WorldWideScience

Sample records for sand transport calculated

  1. Sand transport, erosion and granular electrification

    DEFF Research Database (Denmark)

    Merrison, J.P.

    2012-01-01

    is expanding our current understanding and outline the areas of advancement needed in the future. Presentation is made of current models for wind driven detachment/entrainment and the transport rates of sand and dust, including the effects of contact induced grain electrification. This ubiquitous phenomenon...... can affect grain transport through the generation of intense electric fields and processes of electrostatic assembly. Importantly the transport of sand is characterized by saltation, which is known to be an active process for erosion and therefore a source for dust and sand formation. Using novel...... erosion simulation techniques the link between grain transport rates and erosion rates has been quantified. Furthermore this can be linked to production rates for dust and has been associated with chemical and mineral alteration through a process of mechanical activation of fractured surfaces. This work...

  2. A Threshold Continuum for Aeolian Sand Transport

    Science.gov (United States)

    Swann, C.; Ewing, R. C.; Sherman, D. J.

    2015-12-01

    The threshold of motion for aeolian sand transport marks the initial entrainment of sand particles by the force of the wind. This is typically defined and modeled as a singular wind speed for a given grain size and is based on field and laboratory experimental data. However, the definition of threshold varies significantly between these empirical models, largely because the definition is based on visual-observations of initial grain movement. For example, in his seminal experiments, Bagnold defined threshold of motion when he observed that 100% of the bed was in motion. Others have used 50% and lesser values. Differences in threshold models, in turn, result is large errors in predicting the fluxes associated with sand and dust transport. Here we use a wind tunnel and novel sediment trap to capture the fractions of sand in creep, reptation and saltation at Earth and Mars pressures and show that the threshold of motion for aeolian sand transport is best defined as a continuum in which grains progress through stages defined by the proportion of grains in creep and saltation. We propose the use of scale dependent thresholds modeled by distinct probability distribution functions that differentiate the threshold based on micro to macro scale applications. For example, a geologic timescale application corresponds to a threshold when 100% of the bed in motion whereas a sub-second application corresponds to a threshold when a single particle is set in motion. We provide quantitative measurements (number and mode of particle movement) corresponding to visual observations, percent of bed in motion and degrees of transport intermittency for Earth and Mars. Understanding transport as a continuum provides a basis for revaluating sand transport thresholds on Earth, Mars and Titan.

  3. Longshore sediment transport at Golden Sands (Bulgaria

    Directory of Open Access Journals (Sweden)

    Hristo Nikolov

    2006-09-01

    Full Text Available The paper presents the results of studies on the qualitative and quantitative features of the littoral drift at Golden Sands (Bulgaria, carried out jointly by Polish and Bulgarian researchers. The mathematical modelling of physical coastal processes took wave transformation (wave diffraction and refraction; the effects of shoaling and wave breaking and longshore sediment transport into account. The computations were carried out for the mean statistical annual wave climate, determined on the basis of IO BAS wave data, simulated using the WAM method from long-term Black Sea wind data. The results of sediment transport computations clearly show that its direction off the Golden Sands shore is from north to south.

  4. Transport processes in intertidal sand flats

    Science.gov (United States)

    Wu, Christy

    2010-05-01

    Methane rich sulfate depleted seeps are observed along the low water line of the intertidal sand flat Janssand in the Wadden Sea. It is unclear where in the flat the methane is formed, and how it is transported to the edge of the sand flat where the sulfidic water seeps out. Methane and sulfate distributions in pore water were determined along transects from low water line toward the central area of the sand flat. The resulting profiles showed a zone of methane-rich and sulfate-depleted pore water below 2 m sediment depth. Methane production and sulfate reduction are monitored over time for surface sediments collected from the upper flat and seeping area. Both activities were at 22 C twice as high as at 15 C. The rates in sediments from the central area were higher than in sediments from the methane seeps. Methanogenesis occurred in the presence of sulfate, and was not significantly accelerated when sulfate was depleted. The observations show a rapid anaerobic degradation of organic matter in the Janssand. The methane rich pore water is obviously transported with a unidirectional flow from the central area of the intertidal sand flat toward the low water line. This pore water flow is driven by the pressure head caused by elevation of the pore water relative to the sea surface at low tide (Billerbeck et al. 2006a). The high methane concentration at the low water line accumulates due to a continuous outflow of pore water at the seepage site that prevents penetration of electron acceptors such as oxygen and sulfate to reoxidize the reduced products of anaerobic degradation (de Beer et al. 2006). It is, however, not clear why no methane accumulates or sulfate is depleted in the upper 2 m of the flats.

  5. Sand transportation and reverse patterns over leeward face of sand dune

    Science.gov (United States)

    Jiang, Hong; Dun, Hongchao; Tong, Ding; Huang, Ning

    2017-04-01

    Sand saltation has complex interactions with turbulent flow and dune form. Most models of wind-blown sand consider ideal circumstances such as steady wind velocity and a flat surface, and the bulk of data on wind flow and sand transport over an individual dune has focused mostly on the influence of dune shape or inter-dune space on the wind flow, neglecting the effect of morphology on sand saltation, particularly airflow and sand transportation over the leeward slope. Wind flow structures over the leeward slope of sand dunes have a fundamental influence on the organization of sand dunes. In order to understand sand dune dynamics, lee face airflow and sediment transportation should be paid more attention. Previous field observations could not measure turbulent flow structure well because of the limited observation points and the influence of experiment structure on wind field. In addition, the reverse sand particles over leeward face could not be collected by sand trap in field. Numerous field observations could not measure turbulent flow structure because of the limited observation points and the influence of experimental structures on the wind field. In addition, the reverse transport of sand particles over leeward face could not be collected by sand traps in field. Therefore, this paper aims to investigate the turbulent flow structure and sand transport pattern over the leeward slope. A numerical model of sand saltation over slope terrain is constructed, which also considers the coupling effects between air flow and sand particles. The large eddy simulation method is used to model turbulent flow. Sand transport is simulated by tracking the trajectory of each sand particle. The results show that terrain significantly alters the turbulent air flow structure and wind-blown sand movement, especially over the leeward slope. Here, mass flux increases initially and then decreases with height in the reversed flow region in the direction of wind flow, and the mass flux

  6. Modeling sheet-flow sand transport under progressive surface waves

    NARCIS (Netherlands)

    Kranenburg, Wouter

    2013-01-01

    In the near-shore zone, energetic sea waves generate sheet-flow sand transport. In present day coastal models, wave-induced sheet-flow sand transport rates are usually predicted with semi-empirical transport formulas, based on extensive research on this phenomenon in oscillatory flow tunnels.

  7. Diffusive transport of strontium-85 in sand-bentonite mixtures

    International Nuclear Information System (INIS)

    Gillham, R.W.; Robin, M.J.L.; Dytynyshyn, D.J.

    1983-06-01

    Diffusion experiments have been used to determine the transport of 85 Sr in sand-bentonite mixtures. The diffusion experiments were performed on one natural soil (Chalk River sand) and on seven mixtures of bentonite and silica sand, containing from 0 percent to 100 percent bentonite. Two non-reactive solutes ( 36 Cl and 3 H) and one reactive solute ( 85 Sr) were used in the study. The experiments with non-reactive solutes yielded estimates of tortuosity factors. Retardation factors were obtained from experimental porosities, experimental bulk densities, and from batch distribution coefficients (Ksub(d)). These Ksub(d) values are a simple way of describing the solute/medium reaction, and are based on the assumption that the cation-exchange reaction may be described by a linear adsorption isotherm passing through the origin. The results demonstrate that, for practical purposes and for our experimental conditions, the use of the distribution coefficient provides a convenient means of calculating the effective diffusion coefficient for 85 Sr. The porosity and bulk density were also found to have a considerable influence on the effective diffusion coefficient, through the retardation factor. Mixtures containing 5-10 percent bentonite were found to be more effective in retarding 85 Sr than either sand alone, or mixtures containing more bentonite. In the soils of higher bentonite content, the effect of increased cation-exchange capacity was balanced by a decreasing ratio of bulk density to porosity

  8. Sand transport in urbanized beaches - models and reality

    International Nuclear Information System (INIS)

    Pineiro, G.; Norbis, W.; Panario, D.

    2012-01-01

    The general objective is to quantify the wind transport of sand in the urbanized beaches. The specific objectives include testing and calibration of the wind velocity as well as the classification of the beaches according to the magnitude and the direction of sand transport

  9. Aeolian sand transport and aeolian deposits on Venus: A review

    Science.gov (United States)

    Kreslavsly, Mikhail A.; Bondarenko, Nataliya V.

    2017-06-01

    We review the current state of knowledge about aeolian sand transport and aeolian bedforms on planet Venus. This knowledge is limited by lack of observational data. Among the four planetary bodies of the Solar System with sufficient atmospheres in contact with solid surfaces, Venus has the densest atmosphere; the conditions there are transitional between those for terrestrial subaerial and subaqueous transport. The dense atmosphere causes low saltation threshold and short characteristic saltation length, and short scale length of the incipient dunes. A few lines of evidence indicate that the typical wind speeds exceed the saltation threshold; therefore, sand transport would be pervasive, if sand capable of saltation is available. Sand production on Venus is probably much slower than on the Earth; the major terrestrial sand sinks are also absent, however, lithification of sand through sintering is expected to be effective under Venus' conditions. Active transport is not detectable with the data available. Aeolian bedforms (transverse dunes) resolved in the currently available radar images occupy a tiny area on the planet; however, indirect observations suggest that small-scale unresolved aeolian bedforms are ubiquitous. Aeolian transport is probably limited by sand lithification causing shortage of saltation-capable material. Large impact events likely cause regional short-term spikes in aeolian transport by supplying a large amount of sand-size particles, as well as disintegration and activation of older indurated sand deposits. The data available are insufficient to understand whether the global aeolian sand transport occurs or not. More robust knowledge about aeolian transport on Venus is essential for future scientific exploration of the planet, in particular, for implementation and interpretation of geochemical studies of surface materials. High-resolution orbital radar imaging with local to regional coverage and desirable interferometric capabilities is the

  10. Production and global transport of Titan's sand particles

    Science.gov (United States)

    Barnes, Jason W.; Lorenz, Ralph D.; Radebaugh, Jani; Hayes, Alexander G.; Arnold, Karl; Chandler, Clayton

    2015-06-01

    Previous authors have suggested that Titan's individual sand particles form by either sintering or by lithification and erosion. We suggest two new mechanisms for the production of Titan's organic sand particles that would occur within bodies of liquid: flocculation and evaporitic precipitation. Such production mechanisms would suggest discrete sand sources in dry lakebeds. We search for such sources, but find no convincing candidates with the present Cassini Visual and Infrared Mapping Spectrometer coverage. As a result we propose that Titan's equatorial dunes may represent a single, global sand sea with west-to-east transport providing sources and sinks for sand in each interconnected basin. The sand might then be transported around Xanadu by fast-moving Barchan dune chains and/or fluvial transport in transient riverbeds. A river at the Xanadu/Shangri-La border could explain the sharp edge of the sand sea there, much like the Kuiseb River stops the Namib Sand Sea in southwest Africa on Earth. Future missions could use the composition of Titan's sands to constrain the global hydrocarbon cycle.

  11. Comparison of Calculation Models for Bucket Foundation in Sand

    DEFF Research Database (Denmark)

    Vaitkunaite, Evelina; Molina, Salvador Devant; Ibsen, Lars Bo

    The possibility of fast and rather precise preliminary offshore foundation design is desirable. The ultimate limit state of bucket foundation is investigated using three different geotechnical calculation tools: [Ibsen 2001] an analytical method, LimitState:GEO and Plaxis 3D. The study has focused...... on resultant bearing capacity of variously embedded foundation in sand. The 2D models, [Ibsen 2001] and LimitState:GEO can be used for the preliminary design because they are fast and result in a rather similar bearing capacity calculation compared with the finite element models of Plaxis 3D. The 2D models...

  12. Oil sands market and transportation solutions

    International Nuclear Information System (INIS)

    Sandahl, R.

    2004-01-01

    This presentation outlined the immense potential of the western Canadian oil sands reserves. Recoverable reserves have been estimated at 180 billion barrels, with production forecasts estimated at 5 million barrels per day by 2030. Resource development is occurring at a time when the world's largest oil importer is increasing supplies through concern for security of supply. The second and third largest oil importers in the world are experiencing economic and energy demand growth. These factors underscore the motivation for rapid growth of the Western Canadian Oil Sands reserves. One of the challenges that must be addressed is to ensure that incremental markets for the increased production are accessed. Another challenge is to ensure adequate infrastructure in terms of pipeline capacity to ensure deliverability of the product. tabs., figs

  13. experimental investigation of sand minimum transport velocity

    African Journals Online (AJOL)

    user

    The production of reservoir fluid through long tiebacks/pipelines has emerged as one of ... transport in multiphase flows, the investigation of the ... Nigerian Journal of Technology ... associated with water-gas-oil-solid flow in pipeline in ... The mixture was well agitated using a .... operational conditions the limit deposit velocity.

  14. Oblique second-order sand transport pathways on an intertidal sand flat in a natural tidal inlet system

    DEFF Research Database (Denmark)

    Ernstsen, Verner Brandbyge; Lefebvre, Alice; Kroon, Aart

    2013-01-01

    tide, sand is transported along ESE-oriented pathways across the intertidal flat towards the inner tidal basin. During the late stages of ebb tide, sand is transported in drainage channels (WSWoriented) from the intertidal flat towards the inlet channel. During storm events with winds from SW, wave...

  15. Prediction of critical transport velocity for preventing sand deposition in gas-oil multiphase production and well systems

    Energy Technology Data Exchange (ETDEWEB)

    Bello, O.O.; Reinicke, K.M. [Technische Univ. Clausthal, Clausthal-Zellerfeld (Germany). Inst. of Petroleum Engineering; Teodoriu, C. [Texas A and M Univ., College Station, TX (United States). Dept. of Petroleum Engineering

    2008-10-23

    The critical transport velocity is one of the key parameters for gas-oil-sand multiphase production and well system design and safe operation. Existing American Petroleum Institute Recommended Practice 14E (API RP 14E) for the sizing of multiphase flow systems suggests an equation to calculate threshold transport velocity. This equation only considers mixture density and does not account for factors such as fluid properties, gas-liquid flow patterns, sand loading, sand particle size, size distributions, shape factor and density. This work presents an improved computational methodology, which can be applied to estimate the critical transport velocity required to ensure efficient performance of gas-oil-sand multiphase production and well systems. The improved method is based on the modelling of three-phase gas-oil-sand pipe flow physics from first principle. Computations of the critical transport velocities show reasonable agreement with values calculated from mechanistic model (Danielson, 2007) for a relatively wide range of design and operating conditions. Compared with the mechanistic model (Danielson, 2007), the present method has no imposed limitations to the range of applicability. It is also takes into adequate account the effects of operating pressure, flow geometry, sand particle size, size distribution and shape factor, which have considerable influence on the critical transport velocity in gas-oil-sand multiphase production and well systems. (orig.)

  16. Sand Transport under Highly Turbulent Airflow on a Beach Surface

    Science.gov (United States)

    Baas, A. C. W.; Jackson, D. W. T.; Cooper, J. A. G.; Lynch, K.; Delgado-Fernandez, I.; Beyers, J. H. M.

    2012-04-01

    The past decade has seen a growing body of research on the relation between turbulence in the wind and the resultant transport of sediment over active sand surfaces. Widespread use of sonic anemometry and high-frequency sand transport sensors and traps have facilitated recent field studies over dunes and beach surfaces, to move beyond monitoring of mean wind speed and bulk transport to more detailed measurements at much higher spatio-temporal resolutions. In this paper we present results of a field study conducted in the recirculation flow and re-attachment zone on a beach behind a foredune at Magilligan Strand, Northern Ireland. The offshore winds over the foredune at this site are associated with flow separation and reversal located over the beach surface in the lee of the dune row, often strong enough to induce sand transport toward the toe of the foredune ('against' the overall offshore flow). The re-attachment and recirculation zone are associated with strongly turbulent fluid flow and complex streamlines that do not follow the underlying topography. High frequency (25 Hz) wind and sand transport data were collected at a grid of point locations distributed over the beach surface between 35 m to 55 m distance from the 10 m high dune crest, using ultrasonic anemometers at 0.5 m height and co-located load cell traps and Safires at the bed surface. The wind data are used to investigate the role of Reynolds shear stresses and quadrant analysis techniques for identifying burst-sweep events in relation to sand transport events. This includes an assessment of the issues involved with data rotations for yaw, pitch, and roll corrections relative to complex flow streamlines, and the subsequently derived turbulence parameters based on fluctuating vector components (u', v', w'). Results illustrate how transport may exist under threshold mean velocities because of the role played by coherent flow structures, and the findings corroborate previous findings that shear velocity

  17. From oil sands to transportation fuels, to electricity, to hydrogen

    International Nuclear Information System (INIS)

    Yildirim, E.

    1993-01-01

    The Alberta Chamber of Resources programs and initiatives on oil sands and heavy oil, and strategies for revitalizing oilsands development in Alberta are described. The regional upgrader and satellite production facilities concept, and technology requirements for mineable oil sands by the year 2010 are discussed. Strategic alliances in furtherence of oil sands research and development and the National Task Force on Oil Sands Strategies are described. Changes in requirements for transportation fuels due to stricter regulations and environmental initiatives will cause a trend to lighter fuels with more hydrogen content, less aromatics, nitrogen, sulfur and metals. A preferred refinery configuration will be able to process heavier crudes and synthetic crudes, have no heavy fuel oil product, low sulfur products, low aromatics with high octane, and low operating cost. A regional or central facility that combines the processing capabilities of a bitumen upgrader with the process units of a refinery is preferred. Advantages of this concept are: value addition to the feedstock is maximized; dependence on refineries is eliminated; restriction on synthetic crude oil volumes due to capacity limitations at refineries is eliminated; directly marketable finished products are produced; more stringent quality specifications are satisfied; and the synergies between upgrading and refining improve overall economics of processing. It is recommended that the concept of regional upgraders be adopted for Alberta, strategic alliances be encouraged, incentives for bitumen production be provided, and a bitumen pipeline network be developed. 12 refs

  18. Study of transport in unsaturated sands using radioactive tracers

    International Nuclear Information System (INIS)

    Merritt, W.F.; Pickens, J.F.; Allison, G.B.

    1979-01-01

    A laboratory experiment was conducted to investigate the mixing that occurs as a series of labelled pulses of water are transported by gravity drainage down through a sand filled column having a water table imposed at the bottom. It also demonstrated the utility of gamma-ray emitting radioactive tracers in studying transport in unsaturated or saturated porous media. The motivation for pursuing this topic was developed from observing that the content of oxygen-18, deuterium and tritium in rainwater shows marked temporal variations whereas their concentrations below the water table in shallow ground water flow systems are generally found to show much less variation. (auth)

  19. Batch and column studies of adsorption of Li, Ni and Br by a reference sand for contaminant transport experiments

    International Nuclear Information System (INIS)

    Seigel, M.D.; Ward, D.B.; Bryan, C.R.

    1995-09-01

    A processed quartz sand (Wedron 510), mined from the St. Peter sandstone, has been characterized by a variety of chemical and physical methods for use as a reference porous media in transport model validation experiments. Wedron 510 sand was used in an intermediate-scale experiment involving migration of Ni, Li and Br through a 6-m high x 3-m diameter caisson. Ni and Li adsorption/desorption, and Li/Ni site-competition experiments yielded information on the importance of the trace mineral phases to adsorption of Li and Ni by the sand. The presence of an iron hydroxide coating similar to goethite on the sand grains is suggested by visual observation and leaching experiments. Kaolinite was identified by SEM and XRD as a significant trace mineral phase in the sand and occurs as small particles coating the sand grains. Quartz, the predominant constituent of the sand by weight, does not appear to contribute significantly to the adsorption properties of the sand. Qualitatively, the adsorption properties of the sand can be adequately modeled as a two-mineral system (goethite and kaolinite). The studies described in this report should provide a basis for understanding transport of Ni, Li and Br through porous media similar to the reference sand. Techniques were developed for obtaining parameter values for surface complexation and kinetic adsorption models for the sand and its mineral components. These constants can be used directly in coupled hydrogeochemical transport codes. The techniques should be useful for characterization of other natural materials and elements in high-level nuclear waste in support of coupled hydrogeochemical transport calculations for Yucca Mountain

  20. A new turbulence-based model for sand transport

    Science.gov (United States)

    Mayaud, Jerome; Wiggs, Giles; Bailey, Richard

    2016-04-01

    Knowledge of the changing rate of sediment flux in space and time is essential for quantifying surface erosion and deposition in desert landscapes. While many aeolian studies have relied on time-averaged parameters such as wind velocity (U) and wind shear velocity (u*) to determine sediment flux, there is increasing evidence that high-frequency turbulence is an important driving force behind the entrainment and transport of sand. However, turbulence has yet to be incorporated into a functional sand transport model that can be used for predictive purposes. In this study we present a new transport model (the 'turbulence model') that accounts for high-frequency variations in the horizontal (u) and vertical (w) components of wind flow. The turbulence model is fitted to wind velocity and sediment transport data from a field experiment undertaken in Namibia's Skeleton Coast National Park, and its performance at three temporal resolutions (10 Hz, 1 Hz, 1 min) is compared to two existing models that rely on time-averaged wind velocity data (Radok, 1977; Dong et al., 2003). The validity of the three models is analysed under a variety of saltation conditions, using a 2-hour (1 Hz measurement resolution) dataset from the Skeleton Coast and a 5-hour (1 min measurement resolution) dataset from the southwestern Kalahari Desert. The turbulence model is shown to outperform the Radok and Dong models when predicting total saltation count over the three experimental periods. For all temporal resolutions presented in this study (10 Hz-10 min), the turbulence model predicted total saltation count to within at least 0.34%, whereas the Radok and Dong models over- or underestimated total count by up to 5.50% and 20.53% respectively. The strong performance of the turbulence model can be attributed to a lag in mass flux response built into its formulation, which can be adapted depending on the temporal resolution of investigation. This accounts for the inherent lag within the physical

  1. Characterization of sand lenses and their role for subsurface transport in low-permeability clay tills

    DEFF Research Database (Denmark)

    Kessler, Timo Christian; Klint, K. E.; Nilsson, B.

    2011-01-01

    Glacial sediments dominate large parts of the geological topology in Denmark. They predominantly consist of lowpermeability tills, but fractures and sand-lenses constitute zones of enhanced permeability facilitating preferential flow. This study focuses on characterization of sand deposits with r...... the sand lenses in hydro-geological models to successfully characterize subsurface flow and transport, e.g. for remediation activities....

  2. Transport of citrate-coated silver nanoparticles in unsaturated sand

    Energy Technology Data Exchange (ETDEWEB)

    Kumahor, Samuel K., E-mail: samuel.kumahor@ufz.de [Department of Soil Physics, Helmholtz Centre for Environmental Research–UFZ, Theodor-Lieser-Strasse 4, 06120 Halle-Saale (Germany); Hron, Pavel, E-mail: pavel.hron@iwr.uni-heidelberg.de [Interdisciplinary Center for Scientific Computing, University of Heidelberg, Im Neuenheimer Feld 368, Raum 422, 69120 Heidelberg (Germany); Metreveli, George, E-mail: metreveli@uni-landau.de [Universität Koblenz-Landau, Institute for Environmental Sciences, Group of Environmental and Soil Chemistry, Fortstr. 7, D-76829 Landau (Germany); Schaumann, Gabriele E., E-mail: schaumann@uni-landau.de [Universität Koblenz-Landau, Institute for Environmental Sciences, Group of Environmental and Soil Chemistry, Fortstr. 7, D-76829 Landau (Germany); Vogel, Hans-Jörg, E-mail: hans-joerg.vogel@ufz.de [Department of Soil Physics, Helmholtz Centre for Environmental Research–UFZ, Theodor-Lieser-Strasse 4, 06120 Halle-Saale (Germany); Institute of Soil Science and Plant Nutrition, Martin-Luther-University Halle-Wittenberg, Von-Seckendorff-Platz 3, 06120 Halle-Saale (Germany)

    2015-12-01

    Chemical factors and physical constraints lead to coupled effects during particle transport in unsaturated porous media. Studies on unsaturated transport as typical for soils are currently scarce. In unsaturated porous media, particle mobility is determined by the existence of an air–water interface in addition to a solid–water interface. To this end, we measured breakthrough curves and retention profiles of citrate-coated Ag nanoparticles in unsaturated sand at two pH values (5 and 9) and three different flow rates corresponding to different water contents with 1 mM KNO{sub 3} as background electrolyte. The classical DLVO theory suggests unfavorable deposition conditions at the air–water and solid–water interfaces. The breakthrough curves indicate modification in curve shapes and retardation of nanoparticles compared to inert solute. Retention profiles show sensitivity to flow rate and pH and this ranged from almost no retention for the highest flow rate at pH = 9 to almost complete retention for the lowest flow rate at pH = 5. Modeling of the breakthrough curves, thus, required coupling two parallel processes: a kinetically controlled attachment process far from equilibrium, responsible for the shape modification, and an equilibrium sorption, responsible for particle retardation. The non-equilibrium process and equilibrium sorption are suggested to relate to the solid–water and air–water interfaces, respectively. This is supported by the DLVO model extended for hydrophobic interactions which suggests reversible attachment, characterized by a secondary minimum (depth 3–5 kT) and a repulsive barrier at the air–water interface. In contrast, the solid–water interface is characterized by a significant repulsive barrier and the absence of a secondary minimum suggesting kinetically controlled and non-equilibrium interaction. This study provides new insights into particle transport in unsaturated porous media and offers a model concept representing the

  3. Transport of citrate-coated silver nanoparticles in unsaturated sand

    Science.gov (United States)

    Kumahor, Samuel; Hron, Pavel; Metreveli, George; Schaumann, Gabriele; Vogel, Hans-Jörg

    2015-04-01

    Chemical factors and physical constraints lead to coupled effects during particle transport in unsaturated porous media. Unlike for saturated transport, studies on unsaturated transport as typical for soil are currently scarce. We investigated the mobility of citrate-coated Ag NPs in unsaturated sand (grain diameter: 0.1-0.3 mm). For three flux rates and a given pore-water ionic strength (1 mM KNO3), the citrate-coated Ag NPs were less mobile at pH = 5 compared to pH = 9. The classic Derjaguin-Landau-Verwey-Overbeek (DLVO) theory suggests unfavorable deposition conditions at both, the air-water interface and solid-water interface. Breakthrough curves measured under quasi-steady state unsaturated flow showed retardation of the citrate-coated Ag NPs compared to inert solute (KBr). After flushing with nanoparticle-free 1 mM KNO3 solution (pH-adjusted), retention was much lower in deeper depths compared to the surface where the particles entered the flow field. The results show a non-linear dependence of nanoparticle (NP) mobility on flux rate and water content. Especially the observed retardation similar to equilibrium sorption is in contrast to observations under saturated flow conditions. A convection-dispersion and reaction model that combines a reversible equilibrium process and a non-equilibrium interaction process reproduced the measured breakthrough curves reasonably well. From comparison between saturated and unsaturated experiments we conclude that the air-water interface is responsible for the reversible equilibrium process while the water-solid interface accounts for irreversible soption.

  4. Range calculations using multigroup transport methods

    International Nuclear Information System (INIS)

    Hoffman, T.J.; Robinson, M.T.; Dodds, H.L. Jr.

    1979-01-01

    Several aspects of radiation damage effects in fusion reactor neutron and ion irradiation environments are amenable to treatment by transport theory methods. In this paper, multigroup transport techniques are developed for the calculation of particle range distributions. These techniques are illustrated by analysis of Au-196 atoms recoiling from (n,2n) reactions with gold. The results of these calculations agree very well with range calculations performed with the atomistic code MARLOWE. Although some detail of the atomistic model is lost in the multigroup transport calculations, the improved computational speed should prove useful in the solution of fusion material design problems

  5. Life cycle energy and greenhouse gas emissions from transportation of Canadian oil sands to future markets

    International Nuclear Information System (INIS)

    Tarnoczi, Tyler

    2013-01-01

    Oil sands transportation diversification is important for preventing discounted crude pricing. Current life cycle assessment (LCA) models that assess greenhouse gas (GHG) emissions from crude oil transportation are linearly-scale and fail to account for project specific details. This research sets out to develop a detailed LCA model to compare the energy inputs and GHG emissions of pipeline and rail transportation for oil sands products. The model is applied to several proposed oils sands transportation routes that may serve as future markets. Comparison between transportation projects suggest that energy inputs and GHG emissions show a high degree of variation. For both rail and pipeline transportation, the distance over which the product is transported has a large impact on total emissions. The regional electricity grid and pump efficiency have the largest impact on pipeline emissions, while train engine efficiency and bitumen blending ratios have the largest impact on rail transportation emissions. LCA-based GHG regulations should refine models to account for the range of product pathways and focus efforts on cost-effective emission reductions. As the climate-change impacts of new oil sands transportation projects are considered, GHG emission boundaries should be defined according to operation control. -- Highlights: •A life cycle model is developed to compare transportation of oil sands products. •The model is applied to several potential future oil sands markets. •Energy inputs and GHG emissions are compared. •Model inputs are explored using sensitivity analysis. •Policy recommendations are provided

  6. SR 97 - Radionuclide transport calculations

    Energy Technology Data Exchange (ETDEWEB)

    Lindgren, Maria [Kemakta Konsult AB, Stockholm (Sweden); Lindstroem, Fredrik [Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden)

    1999-12-01

    An essential component of a safety assessment is to calculate radionuclide release and dose consequences for different scenarios and cases. The SKB tools for such a quantitative assessment are used to calculate the maximum releases and doses for the hypothetical repository sites Aberg, Beberg and Ceberg for the initial canister defect scenario and also for the glacial melting case for Aberg. The reasonable cases, i.e. all parameters take reasonable values, results in maximum biosphere doses of 5x10{sup -8} Sv/yr for Aberg, 3x10{sup -8} Sv/yr for Beberg and 1x10{sup -8} Sv/yr for Ceberg for peat area. These doses lie significantly below 0.15 mSv/yr. (A dose of 0.15 mSv/yr for unit probability corresponds to the risk limit of 10{sup -5} per year for the most exposed individuals recommended in regulations.) The conclusion that the maximum risk would lie well below 10{sup -5} per year is also demonstrated by results from the probabilistic calculations, which directly assess the resulting risk by combining dose and probability estimates. The analyses indicate that the risk is 2x10{sup -5} Sv/yr for Aberg, 8x10{sup -7} Sv/yr for Beberg and 3x10{sup -8} Sv/yr for Ceberg. The analysis shows that the most important parameters in the near field are the number of defective canisters and the instant release fraction. The influence from varying one parameter never changes the doses as much as an order of magnitude. In the far field the most important uncertainties affecting release and retention are associated with permeability and connectivity of the fractures in the rock. These properties affect several parameters. Highly permeable and well connected fractures imply high groundwater fluxes and short groundwater travel times. Sparsely connected or highly variable fracture properties implies low flow wetted surface along migration paths. It should, however, be remembered that the far-field parameters have little importance if the near-field parameters take their reasonable

  7. SR 97 - Radionuclide transport calculations

    International Nuclear Information System (INIS)

    Lindgren, Maria; Lindstroem, Fredrik

    1999-12-01

    An essential component of a safety assessment is to calculate radionuclide release and dose consequences for different scenarios and cases. The SKB tools for such a quantitative assessment are used to calculate the maximum releases and doses for the hypothetical repository sites Aberg, Beberg and Ceberg for the initial canister defect scenario and also for the glacial melting case for Aberg. The reasonable cases, i.e. all parameters take reasonable values, results in maximum biosphere doses of 5x10 -8 Sv/yr for Aberg, 3x10 -8 Sv/yr for Beberg and 1x10 -8 Sv/yr for Ceberg for peat area. These doses lie significantly below 0.15 mSv/yr. (A dose of 0.15 mSv/yr for unit probability corresponds to the risk limit of 10 -5 per year for the most exposed individuals recommended in regulations.) The conclusion that the maximum risk would lie well below 10 -5 per year is also demonstrated by results from the probabilistic calculations, which directly assess the resulting risk by combining dose and probability estimates. The analyses indicate that the risk is 2x10 -5 Sv/yr for Aberg, 8x10 -7 Sv/yr for Beberg and 3x10 -8 Sv/yr for Ceberg. The analysis shows that the most important parameters in the near field are the number of defective canisters and the instant release fraction. The influence from varying one parameter never changes the doses as much as an order of magnitude. In the far field the most important uncertainties affecting release and retention are associated with permeability and connectivity of the fractures in the rock. These properties affect several parameters. Highly permeable and well connected fractures imply high groundwater fluxes and short groundwater travel times. Sparsely connected or highly variable fracture properties implies low flow wetted surface along migration paths. It should, however, be remembered that the far-field parameters have little importance if the near-field parameters take their reasonable values. In that case almost all

  8. Transport and Deposition of Suspended Soil-Colloids in Saturated Sand Columns

    DEFF Research Database (Denmark)

    Sharma, Anu; Kawamoto, Ken; Møldrup, Per

    2011-01-01

    Understanding colloid mobilization, transport and deposition in the subsurface is a prerequisite for predicting colloid‐facilitated transport of strongly adsorbing contaminants and further developing remedial activities. This study investigated the transport behavior of soil‐colloids extracted from...... caused tailing of colloid BTCs with higher reversible entrapment and release of colloids than high flow velocity. The finer Toyoura sand retained more colloids than the coarser Narita sand at low pH conditions. The deposition profile and particle size distribution of colloids in the Toyoura sand clearly...

  9. Aeolian sand transport and its effects on the stability of Miramar-Caranzalem beach

    Digital Repository Service at National Institute of Oceanography (India)

    Reddy, G.V.; Sastry, J.S.

    Removal of sand by wind from the beach at Miramar-Caranzalem, Goa, has been found to effect its stability over a relatively longer time scale. This aeolian sand transport has been computed for this strip of the beach utilising the relation between...

  10. Database of full-scale laboratory experiments on wave-driven sand transport processes

    NARCIS (Netherlands)

    van der Werf, Jebbe J.; Schretlen, Johanna Lidwina Maria; Ribberink, Jan S.; O'Donoghue, Tom

    2009-01-01

    A new database of laboratory experiments involving sand transport processes over horizontal, mobile sand beds under full-scale non-breaking wave and non-breaking wave-plus-current conditions is described. The database contains details of the flow and bed conditions, information on which quantities

  11. Turbulence and sediment transport over sand dunes and ripples

    Science.gov (United States)

    Bennis, A.; Le Bot, S.; lafite, R.; Bonneton, P.; Ardhuin, F.

    2013-12-01

    Several bedforms are present near to the surfzone of natural beaches. Dunes and ripples are frequently observed. Understanding the turbulence over these forms is essential for the sediment transport. The turbulent flow and the suspended sand particles interact with each other. At the moment, the modelling strategy for turbulence is still a challenge. According to the spatial scales, some different methods to model the turbulence are employed, in particular the RANS (Reynolds Averaged Navier-Stokes) and the LES (Large Eddy Simulation). A hybrid method combining both RANS and LES is set up here. We have adapted this method, initially developed for atmospheric flow, to the oceanic flow. This new method is implemented inside the 3D hydrodynamic model, MARS 3D, which is forced by waves. LES is currently the best way to simulate turbulent flow but its higher cost prevents it from being used for large scale applications. So, here we use RANS near the bottom while LES is set elsewhere. It allows us minimize the computational cost and ensure a better accuracy of the results than with a fully RANS model. In the case of megaripples, the validation step was performed with two sets of field data (Sandy Duck'97 and Forsoms'13) but also with the data from Dune2D model which uses only RANS for turbulence. The main findings are: a) the vertical profiles of the velocity are similar throughout the data b) the turbulent kinetic energy, which was underestimated by Dune2D, is in line with the observations c) the concentration of the suspended sediment is simulated with a better accuracy than with Dune2D but this remains lower than the observations.

  12. A bright intra-dune feature on Titan and its implications for sand formation and transport

    Science.gov (United States)

    MacKenzie, Shannon; Barnes, Jason W.; Rodriguez, Sebastien; Cornet, Thomas; Brossier, Jeremy; Soderblom, Jason M.; Le Mouélic, Stephane; Sotin, Christophe; Brown, Robert H.; Buratti, Bonnie J.; Clark, Roger Nelson; Nicholson, Philip D.; Baines, Kevin

    2017-10-01

    Organic sands cover much of Titan’s equatorial belt, gathered into longitudinal dunes about a kilometer wide and hundreds of kilometers long. At the end of the Cassini era, questions of how such a vast volume of saltable material is or was created on Titan remain unanswered. At least two possible mechanisms suggested for forming sand-sized particles involve liquids: (1) evaporite deposition and erosion and (2) flocculation of material within a lake. Transporting sand from the lakes and seas of Titan’s poles to the equatorial belt is not strongly supported by Cassini observations: the equatorial belt sits higher than the poles and no sheets or corridors of travelling sand have been identified. Thus, previous sites of equatorial surface liquids may be of interest for understanding sand formation, such as the suggested paleoseas Tui and Hotei Regio. A newly identified feature in the VIMS data sits within the Fensal dune field but is distinct from the surrounding sand. We investigate this Bright Fensal Feature (BFF) using data from Cassini VIMS and RADAR. Specifically, we find spectral similarities between the BFF and both sand and Hotei Regio. The RADAR cross sectional backscatter is similar to neighboring dark areas, perhaps sand covered interdunes. We use this evidence to constrain the BFF’s formation history and discuss how this intra-dune feature may contribute to the processes of sand transport and supply.

  13. Sediment transport and mixing depth on a coral reef sand apron

    Science.gov (United States)

    Vila-Concejo, Ana; Harris, Daniel L.; Power, Hannah E.; Shannon, Amelia M.; Webster, Jody M.

    2014-10-01

    This paper investigates the mechanics of sediment transport on a subtidal sand apron located on a coral reef environment. In this environment 100% of the sediment is carbonate bioclasts generated in situ. The sand apron is located on the back reef and only affected by waves during high tides. It is commonly accepted in the literature that sand aprons are features that prograde lagoonwards and that most of the progradation occurs during high-energy events. Measurements of water depths, waves, currents and near bed suspended sediment concentrations (all at 10 Hz) on the sand apron were undertaken over a nine day intensive field campaign over both spring and neap tides; waves and tides were also measured in the lagoon. The topography and bathymetry of the sand apron were measured and mixing depth was obtained on three transects using depth of disturbance rods. We found that sediment transport on sand aprons is not solely restricted to high-energy events but occurs on a daily basis during spring tides. The main factor controlling the sediment transport was the water depth above the bed, with depths of 2-2.3 m allowing waves to promote the most sediment transport. This corresponds to a depth over the reef crest of 1.6-1.9 m. The second most important control was waves; transport was observed when Hs on the apron was 0.1 m or greater. In contrast, current magnitude was not a controlling mechanism for sediment entrainment but did affect sediment transport. The morphology of the sand apron was shown to affect the direction of currents with the currents also expected to influence the morphology of the sand apron. The currents measured during this field campaign were aligned with a shallow channel in the sand apron. Mixing depths were small (< 2.5 cm) yet they were larger than the values predicted by empirical formulae for gentle siliciclastic ocean beaches.

  14. On the influence of suspended sediment transport on the generation of offshore sand waves

    NARCIS (Netherlands)

    Sterlini-Van der Meer, Fenneke; Hulscher, Suzanne J.M.H.; van den Berg, J.; Geurts, Bernardus J.; Clercx, H.J.H.; Uijttewaal, Wim

    2007-01-01

    Sand waves are bed-forms occurring in shallow seas. Although their characteristics are mainly affected by bed load transport, during rough weather suspended sediment transport can influence their characteristics. As a first step to model these influences, we added suspended sediment transport to a

  15. Formulating Fine to Medium Sand Erosion for Suspended Sediment Transport Models

    Directory of Open Access Journals (Sweden)

    François Dufois

    2015-08-01

    Full Text Available The capacity of an advection/diffusion model to predict sand transport under varying wave and current conditions is evaluated. The horizontal sand transport rate is computed by vertical integration of the suspended sediment flux. A correction procedure for the near-bed concentration is proposed so that model results are independent of the vertical resolution. The method can thus be implemented in regional models with operational applications. Simulating equilibrium sand transport rates, when erosion and deposition are balanced, requires a new empirical erosion law that involves the non-dimensional excess shear stress and a parameter that depends on the size of the sand grain. Comparison with several datasets and sediment transport formulae demonstrated the model’s capacity to simulate sand transport rates for a large range of current and wave conditions and sand diameters in the range 100–500 μm. Measured transport rates were predicted within a factor two in 67% of cases with current only and in 35% of cases with both waves and current. In comparison with the results obtained by Camenen and Larroudé (2003, who provided the same indicators for several practical transport rate formulations (whose means are respectively 72% and 37%, the proposed approach gives reasonable results. Before fitting a new erosion law to our model, classical erosion rate formulations were tested but led to poor comparisons with expected sediment transport rates. We suggest that classical erosion laws should be used with care in advection/diffusion models similar to ours, and that at least a full validation procedure for transport rates involving a range of sand diameters and hydrodynamic conditions should be carried out.

  16. Experimental investigation on heat transport in gravel-sand materials

    DEFF Research Database (Denmark)

    Maureschat, Gerald; Heller, Alfred

    1997-01-01

    in sand-gravel material, the storage media is to be water satured. In this case, handling of such material on site is rather complex. The conduction is highly dependent on the thermal properties of the storage media and so is the overall thermal performance of a storage applying such media. For sandy...... out in a small size experiment. The experiment consists of a highly insulated box filled with two kinds of sand material crossed by a plastic heat pipe. Heat transfer is measured under dry and water satured conditions in a cross-section.The conclusions are clear. To obtain necessary heat conduction...

  17. Sand transport in a two pass internal cooling duct with rib turbulators

    International Nuclear Information System (INIS)

    Singh, Sukhjinder; Tafti, Danesh; Reagle, Colin; Delimont, Jacob; Ng, Wing; Ekkad, Srinath

    2014-01-01

    Highlights: • Highest particle impingement observed in the bend and first quarter of 2nd pass. • Average particle impingement per pitch is 28% higher in the second pass. • Rib faces are by far the most susceptible to particle impingement. • Particle impingement is sensitive to particle size. • Particle impingement is sensitive to wall collision model used. - Abstract: Jet engines often operate under dirty conditions where large amounts of particulate matter can be ingested, especially, sand, ash and dirt. Particulate matter in different engine components can lead to degradation in performance. The focus of this study is to investigate the sand transport and deposition in the internal cooling passages of turbine blades. A two pass stationary square duct with rib turbulators subjected to sand ingestion is studied using Large Eddy Simulations (LES). Each pass has ribs on two opposite walls and aligned normal to the main flow direction. The rib pitch to rib height (P/e) is 9.28, the rib height to channel hydraulic diameter (e/D h ) is 0.0625 and calculations have been carried out for a bulk Reynolds number of 25,000. Particle sizes in the range 0.5–25 μm are considered, with the same size distribution as found in Arizona Road Dust (medium). Large Eddy Simulation (LES) with a wall-model is used to model the flow and sand particles are modeled using a discrete Lagrangian framework. Results quantify the distribution of particle impingement density on all surfaces. Highest particle impingement density is found in the first quarter section of the second pass after the 180° turn, where the recorded impingement is more than twice that of any other region. It is also found that the average particle impingement per pitch is 28% higher in the second pass than the first pass. Results show lower particle tendency to impact the region immediately behind the rib in the first pass compared to the second pass where particle impingement is more uniform in the region

  18. Advanced testing and characterization of transportation soils and bituminous sands

    CSIR Research Space (South Africa)

    Anochie-Boateng, Joseph

    2007-12-01

    Full Text Available This research study was intended to develop laboratory test procedures for advance testing and characterization of fine-grained cohesive soils and oil sand materials. The test procedures are based on typical field loading conditions and the loading...

  19. Hydrodynamic calculation of a filter sand bed type used in the containment venting systems

    International Nuclear Information System (INIS)

    Cuevas V, D.; Sainz M, E.; Ortiz V, J.

    2015-09-01

    The filtered venting of the containment has been adopted in European countries to mitigate the consequences of excess pressure containment during a severe accident. When venting has taken place, the fission products are released directly into the environment, unless a filter on the same path is placed, so that various types of filters are used to trap the fission products. The venting filters of the containment currently installed use different filtration technologies that involve more than one medium. Those using water as the first stage of filtration are called wet systems and are equipped with additional steps to remove water drops and fine aerosols emissions. And even they may also be equipped with an element containing certain absorption means for the filtration of gaseous iodine species. Other designs based on filtration of deep bed as the primary retention step; called dry filters, use filtration media of metal fiber, ceramic or sand to trap aerosols. This paper evaluates the hydraulic characteristics of the filter sand bed type designed by EDF as a candidate to be installed in the containment of BWR Mark II (type of primary containment of the nuclear power plant of Laguna Verde). The evaluation of filter sand bed type was performed using the software package of open source OpenFOAM. Models of each zone of the filtered device were generated and through a series of parametric calculations of computational fluid mechanics relevant hydrodynamic characteristics of the device were obtained, such as pressure drops against mass flow rate and pressure fields and speed at different operating conditions. On the other hand, the model validation of the sand bed filter when comparing the results of experimental tests on a sand column of PITEAS program (1985-1986) against OpenFOAM simulation was realized. The results are very close to those obtained experimentally. (Author)

  20. Three dimensions transport calculations for PWR core

    International Nuclear Information System (INIS)

    Richebois, E.

    2000-01-01

    The objective of this work is to define improved 3-D core calculation methods based on the transport theory. These methods can be particularly useful and lead to more precise computations in areas of the core where anisotropy and steep flux gradients occur, especially near interface and boundary conditions and in regions of high heterogeneity (bundle with absorbent rods). In order to apply the transport theory a new method for calculating reflector constants has been developed, since traditional methods were only suited for 2-group diffusion core calculations and could not be extrapolated to transport calculations. In this thesis work, the new method for obtaining reflector constants is derived regardless of the number of energy groups and of the operator used. The core calculations results using the reflector constants thereof obtained have been validated on the EDF's power reactor Saint Laurent B1 with MOX loading. The advantages of a 3-D core transport calculation scheme have been highlighted as opposed to diffusion methods; there are a considerable number of significant effects and potential advantages to be gained in rod worth calculations for instance. These preliminary results obtained with on particular cycle will have to be confirmed by more systematic analysis. Accidents like MSLB (main steam line break) and LOCA (loss of coolant accident) should also be investigated and constitute challenging situations where anisotropy is high and/or flux gradients are steep. This method is now being validated for others EDF's PWRs' reactors, as well as for experimental reactors and other types of commercial reactors. (author)

  1. Molecular transport calculations with Wannier Functions

    DEFF Research Database (Denmark)

    Thygesen, Kristian Sommer; Jacobsen, Karsten Wedel

    2005-01-01

    We present a scheme for calculating coherent electron transport in atomic-scale contacts. The method combines a formally exact Green's function formalism with a mean-field description of the electronic structure based on the Kohn-Sham scheme of density functional theory. We use an accurate plane...

  2. Electron stopping powers for transport calculations

    International Nuclear Information System (INIS)

    Berger, M.J.

    1988-01-01

    The reliability of radiation transport calculations depends on the accuracy of the input cross sections. Therefore, it is essential to review and update the cross sections from time to time. Even though the main interest of the author's group at NBS is in transport calculations and their applications, the group spends almost as much time on the analysis and preparation of cross sections as on the development of transport codes. Stopping powers, photon attenuation coefficients, bremsstrahlung cross sections, and elastic-scattering cross sections in recent years have claimed attention. This chapter deals with electron stopping powers (with emphasis on collision stopping powers), and reviews the state of the art as reflected by Report 37 of the International Commission on Radiation Units and Measurements

  3. Diffusive transport of radon in a homogeneous column of dry sand

    NARCIS (Netherlands)

    van der Spoel, W.H.; van der Graaf, E.R.; de Meijer, R.J.

    To validate a model for radon transport in soil, measurements of diffusive radon transport under well-defined and controlled conditions have been made in a homogeneous column of dry sand with an air-filled volume on top. This volume simulates a crawl space. The measurements concern time-dependent

  4. Sand transport in the lower Mississippi River does not yield to dams: Applications for building deltaic land in Louisiana

    Science.gov (United States)

    Nittrouer, J. A.; Viparelli, E.

    2013-12-01

    The Mississippi Delta is presently undergoing a catastrophic drowning, whereby 5000 km2 of low-lying wetlands have converted to open water. This land loss is primarily the result of: a) relative sea-level rise, occurring due to the combined effect of rapid subsidence associated with subsurface fluids extraction and eustatic rise; b) leveeing and damming of the river and its tributaries, which restricts sediment delivery to and dispersal within the delta; and c) severe excavation of the delta for navigation channels. It has been argued that continued net land loss of the Mississippi Delta is inevitable due to declining measured total (sand and mud) suspended sediment loads over the past 6 decades. However, recent research has documented that the key to delta growth is deposition of sand, which accounts for ~50-70% of modern and ancient (up to 9 m.a.) Mississippi Delta deposits, but comprises only ~20% of the sampled portion of the total load. Here we present new analysis of existing data to show that sand transport has not diminished since dam construction. Furthermore, we produce a numerical model based on the mass balance of bed material loads over the lower 1600 km of the Mississippi River to show that mining of sand from the channel bed continues to replenish downstream sand loads. For example, our model results indicate that it requires approximately 240 years for a reduced sand load to reach the delta apex. Furthermore, our calculations indicate that sand load at the delta apex is reduced by a noticeable amount (17%) only after about 600 years. We also show how channel bed elevations are predicted to change over the lower 1600 km of the river channel due to channel mining. Channel-bed degradation is greatest at the upstream end of the study reach and decreases downstream. After 300 years the wave of significant degradation has just passed ~800 km downstream, or roughly half of our model domain. These results are in contrast to the measurements which concern

  5. Feasibility study on embedded transport core calculations

    International Nuclear Information System (INIS)

    Ivanov, B.; Zikatanov, L.; Ivanov, K.

    2007-01-01

    The main objective of this study is to develop an advanced core calculation methodology based on embedded diffusion and transport calculations. The scheme proposed in this work is based on embedded diffusion or SP 3 pin-by-pin local fuel assembly calculation within the framework of the Nodal Expansion Method (NEM) diffusion core calculation. The SP 3 method has gained popularity in the last 10 years as an advanced method for neutronics calculation. NEM is a multi-group nodal diffusion code developed, maintained and continuously improved at the Pennsylvania State University. The developed calculation scheme is a non-linear iteration process, which involves cross-section homogenization, on-line discontinuity factors generation, and boundary conditions evaluation by the global solution passed to the local calculation. In order to accomplish the local calculation, a new code has been developed based on the Finite Elements Method (FEM), which is capable of performing both diffusion and SP 3 calculations. The new code will be used in the framework of the NEM code in order to perform embedded pin-by-pin diffusion and SP 3 calculations on fuel assembly basis. The development of the diffusion and SP 3 FEM code is presented first following by its application to several problems. Description of the proposed embedded scheme is provided next as well as the obtained preliminary results of the C3 MOX benchmark. The results from the embedded calculations are compared with direct pin-by-pin whole core calculations in terms of accuracy and efficiency followed by conclusions made about the feasibility of the proposed embedded approach. (authors)

  6. Radiation transport calculation methods in BNCT

    International Nuclear Information System (INIS)

    Koivunoro, H.; Seppaelae, T.; Savolainen, S.

    2000-01-01

    Boron neutron capture therapy (BNCT) is used as a radiotherapy for malignant brain tumours. Radiation dose distribution is necessary to determine individually for each patient. Radiation transport and dose distribution calculations in BNCT are more complicated than in conventional radiotherapy. Total dose in BNCT consists of several different dose components. The most important dose component for tumour control is therapeutic boron dose D B . The other dose components are gamma dose D g , incident fast neutron dose D f ast n and nitrogen dose D N . Total dose is a weighted sum of the dose components. Calculation of neutron and photon flux is a complex problem and requires numerical methods, i.e. deterministic or stochastic simulation methods. Deterministic methods are based on the numerical solution of Boltzmann transport equation. Such are discrete ordinates (SN) and spherical harmonics (PN) methods. The stochastic simulation method for calculation of radiation transport is known as Monte Carlo method. In the deterministic methods the spatial geometry is partitioned into mesh elements. In SN method angular integrals of the transport equation are replaced with weighted sums over a set of discrete angular directions. Flux is calculated iteratively for all these mesh elements and for each discrete direction. Discrete ordinates transport codes used in the dosimetric calculations are ANISN, DORT and TORT. In PN method a Legendre expansion for angular flux is used instead of discrete direction fluxes, land the angular dependency comes a property of vector function space itself. Thus, only spatial iterations are required for resulting equations. A novel radiation transport code based on PN method and tree-multigrid technique (TMG) has been developed at VTT (Technical Research Centre of Finland). Monte Carlo method solves the radiation transport by randomly selecting neutrons and photons from a prespecified boundary source and following the histories of selected particles

  7. A Wireless Sensor Network for the Real-Time Remote Measurement of Aeolian Sand Transport on Sandy Beaches and Dunes.

    Science.gov (United States)

    Pozzebon, Alessandro; Cappelli, Irene; Mecocci, Alessandro; Bertoni, Duccio; Sarti, Giovanni; Alquini, Fernanda

    2018-03-08

    Direct measurements of aeolian sand transport on coastal dunes and beaches is of paramount importance to make correct decisions about coast management. As most of the existing studies are mainly based on a statistical approach, the solution presented in this paper proposes a sensing structure able to orient itself according to wind direction and directly calculate the amount of wind-transported sand by collecting it and by measuring its weight. Measurements are performed remotely without requiring human action because the structure is equipped with a ZigBee radio module, which periodically sends readings to a local gateway. Here data are processed by a microcontroller and then transferred to a remote data collection centre, through GSM technology. The ease of installation, the reduced power consumption and the low maintenance required, make the proposed solution able to work independently, limiting human intervention, for all the duration of the expected experimental campaign. In order to analyze the cause-effect relationship between the transported sand and the wind, the sensing structure is integrated with a multi-layer anemoscope-anemometer structure. The overall sensor network has been developed and tested in the laboratory, and its operation has been validated in field through a 48 h measurement campaign.

  8. A Wireless Sensor Network for the Real-Time Remote Measurement of Aeolian Sand Transport on Sandy Beaches and Dunes

    Science.gov (United States)

    Cappelli, Irene; Mecocci, Alessandro; Alquini, Fernanda

    2018-01-01

    Direct measurements of aeolian sand transport on coastal dunes and beaches is of paramount importance to make correct decisions about coast management. As most of the existing studies are mainly based on a statistical approach, the solution presented in this paper proposes a sensing structure able to orient itself according to wind direction and directly calculate the amount of wind-transported sand by collecting it and by measuring its weight. Measurements are performed remotely without requiring human action because the structure is equipped with a ZigBee radio module, which periodically sends readings to a local gateway. Here data are processed by a microcontroller and then transferred to a remote data collection centre, through GSM technology. The ease of installation, the reduced power consumption and the low maintenance required, make the proposed solution able to work independently, limiting human intervention, for all the duration of the expected experimental campaign. In order to analyze the cause-effect relationship between the transported sand and the wind, the sensing structure is integrated with a multi-layer anemoscope-anemometer structure. The overall sensor network has been developed and tested in the laboratory, and its operation has been validated in field through a 48 h measurement campaign. PMID:29518060

  9. Turbulent Flow and Sand Dune Dynamics: Identifying Controls on Aeolian Sediment Transport

    Science.gov (United States)

    Weaver, C. M.; Wiggs, G.

    2007-12-01

    Sediment transport models are founded on cubic power relationships between the transport rate and time averaged flow parameters. These models have achieved limited success and recent aeolian and fluvial research has focused on the modelling and measurement of sediment transport by temporally varying flow conditions. Studies have recognised turbulence as a driving force in sediment transport and have highlighted the importance of coherent flow structures in sediment transport systems. However, the exact mechanisms are still unclear. Furthermore, research in the fluvial environment has identified the significance of turbulent structures for bedform morphology and spacing. However, equivalent research in the aeolian domain is absent. This paper reports the findings of research carried out to characterise the importance of turbulent flow parameters in aeolian sediment transport and determine how turbulent energy and turbulent structures change in response to dune morphology. The relative importance of mean and turbulent wind parameters on aeolian sediment flux was examined in the Skeleton Coast, Namibia. Measurements of wind velocity (using sonic anemometers) and sand transport (using grain impact sensors) at a sampling frequency of 10 Hz were made across a flat surface and along transects on a 9 m high barchan dune. Mean wind parameters and mass sand flux were measured using cup anemometers and wedge-shaped sand traps respectively. Vertical profile data from the sonic anemometers were used to compute turbulence and turbulent stress (Reynolds stress; instantaneous horizontal and vertical fluctuations; coherent flow structures) and their relationship with respect to sand transport and evolving dune morphology. On the flat surface time-averaged parameters generally fail to characterise sand transport dynamics, particularly as the averaging interval is reduced. However, horizontal wind speed correlates well with sand transport even with short averaging times. Quadrant

  10. Transport of nanoparticles with dispersant through biofilm coated drinking water sand filters.

    Science.gov (United States)

    Li, Zhen; Aly Hassan, Ashraf; Sahle-Demessie, Endalkachew; Sorial, George A

    2013-11-01

    This article characterizes, experimentally and theoretically, the transport and retention of engineered nanoparticles (NP) through sand filters at drinking water treatment plants (DWTPs) under realistic conditions. The transport of four commonly used NPs (ZnO, CeO2, TiO2, and Ag, with bare surfaces and coating agents) through filter beds filled with sands from either acid washed and calcined, freshly acquired filter media, and used filter media from active filter media, were investigated. The study was conducted using water obtained upstream of the sand filter at DWTP. The results have shown that capping agents have a determinant importance in the colloidal stability and transport of NPs through the different filter media. The presence of the biofilm in used filter media increased adsorption of NPs but its effects in retaining capped NPs was less significant. The data was used to build a mathematical model based on the advection-dispersion equation. The model was used to simulate the performance of a scale-up sand filter and the effects on filtration cycle of traditional sand filtration system used in DWTPs. Published by Elsevier Ltd.

  11. A meshless approach to radionuclide transport calculations

    International Nuclear Information System (INIS)

    Perko, J.; Sarler, B.

    2005-01-01

    Over the past thirty years numerical modelling has emerged as an interdisciplinary scientific discipline which has a significant impact in engineering and design. In the field of numerical modelling of transport phenomena in porous media, many commercial codes exist, based on different numerical methods. Some of them are widely used for performance assessment and safety analysis of radioactive waste repositories and groundwater modelling. Although they proved to be an accurate and reliable tool, they have certain limitations and drawbacks. Realistic problems often involve complex geometry which is difficult and time consuming to discretize. In recent years, meshless methods have attracted much attention due to their flexibility in solving engineering and scientific problems. In meshless methods the cumbersome polygonization of calculation domain is not necessary. By this the discretization time is reduced. In addition, the simulation is not as discretization density dependent as in traditional methods because of the lack of polygon interfaces. In this work fully meshless Diffuse Approximate Method (DAM) is used for calculation of radionuclide transport. Two cases are considered; First 1D comparison of 226 Ra transport and decay solved by the commercial Finite Volume Method (FVM) and Finite Element Method (FEM) based packages and DAM. This case shows the level of discretization density dependence. And second realistic 2D case of near-field modelling of radionuclide transport from the radioactive waste repository. Comparison is made again between FVM based code and DAM simulation for two radionuclides: Long-lived 14 C and short-lived 3 H. Comparisons indicate great capability of meshless methods to simulate complex transport problems and show that they should be seriously considered in future commercial simulation tools. (author)

  12. Calculation of transportation energy for biomass collection

    Energy Technology Data Exchange (ETDEWEB)

    Kanai, G.; Takekura, K.; Kato, H.; Kobayashi, Y.; Yakushido, K. [National Agricultural Research Center, Tsukuba, Ibaraki (Japan)

    2010-07-01

    This paper reported on a study at a rice straw facility in Japan that produces bioethanol. Simulation modeling and calculations methods were used to examine the characteristics of field-to-facility transportation. Fuel consumption was found to be influenced by the conversion rate from straw to ethanol, the quantity of straw collected, and the ratio of the field area to that around the facility. Standard conditions were assumed based on reported data and actual observations for 15 ML/yr ethanol production, 0.3 kL output of ethanol from 1 t dry straw, 53.6 day/yr working days, 2.7 t truck load capacity, and 0.128 as the ratio of field to the area around the facility. According to calculations, a quantity of 50 kt dry straw requires 2.78 L of fuel to transport 1 t of dry straw, 109.5 trucks, and a 19.1 km collection area radius. The fuel consumption for transportation was found to be proportional to the quantity of straw to the 0.5 power, but inversely proportional to the ratio of field to the 0.5 power. The rate of increase in the number of trucks needed to collect straw increases with the decrease in the ratio of the field to area surface around the facility.

  13. Seabed Gradient Controlling Onshore Transport Rates of Surf Sand during Beach Retreat by Sea Level Rise

    Science.gov (United States)

    Lee, Hee Jun; Yi, Hi-Il

    2018-03-01

    A simple relationship is proposed for the onshore transport rates of surf-zone sand to evaluate the beach retreat caused by sea level rise. It suggests that the preservation potential of surf sand is proportional inversely to the seabed gradient during beach retreat. According to this relationship, the erosional remnants of surf sand would be more readily developed on a gentler shelf collectively as transgressive sand sheets. This finding may explain the previous studies regarding the Korean shelves that proposed that the Holocene transgressive sand sheets (HTSS) occur not in the steep eastern shelf but in the gentle western shelf. In line with such presence/absence of the HTSS are the results from some coastal seismic profiles obtained in the present study. The profiles indicate that sand deposits are restricted within the nearshore in the eastern coast, whereas they are persistently traceable to the offshore HTSS in the western coast. Tide is proven to have a negligible influence on the total duration of surf-zone processes. This study may be useful in predicting the consequences of the beach retreat that takes place worldwide as sea levels rise as a result of global warming.

  14. Bed topography and sand transport responses to a step change in discharge and water depth

    Science.gov (United States)

    Ephemeral streams with sand and gravel beds may inherit bed topography caused by previous flow events, resulting in bed topography that is not in equilibrium with flow conditions, complicating the modeling of flow and sediment transport. Major flow events, resulting from rainfall with high intensity...

  15. Shoreline accretion and sand transport at groynes inside the Port of Richards Bay.

    CSIR Research Space (South Africa)

    Schoonees, JS

    2006-01-01

    Full Text Available on the accretion adjacent to two of the groynes and on the sediment transport rates at these groynes. Tides, beach slopes, winds, wave climate, current regime, and sand grain sizes were documented. The one site is “moderately protected” from wave action while...

  16. Modelling and measurements of sand transport processes over full-scale ripples in oscillatory flow

    NARCIS (Netherlands)

    van der Werf, Jebbe J.; Ribberink, Jan S.; O'Donoghue, Tom; Doucette, Jeffrey C.

    2006-01-01

    A new series of laboratory experiments was performed in the Aberdeen Oscillatory Flow Tunnel (AOFT) and the Large Oscillating Water Tunnel (LOWT) to investigate time-averaged suspended sand concentrations and transport rates over rippled beds in regular and irregular oscillatory flow. The

  17. Transport and retention of strontium in surface-modified quartz sand with different wettability

    International Nuclear Information System (INIS)

    Yifei Li; Shuaihui Tian; Tianwei Qian

    2011-01-01

    Instead of radioactive 90 Sr, common strontium chloride was used to simulate the migration of radioactive strontium chloride in surface hydroxylated, silanized, and common quartz sand. The sorption and retardation characteristics of strontium (Sr 2+ ) in these surface modified quartz sands were studied by batch tests and column experiments. The equilibrium sorption data for Sr 2+ on different wettability sands were described by the Langmuir and Freundlich isotherm models, and the Langmuir model has been found to provide better correlation for hydrophilic sand. The breakthrough curves (BTCs) of Sr 2+ in these media were analyzed with the equilibrium convection-dispersion equation (CDE) and a non-equilibrium two-region mobile-immobile model (TRM) using a nonlinear least square curve-fitting program CXTFIT. The TRM model showed better fit to the measured BTCs of Sr 2+ , and the parameters of the fraction of mobile water indicated that significant preferential flow effected the non-equilibrium transport of Sr 2+ . Although TRM model could not fit the Sr 2+ BTCs very well, the parameter estimated by TRM model may be more reliable than those obtained from batch experiments because the transport of Sr 2+ in these kind of sand is non-equilibrium processes. (author)

  18. Facilitated transport of copper with hydroxyapatite nanoparticles in saturated sand

    Science.gov (United States)

    Saturated packed column experiments were conducted to investigate the facilitated transport of Cu with hydroxyapatite nanoparticles (nHAP) at different pore water velocities (0.22-2.2 cm min–1), solution pH (6.2-9.0), and fraction of Fe oxide coating on grain surfaces (', 0-0.36). The facilitated tr...

  19. Uncertainty analysis of neutron transport calculation

    International Nuclear Information System (INIS)

    Oka, Y.; Furuta, K.; Kondo, S.

    1987-01-01

    A cross section sensitivity-uncertainty analysis code, SUSD was developed. The code calculates sensitivity coefficients for one and two-dimensional transport problems based on the first order perturbation theory. Variance and standard deviation of detector responses or design parameters can be obtained using cross section covariance matrix. The code is able to perform sensitivity-uncertainty analysis for secondary neutron angular distribution(SAD) and secondary neutron energy distribution(SED). Covariances of 6 Li and 7 Li neutron cross sections in JENDL-3PR1 were evaluated including SAD and SED. Covariances of Fe and Be were also evaluated. The uncertainty of tritium breeding ratio, fast neutron leakage flux and neutron heating was analysed on four types of blanket concepts for a commercial tokamak fusion reactor. The uncertainty of tritium breeding ratio was less than 6 percent. Contribution from SAD/SED uncertainties are significant for some parameters. Formulas to estimate the errors of numerical solution of the transport equation were derived based on the perturbation theory. This method enables us to deterministically estimate the numerical errors due to iterative solution, spacial discretization and Legendre polynomial expansion of transfer cross-sections. The calculational errors of the tritium breeding ratio and the fast neutron leakage flux of the fusion blankets were analysed. (author)

  20. Transportation channels calculation method in MATLAB

    International Nuclear Information System (INIS)

    Averyanov, G.P.; Budkin, V.A.; Dmitrieva, V.V.; Osadchuk, I.O.; Bashmakov, Yu.A.

    2014-01-01

    Output devices and charged particles transport channels are necessary components of any modern particle accelerator. They differ both in sizes and in terms of focusing elements depending on particle accelerator type and its destination. A package of transport line designing codes for magnet optical channels in MATLAB environment is presented in this report. Charged particles dynamics in a focusing channel can be studied easily by means of the matrix technique. MATLAB usage is convenient because its information objects are matrixes. MATLAB allows the use the modular principle to build the software package. Program blocks are small in size and easy to use. They can be executed separately or commonly. A set of codes has a user-friendly interface. Transport channel construction consists of focusing lenses (doublets and triplets). The main of the magneto-optical channel parameters are total length and lens position and parameters of the output beam in the phase space (channel acceptance, beam emittance - beam transverse dimensions, particles divergence and image stigmaticity). Choice of the channel operation parameters is based on the conditions for satisfying mutually competing demands. And therefore the channel parameters calculation is carried out by using the search engine optimization techniques.

  1. Sand transport, shear stress, and the building of a delta

    Science.gov (United States)

    Wagner, W.; Miller, K. L.; Hiatt, M. R.; Mohrig, D. C.

