WorldWideScience

Sample records for samarium nitrides

  1. Magnetic behavior study of samarium nitride using density functional theory

    Science.gov (United States)

    Som, Narayan N.; Mankad, Venu H.; Dabhi, Shweta D.; Patel, Anjali; Jha, Prafulla K.

    2018-02-01

    In this work, the state-of-art density functional theory is employed to study the structural, electronic and magnetic properties of samarium nitride (SmN). We have performed calculation for both ferromagnetic and antiferromagnetic states in rock-salt phase. The calculated results of optimized lattice parameter and magnetic moment agree well with the available experimental and theoretical values. From energy band diagram and electronic density of states, we observe a half-metallic behaviour in FM phase of rock salt SmN in while metallicity in AFM I and AFM III phases. We present and discuss our current understanding of the possible half-metallicity together with the magnetic ordering in SmN. The calculated phonon dispersion curves shows dynamical stability of the considered structures. The phonon density of states and Eliashberg functional have also been analysed to understand the superconductivity in SmN.

  2. Conductometric investigations on samarium soaps

    International Nuclear Information System (INIS)

    Mehrotra, K.N.; Chauhan, Mithlesh; Shukla, R.K.

    1989-01-01

    The critical micelle concentration (CMC), degree of dissociation and dissociation constant of samarium soaps (valerate, caproate, caprylate and caprate) in a mixture of 60 per cent benzene and 40 per cent methanol were determined by using conductometric measurements. The soaps behaved as simple electrolyte in dilute solutions and the CMC was found to decrease with increasing chainlength of the fatty acid constituent of the soap. (author). 7 refs., 2 tabs

  3. Labeling fish with an activable element through their diet. [samarium

    Energy Technology Data Exchange (ETDEWEB)

    Michibata, Hitoshi (Toyama Univ. (Japan). Faculty of Science)

    1981-10-01

    Stable samarium, one of the rare earth elements, was fed to medaka (Oryzias latipes) and goldfish (Carassius auratus). The concentration of samarium in the labeled fish was determined by neutron activation analysis. In O. latipes, samarium was detectable even 1 yr after the labeled diet was eaten. In C. auratus, samarium was retained in the fifth brachial arch, scales, and gills.

  4. Implementation of an analytical technique for Samarium

    International Nuclear Information System (INIS)

    Garcia G, N.

    2004-01-01

    Since the Samarium presents the same chemical properties that the plutonium, it has been used as homologous in studies that allow us to know the behavior that the plutonium presents in solution, with the advantage of working with an inactive and not very dangerous element. At the moment studies of sorption of plutonium or samarium are made on some mineral matrices that present certain surface properties. Due to the low concentrations that are used in the studies of sorption of samarium on those reagent substrates, their detection becomes very difficult for the conventional analysis media. The luminescence is a technique that can detect lower concentrations, smaller at 1 X 10 - 2 M, but when fluorofors are used this limit of detection increases in several orders of magnitude. In this work it has been used the arsenazo-III as fluorofor agent since it reacts in a specific way with the samarium, forming a complex that presents a proportional luminescence to the concentration of the present samarium. The advantage of making the quantification of samarium by luminescence is that it can use the same instrumental equipment to determine the speciation of the samarium sipped in the zircon. (Author)

  5. Laser spectroscopy of atomic samarium

    International Nuclear Information System (INIS)

    Barkov, L.M.; Melik-Pashaev, D.A.; Zolotorev, M.S.

    1988-01-01

    Samarium spectrum was studied with a purpose to find transitions to be used in experiments on parity nonconservation. Macaluso-Corbino effect - Faraday rotation near resonance was used for the search and study of spectral lines. We have identified previously unknown energy levels belonging to the 4f 5 6s 2 5 D term: 15914.55(3) cm -4 (J=1), 17864.29(3) cm -4 (J=2), 20195.76(3) cm -4 (J=3). M1-transitions to these levels from the levels of the ground 4f 5 6s 2 7 F term were observed. There are several peculiarities of these transitions which are due to the fact that they occut within an inner 4f 5 -shell, particularly, a very small presuure broadening by inert gases. 44 refs.; 17 figs.; 7 tabs

  6. Synthesis of Samarium Cobalt Nanoblades

    Energy Technology Data Exchange (ETDEWEB)

    Darren M. Steele

    2010-08-25

    As new portable particle acceleration technologies become feasible the need for small high performance permanent magnets becomes critical. With particle accelerating cavities of a few microns, the photonic crystal fiber (PCF) candidate demands magnets of comparable size. To address this need, samarium cobalt (SmCo) nanoblades were attempted to be synthesized using the polyol process. Since it is preferable to have blades of 1-2 {micro}m in length, key parameters affecting size and morphology including method of stirring, reaction temperature, reaction time and addition of hydroxide were examined. Nanoparticles consisting of 70-200 nm spherical clusters with a 3-5 nm polyvinylpyrrolidone (PVP) coating were synthesized at 285 C and found to be ferromagnetic. Nanoblades of 25nm in length were observed at the surface of the nanoclusters and appeared to suggest agglomeration was occurring even with PVP employed. Morphology and size were characterized using a transmission electron microscope (TEM). Powder X-Ray Diffraction (XRD) analysis was conducted to determine composition but no supportive evidence for any particular SmCo phase has yet been observed.

  7. A NOVEL SAMARIUM COMPLEX WITH INTERESTING ...

    African Journals Online (AJOL)

    delocalized π-electrons of the pyridyl rings obtains increasing attention in ... BaSO4 plate was used as a reference (100% reflectance), on which the finely ground .... several are samarium-containing complex with bipy [41-45]. Figure 2.

  8. Optical isotope shifts for unstable samarium isotopes

    International Nuclear Information System (INIS)

    Eastham, D.A.; Walker, P.M.; Griffith, J.A.R.; Evans, D.E.; Grant, I.S.; England, J.G.; Fawcett, M.J.

    1984-01-01

    Using a tunable dye laser beam intersecting a thermal atomic beam, optical isotope shifts and hyperfine splittings have been measured for the four unstable samarium isotopes between 144 Sm and 154 Sm, covering the well known transition region from spherical to deformed shapes. (orig.)

  9. Nonlinear Faraday rotation in samarium vapor

    International Nuclear Information System (INIS)

    Barkov, L.M.; Melik-Pashaev, D.A.; Zolotorev, M.S.

    1988-01-01

    Experiments on nonlinear magnetic optical (Faraday) rotation on resonance transitions of atomic samarium are described. Measurements were carried out on transitions with different angular momenta of upper and lower states: 1→0, 0→1 and 1→1. Qualitative explanations of observed phenomena are given

  10. Thermal diffusivity of samarium-gadolinium zirconate solid solutions

    International Nuclear Information System (INIS)

    Pan, W.; Wan, C.L.; Xu, Q.; Wang, J.D.; Qu, Z.X.

    2007-01-01

    We synthesized samarium-gadolinium zirconate solid solutions and determined their thermal diffusivities, Young's moduli and thermal expansion coefficients, which are very important for their application in thermal barrier coatings. Samarium-gadolinium zirconate solid solutions have extremely low thermal diffusivity between 20 and 600 deg. C. The solid solutions have lower Young's moduli and higher thermal expansion coefficients than those of pure samarium and gadolinium zirconates. This combination of characteristics is promising for the application of samarium and gadolinium zirconates in gas turbines. The mechanism of phonon scattering by point defects is discussed

  11. Investigation of samarium solubility in the magnesium based solid solution

    International Nuclear Information System (INIS)

    Rokhlin, L.L.; Padezhnova, E.M.; Guzej, L.S.

    1976-01-01

    Electric resistance measurements and microscopic analysis were used to investigate the solubility of samarium in a magnesium-based solid solution. The constitutional diagram Mg-Sm on the magnesium side is of an eutectic type with the temperature of the eutectic transformation of 542 deg C. Samarium is partly soluble in solid magnesium, the less so, the lower is the temperature. The maximum solubility of samarium in magnesium (at the eutectic transformation point) is 5.8 % by mass (0.99 at. %). At 200 deg C, the solubility of samarium in magnesium is 0.4 % by mass (0.063 at. %)

  12. Anodic dissolution of samarium in acetonitrile solution of acetylacetone

    International Nuclear Information System (INIS)

    Kostyuk, N.N.; Dik, T.A.; Trebnikov, A.G.; Shirokij, V.L.

    2003-01-01

    Electrochemical dissolution of metal samarium in acetonitrile medium in the presence of 0.1 M tetraethylammoniumbromide and 0.9 M acetylacetone (HAA) in argon atmosphere under a voltage of 3 V was considered for studying feasibility of electrochemical synthesis of samarium β-diketonates. Using IR and mass spectrometry, thermal and elementary analyses it was ascertained that, depending on cathode and anode areas ratio, anodic dissolution of samarium can give rise to formation of complexes of bi- and trivalent samarium featuring the composition Sm 4 (AA) 8 · 3HAA, Sm(AA) 3 · HAA and Sm(AA) 3 · 4HAA [ru

  13. Crystallization of Yttrium and Samarium Aluminosilicate Glasses

    OpenAIRE

    Lago, Diana Carolina; Prado, Miguel Oscar

    2016-01-01

    Aluminosilicate glasses containing samarium and yttrium (SmAS and YAS glasses) exhibit high glass transition temperatures, corrosion resistance, and glass stability on heating which make them useful for technological applications. Yttrium aluminosilicate glass microspheres are currently being used for internal selective radiotherapy of liver cancer. During the preparation process, crystallization needs to be totally or partially avoided depending on the final application. Thus knowing the cry...

  14. Plasma sprayed samarium--cobalt permanent magnets

    International Nuclear Information System (INIS)

    Willson, M.C.; Janowiecki, R.J.

    1975-01-01

    Samarium--cobalt permanent magnets were fabricated by arc plasma spraying. This process involves the injection of relatively coarse powder particles into a high-temperature gas for melting and spraying onto a substrate. The technique is being investigated as an economical method for fabricating cobalt--rare earth magnets for advanced traveling wave tubes and cross-field amplifiers. Plasma spraying permits deposition of material at high rates over large areas with optional direct bonding to the substrate, and offers the ability to fabricate magnets in a variety of shapes and sizes. Isotropic magnets were produced with high coercivity and good reproducibility in magnetic properties. Post-spray thermal treatments were used to enhance the magnetic properties of sprayed deposits. Samarium--cobalt magnets, sprayed from samarium-rich powder and subjected to post-spray heat treatment, displayed energy products in excess of 9 million gauss-oersteds and coercive forces of approximately 6000 oersteds. Bar magnet arrays were constructed by depositing magnets on ceramic substrates. (auth)

  15. Synthesis of samarium, europium and ytterbium acetylenides

    International Nuclear Information System (INIS)

    Bochkarev, M.N.; Fedorova, E.A.; Glushkova, N.V.; Protchenko, A.V.; Druzhkov , O.N.; Khorshev, S.Ya.

    1995-01-01

    Ethynyl complexes of samarium, europium and ytterbium were prepared by interaction of naphthalinides of metals with acetylene in tetrahydrofuran. The compounds are isolated in the form of dark-coloured pyrophore powders. Data of magnetic measurements suggest that in the course of the reaction Sm(2) is oxidized completely to Sm(3), Yb(2) transforms into Yb(3) partially, whereas europium preserves its initial bivalent state. Hydrolysis of the compounds prepared provides acetylene, ethylene, ethane and hydrogen which indicates the presence of acethylenide Ln 2 C 2 and hydride LnH groupings (Ln = Sm, Eu, Yb). 9 refs., 2 tabs

  16. High purity samarium oxide from mixed rare earth carbonates

    International Nuclear Information System (INIS)

    Queiroz, Carlos A. da S.; Seneda, Jose A.; Vasconcellos, Mari E. de; Pedreira Filho, Walter dos R.

    2013-01-01

    A simple and economical chemical process for the production of highly pure samarium oxides is discussed. The raw material, which was used in the form of rare earth carbonates was produced industrially from the chemical treatment of Brazilian monazite. Ion exchange chromatography was performed using a strong cationic resin that is typically employed in water treatment processes to fractionate rare earth elements (REE) without the use of retention ions. Under these conditions, 99.9% pure Sm 2 O 3 was eluted using the ammonium salt of ethylenediaminetetraacetic acid (EDTA) at a controlled pH. The EDTA-samarium complex was separated from EDTA and then precipitated as oxalate and fired to samarium oxide. Molecular absorption spectrophotometry was used to monitor the samarium content during the proposed process, and sector field inductively coupled plasma mass spectrometry was used to certify the purity of the samarium oxide. Typical samarium oxide obtained from the proposed procedure contained the following contaminants in micrograms per gram: Sc (20.90); Y (11.80); La (8.4); Ce (4.3); Pr (2.5); Nd (5.1); Eu (94); Gd (114); Tb (3.6); Dy (2.5), Ho (2.3); Er (3.0); Tm (2.3); Yb (38,2); Lu (25.6). The high-purity samarium oxides produced in the present study can be used as an alternative to imported products in research and development applications. (author)

  17. Plasma sprayed samarium--cobalt permanent magnets

    International Nuclear Information System (INIS)

    Willson, M.C.; Janowiecki, R.J.

    1975-01-01

    Samarium--Co permanent magnets were fabricated by arc plasma spraying. This process involves the injection of relatively coarse powder particles into a high temperature gas for melting and spraying onto a substrate. The technique is being investigated as an economical method for fabricating Co--rare earth magnets for advanced traveling wave tubes and cross-field amplifiers. Plasma spraying permits deposition of material at high rates over large areas with optional direct bonding to the substrate, and offers the ability to fabricate magnets in a variety of shapes and sizes. Isotropic magnets were produced with high coercivity and good reproducibility in magnetic properties. Post-spray thermal treatments were used to enhance the magnetic properties of sprayed deposits. Samarium--Co magnets, sprayed from Sm-rich powder and subjected to post-spray heat treatment, displayed energy products in excess of 9 million G-Oe and coercive forces of approximately 6000 Oe. Bar magnet arrays were constructed by depositing magnets on ceramic substrates

  18. Physico-chemical studies on samarium soaps in solid state

    International Nuclear Information System (INIS)

    Mehrotra, K.N.; Chauhan, M.; Shukla, R.K.

    1989-01-01

    The physico-chemical characteristics of samarium soaps (caproate and caprate) in solid state were investigated by IR, X-ray diffraction and TGA measurements. The IR results revealed that the fatty acids exist in dimeric state through hydrogen bonding and samarium soaps possess partial ionic character. The X-ray diffraction measurements were used to calculate the long spacings and the results confirmed the double layer structure of samarium soaps. The decomposition reaction was found kinetically of zero order and the values of energy of activation for the decomposition process for caproate and caprate were found to be 8,0 and 7,8 kcal mol -1 , respectively. (Authors)

  19. The ion-exchange obtaining of high purity samarium oxide

    International Nuclear Information System (INIS)

    Brzyska, W.; Soltysiak, I.; Cygan, J.

    1987-01-01

    The use of lactic acid - EDTA mixture as an eluent for the obtaining of high purity samarium oxide was studied. The studies were carried out at room temperature on cation exchange resin Wofatit KPS X 8. The best results were obtained for lactic acid (0,26 mol/dm 3 ) - EDTA (0,013 mol/dm 3 ) mixture at pH 3,3. As the result of 57% samarium concentrate elution with column load 1:3 and flow rate 0,4 cm/min, over 99% pure samarium oxide with 73% yield has been obtained. The yield of spectrally pure Sm 2 O 3 exceeded 45%. (author)

  20. Yellow-green electroluminescence of samarium complexes of 8-hydroxyquinoline

    Energy Technology Data Exchange (ETDEWEB)

    Behzad, Sara Karimi; Najafi, Ezzatollah [Department of Chemistry Shahid Beheshti University G.C., Tehran 1983963113 (Iran, Islamic Republic of); Amini, Mostafa M., E-mail: m-pouramini@sbu.ac.ir [Department of Chemistry Shahid Beheshti University G.C., Tehran 1983963113 (Iran, Islamic Republic of); Janghouri, Mohammad; Mohajerani, Ezeddin [Laser Research Institute Shahid Beheshti University G.C., Tehran 1983963113 (Iran, Islamic Republic of); Ng, Seik Weng [Department of Chemistry, University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2014-12-15

    Four novel samarium complexes were prepared by reacting samarium(III) nitrate with 8-hydroxyquinoline, 2-methyl-8-hydroxyquinoline, and 1,10-phenanthroline and utilized as emitting materials in the electroluminescence device. All complexes were characterized by elemental analysis, infrared, UV–vis and {sup 1}H NMR spectroscopes and the molecular structure of a representative complex, [Sm{sub 2}(Me-HQ){sub 4}(NO{sub 3}){sub 6}] (1), was determined by single-crystal X-ray diffraction. Utilization of a π-conjugated (phenanthroline) ligand as a second ligand in the structure of the samarium complexes resulted in red shifts in both absorption and fluorescence spectra of complexes and moderately enhanced the photoluminescence intensity and the fluorescence quantum yield. The maximum emission peaks showed that a good correlation exists between the nature of the substituent group on the 8-hydroxyquinoline and the addition of the π-conjugated ligand in the structure of samarium complexes and emission wavelength. Devices with samarium(III) complexes with structure of ITO/PEDOT:PSS (90 nm)/PVK:PBD:Sm(III) complexes (75 nm)/Al (180 nm) were fabricated. In the electroluminescence (EL) spectra of the devices, a strong ligand-centered emission and narrow bands arising from the {sup 4}G{sub 5/2}→{sup 6}H{sub J} transitions (J=7/2, 9/2, and 11/2) of the samarium ion were observed for the complexes. The electroluminescent spectra of the samarium complexes were red-shifted as compared with the PVK:PBD blend. We believe that the electroluminescence performance of OLED devices based on samarium complexes relies on overlaps between the absorption of the samarium compounds and the emission of PVK:PBD. This revealed that it is possible to evaluate the electroluminescence performance of the samarium compounds-doped OLED devices based on the emission of PVK:PBD and the absorption of the dopants. - Highlights: • Four novel photoluminescence samarium complexes have been synthesized.

  1. Role of samarium additions on the shape memory behavior of iron based alloys

    International Nuclear Information System (INIS)

    Shakoor, R.A.; Khalid, F. Ahmad; Kang, Kisuk

    2011-01-01

    Research highlights: → The effect of samarium contents on shape memory behavior has been studied. → Addition of samarium increases the strength, c/a ratio and ε (hcp martensite). → Addition of samarium retards the nucleation of α (bcc martensite). → Improvement in shape memory effect with the increase in samarium contents. - Abstract: The effect of samarium contents on shape memory behavior of iron based shape memory alloys has been studied. It is found that the strength of the alloys increases with the increase in samarium contents. This effect can be attributed to the solid solution strengthening of austenite by samarium addition. It is also noticed that the shape memory effect increases with the increase in samarium contents. This improvement in shape memory effect presumably can be regarded as the effect of improvement in strength, increase in c/a ratio and obstruction of nucleation of α in the microstructure.

  2. Samarium ion exchanged montmorillonite for high temperature cumene cracking reaction

    International Nuclear Information System (INIS)

    Binitha, N.N.

    2009-01-01

    Full text: Nano material Montmorillonite clay is cation exchanged with samarium and its catalytic influence in cumene cracking reaction is investigated. Effect of exchange with sodium ions on further exchange with samarium ions is also noted. Acidity measurements are done using TPD of ammonia. The retention of basic structure is proved from FTIR spectra and XRD patterns. Elemental analysis result shows that samarium exchange has occurred, which is responsible for the higher catalytic activity. Surface area and pore volume remains more or less unaffected upon exchange. Thermogravimetric analysis indicates the enhanced thermal stability on exchanging. Cumene cracking reaction is carried out at atmospheric pressure in a fixed bed glass reactor at 673 K. The predominance of Bronsted acidity is confirmed from high selectivity to benzene. (author)

  3. Basis for developing samarium AMS for fuel cycle analysis

    International Nuclear Information System (INIS)

    Buchholz, Bruce A.; Biegalski, Steven R.; Whitney, Scott M.; Tumey, Scott J.; Jordan Weaver, C.

    2010-01-01

    Modeling of nuclear reactor fuel burnup indicates that the production of samarium isotopes can vary significantly with reactor type and fuel cycle. The isotopic concentrations of 146 Sm, 149 Sm, and 151 Sm are potential signatures of fuel reprocessing, if analytical techniques can overcome the inherent challenges of lanthanide chemistry, isobaric interferences, and mass/charge interferences. We review the current limitations in measurement of the target samarium isotopes and describe potential approaches for developing Sm-AMS. AMS sample form and preparation chemistry will be discussed as well as possible spectrometer operating conditions.

  4. 4f and 5d magnetism in samarium

    International Nuclear Information System (INIS)

    Stunault, A.; Bernhoeft, N.; Vettier, C.; Dumesnil, K.; Dufour, C.

    2001-01-01

    We report on resonant magnetic X-ray scattering studies of a samarium epitaxial film at the samarium L 3 edge. We observe one quadrupolar resonance below the edge, reflecting the polarization of the 4f electrons, and two dipolar resonances above the edge, related to the polarization of the 5d band. We demonstrate, by following the thermal evolution of resonant magnetic intensities of both types, that the polarization of the 4f and 5d electrons present exactly the same temperature dependence, even very close to the ordering temperature, in agreement with the RKKY model for long-range magnetic order in rare earths

  5. Behavior of Samarium III during the sorption process

    International Nuclear Information System (INIS)

    Ordonez R, E.; Garcia G, N.; Garcia R, G.

    2004-01-01

    In this work the results of the behavior of samarium in solution are presented, in front of a fine powder of zirconium silicate (zircon). For that which is necessary to characterize the zircon, studying the crystallinity, the morphology, the surface area and the isoelectric point. The behavior of samarium in solution is studied by means of the elaboration of isotherm of sorption, using the technique by lots. One observes that to pH values of nearer to the isoelectric point (pH = 7.23) the process of sorption of the samarium begins, reaching a maximum to near pH at 9. The technique of luminescence is used to determine the concentration of the sipped samarium (phosphorescence) and also to make the speciation of the species formed in the surface of the zircon (phosphorescence). The results can be extrapolated with the plutonium when making the modeling of the migration of alpha emitting coming from the repositories of radioactive waste since both they have similar chemical properties (they are homologous). (Author)

  6. Studies on ultrasonic velocity and electrical conductivity of samarium soaps in non-aqueous medium

    International Nuclear Information System (INIS)

    Mehrotra, K.N.; Chauhan, M.; Shukla, R.K.

    1990-01-01

    The ultrasonic velocity of solutions of samarium soaps in non-aqueous medium has been measured at a constant temperature and the results have been used to evaluate the various acoustic parameters. The pre-micellar association and the formation of micelles in samarium soap solutions have been determined by conductometric measurements. The molar conductance at infinite dilution, degree of ionisation and ionisation constant have been evaluated. The results show that samarium soaps behave as weak electrolyte in dilute solutions. (Authors)

  7. Solubility isotherms in ternary systems of samarium nitrate, water and nitrates of amidopyrine, benzotriazole

    International Nuclear Information System (INIS)

    Starikova, L.I.

    1991-01-01

    Solubility in the system of samarium nitrate-amidopyrine nitrate-water at 25 and 50 deg C was studied. Solubility isotherms consist of three branches, corresponding to crystallization of samarium nitrate tetrahydrate, amidopyrine nitrate and congruently soluble compounds of Sm(NO 3 ) 3 · 2C 13 H 17 ON 3 ·HNO 3 composition. Its thermal behaviour was studied. The system of samarium nitrate-benzotriazole nitrate-water is referred to eutonic type

  8. Plasma nitriding of steels

    CERN Document Server

    Aghajani, Hossein

    2017-01-01

    This book focuses on the effect of plasma nitriding on the properties of steels. Parameters of different grades of steels are considered, such as structural and constructional steels, stainless steels and tools steels. The reader will find within the text an introduction to nitriding treatment, the basis of plasma and its roll in nitriding. The authors also address the advantages and disadvantages of plasma nitriding in comparison with other nitriding methods. .

  9. Dependence of samarium-soil interaction on samarium concentration: Implications for environmental risk assessment.

    Science.gov (United States)

    Ramírez-Guinart, Oriol; Salaberria, Aitor; Vidal, Miquel; Rigol, Anna

    2018-03-01

    The sorption and desorption behaviour of samarium (Sm), an emerging contaminant, was examined in soil samples at varying Sm concentrations. The obtained sorption and desorption parameters revealed that soil possessed a high Sm retention capacity (sorption was higher than 99% and desorption lower than 2%) at low Sm concentrations, whereas at high Sm concentrations, the sorption-desorption behaviour varied among the soil samples tested. The fractionation of the Sm sorbed in soils, obtained by sequential extractions, allowed to suggest the soil properties (pH and organic matter solubility) and phases (organic matter, carbonates and clay minerals) governing the Sm-soil interaction. The sorption models constructed in the present work along with the sorption behaviour of Sm explained in terms of soil main characteristics will allow properly assessing the Sm-soil interaction depending on the contamination scenario under study. Moreover, the sorption and desorption K d values of radiosamarium in soils were strongly correlated with those of stable Sm at low concentrations (r = 0.98); indicating that the mobility of Sm radioisotopes and, thus, the risk of radioactive Sm contamination can be predicted using data from low concentrations of stable Sm. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Optical properties of zinc–vanadium glasses doped with samarium ...

    Indian Academy of Sciences (India)

    Abstract. Zinc–vanadium glasses doped with samarium oxide having the chemical composition Sm2O3(x). ZnO(40−x)V2O5(60)(where x = 0·1–0·5 mol%) were prepared by melt quenching method. The density of these glasses was measured by Archimedes method; the corresponding molar volumes have also been ...

  11. Chrome-free Samarium-based Protective Coatings for Magnesium Alloys

    Science.gov (United States)

    Hou, Legan; Cui, Xiufang; Yang, Yuyun; Lin, Lili; Xiao, Qiang; Jin, Guo

    The microstructure of chrome-free samarium-based conversion coating on magnesium alloy was investigated and the corrosion resistance was evaluated as well. The micro-morphology, transverse section, crystal structure and composition of the coating were observed by scanning electron microscopy (SEM), X-ray diffraction (XRD), energy dispersive spectroscopy (EDS) and X- ray photoelectron spectroscopy (XPS), respectively. The corrosion resistance was evaluated by potentiodynamic polarization curve and electrochemical impedance spectroscopy (EIS). The results reveal that the morphology of samarium conversion coating is of crack-mud structure. Tiny cracks distribute in the compact coating deposited by samarium oxides. XRD, EDS and XPS results characterize that the coating is made of amorphous and trivalent-samarium oxides. The potentiodynamic polarization curve, EIS and OCP indicate that the samarium conversion coating can improve the corrosion resistance of magnesium alloys.

  12. Preparation of uranium nitride

    International Nuclear Information System (INIS)

    Potter, R.A.; Tennery, V.J.

    1976-01-01

    A process is described for preparing actinide-nitrides from massive actinide metal which is suitable for sintering into low density fuel shapes by partially hydriding the massive metal and simultaneously dehydriding and nitriding the dehydrided portion. The process is repeated until all of the massive metal is converted to a nitride

  13. Separation of lanthanum (3) and samarium (3) extraction with tributylphosphate in the solvent presence of solid phase

    International Nuclear Information System (INIS)

    Korotkevich, I.B.; Kolesnikov, A.A.; Bomshtejn, V.E.

    1990-01-01

    Lanthanum (3) and samarium (3) extraction from nitric acid solutions by tributylphosphate in the presence of solid phase has been investigated. An increase in samarium α-nitrate distribution factor in the presence of solid phase with a decrease in its concentration in the initial solution and with lanthanum nitrate concentration increase is detected. The greatest effect of separation is observed in samarium nitrate microregion. The method of quantitative extraction of samarium from lanthanum nitrate solutions with samarium-lanthanum separation factor exceeding 50 has been suggested

  14. Lanthanum (samarium) nitrate-4-aminoantipyrine nitrate-water systems

    International Nuclear Information System (INIS)

    Starikova, L.I.; Zhuravlev, E.F.

    1985-01-01

    Using the isothermal method of cross-sections at 50 deg C systems lanthanum nitrate-4-aminoantipyrine nitrate-water (1), samarium nitrate-4-aminoantipyrine nitrate-water (2), are studied. Isotherms of system 1 consist of two crystallization branches of initial salt components. In system 2 formation of congruently soluble compounds of the composition Sm(No) 3 ) 3 xC 11 H 13 ON 3 xHNO 3 is established. Analytical, X-ray phase and thermogravimetric analysis of the isolated binary salt are carried out

  15. Knudsen cell vaporization of rare earth nitrides: enthalpy of vaporization of HoN098

    International Nuclear Information System (INIS)

    Brown, R.C.; Clark, N.J.

    1975-01-01

    The enthalpy of vaporization of HoN 0 . 98 was measured by the weight-loss Knudsen cell technique using Motzfeldt-Whitman extrapolations to zero orifice area. A third-law enthalpy of vaporization of HoN 0 . 98 of 155.9 +- 5 kcal mole -1 was obtained compared to a second-law value of 162.0 +- 5 kcal mole -1 . Similar measurements on the nitrides of samarium, erbium, and ytterbium gave third-law enthalpies of vaporization of 126.8 +-- 5 kcal mole -1 ; 159.6 +- 5 kcal mole -1 , and 121.0 +- 5 kcal mole -1 , respectively. 7 tables

  16. Implementation of an analytical technique for Samarium; Implementacion de una tecnica analitica para Samario

    Energy Technology Data Exchange (ETDEWEB)

    Garcia G, N. [ININ, Carretera Mexico-Toluca Km. 36.5, 52045 Estado de Mexico (Mexico)

    2004-07-01

    Since the Samarium presents the same chemical properties that the plutonium, it has been used as homologous in studies that allow us to know the behavior that the plutonium presents in solution, with the advantage of working with an inactive and not very dangerous element. At the moment studies of sorption of plutonium or samarium are made on some mineral matrices that present certain surface properties. Due to the low concentrations that are used in the studies of sorption of samarium on those reagent substrates, their detection becomes very difficult for the conventional analysis media. The luminescence is a technique that can detect lower concentrations, smaller at 1 X 10{sup -} {sup 2} M, but when fluorofors are used this limit of detection increases in several orders of magnitude. In this work it has been used the arsenazo-III as fluorofor agent since it reacts in a specific way with the samarium, forming a complex that presents a proportional luminescence to the concentration of the present samarium. The advantage of making the quantification of samarium by luminescence is that it can use the same instrumental equipment to determine the speciation of the samarium sipped in the zircon. (Author)

  17. Synthesis of samarium binding bleomycin - a possible NCT radiosensitizer

    Energy Technology Data Exchange (ETDEWEB)

    Mendes, B.M., E-mail: bmm@cdtn.b [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil); Mendes, T.M.; Campos, T.P.R., E-mail: campos@nuclear.ufmg.b [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil)

    2011-07-01

    Bleomycin (BLM) is a drug that has attractive features for the development of a new radiopharmaceutical, particularly with regard to neutron capture therapy (NCT) sensitized by Sm-149. It has the ability to chelate many metal ions. In vitro studies have shown that up to 78% of BLM present in a cell is accumulated inside the nucleus or in the nuclear membrane. In addition, this drug has higher affinity for tumor tissues than for normal tissues. Radioactive isotopes carried by this antibiotic would be taken preferentially to one important cellular targets DNA. Besides, BLM displays intrinsic anti-tumor activity - it is a chemotherapic antibiotic clinically used against some cancers. This study aimed to obtain bleomycin molecules bound to samarium (BLM-Sm) for NCT studies in vitro and in vivo. The binding technique employed in this work has great simplicity and low cost. Thin layer chromatography, high performance liquid chromatography, fast protein liquid chromatography and analysis by ICP-AES were applied to verify the binding molecule. ICP-AES results showed the presence of samarium in the sample peaks related to BLM-Sm. However, efficiency and stability of this bond needs to be investigated. (author)

  18. Synthesis of samarium binding bleomycin - a possible NCT radiosensitizer

    International Nuclear Information System (INIS)

    Mendes, B.M.; Mendes, T.M.; Campos, T.P.R.

    2011-01-01

    Bleomycin (BLM) is a drug that has attractive features for the development of a new radiopharmaceutical, particularly with regard to neutron capture therapy (NCT) sensitized by Sm-149. It has the ability to chelate many metal ions. In vitro studies have shown that up to 78% of BLM present in a cell is accumulated inside the nucleus or in the nuclear membrane. In addition, this drug has higher affinity for tumor tissues than for normal tissues. Radioactive isotopes carried by this antibiotic would be taken preferentially to one important cellular targets DNA. Besides, BLM displays intrinsic anti-tumor activity - it is a chemotherapic antibiotic clinically used against some cancers. This study aimed to obtain bleomycin molecules bound to samarium (BLM-Sm) for NCT studies in vitro and in vivo. The binding technique employed in this work has great simplicity and low cost. Thin layer chromatography, high performance liquid chromatography, fast protein liquid chromatography and analysis by ICP-AES were applied to verify the binding molecule. ICP-AES results showed the presence of samarium in the sample peaks related to BLM-Sm. However, efficiency and stability of this bond needs to be investigated. (author)

  19. Preparation and examination of properties of samarium-153-EDTMP complex

    International Nuclear Information System (INIS)

    Nowak, M.; Garnuszek, P.; Lukasiewicz, A.; Wozniak, I.; Zulczyk, W.; Licinska, I.

    1995-01-01

    Preparation and properties of ethylenediaminetetramethylenephosphonic acid (EDTMP) as well as some properties of 153 Sm-EDTMP chelate have been examined. The chelate formed by samarium-153 (46.3 h, β - -decay) with EDTMP exhibits high bone uptake and can be used for treatment of disseminated, painful skeletal metastases. The purity and stability of solutions of 153 Sm-EDTMP chelate were examined in a broad range of samarium concentration and 153 Sm specific activity. The complex under study was examined by radio-TLC, -electrophoresis and radio-HPLC. The results obtained suggest the small size of molecules of 153 Sm-EDTMP chelate as compared with molecules of ''free''EDTMP. The results of biodistribution of 153 Sm-EDTMP determined in rats indicate the quick blood clearance, high deposition of radioactivity in bone and quick excretion of radioactivity into urine. No specific uptake of 153 Sm-EDTMP in extra-skeletal organs was found. (author). 42 refs, 13 figs, 22 tabs

  20. Influence of tellurite on lifetime for samarium doped lanthanum lead borate glass

    Science.gov (United States)

    Madhu, A.; Eraiah, B.

    2018-04-01

    Samarium substituted tellurium lanthanum lead borate glass is prepared using melt quenching technique. Luminescence spectra have been recorded upon excitation with 402 nm various transitions from 4G5/2 level, for samarium doped tellurite glasses are studied and also lifetime for all the samples exhibit single exponential behaviour of decay curve. Luminescence spectra of present glasses show quenching effect due to cross-relation channels of samarium ions. The lifetime of glass samples decrease as the tellurite concentration is decreased. So, it evidences that to attain longer lifetime for lasing material one can tune the host by selecting concentration of tellurite.

  1. Resonances of coherent population trapping in samarium vapours

    International Nuclear Information System (INIS)

    Kolachevsky, Nikolai N; Akimov, A V; Kiselev, N A; Papchenko, A A; Sorokin, Vadim N; Kanorskii, S I

    2001-01-01

    Resonances of coherent population trapping were detected in atomic vapours of the rare-earth element samarium. The coherent population trapping was produced by two external-cavity diode lasers (672 and 686 nm) in a Λ-system formed by the three levels of 154 Sm: the 4f 6 6s 2 ( 7 F 0 ) ground state, the first fine-structure 4f 6 6s 2 ( 7 F 1 ) sublevel of the ground state and the 4f 6 ( 7 F)6s6p( 3 P o ) 9 F o 1 upper level. The dependence of the spectral shapes and resonance contrasts on the polarisation of the laser beams and the direction of the applied magnetic field was studied. The obtained results were analysed. (nonlinear optical phenomena)

  2. Optical and physical properties of samarium doped lithium diborate glasses

    Science.gov (United States)

    Hanumantharaju, N.; Sardarpasha, K. R.; Gowda, V. C. Veeranna

    2018-05-01

    Sm3+ doped lithium di-borate glasses with composition 30Li2O-60B2O3-(10-x) PbO, (where 0 molar volume with samarium ion content indicates the openness of the glass structure. The gradual increase in average separation of boron-boron atoms with VmB clearly indicates deterioration of borate glass network, which in turn leads to decrease in the oxygen packing density. The replacements of Sm2O3 for PbO depolymerise the chain structure and that would increase the concentration of non-bridging oxygens. The marginal increase of optical band gap energy after 1.0 mol.% of Sm2O3 is explained by considering the structural modification in lead-borate. The influence of Sm3+ ion on physical and optical properties in lithium-lead-borate glasses is investigated and the results were discussed in view of the structure of borate glass network.

  3. New reduced variant in gadolinium and samarium monoxide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Bist, B M.S.; Kumar, J; Srivastava, O N [Banaras Hindu Univ. (India). Dept. of Physics

    1977-01-01

    A new reduced phase has been observed in the thin films of gadolinium and samarium monoxides. This phase results on imparting an annealing treatment to the monoxides and is formed as a result of the creation and ordering of vacancies in the oxygen sublattice. The new phase has been analysed to possess a rhombohedral unit cell with lattice parameters a/sub R/ = a/sub 0/ square root of (3/2) and c/sub R/ = a/sub 0/ square root of 3 (based on hexagonal axes, a/sub 0/ being the lattice parameter of the fundamental zinc blende type unit cell of the monoxide). Based on the proposed structure, the new phase can be assigned the solid state chemical formula RO/sub x/ where R = Gd, Sm and x = 0.66.

  4. Biodistribution study of 153Sm-EDTMP produced by irradiation of natural and enriched Samarium, in rats

    International Nuclear Information System (INIS)

    Meftahi, M.; Bahrami Samani, A.; Babaei, M. H.; Shamsaei Zafarghandi, M.; Ghannadi Maragheh, M.

    2010-01-01

    ''1 53 Sm-EDTMP is one of the well known radiopharmaceuticals for pain palliation of bone metastases. Despite that, it is used just in a few countries. It is due to some reasons like being costly enriched samarium that usually used as target for irradiation and short half-life of 153 Sm. In this investigation, certain amounts of radiopharmaceuticals prepared by irradiation of enriched and natural samarium were injected to some normal rats. Then, the rodents were sacrificed and some of their organs were removed. All of the mentioned stages were performed in order to consider the possibility of exploiting natural samarium instead of enriched samarium by study of biodistribution of both radiopharmaceuticals in various organs especially in bone as the target tissue. At the end, the acceptable results were obtained using natural samarium in comparison with the enriched samarium from the point of view of the biodistribution studies.

  5. Samarium-153-EDTMP in the metastatic bone pain treatment

    International Nuclear Information System (INIS)

    Lins Filho, M.L.M.; Santos, A.O.; Nappi, A.P.B.; Meirelles, M.B.; Arouca, P.T.; Ramos, C.D.; Etchebehere, E.C.S.C.; Teixeira, L.C.; Netto Junior, N.R.; D'Ancona Cal; Camargo, E.E.

    1997-01-01

    Full text: Bone metastasis is the most reason of pain in prostate and mammary cancer patients. The Samarium-153-EDTMP has been showed as an alternative to the treatment of the metastasis bone pain. With the objective to evaluate the use of the Sm-153-EDTMP as a systemic therapy for the metastasis bone pain, 30 patients (19 male, 11 female, average age of 64,5 years) were studied. 19 patients with prostate cancer and 11 with mammary cancer. All the patients presented previous bone scintiscanning with multiple metastasis; interruption of the chemotherapy or radiotherapy for two or more weeks and leukocyte count higher than 2,000 leukocytes/mm 3 and platelets higher than 80,000/mm 3 . The patients were classified previously to the radioisotope therapy, as far the intensity of the pain in a scale from 0 to 10 is concerned. All the patients received 37 MBq/kg (1m Ci/kg) of weight of Sm-153-EDTMP by venous via. The evaluation 6 weeks after the therapy showed complete or partial pain relief in 22 patients (73,3%). Complete or partial pain relief has been obtained in 91,0% (10 in 11) of the patients with mammary cancer and in 62,2% (12 in 19) of the patients with prostate cancer. Transitory leukopenia (lower than 2,000 leukocytes/mm 3 ) and platelet count (lower than 80,000/mm 3 ) occurred in 33,3% of the patients. 8 patients (26,7%) did not responded to the therapy. The therapy with Samarium-153-EDTMP is a simple, safe and efficient method in the treatment of the bone pain caused by metastasis

  6. Electrochemical extraction of samarium from molten chlorides in pyrochemical processes

    International Nuclear Information System (INIS)

    Castrillejo, Y.; Fernandez, P.; Medina, J.; Hernandez, P.; Barrado, E.

    2011-01-01

    This work concerns the electrochemical extraction of samarium from molten chlorides. In this way, the electrochemical behaviour of samarium ions has been investigated in the eutectic LiCl-KCl at the surface of tungsten, aluminium and aluminium coated tungsten electrodes. On a W inert electrode the electro-reduction of Sm(III) takes place in only one soluble-soluble electrochemical step Sm(III)/Sm(II). The electrochemical system Sm(II)/Sm(0) has not been observed within the electrochemical window, because of the prior reduction of Li(I) ions from the solvent, which inhibits the electro-extraction of Sm species from the salt on such a substrate. Sm metal in contact with the melt react to give Li(0) according to the reaction: Sm(0) + 2Li(I) ↔ Sm(II) + 2Li(0). On the contrary, on reactive Al electrodes the electrochemical system Sm(II)/Sm(0) was observed within the electroactive range. The potential shift of the redox couple is caused by the decrease of Sm activity in the metal phase due to the formation of Sm-Al alloys at the interface. The formation mechanism of the intermetallic compounds was studied in a melt containing: (i) both Sm(III) and Al(III) ions, using W and Al coated tungsten electrodes, and (ii) Sm(III) ions using an Al electrode. Analysis of the samples after potentiostatic electrolysis by X-ray diffraction and scanning electron microscopy (SEM) with energy dispersive X-ray spectroscopy (EDS), allowed the identification of Al 3 Sm and Al 2 Sm.

  7. Electrochemical extraction of samarium from molten chlorides in pyrochemical processes

    Energy Technology Data Exchange (ETDEWEB)

    Castrillejo, Y., E-mail: ycastril@qa.uva.es [QUIANE/Dept Quimica Analitica, F. de Ciencias, Universidad de Valladolid, Prado de la Magdalena s/n, 47005 Valladolid (Spain); Fernandez, P. [QUIANE/Dept Quimica Analitica, F. de Ciencias, Universidad de Valladolid, Prado de la Magdalena s/n, 47005 Valladolid (Spain); Medina, J. [Dept Fisica Materia Condensada Cristalografia y Mineralogia, F. de Ciencias, Universidad de Valladolid, Prado de la Magdalena s/n, 47005 Valladolid (Spain); Hernandez, P. [Centro de Investigaciones Quimicas, Universidad Autonoma del Estado de Hidalgo, Carr. Pachuca-Tulancingo Km. 4.5, C.P. 42076 Pachuca, Hidalgo (Mexico); Barrado, E. [QUIANE/Dept Quimica Analitica, F. de Ciencias, Universidad de Valladolid, Prado de la Magdalena s/n, 47005 Valladolid (Spain)

    2011-10-01

    This work concerns the electrochemical extraction of samarium from molten chlorides. In this way, the electrochemical behaviour of samarium ions has been investigated in the eutectic LiCl-KCl at the surface of tungsten, aluminium and aluminium coated tungsten electrodes. On a W inert electrode the electro-reduction of Sm(III) takes place in only one soluble-soluble electrochemical step Sm(III)/Sm(II). The electrochemical system Sm(II)/Sm(0) has not been observed within the electrochemical window, because of the prior reduction of Li(I) ions from the solvent, which inhibits the electro-extraction of Sm species from the salt on such a substrate. Sm metal in contact with the melt react to give Li(0) according to the reaction: Sm(0) + 2Li(I) {r_reversible} Sm(II) + 2Li(0). On the contrary, on reactive Al electrodes the electrochemical system Sm(II)/Sm(0) was observed within the electroactive range. The potential shift of the redox couple is caused by the decrease of Sm activity in the metal phase due to the formation of Sm-Al alloys at the interface. The formation mechanism of the intermetallic compounds was studied in a melt containing: (i) both Sm(III) and Al(III) ions, using W and Al coated tungsten electrodes, and (ii) Sm(III) ions using an Al electrode. Analysis of the samples after potentiostatic electrolysis by X-ray diffraction and scanning electron microscopy (SEM) with energy dispersive X-ray spectroscopy (EDS), allowed the identification of Al{sub 3}Sm and Al{sub 2}Sm.

  8. Australian manufacture of QuadrametTM (Samarium-153 EDTMP)

    International Nuclear Information System (INIS)

    Wood, N.R.; Whitwell, J.

    1997-01-01

    Quadramet T (Samarium-153 EDTMP) has been shown overseas to be potentially useful in the palliation of painful osteoblastic skeletal metastases and has been approved this year for general marketing in the USA. Australian Radioisotopes (ARI) has licensed this product from the Australian patent holders, Dow Chemical. Within the facilities of ARI, a hot cell has been dedicated to this product and fitted out to manufacture it weekly on a cycle related to the operating cycle of the Australian reactor HIFAR. Due to neutron flux limitations of HIFAR, the local formulation has an elemental Samarium content up to 200μg/mL whereas the overseas formulation has a level of 20-46μg/mL. All other specifications of the two products are essentially the same. In 1995 and 1996 a small clinical trial with 19 patients was held which demonstrated that the pharmacokinetic behaviour was also essentially the same by measuring blood clearance rates and skeletal uptake dynamics. Soft tissue uptake was also qualitatively determined. The ARI version is now the subject of an application for general marketing within Australia. Some useful characteristics of this agent are: almost complete excretion or fixation in the skeleton within 6 hours, rapid onset of clinical effect, applicability in most cases where an abnormal diagnostic bone scan correlates with painful sites, dosage can be tailored to individual patient uptake due to easy dose measurement and retreatment is quite possible. The use of this class of agents in pain palliation continues to increase. Australian manufacture of Quadramet TM provides a further option in the management of these difficult cases

  9. Fluorimetric determination of samarium(III) and europium(III) in neodymium oxide by separation with a resin column

    Energy Technology Data Exchange (ETDEWEB)

    Shaorong Liu; Jian Meng (Beijing Research Institute of Chemical Engineering and Metallurgy (China)); Wenhua Liu (General Research Institute for Non-Ferrous Metals (China))

    1992-08-24

    When thenoyltrifluoroacetone-phenanthroline-Triton X-100 is used to determine samarium(III) and europium(III) fluorimetrically, only a limited amount of neodymium(III) can be tolerated. By using an on- line separation which can partially separate neodymium(III) from samarium(III), a practical and convenient method was developed to detect samarium(III) at concentrations >0.05% and europium(III) at concentrations >0.005% in neodymium oxide. (author). 7 refs.; 4 figs.; 3 tabs.

  10. Fluorimetric determination of samarium(III) and europium(III) in neodymium oxide by separation with a resin column

    International Nuclear Information System (INIS)

    Shaorong Liu; Jian Meng; Wenhua Liu

    1992-01-01

    When thenoyltrifluoroacetone-phenanthroline-Triton X-100 is used to determine samarium(III) and europium(III) fluorimetrically, only a limited amount of neodymium(III) can be tolerated. By using an on- line separation which can partially separate neodymium(III) from samarium(III), a practical and convenient method was developed to detect samarium(III) at concentrations >0.05% and europium(III) at concentrations >0.005% in neodymium oxide. (author). 7 refs.; 4 figs.; 3 tabs

  11. Electrochemical properties of lanthanum nitride with calcium nitride additions

    International Nuclear Information System (INIS)

    Lesunova, R.P.; Fishman, L.S.

    1986-01-01

    This paper reports on the electrochemical properties of lanthanum nitride with calcium nitride added. The lanthanum nitride was obtained by nitriding metallic lanthanum at 870 K in an ammonia stream. The product contained Cl, Pr, Nd, Sm, Fe, Ca, Cu, Mo, Mg, Al, Si, and Be. The calcium nitride was obtained by nitriding metallic calcium in a nitrogen stream. The conductivity on the LaN/C 3 N 2 system components are shown as a function of temperature. A table shows the solid solutions to be virtually electronic conductors and the lanthanum nitride a mixed conductor

  12. Superconducting structure with layers of niobium nitride and aluminum nitride

    International Nuclear Information System (INIS)

    Murduck, J.M.; Lepetre, Y.J.; Schuller, I.K.; Ketterson, J.B.

    1989-01-01

    A superconducting structure is formed by depositing alternate layers of aluminum nitride and niobium nitride on a substrate. Deposition methods include dc magnetron reactive sputtering, rf magnetron reactive sputtering, thin-film diffusion, chemical vapor deposition, and ion-beam deposition. Structures have been built with layers of niobium nitride and aluminum nitride having thicknesses in a range of 20 to 350 Angstroms. Best results have been achieved with films of niobium nitride deposited to a thickness of approximately 70 Angstroms and aluminum nitride deposited to a thickness of approximately 20 Angstroms. Such films of niobium nitride separated by a single layer of aluminum nitride are useful in forming Josephson junctions. Structures of 30 or more alternating layers of niobium nitride and aluminum nitride are useful when deposited on fixed substrates or flexible strips to form bulk superconductors for carrying electric current. They are also adaptable as voltage-controlled microwave energy sources. 8 figs

  13. Sorption-desorption of samarium in Febex bentonite

    International Nuclear Information System (INIS)

    Ramirez-Guinart, O.; Rigol, A.; Vidal, M.; Fernandez-Poyatos, P.; Alba, M. D.

    2012-01-01

    Document available in extended abstract form only. The chemical and physical nature of the clay is a key issue in the design of engineered barriers. The FEBEX bentonite is one of the clays candidates to be used in engineered barriers in deep geology repositories (DGR). Here, its performance was tested with respect to the sorption-desorption of samarium, which is a lanthanide that, besides being considered as a natural analogue of actinides, may also be present in high level radioactive waste in the form of the radioactive isotope 151 Sm. FEBEX bentonite was used in this study. This is a di-octahedral smectite, with isomorphic substitutions in tetrahedral and octahedral sheets. Its theoretical cation exchange capacity value is 1500 meq kg -1 . Sorption isotherms were obtained for Sm in the range of initial concentrations of 0.01 and 9 meq l -1 . Tests were carried out in deionized water and in a medium simulating the composition of interstitial water. Sorption tests were performed equilibrating 30 ml of the Sm solution with 0.2 g of clay. After a contact time of 24 hours, supernatants were decanted off after centrifugation. The quantification of the concentration of Sm in the initial and final solutions allowed us to quantify the Sm equilibrium concentration (C eq ), the fraction sorbed in the FEBEX bentonite (C sorb ) and to derive the sorption K d data. Desorption tests were applied to determine the desorption K d and the percentage of Sm reversibly sorbed. Desorption tests were performed with the bentonite residue from the sorption step, under the same experimental conditions, but without Sm. Powder X-ray diffractograms were obtained from 3 to 70 deg. 2θ with a step of 0.05 deg. and a counting time of 3 s. The crystalline phases were identified using the computer program X'Pert HighScore. The morphology of the samples was analyzed by SEM at 20 kV. An EDX system was fitted to the SEM equipment to perform chemical analyses of the samples using a Si/Li detector

  14. Ion nitriding of aluminium

    International Nuclear Information System (INIS)

    Fitz, T.

    2002-09-01

    The present study is devoted to the investigation of the mechanism of aluminium nitriding by a technique that employs implantation of low-energy nitrogen ions and diffusional transport of atoms. The nitriding of aluminium is investigated, because this is a method for surface modification of aluminium and has a potential for application in a broad spectrum of fields such as automobile, marine, aviation, space technologies, etc. However, at present nitriding of aluminium does not find any large scale industrial application, due to problems in the formation of stoichiometric aluminium nitride layers with a sufficient thickness and good quality. For the purposes of this study, ion nitriding is chosen, as an ion beam method with the advantage of good and independent control over the process parameters, which thus can be related uniquely to the physical properties of the resulting layers. Moreover, ion nitriding has a close similarity to plasma nitriding and plasma immersion ion implantation, which are methods with a potential for industrial application. (orig.)

  15. Determination of 0.01–0.1% of samarium in 40–100 mg of lead chloride

    NARCIS (Netherlands)

    Agterdenbos, J.; Jütte, B.A.H.G.; Schuring, J.

    1971-01-01

    A method is described for the determination of 5–25 μg of samarium in about 40 mg of lead chloride, based on the removal of the lead by electrolysis and determination of the samarium by extraction with PAN and measurement of the extinction of the complex at 552 nm.

  16. Samarium (III Selective Membrane Sensor Based on Tin (IV Boratophosphate

    Directory of Open Access Journals (Sweden)

    Ashok S. K. Kumar

    2004-08-01

    Full Text Available Abstract: A number of Sm (III selective membranes of varying compositions using tin (IV boratophosphate as electroactive material were prepared. Polyvinyl chloride, polystyrene and epoxy resin were used as binding materials. Membrane having composition of 40% exchanger and 60% epoxy resin exhibited best performance. This membrane worked well over a wide concentration range of 1x10-5M to 1x10-1 M of samarium ions with a Super-Nernstian slope of 40 mV/decade. It has a fast response time of less than 10 seconds and can be used for at least six months without any considerable divergence in potentials. The proposed sensor revealed good selectivities with respect to alkali, alkaline earth, some transition and rare earth metal ions and can be used in the pH range of 4.0-10.0. It was used as an indicator electrode in the potentiometric titration of Sm (III ions against EDTA. Effect of internal solution was studied and the electrode was successfully used in non-aqueous media, too.

  17. Structural phase transition and electronic properties in samarium chalcogenides

    Energy Technology Data Exchange (ETDEWEB)

    Panwar, Y. S., E-mail: yspanwar2011@gmail.com [Department of Physics, Govt. New Science College Dewas-455001 (India); Aynyas, Mahendra [Department of Physics, C.S.A. Govt. P.G. College, Sehore, 466001 (India); Pataiya, J.; Sanyal, Sankar P. [Department of Physics, Barkatullah University, Bhopal, 462026 (India)

    2016-05-06

    The electronic structure and high pressure properties of samarium monochalcogenides SmS, SmSe and SmTe have been reported by using tight binding linear muffin-tin-orbital (TB-LMTO) method within the local density approximation (LDA). The total energy as a function of volume is evaluated. It is found that these monochalcogenides are stable in NaCl-type structure under ambient pressure. We predict a structural phase transition from NaCl-type (B{sub 1}-phase) structure to CsCl-type (B{sub 2}-type) structure for these compounds. Phase transition pressures were found to be 1.7, 4.4 and 6.6 GPa, for SmS, SmSe and SmTe respectively. Apart from this, the lattice parameter (a{sub 0}), bulk modulus (B{sub 0}), band structure (BS) and density of states (DOS) are calculated. From energy band diagram we observed that these compounds exhibit metallic character. The calculated values of equilibrium lattice parameter and phase transition pressure are in general good agreement with available data.

  18. Magnetoresistance of samarium in the 4.2-300 K range

    International Nuclear Information System (INIS)

    Trubitsyn, V.A.; Shalashov, V.F.

    1980-01-01

    Electric conductivity, transverse and longitudinal magnetoresistance of polycrystalline samarium with the purity of 99.9% in the 4.2-300 K temperature range and in magnetic fields up to 50 ke, are measured. The constituent of specific electric conductivity caused by spin disorder is 30.7 μOhmxcm, m*/m=2.6, the exchange parameter is G=3.1 eVxA 3 . Both transverse and longitudinal magnetoresistance are positive at 4.2 K; and the increase of temperature reveals a number of anomalies, evidently conditioned by the alteration of samarium magnetic structure

  19. Metal Nitrides for Plasmonic Applications

    DEFF Research Database (Denmark)

    Naik, Gururaj V.; Schroeder, Jeremy; Guler, Urcan

    2012-01-01

    Metal nitrides as alternatives to metals such as gold could offer many advantages when used as plasmonic material. We show that transition metal nitrides can replace metals providing equally good optical performance for many plasmonic applications.......Metal nitrides as alternatives to metals such as gold could offer many advantages when used as plasmonic material. We show that transition metal nitrides can replace metals providing equally good optical performance for many plasmonic applications....

  20. Properties of minor actinide nitrides

    International Nuclear Information System (INIS)

    Takano, Masahide; Itoh, Akinori; Akabori, Mitsuo; Arai, Yasuo; Minato, Kazuo

    2004-01-01

    The present status of the research on properties of minor actinide nitrides for the development of an advanced nuclear fuel cycle based on nitride fuel and pyrochemical reprocessing is described. Some thermal stabilities of Am-based nitrides such as AmN and (Am, Zr)N were mainly investigated. Stabilization effect of ZrN was cleary confirmed for the vaporization and hydrolytic behaviors. New experimental equipments for measuring thermal properties of minor actinide nitrides were also introduced. (author)

  1. Samarium oxide as a radiotracer to evaluate the in vivo biodistribution of PLGA nanoparticles

    CSIR Research Space (South Africa)

    Mandiwana, V

    2015-09-01

    Full Text Available the biodistribution of poly(D,L-lactide-co-glycolide) (PLGA) nanoparticles containing samarium-153 oxide ([(sup153)Sm]Sm(sub2)O(sub3)) in vivo to prove that orally administered nanoparticles alter the biodistribution of a drug. These were then activated in a nuclear...

  2. Expedient Method for Samarium(II) Iodide Preparation Utilizing a Flow Approach

    Czech Academy of Sciences Publication Activity Database

    Voltrová, Svatava; Šrogl, Jiří

    2013-01-01

    Roč. 24, č. 3 (2013), s. 394-396 ISSN 0936-5214 R&D Projects: GA MŠk LH12013 Institutional support: RVO:61388963 Keywords : flow * samarium * iodide * reduction Subject RIV: CC - Organic Chemistry Impact factor: 2.463, year: 2013

  3. Collective effects in even-mass samarium isotopes by polarized-proton scattering

    NARCIS (Netherlands)

    Petit, R.M.A.L.; Hall, van P.J.; Klein, S.S.; Moonen, W.H.L.; Nijgh, G.J.; Overveld, van C.W.A.M.; Poppema, O.J.

    1993-01-01

    The even-mass samarium isotopes 148,...,152Sm have been investigated by polarized proton scattering at 20.4 MeV beam energy. The data have been analysed with an 'extended' optical model, where the intensities of the first maxima of the main inelastic channels are fitted in a coupled-channels

  4. Identification of the lines in the L emission spectrum of cerium and samarium

    International Nuclear Information System (INIS)

    Shrivastava, B.D.; Singh, D.

    1992-01-01

    The occurrence of a line at 2.1556 A in the L emission spectrum of cerium and two lines at 1.6679 and 1.8379 A in the L emission spectrum of samarium, reported many years ago, has remained a puzzle. These have now been identified as EXAFS minima occurring at the L absorption edges of the respective elements. (author)

  5. ppt level detection of samarium(III) with a coated graphite sensor based on an antibiotic.

    Science.gov (United States)

    Ganjali, Mohammad Reza; Rezapour, Morteza; Pourjavid, Mohammad Reza; Haghgoo, Soheila

    2004-07-01

    N-[2-[4-[[[(Cyclohexylamino)carbonyl]amino]sulfonyl]phenyl]ethyl]-5-methyl pyrazine carboxamide (glipizid) was explored as an electro-active material for preparing a polymeric membrane-based sensor selective to samarium ions. The membrane incorporated 30% poly(vinyl chloride) (PVC), 53% benzyl acetate (BA), 11% glipizid and 6% sodium tetraphenyl borate. When coated on the surface of a graphite electrode, it exhibits Nernstian responses in the concentration range of 1.0 x 10(-5) to 1.0 x 10(-10) M, with a detection limit of 8.0 x 10(-11)M samarium. The electrode shows high selectivity towards samarium over several cations (alkali, alkaline earth, transition and heavy metal ions), and specially lanthanide ions. The proposed sensor has a very short response time (pH range for at least ten weeks. It was used as an indicator electrode in potentiometric titration of Sm(III) ions with an EDTA solution, and for determination of samarium in binary and ternary mixtures.

  6. Diffusion of samarium into cobalt in the reduction-diffusion process

    International Nuclear Information System (INIS)

    Freitas Nogueira, P. de; Neto, F.B.; Landgraf, F.J.G.

    1998-01-01

    The presence of metallic cobalt in samarium-cobalt powders is a major cause for low magnetic properties in magnets. This paper intends to investigate the effect of time and temperature in the microstructure of powders produced by reduction-diffusion. This process, developed for the production of rare earth-transition metal alloys, consists on the reduction of the rare earth oxide with metallic calcium (or calcium hydride) and its subsequent diffusion into the cobalt particle. In the present work, a mixture of samarium oxide, cobalt powder and metallic calcium was heated to 1100 or 1200 C for 2 or 4 hours in a tubular furnace under one atmosphere of purified argon. The material thereof obtained, a sintered mass is disintegrated by aqueous crepitation. The powder was evaluated in terms of its chemical composition, its samarium yield and the intermetallic compounds present. The samarium, oxygen and calcium content of the powders produced were adequate for magnet production. However, despite the massive formation of the SmCo 5 compound after 2 hours at 1100 C, final homogeneity is attained only after 4 hours at 1200 C, with the presence of SmCo 5 and Sm 2 Co 7 and the absence of the Sm 5 Co 19 compound. Also, metallic cobalt and Sm 2 Co 17 were observed in the materials produced after 2 hours at 1100 or 1200 C. (orig.)

  7. Pressure and irradiation effects on transport properties of samarium compounds with instable valence

    International Nuclear Information System (INIS)

    Morillo, J.

    1981-01-01

    Electron transport properties in samarium compounds with instable valence are studied in this thesis: from SmS in its integer valence phases at common pressure to SmB 6 compound IV at common pressure through SmSsub(1-x)Psub(x) (x 6 is presented [fr

  8. Adsorption and the initial stages of samarium condensation on iridium coated by graphite monolayer

    International Nuclear Information System (INIS)

    Abdullaev, R.M.; Tontegode, A.Ya.; Yusifov, F.K.

    1978-01-01

    Adsorption and the initial stages of vacuum samarium condensation on iridium coated by graphite monolayer (valent-saturated neutral substrate) were studied by the thermodesorption mass-spectrometry and thermoemission methods, and were compared with samarium adsorption and condensation on iridium. Desorption heat of samarium atoms with thin coating of Ir-C, equal to E approximately 1.9 eV has been determined. For desorption with Ir E is approximately 6 eV. Such a great difference in desorption heats is connected with the reduction of covalent constituent of adsorption bond in a neutral substrate. Samarium on Ir-C is found to be condensated in two states: loosely bound and tightly bound which sharply differ in properties. The tightly bound state is characterized by abnormally low vapour pressure. Possible nature of this state is discussed. Double effect on the condensation of the substrate valent saturation is noted. On the one hand, the reduction of the particle bond with the substrate decreases their concentration on the surface, preventing condensation. On the other hand, the release of the valent eloctrons of adatous brings about strong lateral interaction between them, which in its turn, promotes condensation during eased migration on the neutral substrate

  9. Samarium-153 Oksabifor in the treatment of metastatic bone disease

    International Nuclear Information System (INIS)

    Solodyannikova, O.; Voit, N.; Sukach, G.; Sagan, D.

    2015-01-01

    patients - reducing the number of foci and the level of radiopharmaceutical uptake in them. Conclusions: radionuclide therapy in patients with BM can effectively suppress pain and significantly reduce the number of analgesics. Post-treatment patients, life quality statistically significantly improved. Samarium-153 has the ability to reduce BM number and intensity of radiopharmaceutical accumulation in spots in the control study. (authors)

  10. Silicon nitride nanosieve membrane

    NARCIS (Netherlands)

    Tong, D.H.; Jansen, Henricus V.; Gadgil, V.J.; Bostan, C.G.; Berenschot, Johan W.; van Rijn, C.J.M.; Elwenspoek, Michael Curt

    2004-01-01

    An array of very uniform cylindrical nanopores with a pore diameter as small as 25 nm has been fabricated in an ultrathin micromachined silicon nitride membrane using focused ion beam (FIB) etching. The pore size of this nanosieve membrane was further reduced to below 10 nm by coating it with

  11. The samarium Grignard reaction. In situ formation and reactions of primary and secondary alkylsamarium(III) reagents

    Energy Technology Data Exchange (ETDEWEB)

    Curran, D.P.; Totleben, M.J. [Univ. of Pittsburgh, PA (United States)

    1992-07-15

    This work shows that primary and secondary radicals are rapidly reduced in THF/HMPA to form primary- and secondary-alkylsamarium reagents. The primary- and secondary-radicals can be formed either by direct SmI{sup 2} reductions of primary- and secondary-halides or by a previous rapid radical cyclization. The samarium reagents have moderate stability in solution, and they react with a variety of typical electrophiles, including aldehydes and ketones. The work further shows that organosamarium intermediates can be involved in the traditional samarium Barbier reaction of aldehydes and ketones conducted in THF/HMPA. A new procedure called the {open_quotes}samarium Grignard{close_quotes} method is introduced, and it is suggested that this new procedure will have considerably more scope and generality than the samarium Barbier reaction. 37 refs., 4 tabs.

  12. Rare-earth doped boron nitride nanotubes: Synthesis and characterization

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Wellington Marcos; Sousa, Edesia Martins Barros de, E-mail: wellingtonmarcos@yahoo.com.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2016-07-01

    Full text: Boron nitride is a heat and chemically resistant refractory compound of boron and nitrogen atoms with the chemical formula BN. This structure exists in various crystalline forms that are isoelectronic to a similarly structured carbon lattice. The hexagonal form (h-BN) corresponding to graphite is the most stable and soft among BN polymorph. However, boron nitride nanotubes (BNNTs) were first time synthesized in 1995 [1] and have a type of one-dimensional (1D) nanostructure. Recently the BNNTs have attracted significant interest for scientific and technological applications due to their Wide bandgap. The Wide-bandgap semiconductors doped with rare-earth are considered as a new type of luminescent material, combining special Wide bandgap semiconducting properties with the rare-earth luminescence feature. BNNTs have a stable wide bandgap of 5.5 eV and super thermal and chemical stabilities, which make BNNTs an ideal nanosized luminescent material [2]. In this study, we report a simple and efficient route for the synthesis of BNNTs doped with samarium and europium. High quality BNNTs doped was produced via CVD technique using NH{sub 3} and N{sub 2} gases as source. Boron amorphous, catalyst and oxides rare-earth powder were used as precursor. Detailed studies involving energy-dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), Raman spectroscopy, Fourier-transform infrared spectroscopy (FTIR), scanning electron microscope (SEM) and transmission electron microscope (TEM) were performed in order to characterize the BNNTs as grown. [1] Chopra, N. G.; Luyken, R. J. et al. Science, v. 269, p. 966-967, 1995. [2] Chen, H.; Chen, Y. et al. Adv. Matter. v. 19, p. 1845-1848, 2007. (author)

  13. Rare-earth doped boron nitride nanotubes: Synthesis and characterization

    International Nuclear Information System (INIS)

    Silva, Wellington Marcos; Sousa, Edesia Martins Barros de

    2016-01-01

    Full text: Boron nitride is a heat and chemically resistant refractory compound of boron and nitrogen atoms with the chemical formula BN. This structure exists in various crystalline forms that are isoelectronic to a similarly structured carbon lattice. The hexagonal form (h-BN) corresponding to graphite is the most stable and soft among BN polymorph. However, boron nitride nanotubes (BNNTs) were first time synthesized in 1995 [1] and have a type of one-dimensional (1D) nanostructure. Recently the BNNTs have attracted significant interest for scientific and technological applications due to their Wide bandgap. The Wide-bandgap semiconductors doped with rare-earth are considered as a new type of luminescent material, combining special Wide bandgap semiconducting properties with the rare-earth luminescence feature. BNNTs have a stable wide bandgap of 5.5 eV and super thermal and chemical stabilities, which make BNNTs an ideal nanosized luminescent material [2]. In this study, we report a simple and efficient route for the synthesis of BNNTs doped with samarium and europium. High quality BNNTs doped was produced via CVD technique using NH 3 and N 2 gases as source. Boron amorphous, catalyst and oxides rare-earth powder were used as precursor. Detailed studies involving energy-dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), Raman spectroscopy, Fourier-transform infrared spectroscopy (FTIR), scanning electron microscope (SEM) and transmission electron microscope (TEM) were performed in order to characterize the BNNTs as grown. [1] Chopra, N. G.; Luyken, R. J. et al. Science, v. 269, p. 966-967, 1995. [2] Chen, H.; Chen, Y. et al. Adv. Matter. v. 19, p. 1845-1848, 2007. (author)

  14. Influence of pretreatment temperature cycling on the radiating defect formation in silicon doped by samarium

    International Nuclear Information System (INIS)

    Abdurakhmanov, K.P.; Nazyrov, D.E.

