WorldWideScience

Sample records for samples withestrogen-sensitive yeast

  1. Detecting estrogenic activity in water samples withestrogen-sensitive yeast cells using spectrophotometry and fluorescencemicroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Wozei, E.; Holman, H-Y.N.; Hermanowicz, S.W.; Borglin S.

    2006-03-15

    Environmental estrogens are environmental contaminants that can mimic the biological activities of the female hormone estrogen in the endocrine system, i.e. they act as endocrine disrupters. Several substances are reported to have estrogen-like activity or estrogenic activity. These include steroid hormones, synthetic estrogens (xenoestrogens), environmental pollutants and phytoestrogens (plant estrogens). Using the chromogenic substrate ortho-nitrophenyl-{beta}-D-galactopyranoside (ONPG) we show that an estrogen-sensitive yeast strain RMY/ER-ERE, with human estrogen receptor (hER{alpha}) gene and the lacZ gene which encodes the enzyme {beta}-galactosidase, is able to detect estrogenic activity in water samples over a wide range of spiked concentrations of the hormonal estrogen 17{beta}-estradiol (E2). Ortho-nitrophenol (ONP), the yellow product of this assay can be detected using spectrophotometry but requires cell lysis to release the enzyme and allow product formation. We improved this aspect in a fluorogenic assay by using fluorescein di-{beta}-D-galactopyranoside (FDG) as a substrate. The product was visualized using fluorescence microscopy without the need to kill, fix or lyse the cells. We show that in live yeast cells, the uptake of E2 and the subsequent production of {beta}-galactosidase enzyme occur quite rapidly, with maximum enzyme-catalyzed fluorescent product formation evident after about 30 minutes of exposure to E2. The fluorogenic assay was applied to a selection of estrogenic compounds and the Synchrotron-based Fourier transform infrared (SR-FTIR) spectra of the cells obtained to better understand the yeast whole cell response to the compounds. The fluorogenic assay is most sensitive to E2, but the SR-FTIR spectra suggest that the cells respond to all the estrogenic compounds tested even when no fluorescent response was detected. These findings are promising and may shorten the duration of environmental water screening and monitoring regimes using

  2. Yeasts isolated from clinical samples of AIDS patients

    Directory of Open Access Journals (Sweden)

    Neves Rejane Pereira

    2002-01-01

    Full Text Available In order to investigate yeasts in oropharyngeal secretion, urine, sputum and inguinal scales from AIDS patients, clinical samples were collected from one hundred patients interned in the Infectious and Parasitic Diseases Sector of the Hospital das Clínicas of the Universidade Federal de Pernambuco and in Hospital Universitário Osvaldo Cruz of the Universidade de Pernambuco. Yeasts were isolated from seventy-two out of one hundred and eight clinical samples. The isolated yeasts were: Candida albicans (sixty-two isolates, Candida tropicalis (four isolates, Candida glabrata (two isolates, Candida parapsilosis (two isolates, Candida krusei (one isolate and Trichosporon pullulans (one isolate.

  3. Global metabolite analysis of yeast: evaluation of sample preparation methods

    DEFF Research Database (Denmark)

    Villas-Bôas, Silas Granato; Højer-Pedersen, Jesper; Åkesson, Mats Fredrik

    2005-01-01

    Sample preparation is considered one of the limiting steps in microbial metabolome analysis. Eukaryotes and prokaryotes behave very differently during the several steps of classical sample preparation methods for analysis of metabolites. Even within the eukaryote kingdom there is a vast diversity...... of cell structures that make it imprudent to blindly adopt protocols that were designed for a specific group of microorganisms. We have therefore reviewed and evaluated the whole sample preparation procedures for analysis of yeast metabolites. Our focus has been on the current needs in metabolome analysis......, which is the analysis of a large number of metabolites with very diverse chemical and physical properties. This work reports the leakage of intracellular metabolites observed during quenching yeast cells with cold methanol solution, the efficacy of six different methods for the extraction...

  4. Yeasts from the sediment samples of the EEZ along the southwest coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Prabhakaran, N.; Gupta, R.

    Fiftyeight yeast isolates were obtained from the benthic sediment samples of 19 stations during R.V. Gaveshani Cruise No. 187 of the Exclusive Economic Zone along the southwest coast of India. The depths ranged from 20 to 1,055 m. Asporogenous yeast...

  5. Yeast metabolomics: sample preparation for a GC/MS-based analysis.

    Science.gov (United States)

    Carneiro, Sónia; Pereira, Rui; Rocha, Isabel

    2014-01-01

    Metabolome sample preparation is one of the key factors in metabolomics analyses. The quality of the metabolome data will depend on the suitability of the experimental procedures to the cellular system (e.g., yeast cells) and the analytical performance. Here, we summarize a protocol for metabolome analysis of yeast cells using gas chromatography-mass spectrometry (GC-MS). First, the main phases of a metabolomics analysis are identified: sample preparation, metabolite extraction, and analysis. We also provide an overview on different methods used to quench samples and extract intracellular metabolites from yeast cells. This protocol provides a detailed description of a GC-MS-based analysis of yeast metabolome, in particular for metabolites containing amino and/or carboxyl groups, which represent most of the compounds participating in the central carbon metabolism.

  6. Isolation and Identification of Spoilage Yeasts in Wine Samples by MALDI-TOF MS Biotyper

    Directory of Open Access Journals (Sweden)

    Attila Kántor

    2015-05-01

    Full Text Available Many genera and species of microorganisms can be found in grape musts and wines at various times during the winemaking process. For instance, Saccharomyces, Brettanomyces, and Pediococcus can be found together in wine. There are many species of yeast involved in wine spoilage during storage. Aim of this study was to isolate the spoilage yeasts from wine samples with using special selective agar media and identified on species level by Matrix-Assisted Laser Desorption/Ionization-Time of Fly Mass Spectrometry (MALDI-TOF MS. Six red wines used in this study. We identified 10 yeast species from 152 isolates. The most common species in wine samples was Saccharomyces cerevisiae. We also identified four Candida species, two Zygosaccharomyces species and one species from genus Rhodotorula, Saccharomycodes and Dekkera.

  7. Isolation and identification of yeasts in milk samples from cows' mammary glands

    Directory of Open Access Journals (Sweden)

    Vesna Jaki

    2007-06-01

    Full Text Available The purpose of this study was to isolate fungi from the milk of cow udder quarters with clinical mastitis. The samples were delivered in Veterinary laboratory in Križevci during a routine mastitis diagnostics. Milk samples were cultured on Columbia agar (Merck, KgaA, Darmstadt, Germany with 5 % ovine blood, Sabouraud 4 % maltose agar (Merck, KgaA, Darmstadt, Germany and Rice extract agar (Merck, KgaA, Darmstadt, Germany. The final diagnosis was established regarding to the results of the API 20 C AUX systems (bioMerieux, Lyon, France. All of the fungal isolates were yeasts, genera Candida spp. (76.2 % and Trichosporon spp. (23.8 %. The most prevalent species were: C. quilliermondi (21.4 %, C. krusei/inconspicua (11.9 % and Trichosporon mucoides (14.3 %.

  8. Determination of Kinetic Isotope Effects in Yeast Alcohol Dehydrogenase Using Transition Path Sampling

    Science.gov (United States)

    Varga, Matthew; Schwartz, Steven

    2015-03-01

    The experimental determination of kinetic isotope effects in enzymatic systems can be a difficult, time-consuming, and expensive process. In this study, we use the Chandler-Bolhius method for the determination of reaction rates within transition path sampling (rTPS) to determine the primary kinetic isotope effect in yeast alcohol dehydrogenase (YADH). In this study, normal mode centroid molecular dynamics (CMD) was applied to the transferring hydride/deuteride in order to correctly incorporate quantum effects into the molecular simulations. Though previous studies have used rTPS to calculate reaction rate constants in various model and real systems, it has not been applied to a system as large as YADH. Due to the fact that particle transfer is not wholly indicative of the chemical step, this method cannot be used to determine reaction rate constants in YADH. However, it is possible to determine the transition rate constant of the particle transfer, and the kinetic isotope effect of that step. This method provides a set of tools to determine kinetic isotope effects with the atomistic detail of molecular simulations.

  9. Separation of selenium compounds by CE-ICP-MS in dynamically coated capillaries applied to selenized yeast samples

    DEFF Research Database (Denmark)

    Bendahl, Lars; Gammelgaard, Bente

    2004-01-01

    The selenium species in nutritional supplement tablets, based on selenized yeast, were separated by capillary zone electrophoresis using capillaries coated dynamically with poly(vinyl sulfonate) and detected by ICP-MS. Sample pre-treatment consisted of cold-water extraction by sonication and subs......The selenium species in nutritional supplement tablets, based on selenized yeast, were separated by capillary zone electrophoresis using capillaries coated dynamically with poly(vinyl sulfonate) and detected by ICP-MS. Sample pre-treatment consisted of cold-water extraction by sonication......-water extract within 13 min. The efficiency of the system corresponded to 620 000 theoretical plates. When spiking the sample with available standards, co-migration was observed with selenomethionine and selenocystine-Se-methylselenocysteine-the latter species were not separated. When the cold-water extract...

  10. Genome Sequences of Industrially Relevant Saccharomyces cerevisiae Strain M3707, Isolated from a Sample of Distillers Yeast and Four Haploid Derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Steven D.; Klingeman, Dawn M.; Johnson, Courtney M.; Clum, Alicia; Aerts, Andrea; Salamov, Asaf; Sharma, Aditi; Zane, Matthew; Barry, Kerrie; Grigoriev, Igor V.; Davison, Brian H.; Lynd, Lee R.; Gilna, Paul; Hau, Heidi; Hogsett, David A.; Froehlich, Allan C.

    2013-04-19

    Saccharomyces cerevisiae strain M3707 was isolated from a sample of commercial distillers yeast, and its genome sequence together with the genome sequences for the four derived haploid strains M3836, M3837, M3838, and M3839 has been determined. Yeasts have potential for consolidated bioprocessing (CBP) for biofuel production, and access to these genome sequences will facilitate their development.

  11. NMR analysis of budding yeast metabolomics: a rapid method for sample preparation.

    Science.gov (United States)

    Airoldi, C; Tripodi, F; Guzzi, C; Nicastro, R; Coccetti, P

    2015-02-01

    Here we propose the optimization of a rapid and reproducible protocol for intracellular metabolite extraction from yeast cells and their metabolic profiling by (1)H-NMR spectroscopy. The protocol reliability has been validated through comparison between the metabolome of cells in different phases of growth or with different genetic backgrounds.

  12. Identification of a novel interspecific hybrid yeast from a metagenomic spontaneously inoculated beer sample using Hi-C.

    Science.gov (United States)

    Smukowski Heil, Caiti; Burton, Joshua N; Liachko, Ivan; Friedrich, Anne; Hanson, Noah A; Morris, Cody L; Schacherer, Joseph; Shendure, Jay; Thomas, James H; Dunham, Maitreya J

    2018-01-01

    Interspecific hybridization is a common mechanism enabling genetic diversification and adaptation; however, the detection of hybrid species has been quite difficult. The identification of microbial hybrids is made even more complicated, as most environmental microbes are resistant to culturing and must be studied in their native mixed communities. We have previously adapted the chromosome conformation capture method Hi-C to the assembly of genomes from mixed populations. Here, we show the method's application in assembling genomes directly from an uncultured, mixed population from a spontaneously inoculated beer sample. Our assembly method has enabled us to de-convolute four bacterial and four yeast genomes from this sample, including a putative yeast hybrid. Downstream isolation and analysis of this hybrid confirmed its genome to consist of Pichia membranifaciens and that of another related, but undescribed, yeast. Our work shows that Hi-C-based metagenomic methods can overcome the limitation of traditional sequencing methods in studying complex mixtures of genomes. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  13. Total reflection x-ray fluorescence spectroscopy as a tool for evaluation of iron concentration in ferrofluids and yeast samples

    Energy Technology Data Exchange (ETDEWEB)

    Kulesh, N.A., E-mail: nikita.kulesh@urfu.ru [Ural Federal University, Mira 19, 620002 Ekaterinburg (Russian Federation); Novoselova, I.P. [Ural Federal University, Mira 19, 620002 Ekaterinburg (Russian Federation); Immanuel Kant Baltic Federal University, 236041 Kaliningrad (Russian Federation); Safronov, A.P. [Ural Federal University, Mira 19, 620002 Ekaterinburg (Russian Federation); Institute of Electrophysics UD RAS, Amundsen 106, 620016 Ekaterinburg (Russian Federation); Beketov, I.V.; Samatov, O.M. [Institute of Electrophysics UD RAS, Amundsen 106, 620016 Ekaterinburg (Russian Federation); Kurlyandskaya, G.V. [Ural Federal University, Mira 19, 620002 Ekaterinburg (Russian Federation); University of the Basque Country UPV-EHU, 48940 Leioa (Spain); Morozova, M. [Ural Federal University, Mira 19, 620002 Ekaterinburg (Russian Federation); Denisova, T.P. [Irkutsk State University, Karl Marks 1, 664003 Irkutsk (Russian Federation)

    2016-10-01

    In this study, total reflection x-ray fluorescent (TXRF) spectrometry was applied for the evaluation of iron concentration in ferrofluids and biological samples containing iron oxide magnetic nanoparticles obtained by the laser target evaporation technique. Suspensions of maghemite nanoparticles of different concentrations were used to estimate the limitation of the method for the evaluation of nanoparticle concentration in the range of 1–5000 ppm in absence of organic matrix. Samples of single-cell yeasts grown in the nutrient media containing maghemite nanoparticles were used to study the nanoparticle absorption mechanism. The obtained results were analyzed in terms of applicability of TXRF for quantitative analysis in a wide range of iron oxide nanoparticle concentrations for biological samples and ferrofluids with a simple established protocol of specimen preparation. - Highlights: • Ferrofluids and yeasts samples were analysed by TXRF spectroscopy. • Simple protocol for iron quantification by means of TXRF was proposed. • Results were combined with magnetic, structural, and morphological characterization. • Preliminary conclusion on nanoparticles uptake mechanism was made.

  14. Metagenomic analysis of medicinal Cannabis samples; pathogenic bacteria, toxigenic fungi, and beneficial microbes grow in culture-based yeast and mold tests.

    Science.gov (United States)

    McKernan, Kevin; Spangler, Jessica; Helbert, Yvonne; Lynch, Ryan C; Devitt-Lee, Adrian; Zhang, Lei; Orphe, Wendell; Warner, Jason; Foss, Theodore; Hudalla, Christopher J; Silva, Matthew; Smith, Douglas R

    2016-01-01

    Background: The presence of bacteria and fungi in medicinal or recreational Cannabis poses a potential threat to consumers if those microbes include pathogenic or toxigenic species. This study evaluated two widely used culture-based platforms for total yeast and mold (TYM) testing marketed by 3M Corporation and Biomérieux, in comparison with a quantitative PCR (qPCR) approach marketed by Medicinal Genomics Corporation. Methods: A set of 15 medicinal Cannabis samples were analyzed using 3M and Biomérieux culture-based platforms and by qPCR to quantify microbial DNA. All samples were then subjected to next-generation sequencing and metagenomics analysis to enumerate the bacteria and fungi present before and after growth on culture-based media. Results: Several pathogenic or toxigenic bacterial and fungal species were identified in proportions of >5% of classified reads on the samples, including Acinetobacter baumannii, Escherichia coli, Pseudomonas aeruginosa, Ralstonia pickettii, Salmonella enterica, Stenotrophomonas maltophilia, Aspergillus ostianus, Aspergillus sydowii, Penicillium citrinum and Penicillium steckii. Samples subjected to culture showed substantial shifts in the number and diversity of species present, including the failure of Aspergillus species to grow well on either platform. Substantial growth of Clostridium botulinum and other bacteria were frequently observed on one or both of the culture-based TYM platforms. The presence of plant growth promoting (beneficial) fungal species further influenced the differential growth of species in the microbiome of each sample. Conclusions: These findings have important implications for the Cannabis and food safety testing industries.

  15. Quantitation of yeast total proteins in sodium dodecyl sulfate-polyacrylamide gel electrophoresis sample buffer for uniform loading.

    Science.gov (United States)

    Sheen, Hyukho

    2016-04-01

    Proteins in sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) sample buffer are difficult to quantitate due to SDS and reducing agents being in the buffer. Although acetone precipitation has long been used to clean up proteins from detergents and salts, previous studies showed that protein recovery from acetone precipitation varies from 50 to 100% depending on the samples tested. Here, this article shows that acetone precipitates proteins highly efficiently from SDS-PAGE sample buffer and that quantitative recovery is achieved in 5 min at room temperature. Moreover, precipitated proteins are resolubilized with urea/guanidine, rather than with SDS. Thus, the resolubilized samples are readily quantifiable with Bradford reagent without using SDS-compatible assays. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Candida vulturna pro tempore sp. nov., a dimorphic yeast species related to the Candida haemulonis species complex isolated from flowers and clinical sample.

    Science.gov (United States)

    Sipiczki, Matthias; Tap, Ratna Mohd

    2016-10-01

    In a taxonomic study of yeasts isolated from flowers in Cagayan de Oro, Mindenao Island, The Philippines, strains were identified as representing Kabatiella microsticta, Metschnikowia koreensis and a hitherto undescribed dimorphic species. Sequences of the D1/D2 domains of the LSU 26S rRNA genes, the internal transcribed spacer (ITS) regions and the SSU 18S rRNA genes were identical in the strains of the last-named group and differed from the corresponding sequences of the type strain of the closest related species, Candida duobushaemulonii, by 4 % (D1/D2), 7 % (ITS) and 1 % (SSU). In an independent study, a strain with D1/D2 and ITS sequences very similar to those of the Philippine strains was isolated in Malaysia from the blood of a patient dying of aspiration pneumonia. Both groups of isolates were moderately sensitive to anidulafungin, caspofungin, fluconazole, itraconazole and voriconazole but resistant to amphotericin B. Molecular phylogenetic analysis of the sequences placed the Philippine and Malaysian isolates close to the Candida haemulonis complex of Candida species. To reflect the geographical location of the sites of sample collection, the novel species name Candida vulturna pro tempore sp. nov. is proposed to accommodate these strains. The type strain is 11-1170T (=CBS 14366T=CCY 094-001-001T=NCAIM-Y02177T) isolated in Cagayan de Oro, The Philippines. Mycobank: MB 817222.

  17. Incubation of premise plumbing water samples on Buffered Charcoal Yeast Extract agar at elevated temperature and pH selects for Legionella pneumophila.

    Science.gov (United States)

    Veenendaal, Harm R; Brouwer-Hanzens, Anke J; van der Kooij, Dick

    2017-10-15

    Worldwide, over 90% of the notified cases of Legionnaires' disease are caused by Legionella pneumophila. However, the standard culture medium for the detection of Legionella in environmental water samples, Buffered Charcoal Yeast Extract (BCYE) agar of pH 6.9 ± 0.4 with or without antimicrobial agents incubated at 36 ± 1 °C, supports the growth of a large diversity of Legionella species. BCYE agar of elevated pH or/and incubation at elevated temperature gave strongly reduced recoveries of most of 26 L. non-pneumophila spp. tested, but not of L. pneumophila. BCYE agar of pH 7.3 ± 0.1, incubated at 40 ± 0.5 °C (BCYE pH 7.3/40 °C) was tested for selective enumeration of L. pneumophila. Of the L. non-pneumophila spp. tested, only L. adelaidensis and L. londiniensis multiplied under these conditions. The colony counts on BCYE pH 7.3/40 °C of a L. pneumophila serogroup 1 strain cultured in tap water did not differ significantly from those on BCYE pH 6.9/36 °C when directly plated and after membrane filtration and showed repeatability's of 13-14%. By using membrane filtration L. pneumophila was detected in 58 (54%) of 107 Legionella-positive water samples from premise plumbing systems under one or both of these culture conditions. The L. pneumophila colony counts (log-transformed) on BCYE pH 7.3/40 °C were strongly related (r2 = 0.87) to those on BCYE pH 6.9/36 °C, but differed significantly (p < 0.05) by a mean of - 0.12 ± 0.30 logs. L. non-pneumophila spp. were detected only on BCYE pH 6.9/36 °C in 49 (46%) of the samples. Hence, BCYE pH 7.3/40 °C can facilitate the enumeration of L. pneumophila and their isolation from premise plumbing systems with culturable L. non-pneumophila spp., some of which, e.g. L. anisa, can be present in high numbers. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Developing a Biosensor for Estrogens in Water Samples: Study ofthe Real-time Response of Live Cells of the Estrogen-sensitive YeastStrain RMY/ER-ERE using Fluorescence Microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Wozei, E.; Hermanowicz, S.W.; Holman, H-Y.N.

    2006-01-01

    Using a fluorescein di-{beta}-d-galactopyranoside (FDG) substrate we show that in live cells of an estrogen-sensitive yeast strain RMY/ER-ERE with human estrogen receptor (ER{alpha}) gene and the lacZ gene which encodes {beta}-galactosidase, the uptake of 17{beta}-estradiol (E2) and the subsequent production of {beta}-galactosidase enzyme occur quite rapidly, with maximal enzyme-catalyzed product formation evident after about 30 min of exposure to E2. This finding which agrees with the well-known rates of enzyme-catalyzed reactions could have implications for shortening the duration of environmental sample screening and monitoring regimes using yeast-based estrogen assays, and the development of biosensors for environmental estrogens to complement quantification methods.

  19. Developing a Biosensor for Estrogens in Water Samples: Study ofthe Real-time Response of Live Cells of the Estrogen-sensitive YeastStrain RMY/ER-ERE using Fluorescence Microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Wozei, E.; Hermanowicz, S.W.; Holman, H-Y.N.

    2005-07-13

    Using a fluorescein di-{beta}-D-galactopyranoside (FDG) substrate we show that in live cells of an estrogen-sensitive yeast strain RMY/ER-ERE with human estrogen receptor (ER{alpha}) gene and the lacZ gene which encodes {beta}-galactosidase, the uptake of 17 {beta}-estradiol (E2) and the subsequent production of {beta}-galactosidase enzyme occur quite rapidly, with maximal enzyme-catalyzed product formation evident after about 30 minutes of exposure to E2. This finding which agrees with the well-known rates of enzyme-catalyzed reactions could have implications for shortening the duration of environmental sample screening and monitoring regimes using yeast-based estrogen assays, and the development of biosensors for environmental estrogens to complement quantification methods.

  20. Draft genome sequence of Sugiyamaella xylanicola UFMG-CM-Y1884T, a xylan-degrading yeast species isolated from rotting wood samples in Brazil.

    Science.gov (United States)

    Batista, Thiago M; Moreira, Rennan G; Hilário, Heron O; Morais, Camila G; Franco, Glória R; Rosa, Luiz H; Rosa, Carlos A

    2017-03-01

    We present the draft genome sequence of the type strain of the yeast Sugiyamaella xylanicola UFMG-CM-Y1884T (= UFMG-CA-32.1T = CBS 12683T), a xylan-degrading species capable of fermenting d-xylose to ethanol. The assembled genome has a size of ~ 13.7 Mb and a GC content of 33.8% and contains 5971 protein-coding genes. We identified 15 genes with significant similarity to the d-xylose reductase gene from several other fungal species. The draft genome assembled from whole-genome shotgun sequencing of the yeast Sugiyamaella xylanicola UFMG-CM-Y1884T (= UFMG-CA-32.1T = CBS 12683T) has been deposited at DDBJ/ENA/GenBank under the accession number MQSX00000000 under version MQSX01000000.

  1. Vaginal Yeast Infections

    Science.gov (United States)

    ... Yeast Infections Print A A A en español Infecciones vaginales por hongos What Are Vaginal Yeast Infections? ... keep the amount in a person's body under control. But yeast in the vagina can sometimes "overgrow" ...

  2. Yeast Infection (Vaginal)

    Science.gov (United States)

    ... vaginal discharge with a cottage cheese appearance Complicated yeast infection You might have a complicated yeast infection ... have an uncomplicated or a complicated infection. Uncomplicated yeast infection For mild to moderate symptoms and infrequent ...

  3. Yeasts in an industrial malting ecosystem.

    Science.gov (United States)

    Laitila, A; Wilhelmson, A; Kotaviita, E; Olkku, J; Home, S; Juvonen, R

    2006-11-01

    The malting ecosystem consists of two components: the germinating cereal grains and the complex microbial community. Yeasts and yeast-like fungi are an important part of this ecosystem, but the composition and the effects of this microbial group have been largely unknown. In this study we surveyed the development of yeasts and yeast-like fungi in four industrial scale malting processes. A total of 136 malting process samples were collected and examined for the presence of yeasts growing at 15, 25 and 37 degrees C. More than 700 colonies were isolated and characterized. The isolates were discriminated by PCR-fingerprinting with microsatellite primer (M13). Yeasts representing different fingerprint types were identified by sequence analysis of the D1/D2 domain of the 26S rRNA gene. Furthermore, identified yeasts were screened for the production of alpha-amylase, beta-glucanase, cellulase and xylanase. A numerous and diverse yeast community consisting of both ascomycetous (25) and basidiomycetous (18) species was detected in the various stages of the malting process. The most frequently isolated ascomycetous yeasts belonged to the genera Candida, Clavispora, Galactomyces, Hanseniaspora, Issatchenkia, Pichia, Saccharomyces and Williopsis and the basidiomycetous yeasts to Bulleromyces, Filobasidium, Cryptococcus, Rhodotorula, Sporobolomyces and Trichosporon. In addition, two ascomycetous yeast-like fungi (black yeasts) belonging to the genera Aureobasidium and Exophiala were commonly detected. Yeasts and yeast-like fungi produced extracellular hydrolytic enzymes with a potentially positive contribution to the malt enzyme spectrum. Knowledge of the microbial diversity provides a basis for microflora management and understanding of the role of microbes in the cereal germination process.

  4. Sampling

    CERN Document Server

    Thompson, Steven K

    2012-01-01

    Praise for the Second Edition "This book has never had a competitor. It is the only book that takes a broad approach to sampling . . . any good personal statistics library should include a copy of this book." —Technometrics "Well-written . . . an excellent book on an important subject. Highly recommended." —Choice "An ideal reference for scientific researchers and other professionals who use sampling." —Zentralblatt Math Features new developments in the field combined with all aspects of obtaining, interpreting, and using sample data Sampling provides an up-to-date treat

  5. Prions in yeast

    OpenAIRE

    Bezdíčka, Martin

    2013-01-01

    The thesis describes yeast prions and their biological effects on yeast in general. It defines the basic characteristics of yeast prions, that distinguish prions from other proteins. The thesis introduces various possibilities of prion formation, and propagation as well as specific types of yeast prions, including various functions of most studied types of prions. The thesis also focuses on chaperones that affect the state of yeast prions in cells. Lastly, the thesis indicates similarities be...

  6. Screening of yeasts capable of producing cellulase-free xylanase

    African Journals Online (AJOL)

    Professor

    2015-06-10

    Jun 10, 2015 ... medium and the enzymatic activities of endo-xylanase, β-xylosidase, carboxymetilcellulase, and filter paper cellulose ... yeasts, parts of the fruits and vegetables (stems, leaves, roots) were evaluated separately. Yeast isolation. For enrichment, about 2.5 g of each sample was inoculated into. 25 mL yeast ...

  7. Quality evaluation of some commercial baker's yeasts in Nigeria ...

    African Journals Online (AJOL)

    Seven different brands of commercial baker's yeast commonly found in Nigerian markets were evaluated for their acidity, viability and leavening activity. The baking and staling qualities of bread produced using the yeasts were also determined. Acidity and viability of yeast cells in the samples ranged from 2.09 to 2.78 and ...

  8. Phenotypic characters of yeasts isolated from kpete-kpete, a ...

    African Journals Online (AJOL)

    USER

    2015-07-08

    Jul 8, 2015 ... Key words: Sorghum beer, tchoukoutou, kpete-kpete, yeast, Saccharomyces cerevisiae. INTRODUCTION. Fermented .... Physicochemical and microbiological characteristics of the traditional starter kpete-kpete. Samples origin. Yeasts ... Phenotypic characteristics of yeasts isolates. Results (Table 2) show ...

  9. Validation of High Resolution Melting Analysis (HRM) of the Amplified ITS2 Region for the Detection and Identification of Yeasts from Clinical Samples: Comparison with Culture and MALDI-TOF Based Identification.

    Science.gov (United States)

    Duyvejonck, Hans; Cools, Piet; Decruyenaere, Johan; Roelens, Kristien; Noens, Lucien; Vermeulen, Stefan; Claeys, Geert; Decat, Ellen; Van Mechelen, Els; Vaneechoutte, Mario

    2015-01-01

    Candida species are known as opportunistic pathogens, and a possible cause of invasive infections. Because of their species-specific antimycotic resistance patterns, reliable techniques for their detection, quantification and identification are needed. We validated a DNA amplification method for direct detection of Candida spp. from clinical samples, namely the ITS2-High Resolution Melting Analysis (direct method), by comparing it with a culture and MALDI-TOF Mass Spectrometry based method (indirect method) to establish the presence of Candida species in three different types of clinical samples. A total of 347 clinical samples, i.e. throat swabs, rectal swabs and vaginal swabs, were collected from the gynaecology/obstetrics, intensive care and haematology wards at the Ghent University Hospital, Belgium. For the direct method, ITS2-HRM was preceded by NucliSENS easyMAG DNA extraction, directly on the clinical samples. For the indirect method, clinical samples were cultured on Candida ID and individual colonies were identified by MALDI-TOF. For 83.9% of the samples there was complete concordance between both techniques, i.e. the same Candida species were detected in 31.1% of the samples or no Candida species were detected in 52.8% of the samples. In 16.1% of the clinical samples, discrepant results were obtained, of which only 6.01% were considered as major discrepancies. Discrepancies occurred mostly when overall numbers of Candida cells in the samples were low and/or when multiple species were present in the sample. Most of the discrepancies could be decided in the advantage of the direct method. This is due to samples in which no yeast could be cultured whereas low amounts could be detected by the direct method and to samples in which high quantities of Candida robusta according to ITS2-HRM were missed by culture on Candida ID agar. It remains to be decided whether the diagnostic advantages of the direct method compensate for its disadvantages.

  10. Yeasts and yeast-like organisms associated with fruits and blossoms of different fruit trees.

    Science.gov (United States)

    Vadkertiová, Renáta; Molnárová, Jana; Vránová, Dana; Sláviková, Elena

    2012-12-01

    Yeasts are common inhabitants of the phyllosphere, but our knowledge of their diversity in various plant organs is still limited. This study focused on the diversity of yeasts and yeast-like organisms associated with matured fruits and fully open blossoms of apple, plum, and pear trees, during 2 consecutive years at 3 localities in southwest Slovakia. The occurrence of yeasts and yeast-like organisms in fruit samples was 2½ times higher and the yeast community more diverse than that in blossom samples. Only 2 species (Aureobasidium pullulans and Metschnikowia pulcherrima) occurred regularly in the blossom samples, whereas Galactomyces candidus, Hanseniaspora guilliermondii, Hanseniaspora uvarum, M. pulcherrima, Pichia kluyveri, Pichia kudriavzevii, and Saccharomyces cerevisiae were the most frequently isolated species from the fruit samples. The ratio of the number of samples where only individual species were present to the number of samples where 2 or more species were found (consortium) was counted. The occurrence of individual species in comparison with consortia was much higher in blossom samples than in fruit samples. In the latter, consortia predominated. Aureobasidium pullulans, M. pulcherrima, and S. cerevisiae, isolated from both the fruits and blossoms, can be considered as resident yeast species of various fruit tree species cultivated in southwest Slovakia localities.

  11. Protein expression-yeast.

    Science.gov (United States)

    Nielsen, Klaus H

    2014-01-01

    Yeast is an excellent system for the expression of recombinant eukaryotic proteins. Both endogenous and heterologous proteins can be overexpressed in yeast (Phan et al., 2001; Ton and Rao, 2004). Because yeast is easy to manipulate genetically, a strain can be optimized for the expression of a specific protein. Many eukaryotic proteins contain posttranslational modifications that can be performed in yeast but not in bacterial expression systems. In comparison with mammalian cell culture expression systems, growing yeast is both faster and less expensive, and large-scale cultures can be performed using fermentation. While several different yeast expression systems exist, this chapter focuses on the budding yeast Saccharomyces cerevisiae and will briefly describe some options to consider when selecting vectors and tags to be used for protein expression. Throughout this chapter, the expression and purification of yeast eIF3 is shown as an example alongside a general scheme outline. © 2014 Elsevier Inc. All rights reserved.

  12. Yeast Infection during Pregnancy

    Science.gov (United States)

    ... OK? What's the best way to treat a yeast infection during pregnancy? Answers from Yvonne Butler Tobah, M.D. You can safely treat a yeast infection during pregnancy with various over-the-counter ...

  13. Virgin olive oil yeasts: A review.

    Science.gov (United States)

    Ciafardini, Gino; Zullo, Biagi Angelo

    2018-04-01

    This review summarizes current knowledge on virgin olive oil yeasts. Newly produced olive oil contains solid particles and micro drops of vegetation water in which yeasts reproduce to become the typical microbiota of olive oil. To date, about seventeen yeast species have been isolated from different types of olive oils and their by-products, of which six species have been identified as new species. Certain yeast species contribute greatly to improving the sensorial characteristics of the newly produced olive oil, whereas other species are considered harmful as they can damage the oil quality through the production of unpleasant flavors and triacylglycerol hydrolysis. Studies carried out in certain yeast strains have demonstrated the presence of defects in olive oil treated with Candida adriatica, Nakazawaea wickerhamii and Candida diddensiae specific strains, while other olive oil samples treated with other Candida diddensiae strains were defect-free after four months of storage and categorized as extra virgin. A new acetic acid producing yeast species, namely, Brettanomyces acidodurans sp. nov., which was recently isolated from olive oil, could be implicated in the wine-vinegary defect of the product. Other aspects related to the activity of the lipase-producing yeasts and the survival of the yeast species in the flavored olive oils are also discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Yeast for virus research

    Science.gov (United States)

    Zhao, Richard Yuqi

    2017-01-01

    Budding yeast (Saccharomyces cerevisiae) and fission yeast (Schizosaccharomyces pombe) are two popular model organisms for virus research. They are natural hosts for viruses as they carry their own indigenous viruses. Both yeasts have been used for studies of plant, animal and human viruses. Many positive sense (+) RNA viruses and some DNA viruses replicate with various levels in yeasts, thus allowing study of those viral activities during viral life cycle. Yeasts are single cell eukaryotic organisms. Hence, many of the fundamental cellular functions such as cell cycle regulation or programed cell death are highly conserved from yeasts to higher eukaryotes. Therefore, they are particularly suited to study the impact of those viral activities on related cellular activities during virus-host interactions. Yeasts present many unique advantages in virus research over high eukaryotes. Yeast cells are easy to maintain in the laboratory with relative short doubling time. They are non-biohazardous, genetically amendable with small genomes that permit genome-wide analysis of virologic and cellular functions. In this review, similarities and differences of these two yeasts are described. Studies of virologic activities such as viral translation, viral replication and genome-wide study of virus-cell interactions in yeasts are highlighted. Impacts of viral proteins on basic cellular functions such as cell cycle regulation and programed cell death are discussed. Potential applications of using yeasts as hosts to carry out functional analysis of small viral genome and to develop high throughput drug screening platform for the discovery of antiviral drugs are presented. PMID:29082230

  15. Yeasts colonizing the leaf surfaces.

    Science.gov (United States)

    Sláviková, Elena; Vadkertiová, Renata; Vránová, Dana

    2007-08-01

    The yeasts were isolated from the leaf surfaces of ten species of trees. The study site was a forest park (Zelezná Studnicka) of the Small Carpathians mountain range. One hundred and thirty seven yeast strains belonging to 13 genera were isolated from 320 samples of leaves and needles. Seventeen yeast species were isolated, but only seven occurred regularly: Aureobasidium pullulans, Cryptococcus laurentii, Pichia anomala, Metschnikowia pulcherrima, Saccharomyces sp., Lachancea thermotolerans, and Rhodotorula glutinis. The remaining species were isolated from the leaves and needles of three or less tree species. A. pullulans, Cr. laurentii, and P. anomala were the most frequently found species and they occurred on leaves and needles of all ten tree species. Saccharomyces sp. occurred in leaf samples collected from eight kinds of trees. M. pulcherrima and L. thermotolerans were found in samples collected from six species of trees. Both these species occurred almost always on the leaves of deciduous trees. Rh. glutinis was the most frequently isolated carotenoids producing species. We have found out that the ascomycetous and basidiomycetous species were present in the leaf samples in approximately equal frequency, contrary to the soil samples taken from this forest park, where the ascomycetous species were found rarely.

  16. Validation of High Resolution Melting Analysis (HRM of the Amplified ITS2 Region for the Detection and Identification of Yeasts from Clinical Samples: Comparison with Culture and MALDI-TOF Based Identification.

    Directory of Open Access Journals (Sweden)

    Hans Duyvejonck

    Full Text Available Candida species are known as opportunistic pathogens, and a possible cause of invasive infections. Because of their species-specific antimycotic resistance patterns, reliable techniques for their detection, quantification and identification are needed. We validated a DNA amplification method for direct detection of Candida spp. from clinical samples, namely the ITS2-High Resolution Melting Analysis (direct method, by comparing it with a culture and MALDI-TOF Mass Spectrometry based method (indirect method to establish the presence of Candida species in three different types of clinical samples.A total of 347 clinical samples, i.e. throat swabs, rectal swabs and vaginal swabs, were collected from the gynaecology/obstetrics, intensive care and haematology wards at the Ghent University Hospital, Belgium. For the direct method, ITS2-HRM was preceded by NucliSENS easyMAG DNA extraction, directly on the clinical samples. For the indirect method, clinical samples were cultured on Candida ID and individual colonies were identified by MALDI-TOF.For 83.9% of the samples there was complete concordance between both techniques, i.e. the same Candida species were detected in 31.1% of the samples or no Candida species were detected in 52.8% of the samples. In 16.1% of the clinical samples, discrepant results were obtained, of which only 6.01% were considered as major discrepancies. Discrepancies occurred mostly when overall numbers of Candida cells in the samples were low and/or when multiple species were present in the sample.Most of the discrepancies could be decided in the advantage of the direct method. This is due to samples in which no yeast could be cultured whereas low amounts could be detected by the direct method and to samples in which high quantities of Candida robusta according to ITS2-HRM were missed by culture on Candida ID agar. It remains to be decided whether the diagnostic advantages of the direct method compensate for its disadvantages.

  17. Metagenomic analysis of medicinal Cannabis samples; pathogenic bacteria, toxigenic fungi, and beneficial microbes grow in culture-based yeast and mold tests [version 1; referees: 2 approved, 1 approved with reservations

    Directory of Open Access Journals (Sweden)

    Kevin McKernan

    2016-10-01

    Full Text Available Background: The presence of bacteria and fungi in medicinal or recreational Cannabis poses a potential threat to consumers if those microbes include pathogenic or toxigenic species. This study evaluated two widely used culture-based platforms for total yeast and mold (TYM testing marketed by 3M Corporation and Biomérieux, in comparison with a quantitative PCR (qPCR approach marketed by Medicinal Genomics Corporation. Methods: A set of 15 medicinal Cannabis samples were analyzed using 3M and Biomérieux culture-based platforms and by qPCR to quantify microbial DNA. All samples were then subjected to next-generation sequencing and metagenomics analysis to enumerate the bacteria and fungi present before and after growth on culture-based media. Results: Several pathogenic or toxigenic bacterial and fungal species were identified in proportions of >5% of classified reads on the samples, including Acinetobacter baumannii, Escherichia coli, Pseudomonas aeruginosa, Ralstonia pickettii, Salmonella enterica, Stenotrophomonas maltophilia, Aspergillus ostianus, Aspergillus sydowii, Penicillium citrinum and Penicillium steckii. Samples subjected to culture showed substantial shifts in the number and diversity of species present, including the failure of Aspergillus species to grow well on either platform. Substantial growth of Clostridium botulinum and other bacteria were frequently observed on one or both of the culture-based TYM platforms. The presence of plant growth promoting (beneficial fungal species further influenced the differential growth of species in the microbiome of each sample. Conclusions: These findings have important implications for the Cannabis and food safety testing industries.

  18. Chemotropism during yeast mating.

    Science.gov (United States)

    Follette, Peter J; Arkowitz, Robert A

    2009-01-01

    Virtually all eukaryotic cells can grow in a polarized fashion in response to external signals. Cells can respond to gradients of chemoattractants or chemorepellents by directional growth, a process referred to as chemotropism. The budding yeast Saccharomyces cerevisiae undergoes chemotropic growth during mating, in which two haploid cells of opposite mating type grow toward one another. We have shown that mating pheromone gradients are essential for efficient mating in yeast and have examined the chemotropism defects of different yeast mutants. Two methods of assessing the ability of yeast strains to respond to pheromone gradients are presented here.

  19. Multidrug resistant yeasts in synanthropic wild birds

    Directory of Open Access Journals (Sweden)

    Somanath Sushela

    2010-03-01

    Full Text Available Abstract Background The aim of this study was to investigate the presence of multidrug resistant yeasts in the faeces of synanthropic wild birds from the Bangsar suburb of Kuala Lumpur. Methods Species characterisations of yeast isolates and determinations of antimycotic susceptibility profiles were undertaken using the commercial characterization kit, Integral System Yeasts Plus (Liofilchem, Italy. Results Fourteen species of yeasts were detected in the bird faecal samples.Candida albicans was present in 28.89% of bird faecal samples, Candida krusei (13.33%, Candida tropicalis (4.44%, Candida glabrata (4.44%, Candida parapsilosis (2.22%, Candida lambica (2.22%, Candida stellatoidea (2.22%, Candida rugosa (2.22% and Candida lusitaniae (2.22%. Amongst the non-candidal yeast isolates, Cryptococcus laurentii was present in 6.67% of bird faecal samples, Cryptococcus uniguttulatus (4.44%, Saccharomyces cerevisiae (4.44%, Trichosporon pullulans (2.22%, Trichosporon pullulans/Cryptococcus albidus (8.89% and Rhodotorula rubra/Rhodotorula glutinis (4.44%. Of the isolated yeasts, 18.1% (or 26/144 were found to be resistant to all 11 antimycotic agents they were tested against i.e. Nystatin, Amphotericin B, Flucytosine, Econazole, Ketoconazole, Clotrimazole, Miconazole, Itraconazole, Voriconazole, Fluconazole 16 and Fluconazole 64. 45.8% (or 66/144 of the bird faecal yeast isolates were resistant to four or more of the 11 antimycotic agents they were tested against. Conclusions This finding is of public health significance as these synanthropic wild birds may be reservoirs for transmission of drug resistant yeast infections to humans.

  20. Prions in Yeast

    Science.gov (United States)

    Liebman, Susan W.; Chernoff, Yury O.

    2012-01-01

    The concept of a prion as an infectious self-propagating protein isoform was initially proposed to explain certain mammalian diseases. It is now clear that yeast also has heritable elements transmitted via protein. Indeed, the “protein only” model of prion transmission was first proven using a yeast prion. Typically, known prions are ordered cross-β aggregates (amyloids). Recently, there has been an explosion in the number of recognized prions in yeast. Yeast continues to lead the way in understanding cellular control of prion propagation, prion structure, mechanisms of de novo prion formation, specificity of prion transmission, and the biological roles of prions. This review summarizes what has been learned from yeast prions. PMID:22879407

  1. The yeast Golgi apparatus.

    Science.gov (United States)

    Suda, Yasuyuki; Nakano, Akihiko

    2012-04-01

    The Golgi apparatus is an organelle that has been extensively studied in the model eukaryote, yeast. Its morphology varies among yeast species; the Golgi exists as a system of dispersed cisternae in the case of the budding yeast Saccharomyces cerevisiae, whereas the Golgi cisternae in Pichia pastoris and Schizosaccharomyces pombe are organized into stacks. In spite of the different organization, the mechanism of trafficking through the Golgi apparatus is believed to be similar, involving cisternal maturation, in which the resident Golgi proteins are transported backwards while secretory cargo proteins can stay in the cisternae. Questions remain regarding the organization of the yeast Golgi, the regulatory mechanisms that underlie cisternal maturation of the Golgi and transport machinery of cargo proteins through this organelle. Studies using different yeast species have provided hints to these mechanisms. © 2011 John Wiley & Sons A/S.

  2. Effect of yeast storage temperature and flour composition on fermentative activities of baker's yeast

    Directory of Open Access Journals (Sweden)

    Pejin Dušanka J.

    2009-01-01

    Full Text Available Baker's yeast is a set of living cells of Saccharomyces cerevisiae. It contains around 70-72% of water, 42-45% of proteins, around 40% of carbohydrates, around 7.5% of lipids (based on dry matter, and vitamin B-complex. On the basis of yeast cell analysis it can be concluded that yeast is a complex biological system which changes in time. The intensity of the changes depends on temperature. Yeast sample was stored at 4°C i 24°C for 12 days. During storage at 4°C, the content of total carbohydrates decreased from 48.81% to 37.50% (dry matter, whereas carbohydrate loss ranged from 40.81% to 29.28% at 24°C. The content of trehalose was 12.33% in the yeast sample stored at 4°C and 0.24% at 24°C. Loss of fermentative activity was 81.76% in the sample stored at 24°C for 12 days. The composition of five samples of 1st category flour was investigated. It was found that flours containing more reducing sugars and maltose enable higher fermentation activities. The flours with higher ash content (in the range 0.5-0.94% had higher contents of phytic acid. Higher ash and phytic contents in flour increased the yeast fermentative efficiency. In bakery industry, a range of ingredients has been applied to improve the product's quality such as surface active substances (emulsifiers, enzymes, sugars and fats. In the paper, the effect of some ingredients added to dough (margarine, saccharose, sodium chloride and malted barley on the yeast fermentative activity was studied. The mentioned ingredients were added to dough at different doses: 0.5, 1.0, 1.5 and 2.0%, flour basis. It was found that the investigated ingredients affected the fermentative activity of yeast and improved the bread quality.

  3. Overwintering of vineyard yeasts: survival of interacting yeast communities in grapes mummified on vines

    Directory of Open Access Journals (Sweden)

    Matthias eSipiczki

    2016-02-01

    Full Text Available The conversion of grape must into wine involves the development and succession of yeast populations differing in species composition. The initial population is formed by vineyard strains which are washed into the must from the crushed grapes and then completed with yeasts coming from the cellar environment. As the origin and natural habitat of the vineyard yeasts are not fully understood, this study addresses the possibility that grape yeasts can be preserved in berries left behind on vines at harvest until the spring of the next year. These berries become mummified during the winter on the vines. To investigate whether yeasts can survive in these overwintering grapes, mummified berries were collected in 16 localities in the Tokaj wine region (Hungary-Slovakia in early March. The collected berries were rehydrated to recover viable yeasts by plating samples onto agar plates. For the detection of minority species which would not be detected by direct plating, an enrichment step repressing the propagation of alcohol-sensitive yeasts was also included in the process. The morphological, physiological and molecular analysis identified 13 basidiomycetous and 23 ascomycetous species including fermentative yeasts of wine-making relevance among the 3879 isolates. The presence of viable strains of these species demonstrates that the grapes mummified on the vine can serve as a safe reservoir of yeasts, and may contribute to the maintenance of grape-colonizing yeast populations in the vineyard over years, parallel with other vectors and habitats. All basidiomycetous species were known phylloplane yeasts. Three Hanseniaspora species and pigmented Metschnikowia strains were the most frequent ascomycetes. Other fermentative yeasts of wine-making relevance were detected only in the enrichment cultures. Saccharomyces (S. paradoxus, S. cerevisiae and S. uvarum were recovered from 13 % of the samples. No Candida zemplinina was found. The isolates with Aureobasidium

  4. [Penicillium-inhibiting yeasts].

    Science.gov (United States)

    Benítez Ahrendts, M R; Carrillo, L

    2004-01-01

    The objective of this work was to establish the in vitro and in vivo inhibition of post-harvest pathogenic moulds by yeasts in order to make a biocontrol product. Post-harvest pathogenic moulds Penicillium digitatum, P. italicum, P. ulaiense, Phyllosticta sp., Galactomyces geotrichum and yeasts belonging to genera Brettanomyces, Candida, Cryptococcus, Kloeckera, Pichia, Rhodotorula were isolated from citrus fruits. Some yeasts strains were also isolated from other sources. The yeasts were identified by their macro and micro-morphology and physiological tests. The in vitro and in vivo activities against P. digitatum or P. ulaiense were different. Candida cantarellii and one strain of Pichia subpelliculosa produced a significant reduction of the lesion area caused by the pathogenic moulds P. digitatum and P. ulaiense, and could be used in a biocontrol product formulation.

  5. Nitrile Metabolizing Yeasts

    Science.gov (United States)

    Bhalla, Tek Chand; Sharma, Monica; Sharma, Nitya Nand

    Nitriles and amides are widely distributed in the biotic and abiotic components of our ecosystem. Nitrile form an important group of organic compounds which find their applications in the synthesis of a large number of compounds used as/in pharmaceutical, cosmetics, plastics, dyes, etc>. Nitriles are mainly hydro-lyzed to corresponding amide/acid in organic chemistry. Industrial and agricultural activities have also lead to release of nitriles and amides into the environment and some of them pose threat to human health. Biocatalysis and biotransformations are increasingly replacing chemical routes of synthesis in organic chemistry as a part of ‘green chemistry’. Nitrile metabolizing organisms or enzymes thus has assumed greater significance in all these years to convert nitriles to amides/ acids. The nitrile metabolizing enzymes are widely present in bacteria, fungi and yeasts. Yeasts metabolize nitriles through nitrilase and/or nitrile hydratase and amidase enzymes. Only few yeasts have been reported to possess aldoxime dehydratase. More than sixty nitrile metabolizing yeast strains have been hither to isolated from cyanide treatment bioreactor, fermented foods and soil. Most of the yeasts contain nitrile hydratase-amidase system for metabolizing nitriles. Transformations of nitriles to amides/acids have been carried out with free and immobilized yeast cells. The nitrilases of Torulopsis candida>and Exophiala oligosperma>R1 are enantioselec-tive and regiospecific respectively. Geotrichum>sp. JR1 grows in the presence of 2M acetonitrile and may have potential for application in bioremediation of nitrile contaminated soil/water. The nitrilase of E. oligosperma>R1 being active at low pH (3-6) has shown promise for the hydroxy acids. Immobilized yeast cells hydrolyze some additional nitriles in comparison to free cells. It is expected that more focus in future will be on purification, characterization, cloning, expression and immobilization of nitrile metabolizing

  6. Forces in yeast flocculation

    Science.gov (United States)

    El-Kirat-Chatel, Sofiane; Beaussart, Audrey; Vincent, Stéphane P.; Abellán Flos, Marta; Hols, Pascal; Lipke, Peter N.; Dufrêne, Yves F.

    2015-01-01

    In the baker's yeast Saccharomyces cerevisiae, cell-cell adhesion (``flocculation'') is conferred by a family of lectin-like proteins known as the flocculin (Flo) proteins. Knowledge of the adhesive and mechanical properties of flocculins is important for understanding the mechanisms of yeast adhesion, and may help controlling yeast behaviour in biotechnology. We use single-molecule and single-cell atomic force microscopy (AFM) to explore the nanoscale forces engaged in yeast flocculation, focusing on the role of Flo1 as a prototype of flocculins. Using AFM tips labelled with mannose, we detect single flocculins on Flo1-expressing cells, showing they are widely exposed on the cell surface. When subjected to force, individual Flo1 proteins display two distinct force responses, i.e. weak lectin binding forces and strong unfolding forces reflecting the force-induced extension of hydrophobic tandem repeats. We demonstrate that cell-cell adhesion bonds also involve multiple weak lectin interactions together with strong unfolding forces, both associated with Flo1 molecules. Single-molecule and single-cell data correlate with microscale cell adhesion behaviour, suggesting strongly that Flo1 mechanics is critical for yeast flocculation. These results favour a model in which not only weak lectin-sugar interactions are involved in yeast flocculation but also strong hydrophobic interactions resulting from protein unfolding.

  7. Effect of fungicides on epiphytic yeasts associated with strawberry

    Science.gov (United States)

    Debode, Jane; Van Hemelrijck, Wendy; Creemers, Piet; Maes, Martine

    2013-01-01

    We studied the effect of two commonly used fungicides on the epiphytic yeast community of strawberry. Greenhouse and field experiments were conducted applying Switch (cyprodinil plus fludioxonil) or Signum (boscalid plus pyraclostrobin) to strawberry plants. Yeasts on leaves and fruits were assessed on treated and untreated plants at several time points via plating and denaturing gradient gel electrophoresis (DGGE) analysis. The yeast counts on plates of the treated plants were similar to the control plants. Unripe fruits had 10 times larger yeast concentrations than ripe fruits or leaves. Some dominant yeast types were isolated and in vitro tests showed that they were at least 10 times less sensitive to Switch and Signum as compared with two important fungal strawberry pathogens Botrytis cinerea and Colletotrichum acutatum, which are the targets for the fungicide control. DGGE analysis showed that the applied fungicides had no effect on the composition of the yeast communities, while the growing system, strawberry tissue, and sampling time did affect the yeast communities. The yeast species most commonly identified were Cryptococcus, Rhodotorula, and Sporobolomyces. These results point toward the potential applicability of natural occurring yeast antagonists into an integrated disease control strategy for strawberry diseases.

  8. Uncommon opportunistic yeast bloodstream infections from Qatar

    NARCIS (Netherlands)

    Taj-Aldeen, S.J.; AbdulWahab, A.; Kolecka, A.; Deshmukh, A.; Meis, J.F.G.M.; Boekhout, T.

    2014-01-01

    Eleven uncommon yeast species that are associated with high mortality rates irrespective of antifungal therapy were isolated from 17/187 (201 episodes) pediatric and elderly patients with fungemia from Qatar. The samples were taken over a 6-year period (January 2004-December 2010). Isolated species

  9. Specialist nectar-yeasts decline with urbanization in Berlin

    Science.gov (United States)

    Wehner, Jeannine; Mittelbach, Moritz; Rillig, Matthias C.; Verbruggen, Erik

    2017-03-01

    Nectar yeasts are common inhabitants of insect-pollinated flowers but factors determining their distribution are not well understood. We studied the influence of host identity, environmental factors related to pollution/urbanization, and the distance to a target beehive on local distribution of nectar yeasts within Robinia pseudoacacia L. and Tilia tomentosa Moench in Berlin, Germany. Nectar samples of six individuals per species were collected at seven sites in a 2 km radius from each target beehive and plated on YM-Agar to visualise the different morphotypes, which were then identified by sequencing a section of the 26S rDNA gene. Multivariate linear models were used to analyze the effects of all investigated factors on yeast occurrence per tree. Yeast distribution was mainly driven by host identity. The influence of the environmental factors (NO2, height of construction, soil sealing) strongly depended on the radius around the tree, similar to the distance of the sampled beehive. Incidence of specialist nectar-borne yeast species decreased with increasing pollution/urbanization index. Given that specialist yeast species gave way to generalist yeasts that have a reduced dependency on pollinators for between-flower dispersal, our results indicate that increased urbanization may restrict the movement of nectar-specialized yeasts, via limitations of pollinator foraging behavior.

  10. Yeasts associated with Manteca.

    Science.gov (United States)

    Suzzi, Giovanna; Schirone, Maria; Martuscelli, Maria; Gatti, Monica; Fornasari, Maria Emanuela; Neviani, Erasmo

    2003-04-01

    Manteca is a traditional milk product of southern Italy produced from whey deriving from Caciocavallo Podolico cheese-making. This study was undertaken to obtain more information about the microbiological properties of this product and particularly about the presence, metabolic activities, and technological significance of the different yeast species naturally occurring in Manteca. High numbers of yeasts were counted after 7 days ripening (10(4)-10(5) cfu g(-1)) and then decreased to 10(2) at the end. A total of 179 isolates were identified and studied for their phenotypic and genotypic characteristics. The most frequently encountered species were Trichosporon asahii (45), Candida parapsilosis (33), Rhodotorula mucilaginosa (32), Candida inconspicua (29). Some of these yeasts showed lipolytic activity (32 strains) and proteolytic activity (29 strains), NaCl resistance up to 10% and growth up to 45 degrees C (42 strains). Biogenic amines were formed by proteolytic strains, in particular phenylethylamine, putrescine and spermidine. Spermidine was produced by all the yeasts tested in this work, but only Trichosporon produced a great quantity of this compound. Histamine was not detectable. Caseinolytic activity was common to almost all strains, corresponding to the ability to efficiently split off amino-terminal amino acids. The highest and most constant activity expressed by all species was X-prolyl-dipeptidyl aminopeptidase. The findings suggest that the presence of yeasts may play a significant role in justifying interactions with lactic acid bacteria, and consequently with their metabolic activity in the definition of the peculiar characteristics of Manteca cheese.

  11. Yeast genome sequencing:

    DEFF Research Database (Denmark)

    Piskur, Jure; Langkjær, Rikke Breinhold

    2004-01-01

    they are short and degenerate and occupy different positions. Comparative genomics helps to understand the origin of yeasts and points out crucial molecular events in yeast evolutionary history, such as whole-genome duplication and horizontal gene transfer(s). In addition, the accumulating sequence data provide...... that the minimum number of genes from each species that need to be compared to produce a reliable phylogeny is about 20. Yeast has also become an attractive model to study speciation in eukaryotes, especially to understand molecular mechanisms behind the establishment of reproductive isolation. Comparison...... of closely related species helps in gene annotation and to answer how many genes there really are within the genomes. Analysis of non-coding regions among closely related species has provided an example of how to determine novel gene regulatory sequences, which were previously difficult to analyse because...

  12. Genetics of Yeasts

    Science.gov (United States)

    Querol, Amparo; Fernández-Espinar, M. Teresa; Belloch, Carmela

    The use of yeasts in biotechnology processes dates back to ancient days. Before 7000 BC, beer was produced in Sumeria. Wine was made in Assyria in 3500 BC, and ancient Rome had over 250 bakeries, which were making leavened bread by 100 BC. And milk has been made into Kefyr and Koumiss in Asia for many centuries (Demain, Phaff, & Kurtzman, 1999). However, the importance of yeast in the food and beverage industries was only realized about 1860, when their role in food manufacturing became evident.

  13. Antimicrobial activity of yeasts against some pathogenic bacteria

    OpenAIRE

    Gamal Younis; Amal Awad; Dawod, Rehab E.; Yousef, Nehal E.

    2017-01-01

    Aim: This study was designed to isolate and identify yeast species from milk and meat products, and to test their antimicrobial activity against some bacterial species. Materials and Methods: A total of 160 milk and meat products samples were collected from random sellers and super markets in New Damietta city, Damietta, Egypt. Samples were subjected to yeast isolation procedures and tested for its antimicrobial activity against Staphylococcus aureus, Pseudomonas aeruginosa, and Escherich...

  14. L-arabinose fermenting yeast

    Science.gov (United States)

    Zhang, Min; Singh, Arjun; Knoshaug, Eric; Franden, Mary Ann; Jarvis, Eric; Suominen, Pirkko

    2010-12-07

    An L-arabinose utilizing yeast strain is provided for the production of ethanol by introducing and expressing bacterial araA, araB and araD genes. L-arabinose transporters are also introduced into the yeast to enhance the uptake of arabinose. The yeast carries additional genomic mutations enabling it to consume L-arabinose, even as the only carbon source, and to produce ethanol. Methods of producing ethanol include utilizing these modified yeast strains. ##STR00001##

  15. Rapid isolation of yeast genomic DNA: Bust n' Grab

    Directory of Open Access Journals (Sweden)

    Peterson Kenneth R

    2004-04-01

    Full Text Available Abstract Background Mutagenesis of yeast artificial chromosomes (YACs often requires analysis of large numbers of yeast clones to obtain correctly targeted mutants. Conventional ways to isolate yeast genomic DNA utilize either glass beads or enzymatic digestion to disrupt yeast cell wall. Using small glass beads is messy, whereas enzymatic digestion of the cells is expensive when many samples need to be analyzed. We sought to develop an easier and faster protocol than the existing methods for obtaining yeast genomic DNA from liquid cultures or colonies on plates. Results Repeated freeze-thawing of cells in a lysis buffer was used to disrupt the cells and release genomic DNA. Cell lysis was followed by extraction with chloroform and ethanol precipitation of DNA. Two hundred ng – 3 μg of genomic DNA could be isolated from a 1.5 ml overnight liquid culture or from a large colony. Samples were either resuspended directly in a restriction enzyme/RNase coctail mixture for Southern blot hybridization or used for several PCR reactions. We demonstrated the utility of this method by showing an analysis of yeast clones containing a mutagenized human β-globin locus YAC. Conclusion An efficient, inexpensive method for obtaining yeast genomic DNA from liquid cultures or directly from colonies was developed. This protocol circumvents the use of enzymes or glass beads, and therefore is cheaper and easier to perform when processing large numbers of samples.

  16. Antimicrobial activity of yeasts against some pathogenic bacteria

    Directory of Open Access Journals (Sweden)

    Gamal Younis

    2017-08-01

    Full Text Available Aim: This study was designed to isolate and identify yeast species from milk and meat products, and to test their antimicrobial activity against some bacterial species. Materials and Methods: A total of 160 milk and meat products samples were collected from random sellers and super markets in New Damietta city, Damietta, Egypt. Samples were subjected to yeast isolation procedures and tested for its antimicrobial activity against Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli. In addition, all yeast species isolates were subjected to polymerase chain reaction (PCR for detection of khs (kievitone hydratase and pelA (pectate degrading enzyme genes. Results: The recovery rate of yeasts from sausage was 20% (2/10 followed by kareish cheese, processed cheese, and butter 10% (1/10 each as well as raw milk 9% (9/100, and fruit yoghurt 30% (6/20. Different yeast species were recovered, namely, Candida kefyr (5 isolates, Saccharomyces cerevisiae (4 isolates, Candida intermedia (3 isolates, Candida tropicalis (2 isolates, Candida lusitaniae (2 isolates, and Candida krusei (1 isolate. khs gene was detected in all S. cerevisiae isolates, however, pelA gene was not detected in all identified yeast species. Antimicrobial activity of recovered yeasts against the selected bacterial species showed high activity with C. intermedia against S. aureus and E. coli, C. kefyr against E. coli, and C. lusitaniae against S. aureus. Moderate activities were obtained with C. tropicalis, C. lusitaniae, and S. cerevisiae against E. coli; meanwhile, all the tested yeasts revealed a very low antimicrobial activity against P. aeruginosa. Conclusion: The obtained results confirmed that some kinds of yeasts have the ability to produce antimicrobial compounds that could inhibit some pathogenic and spoilage bacteria and these antimicrobial activity of yeasts enables them to be one of the novel agents in controlling spoilage of food.

  17. Opportunistic Pathogenic Yeasts

    Science.gov (United States)

    Banerjee, Uma

    Advances in medical research, made during the last few decades, have improved the prophylactic, diagnostic and therapeutic capabilities for variety of infections/diseases. However, many of the prophylactic and therapeutic procedures have been seen in many instances to exact a price of host-vulnerability to an expanding group of opportunistic pathogens and yeasts are one of the important members in it. Fortunately amongst the vast majority of yeasts present in nature only few are considered to have the capability to cause infections when certain opportunities predisposes and these are termed as ‘opportunistic pathogenic yeasts.’ However, the term ‘pathogenic’ is quite tricky, as it depends of various factors of the host, the ‘bug’ and the environment to manifest the clinical infection. The borderline is expanding. In the present century with unprecedented increase in number of immune-compromised host in various disciplines of health care settings, where any yeast, which has the capability to grow at 37 ° C (normal body temperature of human), can be pathogenic and cause infection in particular situation

  18. Recombinant wine yeasts

    OpenAIRE

    González García, Ramón; González Ramos, Daniel

    2008-01-01

    The invention relates to a method for obtaining strains that secrete a higher concentration of mannoproteins to the medium, a Saccharomyces cerevisiae yeast strain deposited at the Spanish Type Culture Collection (CECT) as CECT 13012, and to the uses of said strains.

  19. Influence of the farming system on the epiphytic yeasts and yeast-like fungi colonizing grape berries during the ripening process.