    2017-12-01

    River deltas distribute sediment to the coastal sea through a complex branching network of channels; however, the routing and storage of this sediment in and through the delta is poorly understood. We present results from field studies of the sediment and water transport through the branching Wax Lake Delta on the coast of Louisiana. Two channels studied, Main Pass and East Pass, maintain a near-equal total partitioning of flow and sediment. However, East Pass is narrower and has higher river velocities, lower tidal velocity fluctuations, less alluvial bed cover, and more sediment flux per unit width than Main Pass. We connect these differences to small differences in the geometry of the two channels and feedbacks between these differences. We link trends in measured sediment deposits to both measured and modeled shear velocities in Wax Lake Delta's channels and open water `islands' to understand how hydrologic processes shaped the sedimentary architecture of the delta. These connections define the sediment transport and deposition regimes in the WLD. We extend the results herein to suggest that the relationships between the available sediment and shear stress determines the basic planform of the Wax Lake Delta and cross-sectional geometries of its channels.

  2. New nonlinear methods for linear transport calculations

    International Nuclear Information System (INIS)

    Adams, M.L.

    1993-01-01

    We present a new family of methods for the numerical solution of the linear transport equation. With these methods an iteration consists of an 'S N sweep' followed by an 'S 2 -like' calculation. We show, by analysis as well as numerical results, that iterative convergence is always rapid. We show that this rapid convergence does not depend on a consistent discretization of the S 2 -like equations - they can be discretized independently from the S N equations. We show further that independent discretizations can offer significant advantages over consistent ones. In particular, we find that in a wide range of problems, an accurate discretization of the S 2 -like equation can be combined with a crude discretization of the S N equations to produce an accurate S N answer. We demonstrate this by analysis as well as numerical results. (orig.)

  3. Computational fluid dynamics simulation of transport and retention of nanoparticle in saturated sand filters

    International Nuclear Information System (INIS)

    Hassan, Ashraf Aly; Li, Zhen; Sahle-Demessie, Endalkachew; Sorial, George A.

    2013-01-01

    Highlights: ► Breakthrough curves used to study fate of NPs in slow sand filters (SSF). ► CFD simulate transport, attachment/detachment of NPs in SSFs. ► CFD predicted spatial and temporal changes for transient concentrations of NPs. ► CFD predicts low concentrations and steady NP influx would not be retained by SSFs. ► Pulse input is retained with outlet concentration of 0.2% of the inlet. -- Abstract: Experimental and computational investigation of the transport parameters of nanoparticles (NPs) flowing through porous media has been made. This work intends to develop a simulation applicable to the transport and retention of NPs in saturated porous media for investigating the effect of process conditions and operating parameters such, as ion strength, and filtration efficiency. Experimental data obtained from tracer and nano-ceria, CeO 2 , breakthrough studies were used to characterize dispersion of nanoparticle with the flow and their interaction with sand packed columns with different heights. Nanoparticle transport and concentration dynamics were solved using the Eulerian computational fluid dynamics (CFD) solver ANSYS/FLUENT ® based on a scaled down flow model. A numerical study using the Navier–Stokes equation with second order interaction terms was used to simulate the process. Parameters were estimated by fitting tracer, experimental NP transport data, and interaction of NP with the sand media. The model considers different concentrations of steady state inflow of NPs and different amounts of spike concentrations. Results suggest that steady state flow of dispersant-coated NPs would not be retained by a sand filter, while spike concentrations could be dampened effectively. Unlike analytical solutions, the CFD allows estimating flow profiles for structures with complex irregular geometry and uneven packing

  4. Computational fluid dynamics simulation of transport and retention of nanoparticle in saturated sand filters

    Energy Technology Data Exchange (ETDEWEB)

    Hassan, Ashraf Aly [U.S. Environmental Protection Agency, Office of Research and Development, National Risk Management Research Laboratory, 26 W. Martin Luther King Drive, Cincinnati, OH 45268 (United States); Li, Zhen [School of Energy, Environmental, Biological, and Medical Engineering, Environmental Engineering Program, University of Cincinnati, Cincinnati, OH (United States); Sahle-Demessie, Endalkachew, E-mail: sahle-demessie.endalkachew@epa.gov [U.S. Environmental Protection Agency, Office of Research and Development, National Risk Management Research Laboratory, 26 W. Martin Luther King Drive, Cincinnati, OH 45268 (United States); Sorial, George A. [School of Energy, Environmental, Biological, and Medical Engineering, Environmental Engineering Program, University of Cincinnati, Cincinnati, OH (United States)

    2013-01-15

    Highlights: ► Breakthrough curves used to study fate of NPs in slow sand filters (SSF). ► CFD simulate transport, attachment/detachment of NPs in SSFs. ► CFD predicted spatial and temporal changes for transient concentrations of NPs. ► CFD predicts low concentrations and steady NP influx would not be retained by SSFs. ► Pulse input is retained with outlet concentration of 0.2% of the inlet. -- Abstract: Experimental and computational investigation of the transport parameters of nanoparticles (NPs) flowing through porous media has been made. This work intends to develop a simulation applicable to the transport and retention of NPs in saturated porous media for investigating the effect of process conditions and operating parameters such, as ion strength, and filtration efficiency. Experimental data obtained from tracer and nano-ceria, CeO{sub 2}, breakthrough studies were used to characterize dispersion of nanoparticle with the flow and their interaction with sand packed columns with different heights. Nanoparticle transport and concentration dynamics were solved using the Eulerian computational fluid dynamics (CFD) solver ANSYS/FLUENT{sup ®} based on a scaled down flow model. A numerical study using the Navier–Stokes equation with second order interaction terms was used to simulate the process. Parameters were estimated by fitting tracer, experimental NP transport data, and interaction of NP with the sand media. The model considers different concentrations of steady state inflow of NPs and different amounts of spike concentrations. Results suggest that steady state flow of dispersant-coated NPs would not be retained by a sand filter, while spike concentrations could be dampened effectively. Unlike analytical solutions, the CFD allows estimating flow profiles for structures with complex irregular geometry and uneven packing.

  5. Proceedings of the Canadian Institute conference on maximizing oil sands growth : improving transportation logistics, labour supply and pipeline availability

    International Nuclear Information System (INIS)

    2005-01-01

    This conference focused on the development of a transportation infrastructure to accommodate oil sands growth, with particular reference to building a pipeline infrastructure to meet the delivery and supply requirements of oil sands producers. The need for transmission system upgrades and additions to meet the electric power requirements of the oil sands industry was also discussed. The transportation options and new proposed pipeline construction projects that will alleviate the current transportation challenges in the oil sands region were identified. These include the implementation of new infrastructure strategies based on current pipeline availability, Kyoto requirements and downstream market demands. The impact of labour shortages on the oil sands industry was reviewed along with solutions to prevent and overcome these shortages. The conference featured 15 presentations, of which 3 have been catalogued separately for inclusion in this database. tabs., figs

  6. Turbulent flow structures and aeolian sediment transport over a barchan sand dune

    Science.gov (United States)

    Wiggs, G. F. S.; Weaver, C. M.

    2012-03-01

    The turbulent structure of airflow over a barchan sand dune is determined using quadrant analysis of wind velocity data derived from sonic anemometers. Results indicate an increased frequency of ejection and sweep events in the toe region of the dune, characteristic of the turbulent bursting process. In contrast, at the crest there was a significant increase in the occurrence of outward interactions. Combined with high frequency saltation data our analyses show that turbulent structures characterised by a positive streamwise fluctuating velocity (+u‧ sweeps at the toe and outward interactions at the crest) have a dominant influence on sand transport on the dune, together accounting for up to 83% and 95% of transporting events at the toe and crest respectively.

  7. Field testing, comparison, and discussion of five aeolian sand transport measuring devices operating on different measuring principles

    NARCIS (Netherlands)

    Goossens, Dirk; Nolet, Corjan; Etyemezian, Vicken; Duarte-campos, Leonardo; Bakker, Gerben; Riksen, Michel

    2018-01-01

    Five types of sediment samplers designed to measure aeolian sand transport were tested during a wind erosion event on the Sand Motor, an area on the west coast of the Netherlands prone to severe wind erosion. Each of the samplers operates on a different principle. The MWAC (Modified Wilson And

  8. Field testing, comparison, and discussion of five aeolian sand transport measuring devices operation on different measuring priciples

    NARCIS (Netherlands)

    Goossens, Dirk; Nolet, C.; Etyemezian, Vicken; Duarte-Campos, Leonardo; Bakker, G.; Riksen, M.J.P.M.

    2018-01-01

    Five types of sediment samplers designed to measure aeolian sand transport were tested during a wind erosion event on the Sand Motor, an area on the west coast of the Netherlands prone to severe wind erosion. Each of the samplers operates on a different principle. The MWAC (Modified Wilson And

  9. Khnifiss Beach's Black Sand: Provenance and Transport Pathways Investigation Using Heavy Minerals' Characterization

    Science.gov (United States)

    Adnani, M.; Elbelrhiti, H.; Ahmamou, M.; Masmoudi, L.

    2014-12-01

    Arid areas in south of Morocco suffer from silting problem causing destruction of villages infrastructure, roads, agriculture land and oasis heritage. Black sand on Khnifiss beach near Tarfaya city (S-W Morocco) is marked by enrichment of heavy minerals. This later is an important fraction that could help to assess the provenance and transport pathways of sediment. The sand's origin investigation could be useful to fight against erosion and silting problems from the source of supply, to this end, mineralogical analysis was carried out in Khnifiss beach's sand using Optic Microscope and Scanning Electronic Microscope with dispersive energy (SEM- EDS), in addition to physico-chemical analysis provided by Electronic Microprobe. The results revealed: (i) a high grade of oxides (Rutile, Ilmenite, Magnetite, Ulvöspinel) in samples, (ii) silicates (Quartz, Clinopyroxene, feldspar, Zircon), (iii) phosphate (apatite) and (iv) carbonate (calcite). The dominance of iron oxides justifies the black sand's colour. Then, the mineral composition supposes interference between different origins: proximal source (Calcareous cliff) for calcite, distal sources of oxides and silicates are supposed to be eroded and carried by Drâa valley from granite and igneous rocks in Anti-Atlasic field. Another source supposed might be a proximal volcanic island (Canaries island).

  10. Pollutant transport in clayey sands: reactive flows in saturated porous media and unsaturated flows

    International Nuclear Information System (INIS)

    Cadalen, Sebastien

    2008-01-01

    In the context of nuclear risk control associated to nuclear waste storage, the french nuclear agency plays an increasing role in terms of research and development in the area of subsurface contamination. This study focuses on an homogeneous porous media constituted of Fontainebleau sand and clay grains (illite) presenting sorption capacities. The modeling of the complex geometry and physical phenomena at different scales enables us to describe the average transport at Darcy's scale. The two main axes developed are the impact of an heterogeneous sorption on transport phenomena and the dispersivity of an unsaturated porous media. (author) [fr

  11. Field testing, comparison, and discussion of five aeolian sand transport measuring devices operating on different measuring principles

    Science.gov (United States)

    Goossens, Dirk; Nolet, Corjan; Etyemezian, Vicken; Duarte-Campos, Leonardo; Bakker, Gerben; Riksen, Michel

    2018-06-01

    Five types of sediment samplers designed to measure aeolian sand transport were tested during a wind erosion event on the Sand Motor, an area on the west coast of the Netherlands prone to severe wind erosion. Each of the samplers operates on a different principle. The MWAC (Modified Wilson And Cooke) is a passive segmented trap. The modified Leatherman sampler is a passive vertically integrating trap. The Saltiphone is an acoustic sampler that registers grain impacts on a microphone. The Wenglor sampler is an optical sensor that detects particles as they pass through a laser beam. The SANTRI (Standalone AeoliaN Transport Real-time Instrument) detects particles travelling through an infrared beam, but in different channels each associated with a particular grain size spectrum. A procedure is presented to transform the data output, which is different for each sampler, to a common standard so that the samplers can be objectively compared and their relative efficiency calculated. Results show that the efficiency of the samplers is comparable despite the differences in operating principle and the instrumental and environmental uncertainties associated to working with particle samplers in field conditions. The ability of the samplers to register the temporal evolution of a wind erosion event is investigated. The strengths and weaknesses of the samplers are discussed. Some problems inherent to optical sensors are looked at in more detail. Finally, suggestions are made for further improvement of the samplers.

  12. Influence Of Carboxymethyl Cellulose For The Transport Of Titanium Dioxide Nanoparticles In Clean Silica And Mineral-Coated Sands

    Science.gov (United States)

    The transport properties of titanium dioxide (anatase polymorph) nanoparticles encapsulated by carboxymethyl cellulose (CMC) were evaluated as a function of changes in the solute chemical properties in clean quartz, amorphous aluminum and iron hydroxide-coated sands. While prist...

  13. Agglomeration of a comprehensive model for the wind-driven sand transport at the Belgian Coast

    Science.gov (United States)

    Strypsteen, Glenn; Rauwoens, Pieter

    2016-04-01

    Although a lot of research has been done in the area of Aeolian transport, it is only during the last years that attention has been drawn to Aeolian transport in coastal areas. In these areas, the physical processes are more complex, due to a large number of transport limiting parameters. In this PhD-project, which is now in its early stage, a model will be developed which relates the wind-driven sand transport at the Belgian coast with physical parameters such as the wind speed, humidity and grain size of the sand, and the slope of beach and dune surface. For the first time, the interaction between beach and dune dynamics is studied at the Belgian coast. The Belgian coastline is only 67km long, but densely populated and therefore subject to coastal protection and safety. The coast mostly consists of sandy beaches and dikes. Although, still 33km of dunes exist, whose dynamics are far less understood. The overall research approach consists of three pathways: (i) field measurements, (ii) physical model tests, and (iii) numerical simulations. Firstly and most importantly, several field campaigns will provide accurate data of meteo-marine conditions, morphology, and sand transport events on a wide beach at the Belgian Coastline. The experimental set-up consists of a monitoring station, which will provide time series of vegetation cover, shoreline position, fetch distances, surficial moisture content, wind speed and direction and transport processes. The horizontal and vertical variability of the event scale Aeolian sand transport is analyzed with 8 MWAC sand traps. Two saltiphones register the intensity and variations of grain impacts over time. Two meteo-masts, each with four anemometers and one wind vane, provide quantitative measurements of the wind flow at different locations on the beach. Surficial moisture is measured with a moisture sensor. The topography measurements are typically done with laser techniques. To start, two sites are selected for measurement

  14. Aeolian sand transport over complex intertidal bar-trough beach topography

    Science.gov (United States)

    Anthony, Edward J.; Ruz, Marie-Hélène; Vanhée, Stéphane

    2009-04-01

    Aeolian sand transport on macrotidal beaches with complex intertidal bar-trough topography (ridge-and-runnel beaches) was assessed from experiments in northern France that involved measurements of wind speed, saltation, surface moisture contents, and rates of sand trapping across surveyed portions of the upper beach profile. Beaches exhibiting intertidal bars and troughs are much more complex, topographically, than simple reflective or dissipative beaches. Furthermore, the intertidal bar-trough morphology commonly exhibits strong cross-shore variations in the moisture contents of the beach surface and in patterns of bedform development. The results of four 30-minute experiments, conducted along topographically surveyed portions of the upper beach-dune toe profile, show that troughs act as extremely efficient sand interceptors, because of their permanently saturated state, which also inhibits sand mobilisation. Troughs, thus, limit or segment the dry fetch during conditions of intermittent saltation. Flow lines, inferred from the wind profiles, suggest that complex interactions at the boundary layer are generated by the bar-trough topography. Troughs systematically appear to be characterised by air expansion, while bar faces generate ramp wind acceleration for onshore winds, and sometimes immediate downwind deceleration for offshore winds. These effects may also contribute to cross-shore variations in the rates of sand trapping. Finally, a simple conceptual model of effective fetch development, integrating the effects of the spring-neap tidal range and of gross bar-trough morphological variability over time, is proposed for bar-trough beaches. The model highlights the key theme of fetch segmentation induced by cross-shore differentiation in the moisture contents of the beach surface hinged on the complex topography of multiple bars and troughs.

  15. Influence of clay particles on the transport and retention of titanium dioxide nanoparticles in quartz sand.

    Science.gov (United States)

    Cai, Li; Tong, Meiping; Wang, Xueting; Kim, Hyunjung

    2014-07-01

    This study investigated the influence of two representative suspended clay particles, bentonite and kaolinite, on the transport of titanium dioxide nanoparticles (nTiO2) in saturated quartz sand in both NaCl (1 and 10 mM ionic strength) and CaCl2 solutions (0.1 and 1 mM ionic strength) at pH 7. The breakthrough curves of nTiO2 with bentonite or kaolinite were higher than those without the presence of clay particles in NaCl solutions, indicating that both types of clay particles increased nTiO2 transport in NaCl solutions. Moreover, the enhancement of nTiO2 transport was more significant when bentonite was present in nTiO2 suspensions relative to kaolinite. Similar to NaCl solutions, in CaCl2 solutions, the breakthrough curves of nTiO2 with bentonite were also higher than those without clay particles, while the breakthrough curves of nTiO2 with kaolinite were lower than those without clay particles. Clearly, in CaCl2 solutions, the presence of bentonite in suspensions increased nTiO2 transport, whereas, kaolinite decreased nTiO2 transport in quartz sand. The attachment of nTiO2 onto clay particles (both bentonite and kaolinite) were observed under all experimental conditions. The increased transport of nTiO2 in most experimental conditions (except for kaolinite in CaCl2 solutions) was attributed mainly to the clay-facilitated nTiO2 transport. The straining of larger nTiO2-kaolinite clusters yet contributed to the decreased transport (enhanced retention) of nTiO2 in divalent CaCl2 solutions when kaolinite particles were copresent in suspensions.

  16. Calculation of transport coefficients in an axisymmetric plasma

    International Nuclear Information System (INIS)

    Shumaker, D.E.

    1977-01-01

    A method of calculating the transport coefficient in an axisymmetric toroidal plasma is presented. This method is useful in calculating the transport coefficients in a Tokamak plasma confinement device. The particle density and temperature are shown to be a constant on a magnetic flux surface. Transport equations are given for the total particle flux and total energy flux crossing a closed toroidal surface. Also transport equations are given for the toroidal magnetic flux. A computer code was written to calculate the transport coefficients for a three species plasma, electrons and two species of ions. This is useful for calculating the transport coefficients of a plasma which contains impurities. It was found that the particle and energy transport coefficients are increased by a large amount, and the transport coefficients for the toroidal magnetic field are reduced by a small amount

  17. Uncertainty calculation in transport models and forecasts

    DEFF Research Database (Denmark)

    Manzo, Stefano; Prato, Carlo Giacomo

    Transport projects and policy evaluations are often based on transport model output, i.e. traffic flows and derived effects. However, literature has shown that there is often a considerable difference between forecasted and observed traffic flows. This difference causes misallocation of (public...... implemented by using an approach based on stochastic techniques (Monte Carlo simulation and Bootstrap re-sampling) or scenario analysis combined with model sensitivity tests. Two transport models are used as case studies: the Næstved model and the Danish National Transport Model. 3 The first paper...... in a four-stage transport model related to different variable distributions (to be used in a Monte Carlo simulation procedure), assignment procedures and levels of congestion, at both the link and the network level. The analysis used as case study the Næstved model, referring to the Danish town of Næstved2...

  18. Effects of water content on reactive transport of Sr in Chernobyl sand columns

    International Nuclear Information System (INIS)

    Szenknect, S.; Dewiere, L.; Ardois, C.; Gaudet, J.P.

    2005-01-01

    Full text of publication follows: While transport of non-reactive solutes has been studied extensively in unsaturated porous media, much less is known about the factors that control the transport of sorbing solutes in unsaturated conditions. Three laboratory techniques were used to analyze the transport of Sr in the aeolian sand from Chernobyl Pilot Site [1] in both saturated and unsaturated flow conditions. Batch experiments were performed to study the chemical equilibrium state of the soil/solution system. Stirred flow-through reactor (SFTR) experiments were performed to study the kinetics and reversibility of sorption reactions at the surface of solid particles. Column experiments were also performed in saturated and unsaturated steady flow conditions. Experimental data pointed out a non-linear, instantaneous and reversible sorption process of Sr. A suitable cation-exchange model was used to describe the solute/soil reaction. The former model was coupled with transport models to describe behavior of Sr in saturated [2] and unsaturated flow conditions. Transport properties of sand packed columns have been determined with an inert tracer (HTO). BTCs obtained under saturated conditions exhibit a small amount of dispersion compared to those obtained under unsaturated conditions. Classical advection-dispersion model described successfully saturated tritium breakthrough curves (BTCs), whereas a mobile-immobile model (MIM) was required to described asymmetrical unsaturated BTCs. The MIM assumes that the porous medium contains a mobile water phase in which convective-dispersive transport occurs, and a immobile water phase with which solutes can exchange with a first order kinetic. In our experiments, transport by advection in the mobile phase is the predominant process whatever the flow conditions and mass transfer rate between the mobile and immobile regions is the predominant process for broadening the BTCs. Since dispersion is blurred by mass transfer resistance, the

  19. Sequential Subterranean Transport of Excavated Sand and Foraged Seeds in Nests of the Harvester Ant, Pogonomyrmex badius.

    Directory of Open Access Journals (Sweden)

    Walter R Tschinkel

    Full Text Available During their approximately annual nest relocations, Florida harvester ants (Pogonomyrmex badius excavate large and architecturally-distinct subterranean nests. Aspects of this process were studied by planting a harvester ant colony in the field in a soil column composed of layers of 12 different colors of sand. Quantifying the colors of excavated sand dumped on the surface by the ants revealed the progress of nest deepening to 2 m and enlargement to 8 L in volume. Most of the excavation was completed within about 2 weeks, but the nest was doubled in volume after a winter lull. After 7 months, we excavated the nest and mapped its structure, revealing colored sand deposited in non-host colored layers, especially in the upper 30 to 40 cm of the nest. In all, about 2.5% of the excavated sediment was deposited below ground, a fact of importance to sediment dating by optically-stimulated luminescence (OSL. Upward transport of excavated sand is carried out in stages, probably by different groups of ants, through deposition, re-transport, incorporation into the nest walls and floors and remobilization from these. This results in considerable mixing of sand from different depths, as indicated in the multiple sand colors even within single sand pellets brought to the surface. Just as sand is transported upward by stages, incoming seeds are transported downward to seed chambers. Foragers collect seeds and deposit them only in the topmost nest chambers from which a separate group of workers rapidly transports them downward in increments detectable as a "wave" of seeds that eventually ends in the seed chambers, 20 to 80 cm below the surface. The upward and downward transport is an example of task-partitioning in a series-parallel organization of work carried out by a highly redundant work force in which each worker usually completes only part of a multi-step process.

  20. Transport of 152Eu colloids in a system of fine sand and water containing humic substances

    International Nuclear Information System (INIS)

    Klotz, D.

    1995-01-01

    The migration of 152 Eu in a system of fine sand and water containing humic substances was investigated in a flow column system under realistic conditions. In this system, the trivalent Eu forms colloids with the water. These Eu humates are transported without retardation at recovery rates significantly below 100 per cent. Recovery is more or less a measure of the physical process of filtration of Eu bonded to particulates. In the range of natural filtering rates, the recovery rates decrease with decreasing filtering rate. (orig.) [de

  1. Adsorption and transport of cadmium and rhodamine WT in pumice sand columns

    International Nuclear Information System (INIS)

    Pang, L.; Close, M.; Greenfield, H.; Stanton, G.

    2004-01-01

    The transport and attenuation of cadmium (Cd) and rhodamine WT (RWT) in a pumice sand aquifer media was investigated using column experiments to study a scenario of point-source contamination. A pore-water velocity of 1.7-1.8 m/day, which is a typical field groundwater velocity in a pumice sand aquifer system, was applied to triplicate columns. A pulse of a solution containing Cd and RWT, together with the conservative tracer tritiated water ( 3 H 2 O) at pH = 7, was introduced into the columns. Experimental results showed that concentration breakthrough curves (BTCs) of 3 H 2 O were symmetrical and fitted well into an equilibrium model. In contrast, BTCs of Cd and RWT were asymmetrical with significant tailings and fitted well with a two-site adsorption/desorption model. The symmetric 3 H 2 O BTCs suggest that physical non-equilibrium was absent in the experimental system, therefore the asymmetrical BTCs of Cd and RWT were attributed to chemical non-equilibrium. Modelling results showed that, in comparison with 3 H 2 O, Cd was apparently retarded by 101-108 times in pumice sand aquifer media (apparent adsorption coefficient 7.33-9.24 ml/g) and underwent a mass loss of 20-30% that was probably because of precipitation of CdCO 3 . As CdCO 3 is extremely insoluble, Cd precipitation would be irreversible and therefore it would not contribute to the tailing of the Cd BTCs. The experimental results suggest that the adsorption and desorption of Cd in pumice sand aquifer media in hydrodynamic conditions was a kinetic process. Cd desorption rates were two orders-of-magnitude slower than its adsorption rates. This resulted in a prolonged mean residence time for Cd in pumice sand aquifer media, which was 10-12 days in the 18-cm-long columns under a flow velocity of 1.7-1.8 m/day. Since the mean residence time is only indicative for the arrival of the central of mass in a contaminant BTC, the time required for the total disappearance of Cd will be much longer than the mean

  2. Guide to calculating transportation demand management benefits

    Energy Technology Data Exchange (ETDEWEB)

    Litman, T. [Victoria Transport Policy Institute, Victoria, BC (Canada)

    1997-02-14

    The full benefits of transportation demand management (TDM) programs were discussed. TDM includes several policies, programs and measures designed to change travel patterns. TDM programs include commute trip reductions, pricing policies, land use management strategies, and programs to support alternative modes of transportation such as public transit, carpooling, bicycling, walking and telecommuting. In addition to reduction in traffic congestion and reduction in air pollution, other impacts of TDM programs were also evaluated. The value of these impacts based on external cost savings was estimated. A list of documents, software and organizations which could be helpful for TDM planning and evaluation was provided. 34 refs., 14 tabs., 1 fig.

  3. Calculation of transport coefficients in an axisymmetric plasma

    International Nuclear Information System (INIS)

    Shumaker, D.E.

    1976-01-01

    A method of calculating the transport coefficient in an axisymmetric toroidal plasma is presented. This method is useful in calculating the transport coefficients in a Tokamak plasma confinement device. The particle density and temperature are shown to be a constant on a magnetic flux surface. Transport equations are given for the total particle flux and total energy flux crossing a closed toroidal surface. Also transport equations are given for the toroidal magnetic flux. A computer code was written to calculate the transport coefficients for a three species plasma, electrons and two species of ions. This is useful for calculating the transport coefficients of a plasma which contains impurities. It was found that the particle and energy transport coefficients are increased by a large amount, and the transport coefficients for the toroidal magnetic field are reduced by a small amount. For example, a deuterium plasma with 1.3 percent oxygen, one of the particle transport coefficients is increased by a factor of about four. The transport coefficients for the toroidal magnetic flux are reduced by about 20 percent. The increase in the particle transport coefficient is due to the collisional scattering of the deuterons by the heavy oxygen ions which is larger than the deuteron electron scattering, the normal process for particle transport in a two species plasma. The reduction in the toroidal magnetic flux transport coefficients are left unexplained

  4. LDRD Final Review: Radiation Transport Calculations

    Energy Technology Data Exchange (ETDEWEB)

    Goorley, John Timothy [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Morgan, George Lake [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Lestone, John Paul [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-06-22

    Both high-fidelity & toy simulations are being used to understand measured signals and improve the Area 11 NDSE diagnostic. We continue to gain more and more confidence in the ability for MCNP to simulate neutron and photon transport from source to radiation detector.

  5. Colorado River sediment transport: 2. Systematic bed‐elevation and grain‐size effects of sand supply limitation

    Science.gov (United States)

    Topping, David J.; Rubin, David M.; Nelson, Jonathan M.; Kinzel, Paul J.; Corson, Ingrid C.

    2000-01-01

    The Colorado River in Marble and Grand Canyons displays evidence of annual supply limitation with respect to sand both prior to [Topping et al, this issue] and after the closure of Glen Canyon Dam in 1963. Systematic changes in bed elevation and systematic coupled changes in suspended‐sand concentration and grain size result from this supply limitation. During floods, sand supply limitation either causes or modifies a lag between the time of maximum discharge and the time of either maximum or minimum (depending on reach geometry) bed elevation. If, at a cross section where the bed aggrades with increasing flow, the maximum bed elevation is observed to lead the peak or the receding limb of a flood, then this observed response of the bed is due to sand supply limitation. Sand supply limitation also leads to the systematic evolution of sand grain size (both on the bed and in suspension) in the Colorado River. Sand input during a tributary flood travels down the Colorado River as an elongating sediment wave, with the finest sizes (because of their lower settling velocities) traveling the fastest. As the fine front of a sediment wave arrives at a given location, the bed fines and suspended‐sand concentrations increase in response to the enhanced upstream supply of finer sand. Then, as the front of the sediment wave passes that location, the bed is winnowed and suspended‐sand concentrations decrease in response to the depletion of the upstream supply of finer sand. The grain‐size effects of depletion of the upstream sand supply are most obvious during periods of higher dam releases (e.g., the 1996 flood experiment and the 1997 test flow). Because of substantial changes in the grain‐size distribution of the bed, stable relationships between the discharge of water and sand‐transport rates (i.e., stable sand rating curves) are precluded. Sand budgets in a supply‐limited river like the Colorado River can only be constructed through inclusion of the physical

  6. Purification and measurement of acid leachable europium in sands as an aid in the study of sediment transport

    International Nuclear Information System (INIS)

    Ditchburn, R.G.; McCabe, W.J.

    1982-05-01

    The use of europium labelled sand as an aid in the study of sediment transport has been suggested. A method for the purification of acid leachable europium is described. The final measurement is made by flame emission spectrometry using a nitrous oxide-acetylene flame. The usefulness of the method is limited by the natural levels of europium which, in the sand studied, was around 0.3 ppm

  7. Acceleration methods for assembly-level transport calculations

    International Nuclear Information System (INIS)

    Adams, Marvin L.; Ramone, Gilles

    1995-01-01

    A family acceleration methods for the iterations that arise in assembly-level transport calculations is presented. A single iteration in these schemes consists of a transport sweep followed by a low-order calculation which is itself a simplified transport problem. It is shown that a previously-proposed method fitting this description is unstable in two and three dimensions. It is presented a family of methods and shown that some members are unconditionally stable. (author). 8 refs, 4 figs, 4 tabs

  8. Count rate balance method of measuring sediment transport of sand beds by radioactive tracers

    International Nuclear Information System (INIS)

    Sauzay, G.

    1968-01-01

    Radioactive tracers are applied to the direct measurement of the sediment transport rate of sand beds. The theoretical measurement formula is derived: the variation of the count rate balance is inverse of that of the transport thickness. Simultaneously the representativeness of the tracer is critically studied. The minimum quantity of tracer which has to be injected in order to obtain a correct statistical definition of count rate given by a low number of grains 'seen' by the detector is then studied. A field experiment was made and has let to study the technological conditions for applying this method: only the treatment of results is new, the experiment itself is carried out with conventional techniques applied with great care. (author) [fr

  9. Geomorphology and sediment transport on a submerged back-reef sand apron: One Tree Reef, Great Barrier Reef

    Science.gov (United States)

    Harris, Daniel L.; Vila-Concejo, Ana; Webster, Jody M.

    2014-10-01

    Back-reef sand aprons are conspicuous and dynamic sedimentary features in coral reef systems. The development of these features influences the evolution and defines the maturity of coral reefs. However, the hydrodynamic processes that drive changes on sand aprons are poorly understood with only a few studies directly assessing sediment entrainment and transport. Current and wave conditions on a back-reef sand apron were measured during this study and a digital elevation model was developed through topographic and bathymetric surveying of the sand apron, reef flats and lagoon. The current and wave processes that may entrain and transport sediment were assessed using second order small amplitude (Stokes) wave theory and Shields equations. The morphodynamic interactions between current flow and geomorphology were also examined. The results showed that sediment transport occurs under modal hydrodynamic conditions with waves the main force entraining sediment rather than average currents. A morphodynamic relationship between current flow and geomorphology was also observed with current flow primarily towards the lagoon in shallow areas of the sand apron and deeper channel-like areas directing current off the sand apron towards the lagoon or the reef crest. These results show that the short-term mutual interaction of hydrodynamics and geomorphology in coral reefs can result in morphodynamic equilibrium.

  10. Correlation of aeolian sediment transport measured by sand traps and fluorescent tracers

    Science.gov (United States)

    Cabrera, Laura L.; Alonso, Ignacio

    2010-03-01

    Two different methods, fluorescent tracers and vertical sand traps, were simultaneously used to carry out an aeolian sediment transport study designed to test the goodness of fluorescent tracers in aeolian environments. Field experiments were performed in a nebkha field close to Famara beach at Lanzarote Island (Canary Islands, Spain) in a sector where the dunes were between 0.5 and 0.8 m height and 1-2 m wide and the vegetal cover was approximately 22%. In this dune field the sediment supply comes from Famara beach and is blown by trade winds toward the south, where the vegetation acts as natural sediment traps. Wind data were obtained by means of four Aanderaa wind speed sensors and one Aanderaa vane, all them distributed in a vertical array from 0.1 to 4 m height for 27 h. The average velocity at 1 m height during the experiment was 5.26 m s - 1 with the wind direction from the north. The tracer was under wind influence for 90 min at midday. During this period two series of sand traps (T1 and T2) N, S, E and W oriented were used. Resultant transport rates were 0.0131 and 0.0184 kg m - 1 min - 1 respectively. Tracer collection was performed with a sticky tape to sample only surface sediments. Tagged grains were visually counted under UV light. The transport rate was computed from the centroid displacement, that moved 0.875 m southwards, and the depth of the active layer considered was the size of one single grain. Taking into account these data the transport rate was 0.0072 kg m - 1 min - 1 . The discrepancy in results between both methods is related to several factors, such as the thickness of the active layer and the grain size difference between the tagged and the native material.

  11. Statistics of Monte Carlo methods used in radiation transport calculation

    International Nuclear Information System (INIS)

    Datta, D.

    2009-01-01

    Radiation transport calculation can be carried out by using either deterministic or statistical methods. Radiation transport calculation based on statistical methods is basic theme of the Monte Carlo methods. The aim of this lecture is to describe the fundamental statistics required to build the foundations of Monte Carlo technique for radiation transport calculation. Lecture note is organized in the following way. Section (1) will describe the introduction of Basic Monte Carlo and its classification towards the respective field. Section (2) will describe the random sampling methods, a key component of Monte Carlo radiation transport calculation, Section (3) will provide the statistical uncertainty of Monte Carlo estimates, Section (4) will describe in brief the importance of variance reduction techniques while sampling particles such as photon, or neutron in the process of radiation transport

  12. Nonlinear acceleration of SN transport calculations

    Energy Technology Data Exchange (ETDEWEB)

    Fichtl, Erin D [Los Alamos National Laboratory; Warsa, James S [Los Alamos National Laboratory; Calef, Matthew T [Los Alamos National Laboratory

    2010-12-20

    The use of nonlinear iterative methods, Jacobian-Free Newton-Krylov (JFNK) in particular, for solving eigenvalue problems in transport applications has recently become an active subject of research. While JFNK has been shown to be effective for k-eigenvalue problems, there are a number of input parameters that impact computational efficiency, making it difficult to implement efficiently in a production code using a single set of default parameters. We show that different selections for the forcing parameter in particular can lead to large variations in the amount of computational work for a given problem. In contrast, we present a nonlinear subspace method that sits outside and effectively accelerates nonlinear iterations of a given form and requires only a single input parameter, the subspace size. It is shown to consistently and significantly reduce the amount of computational work when applied to fixed-point iteration, and this combination of methods is shown to be more efficient than JFNK for our application.

  13. Mesh requirements for neutron transport calculations

    International Nuclear Information System (INIS)

    Askew, J.R.

    1967-07-01

    Fine-structure calculations are reported for a cylindrical natural uranium-graphite cell using different solution methods (discrete ordinate and collision probability codes) and varying the spatial mesh. It is suggested that of formulations assuming the source constant in a mesh interval the differential approach is generally to be preferred. Due to cancellation between approximations made in the derivation of the finite difference equations and the errors in neglecting source variation, the discrete ordinate code gave a more accurate estimate of fine structure for a given mesh even for unusually coarse representations. (author)

  14. Computer Modeling of Sand Transport on Mars Using a Compart-Mentalized Fluids Algorithm (CFA)

    Science.gov (United States)

    Marshall, J.; Stratton, D.

    1999-01-01

    It has been postulated that aeolian transport on Mars may be significantly different from that on Earth. From laboratory experiments simulating martian grain transport [2], it has been observed that (saltating) grains striking the bed can cause hundreds of secondary reptation trajectories when impact occurs at speeds postulated for Mars. Some of the ballistically induced trajectories "die ouf' and effectively join the ranks on the creep population that is merely nudged along by impact. Many of the induced reptation trajectories, however, are sufficiently high for the grains to become part of the saltation load (it is irrelevant to the boundary layer how a grain attained its initial lift force). When these grains, in turn, strike the surface, they too are capable of inducing more reptating grains. This cascading effect has been discussed in connection with terrestrial aeolian transport in an attempt to dispel the notion that sand motion is divisible only into creep and saltation loads. On Earth, only a few grains are splashed by impact. On Mars, it may be hundreds. We developed a computer model to address this phenomenon because there are some important ramifications: First, this ratio may mean that martian aeolian transport is dominated by reptation flux rather than saltation. On Earth, the flux would be a roughly balanced mixture between reptation/creep and saltation. On Venus, there would be no transport other than by saltation. In other words, an understanding of planetary aeolian processes may not be necessarily understood by extrapolating from the "Earth case", with only gravity and atmospheric density/viscosity being considered as variables. Second, the reptation flux on Mars may be self sustaining, so that little input is required by the wind once transport has been initiated. The number of grains saturating the boundary layer near the bed may mean that average grain speed on Mars might conceivably be less than that on Earth. This would say much for models

  15. Aeolian Sand Transport in the Planetary Context: Respective Roles of Aerodynamic and Bed-Dilatancy Thresholds

    Science.gov (United States)

    Marshall, J. R.; Borucki, J.; Bratton, C.

    1999-09-01

    The traditional view of aeolian sand transport generally estimates flux from the perspective of aerodynamic forces creating the airborne grain population, although it has been recognized that "reptation" causes a significant part of the total airborne flux; reptation involves both ballistic injection of grains into the air stream by the impact of saltating grains as well as the "nudging" of surface grains into a creeping motion. Whilst aerodynamic forces may initiate sand motion, it is proposed here that within a fully-matured grain cloud, flux is actually governed by two thresholds: an aerodynamic threshold, and a bed-dilatancy threshold. It is the latter which controls the reptation population, and its significance increases proportionally with transport energy. Because we only have experience with terrestrial sand transport, extrapolations of aeolian theory to Mars and Venus have adjusted only the aerodynamic factor, taking gravitational forces and atmospheric density as the prime variables in the aerodynamic equations, but neglecting reptation. The basis for our perspective on the importance of reptation and bed dilatancy is a set of experiments that were designed to simulate sand transport across the surface of a martian dune. Using a modified sporting crossbow in which a sand-impelling sabot replaced the bolt-firing mechanism, individual grains of sand were fired at loose sand targets with glancing angles typical of saltation impact; grains were projected at about 80 m/s to simulate velocities commensurate with those predicted for extreme martian aeolian conditions. The sabot impelling method permitted study of individual impacts without the masking effect of bed mobilization encountered in wind-tunnel studies. At these martian impact velocities, grains produced small craters formed by the ejection of several hundred grains from the bed. Unexpectedly, the craters were not elongated, despite glancing impact; the craters were very close to circular in planform

  16. Papers of the Canadian Institute's 3. annual conference : oil sands supply and infrastructure : labour supply, upgraders, transportation, pipelines

    International Nuclear Information System (INIS)

    2005-01-01

    The focus of this conference was on the development of the oil sands industry, with specific reference to issues concerning supply and infrastructure. Energy source development and transmission issues were discussed, as well as transportation systems. The impact of increased oil sands development on pipelines was also examined. Various fuel options were discussed, including the use of hydrogen, natural gas and alternate fuels in manufacturing and processing plants. Economic drivers and the creation of new markets were examined, and various export opportunities were reviewed. The environmental impact of increased oil sands activity was discussed, with specific reference to the Boreal regions. Management challenges in the oil sands industry were also discussed along with issues concerning human resources, labour supply, training and education. The conference featured 15 presentations, of which 13 have been catalogued separately for inclusion in this database. refs., tabs., figs

  17. Determination of the solid consumption in the transport of sands in sea beds with gold 198

    International Nuclear Information System (INIS)

    Rodriguez A, G.

    1983-01-01

    The study of the movement of sediments in sea beds, is necessary when one plans to build a port. Among the techniques used for this studies, it is the radiotracer balance that gives an useful estimation of the quantity of sediment that it moves per day and by meter (perpendicular to the displacement). The main objectives of this work are: to) to present the characteristics of the obtaining of the used radiotracer, describing details those used safety measures, b) to describe the handling of the radiotracer and it radiological safety, during the transport and injection in the sea bottom, c) description of the detection way and the used equipment, d) to describe the information processing obtained in the field and finally, e) the estimate of the solid consumption and the determination of the direction and speed of displacement of those sediments in the sea bottom, in front of the Tabasco coast, to be used jointly with the information obtained by means of other techniques so that one can make a good planning of the operations of dredging during the construction and later on the maintenance of the Dos Bocas marine terminal. The first step is to obtain the radiotracer that in this case was sand of uniform grain metric, marked superficially with Gold-198. The second step is to transport the sand to the place of interest, to place it in the injection equipment and to deposit it in the sea bottom. The third step is to detect the radiotracer in the sea bed, from a craft that drags a sled, which takes mounted a scintillation detector of sodium iodide activated with thallium NaI(Tl) (probe). The fourth step is to process the field information and to obtain the corresponding results. (Author)

  18. Optimal calculational schemes for solving multigroup photon transport problem

    International Nuclear Information System (INIS)

    Dubinin, A.A.; Kurachenko, Yu.A.

    1987-01-01

    A scheme of complex algorithm for solving multigroup equation of radiation transport is suggested. The algorithm is based on using the method of successive collisions, the method of forward scattering and the spherical harmonics method, and is realized in the FORAP program (FORTRAN, BESM-6 computer). As an example the results of calculating reactor photon transport in water are presented. The considered algorithm being modified may be used for solving neutron transport problems

  19. Generalized diffusion theory for calculating the neutron transport scalar flux

    International Nuclear Information System (INIS)

    Alcouffe, R.E.

    1975-01-01

    A generalization of the neutron diffusion equation is introduced, the solution of which is an accurate approximation to the transport scalar flux. In this generalization the auxiliary transport calculations of the system of interest are utilized to compute an accurate, pointwise diffusion coefficient. A procedure is specified to generate and improve this auxiliary information in a systematic way, leading to improvement in the calculated diffusion scalar flux. This improvement is shown to be contingent upon satisfying the condition of positive calculated-diffusion coefficients, and an algorithm that ensures this positivity is presented. The generalized diffusion theory is also shown to be compatible with conventional diffusion theory in the sense that the same methods and codes can be used to calculate a solution for both. The accuracy of the method compared to reference S/sub N/ transport calculations is demonstrated for a wide variety of examples. (U.S.)

  20. Parallel SN transport calculations on a transputer network

    International Nuclear Information System (INIS)

    Kim, Yong Hee; Cho, Nam Zin

    1994-01-01

    A parallel computing algorithm for the neutron transport problems has been implemented on a transputer network and two reactor benchmark problems (a fixed-source problem and an eigenvalue problem) are solved. We have shown that the parallel calculations provided significant reduction in execution time over the sequential calculations

  1. Neutron transport calculations of some fast critical assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-Val Penalosa, J A

    1976-07-01

    To analyse the influence of the input variables of the transport codes upon the neutronic results (eigenvalues, generation times, . . . ) four Benchmark calculations have been performed. Sensitivity analysis have been applied to express these dependences in a useful way, and also to get an unavoidable experience to carry out calculations achieving the required accuracy and doing them in practical computing times. (Author) 29 refs.

  2. Calculations of the transport properties within the PAW formalism

    Energy Technology Data Exchange (ETDEWEB)

    Mazevet, S.; Torrent, M.; Recoules, V.; Jollet, F. [CEA Bruyeres-le-Chatel, DIF, 91 (France)

    2010-07-01

    We implemented the calculation of the transport properties within the PAW formalism in the ABINIT code. This feature allows the calculation of the electrical and optical properties, including the XANES spectrum, as well as the electronic contribution to the thermal conductivity. We present here the details of the implementation and results obtained for warm dense aluminum plasma. (authors)

  3. Neutron transport calculations of some fast critical assemblies

    International Nuclear Information System (INIS)

    Martinez-Val Penalosa, J. A.

    1976-01-01

    To analyse the influence of the input variables of the transport codes upon the neutronic results (eigenvalues, generation times, . . . ) four Benchmark calculations have been performed. Sensitivity analysis have been applied to express these dependences in a useful way, and also to get an unavoidable experience to carry out calculations achieving the required accuracy and doing them in practical computing times. (Author) 29 refs

  4. Facilitated transport of Cu with hydroxyapatite nanoparticles in saturated sand: Effects of solution ionic strength and composition

    Science.gov (United States)

    Column experiments were conducted to investigate the facilitated transport of Cu in association with hydroxyapatite nanoparticles (nHAP) in water-saturated quartz sand at different solution concentrations of NaCl (0 to 100 mM) or CaCl2 (0.1 to 1.0 mM). The experimental breakthrough curves and retent...

  5. Minaret, a deterministic neutron transport solver for nuclear core calculations

    International Nuclear Information System (INIS)

    Moller, J-Y.; Lautard, J-J.

    2011-01-01

    We present here MINARET a deterministic transport solver for nuclear core calculations to solve the steady state Boltzmann equation. The code follows the multi-group formalism to discretize the energy variable. It uses discrete ordinate method to deal with the angular variable and a DGFEM to solve spatially the Boltzmann equation. The mesh is unstructured in 2D and semi-unstructured in 3D (cylindrical). Curved triangles can be used to fit the exact geometry. For the curved elements, two different sets of basis functions can be used. Transport solver is accelerated with a DSA method. Diffusion and SPN calculations are made possible by skipping the transport sweep in the source iteration. The transport calculations are parallelized with respect to the angular directions. Numerical results are presented for simple geometries and for the C5G7 Benchmark, JHR reactor and the ESFR (in 2D and 3D). Straight and curved finite element results are compared. (author)

  6. Minaret, a deterministic neutron transport solver for nuclear core calculations

    Energy Technology Data Exchange (ETDEWEB)

    Moller, J-Y.; Lautard, J-J., E-mail: jean-yves.moller@cea.fr, E-mail: jean-jacques.lautard@cea.fr [CEA - Centre de Saclay , Gif sur Yvette (France)

    2011-07-01

    We present here MINARET a deterministic transport solver for nuclear core calculations to solve the steady state Boltzmann equation. The code follows the multi-group formalism to discretize the energy variable. It uses discrete ordinate method to deal with the angular variable and a DGFEM to solve spatially the Boltzmann equation. The mesh is unstructured in 2D and semi-unstructured in 3D (cylindrical). Curved triangles can be used to fit the exact geometry. For the curved elements, two different sets of basis functions can be used. Transport solver is accelerated with a DSA method. Diffusion and SPN calculations are made possible by skipping the transport sweep in the source iteration. The transport calculations are parallelized with respect to the angular directions. Numerical results are presented for simple geometries and for the C5G7 Benchmark, JHR reactor and the ESFR (in 2D and 3D). Straight and curved finite element results are compared. (author)

  7. Sn transport calculations on vector and parallel processors

    International Nuclear Information System (INIS)

    Rhoades, W.A.; Childs, R.L.

    1987-01-01

    The transport of radiation from the source to the location of people or equipment gives rise to some of the most challenging of calculations. A problem may involve as many as a billion unknowns, each evaluated several times to resolve interdependence. Such calculations run many hours on a Cray computer, and a typical study involves many such calculations. This paper will discuss the steps taken to vectorize the DOT code, which solves transport problems in two space dimensions (2-D); the extension of this code to 3-D; and the plans for extension to parallel processors

  8. Influence of gravity on transport and retention of representative engineered nanoparticles in quartz sand.

    Science.gov (United States)

    Cai, Li; Zhu, Jinghan; Hou, Yanglong; Tong, Meiping; Kim, Hyunjung

    2015-10-01

    Four types of NPs: carbon nanotubes and graphene oxide (carbon-based NPs), titanium dioxide and zinc oxide metal-oxide NPs, were utilized to systematically determine the influence of gravity on the transport of NPs in porous media. Packed column experiments for two types of carbon-based NPs were performed under unfavorable conditions in both up-flow (gravity-negative) and down-flow (gravity-positive) orientations, while for two types of metal-oxide NPs, experiments were performed under both unfavorable and favorable conditions in both up-flow and down-flow orientations. Both breakthrough curves and retained profiles of two types of carbon-based NPs in up-flow orientation were equivalent to those in down-flow orientation, indicating that gravity had negligible effect on the transport and retention of carbon-based NPs under unfavorable conditions. In contrast, under both unfavorable and favorable conditions, the breakthrough curves for two types of metal-oxide NPs in down-flow orientation were lower relative to those in up-flow orientation, indicating that gravity could decrease the transport of metal-oxide NPs in porous media. The distinct effect of gravity on the transport and retention of carbon-based and metal-oxide NPs was mainly attributed to the contribution of gravity to the force balance on the NPs in quartz sand. The contribution of gravity was determined by the interplay of the density and sizes of NP aggregates under examined solution conditions. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. High temperature thermal energy storage in moving sand

    Science.gov (United States)

    Turner, R. H.; Awaya, H. I.

    1978-01-01

    Several high-temperature (to 500 C) heat-storage systems using sand as the storage medium are described. The advantages of sand as a storage medium include low cost for sand, widespread availability, non-toxicity, non-degradation characteristics, easy containment, and safety. The systems considered include: stationary sand with closely spaced tubes throughout the volume, the use of a fluidized bed, use of conveyor belt transporter, and the use of a blower rapid transport system. For a stationary sand bed, very close spacing of heat transfer tubes throughout the volume is required, manifesting as high power related system cost. The suggestion of moving sand past or around pipes is intended to reduce the power related costs at the penalty of added system complexity. Preliminary system cost estimates are offered. These rough calculations indicate that mobile sand heat storage systems cost less than the stationary sand approach.

  10. Characteristics Of Basaltic Sand: Size, Shape, And Composition As A Function Of Transport Process And Distance

    Science.gov (United States)

    Craddock, R. A.; Needell, Z. A.; Rose, T. R.

    2012-04-01

    quartz, feldspar, and heavy minerals commonly found in most terrestrial sedimentary deposits, basaltic sediments are composed of varying amounts of olivine, pyroxene, plagioclase, and vitric and lithic fragments. One of the few locations on Earth containing such material is the Ka'u Desert of Hawaii. This area is unique in that both eolian and fluvial sediment pathways occur in the same area, thus allowing a direct comparison of particles transported by different processes over identical distances (~20 km). We are currently documenting the physical and chemical changes that take place in basaltic sediments as they are transported by wind and water over increasing distances. This will result in an improvement in our understanding of traditional sedimentological concepts when applying them to Martian surface materials. Process: The Ka'u Desert is ~350 km2 and contains the largest basaltic dune fields on Earth. We have identified several different dune types located in various parts of the desert, including climbing and falling dunes, sand sheets, parabolic dunes (that were initially barchans), and crescentic dunes. Fluvial sediments occur as floodout deposits where ephemeral streams go from confined to unconfined flow outside the continuous Keanakako'i Formation [7]. There are also a number of sand bottom streams and playas that occur along a series of channels that extend from the Keanakako'i Formation ~20 km to the sea. We have collected samples from dunes and fluvial deposits at various locations in the Ka'u Desert, at varying distances from sources and subject to different environmental processes. In the lab, we have begun to use optical and scanning electron microscopic images to assess how grain size, shape, and angularity of individual particles change with increasing transport distances. We are also conducting point counts of particles contained within each sample to better understand how olivine, pyroxene, feldspar, and lithic and vitric fragments weather with

  11. Parallel processing of neutron transport in fuel assembly calculation

    International Nuclear Information System (INIS)

    Song, Jae Seung

    1992-02-01

    Group constants, which are used for reactor analyses by nodal method, are generated by fuel assembly calculations based on the neutron transport theory, since one or a quarter of the fuel assembly corresponds to a unit mesh in the current nodal calculation. The group constant calculation for a fuel assembly is performed through spectrum calculations, a two-dimensional fuel assembly calculation, and depletion calculations. The purpose of this study is to develop a parallel algorithm to be used in a parallel processor for the fuel assembly calculation and the depletion calculations of the group constant generation. A serial program, which solves the neutron integral transport equation using the transmission probability method and the linear depletion equation, was prepared and verified by a benchmark calculation. Small changes from the serial program was enough to parallelize the depletion calculation which has inherent parallel characteristics. In the fuel assembly calculation, however, efficient parallelization is not simple and easy because of the many coupling parameters in the calculation and data communications among CPU's. In this study, the group distribution method is introduced for the parallel processing of the fuel assembly calculation to minimize the data communications. The parallel processing was performed on Quadputer with 4 CPU's operating in NURAD Lab. at KAIST. Efficiencies of 54.3 % and 78.0 % were obtained in the fuel assembly calculation and depletion calculation, respectively, which lead to the overall speedup of about 2.5. As a result, it is concluded that the computing time consumed for the group constant generation can be easily reduced by parallel processing on the parallel computer with small size CPU's

  12. Application of a numerical transport correction in diffusion calculations

    International Nuclear Information System (INIS)

    Tomatis, Daniele; Dall'Osso, Aldo

    2011-01-01

    Full core calculations by ordinary transport methods can demand considerable computational time, hardly acceptable in the industrial work frame. However, the trend of next generation nuclear cores goes toward more heterogeneous systems, where transport phenomena of neutrons become very important. On the other hand, using diffusion solvers is more practical allowing faster calculations, but a specific formulation of the diffusion coefficient is requested to reproduce the scalar flux with reliable physical accuracy. In this paper, the Ronen method is used to evaluate numerically the diffusion coefficient in the slab reactor. The new diffusion solution is driven toward the solution of the integral neutron transport equation by non linear iterations. Better estimates of currents are computed and diffusion coefficients are corrected at node interfaces, still assuming Fick's law. This method enables obtaining closer results to the transport solution by a common solver in multigroup diffusion. (author)

  13. Discussion of electron cross sections for transport calculations

    International Nuclear Information System (INIS)

    Berger, M.J.

    1983-01-01

    This paper deals with selected aspects of the cross sections needed as input for transport calculations and for the modeling of radiation effects in biological materials. Attention is centered mainly on the cross sections for inelastic interactions between electrons and water molecules and the use of these cross sections for the calculation of energy degradation spectra and of ionization and excitation yields. 40 references, 3 figures, 1 table

  14. The Effect of Air Density on Sand Transport Structures and the Adobe Abrasion Profile: A Field Wind-Tunnel Experiment Over a Wide Range of Altitude

    Science.gov (United States)

    Han, Qingjie; Qu, Jianjun; Dong, Zhibao; Zu, Ruiping; Zhang, Kecun; Wang, Hongtao; Xie, Shengbo

    2014-02-01

    Aeolian sand transport results from interactions between the surface and the airflow above. Air density strongly constrains airflow characteristics and the resulting flow of sand, and therefore should not be neglected in sand transport models. In the present study, we quantify the influence of air density on the sand flow structure, sand transport rate, adobe abrasion profiles, and abrasion rate using a portable wind-tunnel in the field. For a given wind speed, the flow's ability to transport sand decreases at low air density, so total sand transport decreases, but the saltation height increases. Thus, the damage to human structures increases compared with what occurs at lower altitudes. The adobe abrasion rate by the cloud of blowing sand decreases exponentially with increasing height above the surface, while the wind erosion and dust emission intensity both increase with increasing air density. Long-term feedback processes between air density and wind erosion suggest that the development of low-altitude areas due to long-term deflation plays a key role in dust emission, and will have a profound significance for surface Aeolian processes and geomorphology.

  15. The vertical structure of airflow turbulence characteristics within a boundary layer during wind blown sand transport over a beach

    Science.gov (United States)

    Lee, Z. S.; Baas, A. C.; Jackson, D.; Cooper, J. A.; Lynch, K.; Delgado-Fernandez, I.; Beyers, M.

    2010-12-01

    Recent studies have suggested the significant role of boundary layer turbulence and coherent flow structures on sand transport by wind over beaches and desert dunes. Widespread use of sonic anemometry and high-frequency sand transport sensors and traps have facilitated a move beyond the basic monitoring of shear velocities and bulk sediment transport to more detailed measurements at much higher spatio-temporal resolutions. In this paper we present results of a small-scale point-location field study of boundary layer turbulence and shear stresses conducted under obliquely onshore winds over a beach at Magilligan Strand, Northern Ireland. High-frequency (25 Hz) 3D wind vector measurements were collected at five different heights between 0.13 and 1.67 metres above the bed using sonic anemometry for durations of several hours, and the associated sand transport response was measured using an array of Safires. The wind data are used to investigate the vertical structure of Reynolds shear stresses and burst-sweep event characteristics, as well as a comparison with the standard logarithmic (law-of-the-wall) wind profile. The study explores the identification and selection of a characteristic event duration based on integral time-scales as well as spectral analysis, and includes an assessment of the issues involved with data rotations for yaw, pitch, and roll corrections relative to flow streamlines, and the subsequently derived turbulence parameters based on fluctuating vector components (u’, v’, w’). Results show how the contributions to shear stress and the average pitch of bursts and sweeps changes as a function of height above the bed, indicating the transformation of top-down turbulent eddies as they travel toward the surface. A comparison between the turbulence data and the synchronous sand transport events, meanwhile, reveals the potential effects of enhanced saltation layer roughness feedback on eddies close to the bed.

  16. Calculation of neutron and gamma transport at the FOA:type of problems and calculation methods

    International Nuclear Information System (INIS)

    Lefvert, T.

    1975-11-01

    Protection against the effects of nuclear warfare involves the analysis of the forms of results of a nuclear charge explosion producing neutron and gamma radiation. It brings out problems leading to the calculation of criticality, leakage, and deep transmission. Methods have been developed for various kinds of particle transport problems. Applications to radiation therapy, storage of fissile materials, and fast reactors are discussed. A list (with brief description) of all neutron and gamma transport programmes of the FOA is given. (J.S.)

  17. LTRACK: Beam-transport calculation including wakefield effects

    International Nuclear Information System (INIS)

    Chan, K.C.D.; Cooper, R.K.

    1988-01-01

    LTRACK is a first-order beam-transport code that includes wakefield effects up to quadrupole modes. This paper will introduce the readers to this computer code by describing the history, the method of calculations, and a brief summary of the input/output information. Future plans for the code will also be described

  18. Lagrangian Transport Calculations Using UARS Data. Part I: Passive Tracers

    Science.gov (United States)

    Manney, G. L.; Lahoz, W. A.; Harwood, R. S.; Zurek, R. W.; Kumer, J. B.; Mergenthaler, J. L.; Roche, A. E.; O'Neill, A; Swinbank, R.; Waters, J. W.

    1994-01-01

    The transport of passive tracers observed by UARS has been simulated using computed trajectories of thousands of air parcels initialized on a three-dimensional stratospheric grid. These trajectories are calculated in isentropic coordinates using horizontal winds provided by the United Kingdom Meteorological Office data assimilation system and vertical (cross-isentropic) velocities computed using a fast radiation code.

  19. Impact of increasing freight loads on rail substructure from fracking sand transportation.

    Science.gov (United States)

    2014-03-01

    In this report the effect of surface infiltration of frac sand and heavy axle loads (HALs) were studied for their impact on the ballast layer. : Different combinations of ballast and fracking sand were constructed to observe long term trends of defor...

  20. Load Balancing of Parallel Monte Carlo Transport Calculations

    International Nuclear Information System (INIS)

    Procassini, R J; O'Brien, M J; Taylor, J M

    2005-01-01

    The performance of parallel Monte Carlo transport calculations which use both spatial and particle parallelism is increased by dynamically assigning processors to the most worked domains. Since he particle work load varies over the course of the simulation, this algorithm determines each cycle if dynamic load balancing would speed up the calculation. If load balancing is required, a small number of particle communications are initiated in order to achieve load balance. This method has decreased the parallel run time by more than a factor of three for certain criticality calculations

  1. Dynamic Load Balancing of Parallel Monte Carlo Transport Calculations

    International Nuclear Information System (INIS)

    O'Brien, M; Taylor, J; Procassini, R

    2004-01-01

    The performance of parallel Monte Carlo transport calculations which use both spatial and particle parallelism is increased by dynamically assigning processors to the most worked domains. Since the particle work load varies over the course of the simulation, this algorithm determines each cycle if dynamic load balancing would speed up the calculation. If load balancing is required, a small number of particle communications are initiated in order to achieve load balance. This method has decreased the parallel run time by more than a factor of three for certain criticality calculations

  2. Contribution to gamma ray transport calculation in heterogeneous media

    International Nuclear Information System (INIS)

    Bourdet, L.

    1985-04-01

    This thesis presents the development of gamma transport calculation codes in three dimension heterogeneous geometries. These codes allow us to define the protection against gamma-rays or verify their efficiency. The laws that govern the interactions of gamma-rays with matters are briefly revised. A library with the all necessary constants for these codes is created. TRIPOLI-2, a code that treats in exact way the neutron transport in matters using Monte-Carlo method, has been adapted to deal with the transport of gamma-rays in matters as well. TRINISHI, a code which considers only one collision, has been realized to treat heterogeneous geometries containing voids. Elaborating a formula that calculates the albedo for gamma-ray reflection (the code ALBANE) allows us to solve the problem of gamma-ray reflection on plane surfaces. NARCISSE-2 deals with gamma-rays that suffer only one reflection on the inner walls of any closed volume (rooms, halls...) [fr

  3. Charged-particle calculations using Boltzmann transport methods

    International Nuclear Information System (INIS)

    Hoffman, T.J.; Dodds, H.L. Jr.; Robinson, M.T.; Holmes, D.K.

    1981-01-01

    Several aspects of radiation damage effects in fusion reactor neutron and ion irradiation environments are amenable to treatment by transport theory methods. In this paper, multigroup transport techniques are developed for the calculation of charged particle range distributions, reflection coefficients, and sputtering yields. The Boltzmann transport approach can be implemented, with minor changes, in standard neutral particle computer codes. With the multigroup discrete ordinates code, ANISN, determination of ion and target atom distributions as functions of position, energy, and direction can be obtained without the stochastic error associated with atomistic computer codes such as MARLOWE and TRIM. With the multigroup Monte Carlo code, MORSE, charged particle effects can be obtained for problems associated with very complex geometries. Results are presented for several charged particle problems. Good agreement is obtained between quantities calculated with the multigroup approach and those obtained experimentally or by atomistic computer codes

  4. Analysis of error in Monte Carlo transport calculations

    International Nuclear Information System (INIS)

    Booth, T.E.

    1979-01-01

    The Monte Carlo method for neutron transport calculations suffers, in part, because of the inherent statistical errors associated with the method. Without an estimate of these errors in advance of the calculation, it is difficult to decide what estimator and biasing scheme to use. Recently, integral equations have been derived that, when solved, predicted errors in Monte Carlo calculations in nonmultiplying media. The present work allows error prediction in nonanalog Monte Carlo calculations of multiplying systems, even when supercritical. Nonanalog techniques such as biased kernels, particle splitting, and Russian Roulette are incorporated. Equations derived here allow prediction of how much a specific variance reduction technique reduces the number of histories required, to be weighed against the change in time required for calculation of each history. 1 figure, 1 table

  5. Calculations on safe storage and transportation of radioactive materials

    Energy Technology Data Exchange (ETDEWEB)

    Hathout, A M; El-Messiry, A M; Amin, E [National Center for Nuclear Safety and Radiation Control and AEA, Cairo (Egypt)

    1997-12-31

    In this work the safe storage and transportation of fresh fuel as a radioactive material studied. Egypt planned ET RR 2 reactor which is of relatively high power and would require adequate handling and transportation. Therefore, the present work is initiated to develop a procedure for safe handling and transportation of radioactive materials. The possibility of reducing the magnitude of radiation transmitted on the exterior of the packages is investigated. Neutron absorbers are used to decrease the neutron flux. Criticality calculations are carried out to ensure the achievement of subcriticality so that the inherent safety can be verified. The discrete ordinate transport code ANISN was used. The results show good agreement with other techniques. 2 figs., 2 tabs.

  6. Efficient calculation of dissipative quantum transport properties in semiconductor nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Greck, Peter

    2012-11-26

    We present a novel quantum transport method that follows the non-equilibrium Green's function (NEGF) framework but side steps any self-consistent calculation of lesser self-energies by replacing them by a quasi-equilibrium expression. We termed this method the multi-scattering Buettiker-Probe (MSB) method. It generalizes the so-called Buettiker-Probe model but takes into account all relevant individual scattering mechanisms. It is orders of magnitude more efficient than a fully selfconsistent non-equilibrium Green's function calculation for realistic devices, yet accurately reproduces the results of the latter method as well as experimental data. This method is fairly easy to implement and opens the path towards realistic three-dimensional quantum transport calculations. In this work, we review the fundamentals of the non-equilibrium Green's function formalism for quantum transport calculations. Then, we introduce our novel MSB method after briefly reviewing the original Buettiker-Probe model. Finally, we compare the results of the MSB method to NEGF calculations as well as to experimental data. In particular, we calculate quantum transport properties of quantum cascade lasers in the terahertz (THz) and the mid-infrared (MIR) spectral domain. With a device optimization algorithm based upon the MSB method, we propose a novel THz quantum cascade laser design. It uses a two-well period with alternating barrier heights and complete carrier thermalization for the majority of the carriers within each period. We predict THz laser operation for temperatures up to 250 K implying a new temperature record.

  7. Aggregation and transport of rutile titanium dioxide nanoparticles with montmorillonite and diatomite in the presence of phosphate in porous sand.

