Sample records for sand erosion protection

  1. Sand transport, erosion and granular electrification

    DEFF Research Database (Denmark)

    Merrison, J.P.


    The transport of granular materials by wind has a major impact on our environment through sand/soil erosion and the generation and transport of atmospheric dust aerosols. Terrestrially the transport of dust involves billions of tons of material every year, influencing the global climate...... can affect grain transport through the generation of intense electric fields and processes of electrostatic assembly. Importantly the transport of sand is characterized by saltation, which is known to be an active process for erosion and therefore a source for dust and sand formation. Using novel...... erosion simulation techniques the link between grain transport rates and erosion rates has been quantified. Furthermore this can be linked to production rates for dust and has been associated with chemical and mineral alteration through a process of mechanical activation of fractured surfaces. This work...

  2. Protection from erosion following wildfire (United States)

    Peter R. Robichaud; William J. Elliot


    Erosion in the first year after a wildfire can be up to three orders of magnitude greater than the erosion from undisturbed forests. To mitigate potential postfire erosion, various erosion control treatments are applied on highly erodible areas with downstream resources in need of protection. Because postfire erosion rates generally decline by an order of magnitude for...

  3. Electrochemical and Dry Sand Impact Erosion Studies on Carbon Steel. (United States)

    Naz, M Y; Ismail, N I; Sulaiman, S A; Shukrullah, S


    This study investigated the dry and aqueous erosion of mild steel using electrochemical and dry sand impact techniques. In dry sand impact experiments, mild steel was eroded with 45 μm and 150 μm sand particles. Scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX) and micro-hardness techniques were used to elaborate the surface morphology of the eroded samples. The results revealed significant change in morphology of the eroded samples. In-depth analysis showed that although the metal erosion due to larger particles was significantly higher, the fines also notably damaged the metal surface. The surface damages were appreciably reduced with decrease in impact angle of the accelerated particles. The maximum damages were observed at an impact angle of 90°. The hardness of the samples treated with 45 μm and 150 μm sand remained in the range of 88.34 to 102.31 VHN and 87.7 to 97.55 VHN, respectively. In electrochemical experiments, a triple electrode probe was added into the metal treatment process. The linear polarization resistance (LPR) measurements were performed in slurries having 5% (by weight) of sand particles. LPR of the samples treated with 45 μm and 150 μm sand slurries was calculated about 949 Ω.cm(2) and 809 Ω.cm(2), respectively.

  4. Prediction of sand particle trajectories and sand erosion damage on helicopter rotor blades (United States)

    Shin, Bong Gun

    Therefore, in this dissertation, accurate and time-efficient methodologies were developed for performing sand particle tracking and predicting sand erosion damage on actual helicopter rotor blades under realistic hover and vertical lift conditions. In this dissertation, first, injection (release) conditions of solid particles with new injection parameter, sand particle mass flow rate (SPmFR), were specified to deal with the effect of non-uniform and unsteady flow conditions surrounding at each injection point from which solid particles are released. The SPmFR defines the number of solid particles released from the same injection position per unit time. Secondly, a general definition of erosion rate, "mass or volume loss from the metal surface due to the impact of a unit "mass" of solid particles" was also modified by multiplying with SPmFR in order to solve the limitation for predicting erosion damage on actual helicopter rotor blade. Next, a suitable empirical particle rebound model and an erosion damage model for spherical sand particles with diameters ranging from 10 microm to 500 microm impacting on the material Ti-6A1-4V, the material of helicopter rotor blade, were developed. Finally, C++ language based codes in the form of User Defined Functions (UDFs) were developed and implemented into the commercially available multi-dimensional viscous flow solver ANSYS-FLUENT in order to develop and integrate with the general purpose flow solver, ANSYS-FLUENT, for a specific Lagrangian particle trajectory computing algorithm and rebound and erosion quantification purposes. In the erosion simulation, a reasonably accurate fluid flow solution is necessary. In order to validate the numerical results obtained in this dissertation, computations for flow-only around 2D RAE2822 airfoil and 3D rotating rotor blade (NACA0012) without any sand particle were performed. In the comparison of these results with experimental results, it is found that the flow solutions are in good

  5. Erosion/corrosion testing of materials for oil sands applications

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, G.; Wolodko, J.; Alemaskin, K.; Been, J.; Danysh, M. [Alberta Research Council, Edmonton, AB (Canada)


    Erosion and corrosion are common wear mechanisms for components used in oil sands processing facilities. This paper described a slurry jet test apparatus designed to evaluate and assess materials for oil sands service conditions. The jet testing apparatus was designed to mimic the wet erosion phenomena typically found in oil sands applications. Wear- and corrosion-resistant materials tested by the apparatus included carbon steel, tungsten carbide metal matrix composite (WC-MMC) overlays, and a range of polymer and rubber liner materials. Polymeric materials included hydrogenated nitrile rubber (HNBR); polyurethane elastomer; and high density polyethylene (HDPE). Material losses were determined by measuring the mass of the samples before and after testing. Normalized rates of abrasion were calculated by dividing total mass lost in the specimens by the total mass of sand impinged on the sample surface. Samples were also visually assessed and analyzed using scanning electron microscopy (SEM) in order to determine failure modes. Tests were conducted for a 2-hour period at an impingement angle of 90 degrees. Results of the study showed that the average abrasion rates of the polymeric samples are lower than rates seen with the carbon steel and overlay materials. Future work on the apparatus will include testing the materials under varying slurry jet parameters. 15 refs., 5 tabs., 10 figs.

  6. Active anti-erosion protection strategy in tamarisk (Tamarix aphylla). (United States)

    Han, Zhiwu; Yin, Wei; Zhang, Junqiu; Niu, Shichao; Ren, Luquan


    Plants have numerous active protection strategies for adapting to complex and severe environments. These strategies provide endless inspiration for extending the service life of materials and machines. Tamarisk (Tamarix aphylla), a tree that thrives in raging sandstorm regions, has adapted to blustery conditions by evolving extremely effective and robust erosion resistant characteristics. However, the relationships among its surface cracks, internal histology and biomechanics, such as cracks, rings, cells, elasticity modulus and growth stress, which account for its erosion resistance, remain unclear. This present study reveals that the directionally eccentric growth rings of tamarisk, which are attributed to reduced stress and accelerated cell division, promote the formation of surface cracks. The windward rings are more extensive than the leeward side rings. The windward surfaces are more prone to cracks, which improves erosion resistance. Our data provide insight into the active protection strategy of the tamarisk against wind-sand erosion.

  7. Impact of erosion and accretion on the distribution of enterococci in beach sands. (United States)

    Gast, Rebecca J; Gorrell, Levi; Raubenheimer, Britt; Elgar, Steve


    Bacterial pathogens in coastal sediments may pose a health risk to users of beaches. Although recent work shows that beach sands harbor both indicator bacteria and potential pathogens, it is not known how deep within beach sands the organisms may persist nor if they may be exposed during natural physical processes. In this study, sand cores of approximately 1 m depth were collected at three sites across the beach face in Kitty Hawk, North Carolina before, during and after large waves from an offshore hurricane. The presence of DNA from the fecal indicator bacterium Enterococci was detected in subsamples at different depths within the cores by PCR amplification. Erosion and accretion of beach sand at the three sites also was determined for each sampling day. The results indicate that ocean beach sands with persisting enterococci signals could be exposed and redistributed when wind, waves, and currents cause beach erosion or accretion.

  8. Thresholds of gully erosion in the coastal plains sands of ...

    African Journals Online (AJOL)

    The concept of geomorphic threshold as applied in gully erosion studies assumes that water erosion occurs when the combined power of the rainfall energy and overland flow exceeds the resistance of surface materials to detachment and entrainment. This line of reasoning presupposes that certain environmental factors ...

  9. Measuring splash erosion potential under vegetation using sand-filled splash cups (United States)

    Geißler, C.; Scholten, T.; Kühn, P.


    In soil erosion research it is widely accepted that vegetation is not only protecting the soil from the erosive power of rainfall. Under specific circumstances (like they occur e.g. in forests) vegetation can enhance the erosive power of rainfall by modifying its properties (esp. drop size distribution, kinetic energy). The adjacent processes are very complex and variable in time and space and depend on numerous variables (e.g. rainfall intensity, drop size distribution, drop fall velocity, height of the canopy, density of the canopy, crown and leaf traits, LAI). In the last decades a large number of studies focused this process-system using different methods and came to often different results (Brandt 1989; Calder 2001; Foot & Morgan 2005; Hall & Calder 1993; Mosley 1982; Nanko et al. 2006; Park & Cameron 2008; Vis 1986). The main objective of our field experiments in subtropical China is to quantify the modification of precipitation by its pass through the canopy layer for six different tree species, three different successional stages and three different biodiversity classes. For this, new splash cups were developed based on the archetype of Ellison (1947). In contrast to previous studies with splash cups (Vis 1986) or other forms of splash cups (Kinnell 1974; Morgan 1981) we measured the unit sand remaining inside the cup after single natural rainfall events. The new splash cups contain of a PE-flask to which a carrier system has been attached. In this carrier system a cup filled with unit sand of 125-200 µm particle size is inserted. At the bottom of the cup a silk cover is attached to avoid the loss of sand and to guarantee free drainage of water from the cup to the carrier and vice versa. Cup and PE-flask are hydraulically connected by a cotton wick to assure constant moisture content throughout the time of measuring. Additionally, vents in the carrier system ensure that the pressure arising from the insertion of the cup doesn't lead to a loss of sand. The

  10. Formulating Fine to Medium Sand Erosion for Suspended Sediment Transport Models

    Directory of Open Access Journals (Sweden)

    François Dufois


    Full Text Available The capacity of an advection/diffusion model to predict sand transport under varying wave and current conditions is evaluated. The horizontal sand transport rate is computed by vertical integration of the suspended sediment flux. A correction procedure for the near-bed concentration is proposed so that model results are independent of the vertical resolution. The method can thus be implemented in regional models with operational applications. Simulating equilibrium sand transport rates, when erosion and deposition are balanced, requires a new empirical erosion law that involves the non-dimensional excess shear stress and a parameter that depends on the size of the sand grain. Comparison with several datasets and sediment transport formulae demonstrated the model’s capacity to simulate sand transport rates for a large range of current and wave conditions and sand diameters in the range 100–500 μm. Measured transport rates were predicted within a factor two in 67% of cases with current only and in 35% of cases with both waves and current. In comparison with the results obtained by Camenen and Larroudé (2003, who provided the same indicators for several practical transport rate formulations (whose means are respectively 72% and 37%, the proposed approach gives reasonable results. Before fitting a new erosion law to our model, classical erosion rate formulations were tested but led to poor comparisons with expected sediment transport rates. We suggest that classical erosion laws should be used with care in advection/diffusion models similar to ours, and that at least a full validation procedure for transport rates involving a range of sand diameters and hydrodynamic conditions should be carried out.

  11. Numerical Analysis of Flow Erosion on Sand Discharge Pipe in Nitrogen Drilling

    Directory of Open Access Journals (Sweden)

    Hongjun Zhu


    Full Text Available In nitrogen drilling, entrained sand particles in the gas flow may cause erosive wear on metal surfaces and have a significant effect on the operational life of discharge pipelines, especially for elbows. In this paper, computational fluid dynamics (CFD simulations based code FLUENT is carried out to investigate the flow erosion on a sand discharge pipe in conjunction with an erosion model. The motion of the continuum phase is captured based on solving the three-dimensional Reynolds-averaged Navier-Stokes (RANS equations, while the kinematics and trajectory of the sand particles are evaluated by the discrete phase model (DPM. The flow field has been examined in terms of pressure, velocity, and erosion rate profiles along the flow path in the bend of the simulated discharge pipe. Effects of flow parameters such as inlet velocity, sandy volume fraction, and particle diameter and structure parameters such as pipe diameter and bend curvature are analyzed based on a series of numerical simulations. The results show that small pipe diameter or small bend curvature leads to serious erosion, while slow flow, little sandy volume fraction, and small particle diameter can weaken erosion. The results obtained from the present work provide useful guidance to practical operation and discharge pipe design.

  12. Sand-mud erosion from a soil mechanical perspective

    NARCIS (Netherlands)

    Jacobs, W.


    ‘Wetlands’ in tidal lagoons and estuaries are among the most valuable ecosystems in the world. Managing these systems requires both a thorough knowledge and validated tools to predict their behavior and development. An important morpho-dynamic process herein is the erosion (‘pick-up’) of the bed,

  13. Similarities and dissimilarities between the dynamics of sand and dust during wind erosion of loamy sandy soil

    NARCIS (Netherlands)

    Goosens, D.; Gross, J.


    Aeolian dynamics were measured during a wind erosion event on an agricultural field in Northern Germany. Because the topsoil was loamy sand, particle flow behaved as a sand–dust mixture and not as pure sand (>63 m) or pure dust (<63 m). Although generally similar, the erosion, transportation

  14. CFD evaluation of erosion rate around a bridge near a sand dune (United States)

    He, Wei; Huang, Ning; Dun, Hongchao; Wang, Wenbo


    This study performs a series of simulations through solving the Navier-Stokes equations and the RNG k-ε turbulence model to investigate the wind erosion rates around a bridge in a desert area with sand dunes. The digital elevation model of sand dunes and the bridge model are obtained respectively from hypsographic map and construction drawings. Through combining them into the CFD software of Fluent the simulation zone was formed. The data of wind speed obtained from field observation is fitted into a logarithm format, which was imported into Fluent model as a inlet wind speed condition. Then, the effect of Dun-Go railway on wind-blown sand movement of the neighbouring environment is simulated. The results exhibit that affected by both the sand dune and bridge, the flow field is in a complex condition. It is also shown that the bridge in upstream of the sand dune will not increase the sand transport rate intensively, but change both wind velocity gradient and turbulence kinetic energy over surface of sand dune. On the other hand, when the bridge is built downstream the sand dune, simulation results show that sand deposition rate would be decreased in reference region downstream the pier.

  15. Numerical modelling of the erosion and deposition of sand inside a filter layer

    DEFF Research Database (Denmark)

    Jacobsen, Niels Gjøl; van Gent, Marcel R. A.; Fredsøe, Jørgen


    prediction method to assure that the amount of erosion remains within acceptable limits. This work presents a numerical model that is capable of describing the erosion and deposition patterns inside of an open filter of rock on top of sand. The hydraulic loading is that of incident irregular waves...... and the open filters are surface piercing. Due to the few experimental data sets on sediment transport inside of rock layers, a sediment transport formulation has been proposed based on a matching between the numerical model and experimental data on the profile deformation inside an open filter. The rock layer...... on top of a sand core introduces a correction term in the Exner equation (the continuity equation for sediment and change in bed level). The correction term originates from the fact that the sand can only be deposited in the pores of the filter material. The numerical model is validated against...

  16. Erosion-corrosion in carbon dioxide saturated systems in presence of sand, inhibitor, oil, and high concentration of salt (United States)

    Hassani, Shokrollah

    Oil and gas production is usually accompanied by formation water which typically contains high levels of chloride. Some effects of chloride concentration on corrosion are not widely known in the literature, and this can result in misleading conclusions. One goal of this research was to contribute to a better understanding of the effects of chloride concentration in CO2 corrosion. Experimental and theoretical studies conducted in the present work have shown that increasing the NaCl concentration in solution has three important effects on corrosion results. First, standard pH meter readings in high NaCl concentration solutions require corrections. Second, increasing the NaCl concentration decreases the CO2 concentration in solution and therefore contributes to a decrease in the corrosion rate. Third, increasing the NaCl concentration increases the solubility of FeCO3 and therefore reduces the likelihood of forming an iron carbonate scale. High NaCl concentration also decreases the sand erosion rate of the metal slightly by increasing the density and viscosity of the liquid. There are two main contributions of this research. The first contribution is the experimental characterization of inhibited erosion-corrosion behavior of mild steel under CO2-saturated conditions with a high salt concentration. Chemical inhibition is one the most important techniques for controlling erosion-corrosion in offshore mild steel pipelines, tubing and pipe fittings in oil and gas industry. The second contribution is the introduction of a new approach for predicting inhibited erosion-corrosion in mild steel pipes including the effects of flow and environmental conditions, sand production, and an oil phase. Sand erosion can decrease the efficiency of corrosion protection systems including iron-carbonate scale formation and chemical inhibition. The need to be able to predict inhibitor performance under sand production conditions is particularly acute when the wells are deep or off

  17. How to use wind erosion to restore and maintain the inland drift-sand ecotype in the Netherlands?

    NARCIS (Netherlands)

    Riksen, M.J.P.M.; Spaan, W.P.; Stroosnijder, L.


    Dutch inland drift-sands are of great value to nature and house several Red-Listed species unique for Europe. The inland drift-sand landscape consists of three different intertwined wind erosion zones. Together they form the conditions where a mosaic of vegetation at different stages of development

  18. Abrasion of windblown particles on Mars - Erosion of quartz and basaltic sand under simulated Martian conditions (United States)

    Krinsley, D.; Greeley, R.; Pollack, J. B.


    The results of a series of laboratory experiments initiated to simulate Martian eolian erosion are presented. Experiments were conducted under Martian atmospheric pressure and compared to natural eolian sand produced on earth. It is reported that the less dense atmosphere on Mars resulted in more energetic eolian erosion manifested by an slightly higher rate of grain rounding and surface textures that included semicircular depressions termed 'popouts'. It is suggested that physical and chemical weathering may proceed more rapidly on Mars than on earth, given a sufficient supply of water vapor. In addition, clay mineral formations should be facilitated by the presence of large amounts of disrupted material. Finally, it is noted that the disrupted material could increase the ability of the soil to act as a reservoir for water thereby provisionally explaining the large amount of bound water on the surface soil material over much of Mars.

  19. Study on Sand Erosion and Tribological Behavior of TiO₂ Films Prepared on a Glass Surface. (United States)

    Zhang, Bo; Wang, Junzhong; Shi, Zhiming; Liu, Quansheng; Ji, Guojun


    TiO2 films with one, three or five layers were prepared on a glass surface using the sol-gel method. The crystal structure, the surface morphology and the thickness of the films were characterized by X-ray diffraction, atomic force microscopy and ellipsometry. The tribological properties of the TiO2 films were investigated by a tribometer. TiO2 thin films were eroded by sand-air injection. The erosion behavior and mechanism of TiO2 thin films in a sandstorm were analyzed by scanning electron microscopy. The results showed that the films were highly abraded with increased erosion speed and dose of sand. With an increase in film layers, the erosion resistance and wear resistance of the TiO2 films increased gradually. The erosion mechanism consists of the film being damaged mainly from the cutting action of micro-scratches from low angle erosion. Alternatively, for high angle erosion, the material is damaged mainly by squeeze deformation by the action of erosion. Because of the high strength and toughness of the TiO2 thin films, the wear of its coating from high angle erosion is more severe than that from low erosion angle.

  20. Coastal erosion and its social and environmental aspects in Tanzania: A case study in illegal sand mining


    Masalu, D.


    Metadata only record Coastal erosion is one of the major coastal problems currently facing Tanzania. Several factors, including sea level rise, geology, and rapid coastal population growth accompanied by rapid increase of human activities that interfere with natural processes, have been linked to the problem. One of the human activities that has been well linked to the problem of coastal erosion is illegal sand mining along beaches, coastal streams/rivers, and other restricted areas. This ...

  1. Effects of disturbance on vegetation by sand accretion and erosion across coastal dune habitats on a barrier island. (United States)

    Miller, Thomas E


    Coastal geomorphology and vegetation are expected to be particularly sensitive to climate change, because of disturbances caused by sea-level rise and increased storm frequency. Dunes have critical reciprocal interactions with vegetation; dunes create habitats for plants, while plants help to build dunes and promote geomorphological stability. These interactions are also greatly affected by disturbances associated with sand movement, either in accretion (dune building) or in erosion. The magnitude and intensity of disturbances are expected to vary with habitat, from the more exposed and less stable foredunes, to low-lying and flood-prone interdunes, to the protected and older backdunes. Permanent plots were established at three different spatial scales on St George Island, FL, USA, where the vegetation and dune elevation were quantified annually from 2011 to 2013. Change in elevation, either through accretion or erosion, was used as a measure of year-to-year disturbance over the 2 years of the study. At the scale of different dune habitats, foredunes were found to have the greatest disturbance, while interdunes had the least. Elevation and habitat (i.e. foredune, interdune, backdune) were significantly correlated with plant community composition. Generalized linear models conducted within each habitat show that the change in elevation (disturbance) is also significantly correlated with the plant community, but only within foredunes and interdunes. The importance of disturbance in exposed foredunes was expected and was found to be related to an increasing abundance of a dominant species (Uniola paniculata) in eroding areas. The significant effect of disturbance in the relatively stable interdunes was surprising, and may be due to the importance of flooding associated with small changes in elevation in these low-lying areas. Overall, this study documents changes in the plant community associated with elevation, and demonstrates that the foredune and interdune

  2. The drying kinetics of protective coatings used on sand molds

    Directory of Open Access Journals (Sweden)

    Ł. Jamrozowicz


    Full Text Available Investigation results of the drying rate of the selected protective coatings (water and alcohol are presented in the article. Coating drying rate was determined for the first and second layers. The coating was applied to moulding sand cores. The rate of drying coatings were tested for three coating apparent viscosities estimated by means of the Ford 4 mm cup. Drying rates of the protective coating were examined by using the gravimetric technique and ultrasonic technique. Measurements were carried out in a continuous way under controlled conditions: constant ambient temperature and air humidity. Research shows that the drying time of the second coating layer is longer by 20 – 30 % than the first layer.

  3. Effectiveness of Protective Action of Coatings from Moisture Sorption into Surface Layer of Sand Moulds

    Directory of Open Access Journals (Sweden)

    Kaźnica N.


    Full Text Available The results of investigations of the sorption process of surface layers of sand moulds covered by zirconium and zirconium - graphite alcohol coatings are presented in the paper. Investigations comprised two kinds of sand grains (silica sand and reclaimed sand of moulding sand with furan resin. Tests were performed under conditions of a high relative air humidity 75 - 85% and a constant temperature within the range 28 – 33°C. To evaluate the effectiveness of coatings protective action from moisture penetration into surface layers of sand moulds gravimetric method of quantitavie moisture sorption and ultrasonic method were applied in measurements.

  4. Tillage techniques to reactivate aeolian erosion on inland drift-sand

    NARCIS (Netherlands)

    Riksen, M.J.P.M.; Goossens, D.


    The inland drift-sand areas in northern Europe are characterised by a rapid decline in both aeolian activity and areal size. Many former drift-sand surfaces have become immobilised by natural or man-induced processes, such as conversion into forest or other terrain for agricultural, economic or

  5. The future of fluorides and other protective agents in erosion prevention


    Lussi, Adrian; Saads Carvalho, Thiago


    The effectiveness of fluoride in caries prevention has been convincingly proven. In recent years, researchers have investigated the preventive effects of different fluoride formulations on erosive tooth wear with positive results, but their action on caries and erosion prevention must be based on different requirements, because there is no sheltered area in the erosive process as there is in the subsurface carious lesions. Thus, any protective mechanism from fluoride concerning erosion is lim...

  6. Automated Erosion System to Protect Highway Bridge Crossings at Abutments (United States)


    A new instrument (Photo-Electronic Erosion Pin, or PEEP) was examined in collecting field data and remotely monitoring bank erosion near bridge abutments during floods. The performance of PEEPs was evaluated through a detailed field study to determin...

  7. S-bend erosion in particulated multiphase flow with air and sand

    Directory of Open Access Journals (Sweden)

    Quamrul H Mazumder


    Full Text Available Solid particle erosion is a micro-mechanical process that removes material from a surface by repeated impact of entrained particles in the flow. Erosion is a leading cause of failure in fluid handling equipment such as pumps, pipes, valves, and fittings. The S-bend geometry is used to redirect flows in automotive, chemical processing, oil, gas, and food handling industries. An investigation was conducted using both computational fluid dynamics analysis and experimental methods to identify the location of maximum erosion. Three S-bend geometries with 12.7 mm inside diameter, r/D ratio of 1.5, three different air velocities and six different particle sizes were used in the current study. The experimental test section was of 12.7 mm inside diameter, r/D ratio of 1.5, and used 150 and 300 µm particle sizes.

  8. Lake Michigan: Prediction of Sand Beach and Dune Erosion for Flood Hazard Assessment (United States)


    size is the principle factor in determination of nearshore sediment transport magnitude and profile shape (e.g. Dean and Dalrymple 2002). The sand...References Dean , R, and R. A. Dalrymple . 2002. Coastal Processes with Engineering Applications Cambridge University Press, New York; 475 pp. FEMA . 2007

  9. Habitat Erosion Protection Analysis, Missouri National Recreational River, Nebraska and South Dakota

    National Research Council Canada - National Science Library


    The Corps was tasked by the National Park Service to determine if erosion protection measures are needed to prevent further decline in cottonwood forest within the Missouri National Recreational River...

  10. Erosion protection for soil slopes along Virginia's highways. (United States)


    A survey of the state of practice for designing slope erosion control measures within VDOT's nine districts has been conducted. On the basis of the survey, it is clear that there are no specific design procedures currently in use within VDOT for deal...

  11. Erosion Pressure on the Danish Coasts

    DEFF Research Database (Denmark)

    Sørensen, Carlo Sass; Sørensen, Per; Kroon, Aart

    Coastlines around the world are receding due to coastal erosion.With rising sea levels and a potential climatic deterioration due to climate change, erosion rates are likely to increase at many locations in the future.Together with the current preference of people to settle near or directly...... by the ocean, coastal erosion issues become increasingly more important to the human values at risk. Along many Danish coastlines, hard structures already act as coastal protection in the form of groins, breakwaters, revetments etc. These eroding coasts however still lack sand and where the public, in general......, neglects the need for sand replenishment i.e. in the form of repeated sand nourishments. Here we present a conceptual model and method for dividing coastal erosion into acute and chronic erosion pressure, respectively. We focus on the model use for management and climate change adaptation purposes...

  12. Erosion protection conferred by whole human saliva, dialysed saliva, and artificial saliva (United States)

    Baumann, T.; Kozik, J.; Lussi, A.; Carvalho, T. S.


    During dental erosion, tooth minerals are dissolved, leading to a softening of the surface and consequently to irreversible surface loss. Components from human saliva form a pellicle on the tooth surface, providing some protection against erosion. To assess the effect of different components and compositions of saliva on the protective potential of the pellicle against enamel erosion, we prepared four different kinds of saliva: human whole stimulated saliva (HS), artificial saliva containing only ions (AS), human saliva dialysed against artificial saliva, containing salivary proteins and ions (HS/AS), and human saliva dialysed against deionised water, containing only salivary proteins but no ions (HS/DW). Enamel specimens underwent four cycles of immersion in either HS, AS, HS/AS, HS/DW, or a humid chamber (Ctrl), followed by erosion with citric acid. During the cycling process, the surface hardness and the calcium released from the surface of the specimens were measured. The different kinds of saliva provided different levels of protection, HS/DW exhibiting significantly better protection than all the other groups (p saliva, therefore, have different effects on the protective properties of the pellicle and the right proportions of these components in saliva are critical for the ability to form a protective pellicle.

  13. Predicting the effect of tilling practices on wind erosion activity: application of the Wind Erosion Prediction System in a sand drift area in The Netherlands

    NARCIS (Netherlands)

    Riksen, M.J.P.M.; Visser, S.M.


    The inland drift sand area in The Netherlands forms a unique ecosystem in northern Europe, but is characterized by a rapid decline in both aeolian activity and area size. It is therefore necessary to investigate how the drift sand areas can be preserved, and how their immobilization by vegetation

  14. The future of fluorides and other protective agents in erosion prevention. (United States)

    Lussi, Adrian; Carvalho, Thiago Saads


    The effectiveness of fluoride in caries prevention has been convincingly proven. In recent years, researchers have investigated the preventive effects of different fluoride formulations on erosive tooth wear with positive results, but their action on caries and erosion prevention must be based on different requirements, because there is no sheltered area in the erosive process as there is in the subsurface carious lesions. Thus, any protective mechanism from fluoride concerning erosion is limited to the surface or the near surface layer of enamel. However, reports on other protective agents show superior preventive results. The mechanism of action of tin-containing products is related to tin deposition onto the tooth surface, as well as the incorporation of tin into the near-surface layer of enamel. These tin-rich deposits are less susceptible to dissolution and may result in enhanced protection of the underlying tooth. Titanium tetrafluoride forms a protective layer on the tooth surface. It is believed that this layer is made up of hydrated hydrogen titanium phosphate. Products containing phosphates and/or proteins may adsorb either to the pellicle, rendering it more protective against demineralization, or directly to the dental hard tissue, probably competing with H(+) at specific sites on the tooth surface. Other substances may further enhance precipitation of calcium phosphates on the enamel surface, protecting it from additional acid impacts. Hence, the future of fluoride alone in erosion prevention looks grim, but the combination of fluoride with protective agents, such as polyvalent metal ions and some polymers, has much brighter prospects. 2015 S. Karger AG, Basel

  15. Erosion control and protection from torrential floods in Serbia-spatial aspects

    Directory of Open Access Journals (Sweden)

    Ristić Ratko


    order to achieve maximum security for people and their property and to meet other requirements such as: environmental protection, sustainable soil usage, drinking water supply, rural development, biodiversity sustaining, etc. The lowest and the most effective level is attained through PAERs (Plans for announcement of erosive regions and PPTFs (Plans for protection from torrential floods, with HZs (Hazard zones and TAs (Threatened areas mapping on the basis of spatial analysis of important factors in torrential floods formation. Solutions defined through PAERs and PPTFs must be integrated into Spatial Plans at local and regional levels.

  16. Experimental research results of solid particle erosion resistance of blade steel with protective coating (United States)

    Kachalin, G. V.; Mednikov, A. F.; Tkhabisimov, A. B.; Seleznev, L. I.


    The paper presents the results of metallographic studies and solid particle erosion tests of uncoated blade steel 20kH13 samples and samples with a protective coating based on chromium carbide (Cr-CrC) at a flow (air) velocity CA = 180 m/s, flow temperature tA = 25 °C, attack angle α = 30° and consumption of solid abrasive particles GP = 5·10-4 kg/s. It was found that the coating has a granular structure, a thickness is about 11 μm, the microhardness of the surface is 1520 ± 50 HV0.05. Processing of the obtained data by statistical analysis methods showed that the protective coating based on Cr-CrC increases the solid particle erosion resistance of the blade steel 20kH13 by the incubation-transitional period duration more than 2.5 times.

  17. Evaluation of the Synergistic Effect of Erosion-Corrosion on AISI 4330 Steel in Saline-Sand Multiphase Flow by Electrochemical and Gravimetric Techniques

    Directory of Open Access Journals (Sweden)

    Dario Yesid Peña Ballesteros


    Full Text Available The synergistic effects of fluid flow, sand particles, and solution pH on erosion-corrosion of AISI 4330 steel alloy in saline-sand medium were studied through a rotating cylinder electrode (RCE system by weight-loss and electrochemical measurements. The worn surface was analyzed by X-ray diffraction (XRD and scanning electron microscopy (SEM. Results show that, under all the test conditions assessed, the passivity of the steel alloy could not be maintained; as a result, an activation mechanism dominates the corrosion process of steel alloy. Furthermore, the potentiodynamic curves show that, with the increasing of the electrode flow rate and particle size, the anodic current density increased, which is due to deterioration of the electrode by the impacting slurry. Although the increase of particle size affects the anodic current density, the effect of particle size does not cause a significant change in the polarization behavior of the steel electrode. The electrochemical impedance and potentiodynamic curves suggest that erosion-corrosion phenomenon of the ASISI 4330 steel is under mixed control of mass transport and charge transfer. The inductive loops formed in the impedance plots are representative of an increase in roughness of the electrode caused by the particles impacting at the surface. The change in the passivity of the steel alloy as the pH is altered plays an important role in the corrosion rate.

  18. Protective effect of calcium nanophosphate and CPP-ACP agents on enamel erosion

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, Fabiola Galbiatti de; Santos, Rogerio Lacerda dos, E-mail: [Universidade Federal de Campina Grande (UFCG), Patos, PB (Brazil). Dept. de Ciencias Biologicas. Div. de Odontologia; Silva Filho, Tiago Joao da; Carlo, Hugo Lemes [Universidade Federal da Paraiba (UFPB), Joao Pessoa, PB (Brazil). Centro de Ciencias da Saude. Dept. de Odontologia Restauradora; Lima, Bruno Alessandro Silva Guedes de [Universidade Federal da Paraiba (UFPB), Joao Pessoa, PB (Brazil). Dept. de Tecnologia Mecanica. Lab. de Solidificacao Rapida


    The aim of this study was to assess the effect of different remineralizing agents on enamel microhardness (KHN) and surface topography after an erosive challenge. Forty-eight human enamel specimens (4 X 4 mm) were randomly assigned to 4 groups: control (no treatment), fluoride varnish, calcium nanophosphate paste and casein phosphopeptide-amorphous calcium phosphate paste (CPP-ACP). Both pastes were applied for 5 minutes, and fluoride varnish, for 24 h. Four daily erosive cycles of 5 minutes of immersion in a cola drink and 2 h in artificial saliva were conducted for 5 days. KHN readings were performed at baseline and after 5 days. The percentage of enamel hardness change (%KHN) was obtained after erosion. The surface topography was evaluated by atomic force microscopy (AFM). The data were tested using ANOVA, Tukey's and paired-T tests (p < 0.05). After an erosive challenge, there was no statistically significant difference between the control (96.8 ± 11.4 KHN / 72.4 ± 3.0 %KHN) and the varnish (91.7 ± 14.1 KHN / 73.4 ± 5.5 %KHN) groups. The nanophosphate group showed lower enamel hardness loss (187.2 ± 27.9 /49.0 ± 7.9 %KHN), compared with the CPP-ACP group (141.8 ± 16.5 /60.6 ± 4.0 %KHN), and both were statistically different from the varnish and the control groups. AFM images showed a rough surface for the control and the varnish groups, a non-homogeneous layer with globular irregularities for CPP-ACP, and a thick homogeneous layer for the nanophosphate group. None of the agents provided protection against the development of erosion; however, nanophosphate paste was able to reduce enamel surface softening after the erosive challenge. (author)

  19. Protective effect of calcium nanophosphate and CPP-ACP agents on enamel erosion

    Directory of Open Access Journals (Sweden)

    Fabiola Galbiatti de Carvalho


    Full Text Available The aim of this study was to assess the effect of different remineralizing agents on enamel microhardness (KHN and surface topography after an erosive challenge. Forty-eight human enamel specimens (4 × 4 mm were randomly assigned to 4 groups: control (no treatment, fluoride varnish, calcium nanophosphate paste and casein phosphopeptide-amorphous calcium phosphate paste (CPP-ACP. Both pastes were applied for 5 minutes, and fluoride varnish, for 24 h. Four daily erosive cycles of 5 minutes of immersion in a cola drink and 2 h in artificial saliva were conducted for 5 days. KHN readings were performed at baseline and after 5 days. The percentage of enamel hardness change (%KHN was obtained after erosion. The surface topography was evaluated by atomic force microscopy (AFM. The data were tested using ANOVA, Tukey's and paired-T tests (p < 0.05. After an erosive challenge, there was no statistically significant difference between the control (96.8 ± 11.4 KHN / 72.4 ± 3.0 %KHN and the varnish (91.7 ± 14.1 KHN / 73.4 ± 5.5 %KHN groups. The nanophosphate group showed lower enamel hardness loss (187.2 ± 27.9 / 49.0 ± 7.9 %KHN, compared with the CPP-ACP group (141.8 ± 16.5 / 60.6 ± 4.0 %KHN, and both were statistically different from the varnish and the control groups. AFM images showed a rough surface for the control and the varnish groups, a non-homogeneous layer with globular irregularities for CPP-ACP, and a thick homogeneous layer for the nanophosphate group. None of the agents provided protection against the development of erosion; however, nanophosphate paste was able to reduce enamel surface softening after the erosive challenge


    Directory of Open Access Journals (Sweden)

    V. Tymoshevskyi


    Full Text Available The main aims of the article is the research areas of optimization of land use and land protection of agricultural landscapes. According to this in the article analysis of the degradation processes in agricultural landscapes, development of land management projects as a tool for optimization of land use and protection of agricultural landscapes are discussed. Theoretical and methodological basis of research is dialectical theory of knowledge, the comprehensive, systematic approach to the study of foreign experience and national practice of investigated problems, use of general and special methods of basic laws and regulations of economic theory. Much attention is given to the negative phenomena of agricultural land use, including water erosion and formation the ways of economically efficient, ecologically safety and socially oriented land use. Studied the experience of foreign countries on the mechanism of land use and providing safety use in dangerous erosion agricultural landscapes. Caused by anthropogenic degradation processes in agricultural landscapes mainly due of the intensity of cultivation, use of erosion dangerous lands, breach of crop rotation, decrease area with grasses crop, unsystematic use of natural grasslands. Conscious of the needs to implementation control of erosion, land users don’t do it at once and quickly. Because economic activity while profits more than production costs or costs associated with the implementation of erosion control measures, including contour-reclamation organization of territory. However, in the future this approach could lead to economically efficient, socially and environmentally threatening and dangerous land use. Land has a number of features that distinguish it among other resources. Such as means of production and the subject of labor in agriculture and forestry, base of industries location, environmental and social regulator etc. Therefore, there is a need to preserve and improve the

  1. Erosion protection Phytoreinforcement of SCARP steep slopes of the holy virgin’s DITCH


    Darchiya Valentina Ivanovna; Tazina Natal'ya Georgievna; Chernyshev Sergey Nikolaevich


    Erosion protection landscaping embedment of steep subsoil slopes is a time-sensitive issue of road construction and planning of recreational area that are often fit on a challenging picturesque terrain unsuitable for site development. The article provides the results of a 4-year experiment on landscaping and plant fixing of up to 4.5 m soil slopes with 1:1 and 2:1 grades; the experiment was carried out by the MGSU on the territory of a convent in the south of the Nizhniy Novgorod region. The ...

  2. Survey of sand flies (Diptera: Psychodidae in an environmentally protected area in Brazil.

    Directory of Open Access Journals (Sweden)

    Lara Saraiva

    Full Text Available Brazil is one of the most important endemic areas for leishmaniasis worldwide. Protected areas that are tourist attractions likely present an important risk of transmission of cutaneous leishmaniasis (CL. Furthermore, with the geographical expansion of visceral leishmaniasis (VL, several studies have recorded the occurrence of its vector, Lutzomyia longipalpis, and cases of human and canine VL in such tourist areas. The Parque Estadual do Sumidouro is an environmentally protected area located in the Brazilian Cerrado biome and in an important area endemic for leishmaniasis in the state of Minas Gerais. The purpose of this study was to monitor the sand fly fauna in areas of tourist activity in the park. Sampling was performed every month, from September 2011 to August 2013, using CDC light traps at six sites of differing environmental characteristics. Sampled specimens were identified following Galati (2003, and females were submitted to molecular techniques for the detection and identification of Leishmania DNA. A total of 4,675 sand fly specimens of 25 species belonging to nine genera were collected. The most abundant species were Micropygomyia quinquefer, Lutzomyia renei and Pintomyia pessoai, although only Pi. pessoai is implicated in the transmission of Leishmania braziliensis. The species accumulation curve reached saturation on the 16th sampling event. Species richness, diversity and evenness differed among the sampled areas. The seasonal curve was not determined by a single unique species, and no single species was the most abundant in all environments sampled. The main vector of Leishmania (Leishmania infantum, Lutzomyia longipalpis, accounted for only 5.35% of the specimens collected. Proven or suspected vectors of Leishmania (Viannia braziliensis were recorded, and one female of the cortellezzii complex tested positive for Le. braziliensis DNA. Even with a low infection rate (0.62%, these data indicate the circulation of the parasite

  3. A Nanomechanical Investigation of Three Putative Anti-Erosion Agents: Remineralisation and Protection against Demineralisation

    Directory of Open Access Journals (Sweden)

    Ahmed Z. Abdullah


    Full Text Available An increasing interest in dental erosion as a clinical and scientific phenomenon has led to concerted efforts to identify agents which might protect against erosion. In this study, nanoindentation was used to investigate inhibition of erosive enamel demineralisation over time scales with direct clinical relevance. Nanohardness of polished human enamel specimens (n=8 per group was measured at baseline (B, after demineralisation (D1: citric acid, 0.3% w/v, pH3.20, 20s, after treatment (T, and after a second demineralisation (D2: as above. Data were analysed using repeated measures ANOVA. All specimens exhibited a similar reduction in nanohardness B-D1 in the range 35.2–39.5%. The positive control solution (saturated hydroxyapatite solution and 4500 mg/L fluoride as NaF significantly increased nanohardness D1-T by 19.9% and 24.1%, respectively, whereas 1400 mg/L fluoride as NaF, casein phosphopeptide-amorphous calcium phosphate mousse and negative control (deionised water had no significant effect. Nanohardness at D2 was indistinguishable for all groups, with total reduction in nanohardness B-D2 of 31.6% (4500 mg/L fluoride, 35.2% (positive control, 39.9% (1400 mg/L fluoride, 42.4% (negative control, and 43.7% (CPP-ACP product. In summary, 4500 mg/L fluoride significantly increased the nanohardness of previously demineralised enamel and resulted in the smallest total reduction in nanohardness but there were few statistically significant differences among the groups.

  4. Protective effect of experimental mouthrinses containing NaF and TiF4 on dentin erosive loss in vitro

    Directory of Open Access Journals (Sweden)

    Aline Rogéria Freire de CASTILHO


    Full Text Available Objective This in vitro study assessed the anti-erosive effect of experimental mouthrinses containing TiF4 and NaF on dentin erosive loss.Material and Methods Bovine dentin specimens were randomly allocated into the groups (n=15: 1 SnCl2/NaF/AmF (Erosion Protection®/GABA, pH 4.5, positive control; 2 experimental solution with 0.0815% TiF4(pH 2.5; 3 0.105% NaF (pH 4.5; 4 0.042% NaF+0.049% TiF4 (pH 4.4; 5 0.063% NaF+0.036% TiF4 (pH 4.5; 6 no treatment (negative control. Each specimen was cyclically demineralized (Sprite Zero, pH 2.6, 4x90 s/day and exposed to artificial saliva between the erosive challenges for 7 days. The treatment with the fluoride solutions was done 2x60 s/day, immediately after the first and the last erosive challenges of the day. Dentin erosive loss was measured by profilometry (μm. The data were analyzed using Kruskal Wallis/Dunn tests (p<0.05.Results Mouthrinses containing TiF4or Sn/F were able to show some protective effect against dentin erosive loss compared to negative control. The best anti-erosive effect was found for experimental solution containing 0.0815% TiF4 (100% reduction in dentin loss, followed by 0.042% NaF+0.049% TiF4 (58.3%, SnCl2/NaF/AmF (52% and 0.063% NaF+0.036% TiF4 (40%. NaF solution (13.3% did not significantly differ from control.Conclusion The daily application of experimental mouthrinse containing TiF4and NaF has the ability to reduce dentin erosion, as well as Erosion Protection® and TiF4 alone.

  5. Protective effects of resin sealant and flowable composite coatings against erosive and abrasive wear of dental hard tissues. (United States)

    Zhao, Xiaoyi; Pan, Jie; Malmstrom, Hans S; Ren, Yan-Fang


    To test the effectiveness of sealant and flowable composite coating on eroded enamel, dentin and cementum under erosive/abrasive challenges in vitro. A total of 108 tissue sections (36 each for enamel, dentin and cementum) from third molars were assigned to three groups: Seal & Protect sealant (S&P), Tetric EvoFlow composite (TEF) and control. Erosive/abrasive lesions were created on each specimen by citric acid and brushing with toothpaste. S&P and TEF were applied to the lesions and subjected to erosive/abrasive cycling included 24 cycles of immersion in citric acid (pH 3.6) for 60min, followed by remineralization for 120min and brushing with toothpastes for 600 strokes at 150g. Erosive wear of materials or dental tissues were measured with 3D scanning microscopy and data were analyzed using ANOVA. Treatments with S&P and TEF created a protective material coating of 42.7±17.8μm and 150.8±9.9μm in thickness, respectively. After 24 cycles of erosive/abrasive challenges, tissue losses were -346.9±37.3μm for enamel, -166.5±26.3μm for dentin and -164.7±18.2μm for cementum in untreated controls, as compared to material losses of -24.4±3.3μm for S&P, and -10.8±4.4μm for TEF, respectively. Both S&P and TEF were effective in protecting enamel, dentin and cementum against erosive tooth wear (ppeeling in a third of the specimens. TEF remained intact on all three types of dental tissues at the end of the 24 cycles of erosive/abrasive challenges. A thin coating of flowable composite resin 150μm in thickness may provide long-term protection against erosive/abrasive tooth wear. Resin sealant may provide adequate protection for dental hard tissues in short-term and may require repeated applications if long-term protection is desired. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Scenario analysis of Agro-Environment measure adoption for soil erosion protection in Sicilian vineyard (Italy) (United States)

    Novara, Agata; Gristina, Luciano; Fantappiè, Maria; Costantini, Edoardo


    Most of the challenges in designing land use policies that address sustainability issues are inherent to the concept of Agro-Environmental Measures (AEM). Researchers, farmers and mainly policy makers need to evaluate the impact of new and existing policies for soil protection. In Europe, farmers commit themselves, for a minimum period of at least five years, to adopt environmentally-friendly farming techniques that undergone legal obligations. On the other hand, farmers receive payments that provide compensation for additional costs and income foregone resulting from applying those environmentally friendly farming practices in line with the stipulations of agri-environment contracts. In this context we prospect scenarios on soil erosion variations in a detailed case study after the application of Agro-Environmental Measures (AEM). The study area is located in the South part of Sicily. In a district area of 11,588 ha, 35.5 % is devoted to vineyard cultivation, 32.2 % is arable land and only 11.1 % cultivated to olive grow. 2416 ha are urbanized areas and other less important crops. A paired-site approach was chosen to study the difference in soil organic carbon stocks after AEM adoption, following criteria based on Conteh (1999) also applied in several research studies. For the purpose of comparison, the members of a paired site were selected to be similar with respect to the type of soil, slope, elevation, and drainage, but not to AEM. The comparisons were made between adjacent patches of land with different AEM, and a known history of land use and management. 100 paired sites (two adjacent plots) were chosen and three soil samples (0-30 cm depth) were collected in each plot (600 soil samples). The rainfall erosivity (R) factor (Mj mm ha-1 hour-1 year-1) was estimated with the formula specifically proposed for Sicily by Ferro and coauthors in 1999. The soil erodibility factor (K, in tons hour MJ-1 mm-1) was mapped on the base of soil texture and soil organic

  7. Optimal array of sand fences (United States)

    Lima, Izael A.; Araújo, Ascânio D.; Parteli, Eric J. R.; Andrade, José S.; Herrmann, Hans J.


    Sand fences are widely applied to prevent soil erosion by wind in areas affected by desertification. Sand fences also provide a way to reduce the emission rate of dust particles, which is triggered mainly by the impacts of wind-blown sand grains onto the soil and affects the Earth’s climate. Many different types of fence have been designed and their effects on the sediment transport dynamics studied since many years. However, the search for the optimal array of fences has remained largely an empirical task. In order to achieve maximal soil protection using the minimal amount of fence material, a quantitative understanding of the flow profile over the relief encompassing the area to be protected including all employed fences is required. Here we use Computational Fluid Dynamics to calculate the average turbulent airflow through an array of fences as a function of the porosity, spacing and height of the fences. Specifically, we investigate the factors controlling the fraction of soil area over which the basal average wind shear velocity drops below the threshold for sand transport when the fences are applied. We introduce a cost function, given by the amount of material necessary to construct the fences. We find that, for typical sand-moving wind velocities, the optimal fence height (which minimizes this cost function) is around 50 cm, while using fences of height around 1.25 m leads to maximal cost.

  8. Protective effect of casein phosphopeptide-amorphous calcium phosphate on enamel erosion: Atomic force microscopy studies. (United States)

    Ceci, Matteo; Mirando, Maria; Beltrami, Riccardo; Chiesa, Marco; Poggio, Claudio


    The aim of this study was to investigate the in vitro effect of a casein phosphopeptide-amorphous calcium phosphate (CPP-ACP) paste (GC Tooth Mousse- TM, GC Corporation, Tokyo, Japan) on preventing enamel erosion, by using Atomic Force Microscopy (AFM). 30 human incisors, were equally assigned to 6 groups: intact enamel, enamel + soft drink, enamel + TM, enamel + TM + soft drink, enamel + soft drink + TM, enamel + soft drink + TM + soft drink. Specimens were observed through atomic force microscopy (AFM). The most common topographical parameters were determined, such as the surface roughness (Rrms ). The use of soft drink on intact enamel has roughened the surface of the sample. The application of the CPP-ACP paste on non-treated enamel made the surface smoother. A significant decrease in roughness was seen after remineralization with CPP-ACP paste. Significant differences were recorded when comparing softened enamel with softened enamel remineralized with CPP-ACP paste. Comparing eroded enamel with demineralized/remineralized specimens, the application of a CPP-ACP paste leads to a significant reduction in roughness values. AFM images of enamel surface treated with CPP-ACP resulted in less morphological changes of the tooth substrate when compared with the only eroded enamel surface morphology; thus, indicating that CPP-ACP paste promoted remineralization. Specimens' surface roughness remained similar regardless that the protective agent is used before or after exposure to coke or between two demineralizing cycles. The results confirmed the effectiveness of the CPP-ACP paste on preventing enamel erosion produced by soft drinks. © Wiley Periodicals, Inc.


    Directory of Open Access Journals (Sweden)

    Hayrettin AHLATCI


    Full Text Available High pressure turbine components are subjected to a wide variety of thermal and mechanical loading during service. In addition, the components are exposed to a highly oxidizing atmosphere which may contain contaminants such as sulphates, chlorides and sulphuorous gases along with erosive media. So the variety of surface coatings and deposition processes available for the protection of blade and vane components in gas turbines are summarised in this study. Coating types range from simple diffusion aluminides to modified aluminides and a CoCrAlY overlayer. The recommendations for corrosion-resistant coatings (for low temperature and high temperature hot corrosion environments are as follows: silicon aluminide and platinumchromium aluminide for different gas turbine section superalloys substrates. Platinum metal additions are used to improve the properties of coatings on turbine components. Inorganic coatings based on ceramic films which contain aluminium or aluminium and silicon are very effective in engines and gas turbines. Diffusion, overlayer and thermal barrier coatings which are deposited on superalloys gas turbine components by pack cementation, plasma spraying processes and a number of chemical vapour deposition, physical vapour deposition processes (such as electron beam, sputtering, ion plating are described. The principles underlying the development of protective coatings serve as a useful guide in the choice of coatings for other high temperature applications.

  10. Erosion protection Phytoreinforcement of SCARP steep slopes of the holy virgin’s DITCH

    Directory of Open Access Journals (Sweden)

    Darchiya Valentina Ivanovna


    Full Text Available Erosion protection landscaping embedment of steep subsoil slopes is a time-sensitive issue of road construction and planning of recreational area that are often fit on a challenging picturesque terrain unsuitable for site development. The article provides the results of a 4-year experiment on landscaping and plant fixing of up to 4.5 m soil slopes with 1:1 and 2:1 grades; the experiment was carried out by the MGSU on the territory of a convent in the south of the Nizhniy Novgorod region. The site has slopes oriented towards all cardinals. At some places the slopes are bedimmed by trees. All these factors create a wide range of geo-ecological conditions for lawns. All the slopes are fixed with geo-fibrefill grids; slopes with 2:1 grade are strengthened by auxiliary grids made of reinforced metal bars, anchors and braces on the bottom of the Holy Moat. The paper recommends composition of grass plants as well as techniques to build up lawns suitable for various micro-climate conditions. It also advises the structure of multi-tier plant entity. The suggested methods are tested during a 3-year maintenance of slopes built for constant use.

  11. Application of erosion-control materials and spontaneous vegetation in the protection of reservoirs in southern and eastern Serbia

    Directory of Open Access Journals (Sweden)

    Matić Vjačeslava


    Full Text Available The quality and stability of erosion-control materials in protection of reservoirs in Southern and Eastern Serbia have been examined both in the field and in accredited laboratories in our country. Field investigations have been carried out over a period of 15 years in Eastern Serbia and for up to 30 years in Southern Serbia, and they are still being conducted by monitoring the state and possible damage of consolidation-retention check dams, walls, and other erosion-control structures. The materials used in protection of the Selova and Grlište Reservoirs are typical construction materials, such as resistant natural stone, concrete of the BI group, i.e., MB 20, aggregate, synthetic elements, etc. Long-term monitoring of their state and minor deformations has shown that the materials were well-chosen and stable, and that there has been no significant damage, except for some minor crumbling and smaller cracks due to negligible scouring. This is all the result of prior thorough empirical and laboratory testing of applied materials, which helped to achieve stability and functionality of structures erected to prevent silting-up of the reservoir. Such a state has contributed to stabilization of erosion processes and reduction of sediment quantities, improvement of water quality, and advancement of the autochthonous vegetation (Salix L., Cornus L., Quercus L.. Vegetation has further mitigated erosion, decreased floods, and consolidated the structures, thereby improving the ecological quality of the catchments as well as the entire study area.

  12. Integrated protecting plan for beach erosion. A case study in Plaka beach, E. Crete, Greece (United States)

    Petrakis, Stelios; Alexandrakis, George; Kozyrakis, George; Hatziyanni, Eleni; Kampanis, Nikolaos


    Coastal zones are among the most active areas on Earth, being subjected to extreme wind / wave conditions, thus vulnerable to erosion. In Greece and Crete in particular, beach zones are extremely important for the welfare of the inhabitants, since, apart for the important biological and archaeological value of the beach zones, the socio-economic value is critical since a great number of human activities are concentrated in such areas (touristic facilities, fishing harbors etc.). The present study investigates the erosional procedures observed in Plaka beach, E. Crete, Greece, a highly touristic developed area with great archaeological interest and proposes a cost-effective solution. The factors taken into consideration for the proposed solution in reducing the erosion of the beach were the study of the climatological, geological and geomorphological regime of the area, the recent (~70 years) shifting of the coastline through the study of topographic maps, aerial photographs and satellite images, the creation of detailed bathymetric and seabed classification maps of the area and finally, a risk analysis in terms of erosional phenomena. On the basis of the above, it is concluded that the area under investigation is subjected to an erosional rate of about 1 m/10 years and the total land-loss for the past 70 years is about 4600 m2. Through the simulation of the wave regime we studied 3 possible scenarios, the "do-nothing" scenario, the construction of a detached submerged breakwater at the depth of 3 meters and, finally, the armoring of the existing beach-wall through the placement of appropriate size and material boulders, forming an artificial slope for the reducing of the wave breaking energy and a small scale nourishment plan. As a result, through the modeling of the above, the most appropriate and cost-effective solution was found to be the third, armoring of the existing coastal wall and nourishment of the beach periodically, thus the further undermining of the

  13. Enhanced protective efficacy of nonpathogenic recombinant leishmania tarentolae expressing cysteine proteinases combined with a sand fly salivary antigen. (United States)

    Zahedifard, Farnaz; Gholami, Elham; Taheri, Tahereh; Taslimi, Yasaman; Doustdari, Fatemeh; Seyed, Negar; Torkashvand, Fatemeh; Meneses, Claudio; Papadopoulou, Barbara; Kamhawi, Shaden; Valenzuela, Jesus G; Rafati, Sima


    Novel vaccination approaches are needed to prevent leishmaniasis. Live attenuated vaccines are the gold standard for protection against intracellular pathogens such as Leishmania and there have been new developments in this field. The nonpathogenic to humans lizard protozoan parasite, Leishmania (L) tarentolae, has been used effectively as a vaccine platform against visceral leishmaniasis in experimental animal models. Correspondingly, pre-exposure to sand fly saliva or immunization with a salivary protein has been shown to protect mice against cutaneous leishmaniasis. Here, we tested the efficacy of a novel combination of established protective parasite antigens expressed by L. tarentolae together with a sand fly salivary antigen as a vaccine strategy against L. major infection. The immunogenicity and protective efficacy of different DNA/Live and Live/Live prime-boost vaccination modalities with live recombinant L. tarentolae stably expressing cysteine proteinases (type I and II, CPA/CPB) and PpSP15, an immunogenic salivary protein from Phlebotomus papatasi, a natural vector of L. major, were tested both in susceptible BALB/c and resistant C57BL/6 mice. Both humoral and cellular immune responses were assessed before challenge and at 3 and 10 weeks after Leishmania infection. In both strains of mice, the strongest protective effect was observed when priming with PpSP15 DNA and boosting with PpSP15 DNA and live recombinant L. tarentolae stably expressing cysteine proteinase genes. The present study is the first to use a combination of recombinant L. tarentolae with a sand fly salivary antigen (PpSP15) and represents a novel promising vaccination approach against leishmaniasis.

  14. Wave and Seepage-Flow Effects on Sand Streambanks and Their Protective Cover Layers; Demonstration Hydraulic Models. (United States)


    used in Plan 5B. 24 20. Plan 6, Figures 25 and 28, was a protected sand streambank identical with Plan 5A except for the nonwoven , or random mesh, filter ...fabric that was used in Plan 6. The nonwoven filter fabric was in- stalled in the same manner as described in paragraph 18 and Figures 20a and 20b...The nonwoven filter fabric had an EOS of 50. From Equation 8 D 85Soil 0.38 mm S01.28 > 1.0 EOS 50 0.297 mm and the gradient ratio for the nonwoven

  15. Impact of Sn/F Pre-Treatments on the Durability of Protective Coatings against Dentine Erosion/Abrasion.

    Directory of Open Access Journals (Sweden)

    Carolina Ganss

    Full Text Available For preventing erosive wear in dentine, coating with adhesives has been suggested as an alternative to fluoridation. However, clinical studies have revealed limited efficacy. As there is first evidence that Sn(2+ increases bond strength of the adhesive Clearfil SE (Kuraray, the aim of the present study was to investigate whether pre-treatment with different Sn(2+/F(- solutions improves the durability of Clearfil SE coatings. Dentine samples (eight groups, n=16/group were freed of smear layer (0.5% citric acid, 10 s, treated (15 s either with no solution (control, aminefluoride (AmF, 500 ppm F(-, pH 4.5, SnCl2 (800/1600 ppm Sn(2+; pH 1.5, SnCl2/AmF (500 ppm F(-, 800 ppm Sn(2+, pH 1.5/3.0/4.5, or Elmex Erosion Protection Rinse (EP, 500 ppm F-, 800 ppm Sn(2+, pH 4.5; GABA International, then rinsed with water (15 s and individually covered with Clearfil SE. Subsequently the specimens were subjected to an erosion/abrasion protocol consisting of 1320 cycles of immersion in 0.5% citric acid (5 °C/55 °C; 2 min and automated brushing (15 s, 200 g, NaF-toothpaste, RDA 80. As the coatings proved stable up to 1320 cycles, 60 modified cycles (brushing time 30 min/cycle were added. Wear was measured profilometrically. After SnCl2/AmF, pH 4.5 or EP pre-treatment all except one coating survived. In the other groups, almost all coatings were lost and there was no significant difference to the control group. Pre-treatment with a Sn(2+/F(- solution at pH 4.5 seems able to improve the durability of adhesive coatings, rendering these an attractive option in preventing erosive wear in dentine.

  16. Emergency wind erosion control (United States)

    February through May is the critical time for wind erosion in Kansas, but wind erosion can happen any time when high winds occur on smooth, wide fields with low vegetation and poor soil structure. The most effective wind erosion control is to ensure a protective cover of residue or growing crop thro...

  17. An Extreme Event as a Game Changer in Coastal Erosion Management

    DEFF Research Database (Denmark)

    Sørensen, Carlo Sass; Drønen, Nils K.; Knudsen, Per


    of cyclone Xaver in December 2013 with severe coastal erosion led to collaboration between the involved municipalities to work on a coherent solution for the entire coastline that involves sand nourishments, renovation and optimization of hard protection structures, and the restoration of recreational values...

  18. Morphology and structure of polymer layers protecting dental enamel against erosion. (United States)

    Beyer, Markus; Reichert, Jörg; Sigusch, Bernd W; Watts, David C; Jandt, Klaus D


    Human dental erosion caused by acids is a major factor for tooth decay. Adding polymers to acidic soft drinks is one important approach to reduce human dental erosion caused by acids. The aim of this study was to investigate the thickness and the structure of polymer layers adsorbed in vitro on human dental enamel from polymer modified citric acid solutions. The polymers propylene glycol alginate (PGA), highly esterified pectin (HP) and gum arabic (GA) were used to prepare polymer modified citric acids solutions (PMCAS, pH 3.3). With these PMCAS, enamel samples were treated for 30, 60 and 120s respectively to deposit polymer layers on the enamel surface. Profilometer scratches on the enamel surface were used to estimate the thickness of the polymer layers via atomic force microscopy (AFM). The composition of the deposited polymer layers was investigated with X-ray photoelectron spectroscopy (XPS). In addition the polymer-enamel interaction was investigated with zeta-potential measurements and scanning electron microscopy (SEM). It has been shown that the profilometer scratch depth on the enamel with deposited polymers was in the range of 10nm (30s treatment time) up to 25nm (120s treatment time). Compared to this, the unmodified CAS-treated surface showed a greater scratch depth: from nearly 30nm (30s treatment time) up to 60nm (120s treatment time). Based on XPS measurements, scanning electron microscopy (SEM) and zeta-potential measurements, a model was hypothesized which describes the layer deposited on the enamel surface as consisting of two opposing gradients of polymer molecules and hydroxyapatite (HA) particles. In this study, the structure and composition of polymer layers deposited on in vitro dental enamel during treatment with polymer modified citric acid solutions were investigated. Observations are consistent with a layer consisting of two opposing gradients of hydroxyapatite particles and polymer molecules. This leads to reduced erosive effects of

  19. Gendered Processes in Child Protection: 'Mother-blaming' and the Erosion of Men's Accountability

    Directory of Open Access Journals (Sweden)

    Majella Mulkeen


    Full Text Available The Inquiry Report of the Roscommon Child Care Case (HSE, 2010 was the first Inquiry Report into intra-familial child abuse and neglect in the Irish context to explicitly identify a gender dimension to its findings. This paper seeks to build on these observations and argues that an analysis of the gendering processes that underlie understandings of and responses to neglect, violence and abuse can make child protection policy and practice more effective. The absence of an analysis which places gender at the core of policy and practice in child protection and family support raises serious questions about the differentiated responses to women and men who are subject to and perpetrators of violence, rape and abuse. Constructions of femininity and masculinity within child protection which systematically excludes fathers and mitigate sexual abuse by mothers must be addressed in order to enhance the support offered to parents and the quality of protection available to children. In addition a discourse of ‘mother-blaming’ which renders women responsible for matters over which they have little control and the reinforcement of men’s power when their abuse remains invisible in professional interventions are the unintended consequences of ignoring the gender dimension of work in this challenging field. The findings of this paper suggest that a gender lens may contribute to better practice in child protection and the greater likelihood that children will be protected and parents supported, each according to their need.

