Sample records for samarium arsenides

  1. Synthesis of Samarium Cobalt Nanoblades

    Energy Technology Data Exchange (ETDEWEB)

    Darren M. Steele


    As new portable particle acceleration technologies become feasible the need for small high performance permanent magnets becomes critical. With particle accelerating cavities of a few microns, the photonic crystal fiber (PCF) candidate demands magnets of comparable size. To address this need, samarium cobalt (SmCo) nanoblades were attempted to be synthesized using the polyol process. Since it is preferable to have blades of 1-2 {micro}m in length, key parameters affecting size and morphology including method of stirring, reaction temperature, reaction time and addition of hydroxide were examined. Nanoparticles consisting of 70-200 nm spherical clusters with a 3-5 nm polyvinylpyrrolidone (PVP) coating were synthesized at 285 C and found to be ferromagnetic. Nanoblades of 25nm in length were observed at the surface of the nanoclusters and appeared to suggest agglomeration was occurring even with PVP employed. Morphology and size were characterized using a transmission electron microscope (TEM). Powder X-Ray Diffraction (XRD) analysis was conducted to determine composition but no supportive evidence for any particular SmCo phase has yet been observed.

  2. A FETISH for gallium arsenide

    Energy Technology Data Exchange (ETDEWEB)

    Barron, A.R. [Rice Univ., Houston, TX (United States)


    An overview of the development of a new dielectric material, cubic-GaS, from the synthesis of new organometallic compounds to the fabrication of a new class of gallium arsenide based transistor is presented as a representative example of the possibility that inorganic chemistry can directly effect the development of new semiconductor devices. The gallium sulfido compound [({sup t}Bu)GaS]{sub 4}, readily prepared from tri-tert-butyl gallium, may be used as a precursor for the growth of GaS thin films by metal organic chemical vapor deposition (MOCVD). Photoluminescence and electronic measurements indicate that this material provides a passivation coating for GaAs. Furthermore, the insulating properties of cubic-GaS make it suitable as the insulating gate layer in a new class of GaAs transistor: a field effect transistor with a sulfide heterojunction (FETISH).

  3. Particle-Size-Induced Valence Changes in Samarium Clusters

    Energy Technology Data Exchange (ETDEWEB)

    Mason, M. G.; Lee, S. -T.; Apai, G.; Davis, R. F.; Shirley, D. A.; Franciosi, A.; Weaver, J. H.


    Samarium clusters exhibit mixed-valence behavior which is sensitive to particle size. XPS and UPS data show samarium to be primarily divalent (4f{sup 6} ) at small particle size. The trivalent state (4f{sup 5} ) becomes progressively more abundant with increasing s1ze, becoming the dominant state for the bulk metal. These results are interpreted using a model in which band narrowing, due to reduced surface coordination, is more dominant than surface tension effects in establishing the valence of small samarium clusters.

  4. Window structure for passivating solar cells based on gallium arsenide (United States)

    Barnett, Allen M. (Inventor)


    Passivated gallium arsenide solar photovoltaic cells with high resistance to moisture and oxygen are provided by means of a gallium arsenide phosphide window graded through its thickness from arsenic rich to phosphorus rich.

  5. Yellow-green electroluminescence of samarium complexes of 8-hydroxyquinoline

    Energy Technology Data Exchange (ETDEWEB)

    Behzad, Sara Karimi; Najafi, Ezzatollah [Department of Chemistry Shahid Beheshti University G.C., Tehran 1983963113 (Iran, Islamic Republic of); Amini, Mostafa M., E-mail: [Department of Chemistry Shahid Beheshti University G.C., Tehran 1983963113 (Iran, Islamic Republic of); Janghouri, Mohammad; Mohajerani, Ezeddin [Laser Research Institute Shahid Beheshti University G.C., Tehran 1983963113 (Iran, Islamic Republic of); Ng, Seik Weng [Department of Chemistry, University of Malaya, 50603 Kuala Lumpur (Malaysia)


