wet steam wetness measurement in steam turbines. This new generation of small sized extinction probes was developed at CTU in Prague. A data processing technique is presented together with yielded examples of the wetness distribution along the last blade of a 10MW steam turbine. The experimental measurement was done in cooperation with Doosan Škoda Power s.r.o.

  1. Wet steam wetness measurement in a 10 MW steam turbine

    OpenAIRE

    Kolovratník Michal; Bartoš Ondřej

    2014-01-01

    The aim of this paper is to introduce a new design of the extinction probes developed for wet steam wetness measurement in steam turbines. This new generation of small sized extinction probes was developed at CTU in Prague. A data processing technique is presented together with yielded examples of the wetness distribution along the last blade of a 10MW steam turbine. The experimental measurement was done in cooperation with Doosan Škoda Power s.r.o.

  2. Isotopic power supplies for space and terrestrial systems: quality assurance by Sandia National Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Hannigan, R.L.; Harnar, R.R.

    1981-09-01

    The Sandia National Laboratories participation in Quality Assurance (QA) programs for Radioisotopic Thermoelectric Generators which have been used in space and terrestrial systems over the past 15 years is summarized. Basic elements of the program are briefly described and recognition of assistance from other Sandia organizations is included. Descriptions of the various systems for which Sandia has had the QA responsibility are also presented. In addition, the outlook for Sandia participation in RTG programs for the next several years is noted.

  3. An analysis of microsystems development at Sandia National Laboratories

    Science.gov (United States)

    Herrera, Gilbert V.; Myers, David R.

    2011-06-01

    While Sandia initially was motivated to investigate emergent microsystem technology to miniaturize existing macroscale structures, present designs embody innovative approaches that directly exploit the fundamentally different material properties of a new technology at the micro- and nano-scale. Direct, hands-on experience with the emerging technology gave Sandia engineers insights that not only guided the evolution of the technology but also enabled them to address new applications that enlarged the customer base for the new technology. Sandia's early commitment to develop complex microsystems demonstrated the advantages that early adopters gain by developing an extensive design and process tool kit and a shared awareness of multiple approaches to achieve the multiple goals. As with any emergent technology, Sandia's program benefited from interactions with the larger technical community. However, custom development followed a spiral path of direct trial-and-error experience, analysis, quantification of materials properties at the micro- and nano-scale, evolution of design tools and process recipes, and an understanding of reliability factors and failure mechanisms even in extreme environments. The microsystems capability at Sandia relied on three key elements. The first was people: a mix of mechanical and semiconductor engineers, chemists, physical scientists, designers, and numerical analysts. The second was a unique facility that enabled the development of custom technologies without contaminating mainline product deliveries. The third was the arrival of specialized equipment as part of a Cooperative Research And Development Agreement (CRADA) enabled by the National Competitiveness Technology Transfer Act of 1989. Underpinning all these, the program was guided and sustained through the research and development phases by accomplishing intermediate milestones addressing direct mission needs.

  4. The SEMATECH - Sandia National Laboratories partnership: A case study

    Energy Technology Data Exchange (ETDEWEB)

    Carayannis, E. [George Washington Univ., DC (United States). School of Business and Public Management; Gover, J. [Sandia National Labs., Albuquerque, NM (United States)

    1997-11-01

    SEMATECH was established in 1987 for defense and economic reasons to help the U.S. regain a competitive posture in semiconductor manufacturing. For 10 years SEMATECH was jointly funded by the federal government and semiconductor manufacturing companies representing 85 percent of the U.S. semiconductor industry. SEMATECH has spent about 80 percent of these funds on activities intended to produce useful results between 1 and 3 years. Very early in the establishment of SEMATECH, its members determined that their first priority would be to strengthen their U.S. based suppliers of semiconductor manufacturing equipment. This has been the primary thrust of SEMATECH. SEMATECH first held some 30 workshops on a broad set of technical topics to assess the needs and opportunities to help the industry recover. These workshops scoped manufacturing areas where SEMATECH should focus. These early meetings were an early form of what later came to be termed roadmapping. The scope of R&D needs identified in these workshops well exceeded what SEMATECH could hope to accomplish with its $200 million annual budget. Wayne Johnson of Sandia participated in five of these workshops and used the knowledge gained as the basis for proposals later submitted to SEMATECH on behalf of Sandia. In the fall of 1989 the SETEC program was established at Sandia to support SEMATECH. This was initially a funds-in, work-for-others project that was fully funded by SEMATECH. Thus, the early work was entirely focused on SEMATECH`s needs. Later in the program when SEMATECH funds were supplemented by Department of Energy Cooperative Research and Development funds, attention was given to how this project would benefit Sandia`s defense microelectronics program.

  5. Totally confined explosive welding

    Science.gov (United States)

    Bement, L. J. (Inventor)

    1978-01-01

    The undesirable by-products of explosive welding are confined and the association noise is reduced by the use of a simple enclosure into which the explosive is placed and in which the explosion occurs. An infrangible enclosure is removably attached to one of the members to be bonded at the point directly opposite the bond area. An explosive is completely confined within the enclosure at a point in close proximity to the member to be bonded and a detonating means is attached to the explosive. The balance of the enclosure, not occupied by explosive, is filled with a shaped material which directs the explosive pressure toward the bond area. A detonator adaptor controls the expansion of the enclosure by the explosive force so that the enclosure at no point experiences a discontinuity in expansion which causes rupture. The use of the technique is practical in the restricted area of a space station.

  6. Cell phone explosion.

    Science.gov (United States)

    Atreya, Alok; Kanchan, Tanuj; Nepal, Samata; Pandey, Bhuwan Raj

    2016-03-01

    Cell phone explosions and resultant burn injuries are rarely reported in the scientific literature. We report a case of cell phone explosion that occurred when a young male was listening to music while the mobile was plugged in for charging.

  7. NEW EXPLOSIVE WELDING TECHNIQUES

    OpenAIRE

    Lotous, V.; Dragobetskii, V.

    2015-01-01

    Purpose - analysis of the variety of factors of the physical phenomena accompanying the process of the power explosive effect for development of new processes of metal treatment: explosive film coating of hardening and updating of a superficial layer of an item. Industrial approbation of cladding techniques by explosion of item surfaces of complex configuration and determination of parameters of the process of the explosive welding of high-strength pig-iron (graphite of the spherical form) wi...

  8. Photoacoustic Sensing of Explosives

    Science.gov (United States)

    2013-11-01

    NOV 2013 2. REPORT TYPE 3. DATES COVERED 00-00-2013 to 00-00-2013 4. TITLE AND SUBTITLE Photoacoustic Sensing of Explosives 5a. CONTRACT NUMBER...2013www.ll.mit.edu Photoacoustic Sensing of Explosives (PHASE) is a promising new technology that detects trace explosive residues from significant... photoacoustic phenomena resulting from ultraviolet laser excitation. Exposed explosives are excited up to 100 meters away by using PHASE’s

  9. Inspection tester for explosives

    Science.gov (United States)

    Haas, Jeffrey S.; Simpson, Randall L.; Satcher, Joe H.

    2007-11-13

    An inspection tester that can be used anywhere as a primary screening tool by non-technical personnel to determine whether a surface contains explosives. It includes a body with a sample pad. First and second explosives detecting reagent holders and dispensers are operatively connected to the body and the sample pad. The first and second explosives detecting reagent holders and dispensers are positioned to deliver the explosives detecting reagents to the sample pad. A is heater operatively connected to the sample pad.

  10. Explosive Line Wave Generators

    Science.gov (United States)

    2013-12-01

    curvature produced by each line wave generator. Piezoelectric pins were used for an additional assessment of the explosive lens design...to a visual assessment of the wave curvature from the high speed camera images, the explosive lens design was also evaluated using piezoelectric pins...High Explosive Firing Complex (HEFC). The various explosive line wave generators were taped vertically on a supporting board and the detonation wave

  11. Process for purifying geothermal steam

    Science.gov (United States)

    Li, C.T.

    Steam containing hydrogen sulfide is purified and sulfur recovered by passing the steam through a reactor packed with activated carbon in the presence of a stoichiometric amount of oxygen which oxidizes the hydrogen sulfide to elemental sulfur which is adsorbed on the bed. The carbon can be recycled after the sulfur has been recovered by vacuum distillation, inert gas entrainment or solvent extraction. The process is suitable for the purification of steam from geothermal sources which may also contain other noncondensable gases.

  12. Wet steam treatment with oxygen

    Energy Technology Data Exchange (ETDEWEB)

    Ruehle, W.; Enkler, G. [EnBW Kraftwerke AG, Kernkraftwerk Philippsburg (Germany)

    1999-07-01

    After many years of excellent results using high all volatile treatment (HAVT) for operation of the secondary system of a PWR, flow assisted corrosion in the heating pipes of the intermediate steam reheaters has been experienced. Oxygen addition into the heating steam before the reheater is expected to improve the protective oxide layers formation. The reaction of oxygen with the alkalizing steam ingredients is described. (orig.)

  13. Regenerative superheated steam turbine cycles

    Science.gov (United States)

    Fuller, L. C.; Stovall, T. K.

    1980-01-01

    PRESTO computer program was developed to analyze performance of wide range of steam turbine cycles with special attention given to regenerative superheated steam turbine cycles. It can be used to model standard turbine cycles, including such features as process steam extraction, induction and feedwater heating by external sources, peaking, and high back pressure. Expansion line efficiencies, exhaust loss, leakages, mechanical losses, and generator losses are used to calculate cycle heat rate and generator output. Program provides power engineer with flexible aid for design and analysis of steam turbine systems.

  14. Sandia National Laboratories, California Environmental Management System Program Manual.

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Barbara L.

    2011-04-01

    The Sandia National Laboratories, California (SNL/CA) Environmental Management System (EMS) Program Manual documents the elements of the site EMS Program. The SNL/CA EMS Program conforms to the International Standard on Environmental Management Systems, ISO 14001:2004and Department of Energy (DOE) Order 450.1. Sandia National Laboratories, California (SNL/CA) has maintained functional environmental programs to assist with regulatory compliance for more than 30 years. During 2005, these existing programs were rolled into a formal environmental management system (EMS) that expands beyond the traditional compliance focus to managing and improving environmental performance and stewardship practices for all site activities. An EMS is a set of inter-related elements that represent a continuing cycle of planning, implementing, evaluating, and improving processes and actions undertaken to achieve environmental policy and goals. The SNL/CA EMS Program conforms to the International Standard for Environmental Management Systems, ISO 14001:2004 (ISO 2004). The site received ISO 14001 certification in September 2006. SNL/CA's EMS Program is applicable to the Sandia, Livermore site only. Although SNL/CA operates as one organizational division of the overall Sandia National Laboratories, the EMS Program is site-specific, with site-specific objectives and targets. SNL/CA (Division 8000) benefits from the organizational structure as it provides corporate level policies, procedures, and standards, and established processes that connect to and support elements of the SNL/CA EMS Program. Additionally, SNL/CA's EMS Program benefits from two corporate functional programs (Facilities Energy Management and Fleet Services programs) that maintain responsibility for energy management and fleet services for all Sandia locations. Each EMS element is further enhanced with site-specific processes and standards. Division 8000 has several groups operating at Sandia National Laboratories

  15. Sandia National Laboratories, California Environmental Management System program manual.

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Barbara L.

    2012-03-01

    The Sandia National Laboratories, California (SNL/CA) Environmental Management System (EMS) Program Manual documents the elements of the site EMS Program. The SNL/CA EMS Program conforms to the International Standard on Environmental Management Systems, ISO 14001:2004and Department of Energy (DOE) Order 436.1. Sandia National Laboratories, California (SNL/CA) has maintained functional environmental programs to assist with regulatory compliance for more than 30 years. During 2005, these existing programs were rolled into a formal environmental management system (EMS) that expands beyond the traditional compliance focus to managing and improving environmental performance and stewardship practices for all site activities. An EMS is a set of inter-related elements that represent a continuing cycle of planning, implementing, evaluating, and improving processes and actions undertaken to achieve environmental policy and goals. The SNL/CA EMS Program conforms to the International Standard for Environmental Management Systems, ISO 14001:2004 (ISO 2004). The site first received ISO 14001 certification in September 2006 and recertification in 2009. SNL/CA's EMS Program is applicable to the Sandia, Livermore site only. Although SNL/CA operates as one organizational division of the overall Sandia National Laboratories, the EMS Program is site-specific, with site-specific objectives and targets. SNL/CA (Division 8000) benefits from the organizational structure as it provides corporate level policies, procedures, and standards, and established processes that connect to and support elements of the SNL/CA EMS Program. Additionally, SNL/CA's EMS Program benefits from two corporate functional programs (Facilities Energy and Water Resource Management and Fleet Services programs) that maintain responsibility for energy management and fleet services for all Sandia locations. Each EMS element is further enhanced with site-specific processes and standards. Division 8000 has

  16. Sandia National Laboratories, California Environmental Management System Program Manual.

    Energy Technology Data Exchange (ETDEWEB)

    2009-04-01

    The Sandia National Laboratories, California (SNL/CA) Environmental Management System (EMS) Program Manual documents the elements of the site EMS Program. The SNL/CA EMS Program conforms to the International Standard on Environmental Management Systems, ISO 14001:2004 and Department of Energy (DOE) Order 450.1. Sandia National Laboratories, California (SNL/CA) has maintained functional environmental programs to assist with regulatory compliance for more than 30 years. During 2005, these existing programs were rolled into a formal environmental management system (EMS) that expands beyond the traditional compliance focus to managing and improving environmental performance and stewardship practices for all site activities. An EMS is a set of inter-related elements that represent a continuing cycle of planning, implementing, evaluating, and improving processes and actions undertaken to achieve environmental policy and goals. The SNL/CA EMS Program conforms to the International Standard for Environmental Management Systems, ISO 14001:2004 (ISO 2004). The site received ISO 14001 certification in September 2006. SNL/CA's EMS Program is applicable to the Sandia, Livermore site only. Although SNL/CA operates as one organizational division of the overall Sandia National Laboratories, the EMS Program is site-specific, with site-specific objectives and targets. SNL/CA (Division 8000) benefits from the organizational structure as it provides corporate level policies, procedures, and standards, and established processes that connect to and support elements of the SNL/CA EMS Program. Additionally, SNL/CA's EMS Program benefits from two corporate functional programs (Facilities Energy Management and Fleet Services Environmental programs) that maintain responsibility for energy management and fleet services for all Sandia locations. Each EMS element is further enhanced with site-specific processes and standards. Division 8000 has several groups operating at Sandia

  17. A brief history of Sandia's National security missions.

    Energy Technology Data Exchange (ETDEWEB)

    Drewien, Celeste A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); O' Canna, Myra Lynn [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Stikar, John Anthony. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-09-01

    To help members of the workforce understand what factors contribute to Sandia National Laboratories national security mission, the authors describe the evolution of Sandias core mission and its other mission components. The mission of Sandia first as a division of Los Alamos and later as Sandia Corporation underlies our core nuclear weapon mission of today. Sandias mission changed in 1963 and twice more in the 1970s. This report should help staff and management appreciate the need for mission evolution. A clear definition and communication of a consistent corporate mission statement is still needed.