  20. Design and construction of surge protection devices for rural distribution transformers based on the hygroscopic properties of sand

    Energy Technology Data Exchange (ETDEWEB)

    Arevalo, Liliana; Mejia, Antonio [National University of Colombia, Bogota (Colombia). EMC Research Group], Emails:,; Diaz, Oscar [Universidad Distrital FJC, Bogota (Colombia). School of Technology]. E-mail:


    The rural distribution transformer failure ratio due to lightning activity is a critical matter in several regions of Colombia. Different research projects have been funded by Colombian electrical companies in order to solve this problem. In some colombian regions, such as Rionegro, Cundinamarca, the transformer failure ratio has been as high as 50%. In different places around the world with a lightning activity similar to our country, the failure ratio has been kept close to 1%. The problem could be solved by developing an integral solution that includes: reduction of grounding resistance and inductive loops, specific transformer design and extensive use of surge arresters on the low and medium voltage transformer windings. The hygroscopic properties of granular materials against lightning-like current and voltage impulses were used to develop an economic surge protection device based on sand. The transformers with the highest failure ratio were selected to install this new type of surge protection device. The design and implementation of the new device for the distribution transformer low-voltage side is described in this paper. (author)

  1. Agri-spillways as soil erosion protection tools in conventional sloping vineyards (Montes de Málaga, Spain) (United States)

    Rodrigo-Comino, Jesús


    Rainfall causes soil erosion on Mediterranean sloping vineyards (>25˚ of slope inclination), however, little is known about information related to cheap, effective and suitable soil erosion protection measures. In the vineyards of the Montes de Málaga (southern Spain), a concrete land management practice against soil erosion is actually conducted by building tilled rills to down-slope direction to canalize water and sediments. We decided to call them agri-spillways. In this study, by carrying out runoff experiments, we assessed two agri-spillways (from 10 m to 15 m length) under extreme conditions. A motor driven pump mobilizes a constant water inflow about of 1.33 L s-1during between 12 and 15 minutes (≈1000 litres). Finally, we observed: i) a high capacity of these agri-spillways to canalize a large volume of water and sediments; and, ii) higher speed of water flow (from 0.16 m s-1to 0.28 m s-1) and sediment concentration (SC) rates with ratios up to 1538.6 g l-1). By comparing among them, the speed of water flow and the SC were much higher in one of tested rills, which was 5 meters length less and 7 degrees more of inclination. So, we concluded that these agri-spillways, after correctly planning and long term maintenance from contribution area to down-slope direction, can be function as a potential tool for designing suitable and cheap plans to protect the soil in Mediterranean sloping vineyards. Acknowledgements Firstly, we acknowledge the farmer's syndicate UPA (Unión de Pequeños Agricultores) and the wine-grower Pepe Gámez (Almáchar) for providing access to the study area. Secondly, we thank the students of the Bachelor course and Master from Trier University for their hard efforts in the field and laboratory works in the Almáchar campaign. Thirdly, we acknowledge the geomorphology and soil laboratory technicians María Pedraza and Rubén Rojas of GSoilLab (Málaga University) for the soil analysis. Finally, we also thank the Ministerio de Educaci

  2. The normative erosion of international refugee protection through UN Security Council practice

    NARCIS (Netherlands)

    Ahlborn, C.


    Since the early 1990s, the UN Security Council has used its enforcement measures under Chapter VII of the UN Charter to address different aspects of international refugee protection from the root causes of forced displacement to the search for durable solutions to the refugee problem. At the same

  3. A natural flavonoid present in unripe plantain banana pulp (Musa sapientum L. var. paradisiaca) protects the gastric mucosa from aspirin-induced erosions. (United States)

    Lewis, D A; Fields, W N; Shaw, G P


    The active anti-ulcerogenic ingredient was extracted from unripe plantain banana by solvent fractionation and identified by chromatography, spectroscopy and high performance liquid chromatography as the flavonoid leucocyanidin. Dried unripe plantain banana powder, the extracted leucocyanidin and a purified synthetic leucocyanidin demonstrated a significant (P < 0.05) protective effect against aspirin-induced erosions.

  4. Glass-ceramic coating material for the CO2laser based sintering of thin films as caries and erosion protection. (United States)

    Bilandžić, Marin Dean; Wollgarten, Susanne; Stollenwerk, Jochen; Poprawe, Reinhart; Esteves-Oliveira, Marcella; Fischer, Horst


    The established method of fissure-sealing using polymeric coating materials exhibits limitations on the long-term. Here, we present a novel technique with the potential to protect susceptible teeth against caries and erosion. We hypothesized that a tailored glass-ceramic material could be sprayed onto enamel-like substrates to create superior adhesion properties after sintering by a CO 2 laser beam. A powdered dental glass-ceramic material from the system SiO 2 -Na 2 O-K 2 O-CaO-Al 2 O 3 -MgO was adjusted with individual properties suitable for a spray coating process. The material was characterized using X-ray fluorescence analysis (XRF), heating microscopy, dilatometry, scanning electron microscopy (SEM), grain size analysis, biaxial flexural strength measurements, fourier transform infrared spectroscopy (FTIR), and gas pycnometry. Three different groups of samples (each n=10) where prepared: Group A, powder pressed glass-ceramic coating material; Group B, sintered hydroxyapatite specimens; and Group C, enamel specimens (prepared from bovine teeth). Group B and C where spray coated with glass-ceramic powder. All specimens were heat treated using a CO 2 laser beam process. Cross-sections of the laser-sintered specimens were analyzed using laser scanning microscopy (LSM), energy dispersive X-ray analysis (EDX), and SEM. The developed glass-ceramic material (grain size d50=13.1mm, coefficient of thermal expansion (CTE)=13.310 -6 /K) could be spray coated on all tested substrates (mean thickness=160μm). FTIR analysis confirmed an absorption of the laser energy up to 95%. The powdered glass-ceramic material was successfully densely sintered in all sample groups. The coating interface investigation by SEM and EDX proved atomic diffusion and adhesion of the glass-ceramic material to hydroxyapatite and to dental enamel. A glass-ceramic material with suitable absorption properties was successfully sprayed and laser-sintered in thin films on hydroxyapatite as well as on

  5. Sand Drift Potential by Wind in Shileh Plain of Sistan

    Directory of Open Access Journals (Sweden)

    S. Poormand


    research could be used to protect this highway from sand dune migration. The residential areas and the infrastructure can be damaged by the migration of sand dunes since the sand dunes can move both spatially and temporally. For example, we can even notify the highway passengers about the rate of monthly and seasonal migration of sand dunes so that they avoid travelling during high-storm seasons. The results of this study are also important regarding wind-break design to protect the infrastructure such as highways and agricultural fields. Therefore, sand encroachment hazards affect man-made infrastructures due to wind speed and direction. Sand drift potential is a serious hazard to settlements and other lands as well. This problem is accelerated by the extreme arid conditions (such as the case of Shileh that may occur in different months of summer. Keywords: Resultant Drift Direction, Sand Drift Potential, Sand Dune, Wind Erosion, Wind Regime

  6. Immunity to a salivary protein of a sand fly vector protects against the fatal outcome of visceral leishmaniasis in a hamster model. (United States)

    Gomes, Regis; Teixeira, Clarissa; Teixeira, Maria Jânia; Oliveira, Fabiano; Menezes, Maria José; Silva, Claire; de Oliveira, Camila I; Miranda, Jose C; Elnaiem, Dia-Eldin; Kamhawi, Shaden; Valenzuela, Jesus G; Brodskyn, Cláudia I


    Visceral leishmaniasis (VL) is a fatal disease for humans, and no vaccine is currently available. Sand fly salivary proteins have been associated with protection against cutaneous leishmaniasis. To test whether vector salivary proteins can protect against VL, a hamster model was developed involving intradermal inoculation in the ears of 100,000 Leishmania infantum chagasi parasites together with Lutzomyia longipalpis saliva to mimic natural transmission by sand flies. Hamsters developed classical signs of VL rapidly, culminating in a fatal outcome 5-6 months postinfection. Saliva had no effect on the course of infection in this model. Immunization with 16 DNA plasmids coding for salivary proteins of Lu. longipalpis resulted in the identification of LJM19, a novel 11-kDa protein, that protected hamsters against the fatal outcome of VL. LJM19-immunized hamsters maintained a low parasite load that correlated with an overall high IFN-gamma/TGF-beta ratio and inducible NOS expression in the spleen and liver up to 5 months postinfection. Importantly, a delayed-type hypersensitivity response with high expression of IFN-gamma was also noted in the skin of LJM19-immunized hamsters 48 h after exposure to uninfected sand fly bites. Induction of IFN-gamma at the site of bite could partly explain the protection observed in the viscera of LJM19-immunized hamsters through direct parasite killing and/or priming of anti-Leishmania immunity. We have shown that immunity to a defined salivary protein (LJM19) confers powerful protection against the fatal outcome of a parasitic disease, which reinforces the concept of using components of arthropod saliva in vaccine strategies against vector-borne diseases.

  7. Catastrophic die-off of globally threatened Arabian Oryx and Sand Gazelle in the fenced protected area of the arid central Saudi Arabia

    Directory of Open Access Journals (Sweden)

    M.Z. Islam


    Full Text Available A large number of die-off of globally threatened Arabian Oryx (Oryx leucoryx, and Arabian Sand Gazelle (Gazella subgutturosa marica were recorded from 1999 to 2008 in fenced Mahazat as-Sayd Protected Area (PA in western-central Saudi Arabia. Mortalities of animals have been recorded during summer months when the rainfall is negligible or insignificant. Deaths were due to starvation because of reduced availability, accessibility and quality of food plants in the area. In total, 560 oryx and 2815 sand gazelle deaths were recorded since the reintroduction projects began till the end of 2008. Mortalities of animals were higher in 1999-2001, 2006, 2007 and 2008. Grazing of oryx habitat depends on rainfall and animals move over great distances in response to rain. The fence around Mahazat as-Sayd PA prevents natural movements of animals, and artificially concentrates the ungulate populations into possibly unfavourable habitat. The sand gazelle is a highly gregarious and migratory species, moving long distances in search of good quality pastures. Populations of sand gazelle in Central Asia are also known to migrate over large distances, covering several hundred kilometers. It is therefore likely that by preventing natural movements of sand gazelles and oryx, fencing may have reinforced the effects of stressful conditions such as drought. To reduce the catastrophic effects, a Strategy and Action Plan was developed in August 2008 to manage oryx and gazelle within the reserve and with provision for food and water at the five camps in the reserve as emergency plan to minimize mortalities.

  8. Light-induced changes within photosystem II protects Microcoleus sp. in biological desert sand crusts against excess light.

    Directory of Open Access Journals (Sweden)

    Itzhak Ohad

    Full Text Available The filamentous cyanobacterium Microcoleus vaginatus, a major primary producer in desert biological sand crusts, is exposed to frequent hydration (by early morning dew followed by desiccation during potentially damaging excess light conditions. Nevertheless, its photosynthetic machinery is hardly affected by high light, unlike "model" organisms whereby light-induced oxidative stress leads to photoinactivation of the oxygen-evolving photosystem II (PSII. Field experiments showed a dramatic decline in the fluorescence yield with rising light intensity in both drying and artificially maintained wet plots. Laboratory experiments showed that, contrary to "model" organisms, photosynthesis persists in Microcoleus sp. even at light intensities 2-3 times higher than required to saturate oxygen evolution. This is despite an extensive loss (85-90% of variable fluorescence and thermoluminescence, representing radiative PSII charge recombination that promotes the generation of damaging singlet oxygen. Light induced loss of variable fluorescence is not inhibited by the electron transfer inhibitors 3-(3,4-dichlorophenyl-1,1-dimethylurea (DCMU, 2,5-dibromo-3-methyl-6-isopropylbenzoquinone (DBMIB, nor the uncoupler carbonyl cyanide-p-trifluoromethoxyphenylhydrazone (FCCP, thus indicating that reduction of plastoquinone or O(2, or lumen acidification essential for non-photochemical quenching (NPQ are not involved. The rate of Q(A (- re-oxidation in the presence of DCMU is enhanced with time and intensity of illumination. The difference in temperatures required for maximal thermoluminescence emissions from S(2/Q(A (- (Q band, 22 degrees C and S(2,3/Q(B (- (B band, 25 degrees C charge recombinations is considerably smaller in Microcoleus as compared to "model" photosynthetic organisms, thus indicating a significant alteration of the S(2/Q(A (- redox potential. We propose that enhancement of non-radiative charge recombination with rising light intensity may reduce

  9. Fontainebleau Sand

    DEFF Research Database (Denmark)

    Leth, Caspar Thrane


    The report is a summary of results from laboratory tests in the geotechncial research group on Fontainebleau sand.......The report is a summary of results from laboratory tests in the geotechncial research group on Fontainebleau sand....

  10. Testing and prediction of erosion-corrosion for corrosion resistant alloys used in the oil and gas production industry (United States)

    Rincon, Hernan E.

    The corrosion behavior of CRAs has been thoroughly investigated and documented in the public literature by many researchers; however, little work has been done to investigate erosion-corrosion of such alloys. When sand particles are entrained in the flow, the degradation mechanism is different from that observed for sand-free corrosive environment. There is a need in the oil and gas industry to define safe service limits for utilization of such materials. The effects of flow conditions, sand rate, pH and temperature on the erosion-corrosion of CRAs were widely studied. An extensive experimental work was conducted using scratch tests and flow loop tests using several experimental techniques. At high erosivity conditions, a synergistic effect between erosion and corrosion was observed. Under the high sand rate conditions tested, erosivity is severe enough to damage the passive layer protecting the CRA thereby enhancing the corrosion rate. In most cases there is likely a competition between the rates of protective film removal due to mechanical erosion and protective film healing. Synergism occurs for each of the three alloys examined (13Cr and Super13Cr and 22Cr); however, the degree of synergism is quite different for the three alloys and may not be significant for 22Cr for field conditions where erosivities are typically much lower that those occurring in the small bore loop used in this research. Predictions of the corrosion component of erosion-corrosion based on scratch test data compared reasonably well to test results from flow loops for the three CRAs at high erosivity conditions. Second order behavior appears to be an appropriate and useful model for representing the repassivation process of CRAs. A framework for a procedure to predict penetration rates for erosion-corrosion conditions was developed based on the second order model behavior observed for the re-healing process of the passive film of CRAs and on computational fluid dynamics (CFD) simulations

  11. Determining Consistency of Tillage Direction with Soil Erosion Protection Requirements as The Element of Decision-Making Process in Planning and Applying Land Consolidation (United States)

    Bozek, Piotr; Janus, Jaroslaw; Taszakowski, Jaroslaw; Glowacka, Agnieszka


    boundaries, it is impossible to adapt the direction of cultivation to the requirements of protection against erosion.

  12. Saliva and dental erosion

    Directory of Open Access Journals (Sweden)

    Marília Afonso Rabelo Buzalaf


    Full Text Available Dental erosion is a multifactorial condition. The consideration of chemical, biological and behavioral factors is fundamental for its prevention and therapy. Among the biological factors, saliva is one of the most important parameters in the protection against erosive wear. Objective: This review discusses the role of salivary factors on the development of dental erosion. Material and Methods: A search was undertaken on MeDLINe website for papers from 1969 to 2010. The keywords used in the research were "saliva", "acquired pellicle", "salivary flow", "salivary buffering capacity" and "dental erosion". Inclusion of studies, data extraction and quality assessment were undertaken independently and in duplicate by two members of the review team. Disagreements were solved by discussion and consensus or by a third party. Results: Several characteristics and properties of saliva play an important role in dental erosion. Salivary clearance gradually eliminates the acids through swallowing and saliva presents buffering capacity causing neutralization and buffering of dietary acids. Salivary flow allows dilution of the acids. In addition, saliva is supersaturated with respect to tooth mineral, providing calcium, phosphate and fluoride necessary for remineralization after an erosive challenge. Furthermore, many proteins present in saliva and acquired pellicle play an important role in dental erosion. Conclusions: Saliva is the most important biological factor affecting the progression of dental erosion. Knowledge of its components and properties involved in this protective role can drive the development of preventive measures targeting to enhance its known beneficial effects.

  13. Saliva and dental erosion (United States)

    BUZALAF, Marília Afonso Rabelo; HANNAS, Angélicas Reis; KATO, Melissa Thiemi


    Dental erosion is a multifactorial condition. The consideration of chemical, biological and behavioral factors is fundamental for its prevention and therapy. Among the biological factors, saliva is one of the most important parameters in the protection against erosive wear. Objective This review discusses the role of salivary factors on the development of dental erosion. Material and Methods A search was undertaken on MEDLINE website for papers from 1969 to 2010. The keywords used in the research were "saliva", "acquired pellicle", "salivary flow", "salivary buffering capacity" and "dental erosion". Inclusion of studies, data extraction and quality assessment were undertaken independently and in duplicate by two members of the review team. Disagreements were solved by discussion and consensus or by a third party. Results Several characteristics and properties of saliva play an important role in dental erosion. Salivary clearance gradually eliminates the acids through swallowing and saliva presents buffering capacity causing neutralization and buffering of dietary acids. Salivary flow allows dilution of the acids. In addition, saliva is supersaturated with respect to tooth mineral, providing calcium, phosphate and fluoride necessary for remineralization after an erosive challenge. Furthermore, many proteins present in saliva and acquired pellicle play an important role in dental erosion. Conclusions Saliva is the most important biological factor affecting the progression of dental erosion. Knowledge of its components and properties involved in this protective role can drive the development of preventive measures targeting to enhance its known beneficial effects. PMID:23138733

  14. Water erosion and soil protection technology in the agro-industrial farms around the Wadi El Ouaar, Taroudant sedimentary fan, Morocco (United States)

    Ghafrani, Hassan; Hssaine, Ali Ait


    Soil erosion is a phenomenon of global order. Similarly, it affects the soils around the Mediterranean, by removing considerable amounts of arable land and reducing their fertility. Thus, it reduces their agricultural productivity. In the Maghrebian countries, the erosion continues to degrade soils despite the techniques adopted by farmers and state efforts initiated since the 1940s in the field of erosion control. The negative impacts of this phenomenon increase by the combination of natural (climate, topography, lithology and soils) and anthropogenic factors (forest clearance, overgrazing, inappropriate and artificial development). The sedimentary fan of Taroudant (in the south of the High Atlas) is in a morphological imbalance. Therefore, the recent morphological activity leads to a threat of the agricultural development. The resulting forms are leading to a large wadi. Around the Wadi El Ouaar, there are currently situated both types of oppositional farms, traditional and modern ones. Indeed, traditional agriculture is still practiced by the majority of the inhabitants of the 11 population groups (douars) installed in this area. Modern agriculture is installed there since 1960, but since the 1990s, the number of farms is exploding. Clearing for farming purposes and pastoralism, combined with climatic conditions and soil formation mainly of silt have accelerated the phenomenon of gullies formed by erosion in this area. Thus, in the occasion of each precipitation event, gully growth is triggered enormously. In addition, farmers and residents are feared to lose their land. In this context, farmers are fighting hard against the gullies to protect their property. A survey of farmers conducted in the region of Taroudant shows that gully growth requires them to spend a high portion of their profits to constantly fight against the erosion. Despite the diversity of the used resources (concrete, gabion, vegetation, etc.) to prevent the arable land from soil erosion

  15. Backshore sill beach and dune erosion control system

    Energy Technology Data Exchange (ETDEWEB)

    Sample, J.W.


    A backshore sill beach and dune erosion control system is described comprising: a supporting protective apron formed of weather and water resistant cloth. The apron includes a flat base portion and an angularly sloped portion extending seaward of the base portion, a toe scour anchor tube connected to the seaward end of the apron sloped portion, and longitudinal sand-filled geotextile containers placed upon the apron base portion each extending longitudinally shore parallel to the incoming surf. The sand-filled geotextile containers are specifically placed upon the beach in a pyramidal longitudinally extending shore parallel relation to an area being protected whereby wave action impacts upon relatively soft surfaces of the containers and is dissipated before normally impacting surfaces that would otherwise be eroded.

  16. Estimating rates of coastal cliff erosion in a small island using terrestrial laser scanning and RPAS-based SfM-MVS photogrammetry (United States)

    Hayakawa, Yuichi S.; Obanawa, Hiroyuki


    Rapid erosion of coastal cliffs has been historically observed to be more than 1 m/y in the outer Boso Peninsula area, eastern Japan. However, due to the modern work of coastal protection, the erosion rates of the coastal cliffs have significantly decreased. This caused coastal erosion in the nearby sand beach, to which sands had been supplied from the formerly eroded rocky coast. In order to assess the relationships between erosion and protection in both rocky and sandy coasts, quantitative evaluation of erosion rates by natural processes would be necessary. The Suzume-jima Island, a small coastal island in the outer Boso Peninsula area, is an ideal site, which is located outside of the coastal protection and natural processes of erosion can still be observed. Here we carried out multiple measurements of the entire shape of the island using remotely piloted aerial system (RPAS) and structure-from-motion multi-view stereo (SfM-MVS) photogrammetry. Terrestrial laser scanning is also performed for the accuracy assessment. The high-frequency (3 times a year) and high-resolution (cm) measurements of the small island for 3 years revealed spatially variable rockfalls and wave erosion, whose volume of mass has been quantitatively revealed from the 3-D point cloud obtained. The relatively short-term measurements are also compared with the long-term 2-D topographic changes in the island by aerial photographs for 50 years.

  17. Documenting the global impacts of beach sand mining (United States)

    Young, R.; Griffith, A.


    For centuries, beach sand has been mined for use as aggregate in concrete, for heavy minerals, and for construction fill. The global extent and impact of this phenomenon has gone relatively unnoticed by academics, NGOs, and major news sources. Most reports of sand mining activities are found at the very local scale (if the mining is ever documented at all). Yet, sand mining in many localities has resulted in the complete destruction of beach (and related) ecosystems along with severe impacts to coastal protection and tourism. The Program for the Study of Developed Shorelines at Western Carolina University and have initiated the construction of a global database of beach sand mining activities. The database is being built through a combination of site visits and through the data mining of media resources, peer reviewed papers, and reports from private and governmental entities. Currently, we have documented sand mining in 35 countries on 6 continents representing the removal of millions of cubic meters of sand. Problems extend from Asia where critical infrastructure has been disrupted by sand mining to the Caribbean where policy reform has swiftly followed a highly publicized theft of sand. The Program for the Study of Developed Shorelines recently observed extensive sand mining in Morocco at the regional scale. Tens of kilometers of beach have been stripped of sand and the mining continues southward reducing hope of a thriving tourism-based economy. Problems caused by beach sand mining include: destruction of natural beaches and the ecosystems they protect (e.g. dunes, wetlands), habitat loss for globally important species (e.g. turtles, shorebirds), destruction of nearshore marine ecosystems, increased shoreline erosion rates, reduced protection from storms, tsunamis, and wave events, and economic losses through tourist abandonment and loss of coastal aesthetics. The threats posed by sand mining are made even more critical given the prospect of a

  18. Characterization of the early inflammatory infiltrate at the feeding site of infected sand flies in mice protected from vector-transmitted Leishmania major by exposure to uninfected bites.

    Directory of Open Access Journals (Sweden)

    Clarissa Teixeira


    Full Text Available Mice exposed to sand fly saliva are protected against vector-transmitted Leishmania major. Although protection has been related to IFN-γ producing T cells, the early inflammatory response orchestrating this outcome has not been defined.Mice exposed to uninfected P. duboscqi bites and naïve mice were challenged with L. major-infected flies to characterize their early immune response at the bite site. Mostly, chemokine and cytokine transcript expression post-infected bites was amplified in exposed compared to naïve mice. In exposed mice, induced chemokines were mostly involved in leukocyte recruitment and T cell and NK cell activation; IL-4 was expressed at 6 h followed by IFN-γ and iNOS2 as well as IL-5 and IL-10 expression. In naïve animals, the transcript expression following Leishmania-infected sand fly bites was suppressed. Expression profiles translated to an earlier and significantly larger recruitment of leukocytes including neutrophils, macrophages, Gr+ monocytes, NK cells and CD4+ T cells to the bite site of exposed compared to naïve mice post-infected bites. Additionally, up to 48 hours post-infected bites the number of IFN-γ-producing CD4+ T cells and NK cells arriving at the bite site was significantly higher in exposed compared to naïve mice. Thereafter, NK cells become cytolytic and persist at the bite site up to a week post-bite.The quiet environment induced by a Leishmania-infected sand fly bite in naïve mice was significantly altered in animals previously exposed to saliva of uninfected flies. We propose that the enhanced recruitment of Gr+ monocytes, NK cells and CD4 Th1 cells observed at the bite site of exposed mice creates an inhospitable environment that counters the establishment of L. major infection.

  19. The telomeric protein TRF2 is critical for the protection of A549 cells from both telomere erosion and DNA double-strand breaks driven by salvicine. (United States)

    Zhang, Yong-Wei; Zhang, Zhi-Xiang; Miao, Ze-Hong; Ding, Jian


    Telomere repeat binding factor 2 (TRF2) has been increasingly recognized to be involved in DNA damage response and telomere maintenance. Our previous report found that salvicine (SAL), a novel topoisomerase II poison, elicited DNA double-strand breaks and telomere erosion in separate experimental systems. However, it remains to be clarified whether they share a common response to these two events and in particular whether TRF2 is involved in this process. In this study, we found that SAL concurrently induced DNA double-strand breaks, telomeric DNA damage, and telomere erosion in lung carcinoma A549 cells. It was unexpected to find that SAL led to disruption of TRF2, independently of either its transcription or proteasome-mediated degradation. By overexpressing the full-length trf2 gene and transfecting TRF2 small interfering RNAs, we showed that TRF2 protein protected both telomeric and genomic DNA from the SAL-elicited events. It is noteworthy that although both the Ataxia-telangiectasia-mutated (ATM) and the ATM- and Rad3-related (ATR) kinases responded to the SAL-induced DNA damages, only ATR was essential for the telomere erosion. The study also showed that the activated ATR augmented the SAL-triggered TRF2 disruption, whereas TRF2 reduction in turn enhanced ATR function. All of these findings suggest the emerging significance of TRF2 protecting both telomeric DNA and genomic DNA on the one hand and reveal the mutual modulation between ATR and TRF2 in sensing DNA damage signaling during cancer development on the other hand.

  20. Drawing lines at the sand: evidence for functional vs. visual reef boundaries in temperate Marine Protected Areas. (United States)

    Sheehan, E V; Cousens, S L; Nancollas, S J; Stauss, C; Royle, J; Attrill, M J


    Marine Protected Areas (MPAs) can either protect all seabed habitats within them or discrete features. If discrete features within the MPA are to be protected humans have to know where the boundaries are. In Lyme Bay, SW England a MPA excluded towed demersal fishing gear from 206 km(2) to protect rocky reef habitats and the associated species. The site comprised a mosaic of sedimentary and reef habitats and so 'non reef' habitat also benefited from the MPA. Following 3 years protection, video data showed that sessile Reef Associated Species (RAS) had colonised sedimentary habitat indicating that 'reef' was present. This suggested that the functional extent of the reef was potentially greater than its visual boundary. Feature based MPA management may not adequately protect targeted features, whereas site based management allows for shifting baselines and will be more effective at delivering ecosystem goods and services. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  1. Shoreline Protection and Beach Erosion Control Study. Final Report: An Analysis of the U.S. Army Corps of Engineers Shore Protection Program (United States)


    Coastal Geology Program ( CGP ) is a component of the U.S. Department of the Interior, Geologic Survey’s Marine and Coastal Geologic Surveys. Its purpose...Wetlands Deterioration, (3) Coastal Pollution, and (4) Hard- Mineral Resources (such as sand sources). c. During Fiscal Year 1993, the CGP supported...organisms. f. Mitigation and Enhancement Costs. Costs may be incurred for relocating nests of birds or reptiles , replanting of vegetation, tilling of

  2. Role of Sand Grains in Sorption Processes by Surface Layers of Components of Sand Moulds

    Directory of Open Access Journals (Sweden)

    Kaźnica N.


    Full Text Available The results of researches of sorption processes of surface layers of components of sand moulds covered by protective coatings are presented in the hereby paper. Investigations comprised various types of sand grains of moulding sands with furan resin: silica sand, reclaimed sand and calcined in temperature of 700°C silica sand. Two kinds of alcoholic protective coatings were used - zirconium and zirconium - graphite. Tests were performed under condition of a constant temperature within the range 30 - 35°C and high relative air humidity 75 - 80%. To analyze the role of sand grains in sorption processes quantitavie moisture sorption with use of gravimetric method and ultrasonic method were used in measurements. The tendency to moisture sorption of surface layers of sand moulds according to the different kinds of sand grains was specified. The effectiveness of protective action of coatings from moisture sorption was analyzed as well.

  3. Splash erosion

    NARCIS (Netherlands)

    Fernández-Raga, María; Palencia, Covadonga; Keesstra, Saskia; Jordán, Antonio; Fraile, Roberto; Angulo-Martínez, Marta; Cerda Bolinches, Artemio


    Soil erosion is a serious ecological and environmental problem, and the main cause of land degradation in many ecosystems at global scale. Detachment of soil particles by raindrop splash is the first stage in the soil erosion process. A review of the scientific literature published in

  4. Dune erosion during storm surges

    NARCIS (Netherlands)

    Van Thiel de Vries, J.S.M.


    Large parts of The Netherlands are protected from flooding by a narrow strip of sandy beaches and dunes. The aim of this thesis is to extend the existing knowledge of dune erosion during storm surges as it occurs along the Dutch coast. The thesis discusses: • A large scale dune erosion experiment to

  5. Estimation of vanadium water quality benchmarks for the protection of aquatic life with relevance to the Athabasca Oil Sands region using species sensitivity distributions. (United States)

    Schiffer, Stephanie; Liber, Karsten


    Elevated vanadium (V) concentrations in oil sands coke, which is produced and stored on site of some major Athabasca Oil Sands companies, could pose a risk to aquatic ecosystems in northern Alberta, Canada, depending on its future storage and utilization. In the present study, V toxicity was determined in reconstituted Athabasca River water to various freshwater organisms, including 2 midge species (Chironomus dilutus and Chironomus riparius; 4-d and 30-d to 40-d exposures) and 2 freshwater fish species (Oncorhynchus mykiss and Pimephales promelas; 4-d and 28-d exposures) to facilitate estimation of water quality benchmarks. The acute toxicity of V was 52.0 and 63.2 mg/L for C. dilutus and C. riparius, respectively, and 4.0 and 14.8 mg V/L for P. promelas and O. mykiss, respectively. Vanadium exposure significantly impaired adult emergence of C. dilutus and C. riparius at concentrations ≥16.7 (31.6% reduction) and 8.3 (18.0% reduction) mg/L, respectively. Chronic toxicity in fish presented as lethality, with chronic 28-d LC50s of 0.5 and 4.3 mg/L for P. promelas and O. mykiss, respectively. These data were combined with data from the peer-reviewed literature, and separate acute and chronic species sensitivity distributions (SSDs) were constructed. The acute and chronic hazardous concentrations endangering only 5% of species (HC5) were estimated as 0.64 and 0.05 mg V/L, respectively. These new data for V toxicity to aquatic organisms ensure that there are now adequate data available for regulatory agencies to develop appropriate water quality guidelines for use in the Athabasca Oil Sands region and elsewhere. Until then, the HC5 values presented in the present study could serve as interim benchmarks for the protection of aquatic life from exposure to hazardous levels of V in local aquatic environments. Environ Toxicol Chem 2017;36:3034-3044. © 2017 SETAC. © 2017 SETAC.

  6. Coupled wellbore erosion and stability analysis (United States)

    Stavropoulou, M.; Papanastasiou, P.; Vardoulakis, I.


    This paper extends earlier work on sand erosion and presents an attempt to couple sand erosion to mechanical damage of rock around a wellbore. Porosity which evolves in time and space as surface erosion progresses, is chosen as the coupling parameter. Both rock elasticity and strength (cohesion) are assumed to depend on porosity in such a way that the material becomes weaker with increasing porosity. The mathematical model, consists of erosion equations, mixture flow equations and stress equilibrium equations, is solved numerically by Galerkin finite element method. Numerical results suggest that erosion, resulting in sand production, is high close to the free surface. Erosion is accompained by changes in porosity and a significant permeability increase. Erosion in the vicinity of the wellbore induces alterations in the mechanical behaviour of the medium. Weakening of rock stiffness leads to severe alteration of both effective stresses and pore pressure near the cavity. Since cohesion decreases with increasing porosity, one can also identify the time instant at which rock mechanical failure starts.

  7. Protection against productivity versus erosion vineyards. Testing of vegetal covers in slope crops; Proteccion contra la erosion versus productividad en venidos. Ensayos de cubiertas vegetales en cultivos en pendiente

    Energy Technology Data Exchange (ETDEWEB)

    Marques, M. J.; Ruiz-Colmenero, M.; Garcia-Munoz, S.; Cabello, F.; Munoz-Organero, G.; Perez-Jimenez, M. A.; Bienes, R.


    Temporary and permanent cover crops were used in three rain fed vineyards in the Center of Spain. They were sown in the middle of the strips to assess their ability to control erosion as well as their influence on grape production. Data from the year 2008 are compared with those obtained with traditional tillage treatment. The permanent cover formed by Brachypodium distachyon showed better ability to control erosion but it produced a decrease in production in young vines. barley and rye treatments were temporary covers, mowed in spring. They also reduced the erosion compared with the tillage however they did not appear to affect the vineyard production. (Author)

  8. Sands at Gusev Crater, Mars (United States)

    Cabrol, Nathalie A.; Herkenhoff, Kenneth E.; Knoll, Andrew H.; Farmer, Jack D.; Arvidson, Raymond E.; Grin, E.A.; Li, Ron; Fenton, Lori; Cohen, B.; Bell, J.F.; Yingst, R. Aileen


    Processes, environments, and the energy associated with the transport and deposition of sand at Gusev Crater are characterized at the microscopic scale through the comparison of statistical moments for particle size and shape distributions. Bivariate and factor analyses define distinct textural groups at 51 sites along the traverse completed by the Spirit rover as it crossed the plains and went into the Columbia Hills. Fine-to-medium sand is ubiquitous in ripples and wind drifts. Most distributions show excess fine material, consistent with a predominance of wind erosion over the last 3.8 billion years. Negative skewness at West Valley is explained by the removal of fine sand during active erosion, or alternatively, by excess accumulation of coarse sand from a local source. The coarse to very coarse sand particles of ripple armors in the basaltic plains have a unique combination of size and shape. Their distribution display significant changes in their statistical moments within the ~400 m that separate the Columbia Memorial Station from Bonneville Crater. Results are consistent with aeolian and/or impact deposition, while the elongated and rounded shape of the grains forming the ripples, as well as their direction of origin, could point to Ma'adim Vallis as a possible source. For smaller particles on the traverse, our findings confirm that aeolian processes have dominated over impact and other processes to produce sands with the observed size and shape patterns across a spectrum of geologic (e.g., ripples and plains soils) and aerographic settings (e.g., wind shadows).

  9. Sands at Gusev Crater, Mars (United States)

    Cabrol, Nathalie A.; Herkenhoff, Kenneth; Knoll, Andrew H.; Farmer, Jack; Arvidson, Raymond; Grin, Edmond; Li, Ronxing; Fenton, Lori; Cohen, Barbara; Bell, James F.; Aileen Yingst, R.


    Processes, environments, and the energy associated with the transport and deposition of sand at Gusev Crater are characterized at the microscopic scale through the comparison of statistical moments for particle size and shape distributions. Bivariate and factor analyses define distinct textural groups at 51 sites along the traverse completed by the Spirit rover as it crossed the plains and went into the Columbia Hills. Fine-to-medium sand is ubiquitous in ripples and wind drifts. Most distributions show excess fine material, consistent with a predominance of wind erosion over the last 3.8 billion years. Negative skewness at West Valley is explained by the removal of fine sand during active erosion, or alternatively, by excess accumulation of coarse sand from a local source. The coarse to very coarse sand particles of ripple armors in the basaltic plains have a unique combination of size and shape. Their distribution display significant changes in their statistical moments within the ~400 m that separate the Columbia Memorial Station from Bonneville Crater. Results are consistent with aeolian and/or impact deposition, while the elongated and rounded shape of the grains forming the ripples, as well as their direction of origin, could point to Ma'adim Vallis as a possible source. For smaller particles on the traverse, our findings confirm that aeolian processes have dominated over impact and other processes to produce sands with the observed size and shape patterns across a spectrum of geologic (e.g., ripples and plains soils) and aerographic settings (e.g., wind shadows).

  10. Critical storm thresholds for the generation of significant dune erosion at Dziwnow Spit, Poland (United States)

    Furmańczyk, K. K.; Dudzińska-Nowak, J.; Furmańczyk, K. A.; Paplińska-Swerpel, B.; Brzezowska, N.


    Storm influence on the southern Baltic coast was examined for a 14-km long section of the Polish coast along the Dziwnow Spit based on 30 years of post-storm dune erosion observations. In this study, we assumed that a significant storm causes noticeable sand dune erosion. Significant changes of the coast after each major storm were analysed based on reports from 1978 to 2008 provided by the Maritime Office, Szczecin. Thirty-two storms that caused dune losses were chosen for analysis. Correlation and hierarchical cluster analysis allowed us to distinguish three groups of storms that caused varying amounts of dune erosion: G1 (small), G2 (medium), and G3 (large). Sea level is the main parameter that influences the amount of dune erosion caused by storms on the southern Baltic coast. Factors such as maximum significant wave height, mean wave direction, storm energy and duration can also, but less significantly, influence dune erosion. The study area was divided into two sections: Dziwnow, where there are many protection measures in place, and Miedzywodzie, which has no protection measures in place. In both areas, we observed differences in the impact of sea level and significant wave height and storm groupings. Approximate minimum sea level and significant wave height thresholds were defined for particular storm groups.

  11. Evaluation of insecticides and repellents for the control of the sand fly Phlebotomus papatasi to protect deployed U.S. Military personnel (United States)

    Phlebotomine sand flies, including Phlebotomus papatasi, are important blood feeders and vectors that transmit the disease agents (Leishmania) that cause Leishmaniasis. Deployed U.S. Military Personnel in Iraq and Afghanistan suffered from sand fly bites and the disease they transmit. A USDA-DoD joi...

  12. Erosion resistance of bionic functional surfaces inspired from desert scorpions. (United States)

    Zhiwu, Han; Junqiu, Zhang; Chao, Ge; Li, Wen; Ren, Luquan


    In this paper, a bionic method is presented to improve the erosion resistance of machine components. Desert scorpion (Androctonus australis) is a typical animal living in sandy deserts, and may face erosive action of blowing sand at a high speed. Based on the idea of bionics and biologic experimental techniques, the mechanisms of the sand erosion resistance of desert scorpion were investigated. Results showed that the desert scorpions used special microtextures such as bumps and grooves to construct the functional surfaces to achieve the erosion resistance. In order to understand the erosion resistance mechanisms of such functional surfaces, the combination of computational and experimental research were carried out in this paper. The Computational Fluid Dynamics (CFD) method was applied to predict the erosion performance of the bionic functional surfaces. The result demonstrated that the microtextured surfaces exhibited better erosion resistance than the smooth surfaces. The further erosion tests indicated that the groove surfaces exhibited better erosion performance at 30° injection angle. In order to determine the effect of the groove dimensions on the erosion resistance, regression analysis of orthogonal multinomials was also performed under a certain erosion condition, and the regression equation between the erosion rate and groove distance, width, and height was established.

  13. Sands styrke

    DEFF Research Database (Denmark)

    Jacobsen, H. Moust; Jørgensen, Mogens B.; Poulsen, H. Serup


    På grundlag af triaxialforsøg med D=7 og 20 cm og varierende højde på løse og faste lejringer af Blokhussand kan effekten af varierende højde-breddeforhold og spændingsniveau samt skalaeffekten bestemmes. Ved sammenligning med pladeforsøg med overfladelast op til 8 t/m2 kan den almindelige fremga...... fremgangsmåde ved bæreevneberegninger på sand undersøges....

  14. sand mold (United States)

    Kovačević, Lazar; Terek, Pal; Miletić, Aleksandar; Kakaš, Damir


    Interfacial heat transfer coefficient at the metal-mold interface (IHTC) was estimated by an iterative algorithm based on the function specification method. An Al-9 wt% Si alloy plate casting was made in a sand mold prepared by CO2 process. Thermal history obtained from the experiment was used to solve an inverse heat conduction problem. Acquired transient IHTC values are then given in function of the casting surface temperature at the interface. By comparing the obtained results with previous findings, the influence of grain fineness number and consequently of mold roughness on maximum IHTC values is revealed.

  15. Erhversbetinget erosion?

    DEFF Research Database (Denmark)

    Dige, Irene; Gjørup, Hans; Nyvad, Bente


    Baggrund – I forbindelse med dental erosion er en grundig udredning af patienten vigtig, således at årsagen til erosionernes opståen findes, og der kan iværksættes adækvat forebyggende indsats. En sådan udredning er ikke mindst vigtig, når arbejdsmiljøet mistænkes. Patienttilfælde – En 30-årig...... arbejdsskade, men ikke anerkendt, da erosioner ikke er optaget på Arbejdsskadestyrelsens liste over erhvervssygdomme. En systematisk registrering af lignende tilfælde kunne imidlertid på sigt ændre retspraksis for fremtidige patienter med arbejdsbetinget erosion....

  16. Vulnerability and fate of a coastal sand dune complex, Rosetta-Idku, northwestern Nile Delta, Egypt (United States)

    El Banna, Mahmoud M.


    Types, distribution, and origin of recent sand dunes between Rosetta and Idku, in the western sector of the Nile Delta, Egypt were investigated. Sand samples from the dunes, beach, and seafloor were studied for grain size distribution and mineralogical composition. It has been found that most of the dunes in the study area have been subjected to deterioration and removal due to the construction of buildings and the International Coastal Highway. The remnant constitutes a damaged belt of foredunes that extends from El Bouseily village to the west of Idku town. The dune’s origin is interpreted to be the result of coastal drifting and the subsequent transport of sediments of the former Canopic Nile branch eastward by the predominant longshore current and by aeolian processes. The blown sand grains accumulated to form a belt of coastal sand dunes of original longitudinal and crescentic forms. Urbanization of the coast has severely altered the landscape. The study area is considered vulnerable to the impacts of climate change and the expected rise in sea level. The outcome of potential sea level rise is serious; erosion problems are expected to be exacerbated and vast areas from land and property would be lost. Thus, protection and preservation the remaining dunes in the study area are vital requirements for shore protection.

  17. Review of Sand Production Prediction Models

    Directory of Open Access Journals (Sweden)

    Hossein Rahmati


    Full Text Available Sand production in oil and gas wells can occur if fluid flow exceeds a certain threshold governed by factors such as consistency of the reservoir rock, stress state and the type of completion used around the well. The amount of solids can be less than a few grams per cubic meter of reservoir fluid, posing only minor problems, or a substantial amount over a short period of time, resulting in erosion and in some cases filling and blocking of the wellbore. This paper provides a review of selected approaches and models that have been developed for sanding prediction. Most of these models are based on the continuum assumption, while a few have recently been developed based on discrete element model. Some models are only capable of assessing the conditions that lead to the onset of sanding, while others are capable of making volumetric predictions. Some models use analytical formulae, particularly those for estimating the onset of sanding while others use numerical models, particularly in calculating sanding rate. Although major improvements have been achieved in the past decade, sanding tools are still unable to predict the sand mass and the rate of sanding for all field problems in a reliable form.

  18. Sand Diver (United States)

    Scott, Alan J.


    A few years ago, I was preparing to teach a summer enrichment program for middle school students at the University of Wisconsin-Stout. With swimming on the minds of most kids during the summer, I thought buoyancy would be a fun topic to discuss. An interesting way to introduce this concept is by discussing the beer-drinking balloonist who, in a lawn chair, floated to 11,000 feet above Los Angeles in 1997. However, I needed a hands-on project and was not about to go purchase some lawn chairs to duplicate this experiment. A simple submersible called the "Sand Diver" was designed and is now used as a hands-on activity for my introductory physics course.

  19. It's in the sand


    Mitchell, Clive


    Sand is sand isn’t it? Sand gets everywhere but rather than a nuisance it is a valuable, high-purity raw material. Clive Mitchell, Industrial Minerals Specialist at the British Geological Survey (BGS), talks us through what sand is, what it can be used for and how to find it. His exploration of sand takes us from the deserts of Arabia to the damp sand pits of Mansfield!

  20. The water erosion processes in the retreat erosive of cliff on soft rocks in the province of Cadiz (Spain); Los procesos de erosion hidrica en el retroceso erosivo de acantilados sobre rocas blandas en la provincia de Cadiz

    Energy Technology Data Exchange (ETDEWEB)

    Rendon Aragon, J. J.; Gracia Prieto, F. J.; Rio Rodriguez, L. del


    The littoral cliffs on soft materials of the Atlantic Cadiz coast show an important activity of the fresh water erosion processes, sometimes even more significant than the marine erosion processes. The connection of the lower cliffs with sandy beaches favours aeolian sand invasion, which fills previous rills and reduces the water erosion intensity by increasing infiltration. Cliff retreat and rill erosion measurement by using erosion sticks has shown very variables values, most of them higher than the estimated error of the employed methods. This indicates the existence of other factors influencing the distribution of water erosion processes along these cliffs, which have to be studied through different techniques. (Author) 5 refs.

  1. Wind Erosion Induced Soil Degradation in Northern China: Status, Measures and Perspective

    Directory of Open Access Journals (Sweden)

    Zhongling Guo


    Full Text Available Soil degradation is one of the most serious ecological problems in the world. In arid and semi-arid northern China, soil degradation predominantly arises from wind erosion. Trends in soil degradation caused by wind erosion in northern China frequently change with human activities and climatic change. To decrease soil loss by wind erosion and enhance local ecosystems, the Chinese government has been encouraging residents to reduce wind-induced soil degradation through a series of national policies and several ecological projects, such as the Natural Forest Protection Program, the National Action Program to Combat Desertification, the “Three Norths” Shelter Forest System, the Beijing-Tianjin Sand Source Control Engineering Project, and the Grain for Green Project. All these were implemented a number of decades ago, and have thus created many land management practices and control techniques across different landscapes. These measures include conservation tillage, windbreak networks, checkerboard barriers, the Non-Watering and Tube-Protecting Planting Technique, afforestation, grassland enclosures, etc. As a result, the aeolian degradation of land has been controlled in many regions of arid and semiarid northern China. However, the challenge of mitigating and further reversing soil degradation caused by wind erosion still remains.

  2. Soil nutrients losses by wind erosion in a citrus crop at southeast Spain (United States)

    Segovia, C.; Gómez, J. D.; Gallardo, P.; Lozano, F. J.; Asensio, C.


    The purpose of this study was to analyze the influence of wind erosion on the productivity of citric crops over gypsiric Fluvisols in Gador area (Almeria, SE Spain) by blowing air through a wind tunnel. Wind erosion varies considerably depending on time since the last tillage. This is because a physical crust forms after tilling which protects the soil from wind. Crust formation in the study area is strongly favored by dew, which causes them to form in around a week. The repeated measurements ANOVA, as a nonparametric alternative to the ANOVA, using the Geiiser method and the Friedman test shows significant differences ( P ≤ 0.05) in the fractions of very fine sand and coarse silt, which confirmed that very fine sand and coarse silt are the fractions most susceptible to loss from wind. The same statistical analysis for fertility showed smaller differences in organic carbon and K2O content, while N and P2O5 increased. Nutrients lost from wind imply an additional fertilization cost for a crop to be economically feasible. The cost of this restoration of nutrients lost from the soil because of wind erosion was based on experimental data taken in crusted soil and immediately after tilling. Losses in organic matter (O.M.), N, P2O5 and K2O were estimated based on the cost of fertilizers most commonly used in the area.

  3. 40 CFR 436.40 - Applicability; description of the industrial sand subcategory. (United States)


    ... industrial sand subcategory. 436.40 Section 436.40 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Sand Subcategory § 436.40 Applicability; description of the industrial sand subcategory. The provisions of this subpart are applicable to the mining and the processing of sand and gravel for uses other...

  4. Supply-limited horizontal sand drift at an ephemerally crusted, unvegetated saline playa (United States)

    Gillette, Dale A.; Niemeyer, Tezz C.; Helm, Paula J.


    protection from wind erosion. Rough crusts provided sufficient protection expressed as high threshold friction velocities. For these high threshold friction velocities, aeolian activity was greatly reduced or practically prevented. The softest crusts, usually formed in the winter, provided much less protection and sometimes were destroyed by the wind. Following this destruction the "potential" or "supply unlimited" sand drift would be observed.

  5. Modulation of outer bank erosion by slump blocks: Disentangling the protective and destructive role of failed material on the three-dimensional flow structure (United States)

    Hackney, Christopher; Best, Jim; Leyland, Julian; Darby, Stephen E.; Parsons, Daniel; Aalto, Rolf; Nicholas, Andrew


    The three-dimensional flow field near the banks of alluvial channels is the primary factor controlling rates of bank erosion. Although submerged slump blocks and associated large-scale bank roughness elements have both previously been proposed to divert flow away from the bank, direct observations of the interaction between eroded bank material and the 3-D flow field are lacking. Here we use observations from multibeam echo sounding, terrestrial laser scanning, and acoustic Doppler current profiling to quantify, for the first time, the influence of submerged slump blocks on the near-bank flow field. In contrast to previous research emphasizing their influence on flow diversion away from the bank, we show that slump blocks may also deflect flow onto the bank, thereby increasing local shear stresses and rates of erosion. We use our measurements to propose a conceptual model for how submerged slump blocks interact with the flow field to modulate bank erosion.

  6. Industrial sand and gravel (United States)

    Dolley, T.P.


    Domestic production of industrial sand and gravel in 2012 was about 49.5 Mt (55 million st), increasing 13 percent compared with that of 2011. Some important end uses for industrial sand and gravel include abrasives, filtration, foundry, glassmaking, hydraulic fracturing sand (frac sand) and silicon metal applications.

  7. Effect of erodent particles on the erosion of metal specimens

    Energy Technology Data Exchange (ETDEWEB)

    Razzaque, M. Mahbubur, E-mail:; Alam, M. Khorshed; Khan, M. Ishak, E-mail: [Department of Mechanical Engineering Bangladesh University of Engineering and Technology (BUET), Dhaka (Bangladesh)


    This paper presents the experimental results of the measurement of erosion rate of carbon steel specimens in sand water slurry system in a slurry pot tester. Sylhet sand has been sieved to get three sizes of erodent particles; namely, less than 250 micron, 250 to 590 micron and 590 to 1190 micron. Experiments are done with three sand concentrations (10%, 15% and 20%). The rate of erosion of the carbon steel specimens is measured as the loss of weight per unit surface area per unit time under the dynamic action of solid particles. The eroded surfaces of the specimens are examined using Scanning Electron Microscopy (SEM) to visualize the impact of the slurry of various conditions. It is seen that irrespective of the particle size the rate of erosion increases with the increase of slurry concentration. This increment of erosion rate at high concentration is high for large particles. High erosion rate is observed in case of large sand particles. In case of small and fine particles erosion rate is small because of low impact energy as well as the wastage of energy to overcome the hindrance of the finer particles before striking on the specimen surface.

  8. Reduction of soil erosion on forest roads (United States)

    Edward R. Burroughs; John G. King


    Presents the expected reduction in surface erosion from selected treatments applied to forest road traveledways, cutslopes, fillslopes, and ditches. Estimated erosion reduction is expressed as functions of ground cover, slope gradient, and soil properties whenever possible. A procedure is provided to select rock riprap size for protection of the road ditch.

  9. Cermet composite thermal spray coatings for erosion and corrosion protection in combustion environments of advanced coal-fired boilers. Semiannual technical report, January 14, 1997--August 14, 1997

    Energy Technology Data Exchange (ETDEWEB)

    Schorr, B.S.; Levin, B.F.; DuPont, J.N.; Marder, A.R.


    Research is presently being conducted to determine the optimum ceramic/metal combination in thermally sprayed metal matrix composite coatings for erosion and corrosion resistance in new coal-fired boilers. The research will be accomplished by producing model cermet composites using powder metallurgy and electrodeposition methods in which the effect of ceramic/metal combination for the erosion and corrosion resistance will be determined. These results will provide the basis for determining the optimum hard phase constituent size and volume percent in thermal spray coatings. Thermal spray coatings will be applied by our industrial sponsor and tested in our erosion and corrosion laboratories. Bulk powder processed Ni-Al{sub 2}O{sub 3} composites were produced at Idaho National Engineering Laboratory. The composite samples contained 0, 21, 27, 37, and 45 volume percent Al{sub 2}O{sub 3} with an average particle size of 12 um. Also, to deposit model Ni-Al{sub 2}O{sub 3} coatings, an electrodeposition technique was developed and coatings with various volume fractions (0-35%) of Al{sub 2}O{sub 3} were produced. The powder and electrodeposition processing of Ni-Al{sub 2}O{sub 3} Composites provide the ability to produce two phase microstructure without changing the microstructure of the matrix material. Therefore, the effect of hard second phase particles size and volume fraction on erosion resistance could be analyzed.

  10. Eastern Scheldt Sand, Baskarp Sand No. 15

    DEFF Research Database (Denmark)

    Andersen, A. T; Madsen, E. B.; Schaarup-Jensen, A. L.

    The present data report contains data from 13 drained triaxial tests, performed on two different sand types in the Soil Mechanics Laboratory at Aalborg University in March, 1997. Two tests have been performed on Baskarp Sand No. 15, which has already ken extensively tested in the Soil Mechanics...... Laboratory. The remaining 11 triaxial tests have ben performed on Eastern Scheldt Sand, which is a material not yet investigated at the Soil Mechanics Laboratory. In the first pari of this data report, the characteristics of the two sand types in question will be presented. Next, a description...

  11. Simulation of erosion by a particulate airflow through a ventilator (United States)

    Ghenaiet, A.


    Particulate flows are a serious problem in air ventilation systems, leading to erosion of rotor blades and aerodynamic performance degradation. This paper presents the numerical results of sand particle trajectories and erosion patterns in an axial ventilator and the subsequent blade deterioration. The flow field was solved separately by using the code CFX- TASCflow. The Lagrangian approach for the solid particles tracking implemented in our inhouse code considers particle and eddy interaction, particle size distribution, particle rebounds and near walls effects. The assessment of erosion wear is based on the impact frequency and local values of erosion rate. Particle trajectories and erosion simulation revealed distinctive zones of impacts with high rates of erosion mainly on the blade pressure side, whereas the suction side is eroded around the leading edge.

  12. Solution of internal erosion equations by asymptotic expansion

    Directory of Open Access Journals (Sweden)

    Dubujet P.


    Full Text Available One dimensional coupled soil internal erosion and consolidation equations are considered in this work for the special case of well determined sand and clay mixtures with a small proportion of clay phase. An enhanced modelling of the effect of erosion on elastic soil behavior was introduced through damage mechanics concepts. A modified erosion law was proposed. The erosion phenomenon taking place inside the soil was shown to act like a perturbation affecting the classical soil consolidation equation. This interpretation has enabled considering an asymptotic expansion of the coupled erosion consolidation equations in terms of a perturbation parameter linked to the maximum expected internal erosion. A robust analytical solution was obtained via direct integration of equations at order zero and an adequate finite difference scheme that was applied at order one.

  13. Assessing radiation impact at a protected coastal sand dune site: an intercomparison of models for estimating the radiological exposure of non-human biota

    Energy Technology Data Exchange (ETDEWEB)

    Wood, Michael D., E-mail: [Institute for Sustainable Water Integrated Management and Ecosystem Research (SWIMMER), Nicholson Building, University of Liverpool, Liverpool, Merseyside L69 3GP (United Kingdom); School of Biological Sciences, Nicholson Building, University of Liverpool, Liverpool, Merseyside L69 3GP (United Kingdom); Beresford, Nicholas A.; Barnett, Catherine L. [Centre for Ecology and Hydrology, Lancaster Environment Centre, Library Avenue, Bailrigg, Lancaster, Lancashire LA1 4AP (United Kingdom); Copplestone, David [Environment Agency, PO Box 12, Richard Fairclough House, Knutsford Road, Latchford, Warrington, Cheshire WA4 1HG (United Kingdom); Leah, Richard T. [Institute for Sustainable Water Integrated Management and Ecosystem Research (SWIMMER), Nicholson Building, University of Liverpool, Liverpool, Merseyside L69 3GP (United Kingdom); School of Biological Sciences, Nicholson Building, University of Liverpool, Liverpool, Merseyside L69 3GP (United Kingdom)


    This paper presents the application of three publicly available biota dose assessment models (the ERICA Tool, R and D128/SP1a and RESRAD-BIOTA) to an assessment of the Drigg coastal sand dunes. Using measured {sup 90}Sr, {sup 99}Tc, {sup 137}Cs, {sup 238}Pu, {sup 239+240}Pu and {sup 241}Am activity concentrations in sand dune soil, activity concentration and dose rate predictions are made for a range of organisms including amphibians, birds, invertebrates, mammals, reptiles, plants and fungi. Predicted biota activity concentrations are compared to measured data where available. The main source of variability in the model predictions is the transfer parameters used and it is concluded that developing the available transfer databases should be a focus of future research effort. The value of taking an informed user approach to investigate the way in which models may be expected to be applied in practice is highlighted and a strategy for the future development of intercomparison exercises is presented.

  14. Baskarp Sand No. 15

    DEFF Research Database (Denmark)

    Borup, Marianne; Hedegaard, Jette

    The Soil Mechanics Laboratory has started performing tests with a new sand, Baskarp No 15. Baskarp No 15 is a graded sand from Sweden. The shapes of the largest grains are round, while the small grains have sharp edges. The main part of of Baskarp No 15 is quarts, but it also contains feldspar...... and biotit. Mainly the sand will be used for tests concerning the development og the theory of building up pore pressure in sand, L. B. Ibsen 1993....

  15. Baskarp Sand No. 15

    DEFF Research Database (Denmark)

    Ibsen, Lars Bo; Bødker, Lars Bødker

    The Soil Mechanics Laboratory has started performing tests with a new sand, Baskarp No 15. Baskarp No 15 is a graded sand from Sweden. The shapes of the largest grains are round, while the small grains have sharp edges. The main part of of Baskarp No 15 is quarts, but it also contains feldspar...... and biotit. Mainly the sand will be used for tests concerning the development of the theory of building up pore pressure in sand....

  16. Lund Sand No 0

    DEFF Research Database (Denmark)

    Ibsen, Lars Bo; Jakobsen, Finn Rosendal

    During the last 15 years the Geotechnical Engineering Group (GEG) at Aalborg University has performed triaxial tests with a sand called Lund No 0. Lund No 0 is a graded sand from a gravel pit near Horsens in Denmark. For the classification of the sand the following tests have been performed: Sieve...

  17. [Tooth erosion - a multidisciplinary approach]. (United States)

    Strużycka, Izabela; Rusyan, Ewa; Bogusławska-Kapała, Agnieszka


    During the last decades, an increasingly greater interest in dental erosion has been observed in clinical dental practice, in dental public health and in dental research because prevalence of erosive tooth wear is still increasing especially in young age group of population. Erosive tooth wear is a multifactorial etiology process characterized by progressive loss of hard dental tissue. It is defined as the exogenous and/or endogenous acids dissolution of the dental tissue, without bacterial involvement. In the development of dental erosive wear, interactions are required which include chemical, biological, behavioral, diet, time, socioeconomic, knowledge, education, and general health factors. Examples of risk groups could be patients with eating disorders, like anorexia nervosa or bulimia nervosa, gastroesophageal reflux disease, chronic alcohol abuse or dependence. Special nutrition habits groups with high consumption of soft or sport drinks, special diets like vegetarian, vegan or raw food diet, the regular intake of drugs, medications and food supplements can also increase the risk for dental erosion. Comprehensive knowledge of the different risk and protective factors is a perquisite for initiating adequate preventive measures. © 2016 MEDPRESS.

  18. Mechanism behind Erosive Bursts In Porous Media (United States)

    Jäger, R.; Mendoza, M.; Herrmann, H. J.


    Erosion and deposition during flow through porous media can lead to large erosive bursts that manifest as jumps in permeability and pressure loss. Here we reveal that the cause of these bursts is the reopening of clogged pores when the pressure difference between two opposite sites of the pore surpasses a certain threshold. We perform numerical simulations of flow through porous media and compare our predictions to experimental results, recovering with excellent agreement shape and power-law distribution of pressure loss jumps, and the behavior of the permeability jumps as a function of particle concentration. Furthermore, we find that erosive bursts only occur for pressure gradient thresholds within the range of two critical values, independent of how the flow is driven. Our findings provide a better understanding of sudden sand production in oil wells and breakthrough in filtration.

  19. Journal of EEA, Vol. 30, 2013 SAND SINTERING PROBLEM ON ...

    African Journals Online (AJOL)


    methods of sand sintering protection on the tin bronze impeller body and internal surfaces. The research ... causes of formation and protection of it [4, 5]. Based on the adhering characteristics of sand grain with ..... including pumps, pipes, taps and impellers .It is because they resist corrosion and impingent effect of water.

  20. The impact of different soil bioengineering techniques on the surface erosion of levees (United States)

    Lammeranner, W.; Meixner, H.; Florineth, F.


    The recent flood events have once more drawn attention to the stability and maintenance of river levees. Subsequently, the attention has also been focused on the prevention of erosion by hydraulic forces in case of flooding or overtopping. Vegetation can limit the soil detaching capacity of flowing water, by their retarding effects on runoff and velocity as well as the physical protection of the levee surface. At low discharge intensity vegetation stands rigid and unsubmerged, reducing velocity below required for soil particle entrainment (Coppin and Richards, 1990). At higher discharge capacities flexible vegetation tend to lay down, dissipating energy and providing resistance to scour (Henderson and Shields, 1984). Roots increase the shear strength of the soil (Schiechtl, 1980) and can create a fibrous mat that resists detachment of the surrounding soil matrix (Henderson and Shields, 1984). The erosive capacity of surface water flow is dependant to type and pattern of vegetation. The denser the vegetation, the better the soil surface is protected against erosion. Sets of regulations regard compact turf to be the best vegetation cover for river levees. A contentious issue are woody plants, and many guidelines (DIN 19712, 1997; FEMA, 2005; USACE, 2000) ban woody vegetation from levees for several reasons. So, the planting of woody plants is not an accepted policy by any agency. Within the frame of a research project carried out by the Institute of Soil Bioengineering and Landscape Construction (University of Natural Resources and Applied Life Sciences, Vienna), focusing on woody plants on levees, the effects of small to medium growing woody (shrubby) plants on erosion while hydraulic forces (overtopping) are tested. Data are drawn from two natural-scaled research levees. The homogenous levees consist of a mineral silt-sand-gravel and have a fill height of 2.7 m and a slope inclination of 2:3. The tests investigate erosion resistance with respect to four different

  1. One dimensional modeling of anthropogenic beach berm erosion (United States)

    Shakeri Majd, M.; Sanders, B. F.