    2006-01-01

    Full text: The raise of thermal and radiation stability as it is known, is one of actual problems of physics semiconductors. Recently it is established, that the rare-earth elements (REE) raise a stability of silicon to exterior action. In this connection the investigation of silicon doped REE by samarium and influence on its properties of heat treatments and radiation exposure is important. In sectional operation the outcomes of investigations of influence of samarium on thermal (600 degree C are reduced; 600 deg. + 900 deg. C; 900 deg. C; 900 deg. C + 600 deg. C; 1100 deg. C; 600 deg. C + 900 deg. C + 1100 deg. C; 900 deg. C + 600 deg. C + 1100 deg. C) thermal defect formation and radiation defect formation (exposure of γ-quanta 60 Co) both in beforehand wrought, and in thermally unfinished samples. After each cycle of heat treatments samples cool fast (throwing off in oil) or slowly (together with the furnace). Doping n-silicon REE by gadolinium and samarium was carried out during cultivation. The concentration of gadolinium and samarium in silicon, on sectional of a neutron-activation analysis was equaled 10 14 - 10 18 cm -3 . As control is model monocrystal silicon such as KEP-15/50. Para-meters of deep levels originating in control and doped REE samples, both past heat treatment or temperature cycling, and irradiated by the γ-quanta are defined by methods of a capacity spectroscopy: DLTS and IRC. The obtained outcomes have shown, that in irradiated with the γ-quanta 60 Co deep levels samples are formed with energies: E C -0,17 eV, E C -0,32 eV, EC-0,41 eV. Thus the parameters of deep levels vary depending on requirements of prestress heat treatment. For example heat treatment at 600 deg. C essentially increments a velocity of introduction of and centre (deep level of E C -0,17 eV), in comparison with a velocity of introduction of this level in samples with prestress heat treatment at 900 deg. C. In samples n-Si doped by samarium effectiveness of formation

  15. Nitriding of high speed steel

    International Nuclear Information System (INIS)

    Doyle, E.D.; Pagon, A.M.; Hubbard, P.; Dowey, S.J.; Pilkington, A.; McCulloch, D.G.; Latham, K.; DuPlessis, J.

    2010-01-01

    Current practice when nitriding HSS cutting tools is to avoid embrittlement of the cutting edge by limiting the depth of the diffusion zone. This is accomplished by reducing the nitriding time and temperature and eliminating any compound layer formation. However, in many applications there is an argument for generating a compound layer with beneficial tribological properties. In this investigation results are presented of a metallographic, XRD and XPS analysis of nitrided surface layers generated using active screen plasma nitriding and reactive vapour deposition using cathodic arc. These results are discussed in the context of built up edge formation observed while machining inside a scanning electron microscope. (author)

  16. Defects in dilute nitrides

    International Nuclear Information System (INIS)

    Chen, W.M.; Buyanova, I.A.; Tu, C.W.; Yonezu, H.

    2005-01-01

    We provide a brief review our recent results from optically detected magnetic resonance studies of grown-in non-radiative defects in dilute nitrides, i.e. Ga(In)NAs and Ga(Al,In)NP. Defect complexes involving intrinsic defects such as As Ga antisites and Ga i self interstitials were positively identified.Effects of growth conditions, chemical compositions and post-growth treatments on formation of the defects are closely examined. These grown-in defects are shown to play an important role in non-radiative carrier recombination and thus in degrading optical quality of the alloys, harmful to performance of potential optoelectronic and photonic devices based on these dilute nitrides. (author)

  17. Solar nebula heterogeneity in p-process samarium and neodymium isotopes.

    Science.gov (United States)

    Andreasen, Rasmus; Sharma, Mukul

    2006-11-03

    Bulk carbonaceous chondrites display a deficit of approximately 100 parts per million (ppm) in 144Sm with respect to other meteorites and terrestrial standards, leading to a decrease in their 142Nd/144Nd ratios by approximately 11 ppm. The data require that samarium and neodymium isotopes produced by the p process associated with photodisintegration reactions in supernovae were heterogeneously distributed in the solar nebula. Other samarium and neodymium isotopes produced by rapid neutron capture (r process) in supernovae and by slow neutron capture (s process) in red giants were homogeneously distributed. The supernovae sources supplying the p- and r-process nuclides to the solar nebula were thus disconnected or only weakly connected.

  18. Ultrasonic and viscosimetric studies of samarium laurate in benzene-dimethylsulfoxide mixtures

    International Nuclear Information System (INIS)

    Mehrotra, K.N.; Anis, M.

    1995-01-01

    Ultrasonic and viscosity measurements of samarium laurate in benzene-DMSO mixtures of different compositions (7:3 and 1:1 V/V) have been used to determine the critical micelle concentration (CMC), soap-solvent interaction, and various acoustic parameters of the system. The values of critical micelle concentration increase with increasing amount of DMSO in the solvent mixtures. The viscosity results have been explained on the basis of equations proposed by Einstein, Vand. Moulik, and Jones-Dole. The values of CMC for samarium laurate obtained from the viscosity measurements are in agreement with the results obtained from ultrasonic measurements. The results show that the soap molecules do not aggregate appreciably below CMC there is a marked change in the aggregation behaviour at CMC. (author)

  19. Removal of trivalent samarium from aqueous solutions by activated biochar derived from cactus fibres

    Institute of Scientific and Technical Information of China (English)

    Loukia Hadjittofi; Styliana Charalambous; Ioannis Pashalidis

    2016-01-01

    The efficiency of activated biochar fibres obtained fromOpuntia Ficus Indica regarding the sorption of trivalent samarium (Sm(III)) from aqueous solutions was investigated by batch experiments. The effect of various physicochemical parameters (e.g. pH, initial metal concentration, ionic strength, temperature and contact time) on the Sm(III) adsorption was studied and the surface species were characterized by FTIR spectroscopy prior to and after the lanthanide sorption. The experimental results showed that the acti-vated biochar fibres possessed extraordinary sorption capacity for Sm(III) in acidic solutions (qmax=90 g/kg, pH 3.0) and near neutral solutions (qmax=350 g/kg, pH 6.5). This was attributed to the formation of samarium complexes with the surface carboxylic moieties, available in high density on the lamellar structures of the bio-sorbent.

  20. Plasmonic Titanium Nitride Nanostructures via Nitridation of Nanopatterned Titanium Dioxide

    DEFF Research Database (Denmark)

    Guler, Urcan; Zemlyanov, Dmitry; Kim, Jongbum

    2017-01-01

    Plasmonic titanium nitride nanostructures are obtained via nitridation of titanium dioxide. Nanoparticles acquired a cubic shape with sharper edges following the rock-salt crystalline structure of TiN. Lattice constant of the resulting TiN nanoparticles matched well with the tabulated data. Energy...

  1. Enhanced electron-lattice coupling under uniaxial stress in layered double hydroxides intercalated with samarium complexes

    International Nuclear Information System (INIS)

    Park, Ta-Ryeong

    2004-01-01

    We have applied uniaxial stress to samarium complexes by intercalating them into the gallery of a layered material and by using a diamond-anvil cell at 28 K. Although uniaxial stress reduces symmetry and removes degeneracy, the overall number of photoluminescence (PL) peaks evidently decreased with the application of uniaxial stress. This contradictory observation is explained by an increased electron-lattice coupling strength under uniaxial stress. This behavior is also confirmed by time-resolved PL data.

  2. Synthesis of samarium complexes with the derivative binder of Schiff Quinolinic base. Characterization and photophysical study

    International Nuclear Information System (INIS)

    Lucas H, J.

    2016-01-01

    In this work we determined the metal: binder stoichiometry of the species formed during the UV/Vis spectrophotometric titration of the derivative binder of Schiff quinolinic base, L1 with the samarium nitrate pentahydrate in methanol. Statistical analysis of the data allowed proposing the metal: binder stoichiometry for the synthesis of the complexes which was one mole of samarium salt by 2.5 moles of binder and thus favor the formation of complexes with 1M: 1L and 1M: 2L stoichiometries. They were synthesized in aqueous-organic medium (water-ethanol), isolated and purified two complexes with stoichiometry 1 Sm: 1 L1, complex 1 and 1 Sm: 2 L1, complex 2. The overall yield of the reaction was 76%. The characterization of the formed complexes was performed by visible ultraviolet spectrometry (UV/Vis), nuclear magnetic resonance, X-ray photoelectron spectroscopy (XP S), thermal gravimetric analysis with differential scanning calorimetry (TGA/DSC), and radial distribution function. These complexes were studied by fluorescence and emission phosphorescence at variable temperature. Spectroscopic techniques used in both solution and solid demonstrated the formation and stability of these complexes. In addition XP S indicated that in both complexes the samarium retains its oxidation state 3+. Luminescence studies indicated that there is intra-binding charge transfer which decreases the transfer of light energy from the binder to the samarium. Based on the experimental results, L1 binder molecules and complexes 1 and 2 were modeled that demonstrated the proposed Nc for each complex, as well as allowed to visualize the structural arrangement of the molecules, complexes and binder. (Author)

  3. Sorption of samarium in iron (II) and (III) phosphates in aqueous systems

    International Nuclear Information System (INIS)

    Diaz F, J.C.

    2006-01-01

    The radioactive residues that are stored in the radioactive confinements its need to stay isolated of the environment while the radioactivity levels be noxious. An important mechanism by which the radioactive residues can to reach the environment, it is the migration of these through the underground water. That it makes necessary the investigation of reactive materials that interacting with those radionuclides and that its are able to remove them from the watery resources. The synthesis and characterization of materials that can be useful in Environmental Chemistry are very important because its characteristics are exposed and its behavior in chemical phenomena as the sorption watery medium is necessary to use it in the environmental protection. In this work it was carried out the sorption study of the samarium III ion in the iron (II) and (III) phosphate; obtaining the sorption isotherms in function of pH, of the phosphate mass and of the concentration of the samarium ion using UV-visible spectroscopy to determine the removal percentage. The developed experiments show that as much the ferrous phosphate as the ferric phosphate present a great affinity by the samarium III, for what it use like reactive material in contention walls can be very viable because it sorption capacity has overcome 90% to pH values similar to those of the underground and also mentioning that the form to obtain these materials is very economic and simple. (Author)

  4. Optical characterization of gallium nitride

    NARCIS (Netherlands)

    Kirilyuk, Victoria

    2002-01-01

    Group III-nitrides have been considered a promising system for semiconductor devices since a few decades, first for blue- and UV-light emitting diodes, later also for high-frequency/high-power applications. Due to the lack of native substrates, heteroepitaxially grown III-nitride layers are usually

  5. Impact of educational strategies in positioning Samarium-153 EDTMP as a treatment for metastatic bone pain

    International Nuclear Information System (INIS)

    Seminario, C.; Morales, R.; Castro, M.; Cano, R.A.; Mendoza, G.

    2005-01-01

    To educate is a difficult task but its results make efforts worthwhile. Many patients in Peru suffer from intractable bone pain due to metastases. Since 1993 radionuclides were used to palliate bone pain due to metastases in Peru. First, with the help of the IAEA, Peru participated in a clinical trial using Phosphorus 32 and Strontium 89. Then, efforts were performed to produce Samarium 153 EDMTP locally, which was achieved in 1995. Nevertheless, years passed and Samarium use did not increase proportionally to the needs of people with cancer and bone pain, mainly the poor. Educational strategies have been proven useful for delivering solutions to many health problems in other diseases and also in cancer. Health education makes patients and their relatives assume responsible care of their problems. The purpose of this work was to increase Samarium EDTMP use as palliative treatment in patients with bone pain due to metastases, using educational strategies as means to change attitudes towards this health problem. In September 2003, a task group conducted studies in order to apply several methods to achieve the goal of increasing Samarium EDTMP use. Educational strategies employed were performed to provide verbal and written information to patients, physicians, medical students, residents, pain specialists, oncologists and neurologists, as well as general public. Verbal information included radio interviews, television spots and a phone number (in charge of two secretaries, prepared for answering and if not possible, a physician was in charge of attending patient consultation), e-mail and a web page for consultation. Written material was delivered to several newspapers, including clinical use of Samarium, possibilities of being elected for treatment, benefits and risks and a photography of the product. Politics of the institution producing Samarium changed, in order to achieve minimum cost of the product and it was delivered to all publics at the lowest cost for a year

  6. Hot pressing of uranium nitride and mixed uranium plutonium nitride

    International Nuclear Information System (INIS)

    Chang, J.Y.

    1975-01-01

    The hot pressing characteristics of uranium nitride and mixed uranium plutonium nitride were studied. The utilization of computer programs together with the experimental technique developed in the present study may serve as a useful purpose of prediction and fabrication of advanced reactor fuel and other high temperature ceramic materials for the future. The densification of nitrides follow closely with a plastic flow theory expressed as: d rho/ dt = A/T(t) (1-rho) [1/1-(1-rho)/sup 2/3/ + B1n (1-rho)] The coefficients, A and B, were obtained from experiment and computer curve fitting. (8 figures) (U.S.)

  7. Electrospun Gallium Nitride Nanofibers

    International Nuclear Information System (INIS)

    Melendez, Anamaris; Morales, Kristle; Ramos, Idalia; Campo, Eva; Santiago, Jorge J.

    2009-01-01

    The high thermal conductivity and wide bandgap of gallium nitride (GaN) are desirable characteristics in optoelectronics and sensing applications. In comparison to thin films and powders, in the nanofiber morphology the sensitivity of GaN is expected to increase as the exposed area (proportional to the length) increases. In this work we present electrospinning as a novel technique in the fabrication of GaN nanofibers. Electrospinning, invented in the 1930s, is a simple, inexpensive, and rapid technique to produce microscopically long ultrafine fibers. GaN nanofibers are produced using gallium nitrate and dimethyl-acetamide as precursors. After electrospinning, thermal decomposition under an inert atmosphere is used to pyrolyze the polymer. To complete the preparation, the nanofibers are sintered in a tube furnace under a NH 3 flow. Both scanning electron microscopy and profilometry show that the process produces continuous and uniform fibers with diameters ranging from 20 to a few hundred nanometers, and lengths of up to a few centimeters. X-ray diffraction (XRD) analysis shows the development of GaN nanofibers with hexagonal wurtzite structure. Future work includes additional characterization using transmission electron microscopy and XRD to understand the role of precursors and nitridation in nanofiber synthesis, and the use of single nanofibers for the construction of optical and gas sensing devices.

  8. Inductively coupled plasma optical emission spectrometry analysis of lanthanum, samarium and gadolinium oxides for rare earths impurities

    International Nuclear Information System (INIS)

    Reino, L.C.P.; Lordello, A.R.

    1990-09-01

    An inductively coupled plasma optical emission spectrometry method is described for the determination of Sm, Eu, La, Gd, Dy, Pr, Ho, Nd, Tb and Y in purified oxides of lanthanum, samarium and gadolinium. The method enables a simple, precise and readily available determination. Dissolution of the samples is achieved with diluted hydrochloric acid (1:1). The solutions are diluted to volume for a concentration of 1mg/ml. The lowest determination limit is 0,01% for most elements and 0,05 or 0,1% for a few rare earths in samarium and gadolinium matrices. Lanthanum, Samarium and Gadolinium concentrates with purity grade of 99,9%, 99,6% and 99,8%, respectively, can be analysed by this procedure. (author)

  9. Synthesis and structure of unprecedented samarium complex with bulky bis-iminopyrrolyl ligand via intramolecular C=N bond activation

    Energy Technology Data Exchange (ETDEWEB)

    Das, Suman; Anga, Srinivas; Harinath, Adimulam; Panda, Tarun K. [Department of Chemistry, Indian Institute of Technology, Hyderabad (India); Pada Nayek, Hari [Department of Applied Chemistry, Indian Institute of Technology, (ISM) Dhanbad, Jharkhand (India)

    2017-12-29

    An unprecedentate samarium complex of the molecular composition [{κ"3-{(Ph_2CH)N=CH}{sub 2}C{sub 4}H{sub 2}N}{κ"3-{(Ph_2CHN=CH)(Ph_2CHNCH)C_4H_2N}Sm}{sub 2}] (2), which was isolated by the reaction of a potassium salt of 2,5-bis{N-(diphenylmethyl)-iminomethyl}pyrrolyl ligand [K(THF){sub 2}{(Ph_2CH)N=CH}{sub 2}C{sub 4}H{sub 2}N] (1) with anhydrous samarium diiodide in THF at 60 C through the in situ reduction of imine bond is presented. The homoleptic samarium complex [[κ{sup 3}-{(Ph_2CH)-N=CH}{sub 2}C{sub 4}H{sub 2}N]{sub 3}Sm] (3) can also be obtained from the reaction of compound 1 with anhydrous samarium triiodide (SmI{sub 3}) in THF at 60 C. The molecular structures of complexes 2 and 3 were established by single-crystal X-ray diffraction analysis. The molecular structure of complex 2 reveals the formation of a C-C bond in the 2,5-bis{N-(diphenylmethyl)iminomethyl}pyrrole ligand moiety (Ph{sub 2}Py{sup -}). However, complex 3 is a homoleptic samarium complex of three bis-iminopyrrolyl ligands. In complex 2, the samarium ion adopts an octahedral arrangement, whereas in complex 3, a distorted three face-centered trigonal prismatic mode of nine coordination is observed around the metal ion. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. Method for producing polycrystalline boron nitride

    International Nuclear Information System (INIS)

    Alexeevskii, V.P.; Bochko, A.V.; Dzhamarov, S.S.; Karpinos, D.M.; Karyuk, G.G.; Kolomiets, I.P.; Kurdyumov, A.V.; Pivovarov, M.S.; Frantsevich, I.N.; Yarosh, V.V.

    1975-01-01

    A mixture containing less than 50 percent of graphite-like boron nitride treated by a shock wave and highly defective wurtzite-like boron nitride obtained by a shock-wave method is compressed and heated at pressure and temperature values corresponding to the region of the phase diagram for boron nitride defined by the graphite-like compact modifications of boron nitride equilibrium line and the cubic wurtzite-like boron nitride equilibrium line. The resulting crystals of boron nitride exhibit a structure of wurtzite-like boron nitride or of both wurtzite-like and cubic boron nitride. The resulting material exhibits higher plasticity as compared with polycrystalline cubic boron nitride. Tools made of this compact polycrystalline material have a longer service life under impact loads in machining hardened steel and chilled iron. (U.S.)

  11. X-ray spectrum in the range (6-12) A emitted by laser-produced plasma of samarium

    International Nuclear Information System (INIS)

    Louzon, Einat; Henis, Zohar; Levi, Izhak; Hurvitz, Gilad; Ehrlich, Yosi; Fraenkel, Moshe; Maman, Shlomo; Mandelbaum, Pinchas

    2009-01-01

    A detailed analysis of the x-ray spectrum emitted by laser-produced plasma of samarium (6-12 A) is presented, using ab initio calculations with the HULLAC relativistic code and isoelectronic considerations. Resonance 3d-nf (n=4 to 7), 3p-4d, 3d-4p, and 3p-4s transitions in Ni samarium ions and in neighboring ionization states (from Mn to Zn ions) were identified. The experiment results show changes in the fine details of the plasma spectrum for different laser intensities.

  12. Peculiarities of electronic, phonon and magnon subsystems of lanthanum and samarium tetraborides

    Energy Technology Data Exchange (ETDEWEB)

    Novikov, V.V., E-mail: vvnovikov@mail.ru; Mitroshenkov, N.V.; Matovnikov, A.V.

    2015-10-15

    Experimental research was carried out to study the temperature dependences of heat capacity C{sub p}(T = 2–300 K), lattice parameters a(T), and ≿(T), (5–300 K) of lanthanum and samarium tetraborides. A comparison with data obtained previously for LuB{sub 4} reveals the peculiar influence of lanthanide contraction and the rare-earths mass on the thermodynamic properties of rare earth tetraborides at low and high temperatures. Sharp anomalies were found in the heat capacity and thermal expansion for SmB{sub 4} at T{sub N} = 25.1 K, conditioned by the phase transition into antiferromagnetic state. The more poorly defined heat capacity anomaly around 7 K is referred to the quadrupole orbital fluctuation of the atomic magnetic moments for Sm{sup 3+} ions. The electronic, lattice, and magnetic contributions to the heat capacity and thermal expansion of samarium tetraboride were defined. Our approach makes it possible to adequately approximate the lattice components of heat capacity and thermal expansion by combining the Debye and Einstein contributions, which are based on the joint analysis of calorimetric and X-ray data. The influence of the frustration of the atomic magnetic moment system for Sm{sup 3+} ions on the thermodynamic characteristics of the samarium tetraboride magnetic phase transition was revealed. - Highlights: • The heat capacity and lattice parameters for LaB{sub 4} and SmB{sub 4} were determined at 2–300 K. • The anomalies of C{sub p}(T), a(T), c(T) for SmB{sub 4} due to the phase transition are revealed. • The lattice contributions to the thermal properties of LaB{sub 4} and SmB{sub 4} are analyzed.

  13. Zirconium nitride hard coatings

    International Nuclear Information System (INIS)

    Roman, Daiane; Amorim, Cintia Lugnani Gomes de; Soares, Gabriel Vieira; Figueroa, Carlos Alejandro; Baumvol, Israel Jacob Rabin; Basso, Rodrigo Leonardo de Oliveira

    2010-01-01

    Zirconium nitride (ZrN) nanometric films were deposited onto different substrates, in order to study the surface crystalline microstructure and also to investigate the electrochemical behavior to obtain a better composition that minimizes corrosion reactions. The coatings were produced by physical vapor deposition (PVD). The influence of the nitrogen partial pressure, deposition time and temperature over the surface properties was studied. Rutherford backscattering spectrometry (RBS), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), scanning electron microscopy (SEM) and corrosion experiments were performed to characterize the ZrN hard coatings. The ZrN films properties and microstructure changes according to the deposition parameters. The corrosion resistance increases with temperature used in the films deposition. Corrosion tests show that ZrN coating deposited by PVD onto titanium substrate can improve the corrosion resistance. (author)

  14. Pyrochemical reprocessing of nitride fuel

    International Nuclear Information System (INIS)

    Nakazono, Yoshihisa; Iwai, Takashi; Arai, Yasuo

    2004-01-01

    Electrochemical behavior of actinide nitrides in LiCl-KCl eutectic melt was investigated in order to apply pyrochemical process to nitride fuel cycle. The electrode reaction of UN and (U, Nd)N was examined by cyclic voltammetry. The observed rest potential of (U, Nd)N depended on the equilibrium of U 3+ /UN and was not affected by the addition of NdN of 8 wt.%. (author)

  15. Separation of lanthanum from samarium on solid aluminum electrode in LiCl-KCl eutectic melts

    International Nuclear Information System (INIS)

    De-Bin Ji; Mi-Lin Zhang; Xing Li; Xiao-Yan Jing; Wei Han; Yong-De Yan; Yun Xue; Zhi-Jian Zhang; Harbin Engineering University, Harbin

    2015-01-01

    This paper presents an electrochemical study on the separation of lanthanum from samarium on aluminum electrode at 773 K. The results from different electrochemical methods showed that Sm(III) and La(III) formed Al-Sm and Al-La intermetallic compounds on an aluminum electrode at electrode potential around -1.67 and -1.46 V, respectively. The electrochemical separation of lanthanum was carried out in LiCl-KCl-LaCl 3 -SmCl 3 melts on solid aluminum electrodes at 773 K by potentiostatic electrolysis at -1.45 V for 40 h and the separation efficiency was 99.1 %. (author)

  16. Determination of micro amounts of samarium and europium by analogue derivative spectrophotometry

    International Nuclear Information System (INIS)

    Ishii, H.; Satoh, K.

    1982-01-01

    Derivative spectrophotometry using the analogue differentiation circuit was applied to the determination of samarium and europium at ppm levels. By measuring the second or the fourth derivative spectra of the characteristic absorption bands of both the rare earth ions around 400 nm, they can be determined directly and selectively in the presence of large amounts of most other rare earths without any prior separation. Further, aptly selecting conditions for the measurement of the derivative spectra, the simultaneous determination of both the rare earth elements was feasible. The principle and the characteristics of analogue derivative spectrophotometry are also described. (orig.) [de

  17. Evaluation of samarium-153 and holmium-166-EDTMP in the normal baboon model

    Energy Technology Data Exchange (ETDEWEB)

    Louw, W.K.A.; Dormehl, I.C.; Rensburg, A.J. van; Hugo, N.; Alberts, A.S.; Forsyth, O.E.; Beverley, G.; Sweetlove, M.A.; Marais, J.; Loetter, M.G.; Aswegen, A. van

    1996-11-01

    Bone-seeking radiopharmaceuticals such as ethylenediaminetetramethylene phosphonate (EDTMP) complexes of samarium-153 and holmium-166 are receiving considerable attention for therapeutic treatment of bone metastases. In this study, using the baboon experimental model, multicompartmental analysis revealed that with regard to pharmacokinetics, biodistribution, and skeletal localisation, {sup 166}Ho-EDTMP was significantly inferior to {sup 153}Sm-EDTMP and {sup 99m}Tc-MDP. A more suitable {sup 166}Ho-bone-seeking agent should thus be sought for closer similarity to {sup 153}Sm-EDTMP to exploit fully the therapeutic potential of its shorter half-life and more energetic beta radiation.

  18. Body composition analysis by DEXA by using dynamically changing samarium filtration

    DEFF Research Database (Denmark)

    Gotfredsen, Arne; Baeksgaard, L; Hilsted, J

    1997-01-01

    Dual-energy X-ray absorptiometry (DEXA) has a high accuracy for body composition analysis but is influenced by beam hardening and other error sources in the extremes of measurement. To compensate for beam hardening, the Norland XR-36 introduces a dynamically changing samarium filtration system......). Scans of six healthy volunteers covered with combinations of beef and lard (approximately 5-15 kg) showed a good agreement (r = 0.99) between reference and DEXA values of added soft tissue mass and fat percentage. We conclude that the DEXA method (and, in particular, the Norland XR-36 using dynamic...

  19. Performance analysis of samarium cobalt P.M. synchronous motor fed from PWM inverters

    International Nuclear Information System (INIS)

    Rahman, M.A.; Choudhury, M.A.

    1985-01-01

    This paper presents an analysis and performance of samarium cobalt permanent magnet (P.M.) synchronous motors fed from two types of voltage source pulse width modulated (PWM) inverters. The analysis and test results on the steady state performance of a P.M. motor fed from PWM inverters are presented. PWM inverters are used in variable voltage variable frequency applications to avoid a double conversion process of ordinary inverters. In drives, they are used for voltage and speed regulation of motors. Use of modulation technique in inverters also allow to eliminate or minimize selected harmonics from the inverter output voltage

  20. Superplastic forging nitride ceramics

    Science.gov (United States)

    Panda, P.C.; Seydel, E.R.; Raj, R.

    1988-03-22

    A process is disclosed for preparing silicon nitride ceramic parts which are relatively flaw free and which need little or no machining, said process comprising the steps of: (a) preparing a starting powder by wet or dry mixing ingredients comprising by weight from about 70% to about 99% silicon nitride, from about 1% to about 30% of liquid phase forming additive and from 1% to about 7% free silicon; (b) cold pressing to obtain a preform of green density ranging from about 30% to about 75% of theoretical density; (c) sintering at atmospheric pressure in a nitrogen atmosphere at a temperature ranging from about 1,400 C to about 2,200 C to obtain a density which ranges from about 50% to about 100% of theoretical density and which is higher than said preform green density, and (d) press forging workpiece resulting from step (c) by isothermally uniaxially pressing said workpiece in an open die without initial contact between said workpiece and die wall perpendicular to the direction of pressing and so that pressed workpiece does not contact die wall perpendicular to the direction of pressing, to substantially final shape in a nitrogen atmosphere utilizing a temperature within the range of from about 1,400 C to essentially 1,750 C and strain rate within the range of about 10[sup [minus]7] to about 10[sup [minus]1] seconds[sup [minus]1], the temperature and strain rate being such that surface cracks do not occur, said pressing being carried out to obtain a shear deformation greater than 30% whereby superplastic forging is effected.

  1. Nitride stabilized core/shell nanoparticles

    Science.gov (United States)

    Kuttiyiel, Kurian Abraham; Sasaki, Kotaro; Adzic, Radoslav R.

    2018-01-30

    Nitride stabilized metal nanoparticles and methods for their manufacture are disclosed. In one embodiment the metal nanoparticles have a continuous and nonporous noble metal shell with a nitride-stabilized non-noble metal core. The nitride-stabilized core provides a stabilizing effect under high oxidizing conditions suppressing the noble metal dissolution during potential cycling. The nitride stabilized nanoparticles may be fabricated by a process in which a core is coated with a shell layer that encapsulates the entire core. Introduction of nitrogen into the core by annealing produces metal nitride(s) that are less susceptible to dissolution during potential cycling under high oxidizing conditions.

  2. Production of SmCo5 alloy by calciothermic reduction of samarium oxide

    International Nuclear Information System (INIS)

    Krishnan, T.S.; Gupta, C.K.

    1988-01-01

    Among the established permanent magnets, SmCo 5 magnet occupies the foremost position as it offers a unique combination of high energy product, coercivity and curie temperature. The SmCo 5 magnets are thus extensively used for high field applications. These are also best suited for use in environments where high demagnetizing field and high temperature are operative. Also, for applications where high performance and miniaturization are the over-riding considerations, the choice again falls on SmCo 5 magnets. The main deterrent to the widespread use of SmCo 5 magnet is its high cost. Both samarium and cobalt metals are high priced, and the magnets prepared from their directly melted alloy are thus naturally very expensive. An alternate process involving calcium reduction of their oxide intermediates has, therefore, been studied and the alloy prepared by this process has been evaluated and found satisfactory for magnet production. The process essentially involves compaction of the charge mix containing samarium oxide, cobalt oxide (or metal) and calcium metal and reduction of the charge compact at 1000-1300 degrees C in hydrogen atmosphere, followed by water and acid leaching, drying and classification

  3. Polypyrrole-coated samarium oxide nanobelts: fabrication, characterization, and application in supercapacitors

    Science.gov (United States)

    Liu, Peng; Wang, Yunjiao; Wang, Xue; Yang, Chao; Yi, Yanfeng

    2012-11-01

    Polypyrrole-coated samarium oxide nanobelts were synthesized by the in situ chemical oxidative surface polymerization technique based on the self-assembly of pyrrole on the surface of the amine-functionalized Sm2O3 nanobelts. The morphologies of the polypyrrole/samarium oxide (PPy/Sm2O3) nanocomposites were characterized using transmission electron microscope. The UV-vis absorbance of these samples was also investigated, and the remarkable enhancement was clearly observed. The electrochemical behaviors of the PPy/Sm2O3 composites were investigated by cyclic voltammetry, electrochemical impedance spectroscopy, and galvanostatic charge-discharge. The results indicated that the PPy/Sm2O3 composite electrode was fully reversible and achieved a very fast Faradaic reaction. After being corrected into the weight percentage of the PPy/Sm2O3 composite at a current density of 20 mA cm-2 in a 1.0 M NaNO3 electrolyte solution, a maximum discharge capacity of 771 F g-1 was achieved in a half-cell setup configuration for the PPy/Sm2O3 composites electrode with the potential application to electrode materials for electrochemical capacitors.

  4. Ekstraksi Pemisahan Neodimium dari Samarium, Itrium dan Praseodimium Memakai Tri Butil Fosfat

    Directory of Open Access Journals (Sweden)

    Maria Veronica Purwani

    2017-05-01

    Full Text Available The extraction of Nd(OH3 (neodymium hydroxide concentrate containing Y (yttrium, Sm (samarium and Pr (praseodymium as product of monazite processed has been done. The purpose of this study is to determine the separation of Nd from Y, Pr and Nd Sm in Nd concentrate. The aqueous phase was concentrated Nd (OH3 in HNO3 and extractant while organic phase was Tri Butyl Phosphate (TBP in kerosene. Parameters studied were pH and concentration feed, concentration of TBP in kerosene, extraction time and stirring speed. The result showed that the optimization of separation extraction neodymium from samarium, yttrium and praseodymium in Nd(OH3 concentrated with TBP, obtained the optimum condition of pH = 0.2, concentration of feed 100 g /L, concentration of TBP in kerosene 5%, extraction time 15 minutes and stirring speed 150 rpm. With the conditions, Separation Factor (SF obtained for Nd-Y, Nd-Pr, Nd-Sm are 2.242, 4.811, 4.002 respectively, while D and extraction efficiency of Nd are 0.236 and 19.07%.

  5. Thermomechanical behavior of Fe-Mn-Si-Cr-Ni shape memory alloys modified with samarium

    International Nuclear Information System (INIS)

    Shakoor, R.A.; Khalid, F. Ahmad

    2009-01-01

    The deformation and training behavior of Fe-14Mn-3Si-10Cr-5Ni (wt.%) shape memory alloys containing samarium addition has been studied in the iron-based shape memory alloys. It is noticed that thermomechanical treatment (training) has significant influence on proof stress, critical stress and shape memory behavior of the alloys. The improvement in shape memory behavior can be attributed to the decrease in the proof stress and critical stress which facilitates the formation of ε (hcp martensite). It is also observed that alloy 2 containing samarium undergoes less softening as compared to alloy 1 with training which inhibits the formation of α (bcc martensite) and thus enhances the shape memory behavior. The excessive thermomechanical treatment with increase in the training cycle has led to the formation of α (bcc martensite) along with ε (hcp martensite) in the alloy 1 which appeared to have decline in the shape memory effect. This has been demonstrated by the examination of microstructure and identification of α (bcc martensite) martensite in the alloy 1 as compared to alloy 2

  6. Phase Composition of Samarium Niobate and Tantalate Thin Films Prepared by Sol-Gel Method

    Science.gov (United States)

    Bruncková, H.; Medvecký, Ľ.; Múdra, E.; Kovalčiková, A.; Ďurišin, J.; Šebek, M.; Girman, V.

    2017-12-01

    Samarium niobate SmNbO4 (SNO) and tantalate SmTaO4 (STO) thin films ( 100 nm) were prepared by sol-gel/spin-coating process on alumina substrates with PZT interlayer and annealing at 1000°C. The precursors of films were synthesized using Nb or Ta tartrate complexes. The improvement of the crystallinity of monoclinic M'-SmTaO4 phase via heating was observed through the coexistence of small amounts of tetragonal T-SmTa7O19 phase in STO precursor at 1000°C. The XRD results of SNO and STO films confirmed monoclinic M-SmNbO4 and M'-SmTaO4 phases, respectively, with traces of orthorhombic O-SmNbO4 (in SNO). In STO film, the single monoclinic M'-SmTaO4 phase was revealed. The surface morphology and topography of thin films were investigated by SEM and AFM analysis. STO film was smoother with roughness 3.2 nm in comparison with SNO (6.3 nm). In the microstructure of SNO film, small spherical ( 50 nm) and larger cuboidal particles ( 100 nm) of the SmNbO4 phase were observed. In STO, compact clusters composed of fine spherical SmTaO4 particles ( 20-50 nm) were found. Effect of samarium can contribute to the formation different polymorphs of these films for the application to environmental electrolytic thin film devices.

  7. Polypyrrole-coated samarium oxide nanobelts: fabrication, characterization, and application in supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Liu Peng, E-mail: pliu@lzu.edu.cn; Wang Yunjiao; Wang Xue; Yang Chao; Yi Yanfeng [College of Chemistry and Chemical Engineering, Lanzhou University, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry (China)

    2012-11-15

    Polypyrrole-coated samarium oxide nanobelts were synthesized by the in situ chemical oxidative surface polymerization technique based on the self-assembly of pyrrole on the surface of the amine-functionalized Sm{sub 2}O{sub 3} nanobelts. The morphologies of the polypyrrole/samarium oxide (PPy/Sm{sub 2}O{sub 3}) nanocomposites were characterized using transmission electron microscope. The UV-vis absorbance of these samples was also investigated, and the remarkable enhancement was clearly observed. The electrochemical behaviors of the PPy/Sm{sub 2}O{sub 3} composites were investigated by cyclic voltammetry, electrochemical impedance spectroscopy, and galvanostatic charge-discharge. The results indicated that the PPy/Sm{sub 2}O{sub 3} composite electrode was fully reversible and achieved a very fast Faradaic reaction. After being corrected into the weight percentage of the PPy/Sm{sub 2}O{sub 3} composite at a current density of 20 mA cm{sup -2} in a 1.0 M NaNO{sub 3} electrolyte solution, a maximum discharge capacity of 771 F g{sup -1} was achieved in a half-cell setup configuration for the PPy/Sm{sub 2}O{sub 3} composites electrode with the potential application to electrode materials for electrochemical capacitors.

  8. Leachability of nitrided ilmenite in hydrochloric acid

    CSIR Research Space (South Africa)

    Swanepoel, JJ

    2010-10-01

    Full Text Available Titanium nitride in upgraded nitrided ilmenite (bulk of iron removed) can selectively be chlorinated to produce titanium tetrachloride. Except for iron, most other components present during this low temperature (ca. 200 °C) chlorination reaction...

  9. Aluminum nitride insulating films for MOSFET devices

    Science.gov (United States)

    Lewicki, G. W.; Maserjian, J.

    1972-01-01

    Application of aluminum nitrides as electrical insulator for electric capacitors is discussed. Electrical properties of aluminum nitrides are analyzed and specific use with field effect transistors is defined. Operational limits of field effect transistors are developed.

  10. Pemisahan Unsur Samarium dan Yttrium dari Mineral Tanah Jarang dengan Teknik Membran Cair Berpendukung (Supported Liquid Membrane

    Directory of Open Access Journals (Sweden)

    Amri Amin

    2009-06-01

    Full Text Available he increasing use of rare earth elements in high technology industries needs to be supported by developmental work for the separation of elements. The research objective is fiercely attracting and challenging considering the similarity of bath physical and chemical properties among these elements. The rate separation of samarium and yttrium elements using supported liquid membrane has been studied. Polytetrafluoroethylene (PTFE with pore size of 0.45 µm has been used as the membrane and di(2-ethylhexyl phosphate (D2EHP in hexane has been used as a carrier and nitric acid solution has been used as receiving phase. Result of experiments showed that the best separation rate of samarium and yttrium elements could be obtained at feeding phase of pH 3.0, di(2-ethylhexyl phosphate (D2EHP concentration of 0.3 M, agitation rate of 700 rpm, agitation time of 2 hours, and nitric acid and its solution concentrations of 1.0 M and 0.1 M, respectively. At this condition, separation rates of samarium and yttrium were 64.4 and 67.6%, respectively.   Keywords: liquid membrane, rare earth elements, samarium, yttrium

  11. Behavior of Samarium III during the sorption process; Comportamiento del Samario-III durante el proceso de sorcion

    Energy Technology Data Exchange (ETDEWEB)

    Ordonez R, E.; Garcia G, N.; Garcia R, G. [ININ, Carr. Mexico-Toluca Km 36.5, Salazar, Estado de Mexico (Mexico)]. e-mail: edo@nuclear.inin.mx

    2004-07-01

    In this work the results of the behavior of samarium in solution are presented, in front of a fine powder of zirconium silicate (zircon). For that which is necessary to characterize the zircon, studying the crystallinity, the morphology, the surface area and the isoelectric point. The behavior of samarium in solution is studied by means of the elaboration of isotherm of sorption, using the technique by lots. One observes that to pH values of nearer to the isoelectric point (pH = 7.23) the process of sorption of the samarium begins, reaching a maximum to near pH at 9. The technique of luminescence is used to determine the concentration of the sipped samarium (phosphorescence) and also to make the speciation of the species formed in the surface of the zircon (phosphorescence). The results can be extrapolated with the plutonium when making the modeling of the migration of alpha emitting coming from the repositories of radioactive waste since both they have similar chemical properties (they are homologous). (Author)

  12. Leachability of nitrided ilmenite in hydrochloric acid

    OpenAIRE

    Swanepoel, J.J.; van Vuuren, D.S.; Heydenrych, M.

    2011-01-01

    Titanium nitride in upgraded nitrided ilmenite (bulk of iron removed) can selectively be chlorinated to produce titanium tetrachloride. Except for iron, most other components present during this low temperature (ca. 200°C) chlorination reaction will not react with chlorine. It is therefore necessary to remove as much iron as possible from the nitrided ilmenite. Hydrochloric acid leaching is a possible process route to remove metallic iron from nitrided ilmenite without excessive dissolution o...

  13. Fabrication of vanadium nitride by carbothermal nitridation reaction

    International Nuclear Information System (INIS)

    Wang Xitang; Wang Zhuofu; Zhang Baoguo; Deng Chengji

    2005-01-01

    Vanadium nitride is produced from V 2 O 5 by carbon-thermal reduction and nitridation. When the sintered temperature is above 1273 K, VN can be formed, and the nitrogen content of the products increased with the firing temperature raised, and then is the largest when the sintered temperature is 1573 K. The C/V 2 O 5 mass ratio of the green samples is the other key factor affecting on the nitrogen contents of the products. The nitrogen content of the products reaches the most when the C/V 2 O 5 mass ratio is 0.33, which is the theoretical ratio of the carbothermal nitridation of V 2 O 5 . (orig.)

  14. Simulation of the Nitriding Process

    Science.gov (United States)

    Krukovich, M. G.

    2004-01-01

    Simulation of the nitriding process makes it possible to solve many practical problems of process control, prediction of results, and development of new treatment modes and treated materials. The presented classification systematizes nitriding processes and processes based on nitriding, enables consideration of the theory and practice of an individual process in interrelation with other phenomena, outlines ways for intensification of various process variants, and gives grounds for development of recommendations for controlling the structure and properties of the obtained layers. The general rules for conducting the process and formation of phases in the layer and properties of the treated surfaces are used to create a prediction computational model based on analytical, numerical, and empirical approaches.

  15. Neutron Capture and Transmission Measurements and Resonance Parameter Analysis of Samarium

    International Nuclear Information System (INIS)

    Leinweber, G.; Burke, J.A.; Knox, H.D.; Drindak, N.J.; Mesh, D.W.; Haines, W.T.; Ballad, R.V.; Block, R.C.; Slovacek, R.E.; Werner, C.J.; Trbovich, M.J.; Barry, D.P.; Sato, T.

    2001-01-01

    The purpose of the present work is to accurately measure the neutron cross sections of samarium. The most significant isotope is 149 Sm, which has a large neutron absorption cross section at thermal energies and is a 235 U fission product with a 1% yield. Its cross sections are thus of concern to reactor neutronics. Neutron capture and transmission measurements were performed by the time-of-flight technique at the Rensselaer Polytechnic institute (RPI) LINAC facility using metallic and liquid Sm samples. The capture measurements were made at the 25 meter flight station with a multiplicity-type capture detector, and the transmission total cross-section measurements were performed at 15- and 25-meter flight stations with 6 Li glass scintillation detectors. Resonance parameters were determined by a combined analysis of six experiments (three capture and three transmission) using the multi-level R-matrix Bayesian code SAMMY version M2. The significant features of this work are as follows. Dilute samples of samarium nitrate in deuterated water (D 2 O) were prepared to measure the strong resonances at 0.1 and 8 eV without saturation. Disk-shaped spectroscopic quartz cells were obtained with parallel inner surfaces to provide a uniform thickness of solution. The diluent feature of the SAMMY program was used to analyze these data. The SAMMY program also includes multiple scattering corrections to capture yield data and resolution functions specific to the RPI facility. Resonance parameters for all stable isotopes of samarium were deduced for all resonances up to 30 eV. Thermal capture cross-section and capture resonance integral calculations were made using the resultant resonance parameters and were compared to results obtained using resonance parameters from ENDF/B-VI updated through release 3. Extending the definition of the capture resonance integral to include the strong 0.1 eV resonance in 149 Sm, present measurements agree within estimated uncertainties with En

  16. Precipitation of metal nitrides from chloride melts

    International Nuclear Information System (INIS)

    Slater, S.A.; Miller, W.E.; Willit, J.L.

    1996-01-01

    Precipitation of actinides, lanthanides, and fission products as nitrides from molten chloride melts is being investigated for use as a final cleanup step in treating radioactive salt wastes generated by electrometallurgical processing of spent nuclear fuel. The radioactive components (eg, fission products) need to be removed to reduce the volume of high-level waste that requires disposal. To extract the fission products from the salt, a nitride precipitation process is being developed. The salt waste is first contacted with a molten metal; after equilibrium is reached, a nitride is added to the metal phase. The insoluble nitrides can be recovered and converted to a borosilicate glass after air oxidation. For a bench-scale experimental setup, a crucible was designed to contact the salt and metal phases. Solubility tests were performed with candidate nitrides and metal nitrides for which there are no solubility data. Experiments were performed to assess feasibility of precipitation of metal nitrides from chloride melts

  17. The systems cerium(3) (samarium) nitrate-quinoline nitrate-water

    International Nuclear Information System (INIS)

    Khisaeva, D.A.; Zhuravlev, E.F.; Semenova, Eh.B.

    1982-01-01

    Using the method of cross sections at 25 and 50 deg C the solubility in the systems cerium (3) nitrate-quinoline nitrate-water and samarium nitrate-quinoline nitrate-water has been studied. It is established that in the systems during chemical interaction of components congruently melting compounds of the composition: Ce(NO 3 ) 2 x2[C 9 H 7 NxHNO 3 ]x6H 2 O and Sm(NO 3 ) 3 x2[C 9 H 7 NxHNO 3 ]x2H 2 O are formed. New solid phases are separated preparatively and are subjected to chemical, differential thermal and IR spectroscopic analyses. The investigation results are compared with similar ones for nitrates of other representatives of lanthanide group

  18. The systems lanthanum (cerium, samarium) nitrate-tetramethyl-ammonium nitrate-water

    International Nuclear Information System (INIS)

    Zhuravlev, E.F.; Khisaeva, D.A.; Semenova, Eh.B.

    1984-01-01

    The method of cross sections at 25 and 50 deg C has been applied to study solubility in the systems lanthanum nitrate-tetramethyl ammonium nitrate-water (1), cesium (3) nitrate-tetramethyl ammonium nitrate-water (2) and samarium nitrate-tetramethyl ammonium nitrate-water (3). Crystallization fields of congruently dissolving compounds with 1:3 ratio of salt components (in system 1) and 1:2 ratio (in systems 2 and 3) are found in the systems. New solid phases are separated preparatively and subjected to chemical, differential thermal and IR spectroscopic analyses. Compositions of formed compounds are compared with the compositions known for nitrates of other representatives of light lanthanides

  19. Preparation and biological behaviour of samarium-153-hydroxyapatite particles for radiation synovectomy

    International Nuclear Information System (INIS)

    Agrueelles, M.G.; Luppi Berlanga, I.S.; Torres, E.A.; Rutty Sola, G.A.; Rimoldi, G.

    1998-01-01

    The preparation and labelling procedures of 153 Sm-hydroxyapatite ( 153 Sm-HA) are described in this paper. Hydroxyapatite (HA) was prepared and studied as a radiosynovectomy agent. HA particles were prepared from the reaction of calcium nitrate and ammonia phosphate at high pH Samarium-153 labelling was done in two steps with citric acid. A serie of experimental conditions, such as specific activity, citric acid mass, radioactive solution volume, in-vitro stability, have been carried out. Radiolabelling efficiency was greater than 95%. In vitro studies showed high stability (≥99%). Animal studies showed a good retention in the synovium, with a very low extra-articular leakage over 6 days after administration. (author)

  20. Efficacy and toxicity of Samarium-153-EDTMP locally produced in the treatment of painful skeletal metastases

    International Nuclear Information System (INIS)

    Olea, E.; Quintana, J.C.; Nagel, J.; Arenas, L.; Tomicic, M.; Gil, M.C.; Araya, G.

    2001-01-01

    Samarium-153 emits medium-energy beta particles an a gamma photon with a physical half-life of 46,3 hours. When chelated to ethylenediaminetetramethylenephosphonic acid (EDTMP), it is remarkably stable in vitro and in vivo. In this study we administered randomly 0,5 and 1,0 mCi/Kg body weight (two groups), to 30 patients with painful metastatic bone cancer. Slight and spontaneously reversible myelotoxicity was observed. A bigger leukocyte and platelet suppression was obtained with 1,0 mCi/kg than 0,5 mCi/Kg dose. Pain palliation was obtained in 66% of the treated patients. Our preliminary results indicate that 153 Sm-EDTMP is a promising radiotherapeutic agent for palliative treatment of metastatic bone cancer pain where a reactor is available and at a very affordable cost. (author)

  1. Studies on the structural, optical and dielectric properties of samarium coordinated with salicylic acid single crystal

    Science.gov (United States)

    Singh, Harjinder; Slathia, Goldy; Gupta, Rashmi; Bamzai, K. K.

    2018-04-01

    Samarium coordinated with salicylic acid was successfully grown as a single crystal by low temperature solution technique using mixed solvent of methanol and water in equal ratio. Structural characterization was carried out by single crystal X-ray diffraction analysis and it crystallizes in centrosymmetric space group P121/c1. FTIR and UV-Vis-NIR spectroscopy confirmed the compound formation and help to determine the mode of binding of the ligand to the rare earth-metal ion. Dielectric constant and dielectric loss have been measured over the frequency range 100 Hz - 30MHz. The decrease in dielectric constant with increases in frequency is due to the transition from interfacial polarization to dipolar polarization. The small value of dielectric constant at higher frequency ensures that the crystal is good candidate for NLO devices. Dielectric loss represents the resistive nature of the material.

  2. Use of dispersive liquid-liquid microextraction for simultaneous preconcentration of samarium, europium, gadolinium and dysprosium

    International Nuclear Information System (INIS)

    Mallah, M.H.; Atomic Energy Organization of Iran, Tehran; Shemirani, F.; Ghannadi Maragheh, M.

    2008-01-01

    A new preconcentration method of dispersive liquid-liquid microextraction (DLLME) was developed for simultaneous preconcentration of samarium, europium, gadolinium and dysprosium. DLLME technique was successfully used as a sample preparation method. In this preconcentration method, an appropriate mixture of extraction solvent, disperser solvent was injected rapidly into an aqueous solution containing Sm, Eu, Gd and Dy after complex formation using chelating reagent of the 1-(2-pyridylazo)-2-naphthol (PAN). After phase separation, 0.5 mL of the settled phase containing enriched analytes was determined by inductively coupled plasma optical emission spectrometry (ICP-OES). The main factors affected the preconcentration of Sm, Eu, Gd and Dy were extraction and dispersive solvent type and their volume, extraction time, volume of chelating agent (PAN), centrifuge speed and drying temperature of the samples. Under the best operating condition simultaneous preconcentration factors of 80, 100, 103 and 78 were obtained for Sm, Eu, Gd and Dy, respectively. (author)

  3. Europium and samarium doped calcium sulfide thin films grown by PLD

    International Nuclear Information System (INIS)

    Christoulakis, S.; Suchea, M; Katsarakis, N.; Koudoumas, E

    2007-01-01

    Europium and samarium doped calcium sulfide thin films (CaS:Eu,Sm) with different thickness were prepared by the pulsed laser deposition technique using sintered targets. A typical homemade deposition chamber and XeCl excimer laser (308 nm) were employed and the films were deposited in helium atmosphere onto silicon and corning glass substrates. Structural investigations carried out by X-ray diffraction and atomic force microscopy showed a strong influence of the deposition parameters on the film properties. The films grown had an amorphous or polycrystalline structure depending on growth temperature and the number of pulses used, the same parameters affecting the film roughness, the grain shape and dimensions, the film thickness and the optical transmittance. This work indicates that pulsed laser deposition can be a suitable technique for the preparation of CaS:Eu,Sm thin films, the film characteristics being controlled by the growth conditions

  4. Effect of samarium in corrosion and microstructure of Al-5Zn-0.5Cu as low driving voltage sacrificial anode

    Science.gov (United States)

    Pratesa, Yudha; Ferdian, Deni; Ramadhan, Fajar Yusya; Maulana, Bramuda

    2018-05-01

    Sacrificial Anode Low voltage is the latest generation of the sacrificial anode that can prevent the occurrence of Hydrogen Cracking (HIC) due to overprotection. The Al-5n-0.5Cu alloy showed the potential to be developed as the new sacrificial anode. However, the main problem is copper made Al2Cu intermetallic in grain boundary. Samarium is added to modify the shape of the intermetallic to make it finer and make the corrosion uniform. Several characterizations were conducted to analyze the effect of Samarium. Scanning electron microscope (SEM) and Energy dispersive spectroscopy was used to analyzed the microstructure of the alloy. Metallography preparation was prepared for SEM analysis. Corrosion behavior was characterized by cyclic polarization in 3.5% NaCl solution. The results show samarium can change the shape of intermetallic and refine the grains. In addition, samarium makes better pitting resistance and exhibits a tendency for uniform corrosion. It is indicated by the loop reduction (ΔEpit-prot). Current density increased as an effect of samarium addition from 6x10-5 Ampere (Al-5Zn-0.5Cu) to 2.5x10-4 Ampere (Al-5Zn-0.5Cu-0.5Sm). Steel potential protection increased after addition of samarium which is an indication the possibility of Al-Zn-Cu-Sm to be used as low voltage sacrificial anode.

  5. Myelotoxicity of Samarium Sm153 lexidronam in patients with painful bony metastases

    International Nuclear Information System (INIS)

    Ben Ghachem, T.; Mhiri, A.; Slim, I.; Bahloul, A.; Yeddes, I.; Elbez, I.; Meddeb, I.; Ben Slimene, M.F.

    2015-01-01

    Full text of publication follows. Introduction: the management of bone pain includes analgesia, radiation, hormones, radiofrequency (RF) ablation, chemotherapy, and surgery. Bone pain palliation therapy with radiopharmaceuticals is a cost-effective systemic therapy to relieve pain from skeletal metastases with a consequent decrease in morbidity and an improvement in quality of life. The aim of our study is to evaluate the effect of myelotoxicity of samarium lexidronam (Sm 153 ) in patients with painful bony metastasis. Methods: we reviewed 116 patients aged from 14 to 87 years old, 91 males (78%) and 25 females (22%), having received 1 to 4 treatments of Sm 153 (37 MBq/kg) for painful bony metastases from different primitive tumors: 67 cases of prostate cancer (57.7%), 22 cases of breast cancer (18.9%), 10 cases of pulmonary cancer (8.6%) and others in 14.6% of cases. Clinical follow-up was available for 159 treatments, consisting on blood count each week over at least two months, in order to evaluate myelotoxicity according to WHO classification. Results: no patients had grade 4 toxicity after its cures. A grade 2-3 myelotoxicity was observed after 52 treatments (34%) during the second week and after 50 treatments (32.6%) during the fourth week with a satisfactory reversibility. At 10 weeks of treatment, myelotoxicity was reclassified from 0 to 2 for 139 cures (90,8%). Moreover, we found that prior treatment with radiotherapy or chemotherapy did not affect the rates of myelotoxicity. Conclusion: multiple treatments with samarium Sm 153 lexidronam had no significant effect on myelotoxicity. Patients with bone predominant metastatic disease may survive for extended periods of time and may safely be treated with multiple modalities of therapy. (authors)

  6. Reaction-bonded silicon nitride

    International Nuclear Information System (INIS)

    Porz, F.

    1982-10-01

    Reaction-bonded silicon nitride (RBSN) has been characterized. The oxidation behaviour in air up to 1500 0 C and 3000 h and the effects of static and cyclic oxidation on room-temperature strength have been studied. (orig./IHOE) [de

  7. Potentiometric study of samarium oxides formation from its chloride in a molten eutectic mixture of sodium and cesium chlorides

    International Nuclear Information System (INIS)

    Smolenskij, V.V.; Bove, A.L.; Del'mukhamedov, R.D.; Borodina, N.P.; Gavrilov, A.G.

    1997-01-01

    Interaction of trivalent samarium cations with oxide-ions in NaCl-2CsCl melt at 973 K has been studied by potentiometric method using electrochemical cell with two platinum-oxygen electrodes with a solid electrolyte membrane. The mechanism of the interaction and composition of the reaction products, depending on the medium oxyacidity, have been considered. Certain thermodynamic characteristics of the process have been calculated

  8. Ion nitridation - physical and technological aspects

    International Nuclear Information System (INIS)

    Elbern, A.W.

    1980-01-01

    Ion nitridation, is a technique which allows the formation of a controlled thickness of nitrides in the surface of the material, using this material as the cathode in a low pressure glow discharge, which presents many advantages over the conventional method. A brief review of the ion nitriding technique, the physical fenomena involved, and we discuss technological aspects of this method, are presented. (Author) [pt

  9. Silicon nitride-fabrication, forming and properties

    International Nuclear Information System (INIS)

    Yehezkel, O.

    1983-01-01

    This article, which is a literature survey of the recent years, includes description of several methods for the formation of silicone nitride, and five methods of forming: Reaction-bonded silicon nitride, sintering, hot pressing, hot isostatic pressing and chemical vapour deposition. Herein are also included data about mechanical and physical properties of silicon nitride and the relationship between the forming method and the properties. (author)

  10. Topotactic synthesis of vanadium nitride solid foams

    International Nuclear Information System (INIS)

    Oyama, S.T.; Kapoor, R.; Oyama, H.T.; Hofmann, D.J.; Matijevic, E.

    1993-01-01

    Vanadium nitride has been synthesized with a surface area of 120 m 2 g -1 by temperature programmed nitridation of a foam-like vanadium oxide (35 m 2 g -1 ), precipitated from vanadate solutions. The nitridation reaction was established to be topotactic and pseudomorphous by x-ray powder diffraction and scanning electron microscopy. The crystallographic relationship between the nitride and oxide was {200}//{001}. The effect of precursor geometry on the product size and shape was investigated by employing vanadium oxide solids of different morphologies

  11. Microhardness and microplasticity of zirconium nitride

    International Nuclear Information System (INIS)

    Neshpor, V.S.; Eron'yan, M.A.; Petrov, A.N.; Kravchik, A.E.

    1978-01-01

    To experimentally check the concentration dependence of microhardness of 4 group nitrides, microhardness of zirconium nitride compact samples was measured. The samples were obtained either by bulk saturation of zirconium iodide plates or by chemical precipitation from gas. As nitrogen content decreased within the limits of homogeneity of zirconium nitride samples where the concentration of admixed oxygen was low, the microhardness grew from 1500+-100 kg/mm 2 for ZrNsub(1.0) to 27000+-100 kg/mm 2 for ZrNsub(0.78). Microplasticity of zirconium nitride (resistance to fracture) decreased, as the concentration of nitrogen vacancies was growing

  12. Structural and luminescence properties of samarium doped lead alumino borate glasses

    Science.gov (United States)

    Mohan, Shaweta; Kaur, Simranpreet; Singh, D. P.; Kaur, Puneet

    2017-11-01

    The study reports the effect of samarium concentration on the physical, structural and spectroscopic characteristics of samarium doped lead alumino borate glasses having composition 20PbO-(10-x)Al2O3-70B2O3-xSm2O3; x = 0.1, 0.5, 1.0 and 2.0 mol %. The glasses were fabricated by conventional melt-quenching technique and then characterized by XRD, FTIR, optical absorption and fluorescence spectra. X-ray diffraction studies confirmed the amorphous nature of the prepared glasses. FTIR spectra indicate the presence of BO3, BO4, AlO6 and a few other structural groups. Various physical properties such as density, molar volume, refractive index, rare earth ion concentration, boron-boron distance and polarizability etc. were determined using conventional methods and standard formulae. The Judd-Ofelt theory was applied on the optical absorption spectra of the glasses to evaluate the three phenomenological intensity parameters Ω2, Ω4 and Ω6. The value of Ω2 was found to be highest for glass with 1 mol% Sm2O3 and attributed to the asymmetry of the ligand field at the rare earth ion site and the rare earth oxygen (Sm-O) covalency. The calculated intensity parameters and fluorescence spectra were further used to predict the radiative transition probability (A), radiative lifetime (τR), branching ratio (βR), peak wavelength (λp), effective line widths (Δλeff) and stimulated emission cross-section (σ) for the characteristic 4G5/2 → 6H5/2, 6H7/2 and 6H9/2 transitions of the Sm3+ ion. Concentration quenching was observed for 2 mol% concentration of Sm2O3 and ascribed to energy transfer through various cross-relaxation channels between Sm3+ ions. Reasonably high values of branching ratios and stimulated emission cross-section for the prepared glasses points towards their utility in the development of visible lasers emitting in the reddish-orange spectral region. However, the glass with 1 mol% Sm2O3 was found to show better radiative properties.

  13. Fluorometric determination of samarium and europium in rare earth minerals with. beta. -diketoneternary complex

    Energy Technology Data Exchange (ETDEWEB)

    Huang, H; Hiraki, K; Nishikawa, Y [Kinki Univ., Higashi-Osaka, Osaka (Japan). Faculty of Science and Technology

    1981-07-01

    This communication reported the optimum conditions for the fluorometric determination of these ions, and the method was adopted in the simultaneous determination of samarium and europium in xenotime and monazite minerals. From the experimental results on the effect of diverse ions and the extraction pH of the aqueous phase, it became clear that TTA-TOPO hexane method was the best system for the determination of samarium and europium because of the highest fluorescence sensitivity of the ternary complex, and also because the lower extraction pH eliminated the effect of diverse ions. Moreover, the very high detection limit (2 ppb) of Sm was achieved by the use of a red sensitive photomultiplier. Which was used at 644 nm, and that of Eu (0.02 ppb) at 614 nm. The procedure was established as follows: The rare earth minerals (xenotime, monazite) sample was treated with hot conc. H/sub 2/SO/sub 4/ and twice precipitated with 0.5 mol dm/sup -3/ oxalic acid (pH was adjusted to 2.0 -- 2.2). Then the precipitate was filtered and ignited to give the rare earth oxide. Fifty milligrams of the oxide was dissolved in HCl and diluted with water in order to obtain the solution containing 5 ..mu..g cm/sup -3/ rare earth oxide. An aliquot of the solution ((1.0 -- 3.0) cm/sup 3/) was adjusted to pH 5.5 with sodium acetate and shaken with 1 x 10/sup -4/ mol dm/sup -3/ TTA- 2 x 10/sup -2/ mol dm/sup -3/ TOPO hexane solution. Then the fluorescence intensity of the organic layer was measured at 644 nm for Sm and 614 nm for Eu. In this procedure, the recovery of Sm and Eu was found to be about 96%. Xenotime contained 0.70% of Sm and 0.004% of Eu, and monazite contained 1.84% of Sm and 0.003% of Eu.

  14. Nitride alloy layer formation of duplex stainless steel using nitriding process

    Science.gov (United States)

    Maleque, M. A.; Lailatul, P. H.; Fathaen, A. A.; Norinsan, K.; Haider, J.

    2018-01-01

    Duplex stainless steel (DSS) shows a good corrosion resistance as well as the mechanical properties. However, DSS performance decrease as it works under aggressive environment and at high temperature. At the mentioned environment, the DSS become susceptible to wear failure. Surface modification is the favourable technique to widen the application of duplex stainless steel and improve the wear resistance and its hardness properties. Therefore, the main aim of this work is to nitride alloy layer on the surface of duplex stainless steel by the nitriding process temperature of 400°C and 450°C at different time and ammonia composition using a horizontal tube furnace. The scanning electron microscopy and x-ray diffraction analyzer are used to analyse the morphology, composition and the nitrided alloy layer for treated DSS. The micro hardnesss Vickers tester was used to measure hardness on cross-sectional area of nitrided DSS. After nitriding, it was observed that the hardness performance increased until 1100 Hv0.5kgf compared to substrate material of 250 Hv0.5kgf. The thickness layer of nitride alloy also increased from 5μm until 100μm due to diffusion of nitrogen on the surface of DSS. The x-ray diffraction results showed that the nitride layer consists of iron nitride, expanded austenite and chromium nitride. It can be concluded that nitride alloy layer can be produced via nitriding process using tube furnace with significant improvement of microstructural and hardness properties.

  15. Method of preparation of uranium nitride

    Science.gov (United States)

    Kiplinger, Jaqueline Loetsch; Thomson, Robert Kenneth James

    2013-07-09

    Method for producing terminal uranium nitride complexes comprising providing a suitable starting material comprising uranium; oxidizing the starting material with a suitable oxidant to produce one or more uranium(IV)-azide complexes; and, sufficiently irradiating the uranium(IV)-azide complexes to produce the terminal uranium nitride complexes.

  16. Atomic Resolution Microscopy of Nitrides in Steel

    DEFF Research Database (Denmark)

    Danielsen, Hilmar Kjartansson

    2014-01-01

    MN and CrMN type nitride precipitates in 12%Cr steels have been investigated using atomic resolution microscopy. The MN type nitrides were observed to transform into CrMN both by composition and crystallography as Cr diffuses from the matrix into the MN precipitates. Thus a change from one...

  17. Low temperature anodic bonding to silicon nitride

    DEFF Research Database (Denmark)

    Weichel, Steen; Reus, Roger De; Bouaidat, Salim

    2000-01-01

    Low-temperature anodic bonding to stoichiometric silicon nitride surfaces has been performed in the temperature range from 3508C to 4008C. It is shown that the bonding is improved considerably if the nitride surfaces are either oxidized or exposed to an oxygen plasma prior to the bonding. Both bu...

  18. Fusion bonding of silicon nitride surfaces

    DEFF Research Database (Denmark)

    Reck, Kasper; Østergaard, Christian; Thomsen, Erik Vilain

    2011-01-01

    While silicon nitride surfaces are widely used in many micro electrical mechanical system devices, e.g. for chemical passivation, electrical isolation or environmental protection, studies on fusion bonding of two silicon nitride surfaces (Si3N4–Si3N4 bonding) are very few and highly application...

  19. Cross sections for d-{sup 3}H neutron interactions with samarium isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Junhua; He, Long [Hexi Univ., Zhangye (China). School of Physics and Electromechanical Engineering; Wu, Chunlei; Jiang, Li [Chinese Academy of Engineering Physics, Mianyang (China). Inst. of Nuclear Physics and Chemistry

    2016-11-01

    The cross sections for (n,x) reactions on samarium isotopes were measured at (d-T) neutron energies of 13.5 and 14.8 MeV with the activation technique. Samples were activated along with Nb and Al monitor foils to determine the incident neutron flux. Theoretical calculations of excitation functions were performed using the nuclear model codes TALYS-1.6 and EMPIRE-3.2 Malta with default parameters, at neutron energies varying from the reaction threshold to 20 MeV. The results were discussed and compared with experimental data found in the literature. At neutron energies 13.5 and 14.8 MeV, the cross sections of the {sup 149}Sm(n,p){sup 149}Pm reaction are reported for the first time. The cross sections of the {sup 150}Sm(n,p){sup 150}Pm, {sup 144}Sm(n,p){sup 144}Pm, {sup 152}Sm(n,α){sup 149}Nd and {sup 144}Sm(n,α){sup 141}Nd reactions at different neutron energies reported in the present work can be added as new data in the nuclear databases.

  20. Solar Hydrogen Production via a Samarium Oxide-Based Thermochemical Water Splitting Cycle

    Directory of Open Access Journals (Sweden)

    Rahul Bhosale

    2016-04-01

    Full Text Available The computational thermodynamic analysis of a samarium oxide-based two-step solar thermochemical water splitting cycle is reported. The analysis is performed using HSC chemistry software and databases. The first (solar-based step drives the thermal reduction of Sm2O3 into Sm and O2. The second (non-solar step corresponds to the production of H2 via a water splitting reaction and the oxidation of Sm to Sm2O3. The equilibrium thermodynamic compositions related to the thermal reduction and water splitting steps are determined. The effect of oxygen partial pressure in the inert flushing gas on the thermal reduction temperature (TH is examined. An analysis based on the second law of thermodynamics is performed to determine the cycle efficiency (ηcycle and solar-to-fuel energy conversion efficiency (ηsolar−to−fuel attainable with and without heat recuperation. The results indicate that ηcycle and ηsolar−to−fuel both increase with decreasing TH, due to the reduction in oxygen partial pressure in the inert flushing gas. Furthermore, the recuperation of heat for the operation of the cycle significantly improves the solar reactor efficiency. For instance, in the case where TH = 2280 K, ηcycle = 24.4% and ηsolar−to−fuel = 29.5% (without heat recuperation, while ηcycle = 31.3% and ηsolar−to−fuel = 37.8% (with 40% heat recuperation.