  18. Development of a non-propagating explosives storage cabinet

    Science.gov (United States)

    Couch, W. A.; Schneider, B. A.

    1991-08-01

    Sandia National Laboratories, Albuquerque (SNL) has completed the design of an Explosive Components Facility (ECF). Construction of the ECF is scheduled to begin in 1992 with completion in 1995. An integral part of the ECF will be on-site storage of explosives in six earth-covered service magazines. Each magazine will contain a non-propagating Explosives Storage Cabinet (ESC) system made up to twenty modular units. In addition to the secure storage of explosives, a primary purpose of the cabinet system is to prevent a sympathetic detonation of the explosives stored in the surrounding units as a result of an accidental detonation of up to 5.0 pounds of explosives (TNT equivalent) stored in a donor unit in the cabinet. Therefore, the maximum creditable event for each service magazine is 5.0 pounds, even though each magazine could contain up to 100 pounds of explosives stored in 5.0 pounds increments. A new material being developed at the New Mexico Engineering Research Institute (NMERI) known as SIFCON (Slurry Infiltrated Fiber CONcrete), had been shown to be highly resistant to back spall from blast loadings, and penetration by high velocity ballistic projectiles and fragments. These, and other characteristics unique to SIFCON, such as very high strength and ductility, appeared to make it an excellent candidate material for the modular units of the ESC. In 1989 SNL contracted with NMERI to develop a SIFCON modular unit for the ESC. Based upon the success of Phase 1 program, a more extensive Phase 2 program was undertaken in 1990 and has been successfully completed. This paper is a summary of the Phase 1 and Phase 2 work, which includes the design, fabrication, and explosive testing of the modular units.

  19. National Environmental Policy Act (NEPA) Compliance Guide, Sandia National Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, R.P. [Hansen Environmental Consultants, Englewood, CO (United States)

    1995-08-01

    This report contains a comprehensive National Environmental Policy Act (NEPA) Compliance Guide for the Sandia National Laboratories. It is based on the Council on Environmental Quality (CEQ) NEPA regulations in 40 CFR Parts 1500 through 1508; the US Department of Energy (DOE) N-EPA implementing procedures in 10 CFR Part 102 1; DOE Order 5440.1E; the DOE ``Secretarial Policy Statement on the National Environmental Policy Act`` of June 1994- Sandia NEPA compliance procedures-, and other CEQ and DOE guidance. The Guide includes step-by-step procedures for preparation of Environmental Checklists/Action Descriptions Memoranda (ECL/ADMs), Environmental Assessments (EAs), and Environmental Impact Statements (EISs). It also includes sections on ``Dealing With NEPA Documentation Problems`` and ``Special N-EPA Compliance Issues.``

  20. 1980 environmental monitoring report, Sandia National Laboratories, Albuquerque, New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Millard, G.C.; Simmons, T.N.; Gray, C.E.; O' Neal, B.L.

    1981-04-01

    Sandia National Laboratories in Albuquerque is located south of the city on two broad mesas. The local climate is arid continental. Radionuclides are potentially released from five technical areas from the Laboratories' research activities. Sandia's environmental monitoring program searches for cesium-137, tritium, uranium, alpha emitters, and beta emitters in water, soil, air, and vegetation. No activity was found in public areas in excess of that found in local background in 1980. The Albuquerque population receives only 0.11 person-rem (estimated) from airborne radioactive releases. While national security research is the Laboratories' major responsibility, energy research is a major area of activity. Both these research areas cause radioactive releases.

  1. Tiger Team assessment of the Sandia National Laboratories, Albuquerque

    Energy Technology Data Exchange (ETDEWEB)

    1991-05-01

    This report documents the Tiger Team Assessment of Sandia National Laboratories (SNL), Albuquerque, located in Albuquerque, New Mexico. SNL, Albuquerque, is operated by the Sandia Corporation (a wholly owned subsidiary of the American Telephone and Telegraph Company) for the US Department of Energy (DOE). The environmental assessment also included DOE tenant facilities at Ross Aviation, Albuquerque Microelectronics Operation, and the Central Training Academy. The assessment was conducted from April 15 to May 24, 1991, under the auspices of DOE's Office of Special Projects under the Assistant Secretary for Environment, Safety and Health (ES H). The assessment was comprehensive, encompassing ES H disciplines, management, self-assessments, and quality assurance; transportation; and waste management operations. Compliance with applicable federal, state, and local regulations; applicable DOE Orders; best management practices; and internal SNL, Albuquerque, requirements were assessed. In addition, an evaluation of the adequacy and effectiveness of DOE and SNL, Albuquerque management of ES H programs was conducted.

  2. Airbags to Martian Landers: Analyses at Sandia National Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Gwinn, K.W.

    1994-03-01

    A new direction for the national laboratories is to assist US business with research and development, primarily through cooperative research and development agreements (CRADAs). Technology transfer to the private sector has been very successful as over 200 CRADAs are in place at Sandia. Because of these cooperative efforts, technology has evolved into some new areas not commonly associated with the former mission of the national laboratories. An example of this is the analysis of fabric structures. Explicit analyses and expertise in constructing parachutes led to the development of a next generation automobile airbag; which led to the construction, testing, and analysis of the Jet Propulsion Laboratory Mars Environmental Survey Lander; and finally led to the development of CAD based custom garment designs using 3D scanned images of the human body. The structural analysis of these fabric structures is described as well as a more traditional example Sandia with the test/analysis correlation of the impact of a weapon container.

  3. Sandia and the Waste Isolation Pilot Plant, 1974--1999

    Energy Technology Data Exchange (ETDEWEB)

    MORA,CARL J.

    2000-04-11

    Engineers have learned to design and build big projects, which certainly describes the WIPP project, but also includes defense projects, highway networks, space exploration, the Internet, etc., through what has been called a messily complex embracing of contradictions. When something massive and complicated has to be built these days, it leads to a protracted political process in which every special interest makes a stand, lobbyists exert what influence they can, lawmakers bicker, contractors change things, Congress struggles with costs, environmentalists hold things up--and this is good. It may seem amazing that anything gets done, but when it does, everyone has had their say. It's an intensely democratic, even if expensive and time-consuming, process. The corporate historian of Sandia National Laboratories presents a unique background of the WIPP project and Sandia's part in it.

  4. 1994 Site Environmental Report Sandia National Laboratories Albuquerque, New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Shyr, L.J.; Wiggins, T.; White, B.B. [eds.] [and others

    1995-09-01

    This 1994 report contains data from routine radiological and nonradiological environmental monitoring activities. Summaries of significant environmental compliance programs in progress, such as National Environmental Policy Act documentation, environmental permits, environmental restoration, and various waste management programs for Sandia National Laboratories in Albuquerque, New Mexico, are included. The maximum off-site dose impact from air emissions was calculated to be 1.5 x 10{sup -4} millirem. The total population within a 50-mile radius of Sandia National Laboratories/New Mexico received an estimated collective dose of 0.012 person-rem during 1994 from the laboratories` operations. This report is prepared for the U.S. Department of Energy in compliance with DOE Order 5400.1.

  5. Sandia National Laboratories, California proposed CREATE facility environmental baseline survey.

    Energy Technology Data Exchange (ETDEWEB)

    Catechis, Christopher Spyros

    2013-10-01

    Sandia National Laboratories, Environmental Programs completed an environmental baseline survey (EBS) of 12.6 acres located at Sandia National Laboratories/California (SNL/CA) in support of the proposed Collaboration in Research and Engineering for Advanced Technology and Education (CREATE) Facility. The survey area is comprised of several parcels of land within SNL/CA, County of Alameda, California. The survey area is located within T 3S, R 2E, Section 13. The purpose of this EBS is to document the nature, magnitude, and extent of any environmental contamination of the property; identify potential environmental contamination liabilities associated with the property; develop sufficient information to assess the health and safety risks; and ensure adequate protection for human health and the environment related to a specific property.

  6. Sandia equation of state data base: seslan File

    Energy Technology Data Exchange (ETDEWEB)

    Kerley, G.I. [Sandia National Labs., Albuquerque, NM (US); Christian-Frear, T.L. [RE/SPEC Inc., Albuquerque, NM (US)

    1993-06-24

    Sandia National Laboratories maintains several libraries of equation of state tables, in a modified Sesame format, for use in hydrocode calculations and other applications. This report discusses one of those libraries, the seslan file, which contains 78 tables from the Los Alamos equation of state library. Minor changes have been made to these tables, making them more convenient for code users and reducing numerical difficulties that occasionally arise in hydrocode calculations.

  7. DESALINATION AND WATER TREATMENT RESEARCH AT SANDIA NATIONAL LABORATORIES.

    Energy Technology Data Exchange (ETDEWEB)

    Rigali, Mark J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Miller, James E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Altman, Susan J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Biedermann, Laura [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Brady, Patrick Vane. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Kuzio, Stephanie P. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Nenoff, Tina M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Rempe, Susan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-11-01

    Water is the backbone of our economy - safe and adequate supplies of water are vital for agriculture, industry, recreation, and human consumption. While our supply of water today is largely safe and adequate, we as a nation face increasing water supply challenges in the form of extended droughts, demand growth due to population increase, more stringent health-based regulation, and competing demands from a variety of users. To meet these challenges in the coming decades, water treatment technologies, including desalination, will contribute substantially to ensuring a safe, sustainable, affordable, and adequate water supply for the United States. This overview documents Sandia National Laboratories' (SNL, or Sandia) Water Treatment Program which focused on the development and demonstration of advanced water purification technologies as part of the larger Sandia Water Initiative. Projects under the Water Treatment Program include: (1) the development of desalination research roadmaps (2) our efforts to accelerate the commercialization of new desalination and water treatment technologies (known as the 'Jump-Start Program),' (3) long range (high risk, early stage) desalination research (known as the 'Long Range Research Program'), (4) treatment research projects under the Joint Water Reuse & Desalination Task Force, (5) the Arsenic Water Technology Partnership Program, (6) water treatment projects funded under the New Mexico Small Business Administration, (7) water treatment projects for the National Energy Technology Laboratory (NETL) and the National Renewable Energy Laboratory (NREL), (8) Sandia- developed contaminant-selective treatment technologies, and finally (9) current Laboratory Directed Research and Development (LDRD) funded desalination projects.

  8. Sandia National Laboratories, California Waste Management Program annual report.

    Energy Technology Data Exchange (ETDEWEB)

    Brynildson, Mark E.

    2010-02-01

    The annual program report provides detailed information about all aspects of the Sandia National Laboratories, California (SNL/CA) Waste Management Program. It functions as supporting documentation to the SNL/CA Environmental Management System Program Manual. This annual program report describes the activities undertaken during the past year, and activities planned in future years to implement the Waste Management (WM) Program, one of six programs that supports environmental management at SNL/CA.

  9. Implementing a lessons learned process at Sandia National Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Fosshage, Erik D.; Drewien, Celeste A.; Eras, Kenneth; Hartwig, Ronald Craig; Post, Debra S.; Stoecker, Nora Kathleen

    2016-01-01

    The Lessons Learned Process Improvement Team was tasked to gain an understanding of the existing lessons learned environment within the major programs at Sandia National Laboratories, identify opportunities for improvement in that environment as compared to desired attributes, propose alternative implementations to address existing inefficiencies, perform qualitative evaluations of alternative implementations, and recommend one or more near-term activities for prototyping and/or implementation. This report documents the work and findings of the team.

  10. Sandia non-fusion R&D supported by FES.

    Energy Technology Data Exchange (ETDEWEB)

    Nygren, Richard E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-06-03

    Until 2012, Sandia participated regularly in non-fusion R&D that was supported primarily through our collaborations with companies in the DOE program for Small Business Innovative Research but also in some work-for-others contracts. In this work, funds were recovered from collaborating institutions for the staff time and materials used, but FES had supported the facility itself and in doing so enabled the contributions to the non-fusion R&D below.

  11. Sandia wind program FY94 annual operating plan

    Energy Technology Data Exchange (ETDEWEB)

    Dodd, H.M.

    1993-10-01

    This document presents the objectives, accomplishments and activity plan for the Sandia Wind Energy Technology Program. The status of the current program is summarized and the planned FY94 activities are defined. Appendices detailing the cost, performance and schedule associated with these activities are also included. Funding requirements are given for several scenarios in order to reflect the impact of funding variability on program progress.

  12. Sandia National Laboratories, California Hazardous Materials Management Program annual report.

    Energy Technology Data Exchange (ETDEWEB)

    Brynildson, Mark E.

    2011-02-01

    The annual program report provides detailed information about all aspects of the Sandia National Laboratories, California (SNL/CA) Hazardous Materials Management Program. It functions as supporting documentation to the SNL/CA Environmental Management System Program Manual. This program annual report describes the activities undertaken during the calender past year, and activities planned in future years to implement the Hazardous Materials Management Program, one of six programs that supports environmental management at SNL/CA.

  13. Site Environmental Report for 2010 Sandia National Laboratories, California.

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Barbara L.