    Anthropogenic beach berms (sometimes called artificial berms or artificial dunes) are in use internationally to guard against beach overtopping and consequent coastal flooding. Berms can be constructed on a seasonal basis or in anticipation of a hazardous event, e.g., when a storm is expected to arrive coincident with an astronomical high tide. In either case, a common approach is to scrape sand from the foreshore with heavy equipment and deposit it on the crest of the natural beach dune, thus providing added protection from the possibility of wave overtopping. Given the potential for higher sea levels globally and more extreme storm events, anthropogenic berms will surely be tested to their limits and will ultimately fail, causing flooding. A better understanding of the conditions under which these berms fail is therefore needed to support coastal flood risk management. An experimental campaign in Newport Beach, California was conducted to document the dynamic erosion of prototype beach berms under a rising tide and mild to moderate wave conditions. Terrestrial laser scanning (TLS) of the berm produced a digital model of how the berm shape evolved over time. Here, a numerical model of swash zone hydromorphodynamics based on shallow-water flow physics is presented to evaluate whether and to what extent the timing and degree of berm erosion and overtopping can be predicted from first principles. The model tightly couples flow and sediment transport within an approximate Riemann solver, and thus is of the Godunov-type variety of finite volume schemes. Additionally, the model includes an avalanching scheme to account for non-hydrodynamic slumping down the angle of repose. Results indicate that it is possible to calibrate the model for a particular event, and then successfully predict erosion for another event, but due to parameter sensitivities, it is unlikely that the model can be applied at a site without calibration (true prediction).

  2. Investigation of the impact of rain and particle erosion on rotor blade aerodynamics with an erosion test facility to enhancing the rotor blade performance and durability (United States)

    Liersch, J.; Michael, J.


    During their operational life span of around 20 years, the individual components of a wind turbine, especially the rotor blades, are exposed to extreme environmental influences. This is the result of the continuous exposure of wind turbines to the elements and of particularly high rotor blade tip speeds, which exceed a velocity of 90 m/s. These effects result in leading edge erosion. Rotor blades are therefore protected by special coating systems, e.g. varnishes and foils. The durability of those surface coatings varies depending on the location of the wind turbine and often proves to be insufficient. Additionally, there is no standardised test procedure for the evaluation of the durability and protective effect of the coating materials under the highly erosive conditions at the location of the wind turbines. In the course of this project, we will develop a testing procedure to evaluate the erosion of coating materials on actual leading edges of rotor blades, which will be applied in a test facility. The test rig will be capable of simulating a realistic application of rain and sand to gauge the effects of erosion. During the application, two test objects can be tested simultaneously. The geometry of the test objects will be adapted to represent that of real rotor blade tips. In order to generate comparable and transferable results, several challenges have to be met during the implementation, especially the realistic reproduction of environmental influences and the corrosion damage mechanism. In this regard, the duration of the test procedure is very important because a time lapse factor of 100-260 is intended. An operation of 20 years can thereby be simulated within 4 to 10 weeks.

  3. Experimental study on bank erosion and protection using submerged vane placed at an optimum angle in a 180° laboratory channel bend (United States)

    Dey, Litan; Barbhuiya, Abdul Karim; Biswas, Piya


    Unsteadiness of the vertical velocity profile and secondary flow in open channel bends poses serious problems in hydraulic engineering design. Insertion of vertical submerged vanes in the channel bend at an optimum angle with the tangential component of flow can minimize the unsteadiness and generation of secondary flow resulting in the reduction of scour depth at the outer bank. A series of experiments were conducted in a 180° bend laboratory channel to study flow erosion and effective ness of the submerged vane in reducing scour depth. The average approach to flow velocity at 0.20 m flow depth above the lowest initial bed level was 25 cm/s. An Acoustic Doppler Velocimeter (ADV) was used to measure the three-dimensional time-averaged velocity components at different azimuthal sections on stabilized nonscoured beds without vane. Scour bed profile without vanes shows that bank erosion in a 180° parabolic-shaped bed channel occurs mostly at the zone from bend angles 120° to 140°. Vanes were installed at angles of 10°, 15°, 20°, 30°, and 40° to the tangential flow component maintaining a spacingof 75 cm distance from one vane to another. Experimental results show that a 15° vane angle produces best result in reducing outer bank scour in a parabolic-shaped channel. The data presented in this paper can also be used for validating three-dimensional turbulence models for simulating flows in a curved channel.

  4. Beach Sand Supply and Transport at Kunduchi in Tanzania and ...

    African Journals Online (AJOL)

    Abstract—Beach-head erosion of sandy beach plains in eastern Africa threatens tourism-related infrastructure and the livelihoods of beach users. The nature and drivers of physical shoreline change at Kunduchi, Dar es Salaam, and Bamburi,. Mombasa, are described with analyses of beach sand transport through the ...

  5. and remote sensing for multi-temporal analysis of sand ...

    African Journals Online (AJOL)


    nation of “sand” and photo-interpretation for identification of sandy soils is useful to assess wind erosion dynamics through the mapping of the spatial and temporal evolution of sandy soil. According to these results, Oglet Merteba is more affected by sand accumulation over the last de- cade. The more aggressive period is ...

  6. Oil sands fever : the environmental implications of Canada's oil sands rush

    Energy Technology Data Exchange (ETDEWEB)

    Woynillowicz, D.; Severson-Baker, C.; Raynolds, M.


    This report puts forward recommendations to improve the environmental management of oil sands while calling for an accelerated transition towards sustainable energy in Canada. It presents a historical discussion and background of Canada's oil sands rush and discusses making oil from tar, fuel consumption by oil sand operations, and transportation to refineries. Climate change consequences such as escalating greenhouse gas emissions, emissions intensity, the Kyoto commitment and taking meaningful action are identified along with the cumulative environmental impacts on water, land and air. The paper addressed the issue of managing these cumulative impacts and protecting the environment. Government assistance and subsidies were discussed with reference to Alberta's favourable royalty regime and federal tax breaks. Last, the report discussed stewardship and leadership for responsible oil sand use, climate protection, regional environment protection and establishment of an equitable fiscal regime. 266 refs., 7 tabs., 34 figs.

  7. Sand Dune Encroachment and Desertification Processes of the Rigboland Sand Sea, Central Iran. (United States)

    Ahmady-Birgani, Hesam; McQueen, Kenneth G; Moeinaddini, Mazaher; Naseri, Hamidreza


    Early studies on sand dune movement and desertification in Iran have not always been convincingly demonstrated because of problems with the field-based measurements. In some areas where various land uses have been engulfed by aeolian sand dunes, desertification is clear, but in other less settled areas, it may not be so obvious. The objective of this study is to demonstrate encroachments of the Rigboland sand sea, central Iran, in its different directions and variable magnitude rates. Determining the rate and direction of the sand sea movements is critical for specifying which lands should be prioritized and quickly protected. The study has trialed a change detection technique which uses a Cross-Tabulation module to compare two available LandsatTM images over the Rigboland sand sea. This indicates that within a ten-year span (from 1988 to 1998) more than 200 ha/yr were added to the Rigboland sand sea, from the alluvial fan landforms in the eastern upstream, outer margins of the Rigboland sand sea. Coupled with GIS techniques, this type of analysis of the remote sensing (RS) images provides an effective tool for the monitoring and prognostication of sand dune movement and sand sea change.

  8. Erosion and Errors

    NARCIS (Netherlands)

    Huisman, H.; Heeres, Glenn; Os, van Bertil; Derickx, Willem; Schoorl, J.M.


    Slope soil erosion is one of the main threats to archaeological sites. Several methods were applied to establish the erosion rates at archaeological sites. Digital elevation models (DEMs) from three different dates were used. We compared the elevations from these three models to estimate erosion. We

  9. Mediterranean coastal sand dune vegetation: influence of natural and anthropogenic factors. (United States)

    Ciccarelli, Daniela


    The aim of the present work was to assess the conservation status of coastal dune systems in Tuscany (Italy). Emphasis was given to the presence and abundance of plant communities identified as habitat in accordance with the Directive 92/43/EEC. Twenty transects perpendicular to the shoreline were randomly positioned on the whole coastal area (30 km in length) in order to sample the full spectrum of plant communities. Vegetation zonation and relationships with the most frequent disturbance factors in the study area-beach cleaning, coastline erosion, presence of paths and roads, bathing settlements and trampling-were investigated through principal coordinate analysis and canonical correspondence analysis. Natural factors, such as distance from the sea and total length, were also considered. Differences in the conservation status of the sites were found, ranging from the total disappearance of the foredune habitats to the presence of the complete psammophilous (sand-loving) plant communities. Erosion, trampling, and paths were found to be closely correlated with degradation and habitat loss. Furthermore, the overall plant species diversity of dunes was measured with NHDune, a modified version of the Shannon index; while the incidence of invasive taxa was calculated using N, a naturalness index. However, these diversity indices proved to be a weaker bioindicator of ecosystem integrity than habitat composition along transects. A possible strategy for the conservation and management of these coastal areas could be to protect the foredunes from erosion and limit trampling through the installation of footbridges or the use of appropriate fences.

  10. Conception de couches minces tribologiques pour augmenter la resistance a l'erosion par impacts de particules (United States)

    Hassani, Salim

    Solid particle erosion (SPE) is a serious problem in gas turbines, pumps, heat exchangers and piping systems in aircrafts and other applications. Sand and dust ingested by gas turbine engines may cause major damage to compressor gas path components, leading to severe performance degradation, excessive wear, increased maintenance and eventually premature failure of the engines. For the compressor section of aerospace gas turbine engines, in addition to the complex filtration systems used to screen the eroding particles, tribological coatings, such as TiN, Ti/TiN, CrN and TiAlN are used as protective layers of the base titanium alloy (Ti-6Al-4V) or stainless steels (17-4PH and 410) materials (substrates) against erosive wear. Such coatings can extend the service life of the components, but their performance still remains insufficient due to the complexity of failure mechanisms occurring upon SPE. Therefore, aerospace industry seeks to develop high performance coatings for the protection against erosion by solid particles. However, with many new materials used and tested for different applications and operation under different conditions, conducting experiments for each one of them is becoming increasingly difficult. Presently, coating selection criteria to prevent damage caused by erosion are based on trial and error experiments instead of prior design of coating's architecture and properties to maximize erosion resistance. The present work focuses on the use of advanced finite element (FE) methods to design erosion resistant (ER) coatings. It contributes a new methodology based on the analysis of transient stresses generated by a single impact event. Identification of coating architectures in which such stresses are minimized and crack propagation suppressed, allows one to predict and possibly minimize the erosion rate. Erosion mechanisms and governing erosion parameters are investigated to predict the coating behavior in simulated erosion conditions. The


    Directory of Open Access Journals (Sweden)

    Mădălina - Cristina Marian


    Full Text Available Soil erosion in Arges County affects a high percentage of agricultural land. Most agricultural lands are located on slopes undergoing erosion, excess humidity temporarily or permanently, landslides. The importance lies in the need to know theme addressed erosion, the erosive potential of the land, the causes and factors that led to the onset of erosion and its deployment at a accelerated rate and now, because the based on this knowledge to determine the effective measures to prevent and combat this phenomenon of soil degradation. The importance of knowing this erosion is related both to protect land and diminishing rates of clogging existing accumulation lakes in the river basin. Erosion mapping was carried out in recent years with the use of means modern cadastral- topographical. So not provided with sufficient precision to determine the areas affected by erosion. This paper presents methods using modern maps using satellite images, topographical precision instrumentation, cartograms results can be easily integrated into a GIS system monitoring. The information is graphically and containing a database solid. Cartograms accuracy depends on the quality of engineerings survey carried out in the field.

  12. Hidden bone erosions

    Directory of Open Access Journals (Sweden)

    F. Salaffi


    Full Text Available The aim of this pictorial essay was to demonstrate the diagnostic efficacy of high-resolution sonography in detecting bone erosions in a patient with rheumatoid arthritis. Standard X-Ray of the feet did not reveal clearly evident erosions. Ultrasonography was able to detect the presence of bone erosions of the metatarsal heads of both the first toes and of the V toe of the left foot. Because the appearance of bone erosions on radiographs of a patient with a recent onset arthritis indicates a poor prognosis, the possibility of demonstrating small hidden erosions at the level of the early targets of the disease is of relevant practical value.

  13. When erosion ruins the chronology (United States)

    Wolters, Steffen; Enters, Dirk; Blume, Katharina; Lücke, Andreas


    Human land-use has considerably shaped the landscape of north-western Germany over the past millennia. Deforestation and agriculture created a predominantly open scenery preserved until today with only a few remnants of former landscape elements such as woodlands, peat bogs, heath lands and lakes. Here we present a multi-proxy approach including sedimentological and geochemical parameters (e. g. element concentrations and stable isotopes) as well as biological proxies (pollen, macro fossils and diatoms) combined with an archaeological site analysis to investigate the effects of prehistoric land-use on lake systems and their catchment areas with a special focus on changes of the water quality, e. g. eutrophication and acidification and its natural regeneration during phases of weaker land-use impact. The study reveals a millenia-long history of erosion processes caused by successive selective woodland clearances starting in Neolithic Times. The geochemical evidence of soil erosion is recorded by distinct peaks of the terrigenic elements K and Ti. However, due to (1) the low sensitivy of the XRF scanner for Si and (2) the prevalence of diatom related biogenic silicon XRF-scanning of highly organic lake sediments fails to reflect the actual sand input caused by erosion. Particularly single quartz grains are not detected in the organic sediment matrix. Therefore we make successful use of mineral grain analysis which previously has only been applied to record aeolian input in bogs. K and Ti concentrations are not correlated with the content of mineral grains which suggest two different erosion processes. Our efforts to construct robust age-depth relationships based on AMS 14C-dates of terrestrial plant macrofossils reveal a specific dating issue of northwest German lakes. Especially in younger sediments we observe 14C-dates which are on the one hand too old and on the other hand among themselves roughly contemporaneous. We explain this feature with the extensive bog

  14. Rainfall Erosivity in Europe

    DEFF Research Database (Denmark)

    Panagos, Panos; Ballabio, Cristiano; Borrelli, Pasquale


    Rainfall is one the main drivers of soil erosion. The erosive force of rainfall is expressed as rainfall erosivity. Rainfall erosivity considers the rainfall amount and intensity, and is most commonly expressed as the Rfactor in the USLE model and its revised version, RUSLE. At national...... and continental levels, the scarce availability of data obliges soil erosion modellers to estimate this factor based on rainfall data with only low temporal resolution (daily, monthly, annual averages). The purpose of this study is to assess rainfall erosivity in Europe in the form of the RUSLE R-factor, based....... Gaussian Process Regression (GPR) has been used to interpolate the R-factor station values to a European rainfall erosivity map at 1 km resolution. The covariates used for the R-factor interpolation were climatic data (total precipitation, seasonal precipitation, precipitation of driest/wettest months...

  15. Influence green sand system by core sand additions

    Directory of Open Access Journals (Sweden)

    N. Špirutová


    Full Text Available Today, about two thirds of iron alloys casting (especially for graphitizing alloys of iron are produced into green sand systems with usually organically bonded cores. Separation of core sands from the green sand mixture is very difficult, after pouring. The core sand concentration increase due to circulation of green sand mixture in a closed circulation system. Furthermore in some foundries, core sands have been adding to green sand systems as a replacement for new sands. The goal of this contribution is: “How the green sand systems are influenced by core sands?”This effect is considered by determination of selected technological properties and degree of green sand system re-bonding. From the studies, which have been published yet, there is not consistent opinion on influence of core sand dilution on green sand system properties. In order to simulation of the effect of core sands on the technological properties of green sands, there were applied the most common used technologies of cores production, which are based on bonding with phenolic resin. Core sand concentration added to green sand system, was up to 50 %. Influence of core sand dilution on basic properties of green sand systems was determined by evaluation of basic industrial properties: moisture, green compression strength and splitting strength, wet tensile strength, mixture stability against staling and physical-chemistry properties (pH, conductivity, and loss of ignition. Ratio of active betonite by Methylene blue test was also determined.

  16. Erosion Testing of Coatings for V-22 Aircraft Applications

    Directory of Open Access Journals (Sweden)

    G. Y. Richardson


    Full Text Available High-velocity (183 m/sec sand erosion tests in a wind tunnel were conducted to evaluate developmental coatings from three separate companies under funding by the Navy's phase I small business innovative research program. The purpose of the coatings was to address a particular problem the V-22 tilt-rotor aircraft (Osprey was having with regard to ingestion of sand particles by a titanium impeller that was associated with the aircraft's environmental control system. The three coatings that were deposited on titanium substrates and erosion-tested included (1 SixCy/DLC multilayers deposited by chemical vapor deposition (CVD; (2 WC/TaC/TiC processed by electrospark deposition; and (3 polymer ceramic mixtures applied by means of an aqueous synthesis. The erosion test results are presented; they provided the basis for assessing the suitability of some of these coatings for the intended application.

  17. Identifying the Areas Benefitting from the Prevention of Wind Erosion by the Key Ecological Function Area for the Protection of Desertification in Hunshandake, China

    Directory of Open Access Journals (Sweden)

    Yu Xiao


    Full Text Available Research on the spatial flow of ecosystem services can help to identify the spatial relationships between service-providing areas (SPAs and service-benefitting areas (SBAs. In this study, we used the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT model to stimulate the flow paths of the wind erosion prevented by ecosystems in Hunshandake, China. By interpolating these paths, the SBAs were identified, and their benefits in terms of land cover, population, and Gross Domestic Product (GDP were determined. The results indicated that the flow paths mostly extended to the eastern part of the study area, and the estimated cover of the SBAs was 39.21% of the total area of China. The grid cells through which many (≥10% of the trajectories passed were mainly located in the western part of north-eastern China and the eastern part of northern China. The benefitting population accounted for 74.51% of the total population of China, and the GDP was 67.11% of the total in 2010. Based on this research, we described a quantitative relationship between the SPAs and the SBAs and identified the actual beneficiaries. This work may provide scientific knowledge that can be used by decision makers to develop management strategies, such as ecological compensation to mitigate damage from sandstorms in the study area.

  18. Sea-cliff erosion as a function of beach changes and extreme wave runup during the 1997-1998 El Nino (United States)

    Sallenger, A.H.; Krabill, W.; Brock, J.; Swift, R.; Manizade, S.; Stockdon, H.


    Over time scales of hundreds to thousands of years, the net longshore sand transport direction along the central California coast has been driven to the south by North Pacific winter swell. In contrast, during the El Nin??o winter of 1997-1998, comparisons of before and after airborne lidar surveys showed sand was transported from south to north and accumulated on the south sides of resistant headlands bordering pocket beaches. This resulted in significant beach erosion at the south ends of pocket beaches and deposition in the north ends. Coincident with the south-to-north redistribution of sand, shoreline morphology became prominently cuspate with longshore wavelengths of 400-700 m. The width and elevation of beaches were least where maximum shoreline erosion occurred, preferentially exposing cliffs to wave attack. The resulting erosional hotspots typically were located in the embayments of giant cusps in the southern end of the pocket beaches. The observed magnitude of sea cliff retreat, which reached 14 m, varied with the number of hours that extreme wave runup exceeded certain thresholds representing the protective capacity of the beach during the El Nin??o winter. A threshold representing the width of the beach performed better than a threshold representing the elevation of the beach. The magnitude of cliff erosion can be scaled using a simple model based on the cross-shore distance that extreme wave runup exceeded the pre-winter cliff position. Cliff erosion appears to be a balance between terrestrial mass wasting processes, which tend to decrease the cliff slope, and wave attack, which removes debris and erodes the cliff base increasing the cliff slope. ?? 2002 Elsevier Science B.V. All rights reserved.

  19. The Geodiversity in Drift Sand Landscapes of The Netherlands (United States)

    van den Ancker, Hanneke; Jungerius, Pieter Dirk; Riksen, Michel


    The authors carried out detailed field studies of more than twelve drift sand landscapes in The Netherlands. The objective of these studies was to restore Natura-2000 values by restoring the wind activity. Active drift sands occur almost exclusively in The Netherlands, Natura 2000 habitat 2330 'Inland dunes with open Corynephorus and Agrostis grasslands', for which reason our country is largely responsible for this European landscape. Active drift sands had almost disappeared for two reasons: first, the stabilization of the drift sands by air pollution, mainly nitrogen, which stimulates the growth of algae and grasses that initiate soil formation, and second, by the growth of forests surrounding the sands, which decreases the wind force. The restoration studies revealed differences in the geodiversity between and within the drift sand areas. Whereas the drift sands on geological and soil maps show as almost homogenous areas, they have in fact highly variable geo-conditions of which examples will be given. These geodiversity aspects concern differences in geomorphological structure, origin, sediments and age of the drift sands. Differences in wind and water erosion, trampling and soil formation add to the geodiversity within the drift sand areas. Especially in the primary stages of succession the differences in geodiversity are relevant for the Natura-2000 values. We discerned three main types of active sands. Firstly, the impressive drift sands with large parabolic dune structures, often consisting of series of interlocking parabolic dunes. They developed from the northeast towards the southwest, against the direction of the dominant wind, and must have taken centuries to develop. Small parts of these systems are still active, other parts show different degrees of soil formation. Their origin is still unclear but probably dates from medieval times (Heidinga, 1985, Jungerius & Riksen, 2008). Second are the drift sand areas with irregular hills from 0.5 to about 2

  20. Chemical and biological control of phlebotominae sand flies


    Pružinová, Kateřina


    Phlebotominae sand flies (Diptera: Phlebotominae) are important vectors of leishmaniasis. Control measures are complicated by the fact that sand fly breeding sites and resting places are generally hard to find. Measures used to control adult sand flies include the use of chemical insecticides for insecticide-treated bednets or curtains, residual spraying of dwellings, eventually the space-spraying. Domestic dogs as reservoir host of visceral leishmaniosis can be protected by dog-collars impre...

  1. Modelling sand wave variation

    NARCIS (Netherlands)

    Sterlini-Van der Meer, Fenneke


    The sea floor of shallow seas is rarely flat and often dynamic. A widely occurring bedform type is the sand wave. Sand waves form more or less regular wavelike patterns on the seabed with crests up to one third of the water depth, wave lengths of hundreds of metres and a migration rate of metres up

  2. Sands cykliske styrke

    DEFF Research Database (Denmark)

    Ibsen, Lars Bo


    Sands cykliske styrke kan beskrives ved Cyclic Liquefaction, Mobilisering, Stabilization og Instant Stabilization. I artiklen beskrives hvorfor Stabilization og Instant Stabilization ikke observeres, når sands udrænede styrke undersøges i triaxial celler, der anvender prøver med dobbelt prøvehøjde....

  3. Hierarchical organization of a Sardinian sand dune plant community

    Directory of Open Access Journals (Sweden)

    Valentina Cusseddu


    Full Text Available Coastal sand dunes have attracted the attention of plant ecologists for over a century, but they have largely relied on correlations to explain dune plant community organization. We examined long-standing hypotheses experimentally that sand binding, inter-specific interactions, abiotic factors and seedling recruitment are drivers of sand dune plant community structure in Sardinia, Italy. Removing foundation species from the fore-, middle- and back-dune habitats over three years led to erosion and habitat loss on the fore-dune and limited plant recovery that increased with dune elevation. Reciprocal species removals in all zones suggested that inter-specific competition is common, but that dominance is transient, particularly due to sand burial disturbance in the middle-dune. A fully factorial 2-year manipulation of water, nutrient availability and substrate stability revealed no significant proximate response to these physical factors in any dune zone. In the fore- and middle-dune, plant seeds are trapped under adult plants during seed germination, and seedling survivorship and growth generally increase with dune height in spite of increased herbivory in the back-dune. Sand and seed erosion leads to limited seed recruitment on the fore-dune while high summer temperatures and preemption of space lead to competitive dominance of woody plants in the back-dune. Our results suggest that Sardinian sand dune plant communities are organized hierarchically, structured by sand binding foundation species on the fore-dune, sand burial in the middle-dune and increasingly successful seedling recruitment, growth and competitive dominance in the back-dune.

  4. Hierarchical organization of a Sardinian sand dune plant community. (United States)

    Cusseddu, Valentina; Ceccherelli, Giulia; Bertness, Mark


    Coastal sand dunes have attracted the attention of plant ecologists for over a century, but they have largely relied on correlations to explain dune plant community organization. We examined long-standing hypotheses experimentally that sand binding, inter-specific interactions, abiotic factors and seedling recruitment are drivers of sand dune plant community structure in Sardinia, Italy. Removing foundation species from the fore-, middle- and back-dune habitats over three years led to erosion and habitat loss on the fore-dune and limited plant recovery that increased with dune elevation. Reciprocal species removals in all zones suggested that inter-specific competition is common, but that dominance is transient, particularly due to sand burial disturbance in the middle-dune. A fully factorial 2-year manipulation of water, nutrient availability and substrate stability revealed no significant proximate response to these physical factors in any dune zone. In the fore- and middle-dune, plant seeds are trapped under adult plants during seed germination, and seedling survivorship and growth generally increase with dune height in spite of increased herbivory in the back-dune. Sand and seed erosion leads to limited seed recruitment on the fore-dune while high summer temperatures and preemption of space lead to competitive dominance of woody plants in the back-dune. Our results suggest that Sardinian sand dune plant communities are organized hierarchically, structured by sand binding foundation species on the fore-dune, sand burial in the middle-dune and increasingly successful seedling recruitment, growth and competitive dominance in the back-dune.

  5. Coastal erosion in Sicily: geomorphologic impact and mitigation (Italy) (United States)

    Liguori, V.; Manno, G.


    The coast of Sicily region stretches about 1400 km, bathing three different seas: the North tract, from Messina to Capo San Vito wash to the Tyrrhenian Sea, the oriental side, from Messina to Capo Passero, wash to the Ionian Sea, and finally the southern side wash to the Mediterranean. Of these, 395 km are made up of beaches and 970 km from rocky shores. The coastal morph-type were analyzed in relation to their evolutionary trend (backspace or advancement of the seaside), can be summarized as follows: a low shores of torrent plain (Messina), low shores with salt (Trapani), low shores beaches edged with dunal systems, subject to backspace, where urbanization has reduced or eliminated the internal sand dunes, shores on marine terraces, with beaches at the foot (Agrigento) and high shores non-affected of real phenomena of backspace, but subject to often dangerous events of detachment and collapse of blocks (high rocky shores). The marine and coastal environment is a complex and articulated, in balance with the Earth's environment, in which live together, but through different dynamics strongly interacting, ecosystems and marine ecosystems typically transition. The increasing density of population concentrated along the shores, the gradual expansion of activities related to the use of marine and coastal resources, are some of the issues that threaten the delicate balance of nature and the sea coast. The sicilian coastal areas most subject to erosion are those in Ragusa shores areas in south-eastern of Sicily, where the critical areas interesting low coastline and high shores. Following the coast, between Capo Peloro and Milazzo (Messina),where the erosion affects the coast with a low of about 23 km. In the coastal between Capo St. Marco and Capo Feto (Trapani) the critical areas interesting the low coastline and, in part erodible bluffs. One of this case is localized in the town of Mazara del Vallo. In general, the phenomenon erosive affects almost all the sicilian

  6. An empirical approach to estimate soil erosion risk in Spain. (United States)

    Martín-Fernández, Luis; Martínez-Núñez, Margarita


    Soil erosion is one of the most important factors in land degradation and influences desertification worldwide. In 2001, the Spanish Ministry of the Environment launched the 'National Inventory of Soil Erosion (INES) 2002-2012' to study the process of soil erosion in Spain. The aim of the current article is to assess the usefulness of this National Inventory as an instrument of control, measurement and monitoring of soil erosion in Spain. The methodology and main features of this National Inventory are described in detail. The results achieved as of the end of May 2010 are presented, together with an explanation of the utility of the Inventory as a tool for planning forest hydrologic restoration, soil protection, erosion control, and protection against desertification. Finally, the authors make a comparative analysis of similar initiatives for assessing soil erosion in other countries at the national and European levels. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. [Influence of perlite sand on the skin in experiment]. (United States)

    Dracheva, E E; Iatsyna, I V; Lapina, N E; Ianin, V A; Antoshina, L I; Zhadan, I Iu; Krasavina, E K


    In the present work influence of perlite sand has been studied on a skin of Sprague-Dawley male rat (300-350 g). The biopsy of intact rat skin has been used as control. Contact of the perlite sand with animals' skin causes the reaction of an inflammation amplifying with increase of duration of the influence of substance. Therefore, despite an inert chemical compound, long contact with perlite sand in conditions of production can promote development of skin diseases. From the result of this investigation it is concluded that perlite sand causes irritating action on the skin and it is necessary to apply additional protective means to workers contacting to this substance.

  8. Rainfall erosivity index for the Ghana Atomic Energy Commission site. (United States)

    Essel, Paul; Glover, Eric T; Yeboah, Serwaa; Adjei-Kyereme, Yaw; Yawo, Israel Nutifafa Doyi; Nyarku, Mawutoli; Asumadu-Sakyi, Godfred S; Gbeddy, Gustav Kudjoe; Agyiri, Yvette Agyiriba; Ameho, Evans Mawuli; Aberikae, Emmanuel Atule


    Rainfall erosivity is the potential ability for rainfall to cause soil loss. The purpose of this study was to estimate the rainfall erosivity index for the Ghana Atomic Energy Commission site in order to compute the surface erosion rate. Monthly rainfall data, for the period 2003-2012 were used to compute annual rainfall erosivity indices for the site, using the Modified Fournier index. Values of the annual rainfall erosivity indices ranged from 73.5 mm for 2004 to 200.4 mm for the year 2003 with a mean annual erosivity index of 129.8 mm for the period. The Pearson's Coefficient of Correlation was used to establish the relationship between annual rainfall and annual rainfall erosivity. This showed a high degree of positive relationship (r = 0.7) for the study area. The computed mean annual erosivity index revealed that the site is in the high erosion risk zone. Therefore, it is necessary to develop soil protection and management strategies to protect the soil from erosion.

  9. Sand and Gravel Deposits (United States)

    Vermont Center for Geographic Information — This dataset is a statewide polygon coverage of sand, gravel, and stone resources. This database includes the best data available from the VT Agency of Natural...

  10. Erosion Negril Beach

    NARCIS (Netherlands)

    Ten Ham, D.; Henrotte, J.; Kraaijeveld, R.; Milosevic, M.; Smit, P.


    The ongoing erosion of the Negril Beach has become worse the past decade. In most places along the coast line, the beach will be gone in approximately 10 years. This will result in a major decrease of incomes that are made by the local tourist sector. To prevent the erosion this study has been

  11. Vestled - Hvide Sande

    DEFF Research Database (Denmark)

    Juel-Christiansen, Carsten; Hesselbjerg, Marianne; Schønherr, Torben


    Værket Vestled i Hvide Sande præsenteret i sammenhæng af 1000 nutidige landskabsarkitektoniske arbejder fra hele verden, hvor hvert værk vises på én side......Værket Vestled i Hvide Sande præsenteret i sammenhæng af 1000 nutidige landskabsarkitektoniske arbejder fra hele verden, hvor hvert værk vises på én side...

  12. Composition of enamel pellicle from dental erosion patients. (United States)

    Carpenter, G; Cotroneo, E; Moazzez, R; Rojas-Serrano, M; Donaldson, N; Austin, R; Zaidel, L; Bartlett, D; Proctor, G


    Oral health is dependent upon a thin mobile film of saliva on soft and hard tissues. Salivary proteins adhere to teeth to form the acquired enamel pellicle which is believed to protect teeth from acid erosion. This study investigated whether patients suffering diet-induced dental erosion had altered enamel pellicles. Thirty patients suffering erosion were compared to healthy age-matched controls. Subjects wore a maxillary splint holding hydroxyapatite and human enamel blocks for 1 h. The acquired enamel pellicle was removed from the blocks and compared to the natural incisor pellicle. Basic Erosive Wear Examination scores confirmed that dental erosion was present in erosion patients and absent from healthy age-matched controls. Erosion patients had half the amount of proteins (BCA assay) within the acquired pellicle forming on splint blocks compared to normal controls (p < 0.05). In particular, statherin, a calcium-binding protein, was 35% less abundant (p < 0.05). Calcium concentration within the acquired pellicle was also reduced by 50% in erosion patients (p < 0.001). In contrast, the natural pellicle on the incisor had similar amounts of total protein in erosion patients and healthy controls. In summary, the formation of new acquired pellicles on surfaces was reduced in erosion patients, which may explain their greater susceptibility to acid erosion of teeth. © 2014 S. Karger AG, Basel.


    Directory of Open Access Journals (Sweden)

    D. I. Gnir


    Full Text Available The experimental activation of the sand regenerator of the firm SINTO is carried out at ОАО “MZOO". It is shown that sand grains are cleared from films of binding agents, that allows to use the treated sand for preparation of agglutinant and core sands.

  14. Beach erosion and nest site selection by the leatherback sea turtle Dermochelys coriacea (Testudines: Dermochelyidae and implications for management practices at Playa Gandoca, Costa Rica

    Directory of Open Access Journals (Sweden)

    Matthew J Spanier


    Full Text Available Leatherback sea turtles (Dermochelys coriacea nest on dynamic, erosion-prone beaches. Erosive processes and resulting nest loss have long been presumed to be a hindrance to clutch survival. In order to better understand how leatherbacks cope with unstable nesting beaches, I investigated the role of beach erosion in leatherback nest site selection at Playa Gandoca, Costa Rica. I also examined the potential effect of nest relocation, a conservation strategy in place at Playa Gandoca to prevent nest loss to erosion, on the temperature of incubating clutches. I monitored changes in beach structure as a result of erosion at natural nest sites during the time the nest was laid, as well as in subsequent weeks. To investigate slope as a cue for nest site selection, I measured the slope of the beach where turtles ascended from the sea to nest, as well as the slopes at other random locations on the beach for comparison. I examined temperature differences between natural and relocated nest sites with thermocouples placed in the sand at depths typical of leatherback nests. Nests were distributed non-randomly in a clumped distribution along the length of the beach and laid at locations that were not undergoing erosion. The slope at nest sites was significantly different than at randomly chosen locations on the beach. The sand temperature at nest depths was significantly warmer at natural nest sites than at locations of relocated nests. The findings of this study suggest leatherbacks actively select nest sites that are not undergoing erosive processes, with slope potentially being used as a cue for site selection. The relocation of nests appears to be inadvertently cooling the nest environment. Due to the fact that leatherback clutches undergo temperaturedependent sex determination, the relocation of nests may be producing an unnatural male biasing of hatchlings. The results of this study suggest that the necessity of relocation practices, largely in place to

  15. Wind born(e) landscapes: the role of wind erosion in agricultural land management and nature development

    NARCIS (Netherlands)

    Riksen, M.J.P.M.


    Wind has played an important role in the geological development of the north-western Europe. Various aeolian deposits such as inland dunes, river dunes, cover sands, drift sands and coastal dunes, form the base of large areas in our present landscape. The role of wind erosion in today's north-west

  16. Using rainfall simulators to test wood shreddings for erosion control (United States)

    James Gronier; Randy Foltz; Charlie Showers


    The U.S. Department of Agriculture Forest Service is considering alternative methods of erosion control when constructing roads, decommissioning roads, protecting lands burned by wildland fires, and reclaiming lands disturbed by other activities. This article is the second in a series of tech tips that discuss the use of wood shreddings for erosion control. The first...

  17. 40 CFR 436.30 - Applicability; description of the construction sand and gravel subcategory. (United States)


    ... construction sand and gravel subcategory. 436.30 Section 436.30 Protection of Environment ENVIRONMENTAL... CATEGORY Construction Sand and Gravel Subcategory § 436.30 Applicability; description of the construction sand and gravel subcategory. The provisions of this subpart are applicable to the mining and the...

  18. Differences and commonalities impregnation of dry and wet sand

    Directory of Open Access Journals (Sweden)



    Full Text Available The article is devoted to research new methods of physic-chemical methods of preventing deflation to protect railways and highways from such phenomena as exogenous sand drifts. In particular, first studied the possibility of using binders in sand wet state. Results can significantly extend the scope of the method, and identified with particular impregnation maintaining stability requirements protective cover reduces both the concentration previously recommended binders, and their costs, thereby securing implementation in practice of shifting sands resource-saving technology.

  19. Dark grains of sand: a geological storytelling (United States)

    Gallo Maresca, Magda


    In the secondary Italian school the Earth science learning begins at first year, in synergy with other natural science subjects such as Astronomy, Chemistry and Biology. Italian teachers have to focus on the landscape geomorphological aspects and often Earth processes are difficult to display since they are related to certain phenomena happened during the past and often far from the involved country. In order to better understand the environment surrounding us, very simple and poor materials, like sands, allow the teachers to create attractive lab experiences. According to the IBSE (Inquiry Based Science Education) approach, a learning unit has been implemented starting from a walking along the light carbonate beaches of the Adriatic sea: a smart look to the sands ("engage step"), stroke the students fantasy pushing them to explore some strange black grains on the sands. Dirty sands? Or rock landscape, soil degradation and Ofanto river and coastal processes (erosion, transportation and deposition)? This was the teaching challenge. Due to the youngest age, a third level, guided inquiry, was adopted so the teacher is the "guide of inquiry" encouraging the students using the research question ("Why is the sand dark?", "Do all sands look the same?", "Where does it come from?") and driving the students around their investigation plans ("How can I measure grain size?"). A procedure to answer the above questions and validate the results and explanations has been implemented to allow the students to be proactive in their study. During the learning activities will be the students to ask for field trip to elaborate their new knowledge, verify and visualize the speculated processes. The teaching skills allow to address several geosciences domains such as mineralogy, petrology, regional geology and geodynamics as well as other scientific disciplines such as mathematics (more specifically statistics), forensic science and even life sciences (the presence of bioclasts might

  20. Erosion in America

    Energy Technology Data Exchange (ETDEWEB)


    The US loses about five billion tons of soil a year from erosion, and scientists estimate that from 20 to 50% of world cropland suffers from excessive erosion. The effect of erosion is a loss in both land and water productivity. When combined with the problems of overpopulation, overgrazing, and deforestation, the environmental impacts are very serious. There are some signs that countries are beginning to adopt conservation tilling techniques, but even cooperative government programs in the US such as the 1983 Payment-in-Kind (PIK) program have had only partial success because of expanded production on marginal farmlands. 20 reference 5 figures.

  1. Development tendencies of moulding and core sands

    Directory of Open Access Journals (Sweden)

    Stanislaw M. Dobosz1


    Full Text Available Further development of the technology for making moulding and core sands will be strictly limited by tough requirements due to protection of the natural environment. These tendencies are becoming more and more tense, so that we will reach a point when even processes, that from technological point of view fulfill high requirements of the foundry industry, must be replaced by more ecologically-friendly solutions. Hence, technologies using synthetic resins as binding materials will be limited. This paper presents some predictable development tendencies of moulding and core sands. The increasing role of inorganic substances will be noticed, including silicate binders with significantly improved properties, such as improved knock-out property or higher reclamation strength. Other interesting solutions might also be moulding sands bonded by geo-polymers and phosphate binders or salts and also binders based on degradable biopolymers. These tendencies and the usefulness of these binders are put forward in this paper.

  2. Scaling up from field to region for wind erosion prediction using a field-scale wind erosion model and GIS (United States)

    Zobeck, T.M.; Parker, N.C.; Haskell, S.; Guoding, K.


    Factors that affect wind erosion such as surface vegetative and other cover, soil properties and surface roughness usually change spatially and temporally at the field-scale to produce important field-scale variations in wind erosion. Accurate estimation of wind erosion when scaling up from fields to regions, while maintaining meaningful field-scale process details, remains a challenge. The objectives of this study were to evaluate the feasibility of using a field-scale wind erosion model with a geographic information system (GIS) to scale up to regional levels and to quantify the differences in wind erosion estimates produced by different scales of soil mapping used as a data layer in the model. A GIS was used in combination with the revised wind erosion equation (RWEQ), a field-scale wind erosion model, to estimate wind erosion for two 50 km2 areas. Landsat Thematic Mapper satellite imagery from 1993 with 30 m resolution was used as a base map. The GIS database layers included land use, soils, and other features such as roads. The major land use was agricultural fields. Data on 1993 crop management for selected fields of each crop type were collected from local government agency offices and used to 'train' the computer to classify land areas by crop and type of irrigation (agroecosystem) using commercially available software. The land area of the agricultural land uses was overestimated by 6.5% in one region (Lubbock County, TX, USA) and underestimated by about 21% in an adjacent region (Terry County, TX, USA). The total estimated wind erosion potential for Terry County was about four times that estimated for adjacent Lubbock County. The difference in potential erosion among the counties was attributed to regional differences in surface soil texture. In a comparison of different soil map scales in Terry County, the generalised soil map had over 20% more of the land area and over 15% greater erosion potential in loamy sand soils than did the detailed soil map. As

  3. Interdigital erosions: Tinea pedis?

    National Research Council Canada - National Science Library

    Orgaz-Molina, Jacinto; Orgaz-Molina, Maria Carmen; Cotugno, Marilena; Arias-Santiago, Salvador


    Interdigital erosions are frequently due to tinea pedis. However, other infectious conditions, such as candidiasis, erythrasma or bacterial infections, can generate lesions that cannot be differentiated at the clinical level...

  4. Development of a Cavitation Erosion Resistant Advanced Material System

    National Research Council Canada - National Science Library

    Kendrick, Light H; Caccese, Vincent


    .... Historically, neither of these materials has performed well in a cavitating environment. The objective of this effort was to evaluate cavitation erosion protection alternatives for a GRP composite structure used in a cavitating environment...

  5. Measurement of erosion: Is it possible?

    NARCIS (Netherlands)

    Stroosnijder, L.


    Reasons for erosion measurements are: (1) to determine the environmental impact of erosion and conservation practices, (2) scientific erosion research; (3) development and evaluation of erosion control technology; (4) development of erosion prediction technology and (5) allocation of conservation

  6. Operating sand and environment: can harmonising?

    Directory of Open Access Journals (Sweden)

    Eriton Geraldo Vieira


    Full Text Available Mining is considered one of the basic sectors of Brazil's economy. The mining activity provides basic raw material for industry, and several products from the simplest to the most complex have mineral origin. Most products mined in Brazil, by volume, are sand and crushed stone. The sand extraction activities are of great importance for social development, but equally responsible for negative environmental impacts, sometimes irreversible. Due to the location’s rigidity, the sand miner is forced to mine where there is mineral occurrence, which constantly is near the bottom of valleys and rivers, often coinciding with the riparian forests, which are considered to be permanently protected areas (APP. In this context, objective is to demonstrate through a dialectical approach, procedurally developed through literature the possibility of conciliating the exploration of ore sand in permanently protected areas. Thus, will be analyzed the rules established in the Law 12.651/12 (New forest law, as well as will be demonstrated the socioeconomic and environmental impacts of mining activities which have to be observed to achieve the environmental function of property. The research was supported by the qualitative method and its construction we used the technique of bibliographical and documentary review.

  7. Solid Particle Erosion of Date Palm Leaf Fiber Reinforced Polyvinyl Alcohol Composites

    Directory of Open Access Journals (Sweden)

    Jyoti R. Mohanty


    Full Text Available Solid particle erosion behavior of short date palm leaf (DPL fiber reinforced polyvinyl alcohol (PVA composite has been studied using silica sand particles (200 ± 50 μm as an erodent at different impingement angles (15–90° and impact velocities (48–109 m/s. The influence of fiber content (wt% of DPL fiber on erosion rate of PVA/DPL composite has also been investigated. The neat PVA shows maximum erosion rate at 30° impingement angle whereas PVA/DPL composites exhibit maximum erosion rate at 45° impingement angle irrespective of fiber loading showing semiductile behavior. The erosion efficiency of PVA and its composites varies from 0.735 to 16.289% for different impact velocities studied. The eroded surfaces were observed under scanning electron microscope (SEM to understand the erosion mechanism.

  8. Sand Needs and Resources Offshore New York (United States)

    Lashley, J. M.; Flood, R. D.; White, M.; Bokuniewicz, H.; Hinrichs, C.; Wilson, R. E.


    "Superstorm" Sandy (October, 2012) accentuated the persistent problem of coastal erosion on New York's ocean coast. The New York state Department of State in cooperation with the Bureau of Ocean Energy Management has initiated further identification and assessment of marine sand reserves required to improve the resiliency of coastal communities and the maintenance of coastal habitats. The historical demand for beach nourishment has been about 1.5 million cubic meters per year, but sea level rise and the occurrence of extreme conditions may increase the demand to over 5 million cubic meters annually. Forty-four historical and proposed borrow sites have been delineated. This inner shelf is both sand rich and data rich. Geophysical and geological data has been compiled and reassessed to support identification, characterization, and delineation of sand resources for potential use in future coastal restoration, beach nourishment, and/or wetland restoration efforts. The South Shore of Long Island is composed in part by the Fire Island National Seashore. Holocene sand ridges extending at an oblique angle to the cross shore in the seaward direction. Borrow pits among the sand ridges, excavated were apparent in the most recent surveys and it appears that natural replenishment of offshore borrow areas has been occurring although the rates need to be determined in order to assess their sustainability. Not only is the area one of intense societal attention, but the use of this resource for coastal resilience must fit into a diverse framework marine spatial planning including not only traditional components, like commercial fishing, but also new factors like the siting of offshore wind-farms. To extend this assessment will include a recent survey, sponsored by the Bureau of Ocean Energy Management and the New York Department of State, providing approximately 700 km of geophysical survey lines located between 3 and 9 nautical miles offshore, and 46 geotechnical samples

  9. Sand (CSW4)

    CSIR Research Space (South Africa)

    Estuarine and Coastal Research Unit


    Full Text Available This report is one of a series on Cape Estuaries being published under the general title "The Estuaries of the Cape, Part 2". The report provides information on sand estuary: historical background, abiotic and biotic characteristics. It is pointed...

  10. Virksomhedens sande ansigt

    DEFF Research Database (Denmark)

    Lundholt, Marianne Wolff


    Er modhistorier en byrde eller en styrke i forandringsprocesser? Hvad stiller vi op, når adgangen til organisationens sande identitet går gennem medarbejdernes modhistorier? Når vi sammenholder denne erkendelse med vores viden om, at medarbejdere helt naturligt afholder sig fra at videregive disse...

  11. Speleothems and Sand Castles (United States)

    Hance, Trevor; Befus, Kevin


    The idea of building sand castles evokes images of lazy summer days at the beach, listening to waves crash, enjoying salty breezes, and just unplugging for a while to let our inner child explore the wonderful natural toys beneath our feet. The idea of exploring caves might evoke feelings and images of claustrophobia or pioneers and Native…

  12. Sand Filter Technology (United States)


    EXWC) performed the evaluation at the Naval Air Station Lemoore, CA . The two year evaluation period began with one year of sand filter operation...appear dirty? If you answered “ yes ” to the first question and “ yes ” to either of the other questions, investigate this technology for your

  13. Building with Sand (United States)

    Ashbrook, Peggy


    Children playing in damp sand invariably try to make a tower or a tunnel. By providing experiences with a variety of materials, alone and together, teachers set up the conditions for children to learn through their senses and ensure that a class approaches a topic with a common set of experiences to build on. Learning about the properties of…

  14. Triaxial tests in Fontainebleau sand

    DEFF Research Database (Denmark)

    Latini, Chiara; Zania, Varvara


    The purpose of this internal report is to examine the influence of relative density on the strength and deformation characteristics of Fontainebleau sand. Compression triaxial tests were performed on saturated sand samples with different densities and initial confining pressure. Note...

  15. Computational analysis of Pelton bucket tip erosion using digital image processing (United States)

    Shrestha, Bim Prasad; Gautam, Bijaya; Bajracharya, Tri Ratna


    Erosion of hydro turbine components through sand laden river is one of the biggest problems in Himalayas. Even with sediment trapping systems, complete removal of fine sediment from water is impossible and uneconomical; hence most of the turbine components in Himalayan Rivers are exposed to sand laden water and subject to erode. Pelton bucket which are being wildly used in different hydropower generation plant undergoes erosion on the continuous presence of sand particles in water. The subsequent erosion causes increase in splitter thickness, which is supposed to be theoretically zero. This increase in splitter thickness gives rise to back hitting of water followed by decrease in turbine efficiency. This paper describes the process of measurement of sharp edges like bucket tip using digital image processing. Image of each bucket is captured and allowed to run for 72 hours; sand concentration in water hitting the bucket is closely controlled and monitored. Later, the image of the test bucket is taken in the same condition. The process is repeated for 10 times. In this paper digital image processing which encompasses processes that performs image enhancement in both spatial and frequency domain. In addition, the processes that extract attributes from images, up to and including the measurement of splitter's tip. Processing of image has been done in MATLAB 6.5 platform. The result shows that quantitative measurement of edge erosion of sharp edges could accurately be detected and the erosion profile could be generated using image processing technique.

  16. Northern Sand Sea (United States)


    [figure removed for brevity, see original site] Our topic for the weeks of April 4 and April 11 is dunes on Mars. We will look at the north polar sand sea and at isolated dune fields at lower latitudes. Sand seas on Earth are often called 'ergs,' an Arabic name for dune field. A sand sea differs from a dune field in two ways: 1) a sand sea has a large regional extent, and 2) the individual dunes are large in size and complex in form. This VIS image was taken at 82 degrees North latitude during Northern spring. The image is completely dominated by dunes. In sand seas, it is very common for a single type of dune to occur, and for a single predominate wind to control the alignment of the dunes. Image information: VIS instrument. Latitude 82.2, Longitude 152.5 East (207.5 West). 19 meter/pixel resolution. Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time. NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  17. Insights into preventive measures for dental erosion

    Directory of Open Access Journals (Sweden)

    Ana Carolina Magalhães


    Full Text Available Dental erosion is defined as the loss of tooth substance by acid exposure not involving bacteria. The etiology of erosion is related to different behavioral, biological and chemical factors. Based on an overview of the current literature, this paper presents a summary of the preventive strategies relevant for patients suffering from dental erosion. Behavioral factors, such as special drinking habits, unhealthy lifestyle factors or occupational acid exposure, might modify the extent of dental erosion. Thus, preventive strategies have to include measures to reduce the frequency and duration of acid exposure as well as adequate oral hygiene measures, as it is known that eroded surfaces are more susceptible to abrasion. Biological factors, such as saliva or acquired pellicle, act protectively against erosive demineralization. Therefore, the production of saliva should be enhanced, especially in patients with hyposalivation or xerostomia. With regard to chemical factors, the modification of acidic solutions with ions, especially calcium, was shown to reduce the demineralization, but the efficacy depends on the other chemical factors, such as the type of acid. To enhance the remineralization of eroded surfaces and to prevent further progression of dental wear, high-concentrated fluoride applications are recommended. Currently, little information is available about the efficacy of other preventive strategies, such as calcium and laser application, as well as the use of matrix metalloproteinase inhibitors. Further studies considering these factors are required. In conclusion, preventive strategies for patients suffering from erosion are mainly obtained from in vitro and in situ studies and include dietary counseling, stimulation of salivary flow, optimization of fluoride regimens, modification of erosive beverages and adequate oral hygiene measures.

  18. Study of erosion characterization of carbon fiber reinforced composite material (United States)

    Debnath, Uttam Kumar; Chowdhury, Mohammad Asaduzzaman; Kowser, Md. Arefin; Mia, Md. Shahin


    Carbon fiber composite materials are widely used at different engineering and industrial applications there are good physical, mechanical, chemical properties and light weight. Erosion behavior of materials depends on various factors such as impact angle, particle velocity, particle size, particle shape, particle type, particle flux, temperature of the tested materials. Among these factors impact angle and particle velocity have been recognized as two parameters that noticeably influence the erosion rates of all tested materials. Irregular shaped sand (SiO2) particles of various sizes (200-300 µm, 400-500 µm, and 500-600 µm) were selected erosive element. Tested conditions such as impingement angles between 15 degree to 90 degree, impact velocities between 30-50 m/sec, and stand-off distances 15-25 mm at surrounding room temperature were maintained. The highest level of erosion of the tested composite is obtained at 60° impact angle, which signifies the semi-ductile behavior of this material. Erosion showed increasing trend with impact velocity and decreasing nature in relation to stand-off distance. Surface damage was analyzed using SEM to examine the nature of the erosive wear mechanism.

  19. On Pluvial Compaction of Sand

    DEFF Research Database (Denmark)

    Jacobsen, Moust

    At the Institute of Civil Engineering in Aalborg model tests on dry sand specimens have been carried out during the last five years. To reduce deviations in test results, the sand laying technique has been carefully studied, and the sand mass spreader constructed. Preliminary results have been...

  20. The effect of enamel proteins on erosion (United States)

    Baumann, T.; Carvalho, T. S.; Lussi, A.


    Enamel proteins form a scaffold for growing hydroxyapatite crystals during enamel formation. They are then almost completely degraded during enamel maturation, resulting in a protein content of only 1% (w/v) in mature enamel. Nevertheless, this small amount of remaining proteins has important effects on the mechanical and structural properties of enamel and on the electrostatic properties of its surface. To analyze how enamel proteins affect tooth erosion, human enamel specimens were deproteinated. Surface microhardness (SMH), surface reflection intensity (SRI) and calcium release of both deproteinated and control specimens were monitored while continuously eroding them. The deproteination itself already reduced the initial SMH and SRI of the enamel significantly (p < 0.001 and p < 0.01). During the course of erosion, the progression of all three evaluated parameters differed significantly between the two groups (p < 0.001 for each). The deproteinated enamel lost its SMH and SRI faster, and released more calcium than the control group, but these differences were only significant at later stages of erosion, where not only surface softening but surface loss can be observed. We conclude that enamel proteins have a significant effect on erosion, protecting the enamel and slowing down the progression of erosion when irreversible surface loss starts to occur.

  1. Environmental Impacts of Sand Exploitation. Analysis of Sand Market

    Directory of Open Access Journals (Sweden)

    Marius Dan Gavriletea


    Full Text Available Sand is an indispensable natural resource for any society. Despite society’s increasing dependence on sand, there are major challenges that this industry needs to deal with: limited sand resources, illegal mining, and environmental impact of sand mining. The purpose of this paper is twofold: to present an overview of the sand market, highlighting the main trends and actors for production, export and import, and to review the main environmental impacts associated with sand exploitation process. Based on these findings, we recommend different measures to be followed to reduce negative impacts. Sand mining should be done in a way that limits environmental damage during exploitation and restores the land after mining operations are completed.

  2. Erosive Lichen Planus. (United States)

    Mauskar, Melissa


    Lichen planus is an inflammatory mucocutaneous condition with a myriad of clinical manifestations. There are 3 forms of lichen planus that effect the vulva: papulosquamous, hypertrophic, and erosive. Erosive lichen planus can progress to vulvar scaring, vaginal stenosis, and squamous cell carcinoma; these long-term sequelae cause sexual distress, depression, and decreased quality of life for patients. Diagnosis is often delayed because of patient embarrassment or clinician misdiagnosis. Early recognition and treatment is essential to decreasing the morbidity of this condition. Multimodal treatment, along with a multidisciplinary approach, will improve outcomes and further clinical advances in studying this condition. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Clinical studies of dental erosion and erosive wear

    National Research Council Canada - National Science Library

    Huysmans, M.C.D.N.J.M; Chew, H.P; Ellwood, R.P


    We define erosion as a partial demineralisation of enamel or dentine by intrinsic or extrinsic acids and erosive tooth wear as the accelerated loss of dental hard tissue through the combined effect...

  4. Moving sand dunes

    CERN Document Server

    Sparavigna, Amelia Carolina


    In several desert areas, the slow motion of sand dunes can be a challenge for modern human activities and a threat for the survival of ancient places or archaeological sites. However, several methods exist for surveying the dune fields and estimate their migration rate. Among these methods, the use of satellite images, in particular of those freely available on the World Wide Web, is a convenient resource for the planning of future human settlements and activities.

  5. Fatal toxoplasmosis in sand cats (Felis margarita). (United States)

    Pas, An; Dubey, J P


    The sand cat (Felis margarita) is a small-sized felid occurring in the United Arab Emirates (UAE). The sand cat captive-breeding program at the Breeding Centre for Endangered Arabian Wildlife in Sharjah, UAE, has until recently been severely compromised by very high newborn mortality rates. Two different pairs of sand cats gave birth, respectively, to one and two litters (with a total of eight kittens) between 1999 and 2006. Seven out of eight kittens died between the third and 21st wk of life. Toxoplasmosis was confirmed as the cause of death in these two litters. Adult cats had high antibody titers to Toxoplasma gondii before pregnancy, suggesting that maternal immunity did not protect the kittens against infection with T. gondii and that maternal immunity might not have prevented transplacental transmission of the parasite. This observation contrasts with what is seen in domestic cats. To date, this is the first report on confirmed fatal toxoplasmosis and prevalence of T. gondii in sand cats.

  6. Gouging abrasion resistance of materials for oil sands service

    Energy Technology Data Exchange (ETDEWEB)

    Llewellyn, R.J. [National Research Council of Canada, Vancouver, BC (Canada); Tolfree, D.J.; Hall, R.A. [British Columbia Univ., Vancouver, BC (Canada). Dept. of Mining and Mineral Process Engineering; Liang, P. [British Columbia Univ., Vancouver, BC (Canada). Dept. of Metals and Materials Engineering


    Hydraulic ore transportation in the oil sands industry has brought about a need for effective and reliable crusher and classifying systems to pulverize, screen and handle mined frozen oil sands lumps and large solids before they get slurried and pipelined to bitumen extraction plants. Improved product development, assessment methods for materials for oil sands applications have generally focused on low and high stress abrasion and slurry erosion resistance because these wear mechanisms are considered to predominate in oil sands mining, transportation and bitumen recovery. With the increased use of crusher and slurry handling systems, materials of construction are required to have good toughness and gouging abrasion properties to withstand impact and ploughing forces. Tests of gouging abrasion were conducted using a modified ASTM G81 procedure on a range of materials associated with oil sands processing. The objective was to assess material property requirements for mitigating these conditions. The wear losses that occurred for reference wear plates were compared to feed rock that was pulverized in a laboratory jaw crusher. The classes of evaluated materials were abrasion resistant (AR) steel plates, austenitic manganese steel castings, chromium and chromium molybdenum white irons (as plain castings and in laminated forms), and chromium carbide and tungsten carbide overlaid wear plates. 8 refs., 1 tab., 11 figs.

  7. Clinical studies of dental erosion and erosive wear

    NARCIS (Netherlands)

    Huysmans, M.C.D.N.J.M.; Chew, H.P.; Ellwood, R.P.


    We define erosion as a partial demineralisation of enamel or dentine by intrinsic or extrinsic acids and erosive tooth wear as the accelerated loss of dental hard tissue through the combined effect of erosion and mechanical wear (abrasion and attrition) on the tooth surface. Most experts believe

  8. Bentonite erosion. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Birgersson, Martin; Boergesson, Lennart; Hedstroem, Magnus; Karnland, Ola; Nilsson, Ulf (Clay Technology AB, Lund (Sweden))


    Low saline water may reach KBS-3 repository depth, e.g. during periods of glaciation. Under such aqueous conditions, the montmorillonite part of the bentonite buffer might transform into a sol and thereby be transported away with flowing water in fractures. The primary aim with this report is to improve the understanding of the basic principles for this possible montmorillonite particle release. The report includes experimental and theoretical work performed at Clay Technology. Natural bentonite and ion-exchanged purified montmorillonite from three different geographical origins, Wyoming (U.S.), Milos (Greece) and Kutch (India) have been studied. Experimental and/or theoretical investigations have been performed with respect to: - Free swelling ability; - Rheological properties; - Rate of bentonite loss into fractures; - Filtering; - Ion exchange; - Sol formation ability; - Ion diffusion; - Mass loss due to erosion. The performed erosion experiments show that erosion does not occur in a mixed calcium/sodium montmorillonite with at least 20% calcium in exchange positions, when the external solution contains above 4 mM charge equivalents. This result is in agreement with the presented conceptual view of sol formation and measured equilibrium properties in mixed calcium/sodium montmorillonite. The findings imply that the buffer will be stable for non-glacial conditions. However, erosion due to sol formation cannot be ruled out for glacial conditions.

  9. Controlled ultrasonic tissue erosion (United States)

    Cain, Charles


    Controlled ultrasonic tissue erosion has many clinical applications, including the placement of very precise sharply defined perforations in biological interfaces and membranes with focused ultrasound. With carefully chosen acoustic parameters, tissue can be rapidly eroded away at a constant etching rate. The maximum erosion rate for minimal propagated energy is obtained by using very short high intensity pulses. The etching rate is higher with shorter pulse durations. For short pulses less than 10 cycles of the drive frequency, an optimum pulse repetition rate exists which maximizes the etching rate. Higher gas saturation in the surrounding medium reduces the etching rate and reduces the spatial sharpness of the holes produced. Most of the erosion appears to be produced in the first several cycles of the therapy pulse. For example, a series of short (about 3 cycles) focused pulses of 2100 W/cm2 (Isppa) at 788 kHz can erode a very well defined 2 mm diameter hole in a 1 mm thick sample of fresh pork atrial posterior wall in about 1 min at the optimum pulse repetition rate (about 18 kHz). Controlled ultrasonic tissue erosion may provide an effective image guided noninvasive tool in treatment of neonatal patients with hypoplastic left heart syndrome. Without the mixing of oxygenated blood across perforations placed in the atrial septum, these infants do not survive.

  10. [Adaptation strategies of seed germination and seedling growth to sand dune environment]. (United States)

    Zhu, Yajuan; Dong, Ming; Huang, Zhenying


    Sand dune plants possess many adaptation strategies to withstand sand environment, e. g., some desert plant seeds are dormant when matured, which helps them to escape from unfeasible environment conditions and be preserved as seed bank. The seed germination and seedling establishment of psammophytes need moderate sand burial, while excessive burial will inhibit seed germination and seedling emergence. Seeds without germination in deeper sand are in enforced dormancy, and form soil seed bank. Sand dune plant seedlings could tolerant finite sand burial by increasing the number of nodes per culm and elongating internodes. When the seedlings are partially buried, they could survive through the maintenance of photosynthesis organism. Once sand burial exceed the threshold of the plant, seedlings growth will be restrained and the growth ability even permanently lost. Other factors such as salt spray, insect herbivory, and lack of soil nutrients also affect seed germination and seedling establishment. The precipitation in desert and sand land is unpredictable and irregular. Sand erosion leads roots be exposed to the air and dehydrated to die. However, seedlings of some desert plant have the ability to tolerate desiccation for a period of time after germination. Once there is rain, the seedlings will rivive.

  11. A bright intra-dune feature on Titan and its implications for sand formation and transport (United States)

    MacKenzie, Shannon; Barnes, Jason W.; Rodriguez, Sebastien; Cornet, Thomas; Brossier, Jeremy; Soderblom, Jason M.; Le Mouélic, Stephane; Sotin, Christophe; Brown, Robert H.; Buratti, Bonnie J.; Clark, Roger Nelson; Nicholson, Philip D.; Baines, Kevin


    Organic sands cover much of Titan’s equatorial belt, gathered into longitudinal dunes about a kilometer wide and hundreds of kilometers long. At the end of the Cassini era, questions of how such a vast volume of saltable material is or was created on Titan remain unanswered. At least two possible mechanisms suggested for forming sand-sized particles involve liquids: (1) evaporite deposition and erosion and (2) flocculation of material within a lake. Transporting sand from the lakes and seas of Titan’s poles to the equatorial belt is not strongly supported by Cassini observations: the equatorial belt sits higher than the poles and no sheets or corridors of travelling sand have been identified. Thus, previous sites of equatorial surface liquids may be of interest for understanding sand formation, such as the suggested paleoseas Tui and Hotei Regio. A newly identified feature in the VIMS data sits within the Fensal dune field but is distinct from the surrounding sand. We investigate this Bright Fensal Feature (BFF) using data from Cassini VIMS and RADAR. Specifically, we find spectral similarities between the BFF and both sand and Hotei Regio. The RADAR cross sectional backscatter is similar to neighboring dark areas, perhaps sand covered interdunes. We use this evidence to constrain the BFF’s formation history and discuss how this intra-dune feature may contribute to the processes of sand transport and supply.