    Science.gov (United States)

    Martins, Guilherme; Vallance, Jessica; Mercier, Anne; Albertin, Warren; Stamatopoulos, Panagiotis; Rey, Patrice; Lonvaud, Aline; Masneuf-Pomarède, Isabelle

    2014-05-02

    Grape berries are colonized by a wide array of epiphytic microorganisms such as yeast and filamentous fungi. This microbiota plays a major role in crop health and also interferes with the winemaking process. In this study, culture-dependent and -independent methods were used to investigate the dynamics and diversity of the yeast and yeast-like microorganisms on the grape berry surface during maturation and the influence of cropping systems in this microflora. The results showed a significant impact of both the farming system and the maturity stage on the epiphytic yeast and yeast-like community. A quantitative approach based on counting cultivable populations indicated an increase in the yeast and yeast-like population during the grape ripening process, reaching a maximum when the berries became overripe. The cultivable yeast and yeast-like population also varied significantly depending on the farming system. Microorganism counts were significantly higher for organically- than conventionally-farmed grapes. The yeast and yeast-like community structures were analysed by culture independent methods, using CE-SSCP. The results revealed changes in the genetic structure of the yeast and yeast-like community throughout the ripening process, as well as the impact of the farming system. Copper-based fungicide treatments were revealed as the main factor responsible for the differences in microbial population densities between samples of different farming systems. The results showed a negative correlation between copper levels and yeast and yeast-like populations, providing evidence that copper inhibited this epiphytic community. Taken together, our results showed that shifts in the microbial community were related to changes in the composition of the grape-berry surface, particularly sugar exudation and the occurrence of copper residues from pesticide treatments. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Isolation and characterization of phenol degrading yeasts from wastewater in the coking plant of Zarand, Kerman

    Directory of Open Access Journals (Sweden)

    Maryam Karimi

    2016-03-01

    Full Text Available Abstract Phenol and phenolic compounds are environmental pollutants present in industrial wastewaters such as coal tar, oil refineries and petrochemical plants. Phenol removal from industrial effluents is extremely important for the protection of environment. Usually, phenol degradation is carried out by physicochemical methods that are costly and produce hazardous metabolites. Recently, phenol biodegradation has been considered. Yeasts are the most important phenol biodegraders. In this study, the phenol-degrading yeast from environmental samples (soil and wastewater was isolated from the coking plant of Zarand, Kerman. Then total heterotrophic yeasts were counted. The soil samples had higher rates of yeast degrader, in comparison to wastewater samples. After three passages, four yeasts (K1, K2, K7 and K11 that had the highest growth rate were selected for further study. Also, these yeasts were able to remove phenol measured by Gibbs reagent. The effect of four different concentrations of phenol (50, 125, 200 and 275 mg L−1 was measured and three degradation patterns in these yeasts were observed. The hydrophobicity and emulsification activity were measured in all eleven yeasts. Finally, strong yeasts in phenol degrading yeasts were identified by molecular method using amplification of 18S rRNA gene region. The sequencing results showed that these isolated yeasts belonged to Candida tropicalis strain K1, Pichia guilliermondii strain K2, Meyerozyma guilliermondii strain K7 and C. tropicalis strain K11.

  1. Proteolytic activities in yeast.

    Science.gov (United States)

    Saheki, T; Holzer, H

    1975-03-28

    Studies on the mechanism and time course of the activation of proteinases A (EC 3.4.23.8), B (EC 3.4.22.9) and C (EC 3.4.12.--) in crude yeast extracts at pH 5.1 and 25 degrees C showed that the increase in proteinase B activity is paralleled with the disappearance of proteinase B inhibitor. Addition of purified proteinase A to fresh crude extracts accelerates the inactivation of the proteinase B inhibitor and the appearance of maximal activities of proteinases B and C. The decrease of proteinase B inhibitor activity and the increase of proteinase B activity are markedly retarded by the addition of pepstatin. Because 10-minus 7 M pepstatin completely inhibits proteinase A without affecting proteinase B activity, this is another indication for the role of proteinase A during the activation of proteinase B. Whereas extracts of yeast grown on minimal medium reached maximal activation of proteinases B and C after 20 h of incubation at pH 5.1 and 25 degrees C, extracts of yeast grown on complete medium had to be incubated for about 100 h. In the latter case, the addition of proteinas A results in maximal activation of proteinases B and C and disappearance of proteinase B inhibitor activity only after 10--20 h of incubation. With the optimal conditions, the maximal activities of proteinases A, B and C, as well as of the proteinase B inhibitor, were determined in crude extracts of yeast that had been grown batchwise for different lengths of time either on minimal or on complete medium. Upon incubation, all three proteinases were activated by several times their initial activity. This reflects the existence of proteolytically degradable inhibitors of the three proteinases and together with the above mentioned observations it demonstrates that the "activation" of yeast proteinases A, B and C upon incubation results from the proteolytic digestion of inhibitors rather than from activation of inactive zymogens by limited proteolysis.

  2. L-arabinose fermenting yeast

    Science.gov (United States)

    Zhang, Min; Singh, Arjun; Suominen, Pirkko; Knoshaug, Eric; Franden, Mary Ann; Jarvis, Eric

    2013-02-12

    An L-arabinose utilizing yeast strain is provided for the production of ethanol by introducing and expressing bacterial araA, araB and araD genes. L-arabinose transporters are also introduced into the yeast to enhance the uptake of arabinose. The yeast carries additional genomic mutations enabling it to consume L-arabinose, even as the only carbon source, and to produce ethanol. A yeast strain engineered to metabolize arabinose through a novel pathway is also disclosed. Methods of producing ethanol include utilizing these modified yeast strains.

  3. Yeast ecology of Kombucha fermentation.

    Science.gov (United States)

    Teoh, Ai Leng; Heard, Gillian; Cox, Julian

    2004-09-01

    Kombucha is a traditional fermentation of sweetened tea, involving a symbiosis of yeast species and acetic acid bacteria. Despite reports of different yeast species being associated with the fermentation, little is known of the quantitative ecology of yeasts in Kombucha. Using oxytetracycline-supplemented malt extract agar, yeasts were isolated from four commercially available Kombucha products and identified using conventional biochemical and physiological tests. During the fermentation of each of the four products, yeasts were enumerated from both the cellulosic pellicle and liquor of the Kombucha. The number and diversity of species varied between products, but included Brettanomyces bruxellensis, Candida stellata, Schizosaccharomyces pombe, Torulaspora delbrueckii and Zygosaccharomyces bailii. While these yeast species are known to occur in Kombucha, the enumeration of each species present throughout fermentation of each of the four Kombucha cultures demonstrated for the first time the dynamic nature of the yeast ecology. Kombucha fermentation is, in general, initiated by osmotolerant species, succeeded and ultimately dominated by acid-tolerant species.

  4. Yeast species associated with wine grapes in China.

    Science.gov (United States)

    Li, Shuang-Shi; Cheng, Chao; Li, Zheng; Chen, Jing-Yu; Yan, Bin; Han, Bei-Zhong; Reeves, Malcolm

    2010-03-31

    Having more information on the yeast ecology of grapes is important for wine-makers to produce wine with high quality and typical attributes. China is a significant wine-consuming country and is becoming a serious wine-producer, but little has been reported about the yeast ecology of local ecosystems. This study provides the first step towards the exploitation of the yeast wealth in China's vine-growing regions. The aim of this study was to investigate the yeast population density and diversity on three grape varieties cultivated in four representative vine-growing regions of China. Yeast species diversity was evaluated by using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) and sequence analysis of the 5.8S internal transcribed spacer (ITS) ribosomal DNA (rDNA) region of cultivable yeasts. The grapes harbored yeast populations at 10(2)-10(6)CFU/mL, consisting mostly of non-Saccharomyces species. Seventeen different yeast species belonging to eight genera were detected on the grape samples tested, including Hanseniaspora uvarum, Cryptococcus flavescens, Pichia fermentans, Candida zemplinina, Cryptococcus carnescens, Candida inconpicua, Zygosaccharomyces fermentati, Issatchenkia terricola, Candida quercitrusa, Hanseniaspora guilliermondii, Candida bombi, Zygosaccharomyces bailii, Sporidiobolus pararoseus, Cryptococcus magnus, Metschnikowia pulcherrima, Issatchenkia orientalis and Pichia guilliermondii. H. uvarum and C. flavescens were the dominant species present on the grapes. For the first time Sporidiobolus pararoseus was discovered as an inhabitant of the grape ecosystem. The yeast community on grape berries was influenced by the grape chemical composition, vine-variety and vine-growing region. This study is the first to identify the yeast communities associated with grapes in China using molecular methods. The results enrich our knowledge of wine-related microorganisms, and can be used to promote the development of the local wine

  5. Extracellular Polysaccharides Produced by Yeasts and Yeast-Like Fungi

    Science.gov (United States)

    van Bogaert, Inge N. A.; de Maeseneire, Sofie L.; Vandamme, Erick J.

    Several yeasts and yeast-like fungi are known to produce extracellular polysaccharides. Most of these contain D-mannose, either alone or in combination with other sugars or phosphate. A large chemical and structural variability is found between yeast species and even among different strains. The types of polymers that are synthesized can be chemically characterized as mannans, glucans, phosphoman-nans, galactomannans, glucomannans and glucuronoxylomannans. Despite these differences, almost all of the yeast exopolysaccharides display some sort of biological activity. Some of them have already applications in chemistry, pharmacy, cosmetics or as probiotic. Furthermore, some yeast exopolysaccharides, such as pullulan, exhibit specific physico-chemical and rheological properties, making them useful in a wide range of technical applications. A survey is given here of the production, the characteristics and the application potential of currently well studied yeast extracellular polysaccharides.

  6. Microbiology and epidemiology of oral yeast colonization in hemopoietic progenitor cell transplant recipients.

    Science.gov (United States)

    Westbrook, Steven D; Kirkpatrick, William R; Wiederhold, Nathan P; Freytes, Cesar O; Toro, Juan J; Patterson, Thomas F; Redding, Spencer W

    2013-03-01

    We monitored the epidemiology and microbiology of oral yeast colonization in patients undergoing hemopoietic progenitor cell transplantation (HPCT) to examine associations between yeast colonization and oral mucositis. One hundred twenty-one consecutive HPCT patients were sampled for oral yeasts prior to fluconazole (FLC) prophylaxis, at transplantation, and weekly until discharge. Clinical oral mucositis screenings were performed triweekly. Yeast colonization was evident at 216 of 510 total visits. Candida albicans and Candida glabrata were the predominant organisms. Eight patients showed elevated minimal inhibitory concentrations to FLC. One patient developed fungal septicemia. Patients with oral mucositis assessment scale scores oral yeasts in HPCT recipients. FLC-resistant yeasts do emerge and can be the source of fungal sepsis. A positive association was not shown between yeast colonization and the presence or severity of oral mucositis. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. Effects of fermentation temperature on the composition of beer volatile compounds, organoleptic quality and spent yeast density

    OpenAIRE

    Olaniran, Ademola O.; Maharaj,Yushir R; Pillay, Balakrishna

    2011-01-01

    Production of good quality beer is dependent largely on the fermentation temperature and yeast strains employed during the brewing process, among others. In this study, effects of fermentation temperatures and yeast strain type on beer quality and spent yeast density produced after wort fermentation by two commercial yeast strains were investigated. Beer samples were assessed for colour, clarity and foam head stability using standard methods, whilst the compositions and concentration of Beer ...

  8. Yeasts in Hevea brasiliensis Latex.

    Science.gov (United States)

    Glushakova, A M; Kachalkin, A V; Maksimova, I A; Chernov, I Yu

    2016-07-01

    Yeast abundance and species diversity in the latex of caoutchouc tree Hevea brasiliensis (Willd. ex Juss.) M611. Arg., on its green leaves, and in soil below the plant Was studied. The yeasts present in the fresh latex in concentrations of up to 5.5 log(CFU/g) were almost exclusively represented by the species Candida heveicola, which was previously isolated from Hevea latex in China. In the course of natural modification of the latex yeast diversity increased, while yeast abundance decreased. The yeasts of thickened and solidified latex were represented by typical epiphytic and ubiquitous species: Kodamea ohmeri, Debaryomyces hansenii, Rhodotorula mucilaginosa, and synanthropic species Candida parapsilosis and Cutaneotrichosporon arbori- formis. The role of yeasts in latex modification at the initial stages of succession and their probable role in de- velopment of antifungal activity in the latex are discussed.

  9. Identification and characterization of yeasts in sugarcane silages.

    Science.gov (United States)

    Avila, C L S; Bravo Martins, C E C; Schwan, R F

    2010-11-01

    To enumerate the micro-organisms and to identify the yeast species present during the ensilage of different sugarcane (Saccharum spp.) cultivars. Samples of sugarcane silage were collected at 10, 20, 30 and 40 days from the start of fermentation. Population levels of lactic acid bacteria (LAB), mesophilic facultative anaerobic (MFA) bacteria, filamentous fungi and yeasts were determined. Nine species of yeasts were classified according to traditional methods and confirmed using molecular techniques. LAB dominated the ensiling process of sugarcane, although yeasts were present at relatively high population levels throughout the whole fermentation period. The detected species of yeasts varied according to sugarcane cultivar and time of fermentation. Torulaspora delbrueckii was the predominant yeast, followed by Pichia anomala and Saccharomyces cerevisiae. Knowledge of the population of micro-organisms in general, and of yeasts in particular, present during the fermentation of sugarcane is of fundamental importance in the development of more effective ensiling processes. © 2010 The Authors. Journal of Applied Microbiology © 2010 The Society for Applied Microbiology.

  10. Yeast interactions and wine flavour.

    Science.gov (United States)

    Fleet, Graham H

    2003-09-01

    Wine is the product of complex interactions between fungi, yeasts and bacteria that commence in the vineyard and continue throughout the fermentation process until packaging. Although grape cultivar and cultivation provide the foundations of wine flavour, microorganisms, especially yeasts, impact on the subtlety and individuality of the flavour response. Consequently, it is important to identify and understand the ecological interactions that occur between the different microbial groups, species and strains. These interactions encompass yeast-yeast, yeast-filamentous fungi and yeast-bacteria responses. The surface of healthy grapes has a predominance of Aureobasidium pullulans, Metschnikowia, Hanseniaspora (Kloeckera), Cryptococcus and Rhodotorula species depending on stage of maturity. This microflora moderates the growth of spoilage and mycotoxigenic fungi on grapes, the species and strains of yeasts that contribute to alcoholic fermentation, and the bacteria that contribute to malolactic fermentation. Damaged grapes have increased populations of lactic and acetic acid bacteria that impact on yeasts during alcoholic fermentation. Alcoholic fermentation is characterised by the successional growth of various yeast species and strains, where yeast-yeast interactions determine the ecology. Through yeast-bacterial interactions, this ecology can determine progression of the malolactic fermentation, and potential growth of spoilage bacteria in the final product. The mechanisms by which one species/strain impacts on another in grape-wine ecosystems include: production of lytic enzymes, ethanol, sulphur dioxide and killer toxin/bacteriocin like peptides; nutrient depletion including removal of oxygen, and production of carbon dioxide; and release of cell autolytic components. Cell-cell communication through quorum sensing molecules needs investigation.

  11. Properties of palm wine yeasts and its performance in wine making ...

    African Journals Online (AJOL)

    Fresh palm wine samples were obtained from oil palm and raffia palm into sterile flasks. The samples were examined for yeasts properties and performance in wine making using grapes. The yeasts in the palm wine were characterized, identified, and screened for their sedimentation rate, ethanol tolerance, alcohol content, ...

  12. Flavour-active wine yeasts

    OpenAIRE

    Cordente, Antonio G.; Curtin, Christopher D.; Varela, Cristian; Pretorius, Isak S.

    2012-01-01

    The flavour of fermented beverages such as beer, cider, saké and wine owe much to the primary fermentation yeast used in their production, Saccharomyces cerevisiae. Where once the role of yeast in fermented beverage flavour was thought to be limited to a small number of volatile esters and higher alcohols, the discovery that wine yeast release highly potent sulfur compounds from non-volatile precursors found in grapes has driven researchers to look more closely at how choice of yeast can infl...

  13. Yeast diversity and novel yeast D1/D2 sequences from corn phylloplane obtained by a culture-independent approach.

    Science.gov (United States)

    Nasanit, Rujikan; Jaibangyang, Sopin; Tantirungkij, Manee; Limtong, Savitree

    2016-12-01

    Culture-independent techniques have recently been used for evaluation of microbial diversity in the environment since it addresses the problem of unculturable microorganisms. In this study, the diversity of epiphytic yeasts from corn (Zea mays Linn.) phylloplanes in Thailand was investigated using this technique and sequence-based analysis of the D1/D2 domains of the large subunit ribosomal DNA sequences. Thirty-seven samples of corn leaf were collected randomly from 10 provinces. The DNA was extracted from leaf washing samples and the D1/D2 domains were amplified. The PCR products were cloned and then screened by colony PCR. A total of 1049 clones were obtained from 37 clone libraries. From this total, 329 clones (213 sequences) were closely related to yeast strains in the GenBank database, and they were clustered into 77 operational taxonomic units (OTUs) with a similarity threshold of 99 %. The majority of sequences (98.5 %) were classified into the phylum Basidiomycota. Sixteen known yeast species were identified. Interestingly, more than 65 % of the D1/D2 sequences obtained by this technique were suggested to be sequences from new yeast taxa. The predominant yeast sequences detected belonged to the order Ustilaginales with relative frequency of 68.0 %. The most common known yeast species detected on the leaf samples were Pseudozyma hubeiensis pro tem. and Moesziomyces antarcticus with frequency of occurrence of 24.3 and 21.6 %, respectively.

  14. Influence of aeration during propagation of pitching yeast on fermentation and beer flavor.

    Science.gov (United States)

    Cheong, Chul; Wackerbauer, Karl; Kang, Soon Ah

    2007-02-01

    The effect of yeast propagated at different aeration conditions on yeast physiology, fermentation ability, and beer quality was investigated using three strains of Saccharomyces cerevisiae. It was shown that yeast cells grown under continuous aeration conditions during propagation were almost two times higher as compared with discontinuous aeration conditions. The maximum of cell growth of all samples reached between 36 h and 48 h. The concentration of trehalose was increased under continuous aerated yeasts, whereas glycogen was decreased. It was also observed that the concentration of glycogen and trehalose in yeast cells had no direct effect on subsequent fermentation ability. The effect of yeast propagated under different aeration conditions on subsequent fermentation ability was different from yeast strains, in which the influence will be most pronounced at the first fermentation. Later, the yeasts might regain its original characteristics in the following fermentations. Generally, continuously propagated yeast had a positive effect on beer quality in subsequent fermentation. Hence, the concentration of aroma compounds obtained with yeast propagated under 6 1/h for 48 h aeration was lower than those grown under other aeration conditions in the bottom yeasts; in particular, the amounts of phenylethyl alcohol, ester, and fatty acids were decreased.

  15. The origin and species of yeasts in commercial preparations of bovine semen.

    Science.gov (United States)

    Dion, W M

    1979-01-01

    Whereas yeasts were not normally isolated from raw semen samples 13% of commercial frozen semen samples and 71% of preputial washings contained yeasts. Nine genera and 25 species of yeasts have been identified from these two sources. Yeasts originating in the preputial cavity were generally saprobic members of the genera Candida, Cryptococcus, Rhodotorula, Saccharomyces, Torulopsis and Trichosporon. Those originating as contaminants during processing were more likely to be opportunistic pathogens of the genus Candida. Conception was not necessarily affected by the presence of large numbers of Candida krusei or C. macedoniensis in the uterus. PMID:570874

  16. Species richness of yeast communities in floral nectar of southern Spanish plants.

    Science.gov (United States)

    Pozo, María I; Herrera, Carlos M; Bazaga, Pilar

    2011-01-01

    Floral nectar of insect-pollinated plants often contains dense yeast populations, yet little quantitative information exists on patterns and magnitude of species richness of nectar-dwelling yeasts in natural plant communities. This study evaluates yeast species richness at both the plant community and plant species levels in a montane forest area in southern Spain, and also explores possible correlations between the incidence of different yeast species in nectar and their reported tolerance to high sugar concentrations, and between yeast diversity and pollinator composition. Yeast species occurring in a total of 128 field-collected nectar samples from 24 plant species were identified by sequencing the D1/D2 domain of the large subunit rDNA, and rarefaction-based analyses were used to estimate yeast species richness at the plant community and plant species levels, using nectar drops as elemental sampling units. Individual nectar samples were generally characterized by very low species richness (1.2 yeast species/sample, on average), with the ascomycetous Metschnikowia reukaufii and Metschnikowia gruessii accounting altogether for 84.7% of the 216 isolates identified. Other yeasts recorded included species in the genera Aureobasidium, Rhodotorula, Cryptococcus, Sporobolomyces, and Lecythophora. The shapes and slopes of observed richness accumulation curves were quite similar for the nectar drop and plant species approaches, but the two approaches yielded different expected richness estimates. Expected richness was higher for plant species-based than for nectar drop-based analyses, showing that the coverage of nectar yeast species occurring in the region would be improved by sampling additional host plant species. A significant correlation was found between incidence of yeast species in nectar and their reported ability to grow in a medium containing 50% glucose. Neither diversity nor incidence of yeasts was correlated with pollinator composition across plant species.

  17. The yeast spectrum of the 'tea fungus Kombucha'.

    Science.gov (United States)

    Mayser, P; Fromme, S; Leitzmann, C; Gründer, K

    1995-01-01

    The tea fungus 'Kombucha' is a symbiosis of Acetobacter, including Acetobacter xylinum as a characteristic species, and various yeasts. A characteristic yeast species or genus has not yet been identified. Kombucha is mainly cultivated in sugared black tea to produce a slightly acidulous effervescent beverage that is said to have several curative effects. In addition to sugar, the beverage contains small amounts of alcohol and various acids, including acetic acid, gluconic acid and lactic acid, as well as some antibiotic substances. To characterize the yeast spectrum with special consideration given to facultatively pathogenic yeasts, two commercially available specimens of tea fungus and 32 from private households in Germany were analysed by micromorphological and biochemical methods. Yeasts of the genera Brettanomyces, Zygosaccharomyces and Saccharomyces were identified in 56%, 29% and 26% respectively. The species Saccharomycodes ludwigii and Candida kefyr were only demonstrated in isolated cases. Furthermore, the tests revealed pellicle-forming yeasts such as Candida krusei or Issatchenkia orientalis/occidentalis as well as species of the apiculatus yeasts (Kloeckera, Hanseniaspora). Thus, the genus Brettanomyces may be a typical group of yeasts that are especially adapted to the environment of the tea fungus. However, to investigate further the beneficial effects of tea fungus, a spectrum of the other typical genera must be defined. Only three specimens showed definite contaminations. In one case, no yeasts could be isolated because of massive contamination with Penicillium spp. In the remaining two samples (from one household), Candida albicans was demonstrated. The low rate of contamination might be explained by protective mechanisms, such as formation of organic acids and antibiotic substances. Thus, subjects with a healthy metabolism do not need to be advised against cultivating Kombucha. However, those suffering from immunosuppression should preferably

  18. Gut yeast communities in Larus michahellis from various breeding colonies.

    Science.gov (United States)

    Al-Yasiri, Mohammed Hashim; Normand, Anne-Cécile; Piarroux, Renaud; Ranque, Stéphane; Mauffrey, Jean-François

    2017-06-01

    Yellow-legged gulls have been reported to carry antibiotic-resistant Enterobacteriaceae; however, the gut mycobiota of these birds has not yet been described. In this study, we analyzed the gut yeast communities in five yellow-legged gull breeding colonies along the Mediterranean littoral in southern France. Gull fecal samples were inoculated onto four types of culture media, including one supplemented with itraconazole. Yeast species richness, abundance, and diversity were estimated, and factorial analysis was used to highlight correspondences between breeding colonies. Yeast grew in 113 of 177 cultures, and 17 distinct yeast species were identified. The most frequent species were Candida krusei (53.5%), Galactomyces geotrichum (44.1%), C. glabrata (40.9%), C. albicans (20.5%), and Saccharomyces cerevisiae (18.1%). Gut yeast community structure in the gulls at both Pierre-Blanche Lagoon (PB) and Frioul Archipelago (F) were characterized by greater species richness and diversity than in those at the two cities of La Grande-Motte (GM) and Palavas-les-Flots (PF) as well as Riou Archipelago (R). Gulls in these latter three sites probably share a similar type of anthropogenic diet. Notably, the proportion of anthropic yeast species, including C. albicans and C. glabrata, in the gull mycobiota increased with gull colony synanthropy. Antifungal resistance was found in each of the five most frequent yeast species. We found that the gut yeast communities of these yellow-legged gulls include antifungal-resistant human pathogens. Further studies should assess the public health impact of these common synanthropic seabirds, which represent a reservoir and disseminator of drug-resistant human pathogenic yeast into the environment. © The Author 2016. Published by Oxford University Press on behalf of The International Society for Human and Animal Mycology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  19. Yeast Infections: MedlinePlus Health Topic

    Science.gov (United States)

    ... Vaginal yeast infection (Medical Encyclopedia) Also in Spanish Topic Image MedlinePlus Email Updates Get Yeast Infections updates ... gram stain Thrush Vaginal yeast infection Related Health Topics Fungal Infections Vaginitis National Institutes of Health The ...

  20. Grape berry yeast communities: influence of fungicide treatments.

    Science.gov (United States)

    Milanović, Vesna; Comitini, Francesca; Ciani, Maurizio

    2013-02-15

    The yeast communities colonising grape berry surfaces were evaluated for the influence of fungicide treatments in an organic vineyard (copper/sulphur-based products) and a conventional vineyard (commonly used fungicides). Analysis of yeast abundance and diversity was carried out on grape berries and juice during fermentation, using culture-dependent and -independent approaches. Yeast abundance was as generally reported for mature grapes and it was slight higher from grapes treated with conventional fungicides. Initial grape samples showed less yeast species diversity in the organic vineyard compared with the conventional one. In both vineyards, the dominant yeast were Candida zemplinina and Hanseniaspora uvarum (>50%), respectively, typical species that colonise surfaces of mature grape berries. Metschnikowia pulcherrima was widely found in the conventional samples while it was only occasionally found in organic ones. Saccharomyces cerevisiae was isolated only at the end of natural fermentation (conducted in sterile condition), with lower levels in the organic samples. S. cerevisiae strains showed less intraspecies diversity in the organic samples (two genotypes), in comparison with the conventional samples (six genotypes). Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Characterization of the yeast ecosystem in grape must and wine using real-time PCR.

    Science.gov (United States)

    Zott, K; Claisse, O; Lucas, P; Coulon, J; Lonvaud-Funel, A; Masneuf-Pomarede, I

    2010-08-01

    The complex microbial ecosystem of grape must and wine harbours a wide diversity of yeast species. Specific oligonucleotide primers for real-time quantitative PCR(QPCR) were designed to analyse several important non-Saccharomyces yeasts (Issatchenkia orientalis, Metschnikowia pulcherrima, Torulaspora delbrueckii, Candida zemplinina and Hanseniaspora spp.) and Saccharomyces spp. in fresh wine must, during fermentation and in the finished wine. The specificity of all primer couples for their target yeast species were validated and the QPCR methods developed were compared with a classic approach of colony identification by RFLP-ITS-PCR on cultured samples. Once the methods had been developed and validated, they were used to study these non-Saccharomyces yeasts in wine samples and to monitor their dynamics throughout the fermentation process. This study confirms the usefulness and the relevance of QPCR for studying non-Saccharomyces yeasts in the complex yeast ecosystem of grape must and wine. Copyright 2010 Elsevier Ltd. All rights reserved.

  2. Paraphyly and (yeast) classification.

    Science.gov (United States)

    Lachance, Marc-André

    2016-12-01

    Yeast systematics has wholeheartedly embraced the phylogenetic approach. Central to this has been the unspoken convention that taxa at all ranks be strictly monophyletic. This can result in a proliferation of small genera and instances of nomenclatural instability, counter to the expected benefit of phylogenetic systematics. But the literature abounds with examples, at all taxonomic levels, where paraphyly is a reality that can no longer be ignored. The very concepts of Bacteria or Archaea, under the constraint of monophyly, are in peril. It is therefore desirable to effect a shift in practices that will recognize the existence of paraphyletic taxa.

  3. Yeasts in pigeon feacal droppings in Lisbon - Portugal, 1994

    Directory of Open Access Journals (Sweden)

    Herminia Maria Lourdes Martins

    1997-10-01

    Full Text Available In this work, the results of a preliminary survey held in city of Lisbon. Eighty faecal samples were examined between Summer and Autumn, 1994, from twelve different urban areas, mainly near churchs and monuments where birds nest, rest or eat. From each sample 1 g was weighted and suspensed in 10 ml of destilled sterilized water and consecutive decimal diluitions were executed. Yeasts were enumerated and grouped by species, based on morphological types. On eighty faecal samples the most prevalent yeasts identified were: Candida humicola (51.5%, Candida albicans (48.7%, Cryptococcus neoformans (5% and Trichosporon cutaneum (37.5%.

  4. Association between Grape Yeast Communities and the Vineyard Ecosystems.

    Directory of Open Access Journals (Sweden)

    João Drumonde-Neves

    Full Text Available The grape yeast biota from several wine-producing areas, with distinct soil types and grapevine training systems, was assessed on five islands of Azores Archipelago, and differences in yeast communities composition associated with the geographic origin of the grapes were explored. Fifty-seven grape samples belonging to the Vitis vinifera grapevine cultivars Verdelho dos Açores (Verdelho, Arinto da Terceira (Arinto and Terrantez do Pico (Terrantez were collected in two consecutive years and 40 spontaneous fermentations were achieved. A total of 1710 yeast isolates were obtained from freshly crushed grapes and 1200 from final stage of fermentations. Twenty-eight species were identified, Hanseniaspura uvarum, Pichia terricola and Metschnikowia pulcherrima being the three most representative species isolated. Candida carpophila was encountered for the first time as an inhabitant of grape or wine-associated environments. In both sampling years, a higher proportion of H. uvarum in fresh grapes from Verdelho cultivar was observed, in comparison with Arinto cultivar. Qualitatively significant differences were found among yeast communities from several locations on five islands of the Archipelago, particularly in locations with distinctive agro-ecological compositions. Our results are in agreement with the statement that grape-associated microbial biogeography is non-randomly associated with interactions of climate, soil, cultivar, and vine training systems in vineyard ecosystems. Our observations strongly support a possible linkage between grape yeast and wine typicality, reinforcing the statement that different viticultural terroirs harbor distinctive yeast biota, in particular in vineyards with very distinctive environmental conditions.

  5. Association between Grape Yeast Communities and the Vineyard Ecosystems.

    Science.gov (United States)

    Drumonde-Neves, João; Franco-Duarte, Ricardo; Lima, Teresa; Schuller, Dorit; Pais, Célia

    2017-01-01

    The grape yeast biota from several wine-producing areas, with distinct soil types and grapevine training systems, was assessed on five islands of Azores Archipelago, and differences in yeast communities composition associated with the geographic origin of the grapes were explored. Fifty-seven grape samples belonging to the Vitis vinifera grapevine cultivars Verdelho dos Açores (Verdelho), Arinto da Terceira (Arinto) and Terrantez do Pico (Terrantez) were collected in two consecutive years and 40 spontaneous fermentations were achieved. A total of 1710 yeast isolates were obtained from freshly crushed grapes and 1200 from final stage of fermentations. Twenty-eight species were identified, Hanseniaspura uvarum, Pichia terricola and Metschnikowia pulcherrima being the three most representative species isolated. Candida carpophila was encountered for the first time as an inhabitant of grape or wine-associated environments. In both sampling years, a higher proportion of H. uvarum in fresh grapes from Verdelho cultivar was observed, in comparison with Arinto cultivar. Qualitatively significant differences were found among yeast communities from several locations on five islands of the Archipelago, particularly in locations with distinctive agro-ecological compositions. Our results are in agreement with the statement that grape-associated microbial biogeography is non-randomly associated with interactions of climate, soil, cultivar, and vine training systems in vineyard ecosystems. Our observations strongly support a possible linkage between grape yeast and wine typicality, reinforcing the statement that different viticultural terroirs harbor distinctive yeast biota, in particular in vineyards with very distinctive environmental conditions.

  6. Yeast diversity on grapes in two German wine growing regions.

    Science.gov (United States)

    Brysch-Herzberg, Michael; Seidel, Martin

    2015-12-02

    The yeast diversity on wine grapes in Germany, one of the most northern wine growing regions of the world, was investigated by means of a culture dependent approach. All yeast isolates were identified by sequence analysis of the D1/D2 domain of the 26S rDNA and the ITS region. Besides Hanseniaspora uvarum and Metschnikowia pulcherrima, which are well known to be abundant on grapes, Metschnikowia viticola, Rhodosporidium babjevae, and Curvibasidium pallidicorallinum, as well as two potentially new species related to Sporidiobolus pararoseus and Filobasidium floriforme, turned out to be typical members of the grape yeast community. We found M. viticola in about half of the grape samples in high abundance. Our data strongly suggest that M. viticola is one of the most important fermenting yeast species on grapes in the temperate climate of Germany. The frequent occurrence of Cu. pallidicorallinum and strains related to F. floriforme is a new finding. The current investigation provides information on the distribution of recently described yeast species, some of which are known from a very few strains up to now. Interestingly yeasts known for their role in the wine making process, such as Saccharomyces cerevisiae, Saccharomyces bayanus ssp. uvarum, Torulaspora delbrueckii, and Zygosaccharomyces bailii, were not found in the grape samples. Copyright © 2015. Published by Elsevier B.V.

  7. Inheritance of the yeast mitochondrial genome

    DEFF Research Database (Denmark)

    Piskur, Jure

    1994-01-01

    Mitochondrion, extrachromosomal genetics, intergenic sequences, genome size, mitochondrial DNA, petite mutation, yeast......Mitochondrion, extrachromosomal genetics, intergenic sequences, genome size, mitochondrial DNA, petite mutation, yeast...

  8. Yeasts preservation: alternatives for lyophilisation

    NARCIS (Netherlands)

    Nyanga, L.K.; Nout, M.J.R.; Smid, E.J.; Boekhout, T.; Zwietering, M.H.

    2012-01-01

    The aim of the study was to compare the effect of two low-cost, low technology traditional methods for drying starter cultures with standard lyophilisation. Lyophilised yeast cultures and yeast cultures preserved in dry rice cakes and dry plant fibre strands were examined for viable cell counts

  9. Sociobiology of the budding yeast

    Indian Academy of Sciences (India)

    ... the unicellular yeast Saccharomyces cerevisiae, for sociobiological research. I discuss the problems connected with clear classification of yeast behaviour based on the fitness-based Hamilton paradigm. Relevant traits include different types of communities, production of flocculins, invertase and toxins, and the presence ...

  10. Mitochondria autophagy in yeast.

    Science.gov (United States)

    Kanki, Tomotake; Klionsky, Daniel J; Okamoto, Koji

    2011-05-15

    The mitochondrion is an organelle that carries out a number of important metabolic processes such as fatty acid oxidation, the citric acid cycle, and oxidative phosphorylation. However, this multitasking organelle also generates reactive oxygen species (ROS), which can cause oxidative stress resulting in self-damage. This type of mitochondrial damage can lead to the further production of ROS and a resulting downward spiral with regard to mitochondrial capability. This is extremely problematic because the accumulation of dysfunctional mitochondria is related to aging, cancer, and neurodegenerative diseases. Accordingly, appropriate quality control of this organelle is important to maintain proper cellular homeostasis. It has been thought that selective mitochondria autophagy (mitophagy) contributes to the maintenance of mitochondrial quality by eliminating damaged or excess mitochondria, although little is known about the mechanism. Recent studies in yeast identified several mitophagy-related proteins, which have been characterized with regard to their function and regulation. In this article, we review recent advances in the physiology and molecular mechanism of mitophagy and discuss the similarities and differences of this degradation process between yeast and mammalian cells.

  11. Production of Food Grade Yeasts

    Directory of Open Access Journals (Sweden)

    Argyro Bekatorou

    2006-01-01

    Full Text Available Yeasts have been known to humans for thousands of years as they have been used in traditional fermentation processes like wine, beer and bread making. Today, yeasts are also used as alternative sources of high nutritional value proteins, enzymes and vitamins, and have numerous applications in the health food industry as food additives, conditioners and flavouring agents, for the production of microbiology media and extracts, as well as livestock feeds. Modern scientific advances allow the isolation, construction and industrial production of new yeast strains to satisfy the specific demands of the food industry. Types of commercial food grade yeasts, industrial production processes and raw materials are highlighted. Aspects of yeast metabolism, with respect to carbohydrate utilization, nutritional aspects and recent research advances are also discussed.

  12. Red yeast rice for dysipidemia.

    Science.gov (United States)

    Shamim, Shariq; Al Badarin, Firas J; DiNicolantonio, James J; Lavie, Carl J; O'Keefe, James H

    2013-01-01

    Red yeast rice is an ancient Chinese food product that contains monacolins, chemical substances that are similar to statins in their mechanisms of action and lipid lowering properties. Several studies have found red yeast rice to be moderately effective at improving the lipid profile, particularly for lowering the low-density lipoprotein cholesterol levels. One large randomized controlled study from China found that red yeast rice significantly improved risk of major adverse cardiovascular events and overall survival in patients following myocardial infarction. Thus, red yeast rice is a potentially useful over-the-counter cholesterol-lowering agent. However, many red yeast rice formulations are non-standardized and unregulated food supplements, and there is a need for further research and regulation of production.

  13. Evolutionary History of Ascomyceteous Yeasts

    Energy Technology Data Exchange (ETDEWEB)

    Haridas, Sajeet; Riley, Robert; Salamov, Asaf; Goker, Markus; Klenk, Hans-Peter; Kurtzman, Cletus P.; Blackwell, Meredith; Grigoriev, Igor; Jeffries, Thomas W.

    2014-06-06

    Yeasts are important for many industrial and biotechnological processes and show remarkable diversity despite morphological similarities. We have sequenced the genomes of 16 ascomycete yeasts of taxonomic and industrial importance including members of Saccharomycotina and Taphrinomycotina. A comparison of these with several other previously published yeast genomes have added increased confidence to the phylogenetic positions of previously poorly placed species including Saitoella complicata, Babjeviella inositovora and Metschnikowia bicuspidata. Phylogenetic analysis also showed that yeasts with alternative nuclear codon usage where CUG encodes serine instead of leucine are monophyletic within the Saccharomycotina. Most of the yeasts have compact genomes with a large fraction of single exon genes with Lipomyces starkeyi and the previously published Pneumocystis jirovecii being notable exceptions. Intron analysis suggests that early diverging species have more introns. We also observed a large number of unclassified lineage specific non-simple repeats in these genomes.

  14. Effects of yeast, fermentation time, and preservation methods on tarhana.

    Science.gov (United States)

    Gurbuz, Ozan; Gocmen, Duygu; Ozmen, Nese; Dagdelen, Fatih

    2010-01-01

    The physicochemical properties of tarhana soup produced with different dough treatments, fermentation times, and preservation methods were examined. Tarhana doughs were prepared with yogurt (control) or baker's yeast (Saccharomyces cerevisiae) and fermented for 3 days. Samples were taken at 24, 48, and 72 hr. Samples were then preserved via one of four methods: sun dried, dried in the shade, vacumn dried, and frozen. Frozen samples produced lower organic acid levels after 72 hr of fermentation in both control (0.68 g/100 g) and yeast (0.61 g/100 g) applications than samples that were dried (0.94 g/100 g control samples; 0.81 g/100 g samples with yeast). Increasing fermentation time resulted in a significant effect on the formation of organic acid in the tarhana (p .01). However, sensory scores for tarhana prepared from the samples dried in a sheltered area showed a reduction in color desireablilty as the fermentation time increased. The soup prepared from frozen tarhana (72 hr fermentation, with yeast) had the highest scores with respect to color, mouth feel, flavor, and overall acceptability. Vacuum-dried samples' scores in these areas were also high in comparison to the two other drying methods.

  15. Development of Yeast Populations during Processing and Ripening of Blue Veined Cheese

    Directory of Open Access Journals (Sweden)

    Alison M. Knox

    2003-01-01

    Full Text Available Varieties of blue veined cheese were analyzed regularly during different stages of manufacturing and ripening to determine the origin of contaminating the yeasts present in them, their population diversity and development until the end of the storage. Yeast diversity and development in the inner and outer core of the cheeses during ripening were also compared. Air samples revealed few if any yeasts whereas the samples in contact with the equipment and the surroundings revealed high number of yeasts, implicating it as the possible main source of post-pasteurization contamination, as very few yeasts were isolated from the milk and cheese making process itself. Samples from the inner and outer core of the maturing cheeses had typical survival curves. The number of yeasts on the outer core was about a 100-fold more than of those in the inner core. The most abundant yeasts isolated from the environment and ripening cheeses were identified as Debaryomyces hansenii, Saccharomyces cerevisiae, Torulaspora delbrueckii, Trichosporon beigelii, Candida versatilis and Cryptococcus albidus, while the yeasts Candida zeylanoides and Dekkera anomala were additionally isolated from the environment. Yeasts were present in high number, making their occurrence in blue-veined cheeses meaningful.

  16. Biodiversity of cold-adapted yeasts from glacial meltwater rivers in Patagonia, Argentina.

    Science.gov (United States)

    de García, Virginia; Brizzio, Silvia; Libkind, Diego; Buzzini, Pietro; van Broock, María

    2007-02-01

    The occurrence of culturable yeasts in glacial meltwater from the Frías, Castaño Overo and Río Manso glaciers, located on Mount Tronador in the Nahuel Huapi National Park (Northwestern Patagonia, Argentina) is presented. Subsurface water samples were filtered for colony counting and yeast isolation. The total yeast count ranged between 6 and 360 CFU L(-1). Physiologic and molecular methods were employed to identify 86 yeast isolates. In agreement with yeast diversity data from studies for Antarctic and Alpine glaciers, the genera Cryptococcus, Leucosporidiella, Dioszegia, Rhodotorula, Rhodosporidium, Mrakia, Sporobolomyces, Udeniomyces and Candida were found. Cryptococcus and Leucosporidiella accounted for 50% and 20% of the total number of strains, respectively. Among 21 identified yeast species, Cryptococcus sp. 1 and Leucosporidiella fragaria were the most frequent. The typically psychrophilic Mrakia yeast strain and three new yeast species, yet to be described, were also isolated. All yeast strains were able to grow at 5, 10, and 15 degrees C. Among yeast strains expressing extracellular enzymatic activity, higher proteolytic and lipolytic activities were obtained at 4 degrees C than at 20 degrees C.

  17. Bioprotective Role of Yeasts

    Science.gov (United States)

    Muccilli, Serena; Restuccia, Cristina

    2015-01-01

    The yeasts constitute a large group of microorganisms characterized by the ability to grow and survive in different and stressful conditions and then to colonize a wide range of environmental and human ecosystems. The competitive traits against other microorganisms have attracted increasing attention from scientists, who proposed their successful application as bioprotective agents in the agricultural, food and medical sectors. These antagonistic activities rely on the competition for nutrients, production and tolerance of high concentrations of ethanol, as well as the synthesis of a large class of antimicrobial compounds, known as killer toxins, which showed clearly a large spectrum of activity against food spoilage microorganisms, but also against plant, animal and human pathogens. This review describes the antimicrobial mechanisms involved in the antagonistic activity, their applications in the processed and unprocessed food sectors, as well as the future perspectives in the development of new bio-drugs, which may overcome the limitations connected to conventional antimicrobial and drug resistance. PMID:27682107

  18. Bioprotective Role of Yeasts

    Directory of Open Access Journals (Sweden)

    Serena Muccilli

    2015-10-01

    Full Text Available The yeasts constitute a large group of microorganisms characterized by the ability to grow and survive in different and stressful conditions and then to colonize a wide range of environmental and human ecosystems. The competitive traits against other microorganisms have attracted increasing attention from scientists, who proposed their successful application as bioprotective agents in the agricultural, food and medical sectors. These antagonistic activities rely on the competition for nutrients, production and tolerance of high concentrations of ethanol, as well as the synthesis of a large class of antimicrobial compounds, known as killer toxins, which showed clearly a large spectrum of activity against food spoilage microorganisms, but also against plant, animal and human pathogens. This review describes the antimicrobial mechanisms involved in the antagonistic activity, their applications in the processed and unprocessed food sectors, as well as the future perspectives in the development of new bio-drugs, which may overcome the limitations connected to conventional antimicrobial and drug resistance.

  19. Interaction Between Yeasts and Zinc

    Science.gov (United States)

    Nicola, Raffaele De; Walker, Graeme

    Zinc is an essential trace element in biological systems. For example, it acts as a cellular membrane stabiliser, plays a critical role in gene expression and genome modification and activates nearly 300 enzymes, including alcohol dehydrogenase. The present chapter will be focused on the influence of zinc on cell physiology of industrial yeast strains of Saccharomyces cerevisiae, with special regard to the uptake and subsequent utilisation of this metal. Zinc uptake by yeast is metabolism-dependent, with most of the available zinc translocated very quickly into the vacuole. At cell division, zinc is distributed from mother to daughter cells and this effectively lowers the individual cellular zinc concentration, which may become zinc depleted at the onset of the fermentation. Zinc influences yeast fermentative performance and examples will be provided relating to brewing and wine fermentations. Industrial yeasts are subjected to several stresses that may impair fermentation performance. Such stresses may also impact on yeast cell zinc homeostasis. This chapter will discuss the practical implications for the correct management of zinc bioavailability for yeast-based biotechnologies aimed at improving yeast growth, viability, fermentation performance and resistance to environmental stresses

  20. Lager Yeast Comes of Age

    Science.gov (United States)

    2014-01-01

    Alcoholic fermentations have accompanied human civilizations throughout our history. Lager yeasts have a several-century-long tradition of providing fresh beer with clean taste. The yeast strains used for lager beer fermentation have long been recognized as hybrids between two Saccharomyces species. We summarize the initial findings on this hybrid nature, the genomics/transcriptomics of lager yeasts, and established targets of strain improvements. Next-generation sequencing has provided fast access to yeast genomes. Its use in population genomics has uncovered many more hybridization events within Saccharomyces species, so that lager yeast hybrids are no longer the exception from the rule. These findings have led us to propose network evolution within Saccharomyces species. This “web of life” recognizes the ability of closely related species to exchange DNA and thus drain from a combined gene pool rather than be limited to a gene pool restricted by speciation. Within the domesticated lager yeasts, two groups, the Saaz and Frohberg groups, can be distinguished based on fermentation characteristics. Recent evidence suggests that these groups share an evolutionary history. We thus propose to refer to the Saaz group as Saccharomyces carlsbergensis and to the Frohberg group as Saccharomyces pastorianus based on their distinct genomes. New insight into the hybrid nature of lager yeast will provide novel directions for future strain improvement. PMID:25084862

  1. Isolation and identification of a riboflavin producer yeast from Nectarine

    Directory of Open Access Journals (Sweden)

    Roya Daneshazari

    2014-07-01

    Full Text Available   Introduction : Many microorganisms like fungi , bacteria and yeasts, have a natural ability to produce vitamins included vitamin B2 or riboflavin. In this regard, the present study was performed to isolation and screening for riboflavin producing yeasts from various sources of soil, leaf and fruit s.   Materials and method s: samples of leaf , soil and fruits were prepared for the presence of yeasts and by its ability to produce riboflavin . After purification and enrichment of samples , in order to assay riboflavin production, spectrometry , thin layer chromatography and high performance liquid chromatography were used . Finally, the best selected isolate was identified using conventional morphological , biochemical and molecular techniques .   Results : In this study , 26 yeast strains were isolated from environmental samples, that 6 isolates showed the ability to produce riboflavin . Identification results of the best selected isolate by biochemical and phenotypic characteristics revealed that this isolate is related to Clavispora lusitaniae and considering isolation of it from nectarine, has named it Clavispora lusitaniae strain N3 (Gene accession no: JQ586258 .   Discussion and conclusion : Although only one of the six producing strains was studied and identified , observation of ability to produce among 23% of strains showed necessity for further investigation. And according to the result of absence of viewing report about production by investigated strain, it can be said that Iran has potentiality for isolation of yeasts and is capable of producing riboflavin.

  2. Extension of Yeast Chronological Lifespan by Methylamine

    NARCIS (Netherlands)

    Kumar, Sanjeev; Lefevre, Sophie D.; Veenhuis, Marten; van der Klei, Ida J.

    2012-01-01

    Background: Chronological aging of yeast cells is commonly used as a model for aging of human post-mitotic cells. The yeast Saccharomyces cerevisiae grown on glucose in the presence of ammonium sulphate is mainly used in yeast aging research. We have analyzed chronological aging of the yeast

  3. Assessment of the efficiency of a yeast biofilter in the treatment of ...

    African Journals Online (AJOL)

    A yeast biofilter consisting of Candida krusei, Candida morbosa, Torulopsis dattila, Torulopsis glabrata, and Saccharomyces chevalieri was constructed to bioremediate abattoir wastewater. Potato peels were used as filter bed for the growth of the yeasts. Wastewater samples were collected from three different points in ...

  4. Enumeration and rapid identification of yeasts during extraction processes of extra virgin olive oil in Tuscany.

    Science.gov (United States)

    Mari, Eleonora; Guerrini, Simona; Granchi, Lisa; Vincenzini, Massimo

    2016-06-01

    The aim of this study was to evaluate the occurrence of yeast populations during different olive oil extraction processes, carried out in three consecutive years in Tuscany (Italy), by analysing crushed pastes, kneaded pastes, oil from decanter and pomaces. The results showed yeast concentrations ranging between 10(3) and 10(5) CFU/g or per mL. Seventeen dominant yeast species were identified by random amplified polymorphic DNA with primer M13 and their identification was confirmed by restriction fragments length polymorphism of ribosomal internal transcribed spacer and sequencing rRNA genes. The isolation frequencies of each species in the collected samples pointed out that the occurrence of the various yeast species in olive oil extraction process was dependent not only on the yeasts contaminating the olives but also on the yeasts colonizing the plant for oil extraction. In fact, eleven dominant yeast species were detected from the washed olives, but only three of them were also found in oil samples at significant isolation frequency. On the contrary, the most abundant species in oil samples, Yamadazyma terventina, did not occur in washed olive samples. These findings suggest a phenomenon of contamination of the plant for oil extraction that selects some yeast species that could affect the quality of olive oil.

  5. Red Yeast Rice: An Introduction

    Science.gov (United States)

    ... mg twice daily) in patients with previous statin intolerance . American Journal of Cardiology . 2010;105:198–204. ... to Avoid Red Yeast Rice Products Promoted on Internet as Treatments for High Cholesterol: Products Found to ...

  6. Biotechnical Microbiology, yeast and bacteria

    DEFF Research Database (Denmark)

    Villadsen, Ingrid Stampe

    1999-01-01

    This section contains the following single lecture notes: Eukaryotic Cell Biology. Kingdom Fungi. Cell Division. Meiosis and Recombination. Genetics of Yeast. Organisation of the Chromosome. Organization and genetics of the mitochondrial Geneme. Regulatio of Gene Expression. Intracellular Compart...

  7. Sexual differentiation in fission yeast

    DEFF Research Database (Denmark)

    Egel, R; Nielsen, O; Weilguny, D

    1990-01-01

    The regulation of sexual reproduction in yeast constitutes the highest level of differentiation observed in these unicellular organisms. The various ramifications of this system involve DNA rearrangement, transcriptional control, post-translational modification (such as protein phosphorylation) a...

  8. Mucositis Grades and Yeast Species

    OpenAIRE

    Ognjenović, Marina; Milatić, Katja; Parat, Katica; KOVAČIĆ, IVAN; Ježina Bušelić, Marina A.; Božić, Joško

    2013-01-01

    Surgically treated patients with oral, head and neck cancer commonly develop mucositis during additional irradiation therapy. Oral mucosa inflammation other than irradiation is mostly caused by Candida albicans, yeast of Candida genus. This study evaluated possible connection between grades of oral mucositis and oral yeast profile in irradiated patients before, during and after irradiation. In 25 examined patients mucosits grades »0« to »2« before irradiation with 20% positive smears and o...

  9. Biotechnological Applications of Dimorphic Yeasts

    Science.gov (United States)

    Doiphode, N.; Joshi, C.; Ghormade, V.; Deshpande, M. V.

    The dimorphic yeasts have the equilibrium between spherical growth (budding) and polarized (hyphal or pseudohyphal tip elongation) which can be triggered by change in the environmental conditions. The reversible growth phenomenon has made dimorphic yeasts as an useful model to understand fungal evolution and fungal differentiation, in general. In nature dimorphism is clearly evident in plant and animal fungal pathogens, which survive and most importantly proliferate in the respective hosts. However, number of organisms with no known pathogenic behaviour also show such a transition, which can be exploited for the technological applications due to their different biochemical make up under different morphologies. For instance, chitin and chitosan production using dimorphic Saccharomyces, Mucor, Rhizopus and Benjaminiella, oil degradation and biotransformation with yeast-form of Yarrowia species, bioremediation of organic pollutants, exopolysac-charide production by yeast-phase of Aureobasidium pullulans, to name a few. Myrothecium verrucaria can be used for seed dressing in its yeast form and it produces a mycolytic enzyme complex in its hyphal-form for the biocontrol of fungal pathogens, while Beauveria bassiana and other entomopathogens kill the insect pest by producing yeast- like cells in the insect body. The form-specific expression of protease, chitinase, lipase, ornithine decarboxylase, glutamate dehydrogenases, etc. make Benjaminiella poitrasii, Basidiobolus sp., and Mucor rouxii strains important in bioremediation, nanobiotechnology, fungal evolution and other areas.

  10. Red Yeast Rice

    Directory of Open Access Journals (Sweden)

    Thu Nguyen

    2017-03-01

    Full Text Available Red yeast rice (RYR, produced by the fermentation of the Monascus purpureus mold, has been used for a long time in Asian cuisine and traditional medicine. It consists of multiple bioactive substances, including monacolins, which potentially can be used as a nutraceutical. Monacolin K, which is chemically identical to lovastatin, has been recognized as responsible for the cholesterolreducing effect of this compound. While the European Food Safety Authority maintains that the use of monacolin K from RYR preparations of at least 10 mg can produce a normal blood cholesterol level, the United States Food and Drug Administration considers monacolin K, due to its similarity with lovastatin, an unapproved drug, and therefore marketing of products that label the monacolin content is prohibited. This mini-review summarizes the benefit of RYR in hyperlipidemia, maintains RYR use as a food, and addresses the importance of regulation regarding RYR and the need for clinical data and clear label information for consumers with reference to a toxin-free, nonaugmented, standardized amount of monacolins.

  11. Red Yeast Rice.

    Science.gov (United States)

    Nguyen, Thu; Karl, Mitchell; Santini, Antonello

    2017-03-01

    Red yeast rice (RYR), produced by the fermentation of the Monascus purpureus mold, has been used for a long time in Asian cuisine and traditional medicine. It consists of multiple bioactive substances, including monacolins, which potentially can be used as a nutraceutical. Monacolin K, which is chemically identical to lovastatin, has been recognized as responsible for the cholesterolreducing effect of this compound. While the European Food Safety Authority maintains that the use of monacolin K from RYR preparations of at least 10 mg can produce a normal blood cholesterol level, the United States Food and Drug Administration considers monacolin K, due to its similarity with lovastatin, an unapproved drug, and therefore marketing of products that label the monacolin content is prohibited. This mini-review summarizes the benefit of RYR in hyperlipidemia, maintains RYR use as a food, and addresses the importance of regulation regarding RYR and the need for clinical data and clear label information for consumers with reference to a toxin-free, nonaugmented, standardized amount of monacolins.

  12. Synthetic Yeast Cooperation

    Science.gov (United States)

    Shou, Wenying; Burton, Justin

    2010-03-01

    Cooperation is wide-spread and has been postulated to drive major transitions in evolution. However, Darwinian selection favors ``cheaters'' that consume benefits without paying a fair cost. How did cooperation evolve against the threat of cheaters? To investigate the evolutionary trajectories of cooperation, we created a genetically tractable system that can be observed as it evolves from inception. The system consists of two engineered yeast strains -- a red-fluorescent strain that requires adenine and releases lysine and a yellow-fluorescent strain that requires lysine and releases adenine. Cells that consume but not supply metabolites would be cheaters. From the properties of two cooperating strains, we calculated and experimentally verified the minimal initial cell densities required for the viability of the cooperative system in the absence of exogenously added adenine and lysine. Strikingly, evolved cooperative systems were viable at 100-fold lower initial cell densities than their ancestors. We are investigating the nature and diversity of pro-cooperation changes, the dynamics of cooperator-cheater cocultures, and the effects of spatial environment on cooperation and cheating.

  13. Yeast diversity in new, still fermenting wine "federweisser"

    Directory of Open Access Journals (Sweden)

    Attila Kántor

    2016-01-01

    Full Text Available The aim of this study was to isolate and identify yeasts in different new wine "federweisser" samples. We collected the samples at the end of the August 2015 and in the middle of the September 2015. Used 15 new wine samples in this study (5 white and 10 red were from the local Slovak winemakers. Irsai Oliver (3, Moravian Muscat (2, Agria/Turan (1, Dornfelder (3, Blue Frankish (3, Pinot Noir (1 and Saint Laurent (2. Three cultivation media were used for detection of yeasts in "federweisser" samples. Malt extract agar base (MEA, Wort agar (WA and Wild yeast medium (WYM were used for the cultivation of yeasts. Cultivation was performed by spread plate method. Ethanol/formic acid extraction procedure was used for preparation of samples. MALDI-TOF Mass Spectrometer (Microflex LT/SH (Bruker Daltonics, Germany was used for the identification of yeasts. We identified seven different strains of Saccharomyces cerevisiae (23; 70%, two strains of Kloeckera apiculata [teleomorph Hanseniaspora uvarum] (7; 21%, and one strain of Pichia kluyveri (1; 3%, Pichia occidentalis [anamorph Candida sorbosa] (1; 3% and Metschnikowia pulcherrima (1; 3% in 15 new wine "federweisser" samples. Saccharomyces cerevisiae was dominant species in each new wine sample, and formed creamy convex colonies with circular edge. Metschnikowia pulcherrima formed convex to pulvinate, circular white-pink colored colonies, Kloeckera apiculata formed flat, circular smooth colonies with turquoise center with gray edge, Pichia occidentalis formed irregular pulvinate light-cream colored colonies, and Pichia kluyveri formed turquoise, convex, undulate and smooth colonies on Malt extract agar base with bromocresol green.   Normal 0 21 false false false EN-US X-NONE X-NONE

  14. Nectar-living yeasts of a tropical host plant community: diversity and effects on community-wide floral nectar traits

    Directory of Open Access Journals (Sweden)

    Azucena Canto

    2017-07-01

    Full Text Available We characterize the diversity of nectar-living yeasts of a tropical host plant community at different hierarchical sampling levels, measure the associations between yeasts and nectariferous plants, and measure the effect of yeasts on nectar traits. Using a series of hierarchically nested sampling units, we extracted nectar from an assemblage of host plants that were representative of the diversity of life forms, flower shapes, and pollinator types in the tropical area of Yucatan, Mexico. Yeasts were isolated from single nectar samples; their DNA was identified, the yeast cell density was estimated, and the sugar composition and concentration of nectar were quantified using HPLC. In contrast to previous studies from temperate regions, the diversity of nectar-living yeasts in the plant community was characterized by a relatively high number of equally common species with low dominance. Analyses predict highly diverse nectar yeast communities in a relatively narrow range of tropical vegetation, suggesting that the diversity of yeasts will increase as the number of sampling units increases at the level of the species, genera, and botanical families of the hosts. Significant associations between specific yeast species and host plants were also detected; the interaction between yeasts and host plants impacted the effect of yeast cell density on nectar sugars. This study provides an overall picture of the diversity of nectar-living yeasts in tropical host plants and suggests that the key factor that affects the community-wide patterns of nectar traits is not nectar chemistry, but rather the type of yeasts interacting with host plants.

  15. Nectar-living yeasts of a tropical host plant community: diversity and effects on community-wide floral nectar traits.

    Science.gov (United States)

    Canto, Azucena; Herrera, Carlos M; Rodriguez, Rosalina

    2017-01-01

    We characterize the diversity of nectar-living yeasts of a tropical host plant community at different hierarchical sampling levels, measure the associations between yeasts and nectariferous plants, and measure the effect of yeasts on nectar traits. Using a series of hierarchically nested sampling units, we extracted nectar from an assemblage of host plants that were representative of the diversity of life forms, flower shapes, and pollinator types in the tropical area of Yucatan, Mexico. Yeasts were isolated from single nectar samples; their DNA was identified, the yeast cell density was estimated, and the sugar composition and concentration of nectar were quantified using HPLC. In contrast to previous studies from temperate regions, the diversity of nectar-living yeasts in the plant community was characterized by a relatively high number of equally common species with low dominance. Analyses predict highly diverse nectar yeast communities in a relatively narrow range of tropical vegetation, suggesting that the diversity of yeasts will increase as the number of sampling units increases at the level of the species, genera, and botanical families of the hosts. Significant associations between specific yeast species and host plants were also detected; the interaction between yeasts and host plants impacted the effect of yeast cell density on nectar sugars. This study provides an overall picture of the diversity of nectar-living yeasts in tropical host plants and suggests that the key factor that affects the community-wide patterns of nectar traits is not nectar chemistry, but rather the type of yeasts interacting with host plants.

  16. Speciation and bioavailability of selenium in yeast-based intervention agents used in cancer chemoprevention studies

    DEFF Research Database (Denmark)

    Larsen, Erik Huusfeldt; Hansen, Marianne; Paulin, H.

    2004-01-01

    This study investigated the speciation and bioavailability of selenium in yeast-based intervention agents from multiple manufacturers from several time points. Sources of selenized yeast included Nutrition 21 (San Diego, CA), which supplied the Nutritional Prevention of Cancer (NPC) Trial from 1981......-1996; Cypress Systems (Fresno, CA; 1997-1999); and Pharma Nord (Vejle, Denmark; 1999-2000), which supplied the Prevention of Cancer by Intervention by Selenium (PRECISE) Trial pilot studies. The low-molecular-selenium species were liberated from the samples by proteolytic hydrolysis followed by separation...... at 54-60% of the total selenium in the yeasts. One batch of yeast, however (from 1985), which originated from the same producer as the yeast used in the NPC tablets, contained only 27% of selenium in the sample as selenomethionine. Human subjects receiving 200 mug selenium/day in the UK PRECISE Pilot...

  17. Screening and identification of cellulase producing yeast-like ...

    African Journals Online (AJOL)

    The main goals of the present study included the screening and identification of cellulase producing wild yeasts, isolated from samples collected from different Brazilian biomes. They were selected according to their capabilities of degrading carboxymethyl cellulose (CMC) and micro-crystalline cellulose (SERVACEL®), ...

  18. Effects of Selenium Yeast on Blood Glucose and Antioxidant ...

    African Journals Online (AJOL)

    olayemitoyin

    Selenium yeast is a recognised source of organic nutrient from selenium and naturally present in various food types such as Brazil nuts, chicken, fish, turkey, .... experimental period (Kolawole et al., 2012) with slight modification. Determination of Blood Glucose Level. Blood samples (5mls) were collected by cutting the tail.

  19. Characterisation of palm wine yeast isolates for industrial utilisation

    African Journals Online (AJOL)

    Administrator

    2006-10-02

    Oct 2, 2006 ... Investigations were carried out on yeasts isolated from palm wines obtained from South Eastern Nigeria. The isolates were characterised for ... MATERIALS AND METHODS. Fresh palm wine samples obtained from raffia palm (Raphia raphia) .... Nwogu E (1983). Studies on Alcohol production. M.Sc Thesis,.

  20. Screening of oleaginous yeast with xylose assimilating capacity for ...

    African Journals Online (AJOL)

    ... in industrial-scale production. In our preliminary study, 57 oleaginous yeast with xylose assimilating capacity were isolated from 13 soil samples, 16 strains were identified as potential lipid biomass producer. Four strains which showed higher lipid content were used for further ethanol fermentation at different conditions.

  1. Vegemite Beer: yeast extract spreads as nutrient supplements to promote fermentation

    Directory of Open Access Journals (Sweden)

    Edward D. Kerr

    2016-08-01

    Full Text Available Vegemite is an iconic Australian food spread made from spent brewers’ yeast extract, which has been reported to be used as an ingredient in illegal home brewing. In this study, we tested the utility of Vegemite and the similar spread Marmite in promoting fermentation. We could not culture microorganisms from either Vegemite or Marmite, consistent with these food-grade spreads being essentially sterile. To test if the addition of Vegemite or Marmite could assist in fermentation when additional viable yeast was also present, solutions containing glucose and a range of concentrations of either Vegemite or Marmite were inoculated with brewers’ yeast. No fermentation occurred in any condition without addition of extra brewer’s yeast. Fermentation did not occur when yeast was inoculated into solutions containing only glucose, but progressed efficiently with when Vegemite or Marmite was also added. Gas Chromatography confirmed that ethanol was present at ∼3% v/v post-fermentation in all samples which contained glucose, Vegemite or Marmite, and brewers’ yeast. Trace amounts of methanol were also detected. Mass spectrometry proteomics identified abundant intracellular yeast proteins and barley proteins in Vegemite and Marmite, and abundant secreted yeast proteins from actively growing yeast in those samples to which extra brewers’ yeast had been added. We estimate that the real-world cost of home brewed “Vegemite Beer” would be very low. Our results show that Vegemite or other yeast extract spreads could provide cheap and readily available sources of nutrient supplementation to increase the efficiency of fermentation in home brewing or other settings.

  2. Vegemite Beer: yeast extract spreads as nutrient supplements to promote fermentation.

    Science.gov (United States)

    Kerr, Edward D; Schulz, Benjamin L

    2016-01-01

    Vegemite is an iconic Australian food spread made from spent brewers' yeast extract, which has been reported to be used as an ingredient in illegal home brewing. In this study, we tested the utility of Vegemite and the similar spread Marmite in promoting fermentation. We could not culture microorganisms from either Vegemite or Marmite, consistent with these food-grade spreads being essentially sterile. To test if the addition of Vegemite or Marmite could assist in fermentation when additional viable yeast was also present, solutions containing glucose and a range of concentrations of either Vegemite or Marmite were inoculated with brewers' yeast. No fermentation occurred in any condition without addition of extra brewer's yeast. Fermentation did not occur when yeast was inoculated into solutions containing only glucose, but progressed efficiently with when Vegemite or Marmite was also added. Gas Chromatography confirmed that ethanol was present at ∼3% v/v post-fermentation in all samples which contained glucose, Vegemite or Marmite, and brewers' yeast. Trace amounts of methanol were also detected. Mass spectrometry proteomics identified abundant intracellular yeast proteins and barley proteins in Vegemite and Marmite, and abundant secreted yeast proteins from actively growing yeast in those samples to which extra brewers' yeast had been added. We estimate that the real-world cost of home brewed "Vegemite Beer" would be very low. Our results show that Vegemite or other yeast extract spreads could provide cheap and readily available sources of nutrient supplementation to increase the efficiency of fermentation in home brewing or other settings.