  1. Charge and transition densities of samarium isotopes in the interacting Boson model

    International Nuclear Information System (INIS)

    Moinester, M.A.; Alster, J.; Dieperink, A.E.L.

    1982-01-01

    The interacting boson approximation (IBA) model has been used to interpret the ground-state charge distributions and lowest 2 + transition charge densities of the even samarium isotopes for A = 144-154. Phenomenological boson transition densities associated with the nucleons comprising the s-and d-bosons of the IBA were determined via a least squares fit analysis of charge and transition densities in the Sm isotopes. The application of these boson trasition densities to higher excited 0 + and 2 + states of Sm, and to 0 + and 2 + transitions in neighboring nuclei, such as Nd and Gd, is described. IBA predictions for the transition densities of the three lowest 2 + levels of 154 Gd are given and compared to theoretical transition densities based on Hartree-Fock calculations. The deduced quadrupole boson transition densities are in fair agreement with densities derived previously from 150 Nd data. It is also shown how certain moments of the best fit boson transition densities can simply and sucessfully describe rms radii, isomer shifts, B(E2) strengths, and transition radii for the Sm isotopes. (orig.)

  2. Development and evaluation of copper-67 and samarium-153 labeled conjugates for tumor radioimmunotherapy

    International Nuclear Information System (INIS)

    Srivastava, S.C.; Mausner, L.F.; Mease, R.C.; Meinken, G.E.; Joshi, V.; Kolsky, K.; Sweet, M.; Steplewski, Z.

    1995-01-01

    The potential of utilizing receptor-specific agents such as monoclonal antibodies (MAb), and MAb-derived smaller molecules, as carriers of radionuclides for the selective destruction of tumors has stimulated much research activity. The success of such applications depends on many factors, especially the tumor binding properties of the antibody reagent, the efficiency of labeling and in-vivo stability of the radioconjugate and, on the careful choice of the radionuclide best suited to treat the tumor under consideration. The radiolabeled antibody technique for radioimmunotherapy (RIT), however, has experienced many limitations, and its success has not matched the expectations that were raised more than a decade ago. The problems that have been identified include: (i) degradation of antibody immunoreactivity resulting from chemical manipulations required for labeling; (ii) lack of suitable radioisotopes and methods for stable attachment of the radiolabel; (iii) in-vivo instability of the radioimmunoconjugates; (iv) excessive accumulation of activity in non-target locations; and (v) lack of radioimmunoconjugate accessibility to cells internal to a tumor mass. A careful choice of the radionuclide(s) best suited to treat the tumor under consideration is one of the most important requirements for successful radioimmunotherapy. This study evaluates copper 67 and samarium 153 for tumor radioimmunotherapy

  3. Enhancement of the fluorescence of the samarium (III) complex by gadolinium (III)

    International Nuclear Information System (INIS)

    Yun-Xiang, C.; Zhang-Hua, L.

    1988-01-01

    The increase in sensitivity and selectivity of reactions in which colored species are formed by the addition of different metal ions is an area of research that has recently been developed. This phenomenon, which is sometimes called cocolaration effect, has been explained by the formation of mixed metal complex. The authors found an analogous phenomenon of reactions forming fluorescent complexes. The complexes of Sm(III)-thenoyltrifluoroacetone (TTA)-phenanthroline (Phen)-Triton-X-100 (TX-100) and Gd(III) (or La(III), Lu(III) and Y(III))-TTA-Phen-TX-100 had practically no fluorescence separately. Instead, a fluorescence-enhancement phenomenon caused by adding Gd or La, Lu and Y ions to the system was observed for the first time. The intensity of the enhanced fluorescence of Sm(III) complex was increased in the following order: La< Y< Lu< Gd. By analogy with cocoloration effect, the authors call this new fluorescence-enhancement phenomenon the co-fluorescence effect. The object of this work was to study the enhancement effect of Gd(III) on the fluorescence of the Sm(III)-TTA-Phen-TX-100 system. The recommended fluorimetric method has been applied to the determination of trace amounts of samarium in ytterbium oxide with satisfactory results. A general reaction mechanism for the system studied was proposed

  4. Pharmacokinetics of labelled compounds with technetium-99m and samarium-153

    International Nuclear Information System (INIS)

    Borda O, L.B.; Torres L, M.N.

    1997-01-01

    The purpose of this investigation was to establish the different pharmacokinetics parameters of the main radiopharmaceuticals labeled with technetium-99m and samarium-153. These parameters could be subsequently used as reference to compare other products with the same use. Mathematical models and a computerized pharmacokinetic program were used to this purpose. A biodistribution study in quadruplicate and/or quintuplicate was conducted for each radiopharmaceutical, data was was obtained in injection dose percentages. The biodistribution study involved the injection of a predetermined dose of the radiopharmaceutical into animals (rats or mice), which were subsequently put away at different time intervals, removing the relevant organs. Activity in each organ was read by means of a well-type NaI scintillation counter, data obtained in activity counts was transformed into injection dose percentages. Based on these percentages, the mathematical model was constructed and the pharmacokinetic parameters were obtained using the computerized program Expo 2 v. 1, which is written in C language and works in windows. Analyzing the results obtained, we can conclude that the use of the Expo 2 v. 1 program for a bi compartmental analysis allowed us to obtain reliable pharmacokinetic parameters which describe what happens in the organism when the radiopharmaceutical passes from the central compartment to the peripheral one and vice versa

  5. Memory effect of calcined layered samarium hydroxy chlorides in aqueous solution

    International Nuclear Information System (INIS)

    Lee, Byung Il; Byeon, Song Ho

    2015-01-01

    The decomposition and recovery behavior of layered samarium hydroxychloride (Sm 2 (OH) 5 Cl·nH 2 O, LSmH) has been closely studied in various conditions. Although the heat treatment of LSmH at 700 °C completely collapsed typical layered structure, the calcined LSmH (c-LSmH) recovered its layered characteristics and consequently its ability to intercalate anions into the interlayer space when it was rehydroxylated and rehydrated in aqueous solutions containing organic and inorganic anions. This phenomenon is similar to the memory effect observed in classical layered double hydroxides (LDHs), where LDHs calcined to a mixture of metal oxides can recover their layered structures in aqueous solutions. In contrast, the recovery reaction of c-LSmH in water without any counter anions was unsuccessful and instead resulted in the formation of Sm(OH) 3 . Such a difference was interpreted on the basis of the salt effect on Sm 2 (OH) 5 Cl·nH 2 O–Sm(OH) 3 phase equilibria in water

  6. Characterization of luminescent samarium doped HfO2 coatings synthesized by spray pyrolysis technique

    International Nuclear Information System (INIS)

    Chacon-Roa, C; Guzman-Mendoza, J; Aguilar-Frutis, M; Garcia-Hipolito, M; Alvarez-Fragoso, O; Falcony, C

    2008-01-01

    Trivalent samarium (Sm 3+ ) doped hafnium oxide (HfO 2 ) films were deposited using the spray pyrolysis deposition technique. The films were deposited on Corning glass substrates at temperatures ranging from 300 to 550 deg. C using chlorides as raw materials. Films, mostly amorphous, were obtained when deposition temperatures were below 350 deg. C. However, for temperatures higher than 400 deg. C, the films became polycrystalline, presenting the HfO 2 monoclinic phase. Scanning electron microscopy of the films revealed a rough surface morphology with spherical particles. Also, electron energy dispersive analysis was performed on these films. The photoluminescence and cathodoluminescence characteristics of the HfO 2 : SmCl 3 films, measured at room temperature, exhibited four main bands centred at 570, 610, 652 and 716 nm, which are due to the well-known intra-4f transitions of the Sm 3+ ion. It was found that the overall emission intensity rose as the deposition temperature was increased. Furthermore, a concentration quenching of the luminescence intensity was also observed

  7. Effect of Zinc Oxide Doping on Electroluminescence and Electrical Behavior of Metalloporphyrins-Doped Samarium Complex

    Science.gov (United States)

    Janghouri, Mohammad; Amini, Mostafa M.

    2018-02-01

    Samarium complex [(Sm(III)] as a new host material was used for preparation of red organic light-emitting diodes (OLEDs). Devices with configurations of indium-doped tin oxide (ITO)/poly(3,4-ethylenedioxythiophene):(poly(styrenesulfonate) (PEDOT:PSS (50 nm)/polyvinyl carbazole (PVK):[zinc oxide (ZnO)] (50 nm)/[(Sm(III)]:[zinc(II) 2,3-tetrakis(dihydroxyphenyl)-porphyrin and Pt(II) 2,3-dimethoxyporphyrin] (60 nm)/2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP) (15 nm)/Al (150 nm) have been fabricated and investigated. An electroplex occurring at the (PVK/Sm: Pt(II) 2,3-dimethoxyporphyrin) interface has been suggested when ZnO nanoparticles were doped in PVK. OLED studies have revealed that the photophysical characteristics and electrical behavior of devices with ZnO nanoparticles are much better than those of devices with pure PVK. The efficiency of devices based on [(Sm(III)] was superior than that of known aluminum tris(8-hydroxyquinoline) (Alq3) and also our earlier reports on red OLEDs under the same conditions.

  8. Pyroelectric properties and electrical conductivity in samarium doped BiFeO 3 ceramics

    KAUST Repository

    Yao, Yingbang

    2012-06-01

    Samarium (Sm 3+) doped BiFeO 3 (BFO) ceramics were prepared by a modified solid-state-reaction method which adopted a rapid heating as well as cooling during the sintering process. The pyroelectric coefficient increased from 93 to 137 μC/m 2 K as the Sm 3+ doping level increased from 1 mol% to 8 mol%. Temperature dependence of the pyroelectric coefficient showed an abrupt decrease above 80 °C in all samples, which was associated with the increase of electrical conductivity with temperature. This electrical conduction was attributed to oxygen vacancy existing in the samples. An activation energy of ∼0.7 eV for the conduction process was found to be irrespective of the Sm 3+ doping level. On the other hand, the magnetic Néel temperature (T N) decreased with increasing Sm 3+ doping level. On the basis of our results, the effects of Sm doping level on the pyroelectric and electrical properties of the BFO were revealed. © 2011 Elsevier Ltd. All rights reserved.

  9. Detonation nanodiamond introduced into samarium doped ceria electrolyte improving performance of solid oxide fuel cell

    Science.gov (United States)

    Pei, Kai; Li, Hongdong; Zou, Guangtian; Yu, Richeng; Zhao, Haofei; Shen, Xi; Wang, Liying; Song, Yanpeng; Qiu, Dongchao

    2017-02-01

    A novel electrolyte materials of introducing detonation nanodiamond (DNDs) into samarium doped ceria (SDC) is reported here. 1%wt. DNDs doping SDC (named SDC/ND) can enlarge the electrotyle grain size and change the valence of partial ceria. DNDs provide the widen channel to accelerate the mobility of oxygen ions in electrolyte. Larger grain size means that oxygen ions move easier in electrolyte, it can also reduce the alternating current (AC) impedance spectra of internal grains. The lower valence of partial Ce provides more oxygen vacancies to enhance mobility rate of oxygen ions. Hence all of them enhance the transportation of oxygen ions in SDC/ND electrolyte and the OCV. Ultimately the power density of SOFC can reach 762 mw cm-2 at 800 °C (twice higher than pure SDC, which is 319 mw cm-2 at 800 °C), and it remains high power density in the intermediate temperature (600-800 °C). It is relatively high for the electrolyte supported (300 μm) cells.

  10. Alloy Effects on the Gas Nitriding Process

    Science.gov (United States)

    Yang, M.; Sisson, R. D.

    2014-12-01

    Alloy elements, such as Al, Cr, V, and Mo, have been used to improve the nitriding performance of steels. In the present work, plain carbon steel AISI 1045 and alloy steel AISI 4140 were selected to compare the nitriding effects of the alloying elements in AISI 4140. Fundamental analysis is carried out by using the "Lehrer-like" diagrams (alloy specific Lehrer diagram and nitriding potential versus nitrogen concentration diagram) and the compound layer growth model to simulate the gas nitriding process. With this method, the fundamental understanding for the alloy effect based on the thermodynamics and kinetics becomes possible. This new method paves the way for the development of new alloy for nitriding.

  11. Solvothermal synthesis: a new route for preparing nitrides

    CERN Document Server

    Demazeau, G; Denis, A; Largeteau, A

    2002-01-01

    Solvothermal synthesis appears to be an interesting route for preparing nitrides such as gallium nitride and aluminium nitride, using ammonia as solvent. A nitriding additive is used to perform the reaction and, in the case of gallium nitride, is encapsulated by melt gallium. The syntheses are performed in the temperature range 400-800 deg. C and in the pressure range 100-200 MPa. The synthesized powders are characterized by x-ray diffraction and scanning electron microscopy. Finely divided gallium nitride GaN and aluminium nitride AlN, both with wurtzite-type structure, can be obtained by this route.

  12. Cathodoluminescence of cubic boron nitride

    International Nuclear Information System (INIS)

    Tkachev, V.D.; Shipilo, V.B.; Zajtsev, A.M.

    1985-01-01

    Three optically active defects are detected in mono- and polycrystal cubic boron nitride (β-BN). Analysis of intensity of temperature dependences, halfwidth and energy shift of 1.76 eV narrow phononless line (center GC-1) makes it possible to interprete the observed cathodoluminescence spectra an optical analog of the Moessbaner effect. Comparison of the obtained results with the known data for diamond monocrystals makes it possible to suggest that the detected center GC-1 is a nitrogen vacancy . The conclusion, concerning the Moessbauer optical spectra application, is made to analyze structural perfection of β-BN crystal lattice

  13. Surface analysis in steel nitrides by using Moessbauer spectroscopy

    International Nuclear Information System (INIS)

    Figueiredo, R.S. de.

    1991-07-01

    The formation of iron nitride layer at low temperatures, 600-700 K, by Moessbauer spectroscopy is studied. These layers were obtained basically through two different processes: ion nitriding and ammonia gas nitriding. A preliminary study about post-discharge nitriding was made using discharge in hollow cathode as well as microwave excitation. The assembly of these chambers is also described. The analysis of the nitrided samples was done by CEMS and CXMS, aided by optical microscopy, and the CEMS and CXMS detectors were constructed by ourselves. We also made a brief study about these detectors, testing as acetone as the mixture 80% He+10% C H 4 as detection gases for the use of CEMS. The surface analysis of the samples showed that in the ammonia gas process nitriding the nitrided layer starts by the superficial formation of an iron nitride rich nitrogen. By thermal evolution this nitride promotes the diffusion of nitrogen and the formation of other more stable nitrides. (author)

  14. Simple process to fabricate nitride alloy powders

    International Nuclear Information System (INIS)

    Yang, Jae Ho; Kim, Dong-Joo; Kim, Keon Sik; Rhee, Young Woo; Oh, Jang-Soo; Kim, Jong Hun; Koo, Yang Hyun

    2013-01-01

    Uranium mono-nitride (UN) is considered as a fuel material [1] for accident-tolerant fuel to compensate for the loss of fissile fuel material caused by adopting a thickened cladding such as SiC composites. Uranium nitride powders can be fabricated by a carbothermic reduction of the oxide powders, or the nitriding of metal uranium. Among them, a direct nitriding process of metal is more attractive because it has advantages in the mass production of high-purity powders and the reusing of expensive 15 N 2 gas. However, since metal uranium is usually fabricated in the form of bulk ingots, it has a drawback in the fabrication of fine powders. The Korea Atomic Energy Research Institute (KAERI) has a centrifugal atomisation technique to fabricate uranium and uranium alloy powders. In this study, a simple reaction method was tested to fabricate nitride fuel powders directly from uranium metal alloy powders. Spherical powder and flake of uranium metal alloys were fabricated using a centrifugal atomisation method. The nitride powders were obtained by thermal treating the metal particles under nitrogen containing gas. The phase and morphology evolutions of powders were investigated during the nitriding process. A phase analysis of nitride powders was also part of the present work. KAERI has developed the centrifugal rotating disk atomisation process to fabricate spherical uranium metal alloy powders which are used as advanced fuel materials for research reactors. The rotating disk atomisation system involves the tasks of melting, atomising, and collecting. A nozzle in the bottom of melting crucible introduces melt at the center of a spinning disk. The centrifugal force carries the melt to the edge of the disk and throws the melt off the edge. Size and shape of droplets can be controlled by changing the nozzle size, the disk diameter and disk speed independently or simultaneously. By adjusting the processing parameters of the centrifugal atomiser, a spherical and flake shape

  15. Microstructural Characterization of Low Temperature Gas Nitrided Martensitic Stainless Steel

    DEFF Research Database (Denmark)

    Fernandes, Frederico Augusto Pires; Christiansen, Thomas Lundin; Somers, Marcel A. J.

    2015-01-01

    The present work presents microstructural investigations of the surface zone of low temperature gas nitrided precipitation hardening martensitic stainless steel AISI 630. Grazing incidence X-ray diffraction was applied to investigate the present phases after successive removal of very thin sections...... of the sample surface. The development of epsilon nitride, expanded austenite and expanded martensite resulted from the low temperature nitriding treatments. The microstructural features, hardness and phase composition are discussed with emphasis on the influence of nitriding duration and nitriding potential....

  16. Process for the production of metal nitride sintered bodies and resultant silicon nitride and aluminum nitride sintered bodies

    Science.gov (United States)

    Yajima, S.; Omori, M.; Hayashi, J.; Kayano, H.; Hamano, M.

    1983-01-01

    A process for the manufacture of metal nitride sintered bodies, in particular, a process in which a mixture of metal nitrite powders is shaped and heated together with a binding agent is described. Of the metal nitrides Si3N4 and AIN were used especially frequently because of their excellent properties at high temperatures. The goal is to produce a process for metal nitride sintered bodies with high strength, high corrosion resistance, thermal shock resistance, thermal shock resistance, and avoidance of previously known faults.

  17. Retention capacity of samarium (III) in zircon for it possible use in retaining walls for confinement of nuclear residues

    International Nuclear Information System (INIS)

    Garcia G, N.

    2006-01-01

    Mexico, as country that produces part of its electric power by nuclear means, should put special emphasis in the development of technologies guided to the sure and long term confinement of the high level nuclear residuals. This work studies the capacity that has the natural zircon to retain to the samarium (III) in solution, by what due, firstly, to characterize the zircon for technical instrumental to determine the purity and characteristic of the mineral in study. The instrumental techniques that were used to carry out the physicochemical characterization were the neutron activation analysis (NAA), the infrared spectroscopy (IS), the thermal gravimetric analysis (TGA), scanning electron microscopy (SEM), transmission electron microscopy (TEM), semiquantitative analysis, dispersive energy spectroscopy (EDS), X-ray diffraction (XRD) and luminescence technique. The characterization of the surface properties carries out by means of the determination of the surface area using the BET multipoint technique, acidity constants, hydration time, the determination of the point of null charge (pH PCN ) and density of surface sites (D s ). The luminescence techniques were useful to determine the optimal point hydration of the zircon and for the quantification of the samarium, for that here intends the development of both analysis techniques. With the adjustment of the titration curves in the FITEQL 4 package the constants of surface acidity in the solid/liquid interface were determined. To the finish of this study it was corroborated that the zircon is a mineral that presents appropriate characteristics to be proposed as a contention barrier for the deep geologic confinement. With regard to the study of adsorption that one carries out the samarium retention it is superior to 90% under the described conditions. This investigation could also be applicable in the confinement of dangerous industrial residuals. (Author)

  18. New Routes to Lanthanide and Actinide Nitrides

    Energy Technology Data Exchange (ETDEWEB)

    Butt, D.P.; Jaques, B.J.; Osterberg, D.D. [Boise State University, 1910 University Dr., Boise, Idaho 83725-2075 (United States); Marx, B.M. [Concurrent Technologies Corporation, Johnstown, PA (United States); Callahan, P.G. [Carnegie Mellon University, Pittsburgh, PA (United States); Hamdy, A.S. [Central Metallurgical R and D Institute, Helwan, Cairo (Egypt)

    2009-06-15

    The future of nuclear energy in the U.S. and its expansion worldwide depends greatly on our ability to reduce the levels of high level waste to minimal levels, while maintaining proliferation resistance. Implicit in the so-called advanced fuel cycle is the need for higher levels of fuel burn-up and consequential use of complex nuclear fuels comprised of fissile materials such as Pu, Am, Np, and Cm. Advanced nitride fuels comprised ternary and quaternary mixtures of uranium and these actinides have been considered for applications in advanced power plants, but there remain many processing challenges as well as necessary qualification testing. In this presentation, the advantages and disadvantages of nitride fuels are discussed. Methods of synthesizing the raw materials and sintering of fuels are described including a discussion of novel, low cost routes to nitrides that have the potential for reducing the cost and footprint of a fuel processing plant. Phase pure nitrides were synthesized via four primary methods; reactive milling metal flakes in nitrogen at room temperature, directly nitriding metal flakes in a pure nitrogen atmosphere, hydriding metal flakes prior to nitridation, and carbo-thermically reducing the metal oxide and carbon mixture prior to nitridation. In the present study, the sintering of UN, DyN, and their solid solutions (U{sub x}, Dy{sub 1-x}) (x = 1 to 0.7) were also studied. (authors)

  19. Determination of the nuclear electric charge distribution of samarium isotopes 144, 148, 150, 152, 154 by the muonic atom method

    International Nuclear Information System (INIS)

    Barreau, Pierre.

    1977-01-01

    The theory of the nucleus-negative muon system in the case of electrical interactions is discussed. The interactions of muons with the samarium isotopes 152, 154, 144, 148, 150 are investigated. After a description of the experimental device, from muon beam production to data acquisition (detection of the gamma spectra), the results are analyzed and the nuclear charge distribution parameters determined: for each isotope the absolute value of c (half-density radius) and t (skin thickness); for 152 Sm and 154 Sm the parameter β 2 (quadrupolar defomation). Nuclear polarization was accounted for throughout the analysis [fr

  20. Preparation of aluminum nitride-silicon carbide nanocomposite powder by the nitridation of aluminum silicon carbide

    NARCIS (Netherlands)

    Itatani, K.; Tsukamoto, R.; Delsing, A.C.A.; Hintzen, H.T.J.M.; Okada, I.

    2002-01-01

    Aluminum nitride (AlN)-silicon carbide (SiC) nanocomposite powders were prepared by the nitridation of aluminum-silicon carbide (Al4SiC4) with the specific surface area of 15.5 m2·g-1. The powders nitrided at and above 1400°C for 3 h contained the 2H-phases which consisted of AlN-rich and SiC-rich

  1. Fabrication and properties of samarium doped calcium sulphate thin films using spray pyrolysis technique

    Energy Technology Data Exchange (ETDEWEB)

    Reghima, Meriem [Université Tunis El Manar, Faculté des Sciences de Tunis, Département de Physique, LR99ES13 Laboratoire de Physique de la Matière Condensée (LPMC), 2092 Tunis, Tunisie (Tunisia); Institut d' Electronique et des systèmes, Unité Mixte de Recherche 5214 UM2-CNRS (ST2i) – Université Montpellier, 860 rue de Saint Priest, Bâtiment 5, 34097 Montpellier (France); Faculté des Sciences de Bizerte, Université de Carthage, Zarzouna 7021 (Tunisia); Guasch, Cathy [Institut d' Electronique et des systèmes, Unité Mixte de Recherche 5214 UM2-CNRS (ST2i) – Université Montpellier, 860 rue de Saint Priest, Bâtiment 5, 34097 Montpellier (France); Azzaza, Sonia; Alleg, Safia [Laboratoire de Magnétisme et Spectroscopie des Solides (LM2S), Département de Physique, Faculté des Sciences, Université Badji Mokhtar Annaba, B.P. 12, 23000 Annaba (Algeria); Kamoun-Turki, Najoua [Université Tunis El Manar, Faculté des Sciences de Tunis, Département de Physique, LR99ES13 Laboratoire de Physique de la Matière Condensée (LPMC), 2092 Tunis, Tunisie (Tunisia)

    2016-10-01

    Using low cost spray pyrolysis technique, polycrystalline CaSO{sub 4} thin films were successfully grown on a glass substrate with a thickness of about 1 μm. Samarium doping has been performed on CaSO{sub 4} thin films to explore luminescence properties. The characterizations of these films were carried out using X-ray diffraction, Scanning Electron Microscopy and optical measurements. The structural analyses reveal the existence of hexagonal CaSO{sub 4} phase with a (200) preferred orientation belonging to CaS compound for substrate temperatures below 350 °C. It is shown that the crystallinity of the sprayed thin films can be improved by increasing substrate temperature up to 250 °C. Warren-Averbach analysis has been applied on X-ray diffractogram to determine structural parameters involving the phase with its amount, the grain size and the lattice parameters using Maud software. The surface topography shows a rough surface covered by densely packed agglomerated clusters having faceted and hexagonal shapes. Energy dispersive microscopy measurements confirm the presence of calcium and sulfur in equal proportions as well as high percentage of oxygen. Photoluminescence at room temperature revealed that luminescence peaks are attributed to the intrinsic emission of pure CaSO{sub 4} phase. - Highlights: • Warren Averbach analysis reveal the presence of hcp structure of CaSO{sub 4} phase. • A mixture of CaSO{sub 4} and CaHO{sub 4.5}S phases has been detected for lower T{sub s}. • For increasing T{sub s}, the CaHO{sub 4.5}S phase has been disappeared. • The origin of PL peaks has been identified.

  2. Samarium oxide as a radiotracer to evaluate the in vivo biodistribution of PLGA nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Mandiwana, Vusani, E-mail: VMandiwana@csir.co.za; Kalombo, Lonji, E-mail: LKalombo@csir.co.za [Centre of Polymers and Composites, CSIR (South Africa); Venter, Kobus, E-mail: Kobus.Venter@mrc.ac.za [South African Medical Research Council (South Africa); Sathekge, Mike, E-mail: Mike.Sathekge@up.ac.za [University of Pretoria and Steve Biko Academic Hospital, Department of Nuclear Medicine (South Africa); Grobler, Anne, E-mail: Anne.Grobler@nwu.ac.za; Zeevaart, Jan Rijn, E-mail: zeevaart@necsa.co.za [North-West University, DST/NWU Preclinical Drug Development Platform (South Africa)

    2015-09-15

    Developing nanoparticulate delivery systems that will allow easy movement and localization of a drug to the target tissue and provide more controlled release of the drug in vivo is a challenge in nanomedicine. The aim of this study was to evaluate the biodistribution of poly(d,l-lactide-co-glycolide) (PLGA) nanoparticles containing samarium-153 oxide ([{sup 153}Sm]Sm{sub 2}O{sub 3}) in vivo to prove that orally administered nanoparticles alter the biodistribution of a drug. These were then activated in a nuclear reactor to produce radioactive {sup 153}Sm-loaded-PLGA nanoparticles. The nanoparticles were characterized for size, zeta potential, and morphology. The nanoparticles were orally and intravenously (IV) administered to rats in order to trace their uptake through imaging and biodistribution studies. The {sup 153}Sm-loaded-PLGA nanoparticles had an average size of 281 ± 6.3 nm and a PDI average of 0.22. The zeta potential ranged between 5 and 20 mV. The [{sup 153}Sm]Sm{sub 2}O{sub 3} loaded PLGA nanoparticles, orally administered were distributed to most organs at low levels, indicating that there was absorption of nanoparticles. While the IV injected [{sup 153}Sm]Sm{sub 2}O{sub 3}-loaded PLGA nanoparticles exhibited the highest localization of nanoparticles in the spleen (8.63 %ID/g) and liver (3.07 %ID/g), confirming that nanoparticles are rapidly removed from the blood by the RES, leading to rapid uptake in the liver and spleen. From the biodistribution data obtained, it is clear that polymeric nanoscale delivery systems would be suitable for improving permeability and thus the bioavailability of therapeutic compounds.

  3. Study of samarium modified lead zirconate titanate and nickel zinc ferrite composite system

    Energy Technology Data Exchange (ETDEWEB)

    Rani, Rekha [Department of Physics, SD PG College, Panipat 132103 (India); School of Physics and Materials Science, Thapar University, Patiala 147004 (India); Juneja, J.K., E-mail: jk_juneja@yahoo.com [Department of Physics, Hindu College, Sonepat 131001 (India); Singh, Sangeeta [Department of Physics, GVM Girls College, Sonepat 131001 (India); Raina, K.K. [School of Physics and Materials Science, Thapar University, Patiala 147004 (India); Prakash, Chandra [Solid State Physics Laboratory, Timarpur, Delhi 110054 (India)

    2015-03-15

    In the present work, composites of samarium substituted lead zirconate titanate and nickel zinc ferrite with compositional formula 0.95Pb{sub 1−3x/2} Sm{sub x}Zr{sub 0.65}Ti{sub 0.35}O{sub 3}–0.05Ni{sub 0.8}Zn{sub 0.2}Fe{sub 2}O{sub 4} (x=0, 0.01, 0.02 and 0.03) were prepared by the conventional solid state route. X-ray diffraction analysis was carried out to confirm the coexistence of individual phases. Microstructural study was done by using scanning electron microscope. Dielectric constant and loss were studied as a function of temperature and frequency. To study ferroelectric and magnetic properties of the composite samples, corresponding P–E and M–H hysteresis loops were recorded. Change in magnetic properties of electrically poled composite sample (x=0.02) was studied to confirm the magnetoelectric (ME) coupling. ME coefficient (dE/dH) of the samples (x=0 and 0.02) was measured as a function of DC magnetic field. - Highlights: • We are reporting the effect of Sm substitution on PZT–NiZn ferrite composites. • Observation of both P–E and M–H loops confirms ferroelectric and magnetic ordering. • With Sm substitution, significant improvement in properties was observed. • Increase in magnetization for electrically poled sample is evidence of ME coupling. • Electric polarization is generated by applying magnetic field.

  4. The effectiveness of samarium-153 (153Sm) lexidronam (EDTMP) in treatment of bone metastases

    International Nuclear Information System (INIS)

    Ma Yubo; Huang Gang; Liu Jianjun

    2004-01-01

    Objectives: To evaluate the effectiveness of samarium-153 (153Sm) lexidronam (EDTMP) in treatment of bone metastases. Methods: 380 patients with bone metastases were studied (221 men, 159 women; average age 65.3 y; ranged 27-91 y; average weight 59.3 kg, ranged 39-95 kg). The tumor types were prostate carcinoma (n=155), pulmonary carcinoma (n=92), breast cancer (n=57), gastric carcinoma (n=12), colorectal carcinoma (n=22), nasopharyngeal carcinoma (n=8), lymphoma (n=8), hepatic carcinoma (n=6), ovary carcinoma (n=4) and others (n=16). All patients were received 135Sm-EDTMP 0.8 or 1.0 mCi/kg during 1 to 7 course of treatment. Patients and physician evaluations were used to assess pain relief. Numbers of metastatic foci and activity of ROIs were used to observe post-therapy change in bone scanning. Results: In 380 patients, pain relief was observed in 257 patients (67.6%). Persistence of pain relief was seen through 2 to 24 weeks. The mean relief time is 5.8±3.4 weeks. KPS score was higher 10% than pre-therapy (71.2%±9.6% Vs 80.9%±10.3%, p<0.001). Numbers of metastatic foci (11.2+8.8 Vs 8.4±5.7, p<0.001) and activity of ROIs (3.28±2.04 Vs 2.15±0.94, p<0.01) were less than pre-therapy. Bone marrow suppression was mild and reversible (5.87±1.56 Vs 4.94±1.16 x 109/L). Conclusions: 153Sm-EDTMP provided relief of pain associated with bone metastases and inhibition of metastatic foci. As a relief drug of painful bone metastases, 153Sm-EDTMP is safe and effective. (authors)

  5. Residual Stress Induced by Nitriding and Nitrocarburizing

    DEFF Research Database (Denmark)

    Somers, Marcel A.J.

    2005-01-01

    The present chapter is devoted to the various mechanisms involved in the buildup and relief of residual stress in nitrided and nitrocarburized cases. The work presented is an overview of model studies on iron and iron-based alloys. Subdivision is made between the compound (or white) layer......, developing at the surfce and consisting of iron-based (carbo)nitrides, and the diffusion zone underneath, consisting of iron and alloying element nitrides dispersed in af ferritic matrix. Microstructural features are related directly to the origins of stress buildup and stres relief....

  6. Surface modification of titanium by plasma nitriding

    Directory of Open Access Journals (Sweden)

    Kapczinski Myriam Pereira

    2003-01-01

    Full Text Available A systematic investigation was undertaken on commercially pure titanium submitted to plasma nitriding. Thirteen different sets of operational parameters (nitriding time, sample temperature and plasma atmosphere were used. Surface analyses were performed using X-ray diffraction, nuclear reaction and scanning electron microscopy. Wear tests were done with stainless steel Gracey scaler, sonic apparatus and pin-on-disc machine. The obtained results indicate that the tribological performance can be improved for samples treated with the following conditions: nitriding time of 3 h; plasma atmosphere consisting of 80%N2+20%H2 or 20%N2+80%H2; sample temperature during nitriding of 600 or 800 degreesC.

  7. Thermodynamics, kinetics and process control of nitriding

    DEFF Research Database (Denmark)

    Mittemeijer, Eric J.; Somers, Marcel A. J.

    1999-01-01

    As a prerequisite for predictability of properties obtained by a nitriding treatment of iron-based workpieces, the relation between the process parameters and the composition and structure of the surface layer produced must be known. At present (even) the description of thermodynamic equilibrium...... of pure iron-nitrogen phases has not been achieved fully. It has been shown that taking into account ordering of nitrogen in the epsilon and gamma' iron-nitride phases, leads to an improved understanding of the Fe-N phase diagram. Although thermodynamics indicate the state the system strives for......, the nitriding result is determined largely by the kinetics of the process. The nitriding kinetics have been shown to be characterised by the occurring local near-equilibria and stationary states at surfaces and interfaces, and the diffusion coefficient of nitrogen in the various phases, for which new data have...

  8. Compressive creep of silicon nitride

    International Nuclear Information System (INIS)

    Silva, C.R.M. da; Melo, F.C.L. de; Cairo, C.A.; Piorino Neto, F.

    1990-01-01

    Silicon nitride samples were formed by pressureless sintering process, using neodymium oxide and a mixture of neodymium oxide and yttrio oxide as sintering aids. The short term compressive creep behaviour was evaluated over a stress range of 50-300 MPa and temperature range 1200 - 1350 0 C. Post-sintering heat treatments in nitrogen with a stepwise decremental variation of temperature were performed in some samples and microstructural analysis by X-ray diffraction and transmission electron microscopy showed that the secondary crystalline phase which form from the remnant glass are dependent upon composition and percentage of aditives. Stress exponent values near to unity were obtained for materials with low glass content suggesting grain boundary diffusion accommodation processes. Cavitation will thereby become prevalent with increase in stress, temperature and decrease in the degree of crystallization of the grain boundary phase. (author) [pt

  9. Cathodoluminescence of cubic boron nitride

    International Nuclear Information System (INIS)

    Tkachev, V.D.; Shipilo, V.B.; Zaitsev, A.M.

    1985-01-01

    Three types of optically active defect were observed in single-crystal and polycrystalline cubic boron nitride (β-BN). An analysis of the temperature dependences of the intensity, half-width, and energy shift of a narrow zero-phonon line at 1.76 eV (GC-1 center) made it possible to interpret the observed cathodoluminescence spectra as an optical analog of the Moessbauer effect. A comparison of the results obtained in the present study with the available data on diamond single crystals made it possible to identify the observed GC-1 center as a nitrogen vacancy. It was concluded that optical Moessbauer-type spectra can be used to analyze structure defects in the crystal lattice of β-BN

  10. Waveguide silicon nitride grating coupler

    Science.gov (United States)

    Litvik, Jan; Dolnak, Ivan; Dado, Milan

    2016-12-01

    Grating couplers are one of the most used elements for coupling of light between optical fibers and photonic integrated components. Silicon-on-insulator platform provides strong confinement of light and allows high integration. In this work, using simulations we have designed a broadband silicon nitride surface grating coupler. The Fourier-eigenmode expansion and finite difference time domain methods are utilized in design optimization of grating coupler structure. The fully, single etch step grating coupler is based on a standard silicon-on-insulator wafer with 0.55 μm waveguide Si3N4 layer. The optimized structure at 1550 nm wavelength yields a peak coupling efficiency -2.6635 dB (54.16%) with a 1-dB bandwidth up to 80 nm. It is promising way for low-cost fabrication using complementary metal-oxide- semiconductor fabrication process.

  11. Graphite furnace atomic absorption spectrometry with a tantalum boat for the determination of yttrium, samarium, and dysprosium in a mish metal

    International Nuclear Information System (INIS)

    Daidoji, Hidehiro; Tamura, Shohei

    1982-01-01

    The determination of yttrium, samarium, and dysprodium by means of graphite-furnace atomic absorption spectrometry (AAS) was studied by a tantalum boat inserted into a graphite tube atomizer. These elements could not be determined by the use of a commercial graphite tube, In the atomization from a tantalum boat, better analytical sensitivities and negligible memory effects for these rare earths are obtained. The analytical sensitivities of yttrium, samarium, and dysprodium with the tantalum boat were 0.60 ng, 0.86 ng, and 0.17 ng respectively. This method was applied for the determination of yttrium, samarium, and dysprosium in a mish metal. The measurements were performed with slightly acidified solutions (0.01 mol dm 3 HCI or HNO 3 ). The sensitivities and the precisions for these elements decreased with increasing acid concentration. An enhancement in the sensitivities of yttrium and dysprosium upon the addition of a large excess of lanthanum, neodymium, and praseodymium salts were observed. The yttrium, samarium, and dysprosium in a mish metal were determined with both analytical curves of standard solutions containing an excess of lanthanum, cerium, and neodymium ions and of the standard addition. The precisions for this work were in the 3 - 9.3% range. (author)

  12. Optical properties and electronic transitions of zinc oxide, ferric oxide, cerium oxide, and samarium oxide in the ultraviolet and extreme ultraviolet

    DEFF Research Database (Denmark)

    Pauly, N; Yubero, F; Espinós, J P

    2017-01-01

    Optical properties and electronic transitions of four oxides, namely zinc oxide, ferric oxide, cerium oxide, and samarium oxide, are determined in the ultraviolet and extreme ultraviolet by reflection electron energy loss spectroscopy using primary electron energies in the range 0.3-2.0 ke...

  13. Electrochemical Solution Growth of Magnetic Nitrides

    Energy Technology Data Exchange (ETDEWEB)

    Monson, Todd C. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Pearce, Charles [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-10-01

    Magnetic nitrides, if manufactured in bulk form, would provide designers of transformers and inductors with a new class of better performing and affordable soft magnetic materials. According to experimental results from thin films and/or theoretical calculations, magnetic nitrides would have magnetic moments well in excess of current state of the art soft magnets. Furthermore, magnetic nitrides would have higher resistivities than current transformer core materials and therefore not require the use of laminates of inactive material to limit eddy current losses. However, almost all of the magnetic nitrides have been elusive except in difficult to reproduce thin films or as inclusions in another material. Now, through its ability to reduce atmospheric nitrogen, the electrochemical solution growth (ESG) technique can bring highly sought after (and previously inaccessible) new magnetic nitrides into existence in bulk form. This method utilizes a molten salt as a solvent to solubilize metal cations and nitrogen ions produced electrochemically and form nitrogen compounds. Unlike other growth methods, the scalable ESG process can sustain high growth rates (~mm/hr) even under reasonable operating conditions (atmospheric pressure and 500 °C). Ultimately, this translates into a high throughput, low cost, manufacturing process. The ESG process has already been used successfully to grow high quality GaN. Below, the experimental results of an exploratory express LDRD project to access the viability of the ESG technique to grow magnetic nitrides will be presented.

  14. Nitride fuels irradiation performance data base

    International Nuclear Information System (INIS)

    Brozak, D.E.; Thomas, J.K.; Peddicord, K.L.

    1987-01-01

    An irradiation performance data base for nitride fuels has been developed from an extensive literature search and review that emphasized uranium nitride, but also included performance data for mixed nitrides [(U,Pu)N] and carbonitrides [(U,Pu)C,N] to increase the quantity and depth of pin data available. This work represents a very extensive effort to systematically collect and organize irradiation data for nitride-based fuels. The data base has many potential applications. First, it can facilitate parametric studies of nitride-based fuels to be performed using a wide range of pin designs and operating conditions. This should aid in the identification of important parameters and design requirements for multimegawatt and SP-100 fuel systems. Secondly, the data base can be used to evaluate fuel performance models. For detailed studies, it can serve as a guide to selecting a small group of pin specimens for extensive characterization. Finally, the data base will serve as an easily accessible and expandable source of irradiation performance information for nitride fuels

  15. Nucleation of iron nitrides during gaseous nitriding of iron; the effect of a preoxidation treatment

    DEFF Research Database (Denmark)

    Friehling, Peter B.; Poulsen, Finn Willy; Somers, Marcel A.J.

    2001-01-01

    grains. On prolonged nitriding, immediate nucleation at the surface of iron grains becomes possible. Calculated incubation times for the nucleation of gamma'-Fe4N1-x during nitriding are generally longer than those observed experimentally in the present work. The incubation time is reduced dramatically...

  16. Microstructural characterization of an AISI-SAE 4140 steel without nitridation and nitrided

    International Nuclear Information System (INIS)

    Medina F, A.; Naquid G, C.

    2000-01-01

    It was micro structurally characterized an AISI-SAE 4140 steel before and after of nitridation through the nitridation process by plasma post-unloading microwaves through Optical microscopy (OM), Scanning electron microscopy (SEM) by means of secondary electrons and retrodispersed, X-ray diffraction (XRD), Energy dispersion spectra (EDS) and mapping of elements. (Author)

  17. An estimation of influence of humic acid and organic matter originated from bentonite on samarium solubility

    International Nuclear Information System (INIS)

    Kanaji, Mariko; Sato, Haruo; Sasahira, Akira

    1999-10-01

    Organic acids in groundwater are considered to form complexes and increase the solubility of radionuclides released from vitrified waste in a high-level radioactive waste (HLW) repository. To investigate whether the solubility of samarium (Sm) is influenced by organic substances, we measured Sm solubility in the presence of different organic substances and compared those values with results from thermodynamic predictions. Humic acid (Aldrich) is commercially available and soluble organic matter originated from bentonite were used as organic substances in this study. Consequently, the solubility of Sm showed a tendency to apparently increase with increasing the concentration of humic acid, but in the presence of carbonate, thermodynamic predictions suggested that the dominant species are carbonate complexes and that the effect of organic substances are less than that of carbonate. Based on total organic carbon (TOC), the increase of Sm solubility measured with humic acid (Aldrich) was more significant than that in the case with soluble organic matter originated from bentonite. Since bentonite is presumed to include also simple organic matters of which stability constant for forming complexes is low, the effect of soluble organic matter originated from bentonite on the solubility of Sm is considered to be less effective than that of humic acid (Aldrich). Experimental values were compared with model prediction, proposed by Kim, based on data measured in a low pH region. Tentatively we calculated the increase in Sm solubility assuming complexation with humic acid. Trial calculations were carried out on the premise that the complexation reaction of metal ion with humic acid is based on neutralization process by 1-1 complexation. In this process, it was assumed that one metal ion coordinates with one unit of complexation sites which number of proton exchange sites is equal to ionic charge. Consequently, Kim's model indicated that carbonate complexes should be dominant

  18. Anchoring samarium oxide nanoparticles on reduced graphene oxide for high-performance supercapacitor

    Energy Technology Data Exchange (ETDEWEB)

    Dezfuli, Amin Shiralizadeh [Center of Excellence in Electrochemistry, Faculty of Chemistry, University of Tehran, Tehran (Iran, Islamic Republic of); Ganjali, Mohammad Reza, E-mail: ganjali@khayam.ut.ac.ir [Center of Excellence in Electrochemistry, Faculty of Chemistry, University of Tehran, Tehran (Iran, Islamic Republic of); Biosensor Research Center, Endocrinology & Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Naderi, Hamid Reza [Center of Excellence in Electrochemistry, Faculty of Chemistry, University of Tehran, Tehran (Iran, Islamic Republic of)

    2017-04-30

    Highlights: • Samarium oxide nanoparticles have been anchored on the surface of reduced graphene oxide for the first time. • Sm{sub 2}O{sub 3}/RGO nanocomposite show high capacitance, good rate and cycling performance. • Sm{sub 2}O{sub 3}/RGO nanocomposite can serve as efficient electrode material for energy storage. • The best composite electrode exhibits specific capacitance of 321 F g{sup −1} in 2 mV s{sup −1}. - Abstract: We have synthesized Sm{sub 2}O{sub 3} nanoparticles (SmNs) and anchored them onto the surface of reduced graphene oxide (RGO) through a self-assembly thereof by utilizing a facile sonochemical procedure. The nanomaterials were characterized by means of powder X-ray diffraction (XRD), Field-emission scanning electron microscopy (FE-SEM), fourier transform infrared spectroscopy (FT-IR) spectra, and X-ray photoelectron spectroscopy (XPS). As the next step, the supercapacitive behavior of the resulting nanocomposites were investigated when used as electrode material, through with cyclic voltammetric (CV), galvanostatic charge-discharge and electrochemical impedance spectroscopy (EIS) techniques. The SmNs decorated RGO (SmN-RGO) nanocomposites were found to possess a specific capacitance (SC) of 321 F g{sup −1} when used in a 0.5 M Na{sub 2}SO{sub 4} solution as an electrolyte, in a scan rate of 2 mV s{sup −1}. The SC of the SmN-RGO based electrodes were also found to be 268 F g{sup −1} at a current density of 2 A g{sup −1} through galvanostatic charge-discharge tests. The outstanding properties of the SmN-RGOs were attributed to synergy of the high charge mobility of SmNs and the flexibility of the sheets of RGOs. Additionally, the nano-composite revealed a unique cycling durability (maintaining 99% of its SC even after 4000 cycles).

  19. Fluorescence properties of europium and samarium. beta. -diketonates and their use in fluorometry

    Energy Technology Data Exchange (ETDEWEB)

    Huang, H; Hiraki, K; Nishikawa, Y [Kinki Univ., Higashi-Osaka, Osaka (Japan). Faculty of Science and Technology

    1981-01-01

    Several europium and samarium ..beta..-diketonates (tta, ntfa, bfa) complexed with 1, 10-phenanthroline, or with trioctylphosphine oxide (topo) were synthesized. The fluorescence properties of these compounds in benzene or hexane have been studied. Absorption and fluorescence spectra, fluorescence quantum yield, fluorescence sensitivity index (F.S.I.), and fluorescence lifetime were measured. From the measurement of fluorescence lifetime of the ..beta..-diketonates, the velocity of radiative process (k sub(f)/phi sub(f)) has almost the same value for benzene and hexane solvent. The red fluorescence (Em. max. : 619 nm) of Eu(III) in these chelates is attributed to transitions from /sup 5/D/sub 0/ ..-->.. /sup 7/F/sub 2/ levels of this ion, and the three-band spectrum (Em. max. : 569 nm, 606 nm, 650 nm) indicates the transitions from the /sup 4/G sub(5/2) ..-->.. /sup 6/H sub(5/2), /sup 4/G sub(5/2) ..-->.. /sup 6/H sub(7/2), and /sup 4/G sub(5/2) ..-->.. /sup 6/H sub(9/2) levels of Sm(III), respectively. These spectra are not changed by any solvents and ligands. From the results, the fluorescence of the ..beta..-diketonates in organic solvent has been attributed to m* ..-->.. m luminescence transition. The complexes of Eu(III) and Sm(III) show radiative transition within orbitals, composed exclusively of 4f orbitals of rare earth ions (m* ..-->.. m radiative transition). Fluorinated ligands show better sensitivity than unfluorinated ligands, and the best sensitivity is obtained with TTA-phen system, and/or TTA-topo system for the spectrofluorometric determination of the two metals. In the case of Eu determination, 619 nm emission wavelength is used (the determinable range : 0.2 -- 10 ppb Eu), and in the case of Sm determination, 650 nm emission wavelength is adopted (the determinable range : 0.1 -- 1 ppm Sm), because of much higher sensitivity than the other two peaks (569, 606 nm) without interference from europium complex.

  20. Colloidal Plasmonic Titanium Nitride Nanoparticles: Properties and Applications

    DEFF Research Database (Denmark)

    Guler, Urcan; Suslov, Sergey; Kildishev, Alexander V.

    2015-01-01

    Optical properties of colloidal plasmonic titanium nitride nanoparticles are examined with an eye on their photothermal and photocatalytic applications via transmission electron microscopy and optical transmittance measurements. Single crystal titanium nitride cubic nanoparticles with an average ...

  1. Preparing microspheres of actinide nitrides from carbon containing oxide sols

    International Nuclear Information System (INIS)

    Triggiani, L.V.

    1975-01-01

    A process is given for preparing uranium nitride, uranium oxynitride, and uranium carboxynitride microspheres and the microspheres as compositions of matter. The microspheres are prepared from carbide sols by reduction and nitriding steps. (Official Gazette)

  2. Advancing liquid metal reactor technology with nitride fuels

    International Nuclear Information System (INIS)

    Lyon, W.F.; Baker, R.B.; Leggett, R.D.; Matthews, R.B.

    1991-08-01

    A review of the use of nitride fuels in liquid metal fast reactors is presented. Past studies indicate that both uranium nitride and uranium/plutonium nitride possess characteristics that may offer enhanced performance, particularly in the area of passive safety. To further quantify these effects, the analysis of a mixed-nitride fuel system utilizing the geometry and power level of the US Advanced Liquid Metal Reactor as a reference is described. 18 refs., 2 figs., 2 tabs

  3. Plasma nitridation optimization for sub-15 A gate dielectrics

    NARCIS (Netherlands)

    Cubaynes, F.N; Schmitz, Jurriaan; van der Marel, C.; Snijders, J.H.M.; Veloso, A.; Rothschild, A.; Olsen, C.; Date, L.

    The work investigates the impact of plasma nitridation process parameters upon the physical properties and upon the electrical performance of sub-15 A plasma nitrided gate dielectrics. The nitrogen distribution and chemical bonding of ultra-thin plasma nitrided films have been investigated using

  4. Ion nitriding in 316=L stainless steel

    International Nuclear Information System (INIS)

    Rojas-Calderon, E.L.

    1989-01-01

    Ion nitriding is a glow discharge process that is used to induce surface modification in metals. It has been applied to 316-L austenitic stainless steel looking for similar benefits already obtained in other steels. An austenitic stainless steel was selected because is not hardenable by heat treatment and is not easy to nitride by gas nitriding. The samples were plastically deformed to 10, 20, 40, 50 AND 70% of their original thickness in order to obtain bulk hardening and to observe nitrogen penetration dependence on it. The results were: an increase of one to two rockwell hardness number (except in 70% deformed sample because of its thickness); an increase of even several hundreds per cent in microhardness knoop number in nitrided surface. The later surely modifies waste resistance which would be worth to quantify in further studies. Microhardness measured in an internal transversal face to nitrided surface had a gradual diminish in its value with depth. Auger microanalysis showed a higher relative concentration rate C N /C F e near the surface giving evidence of nitrogen presence till 250 microns deep. The color metallography etchant used, produced faster corrosion in nitrited regions. Therefore, corrosion studies have to be done before using ion nitrited 316-L under these chemicals. (Author)

  5. Innovative boron nitride-doped propellants

    Directory of Open Access Journals (Sweden)

    Thelma Manning

    2016-04-01

    Full Text Available The U.S. military has a need for more powerful propellants with balanced/stoichiometric amounts of fuel and oxidants. However, balanced and more powerful propellants lead to accelerated gun barrel erosion and markedly shortened useful barrel life. Boron nitride (BN is an interesting potential additive for propellants that could reduce gun wear effects in advanced propellants (US patent pending 2015-026P. Hexagonal boron nitride is a good lubricant that can provide wear resistance and lower flame temperatures for gun barrels. Further, boron can dope steel, which drastically improves its strength and wear resistance, and can block the formation of softer carbides. A scalable synthesis method for producing boron nitride nano-particles that can be readily dispersed into propellants has been developed. Even dispersion of the nano-particles in a double-base propellant has been demonstrated using a solvent-based processing approach. Stability of a composite propellant with the BN additive was verified. In this paper, results from propellant testing of boron nitride nano-composite propellants are presented, including closed bomb and wear and erosion testing. Detailed characterization of the erosion tester substrates before and after firing was obtained by electron microscopy, inductively coupled plasma and x-ray photoelectron spectroscopy. This promising boron nitride additive shows the ability to improve gun wear and erosion resistance without any destabilizing effects to the propellant. Potential applications could include less erosive propellants in propellant ammunition for large, medium and small diameter fire arms.

  6. The dynamics of the laser-induced metal-semiconductor phase transition of samarium sulfide (SmS)

    International Nuclear Information System (INIS)

    Kaempfer, Tino

    2009-01-01

    The present thesis is dedicated to the experimental study of the metal-semiconductor phase transition of samarium sulfide (SmS): Temperature- and time-resolved experiments on the characterization of the phase transition of mixed-valence SmS samples (M-SmS) are presented. The measurement of the dynamics of the laser-induced phase transition pursues via time-resolved ultrashort-time microscopy and by X-ray diffraction with sub-picosecond time resolution. The electronic and structural processes, which follow an excitation of M-SmS with infrared femtosecond laser pulses, are physically interpreted on the base of the results obtained in this thesis and model imaginations. [de

  7. Thermodynamics of coproportionation reactions of homogeneous samarium (3) and yttrium (3) nitrates solvates with neutral organic phosphorus compounds

    International Nuclear Information System (INIS)

    Pyartman, A.K.

    1995-01-01

    Reaction heats of homogeneous samarium (3) and yttrium (3) nitrate solvates coproportionation with neutral organophosphoric compounds (tri-n.-butylphosphate, diisooctylmethylphosphonate, diisoamylmethylphosphonate) at T=298.15 K in hexane have been measured by thermochemical method. It has been ascertained that enthalpies of coproportionation reactions practically do not depend on the nature, concentration of rare earth metal (3) nitrate solvates in hexane, nature of neutral organophosphoric compound and constitute 1.1±-.2 kJ/mol. The Gibbs free energy of coproportionation reactions is -5.43 kJ/mol, while entropy of the reactions in 14.5±0.7 J/mol·K. 8 refs., 1 tab

  8. On the effects of pressure and irradiation on the transport properties of samarium compounds with unstable valence

    International Nuclear Information System (INIS)

    Morillo, J.

    1983-06-01

    We present the first extensive study of electronic transport properties of ''quasi-stoichiometric'' SmS as a function of pressure P, temperature T, magnetic field B and defect concentration C. SmS which is a semiconductor, undergoes with increasing P a first order transition towards an homogeneous intermediate valence state. In the semiconducting phase (s.c.), the energie epsilon(f) necessary to delocalize a 4f electron increases greatly with T and is about 250meV at 300K. The phase diagram for the first order electronic transition Sm 2 + →Smsup(2+epsilon) with P has been determined for T 6 has been investigated by resistivity measurements under irradiation at 21K. The threshold energy Ed for displacement of Sm in SmS has been determined: Ed(Sm) = 20 +- 2 eV, and the observed effects of irradiation have been associated to samarium displacements (vacancies and interstitials) [fr

  9. Indium gallium nitride/gallium nitride quantum wells grown on polar and nonpolar gallium nitride substrates

    Science.gov (United States)

    Lai, Kun-Yu

    Nonpolar (m-plane or a-plane) gallium nitride (GaN) is predicted to be a potential substrate material to improve luminous efficiencies of nitride-based quantum wells (QWs). Numerical calculations indicated that the spontaneous emission rate in a single In0.15Ga0.85N/GaN QW could be improved by ˜2.2 times if the polarization-induced internal field was avoided by epitaxial deposition on nonpolar substrates. A challenge for nonpolar GaN is the limited size (less than 10x10 mm2) of substrates, which was addressed by expansion during the regrowth by Hydride Vapor Phase Epitaxy (HVPE). Subsurface damage in GaN substrates were reduced by annealing with NH3 and N2 at 950°C for 60 minutes. It was additionally found that the variation of m-plane QWs' emission properties was significantly increased when the substrate miscut toward a-axis was increased from 0° to 0.1°. InGaN/GaN QWs were grown by Metalorganic Chemical Vapor Deposition (MOCVD) on c-plane and m-plane GaN substrates. The QWs were studied by cathodoluminescence spectroscopy with different incident electron beam probe currents (0.1 nA ˜ 1000 nA). Lower emission intensities and longer peak wavelengths from c-plane QWs were attributed to the Quantum-confined Stark Effect (QCSE). The emission intensity ratios of m-plane QWs to c-plane QWs decreased from 3.04 at 1 nA to 1.53 at 1000 nA. This was identified as the stronger screening effects of QCSE at higher current densities in c-plane QWs. To further investigate these effects in a fabricated structure, biased photoluminescence measurements were performed on m-plane InGaN/GaN QWs. The purpose was to detect the possible internal fields induced by the dot-like structure in the InGaN layer through the response of these internal fields under externally applied fields. No energy shifts of the QWs were observed, which was attributed to strong surface leakage currents.

  10. Sorption of samarium in soils: influence of soil properties and Sm concentration

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez-Guinart, Oriol; Salaberria, Aitor; Rigol, Anna; Vidal, Miquel [Analytical Chemistry department, Faculty of Chemistry, University of Barcelona, Marti i Franques 1-11, 08028, Barcelona (Spain)

    2014-07-01

    Due to the fact that barriers of Deep Geological Repositories (DGR) may lose efficiency before the radioisotopes present in the High Level Radioactive Waste (HLRW) completely decay, it is possible that, in the long-term, radioactive leachates may escape from the DGR and reach the soil and water compartments in the biosphere. Therefore, it is required to examine the interaction and mobility of radionuclides present in the HLRW, or their chemical analogues, to predict the impact of their eventual incorporation in the biosphere and to assess the derived risk. Although relevant data have been recently obtained for a few radionuclides in soils, there are still some important gaps for some radionuclides, such us for samarium (Sm). Sm is a lanthanide that, besides being considered as a natural analogue of actinides, may also be present in HLRW in the form of the radioactive isotope {sup 151}Sm. The main objective of this work was to obtain sorption data (K{sub d}) of {sup 151}Sm gathered from a set of soil samples physicochemical fully-characterized (pH, texture, cationic exchange capacity, soil solution cationic composition, organic matter, carbonate and metallic oxides content, etc.). Additionally, as an alternative for testing sorption capacity of radionuclides in soils is the use of the corresponding stable isotope or a chemical analogue, the influence of Sm concentration was also checked. To evaluate {sup 151}Sm sorption, batch assays were carried out for each soil sample, which consisted in a pre-equilibration step of 2 g of each soil with 50 ml of double deionised water, and a subsequent equilibration step with the same solution, but labelled with {sup 151}Sm. The activity of {sup 151}Sm in initial and final solutions was measured by liquid scintillation and K{sub d} ({sup 151}Sm) data were calculated. The reversibly sorbed fraction was estimated by the application of a single extraction test, with double deionised water, to soil residues coming from the previous

  11. Thermodynamics, kinetics and process control of nitriding

    DEFF Research Database (Denmark)

    Mittemeijer, Eric J.; Somers, Marcel A. J.

    1997-01-01

    As a prerequisite for the predictability of properties obtained by a nitriding treatment of iron based workpieces, the relation between the process parameters and the composition and structure of the surface layer produced must be known. At present, even the description of thermodynamic equilibrium...... of pure Fe-N phases has not been fully achieved. It is shown that taking into account the ordering of nitrogen in the epsilon and gamma' iron nitride phases leads to an improved understanding of the Fe-N phase diagram. Although consideration of thermodynamics indicates the state the system strives for...... for process control of gaseous nitriding by monitoring the partial pressure of oxygen in the furnace using a solid state electrolyte is provided. At the time the work was carried out the authors were in the Laboratory of Materials Science, Delft University of Technology, Rotterdamseweg 137, 2628 AL Delft...

  12. Conducting metal oxide and metal nitride nanoparticles

    Science.gov (United States)

    DiSalvo, Jr., Francis J.; Subban, Chinmayee V.

    2017-12-26

    Conducting metal oxide and nitride nanoparticles that can be used in fuel cell applications. The metal oxide nanoparticles are comprised of for example, titanium, niobium, tantalum, tungsten and combinations thereof. The metal nitride nanoparticles are comprised of, for example, titanium, niobium, tantalum, tungsten, zirconium, and combinations thereof. The nanoparticles can be sintered to provide conducting porous agglomerates of the nanoparticles which can be used as a catalyst support in fuel cell applications. Further, platinum nanoparticles, for example, can be deposited on the agglomerates to provide a material that can be used as both an anode and a cathode catalyst support in a fuel cell.

  13. Molecular dynamics studies of actinide nitrides

    International Nuclear Information System (INIS)

    Kurosaki, Ken; Uno, Masayoshi; Yamanaka, Shinsuke; Minato, Kazuo

    2004-01-01

    The molecular dynamics (MD) calculation was performed for actinide nitrides (UN, NpN, and PuN) in the temperature range from 300 to 2800 K to evaluate the physical properties viz., the lattice parameter, thermal expansion coefficient, compressibility, and heat capacity. The Morse-type potential function added to the Busing-Ida type potential was employed for the ionic interactions. The interatomic potential parameters were determined by fitting to the experimental data of the lattice parameter. The usefulness and applicability of the MD method to evaluate the physical properties of actinide nitrides were studied. (author)

  14. Local heating with titanium nitride nanoparticles

    DEFF Research Database (Denmark)

    Guler, Urcan; Ndukaife, Justus C.; Naik, Gururaj V.

    2013-01-01

    We investigate the feasibility of titanium nitride (TiN) nanoparticles as local heat sources in the near infrared region, focusing on biological window. Experiments and simulations provide promising results for TiN, which is known to be bio-compatible.......We investigate the feasibility of titanium nitride (TiN) nanoparticles as local heat sources in the near infrared region, focusing on biological window. Experiments and simulations provide promising results for TiN, which is known to be bio-compatible....

  15. Optical properties of nitride nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Cantarero, A.; Cros, A.; Garro, N.; Gomez-Gomez, M.I.; Garcia, A.; Lima, M.M. de [Materials Science Institute, University of Valencia, PO Box 22085, 46071 Valencia (Spain); Daudin, B. [Departement de Recherche Fondamentale sur la Matiere Condensee, SPMM, CEA/Grenoble, 17 Rue des Martyrs, 38054 Grenoble (France); Rizzi, A.; Denker, C.; Malindretos, J. [IV. Physikalisches Institut, Georg August Universitaet Goettingen, 37073 Goettingen (Germany)

    2011-01-15

    In this paper we review some recent results on the optical properties of nitride nanostructures, in particular on GaN quantum dots (QDs) and InN nanocolumns (NCs). First, we will give a brief introduction on the particularities of vibrational modes of wurtzite. The GaN QDs, embedded in AlN, were grown by molecular beam epitaxy (MBE) in the Stransky-Krastanov mode on c- and a-plane 6H-SiC. We have studied the optical properties by means of photoluminescence (PL) and performed Raman scattering measurements to analyze the strain relaxation in the dots and the barrier, the effect of the internal electric fields, and the influence of specific growth parameters, like the influence of capping or the spacer on the relaxation of the QDs. A theoretical model, based on continuous elastic theory, were developed to interpret the Raman scattering results. On the other hand, InN NCs have been grown by MBE in the vapor-liquid-solid mode using Au as a catalyst. The nanocolumns have different morphology depending on the growth conditions. The optical properties can be correlated to the morphology of the samples and the best growth conditions can be selected. We observe, from the analysis of the Raman data in InN NCs, the existence of two space regions contributing to the scattering: the surface and the inner region. From the inner region, uncoupled phonon modes are clearly observed, showing the high crystal quality and the complete relaxation of the NCs (no strain). The observation of a LO-phonon-plasmon couple in the same spectra is a fingerprint of the accumulation layer predicted at the surface of the nanocolumns. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  16. Boron nitride nanotubes for spintronics.

    Science.gov (United States)

    Dhungana, Kamal B; Pati, Ranjit

    2014-09-22

    With the end of Moore's law in sight, researchers are in search of an alternative approach to manipulate information. Spintronics or spin-based electronics, which uses the spin state of electrons to store, process and communicate information, offers exciting opportunities to sustain the current growth in the information industry. For example, the discovery of the giant magneto resistance (GMR) effect, which provides the foundation behind modern high density data storage devices, is an important success story of spintronics; GMR-based sensors have wide applications, ranging from automotive industry to biology. In recent years, with the tremendous progress in nanotechnology, spintronics has crossed the boundary of conventional, all metallic, solid state multi-layered structures to reach a new frontier, where nanostructures provide a pathway for the spin-carriers. Different materials such as organic and inorganic nanostructures are explored for possible applications in spintronics. In this short review, we focus on the boron nitride nanotube (BNNT), which has recently been explored for possible applications in spintronics. Unlike many organic materials, BNNTs offer higher thermal stability and higher resistance to oxidation. It has been reported that the metal-free fluorinated BNNT exhibits long range ferromagnetic spin ordering, which is stable at a temperature much higher than room temperature. Due to their large band gap, BNNTs are also explored as a tunnel magneto resistance device. In addition, the F-BNNT has recently been predicted as an ideal spin-filter. The purpose of this review is to highlight these recent progresses so that a concerted effort by both experimentalists and theorists can be carried out in the future to realize the true potential of BNNT-based spintronics.

  17. Boron Nitride Nanotubes for Spintronics

    Directory of Open Access Journals (Sweden)

    Kamal B. Dhungana

    2014-09-01

    Full Text Available With the end of Moore’s law in sight, researchers are in search of an alternative approach to manipulate information. Spintronics or spin-based electronics, which uses the spin state of electrons to store, process and communicate information, offers exciting opportunities to sustain the current growth in the information industry. For example, the discovery of the giant magneto resistance (GMR effect, which provides the foundation behind modern high density data storage devices, is an important success story of spintronics; GMR-based sensors have wide applications, ranging from automotive industry to biology. In recent years, with the tremendous progress in nanotechnology, spintronics has crossed the boundary of conventional, all metallic, solid state multi-layered structures to reach a new frontier, where nanostructures provide a pathway for the spin-carriers. Different materials such as organic and inorganic nanostructures are explored for possible applications in spintronics. In this short review, we focus on the boron nitride nanotube (BNNT, which has recently been explored for possible applications in spintronics. Unlike many organic materials, BNNTs offer higher thermal stability and higher resistance to oxidation. It has been reported that the metal-free fluorinated BNNT exhibits long range ferromagnetic spin ordering, which is stable at a temperature much higher than room temperature. Due to their large band gap, BNNTs are also explored as a tunnel magneto resistance device. In addition, the F-BNNT has recently been predicted as an ideal spin-filter. The purpose of this review is to highlight these recent progresses so that a concerted effort by both experimentalists and theorists can be carried out in the future to realize the true potential of BNNT-based spintronics.

  18. Two-Dimensional Modeling of Aluminum Gallium Nitride/Gallium Nitride High Electron Mobility Transistor

    National Research Council Canada - National Science Library

    Holmes, Kenneth

    2002-01-01

    Gallium Nitride (GaN) High Electron Mobility Transistors (HEMT's) are microwave power devices that have the performance characteristics to improve the capabilities of current and future Navy radar and communication systems...

  19. Surface modification of 17-4PH stainless steel by DC plasma nitriding and titanium nitride film duplex treatment

    International Nuclear Information System (INIS)

    Qi, F.; Leng, Y.X.; Huang, N.; Bai, B.; Zhang, P.Ch.

    2007-01-01

    17-4PH stainless steel was modified by direct current (DC) plasma nitriding and titanium nitride film duplex treatment in this study. The microstructure, wear resistance and corrosion resistance were characterized by X-ray diffraction (XRD), pin-on-disk tribological test and polarization experiment. The results revealed that the DC plasma nitriding pretreatment was in favor of improving properties of titanium nitride film. The corrosion resistance and wear resistance of duplex treatment specimen was more superior to that of only coated titanium nitride film

  20. Microstructure and mechanical properties of silicon nitride structural ceramics of silicon nitride

    International Nuclear Information System (INIS)

    Strohaecker, T.R.; Nobrega, M.C.S.