  12. Booming Sand Dunes (United States)

    Vriend, Nathalie

    "Booming" sand dunes are able to produce low-frequency sound that resembles a pure note from a music instrument. The sound has a dominant audible frequency (70-105 Hz) and several higher harmonics and may be heard from far distances away. A natural or induced avalanche from a slip face of the booming dune triggers the emission that may last for several minutes. There are various references in travel literature to the phenomenon, but to date no scientific explanation covered all field observations. This thesis introduces a new physical model that describes the phenomenon of booming dunes. The waveguide model explains the selection of the booming frequency and the amplification of the sound in terms of constructive interference in a confined geometry. The frequency of the booming is a direct function of the dimensions and velocities in the waveguide. The higher harmonics are related to the higher modes of propagation in the waveguide. The experimental validation includes quantitative field research at the booming dunes of the Mojave Desert and Death Valley National Park. Microphone and geophone recordings of the acoustic and seismic emission show a variation of booming frequency in space and time. The analysis of the sensor data quantifies wave propagation characteristics such as speed, dispersion, and nonlinear effects and allows the distinction between the source mechanism of the booming and the booming itself. The migration of sand dunes results from a complicated interplay between dune building, wind regime, and precipitation. The morphological and morphodynamical characteristics of two field locations are analyzed with various geophysical techniques. Ground-penetrating radar images the subsurface structure of the dunes and reveal a natural, internal layering that is directly related to the history of dune migration. The seismic velocity increases abruptly with depth and gradually increases with downhill position due to compaction. Sand sampling shows local

  13. Conventional and anti-erosion fluoride toothpastes: effect on enamel erosion and erosion-abrasion. (United States)

    Ganss, C; Lussi, A; Grunau, O; Klimek, J; Schlueter, N


    New toothpastes with anti-erosion claims are marketed, but little is known about their effectiveness. This study investigates these products in comparison with various conventional NaF toothpastes and tin-containing products with respect to their erosion protection/abrasion prevention properties. In experiment 1, samples were demineralised (10 days, 6 × 2 min/day; citric acid, pH 2.4), exposed to toothpaste slurries (2 × 2 min/day) and intermittently stored in a mineral salt solution. In experiment 2, samples were additionally brushed for 15 s during the slurry immersion time. Study products were 8 conventional NaF toothpastes (1,400-1,490 ppm F), 4 formulations with anti-erosion claims (2 F toothpastes: NaF + KNO(3) and NaF + hydroxyapatite; and 2 F-free toothpastes: zinc-carbonate-hydroxyapatite, and chitosan) and 2 Sn-containing products (toothpaste: 3,436 ppm Sn, 1,450 ppm F as SnF(2)/NaF; gel: 970 ppm F, 3,030 ppm Sn as SnF(2)). A mouth rinse (500 ppm F as AmF/NaF, 800 ppm Sn as SnCl(2)) was the positive control. Tissue loss was quantified profilometrically. In experiment 1, most NaF toothpastes and 1 F-free formulation reduced tissue loss significantly (between 19 and 42%); the Sn-containing formulations were the most effective (toothpaste and gel 55 and 78% reduction, respectively). In experiment 2, only 4 NaF toothpastes revealed significant effects compared to the F-free control (reduction between 29 and 37%); the F-free special preparations and the Sn toothpaste had no significant effect. The Sn gel (reduction 75%) revealed the best result. Conventional NaF toothpastes reduced the erosive tissue loss, but had limited efficacy regarding the prevention of brushing abrasion. The special formulations were not superior, or were even less effective. Copyright © 2011 S. Karger AG, Basel.

  14. Categorization of erosion control matting. (United States)


    Erosion control is a critical aspect of any Georgia Department of Transportation (GDOT) : construction project, with the extreme negative impacts of high sediment loads in natural : waterways having been well documented. A variety of erosion control ...

  15. Direct numerical simulations of aeolian sand ripples (United States)

    Durán, Orencio; Claudin, Philippe; Andreotti, Bruno


    Aeolian sand beds exhibit regular patterns of ripples resulting from the interaction between topography and sediment transport. Their characteristics have been so far related to reptation transport caused by the impacts on the ground of grains entrained by the wind into saltation. By means of direct numerical simulations of grains interacting with a wind flow, we show that the instability turns out to be driven by resonant grain trajectories, whose length is close to a ripple wavelength and whose splash leads to a mass displacement toward the ripple crests. The pattern selection results from a compromise between this destabilizing mechanism and a diffusive downslope transport which stabilizes small wavelengths. The initial wavelength is set by the ratio of the sediment flux and the erosion/deposition rate, a ratio which increases linearly with the wind velocity. We show that this scaling law, in agreement with experiments, originates from an interfacial layer separating the saltation zone from the static sand bed, where momentum transfers are dominated by midair collisions. Finally, we provide quantitative support for the use of the propagation of these ripples as a proxy for remote measurements of sediment transport. PMID:25331873

  16. A qualitative and quantitative investigation into the effect of fluoride formulations on enamel erosion and erosion-abrasion in vitro. (United States)

    Austin, R S; Stenhagen, K S; Hove, L H; Dunne, S; Moazzez, R; Bartlett, D W; Tveit, A B


    To investigate the effect of a single application of highly concentrated SnF(2) and NaF solutions and a NaF/CaF(2) varnish on human enamel subjected to hydrochloric acid erosion and tooth brush abrasion. Forty enamel samples were prepared from human third molars and NaF (9500ppm, pH 8.0), SnF(2) (9500ppm, pH 2.6) solutions; Bifluorid10(®) varnish (42,500ppm, NaF 5%, CaF(2) 5%) and deionized water (control) was applied to the enamel. Following this three, six and nine cycles of erosion [1 cycle=erosion (0.01M HCl, pH 2.2, 2min)+artificial saliva (1h, pH 7.0)] and erosion-abrasion [1 cycle=erosion (0.01M HCl, pH 2.2, 2min)+artificial saliva (1h, pH 7.0)+abrasion (120 linear strokes in artificial saliva from Tepe medium soft brushes 200g loading)] were carried out. The fluoride treated enamel was analysed using Knoop microhardness, scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS). For erosion alone, there was significantly less microhardness reduction in the Bifluorid10(®) group after three and six cycles of erosion (P0.05). The EDS analysis showed that only the Bifluorid10(®) group had any detectable fluorine following erosion and erosion-abrasion (0.1wt.% and 0.2wt.% fluorine respectively). The surface fluorine was found to have been removed after erosion and erosion-abrasion for all other surface treatments. Although precipitates were observed after application of the surface treatments, following erosion-abrasion, no visible surface effects from any fluoride preparation remained. Enamel surface precipitates from application NaF, SnF(2) solutions appear to not be able to provide protection against gastric erosion and tooth brush abrasion. The NaF/CaF(2) varnish provided limited protection against erosion but the role for such varnishes in gastric erosion and tooth brush abrasion remains uncertain. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. The influence of rainfall on transport of beach sand by wind.

    NARCIS (Netherlands)

    Dijk, van P.M.; Stroosnijder, L.; Lima, de J.L.M.P.


    This paper deals with the effect of rainfall on the process of wind erosion of beach sands and presents results from both field and wind tunnel experiments. Although sediment transport by splash is of secondary importance on coastal dunes, splash-saltation processes can move sediments in conditions

  18. Effect of compost on erodibility of loamy sand under simulated rainfall

    DEFF Research Database (Denmark)

    Arthur, Emmanuel; Cornelis, W.M.; Vermang, J.


    Three types of composts [vegetable, fruit and yard waste compost (VFYW), garden waste compost (GW), and spent mushroom compost (SM)] were applied at a rate of 30 m3 ha−1 for 10 years to loamy sand, to determine its effect on the aggregate stability and susceptibility to water erosion. Aggregate...

  19. Shape feature extraction and pattern recognition of sand particles and their impact (United States)

    Shrestha, Bim P.; Suman, Sandip K.


    Sand deposition is the major problem of Nepalese rivers and it causes substantial impact to different sectors including hydropower generation, natural resource management, and many others. Due to the typical nature of soil and sand of Nepalese mountains it has almost become impossible to predict and manage the upcoming natural disasters and hazards. Sand deposition in rivers affect landslides, aquatic life of rives, environmental disorders and many others. Sedimentation causes not only disasters but also reduces the overall efficiency of hydropower generation units as well. A systematic approach to the problem has been identified in this work. Sand particles are collected from the erosion sensitive power plants and its digital images have been acquired. Software has been developed on MATLAB 6.5 platform to extract the exact shape of sand particles collected. These shapes have further been analyzed by artificial neural network. This network has been first trained for the known input and known output. After that it is trained for unknown input and known output. Finally these networks can recognize any shape given to it and gives the shape which is nearest to the seven predefined shape. The software is trained for seven types of shapes with shape number 1 to 7 in increasing number of sharp edges. The shape with shape number seven is having large number of sharp edges and considered as most erosive where as shape with shape number one is having round edges and considered as least erosive.

  20. Macroscopic erosion of divertor and first wall armour in future tokamaks (United States)

    Würz, H.; Bazylev, B.; Landman, I.; Pestchanyi, S.; Safronov, V.


    Sputtering, evaporation and macroscopic erosion determine the lifetime of the 'in vessel' armour materials CFC, tungsten and beryllium presently under discussion for future tokamaks. For CFC armour macroscopic erosion means brittle destruction and dust formation whereas for metallic armour melt layer erosion by melt motion and droplet splashing. Available results on macroscopic erosion from hot plasma and e-beam simulation experiments and from tokamaks are critically evaluated and a comprehensive discussion of experimental and numerical macroscopic erosion and its extrapolation to future tokamaks is given. Shielding of divertor armour materials by their own vapor exists during plasma disruptions. The evolving plasma shield protects the armour from high heat loads, absorbs the incoming energy and reradiates it volumetrically thus reducing drastically the deposited energy. As a result, vertical target erosion by vaporization turns out to be of the order of a few microns per disruption event and macroscopic erosion becomes the dominant erosion source.

  1. Microbes in Beach Sands: Integrating Environment, Ecology and Public Health (United States)

    Whitman, Richard; Harwood, Valerie J.; Edge, Thomas A.; Nevers, Meredith; Byappanahalli, Muruleedhara; Vijayavel, Kannappan; Brandão, João; Sadowsky, Michael J.; Alm, Elizabeth Wheeler; Crowe, Allan; Ferguson, Donna; Ge, Zhongfu; Halliday, Elizabeth; Kinzelman, Julie; Kleinheinz, Greg; Przybyla-Kelly, Kasia; Staley, Christopher; Staley, Zachery; Solo-Gabriele, Helena M.


    SUMMARY Beach sand is a habitat that supports many microbes, including viruses, bacteria, fungi and protozoa (micropsammon). The apparently inhospitable conditions of beach sand environments belie the thriving communities found there. Physical factors, such as water availability and protection from insolation; biological factors, such as competition, predation, and biofilm formation; and nutrient availability all contribute to the characteristics of the micropsammon. Sand microbial communities include autochthonous species/phylotypes indigenous to the environment. Allochthonous microbes, including fecal indicator bacteria (FIB) and waterborne pathogens, are deposited via waves, runoff, air, or animals. The fate of these microbes ranges from death, to transient persistence and/or replication, to establishment of thriving populations (naturalization) and integration in the autochthonous community. Transport of the micropsammon within the habitat occurs both horizontally across the beach, and vertically from the sand surface and ground water table, as well as at various scales including interstitial flow within sand pores, sediment transport for particle-associated microbes, and the large-scale processes of wave action and terrestrial runoff. The concept of beach sand as a microbial habitat and reservoir of FIB and pathogens has begun to influence our thinking about human health effects associated with sand exposure and recreational water use. A variety of pathogens have been reported from beach sands, and recent epidemiology studies have found some evidence of health risks associated with sand exposure. Persistent or replicating populations of FIB and enteric pathogens have consequences for watershed/beach management strategies and regulatory standards for safe beaches. This review summarizes our understanding of the community structure, ecology, fate, transport, and public health implications of microbes in beach sand. It concludes with recommendations for future

  2. Microbes in Beach Sands: Integrating Environment, Ecology and Public Health. (United States)

    Whitman, Richard; Harwood, Valerie J; Edge, Thomas A; Nevers, Meredith; Byappanahalli, Muruleedhara; Vijayavel, Kannappan; Brandão, João; Sadowsky, Michael J; Alm, Elizabeth Wheeler; Crowe, Allan; Ferguson, Donna; Ge, Zhongfu; Halliday, Elizabeth; Kinzelman, Julie; Kleinheinz, Greg; Przybyla-Kelly, Kasia; Staley, Christopher; Staley, Zachery; Solo-Gabriele, Helena M


    Beach sand is a habitat that supports many microbes, including viruses, bacteria, fungi and protozoa (micropsammon). The apparently inhospitable conditions of beach sand environments belie the thriving communities found there. Physical factors, such as water availability and protection from insolation; biological factors, such as competition, predation, and biofilm formation; and nutrient availability all contribute to the characteristics of the micropsammon. Sand microbial communities include autochthonous species/phylotypes indigenous to the environment. Allochthonous microbes, including fecal indicator bacteria (FIB) and waterborne pathogens, are deposited via waves, runoff, air, or animals. The fate of these microbes ranges from death, to transient persistence and/or replication, to establishment of thriving populations (naturalization) and integration in the autochthonous community. Transport of the micropsammon within the habitat occurs both horizontally across the beach, and vertically from the sand surface and ground water table, as well as at various scales including interstitial flow within sand pores, sediment transport for particle-associated microbes, and the large-scale processes of wave action and terrestrial runoff. The concept of beach sand as a microbial habitat and reservoir of FIB and pathogens has begun to influence our thinking about human health effects associated with sand exposure and recreational water use. A variety of pathogens have been reported from beach sands, and recent epidemiology studies have found some evidence of health risks associated with sand exposure. Persistent or replicating populations of FIB and enteric pathogens have consequences for watershed/beach management strategies and regulatory standards for safe beaches. This review summarizes our understanding of the community structure, ecology, fate, transport, and public health implications of microbes in beach sand. It concludes with recommendations for future work in

  3. Development and Life Prediction of Erosion Resistant Turbine Low Conductivity Thermal Barrier Coatings (United States)

    Zhu, Dongming; Miller, Robert A.; Kuczmarski, Maria A.


    Future rotorcraft propulsion systems are required to operate under highly-loaded conditions and in harsh sand erosion environments, thereby imposing significant material design and durability issues. The incorporation of advanced thermal barrier coatings (TBC) in high pressure turbine systems enables engine designs with higher inlet temperatures, thus improving the engine efficiency, power density and reliability. The impact and erosion resistance of turbine thermal barrier coating systems are crucial to the turbine coating technology application, because a robust turbine blade TBC system is a prerequisite for fully utilizing the potential coating technology benefit in the rotorcraft propulsion. This paper describes the turbine blade TBC development in addressing the coating impact and erosion resistance. Advanced thermal barrier coating systems with improved performance have also been validated in laboratory simulated engine erosion and/or thermal gradient environments. A preliminary life prediction modeling approach to emphasize the turbine blade coating erosion is also presented.

  4. Laboratory singing sand avalanches. (United States)

    Dagois-Bohy, Simon; Ngo, Sandrine; du Pont, Sylvain Courrech; Douady, Stéphane


    Some desert sand dunes have the peculiar ability to emit a loud sound up to 110 dB, with a well-defined frequency: this phenomenon, known since early travelers (Darwin, Marco Polo, etc.), has been called the song of dunes. But only in late 19th century scientific observations were made, showing three important characteristics of singing dunes: first, not all dunes sing, but all the singing dunes are composed of dry and well-sorted sand; second, this sound occurs spontaneously during avalanches on a slip face; third this is not the only way to produce sound with this sand. More recent field observations have shown that during avalanches, the sound frequency does not depend on the dune size or shape, but on the grain diameter only, and scales as the square root of g/d--with g the gravity and d the diameter of the grains--explaining why all the singing dunes in the same vicinity sing at the same frequency. We have been able to reproduce these singing avalanches in laboratory on a hard plate, which made possible to study them more accurately than on the field. Signals of accelerometers at the flowing surface of the avalanche are compared to signals of microphones placed above, and it evidences a very strong vibration of the flowing layer at the same frequency as on the field, responsible for the emission of sound. Moreover, other characteristics of the booming dunes are reproduced and analyzed, such as a threshold under which no sound is produced, or beats in the sound that appears when the flow is too large. Finally, the size of the coherence zones emitting sound has been measured and discussed.

  5. Dental cervical lesions associated with occlusal erosion and attrition. (United States)

    Khan, F; Young, W G; Shahabi, S; Daley, T J


    Acid demineralization of teeth causes occlusal erosion and attrition, and shallow and wedge-shaped cervical lesions putatively involving abfraction. From 250 patients with tooth wear, 122 with cervical lesions were identified. From epoxy resin replicas of their dentitions, associations of occlusal attrition or erosion or no wear with cervical lesions were recorded at 24 tooth sites (total 2928 sites). Criteria used to discriminate occlusal attrition from erosion, and shallow from grooved, wedge-shaped or restored cervical lesions were delineated by scanning electron microscopy. A 96 per cent association was found between occlusal and cervical pathology. Shallow cervical lesions were more commonly found in association with occlusal erosion. Wedge-shaped lesions were found equally commonly in association with occlusal erosion, as with attrition. Grooved and restored cervical lesions were uncommon. Differences were appreciated in the associations within incisor, canine, premolar and molar tooth sites which related more to the site-specificity of dental erosion than to attrition from occlusal forces. Non-carious lesions on teeth then have multifactorial aetiology and pathogenesis in which erosion and salivary protection play central roles. Dentists should primarily consider erosion in the diagnosis, prevention and treatment of tooth wear.

  6. Fortune Cookie Sand Dunes (United States)


    MGS MOC Release No. MOC2-432, 25 July 2003This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a field of small barchan sand dunes in the north polar region near 71.7oN, 51.3oW. Some of them are shaped like fortune cookies. The message these dunes provide: winds blow through this region from the lower right toward the upper left. The steep slip face slopes of these dunes, which point toward the upper left, indicate the wind direction. The scene is illuminated by sunlight from the upper right. The image is 3 km (1.9 mi) wide.

  7. Integrated spatial assessment of wind erosion risk in Hungary

    Directory of Open Access Journals (Sweden)

    L. Pásztor


    Full Text Available Wind erosion susceptibility of Hungarian soils was mapped on the national level integrating three factors of the complex phenomenon of deflation (physical soil features, wind characteristics, and land use and land cover. Results of wind tunnel experiments on erodibility of representative soil samples were used for the parametrization of a countrywide map of soil texture compiled for the upper 5 cm layer of soil, which resulted in a map representing threshold wind velocity exceedance. Average wind velocity was spatially estimated with 0.5′ resolution using the Meteorological Interpolation based on Surface Homogenised Data Basis (MISH method elaborated for the spatial interpolation of surface meteorological elements. The probability of threshold wind velocity exceedance was determined based on values predicted by the soil texture map at the grid locations. Ratio values were further interpolated to a finer 1 ha resolution using sand and silt content of the uppermost (0–5 cm layer of soil as spatial co-variables. Land cover was also taken into account, excluding areas that are not relevant to wind erosion (forests, water bodies, settlements, etc., to spatially assess the risk of wind erosion. According to the resulting map of wind erosion susceptibility, about 10 % of the total area of Hungary can be identified as susceptible to wind erosion. The map gives more detailed insight into the spatial distribution of wind-affected areas in Hungary compared to previous studies.

  8. Reduction in soil aggregate size distribution due to wind erosion (United States)

    Swet, Nitzan; Katra, Itzhak


    Soil erosion process by wind causes emission of fine soil particles, and thus alters the topsoil's properties, fertility, and erodibility. Topsoil resistance to erosion depends on its physicochemical properties, especially on the soil aggregation. Although the key role of aggregates in soil erodibility, quantitative information on the relations between soil aggregate size distribution (ASD) and erosion is still lucking. This study focuses on ASD analyses before and after soil erosion by wind. Wind tunnel experiments and soil analyses were conducted on semiarid loess topsoils with different initial conditions of aggregation. The results show that in all initial soil conditions saltation of sand particles caused the breakdown of macro-aggregates > 500 µm, resulting in increase of micro-aggregates (63-250 µm). The micro-aggregate production increases with the wind shear velocity (up to 0.61 m s-1) for soils with available macro-aggregates. The findings highlight dynamics in soil aggregation in response to erosion process, and therefore the significance of ASD in quantifying soil degradation and soil loss potential.

  9. Integrated spatial assessment of wind erosion risk in Hungary (United States)

    Pásztor, László; Négyesi, Gábor; Laborczi, Annamária; Kovács, Tamás; László, Elemér; Bihari, Zita


    Wind erosion susceptibility of Hungarian soils was mapped on the national level integrating three factors of the complex phenomenon of deflation (physical soil features, wind characteristics, and land use and land cover). Results of wind tunnel experiments on erodibility of representative soil samples were used for the parametrization of a countrywide map of soil texture compiled for the upper 5 cm layer of soil, which resulted in a map representing threshold wind velocity exceedance. Average wind velocity was spatially estimated with 0.5' resolution using the Meteorological Interpolation based on Surface Homogenised Data Basis (MISH) method elaborated for the spatial interpolation of surface meteorological elements. The probability of threshold wind velocity exceedance was determined based on values predicted by the soil texture map at the grid locations. Ratio values were further interpolated to a finer 1 ha resolution using sand and silt content of the uppermost (0-5 cm) layer of soil as spatial co-variables. Land cover was also taken into account, excluding areas that are not relevant to wind erosion (forests, water bodies, settlements, etc.), to spatially assess the risk of wind erosion. According to the resulting map of wind erosion susceptibility, about 10 % of the total area of Hungary can be identified as susceptible to wind erosion. The map gives more detailed insight into the spatial distribution of wind-affected areas in Hungary compared to previous studies.

  10. Compressive behavior of fine sand.

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Bradley E. (Air Force Research Laboratory, Eglin, FL); Kabir, Md. E. (Purdue University, West Lafayette, IN); Song, Bo; Chen, Wayne (Purdue University, West Lafayette, IN)


    The compressive mechanical response of fine sand is experimentally investigated. The strain rate, initial density, stress state, and moisture level are systematically varied. A Kolsky bar was modified to obtain uniaxial and triaxial compressive response at high strain rates. A controlled loading pulse allows the specimen to acquire stress equilibrium and constant strain-rates. The results show that the compressive response of the fine sand is not sensitive to strain rate under the loading conditions in this study, but significantly dependent on the moisture content, initial density and lateral confinement. Partially saturated sand is more compliant than dry sand. Similar trends were reported in the quasi-static regime for experiments conducted at comparable specimen conditions. The sand becomes stiffer as initial density and/or confinement pressure increases. The sand particle size become smaller after hydrostatic pressure and further smaller after dynamic axial loading.

  11. Loss of Plant Species Diversity Reduces Soil Erosion Resistance

    NARCIS (Netherlands)

    Berendse, F.; Ruijven, van J.; Jongejans, E.; Keesstra, S.D.


    In many estuarine areas around the world, the safety of human societies depends on the functioning of embankments (dikes) that provide protection against river floods and storm tides. Vegetation on land-side slopes protects these embankments from erosion by heavy rains or overtopping waves. We

  12. Casting Ductile Iron in Layer Moulds Made from Ecological Sands

    Directory of Open Access Journals (Sweden)

    M. Rączka


    Full Text Available The article contains the results of tests performed under the target project in Hardtop Foundry Charsznica.The objective of the tests and studies was to develop a technology of making high-quality ductile iron castings, combined witheffective means of environmental protection. The studies presented in this article related to castings weighing from 1 to 300 kg made from ductile iron of grades 400-15 and 500-7, using two-layer moulds, where the facing and core sand was the sand with an alkaline organic binder, while backing sand was the sand with an inorganic geopolymer binder.A simplified method of sand reclamation was applied with possible reuse of the reclaim as an addition to the backing sand. The castiron spheroidising treatment and inoculation were selected taking into account the specific conditions of Hardtop Foundry. A pilot batch of castings was made, testing the gating and feeding systems and using exothermic sleeves on risers. The study confirmed the validity of the adopted concept of making ductile iron castings in layer moulds, while maintaining the content of sand with an organic binder at a level of maximum 15%.

  13. Material erosion and erosion products under plasma heat loads typical for ITER hard disruptions

    Energy Technology Data Exchange (ETDEWEB)

    Safronov, V. E-mail:; Arkhipov, N.; Bakhtin, V.; Kurkin, S.; Scaffidi-Argentina, F.; Toporkov, D.; Vasenin, S.; Wuerz, H.; Zhitlukhin, A


    Plasma/material interaction has been studied in disruption simulation experiments. Candidate divertor materials were exposed to heat loads expected for tokamak-reactor disruptions. It is shown that sudden evaporation of a thin material layer produces a cloud of vapor plasma, which acts as a thermal shield protecting the surface from further excessive evaporation. In terms of evaporation reduction a shielding factor is above 100. Formation and physical properties of the shielding layer are analyzed. Target plasma converts the incoming energy flux into photon radiation. Radiation from target plasma is so intensive that it may cause erosion of nearby components. Surface damages result not solely from atomic vaporization but also from melt layer splashing for metals and brittle destruction for carbon-based materials. Erosion products are emitted as droplets (metal) and grains (carbon-based material). Melt layer splashing results in greater surface damages than vaporization. A contribution of brittle destruction to net erosion is under investigation now.

  14. Modeling post-fire water erosion mitigation strategies

    Directory of Open Access Journals (Sweden)

    M. C. Rulli


    Full Text Available Severe wildfires are often followed by significant increase in runoff and erosion, due to vegetation damage and changes in physical and chemical soil properties. Peak flows and sediment yields can increase up to two orders of magnitude, becoming dangerous for human lives and the ecosystem, especially in the wildland–urban interface. Watershed post-fire rehabilitation measures are usually used to mitigate the effects of fire on runoff and erosion, by protecting soil from splash and shear stress detachment and enhancing its infiltration capacity. Modeling post-fire erosion and erosion mitigation strategies can be useful in selecting the effectiveness of a rehabilitation method. In this paper a distributed model based on the Revised Universal Soil Loss Equation (RUSLE, properly parameterized for a Mediterranean basin located in Sardinia, is used to determine soil losses for six different scenarios describing both natural and post-fire basin condition, the last also accounting for the single and combined effect of different erosion mitigation measures. Fire effect on vegetation and soil properties have been mimed by changing soil drainage capacity and organic matter content, and RUSLE factors related to soil cover and protection measures. Model results, validated using measured data on erosion rates from the literature and in situ field campaigns, show the effect of the analyzed rehabilitation treatments in reducing the amount of soil losses with the peculiar characteristics of the spatial distribution of such changes. In particular, the mulching treatment substantially decreases erosion both in its mean value (−75% and in the spatially distribution of the erosion levels over the burned area . On the contrary, the breaking up of the hydrophobic layer decreases post-fire mean soil losses of about the 14%, although it strongly influences the spatial distribution of the erosion levels.

  15. Dental Surface Texture Characterization Based on Erosive Tooth Wear Processes. (United States)

    Hara, A T; Livengood, S V; Lippert, F; Eckert, G J; Ungar, P S


    The differential diagnosis of dental wear lesions affects their clinical management. We hypothesized that surface texture parameters can differentiate simulated erosion, abrasion, and erosion-abrasion lesions on human enamel and dentin. This in vitro study comprised 2 parts (both factorial 4 × 2), with 4 lesion types (erosion, abrasion, erosion-abrasion, and sound [no lesion; control]) and 2 substrates (enamel and dentin). Flattened/polished dental specimens were used in part 1, whereas natural dental surfaces were used in part 2. Testing surfaces were evaluated in blind conditions, using average surface roughness (Sa) and the following scale-sensitive fractal analysis parameters: area-scale fractal complexity (Asfc), exact proportion length-scale anisotropy of relief (eplsar), scale of maximum complexity (Smc), and textural fill volume (Tfv). Two-way analyses of variance, followed by Fisher's protected least significant difference tests (α = 0.05), were used to evaluate the effects of lesion and substrate. Classification trees were constructed to verify the strength of potential associations of the tested parameters. In part 1,Asfc, Sa, and Tfv were able to differentiate erosion and erosion-abrasion lesions from the sound (no lesion) control in both substrates; only Asfc differentiated erosion and erosion-abrasion enamel lesions (allPabrasion lesions from the sound (no lesion) control in both substrates, whereas eplsar was able to differentiate erosion from erosion-abrasion (allPabrasion lesions, despite their complicated surface textures. The association of parameters improved the differentiation of lesions for both enamel and dentin in polished or natural surfaces. © International & American Associations for Dental Research 2016.

  16. Namibia : triaxial test on sand

    DEFF Research Database (Denmark)

    Steenfelt, Jørgen S.; Jacobsen, Kim P.

    In connection with a harbour project the friction angle of a fine sand is required. On Friday 13 March 1998 the Danish Geotechnical Institute (DGI) delivered app. 2.5 kg sand for testing at the Geotechnical Engineering Laboratory, Aalborg University. The present Data Report summarises the results...

  17. Coastal geology and recent origins for Sand Point, Lake Superior (United States)

    Fisher, Timothy G.; Krantz, David E.; Castaneda, Mario R.; Loope, Walter L.; Jol, Harry M.; Goble, Ronald J.; Higley, Melinda C.; DeWald, Samantha; Hansen, Paul


    Sand Point is a small cuspate foreland located along the southeastern shore of Lake Superior within Pictured Rocks National Lakeshore near Munising, Michigan. Park managers’ concerns for the integrity of historic buildings at the northern periphery of the point during the rising lake levels in the mid-1980s greatly elevated the priority of research into the geomorphic history and age of Sand Point. To pursue this priority, we recovered sediment cores from four ponds on Sand Point, assessed subsurface stratigraphy onshore and offshore using geophysical techniques, and interpreted the chronology of events using radiocarbon and luminescence dating. Sand Point formed at the southwest edge of a subaqueous platform whose base is probably constructed of glacial diamicton and outwash. During the post-glacial Nipissing Transgression, the base was mantled with sand derived from erosion of adjacent sandstone cliffs. An aerial photograph time sequence, 1939–present, shows that the periphery of the platform has evolved considerably during historical time, infl uenced by transport of sediment into adjacent South Bay. Shallow seismic refl ections suggest slump blocks along the leading edge of the platform. Light detection and ranging (LiDAR) and shallow seismic refl ections to the northwest of the platform reveal large sand waves within a deep (12 m) channel produced by currents fl owing episodically to the northeast into Lake Superior. Ground-penetrating radar profi les show transport and deposition of sand across the upper surface of the platform. Basal radiocarbon dates from ponds between subaerial beach ridges range in age from 540 to 910 cal yr B.P., suggesting that Sand Point became emergent during the last ~1000 years, upon the separation of Lake Superior from Lakes Huron and Michigan. However, optically stimulated luminescence (OSL) ages from the beach ridges were two to three times as old as the radiocarbon ages, implying that emergence of Sand Point may have begun

  18. Atlas of Dutch drift sands (United States)

    Riksen, Michel; Jungerius, Pieter


    The Netherlands is well known for its aeolian landscapes. Frequent storms during the High Middle Ages (1000-1300 AD) reactivated Pleistocene coversands and river dunes and are responsible for the formation of the Holocene drift sands at a scale which is unique for Europe. A hypothesized relationship with farmer practices for making plaggensoils has recently been refuted, because drift sand formation began centuries earlier. The coastal dune belt with their parabolic dunes dates from the same period as the drift sand. An estimate of the extent of drift sands can be made from soil maps: drift sands are too young to show much profile development (Regosols). With this method Koster estimated the maximum extent of Holocene drift sands in the Netherlands to be about 800 km2 (Koster 2005). Laser altimetry allows a more precise estimate of the total surface affected by wind from the characteristic relief patterns produced by the Holocene wind, which is different from the smooth surface of cover sand deposits. Laser altimetry has been used before to investigate the mechanism of drift sand formation (Jungerius & Riksen 2010). Most of the surface affected by wind is not active anymore, but the tell-tale rough surface survived ages of different landuse. The total affected surface amounts to 825 km2. It is noteworthy that both methods give comparable results. We recorded a total number of 367 of affected areas of varying shapes, ranging in size from 1.6 ha to a large complex of drif sands of 7,119.5 ha. As is to be expected from their mode of origin, most occurrences are associated with cover sands, and with river dunes along the river Meuse and smaller rivers in other parts of the country. Particularly the final phases of cover sand and river dunes that show more relief as parabolic dunes were affected. There are also small aeolian deposits at the lee side blown from fallow agricultural fields but they are (sub)recent. Most of the relief is irregular, but the larger

  19. A terminological matter: paragenesis, antigravitative erosion or antigravitational erosion ?

    Directory of Open Access Journals (Sweden)

    Pasini G.


    Full Text Available In the speleological literature three terms are utilized to designate the “ascending erosion”: paragenesis (= paragénésis, coined in1968, antigravitative erosion (= erosione antigravitativa, coined in 1966 and antigravitational erosion (wrong English translation ofthe Italian term erosione antigravitativa, utilized later on. The term paragenesis should be abandoned because of the priority of theterm erosione antigravitativa - on the ground of the “law of priority” – and because of its ambiguous etimology. On the other hand,the term antigravitational erosion should be forsaken in favour of the term antigravitative erosion, given the meaning that the termsgravitation and gravity have in Physics. Therefore, to designate the phenomenon of the “ascending erosion” there would be nothingleft but the term antigravitative erosion.The antigravitative erosion process and its recognizability are illustrated.Examples of caves with evident antigravitative erosion phenomena, developed in different karstifiable rocks and in several partsof the world, are given.It is recalled that the antigravitative erosion is a phenomenon well-known since 1942 and widely proven and supported, and that it isrelatively easy – in many cases - to recognize the antigravitative origin of karstic passages.It is stressed that the antigravitative erosion is an important phenomenon, exclusive of the karstic caves and unique in nature.

  20. 2010 oil sands performance report

    Energy Technology Data Exchange (ETDEWEB)



    With the depletion of traditional energy resources and the rising demand for energy, oil sands have become an important energy resource for meeting energy needs. Oil sands are a mixture of water, sand, clay and bitumen which is recovered either through open pit mining or in situ drilling techniques. The bitumen is then converted into syncrude or sold to refineries for the production of gasoline, diesel or other products. Shell has oil sands operations in Alberta and the aim of this report is to present its 2010 performance in terms of CO2, water, tailings, land, and reclamation and engagement. This document covers several of Shell's operations in the Muskeg River and Jackpine mines, Scotford upgrader, Peace River, Orion, Seal, Cliffdale and Chipmunk. It provides useful information on Shell's oil sands performance to governments, environmental groups, First Nations, local communities and the public.

  1. A study of the effect of solid particle impact and particle shape on the erosion morphology of ductile metals (United States)

    Rao, P. V.; Young, S. G.; Buckley, D. H.


    Impulsive versus steady jet impingement of spherical glass bead particles on metal surfaces was studied using a gas gun facility and a commercial sand blasting apparatus. Crushed glass particles were also used in the sand blasting apparatus as well as glass beads. Comparisons of the different types of erosion patterns were made. Scanning electron microscopy, surface profilometry and energy dispersive X-ray spectroscopy analysis were used to characterize erosion patterns. The nature of the wear can be divided into cutting and deformation, each with its own characteristic features. Surface chemistry analysis indicates the possiblity of complex chemical and/or mechanical interactions between erodants and target materials.

  2. A study of the nature of solid particle impact and shape on the erosion morphology of ductile metals (United States)

    Rao, P. V.; Young, S. G.; Buckley, D. H.


    Impulsive versus steady jet impingement of spherical glass bead particles on metal surfaces was studied using a gas gun facility and a commercial sand blasting apparatus. Crushed glass particles were also used in the sand blasting apparatus as well as glass beads. Comparisons of the different types of erosion patterns were made. Scanning electron microscopy, surface profilometry and energy dispersive X-ray spectroscopy analysis were used to characterize erosion patterns. The nature of the wear can be divided into cutting and deformation, each with its own characteristic features. Surface chemistry analysis indicates the possibility of complex chemical and/or mechanical interactions between erodants and target materials.

  3. Remineralizing effect of a zinc-hydroxyapatite toothpaste on enamel erosion caused by soft drinks : ultrastructural analysis


    Colombo, Marco; Mirando, Maria; Rattalino, Davide; Beltrami, Riccardo; Chiesa, Marco; Poggio,Claudio


    Background The aim of the present in vitro study was to evaluate the protective effects of a zinc-hydroxyapatite toothpaste on repairing enamel erosion produced by a soft drink (Coca-Cola) compared to toothpastes with and without fluoride using Scanning Electron Microscopy (SEM). Material and Methods Fifty specimens were assigned to 5 groups of 10 specimens each. (Group 1: no erosive challenge, no toothpaste treatment, group 2: erosive challenge, no toothpaste treatment, 3: erosive challenge,...

  4. Evaluation of different techniques for erosion control on different roadcuts in its first year of implantation (United States)

    Gomez, Jose Alfonso; Rodríguez, Abraham; Viedma, Antonio; Contreras, Valentin; Vanwalleghem, Tom; Taguas, Encarnación V.; Giráldez, Juan Vicente


    Linear infrastructures, such as highways and railways, present a large environmental impact. Among this impact is the effect on landscape and the modification of the hydrological conditions of the area and an increase in erosive processes (Martin et al., 2011). The increase of erosive processes is specially significant in roadbanks, resulting in high maintenance costs as well as security risks for the use of the infrastructure if it is not properly controlled. Among roadbanks, roadcuts are specially challenging areas for erosion control and ecological restoration, due to their usually steep slope gradient and poor conditions for establishment of vegetation. There are several studies in Mediterranean conditions indicating how the combination of semiarid conditions with, sporadic, intense rainfall events makes a successful vegetation development and erosion control in motorway roadbanks extremely difficult (e.g. Andrés and Jorbat, 2000; Bochet and García-Fayos, 2004). This communication presents the results of the first year evaluation (hydrological year 2012-2013) of five different erosion control strategies on six different locations under different materials on roadcuts of motorways or railways in Andalusia during 2012-2013 using natural rainfall and simulated rainfall. The six sites were located on roadcuts between 10 and 20 m long on slope steepness ranging from 40 to 90%, in motorways and railways spread over different materials in Andalusia. Site 1, Huelva was located on consolidated sand material, sites 2, Osuna I, site 3, Osuna II and site 4, Mancha Real, on marls. Sites 5, Guadix, and 6, Fiñana, were located on phyllites, in comparison a harder material. At each site 12 plots (10 m long and 2 m wide) were installed using metal sheets buried 10 cm within the soil with their longest side in the direction of the roadcut maximum slope. Six different treatments were evaluated at each site, two replications each. These treatments were: 1- A control with bare

  5. Clear cutting (10-13th century) and deep stable economy (18-19th century) as responsible interventions for sand drifting and plaggic deposition in cultural landscapes on aeolian sands (SE-Netherlands). (United States)

    van Mourik, Jan; Vera, Hein; Wallinga, Jakob


    The landscape in extensive areas in SE-Netherlands is underlain by coversand, deposited during the Late Glacial of the Weichselian. In the Preboreal, aeolian processes reduced soil formation. From the Preboreal to the Atlantic a deciduous climax forest developed. The geomorphology was a coversand landscape, composed of ridges (umbric podzols), coversand plains (gleyic podzols), coversand depressions (histic podzols) and small valleys (gleysols). The area was used by hunting people during the Late Paleolithic and Mesolithic. During the Bronze and Iron Ages the area was populated by people, living from forest grazing, shifting cultivation and trade. The natural deciduous forest gradually degraded into Calluna heath. The deforestation accelerated the soil acidification and affected the hydrology, which is reflected in drying out of ridges and wetting of depressions, promoting the development of histic podzols and even histosols. Aeolian erosion was during this period restricted to local, small scale sand drifting, related to natural hazards as forest fires and hurricanes and shifting cultivation. Sustainable crop productivity on chemically poor sandy substrates required application of organic fertilizers, composed of a mixture of organic litter and animal manure with a very low mineral compound, produced in shallow stables. At least since 1000 AD, heath management was regulated by a series of rules that aimed to protect the valuable heat lands against degradation. During the 11th, 12th and 13th centuries there was an increasing demand for wood and clear cutting transformed the majority of the forests in driftsand landscapes. The most important market was formed by the very wealthy Flemish cities. The exposed soil surface was subjected to wind erosion and sand drifting which endangered the Calluna heath, arable land and even farmhouses. As a consequence, umbric podzols, the natural climax soil under deciduous forests on coversand, degraded into larger scale driftsand

  6. Soil Erosion and Agricultural Sustainability

    National Research Council Canada - National Science Library

    David R. Montgomery


    .... The general equivalence of the latter indicates that, considered globally, hillslope soil production and erosion evolve to balance geologic and climate forcing, whereas conventional plow-based...

  7. Multiperspective analysis of erosion tolerance

    Directory of Open Access Journals (Sweden)

    Sparovek Gerd


    Full Text Available Erosion tolerance is the most multidisciplinary field of soil erosion research. Scientists have shown lack in ability to adequately analyze the huge list of variables that influence soil loss tolerance definitions. For these the perspectives of erosion made by farmers, environmentalists, society and politicians have to be considered simultaneously. Partial and biased definitions of erosion tolerance may explain not only the polemic nature of the currently suggested values but also, in part, the nonadoption of the desired levels of erosion control. To move towards a solution, considerable changes would have to occur on how this topic is investigated, especially among scientists, who would have to change methods and strategies and extend the perspective of research out of the boundaries of the physical processes and the frontiers of the academy. A more effective integration and communication with the society and farmers, to learn about their perspective of erosion and a multidisciplinary approach, integrating soil, social, economic and environmental sciences are essential for improved erosion tolerance definitions. In the opinion of the authors, soil erosion research is not moving in this direction and a better understanding of erosion tolerance is not to be expected in the near future.

  8. Heel erosion and other interdigital disorders in dairy cows

    DEFF Research Database (Denmark)

    Enevoldsen, Carsten; Gröhn, Y.T.; Thysen, Iver


    Epidemiologic associations between variables obtainable from dairy cow records and the occurrence of heel erosion, interdigital dermatitis, and interdigital hyperplasia at claw trimmings were estimated with multivariable logistic regression analysis on data from 1170 and 542 cows in lactation 1...... and lactations 2 to 9, respectively. In the 17 herds, heel erosion, interdigital dermatitis, and hyperplasia occurred among 43.8, 4.5, and .9% of cows in lactation 1 and among 69.1, 7.6 and 5.9% of cows in lactations 2 to 9, respectively. Severity of heel erosion increased with parity, and risk increased...... with stage of lactation. Strong seasonal effects were present. Various combinations of veterinary treatments were associated with heel erosion and hyperplasia depending on parity, stage of lactation, and the presence of other claw disorders. In contrast, veterinary treatment had a protective effect...

  9. Erosion mechanism and erosion products in carbon-based materials

    Energy Technology Data Exchange (ETDEWEB)

    Arkhipov, N.; Bakhtin, V.; Barsuk, V.; Kurkin, S.; Mironova, E.; Piazza, G.; Safronov, V. E-mail:; Scaffidi-Argentina, F.; Toporkov, D.; Vasenin, S.; Wuerz, H.; Zhitlukhin, A


    Plasma/material interaction was studied in disruption simulation experiments at the plasma gun facility MK-200. Graphite and carbon-fibre composites were exposed to pulsed energetic plasma under heat loads typically expected for disruptions in future tokamaks. Erosion rates, erosion mechanisms and the properties of the eroded carbon have been studied.

  10. Rill erosion rates in burned forests (United States)

    Joseph W. Wagenbrenner; Peter R. Robichaud


    Introduction Wildfires often produce large increases in runoff and erosion rates (e.g., Moody and Martin, 2009), and land managers need to predict the frequency and magnitude of postfire erosion to determine the needs for hazard response and possible erosion mitigation to reduce the impacts of increased erosion on public safety and valued resources. The Water Erosion...

  11. Spectroscopic characterization of a Nigerian standard sand: Igbokoda sand

    CSIR Research Space (South Africa)

    Ojuri, OO


    Full Text Available the Middle Ordovician St. Peter Sandstone near Ottawa, Illinois, had been picked by the American Society for Testing and Materials (ASTM) as the reference sand to employ in testing cement and strength of concrete [9]. To the best of our knowledge... and magnetic resonance spectroscopic techniques due to its importance in cement, geotechnical/geo-environmental research in Nigeria. This should halt importation of standard silica sand for mortar and concrete testing...

  12. Uncertainties in assessing tillage erosion - how appropriate are our measuring techniques? (United States)

    Fiener, Peter; Deumlich, Detlef; Gómez, José A.; Guzmán, Gema; Hardy, Robert; Jague, Emilien A.; Quinton, John; Sommer, Michael; van Oost, Kristof; Wexler, Robert; Wilken, Florian


    In undulating arable landscapes tillage erosion is one of the dominant processes initiating lateral transfer of soil and soil constituents. Especially, in relatively dry regions, where tillage erosion can be much larger than water erosion, the associated changes in soil hydraulic properties might have substantial effects upon the sustainable use of soil resources. There have been some studies using different techniques to determine tillage erosion which build the basis for tillage erosion modelling approaches. However, tillage erosion is rather understudied compared to water erosion. The goal of this study was to bring together experts using different techniques to determine tillage erosion in an experimental set-up and to analyse the different results and assess the uncertainties associated with typical model inputs. Tillage erosion on a 50 x 10 m plot was determined after two phases of seven tillage passes performed within a week (simulating 10-14 yrs of tillage). As tracers, two different micro-tracers (magnetite mixed with soil and fluorescent sand) and one macro-tracer (passive Radio-Frequency Identification (RFID) transponders; dia. 3 mm, length 20 mm) were used. Moreover, tillage induced changes in topography were spatially determined for the entire plot with two different terrestrial laser scanners and an UAV-based structure by motion topography analysis. Topography changes were also evaluated at 12 points using buried concrete flagstones as reference. A preliminary analysis of tracer movement indicates substantial differences in tillage induced translocation depending on type of tracer. While the mean translocation of the RFIDs was 0.47 m per pass the mean movement of the micro-tracers was 0.70 m. Substantial differences were also found for the different techniques to determine changes in topography. Overall the experiment underlines the importance of tillage erosion for the lateral transfer of soil and soil constituents, but also shows the large

  13. Sand Resources, Regional Geology, and Coastal Processes of the Chandeleur Islands Coastal System: an Evaluation of the Breton National Wildlife Refuge (United States)

    Lavoie, Dawn


    Breton National Wildlife Refuge, the Chandeleur Islands chain in Louisiana, provides habitat and nesting areas for wildlife and is an initial barrier protecting New Orleans from storms. The U.S. Geological Survey (USGS) in partnership with the University of New Orleans Pontchartrain Institute for Environmental Sciences undertook an intensive study that included (1) an analysis of island change based on historical maps and remotely sensed shoreline and topographic data; (2) a series of lidar surveys at 3- to 4-month intervals after Hurricane Katrina to determine barrier island recovery potential; (3) a discussion of sea level rise and effects on the islands; (4) an analysis of sea floor evolution and sediment dynamics in the refuge over the past 150 years; (5) an assessment of the local sediment transport and sediment resource availability based on the bathymetric and subbottom data; (6) a carefully selected core collection effort to groundtruth the geophysical data and more fully characterize the sediments composing the islands and surrounds; (7) an additional survey of the St. Bernard Shoals to assess their potential as a sand resource; and (8) a modeling study to numerically simulate the potential response of the islands to the low-intensity, intermediate, and extreme events likely to affect the refuge over the next 50 years. Results indicate that the islands have become fragmented and greatly diminished in subaerial extent over time: the southern islands retreating landward as they reorganize into subaerial features, the northern islands remaining in place. Breton Island, because maintenance of the Mississippi River-Gulf Outlet (MRGO) outer bar channel requires dredging, is deprived of sand sufficient to sustain itself. Regional sediment transport trends indicate that large storms are extremely effective in transporting sand and controlling the shoreline development and barrier island geometry. Sand is transported north and south from a divergent zone near

  14. Characterization of sand lenses embedded in tills

    DEFF Research Database (Denmark)

    Kessler, Timo Christian; Klint, K.E.S.; Nilsson, B.


    Tills dominate large parts of the superficial sediments on the Northern hemisphere. These glacial diamictons are extremely heterogeneous and riddled with fractures and lenses of sand or gravel. The frequency and geometry of sand lenses within tills are strongly linked to glaciodynamic processes...... occurring in various glacial environments. This study specifically focuses on the appearance and spatial distribution of sand lenses in tills. It introduces a methodology on how to measure and characterize sand lenses in the field with regard to size, shape and degree of deformation. A set of geometric...... parameters is defined to allow characterization of sand lenses. The proposed classification scheme uses a stringent terminology to distinguish several types of sand lenses based on the geometry. It includes sand layers, sand sheets, sand bodies, sand pockets and sand stringers. The methodology has been...

  15. Reclaimability of the spent sand mixture – sand with bentonite – sand with furfuryl resin

    Directory of Open Access Journals (Sweden)

    J. Dańko


    Full Text Available Introduction of new binding materials and new technologies of their hardening in casting moulds and cores production requires theapplication of reclamation methods adequate to their properties as well as special devices realizing tasks. The spent sands circulationsystem containing the same kind of moulding and core sands is optimal from the point of view of the expected reclamation results.However, in the face of a significant variability of applied technologies and related to them various reclamation methods, the need - of theobtained reclamation products assessment on the grounds of systematic criteria and uniform bases – arises, with a tendency of indicatingwhich criteria are the most important for the given sand system. The reclaimability results of the mixture of the spent moulding sand withGeko S bentonite and the spent core sand with the Kaltharz 404U resin hardened by acidic hardener 100 T3, are presented in the paper.Investigations were performed with regard to the estimation of an influence of core sands additions (10 –25% on the reclaimed materialquality. Dusts and clay content in the reclaim, its chemical reaction (pH and ignition loss were estimated. The verification of the reclaiminstrumental assessment was performed on the basis of the technological properties estimation of moulding sand with bentonite, where the reclaimed material was used as a matrix.

  16. Rangeland Hydrology and Erosion Model (United States)

    Nearing, Mark; Pierson, Fred; Hernandez, Mariano; Al-Hamdan, Osama; Weltz, Mark; Spaeth, Ken; Wei, Haiyan; Stone, Jeff


    Soil loss rates on rangelands are considered one of the few quantitative indicators for assessing rangeland health and conservation practice effectiveness. An erosion model to predict soil loss specific for rangeland applications has been needed for many years. Most erosion models were developed from croplands where the hydrologic and erosion processes are different, largely due to much higher levels of heterogeneity in soil and plant properties at the plot scale and the consolidated nature of the soils. The Rangeland Hydrology and Erosion Model (RHEM) was designed to fill that need. RHEM is an event-based model that estimates runoff, erosion, and sediment delivery rates and volumes at the spatial scale of the hillslope and the temporal scale of a single rainfall event. It represents erosion processes under normal and fire-impacted rangeland conditions, it adopts a new splash erosion and thin sheet-flow transport equation developed from rangeland data, and it links the model hydrologic and erosion parameters with rangeland plant communities by providing a new system of parameter estimation equations based on 204 plots at 49 rangeland sites distributed across 15 western U.S. states. Recent work on the model is focused on representing intra-storm dynamics, using stream-power as the driver for detachment by flow, and deriving parameters for after-fire conditions.

  17. Management recommendations: Sand Lake Complex (United States)

    US Fish and Wildlife Service, Department of the Interior — This document is a review of land management practices at the Sand Lake National Wildlife Refuge, by a land use specialist. Recommendations, time frame and...

  18. Sensuous Communism: Sand with Marx


    White, Claire


    This article reads George Sand's Le Compagnon du Tour de France (1840) alongside Karl Marx's “Economic and Philosophic Manuscripts of 1844.” It considers how these contemporaries bring to bear on their accounts of labor, estrangement, and the structures of property an attention to the fate of the senses under capitalism. Both elaborate a critique of political economy—Sand's voiced by her worker-hero—that demonstrates how the individual's sensuous life is circumscribed by the pressures of mate...

  19. A review of rain erosion problems for aerogenerators (United States)

    Mortimer, A. R.

    Erosive mechanisms and protective measures available for windpowered generators exposed to rain are examined. Rain erosion is modeled in two stages: an incubation phase, when plastic deformation and crack formation occur with no loss of weight; and a phase of actual material loss. Raindrop impact causes a progressive tearing action, which is significant in the erosion of soft, compliant elastomers; light rain over a long time period is noted to cause fatigue. Choosing a protective surface necessitates consideration of both surface impact and the effects on the substrate. Metal, polymeric, and composite coatings are discussed, and it is found that softness reduces impact damage, and fine weaves in composites enhances stress concentration corrosion resistance. Continued studies specifically dealing with wind turbine blades are recommended, as current knowledge is derived from existing helicopter and propeller driven airplane data.

  20. EPA leads effort to contain jet fuel spill on Sand Island (United States)

    HONOLULU - Today, the U.S. Environmental Protection Agency issued a federal Clean Water Act order to ensure the continued cleanup of spilled jet fuel at a tank farm facility on the Sand Island Access Road in Honolulu.

  1. Modeling soil erosion in a watershed


    Lanuza, R.


    Most erosion models have been developed based on a plot scale and have limited application to a watershed due to the differences in aerial scale. In order to address this limitation, a GIS-assisted methodology for modeling soil erosion was developed using PCRaster to predict the rate of soil erosion at watershed level; identify the location of erosion prone areas; and analyze the impact of landuse changes on soil erosion. The general methodology of desktop modeling or soil erosion at watershe...

  2. A probabilistic approach to modeling postfire erosion after the 2009 Australian bushfires (United States)

    P. R. Robichaud; W. J. Elliot; F. B. Pierson; D. E. Hall; C. A. Moffet


    Major concerns after bushfires and wildfires include increased flooding, erosion and debris flows due to loss of the protective forest floor layer, loss of water storage, and creation of water repellent soil conditions. To assist postfire assessment teams in their efforts to evaluate fire effects and make postfire treatment decisions, a web-based Erosion Risk...

  3. Estimation of wind erosion from construction of a railway in arid northwest China (United States)

    A state-of-the-art wind erosion simulation model, the Wind Erosion Prediction System and the United States Environmental Protection Agency’s AP-42 emission factors formula, were combined together to evaluate wind-blown dust emissions from various construction units from a railway construction projec...

  4. Complex evaluation of moulding sand properties by multi-factor analysis of variance

    Directory of Open Access Journals (Sweden)

    A. Smoliński


    Full Text Available The article presents the statistical evaluation of selected properties of moulding sands with additions of various binders. A utilitarian objective of this study was to determine the possibility of using coal dust as an additive to sands to protect castings made in these sands from the burn on defects. Another objective of the study was to investigate the possibilities to eliminate the protective coatings in view of a high cost of their application. The investigations were carried out on mixtures based on silica sand with binders, i.e. P26 flocculant – a complex compound of vegetable origin, and Gitar – a waste material formed during manufacture of hydrogen cyanid, with an addition of coal dust. Applying the multi-factor analysis of variance, a complex effect of the sand chemical composition, and of the drying time and temperature on dry compression strength Rcs was analysed

  5. Slurry Erosion Behavior of Destabilized and Deep Cryogenically Treated Cr-Mn-Cu White Cast Irons

    Directory of Open Access Journals (Sweden)

    S. Gupta


    Full Text Available The effects of destabilization treatment and destabilization followed by cryogenic treatment have been evaluated on the microstructural evolution and sand-water slurry erosion behavior of Cr-Mn-Cu white cast irons. The phase transformations after the destabilization and cryotreatment have been characterized by bulk hardness measurement, optical and scanning electron microscopy, x-ray diffraction analysis. The static corrosion rate has been measured in tap water (with pH=7 and the erosion-corrosion behavior has been studied by slurry pot tester using sand-water slurry. The test results indicate that the cryogenic treatment has a significant effect in minimizing the as-cast retained austenite content and transforming into martensitic and bainitic matrix embedded with ultra-fine M7C3 alloy carbides. In contrast, by conventional destabilization treatment retained austenite in the matrix are not fully eliminated. The slurry erosive wear resistance has been compared with reference to destabilized and cryotreated high chromium iron samples which are commonly employed for such applications. The cryotreated Cr-Mn-Cu irons have exhibited a comparable erosive wear performance to those of high chromium irons. Higher hardness combined with improved corrosion resistance result in better slurry erosion resistance.

  6. Vegetarian children and dental erosion. (United States)

    al-Dlaigan, Y H; Shaw, L; Smith, A J


    There have been recent changes in teenage lifestyle and diet. The increasing consumption of soft drinks and foods containing significant acidic components may play a role in the development of dental erosion. The aims of this investigation were firstly to assess the prevalence of vegetarian children in a cluster random sample of 14-year-old children in Birmingham, United Kingdom. Secondly, to determine the prevalence of dental erosion in these children, and thirdly, to see if there were any differences between vegetarian and non-vegetarian children in the prevalence of dental erosion and dietary intake. A cluster random sample of 418 14-year-old children (209 males and 209 females) were examined from 12 different schools in Birmingham, United Kingdom; a dietary questionnaire was completed and the levels of tooth wear were recorded using a modification of the (TWI) index. All data were analysed using SPSS with t-test and Chi-square analysis. Significance was accepted at the P children were vegetarian; 52% of them had low dental erosion and 48% moderate dental erosion. Statistically there were no significant differences between vegetarian and non-vegetarian children in the prevalence of erosion; however, there were significant differences in some food and drink consumption. It was concluded that dental erosion is common in teenage children, but there were no significant differences in prevalence between vegetarian and non-vegetarian children.

  7. Effects of woody vegetation on overbank sand transport during a large flood, Rio Puerco, New Mexico (United States)

    Griffin, Eleanor R.; Perignon, Mariela C.; Friedman, Jonathan M.; Tucker, Gregory E.


    Distributions of woody vegetation on floodplain surfaces affect flood-flow erosion and deposition processes. A large flood along the lower Rio Puerco, New Mexico, in August 2006 caused extensive erosion in a reach that had been sprayed with herbicide in September 2003 for the purpose of saltcedar (Tamarix spp.) control. Large volumes of sediment, including a substantial fraction of sand, were delivered to the reach downstream, which had not been treated with herbicide. We applied physically based, one-dimensional models of flow and suspended-sediment transport to compute volume concentrations of sand in suspension in floodplain flow at a site within the sprayed reach and at a site downstream from the sprayed reach. We computed the effects of drag on woody stems in reducing the skin friction shear stress, velocity of flow, and suspended-sand transport from open paths into patches of dense stems. Total flow and suspended-sand fluxes were computed for each site using well-constrained flood-flow depths, water-surface slopes, and measured shrub characteristics. Results show that flow in open paths carried high concentrations of sand in suspension with nearly uniform vertical distributions. Drag on woody floodplain stems reduced skin friction shear stresses by two orders of magnitude, yet sufficient velocities were maintained to transport sand more than 50 m into fields of dense, free-surface-penetrating stems. An increase in shrub canopy extent from 31% in the sprayed reach site to 49% in the downstream site was found to account for 69% of the computed decrease in discharge between the two sites. The results demonstrate the need to compute the spatial distribution of skin friction shear stress in order to effectively compute suspended-sand transport and to predict the fate of sediment and contaminants carried in suspension during large floods.

  8. Methods for Monitoring Erosion Using Optical Coherence Tomography. (United States)

    Chan, Kenneth H; Chan, Andrew C; Darling, Cynthia L; Fried, Daniel


    Since optical coherence tomography is well suited for measuring small dimensional changes on tooth surfaces it has great potential for monitoring tooth erosion. The purpose of this study was to explore different approaches for monitoring the erosion of enamel. Application of an acid resistant varnish to protect the tooth surface from erosion has proven effective for providing a reference surface for in vitro studies but has limited potential for in vivo studies. Two approaches which can potentially be used in vivo were investigated. The first approach is to measure the remaining enamel thickness, namely the distance from the tooth surface to the dentinal-enamel junction (DEJ). The second more novel approach is to irradiate the surface with a carbon dioxide laser to create a reference layer which resists erosion. Measuring the remaining enamel thickness proved challenging since the surface roughening and subsurface demineralization that commonly occurs during the erosion process can prevent resolution of the underlying DEJ. The areas irradiated by the laser manifested lower rates of erosion compared to the non-irradiated areas and this method appears promising but it is highly dependent on the severity of the acid challenge.

  9. Minimizing post-fire erosion using rainwater harvesting practices (United States)

    P. R. Garcia-Chevesich; R. Valdes; D. Neary; R. Pizarro


    Though wildfires can lead to tremendous rates of soil erosion, they also have several beneficial effects on natural areas. Plants in ecosystems that are susceptible to wildfires often survive through adaptation processes that include physical protection against heat, increased growth after a wildfire event and production of flammable materials that stimulate fire and...

  10. Probabilistic estimation of dune erosion and coastal zone risk

    NARCIS (Netherlands)

    Li, F.


    Coastal erosion has gained global attention and has been studied for many decades. As a soft sea defence structure, coastal sandy dunes protect coastal zones all over the world, which usually are densely populated areas with tremendous economic value. The coastal zone of the Netherlands, one of the

  11. An index guiding temporal planting policies for wind erosion reduction

    NARCIS (Netherlands)

    Zhao, C.X.; Zheng, D.W.; Stigter, C.J.; He, W.Q.; Tuo, D.B.; Zhao, P.


    Vegetation cover has spatial as well as temporal characteristics, but the latter are often neglected. Temporal cover characteristics were explored to recommend planting policies for returning arable land into land better protected from serious wind erosion during late autumn, winter, and

  12. The immune response to sand fly salivary proteins and its influence on Leishmania immunity

    Directory of Open Access Journals (Sweden)

    Regis eGomes


    Full Text Available Leishmaniasis is a vector-borne disease transmitted by bites of phlebotomine sand flies. During Leishmania transmission, sand fly saliva is co-inoculated with parasites into the skin of the mammalian host. Sand fly saliva consists of roughly thirty different salivary proteins, many with known roles linked to blood feeding facilitation. Apart from the anti-hemostatic capacity of saliva, several sand fly salivary proteins have been shown to be immunogenic upon multiple contacts with a mammalian host. Immunization with single immunogenic salivary proteins or exposure to uninfected bites can produce protective immune responses against leishmaniasis. These sand fly salivary proteins induce cellular immune responses and/or antibodies. Antibodies to saliva are not required for protection in a mouse model against leishmaniasis. A strong body of evidence points to the role for saliva-specific T cells producing IFN-γ in the form of a delayed-type hypersensitivity reaction at the bite site as the main protective response. Herein, we review immunity to sand fly salivary proteins in the context of its vector-parasite-host combinations and vaccine potential, as well as some recent advances to shed light on the mechanism of how an immune response to sand fly saliva protects against leishmaniasis.