    Science.gov (United States)

    Guo, Peng; Xu, Nan; Li, Duo; Huangfu, Xinxing; Li, Zuling

    2018-08-01

    Crop soil is inevitably contaminated by the excess of phosphate (P) fertilizers. A large amount of nanoparticle titanium dioxide (nTiO 2 ) entered soils as well due to the wide use of engineered nanomaterials. It is of great urgency and a high priority to investigate the mechanisms of nTiO 2 deposition with the presence of P in crop soils. This study investigated the transport behavior of (1.0 g L -1 ) rutile nTiO 2 with two representative clay particles (montmorillonite or diatomite) in the presence of P through the saturated quartz sand. In 10 mM NaCl electrolyte solution at pH 6.0, the recovery percentage of nTiO 2 was 36.3% from sand column. Nevertheless, it was reduced to 18.6% and 11.1% while montmorillonite and diatomite present in suspensions, respectively. Obviously, the improvement of nTiO 2 retention in sand was more pronounced by diatomite than montmorillonite. The likely mechanism for this result was that large aggregates were formed due to the attachment of nTiO 2 to montmorillonite and diatomite. Moreover, the surface of diatomite with the larger hydrodynamic radius was less negatively charged by comparison with montmorillonite. However, this phenomenon disappeared with the addition of P. P adsorption increases the repulsive force between particles and sand and the fast release of attached nTiO 2 -montmorillonite and diatomite from sand. The two-site kinetic retention model and the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory suggested that the combination of k 1/ k 1d , k 2 and secondary minimum energy can be used to accurately describe the attachment of nTiO 2 -montmorillonite and diatomite to sand in the presence of P. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Three dimensions transport calculations for PWR core; Calcul de coeur R.E.P. en transport 3D

    Energy Technology Data Exchange (ETDEWEB)

    Richebois, E

    2000-07-01

    The objective of this work is to define improved 3-D core calculation methods based on the transport theory. These methods can be particularly useful and lead to more precise computations in areas of the core where anisotropy and steep flux gradients occur, especially near interface and boundary conditions and in regions of high heterogeneity (bundle with absorbent rods). In order to apply the transport theory a new method for calculating reflector constants has been developed, since traditional methods were only suited for 2-group diffusion core calculations and could not be extrapolated to transport calculations. In this thesis work, the new method for obtaining reflector constants is derived regardless of the number of energy groups and of the operator used. The core calculations results using the reflector constants thereof obtained have been validated on the EDF's power reactor Saint Laurent B1 with MOX loading. The advantages of a 3-D core transport calculation scheme have been highlighted as opposed to diffusion methods; there are a considerable number of significant effects and potential advantages to be gained in rod worth calculations for instance. These preliminary results obtained with on particular cycle will have to be confirmed by more systematic analysis. Accidents like MSLB (main steam line break) and LOCA (loss of coolant accident) should also be investigated and constitute challenging situations where anisotropy is high and/or flux gradients are steep. This method is now being validated for others EDF's PWRs' reactors, as well as for experimental reactors and other types of commercial reactors. (author)

  9. Three dimensions transport calculations for PWR core; Calcul de coeur R.E.P. en transport 3D

    Energy Technology Data Exchange (ETDEWEB)

    Richebois, E

    2000-07-01

    The objective of this work is to define improved 3-D core calculation methods based on the transport theory. These methods can be particularly useful and lead to more precise computations in areas of the core where anisotropy and steep flux gradients occur, especially near interface and boundary conditions and in regions of high heterogeneity (bundle with absorbent rods). In order to apply the transport theory a new method for calculating reflector constants has been developed, since traditional methods were only suited for 2-group diffusion core calculations and could not be extrapolated to transport calculations. In this thesis work, the new method for obtaining reflector constants is derived regardless of the number of energy groups and of the operator used. The core calculations results using the reflector constants thereof obtained have been validated on the EDF's power reactor Saint Laurent B1 with MOX loading. The advantages of a 3-D core transport calculation scheme have been highlighted as opposed to diffusion methods; there are a considerable number of significant effects and potential advantages to be gained in rod worth calculations for instance. These preliminary results obtained with on particular cycle will have to be confirmed by more systematic analysis. Accidents like MSLB (main steam line break) and LOCA (loss of coolant accident) should also be investigated and constitute challenging situations where anisotropy is high and/or flux gradients are steep. This method is now being validated for others EDF's PWRs' reactors, as well as for experimental reactors and other types of commercial reactors. (author)

  10. Assessment of the solubility of thorium and uranium from black sand of Camargue in both simulated lung and gut fluids for dose calculation after internal exposure

    Energy Technology Data Exchange (ETDEWEB)

    Frelon, S.; Chazel, V.; Tourlonias, E.; Paquet, F. [IRSN/ DRPH/ SRBE, LRTOX, BP 166, 26702 Pierrelatte Cedex (France); Blanchardon, E. [IRSN/ DRPH/ SDI, LEDI, BP 17, 92262 Fontenay Aux Roses Cedex (France); Bouisset, P. [IRSN/ DEI/ STEME, LMRE, Bois des rames, 91400 Orsay (France); Pourcelot, L. [IRSN/ DEI/ SESURE, LERCM, BP3, 13 115 St Paul lez Durance Cedex (France)

    2006-07-01

    In the south of France, some beaches of Camargue present a high rate of natural radioactivity due to thorium and uranium from zircon and apatite heavy minerals present in the so-called black sand. These radionuclides may lead to internal exposure consecutive to inhalation or ingestion of this sand. The accurate assessment of radiological risk after internal exposure of public frequenting these beaches requires some information on the human bioavailability of U and Th from the sand. Both routes of intake were studied in this work and the consecutive dose delivered was calculated under two different scenarios for each type of exposure. As far as inhalation is concerned, the first important conclusion is that the inhalable fraction, i.e. particles with aerodynamic diameters below 50 {mu}m, was tiny (0.002%) in this sample of sand. Moreover in vitro assays of solubility were performed for this fraction and showed that U and Th as well as their progeny presented moderate solubility. Then effective doses under several scenarios were calculated and seem to demonstrate a very poor risk of exposure after inhalation. Indeed, a dose of 1 mSv would be received by a babies after inhalation of about 40 Kg of sand, that is impossible, whereas a more realistic scenario of chronic exposure only reached 31 {mu} Sv. In case of ingestion, the solubility of Th and U in the gastrointestinal fluids was found to be very low with a maximum solubility of 0.5% of the initial mass of radioelement in the sample of sand. Then the worst hypothesis studied yields an effective dose of 0.018 mSv./(g-swallowed sand) that is roughly 50 times less than the legal annual dose limit for members of the public. as a conclusion, the possible internal dose after exposure by inhalation or ingestion of black sand of Camargue seems to be very low under the conditions of this study. (N.C.)

  11. Assessment of the solubility of thorium and uranium from black sand of Camargue in both simulated lung and gut fluids for dose calculation after internal exposure

    International Nuclear Information System (INIS)

    Frelon, S.; Chazel, V.; Tourlonias, E.; Paquet, F.; Blanchardon, E.; Bouisset, P.; Pourcelot, L.

    2006-01-01

    In the south of France, some beaches of Camargue present a high rate of natural radioactivity due to thorium and uranium from zircon and apatite heavy minerals present in the so-called black sand. These radionuclides may lead to internal exposure consecutive to inhalation or ingestion of this sand. The accurate assessment of radiological risk after internal exposure of public frequenting these beaches requires some information on the human bioavailability of U and Th from the sand. Both routes of intake were studied in this work and the consecutive dose delivered was calculated under two different scenarios for each type of exposure. As far as inhalation is concerned, the first important conclusion is that the inhalable fraction, i.e. particles with aerodynamic diameters below 50 μm, was tiny (0.002%) in this sample of sand. Moreover in vitro assays of solubility were performed for this fraction and showed that U and Th as well as their progeny presented moderate solubility. Then effective doses under several scenarios were calculated and seem to demonstrate a very poor risk of exposure after inhalation. Indeed, a dose of 1 mSv would be received by a babies after inhalation of about 40 Kg of sand, that is impossible, whereas a more realistic scenario of chronic exposure only reached 31 μ Sv. In case of ingestion, the solubility of Th and U in the gastrointestinal fluids was found to be very low with a maximum solubility of 0.5% of the initial mass of radioelement in the sample of sand. Then the worst hypothesis studied yields an effective dose of 0.018 mSv./(g-swallowed sand) that is roughly 50 times less than the legal annual dose limit for members of the public. as a conclusion, the possible internal dose after exposure by inhalation or ingestion of black sand of Camargue seems to be very low under the conditions of this study. (N.C.)

  12. Lagrangian Transport Calculations Using UARS Data. Part 2; Ozone

    Science.gov (United States)

    Manney, Gloria L.; Zurek, R. W.; Froidevaux, L.; Waters, J. W.; ONeill, A.; Swinbank, R.

    1995-01-01

    Trajectory calculations are used to examine ozone transport in the polar winter stratosphere during periods of the Upper Atmosphere Research Satellite (UARS) observations. The value of these calculations for determining mass transport was demonstrated previously using UARS observations of long-lived tracers, In the middle stratosphere, the overall ozone behavior observed by the Microwave Limb Sounder in the polar vortex is reproduced by this purely dynamical model. Calculations show the evolution of ozone in the lower stratosphere during early winter to be dominated by dynamics in December 1992 in the Arctic. Calculations for June 1992 in the Antarctic show evidence of chemical ozone destruction and indicate that approx. 50% of the chemical destruction may be masked by dynamical effects, mainly diabatic descent, which bring higher ozone into the lower-stratospheric vortex. Estimating differences between calculated and observed fields suggests that dynamical changes masked approx. 20% - 35% of chemical ozone loss during late February and early March 1993 in the Arctic. In the Antarctic late winter, in late August and early September 1992, below approx. 520 K, the evolution of vortex-averaged ozone is entirely dominated by chemical effects; above this level, however, chemical ozone depletion can be partially or completely masked by dynamical effects. Our calculations for 1992 showed that chemical loss was nearly completely compensated by increases due to diabatic descent at 655 K.

  13. CALCULATING BEDLOAD TRANSPORT IN RIVERS: CONCEPTS, CALCULUS ROUTINES AND APPLICATION

    Directory of Open Access Journals (Sweden)

    Hudson de Azevedo Macedo

    2017-10-01

    Full Text Available Rivers are immensely important to human activities such as water supply, navigation, energy generation, and agriculture. They are also an important morphodynamic agent of erosion, transport and deposition. Their capacity to transport sediment depends on their hydraulic characteristics and can be predicted by mathematical models. Several mathematical models can be used to compute bed-load transport. Each one is appropriately better for certain conditions. In this paper, we present an application built in Microsoft Excel to compute the bed-load transport in rivers based on the Van Rijn mathematical model. The Van Rijn model is appropriate for rivers transporting sandy sediments in conditions of subcritical flow. Hydraulic parameters such as channel slope, stream power, and Reynolds and Froude numbers can be calculated using the application proposed here. The application was tested in the Paraná River and results from the calculations are consistent with data obtained from fieldwork surveys. The error of the application was only 20%, which shows good agreement of the model with survey values.

  14. TRING: a computer program for calculating radionuclide transport in groundwater

    International Nuclear Information System (INIS)

    Maul, P.R.

    1984-12-01

    The computer program TRING is described which enables the transport of radionuclides in groundwater to be calculated for use in long term radiological assessments using methods described previously. Examples of the areas of application of the program are activity transport in groundwater associated with accidental spillage or leakage of activity, the shutdown of reactors subject to delayed decommissioning, shallow land burial of intermediate level waste and geologic disposal of high level waste. Some examples of the use of the program are given, together with full details to enable users to run the program. (author)

  15. HAMMER, 1-D Multigroup Neutron Transport Infinite System Cell Calculation for Few-Group Diffusion Calculation

    International Nuclear Information System (INIS)

    Honeck, H.C.

    1984-01-01

    1 - Description of problem or function: HAMMER performs infinite lattice, one-dimensional cell multigroup calculations, followed (optionally) by one-dimensional, few-group, multi-region reactor calculations with neutron balance edits. 2 - Method of solution: Infinite lattice parameters are calculated by means of multigroup transport theory, composite reactor parameters by few-group diffusion theory. 3 - Restrictions on the complexity of the problem: - Cell calculations - maxima of: 30 thermal groups; 54 epithermal groups; 20 space points; 20 regions; 18 isotopes; 10 mixtures; 3 thermal up-scattering mixtures; 200 resonances per group; no overlap or interference; single level only. - Reactor calculations - maxima of : 40 regions; 40 mixtures; 250 space points; 4 groups

  16. Design of a transport calculation system for logging sondes simulation

    International Nuclear Information System (INIS)

    Marquez Damian, Jose Ignacio

    2005-01-01

    Analysis of available resources in earth crust is performed by different techniques, one of them is neutron logging. Design of sondes that are used to make such logging is supported by laboratory experiments as well as by numerical calculations.This work presents several calculation schemes, designed to simplify the task of whom has to planify such experiments or optimize parameters of this kind of sondes.These schemes use transport calculation codes, especially DaRT, TORT and MCNP, and cross section processing modules from SCALE system.Additionally a system for DaRT and TORT data postprocessing using OpenDX is presented.It allows scalar flux spatial distribution analysis, as wells as cross section condensation and reaction rates calculation

  17. Coupling Solute and Fine Particle Transport with Sand Bed Morphodynamics within a Field Experiment

    Science.gov (United States)

    Phillips, C. B.; Ortiz, C. P.; Schumer, R.; Jerolmack, D. J.; Packman, A. I.

    2017-12-01

    Fine suspended particles are typically considered to pass through streams and rivers as wash load without interacting with the bed, however experiments have demonstrated that hyporheic flow causes advective exchange of fine particles with the stream bed, yielding accumulation of fine particle deposits within the bed. Ultimately, understanding river morphodynamics and ecosystem dynamics requires coupling both fine particle and solute transport with bed morphodynamics. To better understand the coupling between these processes we analyze a novel dataset from a controlled field experiment conducted on Clear Run, a 2nd order sand bed stream located within the North Carolina coastal plain. Data include concentrations of continuously injected conservative solutes and fine particulate tracers measured at various depths within the stream bed, overhead time lapse images of bed forms, stream discharge, and geomorphological surveys of the stream. We use image analysis of bed morphodynamics to assess exchange, retention, and remobilization of solutes and fine particles during constant discharge and a short duration experimental flood. From the images, we extract a time series of bedform elevations and scour depths for the duration of the experiment. The high-resolution timeseries of bed elevation enables us to assess coupling of bed morphodynamics with both the solute and fine particle flux during steady state mobile bedforms prior to the flood and to changing bedforms during the flood. These data allow the application of a stochastic modeling framework relating bed elevation fluctuations to fine particle residence times. This combined experimental and modeling approach ultimately informs our ability to predict not only the fate of fine particulate matter but also associated nutrient and carbon dynamics within streams and rivers.

  18. GUIDE TO CALCULATING TRANSPORT EFFICIENCY OF AEROSOLS IN OCCUPATIONAL AIR SAMPLING SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    Hogue, M.; Hadlock, D.; Thompson, M.; Farfan, E.

    2013-11-12

    This report will present hand calculations for transport efficiency based on aspiration efficiency and particle deposition losses. Because the hand calculations become long and tedious, especially for lognormal distributions of aerosols, an R script (R 2011) will be provided for each element examined. Calculations are provided for the most common elements in a remote air sampling system, including a thin-walled probe in ambient air, straight tubing, bends and a sample housing. One popular alternative approach would be to put such calculations in a spreadsheet, a thorough version of which is shared by Paul Baron via the Aerocalc spreadsheet (Baron 2012). To provide greater transparency and to avoid common spreadsheet vulnerabilities to errors (Burns 2012), this report uses R. The particle size is based on the concept of activity median aerodynamic diameter (AMAD). The AMAD is a particle size in an aerosol where fifty percent of the activity in the aerosol is associated with particles of aerodynamic diameter greater than the AMAD. This concept allows for the simplification of transport efficiency calculations where all particles are treated as spheres with the density of water (1g cm-3). In reality, particle densities depend on the actual material involved. Particle geometries can be very complicated. Dynamic shape factors are provided by Hinds (Hinds 1999). Some example factors are: 1.00 for a sphere, 1.08 for a cube, 1.68 for a long cylinder (10 times as long as it is wide), 1.05 to 1.11 for bituminous coal, 1.57 for sand and 1.88 for talc. Revision 1 is made to correct an error in the original version of this report. The particle distributions are based on activity weighting of particles rather than based on the number of particles of each size. Therefore, the mass correction made in the original version is removed from the text and the calculations. Results affected by the change are updated.

  19. CALCULATION OF POLLUTION DYNAMICS NEAR RAILWAY TERRITORY DURING COAL TRANSPORTATION

    Directory of Open Access Journals (Sweden)

    M. M. Biliaiev

    2017-02-01

    Full Text Available Purpose. The article is aimed to develop 3D numerical model for the prediction of atmospheric pollution during transportation of bulk cargo in the railway car. Methodology.To solve this problem, it was developed three-dimensional numerical model, based on the use of the transport equation of dust pollution in the air by the wind and atmospheric turbulent diffusion. For the numerical integration of the simulating equation of the dust transport the implicit difference scheme was used. When constructing a difference scheme, it was carried out prior splitting of the original transport equation into the sequence of solutions of three equations. The first of them takes into account the transport of dust in paths, the second equation – dust transport under the influence of atmospheric turbulent diffusion, and the third equation –change of the dust concentration in the air due to its emissions from the cars.Unknown value of the pollutant concentration at every step of splitting is determined by the explicit scheme – the method of running account, which provides a simple numerical implementation of splitting equations. The developed numerical model is the basis for specialized computer program. On the basis of the constructed numerical model we carried out a computational experiment to assess the level of air pollution at the railway station during the motion of train with coal. Findings. Authors developed 3D numerical model, which belongs to the class of «screening models». This model takes into account the main physical factors affecting the process of dispersion of dust pollution in the atmosphere during coal transportation. The proposed numerical model requires low cost of computer time in the practical implementation on small and medium-power computers. This model can be used for rapid calculations of the dynamics of air pollution when transporting coal by rail. Calculations to determine the pollutant concentration and formation of the

  20. Axial SPN and radial MOC coupled whole core transport calculation

    International Nuclear Information System (INIS)

    Cho, Jin-Young; Kim, Kang-Seog; Lee, Chung-Chan; Zee, Sung-Quun; Joo, Han-Gyu

    2007-01-01

    The Simplified P N (SP N ) method is applied to the axial solution of the two-dimensional (2-D) method of characteristics (MOC) solution based whole core transport calculation. A sub-plane scheme and the nodal expansion method (NEM) are employed for the solution of the one-dimensional (1-D) SP N equations involving a radial transverse leakage. The SP N solver replaces the axial diffusion solver of the DeCART direct whole core transport code to provide more accurate, transport theory based axial solutions. In the sub-plane scheme, the radial equivalent homogenization parameters generated by the local MOC for a thick plane are assigned to the multiple finer planes in the subsequent global three-dimensional (3-D) coarse mesh finite difference (CMFD) calculation in which the NEM is employed for the axial solution. The sub-plane scheme induces a much less nodal error while having little impact on the axial leakage representation of the radial MOC calculation. The performance of the sub-plane scheme and SP N nodal transport solver is examined by solving a set of demonstrative problems and the C5G7MOX 3-D extension benchmark problems. It is shown in the demonstrative problems that the nodal error reaching upto 1,400 pcm in a rodded case is reduced to 10 pcm by introducing 10 sub-planes per MOC plane and the transport error is reduced from about 150 pcm to 10 pcm by using SP 3 . Also it is observed, in the C5G7MOX rodded configuration B problem, that the eigenvalues and pin power errors of 180 pcm and 2.2% of the 10 sub-planes diffusion case are reduced to 40 pcm and 1.4%, respectively, for SP 3 with only about a 15% increase in the computing time. It is shown that the SP 5 case gives very similar results to the SP 3 case. (author)

  1. Comparison of neutron transport calculations with NRC test results

    International Nuclear Information System (INIS)

    Koban, J.; Hofmann, W.

    1981-02-01

    For an exactly defined reactor arrangement (PCA = Pool Critical Assembly) neutron fluxes, neutron spectra and reaction rates for several neutron detectors were calculated by means of one and two dimensional transport codes. An international comparison proved the methods applied at KWU to be adequate. There were difficulties, however, in considering the three dimensions of the assembly which result mainly from its small dimension. This fact applies to all participants who didn't use three dimensional codes. (orig.) [de

  2. ASOP, Shield Calculation, 1-D, Discrete Ordinates Transport

    International Nuclear Information System (INIS)

    1993-01-01

    1 - Nature of physical problem solved: ASOP is a shield optimization calculational system based on the one-dimensional discrete ordinates transport program ANISN. It has been used to design optimum shields for space applications of SNAP zirconium-hydride-uranium- fueled reactors and uranium-oxide fueled thermionic reactors and to design beam stops for the ORELA facility. 2 - Method of solution: ASOP generates coefficients of linear equations describing the logarithm of the dose and dose-weight derivatives as functions of position from data obtained in an automated sequence of ANISN calculations. With the dose constrained to a design value and all dose-weight derivatives required to be equal, the linear equations may be solved for a new set of shield dimensions. Since changes in the shield dimensions may cause the linear functions to change, the entire procedure is repeated until convergence is obtained. The detailed calculations of the radiation transport through shield configurations for every step in the procedure distinguish ASOP from other shield optimization computer code systems which rely on multiple component sources and attenuation coefficients to describe the transport. 3 - Restrictions on the complexity of the problem: Problem size is limited only by machine size

  3. Uniform Gauss-Weight Quadratures for Discrete Ordinate Transport Calculations

    International Nuclear Information System (INIS)

    Carew, John F.; Hu, Kai; Zamonsky, Gabriel

    2000-01-01

    Recently, a uniform equal-weight quadrature set, UE n , and a uniform Gauss-weight quadrature set, UG n , have been derived. These quadratures have the advantage over the standard level-symmetric LQ n quadrature sets in that the weights are positive for all orders,and the transport solution may be systematically converged by increasing the order of the quadrature set. As the order of the quadrature is increased,the points approach a uniform continuous distribution on the unit sphere,and the quadrature is invariant with respect to spatial rotations. The numerical integrals converge for continuous functions as the order of the quadrature is increased.The numerical characteristics of the UE n quadrature set have been investigated previously. In this paper, numerical calculations are performed to evaluate the application of the UG n quadrature set in typical transport analyses. A series of DORT transport calculations of the >1-MeV neutron flux have been performed for a set of pressure-vessel fluence benchmark problems. These calculations employed the UG n (n = 8, 12, 16, 24, and 32) quadratures and indicate that the UG n solutions have converged to within ∼0.25%. The converged UG n solutions are found to be comparable to the UE n results and are more accurate than the level-symmetric S 16 predictions

  4. Accounting for chemical kinetics in field scale transport calculations

    International Nuclear Information System (INIS)

    Bryan, N.D.

    2005-01-01

    The modelling of column experiments has shown that the humic acid mediated transport of metal ions is dominated by the non-exchangeable fraction. Metal ions enter this fraction via the exchangeable fraction, and may transfer back again. However, in both directions these chemical reactions are slow. Whether or not a kinetic description of these processes is required during transport calculations, or an assumption of local equilibrium will suffice, will depend upon the ratio of the reaction half-time to the residence time of species within the groundwater column. If the flow rate is sufficiently slow or the reaction sufficiently fast then the assumption of local equilibrium is acceptable. Alternatively, if the reaction is sufficiently slow (or the flow rate fast), then the reaction may be 'decoupled', i.e. removed from the calculation. These distinctions are important, because calculations involving chemical kinetics are computationally very expensive, and should be avoided wherever possible. In addition, column experiments have shown that the sorption of humic substances and metal-humate complexes may be significant, and that these reactions may also be slow. In this work, a set of rules is presented that dictate when the local equilibrium and decoupled assumptions may be used. In addition, it is shown that in all cases to a first approximation, the behaviour of a kinetically controlled species, and in particular its final distribution against distance at the end of a calculation, depends only upon the ratio of the reaction first order rate to the residence time, and hence, even in the region where the simplifications may not be used, the behaviour is predictable. In this way, it is possible to obtain an estimate of the migration of these species, without the need for a complex transport calculation. (orig.)

  5. Prospects in deterministic three dimensional whole-core transport calculations

    International Nuclear Information System (INIS)

    Sanchez, Richard

    2012-01-01

    The point we made in this paper is that, although detailed and precise three-dimensional (3D) whole-core transport calculations may be obtained in the future with massively parallel computers, they would have an application to only some of the problems of the nuclear industry, more precisely those regarding multiphysics or for methodology validation or nuclear safety calculations. On the other hand, typical design reactor cycle calculations comprising many one-point core calculations can have very strict constraints in computing time and will not directly benefit from the advances in computations in large scale computers. Consequently, in this paper we review some of the deterministic 3D transport methods which in the very near future may have potential for industrial applications and, even with low-order approximations such as a low resolution in energy, might represent an advantage as compared with present industrial methodology, for which one of the main approximations is due to power reconstruction. These methods comprise the response-matrix method and methods based on the two-dimensional (2D) method of characteristics, such as the fusion method.

  6. Whole core transport calculation for the VHTR hexagonal core

    International Nuclear Information System (INIS)

    Cho, J. Y.; Kim, K. S.; Lee, C. C.; Joo, H. G.

    2007-01-01

    Recently, the DeCART code which performs the whole core calculation by coupling the radial MOC transport kernel with the axial nodal kernel has equipped a kernel to deal with the hexagonal geometry and applied to the VHTR hexagonal core to examine the accuracy and the computational efficiency of the implemented kernel. The implementation includes a modular ray tracing module based on the hexagonal assembly and a multi-group CMFD module to perform an efficient transport calculation. The requirements for the modular ray are: (1) the assembly based path linking and (2) the complete reflection capabilities. The first requirement is met by adjusting the azimuthal angle and the ray spacing for the modular ray to construct a core ray by the path linking. The second requirement is met by expanding the constructed azimuthal angle in the range of [0,30 degree] to the remained range to reflect completely at the core boundaries. The considered reflecting surface angles for the complete reflection are 30n's (n=1,2,1,12). The CMFD module performs the equivalent diffusion calculation to the radial MOC transport calculation based on the homogenized structure units. The structure units include the hexagonal pin cells and gap cells appearing at the assembly boundary. Therefore, the CMFD module is programmed to deal with the unstructured cells such as the gap cells. The CMFD equation consists of the two parts of (1) the conventional FDM and (2) the current corrective parts. Since the second part of the CMFD equation guarantees the reproducibility of the radial MOC transport solutions for the cell averaged reaction rate and the net current at the cell surfaces, how to build the first part of the CMFD equation is not important. Therefore, the first part of the CMFD equation is roughly built by using the normal distance from the gravity center to the surface. The VHTR core uses helium as a coolant which is realized as a void hole in a neutronics calculation. This void hole which

  7. An Outflow Event on the Left Side of Harvey: Erosion of Barrier Sand and Seaward Transport Through Aransas Pass

    Science.gov (United States)

    Goff, J.; Swartz, J. M.; Gulick, S. P. S.

    2017-12-01

    Barrier islands provide critical support and protection for coastal communities and ecosystems, but are potentially vulnerable to net losses of sand during major storms. Evidence from satellite imagery, ground observations and tide stations indicates that Hurricane Harvey in 2017 caused a large outflow event of waters moving from the bays out towards the sea in the Port Aransas, Texas region. Rather than just an ebb of a storm surge, this event may have been driven by seaward-directed winds on the left side of storm. Less than a month after landfall, we conducted a swath mapping and sampling survey in Lydia Ann Channel and Aransas Pass, where we had earlier mapped in 2009 and 2012 as part of the UT marine geology and geophysical field course. These waterways are important conduits linking Corpus Christi and Aransas bays to the Gulf of Mexico. This multi-year record allows us to gauge the impact of the outflow event on these waterways in the context of "normal" coastal processes. Both satellite imagery and sonar mapping reveal that the outflow event caused significant erosion, both on land and beneath the water, along the edges of Lydia Ann Channel and Corpus Christi ship channel. It also caused seaward-directed flow and erosion through breaches in the foredunes along southern San Jose Island, from waters that overtopped Lydia Ann Channel. Much of the sand that was transported seaward settled in Lydia Ann Channel and Aransas Pass (up to 6.5 m accumulation), possibly during the waning stages of the event. However, a likely large (but unknown) quantity of barrier and estuarine sand could have been transported well out to sea, beyond the jetties, at the peak of the event. If so, it would have resulted in a net loss of sand from the barrier island system.

  8. Beam transport calculations for BARC-TIFR 14UD pelletron

    International Nuclear Information System (INIS)

    Prasad, K.G.

    1993-01-01

    The 14UD pelletron tandem accelerator installed at Tata Institute of Fundamental Research (TIFR) as a joint BARC-TIFR project, is supplied by National Electrostatic Corporation (NEC), U.S.A. To optimise the parameters of various elements along the beam path, it is essential to work out the beam optics of the entire system. There are various computer codes in use for such calculations. All these codes, except the detailed ray tracing programs, use matrix formulation. Thus each ion optical element is characterised in terms of a transport matrix, whose elements are assumed to be independent of particle trajectory. We have performed only the first order calculations, meaning thereby that no aberrations are included. Further, all calculations are carried out assuming ideal conditions like axial beam injection, perfectly aligned beam line elements, etc. The main code that has been employed in our calculations is based on the one at the Australian National University, Canberra, suitably modified for use with CYBER 170/730 computer at TIFR. However, codes at NEC and Stony Brook were also used for the checking the results. The results of calculations are given and discussed. (author). 2 figs

  9. Modeling Dynamic Objects in Monte Carlo Particle Transport Calculations

    International Nuclear Information System (INIS)

    Yegin, G.

    2008-01-01

    In this study, the Multi-Geometry geometry modeling technique was improved in order to handle moving objects in a Monte Carlo particle transport calculation. In the Multi-Geometry technique, the geometry is a superposition of objects not surfaces. By using this feature, we developed a new algorithm which allows a user to make enable or disable geometry elements during particle transport. A disabled object can be ignored at a certain stage of a calculation and switching among identical copies of the same object located adjacent poins during a particle simulation corresponds to the movement of that object in space. We called this powerfull feature as Dynamic Multi-Geometry technique (DMG) which is used for the first time in Brachy Dose Monte Carlo code to simulate HDR brachytherapy treatment systems. Our results showed that having disabled objects in a geometry does not effect calculated dose values. This technique is also suitable to be used in other areas such as IMRT treatment planning systems

  10. Ab Initio Calculations of Transport Properties of Vanadium Oxides

    Science.gov (United States)

    Lamsal, Chiranjivi; Ravindra, N. M.

    2018-04-01

    The temperature-dependent transport properties of vanadium oxides have been studied near the Fermi energy using the Kohn-Sham band structure approach combined with Boltzmann transport equations. V2O5 exhibits significant thermoelectric properties, which can be attributed to its layered structure and stability. Highly anisotropic electrical conduction in V2O5 is clearly manifested in the calculations. Due to specific details of the band structure and anisotropic electron-phonon interactions, maxima and crossovers are also seen in the temperature-dependent Seebeck coefficient of V2O5. During the phase transition of VO2, the Seebeck coefficient changes by 18.9 µV/K, which is close to (within 10% of) the observed discontinuity of 17.3 µV/K.

  11. Transport and hydrodynamic calculations of direct photons at FAIR

    International Nuclear Information System (INIS)

    Baeuchle, Bjorn; Bleicher, Marcus

    2011-01-01

    The microscopic transport model UrQMD and a micro + macro hybrid model are used to calculate direct photon spectra from U+U-collisions at E lab =35 A GeV as will be measured by the CBM Collaboration at FAIR. In the hybrid model, the intermediate high-density part of the nuclear interaction is described with ideal 3+1-dimensional hydrodynamics. Different equations of state of the matter created in the heavy-ion collisions are investigated and the resulting spectra of direct photons are predicted. The emission patterns of direct photons in space and time are discussed.

  12. Heterogeneity of Rapid Sand Filters and Its Effect on Contaminant Transport and Nitrification Performance

    DEFF Research Database (Denmark)

    Lopato, Laure Rose; Galaj, Zofia; Delpont, Sébastien

    2011-01-01

    Laboratory and full-scale experiments were conducted to investigate the development and effect of heterogeneity caused by filter media nonuniformity, biofilm, particles, precipitates, and gas bubbles in rapid sand filters used for drinking-water treatment. Salt tracer experiments were conducted...

  13. Assessment of existing sediment transport models for sand barrier dynamics under wave and currents

    Digital Repository Service at National Institute of Oceanography (India)

    Thuy, T.T.V.; Nghiem, L.T.; Jayakumar, S.; Nielsen, P.

    The paper summarizes morphology changes over rippled sand barriers under wave and wave combined current of 27 laboratorial experiments. Data of 4 wave conditions (H=10cm, T=1s; H=12cm, T=1s; H=12cm, T=1.5s; H=14cm, T=1.5s) and 6 currents (Q= 10, -10...

  14. Regional transport of a chemically distinctive dust: Gypsum from White Sands, New Mexico (USA)

    Science.gov (United States)

    White, Warren H.; Hyslop, Nicole P.; Trzepla, Krystyna; Yatkin, Sinan; Rarig, Randy S.; Gill, Thomas E.; Jin, Lixin

    2015-03-01

    The White Sands complex, a National Monument and adjoining Missile Range in southern New Mexico, occupies the dry bed of an ice-age lake where an active gypsum dunefield abuts erodible playa sediments. Aerosols entrained from White Sands are sometimes visible on satellite images as distinct, light-colored plumes crossing the Sacramento Mountains to the east and northeast. The IMPROVE network (Interagency Monitoring of PROtected Visual Environments) operates long-term aerosol samplers at two sites east of the Sacramento range. In recent years a spring pulse of sulfate aerosol has appeared at these sites, eclipsing the regional summer peak resulting from atmospheric reactions of sulfur dioxide emissions. A significant fraction of this spring sulfate is contributed by gypsum and other salts from White Sands, with much of the sulfur in coarse particles and concentrations of calcium and strontium above regional levels. The increase in these gypsiferous species coincides with a drought following a period of above-average precipitation. White Sands and the IMPROVE samplers together provide a natural laboratory: a climatically sensitive dust source that is both well characterized and chemically distinct from its surroundings, with a signature that remains identifiable at long-term observatories 100-200 km downwind.

  15. Numerical modeling of solute transport in a sand tank physical model under varying hydraulic gradient and hydrological stresses

    Science.gov (United States)

    Atlabachew, Abunu; Shu, Longcang; Wu, Peipeng; Zhang, Yongjie; Xu, Yang

    2018-03-01

    This laboratory study improves the understanding of the impacts of horizontal hydraulic gradient, artificial recharge, and groundwater pumping on solute transport through aquifers. Nine experiments and numerical simulations were carried out using a sand tank. The variable-density groundwater flow and sodium chloride transport were simulated using the three-dimensional numerical model SEAWAT. Numerical modelling results successfully reproduced heads and concentrations observed in the sand tank. A higher horizontal hydraulic gradient enhanced the migration of sodium chloride, particularly in the groundwater flow direction. The application of constant artificial recharge increased the spread of the sodium chloride plume in both the longitudinal and lateral directions. In addition, groundwater pumping accelerated spreading of the sodium chloride plume towards the pumping well. Both higher hydraulic gradient and pumping rate generated oval-shaped plumes in the horizontal plane. However, the artificial recharge process produced stretched plumes. These effects of artificial recharge and groundwater pumping were greater under higher hydraulic gradient. The concentration breakthrough curves indicated that emerging solutions never attained the concentration of the originally injected solution. This is probably because of sorption of sodium chloride onto the silica sand and/or the exchange of sodium chloride between the mobile and immobile liquid domains. The fingering and protruding plume shapes in the numerical models constitute instability zones produced by buoyancy-driven flow. Overall, the results have substantiated the influences of hydraulic gradient, boundary condition, artificial recharge, pumping rate and density differences on solute transport through a homogeneous unconfined aquifer. The implications of these findings are important for managing liquid wastes.

  16. Chemical mass transport between fluid fine tailings and the overlying water cover of an oil sands end pit lake

    Science.gov (United States)

    Dompierre, Kathryn A.; Barbour, S. Lee; North, Rebecca L.; Carey, Sean K.; Lindsay, Matthew B. J.

    2017-06-01

    Fluid fine tailings (FFT) are a principal by-product of the bitumen extraction process at oil sands mines. Base Mine Lake (BML)—the first full-scale demonstration oil sands end pit lake (EPL)—contains approximately 1.9 × 108 m3 of FFT stored under a water cover within a decommissioned mine pit. Chemical mass transfer from the FFT to the water cover can occur via two key processes: (1) advection-dispersion driven by tailings settlement; and (2) FFT disturbance due to fluid movement in the water cover. Dissolved chloride (Cl) was used to evaluate the water cover mass balance and to track mass transport within the underlying FFT based on field sampling and numerical modeling. Results indicated that FFT was the dominant Cl source to the water cover and that the FFT is exhibiting a transient advection-dispersion mass transport regime with intermittent disturbance near the FFT-water interface. The advective pore water flux was estimated by the mass balance to be 0.002 m3 m-2 d-1, which represents 0.73 m of FFT settlement per year. However, the FFT pore water Cl concentrations and corresponding mass transport simulations indicated that advection rates and disturbance depths vary between sample locations. The disturbance depth was estimated to vary with location between 0.75 and 0.95 m. This investigation provides valuable insight for assessing the geochemical evolution of the water cover and performance of EPLs as an oil sands reclamation strategy.

  17. Sensitivity of growth characteristics of tidal sand ridges and long bed waves to formulations of bed shear stress, sand transport and tidal forcing : A numerical model study

    NARCIS (Netherlands)

    Yuan, Bing; de Swart, Huib E.; Panadès, Carles

    2016-01-01

    Tidal sand ridges and long bed waves are large-scale bedforms that are observed on continental shelves. They differ in their wavelength and in their orientation with respect to the principal direction of tidal currents. Previous studies indicate that tidal sand ridges appear in areas where tidal

  18. Repair for scattering expansion truncation errors in transport calculations

    International Nuclear Information System (INIS)

    Emmett, M.B.; Childs, R.L.; Rhoades, W.A.

    1980-01-01

    Legendre expansion of angular scattering distributions is usually limited to P 3 in practical transport calculations. This truncation often results in non-trivial errors, especially alternating negative and positive lateral scattering peaks. The effect is especially prominent in forward-peaked situations such as the within-group component of the Compton Scattering of gammas. Increasing the expansion to P 7 often makes the peaks larger and narrower. Ward demonstrated an accurate repair, but his method requires special cross section sets and codes. The DOT IV code provides fully-compatible, but heuristic, repair of the erroneous scattering. An analytical Klein-Nishina estimator, newly available in the MORSE code, allows a test of this method. In the MORSE calculation, particle scattering histories are calculated in the usual way, with scoring by an estimator routine at each collision site. Results for both the conventional P 3 estimator and the analytical estimator were obtained. In the DOT calculation, the source moments are expanded into the directional representation at each iteration. Optionally a sorting procedure removes all negatives, and removes enough small positive values to restore particle conservation. The effect of this is to replace the alternating positive and negative values with positive values of plausible magnitude. The accuracy of those values is examined herein

  19. Parallel processing of two-dimensional Sn transport calculations

    International Nuclear Information System (INIS)

    Uematsu, M.

    1997-01-01

    A parallel processing method for the two-dimensional S n transport code DOT3.5 has been developed to achieve a drastic reduction in computation time. In the proposed method, parallelization is achieved with angular domain decomposition and/or space domain decomposition. The calculational speed of parallel processing by angular domain decomposition is largely influenced by frequent communications between processing elements. To assess parallelization efficiency, sample problems with up to 32 x 32 spatial meshes were solved with a Sun workstation using the PVM message-passing library. As a result, parallel calculation using 16 processing elements, for example, was found to be nine times as fast as that with one processing element. As for parallel processing by geometry segmentation, the influence of processing element communications on computation time is small; however, discontinuity at the segment boundary degrades convergence speed. To accelerate the convergence, an alternate sweep of angular flux in conjunction with space domain decomposition and a two-step rescaling method consisting of segmentwise rescaling and ordinary pointwise rescaling have been developed. By applying the developed method, the number of iterations needed to obtain a converged flux solution was reduced by a factor of 2. As a result, parallel calculation using 16 processing elements was found to be 5.98 times as fast as the original DOT3.5 calculation

  20. Neutron and gamma ray transport calculations in shielding system

    Energy Technology Data Exchange (ETDEWEB)

    Masukawa, Fumihiro; Sakamoto, Hiroki [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-03-01

    In the shields for radiation in nuclear facilities, the penetrating holes of various kinds and irregular shapes are made for the reasons of operation, control and others. These penetrating holes and gaps are filled with air or the substances with relatively small shielding performance, and radiation flows out through them, which is called streaming. As the calculation techniques for the shielding design or analysis related to the streaming problem, there are the calculations by simplified evaluation, transport calculation and Monte Carlo method. In this report, the example of calculation by Monte Carlo method which is represented by MCNP code is discussed. A number of variance reduction techniques which seem effective for the analysis of streaming problem were tried. As to the investigation of the applicability of MCNP code to streaming analysis, the object of analysis which are the concrete walls without hole and with horizontal hole, oblique hole and bent oblique hole, the analysis procedure, the composition of concrete, and the conversion coefficient of dose equivalent, and the results of analysis are reported. As for variance reduction technique, cell importance was adopted. (K.I.)

  1. Neutron and photon transport calculations in fusion system. 2

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Satoshi [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment

    1998-03-01

    On the application of MCNP to the neutron and {gamma}-ray transport calculations for fusion reactor system, the wide range design calculation has been carried out in the engineering design activities for the international thermonuclear fusion experimental reactor (ITER) being developed jointly by Japan, USA, EU and Russia. As the objects of shielding calculation for fusion reactors, there are the assessment of dose equivalent rate for living body shielding and the assessment of the nuclear response for the soundness of in-core structures. In the case that the detailed analysis of complicated three-dimensional shapes is required, the assessment using MCNP has been carried out. Also when the nuclear response of peripheral equipment due to the gap streaming between blanket modules is evaluated with good accuracy, the calculation with MCNP has been carried out. The analyses of the shieldings for blanket modules and NBI port are explained, and the examples of the results of analyses are shown. In the blanket modules, there are penetrating holes and continuous gap. In the case of the NBI port, shielding plug cannot be installed. These facts necessitate the MCNP analysis with high accuracy. (K.I.)

  2. Quantifying the effects of European beach grass on aeolian sand transport over the last century: Bodega Marine Reserve, California

    Science.gov (United States)

    Cesmat, R.; Werner, S.; Smith, M. E.; Riedel, T.; Best, R.; Olyarnik, S.

    2012-12-01

    Introduction of European beach grass (Ammophila arenaria) to coastal dune systems of western North America induced significant changes to the transport and storage of sediment, and consequently the nesting habitat of the western snowy plover (Charadrius alexandrinus nivosus). At the Bodega Marine Reserve and Sonoma Coast State Park, Ammophila was introduced within the ~0.5 km2 dune area in the 1920's to limit the flux of sand through Bodega Harbor and agricultural land. To assess the potential impact of restoration efforts (Ammophila removal) on aeolian sediment flux, we measured sediment flux as a function of wind speeds and ground cover, and used these measurements to parameterize a spatial model for historical sand deposition Fine- to coarse-grained lithic to sub-lithic sand is delivered to the Bodega dune system from Salmon Creek beach, the down-shore terminus of a littoral system fed by the 3846 km2 Russian River catchment, several small (Gaffney ridge) at the edge of the planted region. An average accumulation rate of ~4,000 m3/yr is indicated within the study swath by the preserved sediment volumes. Within the modern dune system, unvegetated areas exhibit 2-3 meter wavelength, ~1/2 meter amplitude mega-ripples, and the uppermost 2-10 cm consists of coarse-sand to granule-sized armor layer. In contrast, grain-sizes in vegetated areas are largely vertically homogenous. Open areas are typically 2-8 meters lower than adjacent vegetated areas, and show evidence for net lowering of the land surface (i.e., exposed fence posts, roots). Conversely, vegetated areas appear prone to sediment accumulation, particularly downwind of unvegetated areas. We measured sand transport using 0.5 m high traps deployed at 18 sites throughout the dune field, and used a linear mixed effects model to predict transport rate as a function of wind and ground cover class, taking into account random effects of sampling date and repeated measurements at each site. The analysis indicates up

  3. Robust volume calculations for Constructive Solid Geometry (CSG) components in Monte Carlo transport calculations

    Energy Technology Data Exchange (ETDEWEB)

    Millman, D. L. [Dept. of Computer Science, Univ. of North Carolina at Chapel Hill (United States); Griesheimer, D. P.; Nease, B. R. [Bechtel Marine Propulsion Corporation, Bertis Atomic Power Laboratory (United States); Snoeyink, J. [Dept. of Computer Science, Univ. of North Carolina at Chapel Hill (United States)

    2012-07-01

    In this paper we consider a new generalized algorithm for the efficient calculation of component object volumes given their equivalent constructive solid geometry (CSG) definition. The new method relies on domain decomposition to recursively subdivide the original component into smaller pieces with volumes that can be computed analytically or stochastically, if needed. Unlike simpler brute-force approaches, the proposed decomposition scheme is guaranteed to be robust and accurate to within a user-defined tolerance. The new algorithm is also fully general and can handle any valid CSG component definition, without the need for additional input from the user. The new technique has been specifically optimized to calculate volumes of component definitions commonly found in models used for Monte Carlo particle transport simulations for criticality safety and reactor analysis applications. However, the algorithm can be easily extended to any application which uses CSG representations for component objects. The paper provides a complete description of the novel volume calculation algorithm, along with a discussion of the conjectured error bounds on volumes calculated within the method. In addition, numerical results comparing the new algorithm with a standard stochastic volume calculation algorithm are presented for a series of problems spanning a range of representative component sizes and complexities. (authors)

  4. Robust volume calculations for Constructive Solid Geometry (CSG) components in Monte Carlo transport calculations

    International Nuclear Information System (INIS)

    Millman, D. L.; Griesheimer, D. P.; Nease, B. R.; Snoeyink, J.

    2012-01-01

    In this paper we consider a new generalized algorithm for the efficient calculation of component object volumes given their equivalent constructive solid geometry (CSG) definition. The new method relies on domain decomposition to recursively subdivide the original component into smaller pieces with volumes that can be computed analytically or stochastically, if needed. Unlike simpler brute-force approaches, the proposed decomposition scheme is guaranteed to be robust and accurate to within a user-defined tolerance. The new algorithm is also fully general and can handle any valid CSG component definition, without the need for additional input from the user. The new technique has been specifically optimized to calculate volumes of component definitions commonly found in models used for Monte Carlo particle transport simulations for criticality safety and reactor analysis applications. However, the algorithm can be easily extended to any application which uses CSG representations for component objects. The paper provides a complete description of the novel volume calculation algorithm, along with a discussion of the conjectured error bounds on volumes calculated within the method. In addition, numerical results comparing the new algorithm with a standard stochastic volume calculation algorithm are presented for a series of problems spanning a range of representative component sizes and complexities. (authors)

  5. Parallel MCNP Monte Carlo transport calculations with MPI

    International Nuclear Information System (INIS)

    Wagner, J.C.; Haghighat, A.

    1996-01-01

    The steady increase in computational performance has made Monte Carlo calculations for large/complex systems possible. However, in order to make these calculations practical, order of magnitude increases in performance are necessary. The Monte Carlo method is inherently parallel (particles are simulated independently) and thus has the potential for near-linear speedup with respect to the number of processors. Further, the ever-increasing accessibility of parallel computers, such as workstation clusters, facilitates the practical use of parallel Monte Carlo. Recognizing the nature of the Monte Carlo method and the trends in available computing, the code developers at Los Alamos National Laboratory implemented the message-passing general-purpose Monte Carlo radiation transport code MCNP (version 4A). The PVM package was chosen by the MCNP code developers because it supports a variety of communication networks, several UNIX platforms, and heterogeneous computer systems. This PVM version of MCNP has been shown to produce speedups that approach the number of processors and thus, is a very useful tool for transport analysis. Due to software incompatibilities on the local IBM SP2, PVM has not been available, and thus it is not possible to take advantage of this useful tool. Hence, it became necessary to implement an alternative message-passing library package into MCNP. Because the message-passing interface (MPI) is supported on the local system, takes advantage of the high-speed communication switches in the SP2, and is considered to be the emerging standard, it was selected

  6. Error reduction techniques for Monte Carlo neutron transport calculations

    International Nuclear Information System (INIS)

    Ju, J.H.W.

    1981-01-01

    Monte Carlo methods have been widely applied to problems in nuclear physics, mathematical reliability, communication theory, and other areas. The work in this thesis is developed mainly with neutron transport applications in mind. For nuclear reactor and many other applications, random walk processes have been used to estimate multi-dimensional integrals and obtain information about the solution of integral equations. When the analysis is statistically based such calculations are often costly, and the development of efficient estimation techniques plays a critical role in these applications. All of the error reduction techniques developed in this work are applied to model problems. It is found that the nearly optimal parameters selected by the analytic method for use with GWAN estimator are nearly identical to parameters selected by the multistage method. Modified path length estimation (based on the path length importance measure) leads to excellent error reduction in all model problems examined. Finally, it should be pointed out that techniques used for neutron transport problems may be transferred easily to other application areas which are based on random walk processes. The transport problems studied in this dissertation provide exceptionally severe tests of the error reduction potential of any sampling procedure. It is therefore expected that the methods of this dissertation will prove useful in many other application areas

  7. Phase transition behavior of sediment transport at the sand-mud interface, across scales from flumes to the large rivers

    Science.gov (United States)

    Ma, H.; Nittrouer, J. A.; Wu, B.; Zhang, Y.; Mohrig, D. C.; Lamb, M. P.; Wang, Y.; Fu, X.; Moodie, A. J.; Naito, K.; Parker, G.

    2017-12-01

    Sediment dispersal and deposition creates deltaic landscapes, establishes coastlines, and produces fertile floodplains, all of which serve as critical landforms inhabited by a large proportion of humankind. If poorly managed, sediment loads in these environments can elevate and clog channels, thereby enhancing hazards such as severe flooding. Predictive descriptions of sediment loads, however, are not well constrained, especially for fine-grained (silt and very-fine sand) dispersal systems, which often include river deltas and coastlines. Here, we show efforts to collect and analyze an extensive sediment load database for fine-grained channels, spanning from small flume experiments to large rivers, in order to evaluate the nature of sediment flux. Our analyses determined that sediment transport exhibits two distinct transport phases, separated by a discontinuous transition, whereby sediment flux differs by one to two orders of magnitude. It is determined that the transition responds to the bed material grain size, and we propose a phase diagram based on this metric alone. These findings help elucidate why previous theories of sediment transport at the sand-silt interface, which are typically continuous, are not able to give satisfactory predictions across different scales and environments. Our work serves to help evaluate anthropic influences on rivers, deltas, and coastlines, and can be applied to better constrain sediment flux of paleo-fluvial systems found on Earth and Mars. For example, in situ measurements of sediment flux for the silty-sandy bed of the lower Yellow River, China, validate the aforementioned phase transition behavior, and illustrate that the channel resides near the transition of high to low efficiency transport modes. Recent dam construction and resulting downstream coarsening of the bed via armoring, however, might lead to the unintended consequence of enhancing flood risk by driving the system to a low efficiency transport mode with high

  8. Calculated characteristics of subcritical assembly with anisotropic transport of neutrons

    International Nuclear Information System (INIS)

    Gorin, N.V.; Lipilina, E.N.; Lyutov, V.D.; Saukov, A.I.

    2003-01-01

    There was considered possibility of creating enough sub-critical system that multiply neutron fluence from a primary source by many orders. For assemblies with high neutron tie between parts, it is impossible. That is why there was developed a construction consisting of many units (cascades) having weak feedback with preceding cascades. The feedback attenuation was obtained placing layers of slow neutron absorber and moderators between the cascades of fission material. Anisotropy of fast neutron transport through the layers was used. The system consisted of many identical cascades aligning one by another. Each cascade consists of layers of moderator, fissile material and absorber of slow neutrons. The calculations were carried out using the code MCNP.4a with nuclear data library ENDF/B5. In this construction neutrons spread predominantly in one direction multiplying in each next fissile layer, and they attenuate considerably in the opposite direction. In a calculated construction, multiplication factor of one cascade is about 1.5 and multiplication factor of whole construction composed of n cascades is 1.5 n . Calculated keff value is 0.9 for one cascade and does not exceed 0.98 for a system containing any number of cascades. Therefore the assembly is always sub-critical and therefore it is safe in respect of criticality. There was considered using such a sub-critical assembly to create a powerful neutron fluence for neutron boron-capturing therapy. The system merits and demerits were discussed. (authors)

  9. Mimicking Retention and Transport of Rotavirus and Adenovirus in Sand Media Using DNA-labeled, Protein-coated Silica Nanoparticles

    Science.gov (United States)

    Pang, Liping; Farkas, Kata; Bennett, Grant; Varsani, Arvind; Easingwood, Richard; Tilley, Richard; Nowostawska, Urszula; Lin, Susan

    2014-05-01

    Rotavirus (RoV) and adenovirus (AdV) are important viral pathogens for the risk analysis of drinking water. Despite this, little is known about their retention and transport behaviors in porous media (e.g. sand filtered used for water treatment and groundwater aquifers due to a lack of representative surrogates. In this study, we developed RoV and AdV surrogates by covalently coating 70-nm sized silica nanoparticles with specific proteins and a DNA marker for sensitive detection. Filtration experiments using beach sand columns demonstrated the similarity of the surrogates' concentrations, attachment, and filtration efficiencies to the target viruses. The surrogates showed the same magnitude of concentration reduction as the viruses. Conversely, MS2 phage (a traditional virus model) over predicted concentrations of AdV and RoV by 1- and 2-orders of magnitude, respectively. The surrogates remained stable in size, surface charge and DNA concentration for at least one year. They can be easily and rapidly detected at concentrations down to one particle per PCR reaction and are readily detectable in natural waters and even in effluent. With up-scaling validation in pilot trials, the surrogates can be a useful cost-effective new tool for studying virus retention and transport in porous media, e.g. for assessing filter efficiency in water and wastewater treatment, tracking virus migration in groundwater after effluent land disposal, and establishing safe setback distances for groundwater protection.

  10. Sand dune tracking from satellite laser altimetry

    Science.gov (United States)

    Dabboor, Mohammed

    Substantial problems arise from sand movement in arid and semi-arid countries. Sand poses a threat to infrastructure, agricultural and urban areas. These issues are caused by the encroachment of sand on roads and railway tracks, farmland, towns and villages, and airports, to name a few. Sand movement highly depends on geomorphology including vegetation cover, shape and height of the terrain, and grain size of the sand. However, wind direction and speed are the most important factors that affect efficient sand movement. The direction of the movement depends on the main direction of the wind, but it has been shown that a minimum wind speed is required, e.g. wind gusts, to initiate sand transport. This fact prevents a simple calculation of sand transport from conventional wind data as wind records rarely contain sub-minute intervals masking out any wind gusts. An alternative of predicting sand transport is the direct observation of sand advance by in situ measurements or via satellite. Until recently, satellite imagery was the only means to compare dune shape and position for predicting dune migration over several years. In 2003, the NASA laser altimetry mission ICESat became operational and monitors elevations over all surface types including sand dunes with an accuracy of about 10-20 cm. In this study, ICESat observations from repeat tracks (tracks overlapping eachother within 50 m) are used to derive sand dune advance and direction. The method employs a correlation of the elevation profiles over several dunes and was sucessfully validated with synthetic data. The accuracy of this method is 5 meters of dune advance. One of the most active areas exhibiting sand and dune movement is the area of the Arabian Peninsula. Approximately one-third of the Arabian Peninsula is covered by sand dunes. Different wind regimes (Shamal, Kaus) cause sand dune movement in the selected study area in the eastern part of the Arabian Peninsula between 20-25 degrees North and 45-55 degrees

  11. Calculation of Transport Coefficients in Dense Plasma Mixtures

    Science.gov (United States)

    Haxhimali, T.; Cabot, W. H.; Caspersen, K. J.; Greenough, J.; Miller, P. L.; Rudd, R. E.; Schwegler, E. R.

    2011-10-01

    We use classical molecular dynamics (MD) to estimate species diffusivity and viscosity in mixed dense plasmas. The Yukawa potential is used to describe the screened Coulomb interaction between the ions. This potential has been used widely, providing the basis for models of dense stellar materials, inertial confined plasmas, and colloidal particles in electrolytes. We calculate transport coefficients in equilibrium simulations using the Green- Kubo relation over a range of thermodynamic conditions including the viscosity and the self - diffusivity for each component of the mixture. The interdiffusivity (or mutual diffusivity) can then be related to the self-diffusivities by using a generalization of the Darken equation. We have also employed non-equilibrium MD to estimate interdiffusivity during the broadening of the interface between two regions each with a high concentration of either species. Here we present results for an asymmetric mixture between Ar and H. These can easily be extended to other plasma mixtures. A main motivation for this study is to develop accurate transport models that can be incorporated into the hydrodynamic codes to study hydrodynamic instabilities. We use classical molecular dynamics (MD) to estimate species diffusivity and viscosity in mixed dense plasmas. The Yukawa potential is used to describe the screened Coulomb interaction between the ions. This potential has been used widely, providing the basis for models of dense stellar materials, inertial confined plasmas, and colloidal particles in electrolytes. We calculate transport coefficients in equilibrium simulations using the Green- Kubo relation over a range of thermodynamic conditions including the viscosity and the self - diffusivity for each component of the mixture. The interdiffusivity (or mutual diffusivity) can then be related to the self-diffusivities by using a generalization of the Darken equation. We have also employed non-equilibrium MD to estimate interdiffusivity during

  12. Humic acid facilitates the transport of ARS-labeled hydroxyapatite nanoparticles in iron oxyhydroxide-coated sand

    Science.gov (United States)

    Wang, Dengjun; Bradford, Scott A.; Harvey, Ronald W.; Gao, Bin; Cang, Long; Zhou, Dongmei

    2012-01-01

    Hydroxyapatite nanoparticles (nHAP) have been widely used to remediate soil and wastewater contaminated with metals and radionuclides. However, our understanding of nHAP transport and fate is limited in natural environments that exhibit significant variability in solid and solution chemistry. The transport and retention kinetics of Alizarin red S (ARS)-labeled nHAP were investigated in water-saturated packed columns that encompassed a range of humic acid concentrations (HA, 0–10 mg L–1), fractional surface coverage of iron oxyhydroxide coatings on sand grains (λ, 0–0.75), and pH (6.0–10.5). HA was found to have a marked effect on the electrokinetic properties of ARS-nHAP, and on the transport and retention of ARS-nHAP in granular media. The transport of ARS-nHAP was found to increase with increasing HA concentration because of enhanced colloidal stability and the reduced aggregate size. When HA = 10 mg L–1, greater ARS-nHAP attachment occurred with increasing λ because of increased electrostatic attraction between negatively charged nanoparticles and positively charged iron oxyhydroxides, although alkaline conditions (pH 8.0 and 10.5) reversed the surface charge of the iron oxyhydroxides and therefore decreased deposition. The retention profiles of ARS-nHAP exhibited a hyperexponential shape for all test conditions, suggesting some unfavorable attachment conditions. Retarded breakthrough curves occurred in sands with iron oxyhydroxide coatings because of time-dependent occupation of favorable deposition sites. Consideration of the above effects is necessary to improve remediation efficiency of nHAP for metals and actinides in soils and subsurface environments.

  13. Numerical shoves and countershoves in electron transport calculations

    International Nuclear Information System (INIS)

    Filippone, W.L.

    1986-01-01

    The justification for applying the relatively complex (compared to S/sub n/) streaming ray (SR) algorithm to electron transport problems is its potential for doing rapid and accurate calculations. Because of the Lagrangian treatment of the cell-uncollided electrons, the only significant sources of error are the numerical treatment of the scattering kernel and the spatial differencing scheme used for the cell-collided electrons. Considerable progress has been made in reducing the former source of error. If one is willing to pay the price, the latter source of error can be reduced to any desired level by refining the mesh size or by using high-order differencing schemes. Here the method of numerical shoves and countershoves is introduced, which reduces spatial differencing errors using relatively little additional computational effort

  14. Transport of microbial tracers in clean and organically contaminated silica sand in laboratory columns compared with their transport in the field

    International Nuclear Information System (INIS)

    Weaver, Louise; Sinton, Lester W.; Pang, Liping; Dann, Rod; Close, Murray

    2013-01-01

    Waste disposal on land and the consequent transport of bacterial and viral pathogens in soils and aquifers are of major concern worldwide. Pathogen transport can be enhanced in the presence of organic matter due to occupation of attachment sites in the aquifer materials thus preventing pathogen attachment leading to their faster transport for longer distances. Laboratory column studies were carried out to investigate the effect of organic matter, in the form of dissolved organic carbon (DOC), on the transport of Escherichia coli and MS2 phage in saturated clean silica sand. Transport rates of these microbial tracers were also studied in a contaminated field site. Laboratory column studies showed that low concentrations (0.17 mg L −1 ) of DOC had little effect on E. coli J6-2 removal and slightly reduced the attachment of MS2 phage. After progressive conditioning of the column with DOC (1.7 mg L −1 and 17 mg L −1 ), neither E. coli J6-2 nor MS2 phage showed any attachment and recovery rates increased dramatically (up to 100%). The results suggest that DOC can affect the transport rates of microbial contaminants. For E. coli J6-2 the predominant effect appeared to be an increase in the secondary energy minimum leading to an increase in E. coli attachment initially. However, after 17 mg L −1 DOC conditioning of the silica sand no attachment of E. coli was observed as the DOC took up attachment sites in the porous media. MS2 phage appeared to be affected predominantly by out-competition of binding sites in the clean silica sand and a steady reduction in attachment was observed as the DOC conditioning increased. Field study showed a high removal of both E. coli and MS2 phage, although E. coli was removed at a lower rate than MS2 phage. In the field it is likely that a combination of effects are seen as the aquifer material will be heterogeneous in its surface nanoscale properties, demonstrated by the differing removal of E. coli and MS2 phage compared to the

  15. Discrete-ordinates electron transport calculations using standard neutron transport codes

    International Nuclear Information System (INIS)

    Morel, J.E.

    1979-01-01

    The primary purpose of this work was to develop a method for using standard neutron transport codes to perform electron transport calculations. The method is to develop approximate electron cross sections which are sufficiently well-behaved to be treated with standard S/sub n/ methods, but which nonetheless yield flux solutions which are very similar to the exact solutions. The main advantage of this approach is that, once the approximate cross sections are constructed, their multigroup Legendre expansion coefficients can be calculated and input to any standard S/sub n/ code. Discrete-ordinates calculations were performed to determine the accuracy of the flux solutions for problems corresponding to 1.0-MeV electrons incident upon slabs of aluminum and gold. All S/sub n/ calculations were compared with similar calculations performed with an electron Monte Carlo code, considered to be exact. In all cases, the discrete-ordinates solutions for integral flux quantities (i.e., scalar flux, energy deposition profiles, etc.) are generally in agreement with the Monte Carlo solutions to within approximately 5% or less. The central conclusion is that integral electron flux quantities can be efficiently and accurately calculated using standard S/sub n/ codes in conjunction with approximate cross sections. Furthermore, if group structures and approximate cross section construction are optimized, accurate differential flux energy spectra may also be obtainable without having to use an inordinately large number of energy groups. 1 figure

  16. Transport and mass exchange processes in sand and gravel aquifers (v.1)

    International Nuclear Information System (INIS)

    Moltyaner, G.

    1990-01-01

    The objectives of this conference were to exchange information on promising field measurement techniques used for the characterization of spatial variability of geologic formations and on new methods used for quantifying the effect of spatial variability on groundwater flow and transport of materials; to discuss novel developments in the theory of transport processes and simulation methods; and to present views and opinions on future initiatives and directions in the design of large-scale field tracer experiments and the development of conceptual and mathematical models of transport and mass exchange processes. The 46 papers presented in these proceedings are divided into six sections: field studies of transport processes; groundwater tracers and novel field measurement techniques; promising methods and field measurement techniques for quantifying the effect of geological heterogeneities on groundwater flow and transport; novel developments in the theory of transport processes; numerical modelling of transport and mass exchange processes; and field and modelling studies of mass exchange processes. (L.L.)

  17. Calculation of Selected Emissions from Transport Services in Road Public Transport

    Directory of Open Access Journals (Sweden)

    Konečný Vladimír

    2017-01-01

    Full Text Available The article deals with road public transport and its impact on the environment. According to the methodology given in EN 16258, CO2 emission value has been calculated. The input data for the calculation and the results are shown in the tables. The declaration is created according to STN CEN / TR 14310, which contains recommendations for compiling environmental reports. Finally, the comparison of the environmental impact of a bus and a passenger car, when converted to one passenger, bus has a lower CO2 emission than a passenger car in that section.

  18. Tritium transport calculations for the IFMIF Tritium Release Test Module

    Energy Technology Data Exchange (ETDEWEB)

    Freund, Jana, E-mail: jana.freund@kit.edu; Arbeiter, Frederik; Abou-Sena, Ali; Franza, Fabrizio; Kondo, Keitaro

    2014-10-15

    Highlights: • Delivery of material data for the tritium balance in the IFMIF Tritium Release Test Module. • Description of the topological models in TMAP and the adapted fusion-devoted Tritium Permeation Code (FUS-TPC). • Computation of release of tritium from the breeder solid material into the purge gas. • Computation of the loss of tritium over the capsule wall, rig hull, container wall and purge gas return line. - Abstract: The IFMIF Tritium Release Test Module (TRTM) is projected to measure online the tritium release from breeder ceramics and beryllium pebble beds under high energy neutron irradiation. Tritium produced in the pebble bed of TRTM is swept out continuously by a purge gas flow, but can also permeate into the module's metal structures, and can be lost by permeation to the environment. According analyses on the tritium inventory are performed to support IFMIF plant safety studies, and to support the experiment planning. This paper describes the necessary elements for calculation of the tritium transport in the Tritium Release Test Module as follows: (i) applied equations for the tritium balance, (ii) material data from literature and (iii) the topological models and the computation of the five different cases; namely release of tritium from the breeder solid material into the purge gas, loss of tritium over the capsule wall, rig hull, container wall and purge gas return line in detail. The problem of tritium transport in the TRTM has been studied and analyzed by the Tritium Migration Analysis Program (TMAP) and the adapted fusion-devoted Tritium Permeation Code (FUS-TPC). TMAP has been developed at INEEL and now exists in Version 7. FUS-TPC Code was written in MATLAB with the original purpose to study the tritium transport in Helium Cooled Lead Lithium (HCLL) blanket and in a later version the Helium Cooled Pebble Bed (HCPB) blanket by [6] (Franza, 2012). This code has been further modified to be applicable to the TRTM. Results from the

  19. Tritium transport calculations for the IFMIF Tritium Release Test Module

    International Nuclear Information System (INIS)

    Freund, Jana; Arbeiter, Frederik; Abou-Sena, Ali; Franza, Fabrizio; Kondo, Keitaro

    2014-01-01

    Highlights: • Delivery of material data for the tritium balance in the IFMIF Tritium Release Test Module. • Description of the topological models in TMAP and the adapted fusion-devoted Tritium Permeation Code (FUS-TPC). • Computation of release of tritium from the breeder solid material into the purge gas. • Computation of the loss of tritium over the capsule wall, rig hull, container wall and purge gas return line. - Abstract: The IFMIF Tritium Release Test Module (TRTM) is projected to measure online the tritium release from breeder ceramics and beryllium pebble beds under high energy neutron irradiation. Tritium produced in the pebble bed of TRTM is swept out continuously by a purge gas flow, but can also permeate into the module's metal structures, and can be lost by permeation to the environment. According analyses on the tritium inventory are performed to support IFMIF plant safety studies, and to support the experiment planning. This paper describes the necessary elements for calculation of the tritium transport in the Tritium Release Test Module as follows: (i) applied equations for the tritium balance, (ii) material data from literature and (iii) the topological models and the computation of the five different cases; namely release of tritium from the breeder solid material into the purge gas, loss of tritium over the capsule wall, rig hull, container wall and purge gas return line in detail. The problem of tritium transport in the TRTM has been studied and analyzed by the Tritium Migration Analysis Program (TMAP) and the adapted fusion-devoted Tritium Permeation Code (FUS-TPC). TMAP has been developed at INEEL and now exists in Version 7. FUS-TPC Code was written in MATLAB with the original purpose to study the tritium transport in Helium Cooled Lead Lithium (HCLL) blanket and in a later version the Helium Cooled Pebble Bed (HCPB) blanket by [6] (Franza, 2012). This code has been further modified to be applicable to the TRTM. Results from the

  20. Analysis of wind-blown sand movement over transverse dunes.

    Science.gov (United States)

    Jiang, Hong; Huang, Ning; Zhu, Yuanjian

    2014-12-01

    Wind-blown sand movement often occurs in a very complicated desert environment where sand dunes and ripples are the basic forms. However, most current studies on the theoretic and numerical models of wind-blown sand movement only consider ideal conditions such as steady wind velocity, flat sand surface, etc. In fact, the windward slope gradient plays a great role in the lift-off and sand particle saltation. In this paper, we propose a numerical model for the coupling effect between wind flow and saltating sand particles to simulate wind-blown sand movement over the slope surface and use the SIMPLE algorithm to calculate wind flow and simulate sands transport by tracking sand particle trajectories. We furthermore compare the result of numerical simulation with wind tunnel experiments. These results prove that sand particles have obvious effect on wind flow, especially that over the leeward slope. This study is a preliminary study on windblown sand movement in a complex terrain, and is of significance in the control of dust storms and land desertification.

  1. Modeling and sensitivity analysis on the transport of aluminum oxide nanoparticles in saturated sand: effects of ionic strength, flow rate, and nanoparticle concentration.