    2011-06-01

    Sandia National Laboratories, California (SNL/CA) is a government-owned/contractor-operated laboratory. Sandia Corporation, a Lockheed Martin Company, manages and operates the laboratory for the Department of Energy's National Nuclear Security Administration (NNSA). The NNSA Sandia Site Office administers the contract and oversees contractor operations at the site. This Site Environmental Report for 2010 was prepared in accordance with DOE Order 231.1A (DOE 2004a). The report provides a summary of environmental monitoring information and compliance activities that occurred at SNL/CA during calendar year 2010. General site and environmental program information is also included. The Site Environmental Report is divided into ten chapters. Chapter 1, the Executive Summary, highlights compliance and monitoring results obtained in 2010. Chapter 2 provides a brief introduction to SNL/CA and the existing environment found on site. Chapter 3 summarizes SNL/CA's compliance activities with the major environmental requirements applicable to site operations. Chapter 4 presents information on environmental management, performance measures, and environmental programs. Chapter 5 presents the results of monitoring and surveillance activities in 2010. Chapter 6 discusses quality assurance. Chapters 7 through 9 provide supporting information for the report and Chapter 10 is the report distribution list.

  14. Summary of Sandia research on metal tritides : FY 2007.

    Energy Technology Data Exchange (ETDEWEB)

    Browning, James Frederick (Oak Ridge National Laboratory, Oak Ridge, TN); Kammler, Daniel R.; Snow, Clark Sheldon; Ferrizz, Robert Matthew; Rodriguez, Mark Andrew; Wixom, Ryan R.; Espada, Loren I.

    2008-05-01

    Sandia National Laboratories has cradle to grave responsibility for all neutron generators in the US nuclear weapons stockpile. As such, much research effort is exerted to develop a comprehensive understanding of all the major components of a neutron generator. One of the key components is the tritium containing target. The target is a thin metal tritide film. Sandia's research into metal tritides began in the early 1960's with a collaboration with the Denver Research Institute (DRI) and continues to this day with a major in house research effort. This document is an attempt to briefly summarize what is known about the aging of erbium tritide and to review the major publications conducted at Sandia in FY 07. First, a review of our knowledge of helium in erbium tritide will be presented. Second, executive summaries of the six major SAND reports regarding neutron tube targets published in FY07 by Department 2735, the Applied Science and Technology Maturation Department, and research partners are presented.

  15. NUMERICAL MODEL FOR THE KRAKATOA HYDROVOLCANIC EXPLOSION AND TSUNAMI

    Directory of Open Access Journals (Sweden)

    Charles L. Mader

    2006-01-01

    Full Text Available Krakatoa exploded August 27, 1883 obliterating 5 square miles of land and leaving a crater 3.5 miles across and 200-300 meters deep. Thirty three feet high tsunami waves hit Anjer and Merak demolishing the towns and killing over 10,000 people. In Merak the wave rose to 135 feet above sea level and moved 100 ton coral blocks up on the shore.Tsunami waves swept over 300 coastal towns and villages killing 40,000 people. The sea withdrew at Bombay, India and killed one person in Sri Lanka.The tsunami was produced by a hydrovolcanic explosion and the associated shock wave and pyroclastic flows.A hydrovolcanic explosion is generated by the interaction of hot magma with ground water. It is called Surtseyan after the 1963 explosive eruption off Iceland. The water flashes to steam and expands explosively. Liquid water becoming water gas at constant volume generates a pressure of 30,000 atmospheres.The Krakatoa hydrovolcanic explosion was modeled using the full Navier-Stokes AMREulerian compressible hydrodynamic code called SAGE which includes the high pressure physics of explosions.The water in the hydrovolcanic explosion was described as liquid water heated by the magma to 1100 degree Kelvin or 19 kcal/mole. The high temperature water is an explosive with the hot liquid water going to a water gas. The BKW steady state detonation state has a peak pressure of 89 kilobars, a propagation velocity of 5900 meters/second and the water is compressed to 1.33 grams/cc.The observed Krakatoa tsunami had a period of less than 5 minutes and wavelength of less than 7 kilometers and thus rapidly decayed. The far field tsunami wave was negligible. The air shock generated by the hydrovolcanic explosion propagated around the world and coupled to the ocean resulting in the explosion being recorded on tide gauges around the world.

  16. New Mix Explosives for Explosive Welding

    Science.gov (United States)

    Andreevskikh, Leonid

    2011-06-01

    Suggested and tested were some mix explosives--powder mixtures of a brisant high explosive (HE = RDX, PETN) and an inert diluent (baking soda)--for use in explosive welding. RDX and PETN were selected in view of their high throwing ability and low critical diameter. Since the decomposition of baking soda yields a huge amount of gaseous products, its presence ensures (even at a low HE percentage) a throwing speed that is sufficient for realization of explosive welding, at a reduced brisant action of charge. Mix chargers containing 30-70 wt % HE (the rest baking soda) have been tested experimentally and optimized. For study of possibility to reduce critical diameter of HE mixture, the mixture was prepared where HE crystal sizes did not exceed 10 μm. The tests, which were performed with this HE, revealed that the mixture detonated stably with the velocity D ~ 2 km/s, if the layer thickness was d = 2 mm. The above explosives afford to markedly diminish deformations within the oblique impact zone and thus to carry out explosive welding of hollow items and thin metallic foils.

  17. Air quality investigations of the Sandia National Laboratories Sol se Mete Aerial Cable Facility

    Energy Technology Data Exchange (ETDEWEB)

    Gutman, W.M.; Silver, R.J. [New Mexico State Univ., Las Cruces, NM (United States). Physical Science Lab.

    1994-12-01

    The air quality implications of the test and evaluation activities at the Sandia National Laboratories Sol se Mete Aerial Cable Facility are examined. All facets of the activity that affect air quality are considered. Air contaminants produced directly include exhaust products of rocket motors used to accelerate test articles, dust and gas from chemical explosives, and exhaust gases from electricity generators in the test arenas. Air contaminants produced indirectly include fugitive dust and exhaust contaminants from vehicles used to transport personnel and material to the test area, and effluents produced by equipment used to heat the project buildings. Both the ongoing program and the proposed changes in the program are considered. Using a reliable estimate of th maximum annual testing level, the quantities of contaminants released by project activities ar computed either from known characteristics of test items or from EPA-approved emission factors Atmospheric concentrations of air contaminants are predicted using EPA dispersion models. The predicted quantities and concentrations are evaluated in relation to Federal, New Mexico, an Bernalillo County air quality regulations and the human health and safety standards of the American Conference of Governmental Industrial Hygienists.

  18. Steam generator tube integrity program

    Energy Technology Data Exchange (ETDEWEB)

    Dierks, D.R.; Shack, W.J. [Argonne National Laboratory, IL (United States); Muscara, J.

    1996-03-01

    A new research program on steam generator tubing degradation is being sponsored by the U.S. Nuclear Regulatory Commission (NRC) at Argonne National Laboratory. This program is intended to support a performance-based steam generator tube integrity rule. Critical areas addressed by the program include evaluation of the processes used for the in-service inspection of steam generator tubes and recommendations for improving the reliability and accuracy of inspections; validation and improvement of correlations for evaluating integrity and leakage of degraded steam generator tubes, and validation and improvement of correlations and models for predicting degradation in steam generator tubes as aging occurs. The studies will focus on mill-annealed Alloy 600 tubing, however, tests will also be performed on replacement materials such as thermally-treated Alloy 600 or 690. An overview of the technical work planned for the program is given.

  19. Kinetics of Zr-alloy cladding oxidation in the mixture of air and steam at high temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyung Tae; Park, Kwang Heon; Park, Joo Young [Kyunghee University, Yongin (Korea, Republic of)

    2012-05-15

    In Fukushima Daiichi Nuclear Power Plant accident, No.4 plant was exploded by hydrogen explosion. There was a strong speculation about the possibility of the reaction between the overheated fuels and the steam-air mixture in the storage pool. Later, it turned out to be due to the hydrogen leaked from No.3 plant. However, the reaction of the hot fuels with the steam-air mixture became an important issue. There have been a lot of data accumulated about Zr-alloy interaction with steam. However, Zr-alloy interactions with air and steam-air mixtures have not been studied relatively much. In this study, we measured the oxidation kinetics of Zry-4 and Zirlo claddings in air, and steam-air mixtures, and analyzed the kinetics

  20. Explosives tester with heater

    Science.gov (United States)

    Del Eckels, Joel [Livermore, CA; Nunes, Peter J [Danville, CA; Simpson, Randall L [Livermore, CA; Whipple, Richard E [Livermore, CA; Carter, J Chance [Livermore, CA; Reynolds, John G [San Ramon, CA

    2010-08-10

    An inspection tester system for testing for explosives. The tester includes a body and a swab unit adapted to be removeably connected to the body. At least one reagent holder and dispenser is operatively connected to the body. The reagent holder and dispenser contains an explosives detecting reagent and is positioned to deliver the explosives detecting reagent to the swab unit. A heater is operatively connected to the body and the swab unit is adapted to be operatively connected to the heater.

  1. Explosive Technology Group

    Data.gov (United States)

    Federal Laboratory Consortium — The Explosive Technology Group (ETG) provides diverse technical expertise and an agile, integrated approach to solve complex challenges for all classes of energetic...

  2. Consideration on hydrogen explosion scenario in APR 1400 containment building during small breakup loss of coolant accident

    Energy Technology Data Exchange (ETDEWEB)

    Park, Kweonha, E-mail: khpark@kmou.ac.kr [Division of Mechanical & Energy Systems Engineering, Korea Maritime University, Dongsam-dong, Yeongdo-gu, Busan 606-791 (Korea, Republic of); Khor, Chong Lee, E-mail: itachi_829@hotmail.com [Department of Mechanical Engineering, Korea Maritime University, Dongsam-dong, Yeongdo-gu, Busan 606-791 (Korea, Republic of)

    2015-11-15

    Highlights: • Hydrogen behavior in the containment building of APR1400 nuclear plant up to 15 h after the failure happened. • The risk of hydrogen explosion largely depends on the combination of air, hydrogen and steam in the containment. • Hydrogen explosion risk at different locations in the containment was analyzed. - Abstract: This paper describes the analytical result of the potential risk of hydrogen gas up to 15 h after the failure takes place. The major cause of the disaster occurred in Fukushima Daiichi nuclear reactor was the detonation of accumulated hydrogen in the containment by highly increased reactor core temperatures after the failure of the emergency cooling system. The hydrogen risk should be considered in severe accident strategies in current and future NPPs. A hydrogen explosion scenario is proposed. Hydrogen is accumulated on top of the dome during the hydrogen release period. At this point, there are no risk of explosion due to the steam that resides in upper part of the dome. As the hydrogen concentration increase, substantial amount of steams are released. Subsequently, hydrogen is forced into the lower part of the building with high air density—small explosion and dormant steam condensation phase are possible. The light hydrogen rises up slowly with air, gathering on top of the building with high air density. Massive hydrogen explosion is anticipated upon ignition at this stage.

  3. Active explosion barrier performance against methane and coal dust explosions

    National Research Council Canada - National Science Library

    J. J. L. du Plessis

    2015-01-01

    Preventing the propagation of methane or coal dust explosions through the use of active explosion-suppression systems remains one of the most underutilised explosion controls in underground coal mines...

  4. Selective Detoxification of Steam Explosion Pretreated Stream from Corn Stover with Anion Exchange Resin%阴离子交换树脂对玉米秸秆蒸汽爆破预处理液的选择性脱毒

    Institute of Scientific and Technical Information of China (English)

    徐勇; 江寅申; 左志凤; 张行星; 勇强; 余世袁

    2012-01-01

    The selective adsorption detoxification capacity (SADC) were experimentally compared among 4 anion exchange resin products respectively in the simulated solution (SS) by mixed sugars,organic acids,furan aldehydes and the steam explosion pretreated stream from corn stover (SES). A macroporous styrene series,i. e. weakly alkaline anion exchange resin D301 ,was then selected due to its better adsorbing priority to inhibitors of acids and furan aldehydes than sugars in SS and SES. Resin D301 could adsorb most inhibitors but little sugars in SS. For resin D301 ,acids adsorption was in agreement to Freundlish multilayer isothermal adsorption feature but sugars and furan aldehydes adsorption were in agreement with Langmuir monolayer isothermal adsorption feature. Resin D301 still showed its SADC in SES. It was different from SS in SES that the total inhibitors adsorption ratio decreased markedly by 36.6 % from 70.2 % to 44. 5 % ,but on the contrary,the monosaccharide adsorption ratio raised sharply by 20-31 times from 1.2% to 25. 5 % -37. 9 % . The adsorption ratio of xylo-oligosaccharide and gluco-oligosaccharide reached 13.7 % and 10.6 % respectively because of unknown components interference. 69. 1 % of acids,94.4 % of furan aldehydes,75.4 % of colored substances and 33.9 % of degraded lignin were removed together with 16.3 % of sugars in SES by the combined method of vacuum evaporation and resin D301 adsorption. Although the combined method for detoxification of SES showed a promising future in effectively improving the fermentability of SES,we still have to face the big gap from industrial production. It was noticed that the wider and deeper study is needed to develop the detoxification technology of pretreated lignocellulosic biomass.%分别以糖-酸-醛模拟液和玉米秸秆蒸汽爆破预处理液为实验材料,比较了4种典型的阴离子交换树脂的选择性交换吸附脱毒性能,从中筛选出大孔型苯乙烯系阴离子交换树脂D301.D301

  5. Advanced technologies on steam generators

    Energy Technology Data Exchange (ETDEWEB)

    Sakata, Kaoru; Nakamura, Yuuki [Mitsubishi Heavy Industry Co., Takasago (Japan); Nakamori, Nobuo; Mizutani, Toshiyuki; Uwagawa, Seiichi; Saito, Itaru [Mitsubishi Heavy Industry Co., Kobe (Japan); Matsuoka, Tsuyoshi [Mitsubishi Heavy Industry Co., Yokohama (Japan)

    1997-12-31

    The thermal-hydraulic tests for a horizontal steam generator of a next-generation PWR (New PWR-21) were performed. The purpose of these tests is to understand the thermal-hydraulic behavior in the secondary side of horizontal steam generator during the plant normal operation. A test was carried out with cross section slice model simulated the straight tube region. In this paper, the results of the test is reported, and the effect of the horizontal steam generator internals on the thermalhydraulic behavior of the secondary side and the circulation characteristics of the secondary side are discussed. (orig.). 3 refs.