  13. Cavitation erosion size scale effects (United States)

    Rao, P. V.; Buckley, D. H.


    Size scaling in cavitation erosion is a major problem confronting the design engineers of modern high speed machinery. An overview and erosion data analysis presented in this paper indicate that the size scale exponent n in the erosion rate relationship as a function of the size or diameter can vary from 1.7 to 4.9 depending on the type of device used. There is, however, a general agreement as to the values of n if the correlations are made with constant cavitation number.

  14. Innovative In-Situ Remediation of Contaminated Sediments for Simultaneous Control of Contamination and Erosion. Part 2 (United States)


    prevent migration of leachate . It is also known to be useful for erosion control, but its considerable potential for remediation of contaminants in...mixtures of 25% organoclay PM-199, apatite, and sand were nontoxic to a variety of benthic organisms including Hyalella azteca, the oligocheate worm

  15. Innovative In-Situ Remediation of Contaminated Sediments for Simultaneous Control of Contamination and Erosion. Part 1 (United States)


    252 Figure 124. Survival of Corbicula fluminea Held in Cages within Experimental Active Caps in Steel Creek (A = apatite, OC = organoclay, S = sand...plots using three types of benthic organisms including Hyalella azteca, Lumbriculus variegates, and Corbicula fluminea . The organisms were placed...California blackworm), Corbicula fluminea (Asiatic clam), and Hyalella azteca (amphipod). The erosion evaluation was based on visual observations

  16. Disturbance of the inclined inserting-type sand fence to wind-sand flow fields and its sand control characteristics (United States)

    Cheng, Jian-jun; Lei, Jia-qiang; Li, Sheng-yu; Wang, Hai-feng


    The inclined inserting-type sand fence is a novel sand retaining wall adopted along the Lanxin High-Speed Railway II in Xinjiang for controlling and blocking sand movement. To verify the effectiveness of the new fence structure for sand prevention, a wind tunnel test was used for flow field test simulation of the sand fence. The results indicate that the inclined inserting-type sand fence was able to deflect the flow of the sand and was able to easily form an upward slant acceleration zone on the leeward side of the sand fence. As shown by the percentage change in sand collection rates on the windward side and the leeward side of the sand fence, the sand flux per unit area at 4 m height in the slant upward direction increased on the leeward side of the inclined inserting-type sand fence. By comparing the flow fields, this site is an acceleration zone, which also reaffirms the correspondence of wind-sand flow fields with the spatial distribution characteristic of the wind-carried sand motion. The field sand collection data indicates that under the effects of the inclined inserting-type sand fence, the sandy air currents passing in front and behind the sand fence not only changed in quality, but the grain composition and particle size also significantly changed, suggesting that the inclined inserting-type sand fence has a sorting and filtering effect on the sandy air currents that passed through. The fence retained coarse particulates on the windward side and fine particulates within the shade of the wind on the leeward side.

  17. Compost for steep slope erosion. (United States)


    This study was initiated to develop guidelines for maintenance erosion control measures for steep slopes. The study focused on evaluating and monitoring KY-31 fescue germination rates using two media treatments 1) 100 percent by weight compost and 2)...

  18. Erosion-resistant composite material (United States)

    Finch, C.B.; Tennery, V.J.; Curlee, R.M.

    A highly erosion-resistant composite material is formed of chemical vapor-deposited titanium diboride on a sintered titanium diboride-nickel substrate. This material may be suitable for use in cutting tools, coal liquefaction systems, etc.

  19. A new optical detection method to assess the erosion inhibition by in vitro salivary pellicle layer

    National Research Council Canada - National Science Library

    Brevik, S C; Lussi, A; Rakhmatullina, E


    Application of the recently developed optical method based on the monitoring of the specular reflection intensity to study the protective potential of the salivary pellicle layer against early enamel erosion...

  20. Changes in the hydrological status of the basin due to the application of erosion control works

    Directory of Open Access Journals (Sweden)

    Radonjić Jasmina


    Full Text Available Protection of land with vegetation is the primary factor in the fight against water erosion with necessary application of biotechnical, technical, administrative and planning measures. One of the first basins to be treated with works for the protection against erosion and torrent control is the Gradasnica River basin. The basic parameters to display the changes of the hydrological status of the land are the state of erosion, the change of erosion-coefficient, annual sediment yield, specific annual sediment discharge through the hydrographic network, the value of the runoff curve number and value of the maximal discharge. Works on protection from erosion and regulations of torrents have influenced the decrease in erosion coefficient values from strong erosion (Z=0.99 to the value of weak erosion (Z=0.40, as well as the reduction of the maximum discharge value from Qmax(1956=108,12m3/s to the value of Qmax(2014=87.2 m3/s.


    Directory of Open Access Journals (Sweden)

    D. Yu. Alexandrov


    Full Text Available The paper considers a possibility to use sand asphalt concrete as a material for protection of asphalt concrete and cement concrete road pavements against affection of external destructive factors. Advantages and disadvantages of sand asphalt concrete road pavements have been determined in the paper. The paper provides recommendations on improvement of sand asphalt concrete properties and contains an analysis of possible variants for usage of complex-modified sand asphalt concrete in the road construction. It has been noted that according to its potentially possible physical and mechanical properties activated quartz sand being micro-reinforced by dispersive industrial wastes is considered as an efficient component for creation of constructive layers in road asphalt concrete pavements. The paper reveals only specific aspects of the efficient application of quartz sand in road asphalt concrete. The subject of the paper loоks rather interesting for regions where there are no rock deposits for obtaining broken-stone ballast but there is rather significant spreading of local quarts sand. Its successful application is connected with the necessity to develop special equipment for physical and chemical activation of sand grain surface that permits strongly to increase an adhesive strength in the area of phase separation within the “bitumen–SiO2” system. The considered problem is a topical one and its solution will make it possible to local sand in a maximum way and partially to exclude application of broken stone in road construction.

  2. Effects of artificial sand fixing on community characteristics of a rare desert shrub. (United States)

    Liu, Huiliang; Tao, Ye; Qiu, Dong; Zhang, Daoyuan; Zhang, Yongkuan


    Eremosparton songoricum (Fabaceae) is a rare, native, clonal small shrub of the deserts of central Asia. Although human activities have greatly fragmented the distribution of E. songoricum, it occurs in areas where artificial sand fixing (AS) has been implemented. We sought to explore whether AS promotes survival and growth of E. songoricum. In the Gurbantunggut Desert of northwestern China in June 2010, we established 10 plots in an area where sand fixing occurred (5-10 years previously) and 11 plots on original sand substrate on which some plants had settled without fixing sand. Sand fixing changed soil properties and biological characteristics in sand-fixed plots. The soil surface where sand fixing occurred was covered by algal crusts and some lichen, but not bare sand (BS). Soil nutrients; water content of deep soil (30-150 cm); overall plant and herbaceous species richness, diversity, abundance, and cover; above- and belowground biomass; and cover, biomass, and height of E. songoricum in the sand-fixed plots were significantly greater than in plots of BS. However, distribution of E. songoricum individuals in the 2 types of plots did not differ. Our results indicate AS may enhance survival of E. songoricum and increase the overall diversity and stability of the desert plant community. We suggest AS as a way to protect this rare desert plant in situ. © 2013 Society for Conservation Biology.

  3. The Effect of Air Density on Sand Transport Structures and the Adobe Abrasion Profile: A Field Wind-Tunnel Experiment Over a Wide Range of Altitude (United States)

    Han, Qingjie; Qu, Jianjun; Dong, Zhibao; Zu, Ruiping; Zhang, Kecun; Wang, Hongtao; Xie, Shengbo


    Aeolian sand transport results from interactions between the surface and the airflow above. Air density strongly constrains airflow characteristics and the resulting flow of sand, and therefore should not be neglected in sand transport models. In the present study, we quantify the influence of air density on the sand flow structure, sand transport rate, adobe abrasion profiles, and abrasion rate using a portable wind-tunnel in the field. For a given wind speed, the flow's ability to transport sand decreases at low air density, so total sand transport decreases, but the saltation height increases. Thus, the damage to human structures increases compared with what occurs at lower altitudes. The adobe abrasion rate by the cloud of blowing sand decreases exponentially with increasing height above the surface, while the wind erosion and dust emission intensity both increase with increasing air density. Long-term feedback processes between air density and wind erosion suggest that the development of low-altitude areas due to long-term deflation plays a key role in dust emission, and will have a profound significance for surface Aeolian processes and geomorphology.

  4. Erosion potential from Missoula floods in the Pasco Basin, Washington

    Energy Technology Data Exchange (ETDEWEB)

    Craig, R.G.; Hanson, J.P.


    Localities within the Pasco Basin preserve evidence of Missoula floods. Deposits are 46% sand-sized, 36% gravel-sized, and 18% finer than sand-sized. Mean thickness is 39 meters. High water marks at Wallula Gap require a discharge of approximately 12.5 Mcms. At Sentinel Gap, the slope-area method shows that the high water marks require a discharge of 34.6 Mcms. Since this discharge greatly exceeds any estimated for Missoula floods, there must have been backwater ponding from Wallula Gap. Projecting the slope of the water surface at the upper end of Wallula Gap to the downstream cross section at Gable Mountain leads to a discharge of 9.5 Mcms at Sentinel Gap. The HEC-6 steady state code and four sediment transport equations were applied. Assuming sand-sized particles, DuBoys function estimated 4 to 9 meters of scour. Yang's equation estimated 3 to 4 meters of scour. These are a minimum. A hydrograph synthesized for the boundaries of the Pasco Basin shows the maxima of the flood would occur after 90 h at Sentinel Gap, and at 114 h at Wallula Gap. The 200 areas will remain inundated for four days and six hours. With a quasi-dynamic sediment transport computation, HEC-6 scour estimates range from 0.61 meters to 0.915 meters. This is a minimum amount and erosion is highly variable suggesting reworking of sediment. The Meyer-Peter Meuller equations show less than 1 meter of net scour in the 200 areas. More extensive erosion was achieved during particular time steps of this analysis suggesting that sediment re-working would occur.

  5. Wind erosion of soils burned by wildfire (United States)

    N. S. Wagenbrenner; M. J. Germino; B. K. Lamb; R. B. Foltz; P. R. Robichaud


    Wind erosion and aeolian transport processes are largely unstudied in the post-wildfire environment, but recent studies have shown that wind erosion can play a major role in burned landscapes. A wind erosion monitoring system was installed immediately following a wildfire in southeastern Idaho, USA to measure wind erosion from the burned area (Figure 1). This paper...

  6. Rainfall Erosivity in Southeastern Nigeria | Ezemonye | Ethiopian ...

    African Journals Online (AJOL)

    Calabar Owerri and Port-Harcourt recorded the highest erosive storms/ more months of very high erosivity index. The deterministic relationship between kinetic energy of rains and erosivity pattern observed for the different stations showed that erosive rains contribute significantly to detachment of soil materials in the study ...

  7. Plume Mitigation: Soil Erosion and Lunar Prospecting Sensor Project (United States)

    Metzger, Philip T.


    Demonstrate feasibility of the simplest, lowest-mass method of measuring density of a cloud of lunar soil ejected by rocket exhaust, using new math techniques with a small baseline laser/camera system. Focus is on exploring the erosion process that occurs when the exhaust plume of a lunar rocket impacts the regolith. Also, predicting the behavior of the lunar soil that would be blasted from a lunar landing/launch site shall assist in better design and protection of any future lunar settlement from scouring of structures and equipment. NASA is gathering experimental data to improve soil erosion models and understand how lunar particles enter the plume flow.

  8. Large-scale assessment of soil erosion in Africa: satellites help to jointly account for dynamic rainfall and vegetation cover (United States)

    Vrieling, Anton; Hoedjes, Joost C. B.; van der Velde, Marijn


    Efforts to map and monitor soil erosion need to account for the erratic nature of the soil erosion process. Soil erosion by water occurs on sloped terrain when erosive rainfall and consequent surface runoff impact soils that are not well-protected by vegetation or other soil protective measures. Both rainfall erosivity and vegetation cover are highly variable through space and time. Due to data paucity and the relative ease of spatially overlaying geographical data layers into existing models like USLE (Universal Soil Loss Equation), many studies and mapping efforts merely use average annual values for erosivity and vegetation cover as input. We first show that rainfall erosivity can be estimated from satellite precipitation data. We obtained average annual erosivity estimates from 15 yr of 3-hourly TRMM Multi-satellite Precipitation Analysis (TMPA) data (1998-2012) using intensity-erosivity relationships. Our estimates showed a positive correlation (r = 0.84) with long-term annual erosivity values of 37 stations obtained from literature. Using these TMPA erosivity retrievals, we demonstrate the large interannual variability, with maximum annual erosivity often exceeding two to three times the mean value, especially in semi-arid areas. We then calculate erosivity at a 10-daily time-step and combine this with vegetation cover development for selected locations in Africa using NDVI - normalized difference vegetation index - time series from SPOT VEGETATION. Although we do not integrate the data at this point, the joint analysis of both variables stresses the need for joint accounting for erosivity and vegetation cover for large-scale erosion assessment and monitoring.

  9. Preliminary Guidelines and Standard Operating Procedure for Drainage and Erosion Control at McMurdo Station (United States)


    volcanic rocks that are primarily gravel with minimal fines (i.e., sand and silts). The soil has no organic content. Subsurface temperature temporarily and create fewer infrastructure disruptions; however, it is insufficient to prevent sig- nificant sediments ( soil fines) and...necessary • to reduce the erosion of material ( soils or fines) by snowmelt runoff, • to control flow velocity in channels during extreme runoff



    Mădălina - Cristina Marian


    Soil erosion in Arges County affects a high percentage of agricultural land. Most agricultural lands are located on slopes undergoing erosion, excess humidity temporarily or permanently, landslides. The importance lies in the need to know theme addressed erosion, the erosive potential of the land, the causes and factors that led to the onset of erosion and its deployment at a accelerated rate and now, because the based on this knowledge to determine the effective measures to prevent and c...

  11. Uncertainties in assessing tillage erosion - How appropriate are our measuring techniques? (United States)

    Fiener, P.; Wilken, F.; Aldana-Jague, E.; Deumlich, D.; Gómez, J. A.; Guzmán, G.; Hardy, R. A.; Quinton, J. N.; Sommer, M.; Van Oost, K.; Wexler, R.


    Tillage erosion on arable land is a very important process leading to a net downslope movement of soil and soil constitutes. Tillage erosion rates are commonly in the same order of magnitude as water erosion rates and can be even higher, especially under highly mechanized agricultural soil management. Despite its prevalence and magnitude, tillage erosion is still understudied compared to water erosion. The goal of this study was to bring together experts using different techniques to determine tillage erosion and use the different results to discuss and quantify uncertainties associated with tillage erosion measurements. The study was performed in northeastern Germany on a 10 m by 50 m plot with a mean slope of 8%. Tillage erosion was determined after two sequences of seven tillage operations. Two different micro-tracers (magnetic iron oxide mixed with soil and fluorescent sand) and one macro-tracer (passive radio-frequency identification transponders (RFIDs), size: 4 × 22 mm) were used to directly determine soil fluxes. Moreover, tillage induced changes in topography were measured for the entire plot with two different terrestrial laser scanners and an unmanned aerial system for structure from motion topography analysis. Based on these elevation differences, corresponding soil fluxes were calculated. The mean translocation distance of all techniques was 0.57 m per tillage pass, with a relatively wide range of mean soil translocation distances ranging from 0.39 to 0.72 m per pass. A benchmark technique could not be identified as all used techniques have individual error sources, which could not be quantified. However, the translocation distances of the macro-tracers used were consistently smaller than the translocation distances of the micro-tracers (mean difference = - 26 ± 12%), which questions the widely used assumption of non-selective soil transport via tillage operations. This study points out that tillage erosion measurements, carried out under almost

  12. Tolerable soil erosion in Europe (United States)

    Verheijen, Frank; Jones, Bob; Rickson, Jane; Smith, Celina


    Soil loss by erosion has been identified as an important threat to soils in Europe* and is recognised as a contributing process to soil degradation and associated deterioration, or loss, of soil functioning. From a policy perspective, it is imperative to establish well-defined baseline values to evaluate soil erosion monitoring data against. For this purpose, accurate baseline values - i.e. tolerable soil loss - need to be differentiated at appropriate scales for monitoring and, ideally, should take soil functions and even changing environmental conditions into account. The concept of tolerable soil erosion has been interpreted in the scientific literature in two ways: i) maintaining the dynamic equilibrium of soil quantity, and ii) maintaining biomass production, at a location. The first interpretation ignores soil quality by focusing only on soil quantity. The second approach ignores many soil functions by focusing only on the biomass (particularly crop) production function of soil. Considering recognised soil functions, tolerable soil erosion may be defined as 'any mean annual cumulative (all erosion types combined) soil erosion rate at which a deterioration or loss of one or more soil functions does not occur'. Assumptions and problems of this definition will be discussed. Soil functions can generally be judged not to deteriorate as long as soil erosion does not exceed soil formation. At present, this assumption remains largely untested, but applying the precautionary principle appears to be a reasonable starting point. Considering soil formation rates by both weathering and dust deposition, it is estimated that for the majority of soil forming factors in most European situations, soil formation rates probably range from ca. 0.3 - 1.4 t ha-1 yr-1. Although the current agreement on these values seems relatively strong, how the variation within the range is spatially distributed across Europe and how this may be affected by climate, land use and land management

  13. [Spatio-temporal change of sand-fixing function and its driving forces in desertification control ecological function area of Hunshandake, China]. (United States)

    Shen, Lu; Tian, Mei-rong; Gao, Ji-xi; Qian, Jin-ping


    Soil erosion is an important ecological and environmental problem in Hunshandake Desert, and the sand-fixing function determines the degree of ecological security in the entire region. In order to clarify the situation of windbreak and sand fixation in Hunshandake area, and to guide the prevention and treatment of desertification on regional scale, based on the meteorological and remote sensing data, this paper quantitatively analyzed the temporal and spatial pattern of windbreak and sand fixation ability between 2000-2010 by the revised wind erosion equation (RWEQ) model, meanwhile, the driving forces for each county ( or banner) in the functional zone were analyzed with the method of principal component analysis. The results showed that there was a fluctuation of the sand fixing capacity in Hunshandake over time, generally rendering a decline trend. The coniferous forest and grassland had strong windbreak and sand fixation capacity in unit area among the various land categories. In terms of spatial distribution, the windbreak and sand fixation function in western and southeastern region was weak and needed to be strengthened with ecological restoration efforts. Through the study of the social driving forces of each administrative region in the function zone, there were 3 main social driving forces of soil erosion in the administrative functions: the intensity of input-output, the level of economic development and the level of agriculture-husbandry development.

  14. Understanding coastal processes to assist with coastal erosion management in Darwin Harbour, Northern Territory, Australia (United States)

    Tonyes, S. G.; Wasson, R. J.; Munksgaard, N. C.; Evans, K. G.; Brinkman, R.; Williams, D. K.


    Sand transport pathways in Darwin Harbour, Northern Territory, Australia, are being investigated to assist with coastal management. Coastal erosion, which threatens public and private infrastructure, is one of the major problems along the harbour beaches. A study of sediment transport is essential to identify the challenges encountered by the stakeholders in coastal management. Darwin Harbour, located in the tropical, cyclone prone area of Australia, was, until recently, considered a near pristine estuary. A semi-diurnal macro-tidal embayment, the tidal variation in the harbour reaches up to 8 m with a mean tidal range of 3.7 m. The beach morphology consists of sandy pocket beaches between coastal cliffs, sandbars, rocky shore platforms, tidal flats and mangrove fringes. A two-dimensional depth averaged finite-element hydrodynamic model (RMA-2), coupled with a sediment transport model (RMA-11) from Resource Modelling Associates, has been used to infer the sources and the depositional areas of sand in the harbour. Grain size distributions and geochemical analysis are also used to characterize the sand and its source(s). Initial results show that the beach sand is mostly of offshore origin with small sand input from the rivers. Potential supplementary sand sources are the eroded materials from the shore platforms and the rocky cliffs. Due to the rapid development in Darwin Harbour, this study is fundamental in understanding coastal processes to support decision making in coastal management, particularly in a macro-tidal, tropical estuary.

  15. Experiments and Numerical Simulations of Dike Erosion due to a Wave Impact

    Directory of Open Access Journals (Sweden)

    Stefania Evangelista


    Full Text Available Dike erosion is a crucial issue in coastal and fluvial flood risk management. These defense structures appear vulnerable to extreme hydrological events, whose potential occurrence risk seems to be recently increased due to climate change. Their design and reinforcement is, however, a complex task, and although numerical models are very powerful nowadays, real processes cannot be accurately predicted; therefore, physical models constitute a useful tool to investigate different features under controlled conditions. This paper presents some laboratory experimental results of erosion of a sand dike produced by the impact of a dam break wave. Experiments have been conducted in the Water Engineering Laboratory at the University of Cassino and Southern Lazio, Italy, in a rectangular channel: here, the sudden opening of a gate forming the reservoir generates the wave impacting the dike, made in turn of two different, almost uniform sands. The physical evidence proves that the erosion process is strongly unsteady and significantly different from a gradual overtopping and highlights the importance of apparent cohesion for the fine sand dike. The experimental results have also been compared against the ones obtained through the numerical integration of a two-phase model, which shows the reasonable predictive capability of the temporal free surface and dike profile evolution.

  16. Advancing internal erosion monitoring using seismic methods in field and laboratory studies (United States)

    Parekh, Minal L.

    This dissertation presents research involving laboratory and field investigation of passive and active methods for monitoring and assessing earthen embankment infrastructure such as dams and levees. Internal erosion occurs as soil particles in an earthen structure migrate to an exit point under seepage forces. This process is a primary failure mode for dams and levees. Current dam and levee monitoring practices are not able to identify early stages of internal erosion, and often the result is loss of structure utility and costly repairs. This research contributes to innovations for detection and monitoring by studying internal erosion and monitoring through field experiments, laboratory experiments, and social and political framing. The field research in this dissertation included two studies (2009 and 2012) of a full-scale earthen embankment at the IJkdijk in the Netherlands. In both of these tests, internal erosion occurred as evidenced by seepage followed by sand traces and boils, and in 2009, eventual failure. With the benefit of arrays of closely spaced piezometers, pore pressure trends indicated internal erosion near the initiation time. Temporally and spatially dense pore water pressure measurements detected two pore water pressure transitions characteristic to the development of internal erosion, even in piezometers located away from the backward erosion activity. At the first transition, the backward erosion caused anomalous pressure decrease in piezometers, even under constant or increasing upstream water level. At the second transition, measurements stabilized as backward erosion extended further upstream of the piezometers, as shown in the 2009 test. The transitions provide an indication of the temporal development and the spatial extent of backward erosion. The 2012 IJkdijk test also included passive acoustic emissions (AE) monitoring. This study analyzed AE activity over the course of the 7-day test using a grid of geophones installed on the

  17. Settling Tube Analysis of Sand

    NARCIS (Netherlands)

    Geldof, H.J.; Slot, R.E.


    For various reasons particle-size analysis of sediment is used in many fields of science and technology, a.o. earth sciences, agricultural and civil engineering. Relatively coarse-grained sediment like sand, with dimensions ranging from 0.06 till 2 mm, is analyzed almost exclusively by sieving. The

  18. Silo model tests with sand

    DEFF Research Database (Denmark)

    Munch-Andersen, Jørgen

    Tests have been carried out in a large silo model with Leighton Buzzard Sand. Normal pressures and shear stresses have been measured during tests carried out with inlet and outlet geometry. The filling method is a very important parameter for the strength of the mass and thereby the pressures...

  19. Sand and Water Table Play (United States)

    Wallace, Ann H.; White, Mary J.; Stone, Ryan


    The authors observed preschoolers engaged at the sand and water table to determine if math could be found within their play. Wanting to understand how children interact with provided materials and what kinds of math ideas they explore during these interactions, the authors offer practical examples of how such play can promote mathematical…

  20. V-2 at White Sands (United States)


    A V-2 rocket is hoisted into a static test facility at White Sands, New Mexico. The German engineers and scientists who developed the V-2 came to the United States at the end of World War II and continued rocket testing under the direction of the U. S. Army, launching more than sixty V-2s.

  1. The eolian sand problems arising from desertification. (United States)

    Bofah, K K; Owusu, Y A


    Eolian (wind blown) sand constitutes a very serious problem to development in sandy desert lands and causes equally serious problems in lands that are undergoing desertification. In this paper, eolian sand movement due to bulk movement such as sand dune and ripple movement, sand drift by saltation, and sand storms by strong winds are discussed. Associated problems such as eolian sand encroachment on highways, farms, communities and industrial complexes are also discussed and workable solutions are offered. Solutions include chemical stabilization of the surface grains, fences to trap the blown sand and vegetation to prevent soil deflation. Vegetation is emphasized and recommended as the ultimate viable solution to combat desertification and eolian sand problems.

  2. Paleo-Erosion Rates From in Situ 10Be in Middle European River Terrace Sediments (United States)

    Schaller, M.; von Blanckenburg, F.; von Blanckenburg, F.; Hovius, N.; Kubik, P. W.


    Exploiting cosmogenic nuclides in sand of dated river terrace can be used to quantify catchment-wide rates of paleo-erosion. The measured cosmogenic 10Be concentration in quartz is corrected for post-depositional irradiation using the known terrace age. The remaining nuclide inventory is attributed to irradiation in the source area of the sediment. This inventory reflects the catchment-wide erosion rate at the time of terrace deposition. This approach has been used to assess the influence of climate change on erosion in the waning stages of the last cold period. Late Pleistocene to Holocene terraces of the Allier and Dore Rivers, France, yield paleo-erosion rates that range from 30 to 55 mm/kyr. These rates are very similar to recent ones measured with 10Be in sands from the active Allier channel (31 to 59 mm/kyr, Schaller et al., 2001). Rates derived independently from the sedimentary fill of a lake in the upstream area of the Allier catchment show strong fluctuations with an erosion maximum of 120 mm/kyr during the Younger Dryas (Macaire et al., 1997). However, these real variations in erosion rates are strongly dampened in the cosmogenic nuclide record due to the method's slow response time. As a result, the Late Pleistocene erosion signal in the terrace sequence is virtually invariant and is propagated into the Holocene terrace and modern bedload erosion rates. The resulting memory of elevated past erosion rates might explain the difference between modern cosmogenic nuclide-derived and much lower river load gauging-derived erosion rates that was observed in Middle European rivers (Schaller et al., 2001). The analysis of Late Pleistocene to Holocene terrace sediments of the Meuse River, the Netherlands, suggest that cosmogenic nuclide-derived paleo-erosion rates have decreased from 60 mm/kyr in the Late Pleistocene to 23 mm/kyr in Holocene times. The results from these 30 kyr of erosion rate records suggest that individual samples from a given terrace interval

  3. Effects of Building a Sand Barrier Berm to Mitigate the Effects of the Deepwater Horizon Oil Spill on Louisiana Marshes (United States)

    Lavoie, Dawn; Flocks, James G.; Kindinger, Jack G.; Sallenger, A.H.; Twichell, David C.


    ' locations because sand content is insufficient along a linear track offshore from most of Louisiana's barrier islands. Further, mining sediment near the toe of the barrier island platform or edge of actively eroding barrier islands could create pits in the seafloor that will capture nearshore sand, thereby enhancing island erosion, and focus incoming waves (for example, through refraction processes) that could yield hotspots of erosion. In the Breton NWR, the proposed berm would be continuous from just south of Hewes Point to Breton Island for approximately 100 km with the exception of several passages for vessel access. Proposed volume estimates by sources outside of the USGS suggest that the structure in the Breton NWR would contain approximately 56 million cubic yards (42.8 m3) of sandy material. In the west, the berm would require approximately 36 million cubic yards (27.5 m3) of sandy material because this area has less open water than the area to the east of the delta. The planned berm is intended to protect the islands and inland areas from oil and would be sacrificial; that is, it will rapidly erode through natural processes. It is not part of the coastal restoration plan long discussed in Louisiana to rebuild barrier islands for hurricane protection of mainland infrastructure and habitat.

  4. Using the RBFN model and GIS technique to assess wind erosion hazards of Inner Mongolia, China (United States)

    Shi, Huading; Liu, Jiyuan; Zhuang, Dafang; Hu, Yunfeng


    Soil wind erosion is the primary process and the main driving force for land desertification and sand-dust storms in arid and semi-arid areas of Northern China. Many researchers have paid more attention to this issue. This paper select Inner Mongolia autonomous region as the research area, quantify the various indicators affecting the soil wind erosion, using the GIS technology to extract the spatial data, and construct the RBFN (Radial Basis Function Network) model for assessment of wind erosion hazard. After training the sample data of the different levels of wind erosion hazard, we get the parameters of the model, and then assess the wind erosion hazard. The result shows that in the Southern parts of Inner Mongolia wind erosion hazard are very severe, counties in the middle regions of Inner Mongolia vary from moderate to severe, and in eastern are slight. The comparison of the result with other researches shows that the result is in conformity with actual conditions, proving the reasonability and applicability of the RBFN model.

  5. An application of LIDAR to analyses of El Nino erosion in the Netarts littoral cell, Oregon (United States)

    Revell, D.L.; Komar, P.D.; Sallenger, A.H.


    El Nin??o produces coastal and beach erosion along the West Coast of the USA by elevating mean water levels so that tides are significantly higher than predicted, and by altering the paths of storms that generate large waves. In the past it has been difficult to adequately document the erosion impacts since they are so widespread. This difficulty has been solved through the application of LIDAR, which uses a scanning laser mounted in a small aircraft to rapidly and accurately survey beach elevations. This study uses LIDAR to document the beach changes and shoreline erosion that occurred during the 1997-98 El Nin??o within the Netarts Littoral Cell on the Oregon coast, a 14-km long "pocket beach" between large rocky headlands. The LIDAR surveys demonstrate that sand generally migrated northward within the cell due to the southwest approach of the El Nin??o storm waves, but there was a complex pattern of beach-elevation change due to the superposition of eroded rip-current embayments. The greatest beach erosion occurred near the south end of the cell, where it impacted Cape Lookout State Park, and to the north of the inlet to Netarts Bay where it threatened The Capes, a development of condominiums located on a high bluff. In both cases the LIDAR data proved to be extremely useful in quantifying the erosion, and in providing a better understanding of the erosion processes that occur during an El Nin??o.

  6. The costs of soil erosion

    Directory of Open Access Journals (Sweden)

    Tiago Santos Telles


    Full Text Available The aim of this study was a survey of the estimated costs of soil erosion, an issue of fundamental importance in view of the current worldwide discussions on sustainability. A list was drawn up of research papers on erosion (on-site and off-site effects and their respective costs. The estimates indicate the amount of resources spent in the process of soil degradation, raising a general awareness of the need for soil conservation. On-site costs affect the production units directly, while off-site costs create a burden borne by the environment, economy and society. In addition, estimating the costs of soil erosion should be effective to alert the agricultural producers, society and government for the need for measures that can be implemented to bring erosion under control. Among the various estimates of soil erosion costs between 1933 a 2010, the highest figure was 45.5 billion dollars a year for the European Union. In the United States, the highest figure was 44 billion dollars a year. In Brazil, estimates for the state of Paraná indicate a value of 242 million dollars a year, and for the state of São Paulo, 212 million dollars a year. These figures show, above all, that conservation measures must be implemented if crop and livestock farming production are to be sustainable.

  7. Atomic Oxygen Erosion Yield Dependence Upon Texture Development in Polymers (United States)

    Banks, Bruce A.; Loftus, Ryan J.; Miller, Sharon K.


    The atomic oxygen erosion yield (volume of a polymer that is lost due to oxidation per incident atom) of polymers is typically assumed to be reasonably constant with increasing fluence. However polymers containing ash or inorganic pigments, tend to have erosion yields that decrease with fluence due to an increasing presence of protective particles on the polymer surface. This paper investigates two additional possible causes for erosion yields of polymers that are dependent upon atomic oxygen. These are the development of surface texture which can cause the erosion yield to change with fluence due to changes in the aspect ratio of the surface texture that develops and polymer specific atomic oxygen interaction parameters. The surface texture development under directed hyperthermal attack produces higher aspect ratio surface texture than isotropic thermal energy atomic oxygen attack. The fluence dependence of erosion yields is documented for low Kapton H (DuPont, Wilmington, DE) effective fluences for a variety of polymers under directed hyperthermal and isotropic thermal energy attack.

  8. The Impact of Farming and Land Ownership on Soil Erosion

    Directory of Open Access Journals (Sweden)

    Olga Čermáková


    Full Text Available The aim of this paper was to compare two methods of farming, especially their effect on water soil erosion. The examined methods were (1 large-scale farming, where more than 50% of the land was leased, and (2 small-scale farming, where the land was almost exclusively privately owned. The research area was 8 cadastres in the district of Hodonín, South Moravia, Czech Republic. In these cadastres 48 land blocks representing both large-scale and small-scale farming (i.e. owners and tenants were chosen. The long-term average annual soil loss caused by water erosion (G was calculated using the erosion model USLE 2D and ArcGIS 10.1. The nonparametric Mann-Whitney test was used for the statistical evaluation of the data. The difference between the soil loss (G on land blocks farmed by small producers (owners and large producers (tenants was significant (p < 0.05. Differences between the values of the cropping-management factor (C were not statistically significant (p = 0.054. Based on the analysis of other variables in the USLE equation it can be stated that a continuous slope length, conditioned by the size of land blocks, played an important role in the amount of soil loss caused by water erosion. Above all, to protect the soil from erosion and maintain soil quality it is necessary to reduce the size of land blocks farmed by tenants and improve the crop rotation systems.

  9. Bentonite erosion. Laboratory studies

    Energy Technology Data Exchange (ETDEWEB)

    Jansson, Mats (Div. of Nuclear Chemistry, Royal Inst. of Technology, Stockholm (Sweden), School of Chemical Science and Engineering)


    This report covers the laboratory studies that have been performed at Nuclear Chemistry, KTH in the project 'Bentonite Erosion'. Many of the experiments in this report were performed to support the work of the modelling group and were often relatively simple. One of the experiment series was performed to see the impact of gravity and concentration of mono- and di-valent cations. A clay suspension was prepared in a test tube. A net was placed in contact with the suspension, the test tube was filled with solutions of different concentrations and the system was left overnight to settle. The tube was then turned upside down and the behaviour was visually observed. Either the clay suspension fell through the net or stayed on top. By using this method surprisingly sharp determinations of the Critical Coagulation (Flocculation) Concentration (CCC/CFC) could be made. The CCC/CFC of Ca2+ was for sodium montmorillonite determined to be between 1 and 2 mM. An artificial fracture was manufactured in order to simulate the real case scenario. The set-up was two Plexiglas slabs separated by 1 mm thick spacers with a bentonite container at one side of the fracture. Water was pumped with a very low flow rate perpendicular to bentonite container and the water exiting the fracture was sampled and analyzed for colloid content. The bentonite used was treated in different ways. In the first experiment a relatively montmorillonite rich clay was used while in the second bentonite where only the readily soluble minerals had been removed was used. Since Plexiglas was used it was possible to visually observe the bentonite dispersing into the fracture. After the compacted bentonite (1,000 kg/m3) had been water saturated the clay had expanded some 12 mm out into the fracture. As the experiment progressed the clay expanded more out into the fracture and seemed to fractionate in two different phases with less material in the outmost phase. A dark rim which was later analyzed to contain

  10. experimental studies of sand production from unconsolidated

    African Journals Online (AJOL)

    ES Obe

    consolidated samples has been used to simulate the effect of flow rates, confining pressure, pressure drawdown and fluid viscosity on sand production in the Niger. Delta. The model was also used to determine the ability of using the flow rate to control the production of sand. Sand sample from an unconsolidated reser-.


    Directory of Open Access Journals (Sweden)

    Magdalena Błaszak


    Full Text Available Playgrounds and sandpits (small architecture objects according to the Construction Law are subject to meticulous supervision, both at the design stage and subsequent status checks of the objects. One of the requirements arising from the need to protect playgrounds from animals is the necessity for fencing the object (Regulation of 31 December 2002 On Safety and Hygiene in Public and Private Schools and Institutions; Polish Standard PN-EN 1176 Playground equipment and surfacing. Does fencing playgrounds really reduce contamination of sand? To verify this hypothesis, the studies have been conducted on the residential areas’ sandpits, both fence secured and unsecured, located in close proximity to one another. The aim of the study was to evaluate the effectiveness of fences and nets as protection from microbial and parasite contamination of sandpits, mainly due to the access of animals to them. For several seasons of spring and summer the sand was examined in terms of the total number of heterotrophic bacteria and fungi (organic matter contamination of sand indicators and for the presence of coliform bacteria (including Escherichia coli, bacteria of the Salmonella genus and the eggs of intestinal parasites. It can be concluded that fencing playgrounds affects sand pollution less with waste and plant material (as a consequence, it has been reported statistically significantly less heterotrophic bacteria and fungi in the fenced sandpits’ sand. Unfortunately, the fence does not eliminate the risks associated with sand pollution of coliform bacteria. Cats and birds, but also dogs, still have a continuous access to sand. Due to the repeatedly stated carelessness of children and their caregivers, gates left open to the playground do not constitute an obstacle for domestic and stray animals. Another source of sand pollution with intestinal pathogens can be a manner of carriage of new sand, as there is no legislation governing the issue of transport

  12. Preliminary assessment of soil erosion impact during forest restoration process (United States)

    Lai, Yen-Jen; Chang, Cheng-Sheng; Tsao, Tsung-Ming; Wey, Tsong-Huei; Chiang, Po-Neng; Wang, Ya-Nan


    Taiwan has a fragile geology and steep terrain. The 921 earthquake, Typhoon Toraji, Typhoon Morakot, and the exploitation and use of the woodland by local residents have severely damaged the landscape and posed more severe challenges to the montane ecosystem. A land conservation project has been implemented by the Experimental Forest of National Taiwan University which reclaimed approximately 1,500 hectares of leased woodland from 2008 to 2010, primarily used to grow bamboo, tea trees, betel nut, fruit, and vegetable and about 1,298 hectares have been reforested. The process of forest restoration involves clear cutting, soil preparation and a six-year weeding and tending period which may affect the amount of soil erosion dramatically. This study tried to assess the impact of forest restoration from the perspective of soil erosion through leased-land recovery periods and would like to benefit the practical implementation of reforestation in the future. A new plantation reforested in the early 2013 and a nearby 29-year-old mature forest were chosen as experimental and comparison sites. A self-designed weir was set up in a small watershed of each site for the runoff and sediment yield observation. According to the observed results from May to August 2013, a raining season in Taiwan, the runoff and erosion would not as high as we expected, because the in-situ soil texture of both sites is sandy loam to sandy with high percentage of coarse fragment which increased the infiltration. There were around 200 kg to 250 kg of wet sand/soil yielded in mature forest during the hit of Typhoon Soulik while the rest of the time only suspended material be yielded at both sites. To further investigate the influence of the six-year weeding and tending period, long term observations are needed for a more completed assessment of soil erosion impact.

  13. Soil erosion in Slovene Istria

    Directory of Open Access Journals (Sweden)

    Matjaž Mikoš


    Full Text Available From the end of nineties of the 20th century, intense hydrologic and geomorphologic research is taking place in the Slovene Istria. As a part of this research also studies on soil erosion were undertaken in the period from 2005 to 2008. The field measurements were under taken onclosed 1m2 large erosion plots under three different land uses (on bare soils in an olive grove, on an overgrown meadow, in a forest, placed south of the Marezige village in the Rokava River basin.We show weekly measurements of surface erosion (interrill erosion for the period of 13 months (the end of March 2005 – the end of April 2006, as well as monthly and seasonal averages together with selected linear statistical correlations between soil erosion and weather parameters.From May 2005 to April 2006 the interrill erosion on bare soils in an olive grove with an inclination of 5.5° amounted to 9013 g/m2 (90 t/ha that corresponds to surface lowering rate of 8.5 mm/yr; on an overgrown meadow with an inclination of 9.4° it amounted to 168 g/m2 (1,68 t/ha that corresponds to surface lowering rate of 0.16 mm//yr; and in a forest with an inclination of 7.8° it amounted to 391 g/m2 (3,91 t/ha and in a forest with an inclination of 21.4° it amounted to 415 g/m2 (4,15 t/ha, respectively, that corresponds to surface lowering rate of 0.4 mm/yr.

  14. Observed latitudinal variations in erosion as a function of glacier dynamics (United States)

    Koppes, Michéle; Hallet, Bernard; Rignot, Eric; Mouginot, Jérémie; Wellner, Julia Smith; Boldt, Katherine


    Glacial erosion is fundamental to our understanding of the role of Cenozoic-era climate change in the development of topography worldwide, yet the factors that control the rate of erosion by ice remain poorly understood. In many tectonically active mountain ranges, glaciers have been inferred to be highly erosive, and conditions of glaciation are used to explain both the marked relief typical of alpine settings and the limit on mountain heights above the snowline, that is, the glacial buzzsaw. In other high-latitude regions, glacial erosion is presumed to be minimal, where a mantle of cold ice effectively protects landscapes from erosion. Glacial erosion rates are expected to increase with decreasing latitude, owing to the climatic control on basal temperature and the production of meltwater, which promotes glacial sliding, erosion and sediment transfer. This relationship between climate, glacier dynamics and erosion rate is the focus of recent numerical modelling, yet it is qualitative and lacks an empirical database. Here we present a comprehensive data set that permits explicit examination of the factors controlling glacier erosion across climatic regimes. We report contemporary ice fluxes, sliding speeds and erosion rates inferred from sediment yields from 15 outlet glaciers spanning 19 degrees of latitude from Patagonia to the Antarctic Peninsula. Although this broad region has a relatively uniform tectonic and geologic history, the thermal regimes of its glaciers range from temperate to polar. We find that basin-averaged erosion rates vary by three orders of magnitude over this latitudinal transect. Our findings imply that climate and the glacier thermal regime control erosion rates more than do extent of ice cover, ice flux or sliding speeds.

  15. Observed latitudinal variations in erosion as a function of glacier dynamics. (United States)

    Koppes, Michéle; Hallet, Bernard; Rignot, Eric; Mouginot, Jérémie; Wellner, Julia Smith; Boldt, Katherine


    Glacial erosion is fundamental to our understanding of the role of Cenozoic-era climate change in the development of topography worldwide, yet the factors that control the rate of erosion by ice remain poorly understood. In many tectonically active mountain ranges, glaciers have been inferred to be highly erosive, and conditions of glaciation are used to explain both the marked relief typical of alpine settings and the limit on mountain heights above the snowline, that is, the glacial buzzsaw. In other high-latitude regions, glacial erosion is presumed to be minimal, where a mantle of cold ice effectively protects landscapes from erosion. Glacial erosion rates are expected to increase with decreasing latitude, owing to the climatic control on basal temperature and the production of meltwater, which promotes glacial sliding, erosion and sediment transfer. This relationship between climate, glacier dynamics and erosion rate is the focus of recent numerical modelling, yet it is qualitative and lacks an empirical database. Here we present a comprehensive data set that permits explicit examination of the factors controlling glacier erosion across climatic regimes. We report contemporary ice fluxes, sliding speeds and erosion rates inferred from sediment yields from 15 outlet glaciers spanning 19 degrees of latitude from Patagonia to the Antarctic Peninsula. Although this broad region has a relatively uniform tectonic and geologic history, the thermal regimes of its glaciers range from temperate to polar. We find that basin-averaged erosion rates vary by three orders of magnitude over this latitudinal transect. Our findings imply that climate and the glacier thermal regime control erosion rates more than do extent of ice cover, ice flux or sliding speeds.

  16. Sediment Analysis Network for Decision Support (SANDS) (United States)

    Hardin, D. M.; Keiser, K.; Graves, S. J.; Conover, H.; Ebersole, S.


    Since the year 2000, Eastern Louisiana, coastal Mississippi, Alabama, and the western Florida panhandle have been affected by 28 tropical storms, seven of which were hurricanes. These tropical cyclones have significantly altered normal coastal processes and characteristics in the Gulf region through sediment disturbance. Although tides, seasonality, and agricultural development influence suspended sediment and sediment deposition over periods of time, tropical storm activity has the capability of moving the largest sediment loads in the shortest periods of time for coastal areas. The importance of sediments upon water quality, coastal erosion, habitats and nutrients has made their study and monitoring vital to decision makers in the region. Currently agencies such as United States Army Corps of Engineers (USACE), NASA, and Geological Survey of Alabama (GSA) are employing a variety of in-situ and airborne based measurements to assess and monitor sediment loading and deposition. These methods provide highly accurate information but are limited in geographic range, are not continuous over a region and, in the case of airborne LIDAR are expensive and do not recur on a regular basis. Multi-temporal and multi-spectral satellite imagery that shows tropical-storm-induced suspended sediment and storm-surge sediment deposits can provide decision makers with immediate and long-term information about the impacts of tropical storms and hurricanes. It can also be valuable for those conducting research and for projects related to coastal issues such as recovery, planning, management, and mitigation. The recently awarded Sediment Analysis Network for Decision Support will generate decision support products using NASA satellite observations from MODIS, Landsat and SeaWiFS instruments to support resource management, planning, and decision making activities in the Gulf of Mexico. Specifically, SANDS will generate decision support products that address the impacts of tropical storms

  17. Experimental Measurement of Diffusive Extinction Depth and Soil Moisture Gradients in Southwestern Saudi Arabian Dune Sand

    KAUST Repository

    Mughal, Iqra


    In arid lands, a major contribution to water loss is by soil water evaporation. Desert sand dunes in arid regions are devoid of runoff and have high rates of infiltration. Rainwater is commonly stored within them because of the low permeability soils in the underlying desert pavement. In such cases, moisture is confined in the sand dune below a depth, termed as the “extinction depth”, where it is protected from evaporation during long dry periods. Moreover, desert sand dunes have sparse vegetation, which results in low transpiration losses from the stored water. The water accumulated below the extinction depth of the sand dunes can be utilized for various purposes such as in irrigation to support desert agriculture. In this study, field experiments were conducted in Western Saudi Arabia to monitor the soil moisture gradients and determine the diffusive extinction depth of dune sand. The dune sand was saturated with water and was exposed to natural conditions (evaporation and precipitation). The decline of the water level in the sand column was continuously recorded using transducers and sensors installed at different depths monitored the temporal variation of temperature and moisture content within the sand. The hydrological simulator HYDRUS-1D was used to construct the vertical profiles of soil water content and temperature and the results obtained from HYDRUS-1D were compared to the gradients monitored by the sensors.


    Directory of Open Access Journals (Sweden)

    Gorana Todorovic Rampazzo


    Full Text Available Different physical, chemical and biological processes influence the behaviour of organic contaminants in soils. A better understanding of the organic pollutant behaviour in soils would improve the environmental protection. One possible way for better attenuation of the risk of pollution in agriculture can be achieved through ta better-specified pesticide management based on the adaptation of the pesticide type and application rates to the specific environmental characteristics of the area of application. Nowadays, one of the actually most applied herbicide world wide is glyphosate. Glyphosate is highly water soluble and traces have been found in surface and groundwater systems. For a better understanding of the natural influence of erosion processes on glyphosate behaviour and dispersion under heavy rain conditions after application in the field, two erosion simulation experiments were conducted on two different locations in Austria with completely different soil types in September 2008. The results of the experiments showed that under normal practical conditions (e.g. no rainfall is expected immediatly after application, the potential adsorption capacity of the Kirchberg soil (Stagnic Cambisol, with about 16.000 ppm Fe-oxides is confirmed compared to the low adsorption Chernosem soil (about 8.000 ppm pedogenic Fe-oxides.  Considering the enormous difference in the run-off amounts between the two sites Pixendorf and Kirchberg soils it can be concluded how important the soil structural conditions and vegetation type and cover are for the risks of erosion and, as a consequence, pollution of neighbouring waters. In the rainfall experiments under comparable simulation conditions, the amount of run-off was about 10 times higher at Kirchberg, owing to its better infiltration rate, than at the Pixendorf site. Moreover, the total loss of glyphosate (NT+CT through run-off at the Kirchberg site was more than double that at Pixendorf, which confirms the

  19. Rainfall erosivity in New Zealand (United States)

    Klik, Andreas; Haas, Kathrin; Dvorackova, Anna; Fuller, Ian


    Rainfall and its kinetic energy expressed by the rainfall erosivity is the main driver of soil erosion processes by water. The Rainfall-Runoff Erosivity Factor (R) of the Revised Universal Soil Loss Equation is one oft he most widely used parameters describing rainfall erosivity. This factor includes the cumulative effects of the many moderate-sized storms as well as the effects oft he occasional severe ones: R quantifies the effect of raindrop impact and reflects the amopunt and rate of runoff associated with the rain. New Zealand is geologically young and not comparable with any other country in the world. Inordinately high rainfall and strong prevailing winds are New Zealand's dominant climatic features. Annual rainfall up to 15000 mm, steep slopes, small catchments and earthquakes are the perfect basis for a high rate of natural and accelerated erosion. Due to the multifacted landscape of New Zealand its location as island between the Pacific and the Tasmanian Sea there is a high gradient in precipitation between North and South Island as well as between West and East Coast. The objective of this study was to determine the R-factor for the different climatic regions in New Zealand, in order to create a rainfall erosivity map. We used rainfall data (breakpoint data in 10-min intervals) from 34 gauging stations for the calcuation of the rainfall erosivity. 15 stations were located on the North Island and 19 stations on the South Island. From these stations, a total of 397 station years with 12710 rainstorms were analyzed. The kinetic energy for each rainfall event was calculated based on the equation by Brown and Foster (1987), using the breakpoint precipitation data for each storm. On average, a mean annual precipitation of 1357 mm was obtained from the 15 observed stations on the North Island. Rainfall distribution throughout the year is relatively even with 22-24% of annual rainfall occurring in spring , fall and winter and 31% in summer. On the South Island

  20. Reframing the Canadian Oil Sands


    Patchett, Merle M; Lozowy, A


    Reframing the Canadian Oil Sands” is a collaborative exchange between photographer Andriko Lozowy and cultural geographer Merle Patchett that engages photography and photographic theory to evoke a more critical and politically meaningful visual engagement with the world’s largest capital oil project. Since the appearance of Edward Burtynsky’s aerial and abstracted photographic-mappings of the region, capturing the scale of the Oil Sands from ‘on high’ has become the dominant visual imaginary....

  1. Pipe and bend erosion by pneumatic transport of solids at high temperature: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Klinzing, G. E.; Borzone, L. A.; Yang, Wen-Ching


    The erosion of various components of a pneumatic transport line has been studied through basic experiments, commercial-scale test runs and computer simulation. The main objective was to study the effect of the operating variables on the erosion rates of refractory lined straight sections and bends. Temperatures ranging from 22 to 830/degree/C, gas velocities from 12.9 to 34 m/s and solid flow rates from 48 to 225 kg/h were tested in a High Temperature Pneumatic Transport Test Facility. Four kinds of refractory concretes were used as targets. The erodent materials were river sand, coal slag and alumina. The effect of gas velocity and solids slow rate on the erosion rate was correlated in terms of power laws, while temperature effects proved to be more complex, since mechanical properties of both erodent and target materials change with temperature. The erosion of circular bends was evaluated using a computer model that combines computational particle dynamics and experimental data to predict the erosion pattern inside the bend. Experiments on the erosion of wedge samples, performed in the erosion test facility, and data on particle-wall collisions, obtained with the help of high-speed photographic techniques, were the basic set of data used in the simulation. As an alternative to circular radius bends, and experimental study of wear and flow patterns in blinded T-bends was performed. The internal geometry in this kind of bends was determined by the solids deposition, and complex erosion patterns appeared as the operating variables were manipulated. 81 figs., 50 tabs.

  2. Rheological Characterization of Green Sand Flow

    DEFF Research Database (Denmark)

    Jabbaribehnam, Mirmasoud; Spangenberg, Jon; Hovad, Emil


    The main aim of this paper is to characterize experimentally the flow behaviour of the green sand that is used for casting of sand moulds. After the sand casting process is performed, the sand moulds are used for metal castings. The rheological properties of the green sand is important to quantify...... module for characterizing granular materials. The new module enables viscosity measurements of the green sand as function of the shear rate at different flow rates, i.e. 0, 2, 4, 6, 8, 10, 12 and 15 L/min. The results show generally that the viscosity decreases with both the shear- and flow rate....... In addition, the measurements show that the green sand flow follows a shear-thinning behaviour even after the full fluidization point....

  3. Soil erosion in mountainous areas: how far can we go? (United States)

    Egli, Markus


    Erosion is the counter part of soil formation, is a natural process and cannot be completely impeded. With respect to soil protection, the term of tolerable soil erosion, having several definitions, has been created. Tolerable erosion is often equalled to soil formation or production. It is therefore crucial that we know the rates of soil formation when discussing sustainability of soil use and management. Natural rates of soil formation or production are determined by mineral weathering or transformation of parent material into soil, dust deposition and organic matter incorporation. In mountain areas where soil depth is a main limiting factor for soil productivity, the use and management of soils must consider how to preserve them from excessive depth loss and consequent degradation of their physical, chemical and biological properties. Even under natural conditions, landscape surfaces and soils are known to evolve in complex, non-linear ways over time. As a result, soil production and erosion change substantially with time. The fact that soil erosion and soil production processes are discontinuous over time is an aspect that is in most cases completely neglected. To conserve a given situation, tolerable values should take these dynamics into account. Measurements of long and short-term physical erosion rates, total denudation, weathering rates and soil production have recently become much more widely available through cosmogenic and fallout nuclide techniques. In addition to this, soil chronosequences deliver a precious insight into the temporal aspect of soil formation and production. Examples from mountainous and alpine areas demonstrate that soil production rates strongly vary as a function of time (with young soils and eroded surfaces having distinctly higher rates than old soils). Extensive erosion promotes rejuvenation of the surface and, therefore, accelerates chemical weathering and soil production - the resulting soil thickness will however be shallow

  4. Morphological characteristics and sand volumes of different coastal dune types in Essaouira Province, Atlantic Morocco (United States)

    Flor-Blanco, Germán; Flor, Germán; Lharti, Saadia; Pando, Luis


    Altogether three coastal dune fields, one located north and two south of the city of Essaouira, Atlantic Morocco, have been investigated to establish the distribution and overall sand volumes of various dune types. The purpose of the study was to characterize and classify the aeolian landforms of the coastal dune belt, to estimate their sand volumes and to assess the effectiveness of coastal dune stabilization measures. The northern dune field is 9 km long and lined by a wide artificial foredune complex fixed by vegetation, fences and branches forming a rectangular grid. Active and ephemeral aklé dunes border the inner backshore, while some intrusive dunes have crossed the foredune belt and are migrating farther inland. The total sand volume of the northern dune belt amounts 13,910,255 m3. The central coastal sector comprises a much smaller dune field located just south of the city. It is only 1.2 km long and, with the exception of intrusive dunes, shows all other dune types. The overall sand volume of the central dune field amounts to about 172,463 m3. The southern dune field is characterized by a narrower foredune belt and overall lower dunes that, in addition, become progressively smaller towards the south. In this sector, embryonic dunes (coppice, shadow dunes), tongue-like and tabular dunes, and sand sheets intrude from the beach, the profile of which has a stepped appearance controlled by irregular outcrops of old aeolianite and beach rock. The total volume of the southern dune field amounts 1,446,389 m3. For the whole study area, i.e. for all three dune fields combined, a sand volume of about 15,529,389 m3 has been estimated. The sand of the dune fields is derived from coastal erosion and especially the Tensift River, which enters the sea at Souira Qedima some 70 km north of Essaouira. After entering the sea, the sand is transported southwards by littoral drift driven by the mainly north-westerly swell climate and the Trade Winds blowing from the NNE. This

  5. Pilot Study on Carbon-sand Filter for Sedimentation Effluent

    Directory of Open Access Journals (Sweden)

    Zhang Shuo


    Full Text Available The development of dual function of integrating with activated carbon adsorption and quartz sand filtration in the carbon-sand filter can collaboratively remove organic matters and turbidity and also protect the bio-security, and the pilot test is carried out to optimize the process parameters. The pilot test results show that the thickness of the filter materials is preferably 1,300mm of the activated carbon, 500mm of uniform quartz sand; filtration rate can be 8-12m/h; filter cycle is 24-48h; when the water temperature is 21°C to 29°C, the biofilm formation period in the carbon-sand filter is 15 to 20 days; removal of the organic matters and nitrogen runs through the entire filter bed, and the nitrite is mainly oxidized on the upper side; when the operation is mature, the layer of filter materials can form the biofilm and zoogloea, with the dual function of micro-biological degradation and activated carbon adsorption.

  6. Engineering protection of pipelinesfrom erosion processes Инженерная защита трубопроводов от эрозионных процессов

    Directory of Open Access Journals (Sweden)

    Skapintsev Aleksandr Evgen’evich


    Full Text Available The authors consider varied engineering actions aimed at the protection of pipelines from developing erosion processes with a focus on the conditions of northern regions. Engineering solutions, considered in the article, include prevention of erosion processes along pipelines, protection from suffusion, protection of extended areas having the limit value of the slope angle, and actions aimed at the drainage of areas along pipelines. Prevention of erosion processes along pipelines consists in the restoration of the fertile layer using biological methods, as well as the volumetric soil reinforcement using geological grids. Prevention of suffusion processes consists in the employment of various types of suffusion shields accompanied by the application of geotextile. Berms are constructed as suffusion prevention actions in extended areas having a limit value of the slope angle. This action is used to reduce the water flow energy of drainage ditches and trays along the pipeline. The authors believe that a complete geotechnical monitoring network must be designed and developed to monitor the condition of pipelines and foundation soils.Рассмотрены различные варианты мероприятий инженерной защиты трубопроводов от активизирующихся и развивающихся эрозионных процессов преимущественно в условиях северных регионов. Рассмотрены технические решения на участках вдольтрассовой эрозии, участках развития суффозионных процессов, технические решения на протяженных участках с предельной величиной угла наклона естественной поверхности, а также мероприятия инженерной защиты по осу

  7. The Development of Erosion and Impact Resistant Turbine Airfoil Thermal Barrier Coatings (United States)

    Zhu, Dongming; Miller, Robert A.


    Thermal barrier coatings are used in gas turbine engines to protect engine hot-section components in the harsh combustion environments and extend component lifetimes. For thermal barrier coatings designed for turbine airfoil applications, further improved erosion and impact resistance are crucial for engine performance and durability. Advanced erosion resistant thermal barrier coatings are being developed, with a current emphasis on the toughness improvements using a combined rare earth- and transition metal-oxide doping approach. The performance of the doped thermal barrier coatings has been evaluated in burner rig and laser heat-flux rig simulated engine erosion and thermal gradient environments. The results have shown that the coating composition optimizations can effectively improve the erosion and impact resistance of the coating systems, while maintaining low thermal conductivity and cyclic durability. The erosion and impact damage mechanisms of the thermal barrier coatings will also be discussed.

  8. Tropospheric Emission Spectrometer (TES) Satellite Validations of Ammonia, Methanol, Formic Acid, and Carbon Monoxide over the Canadian Oil Sands (United States)

    U.S. Environmental Protection Agency — The URLs link to the data archive of the Troposphere Emission Spectrometer (TES) retrievals. These include the transects included in the Canadian Tar Sands study. A...

  9. 76 FR 19122 - Record of Decision (ROD) for Authorizing the Use of Outer Continental Shelf (OCS) Sand Resources... (United States)


    ... resources in National Aeronautics and Space Administration's (NASA's) Wallops Flight Facility (WFF... the Use of Outer Continental Shelf (OCS) Sand Resources in National Aeronautics and Space Administration's Wallops Flight Facility Shoreline Restoration and Infrastructure Protection Program AGENCY...

  10. Soil erosion and sediment yield and their relationships with vegetation cover in upper stream of the Yellow River

    NARCIS (Netherlands)

    Ouyang, W.; Hao, F.; Skidmore, A.K.; Toxopeus, A.G.


    Soil erosion is a significant concern when considering regional environmental protection, especially in the Yellow River Basin in China. This study evaluated the temporal-spatial interaction of land cover status with soil erosion characteristics in the Longliu Catchment of China, using the Soil and

  11. Cover and Erosion Asymmetry in Saltation-Abrasion (United States)

    Stark, C. P.; Parker, G.


    Erosion in bedrock-floored rivers is both driven and limited by the amount of sediment transported along the bed. Some sediment boosts wear rates, whereas too much generates a protective cover. This phenomenon determines the shape of river channels in a variety of landscapes and limits how fast they evolve. Here we reevaluate data from a well-known bedrock wear experiment to throw new light on how the saltation-abrasion process. Instead of a symmetric form for erosion versus sediment flux relative to transport capacity, we find the erosion rate peak shifts towards lower sediment fluxes when blocking of oblique saltation trajectories is taken into account. The theoretical context for this reevaluation is a cover-saltation-abrasion model, based on queueing theory (QT), for bedload transport over a planar bedrock bed. The QT approach provides some clarity in the stochastic treatment of granular impacts and cover, and generates closed-form solutions for wear rate in terms of sediment flux and simplified saltation geometry. Applied to the Sklar & Dietrich (2001) experiments in a very small recirculating flume, the two-parameter QT model fits the observed relation between erosion rate and sediment load, infers sediment flux as a function of load, admits non-negligible wear rates for a mean sediment depth of one grain, i.e., for full cover on average, but also suggests that bedrock erosion is blocked at >=50% instantaneous cover. The QT model makes testable predictions for future laboratory experiments and highlights the need for specific improvements in more comprehensive treatments of bedrock erosion and cover.

  12. Evaluation of Durability Parameters of Concrete with Manufacture Sand and River Sand (United States)

    Sangoju, Bhaskar; Ramesh, G.; Bharatkumar, B. H.; Ramanjaneyulu, K.


    Most of the states in our country have banned sand quarrying from the river beds, causing a scarcity of natural river sand for the construction sector. Manufacture sand (M-sand) is one of the alternate solutions to replace the river sand (R-sand) in concrete. The main aim of the present study is to evaluate the durability parameters of concrete with M-sand when compared to that of concrete with R-sand. Corrosion of reinforcement is one of the main deteriorating mechanisms of reinforced concrete due to the ingress of chloride ions or carbon-di-oxide. For comparative evaluation of durability parameters, accelerated tests such as Rapid Chloride Permeability Test, Rapid Chloride Migration Test and accelerated carbonation test were carried out on specimens of R-sand and M-sand. All tests were carried out after 90 days of casting. Test results reveal that the durability parameters of the concrete with M-sand in chloride induced environment is relatively better than that of concrete with R-sand and hence is recommended to use M-sand as a replacement to R-sand.