  3. Viable cell yield from active dry yeast products and effects of storage temperature and diluent on yeast cell viability.

    Science.gov (United States)

    Sullivan, M L; Bradford, B J

    2011-01-01

    Active dry yeast (ADY) products are commonly fed in the dairy industry, but research regarding quality control for such products is limited. The objectives of this study were to determine yeast viability in field samples relative to manufacturers' guarantees (experiment 1), measure the effects of high-temperature storage on yeast viability (experiment 1), and determine the effect of vitamin-trace mineral (VTM) premix on yeast viability (experiment 2). Commercially available ADY products were acquired in triplicate through normal distribution channels and stored at 4°C upon receipt. Initial samples were evaluated for colony-forming units and compared with product label guarantees. Only 1 of the 6 products sampled in experiment 1 met product guarantees for all 3 samples. To determine effects of storage temperature and duration on viability, ADY samples were stored in an incubator at 40°C with ambient humidity for 1, 2, and 3 mo. High-temperature storage significantly decreased viability over the 3-mo period; approximately 90% of viable cells were lost each month. Three of the 5 products sampled in experiment 2 met product guarantees. Fresh samples of 4 of these 5 ADY products were mixed in duplicate with ground corn (GC) or a VTM premix to achieve a target concentration of 2.2×10(8) cfu/g. For each product, GC and VTM samples were stored at ambient temperature (22°C) and at an elevated temperature (40°C) for 2 wk. No differences in viable yeast count were observed between GC and VTM samples immediately after mixing or after storage at ambient temperature. Yeast viability in GC and VTM samples decreased during storage at an elevated temperature. There also was a significant interaction of diluent and storage temperature; VTM samples had higher cell viability than GC samples when subjected to high-temperature storage. Results suggest that (1) ADY products failed to consistently meet product guarantees; (2) viability of ADY products was greatly diminished during

  4. Yeast Genetics and Biotechnological Applications

    Science.gov (United States)

    Mishra, Saroj; Baranwal, Richa

    Yeast can be recognized as one of the very important groups of microorganisms on account of its extensive use in the fermentation industry and as a basic eukaryotic model cellular system. The yeast Saccharomyces cerevisiae has been extensively used to elucidate the genetics and regulation of several key functions in the cell such as cell mating, electron transport chain, protein trafficking, cell cycle events and others. Even before the genome sequence of the yeast was out, the structural organization and function of several of its genes was known. With the availability of the origin of replication from the 2 μm plasmid and the development of transformation system, it became the host of choice for expression of a number of important proteins. A large number of episomal and integrative shuttle vectors are available for expression of mammalian proteins. The latest developments in genomics and micro-array technology have allowed investigations of individual gene function by site-specific deletion method. The application of metabolic profiling has also assisted in understanding the cellular network operating in this yeast. This chapter is aimed at reviewing the use of this system as an experimental tool for conducting classical genetics. Various vector systems available, foreign genes expressed and the limitations as a host will be discussed. Finally, the use of various yeast enzymes in biotechnology sector will be reviewed.

  5. Diversity of soil yeasts isolated from South Victoria Land, Antarctica

    Science.gov (United States)

    Connell, L.; Redman, R.; Craig, S.; Scorzetti, G.; Iszard, M.; Rodriguez, R.

    2008-01-01

    Unicellular fungi, commonly referred to as yeasts, were found to be components of the culturable soil fungal population in Taylor Valley, Mt. Discovery, Wright Valley, and two mountain peaks of South Victoria Land, Antarctica. Samples were taken from sites spanning a diversity of soil habitats that were not directly associated with vertebrate activity. A large proportion of yeasts isolated in this study were basidiomycetous species (89%), of which 43% may represent undescribed species, demonstrating that culturable yeasts remain incompletely described in these polar desert soils. Cryptococcus species represented the most often isolated genus (33%) followed by Leucosporidium (22%). Principle component analysis and multiple linear regression using stepwise selection was used to model the relation between abiotic variables (principle component 1 and principle component 2 scores) and yeast biodiversity (the number of species present at a given site). These analyses identified soil pH and electrical conductivity as significant predictors of yeast biodiversity. Species-specific PCR primers were designed to rapidly discriminate among the Dioszegia and Leucosporidium species collected in this study. ?? 2008 Springer Science+Business Media, LLC.

  6. Whole Genome Analysis of a Wine Yeast Strain

    Science.gov (United States)

    Hauser, Nicole C.; Fellenberg, Kurt; Gil, Rosario; Bastuck, Sonja; Hoheisel, Jörg D.

    2001-01-01

    Saccharomyces cerevisiae strains frequently exhibit rather specific phenotypic features needed for adaptation to a special environment. Wine yeast strains are able to ferment musts, for example, while other industrial or laboratory strains fail to do so. The genetic differences that characterize wine yeast strains are poorly understood, however. As a first search of genetic differences between wine and laboratory strains, we performed DNA-array analyses on the typical wine yeast strain T73 and the standard laboratory background in S288c. Our analysis shows that even under normal conditions, logarithmic growth in YPD medium, the two strains have expression patterns that differ significantly in more than 40 genes. Subsequent studies indicated that these differences correlate with small changes in promoter regions or variations in gene copy number. Blotting copy numbers vs. transcript levels produced patterns, which were specific for the individual strains and could be used for a characterization of unknown samples. PMID:18628902

  7. Yeast identification in floral nectar of Mimulus aurantiacus (Invited)

    Science.gov (United States)

    Kyauk, C.; Belisle, M.; Fukami, T.

    2009-12-01

    Nectar is such a sugar-rich resource that serves as a natural habitat in which microbes thrive. As a result, yeasts arrive to nectar on the bodies of pollinators such as hummingbirds and bees. Yeasts use the sugar in nectar for their own needs when introduced. This research focuses on the identification of different types of yeast that are found in the nectar of Mimulus aurantiacus (commonly known as sticky monkey-flower). Unopened Mimulus aurantiacus flower buds were tagged at Jasper Ridge and bagged three days later. Floral nectar was then extracted and plated on potato dextrose agar. Colonies on the plates were isolated and DNA was extracted from each sample using QIAGEN DNeasy Plant Mini Kit. The DNA was amplified through PCR and ran through gel electrophoresis. The PCR product was used to clone the nectar samples into an E.coli vector. Finally, a phylogenetic tree was created by BLAST searching sequences in GenBank using the Internal Transcribed Space (ITS) locus. It was found that 18 of the 50 identified species were Candida magnifica, 14 was Candida rancensis, 6 were Crytococcus albidus and there were 3 or less of the following: Starmella bombicola, Candida floricola, Aureobasidium pullulans, Pichia kluyvera, Metschnikowa cibodaserisis, Rhodotorua colostri, and Malassezia globosa. The low diversity of the yeast could have been due to several factors: time of collection, demographics of Jasper Ridge, low variety of pollinators, and sugar concentration of the nectar. The results of this study serve as a necessary first step for a recently started research project on ecological interactions between plants, pollinators, and nectar-living yeast. More generally, this research studies the use of the nectar-living yeast community as a natural microcosm for addressing basic questions about the role of dispersal and competitive and facilitative interactions in ecological succession.

  8. Genotyping 1000 yeast strains by next-generation sequencing

    Directory of Open Access Journals (Sweden)

    Wilkening Stefan

    2013-02-01

    Full Text Available Abstract Background The throughput of next-generation sequencing machines has increased dramatically over the last few years; yet the cost and time for library preparation have not changed proportionally, thus representing the main bottleneck for sequencing large numbers of samples. Here we present an economical, high-throughput library preparation method for the Illumina platform, comprising a 96-well based method for DNA isolation for yeast cells, a low-cost DNA shearing alternative, and adapter ligation using heat inactivation of enzymes instead of bead cleanups. Results Up to 384 whole-genome libraries can be prepared from yeast cells in one week using this method, for less than 15 euros per sample. We demonstrate the robustness of this protocol by sequencing over 1000 yeast genomes at ~30x coverage. The sequence information from 768 yeast segregants derived from two divergent S. cerevisiae strains was used to generate a meiotic recombination map at unprecedented resolution. Comparisons to other datasets indicate a high conservation of recombination at a chromosome-wide scale, but differences at the local scale. Additionally, we detected a high degree of aneuploidy (3.6% by examining the sequencing coverage in these segregants. Differences in allele frequency allowed us to attribute instances of aneuploidy to gains of chromosomes during meiosis or mitosis, both of which showed a strong tendency to missegregate specific chromosomes. Conclusions Here we present a high throughput workflow to sequence genomes of large number of yeast strains at a low price. We have used this workflow to obtain recombination and aneuploidy data from hundreds of segregants, which can serve as a foundation for future studies of linkage, recombination, and chromosomal aberrations in yeast and higher eukaryotes.

  9. Emulsifying activity of hydrocarbonoclastic marine yeasts

    Digital Repository Service at National Institute of Oceanography (India)

    Gupta, R.

    Marine yeast growth on four petroleum hydrocarbons induced the production of extracellular emulsifying agents (biosurfactants). Out of the 17 marine yeast isolates tested, 7 isolates, i.e., Candida parapsilosis, C. cantarelli, C. membranae...

  10. Chromatin and Transcription in Yeast

    Science.gov (United States)

    Rando, Oliver J.; Winston, Fred

    2012-01-01

    Understanding the mechanisms by which chromatin structure controls eukaryotic transcription has been an intense area of investigation for the past 25 years. Many of the key discoveries that created the foundation for this field came from studies of Saccharomyces cerevisiae, including the discovery of the role of chromatin in transcriptional silencing, as well as the discovery of chromatin-remodeling factors and histone modification activities. Since that time, studies in yeast have continued to contribute in leading ways. This review article summarizes the large body of yeast studies in this field. PMID:22345607

  11. Influence of yeast and nutrients on quality of apricot brandy

    Directory of Open Access Journals (Sweden)

    Urošević Ivan

    2014-01-01

    Full Text Available Five yeast strains Saccharomyces cerevisiae and Saccharomyces bayanus (SB, Top Floral, Top 15, Aroma White, Red Fruit and two nutrients, diammonium phosphate and Nutrifermarom, examined for their influence on young apricot brandies, with a special emphasis on chemical, volatile and sensory characteristics. Analysis major and minor volatile and sensory analysis of the apricot brandy shows the important difference between samples. Total sensory scores of apricot brandies ranged between 16.88 for control sample to 18.35 for sample produced with SB yeast strain and diamonium phosphate as nutrient. All the samples of apricot brandies fulfilled EU requirements as regards their content of methanol and other components such as acetaldehyde, ethyl acetate, and higher alcohols. [Projekat Ministarstva nauke Republike Srbije, br. 172053

  12. Population FBA predicts metabolic phenotypes in yeast.

    Directory of Open Access Journals (Sweden)

    Piyush Labhsetwar

    2017-09-01

    Full Text Available Using protein counts sampled from single cell proteomics distributions to constrain fluxes through a genome-scale model of metabolism, Population flux balance analysis (Population FBA successfully described metabolic heterogeneity in a population of independent Escherichia coli cells growing in a defined medium. We extend the methodology to account for correlations in protein expression arising from the co-regulation of genes and apply it to study the growth of independent Saccharomyces cerevisiae cells in two different growth media. We find the partitioning of flux between fermentation and respiration predicted by our model agrees with recent 13C fluxomics experiments, and that our model largely recovers the Crabtree effect (the experimentally known bias among certain yeast species toward fermentation with the production of ethanol even in the presence of oxygen, while FBA without proteomics constraints predicts respirative metabolism almost exclusively. The comparisons to the 13C study showed improvement upon inclusion of the correlations and motivated a technique to systematically identify inconsistent kinetic parameters in the literature. The minor secretion fluxes for glycerol and acetate are underestimated by our method, which indicate a need for further refinements to the metabolic model. For yeast cells grown in synthetic defined (SD medium, the calculated broad distribution of growth rates matches experimental observations from single cell studies, and we characterize several metabolic phenotypes within our modeled populations that make use of diverse pathways. Fast growing yeast cells are predicted to perform significant amount of respiration, use serine-glycine cycle and produce ethanol in mitochondria as opposed to slow growing cells. We use a genetic algorithm to determine the proteomics constraints necessary to reproduce the growth rate distributions seen experimentally. We find that a core set of 51 constraints are essential but

  13. Yeasts associated with an abandoned mining area in Pernek and their tolerance to different chemical elements.

    Science.gov (United States)

    Vadkertiová, Renáta; Molnárová, Jana; Lux, Alexander; Vaculík, Marek; Lišková, Desana

    2016-05-01

    Four plants, Cirsium arvense (creeping thistle), Equisetum arvense (field horsetail), Oxalis acetosella (wood sorrel) and Phragmites australis (common reed), which grew in an abandoned Sb-mining area in Pernek (Malé Karpaty Mts., Slovakia), were investigated for the yeast species. Yeasts were isolated from both the leaves of the plants and the soil adjacent to the plants. In total, 65 yeast cultures, belonging to 11 ascomycetous and 5 basidiomycetous yeast species, were isolated. The species most frequently isolated from both the soil and leaf samples were Trichosporon porosum, Galactomyces candidus and Candida solani, whereas Aureobasidium pullulans, Candida tsuchiyae and Sporidiobolus metaroseus were isolated exclusively from the plant leaves. All the yeast species isolated were tested for their tolerance to two heavy metals (Cd, Zn) and three metalloids (As, Sb and Si). The yeasts isolated from both the leaves and soils exhibited a high tolerance level to both As and Sb, present in elevated concentrations at the locality. Among the yeast species tested, Cryptococcus musci, a close relative to Cryptococcus humicola, was the species most tolerant to all the chemical elements tested, with the exception of Si. It grew in the presence of 200 mmol/L Zn, 200 mmol/L Cd, 60 mmol/L As and 50 mmol/L Sb, and therefore, it can be considered as a multi-tolerant species. Some of the yeast species were tolerant to the individual chemical elements. The yeast-like species Trichosporon laibachii exhibited the highest tolerance to Si of all yeasts tested, and Cryptococcus flavescens and Lindnera saturnus showed the same tolerance as Cryptococcus musci to Zn and As, respectively. The majority of the yeasts showed a notably low tolerance to Cd (not exceeded 0.5 mmol/L), which was present in small amounts in the soil. However, Candida solani, isolated from the soil, exhibited a higher tolerance to Cd (20 mmol/L) than to As (2 mmol/L).

  14. Vacuoles of Candida yeast as a specialized niche for Helicobacter pylori.

    Science.gov (United States)

    Siavoshi, Farideh; Saniee, Parastoo

    2014-05-14

    Helicobacter pylori (H. pylori) are resistant to hostile gastric environments and antibiotic therapy, reflecting the possibility that they are protected by an ecological niche, such as inside the vacuoles of human epithelial and immune cells. Candida yeast may also provide such an alternative niche, as fluorescently labeled H. pylori were observed as fast-moving and viable bacterium-like bodies inside the vacuoles of gastric, oral, vaginal and foodborne Candida yeasts. In addition, H. pylori-specific genes and proteins were detected in samples extracted from these yeasts. The H. pylori present within these yeasts produce peroxiredoxin and thiol peroxidase, providing the ability to detoxify oxygen metabolites formed in immune cells. Furthermore, these bacteria produce urease and VacA, two virulence determinants of H. pylori that influence phago-lysosome fusion and bacterial survival in macrophages. Microscopic observations of H. pylori cells in new generations of yeasts along with amplification of H. pylori-specific genes from consecutive generations indicate that new yeasts can inherit the intracellular H. pylori as part of their vacuolar content. Accordingly, it is proposed that yeast vacuoles serve as a sophisticated niche that protects H. pylori against the environmental stresses and provides essential nutrients, including ergosterol, for its growth and multiplication. This intracellular establishment inside the yeast vacuole likely occurred long ago, leading to the adaptation of H. pylori to persist in phagocytic cells. The presence of these bacteria within yeasts, including foodborne yeasts, along with the vertical transmission of yeasts from mother to neonate, provide explanations for the persistence and propagation of H. pylori in the human population. This Topic Highlight reviews and discusses recent evidence regarding the evolutionary adaptation of H. pylori to thrive in host cell vacuoles.

  15. Sugiyamaella xylanicola sp. nov., a xylan-degrading yeast species isolated from rotting wood.

    Science.gov (United States)

    Morais, Camila G; Lara, Carla A; Marques, Susana; Fonseca, Cesar; Lachance, Marc-André; Rosa, Carlos A

    2013-06-01

    Four strains of a novel yeast species were isolated from rotting-wood samples in an Atlantic rainforest site in the state of Minas Gerais, Brazil. These yeasts were obtained from enrichments using yeast nitrogen base (YNB)-d-xylose or YNB-xylan media. The novel yeast species produces bacilliform ascospores typical of the genus Sugiyamaella, and its closest described relative in terms of sequence similarity is Candida (iter. nom. Sugiyamaella) marionensis. The yeast is able to grow in medium with xylan as sole carbon source and produces extracellular enzymes with xylanolytic activities. The novel species Sugiyamaella xylanicola sp. nov. is proposed to accommodate these isolates. The type strain is UFMG-CA-32.1(T) (=CBS 12683(T) =CBMAI 1467(T)).

  16. Characteristics of fermentation yeast isolated from traditional ...

    African Journals Online (AJOL)

    A relatively higher amount of propan-1-ol (43 mg/l) was found in the honey wine than in those made with wine yeast W4 and sake yeast K7. The aroma characteristics of honey wine made with yeast ET99 were acceptable, as determined by organoleptic tests, and were found to be applicable to ethanol fermentation.

  17. 21 CFR 73.355 - Phaffia yeast.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Phaffia yeast. 73.355 Section 73.355 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.355 Phaffia yeast. (a) Identity. (1) The color additive phaffia yeast consists of the killed, dried cells of a nonpathogenic and nontoxicogenic strain of the...

  18. Yeast Communities of Diverse Drosophila Species: Comparison of Two Symbiont Groups in the Same Hosts

    Science.gov (United States)

    Eisen, Jonathan A.; Kopp, Artyom

    2012-01-01

    The combination of ecological diversity with genetic and experimental tractability makes Drosophila a powerful model for the study of animal-associated microbial communities. Despite the known importance of yeasts in Drosophila physiology, behavior, and fitness, most recent work has focused on Drosophila-bacterial interactions. In order to get a more complete understanding of the Drosophila microbiome, we characterized the yeast communities associated with different Drosophila species collected around the world. We focused on the phylum Ascomycota because it constitutes the vast majority of the Drosophila-associated yeasts. Our sampling strategy allowed us to compare the distribution and structure of the yeast and bacterial communities in the same host populations. We show that yeast communities are dominated by a small number of abundant taxa, that the same yeast lineages are associated with different host species and populations, and that host diet has a greater effect than host species on yeast community composition. These patterns closely parallel those observed in Drosophila bacterial communities. However, we do not detect a significant correlation between the yeast and bacterial communities of the same host populations. Comparative analysis of different symbiont groups provides a more comprehensive picture of host-microbe interactions. Future work on the role of symbiont communities in animal physiology, ecological adaptation, and evolution would benefit from a similarly holistic approach. PMID:22885750

  19. Dynamics and characterization of yeasts during ripening of typical Italian dry-cured ham.

    Science.gov (United States)

    Simoncini, N; Rotelli, D; Virgili, R; Quintavalla, S

    2007-09-01

    The evolution of the yeast population during manufacturing and ripening of dry-cured Parma ham was investigated. Contamination levels ranged from 10(5) to 10(7) cfu/g on muscle surface, 10(4) to 10(6) cfu/g on covering fat and exceeded 10(7) cfu/g on spreadable fat mince ("sugna"). Two hundred and sixty one yeast isolates underwent identification test, showing that the predominant species of yeast population during the whole maturing process were Debaryomyces hansenii, Candida zeylanoides, Debaryomyces maramus, and to a lesser extent, Candida famata and Hyphopichia burtonii. The species Candida catenulata, Candida guilliermondii, Candida edax and other genera like Cryptococcus and Wingea were occasionally found. The yeast counts and species distribution changed according to the stage of processing and to the ham sampling location. At the end of the cold phase, the washing procedure was effective in lowering the yeast count in muscle and fat surface layers, but during the next ageing stages, yeast colonization of unskinned ham muscle increased again, though species distribution changed if compared to previous manufacturing phases. The ripening steps taken into account from the end of the cold phase to the final outcome, were always characterized by more than one yeast species, suggesting that yeasts other than Debaryomyces spp. could play a remarkable role on the sensory and safety properties of typical Italian dry-cured ham.

  20. Oxygen Consumption by Postfermentation Wine Yeast Lees: Factors Affecting Its Rate and Extent under Oenological Conditions

    Directory of Open Access Journals (Sweden)

    Jonas Müller

    2016-01-01

    Full Text Available Postfermentation wine yeast lees show antioxidant properties based on their ability to consume dissolved oxygen. The oxygen consumption capacity of suspended yeast lees obtained after fermentations with six commercial active dry yeast strains was investigated in model, white and red wines using fluorescence-based oxygen sensors operating in a nondestructive way. In model solution, the oxygen consumption rate of yeast lees was shown to depend on their amount, yeast strain, sulfur dioxide and temperature. It is slightly lower in red than in white wines. It is strongly decreased by current levels of free sulfur dioxide, thus excluding the complementary use of both as antioxidants in wine. However, in 25 randomly sampled white wines produced under commercial conditions, the rate and extent of oxygen consumption during the first six months of postfermentation had no significant correlation with any of these interacting factors, making it difficult to predict the actual antioxidant effect of yeast lees. In these wines, yeast lees consumed 0 to 47 % of the dissolved oxygen. Although total oxygen consumption capacity of yeast lees is not a limiting factor under commercial winemaking conditions, their oxygen consumption proceeds at a limited rate that reduces but cannot totally prevent concomitant chemical oxidation of the wine.

  1. Oxygen Consumption by Postfermentation Wine Yeast Lees: Factors Affecting Its Rate and Extent under Oenological Conditions.

    Science.gov (United States)

    Schneider, Volker; Müller, Jonas; Schmidt, Dominik

    2016-12-01

    Postfermentation wine yeast lees show antioxidant properties based on their ability to consume dissolved oxygen. The oxygen consumption capacity of suspended yeast lees obtained after fermentations with six commercial active dry yeast strains was investigated in model, white and red wines using fluorescence-based oxygen sensors operating in a nondestructive way. In model solution, the oxygen consumption rate of yeast lees was shown to depend on their amount, yeast strain, sulfur dioxide and temperature. It is slightly lower in red than in white wines. It is strongly decreased by current levels of free sulfur dioxide, thus excluding the complementary use of both as antioxidants in wine. However, in 25 randomly sampled white wines produced under commercial conditions, the rate and extent of oxygen consumption during the first six months of postfermentation had no significant correlation with any of these interacting factors, making it difficult to predict the actual antioxidant effect of yeast lees. In these wines, yeast lees consumed 0 to 47% of the dissolved oxygen. Although total oxygen consumption capacity of yeast lees is not a limiting factor under commercial winemaking conditions, their oxygen consumption proceeds at a limited rate that reduces but cannot totally prevent concomitant chemical oxidation of the wine.

  2. Yeast genomics on food flavours

    NARCIS (Netherlands)

    Schoondermark-Stolk, Sung Ah

    2005-01-01

    The appearance and concentration of the fusel alcohol 3-methyl-1-butanol is important for the flavour of fermented foods. 3-Methyl-1-butanol is formed by yeast during the conversion of L-leucine. Identification of the enzymes and genes involved in the formation of 3-methyl-1-butanol is a major

  3. Nucleotide excision repair in yeast

    NARCIS (Netherlands)

    Eijk, Patrick van

    2012-01-01

    Nucleotide Excision Repair (NER) is a conserved DNA repair pathway capable of removing a broad spectrum of DNA damage. In human cells a defect in NER leads to the disorder Xeroderma pigmentosum (XP). The yeast Saccharomyces cerevisiae is an excellent model organism to study the mechanism of NER. The

  4. Surplus yeast tank failing catastrophically

    DEFF Research Database (Denmark)

    Hedlund, Frank Huess

    2016-01-01

    GOOD REASON FOR CAUTION I A large surplus yeast tank shot into the air leaving the floor plate and the contents behind. Although not designed for overpressure, the tank was kept at “very slight overpressure” to suppress nuisance foaming. The brewery was unaware of the hazards of compressed air...

  5. Yeast Biodiversity in Vineyard Environments Is Increased by Human Intervention.

    Directory of Open Access Journals (Sweden)

    João Drumonde-Neves

    Full Text Available One hundred and five grape samples were collected during two consecutive years from 33 locations on seven oceanic islands of the Azores Archipelago. Grape samples were obtained from vineyards that were either abandoned or under regular cultivation involving common viticultural interventions, to evaluate the impact of regular human intervention on grape yeast biota diversity in vineyards. A total of 3150 yeast isolates were obtained and 23 yeast species were identified. The predominant species were Hanseniaspora uvarum, Pichia terricola, Starmerella bacillaris and Issatchenkia hanoiensis. The species Barnettozyma californica, Candida azymoides and Pichia cecembensis were reported in grapes or wine-associated environments for the first time. A higher biodiversity was found in active vineyards where regular human intervention takes place (Shannon index: 1.89 and 1.53 in the first and second years, respectively when compared to the abandoned ones (Shannon index: 0.76 and 0.31. This finding goes against the assumptions that human intervention can destroy biodiversity and lead to homogeneity in the environment. Biodiversity indices were considerably lower in the year with the heaviest rainfall. This study is the first to report on the grape yeast communities from several abandoned vineyards that have undergone no human intervention.

  6. Selection of Xilose-Fermenting Yeast Strains

    Directory of Open Access Journals (Sweden)

    Rosimeire Oenning da Silva

    Full Text Available ABSTRACT In Brazil, ethanol is obtained by fermentat of sugar cane juice using Saccharomyces cerevisiae. The cane juice extraction generates the bagasse that has been used for obtaining generation biofuel. However, the sugarcane bagasse has 30% pentose that cannot be fermented to ethanol by S. cerevisiae. Thus the aim of this study was to isolate a yeast able to ferment xylose to ethanol. Samples of cane juice and flowers were used for the isolation of 165 strains that were then screened for ethanol production using plate testing. Among them, the ethanol positive strains Wickerhamomyces anomalus, Schizosaccharomyces pombe and Starmerella meliponinorum were selected for a xylose fermentation assay, using a semi-synthetic and bagasse hydrolysate as must. S. meliponinorum and S. pombe produced 0.63 and 2.7 gL-1 of ethanol, respectively, from xylose in a semisynthetic medium. In the medium consisting of bagasse hydrolysate must, 0.67 and 1.1 gL-1 of ethanol were obtained from S. meliponinorum and S. pombe, respectively. All the yeasts produced xylitol from xylose in the semisynthetic medium and S. meliponinorum was that which produced the highest quantity (14.5 g L-1.

  7. Thermotolerant yeasts and application for ethanol production

    Directory of Open Access Journals (Sweden)

    To-on, N.

    2007-07-01

    Full Text Available A total of 70 thermotolerant yeast strains were isolated at 40oC from 145 samples including fruit, leaves, flowers, soils and oil-palm fruits. Six isolates showed maximum growth at 40oC within 18 h. Three isolates (MIY1, MIY48 and MIY57 were selected based on their ability to ferment glucose and sucrose rapidly (24 h and showed the maximum temperature for growth at 42oC but it was good at 40oC. MIY57 produced 4.6% (v/v ethanol at 40oC from a medium containing 15% glucose. The optimum cultivation conditions for growth and ethanol production of MIY57 was 5% inoculum into the fermentation medium containing 15% glucose and 1% yeast extract with initial pH of 4.5 on a shaking incubator at 150 rpm at 40oC. MIY57, under these conditions, produced maximum ethanol of 5.0% (v/v after 48 h incubation while S. cerevisiae TISTR 5048 produced only 3.7% (v/v. Maximum cell dry weight was 7.2 g/L (at 18 h, again much higher than that of S. cerevisiae TISTR 5048 (4.1 g/L. Based on morphological, physiological and molecular studies, this strain (MIY57 was identified as Saccharomyces cerevisiae.

  8. Nanomechanics of Yeast Surfaces Revealed by AFM

    Science.gov (United States)

    Dague, Etienne; Beaussart, Audrey; Alsteens, David

    Despite the large and well-documented characterization of the microbial cell wall in terms of chemical composition, the determination of the mechanical properties of surface molecules in relation to their function remains a key challenge in cell biology.The emergence of powerful tools allowing molecular manipulations has already revolutionized our understanding of the surface properties of fungal cells. At the frontier between nanophysics and molecular biology, atomic force microscopy (AFM), and more specifically single-molecule force spectroscopy (SMFS), has strongly contributed to our current knowledge of the cell wall organization and nanomechanical properties. However, due to the complexity of the technique, measurements on live cells are still at their infancy.In this chapter, we describe the cell wall composition and recapitulate the principles of AFM as well as the main current methodologies used to perform AFM measurements on live cells, including sample immobilization and tip functionalization.The current status of the progress in probing nanomechanics of the yeast surface is illustrated through three recent breakthrough studies. Determination of the cell wall nanostructure and elasticity is presented through two examples: the mechanical response of mannoproteins from brewing yeasts and elasticity measurements on lacking polysaccharide mutant strains. Additionally, an elegant study on force-induced unfolding and clustering of adhesion proteins located at the cell surface is also presented.

  9. Indole-3-Acetic Acid-Producing Yeasts in the Phyllosphere of the Carnivorous Plant Drosera indica L

    Science.gov (United States)

    Shin, Li-Ying; Wei, Jyuan-Yu; Fu, Shih-Feng; Chou, Jui-Yu

    2014-01-01

    Yeasts are widely distributed in nature and exist in association with other microorganisms as normal inhabitants of soil, vegetation, and aqueous environments. In this study, 12 yeast strains were enriched and isolated from leaf samples of the carnivorous plant Drosera indica L., which is currently threatened because of restricted habitats and use in herbal industries. According to similarities in large subunit and small subunit ribosomal RNA gene sequences, we identified 2 yeast species in 2 genera of the phylum Ascomycota, and 5 yeast species in 5 genera of the phylum Basidiomycota. All of the isolated yeasts produced indole-3-acetic acid (IAA) when cultivated in YPD broth supplemented with 0.1% L-tryptophan. Growth conditions, such as the pH and temperature of the medium, influenced yeast IAA production. Our results also suggested the existence of a tryptophan-independent IAA biosynthetic pathway. We evaluated the effects of various concentrations of exogenous IAA on yeast growth and observed that IAA produced by wild yeasts modifies auxin-inducible gene expression in Arabidopsis. Our data suggest that yeasts can promote plant growth and support ongoing prospecting of yeast strains for inclusion into biofertilizer for sustainable agriculture. PMID:25464336

  10. Indole-3-acetic acid-producing yeasts in the phyllosphere of the carnivorous plant Drosera indica L.

    Directory of Open Access Journals (Sweden)

    Pei-Feng Sun

    Full Text Available Yeasts are widely distributed in nature and exist in association with other microorganisms as normal inhabitants of soil, vegetation, and aqueous environments. In this study, 12 yeast strains were enriched and isolated from leaf samples of the carnivorous plant Drosera indica L., which is currently threatened because of restricted habitats and use in herbal industries. According to similarities in large subunit and small subunit ribosomal RNA gene sequences, we identified 2 yeast species in 2 genera of the phylum Ascomycota, and 5 yeast species in 5 genera of the phylum Basidiomycota. All of the isolated yeasts produced indole-3-acetic acid (IAA when cultivated in YPD broth supplemented with 0.1% L-tryptophan. Growth conditions, such as the pH and temperature of the medium, influenced yeast IAA production. Our results also suggested the existence of a tryptophan-independent IAA biosynthetic pathway. We evaluated the effects of various concentrations of exogenous IAA on yeast growth and observed that IAA produced by wild yeasts modifies auxin-inducible gene expression in Arabidopsis. Our data suggest that yeasts can promote plant growth and support ongoing prospecting of yeast strains for inclusion into biofertilizer for sustainable agriculture.

  11. Indole-3-acetic acid-producing yeasts in the phyllosphere of the carnivorous plant Drosera indica L.

    Science.gov (United States)

    Sun, Pei-Feng; Fang, Wei-Ta; Shin, Li-Ying; Wei, Jyuan-Yu; Fu, Shih-Feng; Chou, Jui-Yu

    2014-01-01

    Yeasts are widely distributed in nature and exist in association with other microorganisms as normal inhabitants of soil, vegetation, and aqueous environments. In this study, 12 yeast strains were enriched and isolated from leaf samples of the carnivorous plant Drosera indica L., which is currently threatened because of restricted habitats and use in herbal industries. According to similarities in large subunit and small subunit ribosomal RNA gene sequences, we identified 2 yeast species in 2 genera of the phylum Ascomycota, and 5 yeast species in 5 genera of the phylum Basidiomycota. All of the isolated yeasts produced indole-3-acetic acid (IAA) when cultivated in YPD broth supplemented with 0.1% L-tryptophan. Growth conditions, such as the pH and temperature of the medium, influenced yeast IAA production. Our results also suggested the existence of a tryptophan-independent IAA biosynthetic pathway. We evaluated the effects of various concentrations of exogenous IAA on yeast growth and observed that IAA produced by wild yeasts modifies auxin-inducible gene expression in Arabidopsis. Our data suggest that yeasts can promote plant growth and support ongoing prospecting of yeast strains for inclusion into biofertilizer for sustainable agriculture.

  12. The vineyard yeast microbiome, a mixed model microbial map.

    Directory of Open Access Journals (Sweden)

    Mathabatha Evodia Setati

    Full Text Available Vineyards harbour a wide variety of microorganisms that play a pivotal role in pre- and post-harvest grape quality and will contribute significantly to the final aromatic properties of wine. The aim of the current study was to investigate the spatial distribution of microbial communities within and between individual vineyard management units. For the first time in such a study, we applied the Theory of Sampling (TOS to sample gapes from adjacent and well established commercial vineyards within the same terroir unit and from several sampling points within each individual vineyard. Cultivation-based and molecular data sets were generated to capture the spatial heterogeneity in microbial populations within and between vineyards and analysed with novel mixed-model networks, which combine sample correlations and microbial community distribution probabilities. The data demonstrate that farming systems have a significant impact on fungal diversity but more importantly that there is significant species heterogeneity between samples in the same vineyard. Cultivation-based methods confirmed that while the same oxidative yeast species dominated in all vineyards, the least treated vineyard displayed significantly higher species richness, including many yeasts with biocontrol potential. The cultivatable yeast population was not fully representative of the more complex populations seen with molecular methods, and only the molecular data allowed discrimination amongst farming practices with multivariate and network analysis methods. Importantly, yeast species distribution is subject to significant intra-vineyard spatial fluctuations and the frequently reported heterogeneity of tank samples of grapes harvested from single vineyards at the same stage of ripeness might therefore, at least in part, be due to the differing microbiota in different sections of the vineyard.

  13. Marine culturable yeasts in deep-sea hydrothermal vents: species richness and association with fauna.

    Science.gov (United States)

    Burgaud, Gaëtan; Arzur, Danielle; Durand, Lucile; Cambon-Bonavita, Marie-Anne; Barbier, Georges

    2010-07-01

    Investigations of the diversity of culturable yeasts at deep-sea hydrothermal sites have suggested possible interactions with endemic fauna. Samples were collected during various oceanographic cruises at the Mid-Atlantic Ridge, South Pacific Basins and East Pacific Rise. Cultures of 32 isolates, mostly associated with animals, were collected. Phylogenetic analyses of 26S rRNA gene sequences revealed that the yeasts belonged to Ascomycota and Basidiomycota phyla, with the identification of several genera: Rhodotorula, Rhodosporidium, Candida, Debaryomyces and Cryptococcus. Those genera are usually isolated from deep-sea environments. To our knowledge, this is the first report of yeasts associated with deep-sea hydrothermal animals.

  14. Characterization of butter spoiling yeasts and their inhibition by some spices.

    Science.gov (United States)

    Sagdic, Osman; Ozturk, Ismet; Bayram, Okan; Kesmen, Zulal; Yilmaz, Mustafa Tahsin

    2010-01-01

    This study was designed to identify the yeasts in packaged and unpackaged butters and screen antiyeast activity of spices, including marjoram (Origanum majorana L.), summer savory (Satureja hortensis L.), and black cumin (Nigella sativa L.) against the most dominant yeast species in the packaged and unpackaged butters. Mean total yeast populations were 5.40 log CFU/g in unpackaged butter samples and 2.22 log CFU/g in packaged butter samples, indicating better hygienic quality of packaged samples. Forty-nine yeast species were isolated and identified from butter samples with the most prevalent isolates belonging to genera Candida-C. kefyr, C. zeylanoides, and C. lambica-and with moderate number of isolates belonging to genera Cryptococcus, Rhodotorula, Saccharomyces, and Zygosaccharomyces. Black cumin exhibited the highest antiyeast activity against C. zeylanoides and C. lambica species, even inhibited these species, while summer savory inhibited C. kefyr. The results of this study revealed clear antimicrobial potential of black cumin against the yeast species isolated from butters. Marjoram, summer savory, and black cumin could be used as natural antimicrobial agents against spoilage yeasts in food preservation, especially in butter. © 2010 Institute of Food Technologists®

  15. Chromosome Dynamics in the Yeast Interphase Nucleus

    Science.gov (United States)

    Heun, Patrick; Laroche, Thierry; Shimada, Kenji; Furrer, Patrick; Gasser, Susan M.

    2001-12-01

    Little is known about the dynamics of chromosomes in interphase nuclei. By tagging four chromosomal regions with a green fluorescent protein fusion to lac repressor, we monitored the movement and subnuclear position of specific sites in the yeast genome, sampling at short time intervals. We found that early and late origins of replication are highly mobile in G1 phase, frequently moving at or faster than 0.5 micrometers/10 seconds, in an energy-dependent fashion. The rapid diffusive movement of chromatin detected in G1 becomes constrained in S phase through a mechanism dependent on active DNA replication. In contrast, telomeres and centromeres provide replication-independent constraint on chromatin movement in both G1 and S phases.

  16. THE ANTIMICROBIAL ACTIVITY OF HONEY AND PROPOLIS AGAINST YEASTS CANDIDA SPECIES

    Directory of Open Access Journals (Sweden)

    MIROSLAVA KAČÁNIOVÁ

    2009-10-01

    Full Text Available The aim of this study was to focus on the evaluation of the antimicrobial activity of honey samples and ethanolic extract of propolis (EEP against Candida species. The honey concentrations - 50 % and 25 % of honey in distilled water were prepared. These preparations were tested for antimicrobial activity against five different types of yeasts: Candida crusei, Candida albicans, Candida (Torulopsis glabrata, Candida parapsilosis and Candida tropicalis. The disc diffusion method using filter paper discs was employed. The antimicrobial activity was determined as an equivalent of the inhibition zones diameters (in millimeters after incubation of the cultures for 48 hours. There were not seen an inhibition zones against the yeasts investigated in the 25 % and 50 % concentration of honey samples. The analysis among the tested yeasts showed that Candida crusei was the most sensitive in 70 % of EEP, and the sensitivity of the yeasts decreased in the order: Candida albicans > Candida parapsilosis > Candida tropicalis > Candida glabrata.

  17. Combinatorial pathway assembly in yeast

    Directory of Open Access Journals (Sweden)

    Khalil Essani

    2015-10-01

    Full Text Available With the emergence of synthetic biology and the vast knowledge about individual biocatalytic reactions, the challenge nowadays is to implement whole natural or synthetic pathways into microorganisms. For this purpose balanced enzyme activities throughout the pathway need to be achieved in addition to simple functional gene expression to avoid bottlenecks and to obtain high titers of the desired product. As the optimization of pathways in a specific biological context is often hard to achieve by rational design, combinatorial approaches have been developed to address this issue. Here, current strategies and proof of concepts for combinatorial pathway assembly in yeasts are reviewed. By exploiting its ability to join multiple DNA fragments in a very efficient and easy manner, the yeast Saccharomyces cerevisiae does not only constitute an attractive host for heterologous pathway expression, but also for assembling pathways by recombination in vivo.

  18. Yeast Isolation for Bioethanol Production

    Directory of Open Access Journals (Sweden)

    EKA RURIANI

    2012-09-01

    Full Text Available We have isolated 12 yeast isolates from five different rotten fruits by using a yeast glucose chloramphenicol agar (YGCA medium supplemented with tetracycline. From pre-screening assay, four isolates exhibited higher substrate (glucose-xylose consumption efficiency in the reaction tube fermentation compared to Saccharomyces cerevisiae dan Saccharomyces ellipsoids as the reference strains. Based on the fermentation process in gooseneck flasks, we observed that two isolates (K and SB showed high fermentation efficiency both in sole glucose and mixed glucose-xylose substrate. Moreover, isolates K and SB produced relatively identical level of ethanol concentration compared to the reference strains. Isolates H and MP could only produce high levels of ethanol in glucose fermentation, while only half of that amount of ethanol was detected in glucose-xylose fermentation. Isolate K and SB were identified as Pichia kudriavzeevii (100% based on large sub unit (LSU ribosomal DNA D1/D2 region.

  19. Malt-induced premature yeast flocculation: current perspectives.

    Science.gov (United States)

    Panteloglou, Apostolos G; Smart, Katherine A; Cook, David J

    2012-06-01

    Premature yeast flocculation (PYF) is a sporadic problem for the malting and brewing industries which can have significant financial and logistical implications. The condition is characterised by abnormally heavy (and sometimes early) flocculation of yeast during brewery fermentations. The resulting low suspended yeast cell counts towards the end of the fermentation can result in flavour defects and incomplete attenuation (fermentation of sugars to alcohol). Despite several decades of research into the phenomenon, its precise nature and mechanisms have not been fully elucidated. In part this is because the term PYF has become a 'catch-all' syndrome which can have multiple origins. Furthermore, there are complex interactions in the malting and brewing processes which together mean that the PYF status of a malt sample is hard to predict at a generic level. Whether or not PYF is observed depends not only on barley quality, but on process factors in the maltings and to a substantial extent on the brewing yeast strain concerned. This article highlights the significance of PYF, and reviews current knowledge relating to the origins of this complex phenomenon.

  20. Yeast: A new oil producer?

    Directory of Open Access Journals (Sweden)

    Beopoulos Athanasios

    2012-01-01

    Full Text Available The increasing demand of plant oils or animal fat for biodiesel and specific lipid derivatives for the oleochemical field (such as lubricants, adhesives or plastics have created price imbalance in both the alimentary and energy field. Moreover, the lack of non-edible oil feedstock has given rise to concerns on land-use practices and on oil production strategies. Recently, much attention has been paid to the exploitation of microbial oils. Most of them present lipid profiles similar in type and composition to plants and could therefore have many advantages as are no competitive with food, have short process cycles and their cultivation is independent of climate factors. Among microorganisms, yeasts seem to be very promising as they can be easily genetically enhanced, are suitable for large-scale fermentation and are devoid of endotoxins. This review will focus on the recent understanding of yeasts lipid metabolism, the succeeding genetic engineering of the lipid pathways and the recent developments on fermentation techniques that pointed out yeasts as promising alternative producers for oil or plastic.

  1. Distribution of yeast species associated with oral lesions in HIV-infected patients in Southwest Uganda.

    LENUS (Irish Health Repository)

    Agwu, Ezera

    2012-04-01

    Oropharyngeal candidiasis remains a significant clinical problem in HIV-infected and AIDS patients in regions of Africa where anti-retroviral therapy isn\\'t readily available. In this study we identified the yeast populations associated with oral lesions in HIV-infected patients in Southwest Uganda who were receiving treatment with nystatin and topical clotrimazole. Samples were taken from 605 patients and 316 (52%) of these yielded yeast growth following incubation on Sabouraud dextrose agar. Samples were subsequently re-plated on CHROMagar Candida medium to facilitate identification of the yeast species present. The majority (56%) of culture-positive samples yielded a mix of two or more species. Candida albicans was present in 87% (274\\/316) of patient samples and accounted for 87% (120\\/138) of single species samples. Candida glabrata, Candida tropicalis and Candida norvegensis were also found in cultures that yielded a single species. No Candida dubliniensis isolates were identified in this population.

  2. Yeasts Diversity in Fermented Foods and Beverages

    Science.gov (United States)

    Tamang, Jyoti Prakash; Fleet, Graham H.

    People across the world have learnt to culture and use the essential microorganisms for production of fermented foods and alcoholic beverages. A fermented food is produced either spontaneously or by adding mixed/pure starter culture(s). Yeasts are among the essential functional microorganisms encountered in many fermented foods, and are commercially used in production of baker's yeast, breads, wine, beer, cheese, etc. In Asia, moulds are predominant followed by amylolytic and alcohol-producing yeasts in the fermentation processes, whereas in Africa, Europe, Australia and America, fermented products are prepared exclusively using bacteria or bacteria-yeasts mixed cultures. This chapter would focus on the varieties of fermented foods and alcoholic beverages produced by yeasts, their microbiology and role in food fermentation, widely used commercial starters (pilot production, molecular aspects), production technology of some common commercial fermented foods and alcoholic beverages, toxicity and food safety using yeasts cultures and socio-economy

  3. Yeast Interacting Proteins Database: YEL005C, YGL079W [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available endosome; identified as a transcriptional activator in a high-throughput yeast one-hybrid assay Rows with th...protein localizes to the endosome; identified as a transcriptional activator in a high-throughput yeast one-

  4. Pyridine appended L-methionine: a novel chelating resin for pH dependent Cr speciation with scanning electron microscopic evidence and monitoring of yeast mediated green bio-reduction of Cr(VI) to Cr(III) in environmental samples.

    Science.gov (United States)

    Sahana, Animesh; Das, Sudipto; Banerjee, Arnab; Lohar, Sisir; Karak, Debasis; Das, Debasis

    2011-01-30

    Chemical speciation and pH dependent separation of Cr(III) and Cr(VI) species in environmental samples have been achieved by solid phase extraction using a new chelating resin containing pyridine appended L-methionine. Cr(III) is completely sorbed on the resin at pH 8.0 and Cr(VI) at pH 2.0. Hence a pH dependent separation of Cr(III) and Cr(VI) is possible with a limit of detection of 1.6 μg mL(-1) and 0.6 μg mL(-1) respectively. The sorption capacity of the resin for Cr(III) and Cr(VI) is 2.8 mmol g(-1) and 1.3 mmol g(-1) respectively. The sorption of chromium on the resin is supported by scanning electron microscopy (SEM). Complete desorption of Cr(III) and Cr(VI) from 1g of Cr loaded resin was achieved using 10 mL of 2 mol L(-1) HNO(3) and 6 mL of 3 mol L(-1) HNO(3) respectively. Quantitative recoveries of Cr(III) (pH 8.0) and Cr(VI) (pH 2.0) were found to be 96.0% and 98.0% respectively. Reduction efficiency of Rhodotornula mucilaginosa yeast from Cr(VI) to Cr(III) was monitored with this new resin. Concentrations of metal ions were measured by flame atomic absorption spectroscopy (FAAS). Copyright © 2010 Elsevier B.V. All rights reserved.

  5. Revaluation of Waste Yeast from Beer Production

    OpenAIRE

    Nicoleta Suruceanu; Sonia Socaci; Teodora Coldea; Elena Mudura

    2013-01-01

    Brewing yeast is an important waste product from beer production. The valorification of slurry yeast mainly consists of separation of vitamins and important nitrogen compounds. The hops compounds, one of the most important raw materials in beer technology are removed beforehand valorification. The prenylflavonoids compounds from hops are important bioactive compounds that can be revaluation with proper technology. Revaluation of prenylflavonoids from waste yeast into dietary supplement, ident...

  6. Did Gause Have a Yeast Infection?

    Science.gov (United States)

    Pritchard, Jonathon O; Porter, Alice H M; Montagnes, David J S

    2016-09-01

    We planned to develop predator-prey models using Paramecium and yeast, but they have not been empirically examined since work by Gause in the 1930s. Therefore, we evaluated if Paramecium aurelia ingests and grows on eight yeasts. Recognising that it ingested yeasts but could not grow, we assessed if it might grow on other yeasts, by empirically parameterising a predator-prey model that relies on ingestion, not growth. Simulations were compared to P. aurelia-yeast time-series data, from Gause. We hypothesised that if the model simulated predator-prey dynamics that mimicked the original data, then possibly P. aurelia could grow on yeast; simulations did not mimic the original data. Reviewing works by Gause exposed two issues: experiments were undoubtedly contaminated with bacteria, allowing growth on bacteria, not yeast; and the population cycle data cannot be considered a self-sustaining time series, as they were manipulated by adding yeast and ciliates. We conclude that past and future work should not rely on this system, for either empirical or theoretical evaluations. Finally, although we show that P. aurelia, P. caudatum, Euplotes patella, and Blepharisma sp. cannot grow on yeast, Tetrahymena pyriformis and Colpidium striatum can; these may provide models to explore predator-prey dynamics. © 2016 The Author(s) Journal of Eukaryotic Microbiology © 2016 International Society of Protistologists.

  7. Evaluation of Automated Yeast Identification System

    Science.gov (United States)

    McGinnis, M. R.

    1996-01-01

    One hundred and nine teleomorphic and anamorphic yeast isolates representing approximately 30 taxa were used to evaluate the accuracy of the Biolog yeast identification system. Isolates derived from nomenclatural types, environmental, and clinica isolates of known identity were tested in the Biolog system. Of the isolates tested, 81 were in the Biolog database. The system correctly identified 40, incorrectly identified 29, and was unable to identify 12. Of the 28 isolates not in the database, 18 were given names, whereas 10 were not. The Biolog yeast identification system is inadequate for the identification of yeasts originating from the environment during space program activities.

  8. Yeast Infection Test: MedlinePlus Lab Test Information

    Science.gov (United States)

    ... this page: https://medlineplus.gov/labtests/yeastinfectiontest.html Yeast Infection Test To use the sharing features on this page, please enable JavaScript. What is a Yeast Test? Yeast is a type of fungus that ...

  9. Investigation of the Yeast and Mould Floras in Some Ground Spices

    Directory of Open Access Journals (Sweden)

    Aydın Vural

    2004-01-01

    Full Text Available In this study, yeast and mould floras of 60 spices samples that werecollected from different places of Diyarbakır have been investigated. Theyeast spices as Aspergillus flavus, A. fumigatus and A. niger and mouldspices as Candida tropicalis and C. albicans have been commonly isolatedfrom the spices samples.The ratios of yeast contamination in the samples of black pepper,cumin, allspice, ground hot red pepper, flaked pepper (red and flakedpepper (black, investigated in this study, have been found as % 70, % 80,% 90, % 90, % 60 and % 30 respectively. As a result of high amount ofyeast contamination in spices samples, it is thought that there is a high riskof aflatoxin presence.Using the good and hygienically producing techniques at the stages ofharvest, production, processing, storage and selling with decontaminationapplications as sterilization, microwave and irradiation become effectiveeither in to prove the microbiological quality of the spices and eliminatingof the probable aflatoxin risk due to highly yeast contamination.

  10. Metals uptake by live yeast and heat-modified yeast residue

    Directory of Open Access Journals (Sweden)

    Geórgia Labuto

    2015-07-01

    Full Text Available This study evaluated the biosorption of Cd2+, Cr3+, Pb2+ and Cu2+ at pHs 3, 4, 5 and 6 for Saccharomyces cerevisiae both alive and biologically inactivated by different heating procedures (oven, autoclave or spray dry technique originated from alcohol industry. The material inactivated by autoclave (IA, at 120°C, 30 min had the best performance for metals uptake: 1.88 ± 0.07 (Cu2+, 2.22 ± 0.02 (Cr3+ and 1.57 ± 0.08 g kg-1 (Pb2+. For Cd2+; while the material inactivated by spray dry (RY presented the higher sorption capacity, 2.30 ± 0.08 g kg-1. The sorption studies showed that the biosorbent materials presented different sorption capacities and an ideal sorption pH. The sorption sites were investigated by potentiometric titration and FT-IR and showed that different heating processes used to inactivate biological samples produce materials with different characteristics and with a diverse sorption capacity due to modification of the available sorption sites. This suggests that inactivation by heating can be an alternative to improve the performance of biosorbents. The main sorption sites for each material were phenolic for live yeast (LY and carboxylic for yeast inactivated by heating in an autoclave (IA.

  11. Cell size control in yeast.

    Science.gov (United States)

    Turner, Jonathan J; Ewald, Jennifer C; Skotheim, Jan M

    2012-05-08

    Cell size is an important adaptive trait that influences nearly all aspects of cellular physiology. Despite extensive characterization of the cell-cycle regulatory network, the molecular mechanisms coupling cell growth to division, and thereby controlling cell size, have remained elusive. Recent work in yeast has reinvigorated the size control field and suggested provocative mechanisms for the distinct functions of setting and sensing cell size. Further examination of size-sensing models based on spatial gradients and molecular titration, coupled with elucidation of the pathways responsible for nutrient-modulated target size, may reveal the fundamental principles of eukaryotic cell size control. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Detection and quantitative determination by PIXE of the mutagen Sn{sup 2+} in yeast cells

    Energy Technology Data Exchange (ETDEWEB)

    Viau, C.M. [Departamento de Biofisica/Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, UFRGS (Brazil); Yoneama, M.-L. [Instituto de Fisica, UFRGS, Av. Bento Goncalves 9500, CEP 91501-970, CP 15051, Porto Alegre, RS (Brazil)]. E-mail: jfdias@if.ufrgs.br; Dias, J.F. [Instituto de Fisica, UFRGS, Av. Bento Goncalves 9500, CEP 91501-970, CP 15051, Porto Alegre, RS (Brazil); Pungartnik, C. [Departamento de Ciencias Biologicas, Universidade Estadual de Santa Cruz, UESC, Ilheus, BA (Brazil); Brendel, M. [Departamento de Biofisica/Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, UFRGS (Brazil); Departamento de Ciencias Biologicas, Universidade Estadual de Santa Cruz, UESC, Ilheus, BA (Brazil); Henriques, J.A.P. [Departamento de Biofisica/Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, UFRGS (Brazil); Faculdade de Farmacia, Universidade Luterana do Brasil, ULBRA, Porto Alegre, RS (Brazil)

    2006-08-15

    The main goal of this work was to determine the concentration of Sn{sup 2+} ions in cells of the yeast Saccharomyces cerevisiae and to correlate their quantity with the genotoxicity of intracellularly accumulated metal ions. The intracellular metal content of yeast cells was determined by PIXE (particle-induced X-ray emission) after cell exposure to SnCl{sub 2}. To that end, a thick target protocol was developed for PIXE analysis. The samples were irradiated with a 2 MeV proton beam, while the induced X-rays were detected with a high-purity germanium detector. The results of the toxicity of SnCl{sub 2} and the PIXE analysis performed with two different yeast strains (haploid and diploid) suggest that the exposure of haploid and diploid yeast to Sn{sup 2+} induces DNA lesions and that the absorption depends on the genetic background of each strain.

  13. Oral carriage of yeasts and coliforms in stroke sufferers: a prospective longitudinal study.

    Science.gov (United States)

    Zhu, H W; McMillan, A S; McGrath, C; Li, L S W; Samaranayake, L P

    2008-01-01

    To investigate prospectively the qualitative and quantitative changes in oral carriage of yeasts and coliforms in southern Chinese people suffering from stroke. In 56 elderly people suffering from stroke in a rehabilitation unit of a general medical hospital in Hong Kong, oral microbiological sampling using a combined imprint culture, oral rinse approach and clinical assessment was made during the acute stroke phase, on hospital discharge and 6 months later. The oral carriage of yeasts increased significantly during acute stroke (Pcoliform carriage did not. A reduction in oral carriage of yeasts was found on hospital discharge and 6 months later and in coliforms at the 6-month assessment (Pcoliform respectively. Stroke-related difficulty in tooth brushing and denture wearing were associated with higher oral yeast carriage (Pcoliforms in people suffering from stroke is noteworthy by care providers as K. pneumoniae may cause aspiration pneumonia.

  14. Isolation of the Oleaginous Yeasts from the Soil and Studies of Their Lipid-Producing Capacities

    Directory of Open Access Journals (Sweden)

    Li-Xia Pan

    2009-01-01

    Full Text Available D-xylose is one of the most abundant pentose sugars in nature. To isolate oleaginous yeasts that can utilize xylose from diverse soil samples, soils from a litchi orchard, longan orchard, carambola orchard, and woods were collected, yeasts were isolated by the glycerol enrichment and their xylose-assimilating capacities were measured. A subset of these isolates was grown in nitrogen-limited media and then screened for potential oleaginous yeasts by the Sudan Black B staining, after which their lipid-producing capacities were studied. There were 13 strains of oleaginous yeasts identified, and a rapid microbiological assay was provided to exploit microbial lipids that may one day be used as biodiesels or cocoa butter substitute.

  15. A fast and simple method for wild yeast flora detection in winemaking

    Directory of Open Access Journals (Sweden)

    Francesca Comitini

    2009-02-01

    Full Text Available Francesca Comitini, Mariza Stringini, Manuela Taccari, Maurizio CianiDipartimento S.A.I.F.E.T. sez. di Microbiologia Alimentare, Industriale e Ambientale, Università Politecnica delle Marche, Ancona, ItalyAbstract: An easy technique for a fast determination of wild yeast population-colonizing grape must before fermentation is described. The mathematical relationship between viable cell number and oxygen consumption rate was determined using a simple pO2 electrode chamber. This relation was determined in pure cultures belonging to six yeast species related to wine environment and in natural samples of grape must collected at the time of the grape delivery in the wineries. Results indicated a significant relationship between oxygen consumption rate and viable cell count of the wine yeast species tested. The evaluation of natural grape must samples indicated that the presence at pre-fermentative of wide contaminant yeast flora at a level commonly believed responsible for uncontrolled microbiological process in winemaking (>106 CFU ml−1, was easily detected. Since the results are available in a short time, this method could be profitable used to detect the presence of contaminant level of wild yeasts reducing the risk of uncontrolled start fermentation that could compromise the quality of final product.Keywords: wild yeasts contamination, oxygen consumption, O2 probe

  16. Comparison of culture media for the recovery of airborne yeast in wineries.

    Science.gov (United States)

    Ocón, E; Garijo, P; Santamaría, P; López, R; Olarte, C; Gutiérrez, A R; Sanz, S

    2013-09-01

    The direct air sampling impaction method on agar was evaluated using aerobiocollectors for the recovery of yeasts present in the winery air. Three culture media with different composition and specificity were studied. In addition, a resuscitation phase was included before the culture in the specificity medium [in the case of the Dekkera-Brettanomyces Differential Medium (DBDM) medium]. Sampling was conducted at different times of the year and in different parts of the wineries, which were different in age and design. Both the Chloramphenicol Glucose Agar (CGA) and Agar Lysine AL media recovered yeasts from the air without any prior resuscitation phase. CGA was able to recover a higher number of colony-forming units of yeasts than the other media. Consequently, to estimate the number of yeasts present in winery air, the best choice of medium would be CGA. The AL medium permitted the growth of the greatest range of genera and species. If the aim is to study the diversity of yeasts present in the air, the most suitable medium is AL. Neither CGA nor AL proved suitable for recovering yeasts of the Brettanomyces genus. The DBDM medium was the only one which provided sufficient specificity for their recovery and identification from the air, although their special characteristics made a prior protocol of resuscitation necessary. © 2013 The Society for Applied Microbiology.

  17. The wine and beer yeast Dekkera bruxellensis.

    Science.gov (United States)

    Schifferdecker, Anna Judith; Dashko, Sofia; Ishchuk, Olena P; Piškur, Jure

    2014-09-01

    Recently, the non-conventional yeast Dekkera bruxellensis has been gaining more and more attention in the food industry and academic research. This yeast species is a distant relative of Saccharomyces cerevisiae and is especially known for two important characteristics: on the one hand, it is considered to be one of the main spoilage organisms in the wine and bioethanol industry; on the other hand, it is 'indispensable' as a contributor to the flavour profile of Belgium lambic and gueuze beers. Additionally, it adds to the characteristic aromatic properties of some red wines. Recently this yeast has also become a model for the study of yeast evolution. In this review we focus on the recently developed molecular and genetic tools, such as complete genome sequencing and transformation, to study and manipulate this yeast. We also focus on the areas that are particularly well explored in this yeast, such as the synthesis of off-flavours, yeast detection methods, carbon metabolism and evolutionary history. © 2014 The Authors. Yeast published by John Wiley & Sons, Ltd.

  18. Comet assay on tetraploid yeast cells

    DEFF Research Database (Denmark)

    Rank, Jette; Syberg, Kristian; Jensen, Klara

    2009-01-01

    . Analytical problems that arose due to the small amount of DNA in the yeast nuclei in haploid and diploid cells, which contain 13 Mbp and 26 Mbp DNA per cell, respectively, were solved by using tetraploid yeast cells (52 Mbp) instead. DNA damage was shown after exposure to H2O2 and acrylamide. The lowest dose...

  19. Yeast (Saccharomyces cereveresiae) Supplementation In High ...

    African Journals Online (AJOL)

    A four-week trial to assess the impact of yeast supplementation on the performance characteristics of broiler starters fed high levels of rice bran with or without yeast addition, was conducted using two hundred and forty day old broilers of the Bova nera strain. The chicks were divided into 15 groups of 16 chicks each.

  20. Yeast evolution and ecology meet genomics

    OpenAIRE

    Dunham, Maitreya J.; Louis, Edward J.

    2010-01-01

    The EMBO Conference on Experimental Approaches to Evolution and Ecology in Yeast covered a broad range of interests. The applications of genomic methods to ecological and evolutionary questions emphasize that the yeasts are poised to make significant contributions to these fields.

  1. Exobiopolymer from polyhydroxyalkanoate-producing transgenic yeast

    African Journals Online (AJOL)

    Recently, the wild type yeast Kloeckera sp. strain KY1 was equipped in their cytoplasm with the phaABC operon containing genes phbA, phbB and phbC of the PHA biosynthetic pathway of Ralstonia eutropha. Unpredicted, resulted transgenic yeast strain KY1/PHA was able to synthesize another exopolymer beside the ...

  2. Biosynthesis of polyhydroxyalkanotes in wildtype yeasts | Desuoky ...

    African Journals Online (AJOL)

    Biosynthesis of the biodegradable polymers polyhydroxyalkanotes (PHAs) are studied extensively in wild type and genetically modified prokaryotic cells, however the content and structure of PHA in wild type yeasts are not well documented. The purpose of this study was to screen forty yeast isolates collected from different ...

  3. Yeasts in sustainable bioethanol production: A review

    Directory of Open Access Journals (Sweden)

    Siti Hajar Mohd Azhar

    2017-07-01

    Full Text Available Bioethanol has been identified as the mostly used biofuel worldwide since it significantly contributes to the reduction of crude oil consumption and environmental pollution. It can be produced from various types of feedstocks such as sucrose, starch, lignocellulosic and algal biomass through fermentation process by microorganisms. Compared to other types of microoganisms, yeasts especially Saccharomyces cerevisiae is the common microbes employed in ethanol production due to its high ethanol productivity, high ethanol tolerance and ability of fermenting wide range of sugars. However, there are some challenges in yeast fermentation which inhibit ethanol production such as high temperature, high ethanol concentration and the ability to ferment pentose sugars. Various types of yeast strains have been used in fermentation for ethanol production including hybrid, recombinant and wild-type yeasts. Yeasts can directly ferment simple sugars into ethanol while other type of feedstocks must be converted to fermentable sugars before it can be fermented to ethanol. The common processes involves in ethanol production are pretreatment, hydrolysis and fermentation. Production of bioethanol during fermentation depends on several factors such as temperature, sugar concentration, pH, fermentation time, agitation rate, and inoculum size. The efficiency and productivity of ethanol can be enhanced by immobilizing the yeast cells. This review highlights the different types of yeast strains, fermentation process, factors affecting bioethanol production and immobilization of yeasts for better bioethanol production.

  4. Sporangiospore - Yeast Transformation of Mucor circinelloides

    African Journals Online (AJOL)

    Charles

    2012-02-16

    Feb 16, 2012 ... Measurement of intracellular ion concentration during sporangiospores-yeast transformation of Mucor circinelloides .... Intercellular ion variation (K+, 0.90 g/l; Na+, 0.05 to 0.20 g/l) during sporangiospore-to-yeast transformation of M. circinelloides ...... progressive replication of DNA and, hence nucleation.

  5. Measurement of yeast invertase during alcoholic fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Naudin, O.; Boudarel, M.J.; Ramirez, A.

    1986-01-01

    In continuous alcoholic fermentation of molasses by Saccharomyces cerevisiae, it is important but difficult to know the variation of yeast physiological state with time, so as to maintain maximum yeast productivity. We decided to quantify invertase activity, for which there are few if any appropriate methods (Vitolo and Borzani, Analytical Biochemistry 130, 469-470, 1983). 1 reference.

  6. Biodiesel generation from oleaginous yeast Rhodotorula glutinis ...

    African Journals Online (AJOL)

    This study explored a strategy to convert agricultural and forestry residues into microbial lipid, which could be further transformed into biodiesel. Among the 250 yeast strains screened for xylose assimilating capacity, eight oleaginous yeasts were selected by Sudan Black B test. The lipid content of these 8 strains was ...

  7. Growth requirements of san francisco sour dough yeasts and bakers' yeast.

    Science.gov (United States)

    Henry, N

    1976-03-01

    The growth requirements of several yeasts isolated from San Francisco sour dough mother sponges were compared with those of bakers' yeast. The sour dough yeasts studied were one strain of Saccharomyces uvarum, one strain of S. inusitatus, and four strains of S. exiguus. S. inusitatus was the only yeast found to have an amino acid requirement, namely, methionine. All of the yeasts had an absolute requirement for pantothenic acid and a partial requirement for biotin. Inositol was stimulatory to all except bakers' yeast. All strains of S. exiguus required niacin and thiamine. Interestingly, S. inusitatus, the only yeast that required methionine, also needed folic acid. For optimal growth of S. exiguus in a molasses medium, supplementation with thiamine was required.