    Science.gov (United States)

    Rahman, Tanzina; Millwater, Harry; Shipley, Heather J

    2014-11-15

    Aluminum oxide nanoparticles have been widely used in various consumer products and there are growing concerns regarding their exposure in the environment. This study deals with the modeling, sensitivity analysis and uncertainty quantification of one-dimensional transport of nano-sized (~82 nm) aluminum oxide particles in saturated sand. The transport of aluminum oxide nanoparticles was modeled using a two-kinetic-site model with a blocking function. The modeling was done at different ionic strengths, flow rates, and nanoparticle concentrations. The two sites representing fast and slow attachments along with a blocking term yielded good agreement with the experimental results from the column studies of aluminum oxide nanoparticles. The same model was used to simulate breakthrough curves under different conditions using experimental data and calculated 95% confidence bounds of the generated breakthroughs. The sensitivity analysis results showed that slow attachment was the most sensitive parameter for high influent concentrations (e.g. 150 mg/L Al2O3) and the maximum solid phase retention capacity (related to blocking function) was the most sensitive parameter for low concentrations (e.g. 50 mg/L Al2O3). Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Transport calculations with the BALDUR code. Pt. 1

    International Nuclear Information System (INIS)

    Lackner, K.; Wunderlich, R.

    1979-12-01

    1-d transport calculations with the BALDUR-code are described for predicting the performance of ZEPHYR under D-T operation. Results presented in this report refer to the impurity-free case, and ion and electron heat conduction losses described by CHIsub(i) = neoclassical and CHIsub(e) = 6.25 x 10 17 /nsub(e) (cgs-units). A simple refuelling scenario taking account of the density limit for the ohmic heating phase, the contribution of neutral injection to the refuelling rate and the need for an approximately balanced D-T mixture at the instance of ignition is adopted. The heating scenario assumes a neutral injection beam with 160 keV particle energy in the main component, with a duration of 1.1 sec. Major radius compression by a factor of 1.5 starts 1 sec after the onset of neutral injection and lasts 100 msec. For this standard scenario the performance is studied in different density regimes and for different neutral injection powers. Under the above assumption ignition is predicted for total neutral injection powers < approx. 16 MW (9.6 MW in the main energy component) and average total β-values < 2.8%. Results including impurities, alternative scaling laws, and deviations from the standard scenario will be presented in another report. (orig.) 891 GG/orig. 892 HIS

  3. Considerations of beta and electron transport in internal dose calculations

    International Nuclear Information System (INIS)

    Bolch, W.E.; Poston, J.W. Sr.

    1990-12-01

    Ionizing radiation has broad uses in modern science and medicine. These uses often require the calculation of energy deposition in the irradiated media and, usually, the medium of interest is the human body. Energy deposition from radioactive sources within the human body and the effects of such deposition are considered in the field of internal dosimetry. In July of 1988, a three-year research project was initiated by the Nuclear Engineering Department at Texas A ampersand M University under the sponsorship of the US Department of Energy. The main thrust of the research was to consider, for the first time, the detailed spatial transport of electron and beta particles in the estimation of average organ doses under the Medical Internal Radiation Dose (MIRD) schema. At the present time (December of 1990), research activities are continuing within five areas. Several are new initiatives begun within the second or third year of the current contract period. They include: (1) development of small-scale dosimetry; (2) development of a differential volume phantom; (3) development of a dosimetric bone model; (4) assessment of the new ICRP lung model; and (5) studies into the mechanisms of DNA damage. A progress report is given for each of these tasks within the Comprehensive Report. In each use, preliminary results are very encouraging and plans for further research are detailed within this document. 22 refs., 13 figs., 1 tab

  4. Considerations of beta and electron transport in internal dose calculations

    Energy Technology Data Exchange (ETDEWEB)

    Bolch, W.E.; Poston, J.W. Sr.

    1990-12-01

    Ionizing radiation has broad uses in modern science and medicine. These uses often require the calculation of energy deposition in the irradiated media and, usually, the medium of interest is the human body. Energy deposition from radioactive sources within the human body and the effects of such deposition are considered in the field of internal dosimetry. In July of 1988, a three-year research project was initiated by the Nuclear Engineering Department at Texas A M University under the sponsorship of the US Department of Energy. The main thrust of the research was to consider, for the first time, the detailed spatial transport of electron and beta particles in the estimation of average organ doses under the Medical Internal Radiation Dose (MIRD) schema. At the present time (December of 1990), research activities are continuing within five areas. Several are new initiatives begun within the second or third year of the current contract period. They include: (1) development of small-scale dosimetry; (2) development of a differential volume phantom; (3) development of a dosimetric bone model; (4) assessment of the new ICRP lung model; and (5) studies into the mechanisms of DNA damage. A progress report is given for each of these tasks within the Comprehensive Report. In each case, preliminary results are very encouraging and plans for further research are detailed within this document.

  5. Considerations of beta and electron transport in internal dose calculations

    Energy Technology Data Exchange (ETDEWEB)

    Bolch, W.E.; Poston, J.W. Sr. (Texas A and M Univ., College Station, TX (USA). Dept. of Nuclear Engineering)

    1990-12-01

    Ionizing radiation has broad uses in modern science and medicine. These uses often require the calculation of energy deposition in the irradiated media and, usually, the medium of interest is the human body. Energy deposition from radioactive sources within the human body and the effects of such deposition are considered in the field of internal dosimetry. In July of 1988, a three-year research project was initiated by the Nuclear Engineering Department at Texas A M University under the sponsorship of the US Department of Energy. The main thrust of the research was to consider, for the first time, the detailed spatial transport of electron and beta particles in the estimation of average organ doses under the Medical Internal Radiation Dose (MIRD) schema. At the present time (December of 1990), research activities are continuing within five areas. Several are new initiatives begun within the second or third year of the current contract period. They include: (1) development of small-scale dosimetry; (2) development of a differential volume phantom; (3) development of a dosimetric bone model; (4) assessment of the new ICRP lung model; and (5) studies into the mechanisms of DNA damage. A progress report is given for each of these tasks within the Comprehensive Report. In each use, preliminary results are very encouraging and plans for further research are detailed within this document. 22 refs., 13 figs., 1 tab.

  6. Considerations of beta and electron transport in internal dose calculations

    International Nuclear Information System (INIS)

    Bolch, W.E.; Poston, J.W. Sr.

    1990-12-01

    Ionizing radiation has broad uses in modern science and medicine. These uses often require the calculation of energy deposition in the irradiated media and, usually, the medium of interest is the human body. Energy deposition from radioactive sources within the human body and the effects of such deposition are considered in the field of internal dosimetry. In July of 1988, a three-year research project was initiated by the Nuclear Engineering Department at Texas A ampersand M University under the sponsorship of the US Department of Energy. The main thrust of the research was to consider, for the first time, the detailed spatial transport of electron and beta particles in the estimation of average organ doses under the Medical Internal Radiation Dose (MIRD) schema. At the present time (December of 1990), research activities are continuing within five areas. Several are new initiatives begun within the second or third year of the current contract period. They include: (1) development of small-scale dosimetry; (2) development of a differential volume phantom; (3) development of a dosimetric bone model; (4) assessment of the new ICRP lung model; and (5) studies into the mechanisms of DNA damage. A progress report is given for each of these tasks within the Comprehensive Report. In each case, preliminary results are very encouraging and plans for further research are detailed within this document

  7. User's manual for sustainable transportation performance measures calculator

    Science.gov (United States)

    2010-08-01

    Sustainable transportation can be viewed as the provision of safe, effective, and efficient : access and mobility into the future while considering economic, social, and environmental : needs. For the Texas Department of Transportation (TxDOT) to ass...

  8. Harmonizing carbon footprint calculation for freight transport chains

    NARCIS (Netherlands)

    Lewis, A.; Ehrler, V.; Auvinen, H.; Maurer, H.; Davydenko, I.; Burmeister, A.; Seidel, S.; Lischke, A.; Kiel, J.

    2016-01-01

    The European Commission has set as a target a reduction of 60% in transport greenhouse gas emissions by 2050 [EC 11]. This includes freight transport emissions, which present a particular challenge due to the forecast increase in goods transport linked to future economic growth, the current trend of

  9. Goal based mesh adaptivity for fixed source radiation transport calculations

    International Nuclear Information System (INIS)

    Baker, C.M.J.; Buchan, A.G.; Pain, C.C.; Tollit, B.S.; Goffin, M.A.; Merton, S.R.; Warner, P.

    2013-01-01

    Highlights: ► Derives an anisotropic goal based error measure for shielding problems. ► Reduces the error in the detector response by optimizing the finite element mesh. ► Anisotropic adaptivity captures material interfaces using fewer elements than AMR. ► A new residual based on the numerical scheme chosen forms the error measure. ► The error measure also combines the forward and adjoint metrics in a novel way. - Abstract: In this paper, the application of goal based error measures for anisotropic adaptivity applied to shielding problems in which a detector is present is explored. Goal based adaptivity is important when the response of a detector is required to ensure that dose limits are adhered to. To achieve this, a dual (adjoint) problem is solved which solves the neutron transport equation in terms of the response variables, in this case the detector response. The methods presented can be applied to general finite element solvers, however, the derivation of the residuals are dependent on the underlying finite element scheme which is also discussed in this paper. Once error metrics for the forward and adjoint solutions have been formed they are combined using a novel approach. The two metrics are combined by forming the minimum ellipsoid that covers both the error metrics rather than taking the maximum ellipsoid that is contained within the metrics. Another novel approach used within this paper is the construction of the residual. The residual, used to form the goal based error metrics, is calculated from the subgrid scale correction which is inherent in the underlying spatial discretisation employed

  10. How tides and waves enhance aeolian sediment transport at the sand motor mega-nourishment

    NARCIS (Netherlands)

    Hoonhout, B.M.; Luijendijk, A.P.; de Vries, S.; Roelvink, D.; Aagaard, T.; Deigaard, R.; Fuhrman, D.

    2017-01-01

    Expanding knowledge concerning the close entanglement between subtidal and subaerial processes in coastal environments initiated the development of the open-source Windsurf modeling framework that enables us to simulate
    multi-fraction sediment transport due to subtidal and subaerial processes

  11. Transport of microbial tracers in clean and organically contaminated silica sand in laboratory columns compared with their transport in the field

    Energy Technology Data Exchange (ETDEWEB)

    Weaver, Louise, E-mail: louise.weaver@esr.cri.nz; Sinton, Lester W.; Pang, Liping; Dann, Rod; Close, Murray

    2013-01-15

    Waste disposal on land and the consequent transport of bacterial and viral pathogens in soils and aquifers are of major concern worldwide. Pathogen transport can be enhanced in the presence of organic matter due to occupation of attachment sites in the aquifer materials thus preventing pathogen attachment leading to their faster transport for longer distances. Laboratory column studies were carried out to investigate the effect of organic matter, in the form of dissolved organic carbon (DOC), on the transport of Escherichia coli and MS2 phage in saturated clean silica sand. Transport rates of these microbial tracers were also studied in a contaminated field site. Laboratory column studies showed that low concentrations (0.17 mg L{sup −1}) of DOC had little effect on E. coli J6-2 removal and slightly reduced the attachment of MS2 phage. After progressive conditioning of the column with DOC (1.7 mg L{sup −1} and 17 mg L{sup −1}), neither E. coli J6-2 nor MS2 phage showed any attachment and recovery rates increased dramatically (up to 100%). The results suggest that DOC can affect the transport rates of microbial contaminants. For E. coli J6-2 the predominant effect appeared to be an increase in the secondary energy minimum leading to an increase in E. coli attachment initially. However, after 17 mg L{sup −1} DOC conditioning of the silica sand no attachment of E. coli was observed as the DOC took up attachment sites in the porous media. MS2 phage appeared to be affected predominantly by out-competition of binding sites in the clean silica sand and a steady reduction in attachment was observed as the DOC conditioning increased. Field study showed a high removal of both E. coli and MS2 phage, although E. coli was removed at a lower rate than MS2 phage. In the field it is likely that a combination of effects are seen as the aquifer material will be heterogeneous in its surface nanoscale properties, demonstrated by the differing removal of E. coli and MS2 phage

  12. Computer program for calculating thermodynamic and transport properties of fluids

    Science.gov (United States)

    Hendricks, R. C.; Braon, A. K.; Peller, I. C.

    1975-01-01

    Computer code has been developed to provide thermodynamic and transport properties of liquid argon, carbon dioxide, carbon monoxide, fluorine, helium, methane, neon, nitrogen, oxygen, and parahydrogen. Equation of state and transport coefficients are updated and other fluids added as new material becomes available.

  13. Density functional theory calculations of charge transport properties ...

    Indian Academy of Sciences (India)

    ZIRAN CHEN

    2017-08-04

    Aug 4, 2017 ... properties of 'plate-like' coronene topological structures ... Keywords. Organic semiconductors; density functional theory; charge carrier mobility; ambipolar transport; ..... nology Department of Sichuan Province (Grant Number.

  14. Transport survey calculations using the spectral collocation method

    International Nuclear Information System (INIS)

    Painter, S.L.; Lyon, J.F.

    1989-01-01

    A novel transport survey code has been developed and is being used to study the sensitivity of stellarator reactor performance to various transport assumptions. Instead of following one of the usual approaches, the steady-state transport equation are solved in integral form using the spectral collocation method. This approach effectively combine the computational efficiency of global models with the general nature of 1-D solutions. A compact torsatron reactor test case was used to study the convergence properties and flexibility of the new method. The heat transport model combined Shaing's model for ripple-induced neoclassical transport, the Chang-Hinton model for axisymmetric neoclassical transport, and neoalcator scaling for anomalous electron heat flux. Alpha particle heating, radiation losses, classical electron-ion heat flow, and external heating were included. For the test problem, the method exhibited some remarkable convergence properties. As the number of basis functions was increased, the maximum, pointwise error in the integrated power balance decayed exponentially until the numerical noise level as reached. Better than 10% accuracy in the globally-averaged quantities was achieved with only 5 basis functions; better than 1% accuracy was achieved with 10 basis functions. The numerical method was also found to be very general. Extreme temperature gradients at the plasma edge which sometimes arise from the neoclassical models and are difficult to resolve with finite-difference methods were easily resolved. 8 refs., 6 figs

  15. MORSE-C, Neutron Transport, Gamma Transport for Criticality Calculation by Monte-Carlo Method

    International Nuclear Information System (INIS)

    2002-01-01

    1 - Description of program or function: MORSE-C is a Monte-Carlo code to solve the multiple energy group form of the Boltzmann transport equation in order to obtain the eigenvalue (multiplication) when fissionable materials are present. Cross sections for up to 100 energy groups may be employed. The angular scattering is treated by the usual Legendre expansion as used in the discrete ordinates codes. Up-scattering may be specified. The geometry is defined by relationships to general 1. or 2. degree surfaces. Array units may be specified. Output includes, besides the usual values of input quantities, plots of the geometry, calculated volumes and masses, and graphs of results to assist the user in determining the correctness of the problem's solution

  16. Monte Carlo perturbation theory in neutron transport calculations

    International Nuclear Information System (INIS)

    Hall, M.C.G.

    1980-01-01

    The need to obtain sensitivities in complicated geometrical configurations has resulted in the development of Monte Carlo sensitivity estimation. A new method has been developed to calculate energy-dependent sensitivities of any number of responses in a single Monte Carlo calculation with a very small time penalty. This estimation typically increases the tracking time per source particle by about 30%. The method of estimation is explained. Sensitivities obtained are compared with those calculated by discrete ordinates methods. Further theoretical developments, such as second-order perturbation theory and application to k/sub eff/ calculations, are discussed. The application of the method to uncertainty analysis and to the analysis of benchmark experiments is illustrated. 5 figures

  17. Lecture note on neutron and photon transport calculation with MCNP

    International Nuclear Information System (INIS)

    Sakurai, Kiyoshi

    2003-01-01

    This paper is a lecture note on the continuous energy Monte Carlo method. The contents are as follows; history of the Monte Carlo study, continuous energy Monte Carlo codes, libraries, evaluation method for calculation results, integral emergent particle density equation, pseudorandom number, random walk, variance reduction techniques, MCNP weight window method, MCNP weight window generator, exponential transform, estimators, criticality problem and research subjects. This paper is a textbook for beginners on the Monte Carlo calculation. (author)

  18. Beam transport calculations for the EN tandem installation

    International Nuclear Information System (INIS)

    Sparks, R.J.

    1980-12-01

    Transport of a charged particle beam through the new EN tandem accelerator installation of the Institute of Nuclear Sciences has been analysed using simplified mathematical models. The purpose is to identify the factors affecting transmission of the beam, and to arrive at a design for the system to inject the beam into the accelerator

  19. Cyclic machine scheduling with tool transportation - additional calculations

    NARCIS (Netherlands)

    Kuijpers, C.M.H.

    2001-01-01

    In the PhD Thesis of Kuijpers a cyclic machine scheduling problem with tool transportation is considered. For the problem with two machines, it is shown that there always exists an optimal schedule with a certain structure. This is done by means of an elaborate case study. For a number of cases some

  20. Global transport calculations with an equivalent barotropic system

    Science.gov (United States)

    Salby, Murry L.; O'Sullivan, Donal; Garcia, Rolando R.; Tribbia, Joseph

    1990-01-01

    Transport properties of the two-dimensional equations governing equivalent barotropic motion are investigated on the sphere. This system has ingredients such as forcing, equivalent depth, and thermal dissipation explicitly represented, and takes into account compression effects associated with vertical motion along isentropic surfaces. Horizontal transport properties of this system are investigated under adiabatic and diabatic conditions for different forms of dissipation, and over a range of resolutions. It is shown that forcing represetative of time-mean and amplified conditions at 10 mb leads to the behavior typical of observations at this level. The displacement of the polar night vortex and its distortion into a comma shape are evident, as is irreversible mixing under sufficiently strong forcing amplitude. It is shown that thermal dissipation influences the behavior significantly by inhibiting the amplification of unstable eddies and thereby the horizontal stirring of air.

  1. Concise four-vector scheme for neutron transport calculations

    International Nuclear Information System (INIS)

    Kulacsy, K.; Lukacs, B.; Racz, A.

    1995-01-01

    An explicit Riemannian geometrical form or the vectorial Neutron Streaming Term is presented. The method applies the full Riemannian technique of general covariance. There are cases when the symmetry of the neutron flux must be smaller than that of the arrangement. However, in coordinate space there are always solutions of the Neutron Transport Equation as symmetric as the arrangement, if the latter's symmetry is at least an affine collineation of the Euclidian 3-space. (author). 7 refs

  2. Recently developed methods in neutral-particle transport calculations: overview

    International Nuclear Information System (INIS)

    Alcouffe, R.E.

    1982-01-01

    It has become increasingly apparent that successful, general methods for the solution of the neutral particle transport equation involve a close connection between the spatial-discretization method used and the source-acceleration method chosen. The first form of the transport equation, angular discretization which is discrete ordinates is considered as well as spatial discretization based upon a mesh arrangement. Characteristic methods are considered briefly in the context of future, desirable developments. The ideal spatial-discretization method is described as having the following attributes: (1) positive-positive boundary data yields a positive angular flux within the mesh including its boundaries; (2) satisfies the particle balance equation over the mesh, that is, the method is conservative; (3) possesses the diffusion limit independent of spatial mesh size, that is, for a linearly isotropic flux assumption, the transport differencing reduces to a suitable diffusion equation differencing; (4) the method is unconditionally acceleratable, i.e., for each mesh size, the method is unconditionally convergent with a source iteration acceleration. It is doubtful that a single method possesses all these attributes for a general problem. Some commonly used methods are outlined and their computational performance and usefulness are compared; recommendations for future development are detailed, which include practical computational considerations

  3. Value of gallbladder-preserving partial cholecystectomy in treatment of abnormal gallbladder morphology complicated by sand-like calculous cholecystitis: a reports of 18 cases

    Directory of Open Access Journals (Sweden)

    LIANG Fasheng

    2016-10-01

    Full Text Available Objective To investigate the value of laparoscopic gallbladder-preserving partial cholecystectomy in the treatment of abnormal gallbladder morphology complicated by sand-like calculous cholecystitis. Methods A total of 18 patients with abnormal gallbladder morphology complicated by sand-like calculous cholecystitis who underwent laparoscopic and choledochoscopic partial cholecystectomy in Dalian Friendship Hospital from July 2010 to January 2014 were enrolled. All the patients had abnormal gallbladder morphology manifested as folded gallbladder or adenomyosis, and the lesions were located in the distal end of the gallbladder. Before the surgery, gallbladder contraction test was performed for the diseased part and the normal part of the gallbladder to be preserved. During the surgery, choledochoscopy showed an unobstructed cystic duct and good elasticity in the gallbladder wall, and there was no marked chronic inflammation. After the diseased part of the gallbladder was removed, 4-0 absorbable suture was used for two-layer consecutive suture of the gallbladder. The t-test was used for comparison of continuous data between groups. Results All the patients underwent the surgery successfully. The mean time of operation was 98.0±9.0 minutes, and the mean time to first flatus was 22.8±2.5 hours. The patients were able to get out of the bed and drink water at 6 hours after surgery and to have meals at 24 hours after surgery. They fully recovered and were discharged at 5-7 days after surgery, and no patient experienced the complications such as bile leakage. The patients were followed up for 6-80 months; the patients′ preoperative clinical symptoms disappeared, and there was no recurrence of calculi. At 6-12 months after surgery, the patients experienced compensated cholecystectasis, and there was a significant increase in the mean volume of the gallbladder after surgery (30.29±4.23 cm3 vs 21.72±4.34 cm3, t=-13.00, P<0.001. There was a

  4. Ab Initio Calculations of Transport in Titanium and Aluminum Mixtures

    Science.gov (United States)

    Walker, Nicholas; Novak, Brian; Tam, Ka Ming; Moldovan, Dorel; Jarrell, Mark

    In classical molecular dynamics simulations, the self-diffusion and shear viscosity of titanium about the melting point have fallen within the ranges provided by experimental data. However, the experimental data is difficult to collect and has been rather scattered, making it of limited value for the validation of these calculations. By using ab initio molecular dynamics simulations within the density functional theory framework, the classical molecular dynamics data can be validated. The dynamical data from the ab initio molecular dynamics can also be used to calculate new potentials for use in classical molecular dynamics, allowing for more accurate classical dynamics simulations for the liquid phase. For metallic materials such as titanium and aluminum alloys, these calculations are very valuable due to an increasing demand for the knowledge of their thermophysical properties that drive the development of new materials. For example, alongside knowledge of the surface tension, viscosity is an important input for modeling the additive manufacturing process at the continuum level. We are developing calculations of the viscosity along with the self-diffusion for aluminum, titanium, and titanium-aluminum alloys with ab initio molecular dynamics. Supported by the National Science Foundation through cooperative agreement OIA-1541079 and the Louisiana Board of Regents.

  5. Transport and retention of 14C-perfluorooctanoic acid (PFOA) in saturated limestone and sand porous media: Effects of input concentration, ionic strength and cation type

    Science.gov (United States)

    Xueyan, L.; Gao, B.; Sun, Y.; Wu, J.

    2017-12-01

    Perfluorooctanoic acid (PFOA) has been used in a wide variety of industrial and consumer product applications. PFOA has been detected around the world at ng/L to μg/L levels in groundwater, and at ng/g levels in soil.The physicochemical properties of porous media were proven to play pivotal roles in determining the transport behavior of various pollutants. It is anticipated that physicochemical properties of porous media will strongly influence the transport behavior of PFOA. In addition, previous investigations have revealed that input concentration significantly influence the transport behavior of nanoparticles and antibiotics. Thus, this study was designed experimentally and fundamentally to gain insight into transport and retention of PFOA in various porous medias at different input concentrations, solution IS and cation type. Unlike in quartz sand porous media, the BTCs in limestone porous media exhibited increasing retention rate and high degree of tailing in limestone porous media. Results showed that higher relative retention occurred in limestone porous media than in quartz sand porous media under the same solution chemistry. This result was attributed to the less negative zeta-potentials, rougher surface and larger specific surface area, and the presence of hydroxyl groups and organic matters of limestone grains. Higher ionic strength and Ca2+ had little impact on the mobility of PFOA in quartz sand porous media, but significantly enhanced the retention of PFOA in limestone porous media. The difference is likely due to the compression of the electrical double layer, and the surface-charge neutralization and cation-bridging effect of Ca2+. Higher input concentration resulted in lower relative PFOA retention in limestone porous media, but the influence were insignificant in quartz sand porous media. This effect is likely because attachment sites in limestone responced to the variety of input concentration differently than quartz.

  6. Development of Monte Carlo decay gamma-ray transport calculation system

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Satoshi [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment; Kawasaki, Nobuo [Fujitsu Ltd., Tokyo (Japan); Kume, Etsuo [Japan Atomic Energy Research Inst., Center for Promotion of Computational Science and Engineering, Tokai, Ibaraki (Japan)

    2001-06-01

    In the DT fusion reactor, it is critical concern to evaluate the decay gamma-ray biological dose rates after the reactor shutdown exactly. In order to evaluate the decay gamma-ray biological dose rates exactly, three dimensional Monte Carlo decay gamma-ray transport calculation system have been developed by connecting the three dimensional Monte Carlo particle transport calculation code and the induced activity calculation code. The developed calculation system consists of the following four functions. (1) The operational neutron flux distribution is calculated by the three dimensional Monte Carlo particle transport calculation code. (2) The induced activities are calculated by the induced activity calculation code. (3) The decay gamma-ray source distribution is obtained from the induced activities. (4) The decay gamma-rays are generated by using the decay gamma-ray source distribution, and the decay gamma-ray transport calculation is conducted by the three dimensional Monte Carlo particle transport calculation code. In order to reduce the calculation time drastically, a biasing system for the decay gamma-ray source distribution has been developed, and the function is also included in the present system. In this paper, the outline and the detail of the system, and the execution example are reported. The evaluation for the effect of the biasing system is also reported. (author)

  7. Fontainebleau Sand

    DEFF Research Database (Denmark)

    Leth, Caspar Thrane

    2006-01-01

    The report is a summary of results from laboratory tests in the geotechncial research group on Fontainebleau sand.......The report is a summary of results from laboratory tests in the geotechncial research group on Fontainebleau sand....

  8. An improved filtered spherical harmonic method for transport calculations

    International Nuclear Information System (INIS)

    Ahrens, C.; Merton, S.

    2013-01-01

    Motivated by the work of R. G. McClarren, C. D. Hauck, and R. B. Lowrie on a filtered spherical harmonic method, we present a new filter for such numerical approximations to the multi-dimensional transport equation. In several test problems, we demonstrate that the new filter produces results with significantly less Gibbs phenomena than the filter used by McClarren, Hauck and Lowrie. This reduction in Gibbs phenomena translates into propagation speeds that more closely match the correct propagation speed and solutions that have fewer regions where the scalar flux is negative. (authors)

  9. Mass balance and isotope effects during nitrogen transport through septic tank systems with packed-bed (sand) filters

    Science.gov (United States)

    Hinkle, S.R.; Böhlke, J.K.; Fisher, L.H.

    2008-01-01

    Septic tank systems are an important source of NO3- to many aquifers, yet characterization of N mass balance and isotope systematics following septic tank effluent discharge into unsaturated sediments has received limited attention. In this study, samples of septic tank effluent before and after transport through single-pass packed-bed filters (sand filters) were evaluated to elucidate mass balance and isotope effects associated with septic tank effluent discharge to unsaturated sediments. Chemical and isotopic data from five newly installed pairs and ten established pairs of septic tanks and packed-bed filters serving single homes in Oregon indicate that aqueous solute concentrations are affected by variations in recharge (precipitation, evapotranspiration), NH4+ sorption (primarily in immature systems), nitrification, and gaseous N loss via NH3 volatilization and(or) N2 or N2O release during nitrification/denitrification. Substantial NH4+ sorption capacity was also observed in laboratory columns with synthetic effluent. Septic tank effluent ??15N-NH4+ values were almost constant and averaged + 4.9??? ?? 0.4??? (1 ??). In contrast, ??15N values of NO3- leaving mature packed-bed filters were variable (+ 0.8 to + 14.4???) and averaged + 7.2??? ?? 2.6???. Net N loss in the two networks of packed-bed filters was indicated by average 10-30% decreases in Cl--normalized N concentrations and 2-3??? increases in ??15N, consistent with fractionation accompanying gaseous N losses and corroborating established links between septic tank effluent and NO3- in a local, shallow aquifer. Values of ??18O-NO3- leaving mature packed-bed filters ranged from - 10.2 to - 2.3??? (mean - 6.4??? ?? 1.8???), and were intermediate between a 2/3 H2O-O + 1/3 O2-O conceptualization and a 100% H2O-O conceptualization of ??18O-NO3- generation during nitrification.

  10. One-group transport theory calculation for three slabs cells

    International Nuclear Information System (INIS)

    Maia, C.R.M.

    1979-01-01

    As an idealized model of plate type fuel assemblies for nuclear reactors, three-slab cells are analysed numerically based on the exact solution of the transport equation in the one-group isotropic scattering model. From the equations describing the interface conditions, a set of regular integral equations for the coefficients of the singular eigenfunctions expansions is derived using the half-range orthogonality relations of the eigenfunctions and the recently developed method of regularization. Numerical solutions are obtained by solving this set of equations iteratively. The thermal utilization factor and thermal disadvantage factors as well as flux and current distributions are reported for the first time for various sets of parameters. The accuracy of the P sub(N) approximations is also analysed compared to the exact results. (Author) [pt

  11. Approximate models for neutral particle transport calculations in ducts

    International Nuclear Information System (INIS)

    Ono, Shizuca

    2000-01-01

    The problem of neutral particle transport in evacuated ducts of arbitrary, but axially uniform, cross-sectional geometry and isotropic reflection at the wall is studied. The model makes use of basis functions to represent the transverse and azimuthal dependences of the particle angular flux in the duct. For the approximation in terms of two basis functions, an improvement in the method is implemented by decomposing the problem into uncollided and collided components. A new quadrature set, more suitable to the problem, is developed and generated by one of the techniques of the constructive theory of orthogonal polynomials. The approximation in terms of three basis functions is developed and implemented to improve the precision of the results. For both models of two and three basis functions, the energy dependence of the problem is introduced through the multigroup formalism. The results of sample problems are compared to literature results and to results of the Monte Carlo code, MCNP. (author)

  12. Benchmark calculations in multigroup and multidimensional time-dependent transport

    International Nuclear Information System (INIS)

    Ganapol, B.D.; Musso, E.; Ravetto, P.; Sumini, M.

    1990-01-01

    It is widely recognized that reliable benchmarks are essential in many technical fields in order to assess the response of any approximation to the physics of the problem to be treated and to verify the performance of the numerical methods used. The best possible benchmarks are analytical solutions to paradigmatic problems where no approximations are actually introduced and the only error encountered is connected to the limitations of computational algorithms. Another major advantage of analytical solutions is that they allow a deeper understanding of the physical features of the model, which is essential for the intelligent use of complicated codes. In neutron transport theory, the need for benchmarks is particularly great. In this paper, the authors propose to establish accurate numerical solutions to some problems concerning the migration of neutron pulses. Use will be made of the space asymptotic theory, coupled with a Laplace transformation inverted by a numerical technique directly evaluating the inversion integral

  13. The Suppression of Energy Discretization Errors in Multigroup Transport Calculations

    International Nuclear Information System (INIS)

    Larsen, Edward

    2013-01-01

    The Objective of this project is to develop, implement, and test new deterministric methods to solve, as efficiently as possible, multigroup neutron transport problems having an extremely large number of groups. Our approach was to (i) use the standard CMFD method to 'coarsen' the space-angle grid, yielding a multigroup diffusion equation, and (ii) use a new multigrid-in-space-and-energy technique to efficiently solve the multigroup diffusion problem. The overall strategy of (i) how to coarsen the spatial an energy grids, and (ii) how to navigate through the various grids, has the goal of minimizing the overall computational effort. This approach yields not only the fine-grid solution, but also coarse-group flux-weighted cross sections that can be used for other related problems.

  14. DANTSYS: a system for deterministic, neutral particle transport calculations

    Energy Technology Data Exchange (ETDEWEB)

    Alcouffe, R.E.; Baker, R.S.

    1996-12-31

    The THREEDANT code is the latest addition to our system of codes, DANTSYS, which perform neutral particle transport computations on a given system of interest. The system of codes is distinguished by geometrical or symmetry considerations. For example, ONEDANT and TWODANT are designed for one and two dimensional geometries respectively. We have TWOHEX for hexagonal geometries, TWODANT/GQ for arbitrary quadrilaterals in XY and RZ geometry, and THREEDANT for three-dimensional geometries. The design of this system of codes is such that they share the same input and edit module and hence the input and output is uniform for all the codes (with the obvious additions needed to specify each type of geometry). The codes in this system are also designed to be general purpose solving both eigenvalue and source driven problems. In this paper we concentrate on the THREEDANT module since there are special considerations that need to be taken into account when designing such a module. The main issues that need to be addressed in a three-dimensional transport solver are those of the computational time needed to solve a problem and the amount of storage needed to accomplish that solution. Of course both these issues are directly related to the number of spatial mesh cells required to obtain a solution to a specified accuracy, but is also related to the spatial discretization method chosen and the requirements of the iteration acceleration scheme employed as will be noted below. Another related consideration is the robustness of the resulting algorithms as implemented; because insistence on complete robustness has a significant impact upon the computation time. We address each of these issues in the following through which we give reasons for the choices we have made in our approach to this code. And this is useful in outlining how the code is evolving to better address the shortcomings that presently exist.

  15. Evaluation of dose equivalent rate distribution in JCO critical accident by radiation transport calculation

    CERN Document Server

    Sakamoto, Y

    2002-01-01

    In the prevention of nuclear disaster, there needs the information on the dose equivalent rate distribution inside and outside the site, and energy spectra. The three dimensional radiation transport calculation code is a useful tool for the site specific detailed analysis with the consideration of facility structures. It is important in the prediction of individual doses in the future countermeasure that the reliability of the evaluation methods of dose equivalent rate distribution and energy spectra by using of Monte Carlo radiation transport calculation code, and the factors which influence the dose equivalent rate distribution outside the site are confirmed. The reliability of radiation transport calculation code and the influence factors of dose equivalent rate distribution were examined through the analyses of critical accident at JCO's uranium processing plant occurred on September 30, 1999. The radiation transport calculations including the burn-up calculations were done by using of the structural info...

  16. Predation and transport of persistent pathogens in GAC and slow sand filters: a threat to drinking water safety?

    Science.gov (United States)

    Bichai, Françoise; Dullemont, Yolanda; Hijnen, Wim; Barbeau, Benoit

    2014-11-01

    Zooplankton has been shown to transport internalized pathogens throughout engineered drinking water systems. In this study, experimental measurements from GAC and SSF filtration tests using high influent concentrations of Cryptosporidium (1.3 × 10(6) and 3.3 × 10(4) oocysts L(-1)) and Giardia (4.8 × 10(4) cysts L(-1)) are presented and compared. A predation and transport conceptual model was developed to extrapolate these results to environmental conditions of typical (oo)cyst concentrations in surface water in order to predict concentrations of internalized (oo)cysts in filtered water. Pilot test results were used to estimate transport and survival ratios of internalized (oo)cysts following predation by rotifers in the filter beds. Preliminary indications of lower transport and survival ratios in SSF were found as compared with GAC filters. A probability of infection due to internalized (oo)cysts in filtered water was calculated under likeliest environmental conditions and under a worst-case scenario. Estimated risks under the likeliest environmental scenario were found to fall below the tolerable risk target of 10(-4) infections per person per year. A discussion is presented on the health significance of persistent pathogens that are internalized by zooplankton during granular filtration processes and released into treated water. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Monte Carlo calculations of electron transport on microcomputers

    International Nuclear Information System (INIS)

    Chung, Manho; Jester, W.A.; Levine, S.H.; Foderaro, A.H.

    1990-01-01

    In the work described in this paper, the Monte Carlo program ZEBRA, developed by Berber and Buxton, was converted to run on the Macintosh computer using Microsoft BASIC to reduce the cost of Monte Carlo calculations using microcomputers. Then the Eltran2 program was transferred to an IBM-compatible computer. Turbo BASIC and Microsoft Quick BASIC have been used on the IBM-compatible Tandy 4000SX computer. The paper shows the running speed of the Monte Carlo programs on the different computers, normalized to one for Eltran2 on the Macintosh-SE or Macintosh-Plus computer. Higher values refer to faster running times proportionally. Since Eltran2 is a one-dimensional program, it calculates energy deposited in a semi-infinite multilayer slab. Eltran2 has been modified to a two-dimensional program called Eltran3 to computer more accurately the case with a point source, a small detector, and a short source-to-detector distance. The running time of Eltran3 is about twice as long as that of Eltran2 for a similar case

  18. Calculation of three-dimensional groundwater transport using second-order moments

    International Nuclear Information System (INIS)

    Pepper, D.W.; Stephenson, D.E.

    1987-01-01

    Groundwater transport of contaminants from the F-Area seepage basin at the Savannah River Plant (SRP) was calculated using a three-dimensional, second-order moment technique. The numerical method calculates the zero, first, and second moment distributions of concentration within a cell volume. By summing the moments over the entire solution domain, and using a Lagrangian advection scheme, concentrations are transported without numerical dispersion errors. Velocities obtained from field tests are extrapolated and interpolated to all nodal points; a variational analysis is performed over the three-dimensional velocity field to ensure mass consistency. Transport predictions are calculated out to 12,000 days. 28 refs., 9 figs

  19. A sub-structure method for multidimensional integral transport calculations

    International Nuclear Information System (INIS)

    Kavenoky, A.; Stankovski, Z.

    1983-03-01

    A new method has been developed for fine structure burn-up calculations of very heterogeneous large size media. It is a generalization of the well-known surface-source method, allowing coupling actual two-dimensional heterogeneous assemblies, called sub-structures. The method has been applied to a rectangular medium, divided into sub-structures, containing rectangular and/or cylindrical fuel, moderator and structure elements. The sub-structures are divided into homogeneous zones. A zone-wise flux expansion is used to formulate a direct collision probability problem within it (linear or flat flux expansion in the rectangular zones, flat flux in the others). The coupling of the sub-structures is performed by making extra assumptions on the currents entering and leaving the interfaces. The accuracies and computing times achieved are illustrated by numerical results on two benchmark problems

  20. Nonlinear acceleration of S_n transport calculations

    International Nuclear Information System (INIS)

    Fichtl, Erin D.; Warsa, James S.; Calef, Matthew T.

    2011-01-01

    The use of nonlinear iterative methods, Jacobian-Free Newton-Krylov (JFNK) in particular, for solving eigenvalue problems in transport applications has recently become an active subject of research. While JFNK has been shown to be effective for k-eigenvalue problems, there are a number of input parameters that impact computational efficiency, making it difficult to implement efficiently in a production code using a single set of default parameters. We show that different selections for the forcing parameter in particular can lead to large variations in the amount of computational work for a given problem. In contrast, we employ a nonlinear subspace method that sits outside and effectively accelerates nonlinear iterations of a given form and requires only a single input parameter, the subspace size. It is shown to consistently and significantly reduce the amount of computational work when applied to fixed-point iteration, and this combination of methods is shown to be more efficient than JFNK for our application. (author)

  1. Discontinuous finite element treatment of duct problems in transport calculations

    International Nuclear Information System (INIS)

    Mirza, A. M.; Qamar, S.

    1998-01-01

    A discontinuous finite element approach is presented to solve the even-parity Boltzmann transport equation for duct problems. Presence of ducts in a system results in the streaming of particles and hence requires the employment of higher order angular approximations to model the angular flux. Conventional schemes based on the use of continuous trial functions require the same order of angular approximations to be used everywhere in the system, resulting in wastage of computational resources. Numerical investigations for the test problems presented in this paper indicate that the discontinuous finite elements eliminate the above problems and leads to computationally efficient and economical methods. They are also found to be more suitable for treating the sharp changes in the angular flux at duct-observer interfaces. The new approach provides a single-pass alternate to extrapolation and interactive schemes which need multiple passes of the solution strategy to acquire convergence. The method has been tested with the help of two case studies, namely straight and dog-leg duct problems. All results have been verified against those obtained from Monte Carlo simulations and K/sup +/ continuous finite element method. (author)

  2. Volume-based geometric modeling for radiation transport calculations

    International Nuclear Information System (INIS)

    Li, Z.; Williamson, J.F.

    1992-01-01

    Accurate theoretical characterization of radiation fields is a valuable tool in the design of complex systems, such as linac heads and intracavitary applicators, and for generation of basic dose calculation data that is inaccessible to experimental measurement. Both Monte Carlo and deterministic solutions to such problems require a system for accurately modeling complex 3-D geometries that supports ray tracing, point and segment classification, and 2-D graphical representation. Previous combinatorial approaches to solid modeling, which involve describing complex structures as set-theoretic combinations of simple objects, are limited in their ease of use and place unrealistic constraints on the geometric relations between objects such as excluding common boundaries. A new approach to volume-based solid modeling has been developed which is based upon topologically consistent definitions of boundary, interior, and exterior of a region. From these definitions, FORTRAN union, intersection, and difference routines have been developed that allow involuted and deeply nested structures to be described as set-theoretic combinations of ellipsoids, elliptic cylinders, prisms, cones, and planes that accommodate shared boundaries. Line segments between adjacent intersections on a trajectory are assigned to the appropriate region by a novel sorting algorithm that generalizes upon Siddon's approach. Two 2-D graphic display tools are developed to help the debugging of a given geometric model. In this paper, the mathematical basis of our system is described, it is contrasted to other approaches, and examples are discussed

  3. Saltation of non-spherical sand particles.

    Directory of Open Access Journals (Sweden)

    Zhengshi Wang

    Full Text Available Saltation is an important geological process and the primary source of atmospheric mineral dust aerosols. Unfortunately, no studies to date have been able to precisely reproduce the saltation process because of the simplified theoretical models used. For example, sand particles in most of the existing wind sand movement models are considered to be spherical, the effects of the sand shape on the structure of the wind sand flow are rarely studied, and the effect of mid-air collision is usually neglected. In fact, sand grains are rarely round in natural environments. In this paper, we first analyzed the drag coefficients, drag forces, and starting friction wind speeds of sand grains with different shapes in the saltation process, then established a sand saltation model that considers the coupling effect between wind and the sand grains, the effect of the mid-air collision of sand grains, and the effect of the sand grain shape. Based on this model, the saltation process and sand transport rate of non-spherical sand particles were simulated. The results show that the sand shape has a significant impact on the saltation process; for the same wind speed, the sand transport rates varied for different shapes of sand grains by as much as several-fold. Therefore, sand shape is one of the important factors affecting wind-sand movement.

  4. A retrospective and prospective survey of three-dimensional transport calculations

    International Nuclear Information System (INIS)

    Nakahara, Yasuaki

    1985-01-01

    A retrospective survey is made on the three-dimensional radiation transport calculations. Introduction is given to computer codes based on the distinctive numerical methods such as the Monte Carlo, Direct Integration, Ssub(n) and Finite Element Methods to solve the three-dimensional transport equations. Prospective discussions are made on pros and cons of these methods. (author)

  5. Computer program for calculation of complex chemical equilibrium compositions and applications. Supplement 1: Transport properties

    Science.gov (United States)

    Gordon, S.; Mcbride, B.; Zeleznik, F. J.

    1984-01-01

    An addition to the computer program of NASA SP-273 is given that permits transport property calculations for the gaseous phase. Approximate mixture formulas are used to obtain viscosity and frozen thermal conductivity. Reaction thermal conductivity is obtained by the same method as in NASA TN D-7056. Transport properties for 154 gaseous species were selected for use with the program.

  6. Transport calculation of medium-energy protons and neutrons by Monte Carlo method

    International Nuclear Information System (INIS)

    Ban, Syuuichi; Hirayama, Hideo; Katoh, Kazuaki.

    1978-09-01

    A Monte Carlo transport code, ARIES, has been developed for protons and neutrons at medium energy (25 -- 500 MeV). Nuclear data provided by R.G. Alsmiller, Jr. were used for the calculation. To simulate the cascade development in the medium, each generation was represented by a single weighted particle and an average number of emitted particles was used as the weight. Neutron fluxes were stored by the collisions density method. The cutoff energy was set to 25 MeV. Neutrons below the cutoff were stored to be used as the source for the low energy neutron transport calculation upon the discrete ordinates method. Then transport calculations were performed for both low energy neutrons (thermal -- 25 MeV) and secondary gamma-rays. Energy spectra of emitted neutrons were calculated and compared with those of published experimental and calculated results. The agreement was good for the incident particles of energy between 100 and 500 MeV. (author)

  7. Local transport method for hybrid diffusion-transport calculations in 2-D cylindrical (R, THETA) geometry

    International Nuclear Information System (INIS)

    Zhang, Dingkang; Rahnema, Farzad; Ougouag, Abderrfi M.

    2011-01-01

    A response-based local transport method has been developed in 2-D (r, θ) geometry for coupling to any coarse-mesh (nodal) diffusion method/code. Monte Carlo method is first used to generate a (pre-computed) the response function library for each unique coarse mesh in the transport domain (e.g., the outer reflector region of the Pebble Bed Reactor). The scalar flux and net current at the diffusion/transport interface provided by the diffusion method are used as an incoming surface source to the transport domain. A deterministic iterative sweeping method together with the response function library is utilized to compute the local transport solution within all transport coarse meshes. After the partial angular currents crossing the coarse mesh surfaces are converged, albedo coefficients are computed as boundary conditions for the diffusion methods. The iteration on the albedo boundary condition (for the diffusion method via transport) and the incoming angular flux boundary condition (for the transport via diffusion) is continued until convergence is achieved. The method was tested for in a simplified 2-D (r, θ) pebble bed reactor problem consisting of an inner reflector, an annular fuel region and a controlled outer reflector. The comparisons have shown that the results of the response-function-based transport method agree very well with a direct MCNP whole core solution. The agreement in coarse mesh averaged flux was found to be excellent: relative difference of about 0.18% and a maximum difference of about 0.55%. Note that the MCNP uncertainty was less than 0.1%. (author)

  8. Preliminary integrated calculation of radionuclide cation and anion transport at Yucca Mountain using a geochemical model

    International Nuclear Information System (INIS)

    Birdsell, K.H.; Campbell, K.; Eggert, K.G.; Travis, B.J.

    1989-01-01

    This paper presents preliminary transport calculations for radionuclide movement at Yucca Mountain using preliminary data for mineral distributions, retardation parameter distributions, and hypothetical recharge scenarios. These calculations are not performance assessments, but are used to study the effectiveness of the geochemical barriers at the site at mechanistic level. The preliminary calculations presented have many shortcomings and should be viewed only as a demonstration of the modeling methodology. The simulations were run with TRACRN, a finite-difference porous flow and radionuclide transport code developed for the Yucca Mountain Project. Approximately 30,000 finite-difference nodes are used to represent the unsaturated and saturated zones underlying the repository in three dimensions. Sorption ratios for the radionuclides modeled are assumed to be functions of mineralogic assemblages of the underlying rock. These transport calculations present a representative radionuclide cation, 135 Cs and anion, 99 Tc. The effects on transport of many of the processes thought to be active at Yucca Mountain may be examined using this approach. The model provides a method for examining the integration of flow scenarios, transport, and retardation processes as currently understood for the site. It will also form the basis for estimates of the sensitivity of transport calculations to retardation processes. 11 refs., 17 figs., 1 tab

  9. Iterative resonance self-shielding methods using resonance integral table in heterogeneous transport lattice calculations

    International Nuclear Information System (INIS)

    Hong, Ser Gi; Kim, Kang-Seog

    2011-01-01

    This paper describes the iteration methods using resonance integral tables to estimate the effective resonance cross sections in heterogeneous transport lattice calculations. Basically, these methods have been devised to reduce an effort to convert resonance integral table into subgroup data to be used in the physical subgroup method. Since these methods do not use subgroup data but only use resonance integral tables directly, these methods do not include an error in converting resonance integral into subgroup data. The effective resonance cross sections are estimated iteratively for each resonance nuclide through the heterogeneous fixed source calculations for the whole problem domain to obtain the background cross sections. These methods have been implemented in the transport lattice code KARMA which uses the method of characteristics (MOC) to solve the transport equation. The computational results show that these iteration methods are quite promising in the practical transport lattice calculations.

  10. Development of a database system for the calculation of indicators of environmental pressure caused by transport

    DEFF Research Database (Denmark)

    Giannouli, Myrsini; Samaras, Zissis; Keller, Mario

    2006-01-01

    The scope of this paper is to summarise a methodology developed for TRENDS (TRansport and ENvironment Database System-TRENDS). The main objective of TRENDS was the calculation of environmental pressure indicators caused by transport. The environmental pressures considered are associated with air...... emissions from the four main transport modes, i.e. road, rail, ships and air. In order to determine these indicators a system for calculating a range of environmental pressures due to transport was developed within a PC-based MS Access environment. Emphasis is given oil the latest features incorporated...... the production of collective results for all transport modes as well as a comparative assessment of air emissions produced by the various modes. Traffic activity and emission data obtained according to a basic (reference) scenario are displayed for the time period 1970-2020. In addition, a detailed assessment...

  11. Performing three-dimensional neutral particle transport calculations on tera scale computers

    International Nuclear Information System (INIS)

    Woodward, C.S.; Brown, P.N.; Chang, B.; Dorr, M.R.; Hanebutte, U.R.

    1999-01-01

    A scalable, parallel code system to perform neutral particle transport calculations in three dimensions is presented. To utilize the hyper-cluster architecture of emerging tera scale computers, the parallel code successfully combines the MPI message passing and paradigms. The code's capabilities are demonstrated by a shielding calculation containing over 14 billion unknowns. This calculation was accomplished on the IBM SP ''ASCI-Blue-Pacific computer located at Lawrence Livermore National Laboratory (LLNL)

  12. Modelling the effect of suspended load transport and tidal asymmetry on the equilibrium tidal sand wave height

    NARCIS (Netherlands)

    van Gerwen, W.; Borsje, Bastiaan Wijnand; Damveld, Johan Hendrik; Hulscher, Suzanne J.M.H.

    2018-01-01

    Tidal sand waves are rhythmic bed forms found in shallow sandy coastal seas, reaching heights up to ten meters and migration rates of several meters per year. Because of their dynamic behaviour, unravelling the physical processes behind the growth of these bed forms is of particular interest to

  13. Development of Waste Acceptance Criteria at 221-U Building: Initial Flow and Transport Scoping Calculations

    Energy Technology Data Exchange (ETDEWEB)

    Freedman, Vicky L.; Zhang, Z. F.; Keller, Jason M.; Chen, Yousu

    2007-05-30

    This report documents numerical flow and transport simulations performed that establish initial waste acceptance criteria for the potential waste streams that may be safely sequestered in the 221-U Building and similar canyon structures. Specifically, simulations were executed to identify the maximum loading of contaminant mass (without respect to volume) that can be emplaced within the 221-U Building with no more than 1 pCi/m2 of contaminant migrating outside the structure within a 1,000 year time period. The initial scoping simulations were executed in one dimension to assess important processes, and then two dimensions to establish waste acceptance criteria. Two monolithic conditions were assessed: (1) a grouted canyon monolith; and (2) a canyon monolith filled with sand, both assuming no cracks or fissures were present to cause preferential transport. A three-staged approach was taken to account for different processes that may impact the amount of contaminant that can be safely sequestered in canyon structure. In the first stage, flow and transport simulations established waste acceptance criteria based on a linear (Kd) isotherm approach. In the second stage, impacts on thermal loading were examined and the differences in waste acceptance criteria quantified. In the third stage of modeling, precipitation/dissolution reactions were considered on the release and transport of the contaminants, and the subsequent impact on the maximum contaminant loading. The reactive transport modeling is considered a demonstration of the reactive transport capability, and shows the importance of its use for future performance predictions once site-specific data have been obtained.

  14. Guideline of Monte Carlo calculation. Neutron/gamma ray transport simulation by Monte Carlo method

    CERN Document Server

    2002-01-01

    This report condenses basic theories and advanced applications of neutron/gamma ray transport calculations in many fields of nuclear energy research. Chapters 1 through 5 treat historical progress of Monte Carlo methods, general issues of variance reduction technique, cross section libraries used in continuous energy Monte Carlo codes. In chapter 6, the following issues are discussed: fusion benchmark experiments, design of ITER, experiment analyses of fast critical assembly, core analyses of JMTR, simulation of pulsed neutron experiment, core analyses of HTTR, duct streaming calculations, bulk shielding calculations, neutron/gamma ray transport calculations of the Hiroshima atomic bomb. Chapters 8 and 9 treat function enhancements of MCNP and MVP codes, and a parallel processing of Monte Carlo calculation, respectively. An important references are attached at the end of this report.

  15. Structural instability of atmospheric flows under perturbations of the mass balance and effect in transport calculations

    International Nuclear Information System (INIS)

    Núñez, M A; Mendoza, R

    2015-01-01

    Several methods to estimate the velocity field of atmospheric flows, have been proposed to the date for applications such as emergency response systems, transport calculations and for budget studies of all kinds. These applications require a wind field that satisfies the conservation of mass but, in general, estimated wind fields do not satisfy exactly the continuity equation. An approach to reduce the effect of using a divergent wind field as input in the transport-diffusion equations, was proposed in the literature. In this work, a linear local analysis of a wind field, is used to show analytically that the perturbation of a large-scale nondivergent flow can yield a divergent flow with a substantially different structure. The effects of these structural changes in transport calculations are illustrated by means of analytic solutions of the transport equation

  16. Shielding calculations in support of the Spallation Neutron Source (SNS) proton beam transport system

    International Nuclear Information System (INIS)

    Johnson, Jeffrey O.; Gallmeier, Franz X.; Popova, Irina

    2002-01-01

    Determining the bulk shielding requirements for accelerator environments is generally an easy task compared to analyzing the radiation transport through the complex shield configurations and penetrations typically associated with the detailed Title II design efforts of a facility. Shielding calculations for penetrations in the SNS accelerator environment are presented based on hybrid Monte Carlo and discrete ordinates particle transport methods. This methodology relies on coupling tools that map boundary surface leakage information from the Monte Carlo calculations to boundary sources for one-, two-, and three-dimensional discrete ordinates calculations. The paper will briefly introduce the coupling tools for coupling MCNPX to the one-, two-, and three-dimensional discrete ordinates codes in the DOORS code suite. The paper will briefly present typical applications of these tools in the design of complex shield configurations and penetrations in the SNS proton beam transport system

  17. Numerical simulation of fly-ash transport in three sands of different particle-size distributions using HYDRUS-1D

    Czech Academy of Sciences Publication Activity Database

    Kodešová, R.; Kapička, Aleš; Lebeda, J.; Grison, Hana; Kočárek, M.; Petrovský, Eduard

    2011-01-01

    Roč. 59, č. 3 (2011), s. 206-216 ISSN 0042-790X R&D Projects: GA AV ČR IAA300120701 Institutional research plan: CEZ:AV0Z30120515 Keywords : sand * fly-ash migration * magnetic susceptibility * numerical simulation * attachment /detachment concept * filtration theory Subject RIV: DK - Soil Contamination ; De-contamination incl. Pesticides Impact factor: 0.340, year: 2011

  18. CLEAR (Calculates Logical Evacuation And Response): A Generic Transportation Network Model for the Calculation of Evacuation Time Estimates

    Energy Technology Data Exchange (ETDEWEB)

    Moeller, M. P.; Urbanik, II, T.; Desrosiers, A. E.

    1982-03-01

    This paper describes the methodology and application of the computer model CLEAR (Calculates Logical Evacuation And Response) which estimates the time required for a specific population density and distribution to evacuate an area using a specific transportation network. The CLEAR model simulates vehicle departure and movement on a transportation network according to the conditions and consequences of traffic flow. These include handling vehicles at intersecting road segments, calculating the velocity of travel on a road segment as a function of its vehicle density, and accounting for the delay of vehicles in traffic queues. The program also models the distribution of times required by individuals to prepare for an evacuation. In order to test its accuracy, the CLEAR model was used to estimate evacuatlon tlmes for the emergency planning zone surrounding the Beaver Valley Nuclear Power Plant. The Beaver Valley site was selected because evacuation time estimates had previously been prepared by the licensee, Duquesne Light, as well as by the Federal Emergency Management Agency and the Pennsylvania Emergency Management Agency. A lack of documentation prevented a detailed comparison of the estimates based on the CLEAR model and those obtained by Duquesne Light. However, the CLEAR model results compared favorably with the estimates prepared by the other two agencies.

  19. CLEAR (Calculates Logical Evacuation And Response): A generic transportation network model for the calculation of evacuation time estimates

    International Nuclear Information System (INIS)

    Moeller, M.P.; Desrosiers, A.E.; Urbanik, T. II

    1982-03-01

    This paper describes the methodology and application of the computer model CLEAR (Calculates Logical Evacuation And Response) which estimates the time required for a specific population density and distribution to evacuate an area using a specific transportation network. The CLEAR model simulates vehicle departure and movement on a transportation network according to the conditions and consequences of traffic flow. These include handling vehicles at intersecting road segments, calculating the velocity of travel on a road segment as a function of its vehicle density, and accounting for the delay of vehicles in traffic queues. The program also models the distribution of times required by individuals to prepare for an evacuation. In order to test its accuracy, the CLEAR model was used to estimate evacuation times for the emergency planning zone surrounding the Beaver Valley Nuclear Power Plant. The Beaver Valley site was selected because evacuation time estimates had previously been prepared by the licensee, Duquesne Light, as well as by the Federal Emergency Management Agency and the Pennsylvania Emergency Management Agency. A lack of documentation prevented a detailed comparison of the estimates based on the CLEAR model and those obtained by Duquesne Light. However, the CLEAR model results compared favorably with the estimates prepared by the other two agencies. (author)

  20. Evaluation of radiation shielding performance in sea transport of radioactive material by using simple calculation method

    International Nuclear Information System (INIS)

    Odano, N.; Ohnishi, S.; Sawamura, H.; Tanaka, Y.; Nishimura, K.

    2004-01-01

    A modified code system based on the point kernel method was developed to use in evaluation of shielding performance for maritime transport of radioactive material. For evaluation of shielding performance accurately in the case of accident, it is required to preciously model the structure of transport casks and shipping vessel, and source term. To achieve accurate modelling of the geometry and source term condition, we aimed to develop the code system by using equivalent information regarding structure and source term used in the Monte Carlo calculation code, MCNP. Therefore, adding an option to use point kernel method to the existing Monte Carlo code, MCNP4C, the code system was developed. To verify the developed code system, dose rate distribution in an exclusive shipping vessel to transport the low level radioactive wastes were calculated by the developed code and the calculated results were compared with measurements and Monte Carlo calculations. It was confirmed that the developed simple calculation method can obtain calculation results very quickly with enough accuracy comparing with the Monte Carlo calculation code MCNP4C

  1. Transport methods: general. 1. The Analytical Monte Carlo Method for Radiation Transport Calculations

    International Nuclear Information System (INIS)

    Martin, William R.; Brown, Forrest B.

    2001-01-01

    We present an alternative Monte Carlo method for solving the coupled equations of radiation transport and material energy. This method is based on incorporating the analytical solution to the material energy equation directly into the Monte Carlo simulation for the radiation intensity. This method, which we call the Analytical Monte Carlo (AMC) method, differs from the well known Implicit Monte Carlo (IMC) method of Fleck and Cummings because there is no discretization of the material energy equation since it is solved as a by-product of the Monte Carlo simulation of the transport equation. Our method also differs from the method recently proposed by Ahrens and Larsen since they use Monte Carlo to solve both equations, while we are solving only the radiation transport equation with Monte Carlo, albeit with effective sources and cross sections to represent the emission sources. Our method bears some similarity to a method developed and implemented by Carter and Forest nearly three decades ago, but there are substantive differences. We have implemented our method in a simple zero-dimensional Monte Carlo code to test the feasibility of the method, and the preliminary results are very promising, justifying further extension to more realistic geometries. (authors)

  2. THE CALCULATION OF THE ENERGY RECOVERY ELECTRIFIED URBAN TRANSPORT DURING THE INSTALLATION DRIVE FOR TRACTION SUBSTATION

    Directory of Open Access Journals (Sweden)

    A. A. Sulim

    2014-01-01

    Full Text Available At present a great attention is paid to increasing of energy efficiency at operated electrified urban transport. Perspective direction for increasing energy efficiency at that type of transport is the application of regenerative braking. For additional increasing of energy efficiency there were suggested the use of capacitive drive on tires of traction substation. One of the main task is the analysis of energy recovery application  with drive and without it.These analysis demonstrated that the calculation algorithms don’t allow in the full volume to carry out calculations of amount and cost of energy recovery without drive and with it. That is why we see the current interest to this topic. The purpose of work is to create methods of algorithms calculation for definite amount and cost of consumed, redundant and recovery energy of electrified urban transport due to definite regime of motion on wayside. There is algorithm developed, which allow to calculate amount and cost of consumed, redundant and recovery energy of electrified urban transport on wayside during the installation capacitive drive at traction substation. On the basis of developed algorithm for the definite regime of wagon motion of subway there were fulfilled the example of energy recovery amount and its cost calculation, among them with limited energy intensity drive, when there are 4 trains on wayside simultaneously.

  3. Improved method for calculating neoclassical transport coefficients in the banana regime

    Energy Technology Data Exchange (ETDEWEB)

    Taguchi, M., E-mail: taguchi.masayoshi@nihon-u.ac.jp [College of Industrial Technology, Nihon University, Narashino 275-8576 (Japan)

    2014-05-15

    The conventional neoclassical moment method in the banana regime is improved by increasing the accuracy of approximation to the linearized Fokker-Planck collision operator. This improved method is formulated for a multiple ion plasma in general tokamak equilibria. The explicit computation in a model magnetic field shows that the neoclassical transport coefficients can be accurately calculated in the full range of aspect ratio by the improved method. The some neoclassical transport coefficients for the intermediate aspect ratio are found to appreciably deviate from those obtained by the conventional moment method. The differences between the transport coefficients with these two methods are up to about 20%.

  4. Hybrid PN-SN Calculations with SAAF for the Multiscale Transport Capability in Rattlesnake

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yaqi; Schunert, Sebastian; DeHart, Mark; Martineau, Richard

    2016-05-01

    Two interface conditions, the Lagrange multiplier method and the upwinding method, for hybrid \\pn-\\sn calculations is proposed for the self-adjoint angular flux (SAAF) formulation of the transport equation using the continuous finite element method (FEM) for spatial discretization. These interface conditions are implemented in Rattlesnake, the radiation transport application built on MOOSE, for the on-going multiscale transport simulation effort at INL. For smoothing the solution at the interface for the Lagrange multiplier method, a method based on \\sn Lagrange interpolation on the sphere is proposed. Numerical results indicate that the interface conditions give the expected convergence.

  5. AUTOMATION OF CALCULATION ALGORITHMS FOR EFFICIENCY ESTIMATION OF TRANSPORT INFRASTRUCTURE DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    Sergey Kharitonov

    2015-06-01

    Full Text Available Optimum transport infrastructure usage is an important aspect of the development of the national economy of the Russian Federation. Thus, development of instruments for assessing the efficiency of infrastructure is impossible without constant monitoring of a number of significant indicators. This work is devoted to the selection of indicators and the method of their calculation in relation to the transport subsystem as airport infrastructure. The work also reflects aspects of the evaluation of the possibilities of algorithmic computational mechanisms to improve the tools of public administration transport subsystems.

  6. Development of a database system for the calculation of indicators of environmental pressure caused by transport

    Energy Technology Data Exchange (ETDEWEB)

    Giannouli, Myrsini; Samaras, Zissis [Aristotle University of Thessaloniki, Laboratory of Applied Thermodynamics, Mechanical Engineering Department, GR 54124, Thessaloniki, P.O. Box 458 (Greece); Keller, Mario; De Haan, Peter [INFRAS, Muhlemattstrasse 45 CH-3007, Bern (Switzerland); Kallivoda, Manfred [psiA-Consult, Environmental Research and Engineering GmbH, Lastenstrasse 38/1, 1230 Wien (Austria); Sorenson, Spencer; Georgakaki, Aliki [DTU: Technical University of Denmark, Nils Koppels Alle, Building 403, DK 2800 Kgs. Lyngby (Denmark)

    2006-03-15

    The scope of this paper is to summarise a methodology developed for TRENDS (TRansport and ENvironment Database System-TRENDS). The main objective of TRENDS was the calculation of environmental pressure indicators caused by transport. The environmental pressures considered are associated with air emissions from the four main transport modes, i.e. road, rail, ships and air. In order to determine these indicators a system for calculating a range of environmental pressures due to transport was developed within a PC-based MS Access environment. Emphasis is given on the latest features incorporated in the model and their applications. One of the recently developed features of the software provides an option for simple scenario analysis including vehicle dynamics (such as turnover and evolution) for all EU15 member states. This feature is called the Transport Activity Balance module (TAB) and enables the production of collective results for all transport modes as well as a comparative assessment of air emissions produced by the various modes. Traffic activity and emission data obtained according to a basic (reference) scenario are displayed for the time period 1970-2020. In addition, a detailed assessment of the results produced by TRENDS was conducted by means of comparison with data found in the literature. Finally, vehicle emissions produced by the model for the EU15 member states were spatially disaggregated for the base year, 1995 and GIS maps were generated. Examples of these maps are displayed in this document, for the various modes of transport considered in the study. (author)

  7. Transport calculations for a 14.8 MeV neutron beam in a water phantom

    International Nuclear Information System (INIS)

    Goetsch, S.J.

    1981-01-01

    A coupled neutron/photon Monte Carlo radiation transport code (MORSE-CG) has been used to calculate neutron and photon doses in a water phantom irradiated by 14.8 MeV neutrons from the Gas Target Neutron Source. The source-collimator-phantom geometry was carefully simulated. Results of calculations utilizing two different statistical estimators (next-collision and track-length) are presented

  8. Sand Dunes with Frost

    Science.gov (United States)

    2004-01-01

    9 May 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a suite of frost-covered sand dunes in the north polar region of Mars in early spring, 2004. The dunes indicate wind transport of sand from left to right (west to east). These landforms are located near 78.1oN, 220.8oW. This picture is illuminated by sunlight from the lower left and covers an area about 3 km (1.9 mi) across.

  9. Late Pleistocene shallow water sand transported to the slope at IODP Sites U1484 and U1485 off the north coast of Papua New Guinea: how, when and why?

    Science.gov (United States)

    Mountain, G. S.; Browning, J. V.; Bova, S. C.

    2017-12-01

    IODP Exp 363 drilled two sites on a gently seaward-dipping terrace 18 and 21 km north of Papua New Guinea, enabling the study of mechanisms that bring shallow water sediment to the deep sea. We expect past changes in sea level and precipitation / fluvial run-off dominated this record, but additional processes may have been important. We examined Hole U1484B (1031 m water depth; 223 m drilled; 99.8% recovered) and detected 339 sharp-based sand layers 0.5 cm or more thick. In contrast to the background hemipelagic nanno-bearing silty clay, sand layers are graded or massive turbidites containing detrital grains, shallow-water benthic foraminifera, shell fragments and/or wood. δ18O values of Globigerinoides ruber tied to the isotopic curve of Lisiecki and Raymo (2004) show the densest concentration of sand layers in the last 310 ka occurred during the cooling trend of MIS stage 6. Stage 2 contains significantly fewer discrete sand beds, even during the coldest part of the LGM. Other times of glacial intensification show a similarly modest correlation to peak sand deposition. Sand layers strongly correlate with high values of magnetic susceptibility (MS) measured on unsplit cores, and when mapped to the MIS time scale, MS increases match times of ice growth / falling sea level more consistently than does the density of sand layers. We attribute this to reworking of discrete sand layers by bioturbation, indicating the need for caution tying the absence of sharp-based sands to times of transgression or low precipitation / fluvial run-off. Packages of especially thick and closely-spaced sharp-based sands match seismic reflections at Site U1484. Tracing these reflections throughout the grid of hi-res MCS site survey profiles reveals the areal distribution and transport path of sand as well as a direct tie to similar sharp-based sands in the more distal Hole U1485A (1145 m water depth; 301 m drilled; 103.8% recovered.) The distribution of sands through time might be

  10. On calculating phase shifts and performing fits to scattering cross sections or transport properties

    International Nuclear Information System (INIS)

    Hepburn, J.W.; Roy, R.J. Le

    1978-01-01

    Improved methods of calculating quantum mechanical phase shifts and for performing least-squares fits to scattering cross sections or transport properties, are described. Their use in a five-parameter fit to experimental differential cross sections reduces the computer time by a factor of 4-7. (Auth.)