  6. General purpose steam table library :

    Energy Technology Data Exchange (ETDEWEB)

    Carpenter, John H.; Belcourt, Kenneth Noel; Nourgaliev, Robert

    2013-08-01

    Completion of the CASL L3 milestone THM.CFD.P7.04 provides a general purpose tabular interpolation library for material properties to support, in particular, standardized models for steam properties. The software consists of three parts, implementations of analytic steam models, a code to generate tables from those models, and an interpolation package to interface the tables to CFD codes such as Hydra-TH. Verification of the standard model is maintained through the entire train of routines. The performance of interpolation package exceeds that of freely available analytic implementation of the steam properties by over an order of magnitude.

  7. Numerical and theoretical analyses of underground explosion cavity decoupling

    Science.gov (United States)

    Jensen, R.; Aldridge, D. F.; Chael, E. P.

    2013-12-01

    wholespace. Equilibrating the moment magnitudes of explosions for differing fill materials leads to misleading results in the amplitudes of the radiated elastic waves. The proper procedure entails equalizing the intrinsic energies of the explosions. Numerically-calculated results are in reasonable agreement with a theoretical model based on acoustic and elastic spherical wave propagation from a point center of symmetry. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  8. STEAM DALAM PEMBUATAN PAKAN UNTUK KOMODITAS AKUAKULTUR

    OpenAIRE

    Sukarman Sukarman

    2010-01-01

    Kualitas fisik pakan (pelet) untuk hewan akuakultur sangat penting, karena akan dimasukkan ke dalam air dan diharapkan tidak banyak mencemari lingkungan. Salah satu faktor yang berpengaruh dalam menjaga kualitas fisik pakan adalah penambahan dan pengaturan steam pada saat proses pembuatan pelet. Steam adalah aliran gas yang dihasilkan oleh air pada saat mendidih. Steam dibagi menjadi 3 jenis yaitu steam basah, saturated steam, dan superheated steam. Steam yang digunakan dalam proses pembuatan...

  9. Sandia capabilities for the measurement, characterization, and analysis of heliostats for CSP.

    Energy Technology Data Exchange (ETDEWEB)

    Andraka, Charles E.; Christian, Joshua Mark; Ghanbari, Cheryl M.; Gill, David Dennis; Ho, Clifford Kuofei; Kolb, William J.; Moss, Timothy A.; Smith, Edward J.; Yellowhair, Julius

    2013-07-01

    The Concentrating Solar Technologies Organization at Sandia National Laboratories has a long history of performing important research, development, and testing that has enabled the Concentrating Solar Power Industry to deploy full-scale power plants. Sandia continues to pursue innovative CSP concepts with the goal of reducing the cost of CSP while improving efficiency and performance. In this pursuit, Sandia has developed many tools for the analysis of CSP performance. The following capabilities document highlights Sandias extensive experience in the design, construction, and utilization of large-scale testing facilities for CSP and the tools that Sandia has created for the full characterization of heliostats. Sandia has extensive experience in using these tools to evaluate the performance of novel heliostat designs.

  10. Prototype dish testing and analysis at Sandia National Laboratories

    Science.gov (United States)

    Grossman, J. W.; Houser, R. M.; Erdman, W. W.

    1991-12-01

    During the past year, Sandia National Laboratories performed on-sun testing of several dish concentrator concepts. These tests were undertaken at the National Solar Thermal Test Facility (NSTTF). Two of the tests were performed in support of the DOE Concentrator Receiver Development Program. The first was on-sun testing of the single-element stretched-membrane dish; this 7-meter diameter dish uses a single preformed metal membrane with an aluminized polyester optical surface and shows potential for future dish-Stirling systems. The next involved two prototype facets from the Faceted Stretched-Membrane Dish Program. These facets, representing competitive design concepts, are closest to commercialization. Five 1-meter triangular facets were tested on-sun as part of the development program for a solar dynamic system on Space Station Freedom. While unique in character, all the tests utilized the Beam Characterization System (BCS) as the main measurement tool and all were analyzed using the Sandia-developed CIRCE2 computer code. The BCS is used to capture and digitize an image of the reflected concentrator beam that is incident on a target surface. The CIRCE2 program provides a computational tool, which when given the geometry of the concentrator and target as well as other design parameters will predict the flux distribution of the reflected beam. One of these parameters, slope error, is the variable that has a major effect in determining the quality of the reflected beam. The methodology used to combine these two tools to predict uniform slope errors for the dishes is discussed in this document. As the Concentrator Development Programs continue, Sandia will test and evaluate two prototype dish systems. The first, the faceted stretched-membrane dish, is expected to be tested in 1992, followed by the full-scale single-element stretched-membrane dish in 1993. These tests will use the tools and methodology discussed in this document.

  11. Sandia National Laboratories, California Chemical Management Program annual report.

    Energy Technology Data Exchange (ETDEWEB)

    Brynildson, Mark E.

    2012-02-01

    The annual program report provides detailed information about all aspects of the Sandia National Laboratories, California (SNL/CA) Chemical Management Program. It functions as supporting documentation to the SNL/CA Environmental Management System Program Manual. This program annual report describes the activities undertaken during the calender past year, and activities planned in future years to implement the Chemical Management Program, one of six programs that supports environmental management at SNL/CA. SNL/CA is responsible for tracking chemicals (chemical and biological materials), providing Material Safety Data Sheets (MSDS) and for regulatory compliance reporting according to a variety of chemical regulations. The principal regulations for chemical tracking are the Emergency Planning Community Right-to-Know Act (EPCRA) and the California Right-to-Know regulations. The regulations, the Hazard Communication/Lab Standard of the Occupational Safety and Health Administration (OSHA) are also key to the CM Program. The CM Program is also responsible for supporting chemical safety and information requirements for a variety of Integrated Enabling Services (IMS) programs primarily the Industrial Hygiene, Waste Management, Fire Protection, Air Quality, Emergency Management, Environmental Monitoring and Pollution Prevention programs. The principal program tool is the Chemical Information System (CIS). The system contains two key elements: the MSDS library and the chemical container-tracking database that is readily accessible to all Members of the Sandia Workforce. The primary goal of the CM Program is to ensure safe and effective chemical management at Sandia/CA. This is done by efficiently collecting and managing chemical information for our customers who include Line, regulators, DOE and ES and H programs to ensure compliance with regulations and to streamline customer business processes that require chemical information.

  12. Imaging Detonations of Explosives

    Science.gov (United States)

    2016-04-01

    14. ABSTRACT The techniques and instrumentation presented in this report allow for mapping of temperature, pressure , chemical species, and...measurement in the explosive near- to far-field (0–500 charge diameters) of surface temperatures, peak air-shock pressures , some chemical species...15. SUBJECT TERMS imaging, explosions, temperature, pressure , chemical species 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT UU

  13. Explosions and static electricity

    DEFF Research Database (Denmark)

    Jonassen, Niels M

    1995-01-01

    The paper deals with the problem of electrostatic discharges as causes of ignition of vapor/gas and dust/gas mixtures. A series of examples of static-caused explosions will be discussed. The concepts of explosion limits, the incendiveness of various discharge types and safe voltages are explained...

  14. 1983 environmental monitoring report, Sandia National Laboratories, Albuquerque, New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Millard, G.C.; Gray, C.E.; O' Neal, B.L.

    1984-04-01

    Sandia National Laboratories (SNL) is located south of Albuquerque on Kirtland Air Force Base. Because radionuclides are potentially released from its research activities, SNL has a continuing environmental monitoring program which analyzes for cesium-137, tritium, uranium, alpha emitters, and beta emitters in water, soil, air, and vegetation. Measured radiation levels in public areas were consistent with local background in 1983. The Albuquerque population received an estimated 0.250 person-rem from airborne radioactive releases, whereas it received greater than 49,950 person-rem from naturally occurring radionuclides. 23 references, 6 figures, 15 tables.

  15. Sandia and NJ TRANSIT Authority Developing Resilient Power Grid

    Energy Technology Data Exchange (ETDEWEB)

    Hanley, Charles J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Ellis, Abraham [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-11-01

    Through the memorandum of understanding between the Depratment of Energy (DOE), the New Jersey Transit Authority (NJ Transit), and the New Jersey Board of Public Utilities, Sandia National Labs is assisting NJ Transit in developing NJ TransitGrid: an electric microgrid that will include a large-scale gas-fired generation facility and distributed energy resources (photovoltaics [PV], energy storage, electric vehicles, combined heat and power [CHP]) to supply reliable power during storms or other times of significant power failure. The NJ TransitGrid was awarded $410M from the Department of Transportation to develop a first-of-its-kind electric microgrid capable of supplying highly-reliable power.

  16. History of Sandia National Laboratories` auxiliary closure mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Weydert, J.C. [Sandia National Labs., Albuquerque, NM (United States); Ponder, G.M. [Geo-Centers, Inc., Albuquerque, NM (United States)

    1993-12-01

    An essential component of a horizontal, underground nuclear test setup at the Nevada Test Site is the auxiliary closure system. The massive gates that slam shut immediately after a device has been detonated allow the prompt radiation to pass, but block debris and hot gases from continuing down the tunnel. Thus, the gates protect experiments located in the horizontal line-of-sight steel pipe. Sandia National Laboratories has been the major designer and developer of these closure systems. This report records the history of SNL`s participation in and contributions to the technology of auxiliary closure systems used in horizontal tunnel tests in the underground test program.

  17. Sandia, California Tritium Research Laboratory transition and reutilization project

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, T.B. [Sandia National Lab., Albuquerque, NM (United States)

    1997-02-01

    This paper describes a project within Sandia National Laboratory to convert the shut down Tritium Research Laboratory into a facility which could be reused within the laboratory complex. In the process of decommissioning and decontaminating the facility, the laboratory was able to save substantial financial resources by transferring much existing equipment to other DOE facilities, and then expeditiously implementing a decontamination program which has resulted in the building being converted into laboratory space for new lab programs. This project of facility reuse has been a significant financial benefit to the laboratory.

  18. Vibration control for precision manufacturing at Sandia National Laboratories

    Science.gov (United States)

    Hinnerichs, Terry D.; Martinez, David R.

    1995-05-01

    Sandia National Laboratories performs R&D in structural dynamics and vibration suppression of precision applications in weapon systems, space, underwater, transportation and civil structures. Over the last decade these efforts have expanded into the areas of active vibration control and 'smart' structures and material systems, In addition, major resources have been focused towards technology to support weapon product development and agile manufacturing capability for defense and industrial applications. This paper will briefly describe the structural dynamics modeling and verification process that supports vibration control and some specific applications of these techniques to manufacturing in the areas of lithography, machine tools and flexible robotics.

  19. 1990 DOE/SANDIA crystalline photovoltaic technology project review meeting

    Energy Technology Data Exchange (ETDEWEB)

    Ruby, D.S. (ed.)

    1990-07-01

    This document serves as the proceedings for the annual project review meeting held by Sandia's Photovoltaic Cell Research Division and Photovoltaic Technology Division. It contains information supplied by each organization making a presentation at the meeting, which was held August 7 through 9, 1990 at the Sheraton Hotel in Albuquerque, New Mexico. Sessions were held to discuss national photovoltaic programs, one-sun crystalline silicon cell research, concentrator silicon cell research, concentrator 3-5 cell research, and concentrating collector development.

  20. 49 CFR 176.116 - General stowage conditions for Class 1 (explosive) materials.

    Science.gov (United States)

    2010-10-01

    ... on board. Stowage must be well away from all sources of heat, including steam pipes, heating coils... be dry. In the event of the contents of packages being affected by water when on board immediate... position of stowage of these Class 1 (explosive) materials must be such as to maintain direct access to...

  1. Statement of Work Electrical Energy Storage System Installation at Sandia National Laboratories.

    Energy Technology Data Exchange (ETDEWEB)

    Schenkman, Benjamin L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-03-01

    Sandia is seeking to procure a 1 MWh energy storage system. It will be installed at the existing Energy Storage Test Pad, which is located at Sandia National Laboratories in Albuquerque, New Mexico. This energy storage system will be a daily operational system, but will also be used as a tool in our Research and development work. The system will be part of a showcase of Sandia distributed energy technologies viewed by many distinguished delegates.

  2. Energetic materials research and development activities at Sandia National Laboratories supported under DP-10 programs

    Energy Technology Data Exchange (ETDEWEB)

    Ratzel, A.C. III

    1998-09-01

    This report provides summary descriptions of Energetic Materials (EM) Research and Development activities performed at Sandia National Laboratories and funded through the Department of Energy DP-10 Program Office in FY97 and FY98. The work falls under three major focus areas: EM Chemistry, EM Characterization, and EM Phenomenological Model Development. The research supports the Sandia component mission and also Sandia's overall role as safety steward for the DOE Nuclear Weapons Complex.

  3. Melt Cast High Explosives

    Directory of Open Access Journals (Sweden)

    Stanisław Cudziło

    2014-12-01

    Full Text Available [b]Abstract[/b]. This paper reviews the current state and future developments of melt-cast high explosives. First the compositions, properties and methods of preparation of trinitrotoluene based (TNT conventional mixtures with aluminum, hexogen (RDX or octogen (HMX are described. In the newer, less sensitive explosive formulations, TNT is replaced with dinitroanisole (DNANDNANDNAN and nitrotriazolone (NTONTONTO, nitroguanidine (NG or ammonium perchlorate (AP are the replacement for RDRDX and HMX. Plasticized wax or polymer-based binder systems for melt castable explosives are also included. Hydroxyl terminated polybutadiene (HPTB is the binder of choice, but polyethylene glycol, and polycaprolactone with energetic plasticizers are also used. The most advanced melt-cast explosives are compositions containing energetic thermoplastic elastomers and novel highly energetic compounds (including nitrogen rich molecules in whose particles are nanosized and practically defect-less.[b]Keywords[/b]: melt-cast explosives, detonation parameters

  4. Steam reforming of ethanol

    DEFF Research Database (Denmark)

    Trane-Restrup, Rasmus; Dahl, Søren; Jensen, Anker Degn

    2013-01-01

    Steam reforming (SR) of oxygenated species like bio-oil or ethanol can be used to produce hydrogen or synthesis gas from renewable resources. However, deactivation due to carbon deposition is a major challenge for these processes. In this study, different strategies to minimize carbon deposition...... on Ni-based catalysts during SR of ethanol were investigated in a flow reactor. Four different supports for Ni were tested and Ce0.6Zr0.4O2 showed the highest activity, but also suffered from severe carbon deposition at 600 °C or below. Operation at 600 °C or above were needed for full conversion...... 400 ppm of the carbon in the feed at approx. 600 °C. The different promoters did not influence the product distribution to any significant extent. Selective poisoning with small amounts of K2SO4 on Ni–CeO2/MgAl2O4 at 600 °C decreased carbon deposition from 900 to 200 ppm of the carbon in the feed...