  8. YEAST β-MANNANASE ACTIVITY

    Directory of Open Access Journals (Sweden)

    N. V. Borzova

    2017-02-01

    Full Text Available The aim of the research was to determine the mannan-degrading activity of yeasts cultures isolated from various sources and select strains with high β-mannanase activity. As a result of screening of 245 yeast strains, which are the representatives of 7 genera and 14 species, the active producers of extracellular β-mannanase were identified. To increase β-mannanase activity, the cultures were grown under submerged conditions using guar gum galactomannan as a carbon source and an inducer. β-Mannanase activity was determined by dinitrosalicylic method. The most active biosynthetic species were Cryptococcus albidus, C. gastricus, C. magnus, C. terreus, C. laurentii, Saccharomyces cerevisiae, Williopsis californica, Metschnikowia pulcherrima, Pichia anomala and P. guilliermondii. The activity in culture supernatant was ranged from 0.2 to 75 U/ml. α-Galactosidase activity was found in two strains (Debaryomyces polymorphus UCM Y-152 and Debaryomyces hansenii var. fabryi UCM Y-2400. None of the tested cultures demonstrated both β-mannanase and α-galactosidase activity, that is, they are unable to attack both the main and side chains of galactomannan.

  9. Molecular analysis of red wine yeast diversity in the Ribera del Duero D.O. (Spain) area.

    Science.gov (United States)

    Muñoz-Bernal, Eugenia; Rodríguez, María Esther; Benítez, Patricia; Fernández-Acero, Francisco Javier; Rebordinos, Laureana; Cantoral, Jesús Manuel

    2013-05-01

    Molecular characterization of wine yeast population during spontaneous fermentation in biodynamic wines from Ribera del Duero D.O. located at northern plateau of Spain has been carried out during two consecutive years. A total of 829 yeast strains were isolated from the samples and characterized by electrophoretic karyotype. The results show the presence of three population of yeast differentiated by their electrophoretic karyotypes, (1) non-Saccharomyces yeast dominant in the initial phase of the fermentations (NS); (2) Saccharomyces bayanus var uvarum detected mainly mid-way through the fermentation process at 20-25 °C; and (3) Saccharomyces cerevisiae which remained dominant until the end of the fermentation. This is the first study showing the population dynamic of S. bayanus var. uvarum in red wines produced in Ribera del Duero that could represent an important source of autochthonous wine yeasts with novel oenological properties.

  10. Mycotoxins - prevention and decontamination by yeasts.

    Science.gov (United States)

    Pfliegler, Walter P; Pusztahelyi, Tünde; Pócsi, István

    2015-07-01

    The application of yeasts has great potential in reducing the economic damage caused by toxigenic fungi in the agriculture. Some yeasts may act as biocontrol agents inhibiting the growth of filamentous fungi. These species may also gain importance in the preservation of agricultural products and in the reduction of their mycotoxin contamination, yet the extent of mycotoxin production in the presence of biocontrol agents is relatively less understood. The application of yeasts in various technological processes may have a direct inhibitory effect on the toxin production of certain molds, which is independent of their growth suppressing effect. Furthermore, several yeast species are capable of accumulating mycotoxins from agricultural products, thereby effectively decontaminating them. Probiotic yeasts or products containing yeast cell wall are also applied to counteract mycotoxicosis in livestock. Several yeast strains are also able to degrade toxins to less-toxic or even non-toxic substances. This intensively researched field would greatly benefit from a deeper knowledge on the genetic and molecular basis of toxin degradation. Moreover, yeasts and their biotechnologically important enzymes may exhibit sensitivity to certain mycotoxins, thereby mounting a considerable problem for the biotechnological industry. It is noted that yeasts are generally regarded as safe; however, there are reports of toxin degrading species that may cause human fungal infections. The aspects of yeast-mycotoxin relations with a brief consideration of strain improvement strategies and genetic modification for improved detoxifying properties and/or mycotoxin resistance are reviewed here. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. The neurotropic black yeast Exophiala dermatitidis has a possible origin in the tropical rain forest

    NARCIS (Netherlands)

    Sudhadham, M.; Prakitsin, S.; Sivichai, S.; Chaiyarat, R.; Dorrestein, G.M.; Menken, S.B.J.; de Hoog, G.S.

    2008-01-01

    The black yeast Exophiala dermatitidis is known as a rare etiologic agent of neurotropic infections in humans, occurring particularly in East and Southeast Asia. In search of its natural habitat, a large sampling was undertaken in temperate as well as in tropical climates. Sampling sites were

  12. Composition of natural populations of yeast and yeast-like microorganisms in the area of Mochovce nuclear power plant construction

    Energy Technology Data Exchange (ETDEWEB)

    Stollarova, V. (Pedagogical Faculty, Nitra (Czechoslovakia))

    1984-01-01

    In 1982 to 1983, the composition was studied of natural populations of yeasts and yeast-like microorganisms in the area of the construction of the nuclear power plant at Mochovce. Samples were taken from fruits of plum trees (Prunus domestica L.) and grape vine (Vitis vinifera L.). Totally, 394 strains were isolated that were identified and classified according to the monography of Lodder into the following families and genera: Saccharomycetaceae (Saccharomyces, Hanseniaspora, Hansenula, Debaryomyces, Kluyveromyces, Pichia), Spermopthoraceae (Metschnikowia), Cryptococaceae (Torulopsis, Candida, Kloeckera). On plum tree fruits the species Hanseniaspora uvarum and Saccharomyces rosei and on grape vine fruits Hanseniaspora uvarum and Metschnikowia pulcherrima were most abundantly represented. The trees and plants were not treated with pesticides and on both the fruits of plum trees and grape vines the species Pullularia pullulans was frequently present that had never been isolated before from regularly treated vineyards.

  13. In vitro ability of beer fermentation residue and yeast-based products to bind aflatoxin B1

    Directory of Open Access Journals (Sweden)

    Fernanda Bovo

    2015-06-01

    Full Text Available This study aimed to verify the in vitro ability of beer fermentation residue (BFR containing Saccharomyces cerevisiae cells and five commercial products that differed in the viability and integrity of S. cerevisiae cells to remove aflatoxin B1 (AFB1 from a citrate-phosphate buffer solution (CPBS. BFR was collected at a microbrewery and prepared by drying and milling. The commercial yeast-based products were as follows: inactive intact yeast cells from beer alcoholic fermentation, inactive intact yeast cells from sugarcane alcoholic fermentation, hydrolyzed yeast cells, yeast cell walls and active yeast cells. Adsorption assays were performed in CPBS spiked with 1.0 μg AFB1/mL at pH 3.0 and 6.0 for a contact time of 60 min at room temperature. Analysis of AFB1 in the samples was performed by high performance liquid chromatography. AFB1 adsorption by the products ranged from 45.5% to 69.4% at pH 3.0 and from 24.0% to 63.8% at pH 6.0. The higher percentages (p 0.05 from commercial products containing inactive intact yeast cells. The results of this trial indicate that the yeast-based products tested, especially the BFR, have potential applications in animal feeds as a suitable biological method for reducing the adverse effects of aflatoxins.

  14. In vitro ability of beer fermentation residue and yeast-based products to bind aflatoxin B1.

    Science.gov (United States)

    Bovo, Fernanda; Franco, Larissa Tuanny; Rosim, Roice Eliana; Barbalho, Ricardo; de Oliveira, Carlos Augusto Fernandes

    2015-06-01

    This study aimed to verify the in vitro ability of beer fermentation residue (BFR) containing Saccharomyces cerevisiae cells and five commercial products that differed in the viability and integrity of S. cerevisiae cells to remove aflatoxin B1 (AFB1) from a citrate-phosphate buffer solution (CPBS). BFR was collected at a microbrewery and prepared by drying and milling. The commercial yeast-based products were as follows: inactive intact yeast cells from beer alcoholic fermentation, inactive intact yeast cells from sugarcane alcoholic fermentation, hydrolyzed yeast cells, yeast cell walls and active yeast cells. Adsorption assays were performed in CPBS spiked with 1.0 μg AFB1/mL at pH 3.0 and 6.0 for a contact time of 60 min at room temperature. Analysis of AFB1 in the samples was performed by high performance liquid chromatography. AFB1 adsorption by the products ranged from 45.5% to 69.4% at pH 3.0 and from 24.0% to 63.8% at pH 6.0. The higher percentages (p 0.05) from commercial products containing inactive intact yeast cells. The results of this trial indicate that the yeast-based products tested, especially the BFR, have potential applications in animal feeds as a suitable biological method for reducing the adverse effects of aflatoxins.

  15. Monitoring bisphenol A and estrogenic chemicals in thermal paper with yeast-based bioreporter assay.

    Science.gov (United States)

    Rajasärkkä, Johanna; Koponen, Jani; Airaksinen, Riikka; Kiviranta, Hannu; Virta, Marko

    2014-09-01

    Bioluminescent Saccharomyces cerevisiae yeast-based bioreporters were used to monitor bisphenol A and other estrogenic chemicals in thermal paper samples collected mainly from Finland on two occasions in 2010/2011, and 2013. The bisphenol A-targeted (BPA-R) and the human oestrogen receptor (hERα) bioreporters were applied to analyse both non-treated and extracted paper samples. Bisphenol A was readily bioavailable to the yeast bioreporters on the non-treated paper samples without any pre-treatment. Detected concentrations ranged from a detection limit of 9-142 μg/g to over 20 mg/g of bisphenol A equivalents in the thermal papers. Low bisphenol A like activities were detected in many samples, and were considered to be caused by residual bisphenol A or other types of bisphenols, such as bisphenol S. Most of the thermal paper samples were toxic to the yeast bioreporters. The toxicity did not, however, depend on the bisphenol A concentration of the samples. The yeast bioreporters were demonstrated to be a robust and cost-efficient method to monitor thermal paper samples for their bisphenol A content and estrogenicity. Thermal paper was considered as a potential BPA source for both human exposure and environmental emission.

  16. Isolation, identification and oenological characterization of non-Saccharomyces yeasts in a Mediterranean island.

    Science.gov (United States)

    Polizzotto, G; Barone, E; Ponticello, G; Fasciana, T; Barbera, D; Corona, O; Amore, G; Giammanco, A; Oliva, D

    2016-08-01

    We isolated, identified and characterized yeast strains from grapes, and their fermented musts, sampled in the small island of Linosa, where there are no wineries and therefore the possibility of territory contamination by industrial strains is minimal. By traditional culture-dependent methods, we isolated 3805 colonies, distinguished by molecular methods in 17 different species. Five hundred and forty-four isolates were analysed for the main oenological characteristics such as fermentative vigour with and without sulphites, sugar consumption and production of alcohol, volatile acidity, hydrogen sulphide, glycerol and β-glucosidase. This analysis identified Kluyveromyces marxianus (seldomly used in winemaking) as the most interesting candidate yeast for the production of innovative wines. In recent years, interest is growing for wine production by non-Saccharomyces yeasts, both in research and in the industry. This study describes the yeast population of the grapes in a small-secluded island in the Mediterranean Sea, useful site for the search of new strains. Evaluation of fundamental oenological characters identifies potential best yeasts to assay in experimental vinifications. We also describe, for the first time, 14 new colony morphologies on WL Nutrient Agar, culture medium used to monitor the yeast population dynamics. © 2016 The Society for Applied Microbiology.

  17. CHEMICAL, PHYSICAL AND SENSORY ANALYSIS OF ACTIVITY DIFFERENT YEAST SPECIES ON IDENTICAL SUBSTRATE IN WINE PRODUCTION

    Directory of Open Access Journals (Sweden)

    Vladimír Vietoris

    2013-02-01

    Full Text Available Rizling vlašský is the second most important variety in Slovakia. The science of wine production includes a summary of knowledge and experience in the field of grape growing and wine making, or the production of different types of wines using specific methods of production. Wine quality is the result of the interaction between yeast, bacteria and microscopic funguses. In this research, we studied the effects of active dry wine yeasts on chemical, physical and sensory parameters in wine production. We have applied five kinds of yeasts (FERMIVIN, FERMIVIN PDV, FERMICRU AR2, FERMIFLOR and FERMICRU VB1. It can be concluded that the application of active dry wine yeasts is beneficial for the production of rizling vlašský. The best showing were yeasts FERMIFLOR and FERMIVIN PDM. In the last sample where they were left the original yeasts the varietal aroma was preserved. It can be noted that the wine was right technologically produced and all wines were harmonious with a pleasant fresh taste.

  18. Identification of indigenous yeast flora isolated from the five winegrape varieties harvested in Xiangning, China.

    Science.gov (United States)

    Sun, Yue; Guo, Jingjing; Liu, Fubing; Liu, Yanlin

    2014-03-01

    Inoculated fermentation by selected indigenous yeast strains from a specific location could provide the wine with unique regional sensory characteristics. The identification and differentiation of local yeasts are the first step to understand the function of yeasts and develop a better strain-selection program for winemaking. The indigenous yeasts in five grape varieties, Chardonnay, Cabernet Franc, Cabernet Sauvignon, Marselan, and Merlot cultivated in Xiangning, Shanxi, China were investigated. Eight species of seven genera including Aureobasidium pullulans, Candida zemplinina, Hanseniaspora uvarum, Hanseniaspora occidentalis, Issatchenkia terricola, Metschnikowia pulcherrima, Pichia kluyveri, and Saccharomyces cerevisiae were identified using Wallerstein Laboratory Nutrient medium with sequencing of the 26S rDNA D1/D2 domain. H. uvarum and S. cerevisiae were the predominant species, while most non-Saccharomyces species were present in the whole fermentation process at different levels among the grape varieties. The genotypes of S. cerevisiae from each microvinification were determined by using interdelta sequence analysis. The 102 isolates showed eight different genotypes, and genotype III was the predominant genotype found. The distribution of S. cerevisiae strains during the fermentation of Marselan was also studied. Six genotypes were observed among the 92 strains with different genotypes of competitiveness at different sampling stages. Genotype V demonstrated the potential for organizing starter strains and avoiding inefficient fermentation. In general, this study explored the yeast species in the grapes grown in Xiangning County and provided important information of relationship of local yeast diversity and its regional wine sensory characteristics.

  19. Investigating of yeast species in wine fermentation using terminal restriction fragment length polymorphism method.

    Science.gov (United States)

    Sun, Yue; Liu, Yanlin

    2014-04-01

    The objective of this study was to examine the potential of terminal restriction fragment length polymorphism (T-RFLP) in monitoring yeast communities during wine fermentation and to reveal new information on yeast community of Chinese enology. Firstly, terminal restriction fragment (TRF) lengths database was constructed using 32 pure yeast species. Ten of these species were firstly documented. The species except for Candida vini, Issatchenkia orientalis/Candida krusei, Saccharomyces bayanus, Saccharomyces pastorianus, Saccharomyces cerevisiae, Saccharomyces kudriarzevii and Zygosaccharomyces bisporus could be distinguished by the T-RFLP targeting 5.8S-ITS rDNA. Moreover, the yeast communities in spontaneous fermentation of Chardonnay and Riesling were identified by T-RFLP and traditional methods, including colony morphology on Wallerstein Nutrient (WLN) medium and 5.8S-ITS-RFLP analysis. The result showed that T-RFLP profiles of the yeast community correlated well with that of the results identified by the traditional methods. The TRFs with the highest intensity and present in all the samples corresponded to Saccharomyces sp. Other species detected by both approaches were Hanseniaspora uvarum, Metschnikowia pulcherrima, Pichia minuta var. minuta, Saccharomycodes ludwigii/Torulaspora delbrueckii and Candida zemplinina. This study revealed that T-RFLP technique is a rapid and useful tool for monitoring the composition of yeast species during wine fermentation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Rheologically interesting polysaccharides from yeasts

    Science.gov (United States)

    Petersen, G. R.; Nelson, G. A.; Cathey, C. A.; Fuller, G. G.

    1989-01-01

    We have examined the relationships between primary, secondary, and tertiary structures of polysaccharides exhibiting the rheological property of friction (drag) reduction in turbulent flows. We found an example of an exopolysaccharide from the yeast Cryptococcus laurentii that possessed high molecular weight but exhibited lower than expected drag reducing activity. Earlier correlations by Hoyt showing that beta 1 --> 3, beta 2 --> 4, and alpha 1 --> 3 linkages in polysaccharides favored drag reduction were expanded to include correlations to secondary structure. The effect of sidechains in a series of gellan gums was shown to be related to sidechain length and position. Disruption of secondary structure in drag reducing polysaccharides reduced drag reducing activity for some but not all exopolysaccharides. The polymer from C. laurentii was shown to be more stable than xanthan gum and other exopolysaccharides under the most vigorous of denaturing conditions. We also showed a direct relationship between extensional viscosity measurements and the drag reducing coefficient for four exopolysaccharides.

  1. Yeast-based biosensors: design and applications.

    Science.gov (United States)

    Adeniran, Adebola; Sherer, Michael; Tyo, Keith E J

    2015-02-01

    Yeast-based biosensing (YBB) is an exciting research area, as many studies have demonstrated the use of yeasts to accurately detect specific molecules. Biosensors incorporating various yeasts have been reported to detect an incredibly large range of molecules including but not limited to odorants, metals, intracellular metabolites, carcinogens, lactate, alcohols, and sugars. We review the detection strategies available for different types of analytes, as well as the wide range of output methods that have been incorporated with yeast biosensors. We group biosensors into two categories: those that are dependent upon transcription of a gene to report the detection of a desired molecule and those that are independent of this reporting mechanism. Transcription-dependent biosensors frequently depend on heterologous expression of sensing elements from non-yeast organisms, a strategy that has greatly expanded the range of molecules available for detection by YBBs. Transcription-independent biosensors circumvent the problem of sensing difficult-to-detect analytes by instead relying on yeast metabolism to generate easily detected molecules when the analyte is present. The use of yeast as the sensing element in biosensors has proven to be successful and continues to hold great promise for a variety of applications. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permission@oup.com.

  2. Accelerating Yeast Prion Biology using Droplet Microfluidics

    Science.gov (United States)

    Ung, Lloyd; Rotem, Assaf; Jarosz, Daniel; Datta, Manoshi; Lindquist, Susan; Weitz, David

    2012-02-01

    Prions are infectious proteins in a misfolded form, that can induce normal proteins to take the misfolded state. Yeast prions are relevant, as a model of human prion diseases, and interesting from an evolutionary standpoint. Prions may also be a form of epigenetic inheritance, which allow yeast to adapt to stressful conditions at rates exceeding those of random mutations and propagate that adaptation to their offspring. Encapsulation of yeast in droplet microfluidic devices enables high-throughput measurements with single cell resolution, which would not be feasible using bulk methods. Millions of populations of yeast can be screened to obtain reliable measurements of prion induction and loss rates. The population dynamics of clonal yeast, when a fraction of the cells are prion expressing, can be elucidated. Furthermore, the mechanism by which certain strains of bacteria induce yeast to express prions in the wild can be deduced. Integrating the disparate fields of prion biology and droplet microfluidics reveals a more complete picture of how prions may be more than just diseases and play a functional role in yeast.

  3. [Onychomycosis by yeast not common in diabetics of a health center].

    Science.gov (United States)

    Imbert, J L; G Gomez, J V; Escudero, R B; Blasco, J L

    2016-10-01

    Mexican diabetic population frequently presents mycosis under foot hyperkeratosis; however, in another type of onychomycosis as the ones that is assumed Candida albicans is the causal agent, it is unknown the frequency, the prevalence and if another Candida species or other yeasts are found. Evaluate the frequency of yeasts causing onychomycosis in diabetic patients looked after in public institutions of health of the State of Hidalgo, Mexico, and its association with clinical epidemiological variables. An observational, descriptive and transversal study was made on 261 patients, from which one nail sample of each one was obtained, used to isolate and identify dermatophytes and yeasts; the results were statistically correlated with 24 epidemiological parameters. The clinical study was done through interrogation and by medical exploration in order to evaluate Tinea pedis and onychomycosis. Onychomycosis were caused by Candida guilliermondii, Candida parapsilosis, Candida glabrata, Candida krusei, Candida spp., Kodamaea ohmeri, Prototheca wickerhamii and unidentified yeasts. The prevalence for general onychomycosis, by dermatophytes, mixed onychomycosis and by yeasts were: 24.1, 19.5, 2.3 and 14.6%, respectively. Patients with significant probability to be diagnosed as having onychomycosis by yeasts are those wearing open shoes (2.59%); technicians and professionals (10.49%) and alcohol drinkers (3.72%). The fact that Candida albicans is not present in this study as causal agent of onychomycosis, and emerging and non-common yeasts were indeed isolated, creates new challenges. It is remarked the clinical criterion that when onychomycosis is suspected in diabetics, the diagnosis for culturing dermatophytes and yeasts should be included. Copyright © 2015 Sociedad Española de Médicos de Atención Primaria (SEMERGEN). Publicado por Elsevier España, S.L.U. All rights reserved.

  4. Intracellular physiological events of yeast Rhodotorula glutinis during storage at +4 degrees C.

    Science.gov (United States)

    Gabier, Anne-Claire; Gourdon, Pierre; Reitz, Joëlle; Leveau, Jean-Yves; Bouix, Marielle

    2005-11-25

    Samples of the cheese yeast Rhodotorula glutinis were analysed during storage at +4 degrees C for cultivability, viability, vitality (metabolic activity), membrane potential state, intracellular pH, and carbohydrate content. The results have allowed to describe cellular events occurring during storage. The loss of vitality came with the decrease of carbohydrate content. The fall of trehalose content under a threshold value induced the deterioration of the membrane potential. Later, when all the cells were depolarised, the intracellular pH decreased and the cultivability dropped, whereas viable cells still decreased slowly. Then, it led to an intermediate physiological state similar to the viable but non-cultivable state. Finally, the fall of viability dropped. In this work, we have defined rapid methods relevant to describe the sequence of intracellular events in the cheese yeast R. glutinis during storage, and we applied them to understand the weak vitality without fall of viability of yeast samples. These methods might allow to rapidly test yeast sample quality before use and to predict, at the moment of the harvesting, the conservation of the yeast.

  5. 21 CFR 172.325 - Bakers yeast protein.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Bakers yeast protein. 172.325 Section 172.325 Food... Special Dietary and Nutritional Additives § 172.325 Bakers yeast protein. Bakers yeast protein may be safely used in food in accordance with the following conditions: (a) Bakers yeast protein is the...

  6. Yeast cell factories on the horizon

    DEFF Research Database (Denmark)

    Nielsen, Jens

    2015-01-01

    been engineered to make chemicals at industrial scale (e.g., succinic acid, lactic acid, resveratrol) and advanced biofuels (e.g., isobutanol) (1). On page 1095 of this issue, Galanie et al. (2) demonstrate that yeast can now be engineered to produce opioids (2), a major class of compounds used...... for treating severe pain. Their study represents a tour de force in the metabolic engineering of yeast, as it involved the expression of genes for more than 20 enzymatic activities from plants, mammals, bacteria, and yeast itself. It clearly represents a breakthrough advance for making complex natural products...

  7. Chemical gradients and chemotropism in yeast.

    Science.gov (United States)

    Arkowitz, Robert A

    2009-08-01

    Chemical gradients of peptide mating pheromones are necessary for directional growth, which is critical for yeast mating. These gradients are generated by cell-type specific secretion or export and specific degradation in receiving cells. Spatial information is sensed by dedicated seven-transmembrane G-protein coupled receptors and yeast cells are able to detect extremely small differences in ligand concentration across their approximately 5-microm cell surface. Here, I will discuss our current knowledge of how cells detect and respond to such shallow chemical gradients and in particular what is known about the proteins that are involved in directional growth and the establishment of the polarity axis during yeast mating.

  8. Response of primiparous and multiparous buffaloes to yeast culture supplementation during early and mid-lactation

    Directory of Open Access Journals (Sweden)

    Hanne H. Hansen

    2017-12-01

    Full Text Available Strains of live Saccharomyces cerevisiae yeast have exhibited probiotic effects in ruminants. This study investigated the effects of the dietary yeast supplement, S. cerevisiae (Yea-Sacc1026, on primiparous (PP and multiparous (MP Egyptian buffaloes in early to mid-lactation. Lactating buffaloes were fed either a basal total mixed ration (TMR, control; 4 PP and 8 MP or the basal TMR plus 10 g Yea-Sacc1026 per buffalo cow per day (yeast; 4 PP and 8 MP. The feeds were given from 15 days prepartum to 180 days postpartum. Feed intake, body weight, and milk yields (MY were recorded, and milk and blood samples were collected for analyses. Feces were collected from days 45 to 47 during early lactation and from days 90 to 92 during mid-lactation to determine apparent digestibility of dry matter (DM, organic matter (OM, crude protein (CP and crude fiber (CF. Energy corrected milk yield (ECM, feed conversion, and energy and nitrogen conversion efficiency were calculated. Yeast treated MP buffaloes consumed more DM (P ≤ 0.041 and CP than the untreated control group. Apparent digestibility of DM and OM were significantly greater at mid-lactation for treated versus control group (P = 0.001. Crude fiber digestibility was greater in MP than in PP buffaloes (P = 0.049, and yeast supplemented MP cows had a greater CF digestibility than control MP buffaloes at mid-lactation (P = 0.010. Total blood lipids decreased after yeast supplementation (P = 0.029. Milk yields, ECM, fat and protein yields increased for yeast treated MP buffaloes (P ≤ 0.039. The study concluded that the response to yeast supplementation in buffalo cows is parity dependent. Multiparous buffaloes respond to yeast supplementation with an increased DM intake and CF digestibility without significant weight gains, allowing a greater ECM yield with less fat mobilization. Supplementing buffaloes with yeast culture may increase milk production in early lactation and results in a

  9. Diversity and extracellular enzymatic activities of yeasts isolated from King George Island, the sub-Antarctic region

    Directory of Open Access Journals (Sweden)

    Carrasco Mario

    2012-11-01

    Full Text Available Abstract Background Antarctica has been successfully colonized by microorganisms despite presenting adverse conditions for life such as low temperatures, high solar radiation, low nutrient availability and dryness. Although these “cold-loving” microorganisms are recognized as primarily responsible for nutrient and organic matter recycling/mineralization, the yeasts, in particular, remain poorly characterized and understood. The aim of this work was to study the yeast microbiota in soil and water samples collected on King George Island. Results A high number of yeast isolates was obtained from 34 soil and 14 water samples. Molecular analyses based on rDNA sequences revealed 22 yeast species belonging to 12 genera, with Mrakia and Cryptococcus genera containing the highest species diversity. The species Sporidiobolus salmonicolor was by far the most ubiquitous, being identified in 24 isolates from 13 different samples. Most of the yeasts were psychrotolerant and ranged widely in their ability to assimilate carbon sources (consuming from 1 to 27 of the 29 carbon sources tested. All species displayed at least 1 of the 8 extracellular enzyme activities tested. Lipase, amylase and esterase activity dominated, while chitinase and xylanase were less common. Two yeasts identified as Leuconeurospora sp. and Dioszegia fristingensis displayed 6 enzyme activities. Conclusions A high diversity of yeasts was isolated in this work including undescribed species and species not previously isolated from the Antarctic region, including Wickerhamomyces anomalus, which has not been isolated from cold regions in general. The diversity of extracellular enzyme activities, and hence the variety of compounds that the yeasts may degrade or transform, suggests an important nutrient recycling role of microorganisms in this region. These yeasts are of potential use in industrial applications requiring high enzyme activities at low temperatures.

  10. Distribution of tannin-'tolerant yeasts isolated from Miang, a traditional fermented tea leaf (Camellia sinensis var. assamica) in northern Thailand.

    Science.gov (United States)

    Kanpiengjai, Apinun; Chui-Chai, Naradorn; Chaikaew, Siriporn; Khanongnuch, Chartchai

    2016-12-05

    Miang is a fermented food product prepared from the tea leaves of Camellia sinensis var. assamica, and is traditionally produced in mountainous areas of northern Thailand. Although Miang has a long history and reveals deep-rooted cultural involvement with local people in northern Thailand, little is known regarding its microbial diversity. Yeasts were isolated from 47 Miang samples collected from 28 sampling sites, including eight provinces in upper northern Thailand. A hundred and seven yeast isolates were recovered and identified within 14 species based on the comparison of the D1/D2 sequence of the large subunit (LSU) rRNA gene. Candida ethanolica was determined to be the dominant species that was frequently found in Miang together with minor resident yeast species. All yeast isolates demonstrated their tannin-tolerant capability when cultivated on yeast malt agar (YMA) containing 50g/l tannin, but nine isolates displayed clear zones forming around their colonies, e.g., Debaryomyces hansenii, Cyberlindnera rhodanensis, and Sporidiobolus ruineniae. The results obtained from a visual reading method of tannase revealed that all yeast isolates were positive for methyl gallate, indicating that they possess tannase activity. It is assumed that a tannin-tolerant ability is one of the most important factors for developing a yeast community in Miang. This research study is the first report to describe tannin-tolerant yeasts and yeast communities in traditionally fermented tea leaves. Copyright © 2016. Published by Elsevier B.V.

  11. Identification of predominant yeasts associated with artisan Mexican cocoa fermentations using culture-dependent and culture-independent approaches.

    Science.gov (United States)

    Arana-Sánchez, A; Segura-García, L E; Kirchmayr, M; Orozco-Ávila, I; Lugo-Cervantes, E; Gschaedler-Mathis, A

    2015-02-01

    The process of cocoa fermentation is a very important step for the generation or aromatic compounds, which are attributable to the metabolism of the microorganisms involved. There are some reports about this process and the identification of microorganisms; however, there are no reports identifying the yeasts involved in a Mexican cocoa fermentation process using molecular biology techniques, including restricted fragment length polymorphism (RFLP) and denaturing gradient gel electrophoresis (DGGE). The aim of this study was to identify the main yeast species associated with Mexican cocoa fermentations employing culture-dependent and -independent techniques achieving two samplings with a 1 year time difference at the same site. Isolation of the microorganisms was performed in situ. Molecular identification of yeast isolates was achieved by RFLP analysis and rDNA sequencing. Total DNA from the microorganisms on the cocoa beans was utilized for the DGGE analysis. Bands from the DGGE gels were excised and sequenced. Nineteen isolated yeasts were identified (al specie level), three of which had never before been associated with cocoa fermentations worldwide. The detected predominant yeast varied from one technique to another. Hanseniaspora sp. resulted dominant in DGGE however Saccharomyces cerevisiae was the principal isolated species. In conclusion, the culture-dependent and -independent techniques complement each other showing differences in the main yeasts involved in spontaneous cocoa fermentation, probably due to the physiological states of the viable but non culturable yeasts. Furthermore important differences between the species detected in the two samplings were detected.

  12. X-ray irradiation of yeast cells

    Science.gov (United States)

    Masini, Alessandra; Batani, Dimitri; Previdi, Fabio; Conti, Aldo; Pisani, Francesca; Botto, Cesare; Bortolotto, Fulvia; Torsiello, Flavia; Turcu, I. C. Edmond; Allott, Ric M.; Lisi, Nicola; Milani, Marziale; Costato, Michele; Pozzi, Achille; Koenig, Michel

    1997-10-01

    Saccharomyces Cerevisiae yeast cells were irradiated using the soft X-ray laser-plasma source at Rutherford Laboratory. The aim was to produce a selective damage of enzyme metabolic activity at the wall and membrane level (responsible for fermentation) without interfering with respiration (taking place in mitochondria) and with nuclear and DNA activity. The source was calibrated by PIN diodes and X-ray spectrometers. Teflon stripes were chosen as targets for the UV laser, emitting X-rays at about 0.9 keV, characterized by a very large decay exponent in biological matter. X-ray doses to the different cell compartments were calculated following a Lambert-Bouguet-Beer law. After irradiation, the selective damage to metabolic activity at the membrane level was measured by monitoring CO2 production with pressure silicon detectors. Preliminary results gave evidence of pressure reduction for irradiated samples and non-linear response to doses. Also metabolic oscillations were evidenced in cell suspensions and it was shown that X-ray irradiation changed the oscillation frequency.

  13. YeastWeb: a workset-centric web resource for gene family analysis in yeast

    Directory of Open Access Journals (Sweden)

    Bao Haihua

    2010-07-01

    Full Text Available Abstract Background Currently, a number of yeast genomes with different physiological features have been sequenced and annotated, which provides invaluable information to investigate yeast genetics, evolutionary mechanism, structure and function of gene families. Description YeastWeb is a novel database created to provide access to gene families derived from the available yeast genomes by assigning the genes into putative families. It has many useful features that complement existing databases, such as SGD, CYGD and Génolevures: 1 Detailed computational annotation was conducted with each entry with InterProScan, EMBOSS and functional/pathway databases, such as GO, COG and KEGG; 2 A well established user-friendly environment was created to allow users to retrieve the annotated genes and gene families using functional classification browser, keyword search or similarity-based search; 3 Workset offers users many powerful functions to manage the retrieved data efficiently, associate the individual items easily and save the intermediate results conveniently; 4 A series of comparative genomics and molecular evolution analysis tools are neatly implemented to allow users to view multiple sequence alignments and phylogenetic tree of gene families. At present, YeastWeb holds the gene families clustered from various MCL inflation values from a total of 13 available yeast genomes. Conclusions Given the great interest in yeast research, YeastWeb has the potential to become a useful resource for the scientific community of yeast biologists and related researchers investigating the evolutionary relationship of yeast gene families. YeastWeb is available at http://centre.bioinformatics.zj.cn/Yeast/.

  14. Detection of anabolic steroid abuse using a yeast transactivation system.

    Science.gov (United States)

    Zierau, Oliver; Lehmann, Sylvi; Vollmer, Günter; Schänzer, Willhelm; Diel, Patrick

    2008-10-01

    The classical analytical method for detection of anabolic steroid abuse is gas chromatography followed by mass spectrometry (GC/MS). However, even molecules with a chemical structure typical for this class of substances, are sometimes not identified in routine screening by GC/MS when their precise chemical structure is still unknown. A supplementary approach to identify anabolic steroid abuse could be a structure-independent identification of anabolic steroids based on their biological activity. To test the suitability of such a system, we have analyzed the yeast androgen receptor (AR) reporter gene system to identify anabolic steroids in human urine samples. Analysis of different anabolic steroids dissolved in buffer demonstrated that the yeast reporter gene system is able to detect a variety of different anabolic steroids and their metabolites with high specificity, including the so-called 'designer steroid' tetrahydrogestrinone. In contrast, other non-androgenic steroids, like glucocordicoids, progestins, mineralocordicoids and estrogens had a low potency to stimulate transactivation. To test whether the system would also allow the detection of androgens in urine, experiments with spiked urine samples were performed. The androgen reporter gene in yeast responds very sensitive to 5alpha-dihydrotestosterone (DHT), even at high urine concentrations. To examine whether the test system would also be able to detect anabolic steroids in the urine of anabolic steroid abusers, anonymous urine samples previously characterized by GCMS were analyzed with the reporter gene assay. Even when the concentration of the anabolic metabolites was comparatively low in some positive samples it was possible to identify the majority of positive samples by their biological activity. In conclusion, our results demonstrate that the yeast reporter gene system detects anabolic steroids and corresponding metabolites with high sensitivity even in urine of anabolic steroid abusing athletes

  15. NetPhosYeast: prediction of protein phosphorylation sites in yeast

    DEFF Research Database (Denmark)

    Ingrell, C.R.; Miller, Martin Lee; Jensen, O.N.

    2007-01-01

    We here present a neural network-based method for the prediction of protein phosphorylation sites in yeast-an important model organism for basic research. Existing protein phosphorylation site predictors are primarily based on mammalian data and show reduced sensitivity on yeast phosphorylation...... sites compared to those in humans, suggesting the need for an yeast-specific phosphorylation site predictor. NetPhosYeast achieves a correlation coefficient close to 0.75 with a sensitivity of 0.84 and specificity of 0.90 and outperforms existing predictors in the identification of phosphorylation sites...

  16. The diversity, extracellular enzymatic activities and photoprotective compounds of yeasts isolated in Antarctica

    Directory of Open Access Journals (Sweden)

    Aline B. M Vaz

    2011-09-01

    Full Text Available The diversity of yeasts collected from different sites in Antarctica (Admiralty Bay, King George Island and Port Foster Bay and Deception Island and their ability to produce extracellular enzymes and mycosporines were studied. Samples were collected during the austral summer season, between November 2006 and January 2007, from the rhizosphere of Deschampsia antarctica, ornithogenic (penguin guano soil, soil, marine and lake sediments, marine water and freshwater from lakes. A total of 89 isolates belonging to the following genera were recovered: Bensingtonia, Candida, Cryptococcus, Debaryomyces, Dioszegia, Exophiala, Filobasidium, Issatchenkia (Pichia, Kodamaea, Leucosporidium, Leucosporidiella, Metschnikowia, Nadsonia, Pichia, Rhodotorula, and Sporidiobolus, and the yeast-like fungi Aureobasidium, Leuconeurospora and Microglossum. Cryptococcus victoriae was the most frequently identified species. Several species isolated in our study have been previously reported to be Antarctic psychophilic yeasts, including Cr. antarcticus, Cr. victoriae, Dioszegia hungarica and Leucosporidium scottii. The cosmopolitan yeast species A. pullulans, C. zeylanoides, D. hansenii, I. orientalis, K. ohmeri, P. guilliermondii, Rh. mucilaginosa, and S. salmonicolor were also isolated. Five possible new species were identified. Sixty percent of the yeasts had at least one detectable extracellular enzymatic activity. Cryptococcus antarcticus, D. aurantiaca, D. crocea, D. hungarica, Dioszegia sp., E. xenobiotica, Rh. glaciales, Rh. laryngis, Microglossum sp. 1 and Microglossum sp. 2 produced mycosporines. Of the yeast isolates, 41.7% produced pigments and/or mycosporines and could be considered adapted to survive in Antarctica. Most of the yeasts had extracellular enzymatic activities at 4ºC and 20ºC, indicating that they could be metabolically active in the sampled substrates.

  17. Trichosporon Species Isolated from Guano Samples Obtained from Bat-Inhabited Caves in Japan

    Science.gov (United States)

    Sugita, Takashi; Kikuchi, Ken; Makimura, Koichi; Urata, Kensaku; Someya, Takashi; Kamei, Katsuhiko; Niimi, Masakazu; Uehara, Yoshimasa

    2005-01-01

    Yeasts from caves have rarely been examined. We examined yeasts collected from bat guano samples from 20 bat-inhabited limestone and volcanic caves located in 11 prefectures in Japan. Of ∼700 yeast-like colonies, nine Trichosporon species were recovered from 15 caves. Two of these were known species, and the remaining seven are potentially novel species, based on molecular phylogenetic analyses. In addition to Trichosporon species, identifiable strains of eight ascomycetous yeasts and one basidiomycetous yeast were recovered at frequencies of 5 to 35%. Our findings suggest that Trichosporon spp. are the major yeast species in bat guano in Japan and that bat guano is a potentially rich source of previously undescribed yeast species. PMID:16269819

  18. Systems biology of energy homeostasis in yeast.

    Science.gov (United States)

    Zhang, Jie; Vemuri, Goutham; Nielsen, Jens

    2010-06-01

    The yeast Saccharomyces cerevisiae attains energy homeostasis through complex regulatory events that are predominantly controlled by the Snf1 kinase. This master regulator senses the stress and energy starvation and activates the metabolic processes to produce ATP and inhibits biosynthesis. In doing so, Snf1 controls the switch between catabolism and anabolism accordingly, and regulates the cellular growth and development in coordination with other signaling pathways. Since its mammalian ortholog AMPK, a drug target for obesity and type II diabetes, also exerts analogous control of metabolism, there has been extensive interest recently to understand the chemical and biological aspects of Snf1 activation and regulation in yeast to expedite human disease studies as well as fundamental understanding of yeast. This review will focus on how Snf1 regulates lipid metabolism based on the cellular energy status in yeast and drawing parallels with the mammalian system. Copyright 2010 Elsevier Ltd. All rights reserved.

  19. [Red yeast rice: An unsafe food supplement?

    Science.gov (United States)

    Steffen, Christian

    2017-03-01

    Red yeast rice is the fermentation product of the mould Monascus ruber and is traditionally used in East Asia to dye and conserve food. Its main pharmacologically active compound, monakolin K, was isolated from red yeast rice and is used as an inhibitor of cholesterol synthesis under the INN lovastatin. Lovastatin and several other statins are marketed as drugs whereas red yeast rice is offered as a food supplement. As statins can cause severe side effects, such as muscle damage and kidney failure, the dosing and information about interactions with drugs and food is essential for the use of these products. Furthermore, red yeast rice can contain the mycotoxin citrinin and several other substances that are not yet toxicologically evaluated.

  20. Sporulation in the budding yeast Saccharomyces cerevisiae

    National Research Council Canada - National Science Library

    Neiman, Aaron M

    2011-01-01

    In response to nitrogen starvation in the presence of a poor carbon source, diploid cells of the yeast Saccharomyces cerevisiae undergo meiosis and package the haploid nuclei produced in meiosis into spores...

  1. Genomic Evolution of the Ascomycete Yeasts

    Energy Technology Data Exchange (ETDEWEB)

    Riley, Robert; Haridas, Sajeet; Salamov, Asaf; Boundy-Mills, Kyria; Goker, Markus; Hittinger, Chris; Klenk, Hans-Peter; Lopes, Mariana; Meir-Kolthoff, Jan P.; Rokas, Antonis; Rosa, Carlos; Scheuner, Carmen; Soares, Marco; Stielow, Benjamin; Wisecaver, Jennifer H.; Wolfe, Ken; Blackwell, Meredith; Kurtzman, Cletus; Grigoriev, Igor; Jeffries, Thomas

    2015-03-16

    Yeasts are important for industrial and biotechnological processes and show remarkable metabolic and phylogenetic diversity despite morphological similarities. We have sequenced the genomes of 16 ascomycete yeasts of taxonomic and industrial importance including members of Saccharomycotina and Taphrinomycotina. Phylogenetic analysis of these and previously published yeast genomes helped resolve the placement of species including Saitoella complicata, Babjeviella inositovora, Hyphopichia burtonii, and Metschnikowia bicuspidata. Moreover, we find that alternative nuclear codon usage, where CUG encodes serine instead of leucine, are monophyletic within the Saccharomycotina. Most of the yeasts have compact genomes with a large fraction of single exon genes, and a tendency towards more introns in early-diverging species. Analysis of enzyme phylogeny gives insights into the evolution of metabolic capabilities such as methanol utilization and assimilation of alternative carbon sources.

  2. Structure and function of yeast alcohol dehydrogenase

    Directory of Open Access Journals (Sweden)

    VLADIMIR LESKOVAC

    2000-04-01

    Full Text Available 1. Introduction 2. Isoenzymes of YADH 3. Substrate specificity 4. Kinetic mechanism 5. Primary structure 6. The active site 7. Mutations in the yeast enzyme 8. Chemical mechanism 9. Binding of coenzymes 10. Hydride transfer

  3. Propagation of Mammalian Prions in Yeast

    National Research Council Canada - National Science Library

    Harris, David A

    2006-01-01

    ...: the budding yeast Saccharomyces cerevisiae. This unicellular organism offers a number of potential advantages for the study of prion biology, including rapid generation time, ease of culturing, and facile genetics...

  4. Live Cell Imaging in Fission Yeast.

    Science.gov (United States)

    Mulvihill, Daniel P

    2017-10-03

    Live cell imaging complements the array of biochemical and molecular genetic approaches to provide a comprehensive insight into functional dependencies and molecular interactions in fission yeast. Fluorescent proteins and vital dyes reveal dynamic changes in the spatial distribution of organelles and the proteome and how each alters in response to changes in environmental and genetic composition. This introduction discusses key issues and basic image analysis for live cell imaging of fission yeast. © 2017 Cold Spring Harbor Laboratory Press.

  5. Yeasts are essential for cocoa bean fermentation.

    Science.gov (United States)

    Ho, Van Thi Thuy; Zhao, Jian; Fleet, Graham

    2014-03-17

    Cocoa beans (Theobroma cacao) are the major raw material for chocolate production and fermentation of the beans is essential for the development of chocolate flavor precursors. In this study, a novel approach was used to determine the role of yeasts in cocoa fermentation and their contribution to chocolate quality. Cocoa bean fermentations were conducted with the addition of 200ppm Natamycin to inhibit the growth of yeasts, and the resultant microbial ecology and metabolism, bean chemistry and chocolate quality were compared with those of normal (control) fermentations. The yeasts Hanseniaspora guilliermondii, Pichia kudriavzevii and Kluyveromyces marxianus, the lactic acid bacteria Lactobacillus plantarum and Lactobacillus fermentum and the acetic acid bacteria Acetobacter pasteurianus and Gluconobacter frateurii were the major species found in the control fermentation. In fermentations with the presence of Natamycin, the same bacterial species grew but yeast growth was inhibited. Physical and chemical analyses showed that beans fermented without yeasts had increased shell content, lower production of ethanol, higher alcohols and esters throughout fermentation and lesser presence of pyrazines in the roasted product. Quality tests revealed that beans fermented without yeasts were purplish-violet in color and not fully brown, and chocolate prepared from these beans tasted more acid and lacked characteristic chocolate flavor. Beans fermented with yeast growth were fully brown in color and gave chocolate with typical characters which were clearly preferred by sensory panels. Our findings demonstrate that yeast growth and activity were essential for cocoa bean fermentation and the development of chocolate characteristics. Crown Copyright © 2014. Published by Elsevier B.V. All rights reserved.

  6. Yeast evolution and ecology meet genomics.

    Science.gov (United States)

    Dunham, Maitreya J; Louis, Edward J

    2011-01-01

    The first EMBO Conference on Experimental Approaches to Evolution and Ecology in Yeast was held in Heidelberg, Germany, at the end of September 2010. What might sound like a rather narrow topic actually covered a broad range of interests, approaches, and systems and generated a great deal of excitement among participants. The applications of genomic methods to ecological and evolutionary questions emphasize that the yeasts are poised to make significant contributions to these fields.

  7. Characterisation of yeasts isolated from ‘Nduja of Spilinga

    Directory of Open Access Journals (Sweden)

    Filippo Giarratana

    2014-04-01

    Full Text Available The ‘Nduja of Spilinga protected geographical indication (PGI is a spreadable italian salami, obtained by using fat (50%, lean of pork (25%, chili pepper (25% and NaCl, stuffed into natural pork casing. Its predominant flora is represented by yeasts, reaching at the end of seasoning values of 6 log CFU/g. Considering the need to enhance and protect traditional local products, it seemed interesting to carry out a characterisation of yeasts of the ‘Nduja of Spilinga PGI. A total of 127 strains of yeast isolated from samples of ‘Nduja of Spilinga PGI (79 strains from samples at different days of curing and 48 from samples of commerce was subjected to morphological identification, hydrolysis of urea, lipolytic activity and identification with API 20C AUX, ID 32C and simplified identification systems. One hundred twenty three (96.8% strains were attributable to the phylum Ascomycetes (urease-negative, the remaining 4 strains (3.2% were Basidiomycetes (urease-positive. Debaryomyces hansenii and its anamorph shape, Candida famata, represented the most prevalent species (61.42 and 17.32% respectively, followed by Candida glabrata (8.66%, Pichia (Candida guilliermondii (5.17%, Candida parapsilosis and Rhodotorula glutinis (1.57%. Candida catenulata, Criptococcus uniguttulatus, Rhodotorula minuta, Candida zeylanoides and Candida utilis were observed with 0.79%. The lipolytic activity was observed only in 10 strains of D. hansenii and in one of C. zeylanoides. Further investigation will contribute to the selection of indigenous strains that could be used for the creation of specific starter, useful to improve the process of characterisation of the ‘Nduja of Spilinga and also to guarantee its safety.

  8. Minor Volatile Compounds Profiles of ‘Aligoté’ Wines Fermented with Different Yeast Strains

    Directory of Open Access Journals (Sweden)

    Florin VARARU

    2015-03-01

    Full Text Available The aroma of wine can be classified accordingly to its origin, in varietal aroma, pre-fermentative aroma, fermentative aroma and post-fermentative aroma. Although a number of flavor components are found in the original grape, the dominant and major compounds contributing to white wines are formed during alcoholic fermentation, in concordance with the yeast strain used. In order to highlight the influence of the yeast strain to the aroma composition of wines, wine samples from ‘Aligoté’ grape variety made with 8 different yeast strains were subjected to stir bar sorptive extraction-gas chromatography-mass spectrometry (SBSE-GC-MS analyses. Also, a sensorial analysis of the studied wines was performed by a tasting panel consisting of 15 tasters. 38 minor volatile compounds were quantified by SBSE-GC-MS technique. Different concentration of the same compound and different aroma compounds were identified and quantified in wines obtained with different yeast strains. A wine finger printing was obtained by multivariate data analyses of aroma compounds grouped by chemical families. The analytical and sensorial analysis of the wine samples confirms that there are differences in aroma composition of the wines made with different yeast strains.

  9. Selection and Characterization of Potential Baker’s Yeast from Indigenous Resources of Nepal

    Directory of Open Access Journals (Sweden)

    Tika B. Karki

    2017-01-01

    Full Text Available The study aims to isolate the yeast strains that could be used effectively as baker’s yeast and compare them with the commercial baker’s yeast available in the market of Nepal. A total of 10 samples including locally available sources like fruits, Murcha, and a local tree “Dar” were collected from different localities of Bhaktapur, Kavre, and Syangja districts of Nepal, respectively. Following enrichment and fermentation of the samples, 26 yeast strains were isolated using selective medium Wallerstein Laboratory Nutrient Agar. From the differential tests which included morphological and microscopic observation and physiological and biochemical characterization such as nitrate reduction and lactose utilization tests, 8 strains were selected as possible Saccharomyces strain. The selected strains were further assessed for their efficient leavening ability by tests such as ethanol tolerance, osmotolerance, invertase test, and stress exclusion test. The three most potent strains ENG, MUR3B, and SUG1 isolated from grape, Murcha, and sugarcane, respectively, were used in the fermentation and baking of dough. These strains also carried a possibility of being used as industrial baker’s yeast.

  10. Saccharomycopsis fodiens sp. nov., a rare predacious yeast from three distant localities.

    Science.gov (United States)

    Lachance, Marc-André; Rosa, Carlos A; Carvajal, Enrique Javier; Freitas, Larissa F D; Bowles, Jane M

    2012-11-01

    Three strains representing a novel yeast species were recovered as part of independent collections from flower-associated nitidulid beetles in Australia, Costa Rica and the Galapagos Islands, Ecuador. Analysis of the D1/D2 domains of the large subunit rRNA gene indicated that the species belongs to the genus Saccharomycopsis, although the formation of ascospores was not observed. The yeast is capable of necrotrophic parasitism by means of infection pegs when mixed with other yeasts or filamentous fungi. Of particular interest is the fact that despite the large distances separating the isolation sites of the three strains, other strains of the species have not been recovered in other samples of flower-associated nitidulids even though these habitats have been sampled extensively. It is suggested that the dispersal of the yeast may be linked to human historical factors. The name Saccharomycopsis fodiens sp. nov. is proposed for the yeast. The type strain is UWOPS 95-697.4(T) (=CBS 8332(T)=NRRL Y-48786(T)).

  11. Influence of composition of diluent on populations of yeasts and moulds recovered from raw fruits.

    Science.gov (United States)

    Beuchat, L R; Scouten, A J; Jablonska, J

    2002-01-01

    The aims of this study were (i) to determine the retention of viability of mycoflora removed from raw fruits, and how this affected diluents used to prepare samples for enumeration of propagules, and (ii) to evaluate the performance of recovery media for supporting colony development. Yeasts and moulds removed from seven types of raw fruit were held in seven diluents for 1 h before plating on dichloran rose bengal chloramphenicol (DRBC) agar and plate count agar supplemented with chloramphenicol (100 micro g ml-1) (PCAC). Significant reductions (P=0.05) in populations of yeasts, moulds, and yeasts plus moulds occurred within the 1 h holding period, regardless of diluent composition. Overall, retention of viability was not influenced by diluent composition, and neither DRBC agar nor PCAC were superior in supporting colony development. The composition of diluents used to prepare food samples for mycological analysis has little affect on the number of yeasts and moulds recovered from seven types of naturally contaminated raw fruit. Both DRBC agar and PCAC are suitable as enumeration media. Diluents and media most often recommended for enumerating yeasts and moulds in foods are appropriate for raw fruits.

  12. Yeast communities in a natural tequila fermentation.

    Science.gov (United States)

    Lachance, M A

    1995-08-01

    Fresh and cooked agave, Drosophila spp., processing equipment, agave molasses, agave extract, and fermenting must at a traditional tequila distillery (Herradura, Amatitan, Jalisco, México) were studied to gain insight on the origin of yeasts involved in a natural tequila fermentations. Five yeast communities were identified. (1) Fresh agave contained a diverse mycobiota dominated by Clavispora lusitaniae and an endemic species, Metschnikowia agaveae. (2) Drosophila spp. from around or inside the distillery yielded typical fruit yeasts, in particular Hanseniaspora spp., Pichia kluyveri, and Candida krusei. (3) Schizosaccharomyces pombe prevailed in molasses. (4) Cooked agave and extract had a considerable diversity of species, but included Saccharomyces cerevisiae. (5) Fermenting juice underwent a gradual reduction in yeast heterogeneity. Torulaspora delbrueckii, Kluyveromyces marxianus, and Hanseniaspora spp. progressively ceded the way to S. cerevisiae, Zygosaccharomyces bailii, Candida milleri, and Brettanomyces spp. With the exception of Pichia membranaefaciens, which was shared by all communities, little overlap existed. That separation was even more manifest when species were divided into distinguishable biotypes based on morphology or physiology. It is concluded that crushing equipment and must holding tanks are the main source of significant inoculum for the fermentation process. Drosophila species appear to serve as internal vectors. Proximity to fruit trees probably contributes to maintaining a substantial Drosophila community, but the yeasts found in the distillery exhibit very little similarity to those found in adjacent vegetation. Interactions involving killer toxins had no apparent direct effects on the yeast community structure.

  13. Revaluation of Waste Yeast from Beer Production

    Directory of Open Access Journals (Sweden)

    Nicoleta Suruceanu

    2013-11-01

    Full Text Available Brewing yeast is an important waste product from beer production. The valorification of slurry yeast mainly consists of separation of vitamins and important nitrogen compounds. The hops compounds, one of the most important raw materials in beer technology are removed beforehand valorification. The prenylflavonoids compounds from hops are important bioactive compounds that can be revaluation with proper technology. Revaluation of prenylflavonoids from waste yeast into dietary supplement, identification and quantification of xanthohumol by HPLC method. Waste yeast from brewery pilot plant of USAMV Cluj Napoca it was dried by atomization and the powder was analyzed on xanthohumol content by HPLC method. For quantification a calibration curve it was used. The process of drying by atomisation lead to a powder product. It was used malt dextrin powder for stabilisation. The final product it was encapsulated. The xanthohumol content of powdered yeast it was 1.94 µg/ml. In conclusion the slurry yeast from beer production it is an important source of prenylflavonoids compounds.

  14. Flor yeast: new perspectives beyond wine ageing

    Directory of Open Access Journals (Sweden)

    Jean-luc eLegras

    2016-04-01

    Full Text Available The most important dogma in white-wine production is the preservation of the wine aroma and the limitation of the oxidative action of oxygen. In contrast, the ageing of Sherry and Sherry-like wines is an aerobic process that depends on the oxidative activity of flor strains of Saccharomyces cerevisiae. Under depletion of nitrogen and fermentable carbon sources, these yeast produce aggregates of floating cells and form an air-liquid biofilm on the wine surface, which is also known as the velum or flor. This behaviour is due to genetic and metabolic peculiarities that differentiate flor yeast from other wine yeast. This review will focus first on the most updated data obtained through the analysis of flor yeast with -omic tools. Comparative genomics, proteomics and metabolomics of flor and wine yeast strains are shedding new light on several features of these special yeast, and in particular, they have revealed the extent of proteome remodelling imposed by the biofilm life-style. Finally, new insights in terms of promotion and inhibition of biofilm formation through small molecules, amino acids and di/tri-peptides, and novel possibilities for the exploitation of biofilm immobilisation within a fungal hyphae framework, will be discussed.

  15. Occurrence of yeasts, pseudomonads and enteric bacteria in the oral cavity of patients undergoing head and neck radiotherapy

    OpenAIRE

    Elerson Gaetti-Jardim Júnior; Francisco Isaak Nicolas Ciesielski; Fátima Regina Nunes de Sousa; Francisca Nwaokorie; Christiane Marie Schweitzer; Mario Júlio Avila-Campos

    2011-01-01

    The aim of this study was to evaluate the occurrence of yeasts, pseudomonads and enteric bacteria in the oral cavity of patients undergoing radiotherapy (RT) for treatment of head and neck cancer. Fifty patients receiving RT were examined before, during and 30 days after RT. Saliva, mucosa, and biofilm samples were collected and microorganisms were detected by culture and polymerase chain reaction (PCR). The most prevalent yeasts in patients submitted to RT were Candida albicans, C. tropicali...

  16. Effects of a spoilage yeast from silage on in vitro ruminal fermentation.

    Science.gov (United States)

    Santos, M C; Lock, A L; Mechor, G D; Kung, L

    2015-04-01

    Feeding silages with high concentrations of yeasts from aerobic spoilage is often implicated as a cause of poor animal performance on dairies. Our objective was to determine if a commonly found spoilage yeast, isolated from silage, had the potential to alter in vitro ruminal fermentations. A single colony of Issatchenkia orientalis, isolated from high-moisture corn, was grown in selective medium. The yeast culture was purified and added to in vitro culture tubes containing a total mixed ration (43% concentrate, 43% corn silage, 11% alfalfa haylage, and 3% alfalfa hay on a dry matter basis), buffer, and ruminal fluid to achieve added theoretical final concentrations of 0 (CTR), 4.40 (low yeast; LY), 6.40 (medium yeast; MY), and 8.40 (high yeast; HY) log10 cfu of yeast/mL of in vitro fluid. Seven separate tubes were prepared for each treatment and each time point and incubated for 12 and 24h at 39 °C. At the end of the incubation period, samples were analyzed for pH, yeast number, neutral detergent fiber (NDF) digestibility, volatile fatty acids (VFA), and fatty acids (FA). We found that total viable yeast counts decreased for all treatments in in vitro incubations but were still relatively high (5.3 log10 cfu of yeasts/mL) for HY after 24h of incubation. Addition of HY resulted in a lower pH and higher concentration of total VFA in culture fluid compared with other treatments. Moreover, additions of MY and HY decreased in vitro NDF digestibility compared with CTR, and the effect was greatest for HY. Overall, the biohydrogenation of dietary unsaturated FA was not altered by addition of I. orientalis and decreased over time with an increase in the accumulation of saturated FA, especially palmitic and stearic acids. We conclude that addition of I. orientalis, especially at high levels, has the potential to reduce in vitro NDF digestion and alter other aspects of ruminal fermentations. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All

  17. Yeast Interacting Proteins Database: YGR113W, YGL079W [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available sion protein localizes to the endosome; identified as a transcriptional activator in a high-throughput yeast... a transcriptional activator in a high-throughput yeast one-hybrid assay Rows with this prey as prey Rows wi

  18. Yeast Interacting Proteins Database: YFR015C, YFR015C [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available yeast homolog; expression induced by glucose limitation, nitrogen starvation, environmental stress, and entr...ression induced by glucose limitation, nitrogen starvation, environmental stress, and entry into stationary ...tion, nitrogen starvation, environmental stress, and entry into stationary phase Rows with this bait as bait..., the more highly expressed yeast homolog; expression induced by glucose limitation, nitrogen starvation, environmental

  19. Discussion of teleomorphic and anamorphic Ascomycetous yeasts and yeast-like taxa

    Science.gov (United States)

    The relationship of ascomycetous yeasts with other members of the ascomycete fungi (Ascomycota) has been controversial for over 100 years. Because yeasts are morphologically simple, it was proposed that they represent primitive forms of ascomycetes (e.g., Guilliermond 1912). Alternatively, the ide...

  20. Boolean model of yeast apoptosis as a tool to study yeast and human apoptotic regulations.

    Science.gov (United States)

    Kazemzadeh, Laleh; Cvijovic, Marija; Petranovic, Dina

    2012-01-01

    Programmed cell death (PCD) is an essential cellular mechanism that is evolutionary conserved, mediated through various pathways and acts by integrating different stimuli. Many diseases such as neurodegenerative diseases and cancers are found to be caused by, or associated with, regulations in the cell death pathways. Yeast Saccharomyces cerevisiae, is a unicellular eukaryotic organism that shares with human cells components and pathways of the PCD and is therefore used as a model organism. Boolean modeling is becoming promising approach to capture qualitative behavior and describe essential properties of such complex networks. Here we present large literature-based and to our knowledge first Boolean model that combines pathways leading to apoptosis (a type of PCD) in yeast. Analysis of the yeast model confirmed experimental findings of anti-apoptotic role of Bir1p and pro-apoptotic role of Stm1p and revealed activation of the stress protein kinase Hog proposing the maximal level of activation upon heat stress. In addition we extended the yeast model and created an in silico humanized yeast in which human pro- and anti-apoptotic regulators Bcl-2 family and Valosin-contain protein (VCP) are included in the model. We showed that accumulation of Bax in silico humanized yeast shows apoptotic markers and that VCP is essential target of Akt Signaling. The presented Boolean model provides comprehensive description of yeast apoptosis network behavior. Extended model of humanized yeast gives new insights of how complex human disease like neurodegeneration can initially be tested.

  1. Differences between flocculating yeast and regular industrial yeast in transcription and metabolite profiling during ethanol fermentation

    Directory of Open Access Journals (Sweden)

    Lili Li

    2017-03-01

    Full Text Available Objectives: To improve ethanolic fermentation performance of self-flocculating yeast, difference between a flocculating yeast strain and a regular industrial yeast strain was analyzed by transcriptional and metabolic approaches. Results: The number of down-regulated (industrial yeast YIC10 vs. flocculating yeast GIM2.71 and up-regulated genes were 4503 and 228, respectively. It is the economic regulation for YIC10 that non-essential genes were down-regulated, and cells put more “energy” into growth and ethanol production. Hexose transport and phosphorylation were not the limiting-steps in ethanol fermentation for GIM2.71 compared to YIC10, whereas the reaction of 1,3-disphosphoglycerate to 3-phosphoglycerate, the decarboxylation of pyruvate to acetaldehyde and its subsequent reduction to ethanol were the most limiting steps. GIM2.71 had stronger stress response than non-flocculating yeast and much more carbohydrate was distributed to other bypass, such as glycerol, acetate and trehalose synthesis. Conclusions: Differences between flocculating yeast and regular industrial yeast in transcription and metabolite profiling will provide clues for improving the fermentation performance of GIM2.71.

  2. Prevalence of yeast species in the oral cavity and its relationship to dental caries - doi: 10.4025/actascihealthsci.v33i1.7712 Prevalence of yeast species in the oral cavity and its relationship to dental caries - doi: 10.4025/actascihealthsci.v33i1.7712

    Directory of Open Access Journals (Sweden)

    Terezinha Inez Estivalet Svidzinski

    2011-05-01

    Full Text Available The purpose of this study was to evaluate the frequency of yeasts in the oral cavity, and to determine the main yeast species present and whether there is a correlation between the presence of yeasts in the mouth and caries or dental plaque. Ninety-five healthy children and adolescents who were residents of rural villages participated in the study. They were submitted to an odontological examination for the identification of dental caries and dental plaque, as well as for yeast culture and identification. The frequency of yeasts was 33.7%, with no difference between females and males. Yeasts predominated in children (37.7% more than in adolescents (26.5%. Caries and dental plaque were present in 70.3 and 96.8% of the sample, respectively, and Candida albicans was the most prevalent species (75%. The findings indicated a correlation between the presence of caries and yeasts in the mouth (p = 0.0087 and between yeasts and the number of carious teeth (p The purpose of this study was to evaluate the frequency of yeasts in the oral cavity, and to determine the main yeast species present and whether there is a correlation between the presence of yeasts in the mouth and caries or dental plaque. Ninety-five healthy children and adolescents who were residents of rural villages participated in the study. They were submitted to an odontological examination for the identification of dental caries and dental plaque, as well as for yeast culture and identification. The frequency of yeasts was 33.7%, with no difference between females and males. Yeasts predominated in children (37.7% more than in adolescents (26.5%. Caries and dental plaque were present in 70.3 and 96.8% of the sample, respectively, and Candida albicans was the most prevalent species (75%. The findings indicated a correlation between the presence of caries and yeasts in the mouth (p = 0.0087 and between yeasts and the number of carious teeth (p < 0.05. However, there was no correlation between

  3. Analysis of moisture content, acidity and contamination by yeast and molds in Apis mellifera L. honey from central Brazil.

    Science.gov (United States)

    Ananias, Karla Rubia; de Melo, Adriane Alexandre Machado; de Moura, Celso José

    2013-01-01

    The development of mold of environmental origin in honey affects its quality and leads to its deterioration, so yeasts and molds counts have been used as an important indicator of hygiene levels during its processing, transportation and storage. The aim of this study was to evaluate the levels of yeasts and molds contamination and their correlation with moisture and acidity levels in Apis mellifera L. honey from central Brazil. In 20% of the samples, the yeasts and molds counts exceeded the limit established by legislation for the marketing of honey in the MERCOSUR, while 42.8% and 5.7% presented above-standard acidity and moisture levels, respectively. Although samples showed yeasts and molds counts over 1.0 × 10(2) UFC.g(-1), there was no correlation between moisture content and the number of microorganisms, since, in part of the samples with above-standard counts, the moisture level was below 20%. In some samples the acidity level was higher than that established by legislation, but only one sample presented a yeasts and molds count above the limit established by MERCOSUR, which would suggest the influence of the floral source on this parameter. In general, of the 35 samples analyzed, the quality was considered inadequate in 45.7% of cases.