  11. Transport calculation of neutron flux distribution in reflector of PW reactor

    International Nuclear Information System (INIS)

    Remec, I.

    1982-01-01

    Two-dimensional transport calculation of the neutron flux and spectrum in the equatorial plain of PW reactor, using computer program DOT 3, is presented. Results show significant differences between neutron fields in which test samples and reactor vessel are exposed. (author)

  12. BALTORO a general purpose code for coupling discrete ordinates and Monte-Carlo radiation transport calculations

    International Nuclear Information System (INIS)

    Zazula, J.M.

    1983-01-01

    The general purpose code BALTORO was written for coupling the three-dimensional Monte-Carlo /MC/ with the one-dimensional Discrete Ordinates /DO/ radiation transport calculations. The quantity of a radiation-induced /neutrons or gamma-rays/ nuclear effect or the score from a radiation-yielding nuclear effect can be analysed in this way. (author)

  13. Neutron transport calculation for Activation Evaluation for Decommissioning of PET cyclotron Facility

    Science.gov (United States)

    Nobuhara, Fumiyoshi; Kuroyanagi, Makoto; Masumoto, Kazuyoshi; Nakamura, Hajime; Toyoda, Akihiro; Takahashi, Katsuhiko

    2017-09-01

    In order to evaluate the state of activation in a cyclotron facility used for the radioisotope production of PET diagnostics, we measured the neutron flux by using gold foils and TLDs. Then, the spatial distribution of neutrons and induced activity inside the cyclotron vault were simulated with the Monte Calro calculation code for neutron transport and DCHAIN-SP for activation calculation. The calculated results are in good agreement with measured values within factor 3. Therefore, the adaption of the advanced evaluation procedure for activation level is proved to be important for the planning of decommissioning of these facilities.

  14. Oil sands tax expenditures

    International Nuclear Information System (INIS)

    Ketchum, K; Lavigne, R.; Plummer, R.

    2001-01-01

    The oil sands are a strategic Canadian resource for which federal and provincial governments provide financial incentives to develop and exploit. This report describes the Oil Sands Tax Expenditure Model (OSTEM) developed to estimate the size of the federal income tax expenditure attributed to the oil sands industry. Tax expenditures are tax concessions which are used as alternatives to direct government spending for achieving government policy objectives. The OSTEM was developed within the business Income Tax Division of Canada's Department of Finance. Data inputs for the model were obtained from oil sands developers and Natural Resources Canada. OSTEM calculates annual revenues, royalties and federal taxes at project levels using project-level projections of capital investment, operating expenses and production. OSTEM calculates tax expenditures by comparing taxes paid under different tax regimes. The model also estimates the foregone revenue as a percentage of capital investment. Total tax expenditures associated with investment in the oil sands are projected to total $820 million for the period from 1986 to 2030, representing 4.6 per cent of the total investment. 10 refs., 2 tabs., 7 figs

  15. Microwave emulations and tight-binding calculations of transport in polyacetylene

    International Nuclear Information System (INIS)

    Stegmann, Thomas; Franco-Villafañe, John A.; Ortiz, Yenni P.; Kuhl, Ulrich; Mortessagne, Fabrice; Seligman, Thomas H.

    2017-01-01

    A novel approach to investigate the electron transport of cis- and trans-polyacetylene chains in the single-electron approximation is presented by using microwave emulation measurements and tight-binding calculations. In the emulation we take into account the different electronic couplings due to the double bonds leading to coupled dimer chains. The relative coupling constants are adjusted by DFT calculations. For sufficiently long chains a transport band gap is observed if the double bonds are present, whereas for identical couplings no band gap opens. The band gap can be observed also in relatively short chains, if additional edge atoms are absent, which cause strong resonance peaks within the band gap. The experimental results are in agreement with our tight-binding calculations using the nonequilibrium Green's function method. The tight-binding calculations show that it is crucial to include third nearest neighbor couplings to obtain the gap in the cis-polyacetylene. - Highlights: • Electronic transport in individual polyacetylene chains is studied. • Microwave emulation experiments and tight-binding calculations agree well. • In long chains a band-gap opens due the dimerization of the chain. • In short chains edge atoms cause strong resonance peaks in the center of the band-gap.

  16. Microwave emulations and tight-binding calculations of transport in polyacetylene

    Energy Technology Data Exchange (ETDEWEB)

    Stegmann, Thomas, E-mail: stegmann@icf.unam.mx [Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Avenida Universidad s/n, 62210 Cuernavaca (Mexico); Franco-Villafañe, John A., E-mail: jofravil@fis.unam.mx [Instituto de Física, Benemérita Universidad Autónoma de Puebla, Apartado Postal J-48, 72570 Puebla (Mexico); Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Avenida Universidad s/n, 62210 Cuernavaca (Mexico); Ortiz, Yenni P. [Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Avenida Universidad s/n, 62210 Cuernavaca (Mexico); Kuhl, Ulrich [Université de Nice – Sophia Antipolis, Laboratoire de la Physique de la Matière Condensée, CNRS, Parc Valrose, 06108 Nice (France); Mortessagne, Fabrice, E-mail: fabrice.mortessagne@unice.fr [Université de Nice – Sophia Antipolis, Laboratoire de la Physique de la Matière Condensée, CNRS, Parc Valrose, 06108 Nice (France); Seligman, Thomas H. [Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Avenida Universidad s/n, 62210 Cuernavaca (Mexico); Centro Internacional de Ciencias, 62210 Cuernavaca (Mexico)

    2017-01-05

    A novel approach to investigate the electron transport of cis- and trans-polyacetylene chains in the single-electron approximation is presented by using microwave emulation measurements and tight-binding calculations. In the emulation we take into account the different electronic couplings due to the double bonds leading to coupled dimer chains. The relative coupling constants are adjusted by DFT calculations. For sufficiently long chains a transport band gap is observed if the double bonds are present, whereas for identical couplings no band gap opens. The band gap can be observed also in relatively short chains, if additional edge atoms are absent, which cause strong resonance peaks within the band gap. The experimental results are in agreement with our tight-binding calculations using the nonequilibrium Green's function method. The tight-binding calculations show that it is crucial to include third nearest neighbor couplings to obtain the gap in the cis-polyacetylene. - Highlights: • Electronic transport in individual polyacetylene chains is studied. • Microwave emulation experiments and tight-binding calculations agree well. • In long chains a band-gap opens due the dimerization of the chain. • In short chains edge atoms cause strong resonance peaks in the center of the band-gap.

  17. Shelter Index and a simple wind speed parameter to characterize vegetation control of sand transport threshold and Flu

    Science.gov (United States)

    Gillies, J. A.; Nield, J. M.; Nickling, W. G.; Furtak-Cole, E.

    2014-12-01

    Wind erosion and dust emissions occur in many dryland environments from a range of surfaces with different types and amounts of vegetation. Understanding how vegetation modulates these processes remains a research challenge. Here we present results from a study that examines the relationship between an index of shelter (SI=distance from a point to the nearest upwind vegetation/vegetation height) and particle threshold expressed as the ratio of wind speed measured at 0.45 times the mean plant height divided by the wind speed at 17 m when saltation commences, and saltation flux. The results are used to evaluate SI as a parameter to characterize the influence of vegetation on local winds and sediment transport conditions. Wind speed, wind direction, saltation activity and point saltation flux were measured at 35 locations in defined test areas (~13,000 m2) in two vegetation communities: mature streets of mesquite covered nebkhas and incipient nebkhas dominated by low mesquite plants. Measurement positions represent the most open areas, and hence those places most susceptible to wind erosion among the vegetation elements. Shelter index was calculated for each measurement position for each 10° wind direction bin using digital elevation models for each site acquired using terrestrial laser scanning. SI can show the susceptibility to wind erosion at different time scales, i.e., event, seasonal, or annual, but in a supply-limited system it can fail to define actual flux amounts due to a lack of knowledge of the distribution of sediment across the surface of interest with respect to the patterns of SI.

  18. Optimized shielding calculation to the transport of 131I employed in nuclear medicine

    International Nuclear Information System (INIS)

    Sahyun, A.; Sordi, G.M.; Rodrigues, D.; Sanches, M.P.; Romero F, C.R.

    1996-01-01

    The objective of this paper is to present the basis for shielding calculation used in different situations that could occur during the transport of 131 I utilized in nuclear medicine for diagnostic and therapeutic purposes. The aim of these calculation is to optimize the shielding in order to satisfy the transport of radioactive material. These calculations were proposed for estimated activities around 1,85 GBq (50mCi), 3,7 GBq(100mCi) and 7,4 GBq(200mCi), considering the driver of the cargo company and his assistant as the critical group and the general people considered as effect of collective dose. The population density considered in the models is the one related to Sao Paulo city, because the transport is done by the highway across the city and the radioactive material is distributed from west to north and south, where the airports are located. This area ranges a perimeter of 40 km. For the collective dose calculation, it was considered a population dose of less than 1/100 of the annual limit dose for the public. Our main concern is related to the large volume of radioactive material that is transported per week, specially because 1/3 of this material has activities around 3,7 GBq (100mCi). During the calculations, we have figured out that the activities at the moment of transport are nearly 40% greater than the one related to the calibration date. As for the discrepancy of official alpha value of US$10000/man-Sv and the real value for our country of US$3000/man-Sv,a comparative study was performed. (authors). 3 refs., 2 figs., 2 tabs

  19. Program for calculating multi-component high-intense ion beam transport

    International Nuclear Information System (INIS)

    Kazarinov, N.Yu.; Prejzendorf, V.A.

    1985-01-01

    The CANAL program for calculating transport of high-intense beams containing ions with different charges in a channel consisting of dipole magnets and quadrupole lenses is described. The equations determined by the method of distribution function momenta and describing coordinate variations of the local mass centres and r.m.s. transverse sizes of beams with different charges form the basis of the calculation. The program is adapted for the CDC-6500 and SM-4 computers. The program functioning is organized in the interactive mode permitting to vary the parameters of any channel element and quickly choose the optimum version in the course of calculation. The calculation time for the CDC-6500 computer for the 30-40 m channel at the integration step of 1 cm is about 1 min. The program is used for calculating the channel for the uranium ion beam injection from the collective accelerator into the heavy-ion synchrotron

  20. Risks of transport of radioactive materials on the road; some exploring calculations performed with the INTERTRAN-model

    International Nuclear Information System (INIS)

    1987-04-01

    Under the auspices of the IAEA a computercode, named INTERTRAN, has been developed in order to calculate the risks of the transport of radioactive materials. This code has to be tested nearer. For the Dutch situation a number of calculations has been performed of more or less realistic cases in which four transport streams have been investigated. Two transport routes are chosen. The risks thus obtained are compared quantitatively with the risks of LPG-transports. 4 refs.; 9 figs

  1. Search for a transport method for the calculation of the PWR control and safety clusters

    International Nuclear Information System (INIS)

    Bruna, G.B.; Van Frank, C.; Vergain, M.L.; Chauvin, J.P.; Palmiotti, G.; Nobile, M.

    1990-01-01

    The project studies of power reactors rely mainly on diffusion calculations, but transport ones are often needed for assessing fine effects, intimately linked to geometry and spectrum heterogeneities. Accurate transport computations are necessary, in particular, for shielded cross section generation, and when homogenization and dishomogenization processes are involved. The transport codes, generally, offer the user a variety of computational options, related to different approximation levels. In every case, it is obviously desirable to be able to choose the reliable degree of approximation to be accepted in any particular computational circumstance of the project. The search for such adapted procedures is to be made on the basis of critical experiments. In our studies, this task was made possible by the availability of suitable results of the CAMELEON critical experiment, carried on in the EOLE facility at CEA's Center of Cadarache. In this paper, we summarize some of the work in progress at FRAMATOME on the definition of an assembly based transport calculation scheme to be used for PWR control and safety cluster computations. Two main items, devoted to the search of the optimum computational procedures, are presented here: - a parametrical study on computational options, made in an infinite medium assembly geometry, - a series of comparisons between calculated and experimental values of pin power distribution

  2. International report to validate criticality safety calculations for fissile material transport

    International Nuclear Information System (INIS)

    Whitesides, G.E.

    1984-01-01

    During the past three years a Working Group established by the Organization for Economic Co-operation and Development's Nuclear Energy Agency (OECD-NEA) in Paris, France, has been studying the validity and applicability of a variety of criticality safety computer programs and their associated nuclear data for the computation of the neutron multiplication factor, k/sub eff/, for various transport packages used in the fuel cycle. The principal objective of this work has been to provide an internationally acceptable basis for the licensing authorities in a country to honor licensing approvals granted by other participating countries. Eleven countries participated in the initial study which consisted of examining criticality safety calculations for packages designed for spent light water reactor fuel transport. This paper presents a summary of this study which has been completed and reported in an OECD-NEA Report No. CSNI-71. The basic goal of this study was to outline a satisfactory validation procedure for this particular application. First, a set of actual critical experiments were chosen which contained the various material and geometric properties present in typical LWR transport containers. Secondly, calculations were made by each of the methods in order to determine how accurately each method reproduced the experimental values. This successful effort in developing a benchmark procedure for validating criticality calculations for spent LWR transport packages along with the successful intercomparison of a number of methods should provide increased confidence by licensing authorities in the use of these methods for this area of application. 4 references, 2 figures

  3. Optical photon transport in powdered-phosphor scintillators. Part II. Calculation of single-scattering transport parameters

    Energy Technology Data Exchange (ETDEWEB)

    Poludniowski, Gavin G. [Joint Department of Physics, Division of Radiotherapy and Imaging, Institute of Cancer Research and Royal Marsden NHS Foundation Trust, Downs Road, Sutton, Surrey SM2 5PT, United Kingdom and Centre for Vision Speech and Signal Processing (CVSSP), Faculty of Engineering and Physical Sciences, University of Surrey, Guildford, Surrey GU2 7XH (United Kingdom); Evans, Philip M. [Centre for Vision Speech and Signal Processing (CVSSP), Faculty of Engineering and Physical Sciences, University of Surrey, Guildford, Surrey GU2 7XH (United Kingdom)

    2013-04-15

    Purpose: Monte Carlo methods based on the Boltzmann transport equation (BTE) have previously been used to model light transport in powdered-phosphor scintillator screens. Physically motivated guesses or, alternatively, the complexities of Mie theory have been used by some authors to provide the necessary inputs of transport parameters. The purpose of Part II of this work is to: (i) validate predictions of modulation transform function (MTF) using the BTE and calculated values of transport parameters, against experimental data published for two Gd{sub 2}O{sub 2}S:Tb screens; (ii) investigate the impact of size-distribution and emission spectrum on Mie predictions of transport parameters; (iii) suggest simpler and novel geometrical optics-based models for these parameters and compare to the predictions of Mie theory. A computer code package called phsphr is made available that allows the MTF predictions for the screens modeled to be reproduced and novel screens to be simulated. Methods: The transport parameters of interest are the scattering efficiency (Q{sub sct}), absorption efficiency (Q{sub abs}), and the scatter anisotropy (g). Calculations of these parameters are made using the analytic method of Mie theory, for spherical grains of radii 0.1-5.0 {mu}m. The sensitivity of the transport parameters to emission wavelength is investigated using an emission spectrum representative of that of Gd{sub 2}O{sub 2}S:Tb. The impact of a grain-size distribution in the screen on the parameters is investigated using a Gaussian size-distribution ({sigma}= 1%, 5%, or 10% of mean radius). Two simple and novel alternative models to Mie theory are suggested: a geometrical optics and diffraction model (GODM) and an extension of this (GODM+). Comparisons to measured MTF are made for two commercial screens: Lanex Fast Back and Lanex Fast Front (Eastman Kodak Company, Inc.). Results: The Mie theory predictions of transport parameters were shown to be highly sensitive to both grain size

  4. The effect of gamma-ray transport on afterheat calculations for accident analysis

    International Nuclear Information System (INIS)

    Reyes, S.; Latkowski, J.F.; Sanz, J.

    2000-01-01

    Radioactive afterheat is an important source term for the release of radionuclides in fusion systems under accident conditions. Heat transfer calculations are used to determine time-temperature histories in regions of interest, but the true source term needs to be the effective afterheat, which considers the transport of penetrating gamma rays. Without consideration of photon transport, accident temperatures may be overestimated in others. The importance of this effect is demonstrated for a simple, one-dimensional problem. The significance of this effect depends strongly on the accident scenario being analyzed

  5. Time dependent AN neutron transport calculations in finite media using a numerical inverse Laplace transform technique

    International Nuclear Information System (INIS)

    Ganapol, B.D.; Sumini, M.

    1990-01-01

    The time dependent space second order discrete form of the monokinetic transport equation is given an analytical solution, within the Laplace transform domain. Th A n dynamic model is presented and the general resolution procedure is worked out. The solution in the time domain is then obtained through the application of a numerical transform inversion technique. The justification of the research relies in the need to produce reliable and physically meaningful transport benchmarks for dynamic calculations. The paper is concluded by a few results followed by some physical comments

  6. Evaluation and comparison of SN and Monte-Carlo charged particle transport calculations

    International Nuclear Information System (INIS)

    Hadad, K.

    2000-01-01

    A study was done to evaluate a 3-D S N charged particle transport code called SMARTEPANTS 1 and another 3-D Monte Carlo code called Integrated Tiger Series, ITS 2 . The evaluation study of SMARTEPANTS code was based on angular discretization and reflected boundary sensitivity whilst the evaluation of ITS was based on CPU time and variance reduction. The comparison of the two code was based on energy and charge deposition calculation in block of Gallium Arsenide with embedded gold cylinders. The result of evaluation tests shows that an S 8 calculation maintains both accuracy and speed and calculations with reflected boundaries geometry produces full symmetrical results. As expected for ITS evaluation, the CPU time and variance reduction are opposite to a point beyond which the history augmentation while increasing the CPU time do not result in variance reduction. The comparison test problem showed excellent agreement in total energy deposition calculations

  7. Thermal transport across metal silicide-silicon interfaces: First-principles calculations and Green's function transport simulations

    Science.gov (United States)

    Sadasivam, Sridhar; Ye, Ning; Feser, Joseph P.; Charles, James; Miao, Kai; Kubis, Tillmann; Fisher, Timothy S.

    2017-02-01

    Heat transfer across metal-semiconductor interfaces involves multiple fundamental transport mechanisms such as elastic and inelastic phonon scattering, and electron-phonon coupling within the metal and across the interface. The relative contributions of these different transport mechanisms to the interface conductance remains unclear in the current literature. In this work, we use a combination of first-principles calculations under the density functional theory framework and heat transport simulations using the atomistic Green's function (AGF) method to quantitatively predict the contribution of the different scattering mechanisms to the thermal interface conductance of epitaxial CoSi2-Si interfaces. An important development in the present work is the direct computation of interfacial bonding from density functional perturbation theory (DFPT) and hence the avoidance of commonly used "mixing rules" to obtain the cross-interface force constants from bulk material force constants. Another important algorithmic development is the integration of the recursive Green's function (RGF) method with Büttiker probe scattering that enables computationally efficient simulations of inelastic phonon scattering and its contribution to the thermal interface conductance. First-principles calculations of electron-phonon coupling reveal that cross-interface energy transfer between metal electrons and atomic vibrations in the semiconductor is mediated by delocalized acoustic phonon modes that extend on both sides of the interface, and phonon modes that are localized inside the semiconductor region of the interface exhibit negligible coupling with electrons in the metal. We also provide a direct comparison between simulation predictions and experimental measurements of thermal interface conductance of epitaxial CoSi2-Si interfaces using the time-domain thermoreflectance technique. Importantly, the experimental results, performed across a wide temperature range, only agree well with

  8. Mass Transfer Behavior of Perfluorinated Chemicals in Saturated Clay-rich Sands: A Laboratory-based Study on Fate and Transport in Groundwater and Sediments

    Science.gov (United States)

    Greenberg, R. R.; Tick, G. R.; Abbott, J. B., III; Carroll, K. C.

    2017-12-01

    Perfluoroalkyl substances (PFAS) are a class of emerging contaminants that pose a threat to the human health and the quality of groundwater, surface water, and drinking water supplies. This study aims to elucidate the primary physicochemical factors controlling the fate and transport of the PFAS contaminants, perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS), in groundwater. Physicochemical processes of intercalation, adsorption, and desorption were investigated for the retention of PFAS at different initial aqueous-phase concentrations in modified-natural sediments composed of sand (40/50 accusand; foc = 0.04% unmodified) with low, medium, and high organic carbon contents (foc = 10, 20, and 50%) and various pre-conditioned clay-fractions. Diffusional mass-transfer limitations were evaluated based on initial PFAS concentration, specific clay structure, and resulting contaminant intercalation (d-spacing changes). A series of short- (48 hr), medium- (7 day) and long-term (30 day) batch and column experiments were conducted to determine physicochemical processes as a function of compound chemistry, sediment geochemistry, sorbent crystalline structure, and contaminant/sediment contact-time. Physicochemical parameters, PFAS concentrations, and sediment characterization were conducted using high performance liquid chromatography (HPLC), X-ray diffraction (XRD), and furnace combustion analytical techniques. The results of PFAS contaminant transport, under the different conditions tested, provide a scientific contribution with application to the development of improved risk assessments, predictions of fate and transport, and more effective remediation strategies for emerging perfluorinated contaminants in soil and groundwater.

  9. Continuous Energy, Multi-Dimensional Transport Calculations for Problem Dependent Resonance Self-Shielding

    International Nuclear Information System (INIS)

    Downar, T.

    2009-01-01

    The overall objective of the work here has been to eliminate the approximations used in current resonance treatments by developing continuous energy multi-dimensional transport calculations for problem dependent self-shielding calculations. The work here builds on the existing resonance treatment capabilities in the ORNL SCALE code system. The overall objective of the work here has been to eliminate the approximations used in current resonance treatments by developing continuous energy multidimensional transport calculations for problem dependent self-shielding calculations. The work here builds on the existing resonance treatment capabilities in the ORNL SCALE code system. Specifically, the methods here utilize the existing continuous energy SCALE5 module, CENTRM, and the multi-dimensional discrete ordinates solver, NEWT to develop a new code, CENTRM( ) NEWT. The work here addresses specific theoretical limitations in existing CENTRM resonance treatment, as well as investigates advanced numerical and parallel computing algorithms for CENTRM and NEWT in order to reduce the computational burden. The result of the work here will be a new computer code capable of performing problem dependent self-shielding analysis for both existing and proposed GENIV fuel designs. The objective of the work was to have an immediate impact on the safety analysis of existing reactors through improvements in the calculation of fuel temperature effects, as well as on the analysis of more sophisticated GENIV/NGNP systems through improvements in the depletion/transmutation of actinides for Advanced Fuel Cycle Initiatives.

  10. An investigation of fission models for high-energy radiation transport calculations

    International Nuclear Information System (INIS)

    Armstrong, T.W.; Cloth, P.; Filges, D.; Neef, R.D.

    1983-07-01

    An investigation of high-energy fission models for use in the HETC code has been made. The validation work has been directed checking the accuracy of the high-energy radiation transport computer code HETC to investigate the appropriate model for routine calculations, particularly for spallation neutron source applications. Model calculations are given in terms of neutron production, fission fragment energy release, and residual nuclei production for high-energy protons incident on thin uranium targets. The effect of the fission models on neutron production from thick uranium targets is also shown. (orig.)

  11. Accuracy estimation for intermediate and low energy neutron transport calculation with Monte Carlo code MCNP

    International Nuclear Information System (INIS)

    Kotegawa, Hiroshi; Sasamoto, Nobuo; Tanaka, Shun-ichi

    1987-02-01

    Both ''measured radioactive inventory due to neutron activation in the shield concrete of JPDR'' and ''measured intermediate and low energy neutron spectra penetrating through a graphite sphere'' are analyzed using a continuous energy model Monte Carlo code MCNP so as to estimate calculational accuracy of the code for neutron transport in thermal and epithermal energy regions. Analyses reveal that MCNP calculates thermal neutron spectra fairly accurately, while it apparently over-estimates epithermal neutron spectra (of approximate 1/E distribution) as compared with the measurements. (author)

  12. Comparison of the results of radiation transport calculation obtained by means of different programs

    International Nuclear Information System (INIS)

    Gorbatkov, D.V.; Kruchkov, V.P.

    1995-01-01

    Verification of calculational results of radiation transport, obtained by the known, programs and constant libraries (MCNP+ENDF/B, ANISN+HILO, FLUKA92) by means of their comparison with the precision results calculations through ROZ-6N+Sadko program constant complex and with experimental data, is carried out. Satisfactory agreement is shown with the MCNP+ENDF/B package data for the energy range of E<14 MeV. Analysis of the results derivations, obtained trough the ANISN-HILO package for E<400 MeV and the FLUKA92 programs of E<200 GeV is carried out. 25 refs., 12 figs., 3 tabs

  13. Generalized Bloch Theorem for Complex Periodic Potentials - A Powerful Application to Quantum Transport Calculations

    International Nuclear Information System (INIS)

    Zhang, Xiaoguang; Varga, Kalman; Pantelides, Sokrates T

    2007-01-01

    Band-theoretic methods with periodically repeated supercells have been a powerful approach for ground-state electronic structure calculations, but have not so far been adapted for quantum transport problems with open boundary conditions. Here we introduce a generalized Bloch theorem for complex periodic potentials and use a transfer-matrix formulation to cast the transmission probability in a scattering problem with open boundary conditions in terms of the complex wave vectors of a periodic system with absorbing layers, allowing a band technique for quantum transport calculations. The accuracy and utility of the method is demonstrated by the model problems of the transmission of an electron over a square barrier and the scattering of a phonon in an inhomogeneous nanowire. Application to the resistance of a twin boundary in nanocrystalline copper yields excellent agreement with recent experimental data

  14. Calculations of Neutron Flux Distributions by Means of Integral Transport Methods

    Energy Technology Data Exchange (ETDEWEB)

    Carlvik, I

    1967-05-15

    Flux distributions have been calculated mainly in one energy group, for a number of systems representing geometries interesting for reactor calculations. Integral transport methods of two kinds were utilised, collision probabilities (CP) and the discrete method (DIT). The geometries considered comprise the three one-dimensional geometries, planes, sphericals and annular, and further a square cell with a circular fuel rod and a rod cluster cell with a circular outer boundary. For the annular cells both methods (CP and DIT) were used and the results were compared. The purpose of the work is twofold, firstly to demonstrate the versatility and efficacy of integral transport methods and secondly to serve as a guide for anybody who wants to use the methods.

  15. Hydrodynamic calculation of a filter sand bed type used in the containment venting systems; Calculo hidrodinamico de un filtro tipo lecho de arena usado en los sistemas de venteo de la contencion

    Energy Technology Data Exchange (ETDEWEB)

    Cuevas V, D.; Sainz M, E.; Ortiz V, J., E-mail: delfy.cu@gmail.com [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2015-09-15

    The filtered venting of the containment has been adopted in European countries to mitigate the consequences of excess pressure containment during a severe accident. When venting has taken place, the fission products are released directly into the environment, unless a filter on the same path is placed, so that various types of filters are used to trap the fission products. The venting filters of the containment currently installed use different filtration technologies that involve more than one medium. Those using water as the first stage of filtration are called wet systems and are equipped with additional steps to remove water drops and fine aerosols emissions. And even they may also be equipped with an element containing certain absorption means for the filtration of gaseous iodine species. Other designs based on filtration of deep bed as the primary retention step; called dry filters, use filtration media of metal fiber, ceramic or sand to trap aerosols. This paper evaluates the hydraulic characteristics of the filter sand bed type designed by EDF as a candidate to be installed in the containment of BWR Mark II (type of primary containment of the nuclear power plant of Laguna Verde). The evaluation of filter sand bed type was performed using the software package of open source OpenFOAM. Models of each zone of the filtered device were generated and through a series of parametric calculations of computational fluid mechanics relevant hydrodynamic characteristics of the device were obtained, such as pressure drops against mass flow rate and pressure fields and speed at different operating conditions. On the other hand, the model validation of the sand bed filter when comparing the results of experimental tests on a sand column of PITEAS program (1985-1986) against OpenFOAM simulation was realized. The results are very close to those obtained experimentally. (Author)

  16. Prediction of Liquefaction Potential of Dredge Fill Sand by DCP and Dynamic Probing

    International Nuclear Information System (INIS)

    Alam, Md. Jahangir; Azad, Abul Kalam; Rahman, Ziaur

    2008-01-01

    From many research it is proved that liquefaction potential of sand is function of mainly relative density and confining pressure. During routine site investigations, high-quality sampling and laboratory testing of sands are not feasible because of inevitable sample disturbance effects and budgetary constraints. On the other hand quality control of sand fill can be done by determining in situ density of sand in layer by layer which is expensive and time consuming. In this paper TRL DCP (Transportation Research Laboratory Dynamic Cone Penetration) and DPL (Dynamic Probing Light) are calibrated to predict the relative density of sand deposit. For this purpose sand of known relative density is prepared in a calibration chamber which is a mild steel cylinder with diameter 0.5 m and height 1.0 m. Relative density of sand is varied by controlling height of fall and diameter of hole of sand discharge bowl. After filling, every time DPL and DCP tests are performed and for every blow the penetration of cone is recorded. N10 is then calculated from penetration records. Thus a database is compiled where N10 and relative densities are known. A correlation is made between N 10 and relative density for two types of sand. A good correlation of N 10 and relative density is found

  17. Simplified calculation method for radiation dose under normal condition of transport

    International Nuclear Information System (INIS)

    Watabe, N.; Ozaki, S.; Sato, K.; Sugahara, A.

    1993-01-01

    In order to estimate radiation dose during transportation of radioactive materials, the following computer codes are available: RADTRAN, INTERTRAN, J-TRAN. Because these codes consist of functions for estimating doses not only under normal conditions but also in the case of accidents, when nuclei may leak and spread into the environment by air diffusion, the user needs to have special knowledge and experience. In this presentation, we describe how, with a view to preparing a method by which a person in charge of transportation can calculate doses in normal conditions, the main parameters upon which the value of doses depends were extracted and the dose for a unit of transportation was estimated. (J.P.N.)

  18. A set of integrated environmental transport and diffusion models for calculating hazardous releases

    International Nuclear Information System (INIS)

    Pepper, D.W.

    1996-01-01

    A set of numerical transport and dispersion models is incorporated within a graphical interface shell to predict hazardous material released into the environment. The visual shell (EnviroView) consists of an object-oriented knowledge base, which is used for inventory control, site mapping and orientation, and monitoring of materials. Graphical displays of detailed sites, building locations, floor plans, and three-dimensional views within a room are available to the user using a point and click interface. In the event of a release to the environment, the user can choose from a selection of analytical, finite element, finite volume, and boundary element methods, which calculate atmospheric transport, groundwater transport, and dispersion within a building interior. The program runs on 486 personal computers under WINDOWS

  19. Gyrokinetic Calculations of Microinstabilities and Transport During RF H-Modes on Alcator C-Mod

    International Nuclear Information System (INIS)

    Redi, M.H.; Fiore, C.; Bonoli, P.; Bourdelle, C.; Budny, R.; Dorland, W.D.; Ernst, D.; Hammett, G.; Mikkelsen, D.; Rice, J.; Wukitch, S.

    2002-01-01

    Physics understanding for the experimental improvement of particle and energy confinement is being advanced through massively parallel calculations of microturbulence for simulated plasma conditions. The ultimate goal, an experimentally validated, global, non-local, fully nonlinear calculation of plasma microturbulence is still not within reach, but extraordinary progress has been achieved in understanding microturbulence, driving forces and the plasma response in recent years. In this paper we discuss gyrokinetic simulations of plasma turbulence being carried out to examine a reproducible, H-mode, RF heated experiment on the Alcator CMOD tokamak3, which exhibits an internal transport barrier (ITB). This off axis RF case represents the early phase of a very interesting dual frequency RF experiment, which shows density control with central RF heating later in the discharge. The ITB exhibits steep, spontaneous density peaking: a reduction in particle transport occurring without a central particle source. Since the central temperature is maintained while the central density is increasing, this also suggests a thermal transport barrier exists. TRANSP analysis shows that ceff drops inside the ITB. Sawtooth heat pulse analysis also shows a localized thermal transport barrier. For this ICRF EDA H-mode, the minority resonance is at r/a * 0.5 on the high field side. There is a normal shear profile, with q monotonic

  20. Ab initio calculation of transport properties between PbSe quantum dots facets with iodide ligands

    Science.gov (United States)

    Wang, B.; Patterson, R.; Chen, W.; Zhang, Z.; Yang, J.; Huang, S.; Shrestha, S.; Conibeer, G.

    2018-01-01

    The transport properties between Lead Selenide (PbSe) quantum dots decorated with iodide ligands has been studied using density functional theory (DFT). Quantum conductance at each selected energy levels has been calculated along with total density of states and projected density of states. The DFT calculation is carried on using a grid-based planar augmented wave (GPAW) code incorporated with the linear combination of atomic orbital (LCAO) mode and Perdew Burke Ernzerhof (PBE) exchange-correlation functional. Three iodide ligand attached low index facets including (001), (011), (111) are investigated in this work. P-orbital of iodide ligand majorly contributes to density of state (DOS) at near top valence band resulting a significant quantum conductance, whereas DOS of Pb p-orbital shows minor influence. Various values of quantum conductance observed along different planes are possibly reasoned from a combined effect electrical field over topmost surface and total distance between adjacent facets. Ligands attached to (001) and (011) planes possess similar bond length whereas it is significantly shortened in (111) plane, whereas transport between (011) has an overall low value due to newly formed electric field. On the other hand, (111) plane with a net surface dipole perpendicular to surface layers leading to stronger electron coupling suggests an apparent increase of transport probability. Apart from previously mentioned, the maximum transport energy levels located several eVs (1 2 eVs) from the edge of valence band top.

  1. EPRI-LATTICE: a multigroup neutron transport code for light water reactor lattice physics calculations

    International Nuclear Information System (INIS)

    Jones, D.B.

    1986-01-01

    EPRI-LATTICE is a multigroup neutron transport computer code for the analysis of light water reactor fuel assemblies. It can solve the two-dimensional neutron transport problem by two distinct methods: (a) the method of collision probabilities and (b) the method of discrete ordinates. The code was developed by S. Levy Inc. as an account of work sponsored by the Electric Power Research Institute (EPRI). The collision probabilities calculation in EPRI-LATTICE (L-CP) is based on the same methodology that exists in the lattice codes CPM-2 and EPRI-CPM. Certain extensions have been made to the data representations of the CPM programs to improve the overall accuracy of the calculation. The important extensions include unique representations of scattering matrices and fission fractions (chi) for each composition in the problem. A new capability specifically developed for the EPRI-LATTICE code is a discrete ordinates methodology. The discrete ordinates calculation in EPRI-LATTICE (L-SN) is based on the discrete S/sub n/ methodology that exists in the TWODANT program. In contrast to TWODANT, which utilizes synthetic diffusion acceleration and supports multiple geometries, only the transport equations are solved by L-SN and only the data representations for the two-dimensional geometry are treated

  2. Improvement of the efficiency of two-dimensional multigroup transport calculations assuming isotropic reflection with multilevel spatial discretisation

    International Nuclear Information System (INIS)

    Stankovski, Z.; Zmijarevic, I.

    1987-06-01

    This paper presents two approximations used in multigroup two-dimensional transport calculations in large, very homogeneous media: isotropic reflection together with recently proposed group-dependent spatial representations. These approximations are implemented as standard options in APOLLO 2 assembly transport code. Presented example calculations show that significant savings in computational costs are obtained while preserving the overall accuracy

  3. Experimental observations of Lagrangian sand grain kinematics under bedload transport: statistical description of the step and rest regimes

    Science.gov (United States)

    Guala, M.; Liu, M.

    2017-12-01

    The kinematics of sediment particles is investigated by non-intrusive imaging methods to provide a statistical description of bedload transport in conditions near the threshold of motion. In particular, we focus on the cyclic transition between motion and rest regimes to quantify the waiting time statistics inferred to be responsible for anomalous diffusion, and so far elusive. Despite obvious limitations in the spatio-temporal domain of the observations, we are able to identify the probability distributions of the particle step time and length, velocity, acceleration, waiting time, and thus distinguish which quantities exhibit well converged mean values, based on the thickness of their respective tails. The experimental results shown here for four different transport conditions highlight the importance of the waiting time distribution and represent a benchmark dataset for the stochastic modeling of bedload transport.

  4. New model for mines and transportation tunnels external dose calculation using Monte Carlo simulation

    International Nuclear Information System (INIS)

    Allam, Kh. A.

    2017-01-01

    In this work, a new methodology is developed based on Monte Carlo simulation for tunnels and mines external dose calculation. Tunnels external dose evaluation model of a cylindrical shape of finite thickness with an entrance and with or without exit. A photon transportation model was applied for exposure dose calculations. A new software based on Monte Carlo solution was designed and programmed using Delphi programming language. The variation of external dose due to radioactive nuclei in a mine tunnel and the corresponding experimental data lies in the range 7.3 19.9%. The variation of specific external dose rate with position in, tunnel building material density and composition were studied. The given new model has more flexible for real external dose in any cylindrical tunnel structure calculations. (authors)

  5. Calculation of the coherent transport properties of a symmetric spin nanocontact

    International Nuclear Information System (INIS)

    Bourahla, B.; Khater, A.; Tigrine, R.

    2009-01-01

    A theoretical study is presented for the coherent transport properties of a magnetic nanocontact. In particular, we study a symmetric nanocontact between two identical waveguides composed of semi-infinite spin ordered ferromagnetic chains. The coherent transmission and reflection scattering cross sections via the nanocontact, for spin waves incident from the bulk waveguide, are calculated with the use of the matching method. The inter-atomic magnetic exchange on the nanocontact is allowed to vary to investigate the consequences of magnetic softening and hardening for the calculated spectra. Transmission spectra underline the filtering properties of the nanocontact. The localized spin density of states in the nanocontact domain is also calculated, and analyzed. The results yield an understanding of the relationship between coherent conductance and the structural configuration of the nanocontact.

  6. ZZ AIRFEWG, Gamma, Neutron Transport Calculation in Air Using FEWG1 Cross-Section

    International Nuclear Information System (INIS)

    1985-01-01

    1 - Description of program or function: Format: ANISN; Number of groups: 37 neutron / 21 gamma-ray; Nuclides: air (79% N and 21% O); Origin: DLC-0031/FEWG1 cross sections (ENDF/B-IV). Weighting spectrum: 1/E. The AIRFEWG library has been generated by an ANISN multigroup calculation of gamma-ray, neutron, and secondary gamma-ray transport in infinite homogeneous air using DLC-0031/FEWG1 cross sections. 2 - Method of solution: The results were generated with a P3, ANISN run with a source in a single energy group. Thus, 58 such runs were required. For sources in the 37 neutron groups, both neutron and secondary gamma-ray fluence results were calculated. For gamma-ray sources only gamma-ray fluences were calculated

  7. Application of an efficient materials perturbation technique to Monte Carlo photon transport calculations in borehole logging

    International Nuclear Information System (INIS)

    Picton, D.J.; Harris, R.G.; Randle, K.; Weaver, D.R.

    1995-01-01

    This paper describes a simple, accurate and efficient technique for the calculation of materials perturbation effects in Monte Carlo photon transport calculations. It is particularly suited to the application for which it was developed, namely the modelling of a dual detector density tool as used in borehole logging. However, the method would be appropriate to any photon transport calculation in the energy range 0.1 to 2 MeV, in which the predominant processes are Compton scattering and photoelectric absorption. The method enables a single set of particle histories to provide results for an array of configurations in which material densities or compositions vary. It can calculate the effects of small perturbations very accurately, but is by no means restricted to such cases. For the borehole logging application described here the method has been found to be efficient for a moderate range of variation in the bulk density (of the order of ±30% from a reference value) or even larger changes to a limited portion of the system (e.g. a low density mudcake of the order of a few tens of mm in thickness). The effective speed enhancement over an equivalent set of individual calculations is in the region of an order of magnitude or more. Examples of calculations on a dual detector density tool are given. It is demonstrated that the method predicts, to a high degree of accuracy, the variation of detector count rates with formation density, and that good results are also obtained for the effects of mudcake layers. An interesting feature of the results is that relative count rates (the ratios of count rates obtained with different configurations) can usually be determined more accurately than the absolute values of the count rates. (orig.)

  8. Development of 2-D/1-D fusion method for three-dimensional whole-core heterogeneous neutron transport calculations

    International Nuclear Information System (INIS)

    Lee, Gil Soo

    2006-02-01

    To describe power distribution and multiplication factor of a reactor core accurately, it is necessary to perform calculations based on neutron transport equation considering heterogeneous geometry and scattering angles. These calculations require very heavy calculations and were nearly impossible with computers of old days. From the limitation of computing power, traditional approach of reactor core design consists of heterogeneous transport calculation in fuel assembly level and whole core diffusion nodal calculation with assembly homogenized properties, resulting from fuel assembly transport calculation. This approach may be effective in computation time, but it gives less accurate results for highly heterogeneous problems. As potential for whole core heterogeneous transport calculation became more feasible owing to rapid development of computing power during last several years, the interests in two and three dimensional whole core heterogeneous transport calculations by deterministic method are increased. For two dimensional calculation, there were several successful approaches using even parity transport equation with triangular meshes, S N method with refined rectangular meshes, the method of characteristics (MOC) with unstructured meshes, and so on. The work in this thesis originally started from the two dimensional whole core heterogeneous transport calculation by using MOC. After successful achievement in two dimensional calculation, there were efforts in three-dimensional whole-core heterogeneous transport calculation using MOC. Since direct extension to three dimensional calculation of MOC requires too much computing power, indirect approach to three dimensional calculation was considered.Thus, 2D/1D fusion method for three dimensional heterogeneous transport calculation was developed and successfully implemented in a computer code. The 2D/1D fusion method is synergistic combination of the MOC for radial 2-D calculation and S N -like methods for axial 1

  9. Humic acid facilitates the transport of ARS-labeled hydroxyapatite nanoparticles in iron oxyhydroxide-coated sand

    Science.gov (United States)

    Hydroxyapatite nanoparticles (nHAP) have been widely used to remediate soil and wastewater contaminated with metals and radionuclides. However, our understanding of nHAP transport and fate is limited in natural environments that exhibit significant variability in solid and solution chemistry. The tr...

  10. Sand consolidation

    Energy Technology Data Exchange (ETDEWEB)

    Spain, H H

    1965-01-21

    In a sand consolidation method in which there is injected a mixture of resin-forming liquids comprising an aryl-hydroxy low molecular weight compound, a water- soluble aldehyde, and a catalyst, an improvement is claimed which comprises diluting the resin-forming liquids with a diluent and with water so that the yield of the resin is sufficient to consolidate the sand particles with the minimum desirable pressure. The diluent may be mutually soluble in water and in the resin-forming liquids, and does not affect the setting time of the polymer. The aldehyde and the aryl-hydroxy compound may be in ratio of 5:1, and the diluent, methyl alcohol, is present in a ratio of 2:1 with reference to the water.

  11. Time-dependent Flow and Transport Calculations for Project Opalinus Clay (Entsorgungsnachweis)

    International Nuclear Information System (INIS)

    Kosakowski, G.

    2004-07-01

    This report describes two specific assessment cases used in the safety assessment for a proposed deep geological repository for spent fuel, high level waste and long-lived intermediate-level waste, sited in the Opalinus Clay of the Zuercher Weinland in northern Switzerland (Project Entsorgungsnachweis, NAG RA, 2002d). In this study the influence of time dependent flow processes on the radionuclide transport in the geosphere is investigated. In the Opalinus Clay diffusion dominates the transport of radionuclides, but processes exist that can locally increase the importance of the advective transport for some time. Two important cases were investigated: (1) glaciation-induced flow due to an additional overburden in the form of an ice shield of up to 400 m thickness and (2) fluid flow driven by tunnel convergence. For the calculations the code FRAC3DVS (Therrien and Sudicky, 1996) was used. FRAC3DVS solves the three-dimensional flow and transport equation in porous and fractured media. For the case of glaciation-induced flow (1) a two-dimensional reference model without glaciations was calculated. During the glaciations the geosphere release-rates are up to a factor of about 1.7 higher compared to the reference model. The influence of glaciations on the transport of cations or neutral species is less than for anions, since the importance of the advective transport for anions is higher due to the lower accessible porosity for anions. The increase in the release rates during glaciations is lower for sorbing compared to non-sorbing radionuclides. The influence of the tunnel convergence (2) on the transport of radionuclides in the geosphere is very small. Due to the higher source term the geosphere release rates are slightly higher if tunnel convergence is considered. In addition to the two assessment cases this report investigates the applicability of the one-dimensional approximation for modelling transport through the Opalinus Clay. For the reference case of the safety

  12. Considerations of beta and electron transport in internal dose calculations. Progress report

    Energy Technology Data Exchange (ETDEWEB)

    Bolch, W.E.

    1994-11-01

    The goal of this particular task is to consider, for the first time, the explicit transport of beta particles and photon-generated electrons in the series of six phantoms developed by Cristy and Eckerman (1987) at the Oak Ridge National Laboratory. In their report, ORNL/TM-8381, specific absorbed fractions of energy are reported for phantoms representing the newborn (3.4 kg), the one-year-old (9.8 kg), the five-year-old (19 kg), the ten-year-old (32 kg), the fifteen-year-old/adult female (55-58 kg), and the adult male (70 kg). Radiation transport calculations were performed with the Monte Carlo code ALGAMP which allows photon transport only. In subsequent calculations of radionuclide S values as is done in the MIRDOSE2 computer program, electron absorbed fractions are thus considered to be either unity or zero depending upon whether the source region does or does not equal the target region, respectively.

  13. Comparative assessment of different approaches for the use of CAD geometry in Monte Carlo transport calculations

    International Nuclear Information System (INIS)

    Weinhorst, Bastian; Fischer, Ulrich; Lu, Lei; Qiu, Yuefeng; Wilson, Paul

    2015-01-01

    Highlights: • Comparison of different approaches for the use of CAD geometry for Monte Carlo transport calculations. • Comparison with regard to user-friendliness and computation performance. • Three approaches, namely conversion with McCad, unstructured mesh feature of MCN6 and DAGMC. • Installation most complex for DAGMC, model preparation worst for McCad, computation performance worst for MCNP6. • Installation easiest for McCad, model preparation best for MCNP6, computation speed fastest for McCad. - Abstract: Computer aided design (CAD) is an important industrial way to produce high quality designs. Therefore, CAD geometries are in general used for engineering and the design of complex facilities like the ITER tokamak. Although Monte Carlo codes like MCNP are well suited to handle the complex 3D geometry of ITER for transport calculations, they rely on their own geometry description and are in general not able to directly use the CAD geometry. In this paper, three different approaches for the use of CAD geometries with MCNP calculations are investigated and assessed with regard to calculation performance and user-friendliness. The first method is the conversion of the CAD geometry into MCNP geometry employing the conversion software McCad developed by KIT. The second approach utilizes the MCNP6 mesh geometry feature for the particle tracking and relies on the conversion of the CAD geometry into a mesh model. The third method employs DAGMC, developed by the University of Wisconsin-Madison, for the direct particle tracking on the CAD geometry using a patched version of MCNP. The obtained results show that each method has its advantages depending on the complexity and size of the model, the calculation problem considered, and the expertise of the user.

  14. 3-D Whole-Core Transport Calculation with 3D/2D Rotational Plane Slicing Method

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Han Jong; Cho, Nam Zin [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2014-10-15

    Use of the method of characteristics (MOC) is very popular due to its capability of heterogeneous geometry treatment and widely used for 2-D core calculation, but direct extension of MOC to 3-D core is not so attractive due to huge calculational cost. 2-D/1-D fusion method was very successful for 3-D calculation of current generation reactor types (highly heterogeneous in radial direction but piece-wise homogeneous in axial direction). In this paper, 2-D MOC concept is extended to 3-D core calculation with little modification of an existing 2-D MOC code. The key idea is to suppose 3-D geometry as a set of many 2-D planes like a phone-directory book. Dividing 3-D structure into a large number of 2-D planes and solving each plane with a simple 2-D SN transport method would give the solution of a 3-D structure. This method was developed independently at KAIST but it is found that this concept is similar with that of 'plane tracing' in the MCCG-3D code. The method developed was tested on the 3-D C5G7 OECD/NEA benchmark problem and compared with the 2-D/1-D fusion method. Results show that the proposed method is worth investigating further. A new approach to 3-D whole-core transport calculation is described and tested. By slicing 3-D structure along characteristic planes and solving each 2-D plane problem, we can get 3-D solution. The numerical test results indicate that the new method is comparable with the 2D/1D fusion method and outperforms other existing methods. But more fair comparison should be done in similar discretization level.

  15. Comparative assessment of different approaches for the use of CAD geometry in Monte Carlo transport calculations

    Energy Technology Data Exchange (ETDEWEB)

    Weinhorst, Bastian, E-mail: bastian.weinhorst@kit.edu [Karlsruhe Institute of Technology (KIT), Institute for Neutron Physics and Reactor Technology, Eggenstein-Leopoldshafen (Germany); Fischer, Ulrich; Lu, Lei; Qiu, Yuefeng [Karlsruhe Institute of Technology (KIT), Institute for Neutron Physics and Reactor Technology, Eggenstein-Leopoldshafen (Germany); Wilson, Paul [University of Wisconsin-Madison, Computational Nuclear Engineering Research Group, Madison, WI (United States)

    2015-10-15

    Highlights: • Comparison of different approaches for the use of CAD geometry for Monte Carlo transport calculations. • Comparison with regard to user-friendliness and computation performance. • Three approaches, namely conversion with McCad, unstructured mesh feature of MCN6 and DAGMC. • Installation most complex for DAGMC, model preparation worst for McCad, computation performance worst for MCNP6. • Installation easiest for McCad, model preparation best for MCNP6, computation speed fastest for McCad. - Abstract: Computer aided design (CAD) is an important industrial way to produce high quality designs. Therefore, CAD geometries are in general used for engineering and the design of complex facilities like the ITER tokamak. Although Monte Carlo codes like MCNP are well suited to handle the complex 3D geometry of ITER for transport calculations, they rely on their own geometry description and are in general not able to directly use the CAD geometry. In this paper, three different approaches for the use of CAD geometries with MCNP calculations are investigated and assessed with regard to calculation performance and user-friendliness. The first method is the conversion of the CAD geometry into MCNP geometry employing the conversion software McCad developed by KIT. The second approach utilizes the MCNP6 mesh geometry feature for the particle tracking and relies on the conversion of the CAD geometry into a mesh model. The third method employs DAGMC, developed by the University of Wisconsin-Madison, for the direct particle tracking on the CAD geometry using a patched version of MCNP. The obtained results show that each method has its advantages depending on the complexity and size of the model, the calculation problem considered, and the expertise of the user.

  16. Assessment of assembly homogenized two-steps core dynamic calculations using direct whole core transport solutions

    International Nuclear Information System (INIS)

    Hursin, Mathieu; Downar, Thomas J.; Yoon, Joo Il; Joo, Han Gyu

    2016-01-01

    Highlights: • Reactivity initiated accident analysis with direct whole core transient transport code. • Comparison with usual “two steps” procedure. • Effect of effective delayed neutron fraction definition on energy deposition in the fuel. • Effect of homogenized few-group cross sections generation at the assembly level on energy deposition in the fuel. • Effect of effective fuel temperature definition on energy deposition in the fuel. - Abstract: The impact of the approximations in the “two-steps” procedure used in the current generation of nodal simulators for core transient calculations is assessed by using a higher order solution obtained from a direct, whole core, transient transport calculation. A control rod ejection accident in an idealized minicore is analyzed with PARCS, which uses the two-steps procedure and DeCART which provides the higher order solution. DeCART is used as lattice code to provide the homogenized cross sections and kinetics parameters to PARCS. The approximations made by using (1) the homogenized few-group cross sections and kinetic parameters generated at the assembly level, (2) an effective delayed neutrons fraction, (3) an effective fuel temperature and (4) the few-group formulation are investigated in terms of global and local core power behavior. The results presented in the paper show that the current two-steps procedure produces sufficiently accurate transient results with respect to the direct whole core calculation solution, provided that its parameters are carefully generated using the prescriptions described in the present article.

  17. Method for calculating anisotropic neutron transport using scattering kernel without polynomial expansion

    International Nuclear Information System (INIS)

    Takahashi, Akito; Yamamoto, Junji; Ebisuya, Mituo; Sumita, Kenji

    1979-01-01

    A new method for calculating the anisotropic neutron transport is proposed for the angular spectral analysis of D-T fusion reactor neutronics. The method is based on the transport equation with new type of anisotropic scattering kernels formulated by a single function I sub(i) (μ', μ) instead of polynomial expansion, for instance, Legendre polynomials. In the calculation of angular flux spectra by using scattering kernels with the Legendre polynomial expansion, we often observe the oscillation with negative flux. But in principle this oscillation disappears by this new method. In this work, we discussed anisotropic scattering kernels of the elastic scattering and the inelastic scatterings which excite discrete energy levels. The other scatterings were included in isotropic scattering kernels. An approximation method, with use of the first collision source written by the I sub(i) (μ', μ) function, was introduced to attenuate the ''oscillations'' when we are obliged to use the scattering kernels with the Legendre polynomial expansion. Calculated results with this approximation showed remarkable improvement for the analysis of the angular flux spectra in a slab system of lithium metal with the D-T neutron source. (author)

  18. Equilibrium Limit of Boundary Scattering in Carbon Nanostructures: Molecular Dynamics Calculations of Thermal Transport

    Science.gov (United States)

    Haskins, Justin; Kinaci, Alper; Sevik, Cem; Cagin, Tahir

    2012-01-01

    It is widely known that graphene and many of its derivative nanostructures have exceedingly high reported thermal conductivities (up to 4000 W/mK at 300 K). Such attractive thermal properties beg the use of these structures in practical devices; however, to implement these materials while preserving transport quality, the influence of structure on thermal conductivity should be thoroughly understood. For graphene nanostructures, having average phonon mean free paths on the order of one micron, a primary concern is how size influences the potential for heat conduction. To investigate this, we employ a novel technique to evaluate the lattice thermal conductivity from the Green-Kubo relations and equilibrium molecular dynamics in systems where phonon-boundary scattering dominates heat flow. Specifically, the thermal conductivities of graphene nanoribbons and carbon nanotubes are calculated in sizes up to 3 microns, and the relative influence of boundary scattering on thermal transport is determined to be dominant at sizes less than 1 micron, after which the thermal transport largely depends on the quality of the nanostructure interface. The method is also extended to carbon nanostructures (fullerenes) where phonon confinement, as opposed to boundary scattering, dominates, and general trends related to the influence of curvature on thermal transport in these materials are discussed.

  19. Neutron transport assembly calculation with non-zero net current boundary condition

    International Nuclear Information System (INIS)

    Jo, Chang Keun

    1993-02-01

    Fuel assembly calculation for the homogenized group constants is one of the most important parts in the reactor core analysis. The homogenized group constants of one a quarter assembly are usually generated for the nodal calculation of the reactor core. In the current nodal calculation, one or a quarter of the fuel assembly corresponds to a unit node. The homogenized group constant calculation for a fuel assembly proceeds through cell spectrum calculations, group condensation and cell homogenization calculations, two dimensional fuel assembly calculation, and then depletion calculations of fuel rods. To obtain the assembly wise homogenized group constants, the two dimensional transport calculation is usually performed. Most codes for the assembly wise homogenized group constants employ a zero net current boundary condition. CASMO-3 is such a code that is in wide use. The zero net current boundary condition is plausible and valid in an infinite reactor composed of the same kind of assemblies. However, the reactor is finite and the core is constructed by different kinds of assemblies. Hence, the assumption of the zero net current boundary condition is not valid in the actual reactor. The objective of this study is to develop a homogenization methodology that can treat any actual boundary condition, i.e. non-zero net current boundary condition. In order to treat the non-zero net current boundary condition, we modify CASMO-3. For the two-dimensional treatment in CASMO-3, a multigroup integral transport routine based on the method of transmission probability is used. The code performs assembly calculation with zero net current boundary condition. CASMO-3 is modified to consider the inhomogeneous source at the assembly boundary surface due to the non-zero net current. The modified version of CASMO-3 is called CASMO-3M. CASMO-3M is applied to several benchmark problems. In order to obtain the inhomogeneous source, the global calculation is performed. The local calculation

  20. Seismic analysis, support design and stress calculation of HTR-PM transport and conversion devices

    International Nuclear Information System (INIS)

    Zhang Zheyu; Yuan Chaolong; Zhang Haiquan; Nie Junfeng

    2012-01-01

    Background: The transport and conversion devices are important guarantees for normal operation of HTR-PM fuel handling system in normal and fault conditions. Purpose: A conflict of devices' support design needs to be solved. The flexibility of supports is required because of pipe thermal expansion displacement, while the stiffness is also required because of large devices quality and eccentric distance. Methods: In this paper, the numerical simulation was employed to analyze the seismic characteristics and optimize the support program, Under the chosen support program, the stress calculation of platen support bracket was designed by solidworks software. Results: The supports solved the conflict between the flexibility and stiffness requirements. Conclusions: Therefore, it can ensure the safety of transport and conversion devices and the supports in seismic conditions. (authors)

  1. 3D heterogeneous transport calculations of CANDU fuel with EVENT/HELIOS

    International Nuclear Information System (INIS)

    Rahnema, F.; Mosher, S.; Ilas, D.; De Oliveira, C.; Eaton, M.; Stamm'ler, R.

    2002-01-01

    The applicability of the EVENT/HELIOS package to CANDU lattice cell analysis is studied in this paper. A 45-group cross section library is generated using the lattice depletion transport code HELIOS. This library is then used with the 3-D transport code EVENT to compute the pin fission densities and the multiplication constants for six configurations typical of a CANDU cell. The results are compared to those from MCNP with the same multigroup library. Differences of 70-150 pcm in multiplication constant and 0.08-0.95% in pin fission density are found for these cases. It is expected that refining the EVENT calculations can reduce these differences. This gives confidence in applying EVENT to transient analyses at the fuel pin level in a selected part of a CANDU core such as the limiting bundle during a loss of coolant accident (LOCA). (author)

  2. Standard problem exercise to validate criticality codes for spent LWR fuel transport container calculations

    International Nuclear Information System (INIS)

    Whitesides, G.H.; Stephens, M.E.

    1984-01-01

    During the past two years, a Working Group established by the Organization for Economic Co-Operation and Development's Nuclear Energy Agency (OECD-NEA) has been developing a set of criticality benchmark problems which could be used to help establish the validity of criticality safety computer programs and their associated nuclear data for calculation of ksub(eff) for spent light water reactor (LWR) fuel transport containers. The basic goal of this effort was to identify a set of actual critical experiments which would contain the various material and geometric properties present in spent LWR transport contrainers. These data, when used by the various computational methods, are intended to demonstrate the ability of each method to accurately reproduce the experimentally measured ksub(eff) for the parameters under consideration

  3. Vectorization and parallelization of Monte-Carlo programs for calculation of radiation transport

    International Nuclear Information System (INIS)

    Seidel, R.

    1995-01-01

    The versatile MCNP-3B Monte-Carlo code written in FORTRAN77, for simulation of the radiation transport of neutral particles, has been subjected to vectorization and parallelization of essential parts, without touching its versatility. Vectorization is not dependent on a specific computer. Several sample tasks have been selected in order to test the vectorized MCNP-3B code in comparison to the scalar MNCP-3B code. The samples are a representative example of the 3-D calculations to be performed for simulation of radiation transport in neutron and reactor physics. (1) 4πneutron detector. (2) High-energy calorimeter. (3) PROTEUS benchmark (conversion rates and neutron multiplication factors for the HCLWR (High Conversion Light Water Reactor)). (orig./HP) [de

  4. Mixed first- and second-order transport method using domain decomposition techniques for reactor core calculations

    International Nuclear Information System (INIS)

    Girardi, E.; Ruggieri, J.M.

    2003-01-01

    The aim of this paper is to present the last developments made on a domain decomposition method applied to reactor core calculations. In this method, two kind of balance equation with two different numerical methods dealing with two different unknowns are coupled. In the first part the two balance transport equations (first order and second order one) are presented with the corresponding following numerical methods: Variational Nodal Method and Discrete Ordinate Nodal Method. In the second part, the Multi-Method/Multi-Domain algorithm is introduced by applying the Schwarz domain decomposition to the multigroup eigenvalue problem of the transport equation. The resulting algorithm is then provided. The projection operators used to coupled the two methods are detailed in the last part of the paper. Finally some preliminary numerical applications on benchmarks are given showing encouraging results. (authors)

  5. Calculation of the poloidal ambipolar field in a stellarator and its effect on transport

    International Nuclear Information System (INIS)

    Mynick, H.E.

    1984-01-01

    The portion Phi 1 of the ambipolar potential Phi which produces an electric field in the flux surfaces of a stellarator is self-consistently calculated, and its effect on stellarator transport at low collisionality is considered. The effect is small in a parameter delta/sub h/, which is proportional to the square root of the ripple amplitude, epsilon/sub h/. However, since delta/sub h/ can be an appreciable fraction of 1 for realistic parameters, the effect of Phi 1 on transport can also be appreciable. Whether the effect is harmful or beneficial to confinement depends on the degree of pressure anisotropy and on the sign of p/sub perpendicular/-p/sub parallel/

  6. Krylov subspace method for evaluating the self-energy matrices in electron transport calculations

    DEFF Research Database (Denmark)

    Sørensen, Hans Henrik Brandenborg; Hansen, Per Christian; Petersen, D. E.

    2008-01-01

    We present a Krylov subspace method for evaluating the self-energy matrices used in the Green's function formulation of electron transport in nanoscale devices. A procedure based on the Arnoldi method is employed to obtain solutions of the quadratic eigenvalue problem associated with the infinite...... calculations. Numerical tests within a density functional theory framework are provided to validate the accuracy and robustness of the proposed method, which in most cases is an order of magnitude faster than conventional methods.......We present a Krylov subspace method for evaluating the self-energy matrices used in the Green's function formulation of electron transport in nanoscale devices. A procedure based on the Arnoldi method is employed to obtain solutions of the quadratic eigenvalue problem associated with the infinite...

  7. Quantum close coupling calculation of transport and relaxation properties for Hg-H_2 system

    International Nuclear Information System (INIS)

    Nemati-Kande, Ebrahim; Maghari, Ali

    2016-01-01

    Highlights: • Several relaxation cross sections are calculated for Hg-H_2 van der Waals complex. • These cross sections are calculated from exact close-coupling method. • Energy-dependent SBE cross sections are calculated for ortho- and para-H_2 + Hg systems. • Viscosity and diffusion coefficients are calculated using Mason-Monchick approximation. • The results obtained by Mason-Monchick approximation are compared to the exact close-coupling results. - Abstract: Quantum mechanical close coupling calculation of the state-to-state transport and relaxation cross sections have been done for Hg-H_2 molecular system using a high-level ab initio potential energy surface. Rotationally averaged cross sections were also calculated to obtain the energy dependent Senftleben-Beenakker cross sections at the energy range of 0.005–25,000 cm"−"1. Boltzmann averaging of the energy dependent Senftleben-Beenakker cross sections showed the temperature dependency over a wide temperature range of 50–2500 K. Interaction viscosity and diffusion coefficients were also calculated using close coupling cross sections and full classical Mason-Monchick approximation. The results were compared with each other and with the available experimental data. It was found that Mason-Monchick approximation for viscosity is more reliable than diffusion coefficient. Furthermore, from the comparison of the experimental diffusion coefficients with the result of the close coupling and Mason-Monchick approximation, it was found that the Hg-H_2 potential energy surface used in this work can reliably predict diffusion coefficient data.

  8. Quantum close coupling calculation of transport and relaxation properties for Hg-H{sub 2} system

    Energy Technology Data Exchange (ETDEWEB)

    Nemati-Kande, Ebrahim; Maghari, Ali, E-mail: maghari@ut.ac.ir

    2016-11-10

    Highlights: • Several relaxation cross sections are calculated for Hg-H{sub 2} van der Waals complex. • These cross sections are calculated from exact close-coupling method. • Energy-dependent SBE cross sections are calculated for ortho- and para-H{sub 2} + Hg systems. • Viscosity and diffusion coefficients are calculated using Mason-Monchick approximation. • The results obtained by Mason-Monchick approximation are compared to the exact close-coupling results. - Abstract: Quantum mechanical close coupling calculation of the state-to-state transport and relaxation cross sections have been done for Hg-H{sub 2} molecular system using a high-level ab initio potential energy surface. Rotationally averaged cross sections were also calculated to obtain the energy dependent Senftleben-Beenakker cross sections at the energy range of 0.005–25,000 cm{sup −1}. Boltzmann averaging of the energy dependent Senftleben-Beenakker cross sections showed the temperature dependency over a wide temperature range of 50–2500 K. Interaction viscosity and diffusion coefficients were also calculated using close coupling cross sections and full classical Mason-Monchick approximation. The results were compared with each other and with the available experimental data. It was found that Mason-Monchick approximation for viscosity is more reliable than diffusion coefficient. Furthermore, from the comparison of the experimental diffusion coefficients with the result of the close coupling and Mason-Monchick approximation, it was found that the Hg-H{sub 2} potential energy surface used in this work can reliably predict diffusion coefficient data.

  9. Development of hybrid core calculation system using 2-D full-core heterogeneous transport calculation and 3-D advanced nodal calculation

    International Nuclear Information System (INIS)

    Sugimura, Naoki; Mori, Masaaki; Hijiya, Masayuki; Ushio, Tadashi; Arakawa, Yasushi

    2004-01-01

    This paper presents the Hybrid Core Calculation System which is a very rigorous but a practical calculation system applicable to best estimate core design calculations taking advantage of the recent remarkable progress of computers. The basic idea of this system is to generate the correction factors for assembly homogenized cross sections, discontinuity factors, etc. by comparing the CASMO-4 and SIMULATE-3 2-D core calculation results under the consistent calculation condition and then apply them for SIMULATE-3 3-D calculation. The CASMO-4 2-D heterogeneous core calculation is performed for each depletion step with the core conditions previously determined by ordinary SIMULATE-3 core calculation to avoid time consuming iterative calculations searching for the critical boron concentrations while treating the thermal hydraulic feedback. The final SIMULATE-3 3-D calculation using the correction factors is performed with iterative calculations searching for the critical boron concentrations while treating the thermal hydraulic feedback. (author)

  10. An analytical transport theory method for calculating flux distribution in slab cells

    International Nuclear Information System (INIS)

    Abdel Krim, M.S.

    2001-01-01

    A transport theory method for calculating flux distributions in slab fuel cell is described. Two coupled integral equations for flux in fuel and moderator are obtained; assuming partial reflection at moderator external boundaries. Galerkin technique is used to solve these equations. Numerical results for average fluxes in fuel and moderator and the disadvantage factor are given. Comparison with exact numerical methods, that is for total reflection moderator outer boundaries, show that the Galerkin technique gives accurate results for the disadvantage factor and average fluxes. (orig.)

  11. Comment on ''Walker diffusion method for calculation of transport properties of composite materials''

    International Nuclear Information System (INIS)

    Kim, In Chan; Cule, Dinko; Torquato, Salvatore

    2000-01-01

    In a recent paper [C. DeW. Van Siclen, Phys. Rev. E 59, 2804 (1999)], a random-walk algorithm was proposed as the best method to calculate transport properties of composite materials. It was claimed that the method is applicable both to discrete and continuum systems. The limitations of the proposed algorithm are analyzed. We show that the algorithm does not capture the peculiarities of continuum systems (e.g., ''necks'' or ''choke points'') and we argue that it is the stochastic analog of the finite-difference method. (c) 2000 The American Physical Society

  12. Calculating the Jet Transport Coefficient q-hat in Lattice Gauge Theory

    International Nuclear Information System (INIS)

    Majumder, Abhijit

    2013-01-01

    The formalism of jet modification in the higher twist approach is modified to describe a hard parton propagating through a hot thermalized medium. The leading order contribution to the transverse momentum broadening of a high energy (near on-shell) quark in a thermal medium is calculated. This involves a factorization of the perturbative process of scattering of the quark from the non-perturbative transport coefficient. An operator product expansion of the non-perturbative operator product which represents q -hat is carried out and related via dispersion relations to the expectation of local operators. These local operators are then evaluated in quenched SU(2) lattice gauge theory

  13. A calculation program for harvesting and transportation costs of energy wood; Energiapuun korjuun ja kuljetuksen kustannuslaskentaohjelmisto

    Energy Technology Data Exchange (ETDEWEB)

    Kuitto, P.J.