    1989-01-01

    The utilization of direct evaluation technic of tenacity for fracturing by hardness impact in silicon nitride ceramics is described. The microstructure were analysied, by Scanning Electron Microscopy, equiped with a microanalysis acessory by X ray energy dispersion. The difference between the values of K IC measure for two silicon nitride ceramics is discussed, in function of the microstructures and the fracture surfaces of the samples studied. (C.G.C.) [pt

  1. Ferrites Ni0,5Zn0,5Fe2O4 doped with samarium: structural analysis, morphological and electromagnetic

    International Nuclear Information System (INIS)

    Costa, A.C.F.M.; Diniz, A.P.; Viana, K.M.S.; Cornejo, D.R.; Kiminami, R.H.G.A.

    2010-01-01

    This paper proposes to investigate the sintering at 1200 deg C/2h of Ni 0.5 Zn 0.5 Fe 2-x Sm x O 4 ferrite doped with 0.05; 0.075 e 0.1 mol of Sm synthesized by combustion reaction to evaluate the performance materials as absorbers of electromagnetic radiation. The influence of the concentration of samarium on the structure, morphology and electromagnetic properties of ferrites was studied. The resulting samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), magnetic measurements and reflectivity measurements in the frequency range between 8-12 GHz. The results showed that increasing the concentration of samarium caused a decrease in particle size of the samples, encouraging, therefore, to obtain materials with better values of magnetization and reflectivity, allowing for use as absorbers in narrow-band frequency between 9-10 GHz. (author)

  2. JAEA thermodynamic database for performance assessment of geological disposal of high-level and TRU wastes. Refinement of thermodynamic data for trivalent actinoids and samarium

    International Nuclear Information System (INIS)

    Kitamura, Akira; Fujiwara, Kenso; Yui, Mikazu

    2010-01-01

    Within the scope of the JAEA thermodynamic database project for performance assessment of geological disposal of high-level radioactive and TRU wastes, the refinement of the thermodynamic data for the inorganic compounds and complexes of trivalent actinoids (actinium(III), plutonium(III), americium(III) and curium(III)) and samarium(III) was carried out. Refinement of thermodynamic data for these elements was based on the thermodynamic database for americium published by the Nuclear Energy Agency in the Organisation for Economic Co-operation and Development (OECD/NEA). Based on the similarity of chemical properties among trivalent actinoids and samarium, complementary thermodynamic data for their species expected under the geological disposal conditions were selected to complete the thermodynamic data set for the performance assessment of geological disposal of radioactive wastes. (author)

  3. Boron nitride nanosheets reinforced glass matrix composites

    Czech Academy of Sciences Publication Activity Database

    Saggar, Richa; Porwal, H.; Tatarko, P.; Dlouhý, Ivo; Reece, M. J.

    2015-01-01

    Roč. 114, SEP (2015), S26-S32 ISSN 1743-6753 R&D Projects: GA MŠk(CZ) 7AMB14SK155 EU Projects: European Commission(XE) 264526 Institutional support: RVO:68081723 Keywords : Boron nitride nanosheets * Borosilicate glass * Mechanical properties Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 1.162, year: 2015

  4. Alkaline fuel cell with nitride membrane

    Science.gov (United States)

    Sun, Shen-Huei; Pilaski, Moritz; Wartmann, Jens; Letzkus, Florian; Funke, Benedikt; Dura, Georg; Heinzel, Angelika

    2017-06-01

    The aim of this work is to fabricate patterned nitride membranes with Si-MEMS-technology as a platform to build up new membrane-electrode-assemblies (MEA) for alkaline fuel cell applications. Two 6-inch wafer processes based on chemical vapor deposition (CVD) were developed for the fabrication of separated nitride membranes with a nitride thickness up to 1 μm. The mechanical stability of the perforated nitride membrane has been adjusted in both processes either by embedding of subsequent ion implantation step or by optimizing the deposition process parameters. A nearly 100% yield of separated membranes of each deposition process was achieved with layer thickness from 150 nm to 1 μm and micro-channel pattern width of 1μm at a pitch of 3 μm. The process for membrane coating with electrolyte materials could be verified to build up MEA. Uniform membrane coating with channel filling was achieved after the optimization of speed controlled dip-coating method and the selection of dimethylsulfoxide (DMSO) as electrolyte solvent. Finally, silver as conductive material was defined for printing a conductive layer onto the MEA by Ink-Technology. With the established IR-thermography setup, characterizations of MEAs in terms of catalytic conversion were performed successfully. The results of this work show promise for build up a platform on wafer-level for high throughput experiments.

  5. Intrinsic ferromagnetism in hexagonal boron nitride nanosheets

    Energy Technology Data Exchange (ETDEWEB)

    Si, M. S.; Gao, Daqiang, E-mail: gaodq@lzu.edu.cn, E-mail: xueds@lzu.edu.cn; Yang, Dezheng; Peng, Yong; Zhang, Z. Y.; Xue, Desheng, E-mail: gaodq@lzu.edu.cn, E-mail: xueds@lzu.edu.cn [Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou 730000 (China); Liu, Yushen [Jiangsu Laboratory of Advanced Functional Materials and College of Physics and Engineering, Changshu Institute of Technology, Changshu 215500 (China); Deng, Xiaohui [Department of Physics and Electronic Information Science, Hengyang Normal University, Hengyang 421008 (China); Zhang, G. P. [Department of Physics, Indiana State University, Terre Haute, Indiana 47809 (United States)

    2014-05-28

    Understanding the mechanism of ferromagnetism in hexagonal boron nitride nanosheets, which possess only s and p electrons in comparison with normal ferromagnets based on localized d or f electrons, is a current challenge. In this work, we report an experimental finding that the ferromagnetic coupling is an intrinsic property of hexagonal boron nitride nanosheets, which has never been reported before. Moreover, we further confirm it from ab initio calculations. We show that the measured ferromagnetism should be attributed to the localized π states at edges, where the electron-electron interaction plays the role in this ferromagnetic ordering. More importantly, we demonstrate such edge-induced ferromagnetism causes a high Curie temperature well above room temperature. Our systematical work, including experimental measurements and theoretical confirmation, proves that such unusual room temperature ferromagnetism in hexagonal boron nitride nanosheets is edge-dependent, similar to widely reported graphene-based materials. It is believed that this work will open new perspectives for hexagonal boron nitride spintronic devices.

  6. Covalent biofunctionalization of silicon nitride surfaces

    NARCIS (Netherlands)

    Arafat, A.; Giesbers, M.; Rosso, M.; Sudhölter, E.J.R.; Schroën, C.G.P.H.; White, R.G.; Li Yang,; Linford, M.R.; Zuilhof, H.

    2007-01-01

    Covalently attached organic monolayers on etched silicon nitride (SixN4; x 3) surfaces were prepared by reaction of SixN4-coated wafers with neat or solutions of 1-alkenes and 1-alkynes in refluxing mesitylene. The surface modification was monitored by measurement of the static water contact angle,

  7. Bandgap engineered graphene and hexagonal boron nitride

    Indian Academy of Sciences (India)

    In this article a double-barrier resonant tunnelling diode (DBRTD) has been modelled by taking advantage of single-layer hexagonal lattice of graphene and hexagonal boron nitride (h-BN). The DBRTD performance and operation are explored by means of a self-consistent solution inside the non-equilibrium Green's ...

  8. Plasmonic spectral tunability of conductive ternary nitrides

    Energy Technology Data Exchange (ETDEWEB)

    Kassavetis, S.; Patsalas, P., E-mail: ppats@physics.auth.gr [Department of Physics, Aristotle University of Thessaloniki, GR-54124 Thessaloniki (Greece); Bellas, D. V.; Lidorikis, E. [Department of Materials Science and Engineering, University of Ioannina, GR-45110 Ioannina (Greece); Abadias, G. [Institut Pprime, Département Physique et Mécanique des Matériaux, Université de Poitiers-CNRS-ENSMA, 86962 Chasseneuil-Futuroscope (France)

    2016-06-27

    Conductive binary transition metal nitrides, such as TiN and ZrN, have emerged as a category of promising alternative plasmonic materials. In this work, we show that ternary transition metal nitrides such as Ti{sub x}Ta{sub 1−x}N, Ti{sub x}Zr{sub 1−x}N, Ti{sub x}Al{sub 1−x}N, and Zr{sub x}Ta{sub 1−x}N share the important plasmonic features with their binary counterparts, while having the additional asset of the exceptional spectral tunability in the entire visible (400–700 nm) and UVA (315–400 nm) spectral ranges depending on their net valence electrons. In particular, we demonstrate that such ternary nitrides can exhibit maximum field enhancement factors comparable with gold in the aforementioned broadband range. We also critically evaluate the structural features that affect the quality factor of the plasmon resonance and we provide rules of thumb for the selection and growth of materials for nitride plasmonics.

  9. Effective visible light-active nitrogen and samarium co-doped BiVO{sub 4} for the degradation of organic pollutants

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Min; Niu, Chao [College of Environmental and Chemical Engineering, Shenyang Ligong University, Shenyang 110165 (China); Liu, Jun, E-mail: minwang62@msn.com [Shenyang Military General Hospital, Shenyang 110016 (China); Wang, Qianwu; Yang, Changxiu; Zheng, Haoyan [College of Environmental and Chemical Engineering, Shenyang Ligong University, Shenyang 110165 (China)

    2015-11-05

    Nitrogen and samarium co-doped BiVO{sub 4} (N–xSm–BiVO{sub 4}) nanoparticles were synthesized using a sol–gel method with a corn stem template. The physicochemical properties of the resultant N–xSm–BiVO{sub 4} particles were characterized using various methods: XPS, XRD, SEM, BET, and UV–Vis DRS analyses. The visible-light photocatalytic activity was successfully demonstrated by degrading a model dye, namely, methyl orange. The dopant content was optimized, and the nitrogen and samarium co-doped BiVO{sub 4} extended the light absorption spectrum toward the visible region, significantly enhancing the photodegradation of the model dye. The Sm and N co-doped BiVO{sub 4} exhibited the highest photocatalytic activity compared to materials with a single dopant or no dopant. The significantly enhanced photocatalytic activity of the N–Sm co-doped BiVO{sub 4} under visible-light irradiation can be attributed to the synergistic effects of the nitrogen and samarium. - Highlights: • The N–Sm codoped BiVO{sub 4} were synthesized using a sol–gel method with a corn stem template. • The N and Sm codoped BiVO{sub 4} has excellent photocatalytic activity of methyl orange degradation. • The maximum activity was observed when the molar ratio of Sm/Bi was 1.0. • The high photocatalytic activity was caused by the synergistic effects between N doping and Sm doping.

  10. Effective visible light-active nitrogen and samarium co-doped BiVO4 for the degradation of organic pollutants

    International Nuclear Information System (INIS)

    Wang, Min; Niu, Chao; Liu, Jun; Wang, Qianwu; Yang, Changxiu; Zheng, Haoyan

    2015-01-01

    Nitrogen and samarium co-doped BiVO 4 (N–xSm–BiVO 4 ) nanoparticles were synthesized using a sol–gel method with a corn stem template. The physicochemical properties of the resultant N–xSm–BiVO 4 particles were characterized using various methods: XPS, XRD, SEM, BET, and UV–Vis DRS analyses. The visible-light photocatalytic activity was successfully demonstrated by degrading a model dye, namely, methyl orange. The dopant content was optimized, and the nitrogen and samarium co-doped BiVO 4 extended the light absorption spectrum toward the visible region, significantly enhancing the photodegradation of the model dye. The Sm and N co-doped BiVO 4 exhibited the highest photocatalytic activity compared to materials with a single dopant or no dopant. The significantly enhanced photocatalytic activity of the N–Sm co-doped BiVO 4 under visible-light irradiation can be attributed to the synergistic effects of the nitrogen and samarium. - Highlights: • The N–Sm codoped BiVO 4 were synthesized using a sol–gel method with a corn stem template. • The N and Sm codoped BiVO 4 has excellent photocatalytic activity of methyl orange degradation. • The maximum activity was observed when the molar ratio of Sm/Bi was 1.0. • The high photocatalytic activity was caused by the synergistic effects between N doping and Sm doping

  11. Sorption of samarium in iron (II) and (III) phosphates in aqueous systems; Sorcion de samario en fosfatos de hierro (II) y (III) en sistemas acuosos

    Energy Technology Data Exchange (ETDEWEB)

    Diaz F, J C

    2006-07-01

    The radioactive residues that are stored in the radioactive confinements its need to stay isolated of the environment while the radioactivity levels be noxious. An important mechanism by which the radioactive residues can to reach the environment, it is the migration of these through the underground water. That it makes necessary the investigation of reactive materials that interacting with those radionuclides and that its are able to remove them from the watery resources. The synthesis and characterization of materials that can be useful in Environmental Chemistry are very important because its characteristics are exposed and its behavior in chemical phenomena as the sorption watery medium is necessary to use it in the environmental protection. In this work it was carried out the sorption study of the samarium III ion in the iron (II) and (III) phosphate; obtaining the sorption isotherms in function of pH, of the phosphate mass and of the concentration of the samarium ion using UV-visible spectroscopy to determine the removal percentage. The developed experiments show that as much the ferrous phosphate as the ferric phosphate present a great affinity by the samarium III, for what it use like reactive material in contention walls can be very viable because it sorption capacity has overcome 90% to pH values similar to those of the underground and also mentioning that the form to obtain these materials is very economic and simple. (Author)

  12. Ion beam induces nitridation of silicon

    International Nuclear Information System (INIS)

    Petravic, M.; Williams, J.S.; Conway, M.

    1998-01-01

    High dose ion bombardment of silicon with reactive species, such as oxygen and nitrogen, has attracted considerable interest due to possible applications of beam-induced chemical compounds with silicon. For example, high energy oxygen bombardment of Si is now routinely used to form buried oxide layers for device purposes, the so called SIMOX structures. On the other hand, Si nitrides, formed by low energy ( 100 keV) nitrogen beam bombardment of Si, are attractive as oxidation barriers or gate insulators, primarily due to the low diffusivity of many species in Si nitrides. However, little data exists on silicon nitride formation during bombardment and its angle dependence, in particular for N 2 + bombardment in the 10 keV range, which is of interest for analytical techniques such as SIMS. In SIMS, low energy oxygen ions are more commonly used as bombarding species, as oxygen provides stable ion yields and enhances the positive secondary ion yield. Therefore, a large body of data can be found in the literature on oxide formation during low energy oxygen bombardment. Nitrogen bombardment of Si may cause similar effects to oxygen bombardment, as nitrogen and oxygen have similar masses and ranges in Si, show similar sputtering effects and both have the ability to form chemical compounds with Si. In this work we explore this possibility in some detail. We compare oxide and nitride formation during oxygen and nitrogen ion bombardment of Si under similar conditions. Despite the expected similar behaviour, some large differences in compound formation were found. These differences are explained in terms of different atomic diffusivities in oxides and nitrides, film structural differences and thermodynamic properties. (author)

  13. Metal surface nitriding by laser induced plasma

    Science.gov (United States)

    Thomann, A. L.; Boulmer-Leborgne, C.; Andreazza-Vignolle, C.; Andreazza, P.; Hermann, J.; Blondiaux, G.

    1996-10-01

    We study a nitriding technique of metals by means of laser induced plasma. The synthesized layers are composed of a nitrogen concentration gradient over several μm depth, and are expected to be useful for tribological applications with no adhesion problem. The nitriding method is tested on the synthesis of titanium nitride which is a well-known compound, obtained at present by many deposition and diffusion techniques. In the method of interest, a laser beam is focused on a titanium target in a nitrogen atmosphere, leading to the creation of a plasma over the metal surface. In order to understand the layer formation, it is necessary to characterize the plasma as well as the surface that it has been in contact with. Progressive nitrogen incorporation in the titanium lattice and TiN synthesis are studied by characterizing samples prepared with increasing laser shot number (100-4000). The role of the laser wavelength is also inspected by comparing layers obtained with two kinds of pulsed lasers: a transversal-excited-atmospheric-pressure-CO2 laser (λ=10.6 μm) and a XeCl excimer laser (λ=308 nm). Simulations of the target temperature rise under laser irradiation are performed, which evidence differences in the initial laser/material interaction (material heated thickness, heating time duration, etc.) depending on the laser features (wavelength and pulse time duration). Results from plasma characterization also point out that the plasma composition and propagation mode depend on the laser wavelength. Correlation of these results with those obtained from layer analyses shows at first the important role played by the plasma in the nitrogen incorporation. Its presence is necessary and allows N2 dissociation and a better energy coupling with the target. Second, it appears that the nitrogen diffusion governs the nitriding process. The study of the metal nitriding efficiency, depending on the laser used, allows us to explain the differences observed in the layer features

  14. Nitriding behavior of Ni and Ni-based binary alloys

    Energy Technology Data Exchange (ETDEWEB)

    Fonovic, Matej

    2015-01-15

    Gaseous nitriding is a prominent thermochemical surface treatment process which can improve various properties of metallic materials such as mechanical, tribological and/or corrosion properties. This process is predominantly performed by applying NH{sub 3}+H{sub 2} containing gas atmospheres serving as the nitrogen donating medium at temperatures between 673 K and 873 K (400 C and 600 C). NH{sub 3} decomposes at the surface of the metallic specimen and nitrogen diffuses into the surface adjacent region of the specimen whereas hydrogen remains in the gas atmosphere. One of the most important parameters characterizing a gaseous nitriding process is the so-called nitriding potential (r{sub N}) which determines the chemical potential of nitrogen provided by the gas phase. The nitriding potential is defined as r{sub N} = p{sub NH{sub 3}}/p{sub H{sub 2}{sup 3/2}} where p{sub NH{sub 3}} and p{sub H{sub 2}} are the partial pressures of the NH{sub 3} and H{sub 2} in the nitriding atmosphere. In contrast with nitriding of α-Fe where the nitriding potential is usually in the range between 0.01 and 1 atm{sup -1/2}, nitriding of Ni and Ni-based alloys requires employing nitriding potentials higher than 100 atm{sup -1/2} and even up to ∞ (nitriding in pure NH{sub 3} atmosphere). This behavior is compatible with decreased thermodynamic stability of the 3d-metal nitrides with increasing atomic number. Depending on the nitriding conditions (temperature, nitriding potential and treatment time), different phases are formed at the surface of the Ni-based alloys. By applying very high nitriding potential, formation of hexagonal Ni{sub 3}N at the surface of the specimen (known as external nitriding) leads to the development of a compound layer, which may improve tribological properties. Underneath the Ni{sub 3}N compound layer, two possibilities exist: (i) alloying element precipitation within the nitrided zone (known as internal nitriding) and/or (ii) development of metastable and

  15. Results after therapy of pain from bone metastases with Samarium-153 in our centers in Lima, Peru

    International Nuclear Information System (INIS)

    Alvarado, N.; Eskenazi, S.; Valle, M.P.; Montoya, J.; Castro, M.; Montiel, L.; Velarde, V.; Jauregui, I.; Cueto, C.

    2004-01-01

    Full text: 105 patients with bone metastases from prostate and breast cancer; between 42 and 78 years age (median 61 years) were evaluated. Patients had intense pain that could not be managed with combinations of analgesic and anti tumoral drugs. All patients received 1.2 mCi/kg of Samarium-153 intravenously as treatment for pain due to bony metastases. The isotope obtained from atomic reactor placed in Lima - Peru, was provided by Peruvian Nuclear Energy Institute (IPEN). One week before therapy, all the patients had a bone scan study with Tc99m-MDP that showed the presence of multiple bone metastases with high blastic activity. Haematology and biochemical parameter checked were: Creatinine ( 150,000 mm3), Leukocytes (> 5,000 mm3), Red cells (>3,500,000 mm3). No problems were encountered during intravenous administration of the radioisotope. The side effects after treatment were: Primary effects: 16 cases of nausea, 2 of vomiting, 3 of headache, 28 had increment of pain, 6 had flushing. 50 patients did not have the primary symptoms. Secondary effects: 3 Patients showed drop in leukocyte count between 2nd and 3rd week of therapy. Red cells showed 10-15% decrease between 6th to 8th week. Platelets showed a decrease of about 15% with one peak between 1st and 2nd week post Samarium therapy. Data was analysed using an analogue visual scale of the pain with values from 0 - 10 (0-no pain; 10-maximum pain) and in the same way using the E.C.O.G. scale (Eastern Cooperative Oncology Group) in relationship with the Karnofsky index in order to establish functional recovery for each patient. The decrease of pain was seen between 4th-7th days (average 8 days). A second dose was given after 60 days in 12 patients and a third dose in 3 cases.11 patients died due to different causes between 30 - 60 days post treatment. The analgesic dose came down significantly in 80% of patients. We conclude that palliative therapy of metastatic bone pain in Peru is possible with radionuclides. It

  16. Separation of zirconium--hafnium by nitride precipitation

    International Nuclear Information System (INIS)

    Anderson, R.N.; Parlee, N.A.

    1977-01-01

    A method is described for the separation of a light reactive metal (e.g., zirconium) from a heavy reactive metal (e.g., hafnium) by forming insoluble nitrides of the metals in a molten metal solvent (e.g., copper) inert to nitrogen and having a suitable density for the light metal nitride to form a separate phase in the upper portion of the solvent and for the heavy metal nitride to form a separate phase in the lower portion of the solvent. Nitriding is performed by maintaining a nitrogen-containing atmosphere over the bath. The light and heavy metals may be an oxide mixture and carbothermically reduced to metal form in the same bath used for nitriding. The nitrides are then separately removed and decomposed to form the desired separate metals. 16 claims, 1 figure

  17. An assessment of the thermodynamic properties of uranium nitride, plutonium nitride and uranium-plutonium mixed nitride

    International Nuclear Information System (INIS)

    Matsui, T.; Ohse, R.W.

    1986-01-01

    Thermodynamic properties such as vapour pressures, heat capacities and enthalpies of formation for UN(s), PuN(s) and (U, Pu)N(s) are critically evaluated. The equations of the vapour pressures and the heat capacities for the three nitrides are assessed. Thermal functions, and thermodynamic functions for the formation of UN(s), PuN(s) and (U, Pu)N(s), are calculated

  18. The oxidation of titanium nitride- and silicon nitride-coated stainless steel in carbon dioxide environments

    International Nuclear Information System (INIS)

    Mitchell, D.R.G.; Stott, F.H.

    1992-01-01

    A study has been undertaken into the effects of thin titanium nitride and silicon nitride coatings, deposited by physical vapour deposition and chemical vapour deposition processes, on the oxidation resistance of 321 stainless steel in a simulated advanced gas-cooled reactor carbon dioxide environment for long periods at 550 o C and 700 o C under thermal-cycling conditions. The uncoated steel contains sufficient chromium to develop a slow-growing chromium-rich oxide layer at these temperatures, particularly if the surfaces have been machine-abraded. Failure of this layer in service allows formation of less protective iron oxide-rich scales. The presence of a thin (3-4 μm) titanium nitride coating is not very effective in increasing the oxidation resistance since the ensuing titanium oxide scale is not a good barrier to diffusion. Even at 550 o C, iron oxide-rich nodules are able to develop following relatively rapid oxidation and breakdown of the coating. At 700 o C, the coated specimens oxidize at relatively similar rates to the uncoated steel. A thin silicon nitride coating gives improved oxidation resistance, with both the coating and its slow-growing oxide being relatively electrically insulating. The particular silicon nitride coating studied here was susceptible to spallation on thermal cycling, due to an inherently weak coating/substrate interface. (Author)

  19. Preparation and study of the nitrides and mixed carbide-nitrides of uranium and of plutonium

    International Nuclear Information System (INIS)

    Anselin, F.

    1966-06-01

    A detailed description is given of a simple method for preparing uranium and plutonium nitrides by the direct action of nitrogen under pressure at moderate temperatures (about 400 C) on the partially hydrogenated bulk metal. It is shown that there is complete miscibility between the UN and PuN phases. The variations in the reticular parameters of the samples as a function of temperature and in the presence of oxide have been used to detect and evaluate the solubility of oxygen in the different phases. A study has been made of the sintering of these nitrides as a function of the preparation conditions with or without sintering additives. A favorable but non-reproducible, effect has been found for traces of oxide. The best results were obtained for pure UN at 1600 C (96 per cent theoretical density) on condition that a well defined powder, was used. The criterion used is the integral width of the X-ray diffraction lines. The compounds UN and PuN are completely miscible with the corresponding carbides. This makes it possible to prepare carbide-nitrides of the general formula (U,Pu) (C,N) by solid-phase diffusion, at around 1400 C. The sintering of these carbide-nitrides is similar to that of the carbides if the nitrogen content is low; in particular, nickel is an efficient sintering agent. For high contents, the sintering is similar to that of pure nitrides. (author) [fr

  20. Intragranular Chromium Nitride Precipitates in Duplex and Superduplex Stainless Steel

    OpenAIRE

    Iversen, Torunn Hjulstad

    2012-01-01

    Intragranular chromium nitrides is a phenomenon with detrimental effects on material properties in superduplex stainless steels which have not received much attention. Precipitation of nitrides occurs when the ferritic phase becomes supersaturated with nitrogen and there is insufficient time during cooling for diffusion of nitrogen into austenite. Heat treatment was carried out at between 1060◦C and 1160◦C to study the materials susceptibility to nitride precipitation with...

  1. Corrosion stability of cermets on the base of titanium nitride

    International Nuclear Information System (INIS)

    Kajdash, O.N.; Marinich, M.A.; Kuzenkova, M.A.; Manzheleev, I.V.

    1991-01-01

    Corrosion resistance of titanium nitride and its cermets in 5% of HCl, 7% of HNO 3 , 10% of H 2 SO 4 is studied. It is established that alloys TiN-Ni-Mo alloyed with chromium (from 10 to 15%) possess the highest corrosion resistance. Cermet TiN-Cr has the higher stability than titanium nitride due to formation of binary nitride (Ti, Cr)N

  2. Synthesis of Uranium nitride powders using metal uranium powders

    International Nuclear Information System (INIS)

    Yang, Jae Ho; Kim, Dong Joo; Oh, Jang Soo; Rhee, Young Woo; Kim, Jong Hun; Kim, Keon Sik

    2012-01-01

    Uranium nitride (UN) is a potential fuel material for advanced nuclear reactors because of their high fuel density, high thermal conductivity, high melting temperature, and considerable breeding capability in LWRs. Uranium nitride powders can be fabricated by a carbothermic reduction of the oxide powders, or the nitriding of metal uranium. The carbothermic reduction has an advantage in the production of fine powders. However it has many drawbacks such as an inevitable engagement of impurities, process burden, and difficulties in reusing of expensive N 15 gas. Manufacturing concerns issued in the carbothermic reduction process can be solved by changing the starting materials from oxide powder to metals. However, in nitriding process of metal, it is difficult to obtain fine nitride powders because metal uranium is usually fabricated in the form of bulk ingots. In this study, a simple reaction method was tested to fabricate uranium nitride powders directly from uranium metal powders. We fabricated uranium metal spherical powder and flake using a centrifugal atomization method. The nitride powders were obtained by thermal treating those metal particles under nitrogen containing gas. We investigated the phase and morphology evolutions of powders during the nitriding process. A phase analysis of nitride powders was also a part of the present work

  3. Review of actinide nitride properties with focus on safety aspects

    Energy Technology Data Exchange (ETDEWEB)

    Albiol, Thierry [CEA Cadarache, St Paul Lez Durance Cedex (France); Arai, Yasuo [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2001-12-01

    This report provides a review of the potential advantages of using actinide nitrides as fuels and/or targets for nuclear waste transmutation. Then a summary of available properties of actinide nitrides is given. Results from irradiation experiments are reviewed and safety relevant aspects of nitride fuels are discussed, including design basis accidents (transients) and severe (core disruptive) accidents. Anyway, as rather few safety studies are currently available and as many basic physical data are still missing for some actinide nitrides, complementary studies are proposed. (author)

  4. Research and development of nitride fuel cycle technology in Japan

    International Nuclear Information System (INIS)

    Minato, Kazuo; Arai, Yasuo; Akabori, Mitsuo; Tamaki, Yoshihisa; Itoh, Kunihiro

    2004-01-01

    The research on the nitride fuel was started for an advanced fuel, (U, Pn)N, for fast reactors, and the research activities have been expanded to minor actinide bearing nitride fuels. The fuel fabrication, property measurements, irradiation tests and pyrochemical process experiments have been made. In 2002 a five-year-program named PROMINENT was started for the development of nitride fuel cycle technology within the framework of the Development of Innovative Nuclear Technologies by the Ministry of Education, Culture, Sports, Science and Technology of Japan. In the research program PROMINENT, property measurements, pyrochemical process and irradiation experiments needed for nitride fuel cycle technology are being made. (author)

  5. Development of pseudocapacitive molybdenum oxide–nitride for electrochemical capacitors

    Energy Technology Data Exchange (ETDEWEB)

    Ting, Yen-Jui Bernie [Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario M5S 3E4 (Canada); Wu, Haoran [Department of Materials Science and Engineering, University of Toronto, Toronto, Ontario M5S 3E4 (Canada); Kherani, Nazir P. [Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario M5S 3E4 (Canada); Department of Materials Science and Engineering, University of Toronto, Toronto, Ontario M5S 3E4 (Canada); Lian, Keryn, E-mail: keryn.lian@utoronto.ca [Department of Materials Science and Engineering, University of Toronto, Toronto, Ontario M5S 3E4 (Canada)

    2015-03-15

    A thin film Mo oxide–nitride pseudocapacitive electrode was synthesized by electrodeposition of Mo oxide on Ti and a subsequent low-temperature (400 °C) thermal nitridation. Two nitridation environments, N{sub 2} and NH{sub 3}, were used and the results were compared. Surface analyses of these nitrided films showed partial conversion of Mo oxide to nitrides, with a lower conversion percentage being the film produced in N{sub 2}. However, the electrochemical analyses showed that the surface of the N{sub 2}-treated film had better pseudocapacitive behaviors and outperformed that nitrided in NH{sub 3}. Cycle life of the resultant N{sub 2}-treated Mo oxide–nitride was also much improved over Mo oxide. A two-electrode cell using Mo oxide–nitride electrodes was demonstrated and showed high rate performance. - Highlights: • Mo(O,N){sub x} was developed by electrodeposition and nitridation in N{sub 2} or NH{sub 3}. • N{sub 2} treated Mo(O,N){sub x} showed a capacitive performance superior to that treated by NH{sub 3}. • The promising electrochemical performance was due to the formation of γ-Mo{sub 2}N.

  6. Modeling the Gas Nitriding Process of Low Alloy Steels

    Science.gov (United States)

    Yang, M.; Zimmerman, C.; Donahue, D.; Sisson, R. D.

    2013-07-01

    The effort to simulate the nitriding process has been ongoing for the last 20 years. Most of the work has been done to simulate the nitriding process of pure iron. In the present work a series of experiments have been done to understand the effects of the nitriding process parameters such as the nitriding potential, temperature, and time as well as surface condition on the gas nitriding process for the steels. The compound layer growth model has been developed to simulate the nitriding process of AISI 4140 steel. In this paper the fundamentals of the model are presented and discussed including the kinetics of compound layer growth and the determination of the nitrogen diffusivity in the diffusion zone. The excellent agreements have been achieved for both as-washed and pre-oxided nitrided AISI 4140 between the experimental data and simulation results. The nitrogen diffusivity in the diffusion zone is determined to be constant and only depends on the nitriding temperature, which is ~5 × 10-9 cm2/s at 548 °C. It proves the concept of utilizing the compound layer growth model in other steels. The nitriding process of various steels can thus be modeled and predicted in the future.

  7. Samarium-modified vanadium phosphate catalyst for the selective oxidation of n-butane to maleic anhydride

    International Nuclear Information System (INIS)

    Wu, Hua-Yi; Wang, Hai-Bo; Liu, Xin-Hua; Li, Jian-Hui; Yang, Mei-Hua; Huang, Chuan-Jing; Weng, Wei-Zheng; Wan, Hui-Lin

    2015-01-01

    Graphical abstract: The addition of a small amount of Sm into VPO catalyst brought about great changes in its physicochemical properties such as surface area, surface morphology, phase composition and redox property, thus leading to a higher catalytic performance in the selective oxidation of n-butane to maleic anhydride, as compared to the undoped VPO catalyst. - Highlights: • The addition of Sm leads to great changes in the structure of VPO catalyst. • Sm improves performance of VPO for oxidation of n-butane to maleic anhydride. • Catalytic performance is closely related to structure of VPO catalyst. - Abstract: A series of samarium-modified vanadium phosphate catalysts were prepared and studied in selective oxidation of n-butane to maleic anhydride. The catalytic evaluation showed that Sm modification significantly increased the overall n-butane conversion and intrinsic activity. N 2 -adsorption, XRD, SEM, Raman, XPS, EPR and H 2 -TPR techniques were used to investigate the intrinsic difference among these catalysts. The results revealed that the addition of Sm to VPO catalyst can increase the surface area of the catalyst, lead to a significant change in catalyst morphology from plate-like structure into rosette-shape clusters, and largely promote the formation of (VO) 2 P 2 O 7 . All of these were related to the different catalytic performance of Sm-doped and undoped VPO catalysts. The roles of the different VOPO 4 phases and the influence of Sm were also described and discussed

  8. Study of unstable valences of cadmium and samarium by pulse radiolysis. Influence of complexation by some synthetical ionophores

    International Nuclear Information System (INIS)

    Lerat-Parizot, O.

    1992-01-01

    Instable valences of cations in solution are evidenced by pulse radiolysis, in spite of a lifetime often lower than a milli-second they participate to electron transfer reactions, owing to their redox potential. In this work are studied Cd + and Sm 2+ obtained respectively by reduction of Cd 2+ and Sm 3+ by a solvated electron. The reactivity of Cd + in a cryptand and in a coronand is studied; it is a powerful reducing agent (redox potential -2V) going back to the stable valence by electron transfer to an acceptor. Transfer kinetics is studied by reduction of organic molecules, effect of solvents and ligands is also examined. For samarium the reduction kinetics by hydrated electrons is increased when the ion is in a cryptand in agreement with electrochemical observations, showing that the valence 2+ is stabilized in respect to the valence 3+ for lanthanides. The difference of behaviour between Cd + and Sm 2+ is probably due to the fact that for Cd the transferred electron comes from the external layer and for Sm it is a f electron protected by the 5s and 5p orbitals

  9. Fabrication of samarium strontium aluminate ceramic and deposition of thermal barrier coatings by air plasma spray process

    Directory of Open Access Journals (Sweden)

    Baskaran T

    2018-01-01

    Full Text Available Thermal barrier coatings (TBC with the metallic NiCrAlY bond coat are often used in many aircraft engines to protect superalloy components from high-temperature corrosion thereby to improve the life of gas turbine components. The search for new TBC material has been intensified in recent years due to lack of thermo-physical properties of conventionally used Yttria stabilized Zirconia (YSZ TBCs. Recently, the rare earth containing Samarium Strontium Aluminate (SSA based ceramic was proposed as a new TBC material due to its matching thermo-physical properties with the substrate. The present work focused on the synthesis of SSA ceramics for TBCs application and its coatings development on Ni-based superalloy Inconel 718 substrate by air plasma spray process. The X-ray photoelectron spectroscopy (XPS result confirmed the formation of single phase SSA ceramic after synthesis. The surface morphology of SSA TBCs is mainly composed of melted splats, semi and un-melted particles. The cross-sectional SEM micrographs did not show any spallation at the interface which indicated good mechanical interlocking between the bond coat and ceramic top coat. The Young’s modulus and hardness of SSA TBCs were found to be 80 and 6.1 GPa, respectively. The load-depth curve of SSA TBC showed good elastic recovery about 47 %.

  10. Observation of near infrared and enhanced visible emissions from electroluminescent devices with organo samarium(III) complex

    Energy Technology Data Exchange (ETDEWEB)

    Chu, B [Key Laboratory of the Excited States Process, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 16-Dong NanHu Road, Economic Development Area, Changchun, 130033 (China); Li, W L [Key Laboratory of the Excited States Process, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 16-Dong NanHu Road, Economic Development Area, Changchun, 130033 (China); Hong, Z R [Key Laboratory of the Excited States Process, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 16-Dong NanHu Road, Economic Development Area, Changchun, 130033 (China); Zang, F X [Key Laboratory of the Excited States Process, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 16-Dong NanHu Road, Economic Development Area, Changchun, 130033 (China); Wei, H Z [Key Laboratory of the Excited States Process, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 16-Dong NanHu Road, Economic Development Area, Changchun, 130033 (China); Wang, D Y [Key Laboratory of the Excited States Process, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 16-Dong NanHu Road, Economic Development Area, Changchun, 130033 (China); Li, M T [Key Laboratory of the Excited States Process, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 16-Dong NanHu Road, Economic Development Area, Changchun, 130033 (China); Lee, C S [Department of Physics and Materials Science, City University of Hong Kong, Hong Kong (China); Lee, S T [Department of Physics and Materials Science, City University of Hong Kong, Hong Kong (China)

    2006-11-07

    Samarium (dibenzoylmethanato){sub 3} bathophenanthroline (Sm(DBM){sub 3} bath) was employed as an emitting and electron transport layer in organic light emitting diodes (OLEDs), and narrow electroluminescent (EL) emissions of a Sm{sup 3+} ion were observed in the visible and near infrared (NIR) region, differing from those of the same devices with Eu{sup 3+}- or Tb{sup 3+}-complex EL devices with the same structure. The EL emissions of the Sm{sup 3+}-devices originate from transitions from {sup 4}G{sub 5/2} to the lower respective levels of Sm{sup 3+} ions. A maximum luminance of 490 cd m{sup -2} at 15 V and an EL efficiency of 0.6% at 0.17 mA cm{sup -2} were obtained in the visible region, and the improved efficiency should be attributed to introducing a transitional layer between the N,N'-diphenyl-N,N'-bis(3-methylphenyl)-1,1'-diphenyl-4,4'-diamine (TPD) film and the Sm(DBM){sub 3} bath film and the avoidance of interfacial exciplex emission in devices. Sharp emissions of Sm{sup 3+} ions in the NIR region were also observed under a lower threshold value less than 4.5 V.

  11. Effects of increasing doses of samarium-153-ethylenediaminetetramethylene phosphonate on axial and appendicular skeletal growth in juvenile rabbits

    International Nuclear Information System (INIS)

    Essman, Stephanie C.; Lewis, Michael R.; Fox, Derek B.

    2008-01-01

    Introduction: Targeted radiotherapy using samarium-153-ethylenediaminetetramethylene phosphonate ( 153 Sm-EDTMP) is currently under investigation for treatment of osteosarcoma. Osteosarcoma often occurs in children, and previous studies on a juvenile rabbit model demonstrated that clinically significant damage to developing physeal cartilage may occur as a result of systemic 153 Sm-EDTMP therapy. The aim of this study was to evaluate the late effects of 153 Sm-EDTMP on skeletal structures during growth to maturity and to determine if there is a dose response of 153 Sm-EDTMP on growth of long bones. Methods: Female 8-week-old New Zealand white rabbits were divided into three treatment groups plus controls. Each rabbit was intravenously administered a predetermined dose of 153 Sm-EDTMP. Multiple bones of each rabbit were radiographed every 2 months until physeal closure, with subsequent measurements made to assess for abbreviated bone growth. Statistical analyses were performed to determine the differences in bone length between groups, with significance set at P 153 Sm-EDTMP. Further investigation regarding the effects of bone-seeking radiopharmaceuticals on bone growth and physeal cartilage is warranted

  12. Synthesis and characterization of samarium-doped ZnS nanoparticles: A novel visible light responsive photocatalyst

    Energy Technology Data Exchange (ETDEWEB)

    Hanifehpour, Younes, E-mail: y_hanifehpour@yu.ac.kr [School of Mechanical Engineering, Yeungnam University, Gyeongsan 712-749 (Korea, Republic of); Soltani, Behzad; Amani-Ghadim, Ali Reza; Hedayati, Behnam [Department of Chemistry, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz (Iran, Islamic Republic of); Khomami, Bamin [Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996 (United States); Joo, Sang Woo, E-mail: swjoo1@gmail.com [School of Mechanical Engineering, Yeungnam University, Gyeongsan 712-749 (Korea, Republic of)

    2016-04-15

    Highlights: • Sm-doped ZnS Nanomaterials were synthesized by hydrothermal method. • The as-prepared compounds were characterized by XRD, TEM, XPS, SEM and UV techniques. • The photocatalytic effect of compounds was determined by Reactive Red 43 degradation. • The degradation of RRed 43 followed the Langmuir–Hinshelwood kinetic model. - Abstract: We prepared pure and samarium-doped ZnS (Sm{sub x}Zn{sub 1−x}S{sub 1+0.5x}) nanoparticles via hydrothermal process at 160 °C for 24 h. XRD analysis shows that the particles were well crystallized and corresponds to a cubic sphalerite phase. SEM and TEM images indicate that the sizes of the particles were in the range of 20–60 nm. The photocatalytic activity of Sm-doped ZnS nanoparticles was evaluated by monitoring the decolorization of Reactive Red 43 in aqueous solution under visible light irradiation. The color removal efficiency of Sm{sub 0.04}Zn{sub 0.96}S and pure ZnS was 95.1% and 28.7% after 120 min of treatment, respectively. Among the different amounts of dopant agent used, 4% Sm-doped ZnS nanoparticles indicated the highest decolorization. We found that the presence of inorganic ions such as Cl{sup −}, CO{sub 3}{sup 2−} and other radical scavengers such as buthanol and isopropyl alcohol reduced the decolorization efficiency.

  13. Determination of the speciation and bioavailability of samarium to Chlamydomonas reinhardtii in the presence of natural organic matter.

    Science.gov (United States)

    Rowell, Justine-Anne; Fillion, Marc-Alexandre; Smith, Scott; Wilkinson, Kevin J

    2018-06-01

    As technological interest and environmental emissions of the rare earth elements increase, it is becoming more important to assess their potential environmental impact. Samarium (Sm) is a lanthanide of intermediate molar mass that is used in numerous high-technology applications including wind turbines, solar panels, and electric vehicles. The present study relates the speciation of Sm determined in the presence of natural organic matter (NOM) to its bioavailability to the unicellular green alga Chlamydomonas reinhardtii. The free ion concentration was determined using a cation exchange resin (ion exchange technique) in dynamic mode and compared with thermodynamic modeling. Short-term biouptake experiments were performed in the presence of 4 types of NOM: Suwannee River fulvic acids, Pahokee Peat fulvic acids, Suwannee River humic acids, and a Luther Marsh dissolved organic matter isolate (90-95% humic acids). It was clearly shown that even a small amount of NOM (0.5 mg C L -1 ) resulted in a significant decrease (10 times) in the Sm internalization fluxes. Furthermore, complexation with humic acids (and the corresponding reduction in Sm bioavailability) was stronger than that with fulvic acids. The results showed that the experimentally measured (free) Sm was a better predictor of Sm internalization than either the total concentrations or the free ion concentrations obtained using thermodynamic modeling. Environ Toxicol Chem 2018;37:1623-1631. © 2018 SETAC. © 2018 SETAC.

  14. Atomic-layer deposition of silicon nitride

    CERN Document Server

    Yokoyama, S; Ooba, K

    1999-01-01

    Atomic-layer deposition (ALD) of silicon nitride has been investigated by means of plasma ALD in which a NH sub 3 plasma is used, catalytic ALD in which NH sub 3 is dissociated by thermal catalytic reaction on a W filament, and temperature-controlled ALD in which only a thermal reaction on the substrate is employed. The NH sub 3 and the silicon source gases (SiH sub 2 Cl sub 2 or SiCl sub 4) were alternately supplied. For all these methods, the film thickness per cycle was saturated at a certain value for a wide range of deposition conditions. In the catalytic ALD, the selective deposition of silicon nitride on hydrogen-terminated Si was achieved, but, it was limited to only a thin (2SiO (evaporative).

  15. Boron nitride encapsulated graphene infrared emitters

    International Nuclear Information System (INIS)

    Barnard, H. R.; Zossimova, E.; Mahlmeister, N. H.; Lawton, L. M.; Luxmoore, I. J.; Nash, G. R.

    2016-01-01

    The spatial and spectral characteristics of mid-infrared thermal emission from devices containing a large area multilayer graphene layer, encapsulated using hexagonal boron nitride, have been investigated. The devices were run continuously in air for over 1000 h, with the emission spectrum covering the absorption bands of many important gases. An approximate solution to the heat equation was used to simulate the measured emission profile across the devices yielding an estimated value of the characteristic length, which defines the exponential rise/fall of the temperature profile across the device, of 40 μm. This is much larger than values obtained in smaller exfoliated graphene devices and reflects the device geometry, and the increase in lateral heat conduction within the devices due to the multilayer graphene and boron nitride layers.

  16. Boron nitride encapsulated graphene infrared emitters

    Energy Technology Data Exchange (ETDEWEB)

    Barnard, H. R.; Zossimova, E.; Mahlmeister, N. H.; Lawton, L. M.; Luxmoore, I. J.; Nash, G. R., E-mail: g.r.nash@exeter.ac.uk [College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter EX4 4QF (United Kingdom)

    2016-03-28

    The spatial and spectral characteristics of mid-infrared thermal emission from devices containing a large area multilayer graphene layer, encapsulated using hexagonal boron nitride, have been investigated. The devices were run continuously in air for over 1000 h, with the emission spectrum covering the absorption bands of many important gases. An approximate solution to the heat equation was used to simulate the measured emission profile across the devices yielding an estimated value of the characteristic length, which defines the exponential rise/fall of the temperature profile across the device, of 40 μm. This is much larger than values obtained in smaller exfoliated graphene devices and reflects the device geometry, and the increase in lateral heat conduction within the devices due to the multilayer graphene and boron nitride layers.

  17. Nitridation of vanadium by ion beam irradiation

    International Nuclear Information System (INIS)

    Kiuchi, Masato; Chayahara, Akiyoshi; Kinomura, Atsushi; Ensinger, Wolfgang

    1994-01-01

    The nitridation of vanadium by ion beam irradiation is studied by the ion implantation method and the dynamic mixing method. The nitrogen ion implantation was carried out into deposited V(110) films. Using both methods, three phases are formed, i.e. α-V, β-V 2 N, and δ-VN. Which phases are formed is related to the implantation dose or the arrival ratio. The orientation of the VN films produced by the dynamic ion beam mixing method is (100) and that of the VN films produced by the ion implantation method is (111). The nitridation of vanadium is also discussed in comparison with that of titanium and chromium. ((orig.))

  18. Gallium Nitride Crystals: Novel Supercapacitor Electrode Materials.

    Science.gov (United States)

    Wang, Shouzhi; Zhang, Lei; Sun, Changlong; Shao, Yongliang; Wu, Yongzhong; Lv, Jiaxin; Hao, Xiaopeng

    2016-05-01

    A type of single-crystal gallium nitride mesoporous membrane is fabricated and its supercapacitor properties are demonstrated for the first time. The supercapacitors exhibit high-rate capability, stable cycling life at high rates, and ultrahigh power density. This study may expand the range of crystals as high-performance electrode materials in the field of energy storage. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Silicon Nitride Antireflection Coatings for Photovoltaic Cells

    Science.gov (United States)

    Johnson, C.; Wydeven, T.; Donohoe, K.

    1984-01-01

    Chemical-vapor deposition adapted to yield graded index of refraction. Silicon nitride deposited in layers, refractive index of which decreases with distance away from cell/coating interface. Changing index of refraction allows adjustment of spectral transmittance for wavelengths which cell is most effective at converting light to electric current. Average conversion efficiency of solar cells increased from 8.84 percent to 12.63 percent.

  20. Nanopillar arrays of amorphous carbon nitride

    Science.gov (United States)

    Sai Krishna, Katla; Pavan Kumar, B. V. V. S.; Eswaramoorthy, Muthusamy

    2011-07-01

    Nanopillar arrays of amorphous carbon nitride have been prepared using anodic aluminum oxide (AAO) membrane as a template. The amine groups present on the surface of these nanopillars were exploited for functionalization with oleic acid in order to stabilize the nanostructure at the aqueous-organic interface and also for the immobilization of metal nanoparticles and protein. These immobilised nanoparticles were found to have good catalytic activity.

  1. Bonding silicon nitride using glass-ceramic

    International Nuclear Information System (INIS)

    Dobedoe, R.S.

    1995-01-01

    Silicon nitride has been successfully bonded to itself using magnesium-aluminosilicate glass and glass-ceramic. For some samples, bonding was achieved using a diffusion bonder, but in other instances, following an initial degassing hold, higher temperatures were used in a nitrogen atmosphere with no applied load. For diffusion bonding, a small applied pressure at a temperature below which crystallisation occurs resulted in intimate contact. At slightly higher temperatures, the extent of the reaction at the interface and the microstructure of the glass-ceramic joint was highly sensitive to the bonding temperature. Bonding in a nitrogen atmosphere resulted in a solution-reprecipitation reaction. A thin layer of glass produced a ''dry'', glass-free joint, whilst a thicker layer resulted in a continuous glassy join across the interface. The chromium silicide impurities within the silicon nitride react with the nucleating agent in the glass ceramic, which may lead to difficulty in producing a fine glass-ceramic microstructure. Slightly lower temperatures in nitrogen resulted in a polycrystalline join but the interfacial contact was poor. It is hoped that one of the bonds produced may be developed to eventually form part of a graded joint between silicon nitride and a high temperature nickel alloy. (orig.)

  2. Ion-nitriding of austenitic stainless steels

    International Nuclear Information System (INIS)

    Pacheco, O.; Hertz, D.; Lebrun, J.P.; Michel, H.

    1995-01-01

    Although ion-nitriding is an extensively industrialized process enabling steel surfaces to be hardened by nitrogen diffusion, with a resulting increase in wear, seizure and fatigue resistance, its direct application to stainless steels, while enhancing their mechanical properties, also causes a marked degradation in their oxidation resistance. However, by adaption of the nitriding process, it is possible to maintain the improved wear resistant properties while retaining the oxidation resistance of the stainless steel. The controlled diffusion permits the growth of a nitrogen supersaturated austenite layer on parts made of stainless steel (AISI 304L and 316L) without chromium nitride precipitation. The diffusion layer remains stable during post heat treatments up to 650 F for 5,000 hrs and maintains a hardness of 900 HV. A very low and stable friction coefficient is achieved which provides good wear resistance against stainless steels under diverse conditions. Electrochemical and chemical tests in various media confirm the preservation of the stainless steel characteristics. An example of the application of this process is the treatment of Reactor Control Rod Cluster Assemblies (RCCAs) for Pressurized Water Nuclear Reactors

  3. Thermodynamics of silicon nitridation - Effect of hydrogen

    Science.gov (United States)

    Shaw, N. J.; Zeleznik, F. J.

    1982-01-01

    Equilibrium compositions for the nitridization of Si were calculated to detect the effectiveness of H2 in removal of the oxide film and in increasing the concentration of SiO and reducing the proportions of O2. Gibbs free energy for the formation of SiN2O was computed above 1685 K, and at lower temperatures. The thermodynamic properties of SiN2O2 were then considered from 1000-3000 K, taking into account the known thermodynamic data for 39 molecular combinations of the Si, Ni, and O. The gases formed were assumed ideal mixtures with pure phase condensed species. The mole fractions were obtained for a system of SiO2 with each Si particle covered with a thin layer of SiO2 before nitridation, and a system in which the nitriding atmosphere had access to the Si. The presence of H2 was determined to enhance the removal of NiO2 in the first system, decrease the partial pressure of O2, increase the partial pressures of SiO, Si, H2O, NH3, and SiH4, while its effects were negligible in the Si system.

  4. RF plasma nitriding of severely deformed iron-based alloys

    International Nuclear Information System (INIS)

    Ferkel, H.; Glatzer, M.; Estrin, Y.; Valiev, R.Z.; Blawert, C.; Mordike, B.L.

    2003-01-01

    The effect of severe plastic deformation by cold high pressure torsion (HPT) on radio frequency (RF) plasma nitriding of pure iron, as well as St2K50 and X5CrNi1810 steels was investigated. Nitriding was carried out for 3 h in a nitrogen atmosphere at a pressure of 10 -5 bar and temperatures of 350 and 400 deg. C. Nitrided specimens were analysed by scanning electron microscopy (SEM), X-ray diffraction and micro hardness measurements. It was found that HPT enhances the effect of nitriding leading almost to doubling of the thickness of the nitrided layer for pure iron and the high alloyed steel. The largest increase in hardness was observed when HPT was combined with RF plasma nitriding at 350 deg. C. In the case of pure iron, the X-ray diffraction spectra showed the formation of ε and γ' nitrides in the compound layer, with a preferential formation of γ' at the expense of the α-phase at the higher nitriding temperature. The corresponding surface hardness was up to 950 HV0.01. While the HPT-processed St2K50 exhibits both nitride phases after nitriding at 350 deg. C, only the γ'-phase was observed after nitriding at 400 deg. C. A surface hardness of up to 1050 HV0.01 was measured for this steel. The high alloyed steel X5CrNi1810 exhibited the highest increase in surface hardness when HPT was combined with nitriding at 350 deg. C. The surface hardness of this steel was greater than 1400 HV0.025. The XRD analyses indicate the formation of the expanded austenite (S-phase) in the surface layer as a result of RF plasma nitriding. Furthermore, after HPT X5CrNi1810 was transformed completely into deformation martensite which did not transform back to austenite under thermochemical treatment. However, in the case of nitriding of the HPT-processed high alloyed steel at 400 deg. C, the formation of the S-phase was less pronounced. In view of the observed XRD peak broadening, the formation of nitrides, such as e.g. CrN, cannot be ruled out

  5. Plasma nitriding - an eco friendly surface hardening process

    International Nuclear Information System (INIS)

    Mukherjee, S.

    2015-01-01

    Surface hardening is a process of heating the metal such that the surface gets only hardened. This process is adopted for many components like gears, cams, and crankshafts, which desire high hardness on the outer surface with a softer core to withstand the shocks. So, to attain such properties processes like carburising, nitriding, flame hardening and induction hardening are employed. Amongst these processes nitriding is the most commonly used process by many industries. In nitriding process the steel material is heated to a temperature of around 550 C and then exposed to atomic nitrogen. This atomic nitrogen reacts with iron and other alloying elements and forms nitrides, which are very hard in nature. By this process both wear resistance and hardness of the product can be increased. The atomic nitrogen required for this process can be obtained using ammonia gas (gas nitriding), cyanide based salt bath (liquid nitriding) and plasma medium (plasma nitriding). However, plasma nitriding has recently received considerable industrial interest owing to its characteristic of faster nitrogen penetration, short treatment time, low process temperature, minimal distortion, low energy use and easier control of layer formation compared with conventional techniques such as gas and liquid nitriding. This process can be used for all ferrous materials including stainless steels. Plasma nitriding is carried out using a gas mixture of nitrogen and hydrogen gas at sub atmospheric pressures hence, making it eco-friendly in nature. Plasma nitriding allows modification of the surface layers and hardness profiles by changing the gas mixture and temperature. The wide applicable temperature range enables a multitude of applications, beyond the possibilities of gas or salt bath processes. This has led to numerous applications of this process in industries such as the manufacture of machine parts for plastics and food processing, packaging and tooling as well as pumps and hydraulic, machine

  6. Fabrication of a PVC membrane samarium(III) sensor based on N,N Prime ,N Double-Prime -tris(4-pyridyl)trimesic amide as a selectophore

    Energy Technology Data Exchange (ETDEWEB)

    Zamani, Hassan Ali, E-mail: haszamani@yahoo.com [Department of Applied Chemistry, Mashhad Branch, Islamic Azad University, Mashhad (Iran, Islamic Republic of); Naghavi-Reyabbi, Fatemeh [Resident of General Surgery, Endoscopic and Minimaly Invasive Surgery Research Center, Ghaem Hospital, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad (Iran, Islamic Republic of); Faridbod, Farnoush [Center of Excellence in Electrochemistry, Faculty of Chemistry, University of Tehran, Tehran (Iran, Islamic Republic of); Mohammadhosseini, Majid [Department of Chemistry, Faculty of Basic Sciences, Shahrood Branch, Islamic Azad University, Shahrood (Iran, Islamic Republic of); Ganjali, Mohammad Reza [Center of Excellence in Electrochemistry, Faculty of Chemistry, University of Tehran, Tehran (Iran, Islamic Republic of); Tadjarodi, Azadeh; Rad, Maryam [Department of Chemistry, Iran University of Science and Technology, Tehran (Iran, Islamic Republic of)

    2013-03-01

    A new ion-selective electrode for Sm{sup 3+} ion is described based on the incorporation of N,N Prime ,N Double-Prime -tris(4-pyridyl)trimesic amide (TPTA) in a poly(vinylchloride) (PVC) matrix. The membrane sensor comprises nitrobenzene (NB) as a plasticizer, and oleic acid (OA) as an anionic additive. The sensor with the optimized composition shows a Nernstian potential response of 19.8 {+-} 0.5 mV decade{sup -1} over a wide concentration range of 1.0 Multiplication-Sign 10{sup -2} and 1 Multiplication-Sign 10{sup -6} mol L{sup -1}, with a lower detection limit of 4.7 Multiplication-Sign 10{sup -7} mol L{sup -1} and satisfactor applicable pH range of 3.6-9.2. Having a short response time of less than 10 s and a very good selectivity towards the Sm{sup 3+} over a wide variety of interfering cations (e.g. alkali, alkaline earth, transition and heavy metal ions) the sensor seemed to be a promising analytical tool for determination of the Sm{sup 3+}. Hence, it was used as an indicator electrode in the potentiometric titration of samarium ion with EDTA. It was also applied to the direct samarium recovery in binary mixtures. - Highlights: Black-Right-Pointing-Pointer A new Sm{sup 3+}-PVC membrane sensor is introduced for determination of Sm{sup 3+} ions in the solutions. Black-Right-Pointing-Pointer N,N Prime ,N Double-Prime -tris(4-pyridyl)trimesic amide was used as a suitable selectophore for samarium sensor. Black-Right-Pointing-Pointer Detection limit of the sensor is 4.7 Multiplication-Sign 10{sup -7} mol L{sup -1} with a short response time of less than 10 s.

  7. Fabrication of a PVC membrane samarium(III) sensor based on N,N′,N″-tris(4-pyridyl)trimesic amide as a selectophore

    International Nuclear Information System (INIS)

    Zamani, Hassan Ali; Naghavi-Reyabbi, Fatemeh; Faridbod, Farnoush; Mohammadhosseini, Majid; Ganjali, Mohammad Reza; Tadjarodi, Azadeh; Rad, Maryam

    2013-01-01

    A new ion-selective electrode for Sm 3+ ion is described based on the incorporation of N,N′,N″-tris(4-pyridyl)trimesic amide (TPTA) in a poly(vinylchloride) (PVC) matrix. The membrane sensor comprises nitrobenzene (NB) as a plasticizer, and oleic acid (OA) as an anionic additive. The sensor with the optimized composition shows a Nernstian potential response of 19.8 ± 0.5 mV decade −1 over a wide concentration range of 1.0 × 10 −2 and 1 × 10 −6 mol L −1 , with a lower detection limit of 4.7 × 10 −7 mol L −1 and satisfactor applicable pH range of 3.6–9.2. Having a short response time of less than 10 s and a very good selectivity towards the Sm 3+ over a wide variety of interfering cations (e.g. alkali, alkaline earth, transition and heavy metal ions) the sensor seemed to be a promising analytical tool for determination of the Sm 3+ . Hence, it was used as an indicator electrode in the potentiometric titration of samarium ion with EDTA. It was also applied to the direct samarium recovery in binary mixtures. - Highlights: ► A new Sm 3+ -PVC membrane sensor is introduced for determination of Sm 3+ ions in the solutions. ► N,N′,N″-tris(4-pyridyl)trimesic amide was used as a suitable selectophore for samarium sensor. ► Detection limit of the sensor is 4.7 × 10 −7 mol L −1 with a short response time of less than 10 s.

  8. 77 FR 51825 - Ferrovanadium and Nitrided Vanadium From Russia

    Science.gov (United States)

    2012-08-27

    ... Nitrided Vanadium From Russia Determination On the basis of the record \\1\\ developed in the subject five... order on ferrovanadium and nitrided vanadium from Russia would not be likely to lead to continuation or recurrence of material injury to an industry in the United States within a reasonably foreseeable time. \\1...

  9. Fabrication of functional structures on thin silicon nitride membranes

    NARCIS (Netherlands)

    Ekkels, P.; Tjerkstra, R.W.; Krijnen, Gijsbertus J.M.; Berenschot, Johan W.; Brugger, J.P.; Elwenspoek, Michael Curt

    A process to fabricate functional polysilicon structures above large (4×4 mm2) thin (200 nm), very flat LPCVD silicon rich nitride membranes was developed. Key features of this fabrication process are the use of low-stress LPCVD silicon nitride, sacrificial layer etching, and minimization of

  10. Process for producing ceramic nitrides anc carbonitrides and their precursors

    Science.gov (United States)

    Brown, G.M.; Maya, L.

    1987-02-25

    A process for preparing ceramic nitrides and carbon nitrides in the form of very pure, fine particulate powder. Appropriate precursors is prepared by reaching a transition metal alkylamide with ammonia to produce a mixture of metal amide and metal imide in the form of an easily pyrolyzable precipitate.

  11. The theoretical basis and clinical methodology for stereotactic interstitial brain tumor irradiation using iododeoxyuridine as a radiation sensitizer and samarium-145 as a brachytherapy source

    International Nuclear Information System (INIS)

    Goodman, J.H.; Gahbauer, R.A.; Kanellitsas, C.; Clendenon, N.R.; Laster, B.H.; Fairchild, R.G.

    1989-01-01

    High grade astrocytomas have proven resistant to all conventional therapy. A technique to produce radiation enhancement during interstitial brain tumor irradiation by using a radiation sensitizer (IdUrd) and by stimulation of Auger electron cascades through absorption of low energy photons in iodine (Photon activation) is described. Clinical studies using IdUrd, 192 Ir as a brachytherapy source, and external radiation have produced promising results. Substituting samarium-145 for 192 Ir in this protocol is expected to produce enhanced results. 15 refs

  12. The properties of samarium-doped zinc oxide/phthalocyanine structure for optoelectronics prepared by pulsed laser deposition and organic molecular evaporation

    Czech Academy of Sciences Publication Activity Database

    Novotný, Michal; Marešová, Eva; Fitl, Přemysl; Vlček, Jan; Bergmann, M.; Vondráček, Martin; Yatskiv, Roman; Bulíř, Jiří; Hubík, Pavel; Hruška, Petr; Drahokoupil, Jan; Abdellaoui, N.; Vrňata, M.; Lančok, Ján

    2016-01-01

    Roč. 122, č. 3 (2016), 1-8, č. článku 225. ISSN 0947-8396 R&D Projects: GA MŠk(CZ) LG15050; GA ČR(CZ) GAP108/11/0958; GA MŠk(CZ) LM2011029; GA ČR(CZ) GA14-10279S; GA MŠk(CZ) 7AMB14FR010 Institutional support: RVO:68378271 ; RVO:67985882 Keywords : samarium-doped zinc oxide zinc/phthalocyanine deposition * evaporation * pulsed laser deposition * thin films Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.455, year: 2016

  13. Low Temperature Gaseous Nitriding of a Stainless Steel Containing Strong Nitride Formers

    DEFF Research Database (Denmark)

    Fernandes, Frederico Augusto Pires; Christiansen, Thomas Lundin; Somers, Marcel A. J.

    Low temperature thermochemical surface hardening of the precipitation hardening austenitic stainless steel A286 in solution treated state was investigated. A286 contains, besides high amounts of Cr, also substantial amounts of strong nitride formers as Ti, Al and V. It is shown that simultaneous...

  14. Problems and possibilities of development of boron nitride ceramics

    International Nuclear Information System (INIS)

    Rusanova, L.N.; Romashin, A.G.; Kulikova, G.I.; Golubeva, O.P.

    1988-01-01

    The modern state of developments in the field of technology of ceramics produced from boron nitride is analyzed. Substantial difficulties in production of pure ceramics from hexagonal and wurtzite-like boron nitride are stated as related to the structure peculiarities and inhomogeneity of chemical bonds in elementary crystal cells of various modifications. Advantages and disadvantages of familiar technological procedures in production of boron nitride ceramics are compared. A new technology is suggested, which is based on the use of electroorganic compounds for hardening and protection of porous high-purity boron-nitride die from oxidation, and as high-efficient sintered elements for treatment of powders of various structures and further pyrolisis. The method is called thermal molecular lacing (TML). Properties of ceramics produced by the TML method are compared with characteristics of well-known brands of boron nitride ceramics

  15. Electrochemical behavior of rare earth metals and their nitrides

    International Nuclear Information System (INIS)

    Ito, Yasuhiko; Goto, Takuya

    2004-01-01

    Pyrometallurgical recycle process using molten salts is considered to be a high potential in pyro-reprocess technologies for spent nitride fuels, and it is important to understand chemical and electro-chemical behavior of nitrides and metals in molten salts. In this study, cadmium nitrates deposited on the anode Cd plate in motlen salt (LiCl-KCl) with addition of Li 3 N are examined. The cadmium nitrates deposited have various compositions corresponding to polarization potentials and then, the relationship between the deposition potential of nitride Cd and their composition is cleared. Their standard chemical potential of CdN is estimated from electrochemical measurement. And then, potential-pH 3- diagram is drawn by voltametry examination of nitride resolution behavior with using thermochemical data of nitrides. (A. Hishinuma)

  16. Exploring electrolyte preference of vanadium nitride supercapacitor electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Bo; Chen, Zhaohui; Lu, Gang [Department of Electrical Engineering and Automation, Luoyang Institute of Science and Technology, Luoyang 471023 (China); Wang, Tianhu [School of Electrical Information and Engineering, Jiangsu University of Technology, Changzhou 213001 (China); Ge, Yunwang, E-mail: ywgelit@126.com [Department of Electrical Engineering and Automation, Luoyang Institute of Science and Technology, Luoyang 471023 (China)

    2016-04-15

    Highlights: • Hierarchical VN nanostructures were prepared on graphite foam. • Electrolyte preference of VN supercapacitor electrodes was explored. • VN showed better capacitive property in organic and alkaline electrolytes than LiCl. - Abstract: Vanadium nitride hierarchical nanostructures were prepared through an ammonia annealing procedure utilizing vanadium pentoxide nanostructures grown on graphite foam. The electrochemical properties of hierarchical vanadium nitride was tested in aqueous and organic electrolytes. As a result, the vanadium nitride showed better capacitive energy storage property in organic and alkaline electrolytes. This work provides insight into the charge storage process of vanadium nitride and our findings can shed light on other transition metal nitride-based electrochemical energy storage systems.

  17. Additive Manufacturing of Dense Hexagonal Boron Nitride Objects

    Energy Technology Data Exchange (ETDEWEB)

    Marquez Rossy, Andres E [ORNL; Armstrong, Beth L [ORNL; Elliott, Amy M [ORNL; Lara-Curzio, Edgar [ORNL

    2017-05-12

    The feasibility of manufacturing hexagonal boron nitride objects via additive manufacturing techniques was investigated. It was demonstrated that it is possible to hot-extrude thermoplastic filaments containing uniformly distributed boron nitride particles with a volume concentration as high as 60% and that these thermoplastic filaments can be used as feedstock for 3D-printing objects using a fused deposition system. Objects 3D-printed by fused deposition were subsequently sintered at high temperature to obtain dense ceramic products. In a parallel study the behavior of hexagonal boron nitride in aqueous solutions was investigated. It was shown that the addition of a cationic dispersant to an azeotrope enabled the formulation of slurries with a volume concentration of boron nitride as high as 33%. Although these slurries exhibited complex rheological behavior, the results from this study are encouraging and provide a pathway for manufacturing hexagonal boron nitride objects via robocasting.

  18. The Effect of Polymer Char on Nitridation Kinetics of Silicon

    Science.gov (United States)

    Chan, Rickmond C.; Bhatt, Ramakrishna T.

    1994-01-01

    Effects of polymer char on nitridation kinetics of attrition milled silicon powder have been investigated from 1200 to 1350 C. Results indicate that at and above 1250 C, the silicon compacts containing 3.5 wt percent polymer char were fully converted to Si3N4 after 24 hr exposure in nitrogen. In contrast, the silicon compacts without polymer char could not be fully converted to Si3N4 at 1350 C under similar exposure conditions. At 1250 and 1350 C, the silicon compacts with polymer char showed faster nitridation kinetics than those without the polymer char. As the polymer char content is increased, the amount of SiC in the nitrided material is also increased. By adding small amounts (approx. 2.5 wt percent) of NiO, the silicon compacts containing polymer char can be completely nitrided at 1200 C. The probable mechanism for the accelerated nitridation of silicon containing polymer char is discussed.