  4. Yeast viability and concentration analysis using lens-free computational microscopy and machine learning

    Science.gov (United States)

    Feizi, Alborz; Zhang, Yibo; Greenbaum, Alon; Guziak, Alex; Luong, Michelle; Chan, Raymond Yan Lok; Berg, Brandon; Ozkan, Haydar; Luo, Wei; Wu, Michael; Wu, Yichen; Ozcan, Aydogan

    2017-03-01

    Research laboratories and the industry rely on yeast viability and concentration measurements to adjust fermentation parameters such as pH, temperature, and pressure. Beer-brewing processes as well as biofuel production can especially utilize a cost-effective and portable way of obtaining data on cell viability and concentration. However, current methods of analysis are relatively costly and tedious. Here, we demonstrate a rapid, portable, and cost-effective platform for imaging and measuring viability and concentration of yeast cells. Our platform features a lens-free microscope that weighs 70 g and has dimensions of 12 × 4 × 4 cm. A partially-coherent illumination source (a light-emitting-diode), a band-pass optical filter, and a multimode optical fiber are used to illuminate the sample. The yeast sample is directly placed on a complementary metal-oxide semiconductor (CMOS) image sensor chip, which captures an in-line hologram of the sample over a large field-of-view of >20 mm2. The hologram is transferred to a touch-screen interface, where a trained Support Vector Machine model classifies yeast cells stained with methylene blue as live or dead and measures cell viability as well as concentration. We tested the accuracy of our platform against manual counting of live and dead cells using fluorescent exclusion staining and a bench-top fluorescence microscope. Our regression analysis showed no significant difference between the two methods within a concentration range of 1.4 × 105 to 1.4 × 106 cells/mL. This compact and cost-effective yeast analysis platform will enable automatic quantification of yeast viability and concentration in field settings and resource-limited environments.

  5. “In vitro” antifungal activity of ozonized sunflower oil on yeasts from onychomycosis

    Science.gov (United States)

    Guerrer, L.V.; Cunha, K. C.; Nogueira, M. C. L.; Cardoso, C. C.; Soares, M. M. C. N.; Almeida, M. T. G.

    2012-01-01

    The “in vitro” antifungal activity of ozonized sunflower oil (Bioperoxoil®) was tested on 101 samples of yeasts originating from onychomycosis using the disk diffusion method. The oil was efficacious against several clinical fungal strains: Candida parapsilosis, Candida albicans, Trichosporon asahii, Candida tropicalis and Candida guilliermondii. PMID:24031958

  6. "In vitro" antifungal activity of ozonized sunflower oil on yeasts from onychomycosis

    Directory of Open Access Journals (Sweden)

    L.V. Guerrer

    2012-12-01

    Full Text Available The "In vitro" antifungal activity of ozonized sunflower oil (Bioperoxoil® was tested on 101 samples of yeasts originating from onychomycosis using the disk diffusion method. The oil was efficacious against several clinical fungal strains: Candida parapsilosis, Candida albicans, Trichosporonasahii, Candida tropicalis and Candida guilliermondii.

  7. "In vitro" antifungal activity of ozonized sunflower oil on yeasts from onychomycosis

    OpenAIRE

    Guerrer,L.V.; Cunha,K. C.; Nogueira,M. C. L.; Cardoso,C. C.; Soares,M. M. C. N.; Almeida,M. T. G.

    2012-01-01

    The ?in vitro? antifungal activity of ozonized sunflower oil (Bioperoxoil?) was tested on 101 samples of yeasts originating from onychomycosis using the disk diffusion method. The oil was efficacious against several clinical fungal strains: Candida parapsilosis, Candida albicans, Trichosporon asahii, Candida tropicalis and Candida guilliermondii.

  8. "In vitro" antifungal activity of ozonized sunflower oil on yeasts from onychomycosis.

    Science.gov (United States)

    Guerrer, L V; Cunha, K C; Nogueira, M C L; Cardoso, C C; Soares, M M C N; Almeida, M T G

    2012-10-01

    The "in vitro" antifungal activity of ozonized sunflower oil (Bioperoxoil®) was tested on 101 samples of yeasts originating from onychomycosis using the disk diffusion method. The oil was efficacious against several clinical fungal strains: Candida parapsilosis, Candida albicans, Trichosporon asahii, Candida tropicalis and Candida guilliermondii.

  9. Exophiala sideris, a novel black yeast obtained by enrichment with toxic alkyl benzenes and arsenic

    NARCIS (Netherlands)

    Seyedmousavi, S.; Badali, H.; Chlebicki, A.; Zhao, J.J.; Prenafeta-Boldú, F.X.; de Hoog, G.S.

    2011-01-01

    A novel species of the black yeast genus Exophiala (order Chaetothyriales) is described. Strains were repeatedly obtained by enriching samples of wild berries from different plants, guano-rich soil and from oak railway ties treated with arsenic creosote under a toluene-rich atmosphere. An identical

  10. Identification and typing of the yeast strains isolated from bili bili, a ...

    African Journals Online (AJOL)

    Seventy six yeast strains isolated form bili bili and others sample were identified and typed in purpose of selecting appropriate starter culture. Identification techniques included conventional phenetic method, PCR/RFLP of NTS2 rDNA region, partial sequencing of the D1/D2 region of 26S rDNA and karyotyping using ...

  11. Environmental isolation of black yeast-like fungi involved in human infection

    NARCIS (Netherlands)

    Vicente, V.A.; Attili-Angelis, D.; Pie, M.R.; Queiroz-Telles, F.; Cruz, L.M.; Najafzadeh, M.J.; de Hoog, G.S.; Zhao, J.; Pizzirani-Kleiner, A.

    2008-01-01

    The present study focuses on potential agents of chromoblastomycosis and other endemic diseases in the state of Paraná, Southern Brazil. Using a highly selective protocol for chaetothyrialean black yeasts and relatives, environmental samples from the living area of symptomatic patients were

  12. Environmental isolation of black yeast-like fungi involved in human infection.

    NARCIS (Netherlands)

    Vicente, V.A.; Attili-Angelis, D.; Pie, M.R.; Queiroz-Telles, F.; Cruz, L.M.; Najafzadeh, M.J.; de Hoog, G.S.; Zhao, J.; Pizzirani-Kleiner, A.

    2008-01-01

    The present study focuses on potential agents of chromoblastomycosis and other endemic diseases in the state of Parana, Southern Brazil. Using a highly selective protocol for chaetothyrialean black yeasts and relatives, environmental samples from the living area of symptomatic patients were

  13. Oral hygiene habits, denture plaque, presence of yeasts and stomatitis in institutionalised elderly in Lothian, Scotland

    DEFF Research Database (Denmark)

    Schou, L; Wight, C; Cumming, C

    1987-01-01

    The purpose of the present study was to examine the relation between oral hygiene habits, denture plaque, presence of yeasts and stomatitis in institutionalised elderly. A sample of 201 residents, 48-99 yr of age (mean age 82 yr), was selected from four different institutions in Lothian, Scotland...

  14. Yeast from burn patients at a major burn centre of China.

    Science.gov (United States)

    Luo, Gaoxing; Peng, Yizhi; Yuan, Zhiqiang; Cheng, Wenguang; Wu, Jun; Fitzgerald, Mark

    2011-03-01

    This study presents fungi and their characteristics identified from burn patients at a major Chinese burn centre. All burns patients admitted to our Burn Research Institute from 2003 to 2006 inclusive were included in this study. Once fungal infection was suspected clinically, samples including wound tissue, blood, urine, stool and sputum were harvested for the culture of yeast. The sensitivities of the identified yeast were determined and the positive samples and cases were analysed. Out of a total of 3909 cases, 467 patients were clinically suspected of fungal infection, of which 1970 samples were taken for yeast culture. A total of 38 samples and 36 patients tested positive. The three most positive samples were urine, blood and catheter. Candida tropicalis was identified as the most common yeast type (42.1%), followed by Candida albicans (31.6%), Candida famata (T. Famata) (10.5%) and Candida glabrata (T. Glabrata) (7.9%). Except for C. galbrata, most of the yeast strains found in the study were sensitive to the routine antimycotic agents. There were eight deaths in the 36 positive patients. As much as 83.3% of the positive cases suffered burns of more than 50% total body surface area (TBSA) and half of the positive cases were greater than 80% TBSA. A total of 78.95% of the positive samples were taken from patients after 2 weeks post-burn injury. A profile of the fungi isolated from burn patients in a major Chinese burn centre is presented. Copyright © 2010 Elsevier Ltd and ISBI. All rights reserved.

  15. COMPARATIVE ASSESSMENT OF THE LABORATORY SELECTED AND ACTIVE DRIED SACCHAROMYCES CEREVISIAE YEAST CULTURE IN BIOTECHNOLOGY OF THE BRANDY PRODUCTION

    Directory of Open Access Journals (Sweden)

    Bayraktar V.N.

    2015-04-01

    Full Text Available Samples from different industrial grape cultivars were collected during the vintage season from the vineyard of the winery (the «Shabo» winery Company, located in the Odesa region, Ukraine. The following industrial cultivars of grapes were selected for the research: Chardonnay, Cabernet Sauvignon, Merlot, Sauvignon, Riesling Rhenish, Aligote, Rkatsiteli, Bastardo, Traminer, Telti Kuruk, Grinosh. The grape cultivars were cultivated on the sandy soils in the district located between the Black Sea and the Dnestrovsky estuary. Grape must derived from different grape cultivars was placed into sterile glass flasks to half of the 450ml flask volume. Each flask was carefully closed with a rubber stopper with an injection needle in it. During the fermentation process, it was necessary to remove carbon dioxide, which was present as a result of active anaerobic fermentation processes in the grape must. At the end of grape must fermentation, pure yeast cultures were isolated using traditional microbiological methods by consistent inoculation of a sample into a Petri dish with a few modifications of nutrient selective agar for yeast isolation and cultivation. Primary yeast isolation was carried out using Inhibitory Mold Agar medium (Becton Dickinson Company, USA. The yeast culture morphological properties were analyzed after the primary yeast culture isolation. Yeasts were identified by polymerase chain reaction (PCR using universal yeast primers. After yeast culture identification, the next step in yeast cultivation was carried out on Wort Agar medium (Becton Dickinson Company, USA. Each isolated, and identified yeast culture was deposited in the Genebank of Japan, MAFF culture Collection, Tsukuba, Ibaraki, Japan and (NCYC - Yeast Culture Collection (National Collection of Yeast Cultures, Institute of Food Research, Norwich, United Kingdom. Each yeast culture was tested for technological characteristics such as growth resistance to high temperature (+42

  16. Validation of the NeoFilm for Yeast and Mold Method for Enumeration of Yeasts and Molds in Select Foods.

    Science.gov (United States)

    Caballero, Oscar; Alles, Susan; Le, Quynh-Nhi; Mozola, Mark; Rice, Jennifer

    2015-01-01

    NeoFilm Yeast and Mold (Y&M), also known as Sanita-kun Yeasts and Molds, is a simple, effective device used for the enumeration of yeasts and molds. It consists of a nonwoven fabric on which a layer of microbial nutrients is deposited in a film. A 1 mL sample homogenate is applied to the membrane and this, in turn, is incubated for 48-72 h at 25°C. Sample homogenates were prepared using two different diluents for customer convenience: phosphate buffered saline (PBS) and 0.1% peptone water. In comparative testing of breaded chicken nuggets, dry pet food, orange juice concentrate, yogurt, and cake mix, there were statistically significant differences in the counts obtained by the NeoFilm Y&M and U.S. Food and Drug Administration Bacteriological Analytical Manual reference culture methods only in the following instances: medium level for orange juice with PBS as diluent and low level for pet food with 0.1% peptone water as diluent, where reference method counts were higher than those of NeoFilm; medium level for cake mix with PBS, and low and medium levels for cake mix with 0.1% peptone water, where NeoFilm produced higher counts than the reference method. In addition to the method comparison study with five matrixes, robustness and stability/lot-to-lot testing were also performed. Results of robustness testing showed no significant effect on results even with perturbation to three assay parameters simultaneously. Results of testing of three lots of devices ranging in age from 2 to 26 months post-manufacture showed no significant differences in performance.

  17. Influence of pesticides on yeasts colonizing leaves.

    Science.gov (United States)

    Vadkertiová, Renata; Sláviková, Elena

    2011-01-01

    The effect of nine different pesticides on the growth of yeasts isolated from the leaves of fruit and forest trees was investigated. Four insecticides (with the active ingredients: thiacloprid, deltamethrin, lambdacyhalothrin, and thiamethoxam) and five fungicides (with the effective substances: bitertanol, kresoxim-methyl, mancozeb, trifloxystrobin, and cupric oxychloride) were tested. The concentrations of chemicals were those recommended by the manufacturers for the spraying of trees. The yeast strains isolated from the leaves of fruit trees were not sensitive to any of the insecticides. The majority of yeast strains isolated from the leaves of forest trees were either not sensitive or only to a small extent. While Rhodotorula mucilaginosa and Pichia anomala were not affected by any insecticide, the strains of Cryptococcus laurentii and Rhodotorula glutinis showed the highest sensitivity. The effects of fungicides on the growth of isolated yeasts were more substantial. The fungicide Dithane DG (mancozeb) completely inhibited the growth of all yeasts. All strains isolated from fruit tree leaves were more resistant to the tested fungicides than those isolated from the leaves of forest trees. The most resistant strains from the leaves of fruit trees belonged to the species Metschnikowia pulcherrima, Pichia anomala, and Saccharomyces cerevisiae, whereas Cryptococcus albidus and C. laurentii, originating from the leaves of forest trees, showed the highest sensitivity to fungicides.

  18. Yeast flocculation: what brewers should know.

    Science.gov (United States)

    Verstrepen, K J; Derdelinckx, G; Verachtert, H; Delvaux, F R

    2003-05-01

    For many industrial applications in which the yeast Saccharomyces cerevisiae is used, e.g. beer, wine and alcohol production, appropriate flocculation behaviour is certainly one of the most important characteristics of a good production strain. Yeast flocculation is a very complex process that depends on the expression of specific flocculation genes such as FLO1, FLO5, FLO8 and FLO11. The transcriptional activity of the flocculation genes is influenced by the nutritional status of the yeast cells as well as other stress factors. Flocculation is also controlled by factors that affect cell wall composition or morphology. This implies that, during industrial fermentation processes, flocculation is affected by numerous parameters such as nutrient conditions, dissolved oxygen, pH, fermentation temperature, and yeast handling and storage conditions. Theoretically, rational use of these parameters offers the possibility of gaining control over the flocculation process. However, flocculation is a very strain-specific phenomenon, making it difficult to predict specific responses. In addition, certain genes involved in flocculation are extremely variable, causing frequent changes in the flocculation profile of some strains. Therefore, both a profound knowledge of flocculation theory as well as close monitoring and characterisation of the production strain are essential in order to gain maximal control over flocculation. In this review, the various parameters that influence flocculation in real-scale brewing are critically discussed. However, many of the conclusions will also be useful in various other industrial processes where control over yeast flocculation is desirable.

  19. Extension of yeast chronological lifespan by methylamine.

    Directory of Open Access Journals (Sweden)

    Sanjeev Kumar

    Full Text Available BACKGROUND: Chronological aging of yeast cells is commonly used as a model for aging of human post-mitotic cells. The yeast Saccharomyces cerevisiae grown on glucose in the presence of ammonium sulphate is mainly used in yeast aging research. We have analyzed chronological aging of the yeast Hansenula polymorpha grown at conditions that require primary peroxisome metabolism for growth. METHODOLOGY/PRINCIPAL FINDINGS: The chronological lifespan of H. polymorpha is strongly enhanced when cells are grown on methanol or ethanol, metabolized by peroxisome enzymes, relative to growth on glucose that does not require peroxisomes. The short lifespan of H. polymorpha on glucose is mainly due to medium acidification, whereas most likely ROS do not play an important role. Growth of cells on methanol/methylamine instead of methanol/ammonium sulphate resulted in further lifespan enhancement. This was unrelated to medium acidification. We show that oxidation of methylamine by peroxisomal amine oxidase at carbon starvation conditions is responsible for lifespan extension. The methylamine oxidation product formaldehyde is further oxidized resulting in NADH generation, which contributes to increased ATP generation and reduction of ROS levels in the stationary phase. CONCLUSION/SIGNIFICANCE: We conclude that primary peroxisome metabolism enhanced chronological lifespan of H. polymorpha. Moreover, the possibility to generate NADH at carbon starvation conditions by an organic nitrogen source supports further extension of the lifespan of the cell. Consequently, the interpretation of CLS analyses in yeast should include possible effects on the energy status of the cell.

  20. MALDI-TOF MS typing enables the classification of brewing yeasts of the genus Saccharomyces to major beer styles.

    Science.gov (United States)

    Lauterbach, Alexander; Usbeck, Julia C; Behr, Jürgen; Vogel, Rudi F

    2017-01-01

    Brewing yeasts of the genus Saccharomyces are either available from yeast distributor centers or from breweries employing their own "in-house strains". During the last years, the classification and characterization of yeasts of the genus Saccharomyces was achieved by using biochemical and DNA-based methods. The current lack of fast, cost-effective and simple methods to classify brewing yeasts to a beer type, may be closed by Matrix Assisted Laser Desorption/Ionization-Time-Of-Flight Mass Spectrometry (MALDI-TOF MS) upon establishment of a database based on sub-proteome spectra from reference strains of brewing yeasts. In this study an extendable "brewing yeast" spectra database was established including 52 brewing yeast strains of the most important types of bottom- and top-fermenting strains as well as beer-spoiling S. cerevisiae var. diastaticus strains. 1560 single spectra, prepared with a standardized sample preparation method, were finally compared against the established database and investigated by bioinformatic analyses for similarities and distinctions. A 100% separation between bottom-, top-fermenting and S. cerevisiae var. diastaticus strains was achieved. Differentiation between Alt and Kölsch strains was not achieved because of the high similarity of their protein patterns. Whereas the Ale strains show a high degree of dissimilarity with regard to their sub-proteome. These results were supported by MDS and DAPC analysis of all recorded spectra. Within five clusters of beer types that were distinguished, and the wheat beer (WB) cluster has a clear separation from other groups. With the establishment of this MALDI-TOF MS spectra database proof of concept is provided of the discriminatory power of this technique to classify brewing yeasts into different major beer types in a rapid, easy way, and focus brewing trails accordingly. It can be extended to yeasts for specialty beer types and other applications including wine making or baking.

  1. Role of birds of prey as carriers and spreaders of Cryptococcus neoformans and other zoonotic yeasts.

    Science.gov (United States)

    Cafarchia, C; Romito, D; Iatta, R; Camarda, A; Montagna, M T; Otranto, D

    2006-09-01

    In the last 20 years, cases of human cryptococcosis, have increased in immunocompromised patients. In several instances, the cases have been associated with the exposure of the patients to bird droppings. In order to investigate birds of prey as potential carriers and spreaders of Cryptococcus neoformans and other yeasts of importance in human infections, 182 swab samples were collected from the cloacae of several species of birds of prey (Group I) and 32 faecal samples from aviaries in which the birds were housed (Group II). Samples were also taken from digestive tract of 60 dead birds (Group III). A total of 454 samples were cultured from which 215 colonies of yeastlike fungi were recovered and identified. Cryptococcusneoformans var. grubii was isolated from three cloacae samples (4.8%) collected from Falco tinnunculus and from one sample (3.1%) obtained from Buteo buteo, as well as from samples collected at the aviaries in which these birds were kept. Overall, 18 samples (9.9%) from Group I, 13 (40.6%) from Group II, 12 crops (20%), three proventriculi (5%) and 12 cloacae (20%) from Group III yielded positive cultures for yeasts. The results indicate that birds of prey and in particular, F. tinnunculus and B. buteo, may act as carriers and spreaders of C. neoformans and other zoonotic yeasts.

  2. Reduction of acrylamide in whole-wheat bread by combining lactobacilli and yeast fermentation.

    Science.gov (United States)

    Nasiri Esfahani, Behnaz; Kadivar, Mahdi; Shahedi, Mohammad; Soleimanian-Zad, Sabihe

    2017-11-01

    This study mainly focuses on a strategy for reducing acrylamide content in whole-wheat bread by combining lactobacilli and yeast in sourdough breadmaking. Combinations of sourdough (fermented dough using different Lactobacillus strains including Lactobacillus plantarum PTCC 1896 [probiotic], L. sakei DSM 20,017, L. rhamnosus DSM 20,021, and L. delbrueckii DSM 20,081) and yeast, in comparison with yeast alone, were used for breadmaking. The results showed that acrylamide levels in breads fermented using sourdough+yeast were in all cases much lower (6.9-20 μg/kg on a dry weight basis [d.b.]) than those in the yeast-only fermented bread (47.6 μg/kg d.b.). Significant (p bread (r = 0.925, p breads and either the reducing sugar or free amino acid contents in dough samples. According to the different effects of Lactobacillus strains, it could be concluded that the acrylamide reducing potential of lactobacilli was strain-specific, with L. rhamnosus being the most effective. This suggests that sourdough fermentation with appropriate Lactobacillus strains can be used as an advantageous technology to reduce the acrylamide content of whole-wheat breads.

  3. Induction and inhibition of film yeast from fermented bamboo shoot by seasoning plants

    Directory of Open Access Journals (Sweden)

    Jaruwan Maneesri

    2007-07-01

    Full Text Available Three samples of fermented bamboo shoot taken from a village in Amphur Kokpho, Pattani Province, were microbiologically examined. Total viable count was between at 104-105 cfu/ml while pH range was between 3.4-4.4. Isolation and identification of film yeast on surface of fermented liquid revealed Saccharomyces cerevisiae J1, Candida krusei J2 and Candida krusei J3. When film yeast was cultivated in liquid culture with different NaCl concentrations (0, 2.5, 5 and 7.5% (w/v, all species tolerated 2.5% NaCl addition. However, growth decreased depending on NaCl concentration. S. cerevisiae J1 grew faster than C. krusei J2 and C. krusei J3. The cultivation of film yeast in medium with different agar concentrations (0.3, 0.5, 1 and 1.5% (w/v within 24 h showed that 0.3% was the optimal agar concentration. Seasoning plants (garlic, ginger, galangal, lemon grass, lesser galangal, clove, kaffir lime, garcinia and shallot were extracted with water (3% (w/v and tested for growth inhibition. Results showed the clove extract inhibited all yeast strains within 12 h and after that the efficiency of inhibition was decreased. At low concentration of 0.75% (w/v clove extract could inhibit film yeast in fermented bamboo shoot.

  4. Diversity of culturable yeasts associated with zoanthids from Brazilian reef and its relation with anthropogenic disturbance.

    Science.gov (United States)

    Paulino, Gustavo Vasconcelos Bastos; Félix, Ciro Ramon; Broetto, Leonardo; Landell, Melissa Fontes

    2017-10-15

    Some of the main threats to coral reefs come from human actions on marine environment, such as tourism, overfishing and pollution from urban development. While several studies have demonstrated an association between bacteria and corals, demonstrating how these communities react to different anthropogenic stressors, yeast communities associated with corals have received far less attention from researchers. The aim of this work was therefore to describe cultivable yeasts associated with three coral species and to evaluate the influence of sewage discharge on yeasts community. We obtained 130 isolates, mostly belonging to phylum Ascomycota and many of them had previously been isolated from human samples or are considered pathogens. The mycobiota was more similar among corals collected from the same reef, indicating that the composition of reef yeast community is more influenced by environmental conditions than host species. We suggest further studies to elucidate which factors are most influential on the composition of the coral-associated yeast community. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. A method of correlative light and electron microscopy for yeast cells.

    Science.gov (United States)

    Asakawa, Haruhiko; Hiraoka, Yasushi; Haraguchi, Tokuko

    2014-06-01

    Correlative light and electron microscopy (CLEM) is a method of imaging in which the same specimen is observed by both light microscopy and electron microscopy. Specifically, CLEM compares images obtained by light and electron microscopy and makes a correlation between them. After the advent of fluorescent proteins, CLEM was extended by combining electron microscopy with fluorescence microscopy to enable molecular-specific imaging of subcellular structures with a resolution at the nanometer level. This method is a powerful tool that is used to determine the localization of specific molecules of interest in the context of subcellular structures. Knowledge of the localization of target proteins coupled with the functions of the structures to which they are localized yields valuable information about the molecular functions of these proteins. However, this method has been mostly applied to adherent cells due to technical difficulties in immobilizing non-adherent target cells, such as yeasts, during sample preparation. We have developed a method of CLEM applicable to yeast cells. In this report, we detail this method and present its extension to Live CLEM. The Live CLEM method enabled us to link the dynamic properties of molecules of interest to cellular ultrastructures in the yeast cell. Since yeasts are premier organisms in molecular genetics, combining CLEM with yeast genetics promises to provide important new findings for understanding the molecular basis of the function of cellular structures. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Formation by yeast of 2-furanmethanethiol and ethyl 2-mercaptopropionate aroma compounds in Japanese soy sauce.

    Science.gov (United States)

    Meng, Qi; Hatakeyama, Makoto; Sugawara, Etsuko

    2014-01-01

    Two aroma compounds of volatile thiols, 2-furanmethanethiol (2FM) and ethyl 2-mercaptopropionate (ET2MP), were formed in five types of Japanese soy sauce during fermentation by yeast. The concentrations of 2FM and ET2MP in the soy sauce samples increased during alcoholic fermentation. The concentrations of 2FM and ET2MP were higher in the soy sauce fermented by Zygosaccharomyces rouxii than in that fermented by Candida versatilis. The enantiomers of ET2MP were separated by gas chromatography in a capillary column. The average enantiomeric ratio of ET2MP in the soy sauce was approximately 1:1. 2FM was formed by yeast in a medium prepared from cysteine and furfural, and cysteine is considered the key precursor of 2FM by yeast in soy sauce.

  7. Isolation and characterization of lactic acid bacteria and yeasts from the Brazilian grape sourdough

    Directory of Open Access Journals (Sweden)

    Krischina Singer Aplevicz

    2014-04-01

    Full Text Available Sourdough is a mixture of flour and water fermented by lactic acid bacteria and yeast, with a large use in bakery products. This study was developed with Brazilian grape (Niagara rosada sourdough obtained from spontaneous fermentation. The aim of this work was to characterize genotypic and phenotypically lactic acid bacteria and yeasts isolated from sourdough. The phenotypic identification for bacteria and yeasts was performed by using the kit API50CHL and 20CAUX and the genotypic characterization was performed by sequencing method. A total of four isolated strains were analyzed in this study. Two of these strains were phenotypically and genotypic identified as Lactobacillus paracasei and one as Saccharomyces cerevisiae. Another sample phenotypically identified as Candida pelliculosa did not show the same identity by sequencing. It shows the need to use phenotypic and genotypic characterization associated for the correct microorganism identification.

  8. [Presumptive identification of Candida spp. and other clinically important yeasts: usefulness of Brilliance Candida Agar].

    Science.gov (United States)

    Alfonso, Claudia; López, Mónica; Arechavala, Alicia; Perrone, María Del Carmen; Guelfand, Liliana; Bianchi, Mario

    2010-06-30

    Fungal infections caused by yeasts have increased during the last decades and invasive forms represent a serious problem for human health. Candida albicans is the species most frequently isolated from clinical samples. However, other emerging yeast pathogens are increasingly responsible for mycotic infections, and some of them are resistant to some antifungal drugs. Consequently, it is necessary to have methods that can provide a rapid presumptive identification at species level. Numerous chromogenic agar media have been shown to be of value as diagnostic tools. We have compared a chromogenic medium, Brilliance Candida Agar, with CHROMagar Candida, the chromogenic medium most used in our country. A multicentre study was conducted in 16 Hospitals belonging to the Mycology Net of Buenos Aires City Government. A total of 240 yeast isolates were included in this research. The new chromogenic agar showed results very similar to those obtained with CHROMagar Candida. Copyright 2009 Revista Iberoamericana de Micología. Published by Elsevier Espana. All rights reserved.

  9. Quality evaluation of processed clay soil samples.

    Science.gov (United States)

    Steiner-Asiedu, Matilda; Harrison, Obed Akwaa; Vuvor, Frederick; Tano-Debrah, Kwaku

    2016-01-01

    This study assessed the microbial quality of clay samples sold on two of the major Ghanaian markets. The study was a cross-sectional assessing the evaluation of processed clay and effects it has on the nutrition of the consumers in the political capital town of Ghana. The items for the examination was processed clay soil samples. Staphylococcus spp and fecal coliforms including Klebsiella, Escherichia, and Shigella and Enterobacterspp were isolated from the clay samples. Samples from the Kaneshie market in Accra recorded the highest total viable counts 6.5 Log cfu/g and Staphylococcal count 5.8 Log cfu/g. For fecal coliforms, Madina market samples had the highest count 6.5 Log cfu/g and also recorded the highest levels of yeast and mould. For Koforidua, total viable count was highest in the samples from the Zongo market 6.3 Log cfu/g. Central market samples had the highest count of fecal coliforms 4.6 Log cfu/g and yeasts and moulds 6.5 Log cfu/g. "Small" market recorded the highest staphylococcal count 6.2 Log cfu/g. The water activity of the clay samples were low, and ranged between 0.65±0.01 and 0.66±0.00 for samples collected from Koforidua and Accra respectively. The clay samples were found to contain Klebsiella spp. Escherichia, Enterobacter, Shigella spp. staphylococcus spp., yeast and mould. These have health implications when consumed.

  10. Yeast diversity during the fermentation of Andean chicha: A comparison of high-throughput sequencing and culture-dependent approaches.

    Science.gov (United States)

    Mendoza, Lucía M; Neef, Alexander; Vignolo, Graciela; Belloch, Carmela

    2017-10-01

    Diversity and dynamics of yeasts associated with the fermentation of Argentinian maize-based beverage chicha was investigated. Samples taken at different stages from two chicha productions were analyzed by culture-dependent and culture-independent methods. Five hundred and ninety six yeasts were isolated by classical microbiological methods and 16 species identified by RFLPs and sequencing of D1/D2 26S rRNA gene. Genetic typing of isolates from the dominant species, Saccharomyces cerevisiae, by PCR of delta elements revealed up to 42 different patterns. High-throughput sequencing (HTS) of D1/D2 26S rRNA gene amplicons from chicha samples detected more than one hundred yeast species and almost fifty filamentous fungi taxa. Analysis of the data revealed that yeasts dominated the fermentation, although, a significant percentage of filamentous fungi appeared in the first step of the process. Statistical analysis of results showed that very few taxa were represented by more than 1% of the reads per sample at any step of the process. S. cerevisiae represented more than 90% of the reads in the fermentative samples. Other yeast species dominated the pre-fermentative steps and abounded in fermented samples when S. cerevisiae was in percentages below 90%. Most yeasts species detected by pyrosequencing were not recovered by cultivation. In contrast, the cultivation-based methodology detected very few yeast taxa, and most of them corresponded with very few reads in the pyrosequencing analysis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Stable isotope ratio analysis for authentication of red yeast rice.

    Science.gov (United States)

    Perini, Matteo; Carbone, Gianfranco; Camin, Federica

    2017-11-01

    Red yeast rice (RYR) is a dietary supplement obtained from rice fermented with the mould Monascus purpureus. It contains Monacolin K which is a hypocholesterolemic statin used to prevent cardiovascular diseases. The homologous prescription biosynthetic statin, lovastatin, is not chemically distinguishable from monacolin K. In this work we investigated whether δ(13)C and δ(2)H can distinguish monacolin K from lovastatin and can detect the presence of lovastatin in RYR. 18 samples of red yeast rice powder and 18 samples of lovastatin were collected. Monacolin K was isolated from RYR using preparative HPLC and together with lovastatin, was subjected to analysis of δ(13)C and δ(2)H using Isotope Ratio Mass Spectrometry. Thanks to the different photosynthetic cycles of the matrices used for their synthesis, monacolin K and lovastatin have different δ(13)C values (-29.6‰ ± 0.6 and -16.7‰ ± 2.6 respectively). δ(2)H is significantly (p < 0.001) lower in monacolin K but the ranges of values partially overlap with those of lovastatin. By defining a δ(13)C threshold value of -28.3‰ for monacolin K, addition of lovastatin from a minimum of 10% can be identified. δ(13)C analysis can be therefore proposed as a suitable tool for detecting the authenticity of RYR on the market. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Facile Preparation of Phosphotungstic Acid-Impregnated Yeast Hybrid Microspheres and Their Photocatalytic Performance for Decolorization of Azo Dye

    Directory of Open Access Journals (Sweden)

    Lan Chen

    2013-01-01

    Full Text Available Phosphotungstic acid (HPW-impregnated yeast hybrid microspheres were prepared by impregnation-adsorption technique through tuning pH of the aqueous yeast suspensions. The obtained products were characterized by field emission scanning electron microscopy (FE-SEM, energy dispersive spectrometry (EDS, X-ray diffraction (XRD, thermogravimetry-differential scanning calorimetry (TG-DSC, and ultraviolet-visible spectrophotometry (UV-Vis, respectively. FE-SEM and EDS ascertain that the HPW has been effectively introduced onto the surface of yeast, and the resulting samples retain ellipsoid shape, with the uniform size (length 4.5 ± 0.2 μm, width 3.0 ± 0.3 μm and good monodispersion. XRD pattern indicates that the main crystal structure of as-synthesized HPW@yeast microsphere is Keggin structure. TG-DTA states that the HPW in composites has better thermal stability than pure HPW. Fourier transform infrared spectroscopy (FT-IR elucidates that the functional groups or chemical bonds inherited from the pristine yeast cell were critical to the assembling of the composites. UV-Vis shows that the obtained samples have a good responding to UV light. The settling ability indicates that the hybrid microspheres possess an excellent suspension performance. In the test of catalytic activity, the HPW@yeast microsphere exhibits a high photocatalytic activity for the decoloration of Methylene blue and Congo red dye aqueous solutions, and there are a few activity losses after four cycles of uses.

  13. The effect of dietary supplementation with spent cider yeast on the Swine distal gut microbiome.

    Directory of Open Access Journals (Sweden)

    Aditya Upadrasta

    Full Text Available BACKGROUND: There is an increasing need for alternatives to antibiotics for promoting animal health, given the increasing problems associated with antibiotic resistance. In this regard, we evaluated spent cider yeast as a potential probiotic for modifying the gut microbiota in weanling pigs using pyrosequencing of 16S rRNA gene libraries. METHODOLOGY AND PRINCIPAL FINDINGS: Piglets aged 24-26 days were assigned to one of two study groups; control (n = 12 and treatment (n = 12. The control animals were fed with a basal diet and the treatment animals were fed with basal diet in combination with cider yeast supplement (500 ml cider yeast containing ∼7.6 log CFU/ml for 21 days. Faecal samples were collected for 16s rRNA gene compositional analysis. 16S rRNA compositional sequencing analysis of the faecal samples collected from day 0 and day 21 revealed marked differences in microbial diversity at both the phylum and genus levels between the control and treatment groups. This analysis confirmed that levels of Salmonella and Escherichia were significantly decreased in the treatment group, compared with the control (P<0.001. This data suggest a positive influence of dietary supplementation with live cider yeast on the microbial diversity of the pig distal gut. CONCLUSIONS/SIGNIFICANCE: The effect of dietary cider yeast on porcine gut microbial communities was characterized for the first time using 16S rRNA gene compositional sequencing. Dietary cider yeast can potentially alter the gut microbiota, however such changes depend on their endogenous microbiota that causes a divergence in relative response to that given diet.

  14. Cell polarization in budding and fission yeasts.

    Science.gov (United States)

    Martin, Sophie G; Arkowitz, Robert A

    2014-03-01

    Polarization is a fundamental cellular property, which is essential for the function of numerous cell types. Over the past three to four decades, research using the best-established yeast systems in cell biological research, Saccharomyces cerevisiae (or budding yeast) and Schizosaccharomyces pombe (or fission yeast), has brought to light fundamental principles governing the establishment and maintenance of a polarized, asymmetric state. These two organisms, though both ascomycetes, are evolutionarily very distant and exhibit distinct shapes and modes of growth. In this review, we compare and contrast the two systems. We first highlight common cell polarization pathways, detailing the contribution of Rho GTPases, the cytoskeleton, membrane trafficking, lipids, and protein scaffolds. We then contrast the major differences between the two organisms, describing their distinct strategies in growth site selection and growth zone dimensions and compartmentalization, which may be the basis for their distinct shapes. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  15. Yeast interactions in inoculated wine fermentation

    Directory of Open Access Journals (Sweden)

    Maurizio eCiani

    2016-04-01

    Full Text Available The use of selected starter culture is widely diffused in winemaking. In pure fermentation, the ability of inoculated Saccharomyces cerevisiae to suppress the wild microflora is one of the most important feature determining the starter ability to dominate the process. Since the wine is the result of the interaction of several yeast species and strains, many studies are available on the effect of mixed cultures on the final wine quality. In mixed fermentation the interactions between the different yeasts composing the starter culture can led the stability of the final product and the analytical and aromatic profile. In the present review, we will discuss the recent developments regarding yeast interactions in pure and in mixed fermentation, focusing on the influence of interactions on growth and dominance in the process.

  16. [Molecular taxonomy techniques used for yeast identification].

    Science.gov (United States)

    Ghindea, Raluca; Csutak, Ortansa; Stoica, Ileana; Ionescu, Robertina; Soare, Simona; Pelinescu, Diana; Nohit, Ana-Maria; Creangă, Oana; Vassu, Tatiana

    2004-01-01

    Due to the major impact of yeasts in human life based on the existence of pathogen yeast species and of species with biotechnological abilities, in the last few years new molecular techniques are performed for an accurate identification of natural isolates. Our study is aimed to review some of these techniques such as electrokariotyping by PFGE (Pulsed Field Gel Electrophoresis), estimation of the molar percentage of guanine and cytosine, the applications of PCR reaction in yeast identification using RAPD (Random amplified polymorphic DNA), UP-PCR (Universally Primed Polymerase Chain Reaction), MLST (Multilocus sequence typing) techniques, mtDNA and rDNA homology studies. Such molecular techniques complete the phenotypical characterization based on classical taxonomical tests allowing thus the polyphasic identification of the microorganisms.

  17. Bioadsorption strategies with yeast molecular display technology.

    Science.gov (United States)

    Shibasaki, Seiji; Ueda, Mitsuyoshi

    2014-01-01

    Molecular display techniques using microbial cell surfaces have been widely developed in the past twenty years, and are useful tools as whole cell catalysts for various applications such as bioconversion, bioremediation, biosensing, and the screening system of protein libraries. Furthermore, different types of microbial cells among eukaryotic and prokaryotic strains have been investigated for their use in surface display technologies. Recently, several kinds of protein-displaying yeasts have been utilized as bioadsorbents in this platform technology. In particular, these trials have successfully expanded the possibility of applications to metal binding, affinity purification, and receptor-ligand interaction by using the yeast cell surface. In this mini review, we describe the general principles of molecular display technology using yeast cells and its applications, with a particular focus on bioadsorption.

  18. Probiotic Properties of Non-Saccharomyces Yeasts

    DEFF Research Database (Denmark)

    Smith, Ida Mosbech

    to harmless luminal substances is a key feature of the intestinal immune system. In this context, dendritic cells (DCs) present in the tissues lining the human gut are central players involved in microbial sensing and shaping of appropriate adaptive immune responses. Probiotics are live microorganisms which...... when administered in adequate amounts confer a health benefit on the host. While the majority of probiotic microorganisms studied to date are lactic acid bacteria, research in yeasts with potentially beneficial influences on human health has mainly revolved around Saccharomyces boulardii. This yeast...... has shown a positive impact on disease outcome in clinical studies of inflammatory bowel disease, indicating an ability of S. boulardii to influence human immune responses underlying intestinal inflammation. Consequent to this focus on S. boulardii as the fundamental probiotic yeast, very little...

  19. Evaluation of microbial quality and yeast diversity in fresh-cut apple.

    Science.gov (United States)

    Graça, Ana; Santo, David; Esteves, Eduardo; Nunes, Carla; Abadias, Maribel; Quintas, Célia

    2015-10-01

    The present work's aim was to study the microbial quality of minimally processed apples commercialized in Portugal. Sixty eight samples of fresh-cut apple were analyzed before their best-before date in 2011 and 2012 for aerobic mesophilic and psychrotrophic microorganisms, total coliforms, lactic-acid bacteria (LAB), coagulase-positive staphylococci and fungi. The parameters of food safety studied were Cronobacter sakazakii, Salmonella spp. and Listeria sp. Samples were analyzed according to standard methodologies and using Chromocult Agar for coliforms and Escherichia coli. The yeasts were identified by restriction analysis of the ITS-5.8S rDNA-region and 26S rDNA partial sequencing. The mesophilic and psychrotrophic microorganisms ranged from 3.3 to 8.9 and from 4.9 to 8.4 log CFU/g, respectively. Coliforms were detected in all the samples and staphylococci in 5.8% of them. LAB numbers varied from 2.8 to 8.7 and fungi (yeast and molds) from 3.6 to 7.1 log CFU/g. The most common yeasts were Candida sake and Pichia fermentans followed by Hanseniaspora spp., Candida spp., Meyerozyma guilliermondii, Metschnikowia pulcherrima, Cryptococcus spp. and the psychrotrophic Cystofilobasidium infirmominiatum. Foodborne bacteria and opportunistic pathogenic yeasts were not detected in the apples studied. The results obtained respected the European Commission regulation regarding criteria of food hygiene and safety. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. ISOLATION OF PROTEOLYTIC PSYCHROTROPHIC YEASTS FROM FRESH RAW SEAFOODS

    NARCIS (Netherlands)

    KOBATAKE, M; KREGERVANRIJ, NJW; PLACIDO, MTLC; VANUDEN, N

    A total of 103 cultures of yeasts were isolated from seven kinds of fresh raw seafoods. The isolates comprised six genera, Candida, Cryptococcus, Debaryomyces. Rhodotorula, Sterigmatomyces and Trichosporon, and included 21 different species. All the isolates were psychrotrophic yeasts. Proteolytic

  1. Autophagy: one more Nobel Prize for yeast

    Directory of Open Access Journals (Sweden)

    Andreas Zimmermann

    2016-12-01

    Full Text Available The recent announcement of the 2016 Nobel Prize in Physiology or Medicine, awarded to Yoshinori Ohsumi for the discoveries of mechanisms governing autophagy, underscores the importance of intracellular degradation and recycling. At the same time, it further cements yeast, in which this field decisively developed, as a prolific model organism. Here we provide a quick historical overview that mirrors both the importance of autophagy as a conserved and essential process for cellular life and death as well as the crucial role of yeast in its mechanistic characterization.

  2. Autophagy: one more Nobel Prize for yeast.

    Science.gov (United States)

    Zimmermann, Andreas; Kainz, Katharina; Andryushkova, Aleksandra; Hofer, Sebastian; Madeo, Frank; Carmona-Gutierrez, Didac

    2016-12-05

    The recent announcement of the 2016 Nobel Prize in Physiology or Medicine, awarded to Yoshinori Ohsumi for the discoveries of mechanisms governing autophagy, underscores the importance of intracellular degradation and recycling. At the same time, it further cements yeast, in which this field decisively developed, as a prolific model organism. Here we provide a quick historical overview that mirrors both the importance of autophagy as a conserved and essential process for cellular life and death as well as the crucial role of yeast in its mechanistic characterization.

  3. Flux control through protein phosphorylation in yeast

    DEFF Research Database (Denmark)

    Chen, Yu; Nielsen, Jens

    2016-01-01

    Protein phosphorylation is one of the most important mechanisms regulating metabolism as it can directly modify metabolic enzymes by the addition of phosphate groups. Attributed to such a rapid and reversible mechanism, cells can adjust metabolism rapidly in response to temporal changes. The yeast...... describe the development of phosphoproteomics in yeast as well as approaches to analysing the phosphoproteomics data. Finally, we focus on integrated analyses with other omics data sets and genome-scale metabolic models. Despite the advances, future studies improving both experimental technologies...

  4. Analysis of RNA metabolism in fission yeast

    DEFF Research Database (Denmark)

    Wise, Jo Ann; Nielsen, Olaf

    2017-01-01

    Here we focus on the biogenesis and function of messenger RNA (mRNA) in fission yeast cells. Following a general introduction that also briefly touches on other classes of RNA, we provide an overview of methods used to analyze mRNAs throughout their life cycles.......Here we focus on the biogenesis and function of messenger RNA (mRNA) in fission yeast cells. Following a general introduction that also briefly touches on other classes of RNA, we provide an overview of methods used to analyze mRNAs throughout their life cycles....

  5. DNA replication in yeast is stochastic

    Science.gov (United States)

    Cheng-Hsin Yang, Scott; Rhind, Nicholas; Bechhoefer, John

    2010-03-01

    Largely on the basis of a simple --- perhaps too simple --- analysis of microarray-chip experiments, people have concluded that DNA replication in budding yeast (S. cerevisiae) is a nearly deterministic process, in which the position and activation time of each origin of replication is pre-determined. In this talk, we introduce a more quantitative approach to the analysis of microarray data. Applying our new methods to budding yeast, we show that the microarray data imply a picture of replication where the timing of origin activation is highly stochastic. We then propose a physical model (the ``multiple-initiator model") to account for the observed probability distributions of origin- activation timing.

  6. Occurrence of Killer Yeast Strains in Fruit and Berry Wine Yeast Populations

    Directory of Open Access Journals (Sweden)

    Gintare Gulbiniene

    2004-01-01

    Full Text Available Apple, cranberry, chokeberry and Lithuanian red grape wine yeast populations were used for the determination of killer yeast occurrence. According to the tests of the killer characteristics and immunity the isolated strains were divided into seven groups. In this work the activity of killer toxins purified from some typical strains was evaluated. The analysed strains produced different amounts of active killer toxin and some of them possessed new industrially significant killer properties. Total dsRNA extractions in 11 killer strains of yeast isolated from spontaneous fermentations revealed that the molecular basis of the killer phenomenon was not only dsRNAs, but also unidentified genetic determinants.

  7. Competition assays and physiological experiments of soil and phyllosphere yeasts identify Candida subhashii as a novel antagonist of filamentous fungi.

    Science.gov (United States)

    Hilber-Bodmer, Maja; Schmid, Michael; Ahrens, Christian H; Freimoser, Florian M

    2017-01-05

    the phyllosphere. Noteworthy was the strong antagonistic activity of the soil yeast C. subhashii, which had so far only been described from a clinical sample and not been studied with respect to biocontrol. Based on binary competition assays and growth analyses (e.g., on different carbon sources, growth in root exudates), C. subhashii was identified as a competitive and antagonistic soil yeast with potential as a novel biocontrol agent against plant pathogenic fungi.

  8. Newly identified prions in budding yeast, and their possible functions

    OpenAIRE

    Crow, Emily T.; Li, Liming

    2011-01-01

    Yeast prions are atypical genetic elements that are transmitted as heritable protein conformations. [PSI+], [URE3], and [PIN+] are three well-studied prions in the budding yeast, Saccharomyces cerevisiae. In the last three years, several additional prions have been reported in yeast, including [SWI+], [OCT+], [MCA], [GAR+], [MOT3+], [ISP+], and [NSI+]. The growing number of yeast prions suggests that protein-based inheritance might be a widespread biological phenomenon. In this review, we sum...

  9. Effect of increasing growth temperature on yeast fermentation ...

    African Journals Online (AJOL)

    The effect of increasing growth temperature on yeast fermentation was studied at approximately 5 oC intervals over a range of 18 – 37 oC, using one strain each of ale, lager and wine yeast. The ale and wine yeasts grew at all the temperatures tested, but lager yeast failed to grow at 37 oC. All these strains gave lower ...

  10. The effect of yeast (Saccharomyces cerevisiae) on nutrient intake, digestibility and finishing performance of lambs fed a diet based on dried molasses sugar beet-pulp.

    Science.gov (United States)

    Payandeh, S; Kafilzadeh, F

    2007-12-15

    This experiment was conducted to determine the effect of yeast (Saccharomyces cerevisiae, SC47) on finishing performance, digestibility, some blood metabolites and carcass characteristics of male lambs fed a diet based on dried Molasses Sugar Beet-Pulp (MSBP). Eighteen Sanjabi male lambs (20.95 +/- 2.7 kg initial body weight and 3 month of age) were used in a completely randomized design. Animals were assigned to one of the two dietary treatments (with or without yeast). Digestibility and nitrogen balance experiment was carried out using six mature rams on finishing diet with and without yeast. Serum metabolites were determined in samples taken from lambs at the end of finishing period. Dry matter digestibility of finishing diet was significantly increased by yeast addition. However, yeast did not have any significant effect on apparent digestibility of OM, NDF, CP and energy. Nitrogen retention was also not affected by yeast addition. Yeast resulted in a significant increase in the average daily gain, dry matter and organic matter intake. However, feed conversion ratio was not significantly affected by addition of yeast. The concentration of the serum metabolites including glucose, urea, cholesterol, sodium, potassium, calcium, phosphorous and cratinine were not affected significantly by yeast supplementation, but triglyceride concentrations increased significantly when yeast was fed. Addition of yeast to the diet did not have any significant effect on the carcass characteristics. Results of this study suggest that feeding saccharomyces cerevisiae with a diet based on MSBP can improve the performance of fattening lambs without any change in carcass characteristics or cuts.

  11. Differential Adsorption of Ochratoxin A and Anthocyanins by Inactivated Yeasts and Yeast Cell Walls during Simulation of Wine Aging

    National Research Council Canada - National Science Library

    Petruzzi, Leonardo; Baiano, Antonietta; De Gianni, Antonio; Sinigaglia, Milena; Corbo, Maria Rosaria; Bevilacqua, Antonio

    2015-01-01

    The adsorption of ochratoxin A (OTA) by yeasts is a promising approach for the decontamination of musts and wines, but some potential competitive or interactive phenomena between mycotoxin, yeast cells, and anthocyanins might modify...

  12. Drosophila-associated yeast species in vineyard ecosystems.

    Science.gov (United States)

    Lam, Samuel S T H; Howell, Kate S

    2015-10-01

    Yeast activity during wine fermentation directly contributes to wine quality, but the source and movement of yeasts in vineyards and winery environments have not been resolved. Here, we investigate the yeast species associated with the Drosophila insect vector to help understand yeast dispersal and persistence. Drosophila are commonly found in vineyards and are known to have a mutualistic relationship with yeasts in other ecosystems. Drosophilids were collected from vineyards, grape waste (marc) piles and wineries during grape harvest. Captured flies were identified morphologically, and their associated yeasts were identified. Drosophila melanogaster/D. simulans, D. hydei and Scaptodrosophila lativittata were identified in 296 captured Drosophila flies. These flies were associated with Metschnikowia pulcherrima, Hanseniaspora uvarum, Torulaspora delbrueckii and H. valbyensis yeasts. Yeast and Drosophila species diversity differed between collection locations (vineyard and marc: R = 0.588 for Drosophila and R = 0.644 for yeasts). Surprisingly, the primary wine fermentation yeast, Saccharomyces cerevisiae, was not isolated. Drosophila flies are preferentially associated with different yeast species in the vineyard and winery environments, and this association may help the movement and dispersal of yeast species in the vineyard and winery ecosystem. © FEMS 2015. All rights reserved.

  13. Performance of baker's yeast produced using date syrup substrate ...

    African Journals Online (AJOL)

    Baker's yeast was produced from three selected baker's yeast strains using date syrup as a substrate at low and high flow rate compared to those produced using molasses substrates. Performance of the produced baker's yeasts on Arabic bread quality was investigated. Baking tests showed a positive relationship between ...

  14. Effect of yeast extract and chitosan on shoot proliferation ...

    African Journals Online (AJOL)

    This paper reported the effect of yeast extract and chitosan with combination of yeast extract on the growth and morphological changes and production of phenolics in the in vitro plantlets of Curcuma mangga. Yeast extract did not show any effect on the biomass and shoot proliferation of in vitro plantlets. However, the ...

  15. Effects of chlorine and temperature on yeasts isolatedfrom a soft ...

    African Journals Online (AJOL)

    Yeasts isolated from sugar and filling valves in a bottling process were exposed to different chlorine concentrations and various high temperatures. It was found that growth of yeasts decreased with increase in chlorine concentration. The maximum chlorine concentration that inhibited both types of yeasts was 60mg/l while ...

  16. Bright stable luminescent yeast using bacterial luciferase as a sensor.

    NARCIS (Netherlands)

    Szittner, R; Jansen, G.; Thomas, DY; Meighen, E

    2003-01-01

    24h while luminescence of yeast with decanal decayed to less than 0.01% of that with Z-9-tetradecenal after 2min. Moreover, yeast survived in 0.5% (v/v) Z-9-tetradecenal while 0.005% (v/v) decanal was lethal. Luminescence of yeast (+luxAB) was also stimulated 100-fold by transformation with the

  17. (FOS)-fermenting yeast or bacterial strains as potential

    African Journals Online (AJOL)

    ltrujillo

    or solid growth medium containing these “prebiotic” ... Saccharomyces cerevisiae L/25-7-82, S. cerevisiae L/25-7-76, ... Culture media. The commonly used minimal Yeast Nitrogen base (YNB) and rich media YP (Yeast extract and Peptone) and LB (Luria Bertani) for yeast and bacterial grow, respectively, were prepared ...

  18. Yeast Contamination Potential in a Carbonated Soft Drink Industry ...

    African Journals Online (AJOL)

    MICHAEL

    species of Saccharomyces cerevisiae (Thrall, 2004). Yeasts are useful in bakery and breweries but undesirable in carbonated soft drink industries due to ... characteristics compared to yeast colonies described in Cheesebrough (1985). RESULTS AND DISCUSSION. The yeasts isolated had some budding cells. The.

  19. 21 CFR 172.590 - Yeast-malt sprout extract.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Yeast-malt sprout extract. 172.590 Section 172.590... CONSUMPTION Flavoring Agents and Related Substances § 172.590 Yeast-malt sprout extract. Yeast-malt sprout extract, as described in this section, may be safely used in food in accordance with the following...

  20. 21 CFR 184.1983 - Bakers yeast extract.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Bakers yeast extract. 184.1983 Section 184.1983 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD... Listing of Specific Substances Affirmed as GRAS § 184.1983 Bakers yeast extract. (a) Bakers yeast extract...

  1. 21 CFR 573.750 - Pichia pastoris dried yeast.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Pichia pastoris dried yeast. 573.750 Section 573... Food Additive Listing § 573.750 Pichia pastoris dried yeast. (a) Identity. The food additive Pichia pastoris dried yeast may be used in feed formulations of broiler chickens as a source of protein not to...

  2. Impact of apple cultivar, ripening stage, fermentation type and yeast strain on phenolic composition of apple ciders.

    Science.gov (United States)

    Laaksonen, Oskar; Kuldjärv, Rain; Paalme, Toomas; Virkki, Mira; Yang, Baoru

    2017-10-15

    Hydroxycinnamic acids and flavonoids in apple juices and ciders were studied using liquid chromatography. Samples were produced from four different Estonian apple cultivars using unripe, ripe and overripe apples, and six different commercial yeasts including Saccharomyces cerevisiae, Saccharomyces bayanus, and Torulaspora delbrueckii strains. Part of the samples was additionally inoculated with malolactic bacteria, Oenococcus oeni. The most notable difference among the samples was the appearance of phloretin in malolactic ciders in comparison to conventional ciders and the juices. Furthermore, the apple cultivars were significantly different in their phenolic contents and compositions. Additionally, ciders and juices made from unripe apples contained more phenolic compounds than the ripe or overripe, but the effect was dependent on cultivar. The commercial yeast strains differed in the release of free HCAs, especially p-coumaric acid, during the yeast fermentation. In ciders inoculated with S. bayanus, the content was higher than in ciders fermented with S. cerevisiae. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Yeast Interacting Proteins Database: YDR357C, YGL079W [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available izes to the endosome; identified as a transcriptional activator in a high-throughpu...ome; identified as a transcriptional activator in a high-throughput yeast one-hybrid assay Rows with this pr

  4. Yeast Interacting Proteins Database: YFR015C, YLR258W [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available yeast homolog; expression induced by glucose limitation, nitrogen starvation, environmental stress, and entr...; expression induced by glucose limitation, nitrogen starvation, environmental stress, and entry into statio

  5. Yeast Interacting Proteins Database: YFR015C, YJL137C [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available yeast homolog; expression induced by glucose limitation, nitrogen starvation, environmental stress, and entr...pression induced by glucose limitation, nitrogen starvation, environmental stress, and entry into stationary

  6. Characterization of winemaking yeast by cell number-size distribution analysis through flow field-flow fractionation with multi-wavelength turbidimetric detection.

    Science.gov (United States)

    Zattoni, Andrea; Melucci, Dora; Reschiglian, Pierluigi; Sanz, Ramsés; Puignou, Lluís; Galceran, Maria Teresa

    2004-10-29

    Yeasts are widely used in several areas of food industry, e.g. baking, beer brewing, and wine production. Interest in new analytical methods for quality control and characterization of yeast cells is thus increasing. The biophysical properties of yeast cells, among which cell size, are related to yeast cell capabilities to produce primary and secondary metabolites during the fermentation process. Biophysical properties of winemaking yeast strains can be screened by field-flow fractionation (FFF). In this work we present the use of flow FFF (FlFFF) with turbidimetric multi-wavelength detection for the number-size distribution analysis of different commercial winemaking yeast varieties. The use of a diode-array detector allows to apply to dispersed samples like yeast cells the recently developed method for number-size (or mass-size) analysis in flow-assisted separation techniques. Results for six commercial winemaking yeast strains are compared with data obtained by a standard method for cell sizing (Coulter counter). The method here proposed gives, at short analysis time, accurate information on the number of cells of a given size, and information on the total number of cells.

  7. Molecular Identification of Unusual Pathogenic Yeast Isolates by Large Ribosomal Subunit Gene Sequencing: 2 Years of Experience at the United Kingdom Mycology Reference Laboratory▿

    Science.gov (United States)

    Linton, Christopher J.; Borman, Andrew M.; Cheung, Grace; Holmes, Ann D.; Szekely, Adrien; Palmer, Michael D.; Bridge, Paul D.; Campbell, Colin K.; Johnson, Elizabeth M.

    2007-01-01

    Rapid identification of yeast isolates from clinical samples is particularly important given their innately variable antifungal susceptibility profiles. We present here an analysis of the utility of PCR amplification and sequence analysis of the hypervariable D1/D2 region of the 26S rRNA gene for the identification of yeast species submitted to the United Kingdom Mycology Reference Laboratory over a 2-year period. A total of 3,033 clinical isolates were received from 2004 to 2006 encompassing 50 different yeast species. While more than 90% of the isolates, corresponding to the most common Candida species, could be identified by using the AUXACOLOR2 yeast identification kit, 153 isolates (5%), comprised of 47 species, could not be identified by using this system and were subjected to molecular identification via 26S rRNA gene sequencing. These isolates included some common species that exhibited atypical biochemical and phenotypic profiles and also many rarer yeast species that are infrequently encountered in the clinical setting. All 47 species requiring molecular identification were unambiguously identified on the basis of D1/D2 sequences, and the molecular identities correlated well with the observed biochemical profiles of the various organisms. Together, our data underscore the utility of molecular techniques as a reference adjunct to conventional methods of yeast identification. Further, we show that PCR amplification and sequencing of the D1/D2 region reliably identifies more than 45 species of clinically significant yeasts and can also potentially identify new pathogenic yeast species. PMID:17251397

  8. Optimization of yeast ( Saccharomyces cerevisiae ) RNA isolation ...

    African Journals Online (AJOL)

    Quality of the starting RNA is indispensably important for obtaining highly reproducible quantitative polymerase chain reaction (qPCR) and microarray results for all organisms as well as S. cerevisiae. Isolating RNA from yeast cells with a maximum quality was especially critical since these cells were rich in polysaccharides ...

  9. Glucose and the ATP paradox in yeast.

    NARCIS (Netherlands)

    Somsen, O.J.G.; Hoeben, M.A.; Esgalhado, M.E.L.M.; Snoep, J.L.; Visser, D.; van der Heijden, R.T.J.M.; Heijnen, J.J.; Westerhoff, H.V.

    2000-01-01

    A sustained decrease in the intracellular ATP concentration has been observed when extra glucose was added to yeast cells growing aerobically under glucose limitation. Because glucose degradation is the main source of ATP-derived free energy, this is a counter-intuitive phenomenon, which cannot be

  10. Cell biology of homologous recombination in yeast

    DEFF Research Database (Denmark)

    Eckert-Boulet, Nadine Valerie; Rothstein, Rodney; Lisby, Michael

    2011-01-01

    Homologous recombination is an important pathway for error-free repair of DNA lesions, such as single- and double-strand breaks, and for rescue of collapsed replication forks. Here, we describe protocols for live cell imaging of single-lesion recombination events in the yeast Saccharomyces...

  11. Biofuels. Altered sterol composition renders yeast thermotolerant

    DEFF Research Database (Denmark)

    Caspeta, Luis; Chen, Yun; Ghiaci, Payam

    2014-01-01

    adaptive laboratory evolution to select yeast strains with improved growth and ethanol production at ≥40°C. Sequencing of the whole genome, genome-wide gene expression, and metabolic-flux analyses revealed a change in sterol composition, from ergosterol to fecosterol, caused by mutations in the C-5 sterol...

  12. Cell polarity: wanderful exploration in yeast sex.

    Science.gov (United States)

    Arkowitz, Robert A

    2013-01-07

    Chemical gradients are used by cells to provide positional information. Two new studies reveal that polarity proteins are highly dynamic in yeast cells responding to a pheromone gradient and suggest that this behavior is important for robust directional growth. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. yeast transformation of Mucor circinelloides Tieghe

    African Journals Online (AJOL)

    GRACE

    2006-05-02

    May 2, 2006 ... In a study monitored at 24 h intervals, profiling gave 2-phase expression in some treatments and this was ..... observed in the broths, although minimal in contrast to the observation in the 2- phase growth pattern described in ... Microscopic examination showed that the morphology of note was the yeast form ...

  14. Deoxyribonucleic Acid Base Composition in Yeasts

    Science.gov (United States)

    Meyer, Sally A.; Phaff, H. J.

    1969-01-01

    The deoxyribonucleic acid base composition of 15 species of yeasts was determined to obtain further clues to or supporting evidence for their taxonomic position. Species examined belonged to the genera Saccharomyces, Debaryomyces, Lodderomyces, Metschnikowia, and Candida. The range of moles per cent guanine plus cytosine (GC content) for all yeasts examined extended from 34.9 to 48.3%. The sporogenous species and the asporogenous yeasts spanned the range with 36.6 to 48.3% GC and 34.9 to 48% GC, respectively. Three Saccharomyces species (S. rosei and related species) exhibited significantly higher GC contents than S. cerevisiae, whereas the fermentative species D. globosus revealed a%GC more aligned to the S. rosei group than to the nonfermentative D. hansenii. Similar GC contents were demonstrated by L. elongasporus and its proposed imperfect form C. parapsilosis. The range of GC contents of various strains of three Metschnikowia species studied was 6.1%, with the type strain of M. pulcherrima having the highest GC content (48.3%) of all of the yeasts examined. PMID:5764346

  15. The glucose signaling network in yeast

    Science.gov (United States)

    Kim, Jeong-Ho; Roy, Adhiraj; Jouandot, David; Cho, Kyu Hong

    2013-01-01

    Background Most cells possess a sophisticated mechanism for sensing glucose and responsing to it appropriately. Glucose sensing and signaling in the budding yeast Saccharomyces cerevisiae represents an important paradigm for understanding how extracellular signals lead to changes in the gene expression program in eukaryotes. Scope of review This review focuses on the yeast glucose sensing and signaling pathways that operate in a highly regulated and cooperative manner to bring about glucose-induction of HXT gene expression. Major conclusions The yeast cells possess a family of glucose transporters (HXTs), with different kinetic properties. They employ three major glucose signaling pathways— Rgt2/Snf3, AMPK, and cAMP-PKA—to express only those transporters best suited for the amounts of glucose available. We discuss the current understanding of how these pathways are integrated into a regulatory network to ensure efficient uptake and utilization of glucose. General significance Elucidating the role of multiple glucose signals and pathways involved in glucose uptake and metabolism in yeast may reveal the molecular basis of glucose homeostasis in humans, especially under pathological conditions, such as hyperglycemia in diabetics and the elevated rate of glycolysis observed in many solid tumors. PMID:23911748

  16. Hybridization of Palm Wine Yeasts ( Saccharomyces Cerevisiae ...

    African Journals Online (AJOL)

    Haploid auxotrophic strains of Saccharomyces cerevisiae were selected from palm wine and propagated by protoplast fusion with Brewers yeast. Fusion resulted in an increase in both ethanol production and tolerance against exogenous ethanol. Mean fusion frequencies obtained for a mating types ranged between 8 x ...

  17. UBA domain containing proteins in fission yeast

    DEFF Research Database (Denmark)

    Hartmann-Petersen, Rasmus; Semple, Colin A M; Ponting, Chris P

    2003-01-01

    characterised on both the functional and structural levels. One example of a widespread ubiquitin binding module is the ubiquitin associated (UBA) domain. Here, we discuss the approximately 15 UBA domain containing proteins encoded in the relatively small genome of the fission yeast Schizosaccharomyces pombe...