  5. Study of the initiation and the escalade phases of a vapour explosion; Etude de la phase d'initiation et d'escalade d'une explosion de vapeur

    Energy Technology Data Exchange (ETDEWEB)

    Lamome, J

    2007-09-15

    The steam explosion triggering issue is discussed here by studying at the thermal fragmentation (small pressure perturbation) of a hot water droplet surrounded by a stable steam film. Fragmentation seems to be the consequence of local contacts between the droplet and the coolant. However, the exact mechanism altering the droplet following the above mentioned contacts is uncertain. After a study of the proportions in place, we realized a contact can fragment the droplet in a very short period of time. Therefore, we adopted an approach considering the contact as the explosion criteria. In order to validate this approach, we researched the explosion levels of the experimental variations based on the surrounding pressure and on the coolant's temperature. The model found again the experimental variations, the levels were found again with some uncertainty. The contact is obtained by 2 mechanisms inducing liquid's proximity: a steam film global compression due to the disturbance and the amplification of the interface defaults between the coolant and the steam. It appears it is the mechanism of global compression that explains mostly the experimental variations. Following these results, we conducted model's extrapolations in order to come as close as possible of the conditions in which steam explosion can occur on an industrial scale (i.e. in the water pressured nuclear reactors). (author)

  6. RF and mm-Wave Photonics at Sandia National Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Vawter, G.A.; Sullivan, C.

    1999-07-08

    RF and mm-wave photonic devices and circuits have been developed at Sandia National Laboratories for applications ranging from RF optical data links to optical generation of mm-wave frequencies. This talk will explore recent high-speed photonics technology developments at Sandia including: (1) A monolithic optical integrated circuit for all-optical generation of mm-waves. Using integrated mode-locked diode lasers, amplifiers, and detectors, frequencies between 30 GHz and 90 GHz are generated by a single monolithic (Al,Ga)As optical circuit less than 2mm in its largest dimension. (2) Development of polarization-maintaining, low-insertion-loss, low v-pi, Mach-Zehnder interferometer (MZI) modulators with DC-to-potentially-K-band modulation bandwidth. New low-loss polarization-maintaining waveguide designs using binary alloys have been shown to reduce polarization crosstalk in undoped (Al,Ga)As waveguides, yielding high extinction ratio (>40dB) and low on-chip loss (<6dB) in Mach-Zehnder interferometers. RF drive voltage is reduced through use of 45rnrn-active length devices with modulator sensitivity, v-pi, less than 3V.

  7. The chemistry involved in the steam treatment of lignocellulosic materials

    Directory of Open Access Journals (Sweden)

    Luiz Pereira Ramos

    2003-12-01

    Full Text Available Pretreatment of lignocellulosic materials is essential for bioconversion because of the various physical and chemical barriers that greatly inhibit their susceptibility to bioprocesses such as hydrolysis and fermentation. The aim of this article is to review some of the most important pretreatment methods developed to date to enhance the conversion of lignocellulosics. Steam explosion, which precludes the treatment of biomass with high-pressure steam under optimal conditions, is presented as the pretreatment method of choice and its mode of action on lignocellulosics is discussed. The optimal pretreatment conditions for a given plant biomass are defined as those in which the best substrate for hydrolysis is obtained with the least amount of soluble sugars lost to side reactions such as dehydration. Therefore, pretreatment optimization results from a compromise between two opposite trends because hemicellulose recovery in acid hydrolysates can only be maximized at lower pretreatment severities, whereas the development of substrate accessibility requires more drastic pretreatment conditions in which sugar losses are inevitable. To account for this heterogeneity, the importance of several process-oriented parameters is discussed in detail, such as the pretreatment temperature, residence time into the steam reactor, use of an acid catalyst, susceptibility of the pretreated biomass to bioconversion, and process design.

  8. Effect of water extraction on sugars recovery from steam exploded olive tree pruning.

    Science.gov (United States)

    Ballesteros, I; Ballesteros, M; Cara, C; Sáez, F; Castro, E; Manzanares, P; Negro, M J; Oliva, J M

    2011-06-01

    Biomass of olive tree pruning can be considered a suitable raw material for the production of ethanol due to its high content of potentially fermentable carbohydrates. However its high extractives content could cause condensation reactions between extractives and acid insoluble lignin during pretreatment, hindering the enzymatic hydrolysis of pretreated material. In this work, the effect of extractives removal before steam explosion of olive tree pruning was evaluated. The objectives are to recover as much glucose as possible in the extraction stage and to avoid the condensation reactions. The effect of temperature and time of water extracted material on sugars recovery was studied using a response surface method according to a central composite design. Extractive removal previous to steam explosion resulted in 20% more total sugars recovery in comparison to a material without water extraction stage.

  9. Modeling steam pressure under martian lava flows

    Science.gov (United States)

    Dundas, Colin M.; Keszthelyi, Laszlo P.

    2013-01-01

    Rootless cones on Mars are a valuable indicator of past interactions between lava and water. However, the details of the lava–water interactions are not fully understood, limiting the ability to use these features to infer new information about past water on Mars. We have developed a model for the pressurization of a dry layer of porous regolith by melting and boiling ground ice in the shallow subsurface. This model builds on previous models of lava cooling and melting of subsurface ice. We find that for reasonable regolith properties and ice depths of decimeters, explosive pressures can be reached. However, the energy stored within such lags is insufficient to excavate thick flows unless they draw steam from a broader region than the local eruption site. These results indicate that lag pressurization can drive rootless cone formation under favorable circumstances, but in other instances molten fuel–coolant interactions are probably required. We use the model results to consider a range of scenarios for rootless cone formation in Athabasca Valles. Pressure buildup by melting and boiling ice under a desiccated lag is possible in some locations, consistent with the expected distribution of ice implanted from atmospheric water vapor. However, it is uncertain whether such ice has existed in the vicinity of Athabasca Valles in recent history. Plausible alternative sources include surface snow or an aqueous flood shortly before the emplacement of the lava flow.

  10. Aging of civil explosives (Poster)

    NARCIS (Netherlands)

    Krabbendam-La Haye, E.L.M.; Klerk, W.P.C. de; Hoen, C. 't; Krämer, R.E.

    2014-01-01

    For the Dutch MoD and police, TNO composed sets with different kinds of civil explosives to train their detection dogs. The manufacturer of these explosives guarantees several years of stability of these explosives. These sets of explosives are used under different conditions, like temperature and

  11. Isentropic Compression of Nitroplastized Estane to ≈ 35 KBAR on the Sandia Z-Machine

    Science.gov (United States)

    Gustavsen, R. L.; Dattelbaum, D. M.; Orler, E. B.; Hooks, D. E.; Alcon, R. R.; Sheffield, S. A.; Hall, C. E.; Baer, M. R.

    2006-07-01

    Nitroplasticized Estane (hereafter NP-Estane) is the plastic binder used to hold HMX grains together in the plastic bonded explosive PBX 9501. It is a mixture of 49 wt. % Estane®5703 (BF Goodrich), 49 wt. % Nitroplasticizer (a 50/50 eutectic mixture of bis(2,2-dinitropropyl)formal and bis(2,2 dinitropropyl)acetal), and 2 wt. % Irganox® 1010 stabilizer. NP-Estane samples 0.1 - 2 mm thick were prepared by compression molding at 110°C. Hydrostatic compression to 2 kbar was measured at 34, 43, and 53°C. CP was measured at ambient conditions. NP-Estane was also isentropically compressed to ≈ 35 kbar in experiment Z1251 on the Sandia Z-Machine. Profiles of ramp waves transmitted through NP-Estane were measured and compared with a free surface reference profile using Hayes's "Backward" analysis and repeated forward analysis with the CTH hydrocode. The following thermodynamic quantities have been obtained; volume coefficient of thermal expansion α = 7.2(10-4)/C, CP = 1.76 J/g C, CV = 1.41 J/g C, isentropic and isothermal bulk moduli, BS = 36.4 kbar, BT = 29.3 kbar, Grüneisen constant Γ = 1.45. The Z1251 experiment is well fit using a Mie-Grüneisen equation of state with the quadratic US - uP relation, US = 1.69 + 2.7uP - (0.7/1.69)uP2 km/s.

  12. Biological investigations of the Sandia National Laboratories Sol se Mete Aerial Cable Facility

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, R.M.

    1994-10-01

    This report provides results of a comprehensive biological field survey performed on the Sandia National Laboratories Aerial Cable Facility, at the east end of Kirtland Air Force Base (KAFB), Bernalillo County, New Mexico. This survey was conducted late September through October, 1991. ACF occupies a 440-acre tract of land withdrawn by the US Forest Service (USFS) for use by KAFB, and in turn placed under operational control of SNL by the Department of Energy (DOE). All land used by SNL for ACF is part of a 15,851-acre tract of land withdrawn by the US Forest Service. In addition, a number of different organizations use the 15,851-acre area. The project area used by SNL encompasses portions of approximately six sections (3,840 acres) of US Forest Service land located within the foothills of the west side of the Manzano Mountains (East Mesa). The biological study area is used by the KAFB, the US Department of Interior, and SNL. This area includes: (1) Sol se Mete Springs and Canyon, (2) East Anchor Access Road, (3) East Anchor Site, (4) Rocket Sled Track, (5) North Arena, (6) East Instrumentation Site and Access Road, (7) West Anchor Access Road, (8) West Anchor Site, (9) South Arena, (10) Winch Sites, (11) West Instrumentation Sites, (12) Explosive Assembly Building, (13) Control Building, (14) Lurance Canyon Road and vicinity. Although portions of approximately 960 acres of withdrawn US Forest Service land have been altered, only 700 acres have been disturbed by activities associated with ACF; approximately 2,880 acres consist of natural habitat. Absence of grazing by livestock and possibly native ungulates, and relative lack of human disturbance have allowed this area to remain in a more natural vegetative state relative to the condition of private range lands throughout New Mexico. This report evaluates threatened and endangered species found on ACF, as well as a comprehensive assessment of biological habitats.

  13. Parametric Explosion Spectral Model

    Energy Technology Data Exchange (ETDEWEB)

    Ford, S R; Walter, W R

    2012-01-19

    Small underground nuclear explosions need to be confidently detected, identified, and characterized in regions of the world where they have never before occurred. We develop a parametric model of the nuclear explosion seismic source spectrum derived from regional phases that is compatible with earthquake-based geometrical spreading and attenuation. Earthquake spectra are fit with a generalized version of the Brune spectrum, which is a three-parameter model that describes the long-period level, corner-frequency, and spectral slope at high-frequencies. Explosion spectra can be fit with similar spectral models whose parameters are then correlated with near-source geology and containment conditions. We observe a correlation of high gas-porosity (low-strength) with increased spectral slope. The relationship between the parametric equations and the geologic and containment conditions will assist in our physical understanding of the nuclear explosion source.

  14. Explosive Components Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The 98,000 square foot Explosive Components Facility (ECF) is a state-of-the-art facility that provides a full-range of chemical, material, and performance analysis...

  15. Intermittent Explosive Disorder

    Directory of Open Access Journals (Sweden)

    Lut Tamam

    2011-09-01

    Full Text Available Intermittent explosive disorder is an impulse control disorder characterized by the occurrence of discrete episodes of failure to resist aggressive impulses that result in violent assault or destruction of property. Though the prevalence intermittent explosive disorder has been reported to be relatively rare in frontier studies on the field, it is now common opinion that intermittent explosive disorder is far more common than previously thought especially in clinical psychiatry settings. Etiological studies displayed the role of both psychosocial factors like childhood traumas and biological factors like dysfunctional neurotransmitter systems and genetics. In differential diagnosis of the disorder, disorders involving agression as a symptom such as alcohol and drug intoxication, antisocial and borderline personality disorders, personality changes due to general medical conditions and behavioral disorder should be considered. A combination of pharmacological and psychotherapeutic approaches are suggested in the treatment of the disorder. This article briefly reviews the historical background, diagnostic criteria, epidemiology, etiology and treatment of intermittent explosive disorder.

  16. 75 FR 5545 - Explosives

    Science.gov (United States)

    2010-02-03

    ....gov . This Federal Register notice, as well as news releases and other relevant information, are also..., Tobacco, Firearms and Explosives (ATF) regulates the import, manufacture, distribution, and storage of...

  17. Ammonium nitrate explosion hazards

    Directory of Open Access Journals (Sweden)

    Negovanović Milanka

    2015-01-01

    Full Text Available Ammonium nitrate (AN primarily is used as a fertilizer but it is also very important compound in the production of industrial explosives. The application of ammonium nitrate in the production of industrial explosives was related with the early era of Nobel dynamite and widely increased with the appearance of blasting agents such as ANFO and Slurry, in the middle of the last Century. Throughout the world millions of tons of ammonium nitrate are produced annually and handled without incident. Although ammonium nitrate generally is used safely, accidental explosions involving AN have high impact resulting in loss of lives and destruction of property. The paper presents the basic properties of ammonium nitrate as well as hazards in handling of ammonium nitrate in order to prevent accidents. Several accidents with explosions of ammonium nitrate resulted in catastrophic consequences are listed in the paper as examples of non-compliance with prescribed procedures.

  18. Explosion suppression system

    Science.gov (United States)

    Sapko, Michael J.; Cortese, Robert A.

    1992-01-01

    An explosion suppression system and triggering apparatus therefor are provided for quenching gas and dust explosions. An electrically actuated suppression mechanism which dispenses an extinguishing agent into the path ahead of the propagating flame is actuated by a triggering device which is light powered. This triggering device is located upstream of the propagating flame and converts light from the flame to an electrical actuation signal. A pressure arming device electrically connects the triggering device to the suppression device only when the explosion is sensed by a further characteristic thereof beside the flame such as the pioneer pressure wave. The light powered triggering device includes a solar panel which is disposed in the path of the explosion and oriented between horizontally downward and vertical. Testing mechanisms are also preferably provided to test the operation of the solar panel and detonator as well as the pressure arming mechanism.