  19. Effects of increasing doses of samarium-153-ethylenediaminetetramethylene phosphonate on axial and appendicular skeletal growth in juvenile rabbits

    Energy Technology Data Exchange (ETDEWEB)

    Essman, Stephanie C. [Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri-Columbia, Columbia, MO 65211 (United States)], E-mail: essmans@missouri.edu; Lewis, Michael R. [Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri-Columbia, Columbia, MO 65211 (United States); Department of Radiology, University of Missouri-Columbia, Columbia, MO 65211 (United States); Nuclear Science and Engineering Institute, University of Missouri-Columbia, Columbia, MO 65211 (United States); Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, MO 65201 (United States); Fox, Derek B. [Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri-Columbia, Columbia, MO 65211 (United States)

    2008-02-15

    Introduction: Targeted radiotherapy using samarium-153-ethylenediaminetetramethylene phosphonate ({sup 153}Sm-EDTMP) is currently under investigation for treatment of osteosarcoma. Osteosarcoma often occurs in children, and previous studies on a juvenile rabbit model demonstrated that clinically significant damage to developing physeal cartilage may occur as a result of systemic {sup 153}Sm-EDTMP therapy. The aim of this study was to evaluate the late effects of {sup 153}Sm-EDTMP on skeletal structures during growth to maturity and to determine if there is a dose response of {sup 153}Sm-EDTMP on growth of long bones. Methods: Female 8-week-old New Zealand white rabbits were divided into three treatment groups plus controls. Each rabbit was intravenously administered a predetermined dose of {sup 153}Sm-EDTMP. Multiple bones of each rabbit were radiographed every 2 months until physeal closure, with subsequent measurements made to assess for abbreviated bone growth. Statistical analyses were performed to determine the differences in bone length between groups, with significance set at P<.05. Results: Significant differences in lengths of multiple bones were detected between the high-dose group and other treatment groups and controls at each time interval. A significant difference in lengths of the tibias was also noted in the medium-treatment group, compared to controls. Mean reduction of bone length was first detected at 4 months and did not increase significantly over time. Conclusions: These data suggest that clinically significant bone shortening may occur as a result of high-dosage administration of {sup 153}Sm-EDTMP. Further investigation regarding the effects of bone-seeking radiopharmaceuticals on bone growth and physeal cartilage is warranted.

  20. Effect of samarium (Sm) addition on the microstructures and mechanical properties of Al–7Si–0.7Mg alloys

    International Nuclear Information System (INIS)

    Qiu, Hongxu; Yan, Hong; Hu, Zhi

    2013-01-01

    Highlights: •Sm affected the secondary dendrite arm spacing of Al–7Si–0.7Mg alloy. •The coarse plate-like eutectic silicon was fully modified into a fine branched and particle structure when 0.6 wt.% Sm added. •The tensile properties were enhanced by the addition of Sm. •Sm has marked effects on eutectic temperature and the latent heat ΔH R on remelting behavior. •The morphology and chemical composition of Sm-rich intermetallics were studied. -- Abstract: The effects of samarium (Sm) additions (0–0.9 wt.%) on the microstructures and mechanical properties of Al–7Si–0.7Mg alloys have been studied in this article. The microstructures of the as-cast samples were examined by optical microscopy (OM) and scanning electron microscopy (SEM). The experimental results indicated that the rare earth Sm affected the secondary dendrite arm spacing (SDAS) of Al–7Si–0.7Mg alloy. And it was found that Sm had great modification effects on the microstructures of eutectic silicon. When 0.6 wt.% Sm was added to the alloy, the coarse plate-like eutectic silicon was fully modified into a fine fibrous structure; the dendrites of Al–7Si–0.7Mg alloy was best refined. The mechanical properties were investigated by tensile test. The findings indicate that the tensile properties and elongation were improved by the addition of Sm. And a good combination of ultimate tensile strength (215 MPa) and elongation (3.3%) was obtained when the Sm addition was up to 0.6 wt.%. Furthermore the results of thermal analysis reveal that Sm addition had marked effects on eutectic temperature and the latent heat ΔH R on remelting behavior

  1. Radiofrequency cold plasma nitrided carbon steel: Microstructural and micromechanical characterizations

    International Nuclear Information System (INIS)

    Bouanis, F.Z.; Bentiss, F.; Bellayer, S.; Vogt, J.B.; Jama, C.

    2011-01-01

    Highlights: → C38 carbon steel samples were plasma nitrided using a radiofrequency (rf) nitrogen plasma discharge. → RF plasma treatment enables nitriding for non-heated substrates. → The morphological and chemical analyses show the formation of a uniform thickness on the surface of the nitrided C38 steel. → Nitrogen plasma active species diffuse into the samples and lead to the formation of Fe x N. → The increase in microhardness values for nitrided samples with plasma processing time is interpreted by the formation of a thicker nitrided layer on the steel surface. - Abstract: In this work, C38 carbon steel was plasma nitrided using a radiofrequency (rf) nitrogen plasma discharge on non-heated substrates. General characterizations were performed to compare the chemical compositions, the microstructures and hardness of the untreated and plasma treated surfaces. The plasma nitriding was carried out on non-heated substrates at a pressure of 16.8 Pa, using N 2 gas. Surface characterizations before and after N 2 plasma treatment were performed by means of the electron probe microanalysis (EPMA), X-ray photoelectron spectroscopy (XPS) and Vickers microhardness measurements. The morphological and chemical analysis showed the formation of a uniform structure on the surface of the nitrided sample with enrichment in nitrogen when compared to untreated sample. The thickness of the nitride layer formed depends on the treatment time duration and is approximately 14 μm for 10 h of plasma treatment. XPS was employed to obtain chemical-state information of the plasma nitrided steel surfaces. The micromechanical results show that the surface microhardness increases as the plasma-processing time increases to reach, 1487 HV 0.005 at a plasma processing time of 8 h.

  2. Radiofrequency cold plasma nitrided carbon steel: Microstructural and micromechanical characterizations

    Energy Technology Data Exchange (ETDEWEB)

    Bouanis, F.Z. [Universite Lille Nord de France, F-59000 Lille (France); Unite Materiaux et Transformations (UMET), Ingenierie des Systemes Polymeres, CNRS UMR 8207, ENSCL, BP 90108, F-59652 Villeneuve d' Ascq Cedex (France); Bentiss, F. [Laboratoire de Chimie de Coordination et d' Analytique, Faculte des Sciences, Universite Chouaib Doukkali, B.P. 20, M-24000 El Jadida (Morocco); Bellayer, S.; Vogt, J.B. [Universite Lille Nord de France, F-59000 Lille (France); Unite Materiaux et Transformations (UMET), Ingenierie des Systemes Polymeres, CNRS UMR 8207, ENSCL, BP 90108, F-59652 Villeneuve d' Ascq Cedex (France); Jama, C., E-mail: charafeddine.jama@ensc-lille.fr [Universite Lille Nord de France, F-59000 Lille (France); Unite Materiaux et Transformations (UMET), Ingenierie des Systemes Polymeres, CNRS UMR 8207, ENSCL, BP 90108, F-59652 Villeneuve d' Ascq Cedex (France)

    2011-05-16

    Highlights: {yields} C38 carbon steel samples were plasma nitrided using a radiofrequency (rf) nitrogen plasma discharge. {yields} RF plasma treatment enables nitriding for non-heated substrates. {yields} The morphological and chemical analyses show the formation of a uniform thickness on the surface of the nitrided C38 steel. {yields} Nitrogen plasma active species diffuse into the samples and lead to the formation of Fe{sub x}N. {yields} The increase in microhardness values for nitrided samples with plasma processing time is interpreted by the formation of a thicker nitrided layer on the steel surface. - Abstract: In this work, C38 carbon steel was plasma nitrided using a radiofrequency (rf) nitrogen plasma discharge on non-heated substrates. General characterizations were performed to compare the chemical compositions, the microstructures and hardness of the untreated and plasma treated surfaces. The plasma nitriding was carried out on non-heated substrates at a pressure of 16.8 Pa, using N{sub 2} gas. Surface characterizations before and after N{sub 2} plasma treatment were performed by means of the electron probe microanalysis (EPMA), X-ray photoelectron spectroscopy (XPS) and Vickers microhardness measurements. The morphological and chemical analysis showed the formation of a uniform structure on the surface of the nitrided sample with enrichment in nitrogen when compared to untreated sample. The thickness of the nitride layer formed depends on the treatment time duration and is approximately 14 {mu}m for 10 h of plasma treatment. XPS was employed to obtain chemical-state information of the plasma nitrided steel surfaces. The micromechanical results show that the surface microhardness increases as the plasma-processing time increases to reach, 1487 HV{sub 0.005} at a plasma processing time of 8 h.

  3. Nano-particulate Aluminium Nitride/Al: An Efficient and Versatile Heterogeneous Catalyst for the Synthesis of Biginelli Scaffolds

    Science.gov (United States)

    Tekale, S. U.; Tekale, A. B.; Kanhe, N. S.; Bhoraskar, S. V.; Pawar, R. P.

    2011-12-01

    Nano-particulate aluminium nitride/Al (7:1) is reported as a new heterogeneous solid acid catalyst for the synthesis of 3, 4-dihydroxypyrimidi-2-(1H)-ones and their sulphur analogues using the Biginelli reaction. This method involves short reaction time, easy separation, high yields and purity of products.

  4. Electrochemical capacitance performance of titanium nitride nanoarray

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Yibing, E-mail: ybxie@seu.edu.cn [School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189 (China); Suzhou Research Institute of Southeast University, Suzhou 215123 (China); Wang, Yong [School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189 (China); Du, Hongxiu [School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189 (China); Suzhou Research Institute of Southeast University, Suzhou 215123 (China)

    2013-12-01

    Highlights: • TiN nanoarray is formed by a nitridation process of TiO{sub 2} in ammonia atmosphere. • TiN nanoarray exhibits much higher EDLC capacitance than TiO{sub 2} nanoarray. • The specific capacitance of TiN nanoarray achieves a high level of 99.7 mF cm{sup −2}. • A flexible solid-state supercapacitor is constructed by TiN nanoarray and PVA gel. -- Abstract: In this study, titanium nitride (TiN) nanoarrays with a short nanotube and long nanopore structure have been prepared by an anodization process of ultra thin titanium foil in ethylene glycol (EG) solution containing ammonium fluoride, subsequent calcination process in an air atmosphere, and final nitridation process in an ammonia atmosphere. The morphology and microstructure characterization has been conducted using field emission scanning electron microscope and X-ray diffraction. The electrochemical properties have been investigated through cyclic voltammetry and electrochemical impedance spectrum measurements. The electrochemical capacitance performance has been investigated by galvanostatic charge–discharge measurements in the acidic, neural and alkali electrolyte solution. Well-defined TiN nanoarrays contribute a much higher capacitance performance than titania (TiO{sub 2}) in the supercapacitor application due to the extraordinarily improved electrical conductivity. Such an electrochemical capacitance can be further enhanced by increasing aspect ratio of TiN nanoarray from short nanotubes to long nanopores. A flexible supercapacitor has been constructed using two symmetrical TiN nanoarray electrodes and a polyvinyl alcohol (PVA) gel electrolyte with H{sub 2}SO{sub 4}–KCl–H{sub 2}O–EG. Such a supercapacitor has a highly improved potential window and still keeps good electrochemical energy storage. TiN nanoarray with a high aspect ratio can act well as an ultra thin film electrode material of flexible supercapacitor to contribute a superior capacitance performance.

  5. Reactive sputter deposition of boron nitride

    International Nuclear Information System (INIS)

    Jankowski, A.F.; Hayes, J.P.; McKernan, M.A.; Makowiecki, D.M.

    1995-10-01

    The preparation of fully dense, boron targets for use in planar magnetron sources has lead to the synthesis of Boron Nitride (BN) films by reactive rf sputtering. The deposition parameters of gas pressure, flow and composition are varied along with substrate temperature and applied bias. The films are characterized for composition using Auger electron spectroscopy, for chemical bonding using Raman spectroscopy and for crystalline structure using transmission electron microscopy. The deposition conditions are established which lead to the growth of crystalline BN phases. In particular, the growth of an adherent cubic BN coating requires 400--500 C substrate heating and an applied -300 V dc bias

  6. Packing C60 in Boron Nitride Nanotubes

    Science.gov (United States)

    Mickelson, W.; Aloni, S.; Han, Wei-Qiang; Cumings, John; Zettl, A.

    2003-04-01

    We have created insulated C60 nanowire by packing C60 molecules into the interior of insulating boron nitride nanotubes (BNNTs). For small-diameter BNNTs, the wire consists of a linear chain of C60 molecules. With increasing BNNT inner diameter, unusual C60 stacking configurations are obtained (including helical, hollow core, and incommensurate) that are unknown for bulk or thin-film forms of C60. C60 in BNNTs thus presents a model system for studying the properties of dimensionally constrained ``silo'' crystal structures. For the linear-chain case, we have fused the C60 molecules to form a single-walled carbon nanotube inside the insulating BNNT.

  7. Doping of III-nitride materials

    OpenAIRE

    Pampili, Pietro; Parbrook, Peter J.

    2016-01-01

    In this review paper we will report the current state of research regarding the doping of III-nitride materials and their alloys. GaN is a mature material with both n-type and p-type doping relatively well understood, and while n-GaN is easily achieved, p-type doping requires much more care. There are significant efforts to extend the composition range that can be controllably doped for AlGaInN alloys. This would allow application in shorter and longer wavelength optoelectronics as well as ex...

  8. Stability analysis of zigzag boron nitride nanoribbons

    Energy Technology Data Exchange (ETDEWEB)

    Rai, Hari Mohan, E-mail: rai.2208@gmail.com; Late, Ravikiran; Saxena, Shailendra K.; Kumar, Rajesh; Sagdeo, Pankaj R. [Indian Institute of Technology, Indore –452017 (India); Jaiswal, Neeraj K. [Discipline of Physics, PDPM- Indian Institute of Information Technology, Design and Manufacturing, Jabalpur – 482005 (India); Srivastava, Pankaj [Computational Nanoscience and Technology Lab. (CNTL), ABV- Indian Institute of Information Technology and Management, Gwalior – 474015 (India)

    2015-05-15

    We have explored the structural stability of bare and hydrogenated zigzag boron nitride nanoribbons (ZBNNRs). In order to investigate the structural stability, we calculate the cohesive energy for bare, one-edge and both edges H-terminated ZBNNRs with different widths. It is found that the ZBNNRs with width Nz=8 are energetically more favorable than the lower-width counterparts (Nz<8). Bare ZBNNRs have been found energetically most stable as compared to the edge terminated ribbons. Our analysis reveals that the structural stability is a function of ribbon-width and it is not affected significantly by the type of edge-passivation (one-edge or both-edges)

  9. Magnesium doping of boron nitride nanotubes

    Science.gov (United States)

    Legg, Robert; Jordan, Kevin

    2015-06-16

    A method to fabricate boron nitride nanotubes incorporating magnesium diboride in their structure. In a first embodiment, magnesium wire is introduced into a reaction feed bundle during a BNNT fabrication process. In a second embodiment, magnesium in powder form is mixed into a nitrogen gas flow during the BNNT fabrication process. MgB.sub.2 yarn may be used for superconducting applications and, in that capacity, has considerably less susceptibility to stress and has considerably better thermal conductivity than these conventional materials when compared to both conventional low and high temperature superconducting materials.

  10. Hardness of carbides, nitrides, and borides

    International Nuclear Information System (INIS)

    Schroeter, W.

    1981-01-01

    Intermetallic compounds of metals with non-metals such as C, N, and B show different hardness. Wagner's interaction parameter characterizes manner and extent of the interaction between the atoms of the substance dissolved and the additional elements in metallic mixed phases. An attempt has been made to correlate the hardness of carbides, nitrides, and borides (data taken from literature) with certain interaction parameters and associated thermodynamic quantities (ΔH, ΔG). For some metals of periods 4, 5, and 6 corresponding relations were found between microhardness, interaction parameters, heat of formation, and atomic number

  11. The failure of aluminium nitride under shock

    International Nuclear Information System (INIS)

    Pickup, I.M.; Bourne, N.K.

    2002-01-01

    The shear strength of aluminium nitride has been measured over a range of impact stresses by measuring lateral stresses in plate impact experiments. The range of impact stress spanned several key shock thresholds for the material, pre and post Hugoniot elastic limit and up to values where the hexagonal to cubic phase transition starts. The shear strength measurements indicate significant inelastic damage at stress levels in excess of the HEL, but a significant recovery of strength at the highest impact stress was observed. This stress equates to the phase transition stress. The shear strength behaviour is compared to that of silicon carbide, which does not exhibit a phase change at these impact velocities

  12. Surface enrichment with chrome and nitriding of IF steel under an abnormal glow discharge

    International Nuclear Information System (INIS)

    Meira, S.R.; Borges, P.C.; Bernardelli, E.A.

    2014-01-01

    The objective of this work is to evaluate the influence of surface enrichment of IF steel with chrome, and nitriding, the formation of the nitrided layer. Thus, IF steel samples were subjected to surface enrichment process, using 409 stainless steel as a target for sputtering, followed by plasma nitriding, both under a dc abnormal glow discharge. The enrichment treatment was operated at 1200 ° C for 3h. The nitriding treatment was operated at 510 ° C for 2 h. The influence of the treatments on the layers formed was studied through optical microscopy (OM), scan electron microscopy (SEM), X-ray diffraction (XRD) and Vickers microindentation. The results show that the enrichment is effective to enrich the IF surface, furthermore, improves the characteristics of nitriding, comparing nitriding samples to nitriding and enriched, was observed needles of nitrides, as well as a higher hardness, which is associated with the nitrides of chrome, on the nitriding and enriched samples. (author)

  13. Determination of trace amounts of rare earth elements in samarium, terbium and disprosium oxides by graphite furnace atomic-absorption spectrometry

    International Nuclear Information System (INIS)

    Dantas, E.S.K.

    1990-01-01

    A graphite furnace atomic-absorption spectrometry method for the determination of neodymium, europium, terbium, dysprosium and yttrium at trace level in samarium oxide; of samarium, europium, dysprosium, holmium, erbium and yttrium in terbium oxide and of europium, terbium, holmium, erbium and yttrium in dysprosium oxide was established. The best pyrolysis and atomization temperatures were determined for each lanthanide considered. Calibration curves were obtained for the pure elements, for binary mixtures formed by the matrix and each of the lanthanides studied and, finally, for the complex mixtures constituted by the matrix and all the other lanthanide of the group under scrutiny. This study has been carried out to examine the interference of the presence of one lanthanide on the behaviour of the other, since a lack of linearity on the calibration curves has been observed in some cases. Detection and determination limits have been determined as well. The detection limits encountered were within the range 0.002 to 0.3% for different elements. The precision of the method expressed as the relative standard deviation was calculated for each element present in each of the matrices studied. The conclusion arrived at is that the method can be applied for determining the above mentioned lanthanides present in the matrices studied with purity up to 99.50%. (author)

  14. Preparation and examination of properties of samarium-153-EDTMP complex; Otrzymywanie chelatu kwasu etylenodiaminotetrametylenofosfonowego (EDTMP) z samarem-153 i badanie jego wlasciwosci

    Energy Technology Data Exchange (ETDEWEB)

    Nowak, M. [Institute of Atomic Energy, Otwock-Swierk (Poland); Garnuszek, P.; Lukasiewicz, A.; Wozniak, I.; Zulczyk, W. [Osrodek Badawczo-Rozwojowy Izotopow, Otwock-Swierk (Poland); Licinska, I. [Instytut Lekow, Warsaw (Poland)

    1995-12-31

    Preparation and properties of ethylenediaminetetramethylenephosphonic acid (EDTMP) as well as some properties of {sup 153}Sm-EDTMP chelate have been examined. The chelate formed by samarium-153 (46.3 h, {beta}{sup -}-decay) with EDTMP exhibits high bone uptake and can be used for treatment of disseminated, painful skeletal metastases. The purity and stability of solutions of {sup 153}Sm-EDTMP chelate were examined in a broad range of samarium concentration and {sup 153}Sm specific activity. The complex under study was examined by radio-TLC, -electrophoresis and radio-HPLC. The results obtained suggest the small size of molecules of {sup 153}Sm-EDTMP chelate as compared with molecules of ``free``EDTMP. The results of biodistribution of {sup 153}Sm-EDTMP determined in rats indicate the quick blood clearance, high deposition of radioactivity in bone and quick excretion of radioactivity into urine. No specific uptake of {sup 153}Sm-EDTMP in extra-skeletal organs was found. (author). 42 refs, 13 figs, 22 tabs.

  15. Microstructural characterization of pulsed plasma nitrided 316L stainless steel

    International Nuclear Information System (INIS)

    Asgari, M.; Barnoush, A.; Johnsen, R.; Hoel, R.

    2011-01-01

    Highlights: → The low temperature pulsed plasma nitrided layer of 316 SS was studied. → The plastic deformation induced in the austenite due to nitriding is characterized by EBSD at different depths (i.e., nitrogen concentration). → Nanomechanical properties of the nitride layer was investigated by nanoindentation at different depths (i.e., nitrogen concentration). → High hardness, high nitrogen concentration and high dislocation density is detected in the nitride layer. → The hardness and nitrogen concentration decreased sharply beyond the nitride layer. - Abstract: Pulsed plasma nitriding (PPN) treatment is one of the new processes to improve the surface hardness and tribology behavior of austenitic stainless steels. Through low temperature treatment (<440 deg. C), it is possible to obtain unique combinations of wear and corrosion properties. Such a combination is achieved through the formation of a so-called 'extended austenite phase'. These surface layers are often also referred to as S-phase, m-phase or γ-phase. In this work, nitrided layers on austenitic stainless steels AISI 316L (SS316L) were examined by means of a nanoindentation method at different loads. Additionally, the mechanical properties of the S-phase at different depths were studied. Electron back-scatter diffraction (EBSD) examination of the layer showed a high amount of plasticity induced in the layer during its formation. XRD results confirmed the formation of the S-phase, and no deleterious CrN phase was detected.

  16. Electronic structure and mechanical properties of plasma nitrided ferrous alloys

    Energy Technology Data Exchange (ETDEWEB)

    Portolan, E. [Centro de Ciencias Exatas e Tecnologia, Universidade de Caxias do Sul, 95070-560 Caxias do Sul-RS (Brazil); Baumvol, I.J.R. [Centro de Ciencias Exatas e Tecnologia, Universidade de Caxias do Sul, 95070-560 Caxias do Sul-RS (Brazil); Instituto de Fisica, Universidade Federal do Rio Grande do Sul, Porto Alegre 91509-970 (Brazil); Figueroa, C.A., E-mail: cafiguer@ucs.br [Centro de Ciencias Exatas e Tecnologia, Universidade de Caxias do Sul, 95070-560 Caxias do Sul-RS (Brazil)

    2009-04-15

    The electronic structures of the near-surface regions of two different nitrided steels (AISI 316 and 4140) were investigated using X-ray photoelectron spectroscopy. Photoelectron groups from all main chemical elements involved were addressed for steel samples with implanted-N concentrations in the range 16-32 at.%. As the implanted-N concentrations were increased, rather contrasting behaviors were observed for the two kinds of steel. The N1s photoelectrons had spectral shifts toward lower (nitrided AISI 316) or higher (nitrided AISI 4140) binding energies, whereas the Fe2p{sub 3/2} photoelectron spectrum remains at a constant binding energy (nitrided AISI 316) or shifts toward higher binding energies (AISI 4140). These trends are discussed in terms of the metallic nitride formation and the overlapping of atomic orbitals. For nitrided AISI 316, a semi-classical approach of charge transfer between Cr and N is used to explain the experimental facts (formation of CrN), while for nitrided AISI 4140 we propose that the interaction between orbitals 4s from Fe and 2p from N promotes electrons to the conduction band increasing the electrical attraction of the N1s and Fe2p electrons in core shells (formation of FeN{sub x}). The increase in hardness of the steel upon N implantation is attributed to the localization of electrons in specific bonds, which diminishes the metallic bond character.

  17. Corrosion fatigue behaviour of ion nitrided AISI 4140 steel

    Energy Technology Data Exchange (ETDEWEB)

    Genel, K. [Sakarya Univ., Adapazari (Turkey). Mech. Eng. Dept.; Demirkol, M.; Guelmez, T. [Faculty of Mechanical Engineering, Istanbul Technical University, Guemuessuyu, 80191, Istanbul (Turkey)

    2000-08-31

    Machine components suffer from corrosion degradation of fatigue characteristics and improvement can be attained by the application of a nitriding treatment, particularly to low alloy steels. In the present study, the effect of ion nitriding on corrosion fatigue performance of AISI 4140 steel has been investigated by conducting a series of rotary bending corrosion fatigue tests at 95 Hz, in 3% NaCl aqueous solution. Hourglass shaped, 4 mm diameter fatigue specimens were ion nitrided at 748 K for 1, 3, 8 and 16 h prior to the tests. It was observed that distinct fatigue limit behaviour of ion nitrided steel in air completely disappeared in corrosive environment besides severe degradation in fatigue characteristics. An improvement reaching to 60% in corrosion fatigue strength can be attained by successive ion nitriding practice based on a fatigue life of 10{sup 7} cycles. An attempt was made to establish an empirical relationship between corrosion fatigue strength and relative case depth, which considers the size of the ion nitrided specimen. It was also determined that a power relationship holds between corrosion fatigue strength and fatigue life of ion nitrided steel. The presence of white layer has resulted in additional improvement in corrosion fatigue resistance, and it was observed that corrosion fatigue cracks were initiated dominantly under the white layer by pit formation mechanism. (orig.)

  18. Corrosion fatigue behaviour of ion nitrided AISI 4140 steel

    International Nuclear Information System (INIS)

    Genel, K.

    2000-01-01

    Machine components suffer from corrosion degradation of fatigue characteristics and improvement can be attained by the application of a nitriding treatment, particularly to low alloy steels. In the present study, the effect of ion nitriding on corrosion fatigue performance of AISI 4140 steel has been investigated by conducting a series of rotary bending corrosion fatigue tests at 95 Hz, in 3% NaCl aqueous solution. Hourglass shaped, 4 mm diameter fatigue specimens were ion nitrided at 748 K for 1, 3, 8 and 16 h prior to the tests. It was observed that distinct fatigue limit behaviour of ion nitrided steel in air completely disappeared in corrosive environment besides severe degradation in fatigue characteristics. An improvement reaching to 60% in corrosion fatigue strength can be attained by successive ion nitriding practice based on a fatigue life of 10 7 cycles. An attempt was made to establish an empirical relationship between corrosion fatigue strength and relative case depth, which considers the size of the ion nitrided specimen. It was also determined that a power relationship holds between corrosion fatigue strength and fatigue life of ion nitrided steel. The presence of white layer has resulted in additional improvement in corrosion fatigue resistance, and it was observed that corrosion fatigue cracks were initiated dominantly under the white layer by pit formation mechanism. (orig.)

  19. Electronic structure and mechanical properties of plasma nitrided ferrous alloys

    Science.gov (United States)

    Portolan, E.; Baumvol, I. J. R.; Figueroa, C. A.

    2009-04-01

    The electronic structures of the near-surface regions of two different nitrided steels (AISI 316 and 4140) were investigated using X-ray photoelectron spectroscopy. Photoelectron groups from all main chemical elements involved were addressed for steel samples with implanted-N concentrations in the range 16-32 at.%. As the implanted-N concentrations were increased, rather contrasting behaviors were observed for the two kinds of steel. The N1s photoelectrons had spectral shifts toward lower (nitrided AISI 316) or higher (nitrided AISI 4140) binding energies, whereas the Fe2p 3/2 photoelectron spectrum remains at a constant binding energy (nitrided AISI 316) or shifts toward higher binding energies (AISI 4140). These trends are discussed in terms of the metallic nitride formation and the overlapping of atomic orbitals. For nitrided AISI 316, a semi-classical approach of charge transfer between Cr and N is used to explain the experimental facts (formation of CrN), while for nitrided AISI 4140 we propose that the interaction between orbitals 4s from Fe and 2p from N promotes electrons to the conduction band increasing the electrical attraction of the N1s and Fe2p electrons in core shells (formation of FeN x). The increase in hardness of the steel upon N implantation is attributed to the localization of electrons in specific bonds, which diminishes the metallic bond character.

  20. Electronic structure and mechanical properties of plasma nitrided ferrous alloys

    International Nuclear Information System (INIS)

    Portolan, E.; Baumvol, I.J.R.; Figueroa, C.A.

    2009-01-01

    The electronic structures of the near-surface regions of two different nitrided steels (AISI 316 and 4140) were investigated using X-ray photoelectron spectroscopy. Photoelectron groups from all main chemical elements involved were addressed for steel samples with implanted-N concentrations in the range 16-32 at.%. As the implanted-N concentrations were increased, rather contrasting behaviors were observed for the two kinds of steel. The N1s photoelectrons had spectral shifts toward lower (nitrided AISI 316) or higher (nitrided AISI 4140) binding energies, whereas the Fe2p 3/2 photoelectron spectrum remains at a constant binding energy (nitrided AISI 316) or shifts toward higher binding energies (AISI 4140). These trends are discussed in terms of the metallic nitride formation and the overlapping of atomic orbitals. For nitrided AISI 316, a semi-classical approach of charge transfer between Cr and N is used to explain the experimental facts (formation of CrN), while for nitrided AISI 4140 we propose that the interaction between orbitals 4s from Fe and 2p from N promotes electrons to the conduction band increasing the electrical attraction of the N1s and Fe2p electrons in core shells (formation of FeN x ). The increase in hardness of the steel upon N implantation is attributed to the localization of electrons in specific bonds, which diminishes the metallic bond character.

  1. Characterization of plasma nitrided layers produced on sintered iron

    Directory of Open Access Journals (Sweden)

    Marcos Alves Fontes

    2014-07-01

    Full Text Available Plasma nitriding is a thermo-physical-chemical treatment process, which promotes surface hardening, caused by interstitial diffusion of atomic nitrogen into metallic alloys. In this work, this process was employed in the surface modification of a sintered ferrous alloy. Scanning electron microscopy (SEM, X-ray diffraction (XRD analyses, and wear and microhardness tests were performed on the samples submitted to ferrox treatment and plasma nitriding carried out under different conditions of time and temperature. The results showed that the nitride layer thickness is higher for all nitrided samples than for ferrox treated samples, and this layer thickness increases with nitriding time and temperature, and temperature is a more significant variable. The XRD analysis showed that the nitrided layer, for all samples, near the surface consists in a mixture of γ′-Fe4N and ɛ-Fe3N phases. Both wear resistance and microhardness increase with nitriding time and temperature, and temperature influences both the characteristics the most.

  2. Anti corrosion layer for stainless steel in molten carbonate fuel cell - comprises phase vapour deposition of titanium nitride, aluminium nitride or chromium nitride layer then oxidising layer in molten carbonate electrolyte

    DEFF Research Database (Denmark)

    2000-01-01

    Forming an anticorrosion protective layer on a stainless steel surface used in a molten carbonate fuel cell (MCFC) - comprises the phase vapour deposition (PVD) of a layer comprising at least one of titanium nitride, aluminium nitride or chromium nitride and then forming a protective layer in situ...

  3. Nanoscratch characterization of indium nitride films

    Energy Technology Data Exchange (ETDEWEB)

    Lian, Derming [Chin-Yi Univ. of Technology, Taichung, Taiwan (China). Dept. of Mechanical Engineering

    2014-01-15

    In this study we used RF plasma-assisted molecular beam epitaxy for the epitaxial growth of single-crystalline indium nitride (InN) thin films on aluminum nitride buffer layers/Si (111) substrates. We then used scratch techniques to study the influence of the c-axis orientation of the InN films and the beam interactions on the tribological performance of these samples. When grown at 440, 470, and 500 C, the coefficients of friction were 0.18, 0.22, and 0.26, respectively, under a normal force (F{sub n}) of 2000 {mu}N; 0.19, 0.23, and 0.27, respectively, under a value of Fn of 4000 {mu}N; and 0.21, 0.24, and 0.28, respectively, under a value of F{sub n} of 6000 {mu}N. These measured values increased slightly upon increasing the growth temperature because of the resulting smaller sizes of the apertures and/or pores in the inner films. The sliding resistance of the ploughed area was observed. The contact sliding line became increasingly noticeable upon increasing the value of F{sub n}; the plot of the friction with respect to the penetration depth revealed a significant relation in its adhesion properties presentation. (orig.)

  4. Graphyne–graphene (nitride) heterostructure as nanocapacitor

    International Nuclear Information System (INIS)

    Bhattacharya, Barnali; Sarkar, Utpal

    2016-01-01

    Highlights: • Binding energy of heterostructures indicates the exothermic nature. • Increasing electric field enhances charge and energy stored in the system. • The external electric fields amplify the charge transfer between two flakes. • The capacitance value gets saturated above a certain electric field. - Abstract: A nanoscale capacitor composed of heterostructure derived from finite size graphyne flake and graphene (nitride) flake has been proposed and investigated using density functional theory (DFT). The exothermic nature of formation process of these heterostructures implies their stability. Significant charge transfer between two flakes generates permanent dipole in this heterostructures. The amount of charge transfer is tunable under the application of external electric field which enhances their applicability in electronics. We have specifically focused on the capacitive properties of different heterostructure composed of graphyne flake and graphene (nitride) flake, i.e., graphyne/graphene, graphyne/h-BN, graphyne/AlN, graphyne/GaN. The charge stored by each flake, energy storage, and capacitance are switchable under external electric field. Thus, our modeled heterostructures are a good candidate as nanoscale capacitor and can be used in nanocircuit. We found that the charge stored by each flake, energy storage, and capacitance value are highest for graphyne/GaN heterostructures.

  5. Stable boron nitride diamondoids as nanoscale materials

    International Nuclear Information System (INIS)

    Fyta, Maria

    2014-01-01

    We predict the stability of diamondoids made up of boron and nitrogen instead of carbon atoms. The results are based on quantum-mechanical calculations within density functional theory (DFT) and show some very distinct features compared to the regular carbon-based diamondoids. These features are evaluated with respect to the energetics and electronic properties of the boron nitride diamondoids as compared to the respective properties of the carbon-based diamondoids. We find that BN-diamondoids are overall more stable than their respective C-diamondoid counterparts. The electronic band-gaps (E g ) of the former are overall lower than those for the latter nanostructures but do not show a very distinct trend with their size. Contrary to the lower C-diamondoids, the BN-diamondoids are semiconducting and show a depletion of charge on the nitrogen site. Their differences in the distribution of the molecular orbitals, compared to their carbon-based counterparts, offer additional bonding and functionalization possibilities. These tiny BN-based nanostructures could potentially be used as nanobuilding blocks complementing or substituting the C-diamondoids, based on the desired properties. An experimental realization of boron nitride diamondoids remains to show their feasibility. (paper)

  6. Graphyne–graphene (nitride) heterostructure as nanocapacitor

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharya, Barnali; Sarkar, Utpal, E-mail: utpalchemiitkgp@yahoo.com

    2016-10-20

    Highlights: • Binding energy of heterostructures indicates the exothermic nature. • Increasing electric field enhances charge and energy stored in the system. • The external electric fields amplify the charge transfer between two flakes. • The capacitance value gets saturated above a certain electric field. - Abstract: A nanoscale capacitor composed of heterostructure derived from finite size graphyne flake and graphene (nitride) flake has been proposed and investigated using density functional theory (DFT). The exothermic nature of formation process of these heterostructures implies their stability. Significant charge transfer between two flakes generates permanent dipole in this heterostructures. The amount of charge transfer is tunable under the application of external electric field which enhances their applicability in electronics. We have specifically focused on the capacitive properties of different heterostructure composed of graphyne flake and graphene (nitride) flake, i.e., graphyne/graphene, graphyne/h-BN, graphyne/AlN, graphyne/GaN. The charge stored by each flake, energy storage, and capacitance are switchable under external electric field. Thus, our modeled heterostructures are a good candidate as nanoscale capacitor and can be used in nanocircuit. We found that the charge stored by each flake, energy storage, and capacitance value are highest for graphyne/GaN heterostructures.

  7. Colloidal characterization of ultrafine silicon carbide and silicon nitride powders

    Science.gov (United States)

    Whitman, Pamela K.; Feke, Donald L.

    1986-01-01

    The effects of various powder treatment strategies on the colloid chemistry of aqueous dispersions of silicon carbide and silicon nitride are examined using a surface titration methodology. Pretreatments are used to differentiate between the true surface chemistry of the powders and artifacts resulting from exposure history. Silicon nitride powders require more extensive pretreatment to reveal consistent surface chemistry than do silicon carbide powders. As measured by titration, the degree of proton adsorption from the suspending fluid by pretreated silicon nitride and silicon carbide powders can both be made similar to that of silica.

  8. Method of production of hollow silicon nitride articles

    International Nuclear Information System (INIS)

    Parr, N.L.; Brown, R.L.

    1971-01-01

    The hollow articles prepared according to the invention have a high density, exhibit no internal stresses and correspond to high demands of tolerance and surface quality. One obtains these by flame spraying silicon powder on a pre-heated form designed with separating agent - e.g. NaCl. After removing the form, the silicon is nitridated to silicon nitride by heating in N 2 or in an atmosphere of ammonia. This process can be interrupted if the article is also to be mechanically processed, and then the nitridation can be completed. (Hoe/LH) [de

  9. Critical fields of niobium nitride films of various granularity

    International Nuclear Information System (INIS)

    Antonova, E.A.; Sukhov, V.A.

    1983-01-01

    The behaviour of lattice parameter, specific electrical resistivity, critical temperature, and temperature dependence of upper critical field near Tsub(cr) of sputtered niobium nitride films is investigated versus the substrate temperature and gas mixture composition in the process of reactive cathode sputtering. The relation between extrapolated value of the upper critical field and granularity of niobium nitride films, close as to composition to the stoichiometric one, has been found. Values of the kappa parameter of the Ginsburg-Landau theory and of the coherence length for niobium nitride films of various granularity are estimated in an approximation of uniform distribution of impurities in a sample

  10. Conductive and robust nitride buffer layers on biaxially textured substrates

    Science.gov (United States)

    Sankar, Sambasivan [Chicago, IL; Goyal, Amit [Knoxville, TN; Barnett, Scott A [Evanston, IL; Kim, Ilwon [Skokie, IL; Kroeger, Donald M [Knoxville, TN

    2009-03-31

    The present invention relates to epitaxial, electrically conducting and mechanically robust, cubic nitride buffer layers deposited epitaxially on biaxially textured substrates such as metals and alloys. The invention comprises of a biaxially textured substrate with epitaxial layers of nitrides. The invention also discloses a method to form such epitaxial layers using a high rate deposition method as well as without the use of forming gases. The invention further comprises epitaxial layers of oxides on the biaxially textured nitride layer. In some embodiments the article further comprises electromagnetic devices which may have superconducting properties.

  11. Characteristics of Au/PZT/TiO2/Nitride/Si structure capacitors with ICP nitride treatments

    International Nuclear Information System (INIS)

    Min, Hyung Seob; Kim, Tae Ho; Jeon, Chang Bae; Lee, Jae Gab; Kim, Ji Young

    2002-01-01

    In this study, the characteristics of PZT/TiO 2 ferroelectric gate stack capacitors with Inductively Coupled Plasma (ICP) nitridation were investigated for field effect transistor (FET)-type Ferroelectric Random Access Memory (FeRAM) applications. If a high accumulation capacitance is to be had, the ICP nitridation time needs to be optimized. While a short ICP treatment time results in thermal oxide growth due to lack of nitrogen, a long nitridation time causes a nitride layer which is too thick. Au/PZT(200 nm)/TiO 2 (40 nm)/Nitride/Si (MeFINS) structure capacitors show a memory window (ΔV) of 1.6 V under ±3-V operation while Au/PZT(200 nm)/TiO 2 (40 nm)/Si (MeFIS) capacitors without nitride treatment exhibit a small memory window of 0.6 V. At the same time, the capacitance of the MeFINS device is almost twice that of the MeFIS capacitor. This result implies that the ICP nitride treatment suppresses the formation of a low dielectric constant interfacial SiO x layer and alleviates the series capacitance problem

  12. The effect of samarium doping on structure and enhanced thermionic emission properties of lanthanum hexaboride fabricated by spark plasma sintering

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Shenlin; Hu, Qianglin [College of Mathematics and Physics, Jinggangshan University, Jian (China); Zhang, Jiuxing; Liu, Danmin [Key Laboratory of Advanced Functional Materials, Ministry of Education, College of Materials Science and Engineering, Beijing University of Technology, Beijing (China); Huang, Qingzhen [NIST Center for Neutron Research, National Institute of Standards and Technology, MD (United States)

    2014-03-15

    Single-phase polycrystalline solid solutions (La{sub 1-x}Sm{sub x})B{sub 6} (x = 0, 0.2, 0.4, 0.8, 1) are fabricated by spark plasma sintering (SPS). This study demonstrates a systematic investigation of structure-property relationships in Sm-doped LaB{sub 6} ternary rare-earth hexaborides. The microstructure, crystallographic orientation, electrical resistivity, and thermionic emission performance of these compounds are investigated. Analysis of the results indicates that samarium (Sm) doping has a noticeable effect on the structure and performance of lanthanum hexaboride (LaB{sub 6}). The analytical investigation of the electron backscatter diffraction confirms that (La{sub 0.6}Sm{sub 0.4})B{sub 6} exhibits a clear (001) texture that results in a low work function. Work functions are determined by pulsed thermionic diode measurements at 1500-1873 K. The (La{sub 0.6}Sm{sub 0.4})B{sub 6} possesses improved thermionic emission properties compared to LaB{sub 6}. The current density of (La{sub 0.6}Sm{sub 0.4})B{sub 6} is 42.4 A cm{sup -2} at 1873 K, which is 17.5% larger than that of LaB{sub 6}. The values of Φ{sub R} for (La{sub 0.6}Sm{sub 0.4})B{sub 6} and LaB{sub 6} are 1.98 ± 0.03 and 1.67 ± 0.03 eV, respectively. Furthermore, the Sm substitution of lanthanum (La) effectively increases the electrical resistivity. These results reveal that Sm doping lead to significantly enhanced thermionic emission properties of LaB{sub 6}. The compound (La{sub 0.6}Sm{sub 0.4})B{sub 6} appears most promising as a future emitter material. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  13. The Level of Europium-154 Contaminating Samarium-153-EDTMP Activates the Radiation Alarm System at the US Homeland Security Checkpoints

    Directory of Open Access Journals (Sweden)

    Mohammed Najeeb Al Hallak

    2009-08-01

    Full Text Available 153Sm-EDTMP is a radiopharmaceutical composed of EDTMP (ethylenediamine-tetramethylenephosphonate and Samarium-153 [1]. 153Sm-EDTMP has an affinity for skeletal tissue and concentrates in areas with increased bone turnover; thus, it is successfully used in relieving pain related to diffuse bone metastases [1]. The manufacturing process of 153Sm-EDTMP leads to contamination with 154Eu (Europium-154 [2]. A previous study only alluded to the retention of 154Eu in the bones after receiving treatment with 153Sm-EDTMP [2]. Activation of the alarm at security checkpoints after 153Sm-EDTMP therapy has not been previously reported. Two out of 15 patients who received 153Sm-EDTMP at Roger Maris Cancer Center (Fargo, N. Dak., USA activated the radiation activity sensors while passing through checkpoints; one at a US airport and the other while crossing theAmerican-Canadian border. We assume that the 154Eu which remained in the patients’ bones activated the sensors. Methods: In order to investigate this hypothesis, we obtained the consent from 3 of our 15 patients who received 153Sm-EDTMP within the previous 4 months to 2 years, including the patient who had activated the radiation alarm at the airport. The patients were scanned with a handheld detector and a gamma camera for energies from 511 keV to 1.3 MeV. Results: All three patients exhibited identical spectral images, and further analysis showed that the observed spectra are the result of 154Eu emissions. Conclusion: Depending on the detection thresholds and windows used by local and federal authorities, the remaining activity of 154Eu retained in patients who received 153Sm-EDTMP could be sufficient enough to increase the count rates above background levels and activate the sensors. At Roger Maris Cancer Center, patients are now informed of the potential consequences of 153Sm-EDTMP therapy prior to initiating treatment. In addition, patients treated with 153Sm-EDTMP at Roger Maris Cancer Center

  14. Fabrication of Aluminum Gallium Nitride/Gallium Nitride MESFET And It's Applications in Biosensing

    Science.gov (United States)

    Alur, Siddharth

    Gallium Nitride has been researched extensively for the past three decades for its application in Light Emitting Diodes (LED's), power devices and UV photodetectors. With the recent developments in crystal growth technology and the ability to control the doping there has been an increased interest in heterostructures formed between Gallium nitride and it's alloy Aluminium Gallium Nitride. These heterostructures due to the combined effect of spontaneous and piezoelectric effect can form a high density and a high mobility electron gas channel without any intentional doping. This high density electron gas makes these heterostructures ideal to be used as sensors. Gallium Nitride is also chemically very stable. Detection of biomolecules in a fast and reliable manner is very important in the areas of food safety and medical research. For biomolecular detection it is paramount to have a robust binding of the probes on the sensor surface. Therefore, in this dissertation, the fabrication and application of the AlGaN/GaN heterostructures as biological sensors for the detection of DNA and Organophosphate hydrolase enzyme is discussed. In order to use these AlGaN/GaN heterostructures as biological sensors capable of working in a liquid environment photodefinable polydimethyl-siloxane is used as an encapsulant. The immobilization conditions for a robust binding of thiolated DNA and the catalytic receptor enzyme organophosphate hydrolase on gold surfaces is developed with the help of X-ray photoelectron spectroscopy. DNA and OPH are detected by measuring the change in the drain current of the device as a function of time.

  15. Diagnostic of corrosion–erosion evolution for [Hf-Nitrides/V-Nitrides]n structures

    Energy Technology Data Exchange (ETDEWEB)

    Escobar, C.; Villarreal, M. [Thin Film Group, Universidad del Valle, A.A. 25360, Cali (Colombia); Caicedo, J.C., E-mail: jcaicedoangulo1@gmail.com [Powder Metallurgy and Processing of Solid Recycled Research Group, Universidad del Valle, Cali (Colombia); Aperador, W. [Ingeniería Mecatrónica, Universidad Militar Nueva Granada, Bogotá (Colombia); Caicedo, H.H. [Department of Bioengineering, University of Illinois at Chicago, IL 60612 (United States); Department of Anatomy and Cell Biology, University of Illinois at Chicago, IL 60612 (United States); Prieto, P. [Thin Film Group, Universidad del Valle, A.A. 25360, Cali (Colombia); Center of Excellence for Novel Materials, CENM, Cali (Colombia)

    2013-10-31

    HfN/VN multilayered systems were grown on 4140 steel substrates with the aim to improve their electrochemical behavior. The multilayered coatings were grown via reactive r.f. magnetron sputtering technique by systematically varying the bilayer period (Λ) and the bilayer number (n) while maintaining constant the total coating thickness (∼ 1.2 μm). The coatings were characterized by X-ray diffraction (XRD), and electron microscopy. The electrochemical properties were studied by Electrochemical Impedance Spectroscopy and Tafel curves. XRD results showed preferential growth in the face-centered cubic (111) crystal structure for [HfN/VN]{sub n} multilayered coatings. The maximum corrosion resistance was obtained for coatings with (Λ) equal to 15 nm, corresponding to bilayer n = 80. Polarization resistance and corrosion rate was around 112.19 kΩ cm{sup 2} and 0.094*10{sup −3} mmy respectively; moreover, these multilayered system showed a decrease of 80% on mass loss due to the corrosive–erosive process, in relation to multilayered systems with n = 1 and Λ = 1200. HfN/VN multilayers have been designed and deposited on Si (100) and AISI 4140 steel substrates with bilayer periods (Λ) in a broad range, from nanometers to hundreds of nanometers to study the microstructural evolution and electrochemical progress with decreasing bilayer thickness. - Highlights: • Enhancements on surface electrochemical properties and response to surface corrosion attack. • Superficial phenomenon that occurs in corrosion surface of [Hf-Nitrides/V-Nitrides]n • Corrosion–erosion evolution for [Hf-Nitrides/V-Nitrides]n structures.

  16. Diagnostic of corrosion–erosion evolution for [Hf-Nitrides/V-Nitrides]n structures

    International Nuclear Information System (INIS)

    Escobar, C.; Villarreal, M.; Caicedo, J.C.; Aperador, W.; Caicedo, H.H.; Prieto, P.

    2013-01-01

    HfN/VN multilayered systems were grown on 4140 steel substrates with the aim to improve their electrochemical behavior. The multilayered coatings were grown via reactive r.f. magnetron sputtering technique by systematically varying the bilayer period (Λ) and the bilayer number (n) while maintaining constant the total coating thickness (∼ 1.2 μm). The coatings were characterized by X-ray diffraction (XRD), and electron microscopy. The electrochemical properties were studied by Electrochemical Impedance Spectroscopy and Tafel curves. XRD results showed preferential growth in the face-centered cubic (111) crystal structure for [HfN/VN] n multilayered coatings. The maximum corrosion resistance was obtained for coatings with (Λ) equal to 15 nm, corresponding to bilayer n = 80. Polarization resistance and corrosion rate was around 112.19 kΩ cm 2 and 0.094*10 −3 mmy respectively; moreover, these multilayered system showed a decrease of 80% on mass loss due to the corrosive–erosive process, in relation to multilayered systems with n = 1 and Λ = 1200. HfN/VN multilayers have been designed and deposited on Si (100) and AISI 4140 steel substrates with bilayer periods (Λ) in a broad range, from nanometers to hundreds of nanometers to study the microstructural evolution and electrochemical progress with decreasing bilayer thickness. - Highlights: • Enhancements on surface electrochemical properties and response to surface corrosion attack. • Superficial phenomenon that occurs in corrosion surface of [Hf-Nitrides/V-Nitrides]n • Corrosion–erosion evolution for [Hf-Nitrides/V-Nitrides]n structures

  17. Interlayer shear of nanomaterials: Graphene-graphene, boron nitride-boron nitride and graphene-boron nitride

    Institute of Scientific and Technical Information of China (English)

    Yinfeng Li; Weiwei Zhang; Bill Guo; Dibakar Datta

    2017-01-01

    In this paper,the interlayer sliding between graphene and boron nitride (h-BN) is studied by molecular dynamics simulations.The interlayer shear force between h-BN/h-BN is found to be six times higher than that of graphene/graphene,while the interlayer shear between graphene/h-BN is approximate to that of graphene/graphene.The graphene/h-BN heterostructure shows several anomalous interlayer shear characteristics compared to its bilayer counterparts.For graphene/graphene and h-BN/h-BN,interlayer shears only exit along the sliding direction while interlayer shear for graphene/h-BN is observed along both the translocation and perpendicular directions.Our results provide significant insight into the interlayer shear characteristics of 2D nanomaterials.

  18. Fabrication of carbide and nitride pellets and the nitride irradiations Niloc 1 and Niloc 2

    International Nuclear Information System (INIS)

    Blank, H.

    1991-01-01

    Besides the relatively well-known advanced LMFBR mixed carbide fuel an advanced mixed nitride is also an attractive candidate for the optimised fuel cycle of the European Fast Reactor, but the present knowledge about the nitride is still insufficient and should be raised to the level of the carbide. For such an optimised fuel cycle the following general conditions have been set up for the fuel: (i) the burnup of the optimised MN and MC should be at least 15 a/o or even beyond, at moderate linear ratings of less than 75 kW/m (ii) the fuel will be used in a He-bonding pin concept and (iii) as far as available an advanced economic pellet fabrication method should be employed. (iv) The fuel structure must contain 15 - 20% porosity in order to accomodate the fission product swelling at high burnup. This report gives a comprehensive description of fuel and pellet fabrication and characterization, irradiation, and post-irradiation examination. From the results important conclusions can be drawn about future work on nitrides

  19. Humidity-dependent stability of amorphous germanium nitrides fabricated by plasma nitridation

    International Nuclear Information System (INIS)

    Kutsuki, Katsuhiro; Okamoto, Gaku; Hosoi, Takuji; Shimura, Takayoshi; Watanabe, Heiji

    2007-01-01

    We have investigated the stability of amorphous germanium nitride (Ge 3 N 4 ) layers formed by plasma nitridation of Ge(100) surfaces using x-ray photoelectron spectroscopy and atomic force microscopy. We have found that humidity in the air accelerates the degradation of Ge 3 N 4 layers and that under 80% humidity condition, most of the Ge-N bonds convert to Ge-O bonds, producing a uniform GeO 2 layer, within 12 h even at room temperature. After this conversion of nitrides to oxides, the surface roughness drastically increased by forming GeO 2 islands on the surfaces. These findings indicate that although Ge 3 N 4 layers have superior thermal stability compared to the GeO 2 layers, Ge 3 N 4 reacts readily with hydroxyl groups and it is therefore essential to take the best care of the moisture in the fabrication of Ge-based devices with Ge 3 N 4 insulator or passivation layers

  20. Plasma nitriding monitoring reactor: A model reactor for studying plasma nitriding processes using an active screen

    Science.gov (United States)

    Hamann, S.; Börner, K.; Burlacov, I.; Spies, H.-J.; Strämke, M.; Strämke, S.; Röpcke, J.

    2015-12-01

    A laboratory scale plasma nitriding monitoring reactor (PLANIMOR) has been designed to study the basics of active screen plasma nitriding (ASPN) processes. PLANIMOR consists of a tube reactor vessel, made of borosilicate glass, enabling optical emission spectroscopy (OES) and infrared absorption spectroscopy. The linear setup of the electrode system of the reactor has the advantages to apply the diagnostic approaches on each part of the plasma process, separately. Furthermore, possible changes of the electrical field and of the heat generation, as they could appear in down-scaled cylindrical ASPN reactors, are avoided. PLANIMOR has been used for the nitriding of steel samples, achieving similar results as in an industrial scale ASPN reactor. A compact spectrometer using an external cavity quantum cascade laser combined with an optical multi-pass cell has been applied for the detection of molecular reaction products. This allowed the determination of the concentrations of four stable molecular species (CH4, C2H2, HCN, and NH3). With the help of OES, the rotational temperature of the screen plasma could be determined.

  1. Plasma nitriding monitoring reactor: A model reactor for studying plasma nitriding processes using an active screen

    International Nuclear Information System (INIS)

    Hamann, S.; Röpcke, J.; Börner, K.; Burlacov, I.; Spies, H.-J.; Strämke, M.; Strämke, S.

    2015-01-01

    A laboratory scale plasma nitriding monitoring reactor (PLANIMOR) has been designed to study the basics of active screen plasma nitriding (ASPN) processes. PLANIMOR consists of a tube reactor vessel, made of borosilicate glass, enabling optical emission spectroscopy (OES) and infrared absorption spectroscopy. The linear setup of the electrode system of the reactor has the advantages to apply the diagnostic approaches on each part of the plasma process, separately. Furthermore, possible changes of the electrical field and of the heat generation, as they could appear in down-scaled cylindrical ASPN reactors, are avoided. PLANIMOR has been used for the nitriding of steel samples, achieving similar results as in an industrial scale ASPN reactor. A compact spectrometer using an external cavity quantum cascade laser combined with an optical multi-pass cell has been applied for the detection of molecular reaction products. This allowed the determination of the concentrations of four stable molecular species (CH 4 , C 2 H 2 , HCN, and NH 3 ). With the help of OES, the rotational temperature of the screen plasma could be determined

  2. EDITORIAL: Non-polar and semipolar nitride semiconductors Non-polar and semipolar nitride semiconductors

    Science.gov (United States)

    Han, Jung; Kneissl, Michael

    2012-02-01

    Throughout the history of group-III-nitride materials and devices, scientific breakthroughs and technological advances have gone hand-in-hand. In the late 1980s and early 1990s, the discovery of the nucleation of smooth (0001) GaN films on c-plane sapphire and the activation of p-dopants in GaN led very quickly to the realization of high-brightness blue and green LEDs, followed by the first demonstration of GaN-based violet laser diodes in the mid 1990s. Today, blue InGaN LEDs boast record external quantum efficiencies exceeding 80% and the emission wavelength of the InGaN-based laser diode has been pushed into the green spectral range. Although these tremenduous advances have already spurred multi-billion dollar industries, there are still a number of scientific questions and technological issues that are unanswered. One key challenge is related to the polar nature of the III-nitride wurtzite crystal. Until a decade ago all research activities had almost exclusively concentrated on (0001)-oriented polar GaN layers and heterostructures. Although the device characteristics seem excellent, the strong polarization fields at GaN heterointerfaces can lead to a significant deterioration of the device performance. Triggered by the first demonstration non-polar GaN quantum wells grown on LiAlO2 by Waltereit and colleagues in 2000, impressive advances in the area of non-polar and semipolar nitride semiconductors and devices have been achieved. Today, a large variety of heterostructures free of polarization fields and exhibiting exceptional electronic and optical properties have been demonstrated, and the fundamental understanding of polar, semipolar and non-polar nitrides has made significant leaps forward. The contributions in this Semiconductor Science and Technology special issue on non-polar and semipolar nitride semiconductors provide an impressive and up-to-date cross-section of all areas of research and device physics in this field. The articles cover a wide range of

  3. Plasma nitriding monitoring reactor: A model reactor for studying plasma nitriding processes using an active screen

    Energy Technology Data Exchange (ETDEWEB)

    Hamann, S., E-mail: hamann@inp-greifswald.de; Röpcke, J. [INP-Greifswald, Felix-Hausdorff-Str. 2, 17489 Greifswald (Germany); Börner, K.; Burlacov, I.; Spies, H.-J. [TU Bergakademie Freiberg, Institute of Materials Engineering, Gustav-Zeuner-Str. 5, 09599 Freiberg (Germany); Strämke, M.; Strämke, S. [ELTRO GmbH, Arnold-Sommerfeld-Ring 3, 52499 Baesweiler (Germany)

    2015-12-15

    A laboratory scale plasma nitriding monitoring reactor (PLANIMOR) has been designed to study the basics of active screen plasma nitriding (ASPN) processes. PLANIMOR consists of a tube reactor vessel, made of borosilicate glass, enabling optical emission spectroscopy (OES) and infrared absorption spectroscopy. The linear setup of the electrode system of the reactor has the advantages to apply the diagnostic approaches on each part of the plasma process, separately. Furthermore, possible changes of the electrical field and of the heat generation, as they could appear in down-scaled cylindrical ASPN reactors, are avoided. PLANIMOR has been used for the nitriding of steel samples, achieving similar results as in an industrial scale ASPN reactor. A compact spectrometer using an external cavity quantum cascade laser combined with an optical multi-pass cell has been applied for the detection of molecular reaction products. This allowed the determination of the concentrations of four stable molecular species (CH{sub 4}, C{sub 2}H{sub 2}, HCN, and NH{sub 3}). With the help of OES, the rotational temperature of the screen plasma could be determined.

  4. Comparative study involving the uranium determination through catalytic reduction of nitrates and nitrides by using decoupled plasma nitridation (DPN)

    International Nuclear Information System (INIS)

    Aguiar, Marco Antonio Souza; Gutz, Ivano G. Rolf

    1999-01-01

    This paper reports a comparative study on the determination of uranium through the catalytic reduction of nitrate and nitride using the decoupled plasma nitridation. The uranyl ions are a good catalyst for the reduction of NO - 3 and NO - 2 ions on the surface of a hanging drop mercury electrode (HDME). The presence of NO - in a solution with p H = 3 presented a catalytic signal more intense than the signal obtained with NO - 3 (concentration ten times higher). A detection limit of 1x10 9 M was obtained using the technique of decoupled plasma nitridation (DPN), suggesting the development of a sensitive way for the determination of uranium in different matrixes

  5. Microstructure and Hardness of High Temperature Gas Nitrided AISI 420 Martensitic Stainless Steel

    Directory of Open Access Journals (Sweden)

    Ibrahim Nor Nurulhuda Md.

    2014-07-01

    Full Text Available This study examined the microstructure and hardness of as-received and nitrided AISI 420 martensitic stainless steels. High temperature gas nitriding was employed to treat the steels at 1200°C for one hour and four hours using nitrogen gas, followed by furnace cooled. Chromium nitride and iron nitride were formed and concentrated at the outmost surface area of the steels since this region contained the highest concentration of nitrogen. The grain size enlarged at the interior region of the nitrided steels due to nitriding at temperature above the recrystallization temperature of the steel and followed by slow cooling. The nitrided steels produced higher surface hardness compared to as-received steel due to the presence of nitrogen and the precipitation of nitrides. Harder steel was produced when nitriding at four hours compared to one hour since more nitrogen permeated into the steel.

  6. Hydrogen diffusion between plasma-deposited silicon nitride-polyimide polymer interfaces

    International Nuclear Information System (INIS)

    Nguyen, S.V.; Kerbaugh, M.

    1988-01-01

    This paper reports a nuclear reaction analysis (NRA) for hydrogen technique used to analyze the hydrogen concentration near plasma enhanced chemical vapor deposition (PECVD) silicon nitride-polyimide interfaces at various nitride-deposition and polyimide-polymer-curing temperatures. The CF 4 + O 2 (8% O 2 ) plasma-etch-rate variation of PECVD silicon nitride films deposited on polyimide appeared to correlate well with the variation of hydrogen-depth profiles in the nitride films. The NRA data indicate that hydrogen-depth-profile fluctuation in the nitride films is due to hydrogen diffusion between the nitride-polyimide interfaces during deposition. Annealing treatment of polyimide films in a hydrogen atmosphere prior to the nitride film deposition tends to enhance the hydrogen-depth-profile uniformity in the nitride films, and thus substantially reduces or eliminates variation in the nitride plasma-etch rate

  7. Anomalous piezoelectricity in two-dimensional graphene nitride nanosheets.

    Science.gov (United States)

    Zelisko, Matthew; Hanlumyuang, Yuranan; Yang, Shubin; Liu, Yuanming; Lei, Chihou; Li, Jiangyu; Ajayan, Pulickel M; Sharma, Pradeep

    2014-06-27

    Piezoelectricity is a unique property of materials that permits the conversion of mechanical stimuli into electrical and vice versa. On the basis of crystal symmetry considerations, pristine carbon nitride (C3N4) in its various forms is non-piezoelectric. Here we find clear evidence via piezoresponse force microscopy and quantum mechanical calculations that both atomically thin and layered graphitic carbon nitride, or graphene nitride, nanosheets exhibit anomalous piezoelectricity. Insights from ab inito calculations indicate that the emergence of piezoelectricity in this material is due to the fact that a stable phase of graphene nitride nanosheet is riddled with regularly spaced triangular holes. These non-centrosymmetric pores, and the universal presence of flexoelectricity in all dielectrics, lead to the manifestation of the apparent and experimentally verified piezoelectric response. Quantitatively, an e11 piezoelectric coefficient of 0.758 C m(-2) is predicted for C3N4 superlattice, significantly larger than that of the commonly compared α-quartz.

  8. Continuum modelling for carbon and boron nitride nanostructures

    International Nuclear Information System (INIS)

    Thamwattana, Ngamta; Hill, James M

    2007-01-01

    Continuum based models are presented here for certain boron nitride and carbon nanostructures. In particular, certain fullerene interactions, C 60 -C 60 , B 36 N 36 -B 36 N 36 and C 60 -B 36 N 36 , and fullerene-nanotube oscillator interactions, C 60 -boron nitride nanotube, C 60 -carbon nanotube, B 36 N 36 -boron nitride nanotube and B 36 N 36 -carbon nanotube, are studied using the Lennard-Jones potential and the continuum approach, which assumes a uniform distribution of atoms on the surface of each molecule. Issues regarding the encapsulation of a fullerene into a nanotube are also addressed, including acceptance and suction energies of the fullerenes, preferred position of the fullerenes inside the nanotube and the gigahertz frequency oscillation of the inner molecule inside the outer nanotube. Our primary purpose here is to extend a number of established results for carbon to the boron nitride nanostructures

  9. Iron Carbides and Nitrides: Ancient Materials with Novel Prospects.

    Science.gov (United States)

    Ye, Zhantong; Zhang, Peng; Lei, Xiang; Wang, Xiaobai; Zhao, Nan; Yang, Hua

    2018-02-07

    Iron carbides and nitrides have aroused great interest in researchers, due to their excellent magnetic properties, good machinability and the particular catalytic activity. Based on these advantages, iron carbides and nitrides can be applied in various areas such as magnetic materials, biomedical, photo- and electrocatalysis. In contrast to their simple elemental composition, the synthesis of iron carbides and nitrides still has great challenges, particularly at the nanoscale, but it is usually beneficial to improve performance in corresponding applications. In this review, we introduce the investigations about iron carbides and nitrides, concerning their structure, synthesis strategy and various applications from magnetism to the catalysis. Furthermore, the future prospects are also discussed briefly. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Defect complexes in carbon and boron nitride nanotubes

    CSIR Research Space (South Africa)

    Mashapa, MG

    2012-05-01

    Full Text Available The effect of defect complexes on the stability, structural and electronic properties of single-walled carbon nanotubes and boron nitride nanotubes is investigated using the ab initio pseudopotential density functional method implemented...

  11. Effect of gas pressure on active screen plasma nitriding response

    International Nuclear Information System (INIS)

    Nishimoto, Akio; Nagatsuka, Kimiaki; Narita, Ryota; Nii, Hiroaki; Akamatsu, Katsuya

    2010-01-01

    An austenitic stainless steel AISI 304 was active screen plasma nitrided using a 304 steel screen to investigate the effect of the gas pressure on the ASPN response. The sample was treated for 18 ks at 723 K in 25% N2 + 75% H2 gases. The gas pressure was changed to 100, 600 and 1200 Pa. The distance between screen and sample was also changed to 10, 30 and 50 mm. The nitrided samples were characterized by appearance observation, surface roughness, optical microscopy, X-ray diffraction, and microhardness testing. After nitriding, polygonal particles with a normal distribution were observed at the center and edges of all the ASPN-treated sample surfaces. Particles on the sample surfaces were finer with an increase in the gas pressure. The nitrided layer with a greater and homogeneous thickness was obtained at a low gas pressure of 100 Pa. (author)

  12. Optical properties of indium nitride films

    International Nuclear Information System (INIS)

    Tyagaj, V.A.; Evstigneev, A.M.; Krasiko, A.N.; Andreeva, A.F.; Malakhov, V.Ya.

    1977-01-01

    Reflection and transmission spectra of heavily doped indium nitride are studied at lambda=0.5-5 μm. Dispersion of the refractive index near the plasma resonance frequency, h.f. dielectric constant (epsilonsub(infinity)=9.3), and extinction coefficient near the transmission maximum of films have been determined from the analysis of interference pattern. The reflection spectrum exhibits maximum in the infrared range and optical effective mass is found through its position (msub(opt)*=0.11msub(0)). Free carrier absorption coefficient is shown to vary according to the law K approximately lambdasup(2.9+-0.1) which is characteristic of electron scattering by charged impurities. The analysis of absorption spectra near the threshold of interband transitions has lead to the conclusion that free carriers are localized in the lateral extremum of conduction band (or out of the center of the Brillouin zone), therefore the Burstein-Moss effect is absent

  13. Boron Nitride Nanotube: Synthesis and Applications

    Science.gov (United States)

    Tiano, Amanda L.; Park, Cheol; Lee, Joseph W.; Luong, Hoa H.; Gibbons, Luke J.; Chu, Sang-Hyon; Applin, Samantha I.; Gnoffo, Peter; Lowther, Sharon; Kim, Hyun Jung; hide

    2014-01-01

    Scientists have predicted that carbon's immediate neighbors on the periodic chart, boron and nitrogen, may also form perfect nanotubes, since the advent of carbon nanotubes (CNTs) in 1991. First proposed then synthesized by researchers at UC Berkeley in the mid 1990's, the boron nitride nanotube (BNNT) has proven very difficult to make until now. Herein we provide an update on a catalyst-free method for synthesizing highly crystalline, small diameter BNNTs with a high aspect ratio using a high power laser under a high pressure and high temperature environment first discovered jointly by NASA/NIA JSA. Progress in purification methods, dispersion studies, BNNT mat and composite formation, and modeling and diagnostics will also be presented. The white BNNTs offer extraordinary properties including neutron radiation shielding, piezoelectricity, thermal oxidative stability (> 800 C in air), mechanical strength, and toughness. The characteristics of the novel BNNTs and BNNT polymer composites and their potential applications are discussed.

  14. Boron nitride: A new photonic material

    International Nuclear Information System (INIS)

    Chubarov, M.; Pedersen, H.; Högberg, H.; Filippov, S.; Engelbrecht, J.A.A.; O'Connel, J.; Henry, A.