  18. Yeast metabolic engineering for hemicellulosic ethanol production

    Science.gov (United States)

    Jennifer Van Vleet; Thomas W. Jeffries

    2009-01-01

    Efficient fermentation of hemicellulosic sugars is critical for the bioconversion of lignocellulosics to ethanol. Efficient sugar uptake through the heterologous expression of yeast and fungal xylose/glucose transporters can improve fermentation if other metabolic steps are not rate limiting. Rectification of cofactor imbalances through heterologous expression of...

  19. Arachidonic acid metabolites in pathogenic yeasts

    Directory of Open Access Journals (Sweden)

    Ells Ruan

    2012-08-01

    Full Text Available Abstract Although most of what is known about the biology and function of arachidonic acid metabolites comes from the study of mammalian biology, these compounds can also be produced by lower eukaryotes, including yeasts and other fungi. It is also in this group of organisms that the least is known about the metabolic pathways leading to the production of these compounds as well as the functions of these compounds in the biology of fungi and yeasts. This review will deal with the discovery of oxylipins from polyunsaturated fatty acids, and more specifically the arachidonic acid derived eicosanoids, such as 3-hydroxy eicosatetraenoic acid, prostaglandin F2α and prostaglandin E2, in yeasts starting in the early 1990s. This review will also focus on what is known about the metabolic pathways and/or proteins involved in the production of these compounds in pathogenic yeasts. The possible roles of these compounds in the biology, including the pathology, of these organisms will be discussed.

  20. Antarctic Yeasts: Biodiversity and Potential Applications

    Science.gov (United States)

    Shivaji, S.; Prasad, G. S.

    This review is an attempt in cataloguing the diversity of yeasts in Antarctica, highlight their biotechnological potential and understand the basis of adaptation to low temperature. As of now several psychrophilic and psychrotolerant yeasts from Antarctic soils and marine waters have been characterized with respect to their growth characteristics, ecological distribution and taxonomic significance. Interestingly most of these species belonged to basidiomycetous yeasts which as a group are known for their ability to circumvent and survive under stress conditions. Simultaneously their possible role as work horses in the biotechnological industry was recognized due to their ability to produce novel enzymes and biomolecules such as agents for the breakdown of xenobiotics, and novel pharmaceutical chemi cals. The high activity of psychrophilic enzymes at low and moderate temperatures offers potential economic benefits. As of now lipases from Pseudozyma antarctica have been extensively studied to understand their unique thermal stability at 90°C and also because of its use in the pharmaceutical, agriculture, food, cosmetics and chemical industry. A few of the other enzymes which have been studied include extracellular alpha-amylase and glucoamylase from the yeast Pseudozyma antarctica (Candida antarctica), an extra-cellular protease from Cryptococcus humicola, an aspartyl proteinase from Cryptococcus humicola, a novel extracellular subtilase from Leucosporidium antarcticum, and a xylanase from Cryptococcus adeliensis

  1. Actin and Endocytosis in Budding Yeast

    Science.gov (United States)

    Goode, Bruce L.; Eskin, Julian A.; Wendland, Beverly

    2015-01-01

    Endocytosis, the process whereby the plasma membrane invaginates to form vesicles, is essential for bringing many substances into the cell and for membrane turnover. The mechanism driving clathrin-mediated endocytosis (CME) involves > 50 different protein components assembling at a single location on the plasma membrane in a temporally ordered and hierarchal pathway. These proteins perform precisely choreographed steps that promote receptor recognition and clustering, membrane remodeling, and force-generating actin-filament assembly and turnover to drive membrane invagination and vesicle scission. Many critical aspects of the CME mechanism are conserved from yeast to mammals and were first elucidated in yeast, demonstrating that it is a powerful system for studying endocytosis. In this review, we describe our current mechanistic understanding of each step in the process of yeast CME, and the essential roles played by actin polymerization at these sites, while providing a historical perspective of how the landscape has changed since the preceding version of the YeastBook was published 17 years ago (1997). Finally, we discuss the key unresolved issues and where future studies might be headed. PMID:25657349

  2. Vaginal yeast infections in diabetic women

    African Journals Online (AJOL)

    The overall vaginal prevalence of C. albicans was 12,8% (26/203 patients). This yeast was associated with genital symp- toms in 84,6% (22/26) ofthe patients from whom it was isolated. Only 4 patients without symptoms yielded C. albicans. One of these had classic candidiasis on clinical grounds, while the other 3 patients ...

  3. Localization of some phosphatases in yeast

    NARCIS (Netherlands)

    Tonino, G.J.M.; Steyn-Parvé, Elizabeth P.

    1963-01-01

    1. 1. The localization of some phosphatases has been studied in yeast cells that were either fragmented by shaking intact cells with glass beads or by hypotonic or isotonic disruption of protoplasts prepared from intact cells. 2. 2. The non-specific acid phosphatase with optimum activity at pH

  4. Developmentally programmed nuclear destruction during yeast gametogenesis.

    Science.gov (United States)

    Eastwood, Michael D; Cheung, Sally W T; Lee, Kwan Yin; Moffat, Jason; Meneghini, Marc D

    2012-07-17

    Autophagy controls cellular catabolism in diverse eukaryotes and modulates programmed cell death in plants and animals. While studies of the unicellular yeast Saccharomyces cerevisiae have provided fundamental insights into the mechanisms of autophagy, the roles of cell death pathways in yeast are less well understood. Here, we describe widespread developmentally programmed nuclear destruction (PND) events that occur during yeast gametogenesis. PND is executed through apoptotic-like DNA fragmentation in coordination with an unusual form of autophagy that is most similar to mammalian lysosomal membrane permeabilization and mega-autophagy, a form of plant autophagic cell death. Undomesticated strains execute gametogenic PND broadly in maturing colonies to the apparent benefit of sibling cells, confirming its prominence during the yeast life cycle. Our results reveal that diverse cell-death-related processes converge during gametogenesis in a microbe distantly related to plants or animals, highlighting gametogenesis as a process during which programmed cell death mechanisms may have evolved. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. Modeling diauxic glycolytic oscillations in yeast

    DEFF Research Database (Denmark)

    Hald, Bjørn Olav; Sørensen, Preben Graae

    2010-01-01

    Glycolytic oscillations in a stirred suspension of starved yeast cells is an excellent model system for studying the dynamics of metabolic switching in living systems. In an open-flow system the oscillations can be maintained indefinitely at a constant operating point where they can be characteri...

  6. Vaginal yeast infections in diabetic women

    African Journals Online (AJOL)

    could we implicate either trichomoniasis or candidiasis as causes ofthese symptoms (Table I). It is possible that in some instances yeasts may have been missed on cul- ture since it has been estimated that at least 10' cfu/m! are required for a culture to be positive.15 Gardnerella vaginalis was not sought in this study and ...

  7. Characteristics of fermentation yeast isolated from traditional ...

    African Journals Online (AJOL)

    Indigenous honey wine, known locally as ogol, was collected in a village of the Majangir ethnic group in Southwest Ethiopia, and the procedure for ogol fermentation was investigated. A fermentation yeast was first isolated from ogol and identified as being a strain of the genus Saccharomyces cerevisiae. Honey wine made ...

  8. Ureohydrolases as dominant selectable markers in yeast

    NARCIS (Netherlands)

    Daran, J.G.; Pronk, J.T.; Romagnoli, G.

    2015-01-01

    The invention relates to a nucleic acid molecule encoding a novel selection marker. Said marker is a guanidinobutyrase from Kluyveromyces lactis, which, when expressed in Saccharomyces, allows the growth of the yeast in the presence of guanidinobutyrate as the sole nitrogen source. Said marker can

  9. Functional differences in yeast protein disulfide isomerases

    DEFF Research Database (Denmark)

    Nørgaard, P; Westphal, V; Tachibana, C

    2001-01-01

    PDI1 is the essential gene encoding protein disulfide isomerase in yeast. The Saccharomyces cerevisiae genome, however, contains four other nonessential genes with homology to PDI1: MPD1, MPD2, EUG1, and EPS1. We have investigated the effects of simultaneous deletions of these genes. In several c...

  10. Biosynthesis of polyhydroxyalkanotes in wildtype yeasts 1 ...

    African Journals Online (AJOL)

    MICHAEL

    Valentin. 1995). The major commercial drawback of the so-produced bacterial PHAs is their high production cost, making them substantially more expensive than synthetic plastics (Poirier et al. 1995). Therefore, looking for eukaryotic cell systems like yeast able to accumulate. PHAs seems to be a beneficial alternative to the.

  11. [Yeast biodiversity in hydromorphic soils with reference to grass-Sphagnum swamp in Western Siberia and the hammocky tundra region( Barrow, Alaska)].

    Science.gov (United States)

    Poliakova, A V; Chernov, I Iu; Panikov, N S

    2001-01-01

    The microbiological analysis of 78 samples taken from a boreal bog in Western Siberia and from a tundra wetland soil in Alaska showed the presence of 23 yeast species belonging to the genera Bullera, Candida, Cryptococcus, Debaryomyces, Hanseniaspora, Metschnikowia, Mrakia, Pichia, Rhodotorula, Saccharomyces, Sporobolomyces, Torulaspora, and Trichosporon. Peat samples from the boreal bog were dominated by eurytopic anamorphic basidiomycetous species, such as Rhodotorula mucilaginosa and Sporobolomyces roseus, and by the ascomycetous yeasts Candida spp. and Debaryomyces hansenii. These samples also contained two rare ascomycetous species (Candida paludigena and Schizoblastosporion starkeyi-henricii), which so far have been found only in taiga wetland soils. The wetland Alaskan soil was dominated by one yeast species (Cryptococcus gilvescens), which is a typical inhabitant of tundra soils. Therefore, geographic factors may serve for a more reliable prediction of yeast diversity in soils than the physicochemical or ecotopic parameters of these soils.

  12. Killer yeasts as biocontrol agents of spoilage yeasts and bacteria isolated from wine

    Directory of Open Access Journals (Sweden)

    Fernández de Ullivarri Miguel

    2014-01-01

    Full Text Available During the winemaking process Saccharomyces cerevisiae is the main yeast species but other yeasts called non-Saccharomyces as well as different species of lactic acid bacteria (LAB are also present. Then, one strategy to prevent or reduce microbial contamination during the winemaking process is the use of killer yeasts. The aim of this study was to evaluate the killer activity (KA of autochthonous yeasts from Northwest region of Argentine (S. cerevisiae Cf8 and Wickerhamomyces anomalus Cf20 on spoilage yeasts and in LAB of the wine. The KA was evaluated using cell-free supernatants obtained from pure and mixed cultures of strains Cf8-Cf20. S. cerevisiae Cf8 showed a growth reduction between 7 and 48% on D. anomala BDa15, P. membranifaciens BPm481 and Z. bailii Bzb317 while W. anomalus Cf20 exhibited KA of 20, 61, 91 and 92% against B. bruxellensis Ld1, D. anomala BDa15, P. membranifaciens BPm481 and P. guilliermondii Cd6, respectively. Killer mixed supernatants showed growth inhibition similar to strain Cf20. Screening against LAB showed that both killer toxins were able to inhibit the growth of L. hilgardii 5w as well as to reduce a 16–31% histamine production by this LAB strain. These results confirm the potential of autochthonous killer yeasts as biocontrol agents in winemaking process. The mixed culture S. cerevisiae Cf8-W. anomalus Cf20 presented a wide range of KA on spoilage yeasts as well as on L. hilgardii. Therefore, the use of killer yeasts as starter cultures would allow producing wines with controlled quality.

  13. Influence of the farming system and vine variety on yeast communities associated with grape berries.

    Science.gov (United States)

    Cordero-Bueso, Gustavo; Arroyo, Teresa; Serrano, Ana; Tello, Javier; Aporta, Irene; Vélez, María Dolores; Valero, Eva

    2011-01-31

    Wine production in most countries is based on the use of commercial strains leading to the colonisation of the wineries by these strains with the consequent reduction of autochthonous biodiversity. This implies that wine styles could therefore become standardised. The vineyard could be an important source of native yeasts of oenological interest. For this reason the objective of this study was to compare two agronomic conditions with the aim of preserving yeast biodiversity in the vineyard. A three year sampling plan was designed to evaluate the influence of different agronomic parameters on the biodiversity of fermentative grape yeasts. Thus two vineyards, one organic and one conventional, with three different grape varieties (Shiraz, Grenache and Barbera) were chosen. In total, 27 samples were collected from both vineyards. Of these, 1080 colonies were isolated and a total of 9 species were identified. The strains identified as Saccharomyces cerevisiae were genotyped by microsatellite analysis obtaining nine different electrophoretic patterns. Classical ecology indexes were used to obtain the richness (S), the biodiversity (H') and the dominance (D) of the species studied. The results indicated a clear influence on grape associated yeast diversity of the phytosanitary treatment used in the vineyard. This is the first time that classical ecology indexes have been used to study the ecology of the spontaneous fermentation of grape musts and the species Candida sorbosa and Pichia toletana have been described in vineyards of the Madrid winegrowing region. Copyright © 2010 Elsevier B.V. All rights reserved.

  14. Lactic acid bacteria and yeasts involved in the fermentation ofamabere amaruranu, a Kenyan fermented milk.

    Science.gov (United States)

    Nyambane, Bitutu; Thari, William M; Wangoh, John; Njage, Patrick M K

    2014-11-01

    Indigenous fermented milk products contain microbiota composed of technologically important species and strains which are gradually getting lost with new technologies. We investigated the microbial diversity inamabere amaruranu, a traditionally fermented milk product from Kenya. Sixteen samples of the product from different containers were obtained. One hundred and twenty isolates of lactic acid bacteria (LAB) and 67 strains of yeasts were identified using API 50 CH and API 20 C AUX identification kits, respectively. The average pH of all the traditional fermented samples was 4.00 ± 0.93. Lactobacilli, yeasts, and molds as well asEnterobacteriaceae counts from the plastic containers were significantly higher (P plastic containers. The LAB species were identified asStreptococcus thermophilus (25%),Lactobacillus plantarum (20%), andLeuconostoc mesenteroides (20%). The predominant yeasts wereSaccharomyces cerevisiae (25%),Trichosporum mucoides (15%),Candida famata (10%), andCandida albicans (10%). The type of vessel used for fermentation had no significant influence on the type of isolated and identified species. The diverse mixture of LAB and yeasts microflora forms a potential consortium for further product innovation inamabere amaruranu and other fermented milk products.

  15. Toward genome-wide identification of Bateson-Dobzhansky-Muller incompatibilities in yeast: a simulation study.

    Science.gov (United States)

    Li, Chuan; Wang, Zhi; Zhang, Jianzhi

    2013-01-01

    The Bateson-Dobzhansky-Muller (BDM) model of reproductive isolation by genetic incompatibility is a widely accepted model of speciation. Because of the exceptionally rich biological information about the budding yeast Saccharomyces cerevisiae, the identification of BDM incompatibilities in yeast would greatly deepen our understanding of the molecular genetic basis of reproductive isolation and speciation. However, despite repeated efforts, BDM incompatibilities between nuclear genes have never been identified between S. cerevisiae and its sister species S. paradoxus. Such negative results have led to the belief that simple nuclear BDM incompatibilities do not exist between the two yeast species. Here, we explore an alternative explanation that such incompatibilities exist but were undetectable due to limited statistical power. We discover that previously employed statistical methods were not ideal and that a redesigned method improves the statistical power. We determine, under various sample sizes, the probabilities of identifying BDM incompatibilities that cause F1 spore inviability with incomplete penetrance, and confirm that the previously used samples were too small to detect such incompatibilities. Our findings call for an expanded experimental search for yeast BDM incompatibilities, which has become possible with the decreasing cost of genome sequencing. The improved methodology developed here is, in principle, applicable to other organisms and can help detect epistasis in general.

  16. Effect of sweet yeast bread formula on evaluating rapid mix test

    Directory of Open Access Journals (Sweden)

    Petra Dvořáková

    2011-01-01

    Full Text Available The aim of this work was to detect how different sweet yeast bread formulas influence results of rapid mix test and by the help of sensory analysis to discover consumer preferences and possible benefit and use in bakery industry. Applied raw materials (ground wheat flour T 530, yeast, sugar, salt, oil, egg, improver Hit along with basic formula were taken from the Varmužova bakery in Boršice by Buchlovice. The basic formula served as a standard (I, other six formulas were then determined (II–VII. In each formula, the rate of yeast, sugar or oil was altered in the range of ± 10% compared with the standard. Flour bread-making quality – Hagberg Falling number [s], Sedimentation index [ml], wet gluten [%], ash [%], moisture [%], binding capacity [%], granulation [%], alveographic energy [10−4J] and alveographic rate P/L – was measured. Rapid mix test and parameters like pastry weight, volume, shape, dough yield, pastry yield, baking loss, penetration and sensory analysis were determined. To establish yeast fermentation activity, Engelke fermentation test was applied. The most evident differences among the samples appeared in the volume and shape. The results of sensory analysis showed that the samples with higher rate of altered raw materials were evaluated as the best.

  17. Impedance technology reduces the enumeration time of Brettanomyces yeast during beer fermentation.

    Science.gov (United States)

    van Wyk, Sanelle; Silva, Filipa V M

    2016-12-01

    Brettanomyces yeasts are increasingly being used to produce lambic style beers and craft beers with unique flavors. Currently, the industry monitors Brettanomyces bruxellensis using time consuming plate counting. B. bruxellensis is a fastidious slow growing organism, requiring five days of incubation at 30°C for visible growth on agar plates. Thus, a need exists to develop a quicker, feasible method to enumerate this yeast. The aim of this study was therefore to determine the feasibility of using the 'direct' and 'indirect' impedance methods for the enumeration of B. bruxellensis in beer and to monitor the growth of the yeast during fermentation. The impedance methods were able to decrease the incubation time of beer samples containing Brettanomyces from 120 h down to 2 and 84 h for samples containing 10(7) and 10(3) cfu/mL, respectively. The 'indirect' method was more successful than the 'direct' method, presenting a smaller error and wider detection range. Overall, the 'indirect' impedance method is a viable alternative to plate counting for the enumeration of yeasts in the brewing industry because it decreases preparation and incubation times, thereby increasing throughput and decreasing the chance of contamination. Copyright © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Occurrence of mycotoxins and yeasts and moulds identification in corn silages in tropical climate.

    Science.gov (United States)

    Carvalho, B F; Ávila, C L S; Krempser, P M; Batista, L R; Pereira, M N; Schwan, R F

    2016-05-01

    This study was aimed to identify yeasts and moulds as well as to detect mycotoxin in corn silages in southern Minas Gerais, Brazil. Corn silages from 36 farms were sampled to analyse dry matter, crude protein, ether extract, ash, neutral detergent fibre, nonfibre carbohydrates and mycotoxins contents, yeasts and moulds population, pH and temperature values. The mycotoxins found in high frequency were aflatoxin in 77·7% of analysed samples, ochratoxin (33·3%) and zearalenone (22·2%). There was no significant correlation between the mycotoxin concentration and the presence of moulds. The pH was negatively correlated with ochratoxin concentration. Aspergillus fumigatus was identified in all silages that presented growth of moulds. Ten different yeast species were identified using the culture-dependent method: Candida diversa, Candida ethanolica, Candida rugosa, Issatchenkia orientalis, Kluyveromyces marxianus, Pichia manshurica, Pichia membranifaciens, Saccharomyces cerevisiae, Trichosporon asahii and Trichosporon japonicum. Another six different yeast species were identified using the culture-independent method. A high mycotoxin contamination rate (91·6% of the analysed silages) was observed. The results indicated that conventional culturing and PCR-DGGE should be combined to optimally describe the microbiota associated with corn silage. This study provides information about the corn silage fermentation dynamics and our findings are relevant to optimization of this silage fermentation. © 2016 The Society for Applied Microbiology.

  19. SILAC Expands its Territory to the Pathogenic Yeast, Candida albicans.

    Science.gov (United States)

    Jang, Wooyoung Eric; Kim, Min-Sik

    2018-02-13

    Quantitative proteomic analysis using SILAC, as metabolic labeling with mass spectrometry (MS), has been used as an excellent technique to measure relative abundance change in proteins and post-transitional modifications. Since its development in 2002, SILAC has proven to have unique and specific advantage compared to other labeling methods such as iTRAQ and TMT. However, SILAC has limitations in its application to human tissue/organ samples and some types of unicellular organisms that convert supplemented heavy amino acids to others. In this issue, Kaneva et al.1 introduces a new application of SILAC to a pathogen, which allows quantitative proteomics analysis to be performed without the need of arginine auxotrophs for SILAC experiment. In fungal pathogens, such as Candida albicans and other yeast family, arginine metabolism is one of the factors that helps pathogen escape host's defenses. This prevents arginine auxotrophs from being used in Candida albicans research and limits SILAC-based MS method as a choice of quantitation. However, possibilities for quantitative proteomic analysis of a pathogenic yeast Candida albicans using SILAC has now opened by Kaneva et al.1 This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  20. Wine yeast typing by MALDI-TOF MS.

    Science.gov (United States)

    Usbeck, Julia C; Wilde, Caroline; Bertrand, Dave; Behr, Jürgen; Vogel, Rudi F

    2014-04-01

    For the production of wine, the most important industrially used yeast species is Saccharomyces cerevisiae. Years of experience have shown that wine quality and property are significantly affected by the employed strain conducting the fermentation. Consequently, the ability of a strain level differentiation became an important requirement of modern winemaking. In our study, we showed that the differentiation by time-consuming and laborious biochemical and DNA-based methods to enable a constant beverage quality and characteristics can be replaced by matrix-assisted-laser-desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS), accompanied by the additional benefit of an application prediction. Mass fingerprints of 33 Saccharomyces strains, which are commonly used for varying wine fermentations, were generated by MALDI-TOF MS upon optimized sample preparation and instrument settings and analyzed by a cluster analysis for strain or ecotype-level differentiation. As a reference method, delta-PCR was chosen to study the genetic diversity of the employed strains. Finally, the cluster analyses of both methods were compared. It could be shown that MALDI-TOF MS, acting at proteome level, provides valuable information about the relationship between yeast strains and their application potential according to their MALDI mass fingerprint.

  1. Mould and yeast flora in fresh berries, grapes and citrus fruits.

    Science.gov (United States)

    Tournas, V H; Katsoudas, Eugenia

    2005-11-15

    Fresh fruits are prone to fungal contamination in the field, during harvest, transport, marketing, and with the consumer. It is important to identify fungal contaminants in fresh fruits because some moulds can grow and produce mycotoxins on these commodities while certain yeasts and moulds can cause infections or allergies. In this study, 251 fresh fruit samples including several varieties of grapes, strawberries, blueberries, raspberries, blackberries, and various citrus fruits were surface-disinfected, incubated at room temperature for up to 14 days without supplemental media, and subsequently examined for mould and yeast growth. The level of contamination (percent of contaminated items/sample) varied depending on the type of fruit. All raspberry and blackberry samples were contaminated at levels ranging from 33% to 100%, whereas 95% of the blueberry samples supported mould growth at levels between 10% and 100% of the tested berries, and 97% of strawberry samples showed fungal growth on 33-100% of tested berries. The most common moulds isolated from these commodities were Botrytis cinerea, Rhizopus (in strawberries), Alternaria, Penicillium, Cladosporium and Fusarium followed by yeasts, Trichoderma and Aureobasidium. Thirty-five percent of the grape samples tested were contaminated and supported fungal growth; the levels of contamination ranged from 9% to 80%. The most common fungi spoiling grapes were Alternaria, B. cinerea and Cladosporium. Eighty-three percent of the citrus fruit samples showed fungal growth at levels ranging from 25% to 100% of tested fruits. The most common fungi in citrus fruits were Alternaria, Cladosporium, Penicillium, Fusarium and yeasts. Less common were Trichoderma, Geotrichum and Rhizopus.

  2. Decolorization of a recalcitrant organic compound (Melanoidin by a novel thermotolerant yeast, Candida tropicalis RG-9

    Directory of Open Access Journals (Sweden)

    Tiwari Soni

    2012-06-01

    Full Text Available Abstract Background Sugarcane distilleries use molasses for ethanol production and generate large volume of effluent containing high biological oxygen demand (BOD and chemical oxygen demand (COD along with melanoidin pigment. Melanoidin is a recalcitrant compound that causes several toxic effects on living system, therefore, may be treated before disposal. The aim of this study was to isolate a potential thermotolerant melanoidin decolorizing yeast from natural resources, and optimized different physico-chemical and nutritional parameters. Results Total 24 yeasts were isolated from the soil samples of near by distillery site, in which isolate Y-9 showed maximum decolorization and identified as Candida tropicalis by Microbial Type Culture Collection (MTCC Chandigarh, India. The decolorization yield was expressed as the decrease in the absorbance at 475 nm against initial absorbance at the same wavelength. Uninoculated medium served as control. Yeast showed maximum decolorization (75% at 45°C using 0.2%, glucose; 0.2%, peptone; 0.05%, MgSO4; 0.01%, KH2PO4; pH-5.5 within 24 h of incubation under static condition. Decolorizing ability of yeast was also confirmed by high performance liquid chromatography (HPLC analysis. Conclusion The yeast strain efficiently decolorized melanoidin pigment of distillery effluent at higher temperature than the other earlier reported strains of yeast, therefore, this strain could also be used at industrial level for melanoidin decolorization as it tolerated a wide range of temperature and pH with very small amount of carbon and nitrogen sources.

  3. Sugar-fermenting yeast as an organic source of carbon dioxide to attract the malaria mosquito Anopheles gambiae.

    Science.gov (United States)

    Smallegange, Renate C; Schmied, Wolfgang H; van Roey, Karel J; Verhulst, Niels O; Spitzen, Jeroen; Mukabana, Wolfgang R; Takken, Willem

    2010-10-25

    Carbon dioxide (CO2) plays an important role in the host-seeking process of opportunistic, zoophilic and anthropophilic mosquito species and is, therefore, commonly added to mosquito sampling tools. The African malaria vector Anopheles gambiae sensu stricto is attracted to human volatiles augmented by CO2. This study investigated whether CO2, usually supplied from gas cylinders acquired from commercial industry, could be replaced by CO2 derived from fermenting yeast (yeast-produced CO2). Trapping experiments were conducted in the laboratory, semi-field and field, with An. gambiae s.s. as the target species. MM-X traps were baited with volatiles produced by mixtures of yeast, sugar and water, prepared in 1.5, 5 or 25 L bottles. Catches were compared with traps baited with industrial CO2. The additional effect of human odours was also examined. In the laboratory and semi-field facility dual-choice experiments were conducted. The effect of traps baited with yeast-produced CO2 on the number of mosquitoes entering an African house was studied in the MalariaSphere. Carbon dioxide baited traps, placed outside human dwellings, were also tested in an African village setting. The laboratory and semi-field data were analysed by a χ2-test, the field data by GLM. In addition, CO2 concentrations produced by yeast-sugar solutions were measured over time. Traps baited with yeast-produced CO2 caught significantly more mosquitoes than unbaited traps (up to 34 h post mixing the ingredients) and also significantly more than traps baited with industrial CO2, both in the laboratory and semi-field. Adding yeast-produced CO2 to traps baited with human odour significantly increased trap catches. In the MalariaSphere, outdoor traps baited with yeast-produced or industrial CO2 + human odour reduced house entry of mosquitoes with a human host sleeping under a bed net indoors. Anopheles gambiae s.s. was not caught during the field trials. However, traps baited with yeast-produced CO2 caught

  4. Sugar-fermenting yeast as an organic source of carbon dioxide to attract the malaria mosquito Anopheles gambiae

    Directory of Open Access Journals (Sweden)

    Spitzen Jeroen

    2010-10-01

    Full Text Available Abstract Background Carbon dioxide (CO2 plays an important role in the host-seeking process of opportunistic, zoophilic and anthropophilic mosquito species and is, therefore, commonly added to mosquito sampling tools. The African malaria vector Anopheles gambiae sensu stricto is attracted to human volatiles augmented by CO2. This study investigated whether CO2, usually supplied from gas cylinders acquired from commercial industry, could be replaced by CO2 derived from fermenting yeast (yeast-produced CO2. Methods Trapping experiments were conducted in the laboratory, semi-field and field, with An. gambiae s.s. as the target species. MM-X traps were baited with volatiles produced by mixtures of yeast, sugar and water, prepared in 1.5, 5 or 25 L bottles. Catches were compared with traps baited with industrial CO2. The additional effect of human odours was also examined. In the laboratory and semi-field facility dual-choice experiments were conducted. The effect of traps baited with yeast-produced CO2 on the number of mosquitoes entering an African house was studied in the MalariaSphere. Carbon dioxide baited traps, placed outside human dwellings, were also tested in an African village setting. The laboratory and semi-field data were analysed by a χ2-test, the field data by GLM. In addition, CO2 concentrations produced by yeast-sugar solutions were measured over time. Results Traps baited with yeast-produced CO2 caught significantly more mosquitoes than unbaited traps (up to 34 h post mixing the ingredients and also significantly more than traps baited with industrial CO2, both in the laboratory and semi-field. Adding yeast-produced CO2 to traps baited with human odour significantly increased trap catches. In the MalariaSphere, outdoor traps baited with yeast-produced or industrial CO2 + human odour reduced house entry of mosquitoes with a human host sleeping under a bed net indoors. Anopheles gambiae s.s. was not caught during the field trials

  5. DETERMINATION OF KILLER CHARACTER OF WINE YEAST ISOLATED FROM ISTRA

    Directory of Open Access Journals (Sweden)

    Sandi ORLIC

    2008-07-01

    Full Text Available Wild wine yeasts with killer phenotype are widespread in many wine regions of the world. The presence of killer yeasts may become particularly important in wine fermentations conducted by inoculation with selected strains of Saccharomyces cerevisiae. Wild killer yeasts may suppress selected sensitive yeasts inoculated into the must during the fermentation. The goal of this investigation was to identify killer yeast in Istra region using physiological and molecular methods. In total 50 S.cerevisiae strains were tested. Using the physiological methods 17 strains were identifi ed like killer positive and using molecular methods two strains more. Our results are in agreement with some previous ecological surveys.

  6. South Brazilian wines: culturable yeasts associated to bottled wines produced in Rio Grande do Sul and Santa Catarina.

    Science.gov (United States)

    Ramírez-Castrillón, Mauricio; Mendes, Sandra Denise Camargo; Valente, Patricia

    2017-04-01

    A comprehensive understanding of the presence and role of yeasts in bottled wines helps to know and control the organoleptic quality of the final product. The South Region of Brazil is an important wine producer, and the state of "Rio Grande do Sul" (RS) accounts for 90% of Brazilian wines. The state of "Santa Catarina" (SC) started the production in 1975, and is currently the fifth Brazilian producer. As there is little information about yeasts present in Brazilian wines, our main objective was to assess the composition of culturable yeasts associated to bottled wines produced in RS and SC, South of Brazil. We sampled 20 RS and 29 SC bottled wines produced between 2003 and 2011, and we isolated culturable yeasts in non-selective agar plates. We identified all isolates by sequencing of the D1/D2 domain of LSU rDNA or ITS1-5.8 S-ITS2 region, and comparison with type strain sequences deposited in GenBank database. Six yeast species were shared in the final product in both regions. We obtained two spoilage yeast profiles: RS with Zygosaccharomyces bailii and Pichia membranifaciens (Dekkera bruxellensis was found only in specific table wines); and SC with Dekkera bruxellensis and Pichia manshurica. Knowledge concerning the different spoilage profiles is important for winemaking practices in both regions.

  7. Yeasts in mixed deciduous forest areas of Phujong Nayoy National Park and their ability to produce xylanase and carboxymethyl cellulase

    Directory of Open Access Journals (Sweden)

    Jantaporn Thongekkaew,

    2012-04-01

    Full Text Available A total of 61 yeast strains were obtained from 132 samples collected from various sources such as soil, mushroom,flowers, fruits, tree barks and insect frass in the mixed deciduous forest areas of Phujong Nayoy National Park, Thailand.Based on D1/D2 region at the 5 end of the large subunit ribosomal RNA gene (rRNA gene region D1/D2 analysis, 39 strainswere identified as ascomycetous yeasts and distributed to 7 genera i.e. Blastobotrys, Candida, Debaryomyces, Dipodascus,Kodamaea, Pichia and Torulaspora. Twenty strains were identified as basidiomycetous yeasts which belonged to the generaAsterotremella, Cryptococcus, Sporidiobolus and Trichosporon. Another two strains of yeast-like fungi were belonged togenus Aureobasidium. The predominant genus was Candida with a 31.14% contribution. For testing of xylanase and carboxymethylcellulase production of the 61 strains of yeasts and yeast-like fungi, Candida glabrata and Aureobasidiumpullulans showed xylanase activity of 0.91 and 0.52 UmL-1, respectively, and carboxymethyl cellulase activity of 0.38 and0.44 UmL-1, respectively.

  8. Yeast Autolysis in Sparkling Wine Aging: Use of Killer and Sensitive Saccharomyces cerevisiae Strains in Co-Culture.

    Science.gov (United States)

    Lombardi, Silvia Jane; De Leonardis, Antonella; Lustrato, Giuseppe; Testa, Bruno; Iorizzo, Massimo

    2015-01-01

    Sparkling wines produced by traditional method owe their characteristics to secondary fermentation and maturation that occur during a slow ageing in bottles. Yeast autolysis plays an important role during the sparkling wine aging. Using a combination of killer and sensitive yeasts is possible to accelerate yeast autolysis and reduce maturing time. killer and sensitive Saccharomyces cerevisiae strains, separately and in co-cultures, were inoculated in base wine and bottled on pilot-plant scale. Commercial Saccaromyces bayanus strain was also investigated. Protein free amino acid and polysaccharides contents and sensory analysis were determined on the wine samples at 3, 6 and 9 months of aging. Yeast autolysis that occurs during the production of sparkling wines, obtained with co-cultures of killer and sensitive strains, has influenced free amino acids, total protein and polysaccharides content after 3 months aging time: sparkling wines, produced without the use of these yeasts, have reached the same results only after 9 months aging time. These results demonstrate that killer and sensitive yeasts in co-culture can accelerate the onset of autolysis in enological conditions, and has a positive effect on the quality of the aroma and flavor of sparkling wine. This paper offers an interesting biotechnological method to reduce production time of sparkling wine with economical benefits for the producers. We revised all patents relating to sparkling wine considering only those of interest for our study.

  9. Species accumulation curves and incidence-based species richness estimators to appraise the diversity of cultivable yeasts from beech forest soils.

    Science.gov (United States)

    Yurkov, Andrey M; Kemler, Martin; Begerow, Dominik

    2011-01-01

    Yeast-like fungi inhabit soils throughout all climatic zones in a great abundance. While recent estimations predicted a plethora of prokaryotic taxa in one gram of soil, similar data are lacking for fungi, especially yeasts. We assessed the diversity of soil yeasts in different forests of central Germany using cultivation-based techniques with subsequent identification based on rDNA sequence data. Based on experiments using various pre-cultivation sample treatment and different cultivation media we obtained the highest number of yeasts by analysing mixed soil samples with a single nutrient-rich medium. Additionally, several species richness estimators were applied to incidence-based data of 165 samples. All of them predicted a similar range of yeast diversity, namely 14 to 16 species. Randomized species richness curves reached saturation in all applied estimators, thus indicating that the majority of species is detected after approximately 30 to 50 samples analysed. In this study we demonstrate that robust species identification as well as mathematical approaches are essential to reliably estimate the sampling effort needed to describe soil yeast communities. This approach has great potential for optimisation of cultivation techniques and allows high throughput analysis in the future.

  10. Inventions on baker's yeast strains and specialty ingredients.

    Science.gov (United States)

    Gélinas, Pierre

    2009-06-01

    Baker's yeast is one of the oldest food microbial starters. Between 1927 and 2008, 165 inventions on more than 337 baker's yeast strains were patented. The first generation of patented yeast strains claimed improved biomass yield at the yeast plant, higher gassing power in dough or better survival to drying to prepare active dry baker's yeast. Especially between 1980 and 1995, a major interest was given to strains for multiple bakery applications such as dough with variable sugar content and stored at refrigeration (cold) or freezing temperatures. During the same period, genetically engineered yeast strains became very popular but did not find applications in the baking industry. Since year 2000, patented baker's yeast strains claimed aroma, anti-moulding or nutritive properties to better meet the needs of the baking industry. In addition to patents on yeast strains, 47 patents were issued on baker's yeast specialty ingredients for niche markets. This review shows that patents on baker's yeast with improved characteristics such as aromatic or nutritive properties have regularly been issued since the 1920's. Overall, it also confirms recent interest for a very wide range of tailored-made yeast-based ingredients for bakery applications.

  11. The Role of Magnesium and Calcium in Governing Yeast Agglomeration

    Directory of Open Access Journals (Sweden)

    Rosslyn M. Birch

    2002-01-01

    Full Text Available »Grit« formation by agglomerating cells of baker’s yeast is an idiosyncratic phenomenon of irreversible cellular aggregation that is detrimental to yeast quality. Agglomeration results in failure of rehydrated dried yeast to evenly resuspend and has economic consequences for both yeast manufacturers and bakers. Several environmental factors are implicated in governing yeast agglomeration, but no significant differences between 'gritty' and 'non-gritty' yeast in terms of cell hydrophobicity or flocculence have been reported. In this study, analysis of cellular metal ions has revealed high levels of calcium in 'gritty' strains of Saccharomyces cerevisiae, which suggests that calcium ions may positively influence agglomeration. In contrast, it was found that cellular magnesium levels were higher in 'non-gritty' yeast. Furthermore, by increasing magnesium concentrations in molasses yeast growth media, a reduction in cellular calcium was observed and this concomitantly reduced the tendency of cells to agglomerate and form grit. Magnesium thus acted antagonistically against calcium-induced agglomeration, possibly by blocking calcium binding to yeast cell surface receptors. Results suggested that yeast agglomeration and metal ion bioavailability were inextricably linked and the findings are discussed in relation to possible measures of alleviating cellular agglomeration in the production of baker’s yeast.

  12. Isolation and Kinetic Characterization of Fumarase from Baker's Yeast

    Directory of Open Access Journals (Sweden)

    Vasić-Rački, D.

    2012-05-01

    Full Text Available Isolation and purification of fumarase (fumarate hydratase EC 4.2.1.2 from baker’s yeast was carried out. Yeast cells were disrupted by three methods: glass beads, ultrasound, and the combination of these two methods. Cell disruption methods were compared in their efficiency in Fig. 1. Protein fractionation was carried out by precipitation with ammonium sulphate. The concentrations of ammonium sulphate necessary for fumarase precipitation were found ex- perimentally and are presented in Fig. 2. After precipitation, fumarase samples were purified by gel filtration chromatography on columns filled with Sephadex G50 and Sephadex G100. Examples of the elution curve of one protein suspension sample on both columns are presented in Fig. 3 and Fig. 4. Only the samples having high fumarase activity were used in the next purifying step. Table 1 presents the collective results of the fumarase purification procedure. The tech- niques used enabled purification of fumarase with a yield of 25 %. The purified enzyme was employed in the hydration of fumaric acid to L-malic acid. Kinetic constants of fumarase were estimated and are presented in Table 2. They were determined from the experimental data measured by the initial reaction rate method. The hydration of fumaric acid to L-malic acid was carried out in a batch reactor and the results are presented in Fig. 5. The kinetic model was developed on the basis of kinetic data and reaction scheme, as presented by equations 1 and 2. It was combined with the mass balances in the batch reactor presented by equations 3 and 4. Considering that fumarase deactivation occurs, it was proposed that the activity loss could be described by a first-order kinetic model (equation 5. Fumarase activity was followed during the batch experiment by the enzyme assay and it was found that activity decay occurs. Deactivation constant was estimated from the independent experimental results and found to be 0.0031 min–1.

  13. Baker's yeast: production of D- and L-3-hydroxy esters

    DEFF Research Database (Denmark)

    Dahl, Allan Carsten; Madsen, Jørgen Øgaard

    1998-01-01

    Baker's yeast grown under oxygen limited conditions and used in the reduction of 3-oxo esters results in a shift of the stereoselectivity of the yeast towards D-hydroxy esters as compared with ordinary baker's yeast. The highest degree of stereoselectivity was obtained with growing yeast or yeast...... harvested while growing. In contrast, the stereoselectivity was shifted towards L-hydroxy esters when the oxo esters were added slowly to ordinary baker's yeast supplied with gluconolactone as co-substrate. The reduction rate with gluconolactone was increased by active aeration. Ethyl L-(S)-3......-hydroxybutanoate was afforded in >99% ee. Both enantiomers of ethyl 3-hydroxypentanoate, D-(R) in 96% ee and L-(S) in 93% ee, and of ethyl 4-chloro-3-hydroxybutanoate, D-(S) in 98% ee and L-(R) in 94% ee, were obtained. The results demonstrate that the stereoselectivity of baker's yeast can be controlled...

  14. Diversity of yeast and mold species from a variety of cheese types.

    Science.gov (United States)

    Banjara, Nabaraj; Suhr, Mallory J; Hallen-Adams, Heather E

    2015-06-01

    To generate a comprehensive profile of viable fungi (yeasts and molds) on cheese as it is purchased by consumers, 44 types of cheese were obtained from a local grocery store from 1 to 4 times each (depending on availability) and sampled. Pure cultures were obtained and identified by DNA sequence of the ITS region, as well as growth characteristics and colony morphology. The yeast Debaryomyces hansenii was the most abundant fungus, present in 79 % of all cheeses and 63 % of all samples. Penicillium roqueforti was the most common mold, isolated from a variety of cheeses in addition to the blue cheeses. Eighteen other fungal species were isolated, ten from only one sample each. Most fungi isolated have been documented from dairy products; a few raise potential food safety concerns (i.e. Aspergillus flavus, isolated from a single sample and capable of producing aflatoxins; and Candida parapsilosis, an emerging human pathogen isolated from three cheeses). With the exception of D. hansenii (present in most cheese) and P. roqueforti (a necessary component of blue cheese), no strong correlation was observed between cheese type, manufacturer, or sampling time with the yeast or mold species composition.

  15. Modification of the feeding behavior of dairy cows through live yeast supplementation.

    Science.gov (United States)

    DeVries, T J; Chevaux, E

    2014-10-01

    The objective of this study was to determine if the feeding behavior of dairy cows is modified through live yeast supplementation. Twelve lactating Holstein dairy cows (2 primiparous and 10 multiparous) were individually exposed, in a replicated crossover design, to each of 2 treatment diets (over 35-d periods): (1) a control TMR and (2) a control TMR plus 1 × 10(10) cfu/head per day of live yeast (Saccharomyces cerevisiae CNCM I-1077; Levucell SC20; Lallemand Animal Nutrition, Montreal, QC, Canada). Milk production, feeding, and rumination behavior were electronically monitored for each animal for the last 7 d of each treatment period. Milk samples were collected for the last 6 d of each period for milk component analysis. Dry matter intake (28.3 kg/d), eating time (229.3 min/d), and rate (0.14 kg of dry matter/min) were similar between treatments. With yeast supplementation, meal criteria (minimum intermeal interval) were shorter (20.0 vs. 25.8 min), translating to cows tending to have more meals (9.0 vs. 7.8 meals/d), which tended to be smaller in size (3.4 vs. 3.8 kg/meal). Yeast-supplemented cows also tended to ruminate longer (570.3 vs. 544.9 min/d). Milk yield (45.8 kg/d) and efficiency of production (1.64 kg of milk/kg of dry matter intake) were similar between treatments. A tendency for higher milk fat percent (3.71 vs. 3.55%) and yield (1.70 vs. 1.63 kg/d) was observed when cows were supplemented with yeast. No differences in milk fatty acid composition were observed, with the exception of a tendency for a greater concentration of 18:2 cis-9,cis-12 fatty acid (2.71 vs. 2.48% of total fatty acids) with yeast supplementation. Yeast-supplemented cows had lower mean ruminal temperature (38.4 vs. 38.5 °C) and spent less time with rumen temperature above 39.0 °C (353.1 vs. 366.9 min/d), potentially indicating improved rumen pH conditions. Overall, the results show that live yeast supplementation tended to improve meal patterns and rumination, rumen

  16. Microscopic examination in quantifying of Malassezia yeast in scalp and rapid diagnosis of fungi invasive condition: a brief report

    Directory of Open Access Journals (Sweden)

    Mahdi Zareei

    2013-08-01

    Full Text Available Background: Malassezia Species are often commensal of the human skin and scalp that opportunistically in exist of particular predisposing factors, their proliferation increases; as, in dandruff and seborrheic dermatitis which both togather affect more than 50% of humans, the excess proliferation of yeast in scalp, leads to scalp-flaking and causes physical and mental disorder in peaple, spacially in youth that their health and hiar hygiene and beauty is more important for them. Thus, this survey has been done for rapid, easy and inexpensive method to diagnosis of abnormal proliferation and invasive condition of Malassezia yeast and can be more benefical for proper treatment.Methods: Sampling with scalpel scraping from scalp of volunteer persons that had not bathed at least two day ago were done and preparation of direct microscopic slides and staining with methylene blue were accomplished. Then, survey of morpholgic characte-ristics, yeast quantification and mycelium detection were done by direct microscopic examination.Results: From 140 scalp samples of adult persons of both gender (male and female with different age groups, observation of malassezia yeast in 93.5% (131 were positive and 6.5% (9 were negative in direct microscopic examination. Results of yeast quanti-fication in positive cases were: mild or normal flora 25.2%, intermediate 24.5%, severe 50.3%. Detection of mycelium in positive cases were 22.9% (30 (P=0.007 df=2.Conclusion: Application of an accessible, easy and inexpensive method and a determi-nated pattern (yeast quantification with direct microscopic examination to distinguish normal flora from abnormal condition (excess proliferation and mycelium production in cases of Malassezia yeasts can be more useful to rapid diagnosis of abnormal pro-liferation and invasive condition in order to initiate a proper antifungal treatment.

  17. A Novel Radiation-Resistant Yeast, Filobasidium elegans RRY1

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Harinder; Kim, Ha Ram; Song, Hyun Pa; Lim, Sang Yong; Kim, Dong Ho [Korea Atomic Energy Research Institute, Jeongeup (Korea, Republic of)

    2012-05-15

    The tolerance to ionizing radiation stress is present among different classes and species of organisms. As listed by Rainey et al., ionizing radiation resistant organisms were isolated from a variety of different sources like processed/canned food items, paper industry, soil and water samples. Apart from extensively reported bacteria and Archea group, many fungal species like Aspergillus, Curvularia, Alternaria, Cryptococcus, and Ustilago maydis have been found to be resistant to ionizing radiation. However, different environmental sources are constantly been explored for novel radioresistant organisms, which can help in understanding the molecular mechanism behind these extreme stress responses. On the basis of this, present study was initiated to find novel radiation resistant yeast from sea water source

  18. Metschnikowia orientalis sp. nov., an Australasian yeast from nitidulid beetles.

    Science.gov (United States)

    Lachance, Marc-André; Bowles, Jane M; Wiens, Frank; Dobson, Jessica; Ewing, Curtis P

    2006-10-01

    A novel species, Metschnikowia orientalis sp. nov., is described for haploid, heterothallic yeasts isolated from nitidulid beetles sampled in flowers in Rarotonga in the Cook Islands, and the Cameron Highlands of Malaysia. As evidenced by analysis of D1/D2 large subunit rDNA sequences, the species is related to Candida hawaiiana, to which it is similar in growth responses. Cylindrical, conjugated asci and acicular ascospores of moderate size are formed. Rudimentary mating reactions were observed with Metschnikowia aberdeeniae and Metschnikowia continentalis, but not with C. hawaiiana. The type strain of M. orientalis is UWOPS 99-745.6(T) (h(+)) (=CBS 10331(T)=NRRL Y-27991(T)) and the designated allotype is UWOPS 05-269.1 (h(-)) (=CBS 10330=NRRL Y-27992).

  19. Yeasts and hygienic-sanitary microbial indicators in water buffalo mozzarella produced and commercialized in Minas Gerais, Brazil

    Science.gov (United States)

    Facchin, Susanne; Barbosa, Anne C.; Carmo, Luiz S.; Silva, Maria Crisolita C.; Oliveira, Afonso L.; Morais, Paula B.; Rosa, Carlos A.

    2013-01-01

    The aim of this work was to study the yeast populations and the main hygienic-sanitary microbial indicators in water buffalo mozzarella produced and commercialized in Minas Gerais, Brazil. Forty-two water buffalo mozzarella samples were purchased from retail outlets in Belo Horizonte. In addition, five samples of consecutive starter cultures, curd before acidification, acidified curd and mozzarella were collected at an industry in the city of Oliveira. Only three of the five water samples analyzed were suitable for consumption according to Brazilian sanitary standards. Four milk samples were highly contaminated with fecal coliforms, and did not meet the minimal hygienic-sanitary standards according to Brazilian regulations. Only one sample of buffalo muzzarela purchased from retail outlets exceeded the limit for coagulase-positive Staphylococcus. Eleven samples showed counts of thermotolerant coliforms higher than 5 × 103 CFU.g−1, but still lower than the maximum permitted by the Brazilian laws. Salmonella spp. and Listeria monocytogenes were not isolated. Debaryomyces hansenii, Candida lusitaniae and C. parapsilosis were the prevalent yeast species isolated from cheese. Among samples from the production stages, the acidified curd presented the highest numbers of yeasts, with C. catenulata being the most frequent species isolated. Some opportunistic yeast species such as C. guilliermondii, C. tropicalis, C. parapsilosis, C. lusitaniae, C. catenulata, C. rugosa and C. krusei occurred in the mozzarella cheese samples analyzed. The mozzarella cheese presented a low microbial load as compared to other cheese already studied, and the yeast biota included species typical of cheese and also opportunistic pathogens. PMID:24516436

  20. Evaluation of fungal and yeast diversity in Slovakian wine-related microbial communities.

    Science.gov (United States)

    Brežná, Barbara; Zenišová, Katarína; Chovanová, Katarína; Chebeňová, Viera; Kraková, Lucia; Kuchta, Tomáš; Pangallo, Domenico

    2010-11-01

    Since the yeast flora of Slovakian enology has not previously been investigated by culture-independent methods, this approach was applied to two most common cultivars Frankovka (red wine) and Veltlin (white wine), and complemented by cultivation. Model samples included grapes, initial must, middle fermenting must and must in the end-fermentation phase. The cultured isolates were characterized by length polymorphism of rDNA spacer two region using fluorescence PCR and capillary electrophoresis (f-ITS PCR), and some were identified by sequencing. The microbial DNA extracted directly from the samples without cultivation was analysed by f-ITS PCR, amplicons were cloned and sequenced. The use of universal fungal primers led to detection of both yeasts and filamentous fungi. The amplicon of highest intensity and present in all the samples corresponded to Hanseniaspora uvarum. Other species demonstrated by both approaches included Saccharomyces sp., Metschnikowia pulcherrima or M. chrysoperlae, Candida zemplinina, Cladosporium cladosporioides, Botryotinia fuckeliana, Pichia anomala, Candida railenensis, Cryptococcus magnus, Metschnikowia viticola or Candida kofuensis, Pichia kluyveri or Pichia fermentas, Pichia membranifaciens, Aureobasidium pullulans, Alternaria alternata, Erysiphe necator, Rhodotorula glutinis, Issatchenkia terricola and Debaryomyces hansenii. Endemism of Slovakian enological yeasts was suggested on the level of minor genetic variations of the known species and probably not accounting for novel species. The prevalence of H. uvarum over Saccharomyces sp. in the samples was indicated. This is the first culture-independent study of Slovakian enology and the first time f-ITS PCR profiling was used on wine-related microbial communities.

  1. Patulin biodegradation by marine yeast Kodameae ohmeri.

    Science.gov (United States)

    Dong, Xiaoyan; Jiang, Wei; Li, Chunsheng; Ma, Ning; Xu, Ying; Meng, Xianghong

    2015-01-01

    Patulin contamination of fruit- and vegetable-based products had become a major challenge for the food industry. Biological methods of patulin control can play an important role due to their safety and high efficiency. In this study, a strain of marine yeast with high patulin degradation ability was screened. The yeast was identified as Kodameae ohmeri by the BioLog identification system and partial 26S rRNA gene sequencing. The degradation products of patulin were identified as (E)- and (Z)-ascladiol through HPLC and LC-TOF/MS. High patulin tolerance at 100 μg ml(-1) and a high degradation rate at 35°C at a pH between 3 and 6 indicates the potential application of K. ohmeri for patulin detoxification of apple-derived products.

  2. Made for Each Other: Ascomycete Yeasts and Insects.

    Science.gov (United States)

    Blackwell, Meredith

    2017-06-01

    Fungi and insects live together in the same habitats, and many species of both groups rely on each other for success. Insects, the most successful animals on Earth, cannot produce sterols, essential vitamins, and many enzymes; fungi, often yeast-like in growth form, make up for these deficits. Fungi, however, require constantly replenished substrates because they consume the previous ones, and insects, sometimes lured by volatile fungal compounds, carry fungi directly to a similar, but fresh, habitat. Yeasts associated with insects include Ascomycota (Saccharomycotina, Pezizomycotina) and a few Basidiomycota. Beetles, homopterans, and flies are important associates of fungi, and in turn the insects carry yeasts in pits, specialized external pouches, and modified gut pockets. Some yeasts undergo sexual reproduction within the insect gut, where the genetic diversity of the population is increased, while others, well suited to their stable environment, may never mate. The range of interactions extends from dispersal of yeasts on the surface of insects (e.g., cactus- Drosophila -yeast and ephemeral flower communities, ambrosia beetles, yeasts with holdfasts) to extremely specialized associations of organisms that can no longer exist independently, as in the case of yeast-like symbionts of planthoppers. In a few cases yeast-like fungus-insect associations threaten butterflies and other species with extinction. Technical advances improve discovery and identification of the fungi but also inform our understanding of the evolution of yeast-insect symbioses, although there is much more to learn.

  3. MALDI-TOF MS as a tool to identify foodborne yeasts and yeast-like fungi.

    Science.gov (United States)

    Quintilla, Raquel; Kolecka, Anna; Casaregola, Serge; Daniel, Heide M; Houbraken, Jos; Kostrzewa, Markus; Boekhout, Teun; Groenewald, Marizeth

    2018-02-02

    Since food spoilage by yeasts causes high economic losses, fast and accurate identifications of yeasts associated with food and food-related products are important for the food industry. In this study the efficiency of the matrix assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) to identify food related yeasts was evaluated. A CBS in-house MALDI-TOF MS database was created and later challenged with a blinded test set of 146 yeast strains obtained from food and food related products. Ninety eight percent of the strains were correctly identified with log score values>1.7. One strain, Mrakia frigida, gained a correct identification with a score value1.7. Ambiguous identifications were observed due to two incorrect reference mass spectra's found in the commercial database BDAL v.4.0, namely Candida sake DSM 70763 which was re-identified as Candida oleophila, and Candida inconspicua DSM 70631 which was re-identified as Pichia membranifaciens. MALDI-TOF MS can distinguish between most of the species, but for some species complexes, such as the Kazachstania telluris and Mrakia frigida complexes, MALDI-TOF MS showed limited resolution and identification of sibling species was sometimes problematic. Despite this, we showed that the MALDI-TOF MS is applicable for routine identification and validation of foodborne yeasts, but a further update of the commercial reference databases is needed. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. De novo biosynthesis of vanillin in fission yeast (Schizosaccharomyces pombe) and baker's yeast (Saccharomyces cerevisiae).

    Science.gov (United States)

    Hansen, Esben H; Møller, Birger Lindberg; Kock, Gertrud R; Bünner, Camilla M; Kristensen, Charlotte; Jensen, Ole R; Okkels, Finn T; Olsen, Carl E; Motawia, Mohammed S; Hansen, Jørgen

    2009-05-01

    Vanillin is one of the world's most important flavor compounds, with a global market of 180 million dollars. Natural vanillin is derived from the cured seed pods of the vanilla orchid (Vanilla planifolia), but most of the world's vanillin is synthesized from petrochemicals or wood pulp lignins. We have established a true de novo biosynthetic pathway for vanillin production from glucose in Schizosaccharomyces pombe, also known as fission yeast or African beer yeast, as well as in baker's yeast, Saccharomyces cerevisiae. Productivities were 65 and 45 mg/liter, after introduction of three and four heterologous genes, respectively. The engineered pathways involve incorporation of 3-dehydroshikimate dehydratase from the dung mold Podospora pauciseta, an aromatic carboxylic acid reductase (ACAR) from a bacterium of the Nocardia genus, and an O-methyltransferase from Homo sapiens. In S. cerevisiae, the ACAR enzyme required activation by phosphopantetheinylation, and this was achieved by coexpression of a Corynebacterium glutamicum phosphopantetheinyl transferase. Prevention of reduction of vanillin to vanillyl alcohol was achieved by knockout of the host alcohol dehydrogenase ADH6. In S. pombe, the biosynthesis was further improved by introduction of an Arabidopsis thaliana family 1 UDP-glycosyltransferase, converting vanillin into vanillin beta-D-glucoside, which is not toxic to the yeast cells and thus may be accumulated in larger amounts. These de novo pathways represent the first examples of one-cell microbial generation of these valuable compounds from glucose. S. pombe yeast has not previously been metabolically engineered to produce any valuable, industrially scalable, white biotech commodity.

  5. [Yeast urinary tract infections. Multicentre study in 14 hospitals belonging to the Buenos Aires City Mycology Network].

    Science.gov (United States)

    Maldonado, Ivana; Arechavala, Alicia; Guelfand, Liliana; Relloso, Silvia; Garbasz, Claudia

    2016-01-01

    Urinary tract infections are a frequent ailment in patients in intensive care units. Candida and other yeasts cause 5-12% of these infections. The value of the finding of any yeast is controversial, and there is no consensus about which parameters are adequate for differentiating urinary infections from colonization or contamination. To analyse the epidemiological characteristics of patients with funguria, to determine potential cut-off points in cultures (to distinguish an infection from other conditions), to identify the prevalent yeast species, and to determine the value of a second urine sample. A multicentre study was conducted in intensive care units of 14 hospitals in the Buenos Aires City Mycology Network. The first and second samples of urine from every patient were cultured. The presence of white cells and yeasts in direct examination, colony counts, and the identification of the isolated species, were evaluated. Yeasts grew in 12.2% of the samples. There was no statistical correlation between the number of white cells and the fungal colony-forming units. Eighty five percent of the patients had indwelling catheters. Funguria was not prevalent in women or in patients over the age of 65. Candida albicans, followed by Candida tropicalis, were the most frequently isolated yeasts. Candida parapsilosis and Candida glabrata appeared less frequently. The same species were isolated in 70% of second samples, and in 23% of the cases the second culture was negative. It was not possible to determine a useful cut-off point for colony counts to help in the diagnosis of urinary infections. As in other publications, C. albicans, followed by C. tropicalis, were the most prevalent species. Copyright © 2015 Asociación Española de Micología. Published by Elsevier Espana. All rights reserved.

  6. Biotechnology of non-Saccharomyces yeasts-the basidiomycetes.

    Science.gov (United States)

    Johnson, Eric A

    2013-09-01

    Yeasts are the major producer of biotechnology products worldwide, exceeding production in capacity and economic revenues of other groups of industrial microorganisms. Yeasts have wide-ranging fundamental and industrial importance in scientific, food, medical, and agricultural disciplines (Fig. 1). Saccharomyces is the most important genus of yeast from fundamental and applied perspectives and has been expansively studied. Non-Saccharomyces yeasts (non-conventional yeasts) including members of the Ascomycetes and Basidiomycetes also have substantial current utility and potential applicability in biotechnology. In an earlier mini-review, "Biotechnology of non-Saccharomyces yeasts-the ascomycetes" (Johnson Appl Microb Biotechnol 97: 503-517, 2013), the extensive biotechnological utility and potential of ascomycetous yeasts are described. Ascomycetous yeasts are particularly important in food and ethanol formation, production of single-cell protein, feeds and fodder, heterologous production of proteins and enzymes, and as model and fundamental organisms for the delineation of genes and their function in mammalian and human metabolism and disease processes. In contrast, the roles of basidiomycetous yeasts in biotechnology have mainly been evaluated only in the past few decades and compared to the ascomycetous yeasts and currently have limited industrial utility. From a biotechnology perspective, the basidiomycetous yeasts are known mainly for the production of enzymes used in pharmaceutical and chemical synthesis, for production of certain classes of primary and secondary metabolites such as terpenoids and carotenoids, for aerobic catabolism of complex carbon sources, and for bioremediation of environmental pollutants and xenotoxicants. Notwithstanding, the basidiomycetous yeasts appear to have considerable potential in biotechnology owing to their catabolic utilities, formation of enzymes acting on recalcitrant substrates, and through the production of unique primary

  7. Internal transcribed spacer as a target to assess yeast biodiversity in Italian Taleggio PDO cheese.

    Science.gov (United States)

    Giannino, Maria L; Buffoni, Joanna N; Massone, Elisabetta; Feligini, Maria

    2011-09-01

    Three batches of soft smear-ripened Taleggio PDO cheese were made in Northern Italy during the summertime 2010. A total of 129 isolates cultured from cheese surface were examined by using PCR-based methods and sequencing of both the ITS1 region and D1 and D2 domains of the 26S rRNA gene. Sequence analysis of isolates brought to the identification of 6 species: Debaryomyces hansenii, Kluyveromyces lactis, Kluyveromyces marxianus, Yarrowia lipolytica, Pichia guilliermondii, and Torulaspora delbrueckii. Analysis of DNA directly extracted from 45 cheese surfaces permitted to detect 2 additional species Candida sake and Candida etchellsii. D. hansenii was predominant and widespread whereas the other yeast species were detected less frequently. To determine the relationships between yeast community and the environment, 39 isolates from wooden boxes used for dry salting of cheese were analyzed as well. Sequencing of ITS1 region allowed to identify D. hansenii, T. delbrueckii, and K. lactis. ITS1 multiple sequence alignments of D. hansenii detected in wooden boxes showed an in-del polymorphism at position 169. ITS1 secondary structures of yeasts were modeled to explore new applications of this region for molecular identification purposes. This study used molecular analysis to identify adventitious yeast population present in the surface of Taleggio smear-ripened cheese. D. hansenii was found predominant in pasteurized milk, in dry salting equipment, and in all cheese samples until the end of ripening. © 2011 Institute of Food Technologists®

  8. Nanolaser Spectroscopy of Genetically Engineered Yeast: New Tool for a Better Brew?

    Science.gov (United States)

    Gourley, Paul L.; Hendricks, Judy K.; Naviaux, Robert K.; Yaffe, Michael P.

    2006-03-01

    A basic function of the cell membrane is to selectively uptake ions or molecules from its environment to concentrate them into the interior. This concentration difference results in an osmostic pressure difference across the membrane. Ultimately, this pressure and its fluctuation from cell to cell will be limited by the availability and fluctuations of the solute concentrations in solution, the extent of inter-cell communication, and the state of respiring intracellular mitochondria that fuel the process. To measure these fluctuations, we have employed a high-speed nanolaser technique that samples the osmotic pressure in individual yeast cells and isolated mitochondria. We analyzed 2 yeast cell strains, normal baker’s yeast and a genetically-altered version, that differ only by the presence of mitochondrial DNA. The absence of mitochondrial DNA results in the complete loss of all the mtDNA-encoded proteins and RNAs, and loss of the pigmented, heme-containing cytochromes. These cells have mitochondria, but the mitochondria lack most normal respiratory chain complexes. The frequency distributions in the nanolaser spectra produced by wild-type and modified cells and mitochondria show a striking shift from Gaussian to Poissonian distributions, revealing a powerful novel method for studying statistical physics of yeast.

  9. Antifungal Activity of Brazilian Propolis Microparticles against Yeasts Isolated from Vulvovaginal Candidiasis

    Directory of Open Access Journals (Sweden)

    Kelen Fátima Dalben Dota

    2011-01-01

    Full Text Available Propolis, a resinous compound produced by Apis mellifera L. bees, is known to possess a variety of biological activities and is applied in the therapy of various infectious diseases. The aim of this study was to evaluate the in vitro antifungal activity of propolis ethanol extract (PE and propolis microparticles (PMs obtained from a sample of Brazilian propolis against clinical yeast isolates of importance in the vulvovaginal candidiasis (VVC. PE was used to prepare the microparticles. Yeast isolates (n=89, obtained from vaginal exudates of patients with VVC, were exposed to the PE and the PMs. Moreover, the main antifungal drugs used in the treatment of VVC (Fluconazole, Voriconazole, Itraconazole, Ketoconazole, Miconazole and Amphotericin B were also tested. Minimum inhibitory concentration (MIC was determined according to the standard broth microdilution method. Some Candida albicans isolates showed resistance or dose-dependent susceptibility for the azolic drugs and Amphotericin B. Non-C. albicans isolates showed more resistance and dose-dependent susceptibility for the azolic drugs than C. albicans. However, all of them were sensitive or dose-dependent susceptible for Amphotericin B. All yeasts were inhibited by PE and PMs, with small variation, independent of the species of yeast. The overall results provided important information for the potential application of PMs in the therapy of VVC and the possible prevention of the occurrence of new symptomatic episodes.