  13. Soil erosion in humid regions: a review (United States)

    Daniel J. Holz; Karl W.J. Williard; Pamela J. Edwards; Jon E. Schoonover


    Soil erosion has significant implications for land productivity and surface water quality, as sediment is the leading water pollutant worldwide. Here, erosion processes are defined. The dominant factors influencing soil erosion in humid areas are reviewed, with an emphasis on the roles of precipitation, soil moisture, soil porosity, slope steepness and length,...

  14. Natural and anthropogenic rates of soil erosion (United States)

    Regions of land that are brought into crop production from native vegetation typically undergo a period of soil erosion instability, and long term erosion rates are greater than for natural lands as long as the land continues being used for crop production. Average rates of soil erosion under natur...

  15. Soil Erosion. LC Science Tracer Bullet. (United States)

    Buydos, John F., Comp.

    Soil erosion is the detachment and movement of topsoil or soil material from the upper part of the soil profile. It may occur in the form of rill, gully, sheet, or wind erosion. Agents of erosion may be water, wind, glacial ice, agricultural implements, machinery, and animals. Soil conservation measures require a thorough understanding of the…

  16. SAND

    DEFF Research Database (Denmark)

    Thorsen, Grete

    Der er udført et konsolideringsforsøg med bakkesand fra Lunds grusgrav, Lund no. O. forsøget er udført i samme konsolideringsapparat, som er anvendt til måling af deformationsegenskaberne af mange forskellige danske jordarter. Forsøgsresultaterne er søgt tolket som ved forsøg med andre jordarter....

  17. Model-based assessment of erosion risks on man-made slopes in recultivation areas (United States)

    Kunth, F.; Schmidt, J.


    The present study deals with non-vegetated slopes of post mining areas which are heavily endangered by soil erosion by water. The prevention of massive on-site damages as well as off-site effects by the emission of acid dump materials is one of the major challenges in the context of recultivation of closed-down open cast mining areas. Hence, the aim of this study is the development of a reproducible methodology to determine erosion risks on slopes in recultivation areas. Moreover, a standardised technique is developed to plan, dimension and test erosion protection measures in recultivation landscapes. The analyses of the study are based on the event-based physical erosion model EROSION 3D. The widely used model is able to predict runoff as well as detachment, transport and deposition of sediments. Its use and validation ranges from erosion prediction from agricultural land to sediment input into water bodies. The required input parameters of EROSION 2D/3D (hydraulic roughness, infiltration rates etc.) were determined under field conditions by simulated rainfall experiments. These field experiments took place on selected non-vegetated plots of the Lusatian mining district in eastern Germany. Due to their huge influence on infiltration and erosion processes special characteristics of coal-containing dump soils (hydrophobicity, air trapping effect) have to be considered and implemented into the model within this survey.

  18. The June 2016 Australian East Coast Low: Importance of Wave Direction for Coastal Erosion Assessment

    Directory of Open Access Journals (Sweden)

    Thomas R. Mortlock


    Full Text Available In June 2016, an unusual East Coast Low storm affected some 2000 km of the eastern seaboard of Australia bringing heavy rain, strong winds and powerful wave conditions. While wave heights offshore of Sydney were not exceptional, nearshore wave conditions were such that beaches experienced some of the worst erosion in 40 years. Hydrodynamic modelling of wave and current behaviour as well as contemporaneous sand transport shows the east to north-east storm wave direction to be the major determinant of erosion magnitude. This arises because of reduced energy attenuation across the continental shelf and the focussing of wave energy on coastal sections not equilibrated with such wave exposure under the prevailing south-easterly wave climate. Narrabeen–Collaroy, a well-known erosion hot spot on Sydney’s Northern Beaches, is shown to be particularly vulnerable to storms from this direction because the destructive erosion potential is amplified by the influence of the local embayment geometry. We demonstrate the magnified erosion response that occurs when there is bi-directionality between an extreme wave event and preceding modal conditions and the importance of considering wave direction in extreme value analyses.

  19. Management of Coastal Erosion Using Remote Sensing and GIS Techniques (SE India

    Directory of Open Access Journals (Sweden)

    S. Saravanan


    Full Text Available World wide, coastal erosion is recognized as a great threat for beach environment. Total control of coastal erosion is not feasible but it should not be ignored and needs timely management. Erosional activities have been significantly noticed along the coastal tract of Vembar and Kallar (Kallurani, South India. An attempt has been made here to delineate different zones based on their sand budget and erosion rate. Linear Imaging Self Scanning Sensor (LISS III 2001 and Linear Imaging Self Scanning Sensor III and PAN merged data of the year 2001 have been utilized to identify the coastal geomorphological features, shoreline changes and river course changes. A Geographic Information System (GIS software namely ArcGIS (9.1 has been used as a tool to delineate the coastal erosion hazard for proper planning and management of coastal developments. Beach profile studies have shown significant variation in the beach morphology. The study area has been categorized into five different zones in the GIS analysis based on the degree of coastal erosion and sediment dynamics namely (i very high - Kalaignanapuram, (ii high - Sippikulam (iii medium - Periyasamypuram (iv low - Vembar and Kallar (Kallurani (v very low - Pachayapuram.

  20. Splash erosion. A bibliometric Review (United States)

    Fernández Raga, M. B.


    Ellison (1944) developed the splash board as a system for measuring splash erosion that was both cheap and reliable. Bollinne (1975), Morgan (1978, 1981). Mutchler (1967) described another different type of splash detectors according to whether they were passive or could register data. In the study mentioned above these authors included bottles, funnels, glasses, photography, markers. After that several devices has been made up like the splash sampler (Leguedois et al., 2005), soil tray (Van Dijk et al., 2002), splash funnel (Terry, 1989) and several rain cups (Fernandez-Raga et al., 2010; Molina and Llinares, 1996; Torri et al., 1987). Splash erosion research has materialized in the form of a number of papers published in international journals. The database of bibliographic references employed has been one of the most prestigious ones: theWeb of Science (ISI). The search was carried out on January 27th 2012. Among the 3x10^8 scholarly documents included in the Science Citation Index Expanded (SCI-EXPANDED) 1899 to present , the searching engine located 439 containing the word "splash erosion*", where the asterisk acts as a wildcard for any letter or group of letters. Of these, 383 were classified as articles, 87 as proceeding papers, 5 as editorial material, 2 as notes and 1 as correction. These documents have been published in 163 different journals, although four are particularly recurrent: Earth surface processes and Landforms, Catena, Soil Science Society of America Journal and Hydrological processes, with 41, 35, 35 and 26 published documents respectively. A geographic analysis of these articles has been carried out in an attempt to determine in what parts of the world research projects were making use of splash erosion. The results are that anglo-saxon countries, as USA, England and Australia dominate, particularly USA, with 130 articles. China and Japan are large communities of researches too, and some Central European countries as Belgium, France Germany

  1. Soil Erosion Threatens Food Production

    Directory of Open Access Journals (Sweden)

    Michael Burgess


    Full Text Available Since humans worldwide obtain more than 99.7% of their food (calories from the land and less than 0.3% from the oceans and aquatic ecosystems, preserving cropland and maintaining soil fertility should be of the highest importance to human welfare. Soil erosion is one of the most serious threats facing world food production. Each year about 10 million ha of cropland are lost due to soil erosion, thus reducing the cropland available for world food production. The loss of cropland is a serious problem because the World Health Organization and the Food and Agricultural Organization report that two-thirds of the world population is malnourished. Overall, soil is being lost from agricultural areas 10 to 40 times faster than the rate of soil formation imperiling humanity’s food security.

  2. Sports drinks and dental erosion. (United States)

    Noble, Warden H; Donovan, Terence E; Geissberger, Marc


    Sports drinks were originally developed to improve hydration and performance in athletes taking part in intense or endurance sporting events. These drinks contain relatively high amounts of carbohydrates (sugars), salt, and citric acid. These ingredients create the potential for dental ramifications and overall public health consequences such as obesity and diabetes. High intake of sports drinks during exercise, coupled with xerostomia from dehydration, may lead to the possibility of erosive damage to teeth.

  3. Dental erosion in French adolescents


    Muller-Bolla, Mich?le; Courson, Fr?d?ric; Smail-Faugeron, Violaine; Bernardin, Thibault; Lupi-P?gurier, Laurence


    Background Since the 2000s, different epidemiological studies focusing on the prevalence or the aetiology of DE in adolescents recognised them as an at-risk population due to their eating behaviours. None was carried out in French adolescents. The primary objective of this study was to assess the prevalence of dental erosion (DE) using the total BEWE score among adolescents in the department of Alpes Maritimes, France. The secondary objectives were to observe changes in prevalence estimates d...


    Directory of Open Access Journals (Sweden)

    G. PANDI


    Full Text Available The water from nature and the erosion process. Studying earth's surface erosion process is necessary for practical reasons. The theoretical approach requires knowledge of the alluvial system’s structure and operation as the cascade sequence of fluvial system’s mass and energy. Geosystem research methodology requires that the water energy and the role of adjacent surface must be expressed. The expression of water power can be grouped according to the shape of movement and action in the basin. A particular, important case is the energy variation in a basin-slope. An important role in energy expressions is considering the existence in nature of biphasic fluid - water as dispersion phase and solid particles as dispersed phase. The role of the adjacent surface is taken into account by using the erosion resistance indicator, which is calculated using the indicator of geological resistance and the indicator of plant protection. The evolution of natural systems, therefore of river basins too, leads to energy diminishing, thus affecting their dynamic balance. This can be expressed using the concept of entropy. Although erosion processes are usual natural phenomena for the evolution of river basins, they induce significant risks in certain circumstances. Depending on the circulated water energies, water basins can be ranked in terms of potential risks.

  5. Crest line minimal model for sand dune


    Guignier, Lucie; Valance, Alexandre; Lague, Dimitri


    International audience; In desert, complex patterns of dunes form. Under unidirectional wind, transverse rectilinear dunes or crescent shaped dunes called barchan dunes can appear, depending on the amount of sediment available. Most rectilinear transverse sand dunes are observed to fragment, for example at White Sands (New Mexico, United States of America) or Walvis Bay (Namibia). We develop a reduced complexity model to investigate the morphodynamics of sand dunes migrating over a non-erodib...

  6. Mapping monthly rainfall erosivity in Europe

    DEFF Research Database (Denmark)

    Ballabio, C; Meusburger, K; Klik, A


    Rainfall erosivity as a dynamic factor of soil loss by water erosion is modelled intra-annually for the first time at European scale. The development of Rainfall Erosivity Database at European Scale (REDES) and its 2015 update with the extension to monthly component allowed to develop monthly...... events. Consequently, spatio-temporal mapping of rainfall erosivity permits to identify the months and the areas with highest risk of soil loss where conservation measures should be applied in different seasons of the year....... to Eastern Europe. The maps also show a clear delineation of areas with different erosivity seasonal patterns, whose spatial outline was evidenced by cluster analysis. The monthly erosivity maps can be used to develop composite indicators that map both intra-annual variability and concentration of erosive...

  7. Effects of soil surface roughness on interrill erosion processes and sediment particle size distribution (United States)

    Ding, Wenfeng; Huang, Chihua


    Soil surface roughness significantly impacts runoff and erosion under rainfall. Few previous studies on runoff generation focused on the effects of soil surface roughness on the sediment particle size distribution (PSD), which greatly affects interrill erosion and sedimentation processes. To address this issue, a rainfall-simulation experiment was conducted with treatments that included two different initial soil surface roughnesses and two rainfall intensities. Soil surface roughness was determined by using photogrammetric method. For each simulated event, runoff and sediment samples were collected at different experimental times. The effective (undispersed) PSD of each sediment sample and the ultimate (after dispersion) PSD were used to investigate the detachment and transport mechanisms involved in sediment movement. The results show that soil surface roughness significantly delayed runoff initiation, but had no significant effect on the steady runoff rate. However, a significant difference in the soil loss rate was observed between the smooth and rough soil surfaces. Sediments from smooth soil surfaces were more depleted in clay-size particles, but more enriched in sand-size particles than those from rough soil surfaces, suggesting that erosion was less selective on smooth than on rough soil surfaces. The ratio of different sizes of transported sediment to the soil matrix indicates that most of the clay was eroded in the form of aggregates, silt-size particles were transported mainly as primary particles, and sand-size particles were predominantly aggregates of finer particles. Soil surface roughness has a crucial effect on the sediment size distribution and erosion processes. Significant differences of the enrichment ratios for the effective PSD and the ultimate PSD were observed under the two soil surface roughness treatments. These findings demonstrate that we should consider each particle size separately rather than use only the total sediment discharge in

  8. Interactive effects of vegetation and sediment properties on erosion of salt marshes in the Northern Adriatic Sea. (United States)

    Lo, V B; Bouma, T J; van Belzen, J; Van Colen, C; Airoldi, L


    We investigated how lateral erosion control, measured by novel photogrammetry techniques, is modified by the presence of Spartina spp. vegetation, sediment grain size, and the nutrient status of salt marshes across 230 km of the Italian Northern Adriatic coastline. Spartina spp. vegetation reduced erosion across our study sites. The effect was more pronounced in sandy soils, where erosion was reduced by 80% compared to 17% in silty soils. Erosion resistance was also enhanced by Spartina spp. root biomass. In the absence of vegetation, erosion resistance was enhanced by silt content, with mean erosion 72% lower in silty vs. sandy soils. We found no relevant relationships with nutrient status, likely due to overall high nutrient concentrations and low C:N ratios across all sites. Our results contribute to quantifying coastal protection ecosystem services provided by salt marshes in both sandy and silty sediments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Study of graphite erosion under lateral radiation from target plasma

    Energy Technology Data Exchange (ETDEWEB)

    Sofronov, V.; Arkhipov, N.; Bakhtin, V.; Kurkin, S.; Toporkov, D.; Vasenin, S.; Zhitlukhin, A. [Troitsk Inst. for Innovation and Fusion Research, Troisk, Moscow region (Russian Federation); Wuerz, H. [Forschungszentrum Karlsruhe (Germany)


    Tokamak disruptive heat load results in a sudden evaporation of plasma irradiated material and produces a target plasma cloud which protects divertor plates from further excessive evaporation. A bulk of incoming energy flux is absorbed in the target plasma and is effectively (up to 95%) dissipated into outcoming radiation. The intense radiation of target plasma causes a high heat load at nearby components and consequently it can produce their surface erosion. The problem of environmental component protection from this secondary irradiation is under investigation now.The experimental results on interaction of target plasma radiation with solid targets and material damage are presented in this paper. (author)

  10. Canada's toxic tar sands : the most destructive project on earth

    Energy Technology Data Exchange (ETDEWEB)

    Hatch, C.; Price, M. [Environmental Defence, Toronto, ON (Canada)


    This document addressed the environmental problems associated with tar sands development in Alberta, with particular reference to toxicity problems associated with global warming and the impending destruction of the boreal forest. The authors cautioned that the tar sand projects are highly destructive, leaving downstream toxics equivalent to that of a massive slow motion oil spill that has the potential to poison people. Negligent oversights by the government regarding the impact of tar sands development were also discussed, with reference to toxics on site; toxics downwind; and toxics down the pipe. The report also provided information on the future of tar sands development and global warming in Canada. It included a discussion of reverse alchemy; Canada's failed climate politics; a tar sands tax; and taking responsibility. Last, the report addressed toxic enforcement, including the Fisheries Act; Canadian Environmental Protection Act; Canadian Environmental Assessment Act; and Alberta law. It was concluded that while it is a stretch to believe the tar sands can truly be sustainable, there is a great deal that can be done to clean it up. The authors recommended that new tar sands approvals should wait until certain reform elements are implemented, such as passing a real carbon cap; using dry tailings; requiring wildlife offsets; cleaning up refineries and upgraders; ensuring Aboriginal control and benefit; and having regulation and independent monitoring. 104 refs., 6 figs.

  11. Assessing the effect of biochar on erosion by using a high precision rainfall simulator (United States)

    Goldman, Nina; Mayer, Marius; Fister, Wolfgang


    Numerus studies have explored the effect of biochar as a soil amendment and its beneficial effects on different soil properties. Adding biochar to soils might also act as a long-term carbon sink, which would mitigate the anthropogenic climate change. However, there are limitations regarding the current process knowledge on the effects of biochar on soil erosion and its erodibility. First test results point towards lower erosion rates of the substrates, which were enriched with biochar. In contrast, biochar concurrently shows relatively high erosion rates due to its lower bulk density, which makes it more susceptible to erosion. However, the number of conducted experiments does not yet allow quantitative statements. The overall objectives of this study are to gain insight into the process knowledge of erodibility of soils with incorporated biochar, and to develop new techniques for their observation. A drip type rainfall simulator is used on a microscale flume (0.2m2) to be able to control and monitor the thin surface flows and rainfall characteristics precisely. Two different types of biochars (high and low temperature pyrolysis) are used in combination with different substrates ranging from pure sand to naturally developed soils. Depending on the particle size and density of the biochar, different erosion rates can be observed. Particle analysis of the eroded material produces insights into which particle sizes and forms are preferably eroded. Since differentiation between eroded soil organic matter and biochar is very difficult without the use of heavy acids, two new methods are being developed and tested to monitor erosion rates of biochar. Comparing the original substrate with the eroded sediment by means of photogrammetry and isotope analysis, it should be possible to infer how much biochar was discharged and to assess the actual particle movement on the erosion flume. The results of this study could provide guidelines for the types of biochar that should be

  12. Storm erosion during the past 2000 years along the north shore of Delaware Bay, USA (United States)

    Nikitina, Daria L.; Kemp, Andrew C.; Horton, Benjamin P.; Vane, Christopher H.; van de Plassche, Orson; Engelhart, Simon E.


    The recent impacts of tropical cyclones and severe storms on the U.S. Atlantic coast brought into focus the need for extended records of storm activity from different geomorphologic settings. Such reconstructions are typically developed from sites that experienced repeated overwash of sand into low-energy, depositional environments. However, salt-marsh sediment may also preserve a record of repeated erosion from tropical cyclones and storms. We describe late Holocene sediments beneath the Sea Breeze salt marsh (Delaware Bay, New Jersey) from more than 200 gouge cores positioned along seven transects. The stratigraphic record documents at least seven depositional sequences consisting of salt-marsh peat and mud couplets that represent dramatic changes in sedimentation regime. There are a number of processes that could produce these stratigraphic sequences against a background of rising relative sea level including: lateral migration of tidal creeks; tidal channel network and/or drainage ditch expansion; changes in sediment delivery rates; rapid relative sea-level change; tsunami; and formation of salt pans. The abrupt contacts between the salt-marsh peat and overlying intertidal mud suggest that erosion of the peat was followed by rapid infilling of accommodation space. Correlation of erosional surfaces across 2.5 km suggests a common mechanism and we propose that the erosion was caused by tropical cyclones and/or storms. We developed a chronology of repeated salt-marsh erosion and recovery using 137Cs, metal pollution (Pb concentration and stable isotopes), and radiocarbon data. Two recent episodes of salt-marsh erosion may correlate with historic tropical cyclones in AD 1903, and AD 1821/1788 that impacted the Atlantic coast of New Jersey, but the erosive nature of the Sea Breeze site hinders definitive correlation. Prehistoric erosional sequences correlate with overwash fans preserved in the regional sedimentary record. We estimated that it takes from several

  13. Influence of sand movement in the Sahara on the erosion of pipeline network

    Directory of Open Access Journals (Sweden)

    Azari Z.


    Full Text Available The influence of sandblasting on a surface notched of pipeline with API 5L X52 steel is studied. The purpose of this study is to determine the evolution of static characteristics and lifetime of material in both directions of pipeline (Longitudinal (L and Transverse (T. Specimens were taken from a pipeline and the material damage was made by projecting corundum particles (aluminium oxide. In order to justify the evolution of mechanical properties of material, residual stress analysis was realized by the technique of X-ray diffraction. The observation of damage mode and distribution of residual stress under the notch tip show that the material hardening, the notch radius and the compressive stress, play together an important role in stabilizing the material mechanical properties.

  14. Hydrology and erosion impacts of mining derived coastal sand dunes, Chanaral Bay, Chile (United States)

    Daniel G. Neary; Pablo Garcia-Chevesich


    Chile has an economy strongly based on the exploitation of its natural resources. Copper mining represents the main export monetary income, employing thousands of people all along the country. The Chilean Copper Corporation (CODELCO), El Salvador branch, has been the primary mining company, but it will be ending most of its activities by 2011 unless copper prices stay...

  15. Modeling regional wind erosion using different model (United States)

    Guo, Zhongling; Chang, Chunping; Wang, Rende; Li, Jifeng; Li, Qing


    Wind erosion is an important factor causing soil degradation in arid and semi-arid regions. The need to quantitatively evaluate wind induced soil erosion yields many wind erosion models. These models include Wind Erosion Equation (WEQ), Revised Wind Erosion Equation (RWEQ),Wind Erosion Predicted System (WEPS) etc. at a field scale and Wind Erosion Assessment Model (WEAM), Integrated Wind Erosion Modeling System (IWEMS), AUStralian Land Erodibility Model (AUSLEM) etc. at a regional scale. The challenge of precisely estimating wind erosion at a regional scale still remain to date. To assess regional wind erosion, WEQ, RWEQ and WEPS have been scaled up to regional versions. However, no attempt is performed to compare these models for regional wind erosion modeling. In this study, the regional versions of WEQ, RWEQ, WEPS and WEAM, IWEMS, AUSLEM will be selected to model regional wind erosion of farmlands in the Kangbao County of northern China with annual soil loss by wind erosion based on 137 Cs analysis. Remote sensing image is used to determine the size and shape of local farmlands. Weather data of 2000-2010, China Soil Survey and published soil data, crops rotations etc. are compiled to generate raster layers of inputs for selected models using ArcGIS 10.2. These models were rebuilt based on ArcGIS Model-builder Module. Spatial distribution of annual soil loss by wind erosion determined from different model will be tested using annual soil loss data by 137 Cs analysis. Performances of these models will be investigated, and restrictions of these models will be further ascertained.

  16. Crushed rock sand – An economical and ecological alternative to natural sand to optimize concrete mix

    Directory of Open Access Journals (Sweden)

    Sanjay Mundra


    Full Text Available The study investigates the use of crushed rock sand as viable alternative to Natural River sand that is being conventionally used as fine aggregate in cement concrete. Various mix designs were developed for different grades of concrete based on IS, ACI and British codes using Natural River sand and crushed rock sand. In each case, the cube compressive strength test, and beam flexure tests were conducted. The results of the study show that, the strength properties of concrete using crushed rock sand are nearly similar to the conventional concrete. The study has shown that crushed stone sand can be used as economic and readily available alternative to river sand and can therefore help to arrest the detrimental effects on the environment caused due to excessive mining of river sand.

  17. Choosing the target of adaptive soil erosion management in Mediterranean. Long vs. Extreme erosion, internal vs. external catchment dynamics (United States)

    Smetanova, Anna; Follain, Stéphane; David, Mélodie; Ciampalini, Rossano; Raclot, Damien; Crabit, Armand; Le Bissonnais, Yves


    For soil resources protection and regulation of soil erosion off-site effects in Mediterranean, it is inevitable to adjust current land management planning to both, event magnitude and long-term erosion means [2, 3, 5]. Science-based soil protection measures need to be adjusted to spatial and temporal scale of practice differing between stakeholders and management aims, and reflect increasing frequency of torrential rainfalls leading to very high erosion rates in short time [3, 4]. In order to address selection of zero-soil erosion land management target, this study applies modelling approach for comparison of 7 land use scenarios using the LandSoil model [1]. We propose comparison of internal vs. external catchment dynamic at extreme event- and long-term scale as a tool for understanding effect of land management in targeting emerging erosion and connectivity patterns. Our results suggest, that proposed approach can be applied to identify best management scenario practices regarding different management aims of farmers and watershed managers. [1] Ciampalini R, Follain S, Le Bissonnais Y. 2012. LandSoil: A model for analysing the impact of erosion on agricultural landscape evolution. Geomorphology 175-176: 25-37. [2] David M, Follain S, Ciampalini R, Le Bissonnais Y, Couturier A, Walter C. 2014. Simulation of medium-term soil redistributions for different land use and landscape design scenarios within a vineyard landscape in Mediterranean France. Geomorphology 214: 10-21. [3] Smetanová A, Le Bissonnais Y, Raclot D, Nunes JP, Licciardello F, Le Bouteiller C, Latron J, Rodríguez-Caballero E, Mathys N, Klotz S, Mekki I, Gallart F, Solé Benet A, Pérez Gallego N, Andrieux P, Moussa R, Planchon O, Marisa Santos J, Alshihabi O, Chikhaoui M., submitted. Patterns of temporal variability and time compression of sediment yield in small Mediterranean catchments. Soil Use & Management [4] Smetanová A, Paton E, Maynard C, Tindale S, Fernandez-Getino A-P, Marques MJ, Bracken

  18. Multifractal Model of Soil Water Erosion (United States)

    Oleshko, Klaudia


    Breaking of solid surface symmetry during the interaction between the rainfall of high erosivity index and internally unstable volcanic soil/vegetation systems, results in roughness increasing as well as fertile horizon loosing. In these areas, the sustainability of management practices depends on the ability to select and implement the precise indicators of soil erodibility and vegetation capacity to protect the system against the extreme damaging precipitation events. Notwithstanding, the complex, non-linear and scaling nature of the phenomena involved in the interaction among the soil, vegetation and precipitation is still not taken into account by the numerous commonly used empirical, mathematical and computer simulation models: for instance, by the universal soil loss equation (USLE). The soil erodibility factor (K-factor) is still measuring by a set of empirical, dimensionless parameters and indexes, without taking into account the scaling (frequently multifractal) origin of a broad range of heterogeneous, anisotropic and dynamical phenomena involved in hydric erosion. Their mapping is not representative of this complex system spatial variability. In our research, we propose to use the toolbox of fractals and multifractals techniques in vista of its ability to measure the scale invariance and type/degree of soil, vegetation and precipitation symmetry breaking. The hydraulic units are chosen as the precise measure of soil/vegetation stability. These units are measured and modeled for soils with contrasting architecture, based on their porosity/permeability (Poroperm) as well as retention capacity relations. The simple Catalog of the most common Poroperm relations is proposed and the main power law relations among the elements of studied system are established and compared for some representative agricultural and natural Biogeosystems of Mexico. All resulted are related with the Mandelbrot' Baby Theorem in order to construct the universal Phase Diagram which

  19. Effects of slope gradient on hydro-erosional processes on an aeolian sand-covered loess slope under simulated rainfall (United States)

    Zhang, F. B.; Yang, M. Y.; Li, B. B.; Li, Z. B.; Shi, W. Y.


    The aeolian sand-covered loess slope of the Wind-Water Erosion Crisscross Region of the Loess Plateau in China may play a key role in contributing excessive sediment to the Yellow River. Understanding its hydro-erosional processes is crucial to assessing, controlling and predicting soil and water losses in this region and maintaining the ecological sustainability of the Yellow River. Simulated rainfall (intensity 90 mm h-1) was used to investigate the runoff and soil loss from loess slopes with different slope gradients (18%, 27%, 36%, 47%, and 58%) and overlying sand layer thicknesses (0, 5 and 10 cm). As compared with uncovered loess slopes, an overlying sand layer delayed runoff production, reduced cumulative runoff and increased cumulative soil loss, as well as enhancing variations among slope gradients. Cumulative runoff and soil loss from the sand-covered loess slopes increased with increasing slope gradients and then slightly decreased, with a peak at about 47% gradient; they both were greater from the 10-cm sand-covered loess slope than from the 5-cm except for with 18% slope gradient. In general, differences in cumulative runoff between sand layer thicknesses became smaller, while those in cumulative soil loss became larger, with increasing slope gradient. Runoff and soil loss rates on the sand-covered loess slopes exhibited unimodal distributions during the rainstorms. Maximum values tended to occur at the same rain duration, and increased considerably with increasing slope gradient and sand layer thickness on slopes that were less than 47%. Liquefaction process might occur on the lower loess slopes covered with thinner sand layers but failures similar to shallow landslides might occur when the sand layer was thicker on steeper slopes. The presence of an overlying sand layer changed the relationship between runoff and soil loss rates during intense rainstorms and this change varied with different slope gradients. Our results demonstrated that the effects

  20. Pelton turbine Needle erosion prediction based on 3D three- phase flow simulation (United States)

    Chongji, Z.; Yexiang, X.; Wei, Z.; Yangyang, Y.; Lei, C.; Zhengwei, W.


    Pelton turbine, which applied to the high water head and small flow rate, is widely used in the mountainous area. During the operation period the sediment contained in the water does not only induce the abrasion of the buckets, but also leads to the erosion at the nozzle which may damage the needle structure. The nozzle and needle structure are mainly used to form high quality cylindrical jet and increase the efficiency of energy exchange in the runner to the most. Thus the needle erosion will lead to the deformation of jet, and then may cause the efficiency loss and cavitation. The favourable prediction of abrasion characteristic of needle can effectively guide the optimization design and maintenance of needle structure. This paper simulated the unsteady three-dimensional multi-phase flow in the nozzle and injected jet flow. As the jet containing water and sediment is injected into the free atmosphere air with high velocity, the VOF model was adopted to predict the water and air flow. The sediment is simplified into round solid particle and the discrete particle model (DPM) was employed to predict the needle abrasion characteristic. The sand particle tracks were analyzed to interpret the mechanism of sand erosion on the needle surface. And the numerical result of needle abrasion was obtained and compared with the abrasion field observation. The similarity of abrasion pattern between the numerical results and field observation illustrated the validity of the 3D multi-phase flow simulation method.

  1. Comparison of erosion and erosion control works in Macedonia, Serbia and Bulgaria

    Directory of Open Access Journals (Sweden)

    Ivan Blinkov


    Natural conditions in the Balkan countries contribute to the appearance of various erosion forms and the intensity of the erosion processes. Over the history of these countries, people who settled this region used the available natural resources to fill their needs (tree cutting, incorrect plugging, overgrazing, which contributed to soil erosion. Organized erosion control works in the Balkans started in the beginning of the 20th century (1905 in Bulgaria. The highest intensity of erosion control works were carried out during the period 1945 – 1990. Various erosion control works were launched. Bulgaria had a large anti-erosion afforestation, almost 1 million ha. Bulgaria's ecological river restoration approach has been in use for almost 50 years. Serbia contributed significant erosion and torrent control works on hilly agricultural areas. Specific screen barrages and afforestation on extremely dry areas are characteristic in Macedonia. A common characteristic for all countries is a high decrease in erosion control works in the last 20 years.

  2. Simulating and understanding sand wave variation: a case study of the Golden Gate sand waves

    NARCIS (Netherlands)

    Sterlini-Van der Meer, Fenneke; Hulscher, Suzanne J.M.H.; Hanes, D.M


    In this paper we present a detailed comparison between measured features of the Golden Gate sand wave field and the results of a nonlinear sand wave model. Because the Golden Gate sand waves exhibit large variation in their characteristics and in their environmental physics, this area gives us the

  3. Validating and Improving Interrill Erosion Equations (United States)

    Zhang, Feng-Bao; Wang, Zhan-Li; Yang, Ming-Yi


    Existing interrill erosion equations based on mini-plot experiments have largely ignored the effects of slope length and plot size on interrill erosion rate. This paper describes a series of simulated rainfall experiments which were conducted according to a randomized factorial design for five slope lengths (0.4, 0.8, 1.2, 1.6, and 2 m) at a width of 0.4 m, five slope gradients (17%, 27%, 36%, 47%, and 58%), and five rainfall intensities (48, 62.4, 102, 149, and 170 mm h−1) to perform a systematic validation of existing interrill erosion equations based on mini-plots. The results indicated that the existing interrill erosion equations do not adequately describe the relationships between interrill erosion rate and its influencing factors with increasing slope length and rainfall intensity. Univariate analysis of variance showed that runoff rate, rainfall intensity, slope gradient, and slope length had significant effects on interrill erosion rate and that their interactions were significant at p = 0.01. An improved interrill erosion equation was constructed by analyzing the relationships of sediment concentration with rainfall intensity, slope length, and slope gradient. In the improved interrill erosion equation, the runoff rate and slope factor are the same as in the interrill erosion equation in the Water Erosion Prediction Project (WEPP), with the weight of rainfall intensity adjusted by an exponent of 0.22 and a slope length term added with an exponent of −0.25. Using experimental data from WEPP cropland soil field interrill erodibility experiments, it has been shown that the improved interrill erosion equation describes the relationship between interrill erosion rate and runoff rate, rainfall intensity, slope gradient, and slope length reasonably well and better than existing interrill erosion equations. PMID:24516624

  4. Root characteristics of cover crops and their erosion-reducing potential during concentrated runoff (United States)

    de Baets, S.; Poesen, J.


    In the loam region in central Belgium, a lot of research has been conducted on the effects of cover crops for preventing splash and interrill erosion and on their nutrient pumping effectiveness. As this is a very effective erosion and environment conservation technique, planting cover crops during the winter season is widely applied in the loess belt. Most of these cover crops freeze at the beginning of the winter period. Consequently, the above-ground biomass becomes less effective in protecting the soil from water erosion. Apart from the effects of the above-ground biomass in protecting the soil against raindrop impacts and reducing flow velocities by the retarding effects of their stems, plant roots also play an important role in improving soil strength. Previous research showed that roots contribute to a large extent to the resistance of topsoils against concentrated flow erosion. Unfortunately, information on root properties of common cover crops (e.g. Sinapis alba, Phacelia tanacetifoli, Lolium perenne, Avena sativa, Secale cereale, Raphanus sativus subsp. oleiferus) is very scarce. Therefore, root density distribution with depth and their erosion-reducing effects during concentrated flow erosion were assessed by conducting root auger measurements and concentrated flow experiments at the end of the growth period (December). The preliminary results indicate that the studied cover crops are not equally effective in preventing soil loss by concentrated flow erosion at the end of the growing season. Cover crops with thick roots, such as Sinapis alba and Raphanus sativus subsp. oleiferus are less effective than cover crops with fine-branched roots such as Phacelia tanacetifoli, Lolium perenne (Ryegrass), Avena sativa (Oats) and Secale cereale (Rye) in preventing soil losses by concentrated flow erosion. These results enable soil managers to select the most suitable crops and maximize soil protection.

  5. Advances in catchment scale bank erosion modelling - quantifying the improved representation of temporal and spatial variability (United States)

    Janes, Victoria; Holman, Ian; O'Donnell, Greg; Birkinshaw, Stephen; Kilsby, Chris


    between 1239-2527 t yr-1 whereas for the same time period the modified model simulated between 677-3142 t yr-1. The modified model provides greater accuracy of spatial variability of bank erosion throughout the catchment when compared with observational data, enabling identification of areas naturally susceptible to erosion, and providing an indication of where protection measures will be most effective. The new channel bank erosion component enables SHETRAN to provide a more complete representation of sediment generation processes at a catchment scale, which will assist successful management of diffuse pollution issues.

  6. Integration of fluvial erosion factors for predicting landslides along meandering rivers (United States)

    Chen, Yi-chin; Chang, Kang-tsung; Ho, Jui-yi


    . In contrast, river sediment in the downstream is an erosion agent eroding the concave bank laterally, but also depositing on the concave side and protecting the bank from erosion. Finally, the results also showed that the integration of fluvial erosion factors can improve the performance in predicting landsliding along meandering rivers.

  7. New international developments in oil sands projects

    Energy Technology Data Exchange (ETDEWEB)

    Vercoe, J. [Fasken Martineau DuMoulin LLP, London (United Kingdom)


    Governments and oil companies from a variety of different countries are now working to create alternative oil and gas operations and the policies required to enable their financial success. The Africa Energy Commission was developed to coordinate policy and act as a framework for the African energy sector. Several large oil and gas operators have become involved in the creation of new contracts to develop training and human resources policies for the petroleum industry in Congo. Issues related to national oil companies and value creation in African countries are currently being studied by the World Bank. A biofuel alliance was recently signed between Congo and Brazil, and a Congo Forest Fund has also been created to help the inhabitants of the Congolese rainforest protect their environment. Congo is also offering opportunities for international companies to implement greenhouse gas (GHG) emission reduction programs to trade emission credits when requirements are satisfied. It was concluded that several African countries are suitable candidates for oil sands development. 1 fig.

  8. Holocene Formation of Heald Sand Bank on the East Texas Inner Continental Shelf (United States)

    Swartz, J. M.; Cleveland, V.; Gulick, S. P. S.; Goff, J. A.


    Heald Bank is a Gulf of Mexico sand bank located ~50 km off the coast of east Texas on the inner continental shelf. The bank is proposed to be a remnant of barrier islands drowned and thus preserved during an episode of rapid sea level rise. For this hypothesis to be true, the transgressive ravinement that marks the erosion by the shoreline moving from shelf edge towards the modern location would by definition postdate and thus be stratigraphically above the bank. To test this hypothesis we present ~90 km of Compressed High Intensity Radar Pulse (CHIRP) and Multi-channel seismic (MCS) data collected from the University of Texas Geophysics marine field course during 2008, 2013, and 2014. In these data, there are several visible underlying channels beneath Heald Bank. These channels have channel fill which are truncated by an overlying erosional surface, which we interpret to be the transgressive ravinement from sea level rise. However, this interpretation places the ravinement below the sand bank, meaning it could not have been drowned and buried by a rapid sea level rise event. Thus, Heald Bank and potentially the related inner shelf banks (Thomas, Shepard, and Sabine) from eastern Texas to western Louisiana cannot be used as an example of coastal response to climate change and sea level rise. We examine alternate origins for the banks and their sand using published cores as well as age models and integrating them with our seismic data. One possibility is that the sand was sourced from the nearby Sabine River system immediately following local transgression or the sand was remobilized from sediment fill within underlying paleo-river channels imaged below the Heald Bank. In either case Heald Bank appears not to serve as an indicator for rapid sea-level rise, yet could be an important analog for sand transport mechanisms offshore.

  9. Study of Black Sand Particles from Sand Dunes in Badr, Saudi Arabia Using Electron Microscopy

    Directory of Open Access Journals (Sweden)

    Haider Abbas Khwaja


    Full Text Available Particulate air pollution is a health concern. This study determines the microscopic make-up of different varieties of sand particles collected at a sand dune site in Badr, Saudi Arabia in 2012. Three categories of sand were studied: black sand, white sand, and volcanic sand. The study used multiple high resolution electron microscopies to study the morphologies, emission source types, size, and elemental composition of the particles, and to evaluate the presence of surface “coatings or contaminants” deposited or transported by the black sand particles. White sand was comprised of natural coarse particles linked to wind-blown releases from crustal surfaces, weathering of igneous/metamorphic rock sources, and volcanic activities. Black sand particles exhibited different morphologies and microstructures (surface roughness compared with the white sand and volcanic sand. Morphological Scanning Electron Microscopy (SEM and Laser Scanning Microscopy (LSM analyses revealed that the black sand contained fine and ultrafine particles (50 to 500 nm ranges and was strongly magnetic, indicating the mineral magnetite or elemental iron. Aqueous extracts of black sands were acidic (pH = 5.0. Fe, C, O, Ti, Si, V, and S dominated the composition of black sand. Results suggest that carbon and other contaminant fine particles were produced by fossil-fuel combustion and industrial emissions in heavily industrialized areas of Haifa and Yanbu, and transported as cloud condensation nuclei to Douf Mountain. The suite of techniques used in this study has yielded an in-depth characterization of sand particles. Such information will be needed in future environmental, toxicological, epidemiological, and source apportionment studies.

  10. Coastal eolian sand-ramp development related to paleo-sea-level changes during the Latest Pleistocene and Holocene (21–0 ka) in San Miguel Island, California, U.S.A. (United States)

    Peterson, Curt D.; Erlandson, Jon M.; Stock, Errol; Hostetler, Steven W.; Price, David M.


    Coastal eolian sand ramps (5–130 m elevation) on the northern slope (windward) side of the small San Miguel Island (13 km in W-E length) range in age from late Pleistocene to modern time, though a major hiatus in sand-ramp growth occurred during the early Holocene marine transgression (16–9 ka). The Holocene sand ramps (1–5 m measured thicknesses) currently lack large dune forms, thereby representing deflated erosional remnants, locally covering thicker late Pleistocene sand-ramp deposits. The ramp sand was initially supplied from the adjacent island-shelf platform, extending about 20 km north of the present coastline. The sand-ramp deposits and interbedded loess soils were 14C dated using 112 samples from 32 archaeological sites and other geologic sections. Latest Pleistocene sand ramps (66–18 ka) were derived from across-shelf eolian sand transport during marine low stands. Shoreward wave transport supplied remobilized late Pleistocene sand from the inner shelf to Holocene beaches, where dominant NW winds supplied sand to the sand ramps. The onset dates of the sand-ramp deposition in San Miguel are 7.2 ± 1.5 ka (sample n = 14). The internal strata dates in the vertically accreting sand ramps are 3.4 ± 1.7 ka (n = 34). The sand ramps in San Miguel show wide-scale termination of sand supply in the latest Holocene time. The sand-ramp top dates or burial dates are 1.7 ± 0.9 ka (n = 28). The latest Holocene sand ramps are truncated along most of the island's northern coastline, indicating recent losses of nearshore sand reserves to onshore, alongshore, and, possibly, offshore sand sinks. The truncated sand ramps in San Miguel Island and in other sand-depleted marine coastlines provide warnings about future beach erosion and/or shoreline retreat from accelerated sea-level rise accompanying predicted global warming.

  11. Weather resistance of CaSO4 ṡ 1/2H2O-based sand-fixation material (United States)

    Liu, Xin; Tie, Shengnian


    Searching for an economical and effective sand-fixing material and technology is of great importance in Northwest China. This paper described the use of a semihydrated gypsum-(CaSO4 ṡ 1/2H2O-)based composite as a sand-fixing material. Its morphology and composition were characterized by SEM, and its water resistance, freezing-thawing resistance and wind erosion resistance were tested in the field. The results indicated that semihydrated gypsum-(CaSO4 ṡ 1/2H2O-)based sand-fixing composite has good water resistance and water-holding capacity. Its strength is maintained at 1.42 MPa after 50 freezing and thawing cycles, and its wind erosion increases with increasing wind speed and slope. Its compressive strength starts to decrease after nine months of field tests with no change in appearance, but it still satisfies the requirements of fixation technology. This sand-fixing material should have wide application owing to its good weather resistance.

  12. Understanding Colombian Amazonian white sand forests

    NARCIS (Netherlands)

    Peñuela-Mora, M.C.


    Although progress has been made in studies on white sand forests in the Amazon, there is still a considerable gap in our knowledge of the unique species composition of white sand forests and their structure and dynamics, especially in Western Amazon. This thesis aims to fill this gap by addressing

  13. Pattern formation - Instabilities in sand ripples

    DEFF Research Database (Denmark)

    Hansen, J. L.; v. Hecke, M.; Haaning, A.


    Sand ripples are seen below shallow wavy water and are formed whenever water oscillates over a bed of sand. Here we analyse the instabilities that can upset this perfect patterning when the ripples are subjected to large changes in driving amplitude or frequency, causing them to deform both...

  14. Silica sand resources in the Netherlands

    NARCIS (Netherlands)

    Meulen, M.J. van der; Westerhoff, W.E.; Menkovic, A.; Gruijters, S.H.L.L.; Dubelaar, C.W.; Maljers, D.


    Silica sand, (almost) pure quartz sand, is a valuable and scarce mineral resource within the shallow Dutch subsurface. High-grade deposits are exploited in the southeastemmost part of the country, as raw material for the glass, ceramic, chemical and other process industries. Dutch land-use policy

  15. Excerpt of the Interview with Mathew Sands

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 16; Issue 9. Excerpt of the Interview with Mathew Sands. Mathew Sands Finn Aaserud. Face to Face Volume 16 Issue 9 September 2011 pp 881-885. Fulltext. Click here to view fulltext PDF. Permanent link:

  16. Seasonal fluctuations of phlebotomines sand fly populations ...

    African Journals Online (AJOL)

    An entomological survey of phlebotomine sand flies was conducted in the Moulay Yacoub province, central Morocco. An anthropic niche (Ouled Aid) and a wild niche (Zliligh) were selected. Sand flies were collected twice a month between April 2011 and March 2012, using sticky traps and CDC light traps. 3675 specimens ...

  17. Sand transportation and reverse patterns over leeward face of sand dune (United States)

    Jiang, Hong; Dun, Hongchao; Tong, Ding; Huang, Ning


    Sand saltation has complex interactions with turbulent flow and dune form. Most models of wind-blown sand consider ideal circumstances such as steady wind velocity and a flat surface, and the bulk of data on wind flow and sand transport over an individual dune has focused mostly on the influence of dune shape or inter-dune space on the wind flow, neglecting the effect of morphology on sand saltation, particularly airflow and sand transportation over the leeward slope. Wind flow structures over the leeward slope of sand dunes have a fundamental influence on the organization of sand dunes. In order to understand sand dune dynamics, lee face airflow and sediment transportation should be paid more attention. Previous field observations could not measure turbulent flow structure well because of the limited observation points and the influence of experiment structure on wind field. In addition, the reverse sand particles over leeward face could not be collected by sand trap in field. Numerous field observations could not measure turbulent flow structure because of the limited observation points and the influence of experimental structures on the wind field. In addition, the reverse transport of sand particles over leeward face could not be collected by sand traps in field. Therefore, this paper aims to investigate the turbulent flow structure and sand transport pattern over the leeward slope. A numerical model of sand saltation over slope terrain is constructed, which also considers the coupling effects between air flow and sand particles. The large eddy simulation method is used to model turbulent flow. Sand transport is simulated by tracking the trajectory of each sand particle. The results show that terrain significantly alters the turbulent air flow structure and wind-blown sand movement, especially over the leeward slope. Here, mass flux increases initially and then decreases with height in the reversed flow region in the direction of wind flow, and the mass flux

  18. The Effect of Sand on Strength of Mixtures of Bentonite-Sand (United States)

    Pakbaz, Mohammad C.; Khayat, Navid

    The main purpose of this research is to evaluate the effect of sand on strength of compacted samples of bentonite sand mixtures. Samples of bentonite with 10,30,50,70, and 80 percent by weight of sand at standard proctor optimum water content were compacted and tested to measure confined and unconfined strength. Unconfined strength of mixtures increased with percentage of sand until 50 percent and then it decreased thereafter. On the other hand, the confined strength of mixtures tested in triaxial UU increased with percentage of sand.

  19. Hematite Outlier and Sand Dunes (United States)


    [figure removed for brevity, see original site] Released 4 December 2003This image shows a crater just south of the edge of the famous hematite-bearing surface, which is visible in the context image as a smooth area to the north. The crater has two features of immediate note. The first is a layered mound in the north part of the crater floor. This mound contains hematite, and it is an outlying remnant of the greater deposits to the north that have otherwise completely disappeared in this crater. The second feature is a dune field in the center of the crater floor, with dark dunes indicating winds from the northwest. The dunes grade into a dark sand sheet with no coherent structure, indicating that the sand layer thins out to the south and east.Image information: VIS instrument. Latitude -4.4, Longitude 357.3 East (2.7 West). 19 meter/pixel resolution.Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  20. Flowability in crushed sand mortar

    Directory of Open Access Journals (Sweden)

    Cabrera, O. A.


    Full Text Available The present experimental study explored the relationship between mortar flowability and the voids content in crushed sand to determine the effect of grain shape and surface texture as well as dust content on the behaviour of fresh mortar. The findings revealed a close correlation between voids content and the volume of paste needed for mortar to begin to flow as a continuous material, mortar flowability and the water content needed to attain a given flowability. The comparison of the empirical findings to the results obtained with the Larrard (1, 2 model provided further information on the effect of sand grain morphology on fresh mortars.

    En el presente trabajo se plantea un estudio experimental de la fluidez de morteros basado en el contenido de vacíos de arenas machacadas, para comprender la influencia de la forma y textura superficial de los granos de arena y del contenido de polvo de las mismas sobre el estado fresco de morteros. Los resultados muestran la estrecha relación entre el contenido de vacíos entre granos y los volúmenes de pasta necesarios para iniciar el escurrimiento como un material continuo, la fluidez de los morteros, el contenido de agua para alcanzar una determinada fluidez, etc. El comportamiento evaluado se compara con resultados obtenidos aplicando el modelo de F. de Larrard (1, 2, permitiendo de este modo obtener mayor información de la influencia de la morfología de los granos de la arena sobre el estado fresco de los morteros.

  1. Sand dynamics along the Belgian coast based on airborne hyperspectral data and lidar data


    Deronde, B.; Houthuys, R.; Sterckx, S.; Fransaer, D.


    The goal of this project was to explore the possibilities of airborne hyperspectral data and airborne lidar data to study sand dynamics on the Belgian backshore and foreshore. The Belgian coast is formed by a sandy strip at the southern edge of the North Sea Basin which is commonly known as the Southern Bight. Since the beach is prone to structural and occasional erosion, it is very important to obtain a better understanding of the processes controlling it. The combination of multi-temporal h...

  2. Preserving inland drift sands in the Netherlands (United States)

    Riksen, M.; Sparrius, L.; Nijssen, M.; Keestra, S.


    Inland drift sands in the Netherlands are an important landscape type within the Dutch nature. They represent an important pioneer habitat which has become rare in European nature. Under current climate and environmental conditions (i.e. high N-deposition) these inland drift sands tend to be rapid colonialized by vegetation and therefor lose their aeolian activity. To maintain the area bare sand, managers regularly remove the vegetation. Lack of proper knowledge about the geomorphological processes and even more important on the geomorphological structure of these drift sands, could lead to the loss of characteristic dune structure. In an interdisciplinary research project a new management strategy was developed in which the geomorphological processes and structure form the base for the planning process. To improve the awareness of these aspects among nature managers we developed a management tool "PROMME". Several activities were taken to communicate this with the people involved in the management of drift sands like a brochure and field workshops.

  3. Ecological release in White Sands lizards. (United States)

    Roches, S Des; Robertson, J M; Harmon, L J; Rosenblum, E B


    Ecological opportunity is any change that allows populations to escape selection from competition and predation. After encountering ecological opportunity, populations may experience ecological release: enlarged population size, broadened resource use, and/or increased morphological variation. We identified ecological opportunity and tested for ecological release in three lizard colonists of White Sands, New Mexico (Sceloporus undulatus, Holbrookia maculata, and Aspidoscelis inornata). First, we provide evidence for ecological opportunity by demonstrating reduced species richness and abundance of potential competitors and predators at White Sands relative to nearby dark soils habitats. Second, we characterize ecological release at White Sands by demonstrating density compensation in the three White Sands lizard species and expanded resource use in White Sands S. undulatus. Contrary to predictions from ecological release models, we observed directional trait change but not increased trait variation in S. undulatus. Our results suggest that ecological opportunity and ecological release can be identified in natural populations, especially those that have recently colonized isolated ecosystems.

  4. Choosing an optimum sand control method

    Directory of Open Access Journals (Sweden)

    Ehsan Khamehchi


    Full Text Available Formation sand control is always one of the main concerns of production engineers. There are some different methods to prevent sand production. Choosing a method for preventing formation sand production depends on different reservoir parameters and politic and economic conditions. Sometimes, economic and politic conditions are more effective to choose an optimum than reservoir parameters. Often, simultaneous investigation of politic and economic conditions with reservoir parameters has different results with what is expected. So, choosing the best sand control method is the result of thorough study. Global oil price, duration of sand control project and costs of necessary equipment for each method as economic and politic conditions and well productivity index as reservoir parameter are the main parameters studied in this paper.

  5. Ecological release in White Sands lizards (United States)

    Roches, S Des; Robertson, J M; Harmon, L J; Rosenblum, E B


    Ecological opportunity is any change that allows populations to escape selection from competition and predation. After encountering ecological opportunity, populations may experience ecological release: enlarged population size, broadened resource use, and/or increased morphological variation. We identified ecological opportunity and tested for ecological release in three lizard colonists of White Sands, New Mexico (Sceloporus undulatus, Holbrookia maculata, and Aspidoscelis inornata). First, we provide evidence for ecological opportunity by demonstrating reduced species richness and abundance of potential competitors and predators at White Sands relative to nearby dark soils habitats. Second, we characterize ecological release at White Sands by demonstrating density compensation in the three White Sands lizard species and expanded resource use in White Sands S. undulatus. Contrary to predictions from ecological release models, we observed directional trait change but not increased trait variation in S. undulatus. Our results suggest that ecological opportunity and ecological release can be identified in natural populations, especially those that have recently colonized isolated ecosystems. PMID:22393523

  6. Varioliform erosions in the stomach and duodenum

    Energy Technology Data Exchange (ETDEWEB)

    Lotz, W.; Schulz, D.; Munkel, G.


    One thousand five hundred and eighty-three patients who were x-rayed for dyspepsia showed varioliform erosions in 15.3%. Men had an incidence of 9.8%, almost twice as common as in women (5.5%). Mucosal polyps, usually of the hyperplastic type, occurred in 2.4%. 15% of patients with gastric ulcers and 16% of patients with duodenal ulcers had varioliform erosions. On the other hand, amongst patients with erosions, 11% had gastric ulcers and 8.3% duodenal ulcers. The definitions of erosion which have been given in the literature are partly contradictory, and are discussed. Varioliform erosions, also known as complete erosions, may be acute or chronic. They are the third most common cause of bleeding from the upper gastrointestinal tract. With modern radiological methods of examining the stomach, they are no longer a rare finding. 5 figs.


    Directory of Open Access Journals (Sweden)

    Rafi Shaik


    Full Text Available BACKGROUND The pattern of oral diseases has been influenced by ever changing human lifestyle. Tooth wear especially dental erosion has drawn increasing attention as risk factor for tooth damage or loss in recent years. It is a common condition in primary dentition compared to permanent dentition due to thinner and less mineralised enamel. However, it is more worrying, when this condition is being found in an alarming proportion among children. The presence of dental erosion in children is likely to be associated with a number of general health and dietary factors, but it is also aggravated by the relatively more rapid progression of erosion in the deciduous teeth. An understanding of the aetiologies and risk factors for erosion is important for early recognition of dental erosion to prevent serious irreversible damage to the dentition. This paper discusses the erosion in children with regard to its epidemiology, prevalence, clinical features, measurement and prevention.

  8. Wave climate, sediment supply and the depth of the sand-mud transition: A global survey (United States)

    George, D.A.; Hill, P.S.


    The influences of wave climate and sediment supply on the depths of sand-mud transitions (hSMT) are investigated. Depths of sand-mud transitions (SMT) are based on published granulometric data from surface samples gathered from 14 sites in different wave-dominated coastal environments with fluvial input, including high energy (Columbia, Eel, Russian, San Lorenzo, Copper, and Nepean rivers), moderate energy (Ebro, Nile, Santa Clara, Tseng-wen and Kao-ping rivers), and low energy (Po, Pescara and Tronto rivers) regimes. Geometric mean diameter (GMD) and mud percent are compiled from samples along shore-normal transects, and significant correlation is found between these two textural descriptors. Nominally, the SMT is defined as the transition from GMD > 63????m to 25% mud. This dual definition is applied to the 14 systems, and hSMT is tabulated for each system. Correlation is found between hSMT and the depth at which wave-induced bottom shear stress equals the critical erosion shear stress of the largest mud particles and also between hSMT and significant wave height. Lack of correlation between hSMT and sediment load of nearby rivers indicates either that the influence of sediment supply on depth of the sand-mud transition is small or is not adequately represented in this study. Shelf width and slope do not correlate with residuals from a formalized linear relationship between hSMT and significant wave height. The relationship between hSMT and wave climate is useful for calibration of numerical models of erosion and deposition in wave-dominated coastal environments, for prediction of seabed properties in remote or inaccessible areas, and for reconstruction of paleodepth based on facies changes from sand to mud in ancient rocks. ?? 2008.

  9. The evaluation of the value of soil erosion prevention on wetlands in Beijing (United States)

    Zhou, Bo; Zhu, Lin; Zhao, Wenji; Liu, Hao


    Wetland is an important part of the ecological system. It has an important role in soil erosion prevention. Without the protection of wetland, soil erosion will cause two aspects physical loss, including 1) the waste land caused by soil degradation and desertification; 2) nutrient contents loss. This paper takes all wetland in Beijing as object. This research includes investigation and research on indexes of soil erosion prevention in Beijing wetland ecological system. Two aspects of reduction soil waste and prevent soil fertility are studied. Potential and actual soil erosion are calculated using GIS and universal soil erosion equation based on collected data, with the difference of the two amounts is the soil conservation quantify, which will be converted to economic value. Research results show the economic value of Beijing wetland in the soil erosion prevention is 4,962.56 million Yuan. The river and swamp have the highest value; meanwhile, the rural wetland's value of soil erosion resistance is more than in the urban area. Wetland has the extremely vital significance to keep a good ecological environment in Beijing.

  10. Global sand trade is paving the way for a tragedy of the sand commons (United States)

    Torres, A.; Brandt, J.; Lear, K.; Liu, J.


    In the first 40 years of the 21st century, planet Earth is highly likely to experience more urban land expansion than in all of history, an increase in transportation infrastructure by more than a third, and a great variety of land reclamation projects. While scientists are beginning to quantify the deep imprint of human infrastructure on biodiversity at large scales, its off-site impacts and linkages to sand mining and trade have been largely ignored. Sand is the most widely used building material in the world. With an ever-increasing demand for this resource, sand is being extracted at rates that far exceed its replenishment, and is becoming increasingly scarce. This has already led to conflicts around the world and will likely lead to a "tragedy of the sand commons" if sustainable sand mining and trade cannot be achieved. We investigate the environmental and socioeconomic interactions over large distances (telecouplings) of infrastructure development and sand mining and trade across diverse systems through transdisciplinary research and the recently proposed telecoupling framework. Our research is generating a thorough understanding of the telecouplings driven by an increasing demand for sand. In particular, we address three main research questions: 1) Where are the conflicts related to sand mining occurring?; 2) What are the major "sending" and "receiving" systems of sand?; and 3) What are the main components (e.g. causes, effects, agents, etc.) of telecoupled systems involving sand mining and trade? Our results highlight the role of global sand trade as a driver of environmental degradation that threatens the integrity of natural systems and their capacity to deliver key ecosystem services. In addition, infrastructure development and sand mining and trade have important implications for other sustainability challenges such as over-fishing and global warming. This knowledge will help to identify opportunities and tools to better promote a more sustainable use

  11. Erosive lichen planus: a therapeutic challenge. (United States)

    Romero, Williams; Giesen, Laura; Navajas-Galimany, Lucas; Gonzalez, Sergio


    Erosive lichen planus is an uncommon variant of lichen planus. Chronic erosions of the soles, accompanied by intense and disabling pain, are some of its most characteristic manifestations. We present the case of a woman who developed oral and plantar erosive lichen planus associated with lichen planus pigmentosus and ungueal lichen planus that were diagnosed after several years. The patient failed to respond to multiple therapies requiring longstanding medication but remained refractory. Knowledge of the treatment options for erosive lichen planus is insufficient. Further research is required to clarify their effectiveness, ideally adopting an evidence-based methodology.

  12. Erosion products in disruption simulation experiments

    Energy Technology Data Exchange (ETDEWEB)

    Safronov, V.; Arkhipov, N.; Bakhtin, V.; Barsuk, V.; Kurkin, S.; Mironova, E.; Toporkov, D.; Vasenin, S.; Zhitlukhin, A. [Troitsk Inst. for Innovation and Fusion Research, Troisk, Moscow region (Russian Federation); Arkhipov, I. [Inst. of Physical Chemistry, Russian Academy of Science, Moscow (Russian Federation); Werle, H.; Wuerz, H. [Forschungszentrum Karlsruhe (Germany)


    Erosion of divertor materials under tokamak disruption event presents a serious problem of ITER technology. Erosion restricts the divertor lifetime and leads to production of redeposited layers of the material retaining large amount of tritium, which is a major safety issue for future fusion reactor. Since ITER disruptive heatloads are not achievable in existing tokamaks, material erosion is studied in special simulation experiments. Till now the simulation experiments have focused mainly on investigation of shielding effect and measurement of erosion rate. In the present work the properties of eroded and redeposited graphite are studied under condition typical for hard ITER disruption. (author)

  13. Erosion Wear of Axial Flow Impellersin a Solid-liquid Suspension

    Directory of Open Access Journals (Sweden)

    I. Fořt


    Full Text Available A study was made of the erosion wear of the blades of pitched blade impellers in a suspension of waste gypsum from a thermal power station (vol. concentration CV=18.3 %, particle mean diameter d=0.1 mm, degree of hardness “2.5” and silicious sand (CV=10 %, d=0.4 mm, degree of hardness “7.5” in water under a turbulent flow regime of agitated charge when complete homogeneity of the suspension was achieved. Experiments were carried out on pilot plant mixing equipment made of stainless steel (diameter of cylindrical vessel T=390 mm, diameter of impeller D=100 mm, impeller off-bottom clearance h=100 mm equipped with four wall radial baffles (width b=39 mm and an impeller with four inclined plane blades (pitch angle α =20°, 30°, 45°, relative blade width W/D=0.2 made either of rolled brass (Brinell hardness 40–50 BH or of structural steel (Brinell hardness 100–120 BH always pumping the liquid downwards towards the flat vessel bottom. Two erosion process mechanisms appear, depending on the hardness of the solid particles in the suspension: while the particles of gypsum (lower hardness generate a uniform sheet erosion over the whole surface of the impeller blade, the particles of silicious sand (higher hardness generate wear of the leading edge of the impeller blades, together with a reduction of the surface of the worn blade. The hardness of the impeller blade also affects the rate of the erosion process: the higher the hardness of the impeller blade, the lower the wear rate of the blade. This study consists of a description of the kinetics of the erosion process of both mechanisms in dependence on the pitch angle of the tested impellers. While the wear of the leading edge of the blade exhibits a monotonous dependence on the pitch angle, the sheet erosion exhibits the maximum rate within the interval of the pitch angles tested α ϵ <20°; 45°>.However, generally the pitch angle α =45° seems to be the most convenient angle of blade

  14. A new turbulence-based model for sand transport (United States)

    Mayaud, Jerome; Wiggs, Giles; Bailey, Richard


    Knowledge of the changing rate of sediment flux in space and time is essential for quantifying surface erosion and deposition in desert landscapes. While many aeolian studies have relied on time-averaged parameters such as wind velocity (U) and wind shear velocity (u*) to determine sediment flux, there is increasing evidence that high-frequency turbulence is an important driving force behind the entrainment and transport of sand. However, turbulence has yet to be incorporated into a functional sand transport model that can be used for predictive purposes. In this study we present a new transport model (the 'turbulence model') that accounts for high-frequency variations in the horizontal (u) and vertical (w) components of wind flow. The turbulence model is fitted to wind velocity and sediment transport data from a field experiment undertaken in Namibia's Skeleton Coast National Park, and its performance at three temporal resolutions (10 Hz, 1 Hz, 1 min) is compared to two existing models that rely on time-averaged wind velocity data (Radok, 1977; Dong et al., 2003). The validity of the three models is analysed under a variety of saltation conditions, using a 2-hour (1 Hz measurement resolution) dataset from the Skeleton Coast and a 5-hour (1 min measurement resolution) dataset from the southwestern Kalahari Desert. The turbulence model is shown to outperform the Radok and Dong models when predicting total saltation count over the three experimental periods. For all temporal resolutions presented in this study (10 Hz-10 min), the turbulence model predicted total saltation count to within at least 0.34%, whereas the Radok and Dong models over- or underestimated total count by up to 5.50% and 20.53% respectively. The strong performance of the turbulence model can be attributed to a lag in mass flux response built into its formulation, which can be adapted depending on the temporal resolution of investigation. This accounts for the inherent lag within the physical

  15. Changes in particle size distribution of suspended sediment affected by gravity erosion on the Loess Plateau, China (United States)

    Guo, Wen-Zhao; Xu, Xiang-Zhou; Liu, Ya-Kun; Zhang, Hong-Wu; Zhu, Ming-Dong


    Gravity erosion generates an enormous volume of sediment on the steep hillslopes throughout the world, yet the response from particle size distribution (PSD) of suspended sediment to mass failure remains poorly understood. Here rainfall simulation experiments were conducted on the natural loess slopes to induce a series of mass failures under rainfall intensity of 48 mm h-1, and then an index of enrichment/dilution ratio was used to quantitatively explore the change trend of suspended sediment PSD affected by gravity erosion. To determine suspended sediment, water samples were collected in a polyethylene bottle directly from the gully runoff and channel flow in the pre and during- slope failures events. Then, the particle fractions of samples were done by combining sieving method and photoelectric sedimentometer technique. The results are shown as follows: (1) Gravity erosion has a significant influence on the particle size distribution of suspended sediment. As the mass erosion occurred, the proportion of sand-sized particles was decreased from 71.2 to 50.8%, whereas the proportions of clay and silt were increased remarkably from 1.3 to 7.3% and 27.5 to 41.9%, respectively. Hence the sediment can be more easily transported into channel flow while the suspended sediment load becomes finer as gravitational erosion occurs. (2) The median particle size (d50), sediment heterogeneity (H) and fractal dimensions (D) were significantly correlated with gravity erosion. As a result, d50 was decreased from 0.084 to 0.051 mm, H was increase from 5.6 to 26.8, and D was magnified from 2.60 to 2.78. This implies that mass failure makes the particle size distribution of suspended sediment more nonuniform and irregular. (3) Suspended sediment tended to enrich in the silt and clay fractions, while it diluted in the sand fractions during landslide erosion. Meanwhile, the enrichment/dilution ratios were 13.9 for the clay fractions, 1.4 for clay, and 0.7 for sand. This reflects the

  16. Erosion controls transpressional wedge kinematics (United States)

    Leever, K. A.; Oncken, O.