    2014-01-01

    Rhombohedral boron nitride (r-BN) layers were grown on sapphire substrate in a hot-wall chemical vapor deposition reactor. Characterization of these layers is reported in details. X-ray diffraction (XRD) is used as a routine characterization tool to investigate the crystalline quality of the films and the identification of the phases is revealed using detailed pole figure measurements. Transmission electron microscopy reveals stacking of more than 40 atomic layers. Results from Fourier Transform InfraRed (FTIR) spectroscopy measurements are compared with XRD data showing that FTIR is not phase sensitive when various phases of sp 2 -BN are investigated. XRD measurements show a significant improvement of the crystalline quality when adding silicon to the gas mixture during the growth; this is further confirmed by cathodoluminescence which shows a decrease of the defects related luminescence intensity.

  15. Boron nitride: A new photonic material

    Energy Technology Data Exchange (ETDEWEB)

    Chubarov, M., E-mail: mihcu@ifm.liu.se [Department of Physics, Chemistry and Biology, Linköping University, SE-581 83 Linköping (Sweden); Pedersen, H., E-mail: henke@ifm.liu.se [Department of Physics, Chemistry and Biology, Linköping University, SE-581 83 Linköping (Sweden); Högberg, H., E-mail: hanho@ifm.liu.se [Department of Physics, Chemistry and Biology, Linköping University, SE-581 83 Linköping (Sweden); Filippov, S., E-mail: stafi@ifm.liu.se [Department of Physics, Chemistry and Biology, Linköping University, SE-581 83 Linköping (Sweden); Engelbrecht, J.A.A., E-mail: Japie.Engelbrecht@nmmu.ac.za [Nelson Mandela Metropolitan University, Port Elizabeth (South Africa); O' Connel, J., E-mail: jacques.oconnell@gmail.com [Nelson Mandela Metropolitan University, Port Elizabeth (South Africa); Henry, A., E-mail: anne.henry@liu.se [Department of Physics, Chemistry and Biology, Linköping University, SE-581 83 Linköping (Sweden)

    2014-04-15

    Rhombohedral boron nitride (r-BN) layers were grown on sapphire substrate in a hot-wall chemical vapor deposition reactor. Characterization of these layers is reported in details. X-ray diffraction (XRD) is used as a routine characterization tool to investigate the crystalline quality of the films and the identification of the phases is revealed using detailed pole figure measurements. Transmission electron microscopy reveals stacking of more than 40 atomic layers. Results from Fourier Transform InfraRed (FTIR) spectroscopy measurements are compared with XRD data showing that FTIR is not phase sensitive when various phases of sp{sup 2}-BN are investigated. XRD measurements show a significant improvement of the crystalline quality when adding silicon to the gas mixture during the growth; this is further confirmed by cathodoluminescence which shows a decrease of the defects related luminescence intensity.

  16. Laser ablation of molecular carbon nitride compounds

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, D., E-mail: d.fischer@fkf.mpg.de [Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569 Stuttgart (Germany); Schwinghammer, K. [Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569 Stuttgart (Germany); Department of Chemistry, University of Munich, LMU, Butenandtstr. 5-13, 81377 Munich (Germany); Nanosystems Initiative Munich (NIM) and Center for Nanoscience (CeNS), 80799 Munich (Germany); Sondermann, C. [Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569 Stuttgart (Germany); Department of Chemistry, University of Munich, LMU, Butenandtstr. 5-13, 81377 Munich (Germany); Lau, V.W.; Mannhart, J. [Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569 Stuttgart (Germany); Lotsch, B.V. [Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569 Stuttgart (Germany); Department of Chemistry, University of Munich, LMU, Butenandtstr. 5-13, 81377 Munich (Germany); Nanosystems Initiative Munich (NIM) and Center for Nanoscience (CeNS), 80799 Munich (Germany)

    2015-09-15

    We present a method for the preparation of thin films on sapphire substrates of the carbon nitride precursors dicyandiamide (C{sub 2}N{sub 4}H{sub 4}), melamine (C{sub 3}N{sub 6}H{sub 6}), and melem (C{sub 6}N{sub 10}H{sub 6}), using the femtosecond-pulsed laser deposition technique (femto-PLD) at different temperatures. The depositions were carried out under high vacuum with a femtosecond-pulsed laser. The focused laser beam is scanned on the surface of a rotating target consisting of the pelletized compounds. The resulting polycrystalline, opaque films were characterized by X-ray powder diffraction, infrared, Raman, and X-ray photoelectron spectroscopy, photoluminescence, SEM, and MALDI-TOF mass spectrometry measurements. The crystal structures and optical/spectroscopic results of the obtained rough films largely match those of the bulk materials.

  17. Hexagonal boron nitride and water interaction parameters

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Yanbin; Aluru, Narayana R., E-mail: aluru@illinois.edu [Department of Mechanical Science and Engineering, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States); Wagner, Lucas K. [Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801-3080 (United States)

    2016-04-28

    The study of hexagonal boron nitride (hBN) in microfluidic and nanofluidic applications at the atomic level requires accurate force field parameters to describe the water-hBN interaction. In this work, we begin with benchmark quality first principles quantum Monte Carlo calculations on the interaction energy between water and hBN, which are used to validate random phase approximation (RPA) calculations. We then proceed with RPA to derive force field parameters, which are used to simulate water contact angle on bulk hBN, attaining a value within the experimental uncertainties. This paper demonstrates that end-to-end multiscale modeling, starting at detailed many-body quantum mechanics and ending with macroscopic properties, with the approximations controlled along the way, is feasible for these systems.

  18. Apatite formability of boron nitride nanotubes

    International Nuclear Information System (INIS)

    Lahiri, Debrupa; Keshri, Anup K; Agarwal, Arvind; Singh, Virendra; Seal, Sudipta

    2011-01-01

    This study investigates the ability of boron nitride nanotubes (BNNTs) to induce apatite formation in a simulated body fluid environment for a period of 7, 14 and 28 days. BNNTs, when soaked in the simulated body fluid, are found to induce hydroxyapatite (HA) precipitation on their surface. The precipitation process has an initial incubation period of ∼ 4.6 days. The amount of HA precipitate increases gradually with the soaking time. High resolution TEM results indicated a hexagonal crystal structure of HA needles. No specific crystallographic orientation relationship is observed between BNNT and HA, which is due to the presence of a thin amorphous HA layer on the BNNT surface that disturbs a definite orientation relationship.

  19. CVD mechanism of pyrolytic boron nitride

    International Nuclear Information System (INIS)

    Tanji, H.; Monden, K.; Ide, M.

    1987-01-01

    Pyrolytic boron nitride (P-BN) has become a essential material for III-V compound semiconductor manufacturing process. As the demand from electronics industry for larger single crystals increases, the demand for larger and more economical P-BN components is growing rapidly. P-BN is manufactured by low pressure CVD using boron-trihalides and ammonia as the reactants. In spite that P-BN has been in the market for quite a long time, limited number of fundamental studies regarding the kinetics and the formation mechanism of P-BN have been reported. As it has been demonstrated in CVD of Si, knowledge and both theoretical and empirical modeling of CVD process can be applied to improve the deposition technology and to give more uniform deposition with higher efficiency, and it should also apply to the deposition of P-BN

  20. Thermal expansion of quaternary nitride coatings

    Science.gov (United States)

    Tasnádi, Ferenc; Wang, Fei; Odén, Magnus; Abrikosov, Igor A.

    2018-04-01

    The thermal expansion coefficient of technologically relevant multicomponent cubic nitride alloys are predicted using the Debye model with ab initio elastic constants calculated at 0 K and an isotropic approximation for the Grüneisen parameter. Our method is benchmarked against measured thermal expansion of TiN and Ti(1-x)Al x N as well as against results of molecular dynamics simulations. We show that the thermal expansion coefficients of Ti(1-x-y)X y Al x N (X  =  Zr, Hf, Nb, V, Ta) solid solutions monotonously increase with the amount of alloying element X at all temperatures except for Zr and Hf, for which they instead decrease for y≳ 0.5 .

  1. A boron nitride nanotube peapod thermal rectifier

    International Nuclear Information System (INIS)

    Loh, G. C.; Baillargeat, D.

    2014-01-01

    The precise guidance of heat from one specific location to another is paramount in many industrial and commercial applications, including thermal management and thermoelectric generation. One of the cardinal requirements is a preferential conduction of thermal energy, also known as thermal rectification, in the materials. This study introduces a novel nanomaterial for rectifying heat—the boron nitride nanotube peapod thermal rectifier. Classical non-equilibrium molecular dynamics simulations are performed on this nanomaterial, and interestingly, the strength of the rectification phenomenon is dissimilar at different operating temperatures. This is due to the contingence of the thermal flux on the conductance at the localized region around the scatterer, which varies with temperature. The rectification performance of the peapod rectifier is inherently dependent on its asymmetry. Last but not least, the favourable rectifying direction in the nanomaterial is established.

  2. A boron nitride nanotube peapod thermal rectifier

    Energy Technology Data Exchange (ETDEWEB)

    Loh, G. C., E-mail: jgloh@mtu.edu [Department of Physics, Michigan Technological University, Houghton, Michigan 49931 (United States); Institute of High Performance Computing, 1 Fusionopolis Way, #16-16 Connexis, Singapore 138632 (Singapore); Baillargeat, D. [CNRS-International-NTU-Thales Research Alliance (CINTRA), 50 Nanyang Drive, Singapore 637553 (Singapore)

    2014-06-28

    The precise guidance of heat from one specific location to another is paramount in many industrial and commercial applications, including thermal management and thermoelectric generation. One of the cardinal requirements is a preferential conduction of thermal energy, also known as thermal rectification, in the materials. This study introduces a novel nanomaterial for rectifying heat—the boron nitride nanotube peapod thermal rectifier. Classical non-equilibrium molecular dynamics simulations are performed on this nanomaterial, and interestingly, the strength of the rectification phenomenon is dissimilar at different operating temperatures. This is due to the contingence of the thermal flux on the conductance at the localized region around the scatterer, which varies with temperature. The rectification performance of the peapod rectifier is inherently dependent on its asymmetry. Last but not least, the favourable rectifying direction in the nanomaterial is established.

  3. Rebar graphene from functionalized boron nitride nanotubes.

    Science.gov (United States)

    Li, Yilun; Peng, Zhiwei; Larios, Eduardo; Wang, Gunuk; Lin, Jian; Yan, Zheng; Ruiz-Zepeda, Francisco; José-Yacamán, Miguel; Tour, James M

    2015-01-27

    The synthesis of rebar graphene on Cu substrates is described using functionalized boron nitride nanotubes (BNNTs) that were annealed or subjected to chemical vapor deposition (CVD) growth of graphene. Characterization shows that the BNNTs partially unzip and form a reinforcing bar (rebar) network within the graphene layer that enhances the mechanical strength through covalent bonds. The rebar graphene is transferrable to other substrates without polymer assistance. The optical transmittance and conductivity of the hybrid rebar graphene film was tested, and a field effect transistor was fabricated to explore its electrical properties. This method of synthesizing 2D hybrid graphene/BN structures should enable the hybridization of various 1D nanotube and 2D layered structures with enhanced mechanical properties.

  4. CEMS of nitride coatings in agressive environments

    Science.gov (United States)

    Hanžel, D.; Agudelo, A. C.; Gancedo, J. R.; Lakatos-Varsanyi, M.; Marco, J. F.

    1998-12-01

    The corrosion properties of single layered TiN and CrN films have been compared to bi-layered and multi-layered Ti/TiN films. XPS has showed that in humid SO2 atmosphere the best corrosion properties have been achieved by a multi-layered Ti/TiN coating. Cyclic voltammetry in acetate buffer has been applied to measure the porousity and corrosion resistance of coatings. The best results have been achieved by multi-layered Ti/TiN and CrN films. Conversion electron Mössbauer spectroscopy has been used to study the changes in the interface Fe/TiN during thermal treatment in UHV. It has been shown that the amount of iron nitrides in the interface increases with increasing temperature.

  5. CEMS of nitride coatings in agressive environments

    International Nuclear Information System (INIS)

    Hanzel, D.; Agudelo, A.C.; Gancedo, J.R.; Lakatos-Varsanyi, M.; Marco, J.F.

    1998-01-01

    The corrosion properties of single layered TiN and CrN films have been compared to bi-layered and multi-layered Ti/TiN films. XPS has showed that in humid SO 2 atmosphere the best corrosion properties have been achieved by a multi-layered Ti/TiN coating. Cyclic voltammetry in acetate buffer has been applied to measure the porousity and corrosion resistance of coatings. The best results have been achieved by multi-layered Ti/TiN and CrN films. Conversion electron Moessbauer spectroscopy has been used to study the changes in the interface Fe/TiN during thermal treatment in UHV. It has been shown that the amount of iron nitrides in the interface increases with increasing temperature

  6. CEMS of nitride coatings in agressive environments

    Energy Technology Data Exchange (ETDEWEB)

    Hanzel, D. [University of Ljubljana, J. Stefan Institute (Slovenia); Agudelo, A.C.; Gancedo, J.R. [Instituto de Quimica-Fisica ' Rocasolano' , CSIC (Spain); Lakatos-Varsanyi, M. [Eoetvoes University, Department of Physical Chemistry (Hungary); Marco, J.F. [Instituto de Quimica-Fisica ' Rocasolano' , CSIC (Spain)

    1998-12-15

    The corrosion properties of single layered TiN and CrN films have been compared to bi-layered and multi-layered Ti/TiN films. XPS has showed that in humid SO{sub 2} atmosphere the best corrosion properties have been achieved by a multi-layered Ti/TiN coating. Cyclic voltammetry in acetate buffer has been applied to measure the porousity and corrosion resistance of coatings. The best results have been achieved by multi-layered Ti/TiN and CrN films. Conversion electron Moessbauer spectroscopy has been used to study the changes in the interface Fe/TiN during thermal treatment in UHV. It has been shown that the amount of iron nitrides in the interface increases with increasing temperature.

  7. Synthesis and characterization of boron nitrides nanotubes

    International Nuclear Information System (INIS)

    Ferreira, T.H.; Sousa, E.M.B.

    2010-01-01

    This paper presents a new synthesis for the production of boron nitride nanotubes (BNNT) from boron powder, ammonium nitrate and hematite tube furnace CVD method. The samples were subjected to some characterization techniques as infrared spectroscopy, thermal analysis, X-ray diffraction and scanning electron microscopy and transmission. By analyzing the results can explain the chemical reactions involved in the process and confirm the formation of BNNT with several layers and about 30 nanometers in diameter. Due to excellent mechanical properties and its chemical and thermal stability this material is promising for various applications. However, BNNT has received much less attention than carbon nanotubes, it is because of great difficulty to synthesize appreciable quantities from the techniques currently known, and this is one of the main reasons this work.(author)

  8. Low temperature gaseous nitriding of Ni based superalloys

    DEFF Research Database (Denmark)

    Eliasen, K. M.; Christiansen, Thomas Lundin; Somers, Marcel A. J.

    2010-01-01

    In the present work the nitriding response of selected Ni based superalloys at low temperatures is addressed. The alloys investigated are nimonic series nos. 80, 90, 95 and 100 and nichrome (Ni/Cr......In the present work the nitriding response of selected Ni based superalloys at low temperatures is addressed. The alloys investigated are nimonic series nos. 80, 90, 95 and 100 and nichrome (Ni/Cr...

  9. Preparation of phosphorus targets using the compound phosphorus nitride

    International Nuclear Information System (INIS)

    Maier-Komor, P.

    1987-01-01

    Commercially available phosphorus nitride (P 3 N 5 ) shows a high oxygen content. Nevertheless, this material is attractive for use as phosphorus targets in experiments where red phosphorus would disappear due to its high vapor pressure and where a metal partner in the phosphide must be excluded due to its high atomic number. Methods are described to produce phosphorus nitride targets by vacuum evaporation condensation. (orig.)

  10. Dynamic Multiaxial Response of a Hot-Pressed Aluminum Nitride

    Science.gov (United States)

    2012-01-05

    Hutchinson, Adv. Appl . Mech. 29 (1992). [34] H. Ming-Yuan, J.W. Hutchinson, Int. J. Solids Struct. 25 (1989) 1053. [35] J. Salem , L. Ghosn, Int. J...Dynamic Multiaxial Response of a Hot- Pressed Aluminum Nitride by Guangli Hu, C. Q. Chen, K. T. Ramesh, and J. W. McCauley ARL-RP-0487...Laboratory Aberdeen Proving Ground, MD 21005-5066 ARL-RP-0487 June 2014 Dynamic Multiaxial Response of a Hot- Pressed Aluminum Nitride

  11. Optimization of time–temperature schedule for nitridation of silicon ...

    Indian Academy of Sciences (India)

    pact was optimized by kinetic study of the reaction, 3Si + 2N2 = Si3N4 at four different temperatures (1250°C,. 1300°C, 1350°C and 1400°C). ... Reaction sintered silicon nitride; nitridation; reaction kinetics. 1. Introduction. Formation of ..... cation of silica layer resulted in active oxidation of silicon at high temperature to ...

  12. Four-Wave Mixing in Silicon-Rich Nitride Waveguides

    DEFF Research Database (Denmark)

    Mitrovic, Miranda; Guan, Xiaowei; Ji, Hua

    2015-01-01

    We demonstrate four-wave mixing wavelength conversion in silicon-rich nitride waveguides which are a promising alternative to silicon for nonlinear applications. The obtained conversion efficiency reaches -13.6 dB while showing no significant nonlinear loss.......We demonstrate four-wave mixing wavelength conversion in silicon-rich nitride waveguides which are a promising alternative to silicon for nonlinear applications. The obtained conversion efficiency reaches -13.6 dB while showing no significant nonlinear loss....

  13. Defect reduction in seeded aluminum nitride crystal growth

    Science.gov (United States)

    Bondokov, Robert T.; Schowalter, Leo J.; Morgan, Kenneth; Slack, Glen A; Rao, Shailaja P.; Gibb, Shawn Robert

    2017-09-26

    Bulk single crystal of aluminum nitride (AlN) having an areal planar defect density.ltoreq.100 cm.sup.-2. Methods for growing single crystal aluminum nitride include melting an aluminum foil to uniformly wet a foundation with a layer of aluminum, the foundation forming a portion of an AlN seed holder, for an AlN seed to be used for the AlN growth. The holder may consist essentially of a substantially impervious backing plate.

  14. Platinum group metal nitrides and carbides: synthesis, properties and simulation

    International Nuclear Information System (INIS)

    Ivanovskii, Alexander L

    2009-01-01

    Experimental and theoretical data on new compounds, nitrides and carbides of the platinum group 4d and 5d metals (ruthenium, rhodium, palladium, osmium, iridium, platinum), published over the past five years are summarized. The extreme mechanical properties of platinoid nitrides and carbides, i.e., their high strength and low compressibility, are noted. The prospects of further studies and the scope of application of these compounds are discussed.

  15. Nitrogen Atom Transfer From High Valent Iron Nitrides

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Michael D. [New Mexico State Univ., Las Cruces, NM (United States); Smith, Jeremy M. [Indiana Univ., Bloomington, IN (United States)

    2015-10-14

    This report describes the synthesis and reactions of high valent iron nitrides. Organonitrogen compounds such as aziridines are useful species for organic synthesis, but there are few efficient methods for their synthesis. Using iron nitrides to catalytically access these species may allow for their synthesis in an energy-and atom-efficient manner. We have developed a new ligand framework to achieve these goals as well as providing a method for inducing previously unknown reactivity.

  16. Theoretical study of nitride short period superlattices

    Science.gov (United States)

    Gorczyca, I.; Suski, T.; Christensen, N. E.; Svane, A.

    2018-02-01

    Discussion of band gap behavior based on first principles calculations of electronic band structures for various short period nitride superlattices is presented. Binary superlattices, as InN/GaN and GaN/AlN as well as superlattices containing alloys, as InGaN/GaN, GaN/AlGaN, and GaN/InAlN are considered. Taking into account different crystallographic directions of growth (polar, semipolar and nonpolar) and different strain conditions (free-standing and pseudomorphic) all the factors influencing the band gap engineering are analyzed. Dependence on internal strain and lattice geometry is considered, but the main attention is devoted to the influence of the internal electric field and the hybridization of well and barrier wave functions. The contributions of these two important factors to band gap behavior are illustrated and estimated quantitatively. It appears that there are two interesting ranges of layer thicknesses; in one (few atomic monolayers in barriers and wells) the influence of the wave function hybridization is dominant, whereas in the other (layers thicker than roughly five to six monolayers) dependence of electric field on the band gaps is more important. The band gap behavior in superlattices is compared with the band gap dependence on composition in the corresponding ternary and quaternary alloys. It is shown that for superlattices it is possible to exceed by far the range of band gap values, which can be realized in ternary alloys. The calculated values of the band gaps are compared with the photoluminescence emission energies, when the corresponding data are available. Finally, similarities and differences between nitride and oxide polar superlattices are pointed out by comparison of wurtzite GaN/AlN and ZnO/MgO.

  17. Gallium Nitride Schottky betavoltaic nuclear batteries

    International Nuclear Information System (INIS)

    Lu Min; Zhang Guoguang; Fu Kai; Yu Guohao; Su Dan; Hu Jifeng

    2011-01-01

    Research highlights: → Gallium Nitride nuclear batteries with Ni-63 are demonstrated for the first time. → Open circuit voltage of 0.1 V and conversion efficiency of 0.32% have been obtained. → The limited performance is due to thin effective energy deposition layer. → The output power is expected to greatly increase with growing thick GaN films. -- Abstract: Gallium Nitride (GaN) Schottky betavoltaic nuclear batteries (GNBB) are demonstrated in our work for the first time. GaN films are grown on sapphire substrates by metalorganic chemical vapor deposition (MOCVD), and then GaN Schottky diodes are fabricated by normal micro-fabrication process. Nickel with mass number of 63 ( 63 Ni), which emits β particles, is loaded on the GaN Schottky diodes to achieve GNBB. X-ray diffraction (XRD) and photoluminescence (PL) are carried out to investigate the crystal quality for the GaN films as grown. Current-voltage (I-V) characteristics shows that the GaN Schottky diodes are not jet broken down at -200 V due to consummate fabrication processes, and the open circuit voltage of the GNBB is 0.1 V and the short circuit current density is 1.2 nA cm -2 . The limited performance of the GNBB is due to thin effective energy deposition layer, which is only 206 nm to absorb very small partial energy of the β particles because of the relatively high dislocation density and carrier concentration. However, the conversion efficiency of 0.32% and charge collection efficiency (CCE) of 29% for the GNBB have been obtained. Therefore, the output power of the GNBB are expected to greatly increase with growing high quality thick GaN films.

  18. Synthesis of reduced carbon nitride at the reduction by hydroquinone of water-soluble carbon nitride oxide (g-C{sub 3}N{sub 4})O

    Energy Technology Data Exchange (ETDEWEB)

    Kharlamov, Alexey [Frantsevich Institute for Problems of Materials Science of NASU, Krzhyzhanovsky St. 3, 03680 Kiev (Ukraine); Bondarenko, Marina, E-mail: mebondarenko@ukr.net [Frantsevich Institute for Problems of Materials Science of NASU, Krzhyzhanovsky St. 3, 03680 Kiev (Ukraine); Kharlamova, Ganna [Taras Shevchenko National University of Kiev, Volodymyrs' ka St. 64, 01601 Kiev (Ukraine); Fomenko, Veniamin [Frantsevich Institute for Problems of Materials Science of NASU, Krzhyzhanovsky St. 3, 03680 Kiev (Ukraine)

    2016-09-15

    For the first time at the reduction by hydroquinone of water-soluble carbon nitride oxide (g-C{sub 3}N{sub 4})O reduced carbon nitride (or reduced multi-layer azagraphene) is obtained. It is differed from usually synthesized carbon nitride by a significantly large (on 0.09 nm) interplanar distance is. At the same time, the chemical bonds between atoms in a heteroatomic plane of reduced carbon nitride correspond to the bonds in a synthesized g-C{sub 3}N{sub 4}. The samples of water-soluble carbon nitride oxide were synthesized under the special reactionary conditions of a pyrolysis of melamine and urea. We believe that reduced carbon nitride consists of weakly connected carbon-nitrogen monosheets (azagraphene sheets) as well as reduced (from graphene oxide) graphene contains weakly connected graphene sheets. - Graphical abstract: XRD pattern and schematic atomic model of one layer of reduced carbon nitride, carbon nitride oxide and synthesized carbon nitride. For the first time at the reduction by hydroquinone of the water-soluble carbon nitride oxide (g-C{sub 3}N{sub 4})O is obtained the reduced carbon nitride (or reduced multi-layer azagraphene). Display Omitted - Highlights: • First the reduced carbon nitride (RCN) at the reduction of the carbon nitride oxide was obtained. • Water-soluble carbon nitride oxide was reduced by hydroquinone. • The chemical bonds in a heteroatomic plane of RCN correspond to the bonds in a synthesized g-C{sub 3}N{sub 4}. • Reduced carbon nitride consists of poorly connected heteroatomic azagraphene layers.

  19. Preparation and characteristics of various rare earth nitrides

    International Nuclear Information System (INIS)

    Imamura, H.; Imahashi, T.; Zaimi, M.; Sakata, Y.

    2008-01-01

    Active nanocrystalline nitrides of EuN and YbN with high surface areas were successfully prepared by the thermal decomposition of the rare earth amides (Eu(NH 2 ) 2 , Yb(NH 2 ) 2 and Yb(NH 2 ) 3 ). For the preparation of CeN, PrN and NdN, the direct reaction of the rare earth metals with ammonia was extensively studied to determine optimal conditions. In the reaction of rare earth metals with ammonia, hydrides besides the nitrides were competitively formed. The reaction conditions such as temperatures and ratios of ammonia to rare earth metal were crucial in preferential formation of nitride. The nanocrystalline YbN and EuN readily absorbed large amounts of ammonia even at room temperature upon contact with ammonia (13.3 kPa). The absorbed ammonia existed in at least two forms on/in the nitride; the one was surface-adsorbed ammonia and the other ammonia absorbed in the nitride in a decomposed state. The properties of ammonia absorbed by the nitride were further evaluated by temperature-programmed desorption (TPD), FT-IR and XRD techniques

  20. The prospect of uranium nitride (UN) and mixed nitride fuel (UN-PuN) for pressurized water reactor

    Science.gov (United States)

    Syarifah, Ratna Dewi; Suud, Zaki

    2015-09-01

    Design study of small Pressurized Water Reactors (PWRs) core loaded with uranium nitride fuel (UN) and mixed nitride fuel (UN-PuN), Pa-231 as burnable poison, and Americium has been performed. Pa-231 known as actinide material, have large capture cross section and can be converted into fissile material that can be utilized to reduce excess reactivity. Americium is one of minor actinides with long half life. The objective of adding americium is to decrease nuclear spent fuel in the world. The neutronic analysis results show that mixed nitride fuel have k-inf greater than uranium nitride fuel. It is caused by the addition of Pu-239 in mixed nitride fuel. In fuel fraction analysis, for uranium nitride fuel, the optimum volume fractions are 45% fuel fraction, 10% cladding and 45% moderator. In case of UN-PuN fuel, the optimum volume fractions are 30% fuel fraction, 10% cladding and 60% coolant/ moderator. The addition of Pa-231 as burnable poison for UN fuel, enrichment U-235 5%, with Pa-231 1.6% has k-inf more than one and excess reactivity of 14.45%. And for mixed nitride fuel, the lowest value of reactivity swing is when enrichment (U-235+Pu) 8% with Pa-231 0.4%, the excess reactivity value 13,76%. The fuel pin analyze for the addition of Americium, the excess reactivity value is lower than before, because Americium absorb the neutron. For UN fuel, enrichment U-235 8%, Pa-231 1.6% and Am 0.5%, the excess reactivity is 4.86%. And for mixed nitride fuel, when enrichment (U-235+Pu) 13%, Pa-231 0.4% and Am 0.1%, the excess reactivity is 11.94%. For core configuration, it is better to use heterogeneous than homogeneous core configuration, because the radial power distribution is better.

  1. The prospect of uranium nitride (UN) and mixed nitride fuel (UN-PuN) for pressurized water reactor

    International Nuclear Information System (INIS)

    Syarifah, Ratna Dewi; Suud, Zaki

    2015-01-01

    Design study of small Pressurized Water Reactors (PWRs) core loaded with uranium nitride fuel (UN) and mixed nitride fuel (UN-PuN), Pa-231 as burnable poison, and Americium has been performed. Pa-231 known as actinide material, have large capture cross section and can be converted into fissile material that can be utilized to reduce excess reactivity. Americium is one of minor actinides with long half life. The objective of adding americium is to decrease nuclear spent fuel in the world. The neutronic analysis results show that mixed nitride fuel have k-inf greater than uranium nitride fuel. It is caused by the addition of Pu-239 in mixed nitride fuel. In fuel fraction analysis, for uranium nitride fuel, the optimum volume fractions are 45% fuel fraction, 10% cladding and 45% moderator. In case of UN-PuN fuel, the optimum volume fractions are 30% fuel fraction, 10% cladding and 60% coolant/ moderator. The addition of Pa-231 as burnable poison for UN fuel, enrichment U-235 5%, with Pa-231 1.6% has k-inf more than one and excess reactivity of 14.45%. And for mixed nitride fuel, the lowest value of reactivity swing is when enrichment (U-235+Pu) 8% with Pa-231 0.4%, the excess reactivity value 13,76%. The fuel pin analyze for the addition of Americium, the excess reactivity value is lower than before, because Americium absorb the neutron. For UN fuel, enrichment U-235 8%, Pa-231 1.6% and Am 0.5%, the excess reactivity is 4.86%. And for mixed nitride fuel, when enrichment (U-235+Pu) 13%, Pa-231 0.4% and Am 0.1%, the excess reactivity is 11.94%. For core configuration, it is better to use heterogeneous than homogeneous core configuration, because the radial power distribution is better

  2. Generation and Characteristics of IV-VI transition Metal Nitride and Carbide Nanoparticles using a Reactive Mesoporous Carbon Nitride

    KAUST Repository

    Alhajri, Nawal Saad

    2016-02-22

    Interstitial nitrides and carbides of early transition metals in groups IV–VI exhibit platinum-like electronic structures, which make them promising candidates to replace noble metals in various catalytic reactions. Herein, we present the preparation and characterization of nano-sized transition metal nitries and carbides of groups IV–VI (Ti, V, Nb, Ta, Cr, Mo, and W) using mesoporous graphitic carbon nitride (mpg-C3N4), which not only provides confined spaces for restricting primary particle size but also acts as a chemical source of nitrogen and carbon. We studied the reactivity of the metals with the template under N2 flow at 1023 K while keeping the weight ratio of metal to template constant at unity. The produced nanoparticles were characterized by powder X-ray diffraction, CHN elemental analysis, nitrogen sorption, X-ray photoelectron spectroscopy, and transmission electron microscopy. The results show that Ti, V, Nb, Ta, and Cr form nitride phases with face centered cubic structure, whereas Mo and W forme carbides with hexagonal structures. The tendency to form nitride or carbide obeys the free formation energy of the transition metal nitrides and carbides. This method offers the potential to prepare the desired size, shape and phase of transition metal nitrides and carbides that are suitable for a specific reaction, which is the chief objective of materials chemistry.

  3. Study for the determination of samarium, europium,terbium, dysprosium and yttrium in gadolinium oxide matrix by means of atomic absorption spectrophotometry using a graphite furnace

    International Nuclear Information System (INIS)

    Caires, A.C.F.

    1985-01-01

    A study for determination of samarium, europium, terbium, dysprosium and yttrium in a gadolinium oxide matrix by atomic absorption spectrophotometry using a graphite furnace is presented. The best charrring and atomization conditions were estabilished for each element, the most convenient ressonance lines being selected as well. The study was carried out for the mentioned lanthanides both when pure and when in binary mixtures with gadolinium, besides those where all for them were together with gadolinium. The determination limits for pure lanthanides were found to be between 1.3 and 9.6 ng assuming a 20% relative standard deviation as acceptable. The detection limits were in the range 0.51 and 7.5 ng, assuming as positive any answer higher than twofold the standard deviation. (author) [pt

  4. Biodistribution of samarium-153-EDTMP in rats treated with docetaxel Biodistribuição de EDTMP-153-samário em ratos tratados com docetaxel

    Directory of Open Access Journals (Sweden)

    Arthur Villarim Neto

    2009-02-01

    Full Text Available PURPOSE: Many patients with metastatic bone disease have to use radiopharmaceuticals associated with chemotherapy to relieve bone pain. The aim of this study was to assess the influence of docetaxel on the biodistribution of samarium-153-EDTMP in bones and other organs of rats. METHODS: Wistar male rats were randomly allocated into 2 groups of 6 rats each. The DS (docetaxel/samarium group received docetaxel (15 mg/kg intraperitoneally in two cycles 11 days apart. The S (samarium/control group rats were not treated with docetaxel. Nine days after chemotherapy, all the rats were injected with 0.1ml of samarium-153-EDTMP via orbital plexus (25µCi. After 2 hours, the animals were killed and samples of the brain, thyroid, lung, heart, stomach, colon, liver, kidney and both femurs were removed. The percentage radioactivity of each sample (% ATI/g was determined in an automatic gamma-counter (Wizard-1470, Perkin-Elmer, Finland. RESULTS: On the 9th day after the administration of the 2nd chemotherapy cycle, the rats had a significant weight loss (314.50±22.09g compared (pOBJETIVO: Muitos pacientes com metástases ósseas são tratados com radiofármacos associados com quimioterapia para alívio da dor óssea. O objetivo do trabalho foi estudar a influência do docetaxel na biodistribuição do EDTMP-153-samário nos ossos e outros órgãos de ratos. MÉTODOS: Ratos Wistar foram aleatoriamente alocados em 2 grupos de 6 animais cada. O grupo DS (docetaxel/samário recebeu docetaxel (15 mg/kg intraperitoneal em dois ciclos com 11 dias de intervalo. Os ratos do grupo S (samário/controle não foram tratados com docetaxel. Nove dias após a quimioterapia, todos os animais receberam 0,1ml de EDTMP-153-samário via plexo orbital (25µCi. Após 2 horas, os animais foram mortos e feitas biópsias de cérebro, tireóide, pulmão, coração, estômago, cólon, fígado, rim e fêmures. O percentual de radioatividade por grama (%ATI/g de tecido de cada bi

  5. Optimal Timing of Bisphosphonate Administration in Combination with Samarium-153 Oxabifore in the Treatment of Painful Metastatic Bone Disease

    International Nuclear Information System (INIS)

    Rasulova, Nigora; Lyubshin, Vladimir; Arybzhanov, Dauranbek; Sagdullaev, Sh.; Krylov, Valery; Khodjibekov, Marat

    2013-01-01

    While bisphosphonates are indicated for prevention of skeletal-related events, radionuclide therapy is widely used for treatment of painful bone metastases. Combined radionuclide therapy with bisphosphonates has demonstrated improved effectiveness in achieving bone pain palliation in comparison to mono therapy with radionuclides or bisphosphonates alone. However, there are conflicting reports as to whether bisphosphonates adversely influence skeletal uptake of the bone-seeking radiotracers used for therapy. Recent studies analyzing influence of Zoledronic acid on total bone uptake of Samarium-153 EDTMP (Sm-153 EDTMP) by measuring cumulative urinary activity of Sm-153 on baseline study, as well as in combination with bisphosphonates (administrated 48 hours prior to Sm-153) did not provide any statistically significant difference in urinary excretion of Sm-153 between the two groups. It may be noted that the exact temporal sequence of bisphosphonate administration vis a vis radionuclide therapy has not yet been studied. One of the side effects of bisphosphonates is transient flare effect on bone pain. Radionuclide therapy may also have similar side effect. Keeping in view the above the current study was designed with the main objective of determining the exact timing of bisphosphonate administration in patients receiving combined therapy so as to achieve optimal efficacy of bone pain palliation. Ninety-three patients suffering from metastatic bone pain who received combination therapy with Sm-153 oxabifore (an analog of Sm-153 EDTMP) and Zoledronic acid were divided into three groups according to the timing of Zoledronic acid administration: Group I: 39 patients who received Zoledronic acid 7 or more days prior to Sm-153 oxabifore treatment; Group II: 32 patients who received Zoledronic acid 48-72 hours prior to Sm-153 oxabifore treatment and Group III: 22 patients who received Zoledronic acid 7 days after Sm-153 oxabifore treatment. Sm-153 oxabifore was administered

  6. Toxicity evaluation of boron nitride nanospheres and water-soluble boron nitride in Caenorhabditis elegans

    Directory of Open Access Journals (Sweden)

    Wang N

    2017-08-01

    Full Text Available Ning Wang,1 Hui Wang,2 Chengchun Tang,3 Shijun Lei,1 Wanqing Shen,1 Cong Wang,1 Guobin Wang,4 Zheng Wang,1,4 Lin Wang1,5 1Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, 2Department of Medical Genetics, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 3Boron Nitride Research Center, School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 4Department of Gastrointestinal Surgery, 5Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China Abstract: Boron nitride (BN nanomaterials have been increasingly explored for potential biological applications. However, their toxicity remains poorly understood. Using Caenorhabditis elegans as a whole-animal model for toxicity analysis of two representative types of BN nanomaterials – BN nanospheres (BNNSs and highly water-soluble BN nanomaterial (named BN-800-2 – we found that BNNSs overall toxicity was less than soluble BN-800-2 with irregular shapes. The concentration thresholds for BNNSs and BN-800-2 were 100 µg·mL-1 and 10 µg·mL-1, respectively. Above this concentration, both delayed growth, decreased life span, reduced progeny, retarded locomotion behavior, and changed the expression of phenotype-related genes to various extents. BNNSs and BN-800-2 increased oxidative stress levels in C. elegans by promoting reactive oxygen species production. Our results further showed that oxidative stress response and MAPK signaling-related genes, such as GAS1, SOD2, SOD3, MEK1, and PMK1, might be key factors for reactive oxygen species production and toxic responses to BNNSs and BN-800-2 exposure. Together, our results suggest that when concentrations are lower than 10 µg·mL-1, BNNSs are more biocompatible than BN-800-2 and are potentially biocompatible material. Keywords: boron nitride nanomaterials, Caenorhabditis elegans, nanotoxicology

  7. First principles calculations of interstitial and lamellar rhenium nitrides

    Energy Technology Data Exchange (ETDEWEB)

    Soto, G., E-mail: gerardo@cnyn.unam.mx [Universidad Nacional Autonoma de Mexico, Centro de Nanociencias y Nanotecnologia, Km 107 Carretera Tijuana-Ensenada, Ensenada Baja California (Mexico); Tiznado, H.; Reyes, A.; Cruz, W. de la [Universidad Nacional Autonoma de Mexico, Centro de Nanociencias y Nanotecnologia, Km 107 Carretera Tijuana-Ensenada, Ensenada Baja California (Mexico)

    2012-02-15

    Highlights: Black-Right-Pointing-Pointer The possible structures of rhenium nitride as a function of composition are analyzed. Black-Right-Pointing-Pointer The alloying energy is favorable for rhenium nitride in lamellar arrangements. Black-Right-Pointing-Pointer The structures produced by magnetron sputtering are metastable variations. Black-Right-Pointing-Pointer The structures produced by high-pressure high-temperature are stable configurations. Black-Right-Pointing-Pointer The lamellar structures are a new category of interstitial dissolutions. - Abstract: We report here a systematic first principles study of two classes of variable-composition rhenium nitride: i, interstitial rhenium nitride as a solid solution and ii, rhenium nitride in lamellar structures. The compounds in class i are cubic and hexagonal close-packed rhenium phases, with nitrogen in the octahedral and tetrahedral interstices of the metal, and they are formed without changes to the structure, except for slight distortions of the unit cells. In the compounds in class ii, by contrast, the nitrogen inclusion provokes stacking faults in the parent metal structure. These faults create trigonal-prismatic sites where the nitrogen residence is energetically favored. This second class of compounds produces lamellar structures, where the nitrogen lamellas are inserted among multiple rhenium layers. The Re{sub 3}N and Re{sub 2}N phases produced recently by high-temperature and high-pressure synthesis belong to this class. The ratio of the nitrogen layers to the rhenium layers is given by the composition. While the first principle calculations point to higher stability for the lamellar structures as opposed to the interstitial phases, the experimental evidence presented here demonstrates that the interstitial classes are synthesizable by plasma methods. We conclude that rhenium nitrides possess polymorphism and that the two-dimensional lamellar structures might represent an emerging class of materials

  8. First principles calculations of interstitial and lamellar rhenium nitrides

    International Nuclear Information System (INIS)

    Soto, G.; Tiznado, H.; Reyes, A.; Cruz, W. de la

    2012-01-01

    Highlights: ► The possible structures of rhenium nitride as a function of composition are analyzed. ► The alloying energy is favorable for rhenium nitride in lamellar arrangements. ► The structures produced by magnetron sputtering are metastable variations. ► The structures produced by high-pressure high-temperature are stable configurations. ► The lamellar structures are a new category of interstitial dissolutions. - Abstract: We report here a systematic first principles study of two classes of variable-composition rhenium nitride: i, interstitial rhenium nitride as a solid solution and ii, rhenium nitride in lamellar structures. The compounds in class i are cubic and hexagonal close-packed rhenium phases, with nitrogen in the octahedral and tetrahedral interstices of the metal, and they are formed without changes to the structure, except for slight distortions of the unit cells. In the compounds in class ii, by contrast, the nitrogen inclusion provokes stacking faults in the parent metal structure. These faults create trigonal-prismatic sites where the nitrogen residence is energetically favored. This second class of compounds produces lamellar structures, where the nitrogen lamellas are inserted among multiple rhenium layers. The Re 3 N and Re 2 N phases produced recently by high-temperature and high-pressure synthesis belong to this class. The ratio of the nitrogen layers to the rhenium layers is given by the composition. While the first principle calculations point to higher stability for the lamellar structures as opposed to the interstitial phases, the experimental evidence presented here demonstrates that the interstitial classes are synthesizable by plasma methods. We conclude that rhenium nitrides possess polymorphism and that the two-dimensional lamellar structures might represent an emerging class of materials within binary nitride chemistry.

  9. Structural properties of iron nitride on Cu(100): An ab-initio molecular dynamics study

    KAUST Repository

    Heryadi, Dodi; Schwingenschlö gl, Udo

    2011-01-01

    Due to their potential applications in magnetic storage devices, iron nitrides have been a subject of numerous experimental and theoretical investigations. Thin films of iron nitride have been successfully grown on different substrates. To study

  10. Optical and Micro-Structural Characterization of MBE Grown Indium Gallium Nitride Polar Quantum Dots

    KAUST Repository

    El Afandy, Rami

    2011-01-01

    Gallium nitride and related materials have ushered in scientific and technological breakthrough for lighting, mass data storage and high power electronic applications. These III-nitride materials have found their niche in blue light emitting diodes

  11. Evanescent field phase shifting in a silicon nitride waveguide using a coupled silicon slab

    DEFF Research Database (Denmark)

    Jensen, Asger Sellerup; Oxenløwe, Leif Katsuo; Green, William M. J.

    2015-01-01

    An approach for electrical modulation of low-loss silicon nitride waveguides is proposed, using a silicon nitride waveguide evanescently loaded with a thin silicon slab. The thermooptic phase-shift characteristics are investigated in a racetrack resonator configuration....

  12. Nitride coating enhances endothelialization on biomedical NiTi shape memory alloy

    Energy Technology Data Exchange (ETDEWEB)

    Ion, Raluca [University of Bucharest, Department of Biochemistry and Molecular Biology, 91-95 Spl. Independentei, 050095 Bucharest (Romania); Luculescu, Catalin [National Institute for Laser, Plasma and Radiation Physics, 409 Atomistilor, P.O. Box MG-36, 077125 Magurele-Bucharest (Romania); Cimpean, Anisoara, E-mail: anisoara.cimpean@bio.unibuc.ro [University of Bucharest, Department of Biochemistry and Molecular Biology, 91-95 Spl. Independentei, 050095 Bucharest (Romania); Marx, Philippe [AMF Company, Route de Quincy, 18120 Lury-sur-Arnon (France); Gordin, Doina-Margareta; Gloriant, Thierry [INSA Rennes, UMR CNRS 6226 ISCR, 20 Avenue des Buttes de Coësmes, 35708 Rennes Cedex 7 (France)

    2016-05-01

    Surface nitriding was demonstrated to be an effective process for improving the biocompatibility of implantable devices. In this study, we investigated the benefits of nitriding the NiTi shape memory alloy for vascular stent applications. Results from cell experiments indicated that, compared to untreated NiTi, a superficial gas nitriding treatment enhanced the adhesion of human umbilical vein endothelial cells (HUVECs), cell spreading and proliferation. This investigation provides data to demonstrate the possibility of improving the rate of endothelialization on NiTi by means of nitride coating. - Highlights: • Gas nitriding process of NiTi is competent to promote cell spreading. • Surface nitriding of NiTi is able to stimulate focal adhesion formation and cell proliferation. • Similar expression pattern of vWf and eNOS was exhibited by bare and nitrided NiTi. • Gas nitriding treatment of NiTi shows promise for better in vivo endothelialization.

  13. Analysis of mechanical properties of steel 1045 plasma nitriding: with and without tempering

    International Nuclear Information System (INIS)

    Machado, N.T.B.; Passos, M.L.M. dos; Riani, J.C.; Recco, A.A.C.

    2014-01-01

    The purpose of this study was to evaluate the possibility of tempering during the nitriding of AISI 1045 steel. The objective was to evaluate the possibility of eliminating this phase, with the nitriding properties remaining unaltered. For this, three parameter samples were compared: quenched, tempered and nitrided for 2h; quenching and nitrided for 2h and quenching and nitrided for 4h. The analysis techniques used for characterizing the samples before and after nitriding were optical microscopy, hardness Rockwell C (HRC), scanning electron microscopy (SEM), X-ray diffraction (XRD). Results showed that phase γ is the most favorable of all parameters tested. The hardness assays showed that samples with different initial hardness (with and without tempering) and even nitriding time showed similar mechanical properties. This fact suggests that the tempering process occurred parallel to the nitriding process. (author)

  14. Microstructure and antibacterial properties of microwave plasma nitrided layers on biomedical stainless steels

    International Nuclear Information System (INIS)

    Lin, Li-Hsiang; Chen, Shih-Chung; Wu, Ching-Zong; Hung, Jing-Ming; Ou, Keng-Liang

    2011-01-01

    Nitriding of AISI 303 austenitic stainless steel using microwave plasma system at various temperatures was conducted in the present study. The nitrided layers were characterized via scanning electron microscopy, glancing angle X-ray diffraction, transmission electron microscopy and Vickers microhardness tester. The antibacterial properties of this nitrided layer were evaluated. During nitriding treatment between 350 deg. C and 550 deg. C, the phase transformation sequence on the nitrided layers of the alloys was found to be γ → (γ + γ N ) → (γ + α + CrN). The analytical results revealed that the surface hardness of AISI 303 stainless steel could be enhanced with the formation of γ N phase in nitriding process. Antibacterial test also demonstrated the nitrided layer processed the excellent antibacterial properties. The enhanced surface hardness and antibacterial properties make the nitrided AISI 303 austenitic stainless steel to be one of the essential materials in the biomedical applications.

  15. Capacitive performance of molybdenum nitride/titanium nitride nanotube array for supercapacitor

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Yibing, E-mail: ybxie@seu.edu.cn; Tian, Fang

    2017-01-15

    Highlights: • MoN{sub x}/TiN NTA is fully converted from MoO{sub 2}/TiO{sub 2} NTA by one-step nitridation process. • MoN{sub x}/TiN NTA is used as feasible electrode material of high-performance supercapacitor. • MoN{sub x}/TiN NTA shows high capacitance, rate capability and cycling stability. - Abstract: Molybdenum nitride (MoN{sub x}) depositing on titanium nitride nanotube array (TiN NTA) was designed as MoN{sub x}/TiN NTA for supercapacitor electrode material. MoN{sub x}/TiN NTA was fabricated by electrodepositing molybdenum oxide onto titanium dioxide NTA and one-step nitridation treatment in ammonia. MoN{sub x}/TiN NTA involved top-surface layer of MoN{sub x} nanoparticles and underlying layer of TiN NTA, which contributed to electric double layer capacitance in aqueous lithium-ion electrolyte solution. The specific capacitance was increased from 69.05 mF cm{sup −2} for TiN NTA to 121.50 mF cm{sup −2} for MoN{sub x}/TiN NTA at 0.3 mA cm{sup −2}, presenting the improved capacitance performance. MoN{sub x} exhibited the capacitance of 174.83 F g{sup −1} at 1.5 A g{sup −1} and slightly declined to 109.13 F g{sup −1} at 30 A g{sup −1}, presenting high rate capability. MoN{sub x}/TiN NTA exhibited the capacitance retention ratio of 93.8% at 3.0 mA cm{sup −2} after 1000 cycles, presenting high cycling stability. MoN{sub x}/TiN NTA could act as a promising electrode material of supercapacitor.

  16. Technical assistance for development of thermally conductive nitride filler for epoxy molding compounds

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Ho Jin; Song, Kee Chan; Jung, In Ha

    2005-07-15

    Technical assistance was carried out to develop nitride filler for thermally conductive epoxy molding compounds. Carbothermal reduction method was used to fabricate silicon nitride powder from mixtures of silica and graphite powders. Microstructure and crystal structure were observed by using scanning electron microscopy and x-ray diffraction technique. Thermal properties of epoxy molding compounds containing silicon nitride were measured by using laser flash method. Fabrication process of silicon nitride nanowire was developed and was applied to a patent.

  17. Performance analysis of nitride alternative plasmonic materials for localized surface plasmon applications

    DEFF Research Database (Denmark)

    Guler, U.; Naik, G. V.; Boltasseva, Alexandra

    2012-01-01

    . Titanium nitride and zirconium nitride, which were recently suggested as alternative plasmonic materials in the visible and near-infrared ranges, are compared to the performance of gold. In contrast to the results from quasistatic methods, both nitride materials are very good alternatives to the usual...

  18. UN{sub 2−x} layer formed on uranium metal by glow plasma nitriding

    Energy Technology Data Exchange (ETDEWEB)

    Long, Zhong [China Academy of Engineering Physics, P.O. Box 919-71, Mianyang 621907 (China); Hu, Yin [Science and Technology on Surface Physics and Chemistry Laboratory, P.O. Box 718-35, Mianyang 621907 (China); Chen, Lin [China Academy of Engineering Physics, P.O. Box 919-71, Mianyang 621907 (China); Luo, Lizhu [Science and Technology on Surface Physics and Chemistry Laboratory, P.O. Box 718-35, Mianyang 621907 (China); Liu, Kezhao, E-mail: liukz@hotmail.com [Science and Technology on Surface Physics and Chemistry Laboratory, P.O. Box 718-35, Mianyang 621907 (China); Lai, Xinchun, E-mail: lai319@yahoo.com [Science and Technology on Surface Physics and Chemistry Laboratory, P.O. Box 718-35, Mianyang 621907 (China)

    2015-01-25

    Highlights: • We used a very simple method to prepare nitride layer on uranium metal surface. • This modified layer is nitrogen-rich nitride, which should be written as UN{sub 2−x}. • TEM images show the nitride layer is composed of nano-sized grains. • XPS analysis indicates there is uranium with abnormal low valence in the nitride. - Abstract: Glow plasma nitriding is a simple and economical surface treatment method, and this technology was used to prepare nitride layer on the surface of uranium metal with thickness of several microns. The composition and structure of the nitride layer were analyzed by AES and XRD, indicating that this modified layer is nitrogen-rich uranium nitride, which should be written as UN{sub 2−x}. TEM images show the nitride layer is composed of nano-sized grains, with compact structure. And XPS analysis indicates there is uranium with abnormal low valence existing in the nitride. After the treated uranium storage in air for a long time, oxygen just entered the surface several nanometers, showing the nitride layer has excellent oxidation resistance. The mechanism of nitride layer formation and low valence uranium appearance is discussed.

  19. UN2−x layer formed on uranium metal by glow plasma nitriding

    International Nuclear Information System (INIS)

    Long, Zhong; Hu, Yin; Chen, Lin; Luo, Lizhu; Liu, Kezhao; Lai, Xinchun

    2015-01-01

    Highlights: • We used a very simple method to prepare nitride layer on uranium metal surface. • This modified layer is nitrogen-rich nitride, which should be written as UN 2−x . • TEM images show the nitride layer is composed of nano-sized grains. • XPS analysis indicates there is uranium with abnormal low valence in the nitride. - Abstract: Glow plasma nitriding is a simple and economical surface treatment method, and this technology was used to prepare nitride layer on the surface of uranium metal with thickness of several microns. The composition and structure of the nitride layer were analyzed by AES and XRD, indicating that this modified layer is nitrogen-rich uranium nitride, which should be written as UN 2−x . TEM images show the nitride layer is composed of nano-sized grains, with compact structure. And XPS analysis indicates there is uranium with abnormal low valence existing in the nitride. After the treated uranium storage in air for a long time, oxygen just entered the surface several nanometers, showing the nitride layer has excellent oxidation resistance. The mechanism of nitride layer formation and low valence uranium appearance is discussed

  20. Turbostratic boron nitride coated on high-surface area metal oxide templates

    DEFF Research Database (Denmark)

    Klitgaard, Søren Kegnæs; Egeblad, Kresten; Brorson, M.

    2007-01-01

    Boron nitride coatings on high-surface area MgAl2O4 and Al2O3 have been synthesized and characterized by transmission electron microscopy and by X-ray powder diffraction. The metal oxide templates were coated with boron nitride using a simple nitridation in a flow of ammonia starting from ammonium...

  1. Cavitation contributes substantially to tensile creep in silicon nitride

    International Nuclear Information System (INIS)

    Luecke, W.E.; Wiederhorn, S.M.; Hockey, B.J.; Krause, R.F. Jr.; Long, G.G.

    1995-01-01

    During tensile creep of a hot isostatically pressed (HIPed) silicon nitride, the volume fraction of cavities increases linearly with strain; these cavities produce nearly all of the measured strain. In contrast, compressive creep in the same stress and temperature range produces very little cavitation. A stress exponent that increases with stress (var-epsilon ∝ σ n , 2 < n < 7) characterizes the tensile creep response, while the compressive creep response exhibits a stress dependence of unity. Furthermore, under the same stress and temperature, the material creeps nearly 100 times faster in tension than in compression. Transmission electron microscopy (TEM) indicates that the cavities formed during tensile creep occur in pockets of residual crystalline silicate phase located at silicon nitride multigrain junctions. Small-angle X-ray scattering (SAXS) from crept material quantifies the size distribution of cavities observed in TEM and demonstrates that cavity addition, rather than cavity growth, dominates the cavitation process. These observations are in accord with a model for creep based on the deformation of granular materials in which the microstructure must dilate for individual grains t slide past one another. During tensile creep the silicon nitride grains remain rigid; cavitation in the multigrain junctions allows the silicate to flow from cavities to surrounding silicate pockets, allowing the dilation of the microstructure and deformation of the material. Silicon nitride grain boundary sliding accommodates this expansion and leads to extension of the specimen. In compression, where cavitation is suppressed, deformation occurs by solution-reprecipitation of silicon nitride

  2. Effective Duration of Gas Nitriding Process on AISI 316L for the Formation of a Desired Thickness of Surface Nitrided Layer

    Directory of Open Access Journals (Sweden)

    Mahmoud Hassan R. S.

    2014-07-01

    Full Text Available High temperature gas nitriding performed on AISI 316L at the temperature of 1200°C. The microstructure of treated AISI 316L samples were observed to identify the formation of the microstructure of nitrided surface layer. The grain size of austenite tends to be enlarged when the nitriding time increases, but the austenite single phase structure is maintained even after the long-time solution nitriding. Using microhardness testing, the hardness values drop to the center of the samples. The increase in surface hardness is due to the high nitrogen concentration at or near the surface. At 245HV, the graph of the effective duration of nitriding process was plotted to achieve the maximum depth of nitrogen diffuse under the surface. Using Sigma Plot software best fit lines of the experimental result found and plotted to find out effective duration of nitriding equation as Y=1.9491(1-0.7947x, where Y is the thickness of nitrided layer below the surface and X is duration of nitriding process. Based on this equation, the duration of gas nitriding process can be estimated to produce desired thickness of nitrided layer.

  3. Gallium nitride at the millennial transition

    International Nuclear Information System (INIS)

    Pankovo, J.I.

    2000-01-01

    The properties of gallium nitride were uncovered in the early years of exploratory research and endowed with negative electron affinity that could be used to make efficient cold cathodes and even dynodes for electron multipliers. GaN has another property i.e. polar nature of the crystal which makes this material piezo-electric and has non-linear optical properties. The piezo-electric properties led to new piezo electric effect may cause interfacial charge. The non-uniform distribution of acceptors, there is also presence of threading and other dislocation in GaN. Defects reappear where two adjacent overgrowth merge, but the good lateral overgrow region is large enough to make lasers. Injection lasers benefit from strong electrical and optical environment. This was achieved by using quantum wells of InGaN in GaN and this can be doped with rare earth elements to exploit the atomic transition between core levels in these elements. The emission efficiency of electrically excited Er in GaN is nearly temperature incentive from 80K to room temperature. An other application of GaN is as a heterojunction emitter for a bi-polar transistor (HBT) that can operate at high temperatures. (A.B.)

  4. Refined phase diagram of boron nitride

    International Nuclear Information System (INIS)

    Solozhenko, V.; Turkevich, V.Z.

    1999-01-01

    The equilibrium phase diagram of boron nitride thermodynamically calculated by Solozhenko in 1988 has been now refined on the basis of new experimental data on BN melting and extrapolation of heat capacities of BN polymorphs into high-temperature region using the adapted pseudo-Debye model. As compared with the above diagram, the hBN left-reversible cBN equilibrium line is displaced by 60 K toward higher temperatures. The hBN-cBN-L triple point has been calculated to be at 3480 ± 10 K and 5.9 ± 0.1 GPa, while the hBN-L-V triple point is at T = 3400 ± 20 K and p = 400 ± 20 Pa, which indicates that the region of thermodynamic stability of vapor in the BN phase diagram is extremely small. It has been found that the slope of the cBN melting curve is positive whereas the slope of hBN melting curve varies from positive between ambient pressure and 3.4 GPa to negative at higher pressures

  5. Scratch-resistant transparent boron nitride films

    Energy Technology Data Exchange (ETDEWEB)

    Dekempeneer, E.H.A.; Kuypers, S.; Vercammen, K.; Meneve, J.; Smeets, J. [Vlaamse Instelling voor Technologisch Onderzoek (VITO), Mol (Belgium); Gibson, P.N.; Gissler, W. [Joint Research Centre of the Commission of the European Communities, Institute for Advanced Materials, Ispra (Vatican City State, Holy See) (Italy)

    1998-03-01

    Transparent boron nitride (BN) coatings were deposited on glass and Si substrates in a conventional capacitively coupled RF PACVD system starting from diborane (diluted in helium) and nitrogen. By varying the plasma conditions (bias voltage, ion current density), coatings were prepared with hardness values ranging from 2 to 12 GPa (measured with a nano-indenter). Infrared absorption measurements indicated that the BN was of the hexagonal type. A combination of glancing-angle X-ray diffraction measurements and simulations shows that the coatings consist of hexagonal-type BN crystallites with different degrees of disorder (nanocrystalline or turbostratic material). High-resolution transmission electron microscopy analysis revealed the presence of an amorphous interface layer and on top of this interface layer a well-developed fringe pattern characteristic for the basal planes in h-BN. Depending on the plasma process conditions, these fringe patterns showed different degrees of disorder as well as different orientational relationships with respect to the substrate surface. These observations were correlated with the mechanical properties of the films. (orig.) 14 refs.

  6. Graphene nanoribbons epitaxy on boron nitride

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Xiaobo; Wang, Shuopei; Wu, Shuang; Chen, Peng; Zhang, Jing; Zhao, Jing; Meng, Jianling; Xie, Guibai; Wang, Duoming; Wang, Guole; Zhang, Ting Ting; Yang, Rong; Shi, Dongxia [Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Yang, Wei [Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Laboratoire Pierre Aigrain, ENS-CNRS UMR 8551, Universités Pierre et Marie Curie and Paris-Diderot, 24 rue Lhomond, 75231 Paris Cedex 05 (France); Watanabe, Kenji; Taniguchi, Takashi [National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044 (Japan); Zhang, Guangyu, E-mail: gyzhang@aphy.iphy.ac.cn [Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Collaborative Innovation Center of Quantum Matter, Beijing 100190 (China)

    2016-03-14

    In this letter, we report a pilot study on epitaxy of monolayer graphene nanoribbons (GNRs) on hexagonal boron nitride (h-BN). We found that GNRs grow preferentially from the atomic steps of h-BN, forming in-plane heterostructures. GNRs with well-defined widths ranging from ∼15 nm to ∼150 nm can be obtained reliably. As-grown GNRs on h-BN have high quality with a carrier mobility of ∼20 000 cm{sup 2} V{sup −1} s{sup −1} for ∼100-nm-wide GNRs at a temperature of 1.7 K. Besides, a moiré pattern induced quasi-one-dimensional superlattice with a periodicity of ∼15 nm for GNR/h-BN was also observed, indicating zero crystallographic twisting angle between GNRs and h-BN substrate. The superlattice induced band structure modification is confirmed by our transport results. These epitaxial GNRs/h-BN with clean surfaces/interfaces and tailored widths provide an ideal platform for high-performance GNR devices.

  7. Fluorescent lighting with aluminum nitride phosphors

    Science.gov (United States)

    Cherepy, Nerine J.; Payne, Stephen A.; Seeley, Zachary M.; Srivastava, Alok M.

    2016-05-10

    A fluorescent lamp includes a glass envelope; at least two electrodes connected to the glass envelope; mercury vapor and an inert gas within the glass envelope; and a phosphor within the glass envelope, wherein the phosphor blend includes aluminum nitride. The phosphor may be a wurtzite (hexagonal) crystalline structure Al.sub.(1-x)M.sub.xN phosphor, where M may be drawn from beryllium, magnesium, calcium, strontium, barium, zinc, scandium, yttrium, lanthanum, cerium, praseodymium, europium, gadolinium, terbium, ytterbium, bismuth, manganese, silicon, germanium, tin, boron, or gallium is synthesized to include dopants to control its luminescence under ultraviolet excitation. The disclosed Al.sub.(1-x)M.sub.xN:Mn phosphor provides bright orange-red emission, comparable in efficiency and spectrum to that of the standard orange-red phosphor used in fluorescent lighting, Y.sub.2O.sub.3:Eu. Furthermore, it offers excellent lumen maintenance in a fluorescent lamp, and does not utilize "critical rare earths," minimizing sensitivity to fluctuating market prices for the rare earth elements.

  8. Aluminum nitride and nanodiamond thin film microstructures

    Energy Technology Data Exchange (ETDEWEB)

    Knoebber, Fabian; Bludau, Oliver; Roehlig, Claus-Christian; Williams, Oliver; Sah, Ram Ekwal; Kirste, Lutz; Cimalla, Volker; Lebedev, Vadim; Nebel, Christoph; Ambacher, Oliver [Fraunhofer-Institute for Applied Solid State Physics, Freiburg (Germany)

    2010-07-01

    In this work, aluminum nitride (AlN) and nanocrystalline diamond (NCD) thin film microstructures have been developed. Freestanding NCD membranes were coated with a piezoelectrical AlN layer in order to build tunable micro-lens arrays. For the evaluation of the single material quality, AlN and NCD thin films on silicon substrates were fabricated using RF magnetron sputtering and microwave chemical vapor deposition techniques, respectively. The crystal quality of AlN was investigated by X-ray diffraction. The piezoelectric constant d{sub 33} was determined by scanning laser vibrometry. The NCD thin films were optimized with respect to surface roughness, mechanical stability, intrinsic stress and transparency. To determine the mechanical properties of the materials, both, micromechanical resonator and membrane structures were fabricated and measured by magnetomotive resonant frequency spectroscopy and bulging experiments, respectively. Finally, the behavior of AlN/NCD heterostructures was modeled using the finite element method and the first structures were characterized by piezoelectrical measurements.

  9. Fully CMOS-compatible titanium nitride nanoantennas

    Energy Technology Data Exchange (ETDEWEB)

    Briggs, Justin A., E-mail: jabriggs@stanford.edu [Department of Applied Physics, Stanford University, 348 Via Pueblo Mall, Stanford, California 94305 (United States); Department of Materials Science and Engineering, Stanford University, 496 Lomita Mall, Stanford, California 94305 (United States); Naik, Gururaj V.; Baum, Brian K.; Dionne, Jennifer A. [Department of Materials Science and Engineering, Stanford University, 496 Lomita Mall, Stanford, California 94305 (United States); Petach, Trevor A.; Goldhaber-Gordon, David [Department of Physics, Stanford University, 382 Via Pueblo Mall, Stanford, California 94305 (United States)

    2016-02-01

    CMOS-compatible fabrication of plasmonic materials and devices will accelerate the development of integrated nanophotonics for information processing applications. Using low-temperature plasma-enhanced atomic layer deposition (PEALD), we develop a recipe for fully CMOS-compatible titanium nitride (TiN) that is plasmonic in the visible and near infrared. Films are grown on silicon, silicon dioxide, and epitaxially on magnesium oxide substrates. By optimizing the plasma exposure per growth cycle during PEALD, carbon and oxygen contamination are reduced, lowering undesirable loss. We use electron beam lithography to pattern TiN nanopillars with varying diameters on silicon in large-area arrays. In the first reported single-particle measurements on plasmonic TiN, we demonstrate size-tunable darkfield scattering spectroscopy in the visible and near infrared regimes. The optical properties of this CMOS-compatible material, combined with its high melting temperature and mechanical durability, comprise a step towards fully CMOS-integrated nanophotonic information processing.

  10. Device performance of in situ steam generated gate dielectric nitrided by remote plasma nitridation

    International Nuclear Information System (INIS)

    Al-Shareef, H. N.; Karamcheti, A.; Luo, T. Y.; Bersuker, G.; Brown, G. A.; Murto, R. W.; Jackson, M. D.; Huff, H. R.; Kraus, P.; Lopes, D.

    2001-01-01

    In situ steam generated (ISSG) oxides have recently attracted interest for use as gate dielectrics because of their demonstrated reliability improvement over oxides formed by dry oxidation. [G. Minor, G. Xing, H. S. Joo, E. Sanchez, Y. Yokota, C. Chen, D. Lopes, and A. Balakrishna, Electrochem. Soc. Symp. Proc. 99-10, 3 (1999); T. Y. Luo, H. N. Al-Shareef, G. A. Brown, M. Laughery, V. Watt, A. Karamcheti, M. D. Jackson, and H. R. Huff, Proc. SPIE 4181, 220 (2000).] We show in this letter that nitridation of ISSG oxide using a remote plasma decreases the gate leakage current of ISSG oxide by an order of magnitude without significantly degrading transistor performance. In particular, it is shown that the peak normalized transconductance of n-channel devices with an ISSG oxide gate dielectric decreases by only 4% and the normalized drive current by only 3% after remote plasma nitridation (RPN). In addition, it is shown that the reliability of the ISSG oxide exhibits only a small degradation after RPN. These observations suggest that the ISSG/RPN process holds promise for gate dielectric applications. [copyright] 2001 American Institute of Physics

  11. Synthesis of samarium complexes with the derivative binder of Schiff Quinolinic base. Characterization and photophysical study; Sintesis de complejos de samario con el ligante derivado de base de Schiff Quinolinica. Caracterizacion y estudio fotofisico

    Energy Technology Data Exchange (ETDEWEB)

    Lucas H, J.