  10. Spectral characterization of yeast cells with an epitaxy-based UV-Vis optical sensor.

    Science.gov (United States)

    Bercu, M; Zhou, X; Lee, A C; Poenar, D P; Heng, C K; Tan, S N

    2006-06-01

    The optical spectra of yeast cells in phosphate buffer saline (PBS) were analyzed with an optical UV-vis sensor based on a shallow p(+)n junction realized in a low doped n-type epitaxial silicon layer grown on a strongly doped n(+) substrate. The presence of the n/n(+) interface allows a significantly enhanced sensitivity, due to an increased collection of carriers photogenerated both by short and large wavelengths in the range 250...800 nm. In our experiments the optical absorption of yeast cells was investigated in the wavelength range 250...500 nm as a function of the cells concentration in PBS in the range of 6 x 10(6)-2 x 10(8) cells/ml. The main absorption peaks were found at 310, 350, 400 and 427 nm, respectively. A significant red shift of the wide absorption band at 427 nm has been observed when increasing cell concentration. This red shift behaviour was nonlinear, with saturation observed for yeast concentrations larger than 5 x 10(7) cells/ml. The half-peak bandwidth of this peak also showed a most significant nonlinear variation. These findings suggest that monitoring the parameters of the absorption band at 427 nm versus cells concentration could be used, e.g. using a dedicated integrated spectrometric microsystem, for fast quantitative measurements of yeast cell concentrations in various bio-samples, with possible applications in the food industry.

  11. Biological diversity of yeasts in the gastrointestinal tract of weaned piglets kept under different farm conditions.

    Science.gov (United States)

    Urubschurov, Vladimir; Janczyk, Pawel; Pieper, Robert; Souffrant, Wolfgang B

    2008-12-01

    The study was conducted to determine yeasts present in the gastrointestinal tract (GIT) of piglets kept under experimental farm (EF) and commercial farm (CF) conditions. Ninety five German Landrace full- and half-sibling piglets were sacrificed at 39 days of age. Sixty eight piglets were weaned at 28th day of life, when they were offered one diet ad libitum. Twenty seven piglets remained unweaned by their dams. None of the piglets received any creep feed before weaning. Digesta samples were collected from 1/3 distal small intestine (SI), caecum and proximal colon. One hundred seventy three colonies of isolated yeasts were characterized by sequence analysis of the PCR-amplified D1/D2 domain of the 26S rRNA gene with following alignment of the recovered sequences to GenBank entries. From the 17 phylotypes found, isolates most closely related to Galactomyces geotrichum, Kazachstania slooffiae and Candida catenulata dominated in the GIT of CF piglets. Kazachstania slooffiae and Candida glabrata dominated in GIT of EF piglets. Sørenson and Morisita-Horn similarity indices between farms were low (0.44 and 0.54 respectively) and the Simpson diversity index was higher for EF (7.58) than for CF (4.34). The study brings new data on yeasts composition in the pig GIT and shows differences in yeasts biodiversity between farms operated at different hygiene conditions.

  12. Detection and identification of wild yeasts in Champús, a fermented Colombian maize beverage.

    Science.gov (United States)

    Osorio-Cadavid, Esteban; Chaves-López, Clemencia; Tofalo, Rosanna; Paparella, Antonello; Suzzi, Giovanna

    2008-09-01

    The aim of this study was to identify and characterise the predominant yeasts in Champús, a traditional Colombian cereal-based beverage with a low alcoholic content. Samples of Champús from 20 production sites in the Cauca Valley region were analysed. A total of 235 yeast isolates were identified by conventional microbiological analyses and by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) of ITS1-5.8S rDNA-ITS2. The dominant species were: Saccharomyces cerevisiae, Issatchenkia orientalis, Pichia fermentans, Pichia kluyveri var. kluyveri, Zygosaccharomyces fermentati, Torulospora delbruekii, Galactomyces geotrichum and Hanseniaspora spp. Model Champús systems were inoculated with single strains of some isolated sporogenus species and the aromatic profiles were analysed by SPME. Analysis of data showed that Champús strains produced high amounts of esters. The aromatic compounds produced by Saccharomyces and non-Saccharomyces yeasts from Champús can exert a relevant influence on the sensory characteristics of the fermented beverage. The Champús strains could thus represent an important source for new yeast biotypes with potential industrial applications.

  13. The production of arabitol by a novel plant yeast isolate Candida parapsilosis 27RL-4

    Directory of Open Access Journals (Sweden)

    Kordowska-Wiater Monika

    2017-10-01

    Full Text Available Polyalcohol arabitol can be used in the food and pharmaceutical industries as a natural sweetener, a dental caries reducer, and texturing agent. Environmental samples were screened to isolate effective yeast producers of arabitol. The most promising isolate 27RL-4, obtained from raspberry leaves, was identified genetically and biochemically as Candida parapsilosis. It secreted 10.42– 10.72 g l-1 of product from 20 g l-1 of L-arabinose with a yield of 0.51 - 0.53 g g-1 at 28°C and a rotational speed of 150 rpm. Batch cultures showed that optimal pH value for arabitol production was 5.5. High yields and productivities of arabitol were obtained during incubation of the yeast at 200 rpm, or at 32°C, but the concentrations of the polyol did not exceed 10 g l-1. In modified medium, with reduced amounts of nitrogen compounds and pH 5.5-6.5, lower yeast biomass produced a similar concentration of arabitol, suggesting higher efficiency of yeast cells. This strain also produced arabitol from glucose, with much lower yields. The search for new strains able to successfully produce arabitol is important for allowing the utilization of sugars abundant in plant biomass.

  14. Effect of Protectants on the Fermentation Performance of Wine Yeasts Subjected to Osmotic Stress

    Directory of Open Access Journals (Sweden)

    Andrea Caridi

    2003-01-01

    Full Text Available During alcoholic fermentation of must from dried grapes, yeasts are subjected to very high sugar concentrations, besides other environmental stresses, and they modify their metabolic behaviour giving low ethanol yield and abnormally high acetic acid production. To investigate the protective effect of catechin, inositol, and SO2 on wine yeasts, three thermotolerant strains of Saccharomyces cerevisiae, selected for wine making of must from dried grapes, and three strains of Saccharomyces selected for the production of wine, were inoculated in a sample of must at very high osmotic strength. A significant (p<0.01 or p<0.05 relationship between the addition of 100 mg/L of catechin, inositol or SO2 to the grape must and the change in the metabolic behaviour of the yeasts was observed. Compared to the control and depending on strain and protectant, the fermentation rate after 3 days increased up to 55 %, the ethanol content of the wines increased up to 16 %, the unitary succinic acid production increased up to 55 %, the unitary acetic acid production decreased up to 53 %, and the unitary glycerol production decreased up to 69 %. So by adding catechin, inositol or SO2 to the grape must it is possible to minimise the abnormal fermentation performance that wine yeasts exhibit in wine making of must from dried grapes.

  15. An engineered yeast efficiently secreting penicillin.

    Directory of Open Access Journals (Sweden)

    Loknath Gidijala

    Full Text Available This study aimed at developing an alternative host for the production of penicillin (PEN. As yet, the industrial production of this beta-lactam antibiotic is confined to the filamentous fungus Penicillium chrysogenum. As such, the yeast Hansenula polymorpha, a recognized producer of pharmaceuticals, represents an attractive alternative. Introduction of the P. chrysogenum gene encoding the non-ribosomal peptide synthetase (NRPS delta-(L-alpha-aminoadipyl-L-cysteinyl-D-valine synthetase (ACVS in H. polymorpha, resulted in the production of active ACVS enzyme, when co-expressed with the Bacillus subtilis sfp gene encoding a phosphopantetheinyl transferase that activated ACVS. This represents the first example of the functional expression of a non-ribosomal peptide synthetase in yeast. Co-expression with the P. chrysogenum genes encoding the cytosolic enzyme isopenicillin N synthase as well as the two peroxisomal enzymes isopenicillin N acyl transferase (IAT and phenylacetyl CoA ligase (PCL resulted in production of biologically active PEN, which was efficiently secreted. The amount of secreted PEN was similar to that produced by the original P. chrysogenum NRRL1951 strain (approx. 1 mg/L. PEN production was decreased over two-fold in a yeast strain lacking peroxisomes, indicating that the peroxisomal localization of IAT and PCL is important for efficient PEN production. The breakthroughs of this work enable exploration of new yeast-based cell factories for the production of (novel beta-lactam antibiotics as well as other natural and semi-synthetic peptides (e.g. immunosuppressive and cytostatic agents, whose production involves NRPS's.

  16. Live Cell Imaging in Fission Yeast

    OpenAIRE

    Mulvihill, Daniel P.

    2017-01-01

    Live cell imaging complements the array of biochemical and molecular genetic approaches to provide a comprehensive insight into functional dependencies and molecular interactions in fission yeast. Fluorescent proteins and vital dyes reveal dynamic changes in the spatial distribution of organelles and the proteome and how each alters in response to changes in environmental and genetic composition. This introduction discusses key issues and basic image analysis for live cell imaging of fission ...

  17. Chronological aging-induced apoptosis in yeast

    OpenAIRE

    Fabrizio, Paola; Longo, Valter D.

    2008-01-01

    Saccharomyces cerevisiae is the simplest among the major eukaryotic model organisms for aging and diseases. Longevity in the chronological life span paradigm is measured as the mean and maximum survival period of populations of non-dividing yeast. This paradigm has been used successfully to identify several life-regulatory genes and three evolutionary conserved pro-aging pathways. More recently, Schizosaccharomyces pombe has been shown to age chronologically in a manner that resembles that of...

  18. Complete biosynthesis of opioids in yeast

    OpenAIRE

    Galanie, Stephanie; Thodey, Kate; Trenchard, Isis J.; Interrante, Maria Filsinger; Smolke, Christina D.

    2015-01-01

    Opioids are the primary drugs used in Western medicine for pain management and palliative care. Farming of opium poppies remains the sole source of these essential medicines despite diverse market demands and uncertainty in crop yields due to weather, climate change, and pests. Here, we engineered yeast to produce the selected opioid compounds thebaine and hydrocodone starting from sugar. All work was conducted in a laboratory that is permitted and secured for work with controlled substances....

  19. Taxonomy Icon Data: fission yeast [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available fission yeast Schizosaccharomyces pombe Schizosaccharomyces_pombe_L.png Schizosaccharomy...ces_pombe_NL.png Schizosaccharomyces_pombe_S.png Schizosaccharomyces_pombe_NS.png http://biosciencedbc.jp/taxonomy..._icon/icon.cgi?i=Schizosaccharomyces+pombe&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Schizosaccharomy...ces+pombe&t=NL http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Schizosaccharomy...ces+pombe&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Schizosaccharomyces+pombe&t=NS

  20. Ribosome biogenesis in the yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Woolford, John L; Baserga, Susan J

    2013-11-01

    Ribosomes are highly conserved ribonucleoprotein nanomachines that translate information in the genome to create the proteome in all cells. In yeast these complex particles contain four RNAs (>5400 nucleotides) and 79 different proteins. During the past 25 years, studies in yeast have led the way to understanding how these molecules are assembled into ribosomes in vivo. Assembly begins with transcription of ribosomal RNA in the nucleolus, where the RNA then undergoes complex pathways of folding, coupled with nucleotide modification, removal of spacer sequences, and binding to ribosomal proteins. More than 200 assembly factors and 76 small nucleolar RNAs transiently associate with assembling ribosomes, to enable their accurate and efficient construction. Following export of preribosomes from the nucleus to the cytoplasm, they undergo final stages of maturation before entering the pool of functioning ribosomes. Elaborate mechanisms exist to monitor the formation of correct structural and functional neighborhoods within ribosomes and to destroy preribosomes that fail to assemble properly. Studies of yeast ribosome biogenesis provide useful models for ribosomopathies, diseases in humans that result from failure to properly assemble ribosomes.

  1. Induction and construct UV protective yeast plasmid.

    Science.gov (United States)

    Cuero, Raul; McKay, David S

    2013-07-10

    In this study, we apply concepts of synthetic biology in combination with conventional methods to assemble different genetic components to construct yeast resistant to UV radiation, and to induce production of anti-UV proteins. This work combines sequences of different promoters, STRESS-proteins, heat shock protein (HSP), kinase proteins, alcohol dehydrogenase protein (ADH), ribosomal binding sites, fluorescent reporter proteins, terminators, and a synthetic ribosomal switch. The aim of this investigation was to induce an anti-UV proteins, and to construct an anti-UV yeast plasmid to be used for protection of skin cells against UV radiation. This investigation demonstrates induction and construction of anti-UV genes and production of their corresponding proteins. Cultures of Saccharomyces cerevisiae (ATCC # 66348) were exposed to short-wave UV radiation and were then subjected to time-PCR to assess specific gene expression. Proteins were identified using two dimensional difference gel electrophoresis (2D DIGE) and LC-MS/MS. Different up-regulated and down-regulated proteins were identified. Highly expressed identified proteins were cloned into S. cerevisiae using a synthetic biology approach. Extracts from UV-induced genetically transformed yeasts were used to protect skin cell cultures (ATCC #2522-CRL) in vitro. Both microscopic analysis and an apoptosis assay showed protection of the skin cell cultures against UV radiation. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Nanomaterials Enhanced Gene Expression in Yeast Cells

    Directory of Open Access Journals (Sweden)

    Su-Fang Chien

    2008-01-01

    Full Text Available Metal nanomaterials are shown to enhance gene expression for rice -galactosidase gene (-Gal in yeast cells. Au and Ag nanoparticles and their nanocomposites, silica-Au and silica-Ag, were prepared and characterized by UV-vis spectroscopy and TEM technique. The rice -galactosidase gene was cloned into the yeast chromosome, where the cloned cells were precultured and induced into a medium containing each of the testing nanomaterials. The nanomaterials were observed to incorporate inside the cells, and no cell death has been detected during the course of gene expression. The enzyme activity was determined by a synthetic substrate, p-nitrophenyl--D-galctopyranoside, and the yellow product yield was recorded in a spectrophotometer at 400 nm. When Au and Ag nanoparticles were incorporated with the culture, a 3–5 fold enhancement in -galactosidase was observed for intracellular activity as well as the secreted activity into the medium. The secreted protein was analyzed to have a pure form and displayed as a single protein band in the SDS-gel electrophoresis. The effects of size and chemical nature of nanomaterials on gene expression for the rice -galactosidase gene in yeast cells are discussed.

  3. Wood impregnation of yeast lees for winemaking.

    Science.gov (United States)

    Palomero, Felipe; Bertani, Paolo; Fernández de Simón, Brígida; Cadahía, Estrella; Benito, Santiago; Morata, Antonio; Suárez-Lepe, José A

    2015-03-15

    This study develops a new method to produce more complex wines by means of an indirect diffusion of wood aromas from yeast cell-walls. An exogenous lyophilized biomass was macerated with an ethanol wood extract solution and subsequently dried. Different times were used for the adsorption of polyphenols and volatile compounds to the yeast cell-walls. The analysis of polyphenols and volatile compounds (by HPLC/DAD and GC-MS, respectively) demonstrate that the adsorption/diffusion of these compounds from the wood to the yeast takes place. Red wines were also aged with Saccharomyces cerevisiae lees that had been impregnated with wood aromas and subsequently dried. Four different types of wood were used: chestnut, cherry, acacia and oak. Large differences were observed between the woods studied with regards to their volatile and polyphenolic profiles. Sensory evaluations confirmed large differences even with short-term contact between the wines and the lees, showing that the method could be of interest for red wine making. In addition, the results demonstrate the potential of using woods other than oak in cooperage. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Evaluation of the 3M™ Petrifilm™ Rapid Yeast and Mold Count Plate for the Enumeration of Yeast and Mold in Food: Collaborative Study, First Action 2014.05.

    Science.gov (United States)

    Bird, Patrick; Flannery, Jonathan; Crowley, Erin; Agin, James; Goins, David; Jechorek, Robert

    2015-01-01

    The 3M™ Petrifilm™ Rapid Yeast and Mold (RYM) Count Plate is a simple, ready-to-use chromogenic culture method for the rapid detection and enumeration of yeast and mold in food products. The 3M Petrifilm RYM Count Plate method was compared to the U. S. Food and Drug Administration Bacteriological Analytical Manual (FDA BAM) Chapter 18, Yeasts, Molds and Mycotoxins and the ISO 21527:2008 Microbiology of Food and Animal Feeding Stuffs-Horizontal Method for the Enumeration for Yeast and Molds - Part 1: Colony Count Technique in Products with Water Activity Greater Than 0.95 and Part 2: Colony Count Technique in Products with Water Activity Less Than or Equal to 0.95 reference methods for raw almonds and raw frozen ground beef patties (77% lean). The 3M Petrifilm RYM Count Plate method was evaluated using a paired study design in a multi-laboratory collaborative study following the current AOAC Validation Guidelines. Three target contamination levels (low, 10-100 CFU/g; medium, 100-1000 CFU/g; high 1000-10 000 CFU/g) as well as an uninoculated control level (0 CFU/g) were evaluated for each matrix. Samples evaluated by the 3M Petrifilm RYM Count Plate method were prepared in duplicate and incubated at both 25°C and 28°C. Plates at both temperatures were enumerated after 48 and 60 h of incubation. No significant difference was observed between the 3M Petrifilm RYM Count Plate method and the FDA BAM or ISO 21527 reference methods for each contamination level. No statistical differences were observed between samples analyzed by the 3M Petrifilm RYM Count Plate method (at either 25°C or 28°C) and the reference methods. No statistical significant differences were observed between enumeration of colonies at 48 and 60 h on the 3M Petrifilm RYM Count Plate method and the reference methods.

  5. Balanced sampling

    NARCIS (Netherlands)

    Brus, D.J.

    2015-01-01

    In balanced sampling a linear relation between the soil property of interest and one or more covariates with known means is exploited in selecting the sampling locations. Recent developments make this sampling design attractive for statistical soil surveys. This paper introduces balanced sampling

  6. Efficient yeast ChIP-Seq using multiplex short-read DNA sequencing

    Directory of Open Access Journals (Sweden)

    Yellman Christopher M

    2009-01-01

    Full Text Available Abstract Background Short-read high-throughput DNA sequencing technologies provide new tools to answer biological questions. However, high cost and low throughput limit their widespread use, particularly in organisms with smaller genomes such as S. cerevisiae. Although ChIP-Seq in mammalian cell lines is replacing array-based ChIP-chip as the standard for transcription factor binding studies, ChIP-Seq in yeast is still underutilized compared to ChIP-chip. We developed a multiplex barcoding system that allows simultaneous sequencing and analysis of multiple samples using Illumina's platform. We applied this method to analyze the chromosomal distributions of three yeast DNA binding proteins (Ste12, Cse4 and RNA PolII and a reference sample (input DNA in a single experiment and demonstrate its utility for rapid and accurate results at reduced costs. Results We developed a barcoding ChIP-Seq method for the concurrent analysis of transcription factor binding sites in yeast. Our multiplex strategy generated high quality data that was indistinguishable from data obtained with non-barcoded libraries. None of the barcoded adapters induced differences relative to a non-barcoded adapter when applied to the same DNA sample. We used this method to map the binding sites for Cse4, Ste12 and Pol II throughout the yeast genome and we found 148 binding targets for Cse4, 823 targets for Ste12 and 2508 targets for PolII. Cse4 was strongly bound to all yeast centromeres as expected and the remaining non-centromeric targets correspond to highly expressed genes in rich media. The presence of Cse4 non-centromeric binding sites was not reported previously. Conclusion We designed a multiplex short-read DNA sequencing method to perform efficient ChIP-Seq in yeast and other small genome model organisms. This method produces accurate results with higher throughput and reduced cost. Given constant improvements in high-throughput sequencing technologies, increasing

  7. Autochthonous yeasts associated with mature pineapple fruits, freshly crushed juice and their ferments; and the chemical changes during natural fermentation.

    Science.gov (United States)

    Chanprasartsuk, On-ong; Prakitchaiwattana, Cheunjit; Sanguandeekul, Romanee; Fleet, Graham H

    2010-10-01

    This study investigated autochthonous yeasts and their functions in the spontaneous fermentation of freshly crushed pineapple juice samples collected from two different areas of both Thailand and Australia. Hanseniaspora uvarum and Pichia guilliermondii were the main yeast species observed on the fruit skins of Thai samples, and also in the fresh juice and ferments of all samples from both countries. P. guilliermondii was consistently present as the dominant species during the early stage of the fermentation, whereas H. uvarum became more prevalent towards the end of the six-day fermentation period, with populations increasing from an initial level of approximately 5 log CFU/mL to approximately 8 log CFU/mL at the end of fermentation. The ethanol levels in samples from both regions of Thailand were maximal at 2 days of fermentation, reaching approximately 1 to 2% (v/v) but then declined thereafter. In contrast, in the Australian samples ethanol levels continued to increase over the entire six-day fermentation period and reached approximately 3 to 4% (v/v). A significant decrease in citric acid and increase in lactic acid levels were observed throughout the fermentation period in the samples from Thailand, but not in those from Australia where the different acid contents (and pH) were relatively stable. The other wine yeasts and, in particular, Saccharomyces yeasts, were not found in any of sampled fermentation systems that is apparently different from the other fruit juices. These findings suggested that the freshly crushed pineapple juice may possibly have some effects on the other autochthonous yeasts having important role in alcoholic fermentation. Copyright 2010 Elsevier Ltd. All rights reserved.

  8. Biomedical applications of yeast- a patent view, part one: yeasts as workhorses for the production of therapeutics and vaccines.

    Science.gov (United States)

    Roohvand, Farzin; Shokri, Mehdi; Abdollahpour-Alitappeh, Meghdad; Ehsani, Parastoo

    2017-08-01

    Yeasts, as Eukaryotes, offer unique features for ease of growth and genetic manipulation possibilities, making it an exceptional microbial host. Areas covered: This review provides general and patent-oriented insights into production of biopharmaceuticals by yeasts. Patents, wherever possible, were correlated to the original or review articles. The review describes applications of major GRAS (generally regarded as safe) yeasts for the production of therapeutic proteins and subunit vaccines; additionally, immunomodulatory properties of yeast cell wall components were reviewed for use of whole yeast cells as a new vaccine platform. The second part of the review will discuss yeast- humanization strategies and innovative applications. Expert opinion: Biomedical applications of yeasts were initiated by utilization of Saccharomyces cerevisiae, for production of leavened (fermented) products, and advanced to serve to produce biopharmaceuticals. Higher biomass production and expression/secretion yields, more similarity of glycosylation patterns to mammals and possibility of host-improvement strategies through application of synthetic biology might enhance selection of Pichia pastoris (instead of S. cerevisiae) as a host for production of biopharmaceutical in future. Immunomodulatory properties of yeast cell wall β-glucans and possibility of intracellular expression of heterologous pathogen/tumor antigens in yeast cells have expanded their application as a new platform, 'Whole Yeast Vaccines'.

  9. Taming wild yeast: potential of conventional and nonconventional yeasts in industrial fermentations.

    Science.gov (United States)

    Steensels, Jan; Verstrepen, Kevin J

    2014-01-01

    Yeasts are the main driving force behind several industrial food fermentation processes, including the production of beer, wine, sake, bread, and chocolate. Historically, these processes developed from uncontrolled, spontaneous fermentation reactions that rely on a complex mixture of microbes present in the environment. Because such spontaneous processes are generally inconsistent and inefficient and often lead to the formation of off-flavors, most of today's industrial production utilizes defined starter cultures, often consisting of a specific domesticated strain of Saccharomyces cerevisiae, S. bayanus, or S. pastorianus. Although this practice greatly improved process consistency, efficiency, and overall quality, it also limited the sensorial complexity of the end product. In this review, we discuss how Saccharomyces yeasts were domesticated to become the main workhorse of food fermentations, and we investigate the potential and selection of nonconventional yeasts that are often found in spontaneous fermentations, such as Brettanomyces, Hanseniaspora, and Pichia spp.

  10. Lactic acid bacteria and yeasts involved in the fermentation ofamabere amaruranu, a Kenyan fermented milk

    OpenAIRE

    Nyambane, Bitutu; Thari, William M; Wangoh, John; Njage, Patrick M K

    2014-01-01

    Indigenous fermented milk products contain microbiota composed of technologically important species and strains which are gradually getting lost with new technologies. We investigated the microbial diversity inamabere amaruranu, a traditionally fermented milk product from Kenya. Sixteen samples of the product from different containers were obtained. One hundred and twenty isolates of lactic acid bacteria (LAB) and 67 strains of yeasts were identified using API 50 CH and API 20 C AUX identific...

  11. Yeasts and moulds contaminants of food ice cubes and their survival in different drinks.

    Science.gov (United States)

    Francesca, N; Gaglio, R; Stucchi, C; De Martino, S; Moschetti, G; Settanni, L

    2018-01-01

    To evaluate the levels of unicellular and filamentous fungi in ice cubes produced at different levels and to determine their survival in alcoholic beverages and soft drinks. Sixty samples of ice cubes collected from home level (HL) productions, bars and pubs (BP) and industrial manufacturing plants (MP) were investigated for the presence and cell density of yeasts and moulds. Moulds were detected in almost all samples, while yeasts developed from the majority of HL and MP samples. Representative colonies of microfungi were subjected to phenotypic and genotypic characterization. The identification was carried out by restriction fragment length polymorphism (RFLP) analysis of the region spanning the internal transcribed spacers (ITS1 and ITS2) and the 5·8S rRNA gene. The process of yeast identification was concluded by sequencing the D1/D2 region of the 26S rRNA gene. The fungal biodiversity associated with food ice was represented by nine yeast and nine mould species. Strains belonging to Candida parapsilosis and Cryptococcus curvatus, both opportunistic human pathogens, and Penicillium glabrum, an ubiquitous mould in the ice samples analysed, were selected to evaluate the effectiveness of the ice cubes to transfer pathogenic microfungi to consumers, after addition to alcoholic beverages and soft drinks. All strains retained their viability. The survival test indicated that the most common mode of consumption of ice cubes, through its direct addition to drinks and beverages, did not reduce the viability of microfungi. This study evidenced the presence of microfungi in food ice and ascertained their survival in soft drinks and alcoholic beverages. © 2017 The Society for Applied Microbiology.

  12. Not your ordinary yeast: non-Saccharomyces yeasts in wine production uncovered.

    Science.gov (United States)

    Jolly, Neil P; Varela, Cristian; Pretorius, Isak S

    2014-03-01

    Saccharomyces cerevisiae and grape juice are 'natural companions' and make a happy wine marriage. However, this relationship can be enriched by allowing 'wild' non-Saccharomyces yeast to participate in a sequential manner in the early phases of grape must fermentation. However, such a triangular relationship is complex and can only be taken to 'the next level' if there are no spoilage yeast present and if the 'wine yeast' - S. cerevisiae - is able to exert its dominance in time to successfully complete the alcoholic fermentation. Winemakers apply various 'matchmaking' strategies (e.g. cellar hygiene, pH, SO2 , temperature and nutrient management) to keep 'spoilers' (e.g. Dekkera bruxellensis) at bay, and allow 'compatible' wild yeast (e.g. Torulaspora delbrueckii, Pichia kluyveri, Lachancea thermotolerans and Candida/Metschnikowia pulcherrima) to harmonize with potent S. cerevisiae wine yeast and bring the best out in wine. Mismatching can lead to a 'two is company, three is a crowd' scenario. More than 40 of the 1500 known yeast species have been isolated from grape must. In this article, we review the specific flavour-active characteristics of those non-Saccharomyces species that might play a positive role in both spontaneous and inoculated wine ferments. We seek to present 'single-species' and 'multi-species' ferments in a new light and a new context, and we raise important questions about the direction of mixed-fermentation research to address market trends regarding so-called 'natural' wines. This review also highlights that, despite the fact that most frontier research and technological developments are often focussed primarily on S. cerevisiae, non-Saccharomyces research can benefit from the techniques and knowledge developed by research on the former. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  13. Frontiers of yeast metabolic engineering: diversifying beyond ethanol and Saccharomyces.

    Science.gov (United States)

    Liu, Leqian; Redden, Heidi; Alper, Hal S

    2013-12-01

    Microbial systems provide an attractive, renewable route to produce desired organic molecules such as fuels and chemicals. While attention within the field of metabolic engineering has mostly focused on Escherichia coli, yeast is a potent host and growing host for industrial products and has many outstanding, biotechnologically desirable native traits. Thus, there has been a recent shift in focus toward yeast as production hosts to replace E. coli. As such, products have diversified in yeast beyond simply ethanol. Additionally, nonconventional yeasts have been considered to move beyond Saccharomyces cerevisiae. This review highlights recent advances in metabolic engineering of yeasts for producing value-added chemical compounds including alcohols, sugar derivatives, organic acids, fats, terpenes, aromatics, and polyketides. Furthermore, we will also discuss the future direction of metabolic engineering of yeasts. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Biosorption of nickel by yeasts in an osmotically unsuitable environment

    Energy Technology Data Exchange (ETDEWEB)

    Breierova, Emilia; Kovarova, Annamaria [SAS, Bratislava (Slovakia). Inst. of Chemistry; Certik, Milan [SUT, Bratislava (Slovakia). Dept. of Biochemical Technology; Gregor, Tomas [Mendel Univ. of Agriculture and Forestry, Brno (Czech Republic)

    2008-11-15

    The tolerance, sorption of nickel(II) ions, and changes in the production and composition of exopolymers of eight yeast strains grown under nickel presence with/without NaCl were studied. Strains of Pichia anomala and Candida maltosa known as the most resistant yeasts against nickel tolerated up to 3 mm Ni{sup 2+}. NaCl addition decreased both the resistance ofthe yeast strains toward nickel ions and the sorption of metal ions into cells. All yeasts absorbed nickel predominantly into exopolymers (glycoproteins) and on the surface of cells. However, while the amount of polysaccharide moieties of exoglycoproteins of most of the resistant yeasts was induced by stress conditions, the ratio polysaccharide/protein in the exopolymers remained unchanged in the sensitive species Cystofilobasidium. The exopolymer composition might play a key role in yeast adaptation to stress conditions caused by heavy metal ions. (orig.)

  15. Ecology and Biodiversity of Yeasts with Potential Value in Biotechnology

    Science.gov (United States)

    Deak, T.

    In the latest edition of the standard treatise of yeasts, in 1998, 700 species were described. Since then, the number of recognized yeast species has doubled, with a steep increase particularly in the number of the basidiomycetous yeasts. Of all these yeast species, only about a dozen is used at industrial scale, and some 70 - 80 species have been shown at laboratory scale to possess potential value in biotechnology; their ratio is, in the best case, 5 - 10 %. If it is accepted, that according to a modest estimate, the known yeast species represent only 5 % of the total number which may inhabit the Earth, then there is ample room to search for new species with novel potential to exploit. Where could these yeasts be discovered?

  16. A new methodology to obtain wine yeast strains overproducing mannoproteins.

    Science.gov (United States)

    Quirós, Manuel; Gonzalez-Ramos, Daniel; Tabera, Laura; Gonzalez, Ramon

    2010-04-30

    Yeast mannoproteins are highly glycosylated proteins that are covalently bound to the beta-1,3-glucan present in the yeast cell wall. Among their outstanding enological properties, yeast mannoproteins contribute to several aspects of wine quality by protecting against protein haze, reducing astringency, retaining aroma compounds and stimulating growth of lactic-acid bacteria. The development of a non-recombinant method to obtain enological yeast strains overproducing mannoproteins would therefore be very useful. Our previous experience on the genetic determinants of the release of these molecules by Saccharomyces cerevisiae has allowed us to propose a new methodology to isolate and characterize wine yeast that overproduce mannoproteins. The described methodology is based on the resistance of the killer 9 toxin produced by Williopsis saturnus, a feature linked to an altered biogenesis of the yeast cell wall. Copyright 2010 Elsevier B.V. All rights reserved.

  17. Yeast buddies helping to unravel the complexity of neurodegenerative disorders.

    Science.gov (United States)

    Fruhmann, Gernot; Seynnaeve, David; Zheng, Ju; Ven, Karen; Molenberghs, Sofie; Wilms, Tobias; Liu, Beidong; Winderickx, Joris; Franssens, Vanessa

    2017-01-01

    Neurodegenerative disorders have a profound effect on the quality of life of patients and their environment. However, the development of adequate therapies requires accurate understanding of the underlying disease pathogenesis. On that account, yeast models can play an important role, as they enable the elucidation of the mechanisms leading to neurodegenerative disorders. Furthermore, by using so-called humanized yeast systems, the findings in yeast can be interpolated to humans. In this review, we will give an overview of the current body of knowledge on the use of yeast models with regard to Huntington's, Parkinson's and Alzheimer's disease. In addition to the results, obtained with the baker's yeast Saccharomyces cerevisiae, we also consider the existing literature on the less common but promising fission yeast Schizosaccharomyces pombe. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  18. Yeast Genomics for Bread, Beer, Biology, Bucks and Breath

    Science.gov (United States)

    Sakharkar, Kishore R.; Sakharkar, Meena K.

    The rapid advances and scale up of projects in DNA sequencing dur ing the past two decades have produced complete genome sequences of several eukaryotic species. The versatile genetic malleability of the yeast, and the high degree of conservation between its cellular processes and those of human cells have made it a model of choice for pioneering research in molecular and cell biology. The complete sequence of yeast genome has proven to be extremely useful as a reference towards the sequences of human and for providing systems to explore key gene functions. Yeast has been a ‘legendary model’ for new technologies and gaining new biological insights into basic biological sciences and biotechnology. This chapter describes the awesome power of yeast genetics, genomics and proteomics in understanding of biological function. The applications of yeast as a screening tool to the field of drug discovery and development are highlighted and the traditional importance of yeast for bakers and brewers is discussed.

  19. The Geographic Distribution of Saccharomyces cerevisiae Isolates within three Italian Neighboring Winemaking Regions Reveals Strong Differences in Yeast Abundance, Genetic Diversity and Industrial Strain Dissemination

    Directory of Open Access Journals (Sweden)

    Alessia Viel

    2017-08-01

    Full Text Available In recent years the interest for natural fermentations has been re-evaluated in terms of increasing the wine terroir and managing more sustainable winemaking practices. Therefore, the level of yeast genetic variability and the abundance of Saccharomyces cerevisiae native populations in vineyard are becoming more and more crucial at both ecological and technological level. Among the factors that can influence the strain diversity, the commercial starter release that accidentally occur in the environment around the winery, has to be considered. In this study we led a wide scale investigation of S. cerevisiae genetic diversity and population structure in the vineyards of three neighboring winemaking regions of Protected Appellation of Origin, in North-East of Italy. Combining mtDNA RFLP and microsatellite markers analyses we evaluated 634 grape samples collected over 3 years. We could detect major differences in the presence of S. cerevisiae yeasts, according to the winemaking region. The population structures revealed specificities of yeast microbiota at vineyard scale, with a relative Appellation of Origin area homogeneity, and transition zones suggesting a geographic differentiation. Surprisingly, we found a widespread industrial yeast dissemination that was very high in the areas where the native yeast abundance was low. Although geographical distance is a key element involved in strain distribution, the high presence of industrial strains in vineyard reduced the differences between populations. This finding indicates that industrial yeast diffusion it is a real emergency and their presence strongly interferes with the natural yeast microbiota.

  20. Differentiation of enzymatic activity of yeasts and yeast-like microorganisms isolated from various environments

    Directory of Open Access Journals (Sweden)

    Elżbieta Bogusławska-Wąs

    2014-08-01

    Full Text Available The aim of study was to determinate enzymatic activity of yeast-like organisms - Candida lipolytica, Rhodotorula rubra, Trichosporon beigelii, Zygosaccharomyces sp. - isolated from the Szczecin Lagoon and herring salads. We have shown that lipolytic activity was higher than protcolytic for every strain tested. The lowest activity level was found out for amylolytic hydrolases. The results also demonstrated that yeast-like organisms isolated from the Szczecin Lagoon revealed much higher average enzymatic activity compared to tbe same species isolated from herring salads, excepting C. lipolytica.

  1. Breaking Oil-in-water Emulsions Stabilized By Yeast

    OpenAIRE

    Furtado; Guilherme F.; Picone; Carolina S. F.; Cuellar; Maria C.; Cunha; Rosiane L.

    2016-01-01

    Several biotechnological processes can show an undesirable formation of emulsions making difficult phase separation and product recovery. The breakup of oil-in-water emulsions stabilized by yeast was studied using different physical and chemical methods. These emulsions were composed by deionized water, hexadecane and commercial yeast (Saccharomyces cerevisiae). The stability of the emulsions was evaluated varying the yeast concentration from 7.47 to 22.11% (w/w) and the phases obtained after...

  2. Extracellular protease from the antarctic yeast Candida humicola.

    OpenAIRE

    Ray, M K; Devi, K U; Kumar, G S; Shivaji, S

    1992-01-01

    The psychrotrophic, dimorphic yeast Candida humicola, isolated from Antarctic soil, secretes an acidic protease into the medium. The secretion of this protease by C. humicola was found to be dependent on the composition of the medium. In YPD or yeast nitrogen base medium containing either amino acids or ammonium sulfate as the nitrogen source, the activity of the protease in the medium was low (basal level). However, when yeast nitrogen base medium was depleted of amino acids or ammonium sulf...

  3. Yeast species associated with the spontaneous fermentation of cider

    OpenAIRE

    Suárez, Belén; Pando, Rosa; Fernández, Norman; Querol, A.; Rodríguez, Roberto

    2011-01-01

    This paper reports the influence of cider-making technology (pneumatic and traditional pressing) on the dynamics of wild yeast populations. Yeast colonies isolated from apple juice before and throughout fermentation at a cider cellar of Asturias (Spain), during two consecutive years were studied. The yeast strains were identified by restriction fragment length polymorphism analysis of the 5.8S rRNA gene and the two flanking internal transcribed sequences (ITS). The musts obtained by ...

  4. Probiotic properties of yeasts occurring in fermented food and beverages

    DEFF Research Database (Denmark)

    Jespersen, Lene

    Besides being able to improve the quality and safety of many fermented food and beverages some yeasts offer a number of probiotic traits. Especially a group of yeast referred to as "Saccharomyces boulardii", though taxonomically belonging to Saccharomyces cerevisiae, has been claimed to have...... probiotic properties. Besides, yeasts naturally occurring globally in food and beverages will have traits that might have a positive impact on human health....

  5. Red Yeast Rice Preparations: Are They Suitable Substitutions for Statins?

    Science.gov (United States)

    Dujovne, Carlos A

    2017-10-01

    Red yeast rice, a commercially available food supplement known to reduce serum cholesterol, has been repeatedly advocated as alternative therapy for hypercholesterolemic patients that refuse statins, cannot tolerate statin therapy's side effects, or request a "naturopathic" medicine. Red yeast rice contains a fungus (Monascus purpureus), which was utilized in the original production of lovastatin (MEVACOR, Merck & Co, Whitehouse Station, NJ), the first marketed pharmaceutical statin, and is chemically identical to such product. Their identical properties account for the similarity in therapeutic and side effects of red yeast rice and lovastatin. The red yeast rice ingredient that blocks cholesterol production is monacolin K. Because red yeast rice preparations have large variability in monacolin K content, predicting or understanding dose-related efficacy and side-effect risks of red yeast rice is practically impossible. The lipid-regulating potency of red yeast rice in commercial preparations was found to be extensively different according to the number or concentration of monacolin K they possess. Furthermore, more than one type of monacolin was found in different preparations (or batches) of red yeast rice. Other ingredients found in red yeast rice are also known to be potentially toxic. The US Food and Drug Administration issued warnings to consumers in 2007 and in 2013 against taking red yeast rice products due to the lack of assurance about its efficacy, safety, and lack of standardized preparation methods. This article discusses my clinical trial results with red yeast rice, reviews the literature on its therapeutic and side effects, and discusses why red yeast rice is not an acceptable substitution for statins. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. The complexity and implications of yeast prion domains

    OpenAIRE

    Du, Zhiqiang

    2011-01-01

    Prions are infectious proteins with altered conformations converted from otherwise normal host proteins. While there is only one known mammalian prion protein, PrP, a handful of prion proteins have been identified in the yeast Saccharomyces cerevisiae. Yeast prion proteins usually have a defined region called prion domain (PrD) essential for prion properties, which are typically rich in glutamine (Q) and asparagine (N). Despite sharing several common features, individual yeast PrDs are genera...

  7. Fast screening of lovastatin in red yeast rice products by flow injection tandem mass spectrometry.

    Science.gov (United States)

    Song, Fenhong; El-Demerdash, Aref; Lee, Shwn-Ji Susie H; Smith, Robert E

    2012-01-05

    Drug adulteration in dietary supplement materials is a world-wide problem and poses a regulatory challenge. Red yeast rice is a product used by consumers to lower blood levels of cholesterol. While most current methods to analyze red yeast rice are based on HPLC separation with a photo-diode array detector and/or a mass spectrometry detector, which takes 20-40min analysis time per sample, we developed a method to do fast screening of the active compound lovastatin by direct infusion into a mass spectrometer. This method takes under 1min per analysis on the instrument. By using multiple reaction monitoring with five product ions, all the ion ratios of the analyte in the samples are compared with those from the standards for qualitative analysis. The results from this method were compared to the result from the liquid chromatography tandem mass spectrometry, which uses retention time and one ion ratio as the confirmation criteria. No false positives or false negatives were found among the 12 samples tested. The method also seems to be effective in measuring the lovastatin in red yeast rice semi-quantitatively. This kind of method could be adapted to the screening of other dietary supplement products. Published by Elsevier B.V.

  8. Occurrence and identification of yeasts in dogs external ear canal with and without otitis

    Directory of Open Access Journals (Sweden)

    Elidiana de Bona

    2012-08-01

    Full Text Available Objective. To analyze the presence of yeast in the external ear canal of 116 dogs with and without a diagnosis of otitis from veterinary clinic in the Chapecó city, Santa Catarina, Brazil, and to examine the secretion of the proteinase in isolates. Materials and methods. Were collected cerumen of conduct hearing of dogs of 16 different races 71% with pendular ear type, 5% of semi-pendular and 24% of the erect type. All dogs were previously evaluated by otoscopy and grouped in dogs with and without otitis. Results. Yeasts were isolated in 44 samples (approximately 36%, where Malassezia pachydermatis was identified in 95% of samples where were observed growth of yeasts. On 20 samples the proteinase enzyme showed strong activity in 31% isolates, were 21% of the dogs with otitis tested showed high proteolytic activity. Conclusions. We observed a variation of strains of M. pachydermatis-producing enzymes. The variation in production of these enzymes is probably more associated with different response to the action of the immune system of the animal in the tissue injury.

  9. Effect of organic selenium-enriched yeast supplementation in finishing sheep diet on carcasses microbiological contamination and meat physical characteristics

    Directory of Open Access Journals (Sweden)

    Gisela Velázquez-Garduño

    2015-09-01

    Full Text Available The aim of the current study was to evaluate the effect of feeding Pelibuey sheep on diet supplemented with different doses of organic selenium (Se-enriched yeast on carcasses microbiological contamination and meat physical characteristics. The experiment was conducted during the finishing stage of 18 female sheep and lasted for 60 days. In a complete randomized design, sheep were distributed to one of three treatments: the control without Se-yeast (T1, the control supplemented with Se-yeast at 0.35 mg Se/kg DM (T2, and control supplemented with Se-yeast at 0.60 mg Se/kg DM (T3. The yeast product used was Selyeast 3000TM yeast (LFA Lesaffre, Toluca, Mexico with a Se concentration of 3000 ppm (mg/kg. Lambs were slaughtered at the end of the experiment at an average weight of 39.5±4.41 kg and samples were taken for microbiological analysis. There were no differences between treatments (P>0.05 and the aerobic plate counts for T1, T2 and T3 had indexes of 0.10, 0.08 and 0.08 log10 CFU/cm2, respectively. Total coliform counts obtained were 0.13, 0.10 and 0.09 log10 CFU/cm2 for T1, T2 and T3, respectively, and the faecal coliform counts were 0.09 log10 CFU/cm2 for T1, 0.06 log10 CFU/cm2 for T2 and 0.07 log10 CFU/cm2 for T3. No significant effects (P>0.05 were observed for carcasses physical characteristics of microbial growth, initial and ultimate pH and temperature, colour values and water holding capacity. It can therefore be concluded that organic Se-enriched yeast did not affect carcasses bacterial proliferation or meat physical characteristics.

  10. New Protocol Based on UHPLC-MS/MS for Quantitation of Metabolites in Xylose-Fermenting Yeasts

    Science.gov (United States)

    Campos, Christiane Gonçalves; Veras, Henrique César Teixeira; de Aquino Ribeiro, José Antônio; Costa, Patrícia Pinto Kalil Gonçalves; Araújo, Katiúscia Pereira; Rodrigues, Clenilson Martins; de Almeida, João Ricardo Moreira; Abdelnur, Patrícia Verardi

    2017-12-01

    Xylose fermentation is a bottleneck in second-generation ethanol production. As such, a comprehensive understanding of xylose metabolism in naturally xylose-fermenting yeasts is essential for prospection and construction of recombinant yeast strains. The objective of the current study was to establish a reliable metabolomics protocol for quantification of key metabolites of xylose catabolism pathways in yeast, and to apply this protocol to Spathaspora arborariae. Ultra-high performance liquid chromatography coupled to tandem mass spectrometry (UHPLC-MS/MS) was used to quantify metabolites, and afterwards, sample preparation was optimized to examine yeast intracellular metabolites. S. arborariae was cultivated using xylose as a carbon source under aerobic and oxygen-limited conditions. Ion pair chromatography (IPC) and hydrophilic interaction liquid chromatography-tandem mass spectrometry (HILIC-MS/MS) were shown to efficiently quantify 14 and 5 metabolites, respectively, in a more rapid chromatographic protocol than previously described. Thirteen and eleven metabolites were quantified in S. arborariae under aerobic and oxygen-limited conditions, respectively. This targeted metabolomics protocol is shown here to quantify a total of 19 metabolites, including sugars, phosphates, coenzymes, monosaccharides, and alcohols, from xylose catabolism pathways (glycolysis, pentose phosphate pathway, and tricarboxylic acid cycle) in yeast. Furthermore, to our knowledge, this is the first time that intracellular metabolites have been quantified in S. arborariae after xylose consumption. The results indicated that fine control of oxygen levels during fermentation is necessary to optimize ethanol production by S. arborariae. The protocol presented here may be applied to other yeast species and could support yeast genetic engineering to improve second generation ethanol production. [Figure not available: see fulltext.

  11. New Protocol Based on UHPLC-MS/MS for Quantitation of Metabolites in Xylose-Fermenting Yeasts

    Science.gov (United States)

    Campos, Christiane Gonçalves; Veras, Henrique César Teixeira; de Aquino Ribeiro, José Antônio; Costa, Patrícia Pinto Kalil Gonçalves; Araújo, Katiúscia Pereira; Rodrigues, Clenilson Martins; de Almeida, João Ricardo Moreira; Abdelnur, Patrícia Verardi

    2017-09-01

    Xylose fermentation is a bottleneck in second-generation ethanol production. As such, a comprehensive understanding of xylose metabolism in naturally xylose-fermenting yeasts is essential for prospection and construction of recombinant yeast strains. The objective of the current study was to establish a reliable metabolomics protocol for quantification of key metabolites of xylose catabolism pathways in yeast, and to apply this protocol to Spathaspora arborariae. Ultra-high performance liquid chromatography coupled to tandem mass spectrometry (UHPLC-MS/MS) was used to quantify metabolites, and afterwards, sample preparation was optimized to examine yeast intracellular metabolites. S. arborariae was cultivated using xylose as a carbon source under aerobic and oxygen-limited conditions. Ion pair chromatography (IPC) and hydrophilic interaction liquid chromatography-tandem mass spectrometry (HILIC-MS/MS) were shown to efficiently quantify 14 and 5 metabolites, respectively, in a more rapid chromatographic protocol than previously described. Thirteen and eleven metabolites were quantified in S. arborariae under aerobic and oxygen-limited conditions, respectively. This targeted metabolomics protocol is shown here to quantify a total of 19 metabolites, including sugars, phosphates, coenzymes, monosaccharides, and alcohols, from xylose catabolism pathways (glycolysis, pentose phosphate pathway, and tricarboxylic acid cycle) in yeast. Furthermore, to our knowledge, this is the first time that intracellular metabolites have been quantified in S. arborariae after xylose consumption. The results indicated that fine control of oxygen levels during fermentation is necessary to optimize ethanol production by S. arborariae. The protocol presented here may be applied to other yeast species and could support yeast genetic engineering to improve second generation ethanol production. [Figure not available: see fulltext.

  12. Water quality and diversity of yeasts from tropical lakes and rivers from the Rio Doce basin in Southeastern Brazil

    Directory of Open Access Journals (Sweden)

    Adriana O. Medeiros

    2012-12-01

    Full Text Available Yeast communities were assessed in 14 rivers and four lakes from the Doce River basin in Brazil, during the rainy and dry seasons of the years 2000 and 2001. Water samples were collected at the subsurface in all sites. The following physical and chemical parameters were measured: temperature, dissolved oxygen, pH, electrical conductivity, total phosphorus, ortho-phosphate, ammonium, nitrate, nitrite and total nitrogen and the counts of faecal coliforms and heterotrophic bacteria were carried out to characterize the aquatic environmental sampled. The yeast counts were higher in aquatic environments with the highest counts of coliform and heterotrophic bacteria. These environments receive a high influx of domestic and industrial waste. A total of 317 isolates identified in forty eight yeast species were recorded in the sites sampled and the specie Aureobasidium pullulans were found in eleven out of eighteen sites sampled and some opportunistic pathogens such as the yeast species Candida krusei were isolated only in the polluted rivers with a positive correlation with the biotic and abiotic parameters that indicate sewage contamination.

  13. Adsorption of egg albumin onto methylated yeast biomass

    OpenAIRE

    Seki, Hideshi; Suzuki, Akira; Maruyama, Hideo

    2004-01-01

    A new biosorbent, methylated yeast (MeYE), was prepared for the adsorptive separation of proteins from aqueous solutions. Yeast was methylated in a 0.1 M HCl methyl alcohol solution at room temperature. About 80% of the carboxylic groups of yeast could be methylated within 9 h. The adsorption of egg albumin to MeYE was studied to evaluate the protein adsorption ability of MeYE. At near neutral pH, egg albumin was scarcely adsorbed to unmethylated yeast and the adsorption amount of egg albumin...

  14. Aboveground Deadwood Deposition Supports Development of Soil Yeasts

    Directory of Open Access Journals (Sweden)

    Thorsten Wehde

    2012-12-01

    Full Text Available Unicellular saprobic fungi (yeasts inhabit soils worldwide. Although yeast species typically occupy defined areas on the biome scale, their distribution patterns within a single type of vegetation, such as forests, are more complex. In order to understand factors that shape soil yeast communities, soils collected underneath decaying wood logs and under forest litter were analyzed. We isolated and identified molecularly a total of 25 yeast species, including three new species. Occurrence and distribution of yeasts isolated from these soils provide new insights into ecology and niche specialization of several soil-borne species. Although abundance of typical soil yeast species varied among experimental plots, the analysis of species abundance and community composition revealed a strong influence of wood log deposition and leakage of organic carbon. Unlike soils underneath logs, yeast communities in adjacent areas harbored a considerable number of transient (phylloplane-related yeasts reaching 30% of the total yeast quantity. We showed that distinguishing autochthonous community members and species transient in soils is essential to estimate appropriate effects of environmental factors on soil fungi. Furthermore, a better understanding of species niches is crucial for analyses of culture-independent data, and may hint to the discovery of unifying patterns of microbial species distribution.

  15. In Situ Assays of Chemotropism During Yeast Mating.

    Science.gov (United States)

    Stone, David E; Arkowitz, Robert A

    2016-01-01

    Virtually all eukaryotic cells can grow in a polarized fashion in response to external signals. Cells can respond to gradients of chemoattractants or chemorepellents by directional growth, a process referred to as chemotropism. The budding yeast Saccharomyces cerevisiae undergoes chemotropic growth during mating, in which two haploid cells of opposite mating type grow towards one another. Mating pheromone gradients are essential for efficient mating in yeast and different yeast mutants are defective in chemotropism. Two methods of assessing the ability of yeast strains to respond to pheromone gradients are presented here.

  16. Improved vanillin production in baker's yeast through in silico design

    National Research Council Canada - National Science Library

    Brochado, Ana Rita; Matos, Claudia; Møller, Birger L; Hansen, Jørgen; Mortensen, Uffe H; Patil, Kiran Raosaheb

    2010-01-01

    .... Currently vanillin is mostly produced via chemical synthesis. A de novo synthetic pathway for heterologous vanillin production from glucose has recently been implemented in baker's yeast, Saccharamyces cerevisiae...

  17. Variation in yeast mitochondrial activity associated with asci.

    Science.gov (United States)

    Swart, Chantel W; van Wyk, Pieter W J; Pohl, Carolina H; Kock, Johan L F

    2008-07-01

    An increase in mitochondrial membrane potential (DeltaPsim) and mitochondrially produced 3-hydroxy (3-OH) oxylipins was experienced in asci of the nonfermentative yeasts Galactomyces reessii and Lipomyces starkeyi and the fermentative yeasts Pichia farinosa and Schizosaccharomyces octosporus. Strikingly, asci of Zygosaccharomyces bailii showed no increase in mitochondrial activity (DeltaPsim and oxylipin production). As expected, oxygen deprivation only inhibited ascus formation in those yeasts with increased ascus mitochondrial activity. We conclude that ascus formation in yeasts is not always dependent on mitochondrial activity. In this case, fermentation may provide enough energy for ascus formation in Z. bailii.

  18. Effect of dietary yeast autolysate on performance, slaughter, and ...

    African Journals Online (AJOL)

    TOSHIBA

    2017-05-22

    Saccharomyces cerevisiae) on performance ... Keywords: Carcass attributes, carcass percentages, growth, sex ... yeast, as natural growth and performance enhancers as alternatives to antibiotics in poultry diets (Bonos et al.,.

  19. The yeast osmostress response is carbon source dependent

    DEFF Research Database (Denmark)

    Babazadeh, Roja; Lahtvee, Petri-Jaan; Adiels, Caroline B.

    2017-01-01

    to now, essentially all osmostress studies in yeast have been performed with glucose as carbon and energy source, which is metabolised by glycolysis with glycerol as a by-product. Here we investigated the response of yeast to osmotic stress when yeast is respiring ethanol as carbon and energy source....... Remarkably, yeast cells do not accumulate glycerol under these conditions and it appears that trehalose may partly take over the role as compatible solute. The HOG pathway is activated in very much the same way as during growth on glucose and is also required for osmotic adaptation. Slower volume recovery...

  20. Applications of yeast surface display for protein engineering

    Science.gov (United States)

    Cherf, Gerald M.; Cochran, Jennifer R.

    2015-01-01

    The method of displaying recombinant proteins on the surface of Saccharomyces cerevisiae via genetic fusion to an abundant cell wall protein, a technology known as yeast surface display, or simply, yeast display, has become a valuable protein engineering tool for a broad spectrum of biotechnology and biomedical applications. This review focuses on the use of yeast display for engineering protein affinity, stability, and enzymatic activity. Strategies and examples for each protein engineering goal are discussed. Additional applications of yeast display are also briefly presented, including protein epitope mapping, identification of protein-protein interactions, and uses of displayed proteins in industry and medicine. PMID:26060074

  1. Assessment of Accuracy of Identification of Pathogenic Yeasts in Microbiology Laboratories in the United Kingdom

    Science.gov (United States)

    Szekely, Adrien; Palmer, Michael D.; Johnson, Elizabeth M.

    2012-01-01

    Rapid, accurate identification of yeast isolates from clinical samples has always been important given their innately variable antifungal susceptibility profiles. Recently, this has become paramount with the proposed introduction of species-specific interpretive breakpoints for MICs obtained in yeast antifungal susceptibility tests (M. A. Pfaller, D. Andes, D. J. Diekema, A. Espinel–Ingroff, D. Sheehan, and CLSI Subcommittee for Antifungal Susceptibility Testing, Drug Resist. Updat. 13:180–195, 2010). Here, we present the results of a 12-month evaluation of the accuracy of identifications that accompany yeast isolates submitted to the Mycology Reference Laboratory (United Kingdom) for either confirmation of identity or susceptibility testing. In total, 1,781 yeast isolates were analyzed, and the robustness of prior identifications obtained in microbiology laboratories throughout the United Kingdom was assessed using a combination of culture on chromogenic agar, morphology on cornmeal agar, and molecular identification by pyrosequencing. Over 40% of isolates (755) were submitted without any suggested identification. Of those isolates with a prior identification, 100 (9.7%) were incorrectly identified. Error rates ranged from 5.2% (for organisms submitted for antifungal susceptibility testing) to 18.2% (for organisms requiring confirmation of identity) and varied in a strictly species-specific manner. At least 50% of identification errors would be likely to affect interpretation of MIC data, with a possible impact on patient management. In addition, 2.3% of submitted cultures were found to contain mixtures of at least two yeast species. The vast majority of mixtures had gone undetected in the referring laboratory and would have impacted the interpretation of antifungal susceptibility profiles and patient management. Some of the more common misidentifications are discussed according to the identification method employed, with suggestions for avoiding such

  2. Expansion of the Candida tanzawaensis yeast clade: 16 novel Candida species from basidiocarp-feeding beetles.

    Science.gov (United States)

    Suh, Sung-Oui; McHugh, Joseph V; Blackwell, Meredith

    2004-11-01

    A major clade of new yeast taxa from the digestive tract of basidiocarp-feeding beetles is recognized based on rRNA gene sequence analyses. Almost 30 % of 650 gut isolates formed a statistically well-supported clade that included Candida tanzawaensis. The yeasts in the clade were isolated from 11 families of beetles, of which Tenebrionidae and Erotylidae were most commonly sampled. Repeated isolation of certain yeasts from the same beetle species at different times and places indicated strong host associations. Sexual reproduction was never observed in the yeasts. Based on comparisons of small- and large-subunit rRNA gene sequences and morphological and physiological traits, the yeasts were placed in Candida ambrosiae and in 16 other undescribed taxa. In this report, the novel species in the genus Candida are described and their relationships with other taxa in the Saccharomycetes are discussed. The novel species and their type strains are as follows: Candida guaymorum (NRRL Y-27568(T)=CBS 9823(T)), Candida bokatorum (NRRL Y-27571(T)=CBS 9824(T)), Candida kunorum (NRRL Y-27580(T)=CBS 9825(T)), Candida terraborum (NRRL Y-27573(T)=CBS 9826(T)), Candida emberorum (NRRL Y-27606(T)=CBS 9827(T)), Candida wounanorum (NRRL Y-27574(T)=CBS 9828(T)), Candida yuchorum (NRRL Y-27569(T)=CBS 9829(T)), Candida chickasaworum (NRRL Y-27566(T)=CBS 9830(T)), Candida choctaworum (NRRL Y-27584(T)=CBS 9831(T)), Candida bolitotheri (NRRL Y-27587(T)=CBS 9832(T)), Candida atakaporum (NRRL Y-27570(T)=CBS 9833(T)), Candida panamericana (NRRL Y-27567(T)=CBS 9834(T)), Candida bribrorum (NRRL Y-27572(T)=CBS 9835(T)), Candida maxii (NRRL Y-27588(T)=CBS 9836(T)), Candida anneliseae (NRRL Y-27563(T)=CBS 9837(T)) and Candida taliae (NRRL Y-27589(T)=CBS 9838(T)).

  3. Yeasts and filamentous fungi carried by the gynes of leaf-cutting ants.

    Science.gov (United States)

    Pagnocca, Fernando C; Rodrigues, André; Nagamoto, Nilson S; Bacci, Maurício

    2008-11-01

    Insect-associated microbes exhibit a wide range of interactions with their hosts. One example of such interactions is the insect-driven dispersal of microorganisms, which plays an essential role in the ecology of several microbes. To study dispersal of microorganisms by leaf-cutting ants (Formicidae: Attini), we applied culture-dependent methods to identify the filamentous fungi and yeasts found in two different body parts of leaf-cutting ant gynes: the exoskeleton and the infrabuccal pocket. The gynes use the latter structure to store a pellet of the ants' symbiotic fungus during nest founding. Many filamentous fungi (n = 142) and yeasts (n = 19) were isolated from the gynes' exoskeleton. In contrast, only seven filamentous fungi and three yeasts isolates were recovered from the infrabuccal pellets, suggesting an efficient mechanism utilized by the gynes to prevent contamination of the symbiotic fungus inoculum. The genus Cladosporium prevailed (78%) among filamentous fungi whereas Aureobasidium, Candida and Cryptococcus prevailed among yeasts associated with gynes. Interestingly, Escovopsis, a specialized fungal pathogen of the leaf-cutting ant-fungus symbiosis, was not isolated from the body parts or from infrabuccal pellets of any gynes sampled. Our results suggest that gynes of the leaf-cutter ants Atta laevigata and A. capiguara do not vertically transmit any particular species of yeasts or filamentous fungi during the foundation of a new nest. Instead, fungi found in association with gynes have a cosmopolitan distribution, suggesting they are probably acquired from the environment and passively dispersed during nest foundation. The possible role of these fungi for the attine ant-microbial symbiosis is discussed.

  4. Metahyphopichia laotica gen. nov., sp. nov., a polymorphic yeast related to Hyphopichia.

    Science.gov (United States)

    Sipiczki, Matthias; Pfliegler, Walter P; Safar, Silvana V B; Morais, Paula B; Rosa, Carlos A

    2016-07-01

    Four strains alternating between yeast and filamentous growth morphologies were isolated from flowers in two regions of Laos. In liquid environment the isolates propagated by budding and developed irregularly shaped pseudohyphae. On solid media, their yeast cells switched to hyphal growth which could return to the yeast phase by developing lateral blastoconidia. The sequences of the D1/D2 domains of the large subunit (LSU) 26S rRNA genes, the internal transcribed spacer (ITS) regions and the small subunit (SSU) 18S rRNA genes were identical in the four strains and differed from the corresponding sequences of other yeast species available in databases by at least 11 % (D1/D2), 13 % (ITS) and 7 % (SSU). In an independent project, two strains with D1/D2 and ITS sequences very similar to those of the Laotian strains were found in bark samples collected in Brazil. The six strains also differed from the closest yeast species in physiological properties, indicating that they represented a hitherto undescribed species. Phylogenetic analysis of the D1/D2 sequences, and the concatenated sequences of the SSU rRNA genes, D1/D2 domains of LSU rRNA genes as well as the protein-encoding genes ACT1 and TEF1 placed thestrains close to Hyphopichia. To reflect this position, the novel genus name Metahyphopichia gen. nov. and the novel species name Metahyphopichia laotica gen. nov., sp. nov. are proposed for them. The type strain of the type species is 11-1006T(=CBS 13022T=CCY 092-001-001T=NCAIM Y.02126T) and was isolated in Luang Prabang (Laos). MycoBank registration numbers are MB 808253 (Metahyphopichia) and MB 808254 (Metahyphopichia laotica).

  5. Exploring the phenotypic space of non-Saccharomyces wine yeast biodiversity.

    Science.gov (United States)

    Rossouw, Debra; Bauer, Florian F

    2016-05-01

    Tremendous microbial diversity exists in vineyards, and the potential to harness this diversity for novel mixed or pure starter cultures for wine fermentation has received significant attention in recent years. However, most studies are limited to a small subset of strains and species. Here we present data from a systematic screen of 91 yeast isolates from South African grape must and vineyard samples for oenologically relevant traits. One focus area was finding non-Saccharomyces isolates showing both reduced ethanol yields, as well as improved aromatic characteristics. Of the 91 isolates evaluated initially, 21 showed lower ethanol yields when compared to commercial wine yeast strain controls. Collectively, the metabolic data (primary fermentation and secondary aroma compounds) highlight the enormity of the 'phenotypic space' of yeast communities in South African vineyards. The data also emphasise intraspecies variability, challenging our concept of species typicity. Of particular oenological interest was the ability of several isolates to produce high levels of terpenoid compounds. A few strains were ultimately found which showed a substantial reduction (>1.5%) in the final ethanol content of sequential fermentations, as well as unique aroma compound production profiles. Four of these strains were selected for comprehensive wine trials in both red and white grape musts, complete with microbial, chemical and sensory analyses of the red wines. This presents, for the first time, a full bench-to-bottle characterisation of non-Saccharomyces strains showing the most potential for commercial application. The findings of this study enlarge the potential range of oenological applications for non-Saccharomyces yeast, while also suggesting the potential usefulness of several yeast species that have previously not been considered for winemaking applications. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Effect of yeast with bacteriocin from rumen bacteria on laying performance, blood biochemistry, faecal microbiota and egg quality of laying hens.

    Science.gov (United States)

    Wang, H T; Shih, W Y; Chen, S W; Wang, S Y

    2015-12-01

    The purpose of this study was to evaluate the effect of yeast with bacteriocin from Ruminococcus albus 7 (albusin B) on physiological state and production performance of laying hens. One hundred and twenty 26-week-old Single Comb White Leghorn (Hyline) laying hens were assigned into five groups including: (i) control group, (ii) yeast control (YC), (iii) 0.125% yeast with bacteriocin (0.125B), (iv) 0.25% yeast with bacteriocin (0.25B) and (v) 0.5% yeast with bacteriocin (0.5B). All supplements were added to the experimental diets of the hens from 26 to 46 weeks of age. Samples were collected every 4 weeks. Blood samples were collected from the wing vein for blood biochemical parameters assay, and faecal samples were collected by swab for the microbiota test. The egg production performance was recorded daily, and fresh eggs were collected for quality test. The blood biochemical assay results indicated that the addition of yeast with bacteriocin decreased the AST (aspartate aminotransferase) activity and it also affects the lactate concentration in laying hen blood. The result of egg quality indicated that yeast with bacteriocin supplementation had no effect on the mass of yolk and the strength of eggshell, but it had positive effect on the laying performance under hot environment. Low concentration bacteriocin (0.125B) supplementation could decrease total yolk cholesterol. The faecal microbiota result indicated that the supplementation of bacteriocin increased the lactobacilli counts. The yeast with bacteriocin supplementation significantly decreased the clostridia counts under hot environment condition, especially in hens receiving 0.25B. Combining the data from clinic chemistry, faecal microbiota, egg production and egg quality, the 0.25B supplementation may result in the best physiological parameter and egg production performance of laying hen. Journal of Animal Physiology and Animal Nutrition © 2014 Blackwell Verlag GmbH.