  19. Shock waves & explosions

    CERN Document Server

    Sachdev, PL

    2004-01-01

    Understanding the causes and effects of explosions is important to experts in a broad range of disciplines, including the military, industrial and environmental research, aeronautic engineering, and applied mathematics. Offering an introductory review of historic research, Shock Waves and Explosions brings analytic and computational methods to a wide audience in a clear and thorough way. Beginning with an overview of the research on combustion and gas dynamics in the 1970s and 1980s, the author brings you up to date by covering modeling techniques and asymptotic and perturbative methods and ending with a chapter on computational methods.Most of the book deals with the mathematical analysis of explosions, but computational results are also included wherever they are available. Historical perspectives are provided on the advent of nonlinear science, as well as on the mathematical study of the blast wave phenomenon, both when visualized as a point explosion and when simulated as the expansion of a high-pressure ...

  20. Conformal coating value/risk assessment for Sandia satellite programs.

    Energy Technology Data Exchange (ETDEWEB)

    Russick, Edward Mark; Thayer, Gayle Echo

    2008-03-01

    Conformal coatings are used in space applications on printed circuit board (PCB) assemblies primarily as a protective barrier against environmental contaminants. Such coatings have been used at Sandia for decades in satellite applications including the GPS satellite program. Recently, the value of conformal coating has been questioned because it is time consuming (requiring a 5-6 week schedule allowance) and delays due to difficulty of repairs and rework performed afterward are troublesome. In an effort to find opportunities where assembly time can be reduced, a review of the literature as well as discussions with satellite engineers both within and external to Sandia regarding the value of conformal coating was performed. Several sources on the value of conformal coating, the functions it performs, and on whether coatings are necessary and should be used at all were found, though nearly all were based on anecdotal information. The first section of this report, titled 'Conformal Coating for Space Applications', summarizes the results of an initial risk-value assessment of the conformal coating process for Sandia satellite programs based on information gathered. In the process of collecting information to perform the assessment, it was necessary to obtain a comprehensive understanding of the entire satellite box assembly process. A production time-line was constructed and is presented in the second section of this report, titled 'Satellite Box Assembly', specifically to identify potential sources of time delays, manufacturing issues, and component failures related to the conformal coating process in relation to the box assembly. The time-line also allows for identification of production issues that were anecdotally attributed to the conformal coating but actually were associated with other production steps in the box assembly process. It was constructed largely in consultation with GPS program engineers with empirical knowledge of times required

  1. Numerical analysis of fragmentation mechanisms in vapor explosions

    Energy Technology Data Exchange (ETDEWEB)

    Koshizuka, Seiichi; Ikeda, Hirokazu; Oka, Yoshiaki [Tokyo Univ., Tokai, Ibaraki (Japan). Nuclear Engineering Research Lab.

    1998-01-01

    Fragmentation of molten metal is the key process in vapor explosions. However this process is so rapid that the mechanisms have not been clarified yet in the experimental studies. Besides, numerical simulation is difficult because we have to analyze water, steam and molten metal simultaneously with evaporation and fragmentation. The authors have been developing a new numerical method, the Moving Particle Semi-implicit (MPS) method, based on moving particles and their interactions. Grids are not necessary. Incompressible flows with fragmentation on free surfaces have been calculated successfully using the MPS method. In the present study numerical simulation of the fragmentation processes using the MPS method is carried out to investigate the mechanisms. A numerical model to calculate evaporation from water to steam is developed. In this model, new particles are generated on water-steam interfaces. Effect of evaporation is also investigated. Growth of the filament is not accelerated when the normal evaporation is considered. This is because the normal evaporation needs a longer time than the moment of the jet impingement, though the filament growth is decided in this moment. Next, rapid evaporation based on spontaneous nucleation is considered. The filament growth is markedly accelerated. This result is consistent with the experimental fact that the spontaneous nucleation temperature is a necessary condition of small-scale vapor explosions. (J.P.N.)

  2. Explosive Welding with Nitroguanidine.

    Science.gov (United States)

    Sadwin, L D

    1964-03-13

    By using the explosive nitroguanidine, continuous welds can be made between similar and dissimilar metals. Since low detonation pressures are attainable, pressure transfer media are not required between the explosive and the metal surface. The need for either a space or an angle between the metals is eliminated, and very low atmospheric pressures are not required. Successful welds have been made between tantalum and 4140 steel, 3003H14 aluminum and 4140 steel, and 304 stainless steel and 3003H14 aluminum.

  3. Overview of Explosive Initiators

    Science.gov (United States)

    2015-11-01

    important characteristics of an effective primary explosive is an extremely swift deflagration to detonation transition, meaning that once the... Taylor , G. W. C., Napier, S. E., "Preparation of Explosive Substances Containing Carboxymethyl Cellulose," U.S. Patent 3,291,664, 1966. 8 Perich, A...Rinkenbach, W. H., "Study of the Action of Lead Azide on Copper," U.S. Army ARDEC, Picatinny Arsenal, NJ, Technical Report No. 1152, 1942. 11 Taylor , G. W

  4. Sandia`s network for SC `97: Supporting visualization, distributed cluster computing, and production data networking with a wide area high performance parallel asynchronous transfer mode (ATM) network

    Energy Technology Data Exchange (ETDEWEB)

    Pratt, T.J.; Martinez, L.G.; Vahle, M.O.; Archuleta, T.V.; Williams, V.K.

    1998-05-01

    The advanced networking department at Sandia National Laboratories has used the annual Supercomputing conference sponsored by the IEEE and ACM for the past several years as a forum to demonstrate and focus communication and networking developments. At SC `97, Sandia National Laboratories (SNL), Los Alamos National Laboratory (LANL), and Lawrence Livermore National Laboratory (LLNL) combined their SC `97 activities within a single research booth under the Advance Strategic Computing Initiative (ASCI) banner. For the second year in a row, Sandia provided the network design and coordinated the networking activities within the booth. At SC `97, Sandia elected to demonstrate the capability of the Computation Plant, the visualization of scientific data, scalable ATM encryption, and ATM video and telephony capabilities. At SC `97, LLNL demonstrated an application, called RIPTIDE, that also required significant networking resources. The RIPTIDE application had computational visualization and steering capabilities. This paper documents those accomplishments, discusses the details of their implementation, and describes how these demonstrations support Sandia`s overall strategies in ATM networking.

  5. Handbook of HE (High Explosives) Explosive Effects

    Science.gov (United States)

    1986-04-11

    uPcup SI.B iPip P 3 [ xpI os i or ,tf fects, Lx’i Osions In Air,6 19 6T~lT’ Explosions, Airblast - 19 ABSTRAC.T ’Continuje on "uri~ee it neczessary and...AIR FORCE INSTITUTE OF TECHNOLOGY/EN ATTN: MAT 0323 ATTN- LIURARY/AFIT/LDEE NAVAL OCEAN SYSTEMS CENTER AIR FORCE LOGISTICS COMMAND ATTN: CODE 825

  6. Calendar Year 2009 Annual Site Environmental Report for Sandia National Laboratories, New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, Karen [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bailey-White, Brenda [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bonaguidi, Joseph [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Brown, Mendy [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Byrd, Caroline [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Cabble, Kevin [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Castillo, Dave [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Coplen, Amy [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Curran, Kelsey [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Deola, Regina [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Duran, Leroy [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Eckstein, Joanna [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Evelo, Stacie [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Fitzgerald, Tanja [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); French, Chris [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Gerard, Morgan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Gonzales, Linda [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Gorman, Susan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jackson, Timothy [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jarry, Jeff [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jones, Adrian [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lauffer, Franz [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Mauser, Joseph [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Mayeux, Lucie [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); McCord, Samuel [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Miller, Mark [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Oborny, Stephanie [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Perini, Robin [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Puissant, Pamela [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Reiser, Anita [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Roma, Charles [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Salinas, Stephanie [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Skelly, Michael [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Ullrich, Rebecca [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Wagner, Katrina [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Wrons, Ralph [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2010-09-30

    Sandia National Laboratories, New Mexico (SNL/NM) is a government-owned/contractor operated facility. Sandia Corporation (Sandia), a wholly owned subsidiary of Lockheed Martin Corporation (LMC), manages and operates the laboratory for the U.S. Department of Energy (DOE), National Nuclear Security Administration (NNSA). The DOE/NNSA, Sandia Site O ffice (SSO) administers the contract and oversees contractor operations at the site. This annual report summarizes data and the compliance status of Sandia Corporation’s environmental protection and monitoring programs through December 31, 2009. Major environmental programs include air quality, water quality, groundwater protection, terrestrial surveillance, waste management, pollution prevention (P2), environmental restoration (ER), oil and chemical spill prevention, and implementation of the National Environmental Policy Act (NEPA). Environmental monitoring and surveillance programs are required by DOE Order 450.1A, Environmental Protection Program (DOE 2008a) and DOE Manual 231.1-1A, Environment, Safety, and Health Reporting (DOE 2007).

  7. Annual Site Environmental Report Sandia National Laboratories, Albuquerque, New Mexico, Calendar year 2007

    Energy Technology Data Exchange (ETDEWEB)

    Agogino, Karen [National Nuclear Security Administration (NNSA), Washington, DC (United States); Sanchez, Rebecca [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2008-09-30

    Sandia National Laboratories, New Mexico (SNL/NM) is a government-owned/contractor-operated facility. Sandia Corporation (Sandia), a wholly owned subsidiary of Lockheed Martin Corporation, manages and operates the laboratory for the U.S. Department of Energy (DOE), National Nuclear Security Administration (NNSA). The DOE/NNSA Sandia Site Office (SSO) administers the contract and oversees contractor operations at the site. This annual report summarizes data and the compliance status of Sandia Corporation’s environmental protection and monitoring programs through December 31, 2007. Major environmental programs include air quality, water quality, groundwater protection, terrestrial surveillance, waste management, pollution prevention (P2), environmental restoration (ER), oil and chemical spill prevention, and implementation of the National Environmental Policy Act (NEPA). Environmental monitoring and surveillance programs are required by DOE Order 450.1, Environmental Protection Program (DOE 2007a) and DOE Manual 231.1-1A, Environment, Safety, and Health Reporting (DOE 2007).

  8. Hydrolysis of Miscanthus for bioethanol production using dilute acid presoaking combined with wet explosion pre-treatment and enzymatic treatment

    DEFF Research Database (Denmark)

    Sørensen, Annette; Teller, Philip Johan; Hilstrøm, Troels

    2008-01-01

    xylose prior to wet explosion. The acid presoaking extracted 63.2% xylose and 5.2% glucose. Direct enzymatic hydrolysis of the presoaked biomass was found to give only low sugar yields of 24-26% glucose. Wet explosion is a pre-treatment method that combines wet-oxidation and steam explosion. The effect......Miscanthus is a high yielding bioenergy crop. In this study we used acid presoaking, wet explosion, and enzymatic hydrolysis to evaluate the combination of the different pre-treatment methods for bioethanol production with Miscanthus. Acid presoaking is primarily carried out in order to remove...... of wet explosion on non-presoaked and presoaked Miscanthus was investigated using both atmospheric air and hydrogen peroxide as the oxidizing agent. All wet explosion pre-treatments showed to have a disrupting effect on the lignocellulosic biomass, making the sugars accessible for enzymatic hydrolysis...

  9. 1991 Environmental monitoring report Sandia National Laboratories, Albuquerque, New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Culp, T.; Cox, W.; Hwang, S.; Jones, A.; Longley, S.; Parsons, A.; Wolff, T.; Fish, J.; Ward, S.

    1992-11-01

    This 1991 report contains monitoring data from routine radiological and nonradiological environmental surveillance activities. Summaries of significant environmental compliance programs in progress such as National Environmental Policy Act (NEPA) documentation, environmental permits, environmental restoration (ER), and various waste management programs for Sandia National Laboratories in Albuquerque (SNL, Albuquerque) are included. The maximum offsite dose impact was calculated to be 1.3 {times} 10{sup {minus}3} mrem. The total population within a 50-mile radius of SNL, Albuquerque, received a collective dose of 0.53 person-rem during 1991 from SNL, Albuquerque, operations. As in the previous year, the 1991 operations at SNL, Albuquerque, had no discernible impact on the general public or on the environment.

  10. 1990 Environmental Monitoring Report, Sandia National Laboratories, Albuquerque, New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, S.; Yeager, G.; Wolff, T.; Parsons, A.; Dionne, D.; Massey, C.; Schwartz, B.; Fish, J.; Thompson, D. (Sandia National Labs., Albuquerque, NM (United States)); Goodrich, M. (GRAM, Inc., Albuquerque, NM (United States))

    1991-05-01

    This 1990 report contains monitoring data from routine radiological and nonradiological environmental surveillance activities. Summaries of significant environmental compliance programs in progress such as National Environmental Policy Act (NEPA) documentation, environmental permits, environmental restoration, and various waste management programs for Sandia National Laboratories in Albuquerque (SNL, Albuquerque) are included. The maximum offsite dose impact was calculated to be 2.0 {times} 10{sup {minus}3} mrem. The total 50-mile population received a collective dose of 0.82 person-rem during 1990 from SNL, Albuquerque, operations. As in the previous year, the 1990 SNL operations had no adverse impact on the general public or on the environment. This report is prepared for the US Department of Energy in compliance with DOE Order 5400.1. 97 refs., 30 figs., 137 tabs.

  11. Epidemiologic surveillance. Annual report for Sandia National Laboratories 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    Epidemiologic surveillance at DOE facilities consists of regular and systematic collection, analysis, and interpretation of data on absences due to illness and injury in the work force. Its purpose is to provide an early warning system for health problems occurring among employees at participating sites. In this annual report, 1994 morbidity data for the Sandia National Laboratories are summarized. These analyses focus on absences of 5 or more consecutive workdays occurring among workers aged 15-76 years. They are arranged in five sets of tables that present: (1) the distribution of the labor force by occupational category and pay status; (2) the absences per person, diagnoses per absence, and diagnosis rates for the whole work force; (3) diagnosis rates by type of disease or injury; (4) diagnosis rates by occupational category; and (5) relative risks for specific types of disease or injury by occupational category.