    High resolution digital image analysis of analogue tectonic models reveals that erosion strongly influences the kinematics of brittle transpressional wedges. In the basally-driven experimental setup with low-angle transpression (convergence angle of 20 degrees) and a homogeneous brittle rheology, a doubly vergent wedge develops above the linear basal velocity discontinuity. In the erosive case, the experiment is interrupted and the wedge topography fully removed at displacement increments of ~3/4 the model thickness. The experiments are observed by a stereo pair of high resolution CCD cameras and the incremental displacement field calculated by Digital Particle Image Velocimetry (DPIV). From this dataset, fault slip on individual fault segments - magnitude and angle on the horizontal plane relative to the fault trace - is extracted using the method of Leever et al. (2011). In the non-erosive case, after an initial stage of strain localization, the wedge experiences two transient stages of (1) oblique slip and (2) localized strain partitioning. In the second stage, the fault slip angle on the pro-shear(s) rotates by some 30 degrees from oblique to near-orthogonal. Kinematic steady state is attained in the third stage when a through-going central strike-slip zone develops above the basal velocity discontinuity. In this stage, strain is localized on two main faults (or fault zones) and fully partitioned between plate boundary-parallel displacement on the central strike-slip zone and near-orthogonal reverse faulting at the front (pro-side) of the wedge. The fault slip angle on newly formed pro-shears in this stage is stable at 60-65 degrees (see also Leever et al., 2011). In contrast, in the erosive case, slip remains more oblique on the pro-shears throughout the experiment and a separate central strike-slip zone does not form, i.e. strain partitioning does not fully develop. In addition, more faults are active simultaneously. Definition of stages is based on slip on

  17. A watershed scale spatially-distributed model for streambank erosion rate driven by channel curvature (United States)

    McMillan, Mitchell; Hu, Zhiyong


    Streambank erosion is a major source of fluvial sediment, but few large-scale, spatially distributed models exist to quantify streambank erosion rates. We introduce a spatially distributed model for streambank erosion applicable to sinuous, single-thread channels. We argue that such a model can adequately characterize streambank erosion rates, measured at the outsides of bends over a 2-year time period, throughout a large region. The model is based on the widely-used excess-velocity equation and comprised three components: a physics-based hydrodynamic model, a large-scale 1-dimensional model of average monthly discharge, and an empirical bank erodibility parameterization. The hydrodynamic submodel requires inputs of channel centerline, slope, width, depth, friction factor, and a scour factor A; the large-scale watershed submodel utilizes watershed-averaged monthly outputs of the Noah-2.8 land surface model; bank erodibility is based on tree cover and bank height as proxies for root density. The model was calibrated with erosion rates measured in sand-bed streams throughout the northern Gulf of Mexico coastal plain. The calibrated model outperforms a purely empirical model, as well as a model based only on excess velocity, illustrating the utility of combining a physics-based hydrodynamic model with an empirical bank erodibility relationship. The model could be improved by incorporating spatial variability in channel roughness and the hydrodynamic scour factor, which are here assumed constant. A reach-scale application of the model is illustrated on ∼1 km of a medium-sized, mixed forest-pasture stream, where the model identifies streambank erosion hotspots on forested and non-forested bends.

  18. CFD simulation and experimental analysis of erosion in a slurry tank test rig

    Directory of Open Access Journals (Sweden)

    Bart Hans-Jörg


    Full Text Available Erosion occurring in equipment dealing with liquid-solid mixtures such as pipeline parts, slurry pumps, liquid-solid stirred reactors and slurry mixers in various industrial applications results in operational failure and economic costs. A slurry erosion tank test rig is designed and was built to investigate the erosion rates of materials and the influencing parameters such as flow velocity and turbulence, flow angle, solid particle concentration, particles size distribution, hardness and target material properties on the material loss and erosion profiles. In the present study, a computational fluid dynamics (CFD tool is used to simulate the erosion rate of sample plates in the liquid-solid slurry mixture in a cylindrical tank. The predictions were made in a steady state and also transient manner, applying the flow at the room temperature and using water and sand as liquid and solid phases, respectively. The multiple reference frame method (MRF is applied to simulate the flow behavior and liquid-solid interactions in the slurry tank test rig. The MRF method is used since it is less demanding than sliding mesh method (SM and gives satisfactory results. The computational domain is divided into three regions: a rotational or MRF zone containing the mixer, a rotational zone (MRF containing the erosion plates and a static zone (outer liquid zone. It is observed that changing the MRF zone diameter and height causes a very low impact on the results. The simulated results were obtained for two kinds of hard metals namely stainless steel and ST-50 under some various operating conditions and are found in good agreement with the experimental results.

  19. Coastal Erosion and Flooding Hazards on the North Sea Coast at Thyboron, Denmark

    DEFF Research Database (Denmark)

    Sørensen, Per; Sørensen, Carlo Sass; Nielsen, Peter

    Since a breach of the coastal barrier in 1862, the Thyboron Channel connecting the North Sea and the Lim Fiord has been artificially maintained by construction of breakwaters and groins on the North Sea coast and inside the channel, respectively. Sand nourishment schemes have since the 1980s coun...... counteracted the natural erosion in the upper profile on the North Sea coast where the alongshore sediment transport converges towards the channel and deposits up to 1 million m3/y on the flood tidal delta inside the fiord, Figure 1....

  20. Graffiti for science - erosion painting reveals spatially variable erosivity of sediment-laden flows (United States)

    Beer, Alexander R.; Kirchner, James W.; Turowski, Jens M.


    Spatially distributed detection of bedrock erosion is a long-standing challenge. Here we show how the spatial distribution of surface erosion can be visualized and analysed by observing the erosion of paint from natural bedrock surfaces. If the paint is evenly applied, it creates a surface with relatively uniform erodibility, such that spatial variability in the erosion of the paint reflects variations in the erosivity of the flow and its entrained sediment. In a proof-of-concept study, this approach provided direct visual verification that sediment impacts were focused on upstream-facing surfaces in a natural bedrock gorge. Further, erosion painting demonstrated strong cross-stream variations in bedrock erosion, even in the relatively narrow (5 m wide) gorge that we studied. The left side of the gorge experienced high sediment throughput with abundant lateral erosion on the painted wall up to 80 cm above the bed, but the right side of the gorge only showed a narrow erosion band 15-40 cm above the bed, likely due to deposited sediment shielding the lower part of the wall. This erosion pattern therefore reveals spatial stream bed aggradation that occurs during flood events in this channel. The erosion painting method provides a simple technique for mapping sediment impact intensities and qualitatively observing spatially distributed erosion in bedrock stream reaches. It can potentially find wide application in both laboratory and field studies.

  1. Graffiti for science – erosion painting reveals spatially variable erosivity of sediment-laden flows

    Directory of Open Access Journals (Sweden)

    A. R. Beer


    Full Text Available Spatially distributed detection of bedrock erosion is a long-standing challenge. Here we show how the spatial distribution of surface erosion can be visualized and analysed by observing the erosion of paint from natural bedrock surfaces. If the paint is evenly applied, it creates a surface with relatively uniform erodibility, such that spatial variability in the erosion of the paint reflects variations in the erosivity of the flow and its entrained sediment. In a proof-of-concept study, this approach provided direct visual verification that sediment impacts were focused on upstream-facing surfaces in a natural bedrock gorge. Further, erosion painting demonstrated strong cross-stream variations in bedrock erosion, even in the relatively narrow (5 m wide gorge that we studied. The left side of the gorge experienced high sediment throughput with abundant lateral erosion on the painted wall up to 80 cm above the bed, but the right side of the gorge only showed a narrow erosion band 15–40 cm above the bed, likely due to deposited sediment shielding the lower part of the wall. This erosion pattern therefore reveals spatial stream bed aggradation that occurs during flood events in this channel. The erosion painting method provides a simple technique for mapping sediment impact intensities and qualitatively observing spatially distributed erosion in bedrock stream reaches. It can potentially find wide application in both laboratory and field studies.

  2. Quantifying accelerated soil erosion through ecological site-based assessments of wind and water erosion (United States)

    This work explores how organising soil erosion assessments using established groupings of similar soils (ecological sites) can inform systems for managing accelerated soil erosion. We evaluated aeolian sediment transport and fluvial erosion rates for five ecological sites in southern New Mexico, USA...

  3. Scaling laws in sand launch process (United States)

    Min, Li; Yang, Zhang


    As the bond linking the micro research to the macro research in wind-sand flow, the scaling laws on sand mean launch velocity and mean launch angle can be used to calculate the mean velocity and the transport rate, and they also play an important role in understanding saltation. However, universal scaling laws are still absent. In analogy to the fluid flows, the wind-sand flow is divided into three periods based on the way of sand taking off from sand bed, and the hypothesis on the scaling laws in each period is proposed. Then according to the hypothesis we deduce the sand concentration piece-wise function for saltation layer and also the critical shields numbers dividing three periods. The comparisons between the predictions and the experimental observations show that under a lower shields number the vertical mean launch velocity and the mean launch angle scale with the wind shear velocity and the square root of shields number respectively. However, under a higher shields number the vertical mean launch velocity scale with the sand diameter and the mean launch angle is almost constant at 700 or so.

  4. Partitioning sediment flux by provenance and tracing erosion patterns in Taiwan (United States)

    Resentini, Alberto; Goren, Liran; Castelltort, Sébastien; Garzanti, Eduardo


    We critically evaluate the potential and limitations of an alternative way to calculate erosion rates based on petrographic and mineralogical fingerprints of fluvial sediments coupled with gauged sediment fluxes. Our approach allows us to apportion sediment loads to different lithological units, and consequently to discriminate erosion rates in different tectonic domains within each catchment. Our provenance data on modern Taiwanese sands indicate focused erosion in the Backbone Range and Tananao Complex of the retrowedge. Lower rates are inferred for the northern part of the island characterized by tectonic extension and for the western foothills in the prowedge. The principal factor of uncertainty affecting our estimates is the inevitably inaccurate evaluation of total sediment load, because only the suspended flux was measured. Another is the assumption that suspended load and bed load are derived from the same sources in fixed proportions. Additional errors are caused by the insufficiently precise definition of lithologically similar compositional end-members and by the temporal variability of sediment composition at the outlet of each catchment related to the spatial variability of erosional processes and triggering agents such as earthquakes, typhoons, and landslides. To evaluate the robustness of our findings, we applied a morphometric technique based on the stream-power model. The results obtained are broadly consistent, with local discrepancies ascribed to poorly constrained assumptions and choices of scaling parameters. Our local erosion estimates are consistent with GPS uplift rates measured on a decadal timescale and generally higher than basin-wide results inferred from cosmogenic-nuclide and thermochronology data.

  5. The role of oxygen mass transfer in the erosion-corrosion of slurry pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Postlethwaite, J.; Dobbin, M.H.; Bergevin, K.


    The erosion-corrosion of vertical 38-mm diameter pipes carrying aerated slurry (20 vol% -30 + 50 mesh silica sand) in 3.13% NaCl solution at 2 to 6 m/s has been measured by weight loss measurements over periods of 100 h. Electrochemical methods have been applied to clarify the mechanism of the process and to determine the corrosion component of the metal. Total wear rates in the range of 6 to 25 mm/y were related to the slurry velocity (v) by wear rate = const v/sup n/. The value of n was in agreement with oxygen mass transfer controlled corrosion being the dominant mode of metal loss, with n approx. = 1. The absolute values of the wear rate were sufficiently close to those measured by electrochemical methods and those calculated form a mass transfer correlation determined for this system, Sh = 0.031 Re/sup 0.83/Sc/sup 0.33/, to conclude that the dominant mode of metal loss is corrosion. The role of erosive action in the erosion-corrosion process is to prevent the formation of a complete rust film that normally stifles corrosion and reduces the rate to <1 mm/y, not to yield high erosion rates of the corrosion-roughened surfaces, as previously proposed.

  6. Chemical characterization of sanding dust and methylene chloride usage in automotive refinishing: implications for occupational and environmental health. (United States)

    Enander, Richard T; Gute, David M; Cohen, Howard J; Brown, Linfield C; Desmaris, Anne Marie C; Missaghian, Richard


    Surface preparation activities conducted during automotive refinishing present several potential human health and environmental risks. This study examines the chemical composition of vehicle sanding dust and the prevalence of methylene chloride use as a basis for evaluating potential chemical exposures in the work environment, fugitive environmental releases, and take-home toxics. This article reports on the findings of (1) a statewide technology and work practices survey of 353 licensed auto body shops and (2) laboratory analyses of sanding dust representing more than 200 vehicles, 10 commercial body filler compounds, and work shirts worn during vehicle sanding while using nonventilated equipment. Survey data revealed that the majority of shops (78%) do not use ventilated sanding equipment, that most workers (55%) take their work clothes and shoes home at the end of the workday, and that 17% of the respondents used a methylene chloride-based paint stripper as an adjunct to mechanical sanding. Laboratory results showed that Pb, As, Cr, Mn, and Ni were present in the sanding dust at every facility tested. Lead concentrations in sanding dust were found to be highest at facilities that performed complete vehicle refinishing (range 770 to 7300 ppm) and at a collision repair shop that used a high-lead content body filler compound (1800 ppm). Hexavalent chromium also was found in two vocational high school paint dust samples at concentrations of 54 and 710 ppm. When total lead and chromium concentrations reached 7300 and 2300 ppm, respectively, facility sanding dust samples failed the U.S. Environmental Protection Agency's Toxicity Characteristic Leaching Procedure for hazardous waste. Metals found in the sanding dust also were present on the work shirts of technicians-ranging from 0.06 (Cd) to 81 (Mg) microg/inch2 of cloth-who sanded on paint without ventilated equipment. Results suggest that sanding dust and methylene chloride paint strippers used in vehicle

  7. Evaluation of Membrane-Type Materials for Streambank Erosion Protection. (United States)


    Materials Standards (ASTM) as applicable to coated and nonwoven materials. The Instron testing equipment (Photo 1) was used to determine the grab...4two Fo -I U)z 0 aL M 0 PLT 11 (SET2 F9 0 U> IL 9l 9 /i <- Z -ww CIO. PLTE11(SEE 3OF9 > U t izi w LU le IA 2 a-0 ul- LUU UO 4.4< ac PLATE~~~~ e1(HE LL 0aL1[U *r < 44’ IL 4𔃾 m Ij ic d PLATE 11 (SHEET 7 OF 9) z Cc W I0 0 CCLL wU 0 LU e-C c ILU IL aa-. i~ ac PLATE 11 (SHEET 8 OF 9) co~ I-u le I j

  8. The Influence of Sand Grains Properties on Electrical Properties of Moulding Sand with Inorganic Binder

    Directory of Open Access Journals (Sweden)

    Opyd B.


    Full Text Available The paper presents the results of basic research on the influence of the properties of sand grains on electrical properties of water glass moulding sands. It shows electrical properties of the main component – sand grains, crucial to the kinetics of moulding sands heating, such as permittivity εr and loss factor tgδ. Measurements were carried out with the use of the perturbation method for silica, chromite and olivine sands of different mineral, chemical composition and particle size distribution, as well as for moulding sands with water glass grade 145. Analysis of the results of measurements of electrical properties shows that all moulding sands are characterized by a similar permittivity εr and loss factor tgδ. It was found that the electrical properties and the quantity and quality of other components may have a decisive influence on the effectiveness and efficiency of the microwave heating of moulding sands with sand grains. In determining the ability to efficiently absorb the microwave radiation for mixtures which moulding sands are, the impact of all components influencing their individual technological parameters should be taken into account.

  9. Beach protection by a system of permeable groins (United States)

    Boczar-Karakiewicz, B.; Romanczyk, W.; Roy, N.


    A new type of permeable groin (called System of Groins Maltec-Savard - SGMS) has been installed at three eroded sites located in the coastal area on the north shore of the St. Lawrence, Quebec, Canada. In this area, the narrow sandy beaches with sandy or sand-silty cliff of variable height (10-15~m) are exposed to obliquely incident waves arriving from both west (summer) and east (autumn), and to tidal currents (maximum tidal rate is 4.3~m). The periods of summer waves equal 3-5~s, with wave heights of about 0.4-0.7~m. In the autumn, major storm waves reach periods of up to 7-10~s, with wave heights of 1.0-1.2~m. The new groins are sediment traps formed by a central double and permeable groin with several smaller lateral, groins installed on one or both sides of the central groin (Boczar-Karakiewicz et al., 2001). The permeable central and lateral groins are structured by inserting double ranges of wooden piles (diameter of about 10 cm). The space between the ranges of piles (some 0.8~m wide) is filled with tree branches (e.g., the top parts of pine trees, a waste product of the local forest industry). A permeable grid covering the top of the groins forms a cage that holds the branches in place. The lateral groins, are identical but much shorter than the central groin. The whole system dissipates the incident energy of wave- and tidally-generated currents and causes accretion of sand transported by these currents. The GSMS also allows the by-pass of some sediment to adjacent zones without groins. Observations and results of measurements from three experiments field show that: (1) a sandy beach in front of a coastal cliff secures its stability and attenuates the erosion caused by waves and tidal currents; (2) permeability and flexibility of the SGMS causes the accretion of sediment in the protected area without erosion in the neighboring zones; (3) the SGMS does not generate wave reflection and any secondary current; (4) the materials of the groins are easily

  10. Fecal indicators in sand, sand contact, and risk of enteric illness among beachgoers (United States)

    Heaney, Christopher D.; Sams, Elizabeth; Dufour, Alfred P.; Brenner, Kristen P.; Haugland, Richard A.; Chern, Eunice; Wing, Steve; Marshall, Stephen; Love, David C.; Serre, Marc; Noble, Rachel; Wade, Timothy J.


    Background Beach sand can harbor fecal indicator organisms and pathogens, but enteric illness risk associated with sand contact remains unclear. Methods In 2007, visitors at two recreational marine beaches were asked on the day of their visit about sand contact. Ten to 12 days later, participants answered questions about health symptoms since the visit. F+ coliphage, Enterococcus, Bacteroidales, fecal Bacteroides, and Clostridium spp. in wet sand were measured using culture and molecular methods. Results We analyzed 144 wet sand samples and completed 4,999 interviews. Adjusted odds ratios (aORs) were computed, comparing those in the highest tertile of fecal indicator exposure with those who reported no sand contact. Among those digging in sand compared with those not digging in sand, a molecular measure of Enterococcus spp. (calibrator cell equivalents/g) in sand was positively associated with gastrointestinal (GI) illness (aOR = 2.0 [95% confidence interval (CI) = 1.2–3.2]) and diarrhea (2.4 [1.4–4.2]). Among those buried in sand, point estimates were greater for GI illness (3.3 [1.3–7.9]) and diarrhea (4.9 [1.8–13]). Positive associations were also observed for culture-based Enterococcus (colony-forming units/g) with GI illness (aOR digging = 1.7 [1.1–2.7]) and diarrhea (2.1 [1.3–3.4]). Associations were not found among non-swimmers with sand exposure. Conclusions We observed a positive relationship between sand contact activities and enteric illness as a function of concentrations of fecal microbial pollution in beach sand. PMID:22157306

  11. Dental erosion in French adolescents. (United States)

    Muller-Bolla, Michèle; Courson, Frédéric; Smail-Faugeron, Violaine; Bernardin, Thibault; Lupi-Pégurier, Laurence


    Since the 2000s, different epidemiological studies focusing on the prevalence or the aetiology of DE in adolescents recognised them as an at-risk population due to their eating behaviours. None was carried out in French adolescents. The primary objective of this study was to assess the prevalence of dental erosion (DE) using the total BEWE score among adolescents in the department of Alpes Maritimes, France. The secondary objectives were to observe changes in prevalence estimates depending on both the cutoffvalue of total BEWE score with different teeth/dental surfaces examined, and to identify the related risk factors. A cross-sectional study in a multistage random sample of 339 14-yr-old schoolchildren was carried out in 2014. The children completed a self-administered questionnaire concerning diet and oral habits. Caries was assessed with ICDAS-II (International Caries Detection and Assessment System-II) criteria and erosion with BEWE (Basic Erosive Wear Examination) index. The total BEWE score was calculated to assess the DE prevalence with two cutoff values (3 and 1). Data were analysed using descriptive statistics and logistic regression models. The 331 children were aged 14.4 ± 0.5 years. The DE prevalence was 39 % using a total BEWE score ≥ 3. With a cutoff total BEWE score of 1 (at least one affected tooth), the prevalence varied from 3.9 to 56.8 % depending on the teeth/surfaces that were used for the analysis. The DE prevalence, assessed with only first molars and maxillary incisors, was about 54 %. The risk factors for DE (total BEWE score ≥ 3) were daily consumption of acidic beverages (OR: 4.0; 95 % CI: 2.1-7.6) and acidic sweets (OR: 3.2; 95 % CI: 1.2-8.0), low socio economic category (OR: 2.4; 95 % CI: 1.1-5.0) and visible dental biofilm (OR: 2.0; 95 % CI: 1.2-3.4). Depending on the method chosen, the prevalence varied from 3.9 to 56.8 % among these adolescents. Thus, a consensus on choice of index, teeth to examine and age at

  12. Murzuk Sand Sea, Sahara Desert, Libya, Africa (United States)


    This near vertical view of the Murzuk Sand Sea, Sahara Desert, Libya (22.5N, 13.0E) shows the very diverse landscape that is part of the great Sahara Desert of North Africa. The vast expanse of sand dunes known as the Murzuk sand Sea of Libya and the adjacent rock outcrops support little human habitation. In fact, the tiny village of Murzuk with its center pivot, swing arm irrigated agriculture complex is the only sign of life in the region.

  13. Modification of Disney trap for capture of sand flies (Diptera: Psychodidae: Phlebotominae

    Directory of Open Access Journals (Sweden)

    Maria Elizabeth C Dorval


    Full Text Available This paper describes the modifications made to the original model of the Disney trap, with a view to easier handling of the same, greater practicability in the collection of sand flies, protection of the animal bait and durability of the trap in the field.

  14. Harry Sands (1917-2007). (United States)

    Ochroch, Ruth


    To everyone who knew and had worked with him, the death of Harry Sands on January 3, 2007, three days before his 90th birthday, resounded as though a mighty oak had fallen. Harry was a giant of a man, both as a human being and as a psychologist. Harry was born January 6, 1917, on the Lower East Side of Manhattan to Russian immigrant parents who ran a laundry. His bachelor's degree in psychology (1941) and his doctoral degree (1952) were both earned at New York University. Harry became a member of the American Psychological Association (APA) in 1943. With his breadth of experience and knowledge, as well as his firm foundation in management and finance, he eventually became a financial advisor to the APA Practice Directorate as well as to the American Psychological Foundation. As the executive director of the Postgraduate Center for Mental Health, Harry made creative strides to improve both the public awareness of the organization as well as its fiscal health. Harry was an active writer and researcher, with a particular interest in epilepsy and various psychoanalytic topics. 2009 APA, all rights reserved

  15. The Diversity of Yellow-Related Proteins in Sand Flies (Diptera: Psychodidae.

    Directory of Open Access Journals (Sweden)

    Michal Sima

    Full Text Available Yellow-related proteins (YRPs present in sand fly saliva act as affinity binders of bioamines, and help the fly to complete a bloodmeal by scavenging the physiological signals of damaged cells. They are also the main antigens in sand fly saliva and their recombinant form is used as a marker of host exposure to sand flies. Moreover, several salivary proteins and plasmids coding these proteins induce strong immune response in hosts bitten by sand flies and are being used to design protecting vaccines against Leishmania parasites. In this study, thirty two 3D models of different yellow-related proteins from thirteen sand fly species of two genera were constructed based on the known protein structure from Lutzomyia longipalpis. We also studied evolutionary relationships among species based on protein sequences as well as sequence and structural variability of their ligand-binding site. All of these 33 sand fly YRPs shared a similar structure, including a unique tunnel that connects the ligand-binding site with the solvent by two independent paths. However, intraspecific modifications found among these proteins affects the charges of the entrances to the tunnel, the length of the tunnel and its hydrophobicity. We suggest that these structural and sequential differences influence the ligand-binding abilities of these proteins and provide sand flies with a greater number of YRP paralogs with more nuanced answers to bioamines. All these characteristics allow us to better evaluate these proteins with respect to their potential use as part of anti-Leishmania vaccines or as an antigen to measure host exposure to sand flies.

  16. Rainfall erosivity in Brazil: A Review (United States)

    In this paper, we review the erosivity studies conducted in Brazil to verify the quality and representativeness of the results generated and to provide a greater understanding of the rainfall erosivity (R-factor) in Brazil. We searched the ISI Web of Science, Scopus, SciELO, and Google Scholar datab...

  17. Backward erosion piping : Initiation and progression

    NARCIS (Netherlands)

    Van Beek, V.M.


    Backward erosion piping is an internal erosion mechanism during which shallow pipes are formed in the direction opposite to the flow underneath water-retaining structures as a result of the gradual removal of sandy material by the action of water. It is an important failure mechanism in both dikes


    African Journals Online (AJOL)


    climate change [19]. Vegetation intercepts rain, reducing its energy and preventing splash erosion. It also slows runoff, reduces sheet erosion, and anchors and reinforces the soil ... hydro geological significance in terms of groundwater yield and exploitation ..... Australia's Tropics”, Australian Journal of Soil. Research. Vol.

  19. Saliva Parameters and Erosive Wear in Adolescents

    NARCIS (Netherlands)

    Zwier, N.; Huysmans, M. C. D. N. J. M.; Jager, D. H. J.; Ruben, J.; Bronkhorst, E. M.; Truin, G. J.


    The aim of this study was to investigate the relationship between several parameters of saliva and erosive wear in adolescents. (Un-)stimulated saliva was collected from 88 adolescents with erosion and 49 controls (age 16 +/- 1 years). Flow rate, pH and buffer capacity were determined immediately.

  20. Interrill soil erosion processes on steep slopes (United States)

    To date interrill erosion processes and regimes are not fully understood. The objectives are to 1) identify the erosion regimes and limiting processes between detachment and transport on steep slopes, 2) characterize the interactive effects between rainfall intensity and flow depth on sediment trans...

  1. Soil erosion dynamics response to landscape pattern

    NARCIS (Netherlands)

    Ouyang, W.; Skidmore, A.K.; Hao, F.; Wang, T.


    Simulating soil erosion variation with a temporal land use database reveals long-term fluctuations in landscape patterns, as well as priority needs for soil erosion conservation. The application of a multi-year land use database in support of a Soil Water Assessment Tool (SWAT) led to an accurate

  2. Past, Present, Future Erosion at Locke Island

    Energy Technology Data Exchange (ETDEWEB)

    Bjornstad, Bruce N.


    This report describes and documents the erosion that has occurred along the northeast side of Locke Island over the last 10 to 20 years. The principal cause of this erosion is the massive Locke Island landslide complex opposite the Columbia River along the White Bluffs, which constricts the flow of the river and deflects the river's thalweg southward against the island.

  3. Hydrogeological And Geotechnical Investigations Of Gully Erosion ...

    African Journals Online (AJOL)

    For many years, gully erosion and landslides are posing a serious threat to human existence, agricultural land, infrastructure and socio-economic activities in Calabar and its environs. Consequently, hydrogeological and geotechnical studies of gully erosion sites were carried out in order to provide information on the ...

  4. EPro Non-contact erosion profiling

    DEFF Research Database (Denmark)

    Meinert, Palle

    EPro is a profiler controlled by software, which is constructed to measure the same surface or work piece multiple times and track changes due to erosion.......EPro is a profiler controlled by software, which is constructed to measure the same surface or work piece multiple times and track changes due to erosion....

  5. Evaluation of soil factors controlling gully erosion (United States)

    Ollobarren, Paul; Giménez, Rafael; Ángel Campo, Miguel; Casalí, Javier


    Current models for prediction of (ephemeral) gully erosion rely mainly on topographic factors while soil conditions are almost neglected. However, soil erodibility is essential for analyzing and properly modeling gully erosion. But, despite the wealth of studies to characterize soil vulnerability to gully erosion, a universal approach is still lacking. Moreover, a useful and feasible soil characterization for gully erosion prediction at large scale should be based on simple, quick, repeatable and relatively inexpensive tests to perform. In this work an experimental approach to quantify soil contribution on gully erosion is proposed. From simple methodologies and techniques found in the literature for assessing physical-chemical properties of the soil, a large pool of variables -that presumably underpin gully erosion- were defined. These methodologies includes the use of vane shear apparatus, penetrometers and a mini-rain simulator as well as some current (modified) laboratory tests for assessing soil crustability and erodibility. Thirteen ephemeral gullies developed under different soil condition in agricultural fields of Navarre (Spain) were selected for experiments. Then, the aforementioned variables were calculated for each of the gullies through field and lab experiments. Furthermore, the most relevant variables were detected by means of multivariate analysis and their contribution to gully erosion was finally quantified by using multiple regression analysis. In addition, gully erosion rates of typical agricultural fields are given.

  6. Rethinking erosion on Java: a reaction

    NARCIS (Netherlands)

    Graaff, de J.; Wiersum, K.F.


    In a recent article (Diemont et al., 1991) about erosion on Java, it has been postulated that low inputs, not surface erosion, is the main cause of low productivity of upland food crops on this island. In this article it is argued that this hypothesis is too simple. An analysis of empirical field

  7. Computational and experimental study of effects of sediment shape on erosion of hydraulic turbines (United States)

    Poudel, L.; Thapa, B.; Shrestha, B. P.; Thapa, B. S.; Shrestha, K. P.; Shrestha, N. K.


    plants. The experimental studies of impact of different shapes and sizes of sediment particles on hydraulic turbine material have been conducted on two different test rigs method at Kathmandu University, High velocity test rig method and Rotating Disc apparatus (RDA) at Kathmandu University. Twenty one different sediment shape samples and four different sand size range were studied to correlate the effects of sediment shape and size with the erosion of turbine material. It was observed that the shape of sediment particles have considerable effect on erosion of turbine material. In general Irregular shapes have more erosion potential than regular shapes. It was also observed that the particles with the irregular shape of smaller size induce higher erosion rates than that of the larger size with the same shape. These findings will help to select the proper site of a power plant in erosion prone basins and would also help to design suitable settling basins to trap sediment particles having higher erosion potentials.

  8. A Sand Fly Salivary Protein Vaccine Shows Efficacy Against Vector-Transmitted Cutaneous Leishmaniasis in Nonhuman Primates (United States)


    LE I SHMAN IAS I S A sand fly salivary protein vaccine shows efficacy against vector-transmitted cutaneous leishmaniasis in nonhuman primates Fabiano...Lawyer,2 John F. Andersen,8 Shaden Kamhawi,1† Jesus G. Valenzuela1† Currently, there are no commercially available human vaccines against leishmaniasis ...In rodents, cellular immunity to salivary proteins of sand fly vectors is associated to protection against leishmaniasis , making them worthy targets

  9. Weld overlay coatings for erosion control

    Energy Technology Data Exchange (ETDEWEB)

    Levin, B.; DuPont, J.N.; Marder, A.R.


    A literature review was made. In spite of similarities between abrasive wear and solid particle erosion, weld overlay hardfacing alloys that exhibit high abrasion resistance may not necessarily have good erosion resistance. The performance of weld overlay hardfacing alloys in erosive environments has not been studied in detail. It is believed that primary-solidified hard phases such as carbides and intermetallic compounds have a strong influence on erosion resistance of weld overlay hardfacing alloys. However, relationships between size, shape, and volume fraction of hard phases in a hardfacing alloys and erosion resistance were not established. Almost all hardfacing alloys can be separated into two major groups based upon chemical compositions of the primary solidified hard phases: (a) carbide hardening alloys (Co-base/carbide, WC-Co and some Fe base superalloys); and (b) intermetallic hardening alloys (Ni-base alloys, austenitic steels, iron-aluminides).

  10. Dietary assessment and counseling for dental erosion. (United States)

    Marshall, Teresa A


    Dental erosion occurs after exposure to intrinsic or extrinsic acids. Exposure to intrinsic gastrointestinal acids is associated with anorexia nervosa, bulimia nervosa, rumination syndrome, or gastroesophageal reflux. Extrinsic dietary acids from foods or beverages also can cause erosion, particularly when exposure is prolonged by holding or swishing behaviors. Clinicians should screen patients exhibiting dental erosion for anorexia nervosa, bulimia nervosa, rumination syndrome, and gastroesophageal reflux disease. Clinicians should screen patients without a medical explanation for their erosion for exposure to acidic foods and beverages, particularly for habits that prolong exposure. Identification of intrinsic and extrinsic acid exposures and recommendations to minimize exposures are important to prevent erosion and maintain oral health. Copyright © 2018 American Dental Association. Published by Elsevier Inc. All rights reserved.

  11. Century-long source apportionment of PAHs in Athabasca oil sands region lakes using diagnostic ratios and compound-specific carbon isotope signatures. (United States)

    Jautzy, Josué; Ahad, Jason M E; Gobeil, Charles; Savard, Martine M


    Evaluating the impact that airborne contamination associated with Athabasca oil sands (AOS) mining operations has on the surrounding boreal forest ecosystem requires a rigorous approach to source discrimination. This study presents a century-long historical record of source apportionment of polycyclic aromatic hydrocarbons (PAHs) in dated sediments from two headwater lakes located approximately 40 and 55 km east from the main area of open pit mining activities. Concentrations of the 16 Environmental Protection Agency (EPA) priority PAHs in addition to retene, dibenzothiophene (DBT), and six alkylated groups were measured, and both PAH molecular diagnostic ratios and carbon isotopic signatures (δ(13)C) of individual PAHs were used to differentiate natural from anthropogenic inputs. Although concentrations of PAHs in these lakes were low and below the Canadian Council of Ministers of the Environment (CCME) guidelines, diagnostic ratios pointed to an increasingly larger input of petroleum-derived (i.e., petrogenic) PAHs over the past 30 years concomitant with δ(13)C values progressively shifting to the value of unprocessed AOS bitumen. This petrogenic source is attributed to the deposition of bitumen in dust particles associated with wind erosion from open pit mines.

  12. Ice-Release and Erosion Resistant Materials for Wind Turbines (United States)

    Zhang, Wei; Brinn, Cameron; Cook, Alex; Pascual-Marquez, Fernando


    Icing conditions may cause wind turbine generators to partially lose productivity or to be completely shut down to avoid structural damage. At present, commercially available technologies to mitigate this problem consist of expensive, energy hungry heating elements, which costs roughly 70,000 euro per medium size turbine. Conventional passive ice protection coating systems heavily rely on delicate surface structures and expensive materials to create water repellent superhydrophobic / low surface energy surfaces, which have been proven to be ineffective against ice accumulation. The lack of performance among conventional ice protection materials stems from a flaw in the approach to the problem: failure to recognize that water in its liquid form (WATER) and water in its solid form (ICE) are two different things. Something that works for WATER does not automatically work for ICE. Another reason is that many superhydrophobic materials are often reliant upon often fragile micro-structured surfaces to achieve their intended effects. This paper discusses a fundamentally different approach to the creation of a robust, low cost, durable, and multifunctional materials for ice release and erosion resistance. This National Science Foundation sponsored ice-release coating technology holds promise for protecting wind turbine blades and towers, thus potentially increasing reliability for power generation under icing conditions. Because of the vulnerability of wind turbine blades to ice buildup and erosion damages, wind farm facilities stand to reap considerable benefits.

  13. Counteractive effect of antacid suspensions on intrinsic dental erosion. (United States)

    Turssi, Cecilia P; Vianna, Lídia M F F; Hara, Anderson T; do Amaral, Flávia L B; França, Fabiana M G; Basting, Roberta T


    This in vitro study aimed to investigate the anti-erosive effect of antacid suspensions applied to enamel after exposure to hydrochloric acid (HCl). Ninety bovine enamel slabs were embedded, flattened, and polished. Reference areas were created and specimens were divided into six groups. They were exposed to 0.01 M HCl (pH 2) for 2 min, followed by immersion for 1 min in one of the following test suspensions: magnesium hydroxide, aluminum hydroxide, magnesium hydroxide/aluminum hydroxide, sodium alginate/sodium bicarbonate/calcium carbonate, or hydrated magnesium aluminate. Artificial saliva was used as a negative control. Specimens were subjected to a total of five cycles of erosion/antacid treatment. Enamel surface loss was measured (in micrometers) by optical profilometry. In addition, baseline and final surface microhardness (SMH) values of enamel were obtained. It was found that antacid suspensions significantly reduced enamel loss, and that similar protection was afforded by all formulations. No differences were observed between the final enamel SMH values among groups. Antacid suspensions counteracted HCl-induced enamel loss, although they were not effective in reducing enamel softening. Mouth rinsing with antacid suspensions after vomiting can potentially represent a promising strategy to counteract enamel loss caused by erosion. © 2012 Eur J Oral Sci.

  14. Soil Erosion Study on the Chinese Loess Plateau (United States)

    Hu, Yaxian; Guo, Shengli; Kuhn, Nikolaus


    The Chinese Loess Plateau, because of its highly erodible loess soils and hilly topography, has been extensively studied by soil scientists and geomorphologists. As a research hotspot, there are five national-level field stations across the Loess Plateau, with hundreds of erosion plots set up with various sizes, lengths, slope angles and vegetation covers. In addition, huge indoor rain simulation facilities exist in in different institutes which can provide rainfall simulations under a wide range of controlled conditions. Consequently, national-level restoration projects have achieved tremendous improvements in curbing soil erosion and improving regional agro-ecosystem, mostly by afforestation and soil rehabilitation. However, when implementing the advanced techniques and models that have been widely applied in the rest of the world, there are often regional considerations, which demand new approaches to overcome. One example are the unintentional impacts of restoration efforts, such as the establishment of apple orchards. Over 20 years, they have caused an increase in soil erodibility and lowered local ground water levels. Neither before the introduction of this landscape rehabilitation technique, nor now, has the impact of intensive fruit production been systematically studied, despite lending itself to systematic experiments. The lack of research is attributed to the general idea that trees protect soils and improve environmental services. This presentation identifies several such specific regional environmental issues associated with soil erosion on the Loess Plateau and discusses strategies to avoid missing important research questions.

  15. Sand Lake WMD vegetation mapping project update (United States)

    US Fish and Wildlife Service, Department of the Interior — Final report on the vegetation mapping project at Sand Lake Wetland Management District. This project is being completed by the use of SPRING software and ground...

  16. Displacement pile installation effects in sand

    NARCIS (Netherlands)

    Beijer-Lundberg, A.


    Installation effects govern the post-installation behaviour of displacement piles in sand. These effects are currently not completely understood. Suitable experimental techniques to model these installation effects include field, laboratory and experimental models. In the current thesis a

  17. Communicating and Visualizing Erosion-associated Risks to Infrastructure (United States)

    Hewett, Caspar; Simpson, Carolyn; Wainwright, John


    of ensuring that mitigation measures are undertaken across the landscape to reduce soil erosion. The CAVERTI tool has proven to be an effective means of encouraging farmers and land owners to act to reduce erosion, providing multiple benefits from protecting local infrastructure to reducing pollution of waterways.

  18. Rainfall erosivity index for the Ghana Atomic Energy Commission site

    National Research Council Canada - National Science Library

    Paul Essel; Eric T Glover; Serwaa Yeboah; Yaw Adjei-Kyereme; Israel Nutifafa Doyi Yawo; Mawutoli Nyarku; Godfred S Asumadu-Sakyi; Gustav Kudjoe Gbeddy; Yvette Agyiriba Agyiri; Evans Mawuli Ameho; Emmanuel Atule Aberikae


      Rainfall erosivity is the potential ability for rainfall to cause soil loss. The purpose of this study was to estimate the Rainfall erosivity index for the Ghana Atomic Energy Commission site in order to compute the surface erosion rate...

  19. Rainfall erosivity index for the Ghana Atomic Energy Commission site

    National Research Council Canada - National Science Library

    Essel, Paul; Glover, Eric T; Yeboah, Serwaa; Adjei-Kyereme, Yaw; Yawo, Israel Nutifafa Doyi; Nyarku, Mawutoli; Asumadu-Sakyi, Godfred S; Gbeddy, Gustav Kudjoe; Agyiri, Yvette Agyiriba; Ameho, Evans Mawuli; Aberikae, Emmanuel Atule


    Rainfall erosivity is the potential ability for rainfall to cause soil loss. The purpose of this study was to estimate the rainfall erosivity index for the Ghana Atomic Energy Commission site in order to compute the surface erosion rate...

  20. Dynamic cyclone for solids removal: innovative sand management solutions for oil and gas production

    Energy Technology Data Exchange (ETDEWEB)

    Furnes, Olav [Inter Scandic a.s (Norway); Arefjord, Anders [CleanUp AS (Norway)


    Sand and other solids inevitably occurring in connection with drilling and production operations for exploitation of offshore and onshore petroleum resources represent an increasing challenge for operators and main contractors worldwide. The adherent sand problems can cause severe erosion of conductors, pipelines and critical processing equipment, such as valves, pumps and separator internals, etc. Proliferation of sand could clog up and severely diminish processing capacity in separators, calling for unscheduled shutdowns for separator jetting and equipment cleaning. These and other consequential problems incur considerable costs to the industry, affecting availability and reliability of production as well as undue cost outlays for equipment monitoring, renewal and refurbishment. Such cost impacts could have decisive effects on commercial viability of marginal fields or deep water prospects. Problematic aspects of produced solids could arise at early stages of reservoir drainage, pending geological profile. As sand volumes tend to increase when oil and gas fields mature, viable tail production to recover remaining reserves becomes decisive for operating costs and investment trade-off. The dynamic de-sanding cyclone system described herein is designed to operate without any pressure drop, thus avoiding loss of flow pressure. It consists of an inner and outer cylindrical chamber, allowing for a second separation run for removal of the smaller particles down to 50 micron or less. In additional to tangential flow inlet, an impeller driven by a hydraulic motor adds significantly to centrifugal separation effects, assisting cleaning of solids as part of the process. As the cyclone is designed to perform online de-gassing as well, it can sustain severe slugging during the solids removal operations. Removed solids can be either accumulated in closed, swapping containers or piped as slurry for final disposal. (author)

  1. Supercritical solvent extraction of oil sand bitumen (United States)

    Imanbayev, Ye. I.; Ongarbayev, Ye. K.; Tileuberdi, Ye.; Mansurov, Z. A.; Golovko, A. K.; Rudyk, S.


    The supercritical solvent extraction of bitumen from oil sand studied with organic solvents. The experiments were performed in autoclave reactor at temperature above 255 °C and pressure 29 atm with stirring for 6 h. The reaction resulted in the formation of coke products with mineral part of oil sands. The remaining products separated into SARA fractions. The properties of the obtained products were studied. The supercritical solvent extraction significantly upgraded extracted natural bitumen.

  2. Laboratory evaluation of selected tar sand asphalts

    Energy Technology Data Exchange (ETDEWEB)

    Button, J.W.; Epps, J.A.; Gallaway, B.M.


    Three tar sand asphalts of similar grades prepared from one syncrude by three different refining methods were characterized by tests commonly used to specify paving asphalts together with certain special tests. Asphalt-aggregate mixtures were prepared using these asphalts and tested in the laboratory to determine strength stiffness stability, tensile properties, temperature effects and water susceptibility. Comparison of the tar sand asphalt properties to conventional petroleum asphalt properties reveal no striking differences.

  3. Pragmatics of reclaimed sand quality assessment recovered nowadays from various used sand systems

    Directory of Open Access Journals (Sweden)

    J. Dańko


    Full Text Available The assessment of the reclamation degree of used sands is not a simple, clearly defined issue. The great variety of technologies ofmoulding and core sands, based on the organic and inorganic binders does not allow the use of a single, universal index assessing thedegree of reclamation. The article presents the problems of research relating to selection of proper criteria for assessing the degree ofreclamation process of used moulding and core sands deriving from different technologies. The most often applied in practice types ofused sands and the most adequate in practice methods of assessing the degrees of their reclamation were characterized.

  4. Offshore Sand Resource Needs, Data Availability and Revaluation, and Beach Nourishment Projects in North Carolina (United States)

    Conery, I.; Walsh, J. P.


    Storms and sea-level rise continue to impact the dynamic coastlines of North Carolina. Since the coastal region is economically critical to the state and yields numerous ecosystem services, many towns have planned beach nourishment projects. However, offshore sands compatible for nourishment are limited, and project costs fluctuate with borrow source proximity to the shoreline. Hurricane Sandy (2012) caused high water levels and waves resulting in localized overwash and erosion in the northeastern part of NC. In response, to effectively meet the rising nourishment demands for recovery after future storm events and for long-term resiliency, the Bureau of Ocean Energy Management (BOEM) recognized the need to compile and consolidate all geophysical and geologic information in federal waters (3-8 nm) along the East Coast states. A GIS database was created for NC using bathymetric, seismic reflection, sediment and other relevant data from federal, state and private entities. Information will be accessible to the public, coastal planners and managers to allow for informed decision-making and cost-effective project planning. Priority regions for seismic and core collection were determined based on data gaps and needs across the state. In addition, potential sand resource thickness and volume in northeastern NC were revaluated using comparisons of several overlapping datasets. Shoreline volume losses were calculated using long-term erosion rates and compared to historic and future nourishment projects. Finally, tourism-based revenue by town was evaluated and related to short and long-term nourishment costs.

  5. Environmental Assessment for Beach Shoreline Protection at Patrick Air Force Base, Florida (United States)


    The signing of this FONSIIFONPA completes the environmental impact analysis process. SEPH H. SCHWARZ , Colonel, eputy Director for Installations...strongly subjected to wind and wave/tide events, seasonal and storm erosion, and seabed/sand fluctuations. Situated among expanses of bare sand bottom...USEPA. 1971. Noise from Construction Equipment and Operations, Building Equipment, and Home Appliances , NJID, 300 1, December 31, 1971. U.S. Fish and

  6. Layers, Landslides, and Sand Dunes (United States)


    [figure removed for brevity, see original site] Released 27 October 2003This image shows the northern rim of one of the Valles Marineris canyons. Careful inspection shows many interesting features here. Note that the spurs and gullies in the canyon wall disappear some distance below the top of the canyon wall, indicating the presence of some smooth material here that weathers differently from the underlying rocks. On the floor of the canyon, there are remains from a landslide that came hurtling down the canyon wall between two spurs. Riding over the topography of the canyon floor are many large sand dunes, migrating generally from the lower right to upper left.Image information: VIS instrument. Latitude -14.1, Longitude 306.7 East (53.3 West). 19 meter/pixel resolution.Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time. NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  7. Soil erosion and the global carbon budget. (United States)

    Lal, R


    Soil erosion is the most widespread form of soil degradation. Land area globally affected by erosion is 1094 million ha (Mha) by water erosion, of which 751 Mha is severely affected, and 549 Mha by wind erosion, of which 296 Mha is severely affected. Whereas the effects of erosion on productivity and non-point source pollution are widely recognized, those on the C dynamics and attendant emission of greenhouse gases (GHGs) are not. Despite its global significance, erosion-induced carbon (C) emission into the atmosphere remains misunderstood and an unquantified component of the global carbon budget. Soil erosion is a four-stage process involving detachment, breakdown, transport/redistribution and deposition of sediments. The soil organic carbon (SOC) pool is influenced during all four stages. Being a selective process, erosion preferentially removes the light organic fraction of a low density of erosion causes a severe depletion of the SOC pool on eroded compared with uneroded or slightly eroded soils. In addition, the SOC redistributed over the landscape or deposited in depressional sites may be prone to mineralization because of breakdown of aggregates leading to exposure of hitherto encapsulated C to microbial processes among other reasons. Depending on the delivery ratio or the fraction of the sediment delivered to the river system, gross erosion by water may be 75 billion Mg, of which 15-20 billion Mg are transported by the rivers into the aquatic ecosystems and eventually into the ocean. The amount of total C displaced by erosion on the earth, assuming a delivery ratio of 10% and SOC content of 2-3%, may be 4.0-6.0 Pg/year. With 20% emission due to mineralization of the displaced C, erosion-induced emission may be 0.8-1.2 Pg C/year on the earth. Thus, soil erosion has a strong impact on the global C cycle and this component must be considered while assessing the global C budget. Adoption of conservation-effective measures may reduce the risks of C emission and

  8. Mapping monthly rainfall erosivity in Europe. (United States)

    Ballabio, Cristiano; Borrelli, Pasquale; Spinoni, Jonathan; Meusburger, Katrin; Michaelides, Silas; Beguería, Santiago; Klik, Andreas; Petan, Sašo; Janeček, Miloslav; Olsen, Preben; Aalto, Juha; Lakatos, Mónika; Rymszewicz, Anna; Dumitrescu, Alexandru; Tadić, Melita Perčec; Diodato, Nazzareno; Kostalova, Julia; Rousseva, Svetla; Banasik, Kazimierz; Alewell, Christine; Panagos, Panos


    Rainfall erosivity as a dynamic factor of soil loss by water erosion is modelled intra-annually for the first time at European scale. The development of Rainfall Erosivity Database at European Scale (REDES) and its 2015 update with the extension to monthly component allowed to develop monthly and seasonal R-factor maps and assess rainfall erosivity both spatially and temporally. During winter months, significant rainfall erosivity is present only in part of the Mediterranean countries. A sudden increase of erosivity occurs in major part of European Union (except Mediterranean basin, western part of Britain and Ireland) in May and the highest values are registered during summer months. Starting from September, R-factor has a decreasing trend. The mean rainfall erosivity in summer is almost 4 times higher (315MJmmha-1h-1) compared to winter (87MJmmha-1h-1). The Cubist model has been selected among various statistical models to perform the spatial interpolation due to its excellent performance, ability to model non-linearity and interpretability. The monthly prediction is an order more difficult than the annual one as it is limited by the number of covariates and, for consistency, the sum of all months has to be close to annual erosivity. The performance of the Cubist models proved to be generally high, resulting in R2 values between 0.40 and 0.64 in cross-validation. The obtained months show an increasing trend of erosivity occurring from winter to summer starting from western to Eastern Europe. The maps also show a clear delineation of areas with different erosivity seasonal patterns, whose spatial outline was evidenced by cluster analysis. The monthly erosivity maps can be used to develop composite indicators that map both intra-annual variability and concentration of erosive events. Consequently, spatio-temporal mapping of rainfall erosivity permits to identify the months and the areas with highest risk of soil loss where conservation measures should be applied in

  9. Programs to obtain vertical heights from mean sea level and for computing volume of sand/mineral along beaches: A case study with Kalbadevi beach profiling data and results

    Digital Repository Service at National Institute of Oceanography (India)

    Ganesan, P.

    Two programs have been developed to process profile data, for obtaining vertical heights with respect to mean sea level (M.S.L.) and for computation of volume of heavy mineral / sand accumulation or erosion along the beaches. The final output...

  10. An integrated approach to prevent the erosion of salt marshes in the lagoon of Venice

    Directory of Open Access Journals (Sweden)

    Alberto Barausse


    Full Text Available The loss of coastal habitats is a widespread problem in Europe. To protect the intertidal salt marshes of the lagoon of Venice from the erosion due to natural and human causes which is diffusely and intensely impacting them, the European Commission has funded the demonstrative project LIFE VIMINE. LIFE VIMINE aims to protect the most interior, hard-to-access salt marshes in the northern lagoon of Venice through an integrated approach, whose core is the prevention of erosion through numerous, small but spatially-diffuse soil-bioengineering protections works, mainly placed through semi-manual labour and with low impact on the environment and the landscape. The effectiveness of protection works in the long term is ensured through routine, temporally-continuous and spatially-diffuse actions of monitoring and maintenance. This method contrasts the common approach to managing hydraulic risk and erosion in Italy which is based on large, one-off and irreversible protection actions. The sustainability of the LIFE VIMINE approach is ensured by the participatory involvement of stakeholders and the recognition that protecting salt marshes means defending the benefits they provide to society through their ecological functions, as well as protecting the jobs linked to the existence or conservation of this habitat.

  11. Soft drinks and in vitro dental erosion. (United States)

    Gravelle, Brent L; Hagen Ii, Ted W; Mayhew, Susan L; Crumpton, Brooks; Sanders, Tyler; Horne, Victoria


    The purpose of this investigation was to determine to what extent the in vitro exposure of healthy teeth to various commonly consumed carbonated soft drinks may precipitate dental erosion. Forty-two healthy, extracted, previously unerupted human molars were weighed prior to, during, and after suspension in various sugared and diet or zero-calorie carbonated beverages for 20 days; the specimens were stored at room temperature while being stirred at 275 rpm. The percentage decrease in tooth weight from before to after exposure represented the weight loss due to enamel erosion; values in the experimental groups varied from 3.22% to 44.52% after 20 days' exposure. Data were subjected to analysis of variance and post hoc Scheffe testing at a level of α = 0.05. Nonsugared drinks (diet and zero-calorie) as a whole were more erosive than sugared beverages. A significant positive correlation was found between the amount of titratable acid and percentage of tooth erosion, while a significant negative correlation was revealed between the beverage pH and percentage of tooth erosion. No significant correlations were found between calcium or phosphate ion concentrations and the amount of erosion. It appears that enamel erosion is dependent on not only the beverage flow rate, pH, and amount of titratable acid, but also whether the soft drink is of the diet or zero-calorie variety, which reflects the type of artificial sweetener present.

  12. Use of dentifrices to prevent erosive tooth wear: harmful or helpful?

    Directory of Open Access Journals (Sweden)

    Ana Carolina Magalhães


    Full Text Available Dental erosion is the loss of dental hard tissues caused by non-bacterial acids. Due to acid contact, the tooth surface becomes softened and more prone to abrasion from toothbrushing. Dentifrices containing different active agents may be helpful in allowing rehardening or in increasing surface resistance to further acidic or mechanical impacts. However, dentifrices are applied together with brushing and, depending on how and when toothbrushing is performed, as well as the type of dentifrice and toothbrush used, may increase wear. This review focuses on the potential harmful and helpful effects associated with the use of dentifrices with regard to erosive wear. While active ingredients like fluorides or agents with special anti-erosive properties were shown to offer some degree of protection against erosion and combined erosion/abrasion, the abrasive effects of dentifrices may increase the surface loss of eroded teeth. However, most evidence to date comes from in vitro and in situ studies, so clinical trials are necessary for a better understanding of the complex interaction of active ingredients and abrasives and their effects on erosive tooth wear.

  13. Lifespan of mountain ranges scaled by feedbacks between landsliding and erosion by rivers. (United States)

    Egholm, David L; Knudsen, Mads F; Sandiford, Mike


    An important challenge in geomorphology is the reconciliation of the high fluvial incision rates observed in tectonically active mountain ranges with the long-term preservation of significant mountain-range relief in ancient, tectonically inactive orogenic belts. River bedrock erosion and sediment transport are widely recognized to be the principal controls on the lifespan of mountain ranges. But the factors controlling the rate of erosion and the reasons why they seem to vary significantly as a function of tectonic activity remain controversial. Here we use computational simulations to show that the key to understanding variations in the rate of erosion between tectonically active and inactive mountain ranges may relate to a bidirectional coupling between bedrock river incision and landslides. Whereas fluvial incision steepens surrounding hillslopes and increases landslide frequency, landsliding affects fluvial erosion rates in two fundamentally distinct ways. On the one hand, large landslides overwhelm the river transport capacity and cause upstream build up of sediment that protects the river bed from further erosion. On the other hand, in delivering abrasive agents to the streams, landslides help accelerate fluvial erosion. Our models illustrate how this coupling has fundamentally different implications for rates of fluvial incision in active and inactive mountain ranges. The coupling therefore provides a plausible physical explanation for the preservation of significant mountain-range relief in old orogenic belts, up to several hundred million years after tectonic activity has effectively ceased.

  14. The use of spatial empirical models to estimate soil erosion in arid ecosystems. (United States)

    Abdullah, Meshal; Feagin, Rusty; Musawi, Layla


    The central objective of this project was to utilize geographical information systems and remote sensing to compare soil erosion models, including Modified Pacific South-west Inter Agency Committee (MPSIAC), Erosion Potential Method (EPM), and Revised Universal Soil Loss Equation (RUSLE), and to determine their applicability for arid regions such as Kuwait. The northern portion of Umm Nigga, containing both coastal and desert ecosystems, falls within the boundaries of the de-militarized zone (DMZ) adjacent to Iraq and has been fenced off to restrict public access since 1994. Results showed that the MPSIAC and EPM models were similar in spatial distribution of erosion, though the MPSIAC had a more realistic spatial distribution of erosion and presented finer level details. The RUSLE presented unrealistic results. We then predicted the amount of soil loss between coastal and desert areas and fenced and unfenced sites for each model. In the MPSIAC and EPM models, soil loss was different between fenced and unfenced sites at the desert areas, which was higher at the unfenced due to the low vegetation cover. The overall results implied that vegetation cover played an important role in reducing soil erosion and that fencing is much more important in the desert ecosystems to protect against human activities such as overgrazing. We conclude that the MPSIAC model is best for predicting soil erosion for arid regions such as Kuwait. We also recommend the integration of field-based experiments with lab-based spatial analysis and modeling in future research.

  15. Identifying erosive periods by using RUSLE factors in mountain fields of the Central Spanish Pyrenees

    Directory of Open Access Journals (Sweden)

    M. López-Vicente


    Full Text Available The Mediterranean environment is characterized by strong temporal variations in rainfall volume and intensity, soil moisture and vegetation cover along the year. These factors play a key role on soil erosion. The aim of this work is to identify different erosive periods in function of the temporal changes in rainfall and runoff characteristics (erosivity, maximum intensity and number of erosive events, soil properties (soil erodibility in relation to freeze-thaw processes and soil moisture content and current tillage practices in a set of agricultural fields in a mountainous area of the Central Pyrenees in NE Spain. To this purpose the rainfall and runoff erosivity (R, the soil erodibility (K and the cover-management (C factors of the empirical RUSLE soil loss model were used. The R, K and C factors were calculated at monthly scale. The first erosive period extends from July to October and presents the highest values of erosivity (87.8 MJ mm ha−1 h−1, maximum rainfall intensity (22.3 mm h−1 and monthly soil erosion (0.25 Mg ha−1 month−1 with the minimum values of duration of erosive storms, freeze-thaw cycles, soil moisture content and soil erodibility (0.007 Mg h MJ−1 mm−1. This period includes the harvesting and the plowing tillage practices. The second erosive period has a duration of two months, from May to June, and presents the lowest total and monthly soil losses (0.10 Mg ha−1 month−1 that correspond to the maximum protection of the soil by the crop-cover ($C$ factor = 0.05 due to the maximum stage of the growing season and intermediate values of rainfall and runoff erosivity, maximum rainfall intensity and soil erodibility. The third erosive period extends from November to April and has the minimum values of rainfall erosivity (17.5 MJ mm ha−1 h−1 and

  16. Erosion of an ancient mountain range, the Great Smoky Mountains, North Carolina and Tennessee (United States)

    Matmon, A.; Bierman, P.R.; Larsen, J.; Southworth, S.; Pavich, M.; Finkel, R.; Caffee, M.


    Analysis of 10Be and 26Al in bedrock (n=10), colluvium (n=5 including grain size splits), and alluvial sediments (n=59 including grain size splits), coupled with field observations and GIS analysis, suggest that erosion rates in the Great Smoky Mountains are controlled by subsurface bedrock erosion and diffusive slope processes. The results indicate rapid alluvial transport, minimal alluvial storage, and suggest that most of the cosmogenic nuclide inventory in sediments is accumulated while they are eroding from bedrock and traveling down hill slopes. Spatially homogeneous erosion rates of 25 - 30 mm Ky-1 are calculated throughout the Great Smoky Mountains using measured concentrations of cosmogenic 10Be and 26Al in quartz separated from alluvial sediment. 10Be and 26Al concentrations in sediments collected from headwater tributaries that have no upstream samples (n=18) are consistent with an average erosion rate of 28 ?? 8 mm Ky-1, similar to that of the outlet rivers (n=16, 24 ?? 6 mm Ky-1), which carry most of the sediment out of the mountain range. Grain-size-specific analysis of 6 alluvial sediment samples shows higher nuclide concentrations in smaller grain sizes than in larger ones. The difference in concentrations arises from the large elevation distribution of the source of the smaller grains compared with the narrow and relatively low source elevation of the large grains. Large sandstone clasts disaggregate into sand-size grains rapidly during weathering and downslope transport; thus, only clasts from the lower parts of slopes reach the streams. 26Al/10Be ratios do not suggest significant burial periods for our samples. However, alluvial samples have lower 26Al/10Be ratios than bedrock and colluvial samples, a trend consistent with a longer integrated cosmic ray exposure history that includes periods of burial during down-slope transport. The results confirm some of the basic ideas embedded in Davis' geographic cycle model, such as the reduction of relief

  17. Soil Erosion and Sediment Yield Modelling in the Pra River Basin of ...

    African Journals Online (AJOL)

    The revised universal soil loss equation (RUSLE) was integrated with Geographic Information System (GIS) to model the spatial patterns in soil erosion and sediment yield ... Predicted soil loss and sediment yield were found to be low due to good soil protective cover by vegetation and tree crops as well as a low relief of the ...