    1996-12-31

    VTT Energy is compiling a large and versatile calculation program for harvesting and transportation costs of energy wood. The work has been designed and will be carried out in cooperation with Metsaeteho and Finntech Ltd. The program has been realised in Windows surroundings using SQLWindows graphical database application development system, using the SQLBase relational database management system. The objective of the research is to intensify and create new possibilities for comparison of the utilization costs and the profitability of integrated energy wood production chains with each other inside the chains

  14. Photon and electron data bases and their use in radiation transport calculations

    International Nuclear Information System (INIS)

    Cullen, D.E.; Perkins, S.T.; Seltzer, S.M.

    1992-02-01

    The ENDF/B-VI photon interaction library includes data to describe the interaction of photons with the elements Z=1 to 100 over the energy range 10 eV to 100 MeV. This library has been designed to meet the traditional needs of users to model the interaction and transport of primary photons. However, this library contains additional information which used in a combination with our other data libraries can be used to perform much more detailed calculations, e.g., emission of secondary fluorescence photons. This paper describes both traditional and more detailed uses of this library

  15. A calculation program for harvesting and transportation costs of energy wood; Energiapuun korjuun ja kuljetuksen kustannuslaskentaohjelmisto

    Energy Technology Data Exchange (ETDEWEB)

    Kuitto, P J

    1997-12-31

    VTT Energy is compiling a large and versatile calculation program for harvesting and transportation costs of energy wood. The work has been designed and will be carried out in cooperation with Metsaeteho and Finntech Ltd. The program has been realised in Windows surroundings using SQLWindows graphical database application development system, using the SQLBase relational database management system. The objective of the research is to intensify and create new possibilities for comparison of the utilization costs and the profitability of integrated energy wood production chains with each other inside the chains

  16. An approximate framework for quantum transport calculation with model order reduction

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Quan, E-mail: quanchen@eee.hku.hk [Department of Electrical and Electronic Engineering, The University of Hong Kong (Hong Kong); Li, Jun [Department of Chemistry, The University of Hong Kong (Hong Kong); Yam, Chiyung [Beijing Computational Science Research Center (China); Zhang, Yu [Department of Chemistry, The University of Hong Kong (Hong Kong); Wong, Ngai [Department of Electrical and Electronic Engineering, The University of Hong Kong (Hong Kong); Chen, Guanhua [Department of Chemistry, The University of Hong Kong (Hong Kong)

    2015-04-01

    A new approximate computational framework is proposed for computing the non-equilibrium charge density in the context of the non-equilibrium Green's function (NEGF) method for quantum mechanical transport problems. The framework consists of a new formulation, called the X-formulation, for single-energy density calculation based on the solution of sparse linear systems, and a projection-based nonlinear model order reduction (MOR) approach to address the large number of energy points required for large applied biases. The advantages of the new methods are confirmed by numerical experiments.

  17. Effect of concentration gradients on biodegradation in bench-scale sand columns with HYDRUS modeling of hydrocarbon transport and degradation.

    Science.gov (United States)

    Horel, Agota; Schiewer, Silke; Misra, Debasmita

    2015-09-01

    The present research investigated to what extent results obtained in small microcosm experiments can be extrapolated to larger settings with non-uniform concentrations. Microbial hydrocarbon degradation in sandy sediments was compared for column experiments versus homogenized microcosms with varying concentrations of diesel, Syntroleum, and fish biodiesel as contaminants. Syntroleum and fish biodiesel had higher degradation rates than diesel fuel. Microcosms showed significantly higher overall hydrocarbon mineralization percentages (p transport and degradation of the investigated fuels in vadose zone conditions similar to those in laboratory column experiments. The numerical model was used to evaluate the impact of different degradation rate constants from microcosm versus column experiments.

  18. Radiation transport calculations for the ANS [Advanced Neutron Source] beam tubes

    International Nuclear Information System (INIS)

    Engle, W.W. Jr.; Lillie, R.A.; Slater, C.O.

    1988-01-01

    The Advanced Neutron Source facility (ANS) will incorporate a large number of both radial and no-line-of-sight (NLS) beam tubes to provide very large thermal neutron fluxes to experimental facilities. The purpose of this work was to obtain comparisons for the ANS single- and split-core designs of the thermal and damage neutron and gamma-ray scalar fluxes in these beams tubes. For experimental locations far from the reactor cores, angular flux data are required; however, for close-in experimental locations, the scalar fluxes within each beam tube provide a credible estimate of the various signal to noise ratios. In this paper, the coupled two- and three-dimensional radiation transport calculations employed to estimate the scalar neutron and gamma-ray fluxes will be described and the results from these calculations will be discussed. 6 refs., 2 figs

  19. Assessment model validity document. NAMMU: A program for calculating groundwater flow and transport through porous media

    International Nuclear Information System (INIS)

    Cliffe, K.A.; Morris, S.T.; Porter, J.D.

    1998-05-01

    NAMMU is a computer program for modelling groundwater flow and transport through porous media. This document provides an overview of the use of the program for geosphere modelling in performance assessment calculations and gives a detailed description of the program itself. The aim of the document is to give an indication of the grounds for having confidence in NAMMU as a performance assessment tool. In order to achieve this the following topics are discussed. The basic premises of the assessment approach and the purpose of and nature of the calculations that can be undertaken using NAMMU are outlined. The concepts of the validation of models and the considerations that can lead to increased confidence in models are described. The physical processes that can be modelled using NAMMU and the mathematical models and numerical techniques that are used to represent them are discussed in some detail. Finally, the grounds that would lead one to have confidence that NAMMU is fit for purpose are summarised

  20. Angular quadrature generator for neutron transport SN calculations in slab geometry with arbitrary arithmetic precision

    International Nuclear Information System (INIS)

    Dominguez, Dany S.; Oliveira, Francisco B.S.; Barros, Ricardo C.

    2003-01-01

    We present in this paper a multiplatform computational code to calculate elements of Gauss-Legendre angular quadrature sets of arbitrary order used in slab-geometry discrete ordinates (S N ) formulation of neutron transport equation. In the code, the values can be computed with arbitrary arithmetic precision based on the approach of exact computing floating-point numbers. Calculation routines have been developed in the common language ANSI C using standard compiler gcc and the libraries of the open code GMP (GNU Multi precision Library). The code has a graphical interface in order to facilitate user interaction and numerical results analysis. The code architecture allows it to run on different platforms such as Unix, Linux and Windows. Numerical results and performance measures are also given. (author)

  1. CLUB - a multigroup integral transport theory code for lattice calculations of PHWR cells

    International Nuclear Information System (INIS)

    Krishnani, P.D.

    1992-01-01

    The computer code CLUB has been developed to calculate lattice parameters as a function of burnup for a pressurised heavy water reactor (PHWR) lattice cell containing fuel in the form of cluster. It solves the multigroup integral transport equation by the method based on combination of small scale collision probability (CP) method and large scale interface current technique. The calculations are performed by using WIMS 69 group cross section library or its condensed versions of 27 or 28 group libraries. It can also compute Keff from the given geometrical buckling in the input using multigroup diffusion theory in fundamental mode. The first order differential burnup equations can be solved by either Trapezoidal rule or Runge-Kutta method. (author). 17 refs., 2 figs

  2. Calculation of health risks from spent-nuclear-fuel transportation accidents

    International Nuclear Information System (INIS)

    Chen, S.Y.; Yuan, Y.C.

    1987-01-01

    Models developed to analyze potential radiological health risks from various accident scenarios during transportation of spent nuclear fuels are described. The models are designed both for detailed route-specific risk analyses and for use in conducting overall risk analyses for route selection and related decision-making activities. The radiological risks calculated include individual dose commitments, collective dose commitments, and long-term (100-year) environmental dose commitments to a population following release of radioactivity. To facilitate route-specific analysis, a state-level database was developed and incorporated into the model. Route-specific analysis is demonstrated by the calculation of radiological risks resulting from various accident scenarios, as postulated by the recent US Nuclear Regulatory Commission Modal Study, for four representative states selected from various regions of the United States. 10 refs., 3 figs., 3 tabs

  3. Mineral sands

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    This paper presents an outlook of the Australian mineral sand industry and covers the major operators. It is shown that conscious of an environmentally minded public, the Australian miners have led the way in the rehabilitation of mined areas. Moreover the advanced ceramic industry is generating exciting new perspectives for zircon producers and there is a noticeable growth in the electronic market for rare earths, but in long term the success may depend as much on environmental management and communication skills as on mining and processing skills

  4. Bimodality emerges from transport model calculations of heavy ion collisions at intermediate energy

    Science.gov (United States)

    Mallik, S.; Das Gupta, S.; Chaudhuri, G.

    2016-04-01

    This work is a continuation of our effort [S. Mallik, S. Das Gupta, and G. Chaudhuri, Phys. Rev. C 91, 034616 (2015)], 10.1103/PhysRevC.91.034616 to examine if signatures of a phase transition can be extracted from transport model calculations of heavy ion collisions at intermediate energy. A signature of first-order phase transition is the appearance of a bimodal distribution in Pm(k ) in finite systems. Here Pm(k ) is the probability that the maximum of the multiplicity distribution occurs at mass number k . Using a well-known model for event generation [Botzmann-Uehling-Uhlenbeck (BUU) plus fluctuation], we study two cases of central collision: mass 40 on mass 40 and mass 120 on mass 120. Bimodality is seen in both the cases. The results are quite similar to those obtained in statistical model calculations. An intriguing feature is seen. We observe that at the energy where bimodality occurs, other phase-transition-like signatures appear. There are breaks in certain first-order derivatives. We then examine if such breaks appear in standard BUU calculations without fluctuations. They do. The implication is interesting. If first-order phase transition occurs, it may be possible to recognize that from ordinary BUU calculations. Probably the reason this has not been seen already is because this aspect was not investigated before.

  5. Generalized Coarse-Mesh Rebalance Method for Acceleration of Neutron Transport Calculations

    International Nuclear Information System (INIS)

    Yamamoto, Akio

    2005-01-01

    This paper proposes a new acceleration method for neutron transport calculations: the generalized coarse-mesh rebalance (GCMR) method. The GCMR method is a unified scheme of the traditional coarse-mesh rebalance (CMR) and the coarse-mesh finite difference (CMFD) acceleration methods. Namely, by using an appropriate acceleration factor, formulation of the GCMR method becomes identical to that of the CMR or CMFD method. This also indicates that the convergence property of the GCMR method can be controlled by the acceleration factor since the convergence properties of the CMR and CMFD methods are generally different. In order to evaluate the convergence property of the GCMR method, a linearized Fourier analysis was carried out for a one-group homogeneous medium, and the results clarified the relationship between the acceleration factor and the spectral radius. It was also shown that the spectral radius of the GCMR method is smaller than those of the CMR and CMFD methods. Furthermore, the Fourier analysis showed that when an appropriate acceleration factor was used, the spectral radius of the GCMR method did not exceed unity in this study, which was in contrast to the results of the CMR or the CMFD method. Application of the GCMR method to practical calculations will be easy when the CMFD acceleration is already adopted in a transport code. By multiplying a suitable acceleration factor to a coefficient (D FD ) of a finite difference formulation, one can improve the numerical instability of the CMFD acceleration method

  6. ``Phantom'' Modes in Ab Initio Tunneling Calculations: Implications for Theoretical Materials Optimization, Tunneling, and Transport

    Science.gov (United States)

    Barabash, Sergey V.; Pramanik, Dipankar

    2015-03-01

    Development of low-leakage dielectrics for semiconductor industry, together with many other areas of academic and industrial research, increasingly rely upon ab initio tunneling and transport calculations. Complex band structure (CBS) is a powerful formalism to establish the nature of tunneling modes, providing both a deeper understanding and a guided optimization of materials, with practical applications ranging from screening candidate dielectrics for lowest ``ultimate leakage'' to identifying charge-neutrality levels and Fermi level pinning. We demonstrate that CBS is prone to a particular type of spurious ``phantom'' solution, previously deemed true but irrelevant because of a very fast decay. We demonstrate that (i) in complex materials, phantom modes may exhibit very slow decay (appearing as leading tunneling terms implying qualitative and huge quantitative errors), (ii) the phantom modes are spurious, (iii) unlike the pseudopotential ``ghost'' states, phantoms are an apparently unavoidable artifact of large numerical basis sets, (iv) a presumed increase in computational accuracy increases the number of phantoms, effectively corrupting the CBS results despite the higher accuracy achieved in resolving the true CBS modes and the real band structure, and (v) the phantom modes cannot be easily separated from the true CBS modes. We discuss implications for direct transport calculations. The strategy for dealing with the phantom states is discussed in the context of optimizing high-quality high- κ dielectric materials for decreased tunneling leakage.

  7. Cross sections for electron and photon processes required by electron-transport calculations

    International Nuclear Information System (INIS)

    Peek, J.M.

    1979-11-01

    Electron-transport calculations rely on a large collection of electron-atom and photon-atom cross-section data to represent the response characteristics of the target medium. These basic atomic-physics quantities, and certain qualities derived from them that are now commonly in use, are critically reviewed. Publications appearing after 1978 are not given consideration. Processes involving electron or photon energies less than 1 keV are ignored, while an attempt is made to exhaustively cover the remaining independent parameters and target possibilities. Cases for which data improvements can be made from existing information are identified. Ranges of parameters for which state-of-the-art data are not available are sought out, and recommendations for explicit measurements and/or calculations with presently available tools are presented. An attempt is made to identify the maturity of the atomic-physics data and to predict the possibilities for rapid changes in the quality of the data. Finally, weaknesses in the state-of-the-art atomic-physics data and in the conceptual usage of these data in the context of electron-transport theory are discussed. Brief attempts are made to weight the various aspects of these questions and to suggest possible remedies

  8. OECD/NEA benchmark for time-dependent neutron transport calculations without spatial homogenization

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Jason, E-mail: jason.hou@ncsu.edu [Department of Nuclear Engineering, North Carolina State University, Raleigh, NC 27695 (United States); Ivanov, Kostadin N. [Department of Nuclear Engineering, North Carolina State University, Raleigh, NC 27695 (United States); Boyarinov, Victor F.; Fomichenko, Peter A. [National Research Centre “Kurchatov Institute”, Kurchatov Sq. 1, Moscow (Russian Federation)

    2017-06-15

    Highlights: • A time-dependent homogenization-free neutron transport benchmark was created. • The first phase, known as the kinetics phase, was described in this work. • Preliminary results for selected 2-D transient exercises were presented. - Abstract: A Nuclear Energy Agency (NEA), Organization for Economic Co-operation and Development (OECD) benchmark for the time-dependent neutron transport calculations without spatial homogenization has been established in order to facilitate the development and assessment of numerical methods for solving the space-time neutron kinetics equations. The benchmark has been named the OECD/NEA C5G7-TD benchmark, and later extended with three consecutive phases each corresponding to one modelling stage of the multi-physics transient analysis of the nuclear reactor core. This paper provides a detailed introduction of the benchmark specification of Phase I, known as the “kinetics phase”, including the geometry description, supporting neutron transport data, transient scenarios in both two-dimensional (2-D) and three-dimensional (3-D) configurations, as well as the expected output parameters from the participants. Also presented are the preliminary results for the initial state 2-D core and selected transient exercises that have been obtained using the Monte Carlo method and the Surface Harmonic Method (SHM), respectively.

  9. Synergism of the method of characteristics and CAD technology for neutron transport calculation

    International Nuclear Information System (INIS)

    Chen, Z.; Wang, D.; He, T.; Wang, G.; Zheng, H.

    2013-01-01

    The method of characteristics (MOC) is a very popular methodology in neutron transport calculation and numerical simulation in recent decades for its unique advantages. One of the key problems determining whether the MOC can be applied in complicated and highly heterogeneous geometry is how to combine an effective geometry processing method with MOC. Most of the existing MOC codes describe the geometry by lines and arcs with extensive input data, such as circles, ellipses, regular polygons and combination of them. Thus they have difficulty in geometry modeling, background meshing and ray tracing for complicated geometry domains. In this study, a new idea making use of a CAD solid modeler MCAM which is a CAD/Image-based Automatic Modeling Program for Neutronics and Radiation Transport developed by FDS Team in China was introduced for geometry modeling and ray tracing of particle transport to remove these geometrical limitations mentioned above. The diamond-difference scheme was applied to MOC to reduce the spatial discretization error of the flat flux approximation in theory. Based on MCAM and MOC, a new MOC code was developed and integrated into SuperMC system, which is a Super Multi-function Computational system for neutronics and radiation simulation. The numerical testing results demonstrated the feasibility and effectiveness of the new idea for geometry treatment in SuperMC. (authors)

  10. Patch behaviour and predictability properties of modelled finite-amplitude sand ridges on the inner shelf

    NARCIS (Netherlands)

    Vis-star, N.C.; de Swart, H.E.; Calvete, D.

    2008-01-01

    The long-term evolution of shoreface-connected sand ridges is investigated with a nonlinear spectral model which governs the dynamics of waves, currents, sediment transport and the bed level on the inner shelf. Wave variables are calculated with a shoaling-refraction model instead of using a

  11. Transport of Phanerochaete chrysosporium and Mucor hiemalis f. irnsingii spores through water-saturated quartz sands; Transport von Phanerochaete chrysosporium- und Mucor hiemalis f. irnsingii-Sporen durch wassergesaettigten Quarzsand

    Energy Technology Data Exchange (ETDEWEB)

    Hoque, E.; Klotz, D.; Teichmann, G.; Lang, H.; Wolf, M. [GSF - Forschungszentrum fuer Umwelt und Gesundheit GmbH, Neuherberg (Germany). Inst. fuer Hydrologie; Beisker, W. [GSF, Inst. fuer Pathologie (Germany)

    2001-11-01

    Just as bacteria so can aquatic fungi contribute effectively to pollutant elimination, at least in superficial groundwaters. However, very little is known about this. Nor is it known whether fungal spores are capable of being transported through sedimentary cavities. At least fungal spores are for some part of similar size as bacteria. We here report for the first time on a demonstration of the migration through quartz sand of spores of the two fungal species Phanerochaete chrysosporium and Mucor hiemalis f. irnsingii. [German] Neben Bakterien koennen auch aquatische Pilze, zumindest im oberflaechennahen Grundwasser, effiziente Beitraege zur Schadstoffentgiftung leisten. Darueber ist aber sehr wenig bekannt. Es ist auch nicht bekannt, ob ueberhaupt Pilzsporen durch Sedimenthohlraeume transportiert werden koennen, obwohl die Pilzsporen z.T. aehnliche Abmessungen wie Bakterien haben. Hier berichten wir erstmalig ueber den Nachweis der Migration von Sporen der beiden Pilzarten Phanerochaete chrysosporium und Mucor hiemalis f. irnsingii durch Quarzsand. (orig.)

  12. A method for local transport analysis in tokamaks with error calculation

    International Nuclear Information System (INIS)

    Hogeweij, G.M.D.; Hordosy, G.; Lopes Cardozo, N.J.

    1989-01-01

    Global transport studies have revealed that heat transport in a tokamak is anomalous, but cannot provide information about the nature of the anomaly. Therefore, local transport analysis is essential for the study of anomalous transport. However, the determination of local transport coefficients is not a trivial affair. Generally speaking one can either directly measure the heat diffusivity, χ, by means of heat pulse propagation analysis, or deduce the profile of χ from measurements of the profiles of the temperature, T, and the power deposition. Here we are concerned only with the latter method, the local power balance analysis. For the sake of clarity heat diffusion only is considered: ρ=-gradT/q (1) where ρ=κ -1 =(nχ) -1 is the heat resistivity and q is the heat flux per unit area. It is assumed that the profiles T(r) and q(r) are given with some experimental error. In practice T(r) is measured directly, e.g. from ECE spectroscopy, while q(r) is deduced from the power deposition and loss profiles. The latter cannot be measured directly and is partly determined on the basis of models. This complication will not be considered here. Since in eq. (1) the gradient of T appears, noise on T can severely affect the solution ρ. This means that in general some form of smoothing must be applied. A criterion is needed to select the optimal smoothing. Too much smoothing will wipe out the details, whereas with too little smoothing the noise will distort the reconstructed profile of ρ. Here a new method to solve eq. (1) is presented which expresses ρ(r) as a cosine-series. The coefficients of this series are given as linear combinations of the Fourier coefficients of the measured T- and q-profiles. This formulation allows 1) the stable and accurate calculation of the ρ-profile, and 2) the analytical calculation of the error in this profile. (author) 5 refs., 3 figs

  13. A GPU-based Monte Carlo dose calculation code for photon transport in a voxel phantom

    International Nuclear Information System (INIS)

    Bellezzo, M.; Do Nascimento, E.; Yoriyaz, H.

    2014-08-01

    As the most accurate method to estimate absorbed dose in radiotherapy, Monte Carlo method has been widely used in radiotherapy treatment planning. Nevertheless, its efficiency can be improved for clinical routine applications. In this paper, we present the CUBMC code, a GPU-based Mc photon transport algorithm for dose calculation under the Compute Unified Device Architecture platform. The simulation of physical events is based on the algorithm used in Penelope, and the cross section table used is the one generated by the Material routine, als present in Penelope code. Photons are transported in voxel-based geometries with different compositions. To demonstrate the capabilities of the algorithm developed in the present work four 128 x 128 x 128 voxel phantoms have been considered. One of them is composed by a homogeneous water-based media, the second is composed by bone, the third is composed by lung and the fourth is composed by a heterogeneous bone and vacuum geometry. Simulations were done considering a 6 MeV monoenergetic photon point source. There are two distinct approaches that were used for transport simulation. The first of them forces the photon to stop at every voxel frontier, the second one is the Woodcock method, where the photon stop in the frontier will be considered depending on the material changing across the photon travel line. Dose calculations using these methods are compared for validation with Penelope and MCNP5 codes. Speed-up factors are compared using a NVidia GTX 560-Ti GPU card against a 2.27 GHz Intel Xeon CPU processor. (Author)

  14. A GPU-based Monte Carlo dose calculation code for photon transport in a voxel phantom

    Energy Technology Data Exchange (ETDEWEB)

    Bellezzo, M.; Do Nascimento, E.; Yoriyaz, H., E-mail: mbellezzo@gmail.br [Instituto de Pesquisas Energeticas e Nucleares / CNEN, Av. Lineu Prestes 2242, Cidade Universitaria, 05508-000 Sao Paulo (Brazil)

    2014-08-15

    As the most accurate method to estimate absorbed dose in radiotherapy, Monte Carlo method has been widely used in radiotherapy treatment planning. Nevertheless, its efficiency can be improved for clinical routine applications. In this paper, we present the CUBMC code, a GPU-based Mc photon transport algorithm for dose calculation under the Compute Unified Device Architecture platform. The simulation of physical events is based on the algorithm used in Penelope, and the cross section table used is the one generated by the Material routine, als present in Penelope code. Photons are transported in voxel-based geometries with different compositions. To demonstrate the capabilities of the algorithm developed in the present work four 128 x 128 x 128 voxel phantoms have been considered. One of them is composed by a homogeneous water-based media, the second is composed by bone, the third is composed by lung and the fourth is composed by a heterogeneous bone and vacuum geometry. Simulations were done considering a 6 MeV monoenergetic photon point source. There are two distinct approaches that were used for transport simulation. The first of them forces the photon to stop at every voxel frontier, the second one is the Woodcock method, where the photon stop in the frontier will be considered depending on the material changing across the photon travel line. Dose calculations using these methods are compared for validation with Penelope and MCNP5 codes. Speed-up factors are compared using a NVidia GTX 560-Ti GPU card against a 2.27 GHz Intel Xeon CPU processor. (Author)

  15. Determination of the solid consumption in the transport of sands in sea beds with gold 198; Determinacion del gasto solido en el transporte de arenas en lechos marinos con oro 198

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez A, G

    1983-07-01

    The study of the movement of sediments in sea beds, is necessary when one plans to build a port. Among the techniques used for this studies, it is the radiotracer balance that gives an useful estimation of the quantity of sediment that it moves per day and by meter (perpendicular to the displacement). The main objectives of this work are: to) to present the characteristics of the obtaining of the used radiotracer, describing details those used safety measures, b) to describe the handling of the radiotracer and it radiological safety, during the transport and injection in the sea bottom, c) description of the detection way and the used equipment, d) to describe the information processing obtained in the field and finally, e) the estimate of the solid consumption and the determination of the direction and speed of displacement of those sediments in the sea bottom, in front of the Tabasco coast, to be used jointly with the information obtained by means of other techniques so that one can make a good planning of the operations of dredging during the construction and later on the maintenance of the Dos Bocas marine terminal. The first step is to obtain the radiotracer that in this case was sand of uniform grain metric, marked superficially with Gold-198. The second step is to transport the sand to the place of interest, to place it in the injection equipment and to deposit it in the sea bottom. The third step is to detect the radiotracer in the sea bed, from a craft that drags a sled, which takes mounted a scintillation detector of sodium iodide activated with thallium NaI(Tl) (probe). The fourth step is to process the field information and to obtain the corresponding results. (Author)

  16. Inverse Porosity-Hydraulic Conductivity Relationship in Sand-and-Gravel Aquifers Determined From Analysis of Geophysical Well Logs: Implications for Transport Processes

    Science.gov (United States)

    Morin, R. H.

    2004-05-01

    It is intuitive to think of hydraulic conductivity K as varying directly and monotonically with porosity P in porous media. However, laboratory studies and field observations have documented a possible inverse relationship between these two parameters in unconsolidated deposits under certain grain-size distributions and packing arrangements. This was confirmed at two sites in sand-and-gravel aquifers on Cape Cod, Massachusetts, where sets of geophysical well logs were used to examine the interdependence of several aquifer properties. Along with K and P, the resistivity R and the natural-gamma activity G of the surrounding sediments were measured as a function of depth. Qualitative examination of field results from the first site was useful in locating a contaminant plume and inferred an inverse relation between K and P; this was substantiated by a rigorous multivariate analysis of log data collected from the second site where K and P were determined to respond in a bipolar manner among the four independent variables. Along with this result come some implications regarding our conceptual understanding of contaminant transport processes in the shallow subsurface. According to Darcy's law, the interstitial fluid velocity V is proportional to the ratio K/P and, consequently, a general inverse K-P relationship implies that values of V can extend over a much wider range than conventionally assumed. This situation introduces a pronounced flow stratification within these granular deposits that can result in large values of longitudinal dispersivity; faster velocities occur in already fast zones and slower velocities in already slow zones. An inverse K-P relationship presents a new perspective on the physical processes associated with groundwater flow and transport. Although the results of this study apply strictly to the Cape Cod aquifers, they may merit a re-evaluation of modeling approaches undertaken at other locations having similar geologic environments.

  17. Toolkit for high performance Monte Carlo radiation transport and activation calculations for shielding applications in ITER

    International Nuclear Information System (INIS)

    Serikov, A.; Fischer, U.; Grosse, D.; Leichtle, D.; Majerle, M.

    2011-01-01

    The Monte Carlo (MC) method is the most suitable computational technique of radiation transport for shielding applications in fusion neutronics. This paper is intended for sharing the results of long term experience of the fusion neutronics group at Karlsruhe Institute of Technology (KIT) in radiation shielding calculations with the MCNP5 code for the ITER fusion reactor with emphasizing on the use of several ITER project-driven computer programs developed at KIT. Two of them, McCad and R2S, seem to be the most useful in radiation shielding analyses. The McCad computer graphical tool allows to perform automatic conversion of the MCNP models from the underlying CAD (CATIA) data files, while the R2S activation interface couples the MCNP radiation transport with the FISPACT activation allowing to estimate nuclear responses such as dose rate and nuclear heating after the ITER reactor shutdown. The cell-based R2S scheme was applied in shutdown photon dose analysis for the designing of the In-Vessel Viewing System (IVVS) and the Glow Discharge Cleaning (GDC) unit in ITER. Newly developed at KIT mesh-based R2S feature was successfully tested on the shutdown dose rate calculations for the upper port in the Neutral Beam (NB) cell of ITER. The merits of McCad graphical program were broadly acknowledged by the neutronic analysts and its continuous improvement at KIT has introduced its stable and more convenient run with its Graphical User Interface. Detailed 3D ITER neutronic modeling with the MCNP Monte Carlo method requires a lot of computation resources, inevitably leading to parallel calculations on clusters. Performance assessments of the MCNP5 parallel runs on the JUROPA/HPC-FF supercomputer cluster permitted to find the optimal number of processors for ITER-type runs. (author)

  18. Volume Transport Stream Function Calculated from World Ocean Atlas 2013 (WOA13-VTSF) and Climatological Wind (NCEI Accession 0138646)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The dataset consists of calculated annual and monthly mean ocean volume transport stream function on 1 degree resolution using the WOA13 (T, S) and corresponding...

  19. The nodal discrete-ordinate transport calculation of anisotropy scattering problem in three-dimensional cartesian geometry

    International Nuclear Information System (INIS)

    Wu Hongchun; Xie Zhongsheng; Zhu Xuehua

    1994-01-01

    The nodal discrete-ordinate transport calculating model of anisotropy scattering problem in three-dimensional cartesian geometry is given. The computing code NOTRAN/3D has been encoded and the satisfied conclusion is gained

  20. Effects of two Asian sand dusts transported from the dust source regions of Inner Mongolia and northeast China on murine lung eosinophilia

    Energy Technology Data Exchange (ETDEWEB)

    He, Miao, E-mail: hemiao.cmu@gmail.com [Environment and Chronic Non-communicable Disease Research Center, College of Public Health, China Medical University, 11001 Shenyang (China); Department of Health Sciences, Oita University of Nursing and Health Sciences, 870-1201 Oita (Japan); Ichinose, Takamichi, E-mail: ichinose@oita-nhs.ac.jp [Department of Health Sciences, Oita University of Nursing and Health Sciences, 870-1201 Oita (Japan); Song, Yuan, E-mail: freude@med.uoeh-u.ac.jp [Department of Immunology and Parasitology, School of Medicine, University of Occupational and Environmental Health, Iseigaoka, Yahata-nishi-ku, Kitakyushu, 807-8555 Fukuoka (Japan); Yoshida, Yasuhiro, E-mail: songyuan1107@163.com [Department of Immunology and Parasitology, School of Medicine, University of Occupational and Environmental Health, Iseigaoka, Yahata-nishi-ku, Kitakyushu, 807-8555 Fukuoka (Japan); Arashidani, Keiichi, E-mail: arashi@snow.ocn.ne.jp [Department of Immunology and Parasitology, School of Medicine, University of Occupational and Environmental Health, Iseigaoka, Yahata-nishi-ku, Kitakyushu, 807-8555 Fukuoka (Japan); Yoshida, Seiichi, E-mail: syoshida@oita-nhs.ac.jp [Department of Health Sciences, Oita University of Nursing and Health Sciences, 870-1201 Oita (Japan); Liu, Boying, E-mail: boyingliu321@gmail.com [Environment and Chronic Non-communicable Disease Research Center, College of Public Health, China Medical University, 11001 Shenyang (China); Department of Health Sciences, Oita University of Nursing and Health Sciences, 870-1201 Oita (Japan); Nishikawa, Masataka, E-mail: mnishi@nies.go.jp [Environmental Chemistry Division, National Institute for Environmental Studies, 305-8506 Tsukuba, Ibaraki (Japan); Takano, Hirohisa, E-mail: htakano@health.env.kyoto-u.ac.jp [Environmental Health Division, Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Kyoto daigaku-Katsura, Nishikyo-ku, Kyoto 615-8530 (Japan); and others

    2013-11-01

    The quality and quantity of toxic materials adsorbed onto Asian sand dust (ASD) are different based on dust source regions and passage routes. The aggravating effects of two ASDs (ASD1 and ASD2) transported from the source regions of Inner Mongolia and northeast China on lung eosinophilia were compared to clarify the role of toxic materials in ASD. The ASDs contained different amounts of lipopolysaccharides (LPS) and β-glucan (ASD1 < ASD2) and SiO{sub 2} (ASD1 > ASD2). CD-1 mice were instilled intratracheally with ASD1, ASD2 and/or ovalbumin (OVA) four times at 2-week intervals. ASD1 and ASD2 enhanced eosinophil recruitment induced by OVA in the submucosa of the airway, with goblet cell proliferation in the bronchial epithelium. ASD1 and ASD2 synergistically increased OVA-induced eosinophil-relevant cytokines interleukin-5 (IL-5), IL-13 (ASD1 < ASD2) and chemokine eotaxin (ASD1 > ASD2) in bronchoalveolar lavage fluid. ASD2 aggravating effects on lung eosinophilia were greater than ASD1. The role of LPS and β-glucan in ASD2 on the production of pro-inflammatory mediators was assessed using in vitro bone marrow-derived macrophages (BMDMs) from wild type, Toll-like receptor 2-deficient (TLR2 −/−), TLR4 −/−, and MyD88 −/− mice (on Balb/c background). ASD2-stimulated TLR2 −/− BMDMs enhanced IL-6, IL-12, TNF-α, MCP-1 and MIP-1α secretion compared with ASD2-stimulated TLR4 −/− BMDMs. Protein expression from ASD2-stimulated MyD88 −/− BMDM were very low or undetectable. The in vitro results indicate that lung eosinophilia caused by ASD is TLR4 dependent. Therefore, the aggravation of OVA-related lung eosinophilia by ASD may be dependent on toxic substances derived from microbes, such as LPS, rather than SiO{sub 2}. - Highlights: • Asian sand dust (ASD) from the deserts of China causes serious respiratory problems. • The aggravating effects of two ASDs on lung eosinophilia were compared. • The ASDs contained different LPS and β-glucan (ASD1

  1. Effects of two Asian sand dusts transported from the dust source regions of Inner Mongolia and northeast China on murine lung eosinophilia

    International Nuclear Information System (INIS)

    He, Miao; Ichinose, Takamichi; Song, Yuan; Yoshida, Yasuhiro; Arashidani, Keiichi; Yoshida, Seiichi; Liu, Boying; Nishikawa, Masataka; Takano, Hirohisa

    2013-01-01

    The quality and quantity of toxic materials adsorbed onto Asian sand dust (ASD) are different based on dust source regions and passage routes. The aggravating effects of two ASDs (ASD1 and ASD2) transported from the source regions of Inner Mongolia and northeast China on lung eosinophilia were compared to clarify the role of toxic materials in ASD. The ASDs contained different amounts of lipopolysaccharides (LPS) and β-glucan (ASD1 2 (ASD1 > ASD2). CD-1 mice were instilled intratracheally with ASD1, ASD2 and/or ovalbumin (OVA) four times at 2-week intervals. ASD1 and ASD2 enhanced eosinophil recruitment induced by OVA in the submucosa of the airway, with goblet cell proliferation in the bronchial epithelium. ASD1 and ASD2 synergistically increased OVA-induced eosinophil-relevant cytokines interleukin-5 (IL-5), IL-13 (ASD1 ASD2) in bronchoalveolar lavage fluid. ASD2 aggravating effects on lung eosinophilia were greater than ASD1. The role of LPS and β-glucan in ASD2 on the production of pro-inflammatory mediators was assessed using in vitro bone marrow-derived macrophages (BMDMs) from wild type, Toll-like receptor 2-deficient (TLR2 −/−), TLR4 −/−, and MyD88 −/− mice (on Balb/c background). ASD2-stimulated TLR2 −/− BMDMs enhanced IL-6, IL-12, TNF-α, MCP-1 and MIP-1α secretion compared with ASD2-stimulated TLR4 −/− BMDMs. Protein expression from ASD2-stimulated MyD88 −/− BMDM were very low or undetectable. The in vitro results indicate that lung eosinophilia caused by ASD is TLR4 dependent. Therefore, the aggravation of OVA-related lung eosinophilia by ASD may be dependent on toxic substances derived from microbes, such as LPS, rather than SiO 2 . - Highlights: • Asian sand dust (ASD) from the deserts of China causes serious respiratory problems. • The aggravating effects of two ASDs on lung eosinophilia were compared. • The ASDs contained different LPS and β-glucan (ASD1 2 (ASD1 > ASD2). • The ASD2 aggravating effects on lung

  2. Transport calculation of thermal and cold neutrons using NMTC/JAERI-MCNP4A code system

    International Nuclear Information System (INIS)

    Iga, Kiminori; Takada, Hiroshi; Nagao, Tadashi.

    1998-01-01

    In order to investigate the applicability of the NMTC/JAERI-MCNP4A code system to the neutronics design study in the neutron science research project of JAERI, transport calculations of thermal and cold neutrons are performed with the code system on a spallation neutron source composed of light water cooled tantalum target with a moderator and a reflector system. The following neutronic characteristics are studied in the calculation : the variation of the intensity of neutrons emitted from a light water moderator or a liquid hydrogen with/without the B 4 C decoupler, which are installed to produce sharp pulse, and that dependent on the position of external source neutrons in the tantalum target. The calculated neutron energy spectra are reproduced well by the semi-empirical formula with the parameter values reliable in physical meanings. It is found to be necessary to employ proper importance sampling technique in the statistics. It is confirmed from this work that the NMTC/JAERI-MCNP4A code system is applicable to the neutronics design study of spallation neutron sources proposed for the neutron science research project. (author)

  3. CMADR acceleration and its convergence analysis of the method of characteristics for neutron transport calculation

    International Nuclear Information System (INIS)

    Young, Ryong Park; Nam, Zin Cho

    2005-01-01

    As the nuclear reactor core becomes more complex, heterogeneous, and geometrically irregular, the method of characteristics (MOC) is gaining its wide use in the neutron transport calculations. However, the long computing times require good acceleration methods. In this paper, the concept of coarse-mesh angular dependent re-balance (CMADR) acceleration is described and applied to the MOC calculation in x-y-z (z-infinite, uniform) geometry. The method is based on the angular dependent re-balance factors defined only on the coarse-mesh boundaries; a coarse-mesh consists of several fine meshes that may be heterogeneous and of mixed geometries with irregular or unstructured mesh shapes. In addition, the coarse-mesh boundaries may not coincide with the structural interfaces of the problem and can be chosen artificially for convenience. CMADR acceleration is tested on several test problems and the results show that CMADR is very effective in reducing the number of iterations and computing times of MOC calculations. Fourier analysis is also provided to investigate convergence of the CMADR method analytically and the results show that CMADR acceleration is unconditionally stable. (authors)

  4. Comparison of two numerical modelling codes for hydraulic and transport calculations in the near-field

    International Nuclear Information System (INIS)

    Kalin, J.; Petkovsek, B.; Montarnal, Ph.; Genty, A.; Deville, E.; Krivic, J.; Ratej, J.

    2011-01-01

    In the past years the Slovenian Performance Analysis/Safety Assessment team has performed many generic studies for the future Slovenian low and intermediate level waste repository, most recently a Special Safety Analysis for the Krsko site. The modelling approach was to split the problem into three parts: near-field (detailed model of the repository), far-field (i.e., geosphere) and biosphere. In the Special Safety Analysis the code used to perform the near-field calculations was Hydrus2D. Recently the team has begun a cooperation with the French Commisariat al'Energie Atomique/Saclay (CEA/Saclay) and, as a part of this cooperation, began investigations into using the Alliances numerical platform for near-field calculations in order to compare the overall approach and calculated results. The article presents the comparison between these two codes for a silo-type repository that was considered in the Special Safety Analysis. The physical layout and characteristics of the repository are presented and a hydraulic and transport model of the repository is developed and implemented in Alliances. Some analysis of sensitivity to mesh fineness and to simulation timestep has been preformed and is also presented. The compared quantity is the output flux of radionuclides on the boundary of the model. Finally the results from Hydrus2D and Alliances are compared and the differences and similarities are commented.

  5. Criticality coefficient calculation for a small PWR using Monte Carlo Transport Code

    Energy Technology Data Exchange (ETDEWEB)

    Trombetta, Debora M.; Su, Jian, E-mail: dtrombetta@nuclear.ufrj.br, E-mail: sujian@nuclear.ufrj.br [Coordenacao dos Programas de Pos-Graduacao em Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil); Chirayath, Sunil S., E-mail: sunilsc@tamu.edu [Department of Nuclear Engineering and Nuclear Security Science and Policy Institute, Texas A and M University, TX (United States)

    2015-07-01

    Computational models of reactors are increasingly used to predict nuclear reactor physics parameters responsible for reactivity changes which could lead to accidents and losses. In this work, preliminary results for criticality coefficient calculation using the Monte Carlo transport code MCNPX were presented for a small PWR. The computational modeling developed consists of the core with fuel elements, radial reflectors, and control rods inside a pressure vessel. Three different geometries were simulated, a single fuel pin, a fuel assembly and the core, with the aim to compare the criticality coefficients among themselves.The criticality coefficients calculated were: Doppler Temperature Coefficient, Coolant Temperature Coefficient, Coolant Void Coefficient, Power Coefficient, and Control Rod Worth. The coefficient values calculated by the MCNP code were compared with literature results, showing good agreement with reference data, which validate the computational model developed and allow it to be used to perform more complex studies. Criticality Coefficient values for the three simulations done had little discrepancy for almost all coefficients investigated, the only exception was the Power Coefficient. Preliminary results presented show that simple modelling as a fuel assembly can describe changes at almost all the criticality coefficients, avoiding the need of a complex core simulation. (author)

  6. Comparison of two numerical modelling codes for hydraulic and transport calculations in the near-field

    Energy Technology Data Exchange (ETDEWEB)

    Kalin, J., E-mail: jan.kalin@zag.s [Slovenian National Building and Civil Engineering Institute, Dimiceva 12, SI-1000 Ljubljana (Slovenia); Petkovsek, B., E-mail: borut.petkovsek@zag.s [Slovenian National Building and Civil Engineering Institute, Dimiceva 12, SI-1000 Ljubljana (Slovenia); Montarnal, Ph., E-mail: philippe.montarnal@cea.f [CEA/Saclay, DM2S/SFME/LSET, Gif-sur-Yvette, 91191 cedex (France); Genty, A., E-mail: alain.genty@cea.f [CEA/Saclay, DM2S/SFME/LSET, Gif-sur-Yvette, 91191 cedex (France); Deville, E., E-mail: estelle.deville@cea.f [CEA/Saclay, DM2S/SFME/LSET, Gif-sur-Yvette, 91191 cedex (France); Krivic, J., E-mail: jure.krivic@geo-zs.s [Geological Survey of Slovenia, Dimiceva 14, SI-1000 Ljubljana (Slovenia); Ratej, J., E-mail: joze.ratej@geo-zs.s [Geological Survey of Slovenia, Dimiceva 14, SI-1000 Ljubljana (Slovenia)

    2011-04-15

    In the past years the Slovenian Performance Analysis/Safety Assessment team has performed many generic studies for the future Slovenian low and intermediate level waste repository, most recently a Special Safety Analysis for the Krsko site. The modelling approach was to split the problem into three parts: near-field (detailed model of the repository), far-field (i.e., geosphere) and biosphere. In the Special Safety Analysis the code used to perform the near-field calculations was Hydrus2D. Recently the team has begun a cooperation with the French Commisariat al'Energie Atomique/Saclay (CEA/Saclay) and, as a part of this cooperation, began investigations into using the Alliances numerical platform for near-field calculations in order to compare the overall approach and calculated results. The article presents the comparison between these two codes for a silo-type repository that was considered in the Special Safety Analysis. The physical layout and characteristics of the repository are presented and a hydraulic and transport model of the repository is developed and implemented in Alliances. Some analysis of sensitivity to mesh fineness and to simulation timestep has been preformed and is also presented. The compared quantity is the output flux of radionuclides on the boundary of the model. Finally the results from Hydrus2D and Alliances are compared and the differences and similarities are commented.

  7. Transport calculation of thermal and cold neutrons using NMTC/JAERI-MCNP4A code system

    Energy Technology Data Exchange (ETDEWEB)

    Iga, Kiminori [Kyushu Univ., Fukuoka (Japan); Takada, Hiroshi; Nagao, Tadashi

    1998-01-01

    In order to investigate the applicability of the NMTC/JAERI-MCNP4A code system to the neutronics design study in the neutron science research project of JAERI, transport calculations of thermal and cold neutrons are performed with the code system on a spallation neutron source composed of light water cooled tantalum target with a moderator and a reflector system. The following neutronic characteristics are studied in the calculation : the variation of the intensity of neutrons emitted from a light water moderator or a liquid hydrogen with/without the B{sub 4}C decoupler, which are installed to produce sharp pulse, and that dependent on the position of external source neutrons in the tantalum target. The calculated neutron energy spectra are reproduced well by the semi-empirical formula with the parameter values reliable in physical meanings. It is found to be necessary to employ proper importance sampling technique in the statistics. It is confirmed from this work that the NMTC/JAERI-MCNP4A code system is applicable to the neutronics design study of spallation neutron sources proposed for the neutron science research project. (author)

  8. Initial transport and retention behaviors of ZnO nanoparticles in quartz sand porous media coated with Escherichia coli biofilm

    International Nuclear Information System (INIS)

    Jiang, Xujia; Wang, Xueting; Tong, Meiping; Kim, Hyunjung

    2013-01-01

    The significance of biofilm on the transport and deposition behaviors of ZnO nanoparticles were examined under a series of environmentally relevant ionic strength at two fluid velocities of 4 m-d −1 and 8 m-d −1 . Biofilm enhanced nanoparticles retention in porous media under all examined conditions. The greater deposition was also observed in extracellular polymeric substances (EPS) coated surfaces by employment of quartz microbalance with dissipation (QCM-D) system. Derjaguin–Landau–Verwey–Overbeek (DLVO) failed to interpret more ZnO nanoparticles deposition on biofilm (EPS) coated silica surfaces. Chemical interaction and physical morphology of biofilm contributed to this greater deposition (retention). Biofilm affected the spacial distribution of retained ZnO nanoparticles as well. Relatively steeper slope of retained profiles were observed in the presence of biofilm, corresponding to the greater deviation from colloid filtration theory (CFT). Pore space constriction via biofilm induced more nanoparticle trapped in the column inlet, leading to greater deviations (σln k f ) from the CFT. Highlights: ► Biofilm reduced the mobility of ZnO nanoparticles in column. ► DLVO and non-DLVO interactions contributed the more nanoparticles deposition. ► Biofilm also affected the spacial distribution of ZnO nanoparticles in column. ► Greater deviation from classic filtration theory was observed with biofilm. ► Physical structure of biofilm induced greater deviation from log-linear prediction. -- Biofilm enhanced ZnO nanoparticle deposition and altered spacial distribution in porous media

  9. Description of a neutron field perturbed by a probe using coupled Monte Carlo and discrete ordinates radiation transport calculations

    International Nuclear Information System (INIS)

    Zazula, J.M.

    1984-01-01

    This work concerns calculation of a neutron response, caused by a neutron field perturbed by materials surrounding the source or the detector. Solution of a problem is obtained using coupling of the Monte Carlo radiation transport computation for the perturbed region and the discrete ordinates transport computation for the unperturbed system. (author). 62 refs

  10. Modeling spatial variability of sand-lenses in clay till settings using transition probability and multiple-point geostatistics

    DEFF Research Database (Denmark)

    Kessler, Timo Christian; Nilsson, Bertel; Klint, Knud Erik

    2010-01-01

    (TPROGS) of alternating geological facies. The second method, multiple-point statistics, uses training images to estimate the conditional probability of sand-lenses at a certain location. Both methods respect field observations such as local stratigraphy, however, only the multiple-point statistics can...... of sand-lenses in clay till. Sand-lenses mainly account for horizontal transport and are prioritised in this study. Based on field observations, the distribution has been modeled using two different geostatistical approaches. One method uses a Markov chain model calculating the transition probabilities...

  11. Determination of peripheral underdosage at the lung-tumor interface using Monte Carlo radiation transport calculations

    International Nuclear Information System (INIS)

    Taylor, Michael; Dunn, Leon; Kron, Tomas; Height, Felicity; Franich, Rick

    2012-01-01

    Prediction of dose distributions in close proximity to interfaces is difficult. In the context of radiotherapy of lung tumors, this may affect the minimum dose received by lesions and is particularly important when prescribing dose to covering isodoses. The objective of this work is to quantify underdosage in key regions around a hypothetical target using Monte Carlo dose calculation methods, and to develop a factor for clinical estimation of such underdosage. A systematic set of calculations are undertaken using 2 Monte Carlo radiation transport codes (EGSnrc and GEANT4). Discrepancies in dose are determined for a number of parameters, including beam energy, tumor size, field size, and distance from chest wall. Calculations were performed for 1-mm 3 regions at proximal, distal, and lateral aspects of a spherical tumor, determined for a 6-MV and a 15-MV photon beam. The simulations indicate regions of tumor underdose at the tumor-lung interface. Results are presented as ratios of the dose at key peripheral regions to the dose at the center of the tumor, a point at which the treatment planning system (TPS) predicts the dose more reliably. Comparison with TPS data (pencil-beam convolution) indicates such underdosage would not have been predicted accurately in the clinic. We define a dose reduction factor (DRF) as the average of the dose in the periphery in the 6 cardinal directions divided by the central dose in the target, the mean of which is 0.97 and 0.95 for a 6-MV and 15-MV beam, respectively. The DRF can assist clinicians in the estimation of the magnitude of potential discrepancies between prescribed and delivered dose distributions as a function of tumor size and location. Calculation for a systematic set of “generic” tumors allows application to many classes of patient case, and is particularly useful for interpreting clinical trial data.

  12. Determination of peripheral underdosage at the lung-tumor interface using Monte Carlo radiation transport calculations

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Michael, E-mail: michael.taylor@rmit.edu.au [School of Applied Sciences, College of Science, Engineering and Health, RMIT University, Melbourne, Victoria (Australia); Physical Sciences, Peter MacCallum Cancer Centre, East Melbourne, Victoria (Australia); Dunn, Leon; Kron, Tomas; Height, Felicity; Franich, Rick [School of Applied Sciences, College of Science, Engineering and Health, RMIT University, Melbourne, Victoria (Australia); Physical Sciences, Peter MacCallum Cancer Centre, East Melbourne, Victoria (Australia)

    2012-04-01

    Prediction of dose distributions in close proximity to interfaces is difficult. In the context of radiotherapy of lung tumors, this may affect the minimum dose received by lesions and is particularly important when prescribing dose to covering isodoses. The objective of this work is to quantify underdosage in key regions around a hypothetical target using Monte Carlo dose calculation methods, and to develop a factor for clinical estimation of such underdosage. A systematic set of calculations are undertaken using 2 Monte Carlo radiation transport codes (EGSnrc and GEANT4). Discrepancies in dose are determined for a number of parameters, including beam energy, tumor size, field size, and distance from chest wall. Calculations were performed for 1-mm{sup 3} regions at proximal, distal, and lateral aspects of a spherical tumor, determined for a 6-MV and a 15-MV photon beam. The simulations indicate regions of tumor underdose at the tumor-lung interface. Results are presented as ratios of the dose at key peripheral regions to the dose at the center of the tumor, a point at which the treatment planning system (TPS) predicts the dose more reliably. Comparison with TPS data (pencil-beam convolution) indicates such underdosage would not have been predicted accurately in the clinic. We define a dose reduction factor (DRF) as the average of the dose in the periphery in the 6 cardinal directions divided by the central dose in the target, the mean of which is 0.97 and 0.95 for a 6-MV and 15-MV beam, respectively. The DRF can assist clinicians in the estimation of the magnitude of potential discrepancies between prescribed and delivered dose distributions as a function of tumor size and location. Calculation for a systematic set of 'generic' tumors allows application to many classes of patient case, and is particularly useful for interpreting clinical trial data.

  13. The discrete cones method for two-dimensional neutron transport calculations

    International Nuclear Information System (INIS)

    Watanabe, Y.; Maynard, C.W.

    1986-01-01

    A novel method, the discrete cones method (DC/sub N/), is proposed as an alternative to the discrete ordinates method (S/sub N/) for solutions of the two-dimensional neutron transport equation. The new method utilizes a new concept, discrete cones, which are made by partitioning a unit spherical surface that the direction vector of particles covers. In this method particles in a cone are simultaneously traced instead of those in discrete directions so that an anomaly of the S/sub N/ method, the ray effects, can be eliminated. The DC/sub N/ method has been formulated for X-Y geometry and a program has been creaed by modifying the standard S/sub N/ program TWOTRAN-II. Our sample calculations demonstrate a strong mitigation of the ray effects without a computing cost penalty

  14. Data structures and language elements for automated transport calculations for neutron and gamma radiation

    International Nuclear Information System (INIS)

    Rexer, G.

    1978-12-01

    Computer-aided design of nuclear shielding and irradiation facilities is characterized by studies of different design variants in order to determine which facilities are safe and still economicol. The design engineer has a very complex task including the formulation of calculation models, data linking of programs and data, and the management of large data stores. Integrated modular program systems with centralized module and data management make it possible to treat these problems in a more simplified and automatic manner. The paper describes a system of this type for the field of radiation transport and radiation shielding. The basis is the modular system RSYST II which has a dynamic hierarchical scheme for the structuring of problem data in a central data base. (orig./RW) [de

  15. Calculation of electrical transport properties and electron entanglement in inhomogeneous quantum wires

    Directory of Open Access Journals (Sweden)

    A A Shokri

    2013-10-01

    Full Text Available In this paper, we have investigated the spin-dependent transport properties and electron entanglement in a mesoscopic system, which consists of two semi-infinite leads (as source and drain separated by a typical quantum wire with a given potential. The properties studied include current-voltage characteristic, electrical conductivity, Fano factor and shot noise, and concurrence. The calculations are based on the transfer matrix method within the effective mass approximation. Using the Landauer formalism and transmission coefficient, the dependence of the considered quantities on type of potential well, length and width of potential well, energy of transmitted electron, temperature and the voltage have been theoretically studied. Also, the effect of the above-mentioned factors has been investigated in the nanostructure. The application of the present results may be useful in designing spintronice devices.

  16. Impurity transport calculations for the limiter shadow region of a tokamak

    International Nuclear Information System (INIS)

    Claassen, H.A.; Repp, H.

    1981-01-01

    Impurity transport calculations are presented for the scrape-off layer of a tokamak with a poloidal ring limiter. The theory is based on the drift-kinetic equations for the impurity ions in their different ionization states. It is developed in the limit of low impurity concentrations under due consideration of electron impact ionization, Coulomb collisions with hydrogen ions streaming onto a neutralizing surface, a convection along the magnetic field, and a radial drift. The background plasma and the impurity sources at the walls enter the theory as input parameters. Numerical results are given for the radial profiles of density, temperature, particle flux, and energy flux of wall-released impurity ions as well as for the screening efficiency of the scrape-off layer neglecting impurity re-emission from the limiter. (author)

  17. A simplified spherical harmonic method for coupled electron-photon transport calculations

    International Nuclear Information System (INIS)

    Josef, J.A.

    1996-12-01

    In this thesis we have developed a simplified spherical harmonic method (SP N method) and associated efficient solution techniques for 2-D multigroup electron-photon transport calculations. The SP N method has never before been applied to charged-particle transport. We have performed a first time Fourier analysis of the source iteration scheme and the P 1 diffusion synthetic acceleration (DSA) scheme applied to the 2-D SP N equations. Our theoretical analyses indicate that the source iteration and P 1 DSA schemes are as effective for the 2-D SP N equations as for the 1-D S N equations. Previous analyses have indicated that the P 1 DSA scheme is unstable (with sufficiently forward-peaked scattering and sufficiently small absorption) for the 2-D S N equations, yet is very effective for the 1-D S N equations. In addition, we have applied an angular multigrid acceleration scheme, and computationally demonstrated that it performs as well for the 2-D SP N equations as for the 1-D S N equations. It has previously been shown for 1-D S N calculations that this scheme is much more effective than the DSA scheme when scattering is highly forward-peaked. We have investigated the applicability of the SP N approximation to two different physical classes of problems: satellite electronics shielding from geomagnetically trapped electrons, and electron beam problems. In the space shielding study, the SP N method produced solutions that are accurate within 10% of the benchmark Monte Carlo solutions, and often orders of magnitude faster than Monte Carlo. We have successfully modeled quasi-void problems and have obtained excellent agreement with Monte Carlo. We have observed that the SP N method appears to be too diffusive an approximation for beam problems. This result, however, is in agreement with theoretical expectations

  18. Anisotropic kernel p(μ → μ') for transport calculations of elastically scattered neutrons

    International Nuclear Information System (INIS)

    Stevenson, B.

    1985-01-01

    Literature in the area of anisotropic neutron scattering is by no means lacking. Attention, however, is usually devoted to solution of some particular neutron transport problem and the model employed is at best approximate. The present approach to the problem in general is classically exact and may be of some particular value to individuals seeking exact numerical results in transport calculations. For attempts neutrons originally directed toward the unit vector Omega, it attempts the evaluation of p(theta'), defined such that p(theta') d theta' is that fraction of scattered neutrons that emerges in the vicinity of a cone i.e., having been scattered to between angles theta' and theta' + d theta' with the axis of preferred orientation i; Omega makes an angle theta with i. The relative simplicity of the final form of the solution for hydrogen, in spite of the complicated nature of the limits involved, is a trade-off that truly is not necessary. The exact general solution presented here in integral form, has exceedingly simple limits, i.e., 0 ≤ theta' ≤ π regardless of the material involved; but the form of the final solution is extraordinarily complicated

  19. Transport Calculations for the reference configuration under neutral bean injection in TJ-II

    International Nuclear Information System (INIS)

    Guasp, J.; Castejon, F.; Liniers, M.

    1999-01-01

    Transport calculations for the Reference Configuration under Neutral Beam Injection in TJ-II are discussed. For all these analysis the Transport Code PROCTR has been used but, in reason of the complex geometry of TJ-II, some modifications to the code have been needed, not only for the absorption, losses and deposition radial profile evaluations, but also for the treatment of the transition between ECRH and NBI or the fit of Transport Coefficients to the different Scaling Laws. The attained centralβ values for high density ( central value around 11 x 10''13 cm''3), in steady, range between a minimum of 1.9% for the GRB law up to 3.6% or 4.2% for those laws that show an explicit dependence with the rotational transform (ISS and LGS), with an intermediate value of 2.8% for the LHD case. Global energy confinement times range between 3.9 and 8.8 ms for the two extreme cases and 5.6 ms for LHD. As well ions as electrons are clearly in the plateau regime, in contrast to the ECRH phase where the electrons are well inside the 1/ν regime, dominated by helical ripple effects. The effect of impurities is to decrease slightly the absorption and the attainable β levels, but only for Zeff values higher than 4 this degradation becomes important. For the stationary state the density remains always below the semiempirical limit, independently of the Zeff value. Even along the first stages of injection, where absorption can be rather low, the limit is not reached, at least for Zeff < 4, so that radioactive collapse along this critical phase should not to be expected. (Author) 14 refs

  20. Multi-Group Covariance Data Generation from Continuous-Energy Monte Carlo Transport Calculations

    International Nuclear Information System (INIS)

    Lee, Dong Hyuk; Shim, Hyung Jin

    2015-01-01

    The sensitivity and uncertainty (S/U) methodology in deterministic tools has been utilized for quantifying uncertainties of nuclear design parameters induced by those of nuclear data. The S/U analyses which are based on multi-group cross sections can be conducted by an simple error propagation formula with the sensitivities of nuclear design parameters to multi-group cross sections and the covariance of multi-group cross section. The multi-group covariance data required for S/U analysis have been produced by nuclear data processing codes such as ERRORJ or PUFF from the covariance data in evaluated nuclear data files. However in the existing nuclear data processing codes, an asymptotic neutron flux energy spectrum, not the exact one, has been applied to the multi-group covariance generation since the flux spectrum is unknown before the neutron transport calculation. It can cause an inconsistency between the sensitivity profiles and the covariance data of multi-group cross section especially in resolved resonance energy region, because the sensitivities we usually use are resonance self-shielded while the multi-group cross sections produced from an asymptotic flux spectrum are infinitely-diluted. In order to calculate the multi-group covariance estimation in the ongoing MC simulation, mathematical derivations for converting the double integration equation into a single one by utilizing sampling method have been introduced along with the procedure of multi-group covariance tally

  1. First-principles calculation of electronic transport in low-dimensional disordered superconductors

    Science.gov (United States)

    Conduit, G. J.; Meir, Y.

    2011-08-01

    We present a novel formulation to calculate transport through disordered superconductors connected between two metallic leads. An exact analytical expression for the current is derived and applied to a superconducting sample described by the negative-U Hubbard model. A Monte Carlo algorithm that includes thermal phase and amplitude fluctuations of the superconducting order parameter is employed, and a new efficient algorithm is described. This improved routine allows access to relatively large systems, which we demonstrate by applying it to several cases, including superconductor-normal interfaces and Josephson junctions. Moreover, we can link the phenomenological parameters describing these effects to the underlying microscopic variables. The effects of decoherence and dephasing are shown to be included in the formulation, which allows the unambiguous characterization of the Kosterlitz-Thouless transition in two-dimensional systems and the calculation of the finite resistance due to vortex excitations in quasi-one-dimensional systems. Effects of magnetic fields can be easily included in the formalism, and are demonstrated for the Little-Parks effect in superconducting cylinders. Furthermore, the formalism enables us to map the local super and normal currents, and the accompanying electrical potentials, which we use to pinpoint and visualize the emergence of resistance across the superconductor-insulator transition.

  2. New Three-Dimensional Neutron Transport Calculation Capability in STREAM Code

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Youqi [Xi' an Jiaotong University, Xi' an (China); Choi, Sooyoung; Lee, Deokjung [UNIST, Ulsan (Korea, Republic of)

    2016-10-15

    The method of characteristics (MOC) is one of the best choices for its powerful capability in the geometry modeling. To reduce the large computational burden in 3D MOC, the 2D/1D schemes were proposed and have achieved great success in the past 10 years. However, such methods have some instability problems during the iterations when the neutron leakage for axial direction is large. Therefore, full 3D MOC methods were developed. A lot of efforts have been devoted to reduce the computational costs. However, it still requires too much memory storage and computational time for the practical modeling of a commercial size reactor core. Recently, a new approach for the 3D MOC calculation without transverse integration has been implemented in the STREAM code. In this approach, the angular flux is expressed as a basis function expansion form of only axial variable z. A new approach based on the axial expansion and 2D MOC sweeping to solve the 3D neutron transport equation is implemented in the STREAM code. This approach avoids using the transverse integration in the traditional 2D/1D scheme of MOC calculation. By converting the 3D equation into the 2D form of angular flux expansion coefficients, it also avoids the complex 3D ray tracing. Current numerical tests using two benchmarks show good accuracy of the new method.

  3. A simplified model for calculating atmospheric radionuclide transport and early health effects from nuclear reactor accidents

    International Nuclear Information System (INIS)

    Madni, I.K.; Cazzoli, E.G.; Khatib-Rahbar, M.

    1995-01-01

    During certain hypothetical severe accidents in a nuclear power plant, radionuclides could be released to the environment as a plume. Prediction of the atmospheric dispersion and transport of these radionuclides is important for assessment of the risk to the public from such accidents. A simplified PC-based model was developed that predicts time-integrated air concentration of each radionuclide at any location from release as a function of time integrated source strength using the Gaussian plume model. The solution procedure involves direct analytic integration of air concentration equations over time and position, using simplified meteorology. The formulation allows for dry and wet deposition, radioactive decay and daughter buildup, reactor building wake effects, the inversion lid effect, plume rise due to buoyancy or momentum, release duration, and grass height. Based on air and ground concentrations of the radionuclides, the early dose to an individual is calculated via cloudshine, groundshine, and inhalation. The model also calculates early health effects based on the doses. This paper presents aspects of the model that would be of interest to the prediction of environmental flows and their public consequences

  4. An optimized ultra-fine energy group structure for neutron transport calculations

    International Nuclear Information System (INIS)

    Huria, Harish; Ouisloumen, Mohamed

    2008-01-01

    This paper describes an optimized energy group structure that was developed for neutron transport calculations in lattices using the Westinghouse lattice physics code PARAGON. The currently used 70-energy group structure results in significant discrepancies when the predictions are compared with those from the continuous energy Monte Carlo methods. The main source of the differences is the approximations employed in the resonance self-shielding methodology. This, in turn, leads to ambiguous adjustments in the resonance range cross-sections. The main goal of developing this group structure was to bypass the self-shielding methodology altogether thereby reducing the neutronic calculation errors. The proposed optimized energy mesh has 6064 points with 5877 points spanning the resonance range. The group boundaries in the resonance range were selected so that the micro group cross-sections matched reasonably well with those derived from reaction tallies of MCNP for a number of resonance absorbers of interest in reactor lattices. At the same time, however, the fast and thermal energy range boundaries were also adjusted to match the MCNP reaction rates in the relevant ranges. The resulting multi-group library was used to obtain eigenvalues for a wide variety of reactor lattice numerical benchmarks and also the Doppler reactivity defect benchmarks to establish its adequacy. (authors)

  5. Evaluated Nuclear Data Library for Transport Calculations at Energies up to 150 MeV

    International Nuclear Information System (INIS)

    Korovin, Yu.A.; Konobeyev, A.Yu.; Pilnov, G.B.; Stankovskiy, A.Yu.

    2005-01-01

    A new evaluated nuclear data library has been created. The library consists of two sub-libraries for neutron and proton incident particles. The first version of neutron sub-library has been completed and described in the present paper. The library contains nuclear data for transport, heating, and shielding applications for 242 nuclides ranging in atomic number from 8 to 82 in the energy region of primary neutrons from 10-5 eV to 150 MeV. Data below 20 MeV are taken mainly from ENDF/B-VI (Revision 8) and for some nuclides, from the JENDL-3.3 and JEFF-3.0 libraries. The evaluation of emitted particle energy and angular distributions at the energies above 20 MeV was performed with the help of the ALICE/ASH code and the analysis of available experimental data. The total cross sections, elastic cross sections, and elastic scattering angular distributions were calculated with the help of the coupled channel model. The results of the calculation were adjusted to the data from ENDF/B-VI, JENDL-3.3m or JEFF-3.0 at the neutron energy equal to 20 MeV. The library is written in ENDF/B-VI format using the MF=3/MT=5 and MF=6/MT=5 representations

  6. Calculation of neutron spectra for a 252Cf transport cask using ANISN running on a PC

    International Nuclear Information System (INIS)

    West, L.; Akin, B.P.; Lemley, E.C.

    1995-01-01

    Neutron spectra have been calculated using the ANISN one-dimensional discrete ordinates code for the case of a 152 Cf source in a transport cask of a particular design. All computations were done on personal computers (PCs) (mostly 486 models) with the ANISN-ORNL (486 version) computer code. With a source of 252 Cf fission neutrons, the neutron flux spectrum in the cask cannot be characterized as open-quotes moderated.close quotes Concern about an appropriate choice for the cross-section data set has led to a comparison, for this application, of three different cross-section libraries: DABL, HILO, and BUGLE-80. Although the cross-section sets were not originally designed for PC use, the libraries have been successfully employed for PC computations. Work with yet another data library, BUGLE-93, is incomplete at this stage. From neutron flux spectra on the surface of the cask, personnel dosimetric quantities (such as dose equivalent) have been determined for the DABL, HILO, and BUGLE-80 ANISN calculations

  7. Modelling offshore sand wave evolution

    NARCIS (Netherlands)

    Nemeth, Attila; Hulscher, Suzanne J.M.H.; van Damme, Rudolf M.J.