  12. Sandia National Laboratories shock thermodynamics applied research (STAR) facility

    Energy Technology Data Exchange (ETDEWEB)

    Asay, J.R.

    1981-08-01

    The Sandia National Laboratories Shock Thermodynamics Applied Research (STAR) Facility has recently consolidated three different guns and a variety of instrumentation capabilities into a single location. The guns available at the facility consist of a single-stage light gas gun, a single-stage propellant gun and a two-stage light gas gun, which cover a velocity range from 15 m/s to 8 km/s. Instrumentation available at the facility includes optical and microwave interferometry, time-resolved holography, fast x-radiography, framing and streak photography, fast multi-wavelength pyrometry, piezoelectric and piezoresistive gauges and computer data reduction. This report discusses the guns and instrumentation available at the facility and selected recent applications.

  13. Tritium monitoring at the Sandia Tritium Research Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Devlin, T.K.

    1978-10-01

    Sandia Laboratories at Livermore, California, is presently beginning operation of a Tritium Research Laboratory (TRL). The laboratory incorporates containment and cleanup facilities such that any unscheduled tritium release is captured rather than vented to the atmosphere. A sophisticated tritium monitoring system is in use at the TRL to protect operating personnel and the environment, as well as ensure the safe and effective operation of the TRL decontamination systems. Each monitoring system has, in addition to a local display, a display in a centralized control room which, when coupled room which, when coupled with the TRL control computer, automatically provides an immediate assessment of the status of the entire facility. The computer controls a complex alarm array status of the entire facility. The computer controls a complex alarm array and integrates and records all operational and unscheduled tritium releases.

  14. 1989 Environmental monitoring report, Sandia National Laboratories, Albuquerque, New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, S.; Chavez, G.; Phelan, J.; Parsons, A.; Yeager, G.; Dionne, D.; Schwartz, B.; Wolff, T.; Fish, J.; Gray, C.; Thompson, D.

    1990-05-01

    This 1989 report contains monitoring data from routine radiological and nonradiological environmental surveillance activities. Summaries of significant environmental compliance programs in progress such as National Environmental Policy Act documentation, environmental permits, environmental restoration, and various waste management programs for Sandia National Laboratories in Albuquerque (SNL, Albuquerque) are included. The maximum offsite dose impact was calculated to be 8.8 {times} 10{sup {minus}4} mrem. The total Albuquerque population received a collective dose of 0.097 person-rem during 1989 from SNL, Albuquerque, operations. As in the previous year, SNL, Albuquerque, operations in 1989 had no adverse impact on the general public or on the environment. 46 refs., 20 figs., 31 tabs.

  15. Sandia National Laboratories Internal Dosimetry Technical Basis Manual (Rev 4)

    Energy Technology Data Exchange (ETDEWEB)

    Goke, Sarah Hayes [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Elliott, Nathan Ryan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-09-01

    The Sandia National Laboratories’ Internal Dosimetry Technical Basis Manual is intended to provide extended technical discussion and justification of the internal dosimetry program at SNL. It serves to record the approach to evaluating internal doses from radiobioassay data, and where appropriate, from workplace monitoring data per the Department of Energy Internal Dosimetry Program Guide DOE G 441.1C. The discussion contained herein is directed primarily to current and future SNL internal dosimetrists. In an effort to conserve space in the TBM and avoid duplication, it contains numerous references providing an entry point into the internal dosimetry literature relevant to this program. The TBM is not intended to act as a policy or procedure statement, but will supplement the information normally found in procedures or policy documents. The internal dosimetry program outlined in this manual is intended to meet the requirements of Federal Rule 10CFR835 for monitoring the workplace and for assessing internal radiation doses to workers.

  16. Organizational cultural assessment of the Sandia National Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    1991-05-01

    An Organizational Cultural Assessment (OCA) was performed at the Sandia National Laboratories (SNL) by administering an Organizational Culture Survey (OCS) that queried employees on the subjects of organizational culture, various aspects of communications, employee commitment, work group cohesion, coordination of work, environmental concerns, hazardous nature of work, safety, and overall job satisfaction. The purpose of the OCS is to measure in a quantitative and objective way the values, attitudes, and beliefs of the individuals working within the organization. The OCS administration at SNL was the fifth to occur at a DOE facility. The sample was randomly selected from each Vice Presidency group, the largest organizational unit at SNL. Scores and significance are discussed and statistically significant differences between groups are identified and discussed.

  17. Sandia Lightning Simulation Facility Building 888. Hazards assessment document

    Energy Technology Data Exchange (ETDEWEB)

    Banda, Z.; Barnett, B.

    1994-10-01

    The Department of Energy Order 5500.3A requires facility-specific hazards assessments be prepared, maintained, and used for emergency planning purposes. This hazards assessment document describes the chemical and radiological hazards associated with the Sandia Lightning Simulation Facility, Building 888. The entire inventory was screened according to the potential airborne impact to onsite and offsite individuals. The air dispersion model, ALOHA, estimated pollutant concentrations downwind from the source of a release, taking into consideration the toxicological and physical characteristics of the release site, the atmospheric conditions, and the circumstances of the release. The greatest distance at which a postulated facility event will produce consequences exceeding the Early Severe Health Effects threshold is 23 meters. The highest emergency classification is a Site Area Emergency. The Emergency Planning Zone is 65 meters.

  18. Sandia Administrative Micrographics Facility, Building 802: Hazards assessment document

    Energy Technology Data Exchange (ETDEWEB)

    Swihart, A.

    1994-12-01

    The Department of Energy Order 5500.3A requires facility-specific hazards assessments be prepared, maintained, and used for emergency planning purposes. This hazards assessment document describes the chemical and radiological hazards associated with the Sandia Administrative Micrographics Facility, Building 802. The entire inventory was screened according to the potential airborne impact to onsite and offsite individuals. The air dispersion model, ALOHA, estimated pollutant concentrations downwind from the source of a release, taking into consideration the toxicological and physical characteristics of the release site, the atmospheric conditions, and the circumstances of the release. The greatest distance at which a postulated facility event will produce consequences exceeding the Early Severe Health Effects threshold is 33 meters. The highest emergency classification is a Site Area Emergency. The Emergency Planning Zone is 75 meters.

  19. Sandia National Laboratories' new high level acoustic test facility

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, J. D.; Hendrick, D. M.

    1989-01-01

    A high intensity acoustic test facility has been designed and is under construction at Sandia National Laboratories in Albuquerque, NM. The chamber is designed to provide an acoustic environment of 154dB (re 20 {mu}Pa) overall sound pressure level over the bandwidth of 50 Hz to 10,000 Hz. The chamber has a volume of 16,000 cubic feet with interior dimensions of 21.6 ft {times} 24.6 ft {times} 30 ft. The construction of the chamber should be complete by the summer of 1990. This paper discusses the design goals and constraints of the facility. The construction characteristics are discussed in detail, as are the acoustic performance design characteristics. The authors hope that this work will help others in designing acoustic chambers. 12 refs., 6 figs.

  20. 1989 Environmental monitoring report, Sandia National Laboratories, Albuquerque, New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, S.; Chavez, G.; Phelan, J.; Parsons, A.; Yeager, G.; Dionne, D.; Schwartz, B.; Wolff, T.; Fish, J.; Gray, C.; Thompson, D.

    1990-05-01

    This 1989 report contains monitoring data from routine radiological and nonradiological environmental surveillance activities. Summaries of significant environmental compliance programs in progress such as National Environmental Policy Act documentation, environmental permits, environmental restoration, and various waste management programs for Sandia National Laboratories in Albuquerque (SNL, Albuquerque) are included. The maximum offsite dose impact was calculated to be 8.8 {times} 10{sup {minus}4} mrem. The total Albuquerque population received a collective dose of 0.097 person-rem during 1989 from SNL, Albuquerque, operations. As in the previous year, SNL, Albuquerque, operations in 1989 had no adverse impact on the general public or on the environment. 46 refs., 20 figs., 31 tabs.

  1. Sandia National Laboratories, California sewer system management plan.

    Energy Technology Data Exchange (ETDEWEB)

    Holland, Robert C.

    2010-02-01

    A Sewer System Management Plan (SSMP) is required by the State Water Resources Control Board (SWRCB) Order No. 2006-0003-DWQ Statewide General Waste Discharge Requirements (WDR) for Sanitary Sewer Systems (General Permit). DOE, National Nuclear Security Administration (NNSA), Sandia Site Office has filed a Notice of Intent to be covered under this General Permit. The General Permit requires a proactive approach to reduce the number and frequency of sanitary sewer overflows (SSOs) within the State. SSMPs must include provisions to provide proper and efficient management, operation, and maintenance of sanitary sewer systems and must contain a spill response plan. Elements of this Plan are under development in accordance with the SWRCB's schedule.

  2. Baseline ecological footprint of Sandia National Laboratories, New Mexico.

    Energy Technology Data Exchange (ETDEWEB)

    Coplen, Amy K.; Mizner, Jack Harry,; Ubechel, Norion M.

    2009-01-01

    The Ecological Footprint Model is a mechanism for measuring the environmental effects of operations at Sandia National Laboratories in Albuquerque, New Mexico (SNL/NM). This analysis quantifies environmental impact associated with energy use, transportation, waste, land use, and water consumption at SNL/NM for fiscal year 2005 (FY05). Since SNL/NMs total ecological footprint (96,434 gha) is greater than the waste absorption capacity of its landholdings (338 gha), it created an ecological deficit of 96,096 gha. This deficit is equal to 886,470lha, or about 3,423 square miles of Pinyon-Juniper woodlands and desert grassland. 89% of the ecological footprint can be attributed to energy use, indicating that in order to mitigate environmental impact, efforts should be focused on energy efficiency, energy reduction, and the incorporation of additional renewable energy alternatives at SNL/NM.

  3. Physical explosion analysis in heat exchanger network design

    Science.gov (United States)

    Pasha, M.; Zaini, D.; Shariff, A. M.

    2016-06-01

    The failure of shell and tube heat exchangers is being extensively experienced by the chemical process industries. This failure can create a loss of production for long time duration. Moreover, loss of containment through heat exchanger could potentially lead to a credible event such as fire, explosion and toxic release. There is a need to analyse the possible worst case effect originated from the loss of containment of the heat exchanger at the early design stage. Physical explosion analysis during the heat exchanger network design is presented in this work. Baker and Prugh explosion models are deployed for assessing the explosion effect. Microsoft Excel integrated with process design simulator through object linking and embedded (OLE) automation for this analysis. Aspen HYSYS V (8.0) used as a simulation platform in this work. A typical heat exchanger network of steam reforming and shift conversion process was presented as a case study. It is investigated from this analysis that overpressure generated from the physical explosion of each heat exchanger can be estimated in a more precise manner by using Prugh model. The present work could potentially assist the design engineer to identify the critical heat exchanger in the network at the preliminary design stage.

  4. 49 CFR 172.522 - EXPLOSIVES 1.1, EXPLOSIVES 1.2 and EXPLOSIVES 1.3 placards.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false EXPLOSIVES 1.1, EXPLOSIVES 1.2 and EXPLOSIVES 1.3... INFORMATION, TRAINING REQUIREMENTS, AND SECURITY PLANS Placarding § 172.522 EXPLOSIVES 1.1, EXPLOSIVES 1.2 and EXPLOSIVES 1.3 placards. (a) Except for size and color, the EXPLOSIVES 1.1, EXPLOSIVES 1.2 and EXPLOSIVES 1.3...

  5. Steam Digest 2001: Office of Industrial Technologies

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2002-01-01

    Steam Digest 2001 chronicles Best Practices Program's contributions to the industrial trade press for 2001, and presents articles that cover technical, financial and managerial aspects of steam optimization.

  6. Continuous steam hydrolysis of tulip poplar

    Energy Technology Data Exchange (ETDEWEB)

    Fieber, C.A.; Roberts, R.S.; Faass, G.S.; Muzzy, J.D.; Colcord, A.R.; Bery, M.K.

    1982-01-01

    The continuous hydrolysis of poplar chips by steam at 300-350 psi resulted in the separation of hemicellulose (I) cellulose and lignin components. The I fraction was readily depolymerised by steam to acetic acid, furfural, methanol, and xylose.

  7. Steam pretreatment for coal liquefaction

    Science.gov (United States)

    Ivanenko, Olga

    The objectives of this work are to test the application of steam pretreatment to direct coal liquefaction, to investigate the reaction of model compounds with water, and to explore the use of zeolites in these processes. Previous work demonstrated the effectiveness of steam pretreatment in a subsequent flash pyrolysis. Apparently, subcritical steam ruptures nearly all of the ether cross links, leaving a partially depolymerized structure. It was postulated that very rapid heating of the pretreated coal to liquefaction conditions would be required to preserve the effects of such treatment. Accordingly, a method was adopted in which coal slurry is injected into a hot autoclave containing solvent. Since oxygen is capable of destroying the pretreatment effect, precautions were taken for its rigorous exclusion. Tests were conducted with Illinois No. 6 coal steam treated at 340sp°C, 750 psia for 15 minutes. Both raw and pretreated samples were liquified in deoxygenated tetralin at high severity (400sp°C, 30 min.) and low severity (a: 350sp°C, 30 min., and b: 385sp°C, 15 min.) conditions under 1500 psia hydrogen. Substantial improvement in liquid product quality was obtained and the need for rapid heating and oxygen exclusion demonstrated. Under low severity conditions, the oil yield was more than doubled, going from 12.5 to 29 wt%. Also chemistry of the pretreatment process was studied using aromatic ethers as model compounds. alpha-Benzylnaphthyl ether (alpha-BNE), alpha-naphthylmethyl phenyl (alpha-NMPE), and 9-phenoxyphenanthrene were exposed to steam and inert gas at pretreatment conditions and in some cases to liquid water at 315sp°C. alpha-BNE and alpha-NMPE showed little difference in conversion in inert gas and in steam. Hence, these compounds are poor models for coal in steam pretreatment. Thermally stable 9-phenoxyphenanthrene, however, was completely converted in one hour by liquid water at 315sp°C. At pretreatment conditions mostly rearranged starting

  8. STEAM DALAM PEMBUATAN PAKAN UNTUK KOMODITAS AKUAKULTUR

    Directory of Open Access Journals (Sweden)

    Sukarman Sukarman

    2010-12-01

    Full Text Available Kualitas fisik pakan (pelet untuk hewan akuakultur sangat penting, karena akan dimasukkan ke dalam air dan diharapkan tidak banyak mencemari lingkungan. Salah satu faktor yang berpengaruh dalam menjaga kualitas fisik pakan adalah penambahan dan pengaturan steam pada saat proses pembuatan pelet. Steam adalah aliran gas yang dihasilkan oleh air pada saat mendidih. Steam dibagi menjadi 3 jenis yaitu steam basah, saturated steam, dan superheated steam. Steam yang digunakan dalam proses pembuatan pelet adalah saturated steam. Pengaruh penambahan steam pada kualitas pelet bisa mencapai 20%. Penambahan steam dengan jumlah dan kualitas yang tepat akan menghasilkan pelet berkualitas. Sedangkan jika pengaturan dan penambahannya tidak tepat, maka kualitas fisik pelet akan rendah dan kemungkinan bisa merusak kandungan nutrisi seperti vitamin dan protein. Penambahan steam yang benar bisa dilakukan di dalam kondisioner dengan mengatur retention time, sudut kemiringan paddle conditioner, kecepatan putaran bearing dan menjaga kualitas steam dari mesin boiler sampai dengan kondisioner.