    Four novel samarium complexes were prepared by reacting samarium(III) nitrate with 8-hydroxyquinoline, 2-methyl-8-hydroxyquinoline, and 1,10-phenanthroline and utilized as emitting materials in the electroluminescence device. All complexes were characterized by elemental analysis, infrared, UV–vis and {sup 1}H NMR spectroscopes and the molecular structure of a representative complex, [Sm{sub 2}(Me-HQ){sub 4}(NO{sub 3}){sub 6}] (1), was determined by single-crystal X-ray diffraction. Utilization of a π-conjugated (phenanthroline) ligand as a second ligand in the structure of the samarium complexes resulted in red shifts in both absorption and fluorescence spectra of complexes and moderately enhanced the photoluminescence intensity and the fluorescence quantum yield. The maximum emission peaks showed that a good correlation exists between the nature of the substituent group on the 8-hydroxyquinoline and the addition of the π-conjugated ligand in the structure of samarium complexes and emission wavelength. Devices with samarium(III) complexes with structure of ITO/PEDOT:PSS (90 nm)/PVK:PBD:Sm(III) complexes (75 nm)/Al (180 nm) were fabricated. In the electroluminescence (EL) spectra of the devices, a strong ligand-centered emission and narrow bands arising from the {sup 4}G{sub 5/2}→{sup 6}H{sub J} transitions (J=7/2, 9/2, and 11/2) of the samarium ion were observed for the complexes. The electroluminescent spectra of the samarium complexes were red-shifted as compared with the PVK:PBD blend. We believe that the electroluminescence performance of OLED devices based on samarium complexes relies on overlaps between the absorption of the samarium compounds and the emission of PVK:PBD. This revealed that it is possible to evaluate the electroluminescence performance of the samarium compounds-doped OLED devices based on the emission of PVK:PBD and the absorption of the dopants. - Highlights: • Four novel photoluminescence samarium complexes have been synthesized.

  6. Development of a Multi-layer Anti-reflective Coating for Gallium Arsenide/Aluminum Gallium Arsenide Solar Cells (United States)


    Aluminum Gallium Arsenide Solar Cells by Kimberley A Olver Approved for public release; distribution unlimited...Development of a Multi-layer Anti-reflective Coating for Gallium Arsenide/Aluminum Gallium Arsenide Solar Cells by Kimberley A Olver...Aluminum Gallium Arsenide (AlGaAs) Solar Cells 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Kimberley A Olver

  7. Spin Injection in Indium Arsenide

    Directory of Open Access Journals (Sweden)

    Mark eJohnson


    Full Text Available In a two dimensional electron system (2DES, coherent spin precession of a ballistic spin polarized current, controlled by the Rashba spin orbit interaction, is a remarkable phenomenon that’s been observed only recently. Datta and Das predicted this precession would manifest as an oscillation in the source-drain conductance of the channel in a spin-injected field effect transistor (Spin FET. The indium arsenide single quantum well materials system has proven to be ideal for experimental confirmation. The 2DES carriers have high mobility, low sheet resistance, and high spin orbit interaction. Techniques for electrical injection and detection of spin polarized carriers were developed over the last two decades. Adapting the proposed Spin FET to the Johnson-Silsbee nonlocal geometry was a key to the first experimental demonstration of gate voltage controlled coherent spin precession. More recently, a new technique measured the oscillation as a function of channel length. This article gives an overview of the experimental phenomenology of the spin injection technique. We then review details of the application of the technique to InAs single quantum well (SQW devices. The effective magnetic field associated with Rashba spin-orbit coupling is described, and a heuristic model of coherent spin precession is presented. The two successful empirical demonstrations of the Datta Das conductance oscillation are then described and discussed.

  8. Biodistribution of samarium-153-EDTMP in rats treated with docetaxel

    Energy Technology Data Exchange (ETDEWEB)

    Villarim Neto, Arthur; Acucena, Maria Kadja Meneses Torres; Pereira, Kercia Regina Santos Gomes; Rego, Amalia Cinthia Meneses [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil). Postgraduate Program in Health Sciences; Azevedo, Italo Medeiros; Medeiros, Aldo Cunha [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil). Dept. of Surgery; Bernardo-Filho, Mario [State University of Rio de Janeiro, RJ (Brazil). Dept. of Biophysics and Biometry