    2007-01-01

    We present a two-dimensional vertical (2DV) flow and morphological numerical model describing the behaviour of offshore sand waves. The model contains the 2DV shallow water equations, with a free water surface and a general bed load formula. The water movement is coupled to the sediment transport

  8. Study of Black Sand Particles from Sand Dunes in Badr, Saudi Arabia Using Electron Microscopy

    Directory of Open Access Journals (Sweden)

    Haider Abbas Khwaja

    2015-08-01

    Full Text Available Particulate air pollution is a health concern. This study determines the microscopic make-up of different varieties of sand particles collected at a sand dune site in Badr, Saudi Arabia in 2012. Three categories of sand were studied: black sand, white sand, and volcanic sand. The study used multiple high resolution electron microscopies to study the morphologies, emission source types, size, and elemental composition of the particles, and to evaluate the presence of surface “coatings or contaminants” deposited or transported by the black sand particles. White sand was comprised of natural coarse particles linked to wind-blown releases from crustal surfaces, weathering of igneous/metamorphic rock sources, and volcanic activities. Black sand particles exhibited different morphologies and microstructures (surface roughness compared with the white sand and volcanic sand. Morphological Scanning Electron Microscopy (SEM and Laser Scanning Microscopy (LSM analyses revealed that the black sand contained fine and ultrafine particles (50 to 500 nm ranges and was strongly magnetic, indicating the mineral magnetite or elemental iron. Aqueous extracts of black sands were acidic (pH = 5.0. Fe, C, O, Ti, Si, V, and S dominated the composition of black sand. Results suggest that carbon and other contaminant fine particles were produced by fossil-fuel combustion and industrial emissions in heavily industrialized areas of Haifa and Yanbu, and transported as cloud condensation nuclei to Douf Mountain. The suite of techniques used in this study has yielded an in-depth characterization of sand particles. Such information will be needed in future environmental, toxicological, epidemiological, and source apportionment studies.

  9. Galveston Island, Texas, Sand Management Strategies

    Science.gov (United States)

    2016-07-01

    billion m3 of beach quality sand . However, Texas projects to date have not utilized these sources because of transportation costs. The lack of nearby...estimate that the San Luis Pass flood shoal contains approximately 11.8 million yd3 of beach quality sand . However, it is expected that if permits...a source of beach- quality sand . 2. Sand could be intercepted before it reaches the present dry beach. ERDC/CHL TR-16-13 55 3. The volume of

  10. Evaluation of scattering laws and cross sections for calculation of production and transport of cold and ultracold neutrons

    International Nuclear Information System (INIS)

    Bernnat, W.; Keinert, J.; Mattes, M.

    2004-01-01

    For the calculation of neutron spectra in cold and super thermal sources scattering laws for a variety of liquid and solid cyrogenic materials were evaluated and prepared for use in deterministic and Monte Carlo transport calculations. For moderator materials like liquid and solid H 2 O, liquid He, liquid D 2 O, liquid and solid H 2 and D 2 , solid CH 4 and structure materials such as Al, Bi, Pb, ZrHx, and graphite scattering law data and cross sections are available. The evaluated data were validated by comparison with measured cross sections and comparison of measured and calculated neutron spectra as far as available. Further applications are the calculation of production and transport and storing of ultra cold neutrons (UCN) in different UCN sources. The data structures of the evaluated data are prepared for the common S N -transport codes and the Monte Carlo Code MCNP. (orig.)

  11. Evaluation of scattering laws and cross sections for calculation of production and transport of cold and ultracold neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Bernnat, W.; Keinert, J.; Mattes, M. [Inst. for Nuclear Energy and Energy Systems, Univ. of Stuttgart, Stuttgart (Germany)

    2004-03-01

    For the calculation of neutron spectra in cold and super thermal sources scattering laws for a variety of liquid and solid cyrogenic materials were evaluated and prepared for use in deterministic and Monte Carlo transport calculations. For moderator materials like liquid and solid H{sub 2}O, liquid He, liquid D{sub 2}O, liquid and solid H{sub 2} and D{sub 2}, solid CH{sub 4} and structure materials such as Al, Bi, Pb, ZrHx, and graphite scattering law data and cross sections are available. The evaluated data were validated by comparison with measured cross sections and comparison of measured and calculated neutron spectra as far as available. Further applications are the calculation of production and transport and storing of ultra cold neutrons (UCN) in different UCN sources. The data structures of the evaluated data are prepared for the common S{sub N}-transport codes and the Monte Carlo Code MCNP. (orig.)

  12. 3D Monte-Carlo transport calculations of whole slab reactor cores: validation of deterministic neutronic calculation routes

    Energy Technology Data Exchange (ETDEWEB)

    Palau, J M [CEA Cadarache, Service de Physique des Reacteurs et du Cycle, Lab. de Projets Nucleaires, 13 - Saint-Paul-lez-Durance (France)

    2005-07-01

    This paper presents how Monte-Carlo calculations (French TRIPOLI4 poly-kinetic code with an appropriate pre-processing and post-processing software called OVNI) are used in the case of 3-dimensional heterogeneous benchmarks (slab reactor cores) to reduce model biases and enable a thorough and detailed analysis of the performances of deterministic methods and their associated data libraries with respect to key neutron parameters (reactivity, local power). Outstanding examples of application of these tools are presented regarding the new numerical methods implemented in the French lattice code APOLLO2 (advanced self-shielding models, new IDT characteristics method implemented within the discrete-ordinates flux solver model) and the JEFF3.1 nuclear data library (checked against JEF2.2 previous file). In particular we have pointed out, by performing multigroup/point-wise TRIPOLI4 (assembly and core) calculations, the efficiency (in terms of accuracy and computation time) of the new IDT method developed in APOLLO2. In addition, by performing 3-dimensional TRIPOLI4 calculations of the whole slab core (few millions of elementary volumes), the high quality of the new JEFF3.1 nuclear data files and revised evaluations (U{sup 235}, U{sup 238}, Hf) for reactivity prediction of slab cores critical experiments has been stressed. As a feedback of the whole validation process, improvements in terms of nuclear data (mainly Hf capture cross-sections) and numerical methods (advanced quadrature formulas accounting validation results, validation of new self-shielding models, parallelization) are suggested to improve even more the APOLLO2-CRONOS2 standard calculation route. (author)

  13. 3D Monte-Carlo transport calculations of whole slab reactor cores: validation of deterministic neutronic calculation routes

    International Nuclear Information System (INIS)

    Palau, J.M.

    2005-01-01

    This paper presents how Monte-Carlo calculations (French TRIPOLI4 poly-kinetic code with an appropriate pre-processing and post-processing software called OVNI) are used in the case of 3-dimensional heterogeneous benchmarks (slab reactor cores) to reduce model biases and enable a thorough and detailed analysis of the performances of deterministic methods and their associated data libraries with respect to key neutron parameters (reactivity, local power). Outstanding examples of application of these tools are presented regarding the new numerical methods implemented in the French lattice code APOLLO2 (advanced self-shielding models, new IDT characteristics method implemented within the discrete-ordinates flux solver model) and the JEFF3.1 nuclear data library (checked against JEF2.2 previous file). In particular we have pointed out, by performing multigroup/point-wise TRIPOLI4 (assembly and core) calculations, the efficiency (in terms of accuracy and computation time) of the new IDT method developed in APOLLO2. In addition, by performing 3-dimensional TRIPOLI4 calculations of the whole slab core (few millions of elementary volumes), the high quality of the new JEFF3.1 nuclear data files and revised evaluations (U 235 , U 238 , Hf) for reactivity prediction of slab cores critical experiments has been stressed. As a feedback of the whole validation process, improvements in terms of nuclear data (mainly Hf capture cross-sections) and numerical methods (advanced quadrature formulas accounting validation results, validation of new self-shielding models, parallelization) are suggested to improve even more the APOLLO2-CRONOS2 standard calculation route. (author)

  14. Theoretical background and user's manual for the computer code on groundwater flow and radionuclide transport calculation in porous rock

    International Nuclear Information System (INIS)

    Shirakawa, Toshihiko; Hatanaka, Koichiro

    2001-11-01

    In order to document a basic manual about input data, output data, execution of computer code on groundwater flow and radionuclide transport calculation in heterogeneous porous rock, we investigated the theoretical background about geostatistical computer codes and the user's manual for the computer code on groundwater flow and radionuclide transport which calculates water flow in three dimension, the path of moving radionuclide, and one dimensional radionuclide migration. In this report, based on above investigation we describe the geostatistical background about simulating heterogeneous permeability field. And we describe construction of files, input and output data, a example of calculating of the programs which simulates heterogeneous permeability field, and calculates groundwater flow and radionuclide transport. Therefore, we can document a manual by investigating the theoretical background about geostatistical computer codes and the user's manual for the computer code on groundwater flow and radionuclide transport calculation. And we can model heterogeneous porous rock and analyze groundwater flow and radionuclide transport by utilizing the information from this report. (author)

  15. Calculation of radiation effects in solids by direct numerical solution of the adjoint transport equation

    International Nuclear Information System (INIS)

    Matthes, W.K.

    1998-01-01

    The 'adjoint transport equation in its integro-differential form' is derived for the radiation damage produced by atoms injected into solids. We reduce it to the one-dimensional form and prepare it for a numerical solution by: --discretizing the continuous variables energy, space and direction, --replacing the partial differential quotients by finite differences and --evaluating the collision integral by a double sum. By a proper manipulation of this double sum the adjoint transport equation turns into a (very large) set of linear equations with tridiagonal matrix which can be solved by a special (simple and fast) algorithm. The solution of this set of linear equations contains complete information on a specified damage type (e.g. the energy deposited in a volume V) in terms of the function D(i,E,c,x) which gives the damage produced by all particles generated in a cascade initiated by a particle of type i starting at x with energy E in direction c. It is essential to remark that one calculation gives the damage function D for the complete ranges of the variables {i,E,c and x} (for numerical reasons of course on grid-points in the {E,c,x}-space). This is most useful to applications where a general source-distribution S(i,E,c,x) of particles is given by the experimental setup (e.g. beam-window and and target in proton accelerator work. The beam-protons along their path through the window--or target material generate recoil atoms by elastic collisions or nuclear reactions. These recoil atoms form the particle source S). The total damage produced then is eventually given by: D = (Σ)i ∫ ∫ ∫ S(i, E, c, x)*D(i, E, c, x)*dE*dc*dx A Fortran-77 program running on a PC-486 was written for the overall procedure and applied to some problems

  16. Scoping calculations for groundwater transport of tritium from the Gnome Site, New Mexico

    International Nuclear Information System (INIS)

    Pohlmann, K.; Andricevic, R.

    1994-08-01

    Analytic solutions are employed to investigate potential groundwater transport of tritium from a radioactive tracer site near the Project Gnome site in southeastern New Mexico. The tracer test was conducted in 1963 and introduced significant quantities of radionuclides to the transmissive and laterally continuous Culebra dolomite. Groundwater in the Culebra near Gnome travels toward a regional discharge point at the Pecos River, a distance of about 10 to 15 km, depending on flow path. Groundwater transport of radionuclides from the Gnome site is therefore of interest due to the proximity of the accessible environment and the 31-year time period during which migration is likely to have occurred. The analytical stochastic solutions used incorporate the heterogeneity observed in the Culebra by treating transmissivity as a spatially correlated random field. The results indicate that significant spreading of tritium will occur in the Culebra dolomite as a result of the combination of relatively high transmissivity, high spatial variability, and high spatial correlation of transmissivity. Longitudinal spreading may cause a very small fraction of tritium mass to arrive at the Pecos River within the 31 years since the tracer test. However, dilution and transverse dispersion will act to distribute this mass over a very large volume, thereby reducing groundwater concentrations. Despite the high degree of spreading, the calculations indicate that most of the tritium remains near the source. At present, the center of mass is estimated to have moved approximately 260 m downgradient of the test location and about 95 percent of the mass is estimated to have remained within about 1 km downgradient

  17. First-Principles Calculations of Electronic, Optical, and Transport Properties of Materials for Energy Applications

    Science.gov (United States)

    Shi, Guangsha

    Solar electricity is a reliable and environmentally friendly method of sustainable energy production and a realistic alternative to conventional fossil fuels. Moreover, thermoelectric energy conversion is a promising technology for solid-state refrigeration and efficient waste-heat recovery. Predicting and optimizing new photovoltaic and thermoelectric materials composed of Earth-abundant elements that exceed the current state of the art, and understanding how nanoscale structuring and ordering improves their energy conversion efficiency pose a challenge for materials scientists. I approach this challenge by developing and applying predictive high-performance computing methods to guide research and development of new materials for energy-conversion applications. Advances in computer-simulation algorithms and high-performance computing resources promise to speed up the development of new compounds with desirable properties and significantly shorten the time delay between the discovery of new materials and their commercial deployment. I present my calculated results on the extraordinary properties of nanostructured semiconductor materials, including strong visible-light absorbance in nanoporous silicon and few-layer SnSe and GeSe. These findings highlight the capability of nanoscale structuring and ordering to improve the performance of Earth-abundant materials compared to their bulk counterparts for solar-cell applications. I also successfully identified the dominant mechanisms contributing to free-carrier absorption in n-type silicon. My findings help evaluate the impact of the energy loss from this absorption mechanism in doped silicon and are thus important for the design of silicon solar cells. In addition, I calculated the thermoelectric transport properties of p-type SnSe, a bulk material with a record thermoelectric figure of merit. I predicted the optimal temperatures and free-carrier concentrations for thermoelectric energy conversion, as well the

  18. Pollutant transport over complex terrain: Flux and budget calculations for the pollumet field campaign

    Science.gov (United States)

    Lehning, Michael; Richner, Hans; Kok, Gregory L.

    Especially over complex terrain, transport processes dominate the local pollutant concentrations observed. The data gathered during the POLLUMET measuring campaign in 1993 allow a quantitative analysis of the pollutant fluxes and the pollutant budgets. The data include airborne measurements by NCAR's King Air, radio soundings, radar wind profiles, and data from meteorological ground stations. The regions of interest were the rather densely populated Swiss Plateau, which is embedded between the Alps and the Jura Mountains, and a box south of the Alps covering the south Ticino region and parts of northern Italy. An interpolation scheme was developed to reconstruct the wind field from all available measurements. From the wind field and the reconstruction of the concentration field the fluxes into and out of a box with fixed boundaries are calculated. The pollutant budgets are obtained from the sum of the fluxes and considering a mean vertical velocity. To assess the uncertainties introduced through the interpolation of the measurements, an extensive sensitivity analysis is included. The Swiss Plateau exports ozone and nitrogen oxides. The export rates can be interpreted as an ozone accumulation or fraction of 'homemade pollution' between 3 and 10% and require a net production rate of 1-2 ppb h -1. Accumulation of nitrogen oxides amounts to 20-60%. The box south of the Alps imports polluted air from northern Italy. Thus, oxidized nitrogen is not exported but a net production of ozone still occurs at a rate of 1-2 ppb h -1. The interpolated flow and concentration fields are decomposed into the mean over a box-boundary and the deviation from that mean. This allows isolation of the contribution of local circulations and large-scale turbulence to the total flux. It is shown how the local thermotopographic circulations increasingly dominate the transport as typical Alpine topography is approached. Even over the Swiss Plateau, approximately 20 km away from Alpine topography

  19. Dewatering Behaviour of Fine Oil Sands Tailings : An Experimental Study

    NARCIS (Netherlands)

    Yao, Y.

    2016-01-01

    Oil sands tailings are a warm aqueous suspension of sand, silt, clay, residual bitumen and naphtha. The tailings are hydraulically transported and stored in tailing ponds where they segregate, with the sand settling from suspension forming beaches and the remaining tailings flowing to the middle of

  20. Analytical calculations of neutron slowing down and transport in the constant-cross-section problem

    International Nuclear Information System (INIS)

    Cacuci, D.G.

    1978-01-01

    Some aspects of the problem of neutron slowing down and transport in an infinite medium consisting of a single nuclide that scatters elastically and isotropically and has energy-independent cross sections were investigated. The method of singular eigenfunctions was applied to the Boltzmann equation governing the Laplace transform (with respect to the lethargy variable) of the neutron flux. A new sufficient condition for the convergence of the coefficients of the expansion of the scattering kernel in Legendre polynomials was rigorously derived for this energy-dependent problem. Formulas were obtained for the lethargy-dependent spatial moments of the scalar flux that are valid for medium to large lethargies. In deriving these formulas, use was made of the well-known connection between the spatial moments of the Laplace-transformed scalar flux and the moments of the flux in the ''eigenvalue space.'' The calculations were greatly aided by the construction of a closed general expression for these ''eigenvalue space'' moments. Extensive use was also made of the methods of combinatorial analysis and of computer evaluation, via FORMAC, of complicated sequences of manipulations. For the case of no absorption it was possible to obtain for materials of any atomic weight explicit corrections to the age-theory formulas for the spatial moments M/sub 2n/(u) of the scalar flux that are valid through terms of the order of u -5 . The evaluation of the coefficients of the powers of n, as explicit functions of the nuclear mass, is one of the end products of this investigation. In addition, an exact expression for the second spatial moment, M 2 (u), valid for arbitrary (constant) absorption, was derived. It is now possible to calculate analytically and rigorously the ''age'' for the constant-cross-section problem for arbitrary (constant) absorption and nuclear mass. 5 figures, 1 table

  1. Analytical calculations of neutron slowing down and transport in the constant-cross-section problem

    International Nuclear Information System (INIS)

    Cacuci, D.G.

    1978-04-01

    Aspects of the problem of neutron slowing down and transport in an infinite medium consisting of a single nuclide that scatters elastically and isotropically and has energy-independent cross sections were investigated. The method of singular eigenfunctions was applied to the Boltzmann Equation governing the Laplace transform (with respect to the lethargy variable) of the neutron flux. A new sufficient condition for the convergence of the coefficients of the expansion of the scattering kernel in Legendre polynomials was rigorously derived for this energy-dependent problem. Formulas were obtained for the lethargy-dependent spatial moments of the scalar flux that are valid for medium to large lethargies. Use was made of the well-known connection between the spatial moments of the Laplace-transformed scalar flux and the moments of the flux in the ''eigenvalue space.'' The calculations were aided by the construction of a closed general expression for these ''eigenvalue space'' moments. Extensive use was also made of the methods of combinatorial analysis and of computer evaluation of complicated sequences of manipulations. For the case of no absorption it was possible to obtain for materials of any atomic weight explicit corrections to the age-theory formulas for the spatial moments M/sub 2n/(u) of the scalar flux that are valid through terms of the order of u -5 . The evaluation of the coefficients of the powers of n, as explicit functions of the nuclear mass, represent one of the end products of this investigation. In addition, an exact expression for the second spatial moment, M 2 (u), valid for arbitrary (constant) absorption, was derived. It is now possible to calculate analytically and rigorously the ''age'' for the constant-cross-section problem for arbitrary (constant) absorption and nuclear mass. 5 figures, 1 table

  2. Analytical calculations of neutron slowing down and transport in the constant-cross-section problem

    Energy Technology Data Exchange (ETDEWEB)

    Cacuci, D.G.

    1978-04-01

    Aspects of the problem of neutron slowing down and transport in an infinite medium consisting of a single nuclide that scatters elastically and isotropically and has energy-independent cross sections were investigated. The method of singular eigenfunctions was applied to the Boltzmann Equation governing the Laplace transform (with respect to the lethargy variable) of the neutron flux. A new sufficient condition for the convergence of the coefficients of the expansion of the scattering kernel in Legendre polynomials was rigorously derived for this energy-dependent problem. Formulas were obtained for the lethargy-dependent spatial moments of the scalar flux that are valid for medium to large lethargies. Use was made of the well-known connection between the spatial moments of the Laplace-transformed scalar flux and the moments of the flux in the ''eigenvalue space.'' The calculations were aided by the construction of a closed general expression for these ''eigenvalue space'' moments. Extensive use was also made of the methods of combinatorial analysis and of computer evaluation of complicated sequences of manipulations. For the case of no absorption it was possible to obtain for materials of any atomic weight explicit corrections to the age-theory formulas for the spatial moments M/sub 2n/(u) of the scalar flux that are valid through terms of the order of u/sup -5/. The evaluation of the coefficients of the powers of n, as explicit functions of the nuclear mass, represent one of the end products of this investigation. In addition, an exact expression for the second spatial moment, M/sub 2/(u), valid for arbitrary (constant) absorption, was derived. It is now possible to calculate analytically and rigorously the ''age'' for the constant-cross-section problem for arbitrary (constant) absorption and nuclear mass. 5 figures, 1 table.

  3. Dosimetric impact of Acuros XB deterministic radiation transport algorithm for heterogeneous dose calculation in lung cancer

    International Nuclear Information System (INIS)

    Han Tao; Followill, David; Repchak, Roman; Molineu, Andrea; Howell, Rebecca; Salehpour, Mohammad; Mikell, Justin; Mourtada, Firas

    2013-01-01

    Purpose: The novel deterministic radiation transport algorithm, Acuros XB (AXB), has shown great potential for accurate heterogeneous dose calculation. However, the clinical impact between AXB and other currently used algorithms still needs to be elucidated for translation between these algorithms. The purpose of this study was to investigate the impact of AXB for heterogeneous dose calculation in lung cancer for intensity-modulated radiation therapy (IMRT) and volumetric-modulated arc therapy (VMAT). Methods: The thorax phantom from the Radiological Physics Center (RPC) was used for this study. IMRT and VMAT plans were created for the phantom in the Eclipse 11.0 treatment planning system. Each plan was delivered to the phantom three times using a Varian Clinac iX linear accelerator to ensure reproducibility. Thermoluminescent dosimeters (TLDs) and Gafchromic EBT2 film were placed inside the phantom to measure delivered doses. The measurements were compared with dose calculations from AXB 11.0.21 and the anisotropic analytical algorithm (AAA) 11.0.21. Two dose reporting modes of AXB, dose-to-medium in medium (D m,m ) and dose-to-water in medium (D w,m ), were studied. Point doses, dose profiles, and gamma analysis were used to quantify the agreement between measurements and calculations from both AXB and AAA. The computation times for AAA and AXB were also evaluated. Results: For the RPC lung phantom, AAA and AXB dose predictions were found in good agreement to TLD and film measurements for both IMRT and VMAT plans. TLD dose predictions were within 0.4%–4.4% to AXB doses (both D m,m and D w,m ); and within 2.5%–6.4% to AAA doses, respectively. For the film comparisons, the gamma indexes (±3%/3 mm criteria) were 94%, 97%, and 98% for AAA, AXB Dm,m , and AXB Dw,m , respectively. The differences between AXB and AAA in dose–volume histogram mean doses were within 2% in the planning target volume, lung, heart, and within 5% in the spinal cord. However

  4. Bedrock Kd data and uncertainty assessment for application in SR-Site geosphere transport calculations

    International Nuclear Information System (INIS)

    Crawford, James

    2010-12-01

    The safety assessment SR-Site is undertaken to assess the safety of a potential geologic repository for spent nuclear fuel at the Forsmark and Laxemar sites. The present report is one of several reports that form the data input to SR-Site and contains a compilation of recommended K d data (i.e. linear partitioning coefficients) for safety assessment modelling of geosphere radionuclide transport. The data are derived for rock types and groundwater compositions distinctive of the site investigation areas at Forsmark and Laxemar. Data have been derived for all elements and redox states considered of importance for far-field dose estimates as described in /SKB 2010d/. The K d data are given in the form of lognormal distributions characterised by a mean (μ) and standard deviation (σ). Upper and lower limits for the uncertainty range of the recommended data are defined by the 2.5% and 97.5% percentiles of the empirical data sets. The best estimate K d value for use in deterministic calculations is given as the median of the K d distribution

  5. Neutral transport calculations for W VII-X. First applications to W VII-X

    International Nuclear Information System (INIS)

    Sardei, F.

    1988-01-01

    Results of neutral gas transport calculations obtained with the DEGAS code are presented for a W VII-AS model plasma and a source of neutrals due to limiter recycling. For typical profiles of the plasma parameters as predicted for an ECRH discharge, the simulation yields a radial drop of the average neutral population by a factor of 30. The neutrals are strongly localized near the limiter and have a poloidal minimum at its opposite side. For a W VII-X configuration (HS4-12), a neutral source given by a high recycling ion flux equally distributed over the wall is considered. For an ion density of 5 x 10 1 3 /cc and 30 eV edge temperature, the neutrals originating from the wall completely ionize within the ergodic region. The corresponding average energy of cx neutrals hitting the wall is less than 30 eV. Neutral penetration into the plasma locally depends on the distance between wall and separatrix

  6. Selection of distribution coefficients for contaminant fate and transport calculations: Strontium as a case study

    International Nuclear Information System (INIS)

    Kaplan, D.I.; Krupka, K.M.; Serne, R.J.

    1997-01-01

    As part of an ongoing project funded by a cooperative effort involving the Office of Radiation and Indoor Air (ORIA) of the U.S. Environmental Protection Agency (EPA), the Office of Environmental Restoration (EM-40) of the Department of Energy (DOE), and the Nuclear Regulatory Agency (NRC), distribution coefficient (K d ) values are being compiled from the literature to develop provisional tables for cadmium, cesium, chromium, lead, plutonium, strontium, thorium, and uranium. The tables are organized according to important aqueous- and solid-phase parameters affecting the sorption of these contaminants. These parameters, which vary with contaminant, include pH and redox conditions; cation exchange capacity (CEC); presence of iron-oxide, aluminum-oxide, clay, and mica minerals; organic matter content; and solution concentrations of contaminants, competing ions, and complexing ligands. Sorption information compiled for strontium is used to illustrate our approach. The strontium data show how selected geochemical parameters (i.e., CEC, pH, and clay content) affect Strontium K d values and the selection of open-quote default close-quote K d values needed for modeling contaminant transport and risks at sites for which site specific data are lacking. Results of our evaluation may be used by site management and technical staff to assess contaminant fate, migration, and risk calculations in support of site remediation and waste management decisions

  7. Calculation of channels for forming and transport of medical proton beams at the JINR phasotron

    International Nuclear Information System (INIS)

    Kuz'min, E.S.; Mirokhin, I.V.; Molokanov, A.G.; Obukhov, Yu.L.; Savchenko, O.V.

    1984-01-01

    Results of numerical simulation of shaping and transporting processes of therapeutic proton beams with a modified Bragg curve at the JINR phasotron are presented. The mean energy of proton beams are about 100, 130 and 200 MeV. To provide the flat-topped depth-dose distributions with a steep back slope, the method of shaping with a necessary energy spectrum from a nonmonoenergetic beam is used. It is shown by the calculations that it is possible to choose such modes of the channel operation at which clinical-physical requirements to the parameters of medical proton beams are satisfied. Extensions of flat-tops of dose peaks are 1.3 g/cm 2 , 1.7 g/cm 2 and 3.5 g/cm 2 for the 100 MeV, 130 MeV and 200 MeV beam energies, respectively. Dose rate in the peaks of modified distributions are not less than 100 rad per minute

  8. Electronic structure calculations of atomic transport properties in uranium dioxide: influence of strong correlations

    International Nuclear Information System (INIS)

    Dorado, B.

    2010-09-01

    Uranium dioxide UO 2 is the standard nuclear fuel used in pressurized water reactors. During in-reactor operation, the fission of uranium atoms yields a wide variety of fission products (FP) which create numerous point defects while slowing down in the material. Point defects and FP govern in turn the evolution of the fuel physical properties under irradiation. In this study, we use electronic structure calculations in order to better understand the fuel behavior under irradiation. In particular, we investigate point defect behavior, as well as the stability of three volatile FP: iodine, krypton and xenon. In order to take into account the strong correlations of uranium 5f electrons in UO 2 , we use the DFT+U approximation, based on the density functional theory. This approximation, however, creates numerous metastable states which trap the system and induce discrepancies in the results reported in the literature. To solve this issue and to ensure the ground state is systematically approached as much as possible, we use a method based on electronic occupancy control of the correlated orbitals. We show that the DFT+U approximation, when used with electronic occupancy control, can describe accurately point defect and fission product behavior in UO 2 and provide quantitative information regarding point defect transport properties in the oxide fuel. (author)

  9. The algorithm of numerical calculation of constraints reactions in a dynamic system of transport machine

    Science.gov (United States)

    Akhtulov, A. L.

    2018-01-01

    The questions of construction and practical application of the automation system for the design of components and aggregates for the construction of transport vehicles are considered, taking into account their dynamic characteristics. Based on the results of the studies, a unified method for determining the reactions of bonds of a complex spatial structure is proposed. The technique, based on the method of substructures, allows us to determine the values of the transfer functions taking into account the reactions of the bonds. After the carried out researches it is necessary to note, that such approach gives the most satisfactory results and can be used for calculations of complex mechanical systems of machines and units of different purposes. The directions of increasing the degree of validity of technical decisions are shown, especially in the early stages of design, when the cost of errors is high, with careful thorough working out of all the elements of the design, which is really feasible only on the basis of automation of design and technological work.

  10. Using radar wind profilers and RASS data to calculate power plant plume rise and transport

    International Nuclear Information System (INIS)

    Ping, Y.J.; Gaynor, J.E.

    1994-01-01

    As the number of 915-MHz radar wind profilers and radio acoustic sounding systems (RASS) increases, their number of uses also increases. These systems have demonstrated particular utility in air quality studies and, more specifically, in complex terrain. One data set from the radar profilers that has not, to date, been utilized to any large extent is represented by the temperature profiles derived from the RASS. Normally, these profiles represent a 5-min average every hour with a height resolution of about 60 m, a minimum range of about 100 m, and a maximum range of about 1.5 km, although this varies substantially with meterological conditions. Such profiles have several potential applications. Among them are determinations of mixing height and stability. In this work, we use the stability, along with the hour-averaged wind profiles, to estimate plume rise heights at a power plant site in Laughlin, Nevada, about 200 km south of Lake Mead. The profiles are first stratified according to season and synoptic categories so that the calculated plume rise heights could be separated by background transport conditions. The data were taken during Project Measurement of Haze and Visual Effects (MOHAVE), which took place in 1992. This project is briefly discussed in the next section, along with the instrumentation and data used in this study

  11. Using radar wind profilers and RASS data to calculate power plant plume rise and transport

    Energy Technology Data Exchange (ETDEWEB)

    Ping, Y.J. [Univ. of Colorado, Boulder, CO (United States); Gaynor, J.E. [NOAA/ERL Wave Propagation Lab., Boulder, CO (United States)

    1994-12-31

    As the number of 915-MHz radar wind profilers and radio acoustic sounding systems (RASS) increases, their number of uses also increases. These systems have demonstrated particular utility in air quality studies and, more specifically, in complex terrain. One data set from the radar profilers that has not, to date, been utilized to any large extent is represented by the temperature profiles derived from the RASS. Normally, these profiles represent a 5-min average every hour with a height resolution of about 60 m, a minimum range of about 100 m, and a maximum range of about 1.5 km, although this varies substantially with meterological conditions. Such profiles have several potential applications. Among them are determinations of mixing height and stability. In this work, we use the stability, along with the hour-averaged wind profiles, to estimate plume rise heights at a power plant site in Laughlin, Nevada, about 200 km south of Lake Mead. The profiles are first stratified according to season and synoptic categories so that the calculated plume rise heights could be separated by background transport conditions. The data were taken during Project Measurement of Haze and Visual Effects (MOHAVE), which took place in 1992. This project is briefly discussed in the next section, along with the instrumentation and data used in this study.

  12. Sulphur extended oil sand mix : paving material for lower transport cost and CO{sub 2} reduction : ASRL Syncrude research project 1995

    Energy Technology Data Exchange (ETDEWEB)

    Aquin d' , G. [Con-Sul Inc., Missoula, MT (United States)

    2010-07-01

    This power point presentation discussed the use of sulphur-enhanced oil sands (SEOS) as a paving mixture. Sulphur has been added to asphaltic bitumen paving processes since the 1850s. Research into sulphur additions has been conducted by various Canadian industry members and institutions. A study in 1995 investigated the use of SEOS as a temporary paving material. The benefits of using SEOS included lower capital costs and lower greenhouse gas (GHG) impacts. Increases in equipment efficiency were also observed. Researchers are now developing mixing protocols and testing various paving materials in relation to temperature regimes and percentages of sulphur. Sand, limestone, coke, and rubber additions are also being evaluated, as well as the behaviour of SEOS in freeze-thaw cycles. To date, the studies have indicated that a 30 percent sulphur, 10 percent sand, and 60 percent oil sand mixture provides optimal compression and behaviour under freeze-thaw conditions. The use of SEOS paving at oil sands mine sites will reduce truck and road maintenance as well as reduce fuel emissions and consumption rates. tabs., figs.

  13. Towards quantitative accuracy in first-principles transport calculations: The GW method applied to alkane/gold junctions

    DEFF Research Database (Denmark)

    Strange, Mikkel; Thygesen, Kristian Sommer

    2011-01-01

    -electron interactions are described by th=e many-body GW approximation. The conductance follows an exponential length dependence: Gn = Gc exp(-βn). The main difference from standard density functional theory (DFT) calculations is a significant reduction of the contact conductance, Gc, due to an improved alignment......The calculation of the electronic conductance of nanoscale junctions from first principles is a long-standing problem in the field of charge transport. Here we demonstrate excellent agreement with experiments for the transport properties of the gold/alkanediamine benchmark system when electron...

  14. Diffusion Coefficient Calculations With Low Order Legendre Polynomial and Chebyshev Polynomial Approximation for the Transport Equation in Spherical Geometry

    International Nuclear Information System (INIS)

    Yasa, F.; Anli, F.; Guengoer, S.

    2007-01-01

    We present analytical calculations of spherically symmetric radioactive transfer and neutron transport using a hypothesis of P1 and T1 low order polynomial approximation for diffusion coefficient D. Transport equation in spherical geometry is considered as the pseudo slab equation. The validity of polynomial expansionion in transport theory is investigated through a comparison with classic diffusion theory. It is found that for causes when the fluctuation of the scattering cross section dominates, the quantitative difference between the polynomial approximation and diffusion results was physically acceptable in general

  15. Calculation of the critical buckling of a lattice based on the integral form of the transport equation

    International Nuclear Information System (INIS)

    Benoist, P.

    1990-06-01

    The migration area, which relates the buckling to the multiplication factor, can be calculated by means of the Deniz formula. This formula involves the direct and adjoint angular fluxes. It is shown in this note that it is possible, using the integral form of the transport equation, to establish an equivalent formula in which only angle-integrated quantities appear. This formulation is more suitable for the calculation by the collision probably method [fr

  16. Difference in the wind speeds required for initiation versus continuation of sand transport on mars: implications for dunes and dust storms.

    Science.gov (United States)

    Kok, Jasper F

    2010-02-19

    Much of the surface of Mars is covered by dunes, ripples, and other features formed by the blowing of sand by wind, known as saltation. In addition, saltation loads the atmosphere with dust aerosols, which dominate the Martian climate. We show here that saltation can be maintained on Mars by wind speeds an order of magnitude less than required to initiate it. We further show that this hysteresis effect causes saltation to occur for much lower wind speeds than previously thought. These findings have important implications for the formation of dust storms, sand dunes, and ripples on Mars.

  17. Nuclear data for fusion: Validation of typical pre-processing methods for radiation transport calculations

    International Nuclear Information System (INIS)

    Hutton, T.; Sublet, J.C.; Morgan, L.; Leadbeater, T.W.

    2015-01-01

    Highlights: • We quantify the effect of processing nuclear data from ENDF to ACE format. • We consider the differences between fission and fusion angular distributions. • C-nat(n,el) at 2.0 MeV has a 0.6% deviation between original and processed data. • Fe-56(n,el) at 14.1 MeV has a 11.0% deviation between original and processed data. • Processed data do not accurately depict ENDF distributions for fusion energies. - Abstract: Nuclear data form the basis of the radiation transport codes used to design and simulate the behaviour of nuclear facilities, such as the ITER and DEMO fusion reactors. Typically these data and codes are biased towards fission and high-energy physics applications yet are still applied to fusion problems. With increasing interest in fusion applications, the lack of fusion specific codes and relevant data libraries is becoming increasingly apparent. Industry standard radiation transport codes require pre-processing of the evaluated data libraries prior to use in simulation. Historically these methods focus on speed of simulation at the cost of accurate data representation. For legacy applications this has not been a major concern, but current fusion needs differ significantly. Pre-processing reconstructs the differential and double differential interaction cross sections with a coarse binned structure, or more recently as a tabulated cumulative distribution function. This work looks at the validity of applying these processing methods to data used in fusion specific calculations in comparison to fission. The relative effects of applying this pre-processing mechanism, to both fission and fusion relevant reaction channels are demonstrated, and as such the poor representation of these distributions for the fusion energy regime. For the nat C(n,el) reaction at 2.0 MeV, the binned differential cross section deviates from the original data by 0.6% on average. For the 56 Fe(n,el) reaction at 14.1 MeV, the deviation increases to 11.0%. We

  18. Theoretical prediction of the electronic transport properties of the Al-Cu alloys based on the first-principle calculation and Boltzmann transport equation

    Science.gov (United States)

    Choi, Garam; Lee, Won Bo

    Metal alloys, especially Al-based, are commonly-used materials for various industrial applications. In this paper, the Al-Cu alloys with varying the Al-Cu ratio were investigated based on the first-principle calculation using density functional theory. And the electronic transport properties of the Al-Cu alloys were carried out using Boltzmann transport theory. From the results, the transport properties decrease with Cu-containing ratio at the temperature from moderate to high, but with non-linearity. It is inferred by various scattering effects from the calculation results with relaxation time approximation. For the Al-Cu alloy system, where it is hard to find the reliable experimental data for various alloys, it supports understanding and expectation for the thermal electrical properties from the theoretical prediction. Theoretical and computational soft matters laboratory.

  19. Wind-blown sand on beaches: an evaluation of models

    Science.gov (United States)

    Sherman, Douglas J.; Jackson, Derek W. T.; Namikas, Steven L.; Wang, Jinkang

    1998-03-01

    for the effects of slope and moisture content were calculated using the models of Bagnold [Bagnold, R.A., 1973. The nature of saltation and 'bed-load' transport in water. Proc. R. Soc. London, Ser. A, 332, 473-504] and Belly [Belly, P.-Y., 1964. Sand movement by wind. U.S. Army Corps Eng. CERC. Tech. Mem. 1, Washington D.C., 38 pp.], respectively. None of the models was able to produce a strong correspondence between measured and predicted rates of transport. Best results were obtained using the Bagnold and Zingg models, and the Kadib model was the least viable of this group. The influence of sediment moisture content appeared to be the critical factor in degrading model viability. Overall, none of the models is adequate for general applications to coastal-aeolian environments where moisture content complications tend to override the predictive competence of the simple transport formulations.

  20. Routine average effective charge calculation using visible Bremsstrahlung emission and comparison with the impurity transport code of Tore Supra

    International Nuclear Information System (INIS)

    Guirlet, R.; Mattioli, M.; DeMichelis, C.; Hess, W.; Pecquet, A.L.

    1995-01-01

    Effective charge measurements and calculations are presented for the Tore Supra, using visible Bremsstrahlung diagnostics. The measurements, are presented together with a reliability test of the results are discussed, by means of an impurity transport code simulating all available experimental data (XUV line spectroscopy, soft X-ray emission and Bremsstrahlung). (author) 5 refs.; 10 figs

  1. QmeQ 1.0: An open-source Python package for calculations of transport through quantum dot devices

    DEFF Research Database (Denmark)

    Kiršanskas, Gediminas; Pedersen, Jonas Nyvold; Karlström, Olov

    2017-01-01

    QmeQ is an open-source Python package for numerical modeling of transport through quantum dot devices with strong electron–electron interactions using various approximate master equation approaches. The package provides a framework for calculating stationary particle or energy currents driven...

  2. The modified high-energy transport code, HETC, and design calculations for the SSC [Superconducting Super Collider

    International Nuclear Information System (INIS)

    Alsmiller, R.G. Jr.; Alsmiller, F.S.; Gabriel, T.A.; Hermann, O.W.; Bishop, B.L.

    1988-01-01

    The proposed Superconducting Super Collider (SSC) will have two circulating proton beams, each with an energy of 20 TeV. In order to perform detector and shield design calculations at these higher energies that are as accurate as possible, it is necessary to incorporate in the calculations the best available information on differential particle production from hadron-nucleus collisions. In this paper, the manner in which this has been done in the High-Energy Transport Code HETC will be described and calculated results obtained with the modified code will be compared with experimental data. 10 refs., 1 fig

  3. Calculation of external exposure during transport and disposal of radioactive waste arisen from dismantling of steam generator

    International Nuclear Information System (INIS)

    Hornacek, M.; Necas, V.

    2014-01-01

    The dismantling of large components (reactor pressure vessel, reactor internals, steam generator) represents complex of processes involving preparation, dismantling, waste treatment and conditioning, transport and final disposal. To optimise all of these activities in accordance with the ALARA principle the prediction of the exposure of workers is an essential prerequisite. The paper deals with the calculation of external exposure of workers during transport and final disposal of heat exchange tubes of steam generator used in Slovak nuclear power plant V1 in Jaslovske Bohunice. The type of waste packages, the calculation models of truck and National Radioactive Waste Repository in Mochovce are presented. The detailed methodology of radioactive waste disposal is showed and the degree of influence of time decay (0, 5 and 10 years) on the radiological conditions during transport and disposal is studied. All of the results do not exceed the limits given in Slovak and international regulatory documents. (authors)

  4. Electron transport calculations with biomedical and environmental applications: [Progress report, FY 1987

    International Nuclear Information System (INIS)

    1987-01-01

    This project investigated radiation interactions with matter and radiation transport in bulk media, to generate basic radiological physics information. Applications include biomedical radiation dosimetry, the assessment of radiation hazards in nuclear technology, and modeling of biological radiation action. This work included the development of transport-theoretic methods, the compilation and critical evaluation of the underlying single-scattering cross sections, and the application of the transport methods to radiological physics problems. 7 refs

  5. Improvements in practical applicability of NSHEX: nodal transport calculation code for three-dimensional hexagonal-Z geometry

    International Nuclear Information System (INIS)

    Sugino, Kazuteru

    1998-07-01

    As a tool to perform a fast reactor core calculations with high accuracy, NSHEX the nodal transport calculation code for three-dimensional hexagonal-Z geometry is under development. To improve the practical applicability of NSHEX, for instance, in its application to safety analysis and commercial reactor core design studies, we investigated the basic theory used in it, improved the program performance, and evaluated its applicability to the analysis of commercial reactor cores. The current studies show the following: (1) An improvement in the treatment of radial leakage in the radial nodal coupling equation bettered calculational convergence for safety analysis calculation, so the applicability of NSHEX to safety analysis was improved. (2) As a result of comparison of results from NSHEX and the standard core calculation code, it was confirmed that there was consistency between them. (3) According to the evaluation of the effect due to the difference of calculational condition, it was found that the calculation under appropriate nodal expansion orders and Sn orders correspond to the one under most detailed condition. However further investigation is required to reduce the uncertainty in calculational results due to the treatment of high order flux moments. (4) A whole core version of NSHEX enabling calculation for any FBR core geometry has been developed, this improved general applicability of NSHEX. (5) An investigation of the applicability of the rebalance method to acceleration clarified that this improved calculational convergence and it was effective. (J.P.N.)

  6. Efficient Ab-Initio Electron Transport Calculations for Heterostructures by the Nonequilibrium Green’s Function Method

    Directory of Open Access Journals (Sweden)

    Hirokazu Takaki

    2014-01-01

    Full Text Available We present an efficient computation technique for ab-initio electron transport calculations based on density functional theory and the nonequilibrium Green’s function formalism for application to heterostructures with two-dimensional (2D interfaces. The computational load for constructing the Green’s functions, which depends not only on the energy but also on the 2D Bloch wave vector along the interfaces and is thus catastrophically heavy, is circumvented by parallel computational techniques with the message passing interface, which divides the calculations of the Green’s functions with respect to energy and wave vectors. To demonstrate the computational efficiency of the present code, we perform ab-initio electron transport calculations of Al(100-Si(100-Al(100 heterostructures, one of the most typical metal-semiconductor-metal systems, and show their transmission spectra, density of states (DOSs, and dependence on the thickness of the Si layers.

  7. Neutron transport. Physics and calculation of nuclear reactors with applications to pressurized water reactors and fast neutron reactors. 2 ed.

    International Nuclear Information System (INIS)

    Bussac, J.; Reuss, P.

    1985-01-01

    This book presents the main physical bases of neutron theory and nuclear reactor calculation. 1) Interactions of neutrons with matter and basic principles of neutron transport; 2) Neutron transport in homogeneous medium and the neutron field: kinetic behaviour, slowing-down, resonance absorption, diffusion equation, processing methods; 3) Theory of a reactor constituted with homogeneous zones: critical condition, kinetics, separation of variables, calculation and neutron balance of the fundamental mode, one-group and multigroup theories; 4) Study of heterogeneous cell lattices: fast fission factor, resonance absorption, thermal output factor, diffusion coefficient, computer codes; 5) Operation and control of reactors: perturbation theory, reactivity, fuel properties evolution, poisoning by fission products, calculation of a reactor and fuel management; 6) Study of some types of reactors: PWR and fast breeder reactors, the main reactor types of the present French program [fr

  8. Two dimensional neutron transport calculation system for plate-reactors: experimental design and qualification with SILOE

    International Nuclear Information System (INIS)

    Roussos, N.

    1982-01-01

    The main objective of this work is to create a neutronic calculations system for the SILOE-SILOETTE reactors, adaptable to other types of plate reactors. The author presents the methodology and the development of the APOLLO 1D (99 gr.) calculations for the creation of cross sections libraries. After a recall of the Discrete Ordinate Method (DOT), the method accuracy is studied in order to optimize the spatial discretization of the calculations; calculations of DOT 3.5 and of SILOETTE core are conducted and their convergence and costs are examined. DOT calculations of SILOETTE and experimental tests results are then compared [fr

  9. Sands at Gusev Crater, Mars

    Science.gov (United States)

    Cabrol, Nathalie A.; Herkenhoff, Kenneth E.; Knoll, Andrew H.; Farmer, Jack D.; Arvidson, Raymond E.; Grin, E.A.; Li, Ron; Fenton, Lori; Cohen, B.; Bell, J.F.; Yingst, R. Aileen

    2014-01-01

    Processes, environments, and the energy associated with the transport and deposition of sand at Gusev Crater are characterized at the microscopic scale through the comparison of statistical moments for particle size and shape distributions. Bivariate and factor analyses define distinct textural groups at 51 sites along the traverse completed by the Spirit rover as it crossed the plains and went into the Columbia Hills. Fine-to-medium sand is ubiquitous in ripples and wind drifts. Most distributions show excess fine material, consistent with a predominance of wind erosion over the last 3.8 billion years. Negative skewness at West Valley is explained by the removal of fine sand during active erosion, or alternatively, by excess accumulation of coarse sand from a local source. The coarse to very coarse sand particles of ripple armors in the basaltic plains have a unique combination of size and shape. Their distribution display significant changes in their statistical moments within the ~400 m that separate the Columbia Memorial Station from Bonneville Crater. Results are consistent with aeolian and/or impact deposition, while the elongated and rounded shape of the grains forming the ripples, as well as their direction of origin, could point to Ma'adim Vallis as a possible source. For smaller particles on the traverse, our findings confirm that aeolian processes have dominated over impact and other processes to produce sands with the observed size and shape patterns across a spectrum of geologic (e.g., ripples and plains soils) and aerographic settings (e.g., wind shadows).

  10. Aerosol sampling and Transport Efficiency Calculation (ASTEC) and application to surtsey/DCH aerosol sampling system: Code version 1.0: Code description and user's manual

    International Nuclear Information System (INIS)

    Yamano, N.; Brockmann, J.E.

    1989-05-01

    This report describes the features and use of the Aerosol Sampling and Transport Efficiency Calculation (ASTEC) Code. The ASTEC code has been developed to assess aerosol transport efficiency source term experiments at Sandia National Laboratories. This code also has broad application for aerosol sampling and transport efficiency calculations in general as well as for aerosol transport considerations in nuclear reactor safety issues. 32 refs., 31 figs., 7 tabs

  11. Computational complexity in multidimensional neutron transport theory calculations. Progress report, September 1, 1975--August 31, 1976

    International Nuclear Information System (INIS)

    Bareiss, E.H.

    1976-05-01

    The objectives of the work are to develop mathematically and computationally founded for the design of highly efficient and reliable multidimensional neutron transport codes to solve a variety of neutron migration and radiation problems, and to analyze existing and new methods for performance. As new analytical insights are gained, new numerical methods are developed and tested. Significant results obtained include implementation of the integer-preserving Gaussian elimination method (two-step method) in a CDC 6400 computer code, modes analysis for one-dimensional transport solutions, and a new method for solving the 1-T transport equation. Some of the work dealt with the interface and corner problem in diffusion theory

  12. Procedure for obtaining neutron diffusion coefficients from neutron transport Monte Carlo calculations (AWBA Development Program)

    International Nuclear Information System (INIS)

    Gast, R.C.

    1981-08-01

    A procedure for defining diffusion coefficients from Monte Carlo calculations that results in suitable ones for use in neutron diffusion theory calculations is not readily obtained. This study provides a survey of the methods used to define diffusion coefficients from deterministic calculations and provides a discussion as to why such traditional methods cannot be used in Monte Carlo. This study further provides the empirical procedure used for defining diffusion coefficients from the RCP01 Monte Carlo program

  13. Two-dimensional impurity transport calculations for a high recycling divertor

    International Nuclear Information System (INIS)

    Brooks, J.N.

    1986-04-01

    Two dimensional analysis of impurity transport in a high recycling divertor shows asymmetric particle fluxes to the divertor plate, low helium pumping efficiency, and high scrapeoff zone shielding for sputtered impurities

  14. Discrete nodal integral transport-theory method for multidimensional reactor physics and shielding calculations

    International Nuclear Information System (INIS)

    Lawrence, R.D.; Dorning, J.J.

    1980-01-01

    A coarse-mesh discrete nodal integral transport theory method has been developed for the efficient numerical solution of multidimensional transport problems of interest in reactor physics and shielding applications. The method, which is the discrete transport theory analogue and logical extension of the nodal Green's function method previously developed for multidimensional neutron diffusion problems, utilizes the same transverse integration procedure to reduce the multidimensional equations to coupled one-dimensional equations. This is followed by the conversion of the differential equations to local, one-dimensional, in-node integral equations by integrating back along neutron flight paths. One-dimensional and two-dimensional transport theory test problems have been systematically studied to verify the superior computational efficiency of the new method

  15. Transport coefficients of hard-sphere mixtures: Theory and Monte Carlo molecular-dynamics calculations for an isotopic mixture

    International Nuclear Information System (INIS)

    Erpenbeck, J.J.

    1989-01-01

    The thermal transport properties of mixtures can be formulated in a number of ways, depending on the choice of driving forces for the transport of heat and matter, without violating the Onsager conditions. Here we treat transport in mixtures based on the driving forces -del ln T and -T del(μ/sub a//T), with T the temperature and μ/sub a/ the specific chemical potential, to obtain the Green-Kubo expressions and the Enskog theory for the corresponding transport coefficients which seem most amenable to molecular-dynamics evaluation. The transport properties of a hard-sphere mixture (mass ratio of 0.1, diameter ratio of 1.0, at a volume of three times close-packed volume), calculated by a Monte Carlo, molecular-dynamics method based on the Green-Kubo formulas, are compared with the predictions of the Enskog theory. The long-time behavior of the Green-Kubo time-correlation functions for shear viscosity, thermal conductivity, thermal diffusion, and mutual diffusion are found to be in good agreement with the predictions of mode-coupling theory. Except for viscosity, the contribution of the long-time tails to the transport coefficients is found to be significant. We obtain values, relative to Enskog, of 1.016 +- 0.007 for shear viscosity, 1.218 +- 0.009 for thermal conductivity, 1.267 +- 0.026 for thermal diffusion, and 1.117 +- 0.008 for mutual diffusion

  16. Transport theory calculation for a heterogeneous multi-assembly problem by characteristics method with direct neutron path linking technique

    International Nuclear Information System (INIS)

    Kosaka, Shinya; Saji, Etsuro

    2000-01-01

    A characteristics transport theory code, CHAPLET, has been developed for the purpose of making it practical to perform a whole LWR core calculation with the same level of calculational model and accuracy as that of an ordinary single assembly calculation. The characteristics routine employs the CACTUS algorithm for drawing ray tracing lines, which assists the two key features of the flux solution in the CHAPLET code. One is the direct neutron path linking (DNPL) technique which strictly connects angular fluxes at each assembly interface in the flux solution separated between assemblies. Another is to reduce the required memory storage by sharing the data related to ray tracing among assemblies with the same configuration. For faster computation, the coarse mesh rebalance (CMR) method and the Aitken method were incorporated in the code and the combined use of both methods showed the most promising acceleration performance among the trials. In addition, the parallelization of the flux solution was attempted, resulting in a significant reduction in the wall-clock time of the calculation. By all these efforts, coupled with the results of many verification studies, a whole LWR core heterogeneous transport theory calculation finally became practical. CHAPLET is thought to be a useful tool which can produce the reference solutions for analyses of an LWR (author)

  17. The physics of wind-blown sand and dust.

    Science.gov (United States)

    Kok, Jasper F; Parteli, Eric J R; Michaels, Timothy I; Karam, Diana Bou

    2012-10-01

    The transport of sand and dust by wind is a potent erosional force, creates sand dunes and ripples, and loads the atmosphere with suspended dust aerosols. This paper presents an extensive review of the physics of wind-blown sand and dust on Earth and Mars. Specifically, we review the physics of aeolian saltation, the formation and development of sand dunes and ripples, the physics of dust aerosol emission, the weather phenomena that trigger dust storms, and the lifting of dust by dust devils and other small-scale vortices. We also discuss the physics of wind-blown sand and dune formation on Venus and Titan.

  18. Neoclassical resonant-plateau transport calculation in an effectively axisymmetrized tandem mirror with finite end plate resistance

    International Nuclear Information System (INIS)

    Katanuma, I.; Kiwamoto, Y.; Adachi, S.; Inutake, M.; Ishii, K.; Yatsu, K.; Sawada, K.; Miyoshi, S.

    1987-05-01

    Calculations are made for neoclassical resonant-plateau transports in the geometry of the effectively axisymmetrized tandem mirror GAMMA 10 magnetic field, which has minimum B inbord anchors inside the axisymmetric plug/barrier mirror cells. Azimuthal drifts at the local non-axisymmetric regions are included. The radial potential profile is determined by solving selfconsistently the charge neutrality equation. A finite resistance connecting end plate to machine ground provides appropriate boundary conditions on the radial electrostatic potential distribution so that it can be determined uniquely. The calculation is consistent with experimental results of GAMMA 10. (author)

  19. Modeling of radionuclide transport through rock formations and the resulting radiation exposure of reference persons. Calculations using Asse II parameters

    International Nuclear Information System (INIS)

    Kueppers, Christian; Ustohalova, Veronika; Steinhoff, Mathias

    2012-01-01

    The long-term release of radioactivity into the ground water path cannot be excluded for the radioactive waste repository Asse II. The possible radiological consequences were analyzed using a radio-ecological scenario developed by GRS. A second scenario was developed considering the solubility of radionuclides in salt saturated solutions and retarding/retention effects during the radionuclide transport through the cap rock layers. The modeling of possible radiation exposure was based on the lifestyle habits of reference persons. In Germany the calculation procedure for the prediction of radionuclide release from final repositories is not defined by national standards, the used procedures are based on analogue methods from other radiation protection calculations.

  20. Burnup credit calculations for criticality safety justification for RBMK-1000 spent fuel of transport and storage systems

    Directory of Open Access Journals (Sweden)

    V. V. Galchenko

    2010-12-01

    Full Text Available In present paper the burnup credit calculations for TK-8 transport container and SVJP-1 spent fuel storage fa-cility of pool type with RBMK-1000 spent fuel during 100-years of cooling time were performed for criticality safety analysis purpose using MCNP and SCALE codes. Only actinides were taken into account for these critical systems. Two approaches were analyzed with isotopes distribution calculations along fuel assembly height and without it. The results show that subcriticality margin is increased considerably using burnup credit and isotopes distribution along fuel assembly height made this value more reasonable.

  1. A new approach to calculate charge carrier transport mobility in organic molecular crystals from imaginary time path integral simulations

    International Nuclear Information System (INIS)

    Song, Linze; Shi, Qiang

    2015-01-01

    We present a new non-perturbative method to calculate the charge carrier mobility using the imaginary time path integral approach, which is based on the Kubo formula for the conductivity, and a saddle point approximation to perform the analytic continuation. The new method is first tested using a benchmark calculation from the numerical exact hierarchical equations of motion method. Imaginary time path integral Monte Carlo simulations are then performed to explore the temperature dependence of charge carrier delocalization and mobility in organic molecular crystals (OMCs) within the Holstein and Holstein-Peierls models. The effects of nonlocal electron-phonon interaction on mobility in different charge transport regimes are also investigated

  2. Computer codes in nuclear safety, radiation transport and dosimetry; Les codes de calcul en radioprotection, radiophysique et dosimetrie

    Energy Technology Data Exchange (ETDEWEB)

    Bordy, J M; Kodeli, I; Menard, St; Bouchet, J L; Renard, F; Martin, E; Blazy, L; Voros, S; Bochud, F; Laedermann, J P; Beaugelin, K; Makovicka, L; Quiot, A; Vermeersch, F; Roche, H; Perrin, M C; Laye, F; Bardies, M; Struelens, L; Vanhavere, F; Gschwind, R; Fernandez, F; Quesne, B; Fritsch, P; Lamart, St; Crovisier, Ph; Leservot, A; Antoni, R; Huet, Ch; Thiam, Ch; Donadille, L; Monfort, M; Diop, Ch; Ricard, M

    2006-07-01

    The purpose of this conference was to describe the present state of computer codes dedicated to radiation transport or radiation source assessment or dosimetry. The presentations have been parted into 2 sessions: 1) methodology and 2) uses in industrial or medical or research domains. It appears that 2 different calculation strategies are prevailing, both are based on preliminary Monte-Carlo calculations with data storage. First, quick simulations made from a database of particle histories built though a previous Monte-Carlo simulation and secondly, a neuronal approach involving a learning platform generated through a previous Monte-Carlo simulation. This document gathers the slides of the presentations.

  3. Are inundation limit and maximum extent of sand useful for differentiating tsunamis and storms? An example from sediment transport simulations on the Sendai Plain, Japan

    Science.gov (United States)

    Watanabe, Masashi; Goto, Kazuhisa; Bricker, Jeremy D.; Imamura, Fumihiko

    2018-02-01

    We examined the quantitative difference in the distribution of tsunami and storm deposits based on numerical simulations of inundation and sediment transport due to tsunami and storm events on the Sendai Plain, Japan. The calculated distance from the shoreline inundated by the 2011 Tohoku-oki tsunami was smaller than that inundated by storm surges from hypothetical typhoon events. Previous studies have assumed that deposits observed farther inland than the possible inundation limit of storm waves and storm surge were tsunami deposits. However, confirming only the extent of inundation is insufficient to distinguish tsunami and storm deposits, because the inundation limit of storm surges may be farther inland than that of tsunamis in the case of gently sloping coastal topography such as on the Sendai Plain. In other locations, where coastal topography is steep, the maximum inland inundation extent of storm surges may be only several hundred meters, so marine-sourced deposits that are distributed several km inland can be identified as tsunami deposits by default. Over both gentle and steep slopes, another difference between tsunami and storm deposits is the total volume deposited, as flow speed over land during a tsunami is faster than during a storm surge. Therefore, the total deposit volume could also be a useful proxy to differentiate tsunami and storm deposits.

  4. Eastern Scheldt Sand, Baskarp Sand No. 15

    DEFF Research Database (Denmark)

    Andersen, A. T; Madsen, E. B.; Schaarup-Jensen, A. L.

    The present data report contains data from 13 drained triaxial tests, performed on two different sand types in the Soil Mechanics Laboratory at Aalborg University in March, 1997. Two tests have been performed on Baskarp Sand No. 15, which has already ken extensively tested in the Soil Mechanics...... Laboratory. The remaining 11 triaxial tests have ben performed on Eastern Scheldt Sand, which is a material not yet investigated at the Soil Mechanics Laboratory. In the first pari of this data report, the characteristics of the two sand types in question will be presented. Next, a description...... will described. In this connection, the procedure for preparation of the soil specimens will be presented, and the actual performance of the tests will be briefly outlined. Finally, the procedure for processing of the measurements from the laboratory in order to obtain usable data will be described. The final...

  5. Development and validation of a criticality calculation scheme based on French deterministic transport codes

    International Nuclear Information System (INIS)

    Santamarina, A.

    1991-01-01

    A criticality-safety calculational scheme using the automated deterministic code system, APOLLO-BISTRO, has been developed. The cell/assembly code APOLLO is used mainly in LWR and HCR design calculations, and its validation spans a wide range of moderation ratios, including voided configurations. Its recent 99-group library and self-shielded cross-sections has been extensively qualified through critical experiments and PWR spent fuel analysis. The PIC self-shielding formalism enables a rigorous treatment of the fuel double heterogeneity in dissolver medium calculations. BISTRO is an optimized multidimensional SN code, part of the modular CCRR package used mainly in FBR calculations. The APOLLO-BISTRO scheme was applied to the 18 experimental benchmarks selected by the OECD/NEACRP Criticality Calculation Working Group. The Calculation-Experiment discrepancy was within ± 1% in ΔK/K and always looked consistent with the experimental uncertainty margin. In the critical experiments corresponding to a dissolver type benchmark, our tools computed a satisfactory Keff. In the VALDUC fuel storage experiments, with hafnium plates, the computed Keff ranged between 0.994 and 1.003 for the various watergaps spacing the fuel clusters from the absorber plates. The APOLLO-KENOEUR statistic calculational scheme, based on the same self-shielded multigroup library, supplied consistent results within 0.3% in ΔK/K. (Author)

  6. Hybrid variational principles and synthesis method for finite element neutron transport calculations

    International Nuclear Information System (INIS)

    Ackroyd, R.T.; Nanneh, M.M.

    1990-01-01

    A family of hybrid variational principles is derived using a generalised least squares method. Neutron conservation is automatically satisfied for the hybrid principles employing two trial functions. No interfaces or reflection conditions need to be imposed on the independent even-parity trial function. For some hybrid principles a single trial function can be employed by relating one parity trial function to the other, using one of the parity transport equation in relaxed form. For other hybrid principles the trial functions can be employed sequentially. Synthesis of transport solutions, starting with the diffusion theory approximation, has been used as a way of reducing the scale of the computation that arises with established finite element methods for neutron transport. (author)

  7. Multigroup calculations of low-energy neutral transport in tokamak plasmas

    International Nuclear Information System (INIS)

    Gilligan, J.G.; Gralnick, S.L.; Price, W.G. Jr.; Kammash, T.

    1978-01-01

    Multigroup discrete ordinates methods avoid many of the approximations that have been used in previous neutral transport analyses. Of particular interest are the neutral profiles generated as an integral part of larger plasma system simulation codes. To determine the appropriateness of utilizing a particular multigroup code, ANISN, for this purpose, results are compared with the neutral transport module of the Duechs code. For a typical TFTR plasma, predicted neutral densities differ by a maximum factor of three on axis and outfluxes at the plasma boundary by approximately 40%. This is found to be significant for a neutral transport module. Possible sources of the observed discrepancies are indicated from an analysis of the approximations used in the Duechs model. Recommendations are made concerning the future application of the multigroup method. (author)

  8. Low rank approximation method for efficient Green's function calculation of dissipative quantum transport

    Science.gov (United States)

    Zeng, Lang; He, Yu; Povolotskyi, Michael; Liu, XiaoYan; Klimeck, Gerhard; Kubis, Tillmann

    2013-06-01

    In this work, the low rank approximation concept is extended to the non-equilibrium Green's function (NEGF) method to achieve a very efficient approximated algorithm for coherent and incoherent electron transport. This new method is applied to inelastic transport in various semiconductor nanodevices. Detailed benchmarks with exact NEGF solutions show (1) a very good agreement between approximated and exact NEGF results, (2) a significant reduction of the required memory, and (3) a large reduction of the computational time (a factor of speed up as high as 150 times is observed). A non-recursive solution of the inelastic NEGF transport equations of a 1000 nm long resistor on standard hardware illustrates nicely the capability of this new method.

  9. The use of symbolic computation in radiative, energy, and neutron transport calculations

    Science.gov (United States)

    Frankel, J. I.

    This investigation uses symbolic computation in developing analytical methods and general computational strategies for solving both linear and nonlinear, regular and singular, integral and integro-differential equations which appear in radiative and combined mode energy transport. This technical report summarizes the research conducted during the first nine months of the present investigation. The use of Chebyshev polynomials augmented with symbolic computation has clearly been demonstrated in problems involving radiative (or neutron) transport, and mixed-mode energy transport. Theoretical issues related to convergence, errors, and accuracy have also been pursued. Three manuscripts have resulted from the funded research. These manuscripts have been submitted to archival journals. At the present time, an investigation involving a conductive and radiative medium is underway. The mathematical formulation leads to a system of nonlinear, weakly-singular integral equations involving the unknown temperature and various Legendre moments of the radiative intensity in a participating medium. Some preliminary results are presented illustrating the direction of the proposed research.

  10. A novel method to calculate the extent and amount of drug transported into CSF after intranasal administration.

    Science.gov (United States)

    Shi, Zhenqi; Zhang, Qizhi; Jiang, Xinguo

    2005-01-31

    The aim of this paper is to establish a novel method to calculate the extent and amount of drug transported to brain after administration. The cerebrospinal fluid (CSF) was chosen as the target region. The intranasal administration of meptazinol hydrochloride (MEP) was chosen as the model administration and intravenous administration was selected as reference. According to formula transform, the extent was measured by the equation of X(A)CSF, infinity/X0 = Cl(CSF) AUC(0-->infinity)CSF/X0 and the drug amount was calculated by multiplying the dose with the extent. The drug clearance in CSF (Cl(CSF)) was calculated by a method, in which a certain volume of MEP solution was injected directly into rat cistern magna and then clearance was assessed as the reciprocal of the zeroth moment of a CSF level-time curve normalized for dose. In order to testify the accurateness of the method, 14C-sucrose was chosen as reference because of its impermeable characteristic across blood-brain barrier (BBB). It was found out that the MEP concentrations in plasma and CSF after intranasal administration did not show significant difference with those after intravenous administration. However, the extent and amount of MEP transported to CSF was significantly lower compared with those to plasma after these two administrations. In conclusion, the method can be applied to measure the extent and amount of drug transported to CSF, which would be useful to evaluate brain-targeting drug delivery.

  11. Comparison of Non-overlapping and Overlapping Local/Global Iteration Schemes for Whole-Core Deterministic Transport Calculation

    International Nuclear Information System (INIS)

    Yuk, Seung Su; Cho, Bumhee; Cho, Nam Zin

    2013-01-01

    In the case of deterministic transport model, fixed-k problem formulation is necessary and the overlapping local domain is chosen. However, as mentioned in, the partial current-based Coarse Mesh Finite Difference (p-CMFD) procedure enables also non-overlapping local/global (NLG) iteration. In this paper, NLG iteration is combined with p-CMFD and with CMFD (augmented with a concept of p-CMFD), respectively, and compared to OLG iteration on a 2-D test problem. Non-overlapping local/global iteration with p-CMFD and CMFD global calculation is introduced and tested on a 2-D deterministic transport problem. The modified C5G7 problem is analyzed with both NLG and OLG methods and the solutions converge to the reference solution except for some cases of NLG with CMFD. NLG with CMFD gives the best performance if the solution converges. But if fission-source iteration in local calculation is not enough, it is prone to diverge. The p-CMFD global solver gives unconditional convergence (for both OLG and NLG). A study of switching scheme is in progress, where NLG/p-CMFD is used as 'starter' and then switched to NLG/CMFD to render the whole-core transport calculation more efficient and robust. Parallel computation is another obvious future work

  12. Integral transport multiregion geometrical shadowing factor for the approximate collision probability matrix calculation of infinite closely packed lattices

    International Nuclear Information System (INIS)

    Jowzani-Moghaddam, A.