  7. Differentially expressed genes under simulated deep-sea conditions in the psychrotolerant yeast Cryptococcus sp. NIOCCPY13

    Digital Repository Service at National Institute of Oceanography (India)

    Singh, P.; Raghukumar, C.; Verma, A.K.; Meena, R.M.

    these sequences have been submitted to EST database of NCBI GenBank. Their GenBank Accession numbers and dbEST_Ids are listed in Table 3. Results Culturable yeasts were isolated by incubation of the deep-sea sediment sample in nutrient media at 5°C for a... 85-130 14    Legends to the figures: Fig. 1. Pie chart showing percentage of downregulated genes in a deep-sea psychrotolerant yeast NIOCC#PY13, at a) 50 MPa and b) 50 MPa/5°C. 15    16    Clone ID NCBI database...

  8. Cytology, Cell Walls and septa: A Summary of Yeast Cell Biology from a Phylogenetic Perspective

    NARCIS (Netherlands)

    Klei, I.; Veenhuis, M.; Brul, S.; Klis, F.M.; de Groot, P.W.J.; Müller, W.H.; van Driel, K.G.A.; Boekhout, T.; Kurtzman, C. P.; Fell, J. W.; Boekhout, T.

    2011-01-01

    his chapter aims to present an overview of yeast cell biology, biochemical structure and composition of cell walls in various yeast species, septal pore ultrastructure, and other subcellular characteristics, and a phylogenetic framework to these observations. Yeast cells have ultrastructural

  9. Yeast cells as a tool for analysis of HIV-1 protease susceptibility to protease inhibitors, a comparative study.

    Science.gov (United States)

    Ravaux, Isabelle; Perrin-East, Christelle; Attias, Coralie; Cottalorda, Jacqueline; Durant, Jacques; Dellamonica, Pierre; Gluschankof, Pablo; Stein, Andreas; Tamalet, Catherine

    2014-01-01

    HIV develops drug resistance at a high rate under drug selection pressure. Resistance tests are recommended to help physicians optimize antiretroviral drug therapies. For this purpose, genotypic and phenotypic tests have been developed. In order to propose a new phenotypic test that will be less laborious, expensive, and time consuming than the standard ones, a new procedure to measure HIV-1 protease susceptibility to protease inhibitor (PIs) in Saccharomyces cerevisiae yeast cells was developed. This procedure is based on HIV-1 protease expression in yeast. While the viral protein induces yeast cell death, its inhibition by PIs in the culture medium allows the cell to grow in a dose-dependent manner. In a comparative study of standard genotypic analysis vs. yeast cell-based phenotypic tests, performed on HIV-1 protease coding DNA in 17 different plasma samples from infected individuals, a clear match was found between the results obtained using the two technologies. This suggests that the yeast-based procedure is at least as accurate as standard genotypic test in defining susceptibility to protease inhibitors. This encouraging result should be the basis for large-scale validation of the new phenotypic resistance test. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Yeast Interacting Proteins Database: YGR013W, YKL012W [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available st specific, no metazoan counterpart Rows with this bait as bait (1) Rows with this bait as prey (0) YKL012W...U71 Bait description Component of U1 snRNP required for mRNA splicing via spliceosome; yeast specific, no metazoan counter

  11. Genetically modified yeast species, and fermentation processes using genetically modified yeast

    Energy Technology Data Exchange (ETDEWEB)

    Rajgarhia, Vineet; Koivuranta, Kari; Penttila, Merja; Ilmen, Marja; Suominen, Pirkko; Aristidou, Aristos; Miller, Christopher Kenneth; Olson, Stacey; Ruohonen, Laura

    2016-08-09

    Yeast cells are transformed with an exogenous xylose isomerase gene. Additional genetic modifications enhance the ability of the transformed cells to ferment xylose to ethanol or other desired fermentation products. Those modifications include deletion of non-specific or specific aldose reductase gene(s), deletion of xylitol dehydrogenase gene(s) and/or overexpression of xylulokinase.

  12. Dynamic changes in brewing yeast cells in culture revealed by statistical analyses of yeast morphological data.

    Science.gov (United States)

    Ohnuki, Shinsuke; Enomoto, Kenichi; Yoshimoto, Hiroyuki; Ohya, Yoshikazu

    2014-03-01

    The vitality of brewing yeasts has been used to monitor their physiological state during fermentation. To investigate the fermentation process, we used the image processing software, CalMorph, which generates morphological data on yeast mother cells and bud shape, nuclear shape and location, and actin distribution. We found that 248 parameters changed significantly during fermentation. Successive use of principal component analysis (PCA) revealed several important features of yeast, providing insight into the dynamic changes in the yeast population. First, PCA indicated that much of the observed variability in the experiment was summarized in just two components: a change with a peak and a change over time. Second, PCA indicated the independent and important morphological features responsible for dynamic changes: budding ratio, nucleus position, neck position, and actin organization. Thus, the large amount of data provided by imaging analysis can be used to monitor the fermentation processes involved in beer and bioethanol production. Copyright © 2013 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  13. Utilization of spent brewer’s yeast Saccharomyces cerevisiae for the production of yeast enzymatic hydrolysate

    Directory of Open Access Journals (Sweden)

    M Bayarjargal

    2014-09-01

    Full Text Available Spent brewer’s yeast (Saccharomyces cerevisiae is a rich source of protein, vitamins and widely used as a raw material for production of food supplements. The autolysis and enzymatic treatment of spent brewer’s yeast using Pancreatin (2.5% and Flavourzyme (2.5% were performed at 45 °C and 50 °C, respectively. The autolysis and hydrolysis processes were evaluated by determining a soluble solids, soluble protein concentration and α-amino nitrogen content in a reaction mixture. The yield of pancreatic digest and α-amino nitrogen content was high in comparison with autolysis and Flavourzyme treatment. The total solids recovery in dry Yeast hydrolysate was about 50%, a protein and α-amino nitrogen content was 55.9 and 4.8%, respectively. These results show the possibility of utilizing the spent brewer’s yeast as hydrolysate using hydrolytic enzymes and use it as a food supplement after biological experiments.DOI: http://dx.doi.org/10.5564/mjc.v12i0.179 Mongolian Journal of Chemistry Vol.12 2011: 88-91

  14. Genetically modified yeast species, and fermentation processes using genetically modified yeast

    Science.gov (United States)

    Rajgarhia, Vineet; Koivuranta, Kari; Penttila, Merja; Ilmen, Marja; Suominen, Pirkko; Aristidou, Aristos; Miller, Christopher Kenneth; Olson, Stacey; Ruohonen, Laura

    2013-05-14

    Yeast cells are transformed with an exogenous xylose isomerase gene. Additional genetic modifications enhance the ability of the transformed cells to ferment xylose to ethanol or other desired fermentation products. Those modifications include deletion of non-specific or specific aldose reductase gene(s), deletion of xylitol dehydrogenase gene(s) and/or overexpression of xylulokinase.

  15. Genetically modified yeast species, and fermentation processes using genetically modified yeast

    Energy Technology Data Exchange (ETDEWEB)

    Rajgarhia, Vineet; Koivuranta, Kari; Penttila, Merja; Ilmen, Marja; Suominen, Pirkko; Aristidou, Aristos; Miller, Christopher Kenneth; Olson, Stacey; Ruohonen, Laura

    2017-09-12

    Yeast cells are transformed with an exogenous xylose isomerase gene. Additional genetic modifications enhance the ability of the transformed cells to ferment xylose to ethanol or other desired fermentation products. Those modifications include deletion of non-specific or specific aldose reductase gene(s), deletion of xylitol dehydrogenase gene(s) and/or overexpression of xylulokinase.

  16. How does yeast respond to pressure?

    Directory of Open Access Journals (Sweden)

    P.M.B. Fernandes

    2005-08-01

    Full Text Available The brewing and baking yeast Saccharomyces cerevisiae has been used as a model for stress response studies of eukaryotic cells. In this review we focus on the effect of high hydrostatic pressure (HHP on S. cerevisiae. HHP exerts a broad effect on yeast cells characteristic of common stresses, mainly associated with protein alteration and lipid bilayer phase transition. Like most stresses, pressure induces cell cycle arrest. Below 50 MPa (500 atm yeast cell morphology is unaffected whereas above 220 MPa wild-type cells are killed. S. cerevisiae cells can acquire barotolerance if they are pretreated with a sublethal stress due to temperature, ethanol, hydrogen peroxide, or pressure. Nevertheless, pressure only leads to protection against severe stress if, after pressure pretreatment, the cells are also re-incubated at room pressure. We attribute this effect to the inhibition of the protein synthesis apparatus under HHP. The global genome expression analysis of S. cerevisiae cells submitted to HHP revealed a stress response profile. The majority of the up-regulated genes are involved in stress defense and carbohydrate metabolism while most repressed genes belong to the cell cycle progression and protein synthesis categories. However, the signaling pathway involved in the pressure response is still to be elucidated. Nitric oxide, a signaling molecule involved in the regulation of a large number of cellular functions, confers baroprotection. Furthermore, S. cerevisiae cells in the early exponential phase submitted to 50-MPa pressure show induction of the expression level of the nitric oxide synthase inducible isoform. As pressure becomes an important biotechnological tool, studies concerning this kind of stress in microorganisms are imperative.

  17. Crystal structure of yeast Sco1

    Energy Technology Data Exchange (ETDEWEB)

    Abajian, Carnie; Rosenzweig, Amy C. (NWU)

    2010-03-05

    The Sco family of proteins are involved in the assembly of the dinuclear CuA site in cytochrome c oxidase (COX), the terminal enzyme in aerobic respiration. These proteins, which are found in both eukaryotes and prokaryotes, are characterized by a conserved CXXXC sequence motif that binds copper ions and that has also been proposed to perform a thiol:disulfide oxidoreductase function. The crystal structures of Saccharomyces cerevisiae apo Sco1 (apo-ySco1) and Sco1 in the presence of copper ions (Cu-ySco1) were determined to 1.8- and 2.3-{angstrom} resolutions, respectively. Yeast Sco1 exhibits a thioredoxin-like fold, similar to that observed for human Sco1 and a homolog from Bacillus subtilis. The Cu-ySco1 structure, obtained by soaking apo-ySco1 crystals in copper ions, reveals an unexpected copper-binding site involving Cys181 and Cys216, cysteine residues present in ySco1 but not in other homologs. The conserved CXXXC cysteines, Cys148 and Cys152, can undergo redox chemistry in the crystal. An essential histidine residue, His239, is located on a highly flexible loop, denoted the Sco loop, and can adopt positions proximal to both pairs of cysteines. Interactions between ySco1 and its partner proteins yeast Cox17 and yeast COX2 are likely to occur via complementary electrostatic surfaces. This high-resolution model of a eukaryotic Sco protein provides new insight into Sco copper binding and function.

  18. Ribosylurea accumulates in yeast urc4 mutants.

    Science.gov (United States)

    Björnberg, O; Vodnala, M; Domkin, V; Hofer, A; Rasmussen, A; Andersen, G; Piskur, J

    2010-06-01

    Yeast Saccharomyces (Lachancea) kluyveri urc4 mutants, unable to grow on uracil, biotransformed (14)C(2)-uracil into two labeled compounds, as detected by high performance liquid chromatography (HPLC). These two compounds could also be obtained following organic synthesis of ribosylurea. This finding demonstrates that in the URC pyrimidine degradation pathway, the opening of the uracil ring takes place when uracil is attached to the ribose moiety. Ribosylurea has not been reported in the cell metabolism before and the two observed compounds likely represent an equilibrium mixture of the pyranosyl and furanosyl forms.

  19. Structural Studies of the Yeast Mitochondrial Degradosome

    DEFF Research Database (Denmark)

    Feddersen, Ane; Jonstrup, Anette Thyssen; Brodersen, Ditlev Egeskov

    and nuclear exosome complexes, which consist of 10-12 different nuclease subunits, the mitochondrial degradosome is composed of only two large subunits - an RNase (Dss1p) and a helicase (Suv3p), belonging the Ski2 class of DExH box RNA helicases. Both subunits are encoded on the yeast nuclear genome...... and imported to the mitochondrial matrix posttranslationally. In an effort to understand the complex mechanisms underlying control of RNA turnover and surveillance in eukaryotic organisms, we are studying the structure of the mitochondrial degradosome as a model system for the more complex exosomes. Dss1p...

  20. Levaduras inhibidoras de Penicillium Inhibitory Penicillium yeasts

    Directory of Open Access Journals (Sweden)

    M.R. Benítez Ahrendts

    2004-12-01

    Full Text Available El objetivo de este trabajo fue determinar la acción inhibitoria in vitro e in vivo de algunas cepas de levaduras de la zona citrícola jujeña sobre el crecimiento de los mohos patógenos post-cosecha y seleccionarlas para elaborar un producto de biocontrol. Se aislaron de frutos cítricos cepas de los mohos patógenos post-cosecha Penicillium digitatum, P. italicum,P. ulaiense, Phyllosticta sp. y Galactomyces geotrichum, así como de levaduras saprófítas de los géneros Brettanomyces, Candida, Cryptococcus, Kloeckera, Pichia y Rhodotorula. También se obtuvieron algunas levaduras de otras fuentes. Se identificaron las levaduras por las características macro y micromorfológicas y las pruebas fisiológicas. La actividad in vitro e in vivo de las diferentes cepas fue diferente según se enfrentaran a P. digitatum o P. ulaiense. Candida cantarellii y una cepa de Pichia subpelliculosa produjeron una reducción significativa del área de las lesiones provocadas por estas especies de Penicillium, y podrían ser empleadas en la formulación de un producto para biocontrol.The objective of this work was to establish the in vitro and in vivo inhibition of post-harvest pathogenic moulds by yeasts in order to make a biocontrol product. Post-harvest pathogenic moulds Penicillium digitatumP. italicum, P. ulaiense, Phyllosticta sp., Galactomyces geotrichum and yeasts belonging to genera Brettanomyces, Candida, Cryptococcus, Kloeckera,Pichia, Rhodotorula were isolated from citrus fruits. Some yeasts strains were also isolated from other sources. The yeasts were identified by their macro and micro-morphology and physiological tests. The in vitro and in vivo activities against P. digitatum or P. ulaiense were different. Candida cantarellii and one strain of Pichia subpelliculosa produced a significant reduction of the lesion area caused by the pathogenic moulds P. digitatum and P. ulaiense, and could be used in a biocontrol product formulation.

  1. Cyanohydrin reactions enhance glycolytic oscillations in yeast

    DEFF Research Database (Denmark)

    Hald, Bjørn Olav; Nielsen, Astrid Gram; Tortzen, Christian

    2015-01-01

    Synchronous metabolic oscillations can be induced in yeast by addition of glucose and removal of extracellular acetaldehyde (ACAx). Compared to other means of ACAx removal, cyanide robustly induces oscillations, indicating additional cyanide reactions besides ACA to lactonitrile conversion. Here...... for ~66% of total cyanide removal. Simulations of our updated computational model show that intracellular cyanide reactions increase the amplitude of oscillations and that cyanide addition lowers [ACA] instantaneously. We conclude that cyanide provides the following means of inducing global oscillations......: a) by reducing [ACAx] relative to oscillation amplitude, b) by targeting multiple intracellular carbonyl compounds during fermentation, and c) by acting as a phase resetting stimulus....

  2. Laser effects on yeast cell suspensions

    Science.gov (United States)

    Grigorovici, A.; Despa, Sanda I.; Paunescu, Teodor G.

    1995-03-01

    The aim of this paper is to determine the effects produced by coherent electromagnetic radiation in the ultraviolet and visible range on the growth of a Saccharomyces cerevisiae cell suspension. There were made several experiments in which we used different irradiation parameters (power, irradiation time, wavelength) for pointing out those that produce the stimulation or inhibition of the cellular culture growth. Beyond the modifications that appeared in the culture evolution we investigated other physical and chemical changes induced by the laser light on yeast cell suspensions.

  3. Diversity and physiological characterization of D-xylose-fermenting yeasts isolated from the Brazilian Amazonian Forest.

    Directory of Open Access Journals (Sweden)

    Raquel M Cadete

    Full Text Available BACKGROUND: This study is the first to investigate the Brazilian Amazonian Forest to identify new D-xylose-fermenting yeasts that might potentially be used in the production of ethanol from sugarcane bagasse hemicellulosic hydrolysates. METHODOLOGY/PRINCIPAL FINDINGS: A total of 224 yeast strains were isolated from rotting wood samples collected in two Amazonian forest reserve sites. These samples were cultured in yeast nitrogen base (YNB-D-xylose or YNB-xylan media. Candida tropicalis, Asterotremella humicola, Candida boidinii and Debaryomyces hansenii were the most frequently isolated yeasts. Among D-xylose-fermenting yeasts, six strains of Spathaspora passalidarum, two of Scheffersomyces stipitis, and representatives of five new species were identified. The new species included Candida amazonensis of the Scheffersomyces clade and Spathaspora sp. 1, Spathaspora sp. 2, Spathaspora sp. 3, and Candida sp. 1 of the Spathaspora clade. In fermentation assays using D-xylose (50 g/L culture medium, S. passalidarum strains showed the highest ethanol yields (0.31 g/g to 0.37 g/g and productivities (0.62 g/L · h to 0.75 g/L · h. Candida amazonensis exhibited a virtually complete D-xylose consumption and the highest xylitol yields (0.55 g/g to 0.59 g/g, with concentrations up to 25.2 g/L. The new Spathaspora species produced ethanol and/or xylitol in different concentrations as the main fermentation products. In sugarcane bagasse hemicellulosic fermentation assays, S. stipitis UFMG-XMD-15.2 generated the highest ethanol yield (0.34 g/g and productivity (0.2 g/L · h, while the new species Spathaspora sp. 1 UFMG-XMD-16.2 and Spathaspora sp. 2 UFMG-XMD-23.2 were very good xylitol producers. CONCLUSIONS/SIGNIFICANCE: This study demonstrates the promise of using new D-xylose-fermenting yeast strains from the Brazilian Amazonian Forest for ethanol or xylitol production from sugarcane bagasse hemicellulosic hydrolysates.

  4. Identification of yeast strains isolated from marcha in Sikkim, a microbial starter for amylolytic fermentation.

    Science.gov (United States)

    Tsuyoshi, Naoko; Fudou, Ryosuke; Yamanaka, Shigeru; Kozaki, Michio; Tamang, Namrata; Thapa, Saroj; Tamang, Jyoti P

    2005-03-15

    Marcha or murcha is a traditional amylolytic starter used to produce sweet-sour alcoholic drinks, commonly called jaanr in the Himalayan regions of India, Nepal, Bhutan, and Tibet (China). The aim of this study was to examine the microflora of marcha collected from Sikkim in India, focusing on yeast flora and their roles. Twenty yeast strains were isolated from six samples of marcha and identified by genetic and phenotypic methods. They were first classified into four groups (Group I, II, III, and IV) based on physiological features using an API test. Phylogenetic, morphological, and physiological characterization identified the isolates as Saccharomyces bayanus (Group I); Candida glabrata (Group II); Pichia anomala (Group III); and Saccharomycopsis fibuligera, Saccharomycopsis capsularis, and Pichia burtonii (Group IV). Among them, the Group I, II, and III strains produced ethanol. The isolates of Group IV had high amylolytic activity. Because all marcha samples tested contained both starch degraders and ethanol producers, it was hypothesized that all four groups of yeast (Group I, II, III, and IV) contribute to starch-based alcohol fermentation.

  5. Colorimetric Enzymatic Assay of L-Malic Acid Using Dehydrogenase from Baker’s Yeast

    Directory of Open Access Journals (Sweden)

    Cecilia Laluce

    2008-01-01

    Full Text Available A colorimetric method has been developed and optimized to measure L-malic acid in samples of fruit juices and wine. This method is based on oxidation of the analyte, catalyzed by malate dehydrogenase (MDH from dry baker’s yeast, and in combination with the reduction of a tetrazolium salt (MTT: 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide. In the present study, the method exhibited sensitivity in the range of 500–4000 mM of L-malic acid in the reaction cuvette, with the lower detection limit of 6.7·10^-2 g/L, the upper limit of 53.6·10^-2 g/L and a maximum standard deviation of only 2.5 % for the analyzed samples. The MDH activity from baker’s yeast was also optimized, the enzyme showed a high stability at pH=8.0–9.0 and the activity was maintained completely at temperatures up to 40 °C for 1 hour. The results show that the colorimetric method using enzymatic preparations from dry baker’s yeast is a simple and low-cost method with possibility of wide application

  6. The Use of HIS6 Gene as a Selectable Marker for Yeast Vector

    OpenAIRE

    IMADEARTIKA,

    2009-01-01

    The yeast Saccharomyces cerevisiae HIS6 gene has been shown to be functional as a selectable marker for selecting and maintaining a yeast vector in yeast S. cerevisiae host cells. The yeast HIS6 gene encodes an enzyme involved in the yeast histidine biosynthesis. The yeast HIS6 gene was cloned into a yeast expression vector. The resultant recombinant plasmid was introduced into yeast host cells defective in endogenous HIS6 gene. The functionality of the HIS6 gene as a selectable marker was te...

  7. The Use of HIS6 Gene as a Selectable Marker for Yeast Vector

    Directory of Open Access Journals (Sweden)

    IMADEARTIKA

    2009-03-01

    Full Text Available The yeast Saccharomyces cerevisiae HIS6 gene has been shown to be functional as a selectable marker for selecting and maintaining a yeast vector in yeast S. cerevisiae host cells. The yeast HIS6 gene encodes an enzyme involved in the yeast histidine biosynthesis. The yeast HIS6 gene was cloned into a yeast expression vector. The resultant recombinant plasmid was introduced into yeast host cells defective in endogenous HIS6 gene. The functionality of the HIS6 gene as a selectable marker was tested by growing transformed cells on selective minimum medium lacking histidine supplementation.

  8. Language sampling

    DEFF Research Database (Denmark)

    Rijkhoff, Jan; Bakker, Dik

    1998-01-01

    This article has two aims: [1] to present a revised version of the sampling method that was originally proposed in 1993 by Rijkhoff, Bakker, Hengeveld and Kahrel, and [2] to discuss a number of other approaches to language sampling in the light of our own method. We will also demonstrate how our...... sampling method is used with different genetic classifications (Voegelin & Voegelin 1977, Ruhlen 1987, Grimes ed. 1997) and argue that —on the whole— our sampling technique compares favourably with other methods, especially in the case of exploratory research....

  9. Psychrophilic yeasts and their biotechnological applications - A review

    African Journals Online (AJOL)

    SAM

    2014-05-28

    May 28, 2014 ... The presence of organic carbon and nitrogen sources in waters, originated from melting glacier ice, have been demonstrated and the occurrence of yeast strains degrading a variety of organic compounds including polysaccharides, esters, lipids and pectin's have been observed in the yeasts isolated from.

  10. RAPYD--rapid annotation platform for yeast data.

    Science.gov (United States)

    Schneider, Jessica; Blom, Jochen; Jaenicke, Sebastian; Linke, Burkhard; Brinkrolf, Karina; Neuweger, Heiko; Tauch, Andreas; Goesmann, Alexander

    2011-08-20

    Lower eukaryotes of the kingdom Fungi include a variety of biotechnologically important yeast species that are in the focus of genome research for more than a decade. Due to the rapid progress in ultra-fast sequencing technologies, the amount of available yeast genome data increases steadily. Thus, an efficient bioinformatics platform is required that covers genome assembly, eukaryotic gene prediction, genome annotation, comparative yeast genomics, and metabolic pathway reconstruction. Here, we present a bioinformatics platform for yeast genomics named RAPYD addressing the key requirements of extensive yeast sequence data analysis. The first step is a comprehensive regional and functional annotation of a yeast genome. A region prediction pipeline was implemented to obtain reliable and high-quality predictions of coding sequences and further genome features. Functions of coding sequences are automatically determined using a configurable prediction pipeline. Based on the resulting functional annotations, a metabolic pathway reconstruction module can be utilized to rapidly generate an overview of organism-specific features and metabolic blueprints. In a final analysis step shared and divergent features of closely related yeast strains can be explored using the comparative genomics module. An in-depth application example of the yeast Meyerozyma guilliermondii illustrates the functionality of RAPYD. A user-friendly web interface is available at https://rapyd.cebitec.uni-bielefeld.de. Copyright © 2010 Elsevier B.V. All rights reserved.

  11. Interactions between yeasts, fungicides and apple fruit russeting

    NARCIS (Netherlands)

    Gildemacher, P.R.; Heijne, B.; Silvestri, M.; Houbraken, J.; Hoekstra, E.; Theelen, B.; Boekhout, T.

    2006-01-01

    The effect of inoculations with yeasts occurring on apple surfaces and fungicide treatments on the russeting of Elstar apples was studied. Captan, dithianon and a water treatment were implemented to study the interaction between the fungicides, the inoculated yeast species and Aureobasidium

  12. Metabolic engineering of yeast for fermentative production of flavonoids

    DEFF Research Database (Denmark)

    Rodriguez Prado, Edith Angelica; Strucko, Tomas; Stahlhut, Steen Gustav

    2017-01-01

    Yeast Saccharomyces cerevisiae was engineered for de novo production of six different flavonoids (naringenin, liquiritigenin, kaempferol, resokaempferol, quercetin, and fisetin) directly from glucose, without supplementation of expensive intermediates. This required reconstruction of long...... demonstrates the potential of flavonoid-producing yeast cell factories....

  13. Bipolar budding in yeasts - an electron microscope study

    NARCIS (Netherlands)

    Kreger-van Rij, N.J.W.; Veenhuis, M.

    1971-01-01

    Bud formation in yeasts with bipolar budding was studied by electron microscopy of thin sections. Budding in yeasts of the species Saccharomycodes ludwigii, Hanseniaspora valbyensis and Wickerhamia fluorescens resulted in concentric rings of scar ridges on the wall of the mother cell. The wall

  14. Phenotypic characters of yeasts isolated from kpete-kpete, a ...

    African Journals Online (AJOL)

    USER

    2015-07-08

    Jul 8, 2015 ... Based on their phenotypic characters and their assimilation profiles, 49 yeasts were isolated and found to belong to five ... marriage, birth, the handing over of a dowry, etc.) and constitute a source of ..... Table 3. Assimilation profiles of yeasts isolated from traditional starter kpete-kpete. Parameter a* b c d. E.

  15. Yeast contamination potential in a carbonated soft drink industry ...

    African Journals Online (AJOL)

    Components of the filling valve in a gravity filling machine namely, tulip rubber, spreader rubber and vent tube were analyzed for yeasts using the membrane filtration method. After 5 days incubation, it was found that the tulip rubber had the highest yeast count of 9 cfu/20mls while the vent tube had the least count of 5 ...

  16. A vaccine grade of yeast Saccharomyces cerevisiae expressing mammalian myostatin

    Directory of Open Access Journals (Sweden)

    Zhang Tingting

    2012-12-01

    Full Text Available Abstract Background Yeast Saccharomyces cerevisiae is a widely-used system for protein expression. We previously showed that heat-killed whole recombinant yeast vaccine expressing mammalian myostatin can modulate myostatin function in mice, resulting in increase of body weight and muscle composition in these animals. Foreign DNA introduced into yeast cells can be lost soon unless cells are continuously cultured in selection media, which usually contain antibiotics. For cost and safety concerns, it is essential to optimize conditions to produce quality food and pharmaceutical products. Results We developed a simple but effective method to engineer a yeast strain stably expressing mammalian myostatin. This method utilized high-copy-number integration of myostatin gene into the ribosomal DNA of Saccharomyces cerevisiae. In the final step, antibiotic selection marker was removed using the Cre-LoxP system to minimize any possible side-effects for animals. The resulting yeast strain can be maintained in rich culture media and stably express mammalian myostatin for two years. Oral administration of the recombinant yeast was able to induce immune response to myostatin and modulated the body weight of mice. Conclusions Establishment of such yeast strain is a step further toward transformation of yeast cells into edible vaccine to improve meat production in farm animals and treat human muscle-wasting diseases in the future.

  17. Investigating the proteins released by yeasts in synthetic wine fermentations.

    Science.gov (United States)

    Mostert, Talitha T; Divol, Benoit

    2014-02-03

    Proteins from various biological sources previously identified in wine play important roles in the functioning and survival of their producers and may exhibit oenological properties. Yeasts contribute significantly to the protein pool during and after alcoholic fermentation. While the extracellular proteins of Saccharomyces cerevisiae, the main wine yeast species, have been characterised, those of non-Saccharomyces yeasts remain restricted to a few enzymes. A more comprehensive insight into all proteins released during fermentation could improve our understanding of how yeasts survive and interact in mixed culture fermentations. This study aimed to characterise the exo-proteome of Saccharomyces and selected non-Saccharomyces yeasts in pure and mixed cultures in a wine-like medium. While S. cerevisiae completed the fermentation rapidly, Metschnikowia pulcherrima hardly fermented and Lachancea thermotolerans fermented slowly but steadily. In sequential fermentations, the kinetics resembled those of the non-Saccharomyces yeasts for a period before switching to that of S. cerevisiae. Identification of the proteins present in wine at the end of fermentation using mass fingerprinting revealed the large diversity of proteins secreted and the influence of yeast interactions therein. The fermentation kinetics observed could partially be explained by the extent of the contribution of the different yeast to the protein content. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Antioxidant and Anticancer activities of yeast grown on commercial ...

    African Journals Online (AJOL)

    There is also considerable evidence which indicates lower risk of Cancer in yeast extracts and the used commercial media. The present study was conducted to determine antioxidant activity of yeast extracts grown on four different commercial media using DPPH, total phenolic content, total antioxidant activity and TBARS ...

  19. Identification of Yeasts Present in Sour Fermented Foods and Fodder

    NARCIS (Netherlands)

    Middelhoven, W.J.

    2002-01-01

    This paper deals with rapid methods for identification of 50 yeast species frequently isolated from foods and fodders that underwent a lactic acid fermentation. However, many yeast species present in olive brine, alpechin, and other olive products were not treated. The methods required for

  20. The making of biodiversity across the yeast subphyllum

    Science.gov (United States)

    Goals for this research project are to determine how the functional diversity of the yeast subphylum is encoded, and to reconstruct the history of yeasts to elucidate the tempo and mode of functional diversification. The impact of this work will be to integrate discoveries within broadly disseminate...

  1. Characterisation of palm wine yeast isolates for industrial utilisation ...

    African Journals Online (AJOL)

    Characterisation of palm wine yeast isolates for industrial utilisation. IN Nwachukwu, VI Ibekwe, RN Nwabueze, BN Anyanwu. Abstract. Investigations were carried out on yeasts isolated from palm wines obtained from South Eastern Nigeria. The isolates were characterised for certain attributes necessary for ethanol ...

  2. Analysis of the RNA Content of the Yeast "Saccharomyces Cerevisiae"

    Science.gov (United States)

    Deutch, Charles E.; Marshall, Pamela A.

    2008-01-01

    In this article, the authors describe an interconnected set of relatively simple laboratory experiments in which students determine the RNA content of yeast cells and use agarose gel electrophoresis to separate and analyze the major species of cellular RNA. This set of experiments focuses on RNAs from the yeast "Saccharomyces cerevisiae", a…

  3. Identification of GPD1 gene from yeast via fluorescence differential ...

    African Journals Online (AJOL)

    The main task of this work was to identify abiotic stress-induced gene(s) from yeast (Saccharomyces cerevisiae) and introduce it to a prokaryotic system to detect its effect on conferring tolerance to salt stress. Six isolates of yeast (S. cerevisiae) were evaluated under salt and osmotic stresses at concentrations of 2 M NaCl ...

  4. Biotechnology of non-Saccharomyces yeasts--the ascomycetes.

    Science.gov (United States)

    Johnson, Eric A

    2013-01-01

    Saccharomyces cerevisiae and several other yeast species are among the most important groups of biotechnological organisms. S. cerevisiae and closely related ascomycetous yeasts are the major producer of biotechnology products worldwide, exceeding other groups of industrial microorganisms in productivity and economic revenues. Traditional industrial attributes of the S. cerevisiae group include their primary roles in food fermentations such as beers, cider, wines, sake, distilled spirits, bakery products, cheese, sausages, and other fermented foods. Other long-standing industrial processes involving S. cerevisae yeasts are production of fuel ethanol, single-cell protein (SCP), feeds and fodder, industrial enzymes, and small molecular weight metabolites. More recently, non-Saccharomyces yeasts (non-conventional yeasts) have been utilized as industrial organisms for a variety of biotechnological roles. Non-Saccharomyces yeasts are increasingly being used as hosts for expression of proteins, biocatalysts and multi-enzyme pathways for the synthesis of fine chemicals and small molecular weight compounds of medicinal and nutritional importance. Non-Saccharomyces yeasts also have important roles in agriculture as agents of biocontrol, bioremediation, and as indicators of environmental quality. Several of these products and processes have reached commercial utility, while others are in advanced development. The objective of this mini-review is to describe processes currently used by industry and those in developmental stages and close to commercialization primarily from non-Saccharomyces yeasts with an emphasis on new opportunities. The utility of S. cerevisiae in heterologous production of selected products is also described.

  5. Influence of catalyst (Yeast) on the Biomethanization of Selected ...

    African Journals Online (AJOL)

    Yeast catalyzed the rate of biomethanization of waste materials and rate at which it alter the reaction rate has been determined. It was observed that addition of yeast improved the quality and quantity of biogas generated and also fastened the acid and methane forming stages during biomethanization. The volumes of ...

  6. Screening of indigenous Yeast strains of fermented foods of Western ...

    African Journals Online (AJOL)

    s$s informatic

    2012-06-28

    Jun 28, 2012 ... probiotic attributes. MATERIALS AND METHODS. Isolation of yeast. Indigenous yeast were enumerated and isolated from traditional fermented food viz., Bhaturu (uncooked) of Western Himalayas by standard serial dilution technique on potato dextrose agar (peeled potato 250 g, dextrose 20 g, agar 20 g, ...

  7. Effect of salt hyperosmotic stress on yeast cell viability

    Directory of Open Access Journals (Sweden)

    Logothetis Stelios

    2007-01-01

    Full Text Available During fermentation for ethanol production, yeasts are subjected to different kinds of physico-chemical stresses such as: initially high sugar concentration and low temperature; and later, increased ethanol concentrations. Such conditions trigger a series of biological responses in an effort to maintain cell cycle progress and yeast cell viability. Regarding osmostress, many studies have been focused on transcriptional activation and gene expression in laboratory strains of Saccharomyces cerevisiae. The overall aim of this present work was to further our understanding of wine yeast performance during fermentations under osmotic stress conditions. Specifically, the research work focused on the evaluation of NaCl-induced stress responses of an industrial wine yeast strain S. cerevisiae (VIN 13, particularly with regard to yeast cell growth and viability. The hypothesis was that osmostress conditions energized specific genes to enable yeast cells to survive under stressful conditions. Experiments were designed by pretreating cells with different sodium chloride concentrations (NaCl: 4%, 6% and 10% w/v growing in defined media containing D-glucose and evaluating the impact of this on yeast growth and viability. Subsequent fermentation cycles took place with increasing concentrations of D-glucose (20%, 30%, 40% w/v using salt-adapted cells as inocula. We present evidence that osmostress induced by mild salt pre-treatments resulted in beneficial influences on both cell viability and fermentation performance of an industrial wine yeast strain.

  8. Evaluation Of Soursop Wine Produced With Baker's Yeast ...

    African Journals Online (AJOL)

    Evaluation Of Soursop Wine Produced With Baker's Yeast ( Saccharomyces cerevisae ) ... Journal of Agriculture and Food Sciences ... Soursop pulp was fermented for wine production using baker's yeast (S. cerevisiae) and the wine produced was evaluated using some wine quality parameters (pH, Titrable acidity (TA), ...

  9. Ethanol production potential of local yeast strains isolated from ripe ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-05-16

    May 16, 2008 ... has been Saccharomyces cerevisiae. This yeast also has the ability to produce ethanol which is not contaminated by other products from the substrate. Banana peels are readily available agricultural waste in. Nigeria, yet they seem to be underutilized as potential growth medium for local yeast strains, ...

  10. New yeast-based approaches in production of palmitoleic acid

    Czech Academy of Sciences Publication Activity Database

    Kolouchová, I.; Sigler, Karel; Schreiberová, O.; Masák, J.; Řezanka, Tomáš

    2015-01-01

    Roč. 192, SEP 2015 (2015), s. 726-734 ISSN 0960-8524 R&D Projects: GA ČR(CZ) GAP503/11/0215; GA ČR GA14-00227S Institutional support: RVO:61388971 Keywords : Oleaginous yeasts * Non-oleaginous yeasts * Palmitoleic acid Subject RIV: EE - Microbiology, Virology Impact factor: 4.917, year: 2015

  11. Antioxidant and Anticancer activities of yeast grown on commercial ...

    African Journals Online (AJOL)

    Media preparation. Three commercial media were prepared by weighting of 30 grams and cooked on hot plate then filtrated by cotton and sterilized in the autoclave at 121 °C for 20 min. while basal medium was prepared according to Chen et al. (2010), yeast- peptone-dextrose (YPD) broth containing. 0.5% (w ⁄v) yeast ...

  12. Electrospun chitosan/baker's yeast nanofibre adsorbent: preparation ...

    Indian Academy of Sciences (India)

    Many studies have shown the capability of baker's yeast (Saccharomyces cerevisiae) for heavy met- als removal, but less efforts are dedicated for application of ... Chitosan (75–85% deacetylated) with medium molecular weight and glutaraldehyde solution (25 wt%) were supplied by Sigma-Aldrich. The baker's yeast was ...

  13. Functional genomics of beer-related physiological processes in yeast

    NARCIS (Netherlands)

    Hazelwood, L.A.

    2009-01-01

    Since the release of the entire genome sequence of the S. cerevisiae laboratory strain S288C in 1996, many functional genomics tools have been introduced in fundamental and application-oriented yeast research. In this thesis, the applicability of functional genomics for the improvement of yeast in

  14. Occurrence and function of yeasts in Asian indigenous fermented foods

    NARCIS (Netherlands)

    Aidoo, K.E.; Nout, M.J.R.; Sarkar, P.K.

    2006-01-01

    In the Asian region, indigenous fermented foods are important in daily life. In many of these foods, yeasts are predominant and functional during the fermentation. The diversity of foods in which yeasts predominate ranges from leavened bread-like products such as nan and idli, to alcoholic beverages

  15. The effect of ruminal incubation of bioactive yeast ( Saccharomyces ...

    African Journals Online (AJOL)

    The rising interest in the use of organic and inorganic substances in manipulating rumen function for improved fermentative activity has provided avenues for the inclusion of various species of yeast cultures in ruminant diets. In this study, we investigated the effect of bioactive yeast (Saccharomyces cerevisiae), on rumen ...

  16. Phenotypic characters of yeasts isolated from kpete-kpete , a ...

    African Journals Online (AJOL)

    ... on their phenotypic characters and their assimilation profiles, 49 yeasts were isolated and found to belong to five genera with seven species. Seventy one percent (71%) of the isolates were identified as Saccharomyces cerevisiae. Key words: Sorghum beer, tchoukoutou, kpete-kpete, yeast, Saccharomyces cerevisiae.

  17. EFFECTS OF MILLET MALT WORT ON BREWER'S YEAST

    African Journals Online (AJOL)

    BSN

    The effect of PeJr ~fillet. Penniserum americanum (L), malt won obtained by modified infusion method of mashmg was investigated on the brewers yeast, Saccharomyces uvarum, growth and fermentation performance. Bud formation in the yeast was observed nine hows into the initiation of. the fermentation process which ...

  18. Anti-yeast activity of extracts and fractions from Uvariodendron ...

    African Journals Online (AJOL)

    The resistance to available antifungals highlights the urgent need for innovative drugs to treat yeasts infections. This study aimed at evaluating the activity of extracts and fractions from Uvariodendron calophyllum against pathogenic yeasts. The ethanolic and aqueous extracts obtained by maceration were liquidliquid- ...

  19. Improving industrial yeast strains: exploiting natural and artificial diversity

    Science.gov (United States)

    Steensels, Jan; Snoek, Tim; Meersman, Esther; Nicolino, Martina Picca; Voordeckers, Karin; Verstrepen, Kevin J

    2014-01-01

    Yeasts have been used for thousands of years to make fermented foods and beverages, such as beer, wine, sake, and bread. However, the choice for a particular yeast strain or species for a specific industrial application is often based on historical, rather than scientific grounds. Moreover, new biotechnological yeast applications, such as the production of second-generation biofuels, confront yeast with environments and challenges that differ from those encountered in traditional food fermentations. Together, this implies that there are interesting opportunities to isolate or generate yeast variants that perform better than the currently used strains. Here, we discuss the different strategies of strain selection and improvement available for both conventional and nonconventional yeasts. Exploiting the existing natural diversity and using techniques such as mutagenesis, protoplast fusion, breeding, genome shuffling and directed evolution to generate artificial diversity, or the use of genetic modification strategies to alter traits in a more targeted way, have led to the selection of superior industrial yeasts. Furthermore, recent technological advances allowed the development of high-throughput techniques, such as ‘global transcription machinery engineering’ (gTME), to induce genetic variation, providing a new source of yeast genetic diversity. PMID:24724938

  20. Attraction of Coffee Bean Weevil, Araecerus fasciculatus, to Volatiles from the Industrial Yeast Kluyveromyces lactis.

    Science.gov (United States)

    Yang, Shuai; Mei, Xiang-Dong; Zhang, Xiao-Fang; Li, Yao-Fa; She, Dongmei; Zhang, Tao; Ning, Jun

    2017-02-01

    The coffee bean weevil (CBW), Araecerus fasciculatus (De Geer, 1775) (Coleoptera: Anthribidae) is an important pest of stored products such as grains, coffee beans, cassava, and traditional Chinese medicine materials. In China, CBW causes large losses of Daqu, a traditional Chinese liquor fermentation starter, and, unfortunately, the use of conventional insecticides against CBW is not suitable in Daqu storage. We found CBW to be highly attracted to fermenting yeast cultures, such as Kluyveromyces lactis. Eight volatile compounds, produced by fermenting cultures and not by sterile samples, were identified by gas chromatography coupled with mass spectrometry. Five of these substances elicited significant responses in Y-tube behavioral bioassays. Field trapping experiments revealed 2-phenylethanol and 2-phenylethyl acetate to be crucial for attraction of CBW. Results show that yeast volatiles play an important role in host location, and that 2-phenylethanol and 2-phenylethyl acetate could be utilized as potential attractants in monitoring and control systems against this important pest.

  1. YEAST dynamics during the natural fermentation process of table olives (Negrinha de Freixo cv.).

    Science.gov (United States)

    Pereira, Ermelinda L; Ramalhosa, Elsa; Borges, Ana; Pereira, José A; Baptista, Paula

    2015-04-01

    Yeast population and dynamics associated to spontaneous fermentation of green table olives Negrinha de Freixo cv. were evaluated. Olives and brine samples were taken at different fermentation times, and yeast were enumerated by standard plate count and identified by sequencing of the internal transcribed spacer (ITS) region of the nuclear ribosomal DNA (rDNA). Saccharomyces cerevisiae was the most frequent, followed by Candida tropicalis, Pichia membranifaciens and Candida boidini, representing together 94.8% of the total isolates. Galactomyces reessii was also identified for the first time in table olives. The highest species diversity was found between 44 and 54 days of fermentation, both in brine and olive pulp. Furthermore, high similarity was observed between brine and olive pulp microbiotas. In conclusion, these results give valuable information to table olive industrials in order to achieve more knowledge on the fermentation process of this important Protected Designation of Origin product. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Metabolic study of the adaptation of the yeast Candida guilliermondii to sugarcane bagasse hydrolysate.

    Science.gov (United States)

    Sene, L; Converti, A; Zilli, M; Felipe, M G; Silva, S S

    2001-12-01

    Batch xylitol production from concentrated sugarcane bagasse hydrolysate by Candida guilliermondii was performed by progressively adapting the cells to the medium. Samples were analyzed to monitor sugar and acetic acid consumption, xylitol, arabitol, ethanol, and carbon dioxide production, as well as cell growth. Both xylitol yield and volumetric productivity remarkably increased with the number of adaptations, demonstrating that the more adapted the cells, the better the capacity of the yeast to reduce xylose to xylitol in hemicellulose hydrolysates. Substrate and product concentrations were used in carbon material balances to study in which way the different carbon sources were utilized by this yeast under microaerobic conditions, as well as to shed light on the effect of the progressive adaptation to the medium on its fermentative activity. Such a theoretical means allowed estimation for the first time of the relative contribution of each medium component to the formation of the main products of this fermentation system.

  3. Yeast as an indicator of surface water pollution; Hefe als Bioindikator fuer Gewaesserverunreinigung

    Energy Technology Data Exchange (ETDEWEB)

    Bomhard, S. von [Gymnasium Saarburg (Germany)

    2003-06-01

    The vitality of yeast strains in aqueous solutions is affected by pollutants. In her contribution to 'Jugend forscht', the author added typical water pollutants like kitchen salt, salad oil, detergents and diesel oil to a nutrient broth with yeast in laboratory conditions and measured and analyzed their effects on the basis of CO{sub 2} emissions. In a practical test, water samples of the Saar river were investigated in the same manner, with interesting results. [German] Die Vitalitaet von Hefestaemmen in waessrigen Loesungen wird durch Verunreinigungen beeinflusst. In einer Arbeit zum Wettbewerb 'Jugend forscht' hat die Autorin unter Laborbedingungen typische Gewaesserschadstoffe wie Kochsalz, Speiseoel, Waschmittel und Dieseloel in eine Naehrloesung mit Hefe eingebracht und die Wirkung der Verunreinigungen anhand der freigesetzten CO{sub 2}-Menge gemessen und bewertet. Als praktische Anwendung der Versuche wurden Wasserproben der Saar in gleicher Weise mit interessanten Resultaten untersucht.

  4. A molecular imprinted SPR biosensor for sensitive determination of citrinin in red yeast rice.

    Science.gov (United States)

    Atar, Necip; Eren, Tanju; Yola, Mehmet Lütfi

    2015-10-01

    A novel and sensitive molecular imprinted surface plasmon resonance (SPR) biosensor was developed for selective determination of citrinin (CIT) in red yeast rice. Firstly, the gold surface of SPR chip was modified with allyl mercaptane. Then, CIT-imprinted poly(2-hydroxyethyl methacrylate-methacryloylamidoglutamic acid) (p(HEMA-MAGA)) film was generated on the gold surface modified with allyl mercaptane. The unmodified and imprinted surfaces were characterized by Fourier transform infrared (FTIR) spectroscopy, atomic force microscopy (AFM) and contact angle measurements. The linearity range and the detection limit were obtained as 0.005-1.0 ng/mL and 0.0017 ng/mL, respectively. The SPR biosensor was applied to determination of CIT in red yeast rice sample. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Spencermartinsiella silvicola sp. nov., a yeast species isolated from rotting wood.

    Science.gov (United States)

    Morais, Camila G; Lara, Carla A; Oliveira, Evelyn S; Péter, Gábor; Dlauchy, Dénes; Rosa, Carlos A

    2016-02-01

    Three strains of a new xylanase-producing yeast species were isolated from rotting wood samples collected in the Atlantic Rain Forest of Brazil. The sequences of the internal transcribed spacer region and D1/D2 domains of the large subunit of the rRNA gene showed that this novel yeast species belongs to the genus Spencermartinsiella, and its closest relatives among recognized species are Spencermartinsiella europaea and Spencermartinsiella ligniputridi. A novel species, named Spencermartinsiella silvicola sp. nov., is proposed to accommodate these isolates. The type strain is UFMG-CM-Y274T ( = CBS 13490T). The MycoBank number is MB 813053. In addition, Candida cellulosicola is reassigned to the genus Spencermartinsiella as a new combination.

  6. The occurrence of molds, yeasts and mycotoxins in pre-cooked pizza dough sold in Southern Rio Grande do Sul

    Directory of Open Access Journals (Sweden)

    Pinho Beatriz Helena

    2000-01-01

    Full Text Available The quality of pre-cooked pizza dough was investigated by assessing the occurrence of molds, yeasts and mycotoxins. Random sampling of commercial pre-cooked pizza cakes was done in different stores in the cities of Rio Grande and Pelotas, RS, between 1996 and 1997. The products were analysed on the sampling day and after storage at room (22-30ºC or refrigerated temperature (7ºC following the shelf life stated by the manufacturer (25,30 and 45 days. The results showed that mold and yeast contamination was frequently above the maximum limits (10³CFU/g-1 established by Brazilian guide lines, even in samples kept at refrigerated temperatures up to the end of shelf life. Although no mycotoxin contamination was detected, a strain of the Penicillium genus, isolated from various samples, produced ochratoxin A at refrigeration temperatures.

  7. Transporter engineering in biomass utilization by yeast.

    Science.gov (United States)

    Hara, Kiyotaka Y; Kobayashi, Jyumpei; Yamada, Ryosuke; Sasaki, Daisuke; Kuriya, Yuki; Hirono-Hara, Yoko; Ishii, Jun; Araki, Michihiro; Kondo, Akihiko

    2017-11-01

    Biomass resources are attractive carbon sources for bioproduction because of their sustainability. Many studies have been performed using biomass resources to produce sugars as carbon sources for cell factories. Expression of biomass hydrolyzing enzymes in cell factories is an important approach for constructing biomass-utilizing bioprocesses because external addition of these enzymes is expensive. In particular, yeasts have been extensively engineered to be cell factories that directly utilize biomass because of their manageable responses to many genetic engineering tools, such as gene expression, deletion and editing. Biomass utilizing bioprocesses have also been developed using these genetic engineering tools to construct metabolic pathways. However, sugar input and product output from these cells are critical factors for improving bioproduction along with biomass utilization and metabolic pathways. Transporters are key components for efficient input and output activities. In this review, we focus on transporter engineering in yeast to enhance bioproduction from biomass resources. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  8. Production of glycolipid biosurfactants by basidiomycetous yeasts.

    Science.gov (United States)

    Morita, Tomotake; Fukuoka, Tokuma; Imura, Tomohiro; Kitamoto, Dai

    2009-05-01

    BSs (biosurfactants) produced by various micro-organisms show unique properties (e.g. mild production conditions, lower toxicity, higher biodegradability and environmental compatibility) compared with chemically synthesized surfactants. The numerous advantages of BSs have prompted applications not only in the food, cosmetic and pharmaceutical industries but also in environmental protection and energy-saving technology. Among BSs, glycolipid types are the most promising, owing to their high productivity from renewable resources and versatile biochemical properties. MELs (mannosylerythritol lipids), which are glycolipid BSs abundantly produced by basidiomycetous yeasts such as strains of Pseudozyma, exhibit not only excellent interfacial properties, but also remarkable differentiation-inducing activities against human leukaemia cells. MELs also show high binding affinity towards different immunoglobulins and lectins. Recently, a cationic liposome bearing MEL has been demonstrated to increase dramatically the efficiency of gene transfection into mammalian cells. These features of BSs should broaden their application in new advanced technologies. In the present review the current status of research and development on glycolipid BSs, especially their production by Pseudozyma yeasts, is described.

  9. Mechanics of cell division in fission yeast

    Science.gov (United States)

    Chang, Fred

    2012-02-01

    Cytokinesis is the stage of cell division in which a cell divides into two. A paradigm of cytokinesis in animal cells is that the actomyosin contractile ring provides the primary force to squeeze the cell into two. In the fission yeast Schizosaccharomyces pombe, cytokinesis also requires a actomyosin ring, which has been generally assumed to provide the force for cleavage. However, in contrast to animal cells, yeast cells assemble a cell wall septum concomitant with ring contraction and possess large (MPa) internal turgor pressure. Here, we show that the inward force generated by the division apparatus opposes turgor pressure; a decrease in effective turgor pressure leads to an increase in cleavage rate. We show that the ring cannot be the primary force generator. Scaling arguments indicate that the contractile ring can only provide a tiny fraction of the mechanical stress required to overcome turgor. Further, we show that cleavage can occur even in the absence of the contractile ring. Instead of the contractile ring, scaling arguments and modeling suggest that the large forces for cytokinesis are produced by the assembly of cell wall polymers in the growing septum.

  10. Signaling pathways of replication stress in yeast.

    Science.gov (United States)

    Pardo, Benjamin; Crabbé, Laure; Pasero, Philippe

    2017-03-01

    Eukaryotic cells activate the S-phase checkpoint in response to a variety of events affecting the progression of replication forks, collectively referred to as replication stress. This signaling pathway is divided in two branches: the DNA damage checkpoint (DDC) and the DNA replication checkpoint (DRC). Both pathways are activated by the sensor kinase Mec1 and converge on the effector kinase Rad53. However, the DDC operates throughout the cell cycle and depends on the checkpoint mediator Rad9 to activate Rad53, whereas the DRC is specific to S phase and is mediated by Mrc1 and other fork components to signal replication impediments. In this review, we summarize current knowledge on these two pathways, with a focus on the budding yeast Saccharomyces cerevisiae, in which many important aspects of the replication stress response were discovered. We also discuss the differences and similarities between DDC and DRC and speculate on how these pathways cooperate to ensure the complete and faithful duplication of the yeast genome under various replication stress conditions. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  11. Perchlorate Reduction by Yeast for Mars Exploration

    Science.gov (United States)

    Sharma, Alaisha

    2015-01-01

    Martian soil contains high levels (0.6 percentage by mass) of calcium perchlorate (Ca(ClO4)2), which readily dissociates into calcium and the perchlorate ion (ClO4-) in water. Even in trace amounts, perchlorates are toxic to humans and have been implicated in thyroid dysfunction. Devising methods to lessen perchlorate contamination is crucial to minimizing the health risks associated with human exploration and colonization of Mars. We designed a perchlorate reduction pathway, which sequentially reduces perchlorate to chloride (Cl-) and oxygen (O2), for implementation in the yeast Saccharomyces cerevisiae. Using genes obtained from perchlorate reducing bacteria Azospira oryzae and Dechloromonas aromatica, we plan to assemble this pathway directly within S. cerevisiae through recombinational cloning. A perchlorate reduction pathway would enable S. cerevisiae to lower perchlorate levels and produce oxygen, which may be harvested or used directly by S. cerevisiae for aerobic growth and compound synthesis. Moreover, using perchlorate as an external electron acceptor could improve the efficiency of redox-imbalanced production pathways in yeast. Although several perchlorate reducing bacteria have been identified and utilized in water treatment systems on Earth, the widespread use of S. cerevisiae as a synthetic biology platform justifies the development of a perchlorate reducing strain for implementation on Mars.

  12. Copper exposure effects on yeast mitochondrial proteome.

    Science.gov (United States)

    Banci, Lucia; Bertini, Ivano; Ciofi-Baffoni, Simone; D'Alessandro, Annamaria; Jaiswal, Deepa; Marzano, Valeria; Neri, Sara; Ronci, Maurizio; Urbani, Andrea

    2011-10-19

    Mitochondria play an important role on the entire cellular copper homeostatic mechanisms. Alteration of cellular copper levels may thus influence mitochondrial proteome and its investigation represents an important contribution to the general understanding of copper-related cellular effects. In these study we have performed an organelle targeted proteomic investigation focusing our attention on the effect of non-lethal 1mM copper concentration on Saccharomyces cerevisiae mitochondrial proteome. Functional copper effects on yeast mitochondrial proteome were evaluated by using both 2D electrophoresis (2-DE) and liquid chromatography coupled with tandem mass spectrometry. Proteomic data have been then analyzed by different unsupervised meta-analysis approaches that highlight the impairment of mitochondrial functions and the activation of oxidative stress response. Interestingly, our data have shown that stress response generated by 1mM copper treatment determines the activation of S. cerevisiae survival pathway. To investigate these findings we have treated yeast cells responsiveness to copper with hydrogen peroxide and observed a protective role of this metal. These results are suggestive of a copper role in the protection from oxidative stress possibly due to the activation of mechanisms involved in cellular survival and growth. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Parameters affecting methanol utilization by yeasts

    Energy Technology Data Exchange (ETDEWEB)

    Foda, M.S.; El-Masry, H.G.

    1981-01-01

    Screening of 28 yeast cultures, representing 22 species of various yeasts, with respect to their capabilities to assimilate methanol, has shown that this property was mostly found in certain species of the two genera Hansenula and Candida. When methanol was used as a sole carbon source for a methanol-adapted strain of Hansenula polymorpha, a linear yield response could be obtained with increasing alcohol up to 2% concentration. The amount of inoculum proved to be the decisive factor in determining a priori the ability of the organism to grow at 6% methanol as final concentration. The optimum pH values for growth ranged between 4.5-5.5 with no growth at pH 6.5 or higher. A marked growth stimulation was obtained when the medium was supplied with phosphate up to 0.08 M as final concentration. Within the nitrogen sources tested, corn steep liquor concentrate gave the highest yield of cells. The significance of the obtained results are discussed with reference to feasibilities of application.

  14. Building terpene production platforms in yeast.

    Science.gov (United States)

    Zhuang, Xun; Chappell, Joe

    2015-09-01

    Plants and microbes commonly make terpenes and terpenoids in small amounts and as complex mixtures, and their chemical synthesis is often costly and inefficient. Hence, there are many efforts to create robust and efficient biological production platforms for this interesting class of molecules. In this study, our effort was directed towards building a yeast production platform using an unbiased genetic selection approach. Yeast strain BY4741 was subjected to EMS mutagenesis, followed by selection for growth in the presence of nystatin, squalestatin, and exogenous cholesterol. This unbiased screen selected for mutant yeast lines having a dispensable mevalonate pathway and containing uncharacterized SUE (sterol uptake enhancement) mutations supporting aerobic uptake of exogenous sterol. These mutants were next screened for high level accumulation of farnesol (FOH), an indicator for high level accumulation of the key intermediate FPP, farnesyl diphosphate. To further improve the FPP pool in these mutants, insertional mutations into the ERG9 gene (coding for squalene synthase) were introduced into those lines capable of accumulating ≥50 mg farnesol/L. This generated another series of lines that accumulated farnesol levels over 70 mg/L in small-scale shake cultures. To evaluate the utility of these lines as a general production platform for specific terpenes, select SUE/erg9 lines were transformed with a vector harboring the Hyoscyamus muticus premnaspirodiene synthase (HPS) gene encoding for a sesquiterpene synthase. The new yeast line ZX178-08 accumulated the highest level of premnaspirodiene, up to 116 mg/L, with FOH levels of 23.6 mg/L. In comparison, the parental line BY4741 accumulated 10 times less premnaspirodiene, 10.94 mg/L, with no farnesol detectable. Co-expression of the HPS gene with an amino-terminal truncated, catalytic form of the hamster HMGR gene, tHMGR, increased premnaspirodiene accumulation to 170.23 ± 30.44 mg/L, almost a 50

  15. New lager yeast strains generated by interspecific hybridization.

    Science.gov (United States)

    Krogerus, Kristoffer; Magalhães, Frederico; Vidgren, Virve; Gibson, Brian

    2015-05-01

    The interspecific hybrid Saccharomyces pastorianus is the most commonly used yeast in brewery fermentations worldwide. Here, we generated de novo lager yeast hybrids by mating a domesticated and strongly flocculent Saccharomyces cerevisiae ale strain with the Saccharomyces eubayanus type strain. The hybrids were characterized with respect to the parent strains in a wort fermentation performed at temperatures typical for lager brewing (12 °C). The resulting beers were analysed for sugar and aroma compounds, while the yeasts were tested for their flocculation ability and α-glucoside transport capability. These hybrids inherited beneficial properties from both parent strains (cryotolerance, maltotriose utilization and strong flocculation) and showed apparent hybrid vigour, fermenting faster and producing beer with higher alcohol content (5.6 vs 4.5 % ABV) than the parents. Results suggest that interspecific hybridization is suitable for production of novel non-GM lager yeast strains with unique properties and will help in elucidating the evolutionary history of industrial lager yeast.

  16. Yeast diversity and native vigor for flavor phenotypes.

    Science.gov (United States)

    Carrau, Francisco; Gaggero, Carina; Aguilar, Pablo S

    2015-03-01

    Saccharomyces cerevisiae, the yeast used widely for beer, bread, cider, and wine production, is the most resourceful eukaryotic model used for genetic engineering. A typical concern about using engineered yeasts for food production might be negative consumer perception of genetically modified organisms. However, we believe the true pitfall of using genetically modified yeasts is their limited capacity to either refine or improve the sensory properties of fermented foods under real production conditions. Alternatively, yeast diversity screening to improve the aroma and flavors could offer groundbreaking opportunities in food biotechnology. We propose a 'Yeast Flavor Diversity Screening' strategy which integrates knowledge from sensory analysis and natural whole-genome evolution with information about flavor metabolic networks and their regulation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. The role of red yeast rice for the physician.

    Science.gov (United States)

    Gordon, Ram Y; Becker, David J

    2011-02-01

    Red yeast rice is an ancient Chinese dietary staple and medication used by millions of patients as an alternative therapy for hypercholesterolemia. In recent years, the use of red yeast rice has grown exponentially due to increased public interest in complementary and alternative medications and the publication of several randomized, controlled trials demonstrating its efficacy and safety in different populations. The most promising role for red yeast rice is as an alternative lipid-lowering therapy for patients who refuse to take statins because of philosophical reasons or patients who are unable to tolerate statin therapy due to statin-associated myalgias. However, there is limited government oversight of red yeast rice products, wide variability of active ingredients in available formulations, and the potential of toxic byproducts. Therefore, until red yeast rice products are regulated and standardized, physicians and patients should be cautious in recommending this promising alternative therapy for hyperlipidemia.

  18. PMAA-stabilized ferrofluid/chitosan/yeast composite for bioapplications

    Energy Technology Data Exchange (ETDEWEB)

    Baldikova, Eva, E-mail: baldie@email.cz [Global Change Research Institute, CAS, Na Sadkach 7, 370 05 Ceske Budejovice (Czech Republic); Department of Applied Chemistry, Faculty of Agriculture, University of South Bohemia, Branisovska 1457, 370 05 Ceske Budejovice (Czech Republic); Prochazkova, Jitka [Global Change Research Institute, CAS, Na Sadkach 7, 370 05 Ceske Budejovice (Czech Republic); Stepanek, Miroslav; Hajduova, Jana [Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 2030, 128 40 Prague 2 (Czech Republic); Pospiskova, Kristyna [Regional Centre of Advanced Technologies and Materials, Palacky University, Slechtitelu 27, 783 71 Olomouc (Czech Republic); Safarikova, Mirka [Global Change Research Institute, CAS, Na Sadkach 7, 370 05 Ceske Budejovice (Czech Republic); Department of Nanobiotechnology, Biology Centre, CAS, ISB, Na Sadkach 7, 370 05 Ceske Budejovice (Czech Republic); Safarik, Ivo [Global Change Research Institute, CAS, Na Sadkach 7, 370 05 Ceske Budejovice (Czech Republic); Regional Centre of Advanced Technologies and Materials, Palacky University, Slechtitelu 27, 783 71 Olomouc (Czech Republic); Department of Nanobiotechnology, Biology Centre, CAS, ISB, Na Sadkach 7, 370 05 Ceske Budejovice (Czech Republic)

    2017-04-01

    A simple, one-pot process for the preparation of magnetically responsive yeast-based biocatalysts was developed. Saccharomyces cerevisiae, Candida utilis and Kluyveromyces lactis cells were successfully incorporated into chitosan gel magnetically modified with poly(methacrylic acid)-stabilized magnetic fluid (PMAA-FF) during its formation. Magnetic PMAA-FF/chitosan/yeast composites were efficiently employed for invert sugar production. The dependence of invertase activity on used yeast, amount of magnetic biocatalyst, agitation time and after reuse was studied in detail. The tested magnetic biocatalysts retained at least 69% of their initial activity after 8 reuse cycles. - Highlights: • New types of magnetically responsive yeast biocomposites were prepared. • Recently developed PMAA-stabilized magnetic fluid was used. • Three yeast species were entrapped into magnetic chitosan gel during its formation. • All biocatalysts were efficiently employed for invert sugar formation.

  19. Tolerance of budding yeast Saccharomyces cerevisiae to ultra high pressure

    Science.gov (United States)

    Shibata, M.; Torigoe, M.; Matsumoto, Y.; Yamamoto, M.; Takizawa, N.; Hada, Y.; Mori, Y.; Takarabe, K.; Ono, F.

    2014-05-01

    Our studies on the tolerance of plants and animals against very high pressure of several GPa have been extended to a smaller sized fungus, the budding yeast Saccharomyces cerevisiae. Several pieces of budding yeast (dry yeast) were sealed in a small teflon capsule with a liquid pressure medium fluorinate, and exposed to 7.5 GPa by using a cubic anvil press. The pressure was kept constant for various duration of time from 2 to 24 h. After the pressure was released, the specimens were brought out from the teflon capsule, and they were cultivated on a potato dextrose agar. It was found that the budding yeast exposed to 7.5 GPa for up to 6 h showed multiplication. However, those exposed to 7.5 GPa for longer than 12 h were found dead. The high pressure tolerance of budding yeast is a little weaker than that of tardigrades.

  20. Venous Sampling

    Science.gov (United States)

    ... neck to help locate abnormally functioning glands or pituitary adenoma . This test is most often used after an unsuccessful neck exploration. Inferior petrosal sinus sampling , in which blood samples are taken from veins that drain the pituitary gland to study disorders related to pituitary hormone ...