    2016-07-01

    In this work we determined the metal: binder stoichiometry of the species formed during the UV/Vis spectrophotometric titration of the derivative binder of Schiff quinolinic base, L1 with the samarium nitrate pentahydrate in methanol. Statistical analysis of the data allowed proposing the metal: binder stoichiometry for the synthesis of the complexes which was one mole of samarium salt by 2.5 moles of binder and thus favor the formation of complexes with 1M: 1L and 1M: 2L stoichiometries. They were synthesized in aqueous-organic medium (water-ethanol), isolated and purified two complexes with stoichiometry 1 Sm: 1 L1, complex 1 and 1 Sm: 2 L1, complex 2. The overall yield of the reaction was 76%. The characterization of the formed complexes was performed by visible ultraviolet spectrometry (UV/Vis), nuclear magnetic resonance, X-ray photoelectron spectroscopy (XP S), thermal gravimetric analysis with differential scanning calorimetry (TGA/DSC), and radial distribution function. These complexes were studied by fluorescence and emission phosphorescence at variable temperature. Spectroscopic techniques used in both solution and solid demonstrated the formation and stability of these complexes. In addition XP S indicated that in both complexes the samarium retains its oxidation state 3+. Luminescence studies indicated that there is intra-binding charge transfer which decreases the transfer of light energy from the binder to the samarium. Based on the experimental results, L1 binder molecules and complexes 1 and 2 were modeled that demonstrated the proposed Nc for each complex, as well as allowed to visualize the structural arrangement of the molecules, complexes and binder. (Author)

  12. Structure and properties of nitrided surface layer produced on NiTi shape memory alloy by low temperature plasma nitriding

    International Nuclear Information System (INIS)

    Czarnowska, Elżbieta; Borowski, Tomasz; Sowińska, Agnieszka; Lelątko, Józef; Oleksiak, Justyna; Kamiński, Janusz; Tarnowski, Michał; Wierzchoń, Tadeusz

    2015-01-01

    Highlights: • Low temperature plasma nitriding process of NiTi shape memory alloy is presented. • The possibility of treatment details of sophisticated shape. • TiN surface layer has diffusive character. • TiN surface layer increases corrosion resistance of NiTi alloy. • Produced TiN layer modify the biological properties of NiTi alloy. - Abstract: NiTi shape memory alloys are used for bone and cardiological implants. However, on account of the metallosis effect, i.e. the release of the alloy elements into surrounding tissues, they are subjected to various surface treatment processes in order to improve their corrosion resistance and biocompatibility without influencing the required shape memory properties. In this paper, the microstructure, topography and morphology of TiN surface layer on NiTi alloy, and corrosion resistance, both before and after nitriding in low-temperature plasma at 290 °C, are presented. Examinations with the use of the potentiodynamic and electrochemical impedance spectroscopy methods were carried out and show an increase of corrosion resistance in Ringer's solution after glow-discharge nitriding. This surface titanium nitride layer also improved the adhesion of platelets and the proliferation of osteoblasts, which was investigated in in vitro experiments with human cells. Experimental data revealed that nitriding NiTi shape memory alloy under low-temperature plasma improves its properties for bone implant applications

  13. Structure and properties of nitrided surface layer produced on NiTi shape memory alloy by low temperature plasma nitriding

    Energy Technology Data Exchange (ETDEWEB)

    Czarnowska, Elżbieta [Children' s Memorial Health Institute, Pathology Department, Al. Dzieci Polskich 20, 04-730 Warsaw (Poland); Borowski, Tomasz [Warsaw University of Technology, Faculty of Materials Science and Engineering, Wołoska 141, 02-507 Warsaw (Poland); Sowińska, Agnieszka [Children' s Memorial Health Institute, Pathology Department, Al. Dzieci Polskich 20, 04-730 Warsaw (Poland); Lelątko, Józef [Silesia University, Faculty of Computer Science and Materials Science, 75 Pułku Piechoty 1A, 41-500 Chorzów (Poland); Oleksiak, Justyna; Kamiński, Janusz; Tarnowski, Michał [Warsaw University of Technology, Faculty of Materials Science and Engineering, Wołoska 141, 02-507 Warsaw (Poland); Wierzchoń, Tadeusz, E-mail: twierz@inmat.pw.edu.pl [Warsaw University of Technology, Faculty of Materials Science and Engineering, Wołoska 141, 02-507 Warsaw (Poland)

    2015-04-15

    Highlights: • Low temperature plasma nitriding process of NiTi shape memory alloy is presented. • The possibility of treatment details of sophisticated shape. • TiN surface layer has diffusive character. • TiN surface layer increases corrosion resistance of NiTi alloy. • Produced TiN layer modify the biological properties of NiTi alloy. - Abstract: NiTi shape memory alloys are used for bone and cardiological implants. However, on account of the metallosis effect, i.e. the release of the alloy elements into surrounding tissues, they are subjected to various surface treatment processes in order to improve their corrosion resistance and biocompatibility without influencing the required shape memory properties. In this paper, the microstructure, topography and morphology of TiN surface layer on NiTi alloy, and corrosion resistance, both before and after nitriding in low-temperature plasma at 290 °C, are presented. Examinations with the use of the potentiodynamic and electrochemical impedance spectroscopy methods were carried out and show an increase of corrosion resistance in Ringer's solution after glow-discharge nitriding. This surface titanium nitride layer also improved the adhesion of platelets and the proliferation of osteoblasts, which was investigated in in vitro experiments with human cells. Experimental data revealed that nitriding NiTi shape memory alloy under low-temperature plasma improves its properties for bone implant applications.

  14. Active Control of Nitride Plasmonic Dispersion in the Far Infrared.

    Energy Technology Data Exchange (ETDEWEB)

    Shaner, Eric A.; Dyer, Gregory Conrad; Seng, William Francis; Bethke, Donald Thomas; Grine, Albert Dario,; Baca, Albert G.; Allerman, Andrew A.

    2014-11-01

    We investigate plasmonic structures in nitride-based materials for far-infrared (IR) applications. The two dimensional electron gas (2DEG) in the GaN/AlGaN material system, much like metal- dielectric structures, is a patternable plasmonic medium. However, it also permits for direct tunability via an applied voltage. While there have been proof-of-principle demonstrations of plasma excitations in nitride 2DEGs, exploration of the potential of this material system has thus far been limited. We recently demonstrated coherent phenomena such as the formation of plasmonic crystals, strong coupling of tunable crystal defects to a plasmonic crystal, and electromagnetically induced transparency in GaAs/AlGaAs 2DEGs at sub-THz frequencies. In this project, we explore whether these effects can be realized in nitride 2DEG materials above 1 THz and at temperatures exceeding 77 K.

  15. Research and development of nitride fuel cycle technology in Europe

    International Nuclear Information System (INIS)

    Wallenius, Janne

    2004-01-01

    Research and development on nitride fuels for minor actinide burning in accelerator driven systems is performed in Europe in context of the CONFIRM project. Dry and wet methods for fabrication of uranium free nitride fuels have been developed with the assistance of thermo-chemical modelling. Four (Pu, Zr) pins have been fabricated by PSI and will be irradiated in Studsvik at a rating of 40-50 kW/m. The thermal conductivity of (Pu, Zr)N has been measured and was found to be in agreement with earlier theoretical assessments. Safety modeling indicates that americium bearing nitride fuels, in spite of their relatively poor high temperature stability under atmospheric pressure, can survive power transients as long as the fuel cladding remains intact. (author)

  16. Colloidal characterization of silicon nitride and silicon carbide

    Science.gov (United States)

    Feke, Donald L.

    1986-01-01

    The colloidal behavior of aqueous ceramic slips strongly affects the forming and sintering behavior and the ultimate mechanical strength of the final ceramic product. The colloidal behavior of these materials, which is dominated by electrical interactions between the particles, is complex due to the strong interaction of the solids with the processing fluids. A surface titration methodology, modified to account for this interaction, was developed and used to provide fundamental insights into the interfacial chemistry of these systems. Various powder pretreatment strategies were explored to differentiate between true surface chemistry and artifacts due to exposure history. The colloidal behavior of both silicon nitride and carbide is dominated by silanol groups on the powder surfaces. However, the colloid chemistry of silicon nitride is apparently influenced by an additional amine group. With the proper powder treatments, silicon nitride and carbide powder can be made to appear colloidally equivalent. The impact of these results on processing control will be discussed.

  17. Semipolar III-nitride laser diodes with zinc oxide cladding.

    Science.gov (United States)

    Myzaferi, Anisa; Reading, Arthur H; Farrell, Robert M; Cohen, Daniel A; Nakamura, Shuji; DenBaars, Steven P

    2017-07-24

    Incorporating transparent conducting oxide (TCO) top cladding layers into III-nitride laser diodes (LDs) improves device design by reducing the growth time and temperature of the p-type layers. We investigate using ZnO instead of ITO as the top cladding TCO of a semipolar (202¯1) III-nitride LD. Numerical modeling indicates that replacing ITO with ZnO reduces the internal loss in a TCO clad LD due to the lower optical absorption in ZnO. Lasing was achieved at 453 nm with a threshold current density of 8.6 kA/cm 2 and a threshold voltage of 10.3 V in a semipolar (202¯1) III-nitride LD with ZnO top cladding.

  18. Electronic Biosensors Based on III-Nitride Semiconductors.

    Science.gov (United States)

    Kirste, Ronny; Rohrbaugh, Nathaniel; Bryan, Isaac; Bryan, Zachary; Collazo, Ramon; Ivanisevic, Albena

    2015-01-01

    We review recent advances of AlGaN/GaN high-electron-mobility transistor (HEMT)-based electronic biosensors. We discuss properties and fabrication of III-nitride-based biosensors. Because of their superior biocompatibility and aqueous stability, GaN-based devices are ready to be implemented as next-generation biosensors. We review surface properties, cleaning, and passivation as well as different pathways toward functionalization, and critically analyze III-nitride-based biosensors demonstrated in the literature, including those detecting DNA, bacteria, cancer antibodies, and toxins. We also discuss the high potential of these biosensors for monitoring living cardiac, fibroblast, and nerve cells. Finally, we report on current developments of covalent chemical functionalization of III-nitride devices. Our review concludes with a short outlook on future challenges and projected implementation directions of GaN-based HEMT biosensors.

  19. Origin of interfacial charging in irradiated silicon nitride capacitors

    International Nuclear Information System (INIS)

    Hughes, R.C.

    1984-01-01

    Many experiments show that when metal-silicon nitride-silicon dioxide-silicon (MNOS) devices are irradiated in short circuit, a large interfacial charge builds up near the nitride-SiO 2 -Si interface. This effect cannot be explained by simple models of radiation-induced conductivity of the nitride, but it is reported here that inclusion of carrier diffusion and recombination in the photoconductivity equations can predict the observed behavior. Numerical solutions on a computer are required, however, when these complications are added. The simulations account for the magnitude and radiation dose dependence of the results, as well as the occurrence of a steady state during the irradiation. The location of the excess trapped charge near the interface is also predicted, along with the large number of new traps which must be introduced to influence the steady-state charge distribution

  20. Tribological and microstructural characteristics of ion-nitrided steels

    Science.gov (United States)

    Spalvins, T.

    1983-01-01

    Three steels AISI 4140, AISI 4340 and AISI 304 stainless steel were ion nitrided in a plasma consisting of a 75:25 mixture of H2:N2, sometimes with a trace of CH4. Their surface topography was characterized by SEM and two distinct compound phases were identified: the gamma and the epsilon. The core-case hardness profiles were also established. The low Cr alloy steels have an extended diffusion zone in contrast to the 3034 stainless steels which have a sharp interface. The depth of ion-nitriding is increased as the Cr content is decreased. Friction tests reveal that the gamma surface phase has a lower coefficient of friction than the epsilon phase. The lowest coefficient of friction is achieved when both the rider and the specimen surface are ion nitrided. Previously announced in STAR as N83-24635

  1. performance calculations of gadolinium oxide and boron nitride coated fuel

    International Nuclear Information System (INIS)

    Tanker, E.; Uslu, I.; Disbudak, H.; Guenduez, G.

    1997-01-01

    A comparative study was performed on the behaviour of natural uranium dioxide-gadolinium oxide mixture fuel and boron nitride coated low enriched fuel in a pressurized water reactor. A fuel element containing one burnable poison fuel pins was modeled with the computer code WIMS, and burn-up dependent critically, fissile isotope inventory and two dimensional power distribution were obtained. Calculations were performed for burnable poison fuels containing 5% and 10% gadolinium oxide and for those coated with 1μ,5μ and 10μ of boron nitride. Boron nitride coating was found superior to gadolinium oxide on account of its smoother criticality curve, lower power peaks and insignificant change in fissile isotope content

  2. Kinetic modelling of chlorination of nitrided ilmenite using MATLAB

    Energy Technology Data Exchange (ETDEWEB)

    Ramakrishnan, Sivakumar, E-mail: srsivakumar@usm.my; Kwok, Teong Chen, E-mail: ctck@live.com; Hamid, Sheikh Abdul Rezan Sheikh Abdul, E-mail: rezanshk@gmail.com [School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, 14300, Nibong Tebal, Penang (Malaysia)

    2016-07-19

    In the present study, chlorination of nitride ilmenite using 2{sup k} factorial design was investigated. The reduction experiments were carried out in a temperature range of 400°C to 500°C, chlorination duration from 1 hour to 3 hours and using different type of carbon reactant. Phases of raw materials and reduced samples were analyzed by X-ray diffraction (XRD). Ilmenite was reduced to TiO{sub x}C{sub y}N{sub z} through carbothermal and nitridation for further chlorination into titanium tetrachloride. The Design of Experiment analysis suggested that the types of carbon reactant contribute most influence to the extent of chlorination of nitride ilmenite. The extent of chlorination was highest at 500°C with 3 hours chlorination time and carbon nanotube as carbon reactant.

  3. Hot carrier dynamics in plasmonic transition metal nitrides

    Science.gov (United States)

    Habib, Adela; Florio, Fred; Sundararaman, Ravishankar

    2018-06-01

    Extraction of non-equilibrium hot carriers generated by plasmon decay in metallic nano-structures is an increasingly exciting prospect for utilizing plasmonic losses, but the search for optimum plasmonic materials with long-lived carriers is ongoing. Transition metal nitrides are an exciting class of new plasmonic materials with superior thermal and mechanical properties compared to conventional noble metals, but their suitability for plasmonic hot carrier applications remains unknown. Here, we present fully first principles calculations of the plasmonic response, hot carrier generation and subsequent thermalization of all group IV, V and VI transition metal nitrides, fully accounting for direct and phonon-assisted transitions as well as electron–electron and electron–phonon scattering. We find the largest frequency ranges for plasmonic response in ZrN, HfN and WN, between those of gold and silver, while we predict strongest absorption in the visible spectrum for the VN, NbN and TaN. Hot carrier generation is dominated by direct transitions for most of the relevant energy range in all these nitrides, while phonon-assisted processes dominate only below 1 eV plasmon energies primarily for the group IV nitrides. Finally, we predict the maximum hot carrier lifetimes to be around 10 fs for group IV and VI nitrides, a factor of 3–4 smaller than noble metals, due to strong electron–phonon scattering. However, we find longer carrier lifetimes for group V nitrides, comparable to silver for NbN and TaN, while exceeding 100 fs (twice that of silver) for VN, making them promising candidates for efficient hot carrier extraction.

  4. Production of 15N for nitride type nuclear fuel

    International Nuclear Information System (INIS)

    Axente, Damian

    2005-01-01

    Full text: Nitride nuclear fuel is the choice for advanced nuclear reactors and ADS, considering its favorable properties as: melting point, excellent thermal conductivity, high fissile density, lower fission gas release and good radiation tolerance. The application of nitride fuels in different nuclear reactors requires use of 15 N enriched nitrogen to suppress 14 C production due to (n,p) reaction on 14 N. Nitride fuel is a promising candidate for transmutation in ADSs of radioactive minor actinides, which are converted into nitrides with 15 N for that purpose. Taking into account that at present the world wide 15 N market is about 20 - 40 Kg 15 N/y, the supply of that isotope for nitride type nuclear fuel, would demand an increase in production capacity by a factor of 1000. For an industrial plant producing 100 t/y 15 N at 99 at. % 15 N concentration, using present technology of 15 N/ 14 N isotopic exchange in Nitrox system, the first separation stage of the cascade would be fed with 10M HNO 3 solution at a 600 m 3 /h flow-rate. If conversion of HNO 3 into NO, NO 2 , at the enriching end of the columns, would be done with gaseous SO 2 , for an industrial plant of 100 t/y 15 N a consumption of 4 million t SO 2 /y and a production of 70 % H 2 SO 4 waste solution of 4.5 million m 3 /y are estimated. The reconversion of H 2 SO 4 into SO 2 in order to recycle SO 2 is a problem to be solved to compensate the cost of sulfur dioxide and to diminish the amount of sulfuric acid waste solution. It should be taken into consideration an important price reduction of 15 N in order to make possible its utilization for industrial production of nitride type nuclear fuel. (authors)

  5. Dissolution performance of plutonium nitride based fuel materials

    Energy Technology Data Exchange (ETDEWEB)

    Aneheim, E.; Hedberg, M. [Nuclear Chemistry, Chemistry and Chemical Engineering, Chalmers University of Technology, Kemivaegen 4, Gothenburg, SE41296 (Sweden)

    2016-07-01

    Nitride fuels have been regarded as one viable fuel option for Generation IV reactors due to their positive features compared to oxides. To be able to close the fuel cycle and follow the Generation IV concept, nitrides must, however, demonstrate their ability to be reprocessed. This means that the dissolution performance of actinide based nitrides has to be thoroughly investigated and assessed. As the zirconium stabilized nitrides show even better potential as fuel material than does the pure actinide containing nitrides, investigations on the dissolution behavior of both PuN and (Pu,Zr)N has been undertaken. If possible it is desirable to perform the fuel dissolutions using nitric acid. This, as most reprocessing strategies using solvent-solvent extraction are based on a nitride containing aqueous matrix. (Pu,Zr)N/C microspheres were produced using internal gelation. The spheres dissolution performance was investigated using nitric acid with and without additions of HF and Ag(II). In addition PuN fuel pellets were produced from powder and their dissolution performance were also assessed in a nitric acid based setting. It appears that both PuN and (Pu,Zr)N/C fuel material can be completely dissolved in nitric acid of high concentration with the use of catalytic amounts of HF. The amount of HF added strongly affects dissolution kinetics of (Pu, Zr)N and the presence of HF affects the 2 solutes differently, possibly due to inhomogeneity o the initial material. Large additions of Ag(II) can also be used to facilitate the dissolution of (Pu,Zr)N in nitric acid. PuN can be dissolved by pure nitric acid of high concentration at room temperature while (Pu, Zr)N is unaffected under similar conditions. At elevated temperature (reflux), (Pu,Zr)N can, however, also be dissolved by concentrated pure nitric acid.

  6. Kinetic parameters of nitridation of molybdenum and niobium alloys with various structure states

    International Nuclear Information System (INIS)

    Solodkin, G.A.; Bulgach, A.A.; Likhacheva, T.E.

    1985-01-01

    Effect of preliminary plastic strain under rolling on kinetic parameters of nitridation of VN-2AEh, VN-3 niobium alloys and molybdenum alloy with hafnium is investigated. Extreme character of dependence of kinetic parameters of nitridation on the degree of reduction under rolling is determined. Preliminary plastic strain at negligible reduction is shown to accelerate growth of the zone of internal nitridation and decelerates growth of the nitride zone. Nitrogen atom removal from the surface to the centre is retarded at the increase of the degree of reduction up to 50% and higher. The degree of deformations is the higher the lower nitridation temperature is

  7. Preparation and characterization of morph-genetic aluminum nitride/carbon composites from filter paper

    International Nuclear Information System (INIS)

    Wang Wei; Xue Tao; Jin Zhihao; Qiao Guanjun

    2008-01-01

    Morph-genetic aluminum nitride/carbon composites with cablelike structure were prepared from filter paper template through the surface sol-gel process and carbothermal nitridation reaction. The resulting materials have a hierarchical structure originating from the morphology of cellulose paper. The aluminum nitride/carbon composites have the core-shell microstructure, the core is graphitic carbon, and the shell is aluminum nitride nanocoating formed by carbothermal nitridation reduction of alumina with the interfacial carbon in nitrogen atmosphere. Scanning electron microscopy, energy dispersive X-ray spectroscopy, X-ray diffraction, and transmission electron microscope were employed to characterize the structural morphology and phase compositions of the final products

  8. Photoluminescence and spectroscopic dependence of fluorophosphate glasses on samarium ions concentration and the induced defects by gamma irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Marzouk, M.A., E-mail: marzouk_nrc@yahoo.com [Glass Research Department, National Research Centre, 33 El Bohouth Street (former EL Tahrir), P.O. 12622, Dokki, Giza (Egypt); Hamdy, Y.M. [Spectroscopy Department, National Research Centre, 33 El Bohouth Street (former EL Tahrir), P.O. 12622, Dokki, Giza (Egypt); ElBatal, H.A. [Glass Research Department, National Research Centre, 33 El Bohouth Street (former EL Tahrir), P.O. 12622, Dokki, Giza (Egypt); Ezz ElDin, F.M. [National Institute for Radiation Research & Technology, Nasr City, Cairo (Egypt)

    2015-10-15

    /2} and {sup 6}H{sub 11/2}, respectively. The intensity of the emission spectra is observed to increase with the increase of Sm{sub 2}O{sub 3} content. The optical spectra within the visible–near IR region and photoluminescence spectra of Sm{sub 2}O{sub 3}-doped glasses are found to be stable and show almost no variations after gamma irradiation especially when rare-earth ions are present in noticeable contents (1–3%). FTIR spectra of all the studied glasses reveal repetitive and characteristic vibrational bands mainly due to phosphate groups with abundant of Q{sup 2} and Q{sup 3} groups due to the high content of P{sub 2}O{sub 5} (70 mol%). The introduction of 10% NaF and 20% AlF{sub 3} is observed to cause formation of mixed fluorophosphate groups (PO{sub 3}F){sup 2−}. The formation of (AlPO){sub 4} and/or (AlPO{sub 6}) groups needs further justification by combined techniques. The increase of Sm{sub 2}O{sub 3} content to 3% causes obvious increase of the IR absorption bands within the wavenumbers range of about 850–1400 cm{sup −1} due to suggested depolymerization effect. Gamma irradiation causes no distinct variations in the FTIR spectra due to suggested compactness through the formation of additional structural groups from AlF{sub 4} or AlF{sub 6}. - Highlights: • Samarium ions doped in host fluorophosphate glasses were prepared. • Optical and FT infrared absorption techniques were applied to study the spectral properties of the glasses. • Photoluminescence properties were measured. • Collective spectroscopic variations generated by gamma irradiation were investigated.

  9. Silicon nitride photonics: from visible to mid-infrared wavelengths

    Science.gov (United States)

    Micó, Gloria; Bru, Luis A.; Pastor, Daniel; Doménech, David; Fernández, Juan; Sánchez, Ana; Cirera, Josep M.; Domínguez, Carlos; Muñoz, Pascual

    2018-02-01

    Silicon nitride has received a lot of attention during the last ten years, for applications such as bio-photonics, tele/datacom, optical signal processing and sensing. In this paper, firstly an updated review of the state of the art of silicon nitride photonics integration platforms will be provided. Secondly, our developments on a moderate confinement Si3N4 platform in the near-infrared will be presented. Finally, our steps towards establishing a Si3N4 based platform for broadband operation spanning from visible to mid-infrared wavelengths will be introduced.

  10. Synthesis, reactivity, and electronic structure of molecular uranium nitrides

    OpenAIRE

    Cleaves, Peter A.

    2016-01-01

    The study of metal-ligand multiple bonding offers insight into the electronic structure and bond of metal systems. Until recently, for uranium, such systems were limited to uranyl, and terminal chalcogenide, imide and carbene complexes. In 2012, this was extended to nitrides with the first preparation of a uranium–nitride (U≡N) species isolable under standard conditions, namely [U(TrenTIPS)(N)][Na(12C4)2] (52), which is prepared by the two-electron reduction of sodium azide with a trivalent u...

  11. Inter-layer potential for hexagonal boron nitride

    Energy Technology Data Exchange (ETDEWEB)

    Leven, Itai; Hod, Oded, E-mail: odedhod@tau.ac.il [Department of Chemical Physics, School of Chemistry, The Raymond and Beverly Sackler Faculty of Exact Sciences, Tel-Aviv University, Tel-Aviv 69978 (Israel); Azuri, Ido; Kronik, Leeor [Department of Materials and Interfaces, Weizmann Institute of Science, Rehovoth 76100 (Israel)

    2014-03-14

    A new interlayer force-field for layered hexagonal boron nitride (h-BN) based structures is presented. The force-field contains three terms representing the interlayer attraction due to dispersive interactions, repulsion due to anisotropic overlaps of electron clouds, and monopolar electrostatic interactions. With appropriate parameterization, the potential is able to simultaneously capture well the binding and lateral sliding energies of planar h-BN based dimer systems as well as the interlayer telescoping and rotation of double walled boron-nitride nanotubes of different crystallographic orientations. The new potential thus allows for the accurate and efficient modeling and simulation of large-scale h-BN based layered structures.

  12. Structural, electronic and optical properties of carbon nitride

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, M L [California Univ., Berkeley (United States). Dept. of Physics

    1996-05-01

    Carbon nitride was proposed as a superhard material and a structural prototype, {beta}-C{sub 3}N{sub 4}, was examined using several theoretical models. Some reports claiming experimental verifications have been made recently. The current status of the theory and experiment is reviewed, and a detailed discussion is presented of calculations of the electronic and optical properties of this material. These calculations predict that {beta}-C{sub 3}N{sub 4} will have a minimum gap which is indirect at 6.4{+-}0.5 eV. A discussion of the possibility of carbon nitride nanotubes is also presented. (orig.)

  13. Proceedings of the symposium on nitride fuel cycle technology

    International Nuclear Information System (INIS)

    2004-12-01

    This report is the Proceedings of the Symposium of Nitride Fuel Cycle Technology, which was held on July 28, 2004, at the Tokai Research Establishment of the Japan Atomic Energy Research Institute. The purpose of this symposium is to exchange information and views on nitride fuel cycle technology among researchers from foreign and domestic organizations, and to discuss the recent and future research activities. The topics in the symposium are Present State of the Technology Development in the World and Japan, Fabrication Technology, Property Measurement and Pyrochemical Process. The intensive discussion was made among 53 participants. This report consists of 2 papers as invited presentations and 12 papers as contributed papers. (author)

  14. Colloidal Plasmonic Titanium Nitride Nanoparticles: Properties and Applications

    Directory of Open Access Journals (Sweden)

    Guler Urcan

    2015-01-01

    Full Text Available Optical properties of colloidal plasmonic titanium nitride nanoparticles are examined with an eye on their photothermal and photocatalytic applications via transmission electron microscopy and optical transmittance measurements. Single crystal titanium nitride cubic nanoparticles with an average size of 50 nm, which was found to be the optimum size for cellular uptake with gold nanoparticles [1], exhibit plasmon resonance in the biological transparency window and demonstrate a high absorption efficiency. A self-passivating native oxide at the surface of the nanoparticles provides an additional degree of freedom for surface functionalization. The titanium oxide shell surrounding the plasmonic core can create new opportunities for photocatalytic applications.

  15. Synthesis and Optimization of the Sintering Kinetics of Actinide Nitrides

    International Nuclear Information System (INIS)

    Butt, Drryl P.; Jaques, Brian

    2009-01-01

    Research conducted for this NERI project has advanced the understanding and feasibility of nitride nuclear fuel processing. In order to perform this research, necessary laboratory infrastructure was developed; including basic facilities and experimental equipment. Notable accomplishments from this project include: the synthesis of uranium, dysprosium, and cerium nitrides using a novel, low-cost mechanical method at room temperature; the synthesis of phase pure UN, DyN, and CeN using thermal methods; and the sintering of UN and (U x , Dy 1-x )N (0.7 (le) X (le) 1) pellets from phase pure powder that was synthesized in the Advanced Materials Laboratory at Boise State University.

  16. Nitriding and Nitrocarburizing; Current Status and Future Challenges

    DEFF Research Database (Denmark)

    Somers, Marcel A. J.

    , aspects of low temperature surface hardening of stainless steels in a gaseous environment will be addressed. Here, the developed case consists of expanded austenite and/or expanded martensite, which essentially is a super saturated solid solution of nitrogen/carbon in austenite/martensite. The current......This contribution addresses the current understanding of gaseous nitriding and nitrocarburizing. Aspects of thermodynamics, kinetics and microstructure development in iron and heat treatable steel will be explained. In these materials the nitrided/ nitrocarburized case can be subdivided...

  17. Inter-layer potential for hexagonal boron nitride

    Science.gov (United States)

    Leven, Itai; Azuri, Ido; Kronik, Leeor; Hod, Oded

    2014-03-01

    A new interlayer force-field for layered hexagonal boron nitride (h-BN) based structures is presented. The force-field contains three terms representing the interlayer attraction due to dispersive interactions, repulsion due to anisotropic overlaps of electron clouds, and monopolar electrostatic interactions. With appropriate parameterization, the potential is able to simultaneously capture well the binding and lateral sliding energies of planar h-BN based dimer systems as well as the interlayer telescoping and rotation of double walled boron-nitride nanotubes of different crystallographic orientations. The new potential thus allows for the accurate and efficient modeling and simulation of large-scale h-BN based layered structures.

  18. Peculiar features in formation of diffusion layer properties during nitridation

    International Nuclear Information System (INIS)

    Gulyaev, A.P.; Konoval'tsev, V.I.; Nikitin, V.V.

    1983-01-01

    Peculiarities of the formation of multiphase nitridated layer at samples of commercial iron, 20, 40Kh and 38KhMYu6A steels are studied with the help of high-temperature methods of investigation (X-ray diffraction analysis, hardening and thickness measuring). It is found out that during the saturation the solid solution oversaturated with nitrogen is formed; some increase in hardness in the process is a result of solid solution hardening and the increase of thickness of nitride zone; however the main growth of the layer hardness is achieved during the cooling as a result of α phase precipitating hardening

  19. Communication: Water on hexagonal boron nitride from diffusion Monte Carlo

    Energy Technology Data Exchange (ETDEWEB)

    Al-Hamdani, Yasmine S.; Ma, Ming; Michaelides, Angelos, E-mail: angelos.michaelides@ucl.ac.uk [Thomas Young Centre and London Centre for Nanotechnology, 17–19 Gordon Street, London WC1H 0AH (United Kingdom); Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ (United Kingdom); Alfè, Dario [Thomas Young Centre and London Centre for Nanotechnology, 17–19 Gordon Street, London WC1H 0AH (United Kingdom); Department of Earth Sciences, University College London, Gower Street, London WC1E 6BT (United Kingdom); Lilienfeld, O. Anatole von [Institute of Physical Chemistry and National Center for Computational Design and Discovery of Novel Materials, Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel (Switzerland); Argonne Leadership Computing Facility, Argonne National Laboratories, 9700 S. Cass Avenue Argonne, Lemont, Illinois 60439 (United States)

    2015-05-14

    Despite a recent flurry of experimental and simulation studies, an accurate estimate of the interaction strength of water molecules with hexagonal boron nitride is lacking. Here, we report quantum Monte Carlo results for the adsorption of a water monomer on a periodic hexagonal boron nitride sheet, which yield a water monomer interaction energy of −84 ± 5 meV. We use the results to evaluate the performance of several widely used density functional theory (DFT) exchange correlation functionals and find that they all deviate substantially. Differences in interaction energies between different adsorption sites are however better reproduced by DFT.

  20. Inter-layer potential for hexagonal boron nitride

    International Nuclear Information System (INIS)

    Leven, Itai; Hod, Oded; Azuri, Ido; Kronik, Leeor

    2014-01-01

    A new interlayer force-field for layered hexagonal boron nitride (h-BN) based structures is presented. The force-field contains three terms representing the interlayer attraction due to dispersive interactions, repulsion due to anisotropic overlaps of electron clouds, and monopolar electrostatic interactions. With appropriate parameterization, the potential is able to simultaneously capture well the binding and lateral sliding energies of planar h-BN based dimer systems as well as the interlayer telescoping and rotation of double walled boron-nitride nanotubes of different crystallographic orientations. The new potential thus allows for the accurate and efficient modeling and simulation of large-scale h-BN based layered structures

  1. Synthesis and Optimization of the Sintering Kinetics of Actinide Nitrides

    Energy Technology Data Exchange (ETDEWEB)

    Drryl P. Butt; Brian Jaques

    2009-03-31

    Research conducted for this NERI project has advanced the understanding and feasibility of nitride nuclear fuel processing. In order to perform this research, necessary laboratory infrastructure was developed; including basic facilities and experimental equipment. Notable accomplishments from this project include: the synthesis of uranium, dysprosium, and cerium nitrides using a novel, low-cost mechanical method at room temperature; the synthesis of phase pure UN, DyN, and CeN using thermal methods; and the sintering of UN and (Ux, Dy1-x)N (0.7 ≤ X ≤ 1) pellets from phase pure powder that was synthesized in the Advanced Materials Laboratory at Boise State University.

  2. Mesoporous coaxial titanium nitride-vanadium nitride fibers of core-shell structures for high-performance supercapacitors.

    Science.gov (United States)

    Zhou, Xinhong; Shang, Chaoqun; Gu, Lin; Dong, Shanmu; Chen, Xiao; Han, Pengxian; Li, Lanfeng; Yao, Jianhua; Liu, Zhihong; Xu, Hongxia; Zhu, Yuwei; Cui, Guanglei

    2011-08-01

    In this study, titanium nitride-vanadium nitride fibers of core-shell structures were prepared by the coaxial electrospinning, and subsequently annealed in the ammonia for supercapacitor applications. These core-shell (TiN-VN) fibers incorporated mesoporous structure into high electronic conducting transition nitride hybrids, which combined higher specific capacitance of VN and better rate capability of TiN. These hybrids exhibited higher specific capacitance (2 mV s(-1), 247.5 F g(-1)) and better rate capability (50 mV s(-1), 160.8 F g(-1)), which promise a good candidate for high-performance supercapacitors. It was also revealed by electrochemical impedance spectroscopy (EIS) and X-ray photoelectron spectroscopy (XPS) characterization that the minor capacitance fade originated from the surface oxidation of VN and TiN.

  3. Heavy Ion Irradiation Effects in Zirconium Nitride

    International Nuclear Information System (INIS)

    Egeland, G.W.; Bond, G.M.; Valdez, J.A.; Swadener, J.G.; McClellan, K.J.; Maloy, S.A.; Sickafus, K.E.; Oliver, B.

    2004-01-01

    Polycrystalline zirconium nitride (ZrN) samples were irradiated with He + , Kr ++ , and Xe ++ ions to high (>1.10 16 ions/cm 2 ) fluences at ∼100 K. Following ion irradiation, transmission electron microscopy (TEM) and grazing incidence X-ray diffraction (GIXRD) were used to analyze the microstructure and crystal structure of the post-irradiated material. For ion doses equivalent to approximately 200 displacements per atom (dpa), ZrN was found to resist any amorphization transformation, based on TEM observations. At very high displacement damage doses, GIXRD measurements revealed tetragonal splitting of some of the diffraction maxima (maxima which are associated with cubic ZrN prior to irradiation). In addition to TEM and GIXRD, mechanical property changes were characterized using nano-indentation. Nano-indentation revealed no change in elastic modulus of ZrN with increasing ion dose, while the hardness of the irradiated ZrN was found to increase significantly with ion dose. Finally, He + ion implanted ZrN samples were annealed to examine He gas retention properties of ZrN as a function of annealing temperature. He gas release was measured using a residual gas analysis (RGA) spectrometer. RGA measurements were performed on He-implanted ZrN samples and on ZrN samples that had also been irradiated with Xe ++ ions, in order to introduce high levels of displacive radiation damage into the matrix. He evolution studies revealed that ZrN samples with high levels of displacement damage due to Xe implantation, show a lower temperature threshold for He release than do pristine ZrN samples. (authors)

  4. Graphitic carbon nitride based nanocomposites: a review

    Science.gov (United States)

    Zhao, Zaiwang; Sun, Yanjuan; Dong, Fan

    2014-11-01

    Graphitic carbon nitride (g-C3N4), as an intriguing earth-abundant visible light photocatalyst, possesses a unique two-dimensional structure, excellent chemical stability and tunable electronic structure. Pure g-C3N4 suffers from rapid recombination of photo-generated electron-hole pairs resulting in low photocatalytic activity. Because of the unique electronic structure, the g-C3N4 could act as an eminent candidate for coupling with various functional materials to enhance the performance. According to the discrepancies in the photocatalytic mechanism and process, six primary systems of g-C3N4-based nanocomposites can be classified and summarized: namely, the g-C3N4 based metal-free heterojunction, the g-C3N4/single metal oxide (metal sulfide) heterojunction, g-C3N4/composite oxide, the g-C3N4/halide heterojunction, g-C3N4/noble metal heterostructures, and the g-C3N4 based complex system. Apart from the depiction of the fabrication methods, heterojunction structure and multifunctional application of the g-C3N4-based nanocomposites, we emphasize and elaborate on the underlying mechanisms in the photocatalytic activity enhancement of g-C3N4-based nanocomposites. The unique functions of the p-n junction (semiconductor/semiconductor heterostructures), the Schottky junction (metal/semiconductor heterostructures), the surface plasmon resonance (SPR) effect, photosensitization, superconductivity, etc. are utilized in the photocatalytic processes. Furthermore, the enhanced performance of g-C3N4-based nanocomposites has been widely employed in environmental and energetic applications such as photocatalytic degradation of pollutants, photocatalytic hydrogen generation, carbon dioxide reduction, disinfection, and supercapacitors. This critical review ends with a summary and some perspectives on the challenges and new directions in exploring g-C3N4-based advanced nanomaterials.

  5. Development of nitride fuel and pyrochemical process for transmutation of minor actinides

    International Nuclear Information System (INIS)

    Arai, Yasuo; Akabori, Mitsuo; Minato, Kazuo; Uno, Masayoshi

    2010-01-01

    Nitride fuel cycle for transmutation of minor actinides has been investigated under the double-strata fuel cycle concept. Mononitride solid solutions containing minor actinides have been prepared and characterised. Thermo-physical properties, such as thermal expansion, heat capacity and thermal diffusivity, have been measured by use of minor actinide nitride and burn-up simulated nitride samples. Irradiation behaviour of nitride fuel has been examined by irradiation tests. Pyrochemical process for treatment of spent nitride fuel has been investigated mainly by electrochemical measurements and nitride formation behaviour in pyrochemical process has been studied for recycled fuel fabrication. Recent results of experimental study on nitride fuel and pyrochemical process are summarised in the paper. (authors)

  6. 3D-atom probe analysis of Cr and Cu added nitriding steels

    International Nuclear Information System (INIS)

    Takahashi, J.; Kawakami, K.; Sugiyama, M.; Kawasaki, K.

    2004-01-01

    Full text: Nitriding treatment is a very effective method for hardening the surface of steels and realizing improvement in wear-resistance. Although this technology has been performed for many years, the precipitation and hardening mechanisms are not completely clear. It was not easy to observe very fine precipitates which may be generated in nitriding steels. We performed a three-dimensional atom probe analysis of the nitriding steel plate in which two kinds of precipitates were generated. Hot-rolled steel plates, which mainly contained Cr 1.0wt.% and Cu 1.3wt.%, were nitrided by annealing (550-6000 o ) in a mainly NH 3 atmosphere. The material before the nitriding had a hardness of about 100 Hv. By the nitriding, the surface hardness increased to more than 700 Hv, and the inside hardness also increased to 200 Hv. The specimens were taken from 0.15 mm, 0.3 mm and 0.8 mm depth from the surface, which mostly correspond to the peak, the half and the inside hardness, respectively. In the specimen of 0.8 mm depth, prolate spheroidal Cu precipitates of more than 8 nm in diameter were observed. In the specimen of 0.3 mm depth, plate-shape nitride precipitates of 6-10 nm in diameter were observed in addition to the Cu precipitates. Each Cu precipitate made a pair with the nitride precipitate. In the 0.15 mm depth specimen, Cr nitride precipitates of high volume density in addition to the pairs consisting of a Cu precipitate and a Cr nitride precipitate were observed. The size of the nitride precipitate forming the pair was slightly larger than that of the single Cr nitride precipitates. Furthermore, the denuded zone where the nitride precipitate does not exist was observed around the pairs. From these results, it was concluded that three stages of precipitation arose as follows: By the heat treatment of nitriding processing, Cu precipitates were generated first. Then, Cr nitride nucleated at the surface of the Cu precipitates inhomogeneously, and surrounding solute Cr was

  7. Heterostructures for Increased Quantum Efficiency in Nitride LEDs

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Robert F. [Carnegie Mellon Univ., Pittsburgh, PA (United States)

    2010-09-30

    Task 1. Development of an advanced LED simulator useful for the design of efficient nitride-based devices. Simulator will contain graphical interface software that can be used to specify the device structure, the material parameters, the operating conditions and the desired output results. Task 2. Theoretical and experimental investigations regarding the influence on the microstructure, defect concentration, mechanical stress and strain and IQE of controlled changes in the chemistry and process route of deposition of the buffer layer underlying the active region of nitride-based blue- and greenemitting LEDs. Task 3. Theoretical and experimental investigations regarding the influence on the physical properties including polarization and IQE of controlled changes in the geometry, chemistry, defect density, and microstructure of components in the active region of nitride-based blue- and green-emitting LEDs. Task 4. Theoretical and experimental investigations regarding the influence on IQE of novel heterostructure designs to funnel carriers into the active region for enhanced recombination efficiency and elimination of diffusion beyond this region. Task 5. Theoretical and experimental investigations regarding the influence of enhanced p-type doping on the chemical, electrical, and microstructural characteristics of the acceptor-doped layers, the hole injection levels at Ohmic contacts, the specific contact resistivity and the IQE of nitride-based blue- and green-emitting LEDs. Development and optical and electrical characterization of reflective Ohmic contacts to n- and p-type GaN films.

  8. Compositional analysis of silicon oxide/silicon nitride thin films

    Directory of Open Access Journals (Sweden)

    Meziani Samir

    2016-06-01

    Full Text Available Hydrogen, amorphous silicon nitride (SiNx:H abbreviated SiNx films were grown on multicrystalline silicon (mc-Si substrate by plasma enhanced chemical vapour deposition (PECVD in parallel configuration using NH3/SiH4 gas mixtures. The mc-Si wafers were taken from the same column of Si cast ingot. After the deposition process, the layers were oxidized (thermal oxidation in dry oxygen ambient environment at 950 °C to get oxide/nitride (ON structure. Secondary ion mass spectroscopy (SIMS, Rutherford backscattering spectroscopy (RBS, Auger electron spectroscopy (AES and energy dispersive X-ray analysis (EDX were employed for analyzing quantitatively the chemical composition and stoichiometry in the oxide-nitride stacked films. The effect of annealing temperature on the chemical composition of ON structure has been investigated. Some species, O, N, Si were redistributed in this structure during the thermal oxidation of SiNx. Indeed, oxygen diffused to the nitride layer into Si2O2N during dry oxidation.

  9. Dynamic response of multiwall boron nitride nanotubes subjected to ...

    Indian Academy of Sciences (India)

    Page 1 ... 1. Introduction. Boron nitride nanotubes (BNNTs) are like carbon nanotubes. (CNTs) in structure in which carbon atoms are replaced by alternate boron and nitrogen atoms. Thus, BNNTs demon- ... istic analyser for intermediate landing situation of inserted mass.15 Also, a macroscopic continuum simulation is sug-.

  10. Damage initiation and evolution in silicon nitride under\

    Czech Academy of Sciences Publication Activity Database

    Raga, R.; Khader, I.; Chlup, Zdeněk; Kailer, A.

    360-361, AUG (2016), s. 147-159 ISSN 0043-1648 EU Projects: European Commission(XE) 263476 - ROLICER Institutional support: RVO:68081723 Keywords : Silicon nitride * Rollingcontactfatigue * Subsurface damage Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 2.531, year: 2016

  11. Estimation of tribological anticorrosion properties of impregnated nitriding layers

    International Nuclear Information System (INIS)

    Iwanow, J.; Senatorski, J.; Tacikowski, J.

    1999-01-01

    In this paper is described aim, experimental and test result of tribological anticorrosion properties of thin nitriding layer (12.5 μm) obtained on 45 steel grade in controlled gas-nitriding process (570 o C, 4 h) impregnated with oil-based formulations, containing corrosion inhibitor BS-43, modified with tribological additives based on ashen organometallic compounds as well as ash-free organic compounds. It was stated, that tribological additives does not influence, in fact, on behaviour of corrosion resistance of nitriding layers impregnated with oil-base formulations mainly connected with inhibitor BS-43. Synergy of tribological additive and corrosion inhibitor is however more visible in modelling of wear resistance of nitriding layer. The influence nature of tribological additives in combination with corrosion inhibitor BS-43 is dependent on their kind and as result improves or worsens the wear resistance by friction. Hence in choice of impregnated formulation, which is enable to accomplish of tribological anticorrosion requirements, determined, above all, tribological additive. (author)

  12. Thermionic field emission in gold nitride Schottky nanodiodes

    Science.gov (United States)

    Spyropoulos-Antonakakis, N.; Sarantopoulou, E.; Kollia, Z.; Samardžija, Z.; Kobe, S.; Cefalas, A. C.

    2012-11-01

    We report on the thermionic field emission and charge transport properties of gold nitride nanodomains grown by pulsed laser deposition with a molecular fluorine laser at 157 nm. The nanodomains are sandwiched between the metallic tip of a conductive atomic force microscope and a thin gold layer forming thus a metal-semiconductor-metal junction. Although the limited existing data in the literature indicate that gold nitride was synthesized previously with low efficiency, poor stability, and metallic character; in this work, it is shown that gold nitride nanodomains exhibit semiconducting behavior and the metal-semiconductor-metal contact can be modeled with the back-to-back Schottky barrier model. From the experimental I-V curves, the main charge carrier transport process is found to be thermionic field emission via electron tunneling. The rectifying, near symmetric and asymmetric current response of nanocontacts is related to the effective contact area of the gold nitride nanodomains with the metals. A lower limit for the majority charge carriers concentration at the boundaries of nanodomains is also established using the full depletion approximation, as nanodomains with thickness as low as 6 nm were found to be conductive. Current rectification and charge memory effects are also observed in "quite small" conductive nanodomains (6-10 nm) due to stored charges. Indeed, charges near the surface are identified as inversion domains in the phase shift mapping performed with electrostatic force microscopy and are attributed to charge trapping at the boundaries of the nanodomains.

  13. Transferrable monolithic III-nitride photonic circuit for multifunctional optoelectronics

    Science.gov (United States)

    Shi, Zheng; Gao, Xumin; Yuan, Jialei; Zhang, Shuai; Jiang, Yan; Zhang, Fenghua; Jiang, Yuan; Zhu, Hongbo; Wang, Yongjin

    2017-12-01

    A monolithic III-nitride photonic circuit with integrated functionalities was implemented by integrating multiple components with different functions into a single chip. In particular, the III-nitride-on-silicon platform is used as it integrates a transmitter, a waveguide, and a receiver into a suspended III-nitride membrane via a wafer-level procedure. Here, a 0.8-mm-diameter suspended device architecture is directly transferred from silicon to a foreign substrate by mechanically breaking the support beams. The transferred InGaN/GaN multiple-quantum-well diode (MQW-diode) exhibits a turn-on voltage of 2.8 V with a dominant electroluminescence peak at 453 nm. The transmitter and receiver share an identical InGaN/GaN MQW structure, and the integrated photonic circuit inherently works for on-chip power monitoring and in-plane visible light communication. The wire-bonded monolithic photonic circuit on glass experimentally demonstrates in-plane data transmission at 120 Mb/s, paving the way for diverse applications in intelligent displays, in-plane light communication, flexible optical sensors, and wearable III-nitride optoelectronics.

  14. Microstructure characterization of fluidized bed nitrided Fe–Si and ...

    Indian Academy of Sciences (India)

    Unknown

    The investi- gations on the nitrided samples were carried out by optical and SEM microscopic observations, X-ray ... Many studies have been carried out in the past to improve ... Experimental. The Fe .... The same is true for the FeSiAl sample.

  15. Second-harmonic generation in substoichiometric silicon nitride layers

    Science.gov (United States)

    Pecora, Emanuele; Capretti, Antonio; Miano, Giovanni; Dal Negro, Luca

    2013-03-01

    Harmonic generation in optical circuits offers the possibility to integrate wavelength converters, light amplifiers, lasers, and multiple optical signal processing devices with electronic components. Bulk silicon has a negligible second-order nonlinear optical susceptibility owing to its crystal centrosymmetry. Silicon nitride has its place in the microelectronic industry as an insulator and chemical barrier. In this work, we propose to take advantage of silicon excess in silicon nitride to increase the Second Harmonic Generation (SHG) efficiency. Thin films have been grown by reactive magnetron sputtering and their nonlinear optical properties have been studied by femtosecond pumping over a wide range of excitation wavelengths, silicon nitride stoichiometry and thermal processes. We demonstrate SHG in the visible range (375 - 450 nm) using a tunable 150 fs Ti:sapphire laser, and we optimize the SH emission at a silicon excess of 46 at.% demonstrating a maximum SHG efficiency of 4x10-6 in optimized films. Polarization properties, generation efficiency, and the second order nonlinear optical susceptibility are measured for all the investigated samples and discussed in terms of an effective theoretical model. Our findings show that the large nonlinear optical response demonstrated in optimized Si-rich silicon nitride materials can be utilized for the engineering of nonlinear optical functions and devices on a Si chip.

  16. Electron microprobe analysis of tantalum--nitride thin films

    International Nuclear Information System (INIS)

    Stoltz, D.L.; Starkey, J.P.

    1979-06-01

    Quantitative chemical analysis of 500- and 2000-angstrom tantalum--nitride films on glass substrates has been accomplished using an electron microprobe x-ray analyzer. In order to achieve this analysis, modifications to the microprobe were necessary. A description of the calibration procedure, the method of analysis, and the quantitative results are discussed

  17. Synthesis of hexagonal boron nitride graphene-like few layers

    Science.gov (United States)

    Yuan, S.; Toury, B.; Journet, C.; Brioude, A.

    2014-06-01

    Self-standing highly crystallized hexagonal boron nitride (h-BN) mono-, bi- and few-layers have been obtained for the first time via the Polymer Derived Ceramics (PDCs) route by adding lithium nitride (Li3N) micropowders to liquid-state polyborazylene (PBN). Incorporation of Li3N as a crystallization promoter allows the onset of crystallization of h-BN at a lower temperature (1200 °C) than under classical conditions (1800 °C). The hexagonal structure was confirmed by both electron and X-ray diffraction.Self-standing highly crystallized hexagonal boron nitride (h-BN) mono-, bi- and few-layers have been obtained for the first time via the Polymer Derived Ceramics (PDCs) route by adding lithium nitride (Li3N) micropowders to liquid-state polyborazylene (PBN). Incorporation of Li3N as a crystallization promoter allows the onset of crystallization of h-BN at a lower temperature (1200 °C) than under classical conditions (1800 °C). The hexagonal structure was confirmed by both electron and X-ray diffraction. Electronic supplementary information (ESI) available: See DOI: 10.1039/c4nr01017e

  18. Microstructural evolution during nitriding, finite element simulation and experimental assessment

    Energy Technology Data Exchange (ETDEWEB)

    Hassani-Gangaraj, S.M. [Politecnico di Milano, Dipartimento di Meccanica, Via La Masa, 1, 20156 Milano (Italy); Guagliano, M., E-mail: mario.guagliano@polimi.it [Politecnico di Milano, Dipartimento di Meccanica, Via La Masa, 1, 20156 Milano (Italy)

    2013-04-15

    A finite element simulation of nitriding is proposed in this paper, using the analogy between diffusion and heat conduction, to overcome the shortcomings of the classical internal oxidation model in predicting the kinetics of layer growth and nitrogen distribution during nitriding. To verify the model, a typical gas nitriding has been carried out on an axisymmetric specimen. Treated specimen has been characterized using optical microscopy (OM), scanning electron microscopy (SEM), micro-hardness and X-Ray diffraction (XRD) measurements. It was found that the so-called diffusion zone can be divided into two parts with different influence on the mechanical characteristics including residual stress and hardening. First layer which is a two phase region of ferritic matrix and γ′ (Fe{sub 4}N) makes further improvement with respect to the second layer which is a solid solution of nitrogen in ferrite. The formation of that two phase region, which is not predicted by classical model, can be efficiently recognized by the proposed model. It is also proved that the model has the ability to consider the geometry dependency of layer growth and formation in nitriding.

  19. Hydrotreatment activities of supported molybdenum nitrides and carbides

    Energy Technology Data Exchange (ETDEWEB)

    Dolce, G.M.; Savage, P.E.; Thompson, L.T. [University of Michigan, Ann Arbor, MI (United States). Dept. of Chemical Engineering

    1997-05-01

    The growing need for alternative sources of transportation fuels encourages the development of new hydrotreatment catalysts. These catalysts must be active and more hydrogen efficient than the current commercial hydrotreatment catalysts. Molybdenum nitrides and carbides are attractive candidate materials possessing properties that are comparable or superior to those of commercial sulfide catalysts. This research investigated the catalytic properties of {gamma}-Al{sub 2}O{sub 3}-supported molybdenum nitrides and carbides. These catalysts were synthesized via temperature-programmed reaction of supported molybdenum oxides with ammonia or methane/hydrogen mixtures. Phase constituents and compositions were determined by X-ray diffraction, elemental analysis, and neutral activation analysis. Oxygen chemisorption was used to probe the surface properties of the catalysts. Specific activities of the molybdenum nitrides and carbides were competitive with those of a commercial sulfide catalyst for hydrodenitrogenation (HDN), hydrodesulfurization (HDS), and hydrodeoxygenation (HDO). For HDN and HDS, the catalytic activity on a molybdenum basis was a strong inverse function of the molybdenum loading. Product distributions of the HDN, HDO and HDS of a variety of heteroatom compounds indicated that several of the nitrides and carbides were more hydrogen efficient than the sulfide catalyst. 35 refs., 8 figs., 7 tabs.

  20. Indentation fatigue in silicon nitride, alumina and silicon carbide ...

    Indian Academy of Sciences (India)

    Unknown

    carbide ceramics. A K MUKHOPADHYAY. Central Glass and Ceramic Research Institute, Kolkata 700 032, India. Abstract. Repeated indentation fatigue (RIF) experiments conducted on the same spot of different structural ceramics viz. a hot pressed silicon nitride (HPSN), sintered alumina of two different grain sizes viz.

  1. High efficiency nitride based phosphores for white LEDs

    NARCIS (Netherlands)

    Li, Yuan Qiang; Hintzen, H.T.J.M.

    2008-01-01

    In this overview paper, novel rare-earth doped silicon nitride based phosphors for white LEDs applications have been demonstrated. The luminescence properties of orange-red-emitting phosphors (M2Si5N8:Eu2+) and green-to-yellow emitting phosphors (MSi2N2O2:Eu2+, M = Ca, Sr, Ba) are discussed in

  2. Formation of zirconium nitride via mechanochemical decomposition of zircon

    International Nuclear Information System (INIS)

    Puclin, T.; Kaczmarek, W.A.

    1996-01-01

    In this paper we report some results of the mechanochemical reduction of zircon, and for the first time subsequent reaction with nitrogen to form zirconium nitride (ZrN). This process can be described by the equation: 3ZrSiO 4 + 8Al + 1.5N 2 = 4Al 2 O 3 + 3ZrN + 3Si. Milling was carried out in three steps: 1) low speed grinding of Al+ZrSiO 4 in vacuum, 2) high speed milling to effect the reduction, and 3) continued milling after the addition of nitrogen. Powders produced were examined by X-ray diffraction. The first step showed no reaction occurred during low speed grinding. The second step proved to be a slow reaction without the 'ignition' often seen in other mechanochemical reduction works. The final step was also gradual, and did not always go to full nitridation over the duration of the experiment, giving a product of composition ZrN 0.6 to ZrN l.0 . This is quite acceptable as transition metal nitrides are often non-stoichiometric. These results show that the formation of a useful hard material such as ZrN can be formed from a raw mineral by two stage mechanochemical processing. Further investigations are currently being undertaken to eliminate Fe contamination and produce pure ceramic oxide-nitride composites

  3. Effect of microstructure on the high temperature strength of nitride

    Indian Academy of Sciences (India)

    Effect of microstructure on the high temperature strength of nitride bonded silicon carbide composite. J Rakshit P K Das. Composites Volume ... The effect of these parameters on room temperature and high temperature strength of the composite up to 1300°C in ambient condition were studied. The high temperature flexural ...

  4. Cellular growth and dislocation structures in laser-nitrided titanium

    NARCIS (Netherlands)

    Kloosterman, A.B.; Hosson, J.Th.M. De

    1997-01-01

    Transmission electron microscopic observations were made of different dislocation structures in laser-nitrided titanium. Equidistant edge dislocations in the bulk and periodic surface structures exhibit a periodicity within the same order of magnitude. An analysis is presented in which both periodic

  5. Boron nitride elastic and thermal properties. Irradiation effects

    International Nuclear Information System (INIS)

    Jager, Bernard.

    1977-01-01

    The anisotropy of boron nitride (BN) and especially thermal and elastic properties were studied. Specific heat and thermal conductivity between 1.2 and 300K, thermal conductivity between 4 and 350K and elastic constants C 33 and C 44 were measured. BN was irradiated with electrons at 77K and with neutrons at 27K to determine properties after irradiation [fr

  6. Continuous Fiber Ceramic Composite (CFCC) Program: Gaseous Nitridation

    Energy Technology Data Exchange (ETDEWEB)

    R. Suplinskas G. DiBona; W. Grant

    2001-10-29

    Textron has developed a mature process for the fabrication of continuous fiber ceramic composite (CFCC) tubes for application in the aluminum processing and casting industry. The major milestones in this project are System Composition; Matrix Formulation; Preform Fabrication; Nitridation; Material Characterization; Component Evaluation

  7. Indentation fatigue in silicon nitride, alumina and silicon carbide ...

    Indian Academy of Sciences (India)

    Repeated indentation fatigue (RIF) experiments conducted on the same spot of different structural ceramics viz. a hot pressed silicon nitride (HPSN), sintered alumina of two different grain sizes viz. 1 m and 25 m, and a sintered silicon carbide (SSiC) are reported. The RIF experiments were conducted using a Vicker's ...

  8. Gallium Nitride MMICs for mm-Wave Power Operation

    NARCIS (Netherlands)

    Quay, R.; Maroldt, S.; Haupt, C.; Heijningen, M. van; Tessmann, A.

    2009-01-01

    In this paper a Gallium Nitride MMIC technology for high-power amplifiers between 27 GHz and 101 GHz based on 150 nm- and 100 nm-gate technologies is presented. The GaN HEMT MMICs are designed using coplanar waveguide transmission-line-technology on 3-inch semi-insulating SiC substrates. The

  9. Analysis of boron nitride by flame spectrometry methods

    International Nuclear Information System (INIS)

    Telegin, G.F.; Chapysheva, G.Ya.; Shilkina, N.N.

    1989-01-01

    A rapid method has been developed for determination of free and total boron contents as well as trace impurities in boron nitride by using autoclave sample decomposition followed by atomic emission and atomic absorption determination. The relative standard deviation is not greater than 0.03 in the determination of free boron 0.012 in the determination of total boron content

  10. Methods for improved growth of group III nitride buffer layers

    Science.gov (United States)

    Melnik, Yurity; Chen, Lu; Kojiri, Hidehiro

    2014-07-15

    Methods are disclosed for growing high crystal quality group III-nitride epitaxial layers with advanced multiple buffer layer techniques. In an embodiment, a method includes forming group III-nitride buffer layers that contain aluminum on suitable substrate in a processing chamber of a hydride vapor phase epitaxy processing system. A hydrogen halide or halogen gas is flowing into the growth zone during deposition of buffer layers to suppress homogeneous particle formation. Some combinations of low temperature buffers that contain aluminum (e.g., AlN, AlGaN) and high temperature buffers that contain aluminum (e.g., AlN, AlGaN) may be used to improve crystal quality and morphology of subsequently grown group III-nitride epitaxial layers. The buffer may be deposited on the substrate, or on the surface of another buffer. The additional buffer layers may be added as interlayers in group III-nitride layers (e.g., GaN, AlGaN, AlN).

  11. Hardness and thermal stability of cubic silicon nitride

    DEFF Research Database (Denmark)

    Jiang, Jianzhong; Kragh, Flemming; Frost, D. J.

    2001-01-01

    The hardness and thermal stability of cubic spinel silicon nitride (c-Si3N4), synthesized under high-pressure and high-temperature conditions, have been studied by microindentation measurements, and x-ray powder diffraction and scanning electron microscopy, respectively The phase at ambient...

  12. Study on the nitride fuel fabrication for FBR cycle (1)

    International Nuclear Information System (INIS)

    Shinkai, Yasuo; Ono, Kiyoshi; Tanaka, Kenya

    2002-07-01

    In the phase-II of JNC's 'Feasibility Study on Commercialized Fuel Reactor Cycle System (the F/S)', the nitride fuels are selected as candidate for fuels for heavy metal cooled reactor, gas cooled reactor, and small scale reactor. In particular, the coated fuel particles are a promising concept for gas cooled reactor. In addition, it is necessary to study in detail the application possibility of pellet nitride fuel and vibration compaction nitride fuel for heavy metal cooled reactor and small scale reactor in the phase-II. In 2001, we studied more about additional equipments for the nitride fuel fabrication in processes from gelation to carbothermic reduction in the vibration compaction method. The result of reevaluation of off-gas mass flow around carbothermic reduction equipment in the palletizing method, showed that quantity of off-gas flow reduced and its reduction led the operation cost to decrease. We studied the possibility of fabrication of large size particles in the coated fuel particles for helium gas cooled reactor and we made basic technical issues clear. (author)

  13. Characterization of nitrides in an AISI 1010 steel

    International Nuclear Information System (INIS)

    Naquid G, C.

    1998-01-01

    It was characterized the phase formation in the 1010 carbon steel nitrided in a plasma reactor nearby to eutectoid point. The microstructure and identification of these ones were evaluated by Optical microscopy (OM), Dilatometry and X-ray diffraction (XRD). (Author)

  14. Crystallographic phases and magnetic properties of iron nitride films

    Energy Technology Data Exchange (ETDEWEB)

    Li, Guo-Ke [Department of Physics, Hebei Advanced Thin Films Laboratory, Hebei Normal University, Shijiazhuang 050024 (China); Department of Mathematics and Physics, Shijiazhuang Tiedao University, Shijiazhuang 050043 (China); Liu, Yan; Zhao, Rui-Bin [Department of Physics, Hebei Advanced Thin Films Laboratory, Hebei Normal University, Shijiazhuang 050024 (China); Shen, Jun-Jie [Department of Mathematics and Physics, Shijiazhuang Tiedao University, Shijiazhuang 050043 (China); Wang, Shang; Shan, Pu-Jia; Zhen, Cong-Mian [Department of Physics, Hebei Advanced Thin Films Laboratory, Hebei Normal University, Shijiazhuang 050024 (China); Hou, Deng-Lu, E-mail: houdenglu@mail.hebtu.edu.cn [Department of Physics, Hebei Advanced Thin Films Laboratory, Hebei Normal University, Shijiazhuang 050024 (China)

    2015-08-31

    Iron nitride films, including single phase films of α-FeN (expanded bcc Fe), γ′-Fe{sub 4}N, ε-Fe{sub 3−x}N (0 ≤ x ≤ 1), and γ″-FeN, were sputtered onto AlN buffered glass substrates. It was found possible to control the phases in the films merely by changing the nitrogen partial pressure during deposition. The magnetization decreased with increased nitrogen concentration and dropped to zero when the N:Fe ratio was above 0.5. The experimental results, along with spin polarized band calculations, have been used to discuss and analyze the magnetic properties of iron nitrides. It has been demonstrated that in addition to influencing the lattice constant of the various iron nitrides, the nearest N atoms have a significant influence on the exchange splitting of the Fe atoms. Due to the hybridization of Fe-3d and N-2p states, the magnetic moment of Fe atoms decreases with an increase in the number of nearest neighbor nitrogen atoms. - Highlights: • Single phase γ′-Fe{sub 4}N, ε-Fe{sub 3−x}N, and γ″-FeN films were obtained using dc sputtering. • The phases in iron nitride films can be controlled by the nitrogen partial pressure. • The nearest N neighbors have a significant influence on the exchange splitting of Fe.

  15. Crystallographic phases and magnetic properties of iron nitride films

    International Nuclear Information System (INIS)

    Li, Guo-Ke; Liu, Yan; Zhao, Rui-Bin; Shen, Jun-Jie; Wang, Shang; Shan, Pu-Jia; Zhen, Cong-Mian; Hou, Deng-Lu

    2015-01-01

    Iron nitride films, including single phase films of α-FeN (expanded bcc Fe), γ′-Fe 4 N, ε-Fe 3−x N (0 ≤ x ≤ 1), and γ″-FeN, were sputtered onto AlN buffered glass substrates. It was found possible to control the phases in the films merely by changing the nitrogen partial pressure during deposition. The magnetization decreased with increased nitrogen concentration and dropped to zero when the N:Fe ratio was above 0.5. The experimental results, along with spin polarized band calculations, have been used to discuss and analyze the magnetic properties of iron nitrides. It has been demonstrated that in addition to influencing the lattice constant of the various iron nitrides, the nearest N atoms have a significant influence on the exchange splitting of the Fe atoms. Due to the hybridization of Fe-3d and N-2p states, the magnetic moment of Fe atoms decreases with an increase in the number of nearest neighbor nitrogen atoms. - Highlights: • Single phase γ′-Fe 4 N, ε-Fe 3−x N, and γ″-FeN films were obtained using dc sputtering. • The phases in iron nitride films can be controlled by the nitrogen partial pressure. • The nearest N neighbors have a significant influence on the exchange splitting of Fe

  16. Sodium Flux Growth of Bulk Gallium Nitride

    Science.gov (United States)

    Von Dollen, Paul Martin

    This dissertation focused on development of a novel apparatus and techniques for crystal growth of bulk gallium nitride (GaN) using the sodium flux method. Though several methods exist to produce bulk GaN, none have been commercialized on an industrial scale. The sodium flux method offers potentially lower cost production due to relatively mild process conditions while maintaining high crystal quality. But the current equipment and methods for sodium flux growth of bulk GaN are generally not amenable to large-scale crystal growth or in situ investigation of growth processes, which has hampered progress. A key task was to prevent sodium loss or migration from the sodium-gallium growth melt while permitting N2 gas to access the growing crystal, which was accomplished by implementing a reflux condensing stem along with a reusable sealed capsule. The reflux condensing stem also enabled direct monitoring and control of the melt temperature, which has not been previously reported for the sodium flux method. Molybdenum-based materials were identified from a corrosion study as candidates for direct containment of the corrosive sodium-gallium melt. Successful introduction of these materials allowed implementation of a crucible-free containment system, which improved process control and can potentially reduce crystal impurity levels. Using the new growth system, the (0001) Ga face (+c plane) growth rate was >50 mum/hr, which is the highest bulk GaN growth rate reported for the sodium flux method. Omega X-ray rocking curve (?-XRC) measurements indicated the presence of multiple grains, though full width at half maximum (FWHM) values for individual peaks were 1020 atoms/cm3, possibly due to reactor cleaning and handling procedures. This dissertation also introduced an in situ technique to correlate changes in N2 pressure with dissolution of nitrogen and precipitation of GaN from the sodium-gallium melt. Different stages of N2 pressure decay were identified and linked to

  17. Recombination and photosensitivity centres in boron nitride irradiated with ions

    International Nuclear Information System (INIS)

    Kabyshev, A.; Konusov, F.; Lopatin, V.

    2001-01-01

    The physical-chemical processes, taking place during the irradiation of dielectrics with ions distort the electron structure of the compounds and generate additional localise state in the forbidden zone (FZ). Consequently, the semiconductor layer with the specific surface density of σ ≥ 10 -10 S/ forms on the surface of the dielectric. In addition to his, the high concentration of the radiation-induced defects changes the optical and photoelectric properties of the materials and also the energy characteristics. Analysis of the photoelectric properties indicates that the recombination processes take part in electric transport. These processes restricted the increase of the photosensitivity and changing the kinetics of relaxation of photo conductivity (σ hv ). The practical application of the boron nitride (BN) the in the thermonuclear systems (for example, Ref. 7), stimulates research into the reasons for the deceleration of its properties under the effect of radiation of various types. The conductivity of non-irradiated boron nitride is of the electron-hole nature with a large fraction of the activation component in exchange of the charge carriers between the levels of the defects and the forbidden zones. On the basis of the correlation of the energy and kinetic parameters of luminescence and , the authors of Ref. 8 constructed a model of electron transfers accompanying the electric transport of the boron nitride. In addition to ion-thermal modification, the conductivity of boron nitride is also of the electron-hole nature and is accompanied by luminescence. Examination of the characteristics of luminescence may be useful for obtaining more information on the transport mechanism. In this work, in order to clarify the main parameters of the forbidden band, detailed investigations were carried out into the spectrum of the electronic states of radiation defects which determine the photoelectric and luminescence properties of the modified boron nitride. The

  18. Electronic structure calculations on nitride semiconductors and their alloys

    International Nuclear Information System (INIS)

    Dugdale, D.