    1981-01-01

    An integral transport method of calculating the geometrical shadowing factor in multiregion annular cells for infinite closely packed lattices in cylindrical geometry is developed. This analytical method has been programmed in the TPGS code. This method is based upon a consideration of the properties of the integral transport method for a nonuniform body, which together with Bonalumi's approximations allows the determination of the approximate multiregion collision probability matrix for infinite closely packed lattices with sufficient accuracy. The multiregion geometrical shadowing factors have been calculated for variations in fuel pin annular segment rings in a geometry of annular cells. These shadowing factors can then be used in the calculation of neutron transport from one annulus to another in an infinite lattice. The result of this new geometrical shadowing and collision probability matrix are compared with the Dancoff-Ginsburg correction and the probability matrix using constant shadowing on Yankee fuel elements in an infinite lattice. In these cases the Dancoff-Ginsburg correction factor and collision probability matrix using constant shadowing are in difference by at most 6.2% and 6%, respectively

  13. Inelastic Transport through Molecules: Comparing First-Principles Calculations to Experiments

    DEFF Research Database (Denmark)

    Paulsson, Magnus; Frederiksen, Thomas; Brandbyge, Mads

    2006-01-01

    We present calculations of the elastic and inelastic conductance through three different hydrocarbon molecules connected to gold electrodes. Our method is based on a combination of the nonequilibrium Green's function method with density functional theory. Vibrational effects in these molecular...

  14. Multigroup transport calculations of critical and fuel assemblies with taking into account the scattering anisotropy

    International Nuclear Information System (INIS)

    Rubin, I.E.; Dneprovskaya, N.M.

    2005-01-01

    A technique for calculation of reactor lattices by means of the transmission probabilities with taking into account the scattering anisotropy is generalized for the multigroup case. The errors of the calculated multiplication coefficients and energy release distributions do noe exceed practically the errors, of these values, obtained by the Monte Carlo method. The proposed method is most effective when determining the small difference effects [ru

  15. LASER-R a computer code for reactor cell and burnup calculations in neutron transport theory

    International Nuclear Information System (INIS)

    Cristian, I.; Cirstoiu, B.; Dumitrache, I.; Cepraga, D.

    1976-04-01

    The LASER-R code is an IBM 370/135 version of the Westinghouse code, LASER, based on the THERMOS and MUFT codes developped by Poncelet. It can be used to perform thermal reactor cell calculations and burnup calculations. The cell exhibits 3-4 concentric areas: fuel, cladding, moderator and scattering ring. Besides directions for use, a short description of the physical model, numerical methods and output is presented

  16. Computational complexity in multidimensional neutron transport theory calculations. Progress report, September 1, 1974--August 31, 1975

    International Nuclear Information System (INIS)

    Bareiss, E.H.

    1975-01-01

    The objectives of the research remain the same as outlined in the original proposal. They are in short as follows: Develop mathematically and computationally founded criteria for the design of highly efficient and reliable multi-dimensional neutron transport codes to solve a variety of neutron migration and radiation problems and analyze existing and new methods for performance. (U.S.)

  17. General-purpose Monte Carlo codes for neutron and photon transport calculations. MVP version 3

    International Nuclear Information System (INIS)

    Nagaya, Yasunobu

    2017-01-01

    JAEA has developed a general-purpose neutron/photon transport Monte Carlo code MVP. This paper describes the recent development of the MVP code and reviews the basic features and capabilities. In addition, capabilities implemented in Version 3 are also described. (author)

  18. The use of symbolic computation in radiative, energy, and neutron transport calculations. Final report

    International Nuclear Information System (INIS)

    Frankel, J.I.

    1997-01-01

    This investigation used sysmbolic manipulation in developing analytical methods and general computational strategies for solving both linear and nonlinear, regular and singular integral and integro-differential equations which appear in radiative and mixed-mode energy transport. Contained in this report are seven papers which present the technical results as individual modules

  19. Application of artificial intelligence techniques to the acceleration of Monte Carlo transport calculations

    International Nuclear Information System (INIS)

    Maconald, J.L.; Cashwell, E.D.

    1978-09-01

    The techniques of learning theory and pattern recognition are used to learn splitting surface locations for the Monte Carlo neutron transport code MCN. A study is performed to determine default values for several pattern recognition and learning parameters. The modified MCN code is used to reduce computer cost for several nontrivial example problems

  20. Electronic transport properties of fullerene functionalized carbon nanotubes: Ab initio and tight-binding calculations

    DEFF Research Database (Denmark)

    Fürst, Joachim Alexander; Hashemi, J.; Markussen, Troels

    2009-01-01

    Fullerene functionalized carbon nanotubes-NanoBuds-form a novel class of hybrid carbon materials, which possesses many advantageous properties as compared to the pristine components. Here, we report a theoretical study of the electronic transport properties of these compounds. We use both ab init...

  1. Computational complexity in multidimensional neutron transport theory calculations. Progress report, September 1976--November 30, 1977

    International Nuclear Information System (INIS)

    Bareiss, E.H.

    1977-08-01

    The objectives of this research are to develop mathematically and computationally founded criteria for the design of highly efficient and reliable multidimensional neutron transport codes to solve a variety of neutron migration and radiation problems, and to analyze existing and new methods for performance

  2. Electronic and thermoelectric properties of InN studied using ab initio density functional theory and Boltzmann transport calculations

    Energy Technology Data Exchange (ETDEWEB)

    Borges, P. D., E-mail: pdborges@gmail.com, E-mail: lscolfaro@txstate.edu; Scolfaro, L., E-mail: pdborges@gmail.com, E-mail: lscolfaro@txstate.edu [Department of Physics, Texas State University, San Marcos, Texas 78666 (United States)

    2014-12-14

    The thermoelectric properties of indium nitride in the most stable wurtzite phase (w-InN) as a function of electron and hole concentrations and temperature were studied by solving the semiclassical Boltzmann transport equations in conjunction with ab initio electronic structure calculations, within Density Functional Theory. Based on maximally localized Wannier function basis set and the ab initio band energies, results for the Seebeck coefficient are presented and compared with available experimental data for n-type as well as p-type systems. Also, theoretical results for electric conductivity and power factor are presented. Most cases showed good agreement between the calculated properties and experimental data for w-InN unintentionally and p-type doped with magnesium. Our predictions for temperature and concentration dependences of electrical conductivity and power factor revealed a promising use of InN for intermediate and high temperature thermoelectric applications. The rigid band approach and constant scattering time approximation were utilized in the calculations.

  3. Calculations of reactivity based in the solution of the Neutron transport equation in X Y geometry and Lineal perturbation theory

    International Nuclear Information System (INIS)

    Valle G, E. del; Mugica R, C.A.

    2005-01-01

    In our country, in last congresses, Gomez et al carried out reactivity calculations based on the solution of the diffusion equation for an energy group using nodal methods in one dimension and the TPL approach (Lineal Perturbation Theory). Later on, Mugica extended the application to the case of multigroup so much so much in one as in two dimensions (X Y geometry) with excellent results. Presently work is carried out similar calculations but this time based on the solution of the neutron transport equation in X Y geometry using nodal methods and again the TPL approximation. The idea is to provide a calculation method that allows to obtain in quick form the reactivity solving the direct problem as well as the enclosed problem of the not perturbed problem. A test problem for the one that results are provided for the effective multiplication factor is described and its are offered some conclusions. (Author)

  4. High energy ion range and deposited energy calculation using the Boltzmann-Fokker-Planck splitting of the Boltzmann transport equation

    International Nuclear Information System (INIS)

    Mozolevski, I.E.

    2001-01-01

    We consider the splitting of the straight-ahead Boltzmann transport equation in the Boltzmann-Fokker-Planck equation, decomposing the differential cross-section into a singular part, corresponding to small energy transfer events, and in a regular one, which corresponds to large energy transfer. The convergence of implantation profile, nuclear and electronic energy depositions, calculated from the Boltzmann-Fokker-Planck equation, to the respective exact distributions, calculated from Monte-Carlo method, was exanimate in a large-energy interval for various values of splitting parameter and for different ion-target mass relations. It is shown that for the universal potential there exists an optimal value of splitting parameter, for which range and deposited energy distributions, calculated from the Boltzmann-Fokker-Planck equation, accurately approximate the exact distributions and which minimizes the computational expenses

  5. Transport calculations of. gamma. -ray flux density and dose rate about implantable californium-252 sources

    Energy Technology Data Exchange (ETDEWEB)

    Shapiro, A; Lin, B I [Cincinnati Univ., Ohio (USA). Dept. of Chemical and Nuclear Engineering; Windham, J P; Kereiakes, J G

    1976-07-01

    ..gamma.. flux density and dose rate distributions have been calculated about implantable californium-252 sources for an infinite tissue medium. Point source flux densities as a function of energy and position were obtained from a discrete-ordinates calculation, and the flux densities were multiplied by their corresponding kerma factors and added to obtain point source dose rates. The point dose rates were integrated over the line source to obtain line dose rates. Container attenuation was accounted for by evaluating the point dose rate as a function of platinum thickness. Both primary and secondary flux densities and dose rates are presented. The agreement with an independent Monte Carlo calculation was excellent. The data presented should be useful for the design of new source configurations.

  6. Vectorization of nuclear codes for atmospheric transport and exposure calculation of radioactive materials

    International Nuclear Information System (INIS)

    Asai, Kiyoshi; Shinozawa, Naohisa; Ishikawa, Hirohiko; Chino, Masamichi; Hayashi, Takashi

    1983-02-01

    Three computer codes MATHEW, ADPIC of LLNL and GAMPUL of JAERI for prediction of wind field, concentration and external exposure rate of airborne radioactive materials are vectorized and the results are presented. Using the continuous equation of incompressible flow as a constraint, the MATHEW calculates the three dimensional wind field by a variational method. Using the particle-in -cell method, the ADPIC calculates the advection and diffusion of radioactive materials in three dimensional wind field and terrain, and gives the concentration of the materials in each cell of the domain. The GAMPUL calculates the external exposure rate assuming Gaussian plume type distribution of concentration. The vectorized code MATHEW attained 7.8 times speedup by a vector processor FACOM230-75 APU. The ADPIC and GAMPUL are estimated to attain 1.5 and 4 times speedup respectively on CRAY-1 type vector processor. (author)

  7. THREEDANT: A code to perform three-dimensional, neutral particle transport calculations

    International Nuclear Information System (INIS)

    Alcouffe, R.E.

    1994-01-01

    The THREEDANT code solves the three-dimensional neutral particle transport equation in its first order, multigroup, discrate ordinate form. The code allows an unlimited number of groups (depending upon the cross section set), angular quadrature up to S-100, and unlimited Pn order again depending upon the cross section set. The code has three options for spatial differencing, diamond with set-to-zero fixup, adaptive weighted diamond, and linear modal. The geometry options are XYZ and RZΘ with a special XYZ option based upon a volume fraction method. This allows objects or bodies of any shape to be modelled as input which gives the code as much geometric description flexibility as the Monte Carlo code MCNP. The transport equation is solved by source iteration accelerated by the DSA method. Both inner and outer iterations are so accelerated. Some results are presented which demonstrate the effectiveness of these techniques. The code is available on several types of computing platforms

  8. Monte Carlo method for neutron transport calculations in graphics processing units (GPUs)

    International Nuclear Information System (INIS)

    Pellegrino, Esteban

    2011-01-01

    Monte Carlo simulation is well suited for solving the Boltzmann neutron transport equation in an inhomogeneous media for complicated geometries. However, routine applications require the computation time to be reduced to hours and even minutes in a desktop PC. The interest in adopting Graphics Processing Units (GPUs) for Monte Carlo acceleration is rapidly growing. This is due to the massive parallelism provided by the latest GPU technologies which is the most promising solution to the challenge of performing full-size reactor core analysis on a routine basis. In this study, Monte Carlo codes for a fixed-source neutron transport problem were developed for GPU environments in order to evaluate issues associated with computational speedup using GPUs. Results obtained in this work suggest that a speedup of several orders of magnitude is possible using the state-of-the-art GPU technologies. (author) [es

  9. Spatially resolved transport data for electrons in gases: Definition, interpretation and calculation

    International Nuclear Information System (INIS)

    Dujko, S.; White, R.D.; Raspopović, Z.M.; Petrović, Z.Lj.

    2012-01-01

    The spatiotemporal evolution of electron swarms in the presence of electric and magnetic fields is investigated to facilitate understanding temporal and spatial non-locality in low-temperature plasmas. Using two independent techniques, a multi-term solution of Boltzmann’s equation and a Monte Carlo simulation technique, the synergism of an applied magnetic field and non-conservative collisions (ionization and/or electron attachment) is demonstrated as a means to control the non-locality of relaxation processes. In particular, oscillatory features in the spatial and temporal profiles are demonstrated, and shown to be enhanced or suppressed through the magnetic field strength, the angle between the electric and magnetic fields, and the degree of ionization. Finally we discuss the impact of field configurations and strengths on the transport properties, highlighting the distinctions in the measured transport properties between various experimental configurations when non-conservative processes are present.

  10. Data sets for hydrogen reflection and their use in neutral transport calculations

    International Nuclear Information System (INIS)

    Eckstein, W.; Heifetz, D.B.

    1986-08-01

    A realistic characterization of the interaction of ions and neutral particles with device walls is important for any edge plasma calculation. Present reflection models vary in detail and computational efficiency. This paper presents a data set for the distribution of the reflection coefficient, R N , over reflected energy, polar, and azimuthal angles, as functions of incident polar angle and energy. These results have been computed using a vectorized version of the TRIM Monte Carlo code. The data are stored using an algorithm for reducing the data into three one-dimensional distributions, resulting in a realistic reflection model which can be used very efficiently in plasma edge calculations. (orig.)

  11. Determination of uncertainties in the calculation of dose rates at transport and storage casks; Unsicherheiten bei der Berechnung von Dosisleistungen an Transport- und Lagerbehaeltern

    Energy Technology Data Exchange (ETDEWEB)

    Schloemer, Luc Laurent Alexander

    2014-12-17

    The compliance with the dose rate limits for transport and storage casks (TLB) for spent nuclear fuel from pressurised water reactors can be proved by calculation. This includes the determination of the radioactive sources and the shielding-capability of the cask. In this thesis the entire computational chain, which extends from the determination of the source terms to the final Monte-Carlo-transport-calculation is analysed and the arising uncertainties are quantified not only by benchmarks but also by variational calculi. The background of these analyses is that the comparison with measured dose rates at different TLBs shows an overestimation by the values calculated. Regarding the studies performed, the overestimation can be mainly explained by the detector characteristics for the measurement of the neutron dose rate and additionally in case of the gamma dose rates by the energy group structure, which the calculation is based on. It turns out that the consideration of the uncertainties occurring along the computational chain can lead to even greater overestimation. Concerning the dose rate calculation at cask loadings with spent uranium fuel assemblies an uncertainty of (({sup +21}{sub -28}) ±2) % (rel.) for the total gamma dose rate and of ({sup +28±23}{sub -55±4}) % (rel.) for the total neutron dose rate are estimated. For mixed-loadings with spent uranium and MOX fuel assemblies an uncertainty of ({sup +24±3}{sub -27±2}) % (rel.) for the total gamma dose rate and of ({sup +28±23}{sub -55±4}) % (rel.) for the total neutron dose rate are quantified. The results show that the computational chain has not to be modified, because the calculations performed lead to conservative dose rate predictions, even if high uncertainties at neutron dose rate measurements arise. Thus at first the uncertainties of the neutron dose rate measurement have to be decreased to enable a reduction of the overestimation of the calculated dose rate afterwards. In the present thesis

  12. Tuning the Transport Properties of Layered Materials for Thermoelectric Applications using First-Principles Calculations

    KAUST Repository

    Saeed, Yasir

    2014-05-11

    Thermoelectric materials can convert waste heat into electric power and thus provide a way to reduce the dependence on fossil fuels. Our aim is to model the underlying materials properties and, in particular, the transport as controlled by electrons and lattice vibrations. The goal is to develop an understanding of the thermoelectric properties of selected materials at a fundamental level. The structural, electronic, optical, and phononic properties are studied in order to tune the transport, focusing on KxRhO2, NaxRhO2, PtSb2 and Bi2Se3. The investigations are based on density functional theory as implemented in the all electron linearized augmented plane wave plus local orbitals WIEN2k and pseudo potential Quantum-ESPRESSO codes. The thermoelectric properties are derived from Boltzmann transport theory under the constant relaxation time approximation, using the BoltzTraP code. We will discuss first the changes in the electronic band structure under variation of the cation concentration in layered KxRhO2 in the 2H phase and NaxRhO2 in the 3R phase. We will also study the hydrated phase. The deformations of the RhO6 octahedra turn out to govern the thermoelectric properties, where the high Seebeck coefficient results from ”pudding mold" bands. We investigate the thermoelectric properties of electron and hole doped PtSb2, which is not a layered material but shares “pudding mold" bands. PtSb2 has a high Seebeck coefficient at room temperature, which increases significantly under As alloying by bandgap opening and reduction of the lattice thermal conductivity. Bi2Se3 (bulk and thin film) has a larger bandgap then the well-known thermoelectric material Bi2Te3, which is important at high temperature. The structural stability, electronic structure, and transport properties of one to six quintuple layers of Bi2Se3 will be discussed. We also address the effect of strain on a single quintuple layer by phonon band structures. We will analyze the electronic and transport

  13. ALBEMO, a program for the calculation of the radiation transport in void volumes with reflecting walls

    International Nuclear Information System (INIS)

    Mueller, K.; Vossebrecker, H.

    The Monte Carlo Program ALBEMO calculates the distribution of neutrons and gamma rays in void volumes which are bounded by reflecting walls with x, y, z coordinates. The program is based on the albedo method. The effect of significant simplifying assumptions is investigated. Comparisons with experiments show satisfying agreement

  14. Electron transport in a Pt-CO-Pt nanocontact: Density functional theory calculations

    DEFF Research Database (Denmark)

    Strange, Mikkel; Thygesen, Kristian Sommer; Jacobsen, Karsten Wedel

    2006-01-01

    We have performed first-principles calculations for the mechanic and electric properties of pure Pt nanocontacts and a Pt contact with a single CO molecule adsorbed. For the pure Pt contacts we see a clear difference between point contacts and short chains in good agreement with experiments. We...

  15. Optimization of the Spent Fuel Attribute Tester using radiation transport calculations

    International Nuclear Information System (INIS)

    Laub, T.W.; Dupree, S.A.; Arlt, R.

    1993-01-01

    The International Atomic Energy Agency uses the Spent Fuel Attribute Tester (SFAT) to measure gamma signatures from fuel assemblies stored in spent fuel pools. It consists of a shielded, collimated NaI(Tl) detector attached to an air-filled pipe. The purpose of the present study was to define design changes, within operational constraints, that would improve the target assembly 137 Cs signal relative to the background signals from adjacent assemblies. This improvement is essential to reducing to an acceptable level the measurement time during an inspection. Monte Carlo calculations of the entire geometry were impractical, therefore, a hybrid method was developed that combined one-dimensional discrete ordinates models of the spent fuel pool, three-dimensional Monte Carlo calculations of the SFAT, and detector response calculations. The method compared well with measurements taken with the existing baseline SFAT. Calculations predicted significant improvements in signal-to-noise ratio. Recommended changes included shortening the pipe and increasing its wall thickness, placing low-Z filters in the crystal line of sight, reducing the thickness of shielding around the collimator aperture and adding shielding around the crystal, and reducing the diameter of the crystal. An instrument incorporating these design changes is being fabricated in Finland and will be tested this year

  16. QmeQ 1.0: An open-source Python package for calculations of transport through quantum dot devices

    Science.gov (United States)

    Kiršanskas, Gediminas; Pedersen, Jonas Nyvold; Karlström, Olov; Leijnse, Martin; Wacker, Andreas

    2017-12-01

    QmeQ is an open-source Python package for numerical modeling of transport through quantum dot devices with strong electron-electron interactions using various approximate master equation approaches. The package provides a framework for calculating stationary particle or energy currents driven by differences in chemical potentials or temperatures between the leads which are tunnel coupled to the quantum dots. The electronic structures of the quantum dots are described by their single-particle states and the Coulomb matrix elements between the states. When transport is treated perturbatively to lowest order in the tunneling couplings, the possible approaches are Pauli (classical), first-order Redfield, and first-order von Neumann master equations, and a particular form of the Lindblad equation. When all processes involving two-particle excitations in the leads are of interest, the second-order von Neumann approach can be applied. All these approaches are implemented in QmeQ. We here give an overview of the basic structure of the package, give examples of transport calculations, and outline the range of applicability of the different approximate approaches.

  17. Calculation Of Aerosol Transport Efficiency For The Airborne Radioiodine Monitoring System - ''RIS125''

    International Nuclear Information System (INIS)

    Kravchik, T.; Levinson, L.; Mazor, Y.; Dolev, E.; German, U.

    1999-01-01

    Radioactive iodine is a typical fission product in nuclear power reactors. Of the many iodine isotopes that can be generated in nuclear reactors only four are considered as radiobiological significant. These are: 125 1 (T 1/2 =60 days), '1 31 I (T 1/2 =8d), 133 I (T 1/2 =21h) and I35 I (T 1/2 7h). The chemical forms that have been identified in heavy water reactors are I 2 (elemental), organic iodides (CH 3 I), Inorganic iodides (HOI, HI) and LiI. Radioiodine is, generally, released as a gas but can be adsorbed on air particulates to form radioiodine contained aerosols. Therefore. its monitoring has to include both gas and aerosol sampling. A new monitoring system, RIS (Radioactive iodine Sampler), has been developed at the NRCN to monitor radioactive iodine (gas and aerosol) on-line in workplaces. This system samples radioiodine at a 60 L/min rate through a transport line connected to a filter holder. The filter consists of a cartridge containing activated charcoal with TEDA for iodine gas adsorption with a membrane for aerosols' retention in from of it. The radioiodine filter cartridge (F and J product code: TE2C) has a diameter of 2 1/4 inch and height of 1 inch . The gas adsorbent is coconut shell carbon type activated charcoal with 5% (by weight) TEDA impregnation and has 30x50 mesh size. This paper presents the aerosols' sampling characteristics of the RIS system including their transport in the sampling line and filter holder. The adsorption of iodine gas on the transport system components is negligible

  18. Analysis of simulation methodology for calculation of the heat of transport for vacancy thermodiffusion

    Energy Technology Data Exchange (ETDEWEB)

    Tucker, William C.; Schelling, Patrick K., E-mail: patrick.schelling@ucf.edu [Advanced Material Processing and Analysis Center and Department of Physics, University of Central Florida, 4000 Central Florida Blvd., Orlando, Florida 32816 (United States)

    2014-07-14

    Computation of the heat of transport Q{sub a}{sup *} in monatomic crystalline solids is investigated using the methodology first developed by Gillan [J. Phys. C: Solid State Phys. 11, 4469 (1978)] and further developed by Grout and coworkers [Philos. Mag. Lett. 74, 217 (1996)], referred to as the Grout-Gillan method. In the case of pair potentials, the hopping of a vacancy results in a heat wave that persists for up to 10 ps, consistent with previous studies. This leads to generally positive values for Q{sub a}{sup *} which can be quite large and are strongly dependent on the specific details of the pair potential. By contrast, when the interactions are described using the embedded atom model, there is no evidence of a heat wave, and Q{sub a}{sup *} is found to be negative. This demonstrates that the dynamics of vacancy hopping depends strongly on the details of the empirical potential. However, the results obtained here are in strong disagreement with experiment. Arguments are presented which demonstrate that there is a fundamental error made in the Grout-Gillan method due to the fact that the ensemble of states only includes successful atom hops and hence does not represent an equilibrium ensemble. This places the interpretation of the quantity computed in the Grout-Gillan method as the heat of transport in doubt. It is demonstrated that trajectories which do not yield hopping events are nevertheless relevant to computation of the heat of transport Q{sub a}{sup *}.

  19. Some efficient Lagrangian mesh finite elements encoded in ZEPHYR for two dimensional transport calculations

    International Nuclear Information System (INIS)

    Mordant, Maurice.

    1981-04-01

    To solve a multigroup stationary neutron transport equation in two-dimensional geometries (X-Y), (R-O) or (R-Z) generally on uses discrete ordinates and rectangular meshes. The way to do it is then well known, well documented and somewhat obvious. If one needs to treat awkward geometries or distorted meshes, things are not so easy and the way to do it is no longer straightforward. We have studied this problem at Limeil Nuclear Center and as an alternative to Monte Carlo methods and code we have implemented in ZEPHYR code at least two efficient finite element solutions for Lagrangian meshes involving any kind of triangles and quadrilaterals

  20. Investigation of multi-dimensional computational models for calculating pollutant transport

    International Nuclear Information System (INIS)

    Pepper, D.W.; Cooper, R.E.; Baker, A.J.

    1980-01-01

    A performance study of five numerical solution algorithms for multi-dimensional advection-diffusion prediction on mesoscale grids was made. Test problems include transport of point and distributed sources, and a simulation of a continuous source. In all cases, analytical solutions are available to assess relative accuracy. The particle-in-cell and second-moment algorithms, both of which employ sub-grid resolution coupled with Lagrangian advection, exhibit superior accuracy in modeling a point source release. For modeling of a distributed source, algorithms based upon the pseudospectral and finite element interpolation concepts, exhibit improved accuracy on practical discretizations

  1. Cross-sections for homogenized BWR fuel elements in 2d-diffusion theory by 1d-transport calculations

    International Nuclear Information System (INIS)

    Ambrosius, G.

    1980-01-01

    Leakage has a large influence on the thermal spectrum in a fuel rod cell of a BWR and originates: a) from rods with different absorptions and; b) from the different distances to the water gaps. Due to reason a) Gd-rods are treated together with a ring of the homogenized eight nearest neighbours. The often used definition of homogenized cross-sections as the ratio of the integrated reaction rate to the integrated flux proved to be inadequate. This homogenization method is exact as far as the flux is constant over the boundary and as the leakag e during calculating the homogenized cross-sections is similar to that during application. With respect to the condition b) a 1d-transport calculation for the whole fuel element with rings or slabs of homogenized fuel rod cells is performed. With the definition above the flux distribution is that of the fluxes in the moderator regions. The spectrum within each fuel rod cell which includes the leakage is calculated by superimposing at each energy on the flux distribution in the cell the flux at the cell position from the bundle calculation. Changes in the flux ratio between fuel and moderator due to the leakage are taken into account in a final few group 2d-diffusion calculation with fuel and (moderator + cladding) taken separately

  2. Interpreting Hydraulic Conditions from Morphology, Sedimentology, and Grain Size of Sand Bars in the Colorado River in Grand Canyon

    Science.gov (United States)

    Rubin, D. M.; Topping, D. J.; Schmidt, J. C.; Grams, P. E.; Buscombe, D.; East, A. E.; Wright, S. A.

    2015-12-01

    During three decades of research on sand bars and sediment transport in the Colorado River in Grand Canyon, we have collected unprecedented quantities of data on bar morphology, sedimentary structures, grain size of sand on the riverbed (~40,000 measurements), grain size of sand in flood deposits (dozens of vertical grain-size profiles), and time series of suspended sediment concentration and grain size (more than 3 million measurements using acoustic and laser-diffraction instruments sampling every 15 minutes at several locations). These data, which include measurements of flow and suspended sediment as well as sediment within the deposits, show that grain size within flood deposits generally coarsens or fines proportionally to the grain size of sediment that was in suspension when the beds were deposited. The inverse problem of calculating changing flow conditions from a vertical profile of grain size within a deposit is difficult because at least two processes can cause similar changes. For example, upward coarsening in a deposit can result from either an increase in discharge of the flow (causing coarser sand to be transported to the depositional site), or from winnowing of the upstream supply of sand (causing suspended sand to coarsen because a greater proportion of the bed that is supplying sediment is covered with coarse grains). These two processes can be easy to distinguish where suspended-sediment observations are available: flow-regulated changes cause concentration and grain size of sand in suspension to be positively correlated, whereas changes in supply can cause concentration and grain size of sand in suspension to be negatively correlated. The latter case (supply regulation) is more typical of flood deposits in Grand Canyon.

  3. Comparison of Monte Carlo method and deterministic method for neutron transport calculation

    International Nuclear Information System (INIS)

    Mori, Takamasa; Nakagawa, Masayuki

    1987-01-01

    The report outlines major features of the Monte Carlo method by citing various applications of the method and techniques used for Monte Carlo codes. Major areas of its application include analysis of measurements on fast critical assemblies, nuclear fusion reactor neutronics analysis, criticality safety analysis, evaluation by VIM code, and calculation for shielding. Major techniques used for Monte Carlo codes include the random walk method, geometric expression method (combinatorial geometry, 1, 2, 4-th degree surface and lattice geometry), nuclear data expression, evaluation method (track length, collision, analog (absorption), surface crossing, point), and dispersion reduction (Russian roulette, splitting, exponential transform, importance sampling, corrected sampling). Major features of the Monte Carlo method are as follows: 1) neutron source distribution and systems of complex geometry can be simulated accurately, 2) physical quantities such as neutron flux in a place, on a surface or at a point can be evaluated, and 3) calculation requires less time. (Nogami, K.)

  4. Analysis and evaluation of critical experiments for validation of neutron transport calculations

    International Nuclear Information System (INIS)

    Bazzana, S.; Blaumann, H; Marquez Damian, J.I

    2009-01-01

    The calculation schemes, computational codes and nuclear data used in neutronic design require validation to obtain reliable results. In the nuclear criticality safety field this reliability also translates into a higher level of safety in procedures involving fissile material. The International Criticality Safety Benchmark Evaluation Project is an OECD/NEA activity led by the United States, in which participants from over 20 countries evaluate and publish criticality safety benchmarks. The product of this project is a set of benchmark experiment evaluations that are published annually in the International Handbook of Evaluated Criticality Safety Benchmark Experiments. With the recent participation of Argentina, this information is now available for use by the neutron calculation and criticality safety groups in Argentina. This work presents the methodology used for the evaluation of experimental data, some results obtained by the application of these methods, and some examples of the data available in the Handbook. [es

  5. Calculation and construction of a beam-transport system for polarized electrons

    International Nuclear Information System (INIS)

    Marschke, G.

    1987-09-01

    In the framework of the ELSA-SAPHIR project a transfer channel between ELSA and the large-space detector SAPHIR was calculated and constructed. Existing optical elements were modified corresponding to their application and the missing racks constructed and ordered for fabrication. Furthermore the vacuum system was designed as the whole as well as in the single components. Starting from the architectonic conditions and the optics to be realized the coordinates of the elements were calculated as preconditions fo the geodetic measurements and calibrations. It was shown that both for a polarized and for an unpolarized electron beam an optic was realized corresponding to the requirements up to an energy of 3.5 GeV. Under the given conditions, the applied method of the rotation of the polarization vector, and the geometrical preconditions up to 3.0 GeV also an acceptable longitudinal polarization was reached. (orig./HSI) [de

  6. Calculating the Contribution Rate of Intelligent Transportation System in Improving Urban Traffic Smooth Based on Advanced DID Model

    Directory of Open Access Journals (Sweden)

    Ming-wei Li

    2015-01-01

    Full Text Available Recent years have witnessed the rapid development of intelligent transportation system around the world, which helps to relieve urban traffic congestion problems. For instance, many mega-cities in China have devoted a large amount of money and resources to the development of intelligent transportation system. This poses an intriguing and important issue: how to measure and quantify the contribution of intelligent transportation system to the urban city, which is still a puzzle. This paper proposes a matching difference-in-difference model to calculate the contribution rate of intelligent transportation system on traffic smoothness. Within the model, the main effect indicators of traffic smoothness are first identified, and then the evaluation index system is built, and finally the ideas of the matching pool are introduced. The proposed model is illustrated in Guangzhou, China (capital city of Guangdong province. The results show that introduction of ITS contributes 9.25% to the improvement of traffic smooth in Guangzhou. Also, the research explains the working mechanism of how ITS improves urban traffic smooth. Eventually, some strategy recommendations are put forward to improve urban traffic smooth.

  7. Dose reconstruction in radioactively contaminated areas based on radiation transport calculations and measurements

    International Nuclear Information System (INIS)

    Hiller, Mauritius Michael

    2015-01-01

    The external radiation exposure at the former village of Metlino, Russia, was reconstructed. The Techa river in Metlino was contaminated by water from the Majak plant. The village was evacuated in 1956 and a reservoir lake created. Absorbed doses in bricks were measured and a model of the present-day and the historic Metlino was created for Monte Carlo calculations. By combining both, the air kerma at shoreline could be reconstructed to evaluate the Techa River Dosimetry System.

  8. Two-dimensional discrete ordinates photon transport calculations for brachytherapy dosimetry applications

    International Nuclear Information System (INIS)

    Daskalov, G.M.; Baker, R.S.; Little, R.C.; Rogers, D.W.O.; Williamson, J.F.

    2000-01-01

    The DANTSYS discrete ordinates computer code system is applied to quantitative estimation of water kerma rate distributions in the vicinity of discrete photon sources with energies in the 20- to 800-keV range in two-dimensional cylindrical r-z geometry. Unencapsulated sources immersed in cylindrical water phantoms of 40-cm diameter and 40-cm height are modeled in either homogeneous phantoms or shielded by Ti, Fe, and Pb filters with thicknesses of 1 and 2 mean free paths. The obtained dose results are compared with corresponding photon Monte Carlo simulations. A 210-group photon cross-section library for applications in this energy range is developed and applied, together with a general-purpose 42-group library developed at Los Alamos National Laboratory, for DANTSYS calculations. The accuracy of DANTSYS with the 42-group library relative to Monte Carlo exhibits large pointwise fluctuations from -42 to +84%. The major cause for the observed discrepancies is determined to be the inadequacy of the weighting function used for the 42-group library derivation. DANTSYS simulations with a finer 210-group library show excellent accuracy on and off the source transverse plane relative to Monte Carlo kerma calculations, varying from minus4.9 to 3.7%. The P 3 Legendre polynomial expansion of the angular scattering function is shown to be sufficient for accurate calculations. The results demonstrate that DANTSYS is capable of calculating photon doses in very good agreement with Monte Carlo and that the multigroup cross-section library and efficient techniques for mitigation of ray effects are critical for accurate discrete ordinates implementation

  9. Visualization and verification of the input data in transport calculations with TORT

    International Nuclear Information System (INIS)

    Portulyan, A.; Belousov, S.

    2011-01-01

    A software package, called VTSTO and applied for visualization of three-dimensional objects, is developed. The purpose of the package is to verify the input data describing the model of an object in TORT code calculation. TORT calculates the neutron and gamma flux in three-dimensional system through the method of discrete ordinates and is used as an essential tool when calculating the radiation load of the reactor construction. The software requires data of the reactor component,, which is then processed and used for the generation of the graphic image. The object is presented in two planes. The user has the opportunity to choose and change the pair sections determined by those planes, which is crucial when obtaining the view of the composition and structure of the reactor elements. Consequently the generated visualization allows the preparation of an evaluation of the model and if necessary the input data for TORT can be corrected. In this way tie software reduces significantly the possibility of committing an error while modeling complex objects of the reactor system In addition the process of modeling becomes easier and faster. (full text)

  10. An approach to develop chemical intuition for atomistic electron transport calculations using basis set rotations

    Energy Technology Data Exchange (ETDEWEB)

    Borges, A.; Solomon, G. C. [Department of Chemistry and Nano-Science Center, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen Ø (Denmark)

    2016-05-21

    Single molecule conductance measurements are often interpreted through computational modeling, but the complexity of these calculations makes it difficult to directly link them to simpler concepts and models. Previous work has attempted to make this connection using maximally localized Wannier functions and symmetry adapted basis sets, but their use can be ambiguous and non-trivial. Starting from a Hamiltonian and overlap matrix written in a hydrogen-like basis set, we demonstrate a simple approach to obtain a new basis set that is chemically more intuitive and allows interpretation in terms of simple concepts and models. By diagonalizing the Hamiltonians corresponding to each atom in the molecule, we obtain a basis set that can be partitioned into pseudo-σ and −π and allows partitioning of the Landuaer-Büttiker transmission as well as create simple Hückel models that reproduce the key features of the full calculation. This method provides a link between complex calculations and simple concepts and models to provide intuition or extract parameters for more complex model systems.

  11. Response matrix Monte Carlo based on a general geometry local calculation for electron transport

    International Nuclear Information System (INIS)

    Ballinger, C.T.; Rathkopf, J.A.; Martin, W.R.

    1991-01-01

    A Response Matrix Monte Carlo (RMMC) method has been developed for solving electron transport problems. This method was born of the need to have a reliable, computationally efficient transport method for low energy electrons (below a few hundred keV) in all materials. Today, condensed history methods are used which reduce the computation time by modeling the combined effect of many collisions but fail at low energy because of the assumptions required to characterize the electron scattering. Analog Monte Carlo simulations are prohibitively expensive since electrons undergo coulombic scattering with little state change after a collision. The RMMC method attempts to combine the accuracy of an analog Monte Carlo simulation with the speed of the condensed history methods. Like condensed history, the RMMC method uses probability distributions functions (PDFs) to describe the energy and direction of the electron after several collisions. However, unlike the condensed history method the PDFs are based on an analog Monte Carlo simulation over a small region. Condensed history theories require assumptions about the electron scattering to derive the PDFs for direction and energy. Thus the RMMC method samples from PDFs which more accurately represent the electron random walk. Results show good agreement between the RMMC method and analog Monte Carlo. 13 refs., 8 figs

  12. Calculation models for prediction of Liquefied Natural Gas (LNG) ageing during ship transportation

    Energy Technology Data Exchange (ETDEWEB)

    Miana, Mario; Hoyo, Rafael del; Rodrigalvarez, Vega; Valdes, Jose Ramon [Instituto Tecnologico de Aragon, Area de Investigacion, Desarrollo y Servicios Tecnologicos, Maria de Luna 7, 50018 Zaragoza (Spain); Llorens, Raul [ENAGAS SA, Direccion de Ingenieria y Tecnologia del Gas, Autovia A - 2, km. 306.4, 50012 Zaragoza (Spain)

    2010-05-15

    A group of European gas transportation companies within the European Gas Research Group launched in 2007 the 'MOLAS' Project to provide a software program for the analysis of the Liquefied Natural Gas (LNG) ageing process during ship transportation. This program contains two different modeling approaches: a physical algorithm and an 'intelligent' model. Both models are fed with the same input data, which is composed of the ship characteristics (BOR and capacity), voyage duration, LNG composition, temperature, pressure, and volume occupied by liquid phase at the port of origin, together with pressure at the port of destination. The results obtained are the LNG composition, temperature and liquid volume at the port of destination. Furthermore, the physical model obtains the evolution over time of such variables en route as it is based on unsteady mass balances over the system, while the i-model applies neural networks to obtain regression coefficients from historical data composed only of origin and destination measurements. This paper describes both models and validates them from previous published models and experimental data measured in ENAGAS LNG regasification plants. (author)

  13. VARIANT: VARIational anisotropic nodal transport for multidimensional Cartesian and hexadgonal geometry calculation

    International Nuclear Information System (INIS)

    Palmiotti, G.; Carrico, C.B.; Lewis, E.E.

    1995-10-01

    The theoretical basis, implementation information and numerical results are presented for VARIANT (VARIational Anisotropic Neutron Transport), a FORTRAN module of the DIF3D code system at Argonne National Laboratory. VARIANT employs the variational nodal method to solve multigroup steady-state neutron diffusion and transport problems. The variational nodal method is a hybrid finite element method that guarantees nodal balance and permits spatial refinement through the use of hierarchical complete polynomial trial functions. Angular variables are expanded with complete or simplified P 1 , P 3 or P 5 5 spherical harmonics approximations with full anisotropic scattering capability. Nodal response matrices are obtained, and the within-group equations are solved by red-black or four-color iteration, accelerated by a partitioned matrix algorithm. Fission source and upscatter iterations strategies follow those of DIF3D. Two- and three-dimensional Cartesian and hexagonal geometries are implemented. Forward and adjoint eigenvalue, fixed source, gamma heating, and criticality (concentration) search problems may be performed

  14. Simplified P{sub n} transport core calculations in the Apollo3 system

    Energy Technology Data Exchange (ETDEWEB)

    Baudron, Anne-Marie; Lautard, Jean-Jacques, E-mail: anne-marie.baudron@cea.fr, E-mail: jean-jacques.lautard@cea.fr [Commissariat a l' Energie Atomique et aux Energies Alternatives, CEA Saclay, Gif-sur-Yvette (France)

    2011-07-01

    This paper describes the development of two different neutronics core solvers based on the Simplified P{sub N} transport (SP{sub N}) approximation developed in the context of a new generation nuclear reactor computational system, APOLLO3. Two different approaches have been used. The first one solves the standard SPN system. In the second approach, the SP{sub N} equations are solved as diffusion equations by treating the SP{sub N} flux harmonics like pseudo energy groups, obtained by a change of variable. These two methods have been implemented for Cartesian and hexagonal geometries in the kinetics solver MINOS. The numerical approximation is based on the mixed dual finite formulation and the discretization uses the Raviart-Thomas-Nedelec finite elements. For the unstructured geometries, the SP{sub N} equations are treated by the SN transport solver MINARET by considering the second SP{sub N} approach. The MINARET solver is based on discontinuous Galerkin finite element approximation on cylindrical unstructured meshes composed of a set of conforming triangles for the radial direction. Numerical applications are presented for both solvers in different core configurations (the Jules Horowitz research reactor (JHR) and the Generation IV fast reactor project ESFR). (author)

  15. On the use of diffusion synthetic acceleration in parallel 3D neutral particle transport calculations

    International Nuclear Information System (INIS)

    Brown, P.; Chang, B.

    1998-01-01

    The linear Boltzmann transport equation (BTE) is an integro-differential equation arising in deterministic models of neutral and charged particle transport. In slab (one-dimensional Cartesian) geometry and certain higher-dimensional cases, Diffusion Synthetic Acceleration (DSA) is known to be an effective algorithm for the iterative solution of the discretized BTE. Fourier and asymptotic analyses have been applied to various idealizations (e.g., problems on infinite domains with constant coefficients) to obtain sharp bounds on the convergence rate of DSA in such cases. While DSA has been shown to be a highly effective acceleration (or preconditioning) technique in one-dimensional problems, it has been observed to be less effective in higher dimensions. This is due in part to the expense of solving the related diffusion linear system. We investigate here the effectiveness of a parallel semicoarsening multigrid (SMG) solution approach to DSA preconditioning in several three dimensional problems. In particular, we consider the algorithmic and implementation scalability of a parallel SMG-DSA preconditioner on several types of test problems

  16. Simplified P_n transport core calculations in the Apollo3 system

    International Nuclear Information System (INIS)

    Baudron, Anne-Marie; Lautard, Jean-Jacques

    2011-01-01

    This paper describes the development of two different neutronics core solvers based on the Simplified P_N transport (SP_N) approximation developed in the context of a new generation nuclear reactor computational system, APOLLO3. Two different approaches have been used. The first one solves the standard SPN system. In the second approach, the SP_N equations are solved as diffusion equations by treating the SP_N flux harmonics like pseudo energy groups, obtained by a change of variable. These two methods have been implemented for Cartesian and hexagonal geometries in the kinetics solver MINOS. The numerical approximation is based on the mixed dual finite formulation and the discretization uses the Raviart-Thomas-Nedelec finite elements. For the unstructured geometries, the SP_N equations are treated by the SN transport solver MINARET by considering the second SP_N approach. The MINARET solver is based on discontinuous Galerkin finite element approximation on cylindrical unstructured meshes composed of a set of conforming triangles for the radial direction. Numerical applications are presented for both solvers in different core configurations (the Jules Horowitz research reactor (JHR) and the Generation IV fast reactor project ESFR). (author)

  17. Life Cycle Cost Calculation at the Transport Company in the Supply of Production of Wooden Houses – Case Study

    Directory of Open Access Journals (Sweden)

    Potkány Marek

    2017-01-01

    Full Text Available A correct information manager's decision-maker database is a very important element that substantially affects its success. This article presents the potential of using the methodology of life cycle cost calculation in the conditions of a transport company that focuses on the logistic supply of wood-housing producers. The problem is presented through a case study and addresses the decision-making aspect of the decision about acquisition of the transport vehicle. This decision uses time value indicators, inflation rates, average rate of profitability of industry and life cycle costs. Due to the short life cycle of the analyzed period, it was not necessary to consider the ergonomic requirements resulting from the trend of anthropometric dimensions growth.

  18. RISKIND: A computer program for calculating radiological consequences and health risks from transportation of spent nuclear fuel

    International Nuclear Information System (INIS)

    Yuan, Y.C.; Chen, S.Y.; LePoire, D.J.

    1993-02-01

    This report presents the technical details of RISIUND, a computer code designed to estimate potential radiological consequences and health risks to individuals and the collective population from exposures associated with the transportation of spent nuclear fuel. RISKIND is a user-friendly, semiinteractive program that can be run on an IBM or equivalent personal computer. The program language is FORTRAN-77. Several models are included in RISKIND that have been tailored to calculate the exposure to individuals under various incident-free and accident conditions. The incidentfree models assess exposures from both gamma and neutron radiation and can account for different cask designs. The accident models include accidental release, atmospheric transport, and the environmental pathways of radionuclides from spent fuels; these models also assess health risks to individuals and the collective population. The models are supported by databases that are specific to spent nuclear fuels and include a radionudide inventory and dose conversion factors

  19. RISKIND: A computer program for calculating radiological consequences and health risks from transportation of spent nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Y.C. [Square Y, Orchard Park, NY (United States); Chen, S.Y.; LePoire, D.J. [Argonne National Lab., IL (United States). Environmental Assessment and Information Sciences Div.; Rothman, R. [USDOE Idaho Field Office, Idaho Falls, ID (United States)

    1993-02-01

    This report presents the technical details of RISIUND, a computer code designed to estimate potential radiological consequences and health risks to individuals and the collective population from exposures associated with the transportation of spent nuclear fuel. RISKIND is a user-friendly, semiinteractive program that can be run on an IBM or equivalent personal computer. The program language is FORTRAN-77. Several models are included in RISKIND that have been tailored to calculate the exposure to individuals under various incident-free and accident conditions. The incidentfree models assess exposures from both gamma and neutron radiation and can account for different cask designs. The accident models include accidental release, atmospheric transport, and the environmental pathways of radionuclides from spent fuels; these models also assess health risks to individuals and the collective population. The models are supported by databases that are specific to spent nuclear fuels and include a radionudide inventory and dose conversion factors.

  20. Influence green sand system by core sand additions

    Directory of Open Access Journals (Sweden)

    N. Špirutová

    2012-01-01

    Full Text Available Today, about two thirds of iron alloys casting (especially for graphitizing alloys of iron are produced into green sand systems with usually organically bonded cores. Separation of core sands from the green sand mixture is very difficult, after pouring. The core sand concentration increase due to circulation of green sand mixture in a closed circulation system. Furthermore in some foundries, core sands have been adding to green sand systems as a replacement for new sands. The goal of this contribution is: “How the green sand systems are influenced by core sands?”This effect is considered by determination of selected technological properties and degree of green sand system re-bonding. From the studies, which have been published yet, there is not consistent opinion on influence of core sand dilution on green sand system properties. In order to simulation of the effect of core sands on the technological properties of green sands, there were applied the most common used technologies of cores production, which are based on bonding with phenolic resin. Core sand concentration added to green sand system, was up to 50 %. Influence of core sand dilution on basic properties of green sand systems was determined by evaluation of basic industrial properties: moisture, green compression strength and splitting strength, wet tensile strength, mixture stability against staling and physical-chemistry properties (pH, conductivity, and loss of ignition. Ratio of active betonite by Methylene blue test was also determined.

  1. GRUNCLE, 1. Collision Source Calculation for Program DOT. DOT-3.5, 2-D Neutron Transport, Gamma Transport Program DOT with New Space-Scaling

    International Nuclear Information System (INIS)

    1996-01-01

    A - Nature of problem or function: DOT solves the Boltzmann transport equation in two-dimensional geometries. Principal applications are to neutron and/or photon transport, although the code can be applied to transport problems for any particles not subject to external force fields. Both homogeneous and external-source problems can be solved. Searches on multiplication factor, time absorption, nuclide concentration, and zone thickness are available for reactor problems. Numerous edits and output data sets for subsequent use are available. DOT-3.5 improves the space-scaling algorithm. DOT-3.5/CAB contains group by group UPSCATTER scaling method. DUCT calculates perturbations to the scalar flux caused by the presence of ducts filled with coolant. VIP is a program for cross section sensitivity analysis using two- dimensional discrete ordinates transport calculations. DGRAD calculates the directional flux gradients from DOT-3 diffusion theory flux tapes. In conjunction with VIP and TPERT, it allows the use of diffusion theory fluxes to obtain exact and first-order perturbation reactivity changes. In order to calculate the reactivity associated with changes in reactor compositions using diffusion theory, it is necessary to fold not only the scalar fluxes with the appropriate cross sections, but also the average flux gradients with the diffusion coefficients. Since DOT diffusion theory does not directly calculate these gradients, it was necessary to calculate the needed quantities external to the DOT code. TPERT is a perturbation code to obtain exact and first-order reactivity changes. TPERT is coupled to VIP which generates adjoint forward flux tables using DOT-3 scalar flux tape information. GRTUNCL calculates an analytical first-collision source for subsequent use in DOT. B - Method of solution: The method of discrete ordinates is used. Balance equations are solved for the density of particles moving along discrete directions in each cell of a two-dimensional spatial

  2. A probability-conserving cross-section biasing mechanism for variance reduction in Monte Carlo particle transport calculations

    OpenAIRE

    Mendenhall, Marcus H.; Weller, Robert A.

    2011-01-01

    In Monte Carlo particle transport codes, it is often important to adjust reaction cross sections to reduce the variance of calculations of relatively rare events, in a technique known as non-analogous Monte Carlo. We present the theory and sample code for a Geant4 process which allows the cross section of a G4VDiscreteProcess to be scaled, while adjusting track weights so as to mitigate the effects of altered primary beam depletion induced by the cross section change. This makes it possible t...

  3. SARTEMP2 - A computer program to calculate power and temperatures in a transport flask during a criticality accident

    International Nuclear Information System (INIS)

    Shaw, P.M.

    1983-04-01

    The computer code SARTEMP2, an extended version of the original SARTEMP program, which calculates the power and temperatures in a transport flask during a hypothetical criticality accident is described. The accident arises, it is assumed, during the refilling of the flask with water, bringing the system to delayed critical. As the water level continues to rise, reactivity is added causing the power to rise, and thus temperatures in the fuel, clad and water to increase. The point kinetics equations are coupled to the one-dimensional heat conduction equation. The model used, the method of solution of the equations and the input data required are given. (author)

  4. High level waste transport and disposal cost calculations for the United Kingdom

    International Nuclear Information System (INIS)

    Nattress, P.C.; Ward, R.D.

    1992-01-01

    Commercial nuclear power has been generated in the United Kingdom since 1962, and throughout that time fuel has been reprocessed giving rise to high level waste. This has been managed by storing fission products and related wastes as highly active liquor, and more recently by a program of vitrification and storage of the glass blocks produced. Government policy is that vitrified high level waste should be stored for at least 50 years, which has the technical advantage of allowing the heat output rate of the waste to fall, making disposal easier and cheaper. Thus, there is no immediate requirement to develop a deep geological repository in the UK, but the nuclear companies do have a requirement to make financial provision out of current revenues for high level waste disposal at a future repository. In 1991 the interested organizations undertook a new calculation of costs for such provisions, which is described here. The preliminary work for the calculation included the assumption of host geology characteristics, a compatible repository concept including overpacking, and a range of possible nuclear programs. These have differing numbers of power plants, and differing mixes of high level waste from reprocessing and spent fuel for direct disposal. An algorithm was then developed so that the cost of high level waste disposal could be calculated for any required case within a stated envelope of parameters. An Example Case was then considered in detail leading to the conclusion that a repository to meet the needs of a constant UK nuclear economy up to the middle of the next century would have a cash cost of UK Pounds 1194M (US$2011M). By simple division the cost to a kWh of electricity is UK Pounds 0.00027 (0.45 US mil). (author)

  5. Gyrokinetic Calculations of Microturbulence and Transport for NSTX and Alcator-CMOD H-modes

    International Nuclear Information System (INIS)

    Redi, M.H.; Dorland, W.; Bell, R.; Bonoli, P.; Bourdelle, C.; Candy, J.; Ernst, D.; Fiore, C.; Gates, D.; Hammett, G.; Hill, K.; Kaye, S.; LeBlanc, B.; Menard, J.; Mikkelsen, D.; Rewoldt, G.; Rice, J.; Waltz, R.; Wukitch, S.

    2003-01-01

    Recent H-mode experiments on NSTX [National Spherical Torus Experiment] and experiments on Alcator-CMOD, which also exhibit internal transport barriers (ITB), have been examined with gyrokinetic simulations with the GS2 and GYRO codes to identify the underlying key plasma parameters for control of plasma performance and, ultimately, the successful operation of future reactors such as ITER [International Thermonuclear Experimental Reactor]. On NSTX the H-mode is characterized by remarkably good ion confinement and electron temperature profiles highly resilient in time. On CMOD, an ITB with a very steep electron density profile develops following off-axis radio-frequency heating and establishment of H-mode. Both experiments exhibit ion thermal confinement at the neoclassical level. Electron confinement is also good in the CMOD core

  6. Improved cache performance in Monte Carlo transport calculations using energy banding

    Science.gov (United States)

    Siegel, A.; Smith, K.; Felker, K.; Romano, P.; Forget, B.; Beckman, P.

    2014-04-01

    We present an energy banding algorithm for Monte Carlo (MC) neutral particle transport simulations which depend on large cross section lookup tables. In MC codes, read-only cross section data tables are accessed frequently, exhibit poor locality, and are typically too much large to fit in fast memory. Thus, performance is often limited by long latencies to RAM, or by off-node communication latencies when the data footprint is very large and must be decomposed on a distributed memory machine. The proposed energy banding algorithm allows maximal temporal reuse of data in band sizes that can flexibly accommodate different architectural features. The energy banding algorithm is general and has a number of benefits compared to the traditional approach. In the present analysis we explore its potential to achieve improvements in time-to-solution on modern cache-based architectures.

  7. Monte Carlo electron-transport calculations for clinical beams using energy grouping

    Energy Technology Data Exchange (ETDEWEB)

    Teng, S P; Anderson, D W; Lindstrom, D G

    1986-01-01

    A Monte Carlo program has been utilized to study the penetration of broad electron beams into a water phantom. The MORSE-E code, originally developed for neutron and photon transport, was chosen for adaptation to electrons because of its versatility. The electron energy degradation model employed logarithmic spacing of electron energy groups and included effects of elastic scattering, inelastic-moderate-energy-loss-processes and inelastic-large-energy-loss-processes (catastrophic). Energy straggling and angular deflections were modeled from group to group, using the Moeller cross section for energy loss, and Goudsmit-Saunderson theory to describe angular deflections. The resulting energy- and electron-deposition distributions in depth were obtained at 10 and 20 MeV and are compared with ETRAN results and broad beam experimental data from clinical accelerators.

  8. Ab-initio calculations of the hydrogen-uranium system: Surface phenomena, absorption, transport and trapping

    International Nuclear Information System (INIS)

    Taylor, Christopher D.; Scott Lillard, R.

    2009-01-01

    Density functional theory was applied to the initial steps of uranium hydriding: surface phenomena, absorption, bulk transport and trapping. H adsorbs exothermically to the (0 0 1) surface, yet H absorption into the bulk is endothermic, with off-center octahedral absorption having the lowest absorption energy of 0.39 eV, relative to molecular H 2 . H absorption in interstitial sites causes a local softening of the bulk modulus. Diffusion of H in unstrained α-U has a barrier of 0.6 eV. The energy of H absorption adjacent to the chemical impurities C, S, Si was lowered by an amount proportional to the size of the impurity atom, and the resulting lattice strain Si > S > C. Thus, impurities may promote hydriding by providing surfaces or prestrained zones for H uptake.

  9. Coarse-mesh rebalance methods compatible with the spherical harmonic fictitious source in neutron transport calculations

    International Nuclear Information System (INIS)

    Miller, W.F. Jr.

    1975-10-01

    The coarse-mesh rebalance method, based on neutron conservation, is used in discrete ordinates neutron transport codes to accelerate convergence of the within-group scattering source. Though very powerful for this application, the method is ineffective in accelerating the iteration on the discrete-ordinates-to-spherical-harmonics fictitious sources used for ray-effect elimination. This is largely because this source makes a minimum contribution to the neutron balance equation. The traditional rebalance approach is derived in a variational framework and compared with new rebalance approaches tailored to be compatible with the fictitious source. The new approaches are compared numerically to determine their relative advantages. It is concluded that there is little incentive to use the new methods. (3 tables, 5 figures)

  10. Computational programs for shielding calculation with transport of one dimensional and monoenergetic SN

    International Nuclear Information System (INIS)

    Nunes, Carlos Eduardo A.; Barros, Ricardo C.

    2009-01-01

    This paper describes a computational program for result simulation of neutron transport problems at one velocity with isotropic scattering in Cartesian onedimensional geometry. Describing the physical modelling, the next phase is a mathematical modelling of the physical problem for simulation of the neutron distribution. The mathematical modelling uses the linearized Boltzmann equation which represents a balance among the production and loss of particles. The formulation of the discrete ordinates S N consists of discretization of angular variables at N directions (discrete ordinates), and using a set of angular quadratures for the approximation of integral terms of scattering sources. The S N equations are numerically solved. This work describes three numerical methods: diamond difference, step and characteristic step. The paper also presents numerical results for illustration of the efficiency of the developed program

  11. Systematic errors in transport calculations of shear viscosity using the Green-Kubo formalism

    Science.gov (United States)

    Rose, J. B.; Torres-Rincon, J. M.; Oliinychenko, D.; Schäfer, A.; Petersen, H.

    2018-05-01

    The purpose of this study is to provide a reproducible framework in the use of the Green-Kubo formalism to extract transport coefficients. More specifically, in the case of shear viscosity, we investigate the limitations and technical details of fitting the auto-correlation function to a decaying exponential. This fitting procedure is found to be applicable for systems interacting both through constant and energy-dependent cross-sections, although this is only true for sufficiently dilute systems in the latter case. We find that the optimal fit technique consists in simultaneously fixing the intercept of the correlation function and use a fitting interval constrained by the relative error on the correlation function. The formalism is then applied to the full hadron gas, for which we obtain the shear viscosity to entropy ratio.

  12. Calculations of the beam transport through the low energy side of the Lund Pelletron accelerator

    International Nuclear Information System (INIS)

    Dymnikov, A.; Hellborg, R.; Pallon, J.; Skog, G.; Yang, C.

    1993-01-01

    A new recursive technique has been used to solve the equations of motion of charged particles in electric and magnetic fields taking into account the effect of space charge. Based on this technique a computer code has been written and calculations have been carried out for the beam optics, from the ion-source to the terminal, stripper of the Lund Pelletron tandem accelerator. The code has been found capable of describing the beam-optics of the existing setup and will in future be used together with a library of typical field descriptions to design new beam lines. (orig.)

  13. A FIRST APPROXIMATION CALCULATION OF AIR CUSHION CHASSIS WEIGHT OF TRANSPORT AIRPLANE

    Directory of Open Access Journals (Sweden)

    2016-01-01

    Full Text Available This article describes a first approximation of a weighted estimate of air cushion chassis. The algorithm for calculating the weight of air cushion chassis allows not only to estimate the mass of the chassis to a first approximation, but also to conduct a preliminary analysis of the influence of various parameters of the aircraft and the chassis on the weight of the aircraft at the stage of before designing. The algorithm can be expanded to include additional design decisions, such as the transformation of the fuselage, increasing the air cushion chassis canopy due to extensions, center of gravity, etc.

  14. Singing Sand Dunes

    Indian Academy of Sciences (India)

    ble low-frequency (s. 75–105 Hz), that can some- times be heard up to 10 km away. Scientific in- vestigations suggest that the sustained low fre- quency sound of sand dunes that resembles a pure note from a musical instrument, is due to the synchronized motion of well-sorted dry sand grains when they spontaneously ...

  15. A probability-conserving cross-section biasing mechanism for variance reduction in Monte Carlo particle transport calculations

    Energy Technology Data Exchange (ETDEWEB)

    Mendenhall, Marcus H., E-mail: marcus.h.mendenhall@vanderbilt.edu [Vanderbilt University, Department of Electrical Engineering, P.O. Box 351824B, Nashville, TN 37235 (United States); Weller, Robert A., E-mail: robert.a.weller@vanderbilt.edu [Vanderbilt University, Department of Electrical Engineering, P.O. Box 351824B, Nashville, TN 37235 (United States)

    2012-03-01

    In Monte Carlo particle transport codes, it is often important to adjust reaction cross-sections to reduce the variance of calculations of relatively rare events, in a technique known as non-analog Monte Carlo. We present the theory and sample code for a Geant4 process which allows the cross-section of a G4VDiscreteProcess to be scaled, while adjusting track weights so as to mitigate the effects of altered primary beam depletion induced by the cross-section change. This makes it possible to increase the cross-section of nuclear reactions by factors exceeding 10{sup 4} (in appropriate cases), without distorting the results of energy deposition calculations or coincidence rates. The procedure is also valid for bias factors less than unity, which is useful in problems that involve the computation of particle penetration deep into a target (e.g. atmospheric showers or shielding studies).

  16. A probability-conserving cross-section biasing mechanism for variance reduction in Monte Carlo particle transport calculations

    International Nuclear Information System (INIS)

    Mendenhall, Marcus H.; Weller, Robert A.

    2012-01-01

    In Monte Carlo particle transport codes, it is often important to adjust reaction cross-sections to reduce the variance of calculations of relatively rare events, in a technique known as non-analog Monte Carlo. We present the theory and sample code for a Geant4 process which allows the cross-section of a G4VDiscreteProcess to be scaled, while adjusting track weights so as to mitigate the effects of altered primary beam depletion induced by the cross-section change. This makes it possible to increase the cross-section of nuclear reactions by factors exceeding 10 4 (in appropriate cases), without distorting the results of energy deposition calculations or coincidence rates. The procedure is also valid for bias factors less than unity, which is useful in problems that involve the computation of particle penetration deep into a target (e.g. atmospheric showers or shielding studies).

  17. Electric conductivity for laboratory and field monitoring of induced partial saturation (IPS) in sands

    Science.gov (United States)

    Kazemiroodsari, Hadi

    Liquefaction is loss of shear strength in fully saturated loose sands caused by build-up of excess pore water pressure, during moderate to large earthquakes, leading to catastrophic failures of structures. Currently used liquefaction mitigation measures are often costly and cannot be applied at sites with existing structures. An innovative, practical, and cost effective liquefaction mitigation technique titled "Induced Partial Saturation" (IPS) was developed by researchers at Northeastern University. The IPS technique is based on injection of sodium percarbonate solution into fully saturated liquefaction susceptible sand. Sodium percarbonate dissolves in water and breaks down into sodium and carbonate ions and hydrogen peroxide which generates oxygen gas bubbles. Oxygen gas bubbles become trapped in sand pores and therefore decrease the degree of saturation of the sand, increase the compressibility of the soil, thus reduce its potential for liquefaction. The implementation of IPS required the development and validation of a monitoring and evaluation technique that would help ensure that the sands are indeed partially saturated. This dissertation focuses on this aspect of the IPS research. The monitoring system developed was based on using electric conductivity fundamentals and probes to detect the transport of chemical solution, calculate degree of saturation of sand, and determine the final zone of partial saturation created by IPS. To understand the fundamentals of electric conductivity, laboratory bench-top tests were conducted using electric conductivity probes and small specimens of Ottawa sand. Bench-top tests were used to study rate of generation of gas bubbles due to reaction of sodium percarbonate solution in sand, and to confirm a theory based on which degree of saturation were calculated. In addition to bench-top tests, electric conductivity probes were used in a relatively large sand specimen prepared in a specially manufactured glass tank. IPS was

  18. CRANE: a new scale super-sequence for neutron transport calculations

    Energy Technology Data Exchange (ETDEWEB)

    Wang, C.; Abdel-Khalik, H.S., E-mail: wang1730@purdue.edu, E-mail: abdelkhalik@purdue.edu [Purdue Univ., School of Nuclear Engineering, West Lafayette, IN (United States); Mertyurek, U., E-mail: umertyurek@ornl.gov [Oak Ridge National Laboratory, Oak Ridge, TN (United States)

    2015-07-01

    A new 'super-sequence' called CRANE has been developed to automate the application of reduced order modeling (ROM) to reactor analysis calculations under the SCALE code environment. This new super-sequence is designed to support computationally intensive analyses that require repeated execution of flux solvers with variations in design parameters and nuclear data. This manuscript provides a brief overview of CRANE and demonstrates its applications to representative reactor physics calculations. Specifically, two ROM applications are demonstrated, the intersection subspace-based approach for uncertainty quantification which is intended to reduce the number of uncertainty sources in a conventional uncertainty analysis, and the exact-to-precision generalized perturbation theory methodology intended as a physics-based surrogate model to replace the flux solver, i.e., NEWT. Our overarching goal is to provide a prototypic ROM capability that allows users to further explore and investigate the benefits of using ROM methods in their respective domain and help guide further developments of the methodology and evolution of the tools. (author)

  19. Two-group k-eigenvalue benchmark calculations for planar geometry transport in a binary stochastic medium

    International Nuclear Information System (INIS)

    Davis, I.M.; Palmer, T.S.

    2005-01-01

    Benchmark calculations are performed for neutron transport in a two material (binary) stochastic multiplying medium. Spatial, angular, and energy dependence are included. The problem considered is based on a fuel assembly of a common pressurized water reactor. The mean chord length through the assembly is determined and used as the planar geometry system length. According to assumed or calculated material distributions, this system length is populated with alternating fuel and moderator segments of random size. Neutron flux distributions are numerically computed using a discretized form of the Boltzmann transport equation employing diffusion synthetic acceleration. Average quantities (group fluxes and k-eigenvalue) and variances are calculated from an ensemble of realizations of the mixing statistics. The effects of varying two parameters in the fuel, two different boundary conditions, and three different sets of mixing statistics are assessed. A probability distribution function (PDF) of the k-eigenvalue is generated and compared with previous research. Atomic mix solutions are compared with these benchmark ensemble average flux and k-eigenvalue solutions. Mixing statistics with large standard deviations give the most widely varying ensemble solutions of the flux and k-eigenvalue. The shape of the k-eigenvalue PDF qualitatively agrees with previous work. Its overall shape is independent of variations in fuel cross-sections for the problems considered, but its width is impacted by these variations. Statistical distributions with smaller standard deviations alter the shape of this PDF toward a normal distribution. The atomic mix approximation yields large over-predictions of the ensemble average k-eigenvalue and under-predictions of the flux. Qualitatively correct flux shapes are obtained in some cases. These benchmark calculations indicate that a model which includes higher statistical moments of the mixing statistics is needed for accurate predictions of binary

  20. Implementing displacement damage calculations for electrons and gamma rays in the Particle and Heavy-Ion Transport code System

    Science.gov (United States)

    Iwamoto, Yosuke

    2018-03-01

    In this study, the Monte Carlo displacement damage calculation method in the Particle and Heavy-Ion Transport code System (PHITS) was improved to calculate displacements per atom (DPA) values due to irradiation by electrons (or positrons) and gamma rays. For the damage due to electrons and gamma rays, PHITS simulates electromagnetic cascades using the Electron Gamma Shower version 5 (EGS5) algorithm and calculates DPA values using the recoil energies and the McKinley-Feshbach cross section. A comparison of DPA values calculated by PHITS and the Monte Carlo assisted Classical Method (MCCM) reveals that they were in good agreement for gamma-ray irradiations of silicon and iron at energies that were less than 10 MeV. Above 10 MeV, PHITS can calculate DPA values not only for electrons but also for charged particles produced by photonuclear reactions. In DPA depth distributions under electron and gamma-ray irradiations, build-up effects can be observed near the target's surface. For irradiation of 90-cm-thick carbon by protons with energies of more than 30 GeV, the ratio of the secondary electron DPA values to the total DPA values is more than 10% and increases with an increase in incident energy. In summary, PHITS can calculate DPA values for all particles and materials over a wide energy range between 1 keV and 1 TeV for electrons, gamma rays, and charged particles and between 10-5 eV and 1 TeV for neutrons.