  9. Parametric study for horizontal steam generator modelling

    Energy Technology Data Exchange (ETDEWEB)

    Ovtcharova, I. [Energoproekt, Sofia (Bulgaria)

    1995-12-31

    In the presentation some of the calculated results of horizontal steam generator PGV - 440 modelling with RELAP5/Mod3 are described. Two nodalization schemes have been used with different components in the steam dome. A study of parameters variation on the steam generator work and calculated results is made in cases with separator and branch.

  10. BWR Steam Dryer Alternating Stress Assessment Procedures

    Energy Technology Data Exchange (ETDEWEB)

    Morante, R. J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Hambric, S. A. [Brookhaven National Lab. (BNL), Upton, NY (United States); Ziada, S. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2016-12-01

    This report presents an overview of Boiling Water Reactor (BWR) steam dryer design; the fatigue cracking failures that occurred at the Quad Cities (QC) plants and their root causes; a history of BWR Extended Power Uprates (EPUs) in the USA; and a discussion of steam dryer modifications/replacements, alternating stress mechanisms on steam dryers, and structural integrity evaluations (static and alternating stress).

  11. Explosive welding of pipes

    Energy Technology Data Exchange (ETDEWEB)

    Drennov, O.; Burtseva, O.; Kitin, A. [Russian Federal Nuclear Center, Sarov (Russian Federation)

    2006-08-15

    Arrangement of pipelines for the transportation of oil and gas is a complicated problem. In this paper it is suggested to use the explosive welding method to weld pipes together. This method is rather new. This method can be advantageous (saving material and physical resources) comparing to its static analogs (electron-beam welding, argon-arc welding, plasma welding, gas welding, etc.), in particular, in hard-to-reach areas due to their geographic and climatic conditions. We suggest to perform explosive welding according to the following scheme: the ends of the 2 pipes are connected, the external surfaces are kept at a similar level. A cylindrical steel layer of diameter larger than the pipe diameter is set around the pipe joint and an explosive charge is placed on its external surface. The basic problem is the elimination of strains and reduction of pipe diameter in the area of the dynamic effect. The suggestion is to use water as filler: the volume of pipes in the area adjacent to the zone of explosive welding is totally filled with water. The principle of non-compressibility of liquid under quasi-dynamic loading is used. In one-dimensional gas dynamic and elastic-plastic calculations we determined non-deformed mass of water. Model experiments with pipes having radii R = 57 mm confirmed results of the calculations and the possibility in principle to weld pipes by explosion with use of water as filler.

  12. Surface explosion cavities

    CERN Document Server

    Benusiglio, Adrien; Clanet, Christophe

    2012-01-01

    We present a fluid dynamics video on cavities created by explosions of firecrackers at the water free surface. We use three types of firecrackers containing 1, 1.3 and 5 g of flash powder. The firecrackers are held with their center at the surface of water in a cubic meter pool. The movies are recorded from the side with a high-speed video camera. Without confinement the explosion produces an hemispherical cavity. Right after the explosion this cavity grows isotropically, the bottom then stops while the sides continue to expand. In the next phase the bottom of the cavity accelerates backwards to the surface. During this phase the convergence of the flow creates a central jet that rises above the free surface. In the last part of the video the explosion is confined in a vertical open tube made of glass and of centimetric diameter. The explosion creates a cylindrical cavity that develops towards the free end of the tube. Depending on the charge, the cavity can either stop inside the tube or at its exit, but nev...

  13. Explosion containment device

    Science.gov (United States)

    Benedick, William B.; Daniel, Charles J.

    1977-01-01

    The disclosure relates to an explosives storage container for absorbing and containing the blast, fragments and detonation products from a possible detonation of a contained explosive. The container comprises a layer of distended material having sufficient thickness to convert a portion of the kinetic energy of the explosion into thermal energy therein. A continuous wall of steel sufficiently thick to absorb most of the remaining kinetic energy by stretching and expanding, thereby reducing the momentum of detonation products and high velocity fragments, surrounds the layer of distended material. A crushable layer surrounds the continuous steel wall and accommodates the stretching and expanding thereof, transmitting a moderate load to the outer enclosure. These layers reduce the forces of the explosion and the momentum of the products thereof to zero. The outer enclosure comprises a continuous pressure wall enclosing all of the layers. In one embodiment, detonation of the contained explosive causes the outer enclosure to expand which indicates to a visual observer that a detonation has occurred.

  14. Maintenance of Power Steam Turbine

    OpenAIRE

    Kapelovich, Boris; Khmelnik, Solomon; Kapelovich, David; Benenson, Evgeny

    2008-01-01

    The diagnostics system of the power steam turbine is offered. It can be executed also in the form of telediagnostic system. The system is presented on a site http://turbo.mic34.com/ System engineering can is ordered to authors.

  15. Steam-water relative permeability

    Energy Technology Data Exchange (ETDEWEB)

    Ambusso, W.; Satik, C.; Home, R.N. [Stanford Univ., CA (United States)

    1997-12-31

    A set of relative permeability relations for simultaneous flow of steam and water in porous media have been measured in steady state experiments conducted under the conditions that eliminate most errors associated with saturation and pressure measurements. These relations show that the relative permeabilities for steam-water flow in porous media vary approximately linearly with saturation. This departure from the nitrogen/water behavior indicates that there are fundamental differences between steam/water and nitrogen/water flows. The saturations in these experiments were measured by using a high resolution X-ray computer tomography (CT) scanner. In addition the pressure gradients were obtained from the measurements of liquid phase pressure over the portions with flat saturation profiles. These two aspects constitute a major improvement in the experimental method compared to those used in the past. Comparison of the saturation profiles measured by the X-ray CT scanner during the experiments shows a good agreement with those predicted by numerical simulations. To obtain results that are applicable to general flow of steam and water in porous media similar experiments will be conducted at higher temperature and with porous rocks of different wetting characteristics and porosity distribution.

  16. Hydrothermal processes above the Yellowstone magma chamber: Large hydrothermal systems and large hydrothermal explosions

    Science.gov (United States)

    Morgan, L.A.; Shanks, W.C. Pat; Pierce, K.L.

    2009-01-01

    Hydrothermal explosions are violent and dramatic events resulting in the rapid ejection of boiling water, steam, mud, and rock fragments from source craters that range from a few meters up to more than 2 km in diameter; associated breccia can be emplaced as much as 3 to 4 km from the largest craters. Hydrothermal explosions occur where shallow interconnected reservoirs of steam- and liquid-saturated fluids with temperatures at or near the boiling curve underlie thermal fields. Sudden reduction in confi ning pressure causes fluids to fl ash to steam, resulting in signifi cant expansion, rock fragmentation, and debris ejection. In Yellowstone, hydrothermal explosions are a potentially signifi cant hazard for visitors and facilities and can damage or even destroy thermal features. The breccia deposits and associated craters formed from hydrothermal explosions are mapped as mostly Holocene (the Mary Bay deposit is older) units throughout Yellowstone National Park (YNP) and are spatially related to within the 0.64-Ma Yellowstone caldera and along the active Norris-Mammoth tectonic corridor. In Yellowstone, at least 20 large (>100 m in diameter) hydrothermal explosion craters have been identifi ed; the scale of the individual associated events dwarfs similar features in geothermal areas elsewhere in the world. Large hydrothermal explosions in Yellowstone have occurred over the past 16 ka averaging ??1 every 700 yr; similar events are likely in the future. Our studies of large hydrothermal explosion events indicate: (1) none are directly associated with eruptive volcanic or shallow intrusive events; (2) several historical explosions have been triggered by seismic events; (3) lithic clasts and comingled matrix material that form hydrothermal explosion deposits are extensively altered, indicating that explosions occur in areas subjected to intense hydrothermal processes; (4) many lithic clasts contained in explosion breccia deposits preserve evidence of repeated fracturing

  17. Novel high explosive compositions

    Science.gov (United States)

    Perry, D.D.; Fein, M.M.; Schoenfelder, C.W.

    1968-04-16

    This is a technique of preparing explosive compositions by the in-situ reaction of polynitroaliphatic compounds with one or more carboranes or carborane derivatives. One or more polynitroaliphatic reactants are combined with one or more carborane reactants in a suitable container and mixed to a homogeneous reaction mixture using a stream of inert gas or conventional mixing means. Ordinarily the container is a fissure, crack, or crevice in which the explosive is to be implanted. The ratio of reactants will determine not only the stoichiometry of the system, but will effect the quality and quantity of combustion products, the explosive force obtained as well as the impact sensitivity. The test values can shift with even relatively slight changes or modifications in the reaction conditions. Eighteen illustrative examples accompany the disclosure. (46 claims)

  18. Bioethanol production from steam-exploded rice husk by recombinant Escherichia coli KO11.

    Science.gov (United States)

    Tabata, Takamitsu; Yoshiba, Yusuke; Takashina, Tomonori; Hieda, Kazuo; Shimizu, Norio

    2017-03-01

    Rice husk is one of the most abundant types of lignocellulosic biomass. Because of its significant amount of sugars, such as cellulose and hemicellulose, it can be used for the production of biofuels such as bioethanol. However, the complex structure of lignocellulosic biomass, consisting of cellulose, hemicellulose and lignin, is resistant to degradation, which limits biomass utilization for ethanol production. The protection of cellulose by lignin contributes to the recalcitrance of lignocelluloses to hydrolysis. Therefore, we conducted steam-explosion treatment as pretreatment of rice husk. However, recombinant Escherichia coli KO11 did not ferment the reducing sugar solution obtained by enzymatic saccharification of steam-exploded rice husk. When the steam-exploded rice husk was washed with hot water to remove inhibitory substances and M9 medium (without glucose) was used as a fermentation medium, E. coli KO11 completely fermented the reducing sugar solution obtained by enzymatic saccharification of hot water washing-treated steam-exploded rice husk to ethanol. We report here the efficient production of bioethanol using steam-exploded rice husk.

  19. High-nitrogen explosives

    Energy Technology Data Exchange (ETDEWEB)

    Naud, D. (Darren); Hiskey, M. A. (Michael A.); Kramer, J. F. (John F.); Bishop, R. L. (Robert L.); Harry, H. H. (Herbert H.); Son, S. F. (Steven F.); Sullivan, G. K. (Gregg K.)

    2002-01-01

    The syntheses and characterization of various tetrazine and furazan compounds offer a different approach to explosives development. Traditional explosives - such as TNT or RDX - rely on the oxidation of the carbon and hydrogen atoms by the oxygen carrying nitro group to produce the explosive energy. High-nitrogen compounds rely instead on large positive heats of formation for that energy. Some of these high-nitrogen compounds have been shown to be less sensitive to initiation (e.g. by impact) when compared to traditional nitro-containing explosives of similar performances. Using the precursor, 3,6-bis-(3,5-dimethylpyrazol-1-yl)-s-tetrazine (BDT), several useful energetic compounds based on the s-tetrazine system have been synthesized and studied. The compound, 3,3{prime}-azobis(6-amino-s-tetrazine) or DAAT, detonates as a half inch rate stick despite having no oxygen in the molecule. Using perfluoroacetic acid, DAAT can be oxidized to give mixtures of N-oxide isomers (DAAT03.5) with an average oxygen content of about 3.5. This energetic mixture burns at extremely high rates and with low dependency on pressure. Another tetrazine compound of interest is 3,6-diguanidino-s-tetrazine(DGT) and its dinitrate and diperchlorate salts. DGT is easily synthesized by reacting BDT with guanidine in methanol. Using Caro's acid, DGT can be further oxidized to give 3,6-diguanidino-s-tetrazine-1,4-di-N-oxide (DGT-DO). Like DGT, the di-N-oxide can react with nitric acid or perchloric acid to give the dinitrate and the diperchlorate salts. The compounds, 4,4{prime}-diamino-3,3{prime}-azoxyfurazan (DAAF) and 4,4{prime}-diamino-3,3{prime}-azofurazan (DAAzF), may have important future roles in insensitive explosive applications. Neither DAAF nor DAAzF can be initiated by laboratory impact drop tests, yet both have in some aspects better explosive performances than 1,3,5-triamino-2,4,6-trinitrobenzene TATB - the standard of insensitive high explosives. The thermal stability of DAAz

  20. History and testimony of competency-based development at Sandia National Laboratories.

    Energy Technology Data Exchange (ETDEWEB)

    Burt, Rebecca A.; Narahara, Sheryl K.

    2004-04-01

    More than ten years ago, Sandia managers defined a set of traits and characteristics that were needed for success at Sandia. Today, the Sandia National Laboratories Success Profile Competencies continue to be powerful tools for employee and leadership development. The purpose of this report is to revisit the historical events that led to the creation and adaptation of the competencies and to position them for integration in future employee selection, development, and succession planning processes. This report contains an account of how the competencies were developed, testimonies of how they are used within the organization, and a description of how they will be foundational elements of new processes.