    Purpose: Many patients with metastatic bone disease have to use radiopharmaceuticals associated with chemotherapy to relieve bone pain. The aim of this study was to assess the influence of docetaxel on the biodistribution of samarium-153-EDTMP in bones and other organs of rats. Methods: Wistar male rats were randomly allocated into 2 groups of 6 rats each. The DS (docetaxel/samarium) group received docetaxel (15 mg/kg) intraperitoneally in two cycles 11 days apart. The S (samarium/control) group rats were not treated with docetaxel. Nine days after chemotherapy, all the rats were injected with 0.1 ml of samarium-153-EDTMP via orbital plexus (25 {mu} Ci. After 2 hours, the animals were killed and samples of the brain, thyroid, lung, heart, stomach, colon, liver, kidney and both femurs were removed. The percentage radioactivity of each sample (% ATI / g) was determined in an automatic gamma-counter (Wizard-1470, Perkin-Elmer, Finland). Results: On the ninth day after the administration of the second chemotherapy cycle, the rats had a significant weight loss (314.50 +- 22.09 g) compared (p<0.5) to pre-treatment weight (353.66 {+-} 22.8). The % ATI/g in the samples of rats treated with samarium-153-EDTMP had a significant reduction in the right femur, left femur, kidney, liver and lungs of animals treated with docetaxel, compared to the control rats. Conclusion: The combination of docetaxel and samarium-153-EDTMP was associated with a lower response rate in the biodistribution of the radiopharmaceutical to targeted tissues. Further investigation into the impact of docetaxel on biodistribution of samarium-153-EDTMP would complement the findings of this study. (author)

  9. The Basis for Developing Samarium AMS for Fuel Cycle Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Buchholz, B A; Biegalski, S R; Whitney, S M; Tumey, S J; Weaver, C J


    Modeling of nuclear reactor fuel burnup indicates that the production of samarium isotopes can vary significantly with reactor type and fuel cycle. The isotopic concentrations of {sup 146}Sm, {sup 149}Sm, and {sup 151}Sm are potential signatures of fuel reprocessing, if analytical techniques can overcome the inherent challenges of lanthanide chemistry, isobaric interferences, and mass/charge interferences. We review the current limitations in measurement of the target samarium isotopes and describe potential approaches for developing Sm-AMS. AMS sample form and preparation chemistry will be discussed as well as possible spectrometer operating conditions.

  10. Surface magnetism of gallium arsenide nanofilms


    Lu, Huan; Yu, Jin; Guo, Wanlin


    Gallium arsenide (GaAs) is the widest used second generation semiconductor with a direct band gap and increasingly used as nanofilms. However, the magnetic properties of GaAs nanofilms have never been studied. Here we find by comprehensive density functional theory calculations that GaAs nanofilms cleaved along the and directions become intrinsically metallic films with strong surface magnetism and magnetoelectric (ME) effect. The surface magnetism and electrical conductivity are realized v...

  11. Optical characteristics of transparent samarium oxide thin films ...

    Indian Academy of Sciences (India)

    Optical characteristics of transparent samarium oxide thin films deposited by the radio-frequency sputtering technique. A A ATTA M M EL-NAHASS KHALED M ELSABAWY M M ABD EL-RAHEEM A M HASSANIEN A ALHUTHALI ALI BADAWI AMAR MERAZGA. Regular Volume 87 Issue 5 November 2016 Article ID 72 ...

  12. Optical properties of zinc–vanadium glasses doped with samarium ...

    Indian Academy of Sciences (India)

    Zinc–vanadium glasses doped with samarium oxide having the chemical composition Sm2O3() ZnO(40-)V2O5(60) (where = 0.1–0.5 mol%) were prepared by melt quenching method. The density of these glasses was measured by Archimedes method; the corresponding molar volumes have also been calculated.

  13. Optical properties of samarium doped zinc–tellurite glasses

    Indian Academy of Sciences (India)


    Optical properties of samarium doped zinc–tellurite glasses. B ERAIAH. Department of Physics, Karnatak University, Dharwad 580 003, India. Present address: Department of Physics, Bangalore University, Bangalore 560 056, India. MS received 20 March 2006; revised 13 June 2006. Abstract. Glasses with the composition, ...