  18. Effects of fire and emergency seeding on hillslope erosion in southern California chaparral (United States)

    Pete Wohlgemuth; Jan Beyers; C.D. Wakeman; S.G. Conard


    Catastrophic wildfires can set the stage for massive postfire erosion and sedimentation in southern California chaparral ecosystems with the onset of heavy winter rainstorms. As a mitigation measure, land managers have typically used grass seeding as a standard emergency rehabilitation technique. However, the effectiveness of grass seeding as a watershed protection...

  19. Effect of Salivary Factors on the Susceptibility of Hydroxyapatite to Early Erosion

    NARCIS (Netherlands)

    Jager, D. H. J.; Vieira, A. M.; Ligtenberg, A. J. M.; Bronkhorst, E.; Huysmans, M. C. D. N. J. M.; Vissink, A.


    Objective: Salivary pellicle is known to reduce the erosion of enamel and differences in the level of protection exist between individual saliva sources, but which parameters or components are important is not known. The focus of this study was to investigate the relationship between saliva

  20. Advanced turbine design for coal-fueled engines. Phase 1, Erosion of turbine hot gas path blading: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, J.H.; Johnson, B.V.


    The investigators conclude that: (1) Turbine erosion resistance was shown to be improved by a factor of 5 by varying the turbine design. Increasing the number of stages and increasing the mean radius reduces the peak predicted erosion rates for 2-D flows on the blade airfoil from values which are 6 times those of the vane to values of erosion which are comparable to those of the vane airfoils. (2) Turbine erosion was a strong function of airfoil shape depending on particle diameter. Different airfoil shapes for the same turbine operating condition resulted in a factor of 7 change in airfoil erosion for the smallest particles studied (5 micron). (3) Predicted erosion for the various turbines analyzed was a strong function of particle diameter and weaker function of particle density. (4) Three dimensional secondary flows were shown to cause increases in peak and average erosion on the vane and blade airfoils. Additionally, the interblade secondary flows and stationary outer case caused unique erosion patterns which were not obtainable with 2-D analyses. (5) Analysis of the results indicate that hot gas cleanup systems are necessary to achieve acceptable turbine life in direct-fired, coal-fueled systems. In addition, serious consequences arise when hot gas filter systems fail for even short time periods. For a complete failure of the filter system, a 0.030 in. thick corrosion-resistant protective coating on a turbine blade would be eroded at some locations within eight minutes.

  1. Contribution of laser altimetry images to the geomorphology of the Late Holocene inland drift sands of the European Sand Belt

    NARCIS (Netherlands)

    Jungerius, P.D.; Riksen, M.J.P.M.


    The paper explores the possibilities of applying the analysis of laser altimetry images to Dutch drift sands. All along the European Sand Belt, which stretches from Great Britain to the Ural Mountains, Late Glacial cover sands, river dunes and other ice-age deposits were reactivated as drift sand

  2. Contribution of laser altimetry images to the geomorphology of the Late Holocene inland drift sands of the European Sand Belt

    NARCIS (Netherlands)

    Jungerius, P.D.; Riksen, M.J.P.M.


    The paper explores the possibilities of applying the analysis of laser altimetry images to Dutch drift sands. All along the European Sand Belt, which stretches from Great Britain to the Ural Mountains, Late Glacial cover sands, river dunes and other ice–age deposits were reactivated as drift sand

  3. Simulation of chemical erosion in rough fractures. (United States)

    Verberg, R; Ladd, A J C


    We report on numerical simulations of acid erosion in a fractured specimen of Carrara marble. The simulations combine two recent advances in lattice-Boltzmann methodology to accurately and efficiently calculate the velocity field in the pore space. A tracer diffusion algorithm was then used to calculate the distribution of reactants in the fracture, and the local erosion rate was obtained from the flux of tracer particles across the surfaces. Our results show that at large length scales, erosion leads to increased heterogeneity via channel formation, whereas at small length scales it tends to smooth out the roughness in the local aperture.

  4. Design of erosion/abrasion studies--insights and rational concepts. (United States)

    Wiegand, Annette; Attin, Thomas


    In vitro and in situ studies modelling the wear of dental hard tissues due to erosion and abrasion are characterised by a high variation in study designs and experimental parameters. Based on a summary of the existing protocols, the present review aimed to describe and discuss the parameters which must be carefully considered in erosion-abrasion research, especially when it is intended to simulate clinical conditions. Experimental characteristics and parameters were retrieved from a total of 42 in vitro and 20 in situ studies. The key experimental characteristics included parameters of erosion (duration and pH) and abrasion (duration, kinds of toothbrush and toothpaste, brushing force, and time point) as well as co-factors (e.g. dental hard tissue). The majority of studies used models with alternating erosion/abrasion treatments intended to simulate clinical conditions, while other studies exaggerated clinical conditions intentionally, often using only a single erosion/abrasion treatment. Both in vitro and in situ models shared a high level of standardisation, but several studies showed a trend to severe erosion (e.g. >5 min/cycle) or extensive brushing (e.g. >100 brushing strokes/cycle) at a high frequency and repetition rate. Thus, studies often tend to produce a higher amount of wear than in the clinical situation, especially as modifying biological factors (e.g. the dilution of the erosive solution by saliva and the protective effect of the pellicle) cannot be simulated adequately. With respect to the existing models, it seems advisable to diminish duration and frequency of erosion and abrasion to more realistic clinical conditions when the everyday situation is to be simulated. Experimental parameters must be chosen with care to ensure that the problem is investigated in an appropriate mode at standardised conditions and with adequate measuring systems to allow prediction of clinical outcomes. Copyright © 2011 S. Karger AG, Basel.

  5. The effect of magnesium hydroxide-containing dentifrice using an extrinsic and intrinsic erosion cycling model. (United States)

    Passos, Vanara Florêncio; Rodrigues, Lidiany Karla Azevedo; Santiago, Sérgio Lima


    To evaluate, in vitro, the effect of Mg(OH) 2 dentifrice, and the influence of the number of experimental days, on the extrinsic (citric acid -CA) and intrinsic (hydrochloric acid -HCl) enamel erosion models. Human enamel slabs were selected according to surface hardness and randomly assigned to 3 groups (n=9) as follows: non-fluoridated (negative control), NaF (1450ppm F- positive control) and Mg(OH) 2 (2%) dentifrices. The slabs were daily submitted to a 2-h period of pellicle formation and, over a period of 5days, submitted to cycles (3×/day) of erosive challenge (CA 0.05M, pH=3.75 or HCl 0.01M, pH=2 for 30s), treatment (1min -1:3w/w of dentifrice/distilled water) and remineralization (artificial saliva/120min). Enamel changes were determined by surface hardness loss (SHL) for each day and mechanical profilometry analysis. Data were analyzed by two-way ANOVA followed by Tukey's test to % SHL and one-way ANOVA to profilometry (p<0.05). The number of experimental days influenced the erosion process for the two types of erosion models (p<0.001). Mg(OH) 2 -containing dentifrices were effective in reducing enamel extrinsic acid erosion as determined by % SHL (p<0.001) when compared to the control group, being better than positive control (p<0.001); however, the dentifrices were not effective for the intrinsic model (p=0.295). With regards to surface wear, no statistically significant differences were found among the groups for CA (p=0.225) and HCl (p=0.526). The findings suggest that Mg(OH) 2 dentifrices might protect enamel against slight erosion, but protection was not effective for stronger acid erosion. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Ultrasonic cavitation erosion of gas nitrided Ti-6Al-4V alloys. (United States)

    Mitelea, I; Dimian, E; Bordeaşu, I; Crăciunescu, C


    Ultrasonic cavitation erosion experiments were performed on Ti-6Al-4V alloys samples in annealed, nitrided and nitrided and subsequently heat treated state. The protective oxide layer formed as a result of annealing and heat treatment after nitriding is eliminated after less than 30 min cavitation time, while the nitride layer lasts up to 90 min cavitation time. Once the protective layer is removed, the cavitation process develops by grain boundary erosion, leading to the expulsion of grains from the surface. The gas nitrided Ti-6Al-4V alloy, forming a TixN surface layer, proved to be a better solution to improve the cavitation erosion resistance, compared to the annealed and nitrided and heat treated state, respectively. The analysis of the mean depth of erosion rate at 165 min cavitation time showed an improvement of the cavitation erosion resistance of the nitrided samples of up to 77% higher compared to the one of the annealed samples. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. The Methods of Locating Areas Exposed to Wind Erosion in the South Moravia Region

    Directory of Open Access Journals (Sweden)

    Jana Podhrázská


    Full Text Available The conditions for the development of wind erosion are determined by the soil and climatic conditions as well as by the presence or absence of wind barriers. It is because of its climatic and soil conditions that the territory of the South Moravia Region has been affected by erosion for centuries. Combined with the atmospheric conditions, the dry and warm climate enables the development of aeolian processes both in light, drying soils and – under certain climatic conditions – in heavy, clay-loam soils. Soil erosion exposure maps have been prepared in order to identify the territories which are potentially exposed to wind erosion in terms of the soil and climatic conditions. Six exposure categories have been applied to the soils. However, the impact of permanent vegetation barriers – line elements – must be considered in order to identify the most exposed areas. Protective forest belts were planted in the 1950s to counter the effects of wind erosion and they are included in the database of the Institute for Economic Forest Management. The network of these wind barriers and the heath condition of the individual elements are often unsatisfactory because of poor maintenance. The purpose of the study was to evaluate the spatial function of the network of protective forest belts using the map of the potential exposure of soil in the Region of South Moravia. The method used to evaluate the spatial function of the windbreaks presented in the study using GIS instruments.

  8. Estimation of wind erosion from construction of a railway in arid Northwest China

    Directory of Open Access Journals (Sweden)

    Benli Liu


    Full Text Available A state-of-the-art wind erosion simulation model, the Wind Erosion Prediction System and the United States Environmental Protection Agency's AP 42 emission factors formula, were combined together to evaluate wind-blown dust emissions from various construction units from a railway construction project in the dry Gobi land in Northwest China. The influence of the climatic factors: temperature, precipitation, wind speed and direction, soil condition, protective measures, and construction disturbance were taken into account. Driven by daily and sub-daily climate data and using specific detailed management files, the process-based WEPS model was able to express the beginning, active, and ending phases of construction, as well as the degree of disturbance for the entire scope of a construction project. The Lanzhou-Xinjiang High-speed Railway was selected as a representative study because of the diversities of different climates, soil, and working schedule conditions that could be analyzed. Wind erosion from different working units included the building of roadbeds, bridges, plants, temporary houses, earth spoil and barrow pit areas, and vehicle transportation were calculated. The total wind erosion emissions, 7406 t, for the first construction area of section LXS-15 with a 14.877 km length was obtained for quantitative analysis. The method used is applicable for evaluating wind erosion from other complex surface disturbance projects.

  9. Nuclear energy in the oils sands

    Energy Technology Data Exchange (ETDEWEB)

    Arsenault, J.E.


    The major Canadian oil sands are located in Alberta and Saskatchewan, with most production from the strata along the Athabasca River in Alberta. The economically recoverable oil sands reserves are estimated to be 168 billion barrels which at a current production rate of 1.8 million barrels per day (2012), are projected to last a very long time. Canada has been blessed with vast energy resources which make it potentially energy-independent and able to provide significant exports but there are concerns that their development cannot be managed in a wholly acceptable manner. Comparable concerns have been applied to nuclear energy in the past and in recent times to the oil sands. The technologies associated with these energy sources have always been controversial because they are at the confluence of economics and politics where finding a balance between risk and reward is difficult. So it should be no surprise that when these technologies get linked together in certain proposals their prospect for success is doubly difficult. The possible use of nuclear energy for production of oil from the oil sands dates back to the late 1950s, when an experiment to mine the oil by detonating an underground nuclear device was proposed. It was predicted that the heat and pressure released from such a device would create a large cavern into which oil would flow, and from where it would be pumped to the surface. Almost at the same time, oil sands research using conventional sources of energy had culminated with the development of practical refining processes, essentially those still in use today. These methods require large amounts of heat energy in the form of hot water and steam. In this century nuclear energy was proposed as the source for the heat required by the oil sands production processes. To date neither of these nuclear proposals for oil sands projects have been successful, because the economic and political balance could not be struck. (author)

  10. [Gastric band erosion: Alternative management]. (United States)

    Echaverry-Navarrete, Denis José; Maldonado-Vázquez, Angélica; Cortes-Romano, Pablo; Cabrera-Jardines, Ricardo; Mondragón-Pinzón, Erwin Eduardo; Castillo-González, Federico Armando


    Obesity is a public health problem, for which the prevalence has increased worldwide at an alarming rate, affecting 1.7 billion people in the world. To describe the technique employed in incomplete penetration of gastric band where endoscopic management and/or primary closure is not feasible. Laparoscopic removal of gastric band was performed in five patients with incomplete penetrance using Foley catheterization in the perforation site that could lead to the development of a gastro-cutaneous fistula. The cases presented include a leak that required surgical lavage with satisfactory outcome, and one patient developed stenosis 3 years after surgical management, which was resolved endoscopically. In all cases, the penetration site closed spontaneously. Gastric band erosion has been reported in 3.4% of cases. The reason for inserting a catheter is to create a controlled gastro-cutaneous fistula, allowing spontaneous closure. Various techniques have been described: the totally endoscopic, hybrid techniques (endoscopic/laparoscopic) and completely laparoscopic. A technique is described here that is useful and successful in cases where the above-described treatments are not viable. Copyright © 2015. Published by Masson Doyma México S.A.

  11. An evaluation of aeolian sand transport models using four different sand traps at the Hors, Texel

    NARCIS (Netherlands)

    Hijma, M.P.; Lodder, Quirijn J.


    This report shows the result of an evaluation of how 12 aeolian sand transport models perform on a beach in Northwest-Europe. Their predictions are compared to measured rates of sand transport using four different traps. The efficiency of the different types of traps was also evaluated. From this it

  12. Simulating and understanding sand wave variation: A case study of the Golden Gate sand waves (United States)

    Sterlini, F.; Hulscher, S.J.M.H.; Hanes, D.M.


    In this paper we present a detailed comparison between measured features of the Golden Gate sand wave field and the results of a nonlinear sand wave model. Because the Golden Gate sand waves exhibit large variation in their characteristics and in their environmental physics, this area gives us the opportunity to study sand wave variation between locations, within one well-measured, large area. The nonlinear model used in this paper is presently the only tool that provides information on the nonlinear evolution of large-amplitude sand waves. The model is used to increase our understanding of the coupling between the variability in environmental conditions and the sand wave characteristics. Results show that the model is able to describe the variation in the Golden Gate sand waves well when both the local oscillating tidal current and the residual current are taken into account. Current and water depth seem to be the most important factors influencing sand wave characteristics. The simulation results give further confidence in the underlying model hypothesis and assumptions. Copyright 2009 by the American Geophysical Union.


    Directory of Open Access Journals (Sweden)

    Lucimar Arruda Viana

    Full Text Available ABSTRACT Morphology studies assume significant importance in analysis of phenomena of granular systems packaging, in particular with a view to the use of the technique of soil stabilization named particle size correction in forest roads. In this context, this study aimed to develop and operationalize a Sand Grain Image Capture System and, hereby, determine the morphological indices of the sand fractions of two sandy soils called João Pinheiro (JP and Cachoeira da Prata (CP. Soil samples, air-dried, were sieved (2.0 mm nominal mesh size for removal of gravels. The materials that passed through the sieve were subjected to dispersion, washing in 0.053 mm nominal mesh size sieve, removal of organic matter and iron oxides to obtain the clean sand fractions. Subsequently, each soil sample was sieved for separation into twelve classes, between the diameters of 0.149 mm and 1.190 mm, using a Rotap shaker. Next, tests were carried out to characterize the morphometric attributes of the twelve classes of sand fractions of the soils studied. For validation of the performance of the Sand Grain Image Capture System, the results were compared to those obtained using a standard procedure for image analysis. The analysis of the results led to the following conclusions: (i the sand fraction of the JP soil presented higher values for the morphometric indices roundness, elongation and compactness compared to sand fraction of the CP soil; and (ii the Sand Grain Image Capture System worked properly, with practicality.

  14. Analyzing the Sand-fixing Effect of Feldspathic Sandstone from the Texture Characteristics (United States)

    Zhang, lu; Ban, Jichang


    The purpose of this research was aimed to study the sand fixing effect of feldspathic sandstone in Mu Us Sandy Land, to provide a scienticic basis for desertification control, soil and water conservation and development of farming there. Methods of mixing feldspathic sandstone and aeolian sandy soil according to 1: 0, 1: 1, 1: 2, 1: 5, and 0: 1 mass ratioes, the graded composition and characteristics were studied with laser particle size analyzer. The result showed that these features of sand-based, loosely structured, easy to wind erosion of aeolian sandy soil were changed before feldspathic sandstone and aeolian sandy soil compounding. The m(F): m(S) was 1: 5(Cu was 54.71 and Cc was 2.54) or when m(F): m(S) was 1: 2(Cu was 76.21, Cc was 1.12). The conclusion is that feldspathic sandstone has sand-fixing effect in texture characteristics, which heightens with feldspathic sandstone mass increasing, and when the mass ratio of feldspathic sandstone: aeolian sandy soil is 1: 2 or 1: 5 which compound better.

  15. [Ecosystem service valuation of Ertan Reservoir watershed in mitigating reservoir sand sedimentation]. (United States)

    Wu, Nan; Gao, Ji-xi; Sudebilige; Ennaanay, Driss; Mendoza, Guillermo F; Luo, Zun-lan; Li, Dai-qing; Tian, Mei-rong


    By using software ArcGIS 9.2, an evaluation model was established to simulate the ecosystem service of Ertan Reservoir watershed in mitigating the sand sedimentation in the reservoir. In the meantime, sediment delivery ratio and universal soil loss equation were used to simulate the spatial patterns of the annual sediment yield and sediment retention in the watershed as well as the value during the service life period. In 2000, the total quantity of soil retention in the watershed was 12. 1 x 10(8) t x a(-1). The region with higher soil retention was near the main and branch streams of Yalong River, and that with higher sediment delivery ratio was near the streams and the Ertan Reservoir. The region with higher sediment yield and sediment retention was around the reservoir. The actual sediment yield in the study area was 629.3 x 10(4) t x a(-1), occupying 12.7% of the actual soil erosion volume. Farmland was the most important source of sediment yield, with its sediment yield occupying 62.9% of the total. The contribution of forestland to the mitigation of reservoir sand sedimentation was higher than that of the other lands on a per unit area basis. For the reservoir's designed operating life (100 a), the total value of the watershed in the service of mitigating Ertan Reservoir sand sedimentation was 2.75 billion yuan.

  16. Experimental Investigation of the Effect of Manufactured Sand and Lightweight Sand on the Properties of Fresh and Hardened Self-Compacting Lightweight Concretes

    Directory of Open Access Journals (Sweden)

    Yiyun Zhu


    Full Text Available Self-compacting lightweight concrete (SCLC is a promising construction material for building applications, but most SCLCs today are made with river sand (RS. There is an increasing demand for environmental protection, as well as materials with a high strength/density ratio. The manufactured sand (MS and lightweight sand (LS as fine aggregates in cement-based composite materials have been receiving more attention among researchers. However, there is not much information about the effects of MS and LS on the properties of the fresh and hardened SCLCs. In this paper, the properties of fresh and hardened SCLC made with MS and LS were investigated by a series of experiments. SCLCs made with RS served as the control in this study. The test results show that increasing the sand ratio (from 0.40–0.50 decreased the filling ability and led to an increased T50 time, which is the time spent for the concrete to reach the 500 mm spread circle, for all of the fresh SCLCs. Although the passing ability of MS-SCLCs and LS-SCLCs is not as good as RS-SCLCs, their results are still within an acceptable range. The ratio of mechanical properties to density was found to increase with an increase of the sand ratio for all of the hardened SCLCs. MS-SCLCs presented the highest compressive strength among all of the SCLCs studied. Although the mean compressive strength of LS-SCLCs is lower than those of the other two SCLCs by 8%, their strength to density ratio is higher than others by 15%, and the ratio increases remarkably with the increase of the sand ratio. Permeability test results showed that the permeability coefficient of MS-SCLC is remarkably lower than that of LS-SCLC, but slightly higher than that of RS-SCLC.

  17. Experimental Investigation of the Effect of Manufactured Sand and Lightweight Sand on the Properties of Fresh and Hardened Self-Compacting Lightweight Concretes. (United States)

    Zhu, Yiyun; Cui, Hongzhi; Tang, Waiching


    Self-compacting lightweight concrete (SCLC) is a promising construction material for building applications, but most SCLCs today are made with river sand (RS). There is an increasing demand for environmental protection, as well as materials with a high strength/density ratio. The manufactured sand (MS) and lightweight sand (LS) as fine aggregates in cement-based composite materials have been receiving more attention among researchers. However, there is not much information about the effects of MS and LS on the properties of the fresh and hardened SCLCs. In this paper, the properties of fresh and hardened SCLC made with MS and LS were investigated by a series of experiments. SCLCs made with RS served as the control in this study. The test results show that increasing the sand ratio (from 0.40-0.50) decreased the filling ability and led to an increased T50 time, which is the time spent for the concrete to reach the 500 mm spread circle, for all of the fresh SCLCs. Although the passing ability of MS-SCLCs and LS-SCLCs is not as good as RS-SCLCs, their results are still within an acceptable range. The ratio of mechanical properties to density was found to increase with an increase of the sand ratio for all of the hardened SCLCs. MS-SCLCs presented the highest compressive strength among all of the SCLCs studied. Although the mean compressive strength of LS-SCLCs is lower than those of the other two SCLCs by 8%, their strength to density ratio is higher than others by 15%, and the ratio increases remarkably with the increase of the sand ratio. Permeability test results showed that the permeability coefficient of MS-SCLC is remarkably lower than that of LS-SCLC, but slightly higher than that of RS-SCLC.

  18. Elution of Mixed Moulding Sands with the GEOPOL Binder and Core Sands with the Phenolic Resin

    Directory of Open Access Journals (Sweden)

    Holtzer M.


    Full Text Available Out of moulding and core sands used in the foundry industry, sands with organic binders deserve a special attention. These binders are based on synthetic resins, which ensure obtaining the proper technological properties and sound castings, however, they negatively influence the environment. Depending on the kind of the applied resin under an influence of a temperature such compounds as for example BTEX group and polycyclic aromatic hydrocarbons (PAHs can be formed and released. During storing or economic utilization of used sand is possibility of eluting harmful substances into the environment. Therefore at assessing an influence of the used sand on the environment two above elements should be taken into consideration. Only such investigations provide the complete assessment of the given sand harmfulness.

  19. Evaluation of ULV applications against Old World sand fly (Diptera: Psychodidae) species in equatorial Kenya. (United States)

    Britch, Seth C; Linthicum, Kenneth J; Walker, Todd W; Farooq, Muhammad; Gordon, Scott W; Clark, Jeffrey W; Ngere, Francis; Ngonga, Daniel; Chepchieng, Clifford


    Reducing populations of phlebotomine sand flies in areas prevalent for human leishmaniases is of ongoing importance to United States military operations and civilian populations in endemic regions. However, not enough is known regarding the efficacy of Department of Defense-approved pesticides and equipment against sand flies; specifically, the potential for ultra-low volume (ULV) pesticide applications to control Old World sand fly vectors. In this study we examine two sprayers, the Terminator ULV and the Grizzly ULV, with UV-labeled Duet and Fyfanon in four combinations against caged Phlebotomus duboscqi (Neveu-Lemaire) and wild sand fly populations in a natural environment in western Kenya. All equipment and Fyfanon have United States military National Stock Numbers and both pesticides are registered with the United States Environmental Protection Agency. Caged sand flies were reared from local P. duboscqi and the area has long been studied because of high incidences of human cutaneous and visceral Leishmania. Patterns of mortality across grids of caged sand flies showed greater efficacy from the Grizzly ULV regardless of chemical. The Terminator ULV performed well with Duet but with a less uniform and overall lower rate of mortality across the spray grid. Sampling of wild populations before and after treatments suggested local population suppression from ULV treatments, as well as a possible repellent effect in nearby untreated areas. Surprisingly, ULV active ingredient deposition inferred from patterns of UV-labeled droplets captured on cotton ribbons adjacent to sand fly cages in spray plots did not match patterns of mortality. We discuss the implications of this study, the first of its kind, for future military preventive medicine activities, including relative performance costs and benefits of larger or smaller sprayers, and the relative stability of ULV-induced mortality patterns in varied or sub-optimal conditions.

  20. Emission Facilities - Erosion & Sediment Control Facilities (United States)

    NSGIC Education | GIS Inventory — An Erosion and Sediment Control Facility is a DEP primary facility type related to the Water Pollution Control program. The following sub-facility types related to...

  1. Puerto Rico Relative Erosion Potential (REP) - 1990 (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The relative erosion potential is an indicator of sediment and pollution runoff from land based on slope, soil type, land cover (circa 1990) and (maximum monthly)...


    African Journals Online (AJOL)



    Oct 13, 2011 ... Ethiopian Journal of Environmental Studies and Management EJESM Vol. 5 No. 2 2012 ..... a rainfall erosivity model for the Mediterranean region, Journal of Hydrology ... Journal of Applied. Social Sciences, vol 1 no 1 pp 5-14.

  3. Puerto Rico Relative Erosion Potential (REP) - 2000 (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The relative erosion potential is an indicator of sediment and pollution runoff from land based on slope, soil type, land cover (circa 2000) and (maximum monthly)...

  4. Vegetated Reinforced Soil Slope Streambank Erosion Control

    National Research Council Canada - National Science Library

    Sotir, Robbin B; Fischenich, J. C


    ...). The VRSS system is useful for the immediate repair or prevention of deeper failures providing a structurally sound system with soil reinforcement, drainage and erosion control typically on steepened...

  5. Regulated Environmental Activity Sites - CriticalErosion (United States)

    NSGIC Local Govt | GIS Inventory — Created based on the Critical Erosion Report for 2005. Indicates the condition of shoreline, determined by our staff of Coastal Engineers, for the year 2005. This...

  6. Rain Erosion/Measurement Impact Laboratory (United States)

    Federal Laboratory Consortium — The FARM Rain Erosion/Impact Measurement Lab develops solutions for deficiencies in the ability of materials, coatings and designs to withstand a severe operational...

  7. Puerto Rico Relative Vulnerability to Erosion (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Physical factors, such as the slope of the land, the texture of the soil, and the precipitation regime influence erosion in an area. Parts of Puerto Rico are very...

  8. Estimating soil erosion on hiking trails in the Sierra Mariola Natural Park in southern Spain (United States)

    Magdalena Warter, Maria; Peeters, Mattias; Kuppen, Emiel; Blok, Kas; Dilly, Lina


    Natural parks and protected natural areas provide excellent recreational opportunities for outdoor activities through the richness of the natural environment and the abundance of walking trails. Hiking, mountain biking and running have rapidly gained popularity over recent years increasing concerns about the erosion and degradation of hiking trails caused by (over)use. This is also the case in the Sierra Mariola Natural Park in southeast Spain, which is a popular destination for tourists due to its diverse fauna and flora. The increasing number of tourists together with the negative impacts of climate change necessitates a better understanding of the key soil erosion processes impacting hiking trails. There are 4 scenic trail routes in the Natural Park amounting to 21 km plus an additional network of unofficial trails. Apart from the heavy touristic traffic on the trails there are large trail running events with up to 1000 participants becoming increasingly popular, however local park authorities have voiced concerns about the impacts of these activities on the trails. Despite the popularity of walking trails around the world, there is a paucity of research exploring soil erosion from these features. Therefore, the aims of this study are: 1) to ascertain the amount of erosion that occurs on trails in the Sierra Mariola Natural Park, and 2) determine the key factors that influence soil erosion. Some 100 km of trails were evaluated (both official and unmarked trails), with route segments ranging between 2 and 10 km. A trail classification system was developed to group trail segments based on their surface characteristics (bedrock, gravel, mixed sediment, soil or man-made) and specific erosion features (rills, ditch-shaped, tilted). For each class, the average erosion rate was calculated which ranged from 262 t/ha for soil-based trails to 2006 t/ha for heavily eroded, ditch-shaped trails. The spatial distribution of the different erosion rates and trail types were

  9. Fracturing in the oil-sands reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Y.; Yang, B. [Society of Petroleum Engineers (Canada); Xu, B. [BitCan G and E Inc (Canada)


    Oil sands reservoirs stimulation requires the use of steam or solvent in order to reduce oil viscosity, making for better recovery. Injection of these stimulants is generally achieved by hydro-fracturing and, given concerns over the impact of this on caprock integrity, a better understanding is needed of the phenomena involved during fracturing. Based on a review of the literature and on analytical, numerical and field data, this paper aims to explore the phenomena involved during hydro-fracturing of oil sands. Review of existing test data shows that oil sands have a clear dilatation tendency. Analytical derivation then compares the effects and occurrence of dilatation and tensile parting during hydro-fracturing, showing a dominance of dilatation, resulting in much higher porosity in the sands formation. Field data then confirmed these derivations, thus giving them an experimental validation. Glaciation is proposed as a cause for the presence of these phenomena in oil sands, thus the results can safely be extrapolated to other similar rock formations.

  10. Development of a new instrument for measurement of high temperature mechanical properties of resin-bonded sand

    Directory of Open Access Journals (Sweden)

    Peng Wan


    Full Text Available The mechanical properties of resin-bonded sand mixtures at high temperatures significantly affect the quality of casting. However, the existing instruments for high-temperature performances testing mainly focus on inorganic binder-bonded sands no matter the test items or the atmospheric protection, while the instrumentss specially designed for resin-bonded sand are not yet available. A new instrument for testing the high-temperature performance of resin sand was designed including the confirmation of the testing parameters, loading, measurement and control systems, and the design of the frame shape and heating furnace. This instrument can test the compressive strength, heat tolerance time and restraining load of phenol-formaldehyde resin coated sand, self-hardened furan resin sand, and trimethylamine (TEA-based resin bonded sand at high temperatures. The developed instrument has a high accuracy offering smaller than 0.3% deviation at a full scale in the measurement of the high temperature compressive strength and the restraining load over the range of 0–6.8 MPa and 0–2,000 N, respectively. The high temperature heat tolerance time range is 0–300 s and its measurement accuracy is ±1 s.

  11. Using high-resolution radar images to determine vegetation cover for soil erosion assessments. (United States)

    Bargiel, D; Herrmann, S; Jadczyszyn, J


    Healthy soils are crucial for human well-being. Because soils are threatened worldwide, politicians recognize the need for soil protection. For example, the European Commission has launched the Thematic Strategy for Soil Protection, which requests the European member states to identify high risk areas for soil degradation. Most states use the Universal Soil Loss Equation (USLE) to assess soil erosion risk at the national scale. The USLE includes different factors, one of them is the vegetation cover and management factor (C factor). Modern satellite-based radar sensors now provide highly accurate vegetation cover data, enabling opportunities to improve the accuracy of the C factor. The presented study proves the suitability for C factor determination based on a multi-temporal classification of high-resolution radar images. Further USLE factors were derived from existing data sources (meteorological data, soil maps, digital elevation model) to conduct an USLE-based soil erosion assessment. The resulting map illustrates a qualitative assessment for soil erosion risk within a plot of about 7*12 km in an agricultural region in Poland that is very susceptible to soil erosion processes. A high erosion risk of more than 10 tonnes per ha and year was assessed to occur on 13.6% (646 ha) of the agricultural areas within the investigated plot. Further 7.8% (372 ha) of agricultural land is threaten by a medium risk of 5-10 tonnes per ha and year. Such a spatial information about areas of high or medium soil erosion risk are crucial for the development of strategies for the protection of soils. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Searching for plant root traits to improve soil cohesion and resist soil erosion (United States)

    De Baets, Sarah; Smyth, Kevin; Denbigh, Tom; Weldon, Laura; Higgins, Ben; Matyjaszkiewicz, Antoni; Meersmans, Jeroen; Chenchiah, Isaac; Liverpool, Tannie; Quine, Tim; Grierson, Claire


    Soil erosion poses a serious threat to future food and environmental security. Soil erosion protection measures are therefore of great importance for soil conservation and food security. Plant roots have proven to be very effective in stabilizing the soil and protecting the soil against erosion. However, no clear insights are yet obtained into the root traits that are responsible for root-soil cohesion. This is important in order to better select the best species for soil protection. Research using Arabidopsis mutants has made great progress towards explaining how root systems are generated by growth, branching, and responses to gravity, producing mutants that affect root traits. In this study, the performance of selected Arabidopsis mutants is analyzed in three root-soil cohesion assays. Measurements of detachment, uprooting force and soil detachment are here combined with the microscopic analysis of root properties, such as the presence, length and density of root hairs in this case. We found that Arabidopsis seedlings with root hairs (wild type, wer myb23, rsl4) were more difficult to detach from gel media than hairless (cpc try) or short haired (rsl4, rhd2) roots. Hairy roots (wild type, wer myb23) on mature, non-reproductive rosettes were more difficult to uproot from compost or clay soil than hairless roots (cpc try). At high root densities, erosion rates from soils with hairless roots (cpc try) were as much as 10 times those seen from soils occupied by roots with hairs (wer myb23, wild type). We find therefore root hairs play a significant role in root-soil cohesion and in minimizing erosion. This framework and associated suite of experimental assays demonstrates its ability to measure the effect of any root phenotype on the effectiveness of plant roots in binding substrates and reducing erosion.

  13. Soil erosion - a local and national problem (United States)

    C.G. Bates; O.R. Zeasman


    The erosion of soils through the action of rain water and that from melting snow is almost universal in its occurrence. The gradual erosion and levelling of any country is inevitable, being a process which has gone on as long as there has been free water on the face of the earth. Nevertheless, this process is an extremely slow one where the landscape is naturally well...



    Rafi Shaik


    BACKGROUND The pattern of oral diseases has been influenced by ever changing human lifestyle. Tooth wear especially dental erosion has drawn increasing attention as risk factor for tooth damage or loss in recent years. It is a common condition in primary dentition compared to permanent dentition due to thinner and less mineralised enamel. However, it is more worrying, when this condition is being found in an alarming proportion among children. The presence of dental erosion in c...

  15. Natural and anthropogenic rates of soil erosion

    Directory of Open Access Journals (Sweden)

    Mark A. Nearing


    Full Text Available Regions of land that are brought into crop production from native vegetation typically undergo a period of soil erosion instability, and long term erosion rates are greater than for natural lands as long as the land continues being used for crop production. Average rates of soil erosion under natural, non-cropped conditions have been documented to be less than 2 Mg ha−1 yr−1. On-site rates of erosion of lands under cultivation over large cropland areas, such as in the United States, have been documented to be on the order of 6 Mg ha−1 yr−1 or more. In northeastern China, lands that were brought into production during the last century are thought to have average rates of erosion over this large area of as much as 15 Mg ha−1 yr−1 or more. Broadly applied soil conservation practices, and in particular conservation tillage and no-till cropping, have been found to be effective in reducing rates of erosion, as was seen in the United States when the average rates of erosion on cropped lands decreased from on the order of 9 Mg ha−1 yr−1 to 6 or 7 Mg ha−1 yr−1 between 1982 and 2002, coincident with the widespread adoption of new conservation tillage and residue management practices. Taking cropped lands out of production and restoring them to perennial plant cover, as was done in areas of the United States under the Conservation Reserve Program, is thought to reduce average erosion rates to approximately 1 Mg ha−1 yr−1 or less on those lands.

  16. Impacts of decentralization - erosion or renewal?

    DEFF Research Database (Denmark)

    Ilsøe, Anna; Madsen, Jørgen Steen; Due, Jesper Jørgen


    to observe erosive tendencies in these hitherto sturdy fortresses of “organised decentralisation”. It is the main thesis of this article that the dualistic German system makes it more difficult for the German parties to adapt the bargaining system so that their overall coordination can be preserved even...... and the more homogeneous composition of company sizes in Denmark are core explanations why Denmark exhibits fewer erosive trends than Germany and more signs of renewal in the development towards multi-level regulation....

  17. Destruction of Moulding Sands with Chemical Binders Caused by the Thermal Radiation of Liquid Metal

    Directory of Open Access Journals (Sweden)

    Zych J.


    Full Text Available The obtained results of heating of sand moulds with binders by means of a thermal radiation of liquid metal are presented in this study. Standard samples for measuring Rg made of the tested moulding sands were suspended at the lower part of the cover which was covering the crucible with liquid metal (cast iron, placed in the induction furnace. The authors own methodology was applied in investigations. The progressing of the samples surface layers heating process was determined as the heating time function. Samples of a few kinds of moulding sands with chemical binders were tested. Samples without protective coatings as well as samples with such coatings were tested. The influence of the thermal radiation on bending resistance of samples after their cooling was estimated. The influence of several parameters such as: time of heating, distance from the metal surface, metal temperature, application of coatings, were tested. A very fast loss of strength of moulding sands with organic binders was found, especially in cases when the distance between metal and sample surfaces was small and equaled to 10÷15 mm. Then, already after app. 15 seconds of the radiation (at Tmet=1400°C, the resistance decreases by nearly 70%. Generally, moulding sands with organic binders are losing their strength very fast, while moulding sands with water glass at first increase their strength and later slightly lose. The deposition of protective coatings increases the strength of the mould surface layers, however does not allow to retain this strength after the metal thermal radiation.

  18. Developing an Erosion Rate Map for Myanmar Using USLE, GIS and Remote Sensing (United States)

    Emtehani, Sobhan; Rutten, Martine


    Predicting erosion and estimating sediment loads in rivers are of major tasks in water resources system planning and management. In Myanmar erosion and collapse of river banks is common during the rainy season and riverine communities are frequently forced to relocate as their homes are dangerously close to the disintegrating river banks (Mann 2013). Myanmar is one of climatically most diverse countries located in Southeast Asia, where sheet, rill, and gully erosion affect crop yields as well as livelihood strategies of many people (Htwe, Brinkmann et al. 2015). In Myanmar, soil erosion measurement and monitoring approaches are increasingly important for land management planning to effectively avoid erosion and soil degradation, but such monitoring is limited by the availability of data and budgetary constraints. Therefore, spatial modeling approaches using GIS and remote sensing techniques play an important role for rapid risk assessments (Htwe 2016). In this study ''Model Builder'' tool in ArcGIS was used to create a model which generates an erosion rate map using Universal Soil Loss Equation (USLE). USLE is the product of five factors: rainfall erosivity factor (R), soil erodibility factor (K), slope length and steepness factor (LS), crop management factor (C), and support practice factor (P). Input data files for this model were acquired from online open source databases. Precipitation data was downloaded from Tropical Rainfall Measuring Mission (TRMM) for calculation of R factor. The resolution of TRMM data is very coarse (0.25 degree × 0.25 degree), therefore it was spatially downscaled by developing a relation between TRMM and Normalized Difference Vegetation Index (NDVI) using regression analysis method. Soil maps depicting percentages of sand, clay and silt were obtained from soilgrids website for calculation of K factor. Digital Elevation Model (DEM) with resolution of 90 meters was taken from Shuttle Radar Topography Mission (SRTM) for calculation of LS


    Directory of Open Access Journals (Sweden)



    Full Text Available This study focuses on an area of erosion soils developed in Timis county of North - East of Timisoara. Soil erosion phenomenon intensity over the field of Ianova area is controlled by environment factors: relief, climate (rainfall intensity and runoff, vegetation, lithological substratum and human activity. Slope erosion state on erosion classes show that more than half of slope lands are affected by moderate and strong erosion. Ecopedological indicators of chemical soil characterization present lower values while erosion degree progresses. Thus, humus cantity progressively comes down from soil weak eroded (3,90-2,82% to soil excessive eroded (1,14%-1,11%. Nitrogen content expressed through nitrogen indicator has medium values (1,86-3,04 for weak and moderate eroded soils and small values (0,96-0,21 for excessive eroded soils. Potassium content substantially comes down from weak eroded soils (180ppm till to those excessive eroded (132 ppm. Phosphorus content has small values for all eroded soils (4,70-2,68 ppm. For eroded fields of Ianova area we propose: antierosional developments, agropedoimprovement works, antierosional agrotechnical works.

  20. Dental erosion: causes, diagnostics and treatment.

    Directory of Open Access Journals (Sweden)

    Cecilia Sosa-Puente


    Full Text Available Despite being a commonly studied topic, it is difficult to find studies which explain the problem of dental erosion. For this article, literature was analyzed to find information on the agents which trigger dental erosion, the main diagnosis methods, the most common treatments used nowadays and the interrelationship with dental materials. The etiology of dental erosion is multifactorial, including acids, eating disorders and gastro-esophageal reflux. However, biological factors such as saliva or habits also play a part in the establishment of this condition. In order to establish a reliable diagnosis, clinical appearance becomes decisive. The Basic Index Erosive Wear Examination (BEWE, created in 2008, is an auxiliary diagnosis tool for assessing the status and progress of the erosion. Treatment should be linked to the eradication of the causative agent and it can range from simple observational monitoring of slightly affected teeth to the placement of total crowns in the most severe cases, but this will depend entirely on the extent, severity, symptoms and type of dentition. Regarding dental materials used in the treatment of eroded parts, there are glass ionomer and composite; the latter presents the greatest resistance to biodegradation when interacting with acids. Glass ionomers are the most vulnerable material while resin is seen as the most resistant. In conclusion, dental erosion has become an issue of great importance in the dental practice because of its serious impact on dental structures. Consequently, it is ranked among the most important dental disorders in the present day.

  1. Basin-wide erosion rates of a relict surface in the southeastern Tibetan Plateau from in-situ produced 10Be in fluvial sediments (United States)

    Fu, Ping; Stroeven, Arjen; Harbor, Jonathan; Heyman, Jakob; Caffee, Marc


    Over geological time Earth's surface undergoes radical changes. Few regions display these changes more than the Tibetan Plateau, a dynamic region undergoing changes brought about by tectonic and climatic forcing. Our goal is to quantify surface erosion rates on the Tibetan Plateau. Characterizing the surficial changes and the underlying causes are significant goals that require quantitative tools. With the development of AMS and improved understanding of nuclide production rates, in-situ produced cosmogenic nuclide dating has become increasingly effective for quantifying surface exposure age and erosion rates. Likewise, in-situ cosmogenic 10Be has been successfully to determine basin-wide erosion rates in many geological setting. However, quantifying fluvial erosion rates from glaciated basins using cosmogenic nuclide concentrations in fluvial sediments has limitations because burial by ice and glacial erosion can strongly reduce concentrations or entirely reset the cosmogenic nuclide clock in a landscape, which in turn leads to overestimation of fluvial erosion rates. In this study, we measured 10Be concentrations in river sand samples from both previously glaciated basins and non-glaciated basins, on a low-relief relict surface and the surrounding mountain area, respectively, in the southeastern Tibetan Plateau. The results show that fluvial sediments from glaciated basins have higher cosmogenic nuclide concentrations than expected given the deglaciation ages for these basins. Derived basin wide erosion rates are therefore significantly lower for glaciated basins than for non-glaciated basins. We interpret the high cosmogenic nuclide concentrations as a result of nuclide inheritance from before the last glaciation. In contrast to others studies indicating that overestimation of fluvial erosion rates can occur due to glacial erosion, our results suggest that in the case of a formerly glaciated relict surface in southeastern Tibet (largely preserved under non-erosive

  2. Rill erosion in natural and disturbed forests: 1. Measurements (United States)

    P. R. Robichaud; J. W. Wagenbrenner; R. E. Brown


    Rill erosion can be a large portion of the total erosion in disturbed forests, but measurements of the runoff and erosion at the rill scale are uncommon. Simulated rill erosion experiments were conducted in two forested areas in the northwestern United States on slopes ranging from 18 to 79%. We compared runoff rates, runoff velocities, and sediment flux rates from...

  3. Satellite-based estimation of rainfall erosivity for Africa

    NARCIS (Netherlands)

    Vrieling, A.; Sterk, G.; Jong, S.M. de


    Rainfall erosivity is a measure for the erosive force of rainfall. Rainfall kinetic energy determines the erosivity and is in turn greatly dependent on rainfall intensity. Attempts for its large-scale mapping are rare. Most are based on interpolation of erosivity values derived from rain gauge

  4. Planet-wide sand motion on mars (United States)

    Bridges, N.T.; Bourke, M.C.; Geissler, P.E.; Banks, M.E.; Colon, C.; Diniega, S.; Golombek, M.P.; Hansen, C.J.; Mattson, S.; McEwen, A.S.; Mellon, M.T.; Stantzos, N.; Thomson, B.J.


    Prior to Mars Reconnaissance Orbiter data, images of Mars showed no direct evidence for dune and ripple motion. This was consistent with climate models and lander measurements indicating that winds of sufficient intensity to mobilize sand were rare in the low-density atmosphere. We show that many sand ripples and dunes across Mars exhibit movement of as much as a few meters per year, demonstrating that Martian sand migrates under current conditions in diverse areas of the planet. Most motion is probably driven by wind gusts that are not resolved in global circulation models. A past climate with a thicker atmosphere is only required to move large ripples that contain coarse grains. ?? 2012 Geological Society of America.

  5. Thermoluminescent dosimetric properties of Descalvado sand

    Energy Technology Data Exchange (ETDEWEB)

    Teixeira, M.I.; Caldas, L.V.E


    Sand samples proceeding from Descalvado, Sao Paulo, were studied with regard to their dosimetric properties using the thermoluminescence technique (TL) for high doses. These sand samples present steady physical and chemical characteristics to the end items, and they are used in the glass industry and for casting. The TL curves of the samples were obtained after an irradiation at the Gamma-Cell system ({sup 60} Co), of IPEN. The glow curves present two peaks at 80 C and 220 C approximately. Calibration curves were obtained for doses between 50 Gy and 5 kGy. The results indicate that the sand samples can be used for high-doses dosimetry in several areas of applications of ionizing radiation. (Author)

  6. On the Size Distribution of Sand

    DEFF Research Database (Denmark)

    Sørensen, Michael


    by Bagnold and confirmed in numerous empirical studies. The model implies that the size distribution of a sand deposit is a logarithmic normal-inverse Gaussian (NIG) distribution, which is one of the generalized hyperbolic distributions. The model modifies a previous model, which implied a log-normal size-distribution......, variance and skewness of the log-size distribution to the physical parameters of the model. The results might be useful when comparing empirical size-distributions from different deposits. It is argued that size-distributions with the same general shape as the NIG-distributions can be obtained also when......A model is presented of the development of the size distribution of sand while it is transported from a source to a deposit. The model provides a possible explanation of the log-hyperbolic shape that is frequently found in unimodal grain size distributions in natural sand deposits, as pointed out...

  7. Permeability Tests on Silkeborg Sand No. 0000

    DEFF Research Database (Denmark)

    Lund, Willy; Jakobsen, Kim Parsberg

    The flow through porous media plays an important role in various engineering disciplines, as for example in ground water hydrology and soil mechanics. In the present study the permeability is determined for a fine, saturated sand. As the flow through a porous media strongly depends on the charact......The flow through porous media plays an important role in various engineering disciplines, as for example in ground water hydrology and soil mechanics. In the present study the permeability is determined for a fine, saturated sand. As the flow through a porous media strongly depends...... on the characteristics of the soil matrix, the permeability is determined for different void ratios. All tests are performed on reconstituted specimens of Silkeborg Sand No. 0000. The permeability is determined by use of a falling head apparatus. The apparatus, test procedures and the analysis method are described...

  8. Permeability Tests on Eastern Scheldt Sand

    DEFF Research Database (Denmark)

    Jakobsen, Kim Parsberg

    The flow through porous media plays an important role in various engineering disciplines, as for example in ground water hydrology and soil mechanics. In the present study the permeability is determined for a fine, saturated sand. As the flow through a porous media strongly depends on the charact......The flow through porous media plays an important role in various engineering disciplines, as for example in ground water hydrology and soil mechanics. In the present study the permeability is determined for a fine, saturated sand. As the flow through a porous media strongly depends...... on the characteristics of the soil matrix, the permeability is determined for different void ratios. All tests are performed on reconstituted specimens of Eastern Scheldt Sand. The permeability is determined by use of a falling head apparatus. Finally the test results are briefly summarised and a relationship between...

  9. Bioaugmentation of flow-through sand filters

    DEFF Research Database (Denmark)

    Samuelsen, Elin Djurhuus

    MCPA degradation for prolonged periods in flow-through sand columns. In an expression study of catabolic genes with putative roles in phenoxy acid degradation, we observed a marked upregulation of catabolic genes cadA and tfdC upon exposure to MCPA, 2,4-D, dichlorprop and mecoprop in strain PM2, which...... coincided with efficient mineralisation/degradation, and proposed the tfdC gene as a suitable marker for monitoring phenoxy acid degradation in strain PM2. Furthermore, when testing strain PM2s degradation performance in flow-through sand columns, we found that strain PM2 was able to sustain induced...... for degradation performances in flow-through sand columns, with the aim of identifying a suitable inoculant strain for future environmental applications. Another aim was to identify a suitable genetic marker to monitor phenoxy acid degradation in strain Sphingobium sp. PM2. We were not able to link motility...

  10. Interplay between experimental dental pellicles and stannous-containing toothpaste on dental erosion-abrasion. (United States)

    Hara, A T; Lippert, F; Zero, D T


    The interaction between stannous-containing dentifrice slurry and experimentally formed pellicles was investigated on enamel and root dentin using an erosion-remineralization-abrasion cycling model. The remineralizing solutions contained no proteins (negative control), mucin, casein, mucin + casein or albumin, for experimental pellicle formation. Toothbrushing was performed with fluoride toothpaste, with (TP + Sn) and without (TP) 3,500 ppm Sn. TP + Sn reduced surface loss for both enamel and root dentin (p dental erosion-abrasion protection. A similar trend was observed for root dentin, although less pronounced. Copyright © 2013 S. Karger AG, Basel.

  11. Progression of stream bank erosion dudring a large flood, Rio Puerco, New Mexico (United States)

    Griffin, Eleanor R.; Smith, J. Dungan; Friedman, Jonathan M.; Vincent, Kirk R.


    In August 2006, a large flood following saltcedar control efforts through a 12-km long segment of the Rio Puerco arroyo resulted in extensive lateral erosion of the streambanks. Almost all woody vegetation on the floodplain and channel banks had been killed by aerial spraying with herbicide in September 2003. During the flood, dead woody bank stems were either removed by the >4-m-deep flood flow or flattened against the bank, eliminating the source of drag that would have protected the banks from erosion. Owing to downstream variation in the shear stresses on the

  12. Erosivity, surface runoff, and soil erosion estimation using GIS-coupled runoff-erosion model in the Mamuaba catchment, Brazil. (United States)

    Marques da Silva, Richarde; Guimarães Santos, Celso Augusto; Carneiro de Lima Silva, Valeriano; Pereira e Silva, Leonardo


    This study evaluates erosivity, surface runoff generation, and soil erosion rates for Mamuaba catchment, sub-catchment of Gramame River basin (Brazil) by using the ArcView Soil and Water Assessment Tool (AvSWAT) model. Calibration and validation of the model was performed on monthly basis, and it could simulate surface runoff and soil erosion to a good level of accuracy. Daily rainfall data between 1969 and 1989 from six rain gauges were used, and the monthly rainfall erosivity of each station was computed for all the studied years. In order to evaluate the calibration and validation of the model, monthly runoff data between January 1978 and April 1982 from one runoff gauge were used as well. The estimated soil loss rates were also realistic when compared to what can be observed in the field and to results from previous studies around of catchment. The long-term average soil loss was estimated at 9.4 t ha(-1) year(-1); most of the area of the catchment (60%) was predicted to suffer from a low- to moderate-erosion risk (soil erosion was estimated to exceed > 12 t ha(-1) year(-1). Expectedly, estimated soil loss was significantly correlated with measured rainfall and simulated surface runoff. Based on the estimated soil loss rates, the catchment was divided into four priority categories (low, moderate, high and very high) for conservation intervention. The study demonstrates that the AvSWAT model provides a useful tool for soil erosion assessment from catchments and facilitates the planning for a sustainable land management in northeastern Brazil.

  13. The shallow stratigraphy and sand resources offshore of the Mississippi Barrier Islands (United States)

    Twichell, David; Pendleton, Elizabeth A.; Baldwin, Wayne; Foster, David; Flocks, James; Kelso, Kyle; DeWitt, Nancy; Pfeiffer, William; Forde, Arnell; Krick, Jason; Baehr, John


    Coastal Mississippi is protected by a series of barrier islands ranging in length from 10-25 kilometers that are less than 2 kilometers wide. The majority of these islands comprise the Gulf Islands National Seashore (GUIS), an ecologically diverse shoreline that provides habitat for wildlife including migratory birds and endangered animals. The majority of GUIS is submerged, and aquatic environments include dynamic tidal inlets, ebb-tide deltas, and seagrass beds. The islands are in a state of decline, with land areas severely reduced during the past century by storms, sea-level rise, and human alteration. Morton (2008) estimates that since the mid-1800s up to 64 percent of island surface area has been lost. Heavy damage was inflicted in 2005 by Hurricane Katrina, which passed by as a Category 3 storm and battered the islands with winds of more than 160 kilometers per hour and a storm surge up to 9 meters. Since 2007, the U.S. Geological Survey (USGS), in collaboration with the National Park Service, has been mapping the seafloor and substrate around the islands as part of the USGS Northern Gulf of Mexico Ecosystem Change and Hazard Susceptibility project. The purpose of these investigations is to characterize the near-surface stratigraphy and identify the influence it may have on island evolution and fate. In 2009, this effort provided the basis for a collaborative effort with the U.S. Army Corps of Engineers (USACE) to expand the investigation outside of GUIS boundaries as part of the Mississippi Coastal Improvement Project (MsCIP). The MsCIP program consists of structural, nonstructural, and environmental project elements to restore portions of coastal Mississippi and GUIS affected by storm impact. The project includes the placement of sand along the islands, both on the present beaches and within the littoral zone, to mitigate shoreline erosion and breaching. This action requires the location and assessment of offshore sand or sediment deposits that can provide

  14. Preliminary assessments of the occurrence and effects of utilization of sand and aggregate resources of the Louisiana inner shelf (United States)

    Suter, J.R.; Mossa, J.; Penland, S.


    Louisiana is experiencing the most critical coastal erosion and land loss problem in the United States. Shoreline erosion rates exceed 6 m/yr in more than 80% of the Louisiana coastal zone and can be up to 50 m/yr in areas impacted by hurricanes. The barrier islands have decreased in area by some 40% since 1880. Land loss from coastal marshlands and ridgelands from both natural and human-induced processes is estimated to exceed 100 km2/yr. In response, a two-phase plan has been established, calling for barrier-island restoration and beach nourishment, both requiring large amounts of sand. The plan will be cost-effective only if sand can be found offshore in sufficient quantities close to project sites. To locate such deposits, the Louisiana Geological Survey is conducting an inventory of nearshore sand resources on the Louisiana continental shelf. Exploration for offshore sand deposits is conducted in two phases, with high-resolution seismic reflection profiling to locate potential sand bodies followed by vibracoring to confirm seismic intepretations and obtain samples for textural characterization. As part of the initial stages of the program, reconnaissance high-resolution seismic investigations of three areas of the continental shelf representing different stages in the evolutionary sequence of barrier shorelines were carried out. The Timbalier Islands, flanking barriers of the eroding Caminada-Moreau headland, contain potential sand resources associated with buried tidal and distributary channels. The Chandeleur Islands, a barrier-island arc, have potential offshore sands in the form of truncated spit and tidal inlet deposits, submerged beach ridges, and distributary channels. Trinity Shoal, an inner shelf shoal, is an offshore feature containing up to 2 ?? 109 m3 of material, most of which is probably fine sand. These reconnaissance surveys have demonstrated the occurrence of sand resources on the Louisiana continental shelf. Utilization of such deposits for

  15. A Threshold Continuum for Aeolian Sand Transport (United States)

    Swann, C.; Ewing, R. C.; Sherman, D. J.


    The threshold of motion for aeolian sand transport marks the initial entrainment of sand particles by the force of the wind. This is typically defined and modeled as a singular wind speed for a given grain size and is based on field and laboratory experimental data. However, the definition of threshold varies significantly between these empirical models, largely because the definition is based on visual-observations of initial grain movement. For example, in his seminal experiments, Bagnold defined threshold of motion when he observed that 100% of the bed was in motion. Others have used 50% and lesser values. Differences in threshold models, in turn, result is large errors in predicting the fluxes associated with sand and dust transport. Here we use a wind tunnel and novel sediment trap to capture the fractions of sand in creep, reptation and saltation at Earth and Mars pressures and show that the threshold of motion for aeolian sand transport is best defined as a continuum in which grains progress through stages defined by the proportion of grains in creep and saltation. We propose the use of scale dependent thresholds modeled by distinct probability distribution functions that differentiate the threshold based on micro to macro scale applications. For example, a geologic timescale application corresponds to a threshold when 100% of the bed in motion whereas a sub-second application corresponds to a threshold when a single particle is set in motion. We provide quantitative measurements (number and mode of particle movement) corresponding to visual observations, percent of bed in motion and degrees of transport intermittency for Earth and Mars. Understanding transport as a continuum provides a basis for revaluating sand transport thresholds on Earth, Mars and Titan.

  16. Soil erosion and sediment yield and their relationships with vegetation cover in upper stream of the Yellow River. (United States)

    Ouyang, Wei; Hao, Fanghua; Skidmore, Andrew K; Toxopeus, A G


    Soil erosion is a significant concern when considering regional environmental protection, especially in the Yellow River Basin in China. This study evaluated the temporal-spatial interaction of land cover status with soil erosion characteristics in the Longliu Catchment of China, using the Soil and Water Assessment Tool (SWAT) model. SWAT is a physical hydrological model which uses the RUSLE equation as a sediment algorithm. Considering the spatial and temporal scale of the relationship between soil erosion and sediment yield, simulations were undertaken at monthly and annual temporal scales and basin and sub-basin spatial scales. The corresponding temporal and spatial Normalized Difference Vegetation Index (NDVI) information was summarized from MODIS data, which can integrate regional land cover and climatic features. The SWAT simulation revealed that the annual soil erosion and sediment yield showed similar spatial distribution patterns, but the monthly variation fluctuated significantly. The monthly basin soil erosion varied from almost no erosion load to 3.92 t/ha and the maximum monthly sediment yield was 47,540 tones. The inter-annual simulation focused on the spatial difference and relationship with the corresponding vegetation NDVI value for every sub-basin. It is concluded that, for this continental monsoon climate basin, the higher NDVI vegetation zones prevented sediment transport, but at the same time they also contributed considerable soil erosion. The monthly basin soil erosion and sediment yield both correlated with NDVI, and the determination coefficients of their exponential correlation model were 0.446 and 0.426, respectively. The relationships between soil erosion and sediment yield with vegetation NDVI indicated that the vegetation status has a significant impact on sediment formation and transport. The findings can be used to develop soil erosion conservation programs for the study area. Copyright © 2010 Elsevier B.V. All rights reserved.

  17. Sand control systems used in completing wells

    Directory of Open Access Journals (Sweden)

    Gabriel Wittenberger


    Full Text Available Expandable Tubular Technology is transforming the face of well completion and construction. This technology provides: a substantially higher hydrocarbon production rates from the reservoir, a reduced well drilling and construction costs, new possibilities for previously unreachable or uneconomic reservoirs, and step a change towards the single diameter well. ESS (Expandable Sand Screen has an unrivalled performance worldwide for delivering a reliable sand control in a wide range of applications. Well costs typically cut by over 20 %, and the productivity increases up to 70 %.

  18. Undrained Cyclic Behaviour of Dense Frederikshavn Sand

    DEFF Research Database (Denmark)

    Nielsen, Søren Kjær; Ibsen, Lars Bo; Sørensen, Kris Wessel


    A modified contour diagram is created for the Frederikshavn Sand in the undrained case for a relative density of ID = 80 %. It can be used to estimate the number of cycles to failure for a given combination of pore pressure, average and cyclic load ratio. The diagram is based on a series of undra......A modified contour diagram is created for the Frederikshavn Sand in the undrained case for a relative density of ID = 80 %. It can be used to estimate the number of cycles to failure for a given combination of pore pressure, average and cyclic load ratio. The diagram is based on a series...

  19. Advances in wind erosion modelling in Europe (United States)

    Borrelli, Pasquale; Lugato, Emanuele; Alewell, Christine; Montanarella, Luca; Panagos, Panos


    Soil erosion by wind is a serious environmental problem often resulting in severe forms of soil degradation. Wind erosion is also a phenomenon relevant for Europe, although this land degradation process has been overlooked until very recently. The state-of-the-art literature presents wind erosion as a process that locally affects the semi-arid areas of the Mediterranean region as well as the temperate climate areas of the northern European countries. Actual observations, field measurements and modelling assessments, however, are all extremely limited and highly unequally distributed across Europe. As a result, we currently lack comprehensive understanding about where and when wind erosion occurs in Europe, and the intensity of erosion that poses a threat to agricultural productivity. Today's challenge is to integrate the insights of local experiments and field-scale models into a new generation of large-scale wind erosion models. While naturally being less accurate than field-scale models, these large-scale modelling approaches still provide essential knowledge about where and when wind erosion occurs and can disclose the level of risk for agricultural productivity in specific areas. Here, we present a geographic information system (GIS) version of the RWEQ (named GIS-RWEQ) to quantitatively assess soil loss by wind over large study areas (Land Degradation & Development, DOI: 10.1002/ldr.2588). The model designed to predict the daily soil loss potential at a ca. 1 km2 spatial resolution shows high consistency with local measurements reported in literature. The average soil loss predicted by GIS-RWEQ for the European arable land totals 62 million Mg yr-1, with an average area-specific soil loss of 0.53 Mg yr-1. The JRC model RUSLE2015, for the same area estimates 295 million Mg yr-1 of soil loss due to water erosion. Notably, soil loss by wind erosion in the European arable land could be as high as 20% of water erosion, even though the areas affected are mainly

  20. Enzyme activity of Chromic Luvisols under different degree of erosion and land use

    Directory of Open Access Journals (Sweden)

    Kostadinka Nedyalkova


    Full Text Available Soil erosion is a serious environmental problem and a threat to the sustainable agriculture production. Little information is available on enzyme activities of eroded soils in Bulgaria, especially on their relations to the degree of erosion and soil properties. In this work, slightly, moderately and severely eroded Chromic Luvisols under different land use (pasture, crop field and virgin were studied. Enzyme activities (invertase, catalase and phosphatase, total nitrogen, total carbon, available phosphorus contents and soil particle distribution were determined and possible relations between them were examined. Data showed that enzyme activities tended to lower with increasing the degree of erosion. This was better pronounced for invertase and phosphatase in pasture and virgin soils. Depending on land use, all enzyme activities decreased in the order pasture > virgin > crop field soils, showing positive impact of soil cover and negative effect of cultivation practices. Soil invertase and phosphatase activities were in close relations with soil carbon content. The activities of catalase and phosphatase correlated positively with soil clay. Invertase only was in positive relation with soil silt and in negative relation with the sand content. Data obtained are intended to contribute to development of biological indicators of eroded soils.