    2000-09-01

    Calculations of the electronic properties of AIN, GaN, InN and their alloys are presented. Initial calculations are performed using the first principles pseudopotential method to obtain accurate lattice constants. Further calculations then investigate bonding in the nitrides through population analysis and density of state calculations. The empirical pseudopotential method is also used in this work. Pseudopotentials for each of the nitrides are constructed using a functional form that allows strained material and alloys to be studied. The conventional k.p valence band parameters for both zincblende and wurtzite are obtained from the empirical band structure using two different methods. A Monte-Carlo fitting of the k.p band structure to the pseudopotential data (or an effective mass method for the zincblende structure) is used to produce one set. Another set is obtained directly from the momentum matrix elements and energy eigenvalues at the centre of the Brillouin zone. Both methods of calculating k.p parameters produce band structure in excellent agreement with the original empirical band calculations near the centre of the Brillouin zone. The advantage of the direct method is that it produces consistent sets of parameters, and can be used in studies involving a series of alloy compositions. Further empirical pseudopotential method calculations are then performed for alloys of the nitrides. In particular, the variation of the band gap with alloy composition is investigated, and good agreement with theory and experiment is found. The direct method is used to obtain k.p parameters for the alloys, and is contrasted with the fitting approach. The behaviour of the nitrides under strain is also studied. In particular. valence band offsets for nitride heterojunctions are calculated, and a strong forward- backward asymmetry in the band offset is found, in good agreement with other results in the literature. (author)

  19. Gallium nitride-based micro-opto-electro-mechanical systems

    Science.gov (United States)

    Stonas, Andreas Robert

    Gallium Nitride and its associated alloys InGaN and AlGaN have many material properties that are highly desirable for micro-electro-mechanical systems (MEMS), and more specifically micro-opto-electro-mechanical systems (MOEMS). The group III-nitrides are tough, stiff, optically transparent, direct bandgap, chemically inert, highly piezoelectric, and capable of functioning at high temperatures. There is currently no other semiconductor system that possesses all of these properties. Taken together, these attributes make the nitrides prime candidates not only for creating new versions of existing device structures, but also for creating entirely unique devices which combine these properties in novel ways. Unfortunately, their chemical resiliency also makes the group III-nitrides extraordinarily difficult to shape into devices. In particular, until this research, no undercut etch technology existed that could controllably separate a selected part of a MEMS device from its sapphire or silicon carbide substrate. This has effectively prevented GaN-based MEMS from being developed. This dissertation describes how this fabrication obstacle was overcome by a novel etching geometry (bandgap-selective backside-illuminated photoelectochemical (BS-BIPEC) etching) and its resulting morphologies. Several gallium-nitride based MEMS devices were created, actuated, and modelled, including cantilevers and membranes. We describe in particular our pursuit of one of the many novel device elements that is possible only in this material system: a transducer that uses an externally applied strain to dynamically change the optical transition energy of a quantum well. While the device objective of a dynamically tunable quantum well was not achieved, we have demonstrated sufficient progress to believe that such a device will be possible soon. We have observed a shift (5.5meV) of quantum well transition energies in released structures, and we have created structures that can apply large biaxial

  20. Ionic nitriding of high chromium martensitic stainless steels

    International Nuclear Information System (INIS)

    Bruhl, S.P; Charadia, R; Vaca, L.S; Cimetta, J

    2008-01-01

    Martensitic stainless steels are used in industrial applications where resistance to corrosion and mechanical resistance are needed simultaneously. These steels are normally used in tempering and annealing condition which gives them hardnesses of 500 and 600 HV (about 54 HRC). Ionic nitriding is an assisted diffusion technique that has recently been successfully applied to harden austenitic stainless steels without reducing their resistance to corrosion. The application with AISI 420 martensitic steels has not given good results yet, because in most cases, it affects their corrosion resistance. This work presents the results of the pulsed nitriding of martensitic steels with a higher chrome content, such as the M340 and M333 Boehler steels and they are compared with the same materials after tempering and annealing, without nitriding. The influence of the variations in the parameters of the process, such as the percentage of active time in the pulsed wave, partial nitrogen pressure, current density and effective tension in the microstructure, hardness and wear and corrosion resistance was studied. The microstructure was studied with an optic microscope; the wear resistance with abrasion tests following ASTM G-65 and corrosion with 100 hour long saline haze tests, in a device built according to ASTM B117. Hardness was found to rise to values of 1000 to 1350 HV in all the steels after ionic nitriding, the modified layers oscillated from 3 to 15 microns. As a result, wear resistance also increased, with differences depending on the microstructure and the thickness of the modified layer. However, corrosion resistance was not good, except in the case of the M333 steel test piece with less hardness and a less thick nitrided layer without a noticeable interphase (au)

  1. Anomalous microstructural changes in III-nitrides under ion bombardment

    International Nuclear Information System (INIS)

    Kucheyev, S.O.; Williams, J.S.; Jagadish, C.

    2002-01-01

    Full text: Group-III nitrides (GaN, AlGaN, and InGaN) are currently a 'hot topic' in the physics and material research community due to very important technological applications of these materials in (opto)electronics. In the fabrication of III-nitride-based devices, ion bombardment represents a very attractive processing tool. However, ion-beam-produced lattice disorder and its undesirable consequences limit technological applications of ion implantation. Hence, studies of ion-beam-damage processes in Ill-nitrides are not only physically interesting but also technologically important. In this study, wurtzite GaN, AlGaN, and InGaN films exposed to ion bombardment under a wide range of irradiation conditions are studied by a combination of transmission electron microscopy (TEM), environmental scanning electron microscopy (ESEM), energy dispersive x-ray spectrometry (EDS), atomic force microscopy (AFM), cathodoluminescence (CL), and Rutherford backscattering/channeling (RBS/C) spectrometry. Results show that, unlike the situation for mature semiconductors such as Si and GaAs, Ill-nitrides exhibit a range of intriguing behavior involving extreme microstructural changes under ion bombardment. In this presentation, the following aspects are discussed: (i) formation of lattice defects during ion bombardment, (ii) ion-beam-induced phase transformations, (iii) ion-beam-produced stoichiometric imbalance and associated material decomposition, and (iv) an application of charging phenomena during ESEM imaging for studies of electrical isolation in GaN by MeV light ion irradiation. Emphasis is given to the (powerful) application of electron microscopy techniques for the understanding of physical processes occurring in Ill-nitrides under ion bombardment. Copyright (2002) Australian Society for Electron Microscopy Inc

  2. Structural and superconducting properties of (Y,Gd)Ba2Cu3O7-δ grown by MOCVD on samarium zirconate buffered IBAD-MgO

    International Nuclear Information System (INIS)

    Stan, L; Holesinger, T G; Maiorov, B; Feldmann, D M; Usov, I O; DePaula, R F; Civale, L; Foltyn, S R; Jia, Q X; Chen, Y; Selvamanickam, V

    2008-01-01

    Textured samarium zirconate (SZO) films have been grown by reactive cosputtering directly on an ion beam assisted deposited (IBAD) MgO template, without an intermediate homoepitaxial MgO layer. The subsequent growth of 0.9 μm thick (Y,Gd)Ba 2 Cu 3 O 7-δ ((Y, Gd)BCO) films by metal organic chemical vapor deposition (MOCVD) yielded well textured films with a full width at half maximum of 1.9 0 and 3.4 0 for the out-of-plane and in-plane texture, respectively. Microstructural characterizations of the SZO buffered samples revealed clean interfaces. This indicates that the SZO not only provides a diffusion barrier, but also functions as a buffer for (Y, Gd)BCO grown by MOCVD. The achievement of self-field critical current densities (J c ) of over 2 MA cm -2 at 75.5 K is another proof of the effectiveness of SZO as a buffer on the IBAD-MgO template. The in-field measurements revealed an asymmetric angular dependence of J c and a shift of the ab-plane maxima due to the tilted nature of the template and (Y,Gd) 2 O 3 particles existing in the (Y, Gd)BCO matrix. The present results are especially important because they demonstrate that high temperature superconducting coated conductors with simpler architecture can be fabricated using commercially viable processes

  3. Pharmacokinetics of labelled compounds with technetium-99m and samarium-153; Farmacocinetica de compuestos marcados con tecnecio-99m y samario-153

    Energy Technology Data Exchange (ETDEWEB)

    Borda O, L B; Torres L, M N

    1997-07-01

    The purpose of this investigation was to establish the different pharmacokinetics parameters of the main radiopharmaceuticals labeled with technetium-99m and samarium-153. These parameters could be subsequently used as reference to compare other products with the same use. Mathematical models and a computerized pharmacokinetic program were used to this purpose. A biodistribution study in quadruplicate and/or quintuplicate was conducted for each radiopharmaceutical, data was was obtained in injection dose percentages. The biodistribution study involved the injection of a predetermined dose of the radiopharmaceutical into animals (rats or mice), which were subsequently put away at different time intervals, removing the relevant organs. Activity in each organ was read by means of a well-type NaI scintillation counter, data obtained in activity counts was transformed into injection dose percentages. Based on these percentages, the mathematical model was constructed and the pharmacokinetic parameters were obtained using the computerized program Expo 2 v. 1, which is written in C language and works in windows. Analyzing the results obtained, we can conclude that the use of the Expo 2 v. 1 program for a bi compartmental analysis allowed us to obtain reliable pharmacokinetic parameters which describe what happens in the organism when the radiopharmaceutical passes from the central compartment to the peripheral one and vice versa.

  4. Synthesis of graphitic carbon nitride by reaction of melamine and uric acid

    International Nuclear Information System (INIS)

    Dante, Roberto C.; Martin-Ramos, Pablo; Correa-Guimaraes, Adriana; Martin-Gil, Jesus

    2011-01-01

    Highlights: → Graphitic carbon nitrides by CVD of melamine and uric acid on alumina. → The building blocks of carbon nitrides are heptazine nuclei. → Composite particles with alumina core and carbon nitride coating. - Abstract: Graphitic carbon nitrides were synthesized starting from melamine and uric acid. Uric acid was chosen because it thermally decomposes, and reacts with melamine by condensation at temperatures in the range of 400-600 deg. C. The reagents were mixed with alumina and subsequently the samples were treated in an oven under nitrogen flux. Alumina favored the deposition of the graphitic carbon nitrides layers on the exposed surface. This method can be assimilated to an in situ chemical vapor deposition (CVD). Infrared (IR) spectra, as well as X-ray diffraction (XRD) patterns, are in accordance with the formation of a graphitic carbon nitride with a structure based on heptazine blocks. These carbon nitrides exhibit poor crystallinity and a nanometric texture, as shown by transmission electron microscopy (TEM) analysis. The thermal degradation of the graphitic carbon nitride occurs through cyano group formation, and involves the bridging tertiary nitrogen and the bonded carbon, which belongs to the heptazine ring, causing the ring opening and the consequent network destruction as inferred by connecting the IR and X-ray photoelectron spectroscopy (XPS) results. This seems to be an easy and promising route to synthesize graphitic carbon nitrides. Our final material is a composite made of an alumina core covered by carbon nitride layers.

  5. The Advanced Aluminum Nitride Synthesis Methods and Its Applications: Patent Review.

    Science.gov (United States)

    Shishkin, Roman A; Elagin, Andrey A; Mayorova, Ekaterina S; Beketov, Askold R

    2016-01-01

    High purity nanosized aluminum nitride synthesis is a current issue for both industry and science. However, there is no up-to-date review considering the major issues and the technical solutions for different methods. This review aims to investigate the advanced methods of aluminum nitride synthesis and its development tendencies. Also the aluminum nitride application patents and prospects for development of the branch have been considered. The patent search on "aluminum nitride synthesis" has been carried out. The research activity has been analyzed. Special attention has been paid to the patenting geography and the leading researchers in aluminum nitride synthesis. Aluminum nitride synthesis methods have been divided into 6 main groups, the most studied approaches are carbothermal reduction (88 patents) and direct nitridation (107 patents). The current issues for each group have been analyzed; the main trends are purification of the final product and nanopowder synthesis. The leading researchers in aluminum nitride synthesis have represented 5 countries, namely: Japan, China, Russia, South Korea and USA. The main aluminum nitride application spheres are electronics (59,1 percent of applications) and new materials manufacturing (30,9 percent). The review deals with the state of the art data in nanosized aluminum nitride synthesis, the major issues and the technical solutions for different synthesis methods. It gives a full understanding of the development tendencies and of the current leaders in the sphere.

  6. Plasma nitriding of a precipitation hardening stainless steel to improve erosion and corrosion resistance

    International Nuclear Information System (INIS)

    Cabo, Amado; Bruhl, Sonia P.; Vaca, Laura S.; Charadia, Raul Charadia

    2010-01-01

    Precipitation hardening stainless steels are used as structural materials in the aircraft and the chemical industry because of their good combination of mechanical and corrosion properties. The aim of this work is to analyze the structural changes produced by plasma nitriding in the near surface of Thyroplast PH X Supra®, a PH stainless steel from ThyssenKrupp, and to study the effect of nitriding parameters in wear and corrosion resistance. Samples were first aged and then nitriding was carried out in an industrial facility at two temperatures, with two different nitrogen partial pressures in the gas mixture. After nitriding, samples were cut, polished, mounted in resin and etched with Vilella reagent to reveal the nitrided case. Nitrided structure was also analyzed with XRD. Erosion/Corrosion was tested against sea water and sand flux, and corrosion in a salt spray fog (ASTM B117). All nitrided samples presented high hardness. Samples nitrided at 390 deg C with different nitrogen partial pressure showed similar erosion resistance against water and sand flux. The erosion resistance of the nitrided samples at 500 deg C was the highest and XRD revealed nitrides. Corrosion resistance, on the contrary, was diminished; the samples suffered of general corrosion during the salt spray fog test. (author)

  7. Microstructural characterization of an AISI-SAE 4140 steel without nitridation and nitrided; Caracterizacion microestructural de un acero AISI-SAE 4140 sin nitrurar y nitrurado

    Energy Technology Data Exchange (ETDEWEB)

    Medina F, A.; Naquid G, C. [Gerencia de Ciencia de Materiales, Depto. de Sintesis y Caracterizacion de Materiales, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    2000-07-01

    It was micro structurally characterized an AISI-SAE 4140 steel before and after of nitridation through the nitridation process by plasma post-unloading microwaves through Optical microscopy (OM), Scanning electron microscopy (SEM) by means of secondary electrons and retrodispersed, X-ray diffraction (XRD), Energy dispersion spectra (EDS) and mapping of elements. (Author)

  8. Corrosion resistant surface for vanadium nitride and hafnium nitride layers as function of grain size

    Science.gov (United States)

    Escobar, C. A.; Caicedo, J. C.; Aperador, W.

    2014-01-01

    In this research it was studied vanadium nitride (VN) and hafnium nitride (HfN) film, which were deposited onto silicon (Si (100)) and AISI 4140 steel substrates via r.f. magnetron sputtering technique in Ar/N2 atmosphere with purity at 99.99% for both V and Hf metallic targets. Both films were approximately 1.2±0.1 μm thick. The crystallography structures that were evaluated via X-ray diffraction analysis (XRD) showed preferential orientations in the Bragg planes VN (200) and HfN (111). The chemical compositions for both films were characterized by EDX. Atomic Force Microscopy (AFM) was used to study the morphology; the results reveal grain sizes of 78±2 nm for VN and 58±2 nm for HfN and roughness values of 4.2±0.1 nm for VN and 1.5±0.1 nm for HfN films. The electrochemical performance in VN and HfN films deposited onto steel 4140 were studied by Tafel polarization curves and impedance spectroscopy methods (EIS) under contact with sodium chloride at 3.5 wt% solution, therefore, it was found that the corrosion rate decreased about 95% in VN and 99% for HfN films in relation to uncoated 4140 steel, thus demonstrating, the protecting effect of VN and HfN films under a corrosive environment as function of morphological characteristics (grain size). VN(grain size)=78±2.0 nm, VN(roughness)=4.2±0.1 nm, VN(corrosion rate)=40.87 μmy. HfN(grain size)=58±2.0 nm, HfN(roughness)=1.5±0.1 nm, HfN(corrosion rate)=0.205 μmy. It was possible to analyze that films with larger grain size, can be observed smaller grain boundary thus generating a higher corrosion rate, therefore, in this work it was found that the HfN layer has better corrosion resistance (low corrosion rate) in relation to VN film which presents a larger grain size, indicating that the low grain boundary in (VN films) does not restrict movement of the Cl- ion and in this way the corrosion rate increases dramatically.

  9. Nanodefects in ultrahard crystalline cubic boron nitride

    International Nuclear Information System (INIS)

    Nistor, S. V.; Stefan, M.; Goovaerts, E.; Schoemaker, D.

    2002-01-01

    Cubic boron nitride (cBN), the second hardest known material after diamond, exhibits high thermal conductivity and an excellent ability to be n or p doped, which makes it a strong candidate for the next generation of high-temperature micro optical and micro electronic devices. According to recent studies, cBN exhibits a better resistance to radiation damage than diamond, which suggests potential applications in extreme radiation environments. Crystalline cBN powders of up to 0.5 mm linear size is obtained in a similar way as diamond, by catalytic conversion of hexagonal BN (hBN) to cBN at even higher pressures (> 5GPa) and temperatures (∼ 1900 K). Considering the essential role played by the nanodefects (point defects and impurities) in determining its physical properties, it is surprising how limited is the amount of published data concerning the properties of nanodefects in this material, especially by Electron Paramagnetic Resonance (EPR) spectroscopy, the most powerful method for identification and characterization of nanodefects in both insulators and semiconductors. This seems to be due mainly to the absence of natural cBN gems and the extreme difficulties in producing even mm 3 sized synthetic crystals. We shall present our recent EPR studies on cBN crystalline powders, performed in a broad temperature range from room temperature (RT) down to 1.2 K on several sorts of large size cBN powder grits of yellow and amber color for industrial applications. Previous multifrequency (9.3 GHz and 95 GHz) EPR studies of brown to black cBN crystallites prepared with excess of boron, resulted in the discovery of two new types of paramagnetic point defects with different spectral properties, called the D1 and D2 centers. Our X(9.3 GHz)-band EPR investigations resulted in the observation in amber cBN crystalline powders of a spectrum with a strong temperature dependence of the lineshape. It was found that for high and low temperatures, respectively, the numerical

  10. Some new aspects of microstructural development during sintering of silicon nitride

    International Nuclear Information System (INIS)

    Feuer, H.; Woetting, G.; Gugel, E.

    1994-01-01

    The mechanical properties of silicon nitride ceramics strongly depend on their microstructure. However, there is still a lively discussion about the parameters controlling the microstructural development. The current research was stimulated by the observation that a bimodal grain-size distribution in dense silicon nitride has a very beneficial effect on the mechanical properties, especially on the fracture toughness. This paper is focused on the relationship between the α-β-transformation and the densification of silicon nitride powders with different characteristics and sintering additives. Effects of β-grains originally present in the silicon nitride powder, of added β-silicon nitride seeds and of β-crystals formed by the α/β-transformation on the resulting microstructure and on the properties are discussed. The results are summarised in a model describing prerequisites and processing conditions, which are necessary to achieve a bimodal microstructure, i. e. a self-reinforced silicon nitride ceramic. (orig.)

  11. Magnetic properties of Nd3(Fe,Mo)29 compound and its nitride

    International Nuclear Information System (INIS)

    Pan Hongge

    1998-01-01

    The iron-rich ternary intermetallic compound Nd 3 (Fe,Mo) 29 with the Nd 3 (Fe,Ti) 29 -type monoclinic structure and its nitride were prepared. After nitrogenation, the nitride retains the structure of the parent compound, but the unit-cell volume of the nitride is 5.9% greater than that of the parent compound. The Curie temperature of Nd 3 (Fe,Mo) 29 nitride is 70.9% higher than that of the parent compound and the saturation magnetization of the nitride is about 6.6% (at 4.2 K) and 23.7% (at 300 K) higher than that of the parent compound. The anisotropy of the nitride is similar to that of parent compound, which exhibits plane anisotropy. (orig.)

  12. Performance analysis of a mixed nitride fuel system for an advanced liquid metal reactor

    International Nuclear Information System (INIS)

    Lyon, W.F.; Baker, R.B.; Leggett, R.D.

    1991-01-01

    In this paper, the conceptual development and analysis of a proposed mixed nitride driver and blanket fuel system for a prototypic advanced liquid metal reactor design is performed. As a first step, an intensive literature survey is completed on the development and testing of nitride fuel systems. Based on the results of this survey, prototypic mixed nitride fuel and blanket pins is designed and analyzed using the SIEX computer code. The analysis predicts that the nitride fuel consistently operated at peak temperatures and cladding strain levels that compared quite favorably with competing fuel designs. These results, along with data available in the literature on nitride fuel performance, indicate that a nitride fuel system should offer enhanced capabilities for advanced liquid metal reactors

  13. Vertical integration of high-Q silicon nitride microresonators into silicon-on-insulator platform.

    Science.gov (United States)

    Li, Qing; Eftekhar, Ali A; Sodagar, Majid; Xia, Zhixuan; Atabaki, Amir H; Adibi, Ali

    2013-07-29

    We demonstrate a vertical integration of high-Q silicon nitride microresonators into the silicon-on-insulator platform for applications at the telecommunication wavelengths. Low-loss silicon nitride films with a thickness of 400 nm are successfully grown, enabling compact silicon nitride microresonators with ultra-high intrinsic Qs (~ 6 × 10(6) for 60 μm radius and ~ 2 × 10(7) for 240 μm radius). The coupling between the silicon nitride microresonator and the underneath silicon waveguide is based on evanescent coupling with silicon dioxide as buffer. Selective coupling to a desired radial mode of the silicon nitride microresonator is also achievable using a pulley coupling scheme. In this work, a 60-μm-radius silicon nitride microresonator has been successfully integrated into the silicon-on-insulator platform, showing a single-mode operation with an intrinsic Q of 2 × 10(6).

  14. Performance analysis of a mixed nitride fuel system for an advanced liquid metal reactor

    International Nuclear Information System (INIS)

    Lyon, W.F.; Baker, R.B.; Leggett, R.D.

    1990-11-01

    The conceptual development and analysis of a proposed mixed nitride driver and blanket fuel system for a prototypic advanced liquid metal reactor design has been performed. As a first step, an intensive literature survey was completed on the development and testing of nitride fuel systems. Based on the results of this survey, prototypic mixed nitride fuel and blanket pins were designed and analyzed using the SIEX computer code. The analysis predicted that the nitride fuel consistently operated at peak temperatures and cladding strain levels that compared quite favorably with competing fuel designs. These results, along with data available in the literature on nitride fuel performance, indicate that a nitride fuel system should offer enhanced capabilities for advanced liquid metal reactors. 13 refs., 10 figs., 2 tabs

  15. Influence of plastic deformation on nitriding of a molybdenum-hafnium alloy

    International Nuclear Information System (INIS)

    Lakhtin, Yu.M.; Kogan, Ya.D.; Shashkov, D.P.; Likhacheva, T.E.

    1982-01-01

    The influence of a preliminary plastic strain on the structure and properties of molybdenum alloy with 0.2 wt.% Hf upon nitriding in the ammonia medium at 900-1200 deg C during 1-6 h is investigated. The study of microhardness distribution across the nitrided layer thickness has shown that with increase of the degree of preliminary plastic strain up to 50 % the nitrided layer hardness decreases and with further reduction growth up to 90 % - increases. Nitriding sharply (hundred times) increases wear resistance of molybdenum alloy with hafnium addition. At the reduction degree 25 % the wear resistance is less than at other values of percentage reduction in area owing to the minimum thickness of the nitride zone. The alloy strained before nitriding by 25 % has shown the best results during heat resistance testing

  16. Toxicity evaluation of boron nitride nanospheres and water-soluble boron nitride in Caenorhabditis elegans.

    Science.gov (United States)

    Wang, Ning; Wang, Hui; Tang, Chengchun; Lei, Shijun; Shen, Wanqing; Wang, Cong; Wang, Guobin; Wang, Zheng; Wang, Lin

    2017-01-01

    Boron nitride (BN) nanomaterials have been increasingly explored for potential biological applications. However, their toxicity remains poorly understood. Using Caenorhabditis elegans as a whole-animal model for toxicity analysis of two representative types of BN nanomaterials - BN nanospheres (BNNSs) and highly water-soluble BN nanomaterial (named BN-800-2) - we found that BNNSs overall toxicity was less than soluble BN-800-2 with irregular shapes. The concentration thresholds for BNNSs and BN-800-2 were 100 µg·mL -1 and 10 µg·mL -1 , respectively. Above this concentration, both delayed growth, decreased life span, reduced progeny, retarded locomotion behavior, and changed the expression of phenotype-related genes to various extents. BNNSs and BN-800-2 increased oxidative stress levels in C. elegans by promoting reactive oxygen species production. Our results further showed that oxidative stress response and MAPK signaling-related genes, such as GAS1 , SOD2 , SOD3 , MEK1 , and PMK1 , might be key factors for reactive oxygen species production and toxic responses to BNNSs and BN-800-2 exposure. Together, our results suggest that when concentrations are lower than 10 µg·mL -1 , BNNSs are more biocompatible than BN-800-2 and are potentially biocompatible material.

  17. Elasticity and inelasticity of silicon nitride/boron nitride fibrous monoliths.

    Energy Technology Data Exchange (ETDEWEB)

    Smirnov, B. I.; Burenkov, Yu. A.; Kardashev, B. K.; Singh, D.; Goretta, K. C.; de Arellano-Lopez, A. R.; Energy Technology; Russian Academy of Sciences; Univer. de Sevilla

    2001-01-01

    A study is reported on the effect of temperature and elastic vibration amplitude on Young's modulus E and internal friction in Si{sub 3}N{sub 4} and BN ceramic samples and Si{sub 3}N{sub 4}/BN monoliths obtained by hot pressing of BN-coated Si{sub 3}N{sub 4} fibers. The fibers were arranged along, across, or both along and across the specimen axis. The E measurements were carried out under thermal cycling within the 20-600 C range. It was found that high-modulus silicon-nitride specimens possess a high thermal stability; the E(T) dependences obtained under heating and cooling coincide well with one another. The low-modulus BN ceramic exhibits a considerable hysteresis, thus indicating evolution of the defect structure under the action of thermoelastic (internal) stresses. Monoliths demonstrate a qualitatively similar behavior (with hysteresis). This behavior of the elastic modulus is possible under microplastic deformation initiated by internal stresses. The presence of microplastic shear in all the materials studied is supported by the character of the amplitude dependences of internal friction and the Young's modulus. The experimental data obtained are discussed in terms of a model in which the temperature dependences of the elastic modulus and their features are accounted for by both microplastic deformation and nonlinear lattice-atom vibrations, which depend on internal stresses.

  18. Cathodic cage nitriding of AISI 409 ferritic stainless steel with the addition of CH4

    Directory of Open Access Journals (Sweden)

    Rômulo Ribeiro Magalhães de Sousa

    2012-04-01

    Full Text Available AISI 409 ferritic stainless steel samples were nitrided using the cathodic cage plasma nitriding technique (CCPN, with the addition of methane to reduce chromium precipitation, increase hardness and wear resistance and reduce the presence of nitrides when compared to plasma carbonitriding. Microhardness profiles and X-Ray analysis confirm the formation of a very hard layer containing mainly ε-Fe3N and expanded ferrite phases.

  19. Martensitic Stainless Steels Low-temperature Nitriding: Dependence of Substrate Composition

    OpenAIRE

    Ferreira, Lauro Mariano; Brunatto, Silvio Francisco; Cardoso, Rodrigo Perito

    2015-01-01

    Low-temperature plasma assisted nitriding is a very promising technique to improve surface mechanical properties of stainless steels, keeping unaltered or even improving their surface corrosion resistance. During treatment, nitrogen diffuses into the steel surface, increasing its hardness and wear resistance. In the present work the nitriding process of different martensitic stainless steels was studied. As-quenched AISI 410, 410NiMo, 416 and 420 stainless steel samples were plasma nitrided a...

  20. Silicon Nitride Photonic Integration Platforms for Visible, Near-Infrared and Mid-Infrared Applications

    Science.gov (United States)

    Micó, Gloria; Pastor, Daniel; Pérez, Daniel; Doménech, José David; Fernández, Juan; Baños, Rocío; Alemany, Rubén; Sánchez, Ana M.; Cirera, Josep M.; Mas, Roser

    2017-01-01

    Silicon nitride photonics is on the rise owing to the broadband nature of the material, allowing applications of biophotonics, tele/datacom, optical signal processing and sensing, from visible, through near to mid-infrared wavelengths. In this paper, a review of the state of the art of silicon nitride strip waveguide platforms is provided, alongside the experimental results on the development of a versatile 300 nm guiding film height silicon nitride platform. PMID:28895906

  1. Retention capacity of samarium (III) in zircon for it possible use in retaining walls for confinement of nuclear residues; Capacidad de retencion de samario (III) en circon para su posible uso en barreras de contencion para confinamiento de residuos nucleares

    Energy Technology Data Exchange (ETDEWEB)

    Garcia G, N

    2006-07-01

    Mexico, as country that produces part of its electric power by nuclear means, should put special emphasis in the development of technologies guided to the sure and long term confinement of the high level nuclear residuals. This work studies the capacity that has the natural zircon to retain to the samarium (III) in solution, by what due, firstly, to characterize the zircon for technical instrumental to determine the purity and characteristic of the mineral in study. The instrumental techniques that were used to carry out the physicochemical characterization were the neutron activation analysis (NAA), the infrared spectroscopy (IS), the thermal gravimetric analysis (TGA), scanning electron microscopy (SEM), transmission electron microscopy (TEM), semiquantitative analysis, dispersive energy spectroscopy (EDS), X-ray diffraction (XRD) and luminescence technique. The characterization of the surface properties carries out by means of the determination of the surface area using the BET multipoint technique, acidity constants, hydration time, the determination of the point of null charge (pH{sub PCN}) and density of surface sites (D{sub s}). The luminescence techniques were useful to determine the optimal point hydration of the zircon and for the quantification of the samarium, for that here intends the development of both analysis techniques. With the adjustment of the titration curves in the FITEQL 4 package the constants of surface acidity in the solid/liquid interface were determined. To the finish of this study it was corroborated that the zircon is a mineral that presents appropriate characteristics to be proposed as a contention barrier for the deep geologic confinement. With regard to the study of adsorption that one carries out the samarium retention it is superior to 90% under the described conditions. This investigation could also be applicable in the confinement of dangerous industrial residuals. (Author)

  2. Preparation of high-pressure phase boron nitride films by physical vapor deposition

    CERN Document Server

    Zhu, P W; Zhao, Y N; Li, D M; Liu, H W; Zou Guang Tian

    2002-01-01

    The high-pressure phases boron nitride films together with cubic, wurtzic, and explosive high-pressure phases, were successfully deposited on the metal alloy substrates by tuned substrate radio frequency magnetron sputtering. The percentage of cubic boron nitride phase in the film was about 50% as calculated by Fourier transform infrared measurements. Infrared peak position of cubic boron nitride at 1006.3 cm sup - sup 1 , which is close to the stressless state, indicates that the film has very low internal stress. Transition electron microscope micrograph shows that pure cubic boron nitride phase exits on the surface of the film. The growth mechanism of the BN films was also discussed.

  3. Effect of cold working on nitriding process of AISI 304 and 316 austenitic stainless steel

    International Nuclear Information System (INIS)

    Pereira, Silvio Andre de Lima

    2012-01-01

    The nitriding behavior of AISI 304 and 316 austenitic stainless steel was studied by different cold work degree before nitriding processes. The microstructure, thickness, microhardness and chemical micro-composition were evaluated through optical microscopy, microhardness, scanner electronic microscopy and x ray diffraction techniques. Through them, it was observed that previous plastic deformations do not have influence on layer thickness. However, a nitrided layer thicker can be noticed in the AISI 304 steel. In addition, two different layers can be identified as resulted of the nitriding, composed for austenitic matrix expanded by nitrogen atoms and another thinner immediately below expanded by Carbon atoms. (author)

  4. Gold film with gold nitride - A conductor but harder than gold

    International Nuclear Information System (INIS)

    Siller, L.; Peltekis, N.; Krishnamurthy, S.; Chao, Y.; Bull, S.J.; Hunt, M.R.C.

    2005-01-01

    The formation of surface nitrides on gold films is a particularly attractive proposition, addressing the need to produce harder, but still conductive, gold coatings which reduce wear but avoid the pollution associated with conventional additives. Here we report production of large area gold nitride films on silicon substrates, using reactive ion sputtering and plasma etching, without the need for ultrahigh vacuum. Nanoindentation data show that gold nitride films have a hardness ∼50% greater than that of pure gold. These results are important for large-scale applications of gold nitride in coatings and electronics

  5. The influence of surface layer nitriding on phase composition and tribological properties of cast steel

    International Nuclear Information System (INIS)

    Brzozka, K; Gorka, B; Gawronski, M; Budzynowski, T W

    2010-01-01

    The effect of two-stage low-temperature nitriding on atomic structure and mechanical properties of selected cast steels is investigated. Conversion electron Moessbauer spectroscopy has been used to investigate nitrides formation. In order to study tribological characteristics, tests of friction and reflecting electron microscopy measurements have been performed. It has been found that thin nitrides layer (composed mainly of γ'-Fe 4 N) arises in the course of the nitriding procedure in most of investigated cast steels, what considerably affects their microstructure and tribological properties.

  6. Surface Area, and Oxidation Effects on Nitridation Kinetics of Silicon Powder Compacts

    Science.gov (United States)

    Bhatt, R. T.; Palczer, A. R.

    1998-01-01

    Commercially available silicon powders were wet-attrition-milled from 2 to 48 hr to achieve surface areas (SA's) ranging from 1.3 to 70 sq m/g. The surface area effects on the nitridation kinetics of silicon powder compacts were determined at 1250 or 1350 C for 4 hr. In addition, the influence of nitridation environment, and preoxidation on nitridation kinetics of a silicon powder of high surface area (approximately equals 63 sq m/g) was investigated. As the surface area increased, so did the percentage nitridation after 4 hr in N2 at 1250 or 1350 C. Silicon powders of high surface area (greater than 40 sq m/g) can be nitrided to greater than 70% at 1250 C in 4 hr. The nitridation kinetics of the high-surface-area powder compacts were significantly delayed by preoxidation treatment. Conversely, the nitridation environment had no significant influence on the nitridation kinetics of the same powder. Impurities present in the starting powder, and those accumulated during attrition milling, appeared to react with the silica layer on the surface of silicon particles to form a molten silicate layer, which provided a path for rapid diffusion of nitrogen and enhanced the nitridation kinetics of high surface area silicon powder.

  7. The wear and corrosion resistance of shot peened-nitrided 316L austenitic stainless steel

    International Nuclear Information System (INIS)

    Hashemi, B.; Rezaee Yazdi, M.; Azar, V.

    2011-01-01

    Research highlights: → Shot peening-nitriding increased the wear resistance and surface hardness of samples. → This treatment improved the surface mechanical properties. → Shot peening alleviates the adverse effects of nitriding on the corrosion behavior. -- Abstract: 316L austenitic stainless steel was gas nitrided at 570 o C with pre-shot peening. Shot peening and nitriding are surface treatments that enhance the mechanical properties of surface layers by inducing compressive residual stresses and formation of hard phases, respectively. The structural phases, micro-hardness, wear behavior and corrosion resistance of specimens were investigated by X-ray diffraction, Vickers micro-hardness, wear testing, scanning electron microscopy and cyclic polarization tests. The effects of shot peening on the nitride layer formation and corrosion resistance of specimens were studied. The results showed that shot peening enhanced the nitride layer formation. The shot peened-nitrided specimens had higher wear resistance and hardness than other specimens. On the other hand, although nitriding deteriorated the corrosion resistance of the specimens, cyclic polarization tests showed that shot peening before the nitriding treatment could alleviate this adverse effect.

  8. The influence of nitride thickness variations on the switching speed of MNOS memory transistors

    DEFF Research Database (Denmark)

    Bruun, Erik

    1978-01-01

    The influence of nitride thickness variations on the switching speed of MNOS memory transistors is examined. The switching time constant is calculated as a function of the nitride thickness using a model of modified Fowler-Nordheim injection. The calculated characteristics compare well with measu......The influence of nitride thickness variations on the switching speed of MNOS memory transistors is examined. The switching time constant is calculated as a function of the nitride thickness using a model of modified Fowler-Nordheim injection. The calculated characteristics compare well...

  9. III-nitride based light emitting diodes and applications

    CERN Document Server

    Han, Jung; Amano, Hiroshi; Morkoç, Hadis

    2017-01-01

    The revised edition of this important book presents updated and expanded coverage of light emitting diodes (LEDs) based on heteroepitaxial GaN on Si substrates, and includes new chapters on tunnel junction LEDs, green/yellow LEDs, and ultraviolet LEDs. Over the last two decades, significant progress has been made in the growth, doping and processing technologies of III-nitride based semiconductors, leading to considerable expectations for nitride semiconductors across a wide range of applications. LEDs are already used in traffic signals, signage lighting, and automotive applications, with the ultimate goal of the global replacement of traditional incandescent and fluorescent lamps, thus reducing energy consumption and cutting down on carbon-dioxide emission. However, some critical issues must be addressed to allow the further improvements required for the large-scale realization of solid-state lighting, and this book aims to provide the readers with details of some contemporary issues on which the performanc...

  10. Radio frequency plasma nitriding of aluminium at higher power levels

    International Nuclear Information System (INIS)

    Gredelj, Sabina; Kumar, Sunil; Gerson, Andrea R.; Cavallaro, Giuseppe P.

    2006-01-01

    Nitriding of aluminium 2011 using a radio frequency plasma at higher power levels (500 and 700 W) and lower substrate temperature (500 deg. C) resulted in higher AlN/Al 2 O 3 ratios than obtained at 100 W and 575 deg. C. AlN/Al 2 O 3 ratios derived from X-ray photoelectron spectroscopic analysis (and corroborated by heavy ion elastic recoil time of flight spectrometry) for treatments preformed at 100 (575 deg. C), 500 (500 deg. C) and 700 W (500 deg. C) were 1.0, 1.5 and 3.3, respectively. Scanning electron microscopy revealed that plasma nitrided surfaces obtained at higher power levels exhibited much finer nodular morphology than obtained at 100 W

  11. Neutron induced degradation in nitrided pyrogenic field oxide MOS capacitors

    CERN Document Server

    Vaidya, S J; Shaikh, A M; Chandorkar, A N

    2002-01-01

    Neutron induced oxide charge trapping and generation of interface states in MOS capacitors with pyrogenic and nitrided pyrogenic field oxides have been studied. In order to assess the damage due to neutrons alone, it is necessary to account for the damage produced by the accompanying gamma rays from neutron radiation. This is done by measuring the intensity of gamma radiation accompanying neutrons at different neutron fluences at the irradiation position. MOS capacitor structures were subjected to neutron radiation in a swimming pool type of reactor. Other samples from the same batch were then subjected to an equivalent dose of gamma radiation from a Co sup 6 sup 0 source. The difference in the damage observed was used to characterize the damage caused by neutrons. It is observed that neutrons, though uncharged, are capable of causing ionization damage. This damage is found to be significant when the radiation is performed under biased conditions. Nitridation in different ambients is found to improve the radi...

  12. Point defects in thorium nitride: A first-principles study

    Energy Technology Data Exchange (ETDEWEB)

    Pérez Daroca, D., E-mail: pdaroca@tandar.cnea.gov.ar [Gerencia de Investigación y Aplicaciones, Comisión Nacional de Energía Atómica (Argentina); Consejo Nacional de Investigaciones Científicas y Técnicas (Argentina); Llois, A.M. [Gerencia de Investigación y Aplicaciones, Comisión Nacional de Energía Atómica (Argentina); Consejo Nacional de Investigaciones Científicas y Técnicas (Argentina); Mosca, H.O. [Gerencia de Investigación y Aplicaciones, Comisión Nacional de Energía Atómica (Argentina); Instituto de Tecnología Jorge A. Sabato, UNSAM-CNEA (Argentina)

    2016-11-15

    Thorium and its compounds (carbides and nitrides) are being investigated as possible materials to be used as nuclear fuels for Generation-IV reactors. As a first step in the research of these materials under irradiation, we study the formation energies and stability of point defects in thorium nitride by means of first-principles calculations within the framework of density functional theory. We focus on vacancies, interstitials, Frenkel pairs and Schottky defects. We found that N and Th vacancies have almost the same formation energy and that the most energetically favorable defects of all studied in this work are N interstitials. These kind of results for ThN, to the best authors' knowledge, have not been obtained previously, neither experimentally, nor theoretically.

  13. Point defects in thorium nitride: A first-principles study

    International Nuclear Information System (INIS)

    Pérez Daroca, D.; Llois, A.M.; Mosca, H.O.

    2016-01-01

    Thorium and its compounds (carbides and nitrides) are being investigated as possible materials to be used as nuclear fuels for Generation-IV reactors. As a first step in the research of these materials under irradiation, we study the formation energies and stability of point defects in thorium nitride by means of first-principles calculations within the framework of density functional theory. We focus on vacancies, interstitials, Frenkel pairs and Schottky defects. We found that N and Th vacancies have almost the same formation energy and that the most energetically favorable defects of all studied in this work are N interstitials. These kind of results for ThN, to the best authors' knowledge, have not been obtained previously, neither experimentally, nor theoretically.

  14. Ultra-low threshold gallium nitride photonic crystal nanobeam laser

    Energy Technology Data Exchange (ETDEWEB)

    Niu, Nan, E-mail: nanniu@fas.harvard.edu; Woolf, Alexander; Wang, Danqing; Hu, Evelyn L. [School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138 (United States); Zhu, Tongtong; Oliver, Rachel A. [Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS (United Kingdom); Quan, Qimin [Rowland Institute at Harvard University, Cambridge, Massachusetts 02142 (United States)

    2015-06-08

    We report exceptionally low thresholds (9.1 μJ/cm{sup 2}) for room temperature lasing at ∼450 nm in optically pumped Gallium Nitride (GaN) nanobeam cavity structures. The nanobeam cavity geometry provides high theoretical Q (>100 000) with small modal volume, leading to a high spontaneous emission factor, β = 0.94. The active layer materials are Indium Gallium Nitride (InGaN) fragmented quantum wells (fQWs), a critical factor in achieving the low thresholds, which are an order-of-magnitude lower than obtainable with continuous QW active layers. We suggest that the extra confinement of photo-generated carriers for fQWs (compared to QWs) is responsible for the excellent performance.

  15. Ultra-low threshold gallium nitride photonic crystal nanobeam laser

    International Nuclear Information System (INIS)

    Niu, Nan; Woolf, Alexander; Wang, Danqing; Hu, Evelyn L.; Zhu, Tongtong; Oliver, Rachel A.; Quan, Qimin

    2015-01-01

    We report exceptionally low thresholds (9.1 μJ/cm 2 ) for room temperature lasing at ∼450 nm in optically pumped Gallium Nitride (GaN) nanobeam cavity structures. The nanobeam cavity geometry provides high theoretical Q (>100 000) with small modal volume, leading to a high spontaneous emission factor, β = 0.94. The active layer materials are Indium Gallium Nitride (InGaN) fragmented quantum wells (fQWs), a critical factor in achieving the low thresholds, which are an order-of-magnitude lower than obtainable with continuous QW active layers. We suggest that the extra confinement of photo-generated carriers for fQWs (compared to QWs) is responsible for the excellent performance

  16. Valence electronic structure of tantalum carbide and nitride

    Institute of Scientific and Technical Information of China (English)

    FAN; ChangZeng

    2007-01-01

    The valence electronic structures of tantalum carbide (TaC) and tantalum nitride (TaN) are studied by using the empirical electronic theory (EET). The results reveal that the bonds of these compounds have covalent, metallic and ionic characters. For a quantitative analysis of the relative strength of these components, their ionicities have been calculated by implanting the results of EET to the PVL model. It has been found that the ionicity of tantalum carbide is smaller than that of tantalum nitride. The EET results also reveal that the covalent electronic number of the strongest bond in the former is larger than that of the latter. All these suggest that the covalent bond of TaC is stronger than that of TaN, which coincides to that deduced from the first-principles method.……

  17. Valence electronic structure of tantalum carbide and nitride

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    @@ The valence electronic structures of tantalum carbide (TaC) and tantalum nitride (TaN) are studied by using the empirical electronic theory (EET). The results reveal that the bonds of these compounds have covalent, metallic and ionic characters. For a quantitative analysis of the relative strength of these components, their ionicities have been calculated by implanting the results of EET to the PVL model. It has been found that the ionicity of tantalum carbide is smaller than that of tantalum nitride. The EET results also reveal that the covalent electronic number of the strongest bond in the former is larger than that of the latter. All these suggest that the covalent bond of TaC is stronger than that of TaN, which coincides to that deduced from the first-principles method.

  18. Neutron detection using boron gallium nitride semiconductor material

    Directory of Open Access Journals (Sweden)

    Katsuhiro Atsumi

    2014-03-01

    Full Text Available In this study, we developed a new neutron-detection device using a boron gallium nitride (BGaN semiconductor in which the B atom acts as a neutron converter. BGaN and gallium nitride (GaN samples were grown by metal organic vapor phase epitaxy, and their radiation detection properties were evaluated. GaN exhibited good sensitivity to α-rays but poor sensitivity to γ-rays. Moreover, we confirmed that electrons were generated in the depletion layer under neutron irradiation. This resulted in a neutron-detection signal after α-rays were generated by the capture of neutrons by the B atoms. These results prove that BGaN is useful as a neutron-detecting semiconductor material.

  19. Morphologic and crystallographic studies on electrochemically formed chromium nitride films

    Energy Technology Data Exchange (ETDEWEB)

    Amezawa, Koji [Graduate School of Environmental Studies, Tohoku University, 6-6-01 Aramaki-Aoba, Aoba-ku, Sendai 980-8579 (Japan); Goto, Takuya; Tsujimura, Hiroyuki; Hagiwara, Rika; Tomii, Yoichi [Graduate School of Energy Science, Kyoto University, Sakyo-ku, Kyoto 606-8501 (Japan); Uchimoto, Yoshiharu [Graduate School of Human and Environmental Studies, Kyoto University, Sakyo-ku, Kyoto 606-8501 (Japan); Ito, Yasuhiko [Department of Environmental Systems Science, Faculty of Engineering, Doshisya University, Kyotanabe-shi, Kyoto 610-0321 (Japan)

    2007-11-20

    Chromium nitride films were prepared by anodically oxidizing nitride ions at 0.4-1.5 V versus Li{sup +}/Li on chromium substrates in molten LiCl-KCl-Li{sub 3}N systems at 723 K. A crystalline Cr{sub 2}N film was successfully prepared at 0.4-1.4 V, and was thicker at more positive electrolytic potential. At 1.5 V, a Cr-N film could be also obtained, but its growth rate was relatively low. The film prepared at 1.5 V consisted of two distinctive layers. The surface layer was amorphous Cr-N containing crystalline CrN particles, and the inner layer was crystalline CrN. It was considered the existence of the amorphous phase suppressed the film growth. (author)

  20. Niobium nitride Josephson tunnel junctions with magnesium oxide barriers

    International Nuclear Information System (INIS)

    Shoji, A.; Aoyagi, M.; Kosaka, S.; Shinoki, F.; Hayakawa, H.

    1985-01-01

    Niobium nitride-niobium nitride Josephson tunnel junctions have been fabricated using amorphous magnesium oxide (a-MgO) films as barriers. These junctions have excellent tunneling characteristics. For example, a large gap voltage (V/sub g/ = 5.1 mV), a large product of the maximum critical current and the normal tunneling resistance (I/sub c/R/sub n/ = 3.25 mV), and a small subgap leakage current (V/sub m/ = 45 mV, measured at 3 mV) have been obtained for a NbN/a-MgO/NbN junction. The critical current of this junction remains finite up to 14.5 K

  1. Synthesis of niobium nitride by pyrolysis of niobium pentachloride ammines

    International Nuclear Information System (INIS)

    Grebtsova, O.M.; Shulga, Y.M.; Troitskii, V.N.

    1986-01-01

    This paper investigates the conditions for the preparation of niobium nitride in the thermal decomposition of niobium nitride in the thermal decomposition of niobium pentachloride ammines. The synthesis of the ammines was accomplished by the reaction of powdered NbC1 5 with dry ammonia at 210 K. Thermography and x-ray diffraction, spectral, and chemical analyses were used to identify the ammonolysis products. It was established that the products of ammonolysis of NbC1 5 are a mixture of the x-ray-amorphous complex Nb (NH 2 ) /SUB 5-x/ - (NG 3 ) 3 CL 3 (x≅) and 2 moles of NH 4 C1. The steps in the thermal decomposition of this mixture were studied. The phase transition that is observed in the case of further vacuum heat treatment at 1100-1300 K is presented

  2. Thermal plasma synthesis of transition metal nitrides and alloys

    International Nuclear Information System (INIS)

    Ronsheim, P.; Christensen, A.N.; Mazza, A.

    1981-01-01

    Applications of arc plasma processing to high-temperature chemistry of Group V nitrides and Si and Ge alloys are studied. The transition metal nitrides 4f-VN, 4f-NbN, and 4f-TaN are directly synthesized in a dc argon-nitrogen plasma from powders of the metals. A large excess of N 2 is required to form stoichiometric 4f-VN, while the Nb and Ta can only be synthesized with a substoichiometric N content. In a dc argon plasma the alloys V 3 Si, VSi 2 , NbSi 2 , NbGe 2 , Cr 3 Si, and Mo 3 Si are obtained from powder mixtures of the corresponding elements. The compounds are identified by x-ray diffraction patterns and particle shape and size are studied by electron microscopy

  3. The structure and dynamics of boron nitride nanoscrolls

    International Nuclear Information System (INIS)

    Perim, Eric; Galvao, Douglas S

    2009-01-01

    Carbon nanoscrolls (CNSs) are structures formed by rolling up graphene layers into a scroll-like shape. CNNs have been experimentally produced by different groups. Boron nitride nanoscrolls (BNNSs) are similar structures using boron nitride instead of graphene layers. In this paper we report molecular mechanics and molecular dynamics results for the structural and dynamical aspects of BNNS formation. Similarly to CNS, BNNS formation is dominated by two major energy contributions, the increase in the elastic energy and the energetic gain due to van der Waals interactions of the overlapping surface of the rolled layers. The armchair scrolls are the most stable configuration while zigzag scrolls are metastable structures which can be thermally converted to armchairs. Chiral scrolls are unstable and tend to evolve into zigzag or armchair configurations depending on their initial geometries. The possible experimental routes to produce BNNSs are also addressed.

  4. Frequency effects and properties of plasma deposited fluorinated silicon nitride

    International Nuclear Information System (INIS)

    Chang, C.; Flamm, D.L.; Ibbotson, D.E.; Mucha, J.A.

    1988-01-01

    The properties of low-hydrogen, fluorinated plasma-enhanced chemical vapor deposition (PECVD) silicon nitride films grown using NF 3 /SiH 4 /N 2 feed mixtures in 200 kHz and 14 MHz discharges were compared. High-energy ion bombardment at 200 kHz is expected to enhance surface diffusion and chemical reconstruction. Compared to fluorinated silicon nitride deposited at 14 MHz under otherwise comparable conditions, the 200 kHz films had a lower Si--H bond concentration (approx. 21 cm -3 ), lower total hydrogen content (5--8 x 10 21 cm -3 ), better resistance to oxidation, lower compressive stress (-0.7 to -1.5 Gdyne/cm), and higher density (3.1 g/cm 3 ). The dielectric constant of better low-frequency Class I films was constant to 500 MHz, while that of high-frequency films fell up to 15% between 100 Hz and 10 MHz. The absorption edges of low-frequency PECVD fluorinated silicon nitride films were between 5.0 and 6.1 eV, which compare with 4.4 to 5.6 eV for the high-excitation frequency fluorinated material and 3 to 4 eV for conventional PECVD nitride. However high-frequency films may have fewer trap centers and a lower dielectric constant. 14 MHz p-SiN:F films grown with NH 3 as an auxiliary nitrogen source showed absorption edges similar to low-frequency material grown from NF 3 /SiH 4 /N 2 , but they have substantially more N--H bonding. The dielectric constant and absorption edge of these films were comparable to those of low-frequency p-SiN:F from NF 3 /SiH 4 /N 2

  5. Method of preparing uranium nitride or uranium carbonitride bodies

    International Nuclear Information System (INIS)

    Wilhelm, H.A.; McClusky, J.K.

    1976-01-01

    Sintered uranium nitride or uranium carbonitride bodies having a controlled final carbon-to-uranium ratio are prepared, in an essentially continuous process, from U 3 O 8 and carbon by varying the weight ratio of carbon to U 3 O 8 in the feed mixture, which is compressed into a green body and sintered in a continuous heating process under various controlled atmospheric conditions to prepare the sintered bodies. 6 claims, no drawings

  6. Charge carrier transport properties in layer structured hexagonal boron nitride

    Directory of Open Access Journals (Sweden)

    T. C. Doan

    2014-10-01

    Full Text Available Due to its large in-plane thermal conductivity, high temperature and chemical stability, large energy band gap (˜ 6.4 eV, hexagonal boron nitride (hBN has emerged as an important material for applications in deep ultraviolet photonic devices. Among the members of the III-nitride material system, hBN is the least studied and understood. The study of the electrical transport properties of hBN is of utmost importance with a view to realizing practical device applications. Wafer-scale hBN epilayers have been successfully synthesized by metal organic chemical deposition and their electrical transport properties have been probed by variable temperature Hall effect measurements. The results demonstrate that undoped hBN is a semiconductor exhibiting weak p-type at high temperatures (> 700 °K. The measured acceptor energy level is about 0.68 eV above the valence band. In contrast to the electrical transport properties of traditional III-nitride wide bandgap semiconductors, the temperature dependence of the hole mobility in hBN can be described by the form of μ ∝ (T/T0−α with α = 3.02, satisfying the two-dimensional (2D carrier transport limit dominated by the polar optical phonon scattering. This behavior is a direct consequence of the fact that hBN is a layer structured material. The optical phonon energy deduced from the temperature dependence of the hole mobility is ħω = 192 meV (or 1546 cm-1, which is consistent with values previously obtained using other techniques. The present results extend our understanding of the charge carrier transport properties beyond the traditional III-nitride semiconductors.

  7. TXRF analysis of trace metals in thin silicon nitride films

    International Nuclear Information System (INIS)

    Vereecke, G.; Arnauts, S.; Verstraeten, K.; Schaekers, M.; Heyrts, M.M.

    2000-01-01

    As critical dimensions of integrated circuits continue to decrease, high dielectric constant materials such as silicon nitride are being considered to replace silicon dioxide in capacitors and transistors. The achievement of low levels of metal contamination in these layers is critical for high performance and reliability. Existing methods of quantitative analysis of trace metals in silicon nitride require high amounts of sample (from about 0.1 to 1 g, compared to a mass of 0.2 mg for a 2 nm thick film on a 8'' silicon wafer), and involve digestion steps not applicable to films on wafers or non-standard techniques such as neutron activation analysis. A novel approach has recently been developed to analyze trace metals in thin films with analytical techniques currently used in the semiconductor industry. Sample preparation consists of three steps: (1) decomposition of the silicon nitride matrix by moist HF condensed at the wafer surface to form ammonium fluosilicate. (2) vaporization of the fluosilicate by a short heat treatment at 300 o C. (3) collection of contaminants by scanning the wafer surface with a solution droplet (VPD-DSC procedure). The determination of trace metals is performed by drying the droplet on the wafer and by analyzing the residue by TXRF, as it offers the advantages of multi-elemental analysis with no dilution of the sample. The lower limits of detection for metals in 2 nm thick films on 8'' silicon wafers range from about 10 to 200 ng/g. The present study will focus on the matrix effects and the possible loss of analyte associated with the evaporation of the fluosilicate salt, in relation with the accuracy and the reproducibility of the method. The benefits of using an internal standard will be assessed. Results will be presented from both model samples (ammonium fluoride contaminated with metallic salts) and real samples (silicon nitride films from a production tool). (author)

  8. Processing and properties of solid state nitrided stainless steels

    International Nuclear Information System (INIS)

    Rennhard, C.A.P.

    1993-02-01

    The properties of austenitic steels and duplex-steels are significantly improved by nitrogen (N) addition. In the present investigation, new alloys were produced and characterized using the high solid N-solubility and diffusion alloying from the gas phase. Most suitable base materials are powder, wire or sheet because of the short diffusion distance. PM-materials were in-can nitrided or treated in a fluidized bed and compacted by Hot Isostatic Pressing (HIP) or hot extrusion. The impact toughness level of PM alloys at room temperature is about 120 to 200 J, compared to 250 to 300 J for steels with equal strength that are produced by ingot metallurgy (IM). The toughness can be improved by high temperature deformation such as forging, hot rolling or hot extrusion or by removing the oxide layer on the particle surface by hydrogen gas reduction. A duplex steel with 22 Cr, 5.6 Ni and 2.7 Mo was transformed to a fully austenitic steel with over 500 MPa yield strength by increasing the N content from 0.2 to 0.65 weight-percent. The expensive Ni can successfully be replaced by N. Nitrided wire material is the base material for cold deformed high-strength wire. The improved strain hardening rate of nitrogen alloyed steels helps to achieve ductile and corrosion resistant materials with strength up to 2200 MPa. Sheet materials were diffusion bonded in the HIP or compacted in a 5000 kN press immediately after in-can nitriding to form solid blocks. Nitrided powder, wire and sheet materials lead to near net shape products that cannot be produced by conventional ingot metallurgy or would require the expensive high-pressure metallurgy. (author) 67 figs., tabs., 70 refs

  9. Boron nitride nanotubes as a reinforcement for brittle matrices

    Czech Academy of Sciences Publication Activity Database

    Tatarko, Peter; Grasso, S.; Porwal, H.; Saggar, Richa; Chlup, Zdeněk; Dlouhý, Ivo; Reece, M.J.

    2014-01-01

    Roč. 34, č. 14 (2014), s. 3339-3349 ISSN 0955-2219 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0068 EU Projects: European Commission(XE) 264526 - GLACERCO Institutional support: RVO:68081723 Keywords : Amorphous borosilicate glass * Boron nitride nanotubes * Composite * Toughening mechanisms * Scratch resistance Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass Impact factor: 2.947, year: 2014

  10. SONOS memories with embedded silicon nanocrystals in nitride

    International Nuclear Information System (INIS)

    Liu, Mei-Chun; Chiang, Tsung-Yu; Chao, Tien-Sheng; Kuo, Po-Yi; Lei, Tan-Fu; Chou, Ming-Hong; Wu, Yi-Hong; Cheng, Ching-Hwa; Liu, Sheng-Hsien; Yang, Wen-Luh; You, Hsin-Chiang

    2008-01-01

    We have successfully demonstrated SONOS memories with embedded Si-NCs in silicon nitride. This new structure exhibits excellent characteristics in terms of larger memory windows and longer retention time compared to control devices. Using the same thickness 2.5 nm of the bottom tunneling oxide, we found that N 2 O is better than O 2 oxide. Retention property is improved when the thickness of N 2 O is increased to 3.0 nm

  11. Effect of boron nitride coating on fiber-matrix interactions

    International Nuclear Information System (INIS)

    Singh, R.N.; Brun, M.K.

    1987-01-01

    Coatings can modify fiber-matrix reactions and consequently interfacial bond strengths. Commercially available mullite, silicon carbide, and carbon fibers were coated with boron nitride via low pressure chemical vapor deposition and incorporated into a mullite matrix by hot-pressing. The influence of fiber-matrix interactions for uncoated fibers on fracture morphologies was studied. These observations are related to the measured values of interfacial shear strengths

  12. Delamination of hexagonal boron nitride in a stirred media mill

    International Nuclear Information System (INIS)

    Damm, C.; Körner, J.; Peukert, W.

    2013-01-01

    A scalable process for delamination of hexagonal boron nitride in an aqueous solution of the non-ionic surfactant TWEEN85 using a stirred media mill is presented. The size of the ZrO 2 beads used as grinding media governs the dimensions of the ground boron nitride particles as atomic force microscopic investigations (AFM) reveal: the mean flakes thickness decreases from 3.5 to 1.5 nm and the ratio between mean flake area and mean flake thickness increases from 2,200 to 5,800 nm if the grinding media size is reduced from 0.8 to 0.1 mm. This result shows that a high number of stress events in combination with low stress energy (small grinding media) facilitate delamination of the layered material whereas at high stress energies in combination with a low number of stress events (large grinding media) breakage of the layers dominates over delamination. The results of particle height analyses by AFM show that few-layer structures have been formed by stirred media milling. This result is in agreement with the layer thickness dependence of the delamination energy for hexagonal boron nitride. The concentration of nanoparticles remaining dispersed after centrifugation of the ground suspension increases with grinding time and with decreasing grinding media size. After 5 h of grinding using 0.1 mm ZrO 2 grinding media the yield of nanoparticle formation is about 5 wt%. The nanoparticles exhibit the typical Raman peak for hexagonal boron nitride at 1,366 cm −1 showing that the in-plane order in the milled platelets is remained.

  13. Formation and properties of chromium nitride coatings on martensitic steels

    International Nuclear Information System (INIS)

    Mendala, B.; Swadzba, L.; Hetmanczyk, M.

    1999-01-01

    In this paper the results of investigation of coatings obtained by ARC-PVD method on martensitic E1961 (13H12NWMFA) steel, which is used on compressor blades in the aircraft engines, were presented. The chemical composition of E1961 was given. The PVT-550 device was used for coating. The protective chromium nitride coatings were tested. The influence of ARC-PVD method parameters for example: bias, pressure and flow rate of reactive gases on the structure and properties of the CrN coatings in corrosion tests were investigated. Technical parameters of obtained CrN coatings were given. The phase analysis of chromium nitride coatings obtained with different technical parameters were tested. The results of phase analysis are given. The pitting corrosion resistance tests in 10% FeCl 3 solution was conducted. The corrosion rate for CrN coated samples were defined. It was found that 50 V and 100 V bias, about 0.5 and 0.7 Pa pressure and 140 sccm (standard cubic centimeter) flow rate of nitride during coating favour the CrN monophase structure while increasing bias to 150 V, decreasing the pressure to about 0.5 Pa and 0.3 Pa and increasing the flow rate of nitride to 160 - 180 sccm favour the CrN+Cr 2 N diphase structure. On the basis of corrosion investigations for CrN coatings obtained with different ARC-PVD parameters the best corrosion resistance in 10% FeCl 3 solution for CrN+Cr 2 N diphase structure was found. (author)

  14. Interface-induced electronic structure toughening of nitride superlattices

    Czech Academy of Sciences Publication Activity Database

    Řehák, Petr; Černý, Miroslav; Holec, D.

    2017-01-01

    Roč. 325, SEP (2017), s. 410-416 ISSN 0257-8972 R&D Projects: GA ČR(CZ) GA16-24711S Institutional support: RVO:68081723 Keywords : Ab initio calculations * Cleavage * Friedel oscillations * Nitride multilayers Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 2.589, year: 2016

  15. Transient Nonlinear Optical Properties of Thin Film Titanium Nitride

    Science.gov (United States)

    2017-03-23

    13] • Chemical composition • Crystal structure and lattice parameters • Defect structure This tuneability will be useful in future engineering ...Nitride SarahKatie Thomas Follow this and additional works at: https://scholar.afit.edu/etd Part of the Materials Science and Engineering Commons This... Thesis is brought to you for free and open access by AFIT Scholar. It has been accepted for inclusion in Theses and Dissertations by an authorized

  16. On new allotropes and nanostructures of carbon nitrides

    OpenAIRE

    Bojdys, Michael Janus

    2010-01-01

    In the first section of the thesis graphitic carbon nitride was for the first time synthesised using the high-temperature condensation of dicyandiamide (DCDA) – a simple molecular precursor – in a eutectic salt melt of lithium chloride and potassium chloride. The extent of condensation, namely next to complete conversion of all reactive end groups, was verified by elemental microanalysis and vibrational spectroscopy. TEM- and SEM-measurements gave detailed insight into the well-defined morpho...

  17. Electron trapping during irradiation in reoxidized nitrided oxide

    International Nuclear Information System (INIS)

    Mallik, A.; Vasi, J.; Chandorkar, A.N.

    1993-01-01

    Isochronal detrapping experiments have been performed following irradiation under different gate biases in reoxidized nitrided oxide (RNO) MOS capacitors. These show electron trapping by the nitridation-induced electron traps at low oxide fields during irradiation. A difference in the detrapping behavior of trapped holes and electrons is observed, with trapped holes being detrapped at relatively lower temperatures compared to trapped electrons. Electron trapping shows a strong dependence on tile magnitude of the applied gate bias during irradiation but is independent of its polarity. Conventional oxide devices, as expected, do not show any electron trapping during irradiation by the native electron traps. Finally, a comparison of the isochronal detrapping behavior following irradiation and following avalanche injection of electrons has been made to estimate the extent of electron trapping. The results show that electron trapping by the nitridation-induced electron traps does not play the dominant role in improving radiation performance of RNO, though its contribution cannot be completely neglected for low oxide field irradiations

  18. Neutron induced degradation in nitrided pyrogenic field oxide MOS capacitors

    Science.gov (United States)

    Vaidya, S. J.; Sharma, D. K.; Shaikh, A. M.; Chandorkar, A. N.

    2002-09-01

    Neutron induced oxide charge trapping and generation of interface states in MOS capacitors with pyrogenic and nitrided pyrogenic field oxides have been studied. In order to assess the damage due to neutrons alone, it is necessary to account for the damage produced by the accompanying gamma rays from neutron radiation. This is done by measuring the intensity of gamma radiation accompanying neutrons at different neutron fluences at the irradiation position. MOS capacitor structures were subjected to neutron radiation in a swimming pool type of reactor. Other samples from the same batch were then subjected to an equivalent dose of gamma radiation from a Co 60 source. The difference in the damage observed was used to characterize the damage caused by neutrons. It is observed that neutrons, though uncharged, are capable of causing ionization damage. This damage is found to be significant when the radiation is performed under biased conditions. Nitridation in different ambients is found to improve the radiation performance of pyrogenic field oxides with respect to positive charge build up as well as interface state generation. Pyrogenic oxide nitrided in N 2O is found to be the best oxynitride as damage due to neutrons is the least.

  19. Iron nitride films formed in a r. f. glow discharge

    Energy Technology Data Exchange (ETDEWEB)

    Li, J.L.; O' Keefe, T.J.; James, W.J. (Depts. of Chemistry and Metallurgical Engineering and Graduate Center for Materials Research, Univ. of Missouri-Rolla (United States))

    1992-12-30

    Fe[sub 2]N and Fe[sub 3]N films were deposited on an r.f. glow discharge by introducing Fe(CO)[sub 5] and NH[sub 3] into the reactor. The iron nitride films thus formed exhibited sheet conductivities in the range of 10[sup 2]-10[sup 3] ohm[sup -1] cm[sup -1]. They exhibited microhardness ranging from 578 to 659 kg mm[sup -2] on glass slides. The effects of the deposition temperature and the nature of the substrate material on the structure and composition of the films were investigated. An Fe[sub 4]N layer was formed on iron substrates at 400degC in the plasma nitriding process using NH[sub 3] as the gas source. The Fe[sub 4]N layer exhibited a microhardness of 230 kg mm[sup -2]. The effect of the temperature on the formation of the nitrided layer is discussed. (orig.).

  20. Study the gas sensing properties of boron nitride nanosheets

    International Nuclear Information System (INIS)

    Sajjad, Muhammad; Feng, Peter

    2014-01-01

    Graphical abstract: - Highlights: • We synthesized boron nitride nanosheets (BNNSs) on silicon substrate. • We analyzed gas sensing properties of BNNSs-based gas-sensor device. • CH 4 gas is used to measure gas-sensing properties of the device. • Quick response and recovery time of the device is recorded. • BNNSs showed excellent sensitivity to the working gas. - Abstract: In the present communication, we report on the synthesis of boron nitride nanosheets (BNNSs) and study of their gas sensing properties. BNNSs are synthesized by irradiating pyrolytic hexagonal boron nitride (h-BN) target using CO 2 laser pulses. High resolution transmission electron microscopic measurements (HRTEM) revealed 2-dientional honeycomb crystal lattice structure of BNNSs. HRTEM, electron diffraction, XRD and Raman scattering measurements clearly identified h-BN. Gas sensing properties of synthesized BNNSs were analyzed with prototype gas sensor using methane as working gas. A systematic response curve of the sensor is recorded in each cycle of gas “in” and “out”; suggesting excellent sensitivity and high performance of BNNSs-based gas-sensor