  14. Effect of second ligand on the luminescence of Samarium (III ...

    Indian Academy of Sciences (India)

    Effect of second ligand on the luminescence of Samarium (III) dibenzoylmethane complexes: Syntheses, crystal structures, thermal analysis and luminescence study. MUHAMMAD IDIRIS SALEH, MIN YEE CHOO, TAI WEI CHAN and MOHD R RAZALI. ∗. School of Chemical Sciences, Universiti Sains Malaysia, Penang, ...

  15. Effect of second ligand on the luminescence of Samarium (III ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 127; Issue 12. Effect of second ligand on the luminescence of Samarium (III) dibenzoylmethane complexes: ... Muhammad Idiris Saleh1 Min Yee Choo1 Tai Wei Chan1 Mohd R Razali1. School of Chemical Sciences, Universiti Sains Malaysia, Penang, Malaysia ...

  16. Superlattice Intermediate Band Solar Cell on Gallium Arsenide (United States)


    AFRL-RV-PS- AFRL-RV-PS- TR-2015-0048 TR-2015-0048 SUPERLATTICE INTERMEDIATE BAND SOLAR CELL ON GALLIUM ARSENIDE Alexandre Freundlich...SUBTITLE 5a. CONTRACT NUMBER FA9453-13-1-0232 Superlattice Intermediate Band Solar Cell on Gallium Arsenide 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER

  17. Heat blocking gallium arsenide solar cells (United States)

    Rahman, F.; Farmer, C. D.; Schmidt, C.; Pfaff, G.; Stanley, C. R.


    The solar cell industry is witnessing an era of unprecedented growth and this trend is set to continue for the foreseeable future. Here we describe a heat reflection pigment-coated single-junction gallium arsenide solar cell that is capable of reflecting heat-inducing near-infrared radiation. The cell maintains its performance better than non-coated cells when exposed to infrared-rich radiant flux. In situations where solar cells get heated mainly from incident infrared radiation, these cells exhibit superior performance. The heat reflecting pigment, cell structure, coating process and cell performance have been described.

  18. Dependence of samarium-soil interaction on samarium concentration: Implications for environmental risk assessment. (United States)

    Ramírez-Guinart, Oriol; Salaberria, Aitor; Vidal, Miquel; Rigol, Anna


    The sorption and desorption behaviour of samarium (Sm), an emerging contaminant, was examined in soil samples at varying Sm concentrations. The obtained sorption and desorption parameters revealed that soil possessed a high Sm retention capacity (sorption was higher than 99% and desorption lower than 2%) at low Sm concentrations, whereas at high Sm concentrations, the sorption-desorption behaviour varied among the soil samples tested. The fractionation of the Sm sorbed in soils, obtained by sequential extractions, allowed to suggest the soil properties (pH and organic matter solubility) and phases (organic matter, carbonates and clay minerals) governing the Sm-soil interaction. The sorption models constructed in the present work along with the sorption behaviour of Sm explained in terms of soil main characteristics will allow properly assessing the Sm-soil interaction depending on the contamination scenario under study. Moreover, the sorption and desorption K d values of radiosamarium in soils were strongly correlated with those of stable Sm at low concentrations (r = 0.98); indicating that the mobility of Sm radioisotopes and, thus, the risk of radioactive Sm contamination can be predicted using data from low concentrations of stable Sm. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Mechanism of the electrochemical deposition of samarium-based coatings

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz, Edgar J. [Electrochemistry Department, Centro de Investigacion y Desarrollo Tecnologico en Electroquimica, Parque Tecnologico Queretaro Sanfandila, P.O. Box 064, Pedro Escobedo, 76700 Queretaro (Mexico); Ortega-Borges, Raul [Electrochemistry Department, Centro de Investigacion y Desarrollo Tecnologico en Electroquimica, Parque Tecnologico Queretaro Sanfandila, P.O. Box 064, Pedro Escobedo, 76700 Queretaro (Mexico); Godinez, Luis A. [Electrochemistry Department, Centro de Investigacion y Desarrollo Tecnologico en Electroquimica, Parque Tecnologico Queretaro Sanfandila, P.O. Box 064, Pedro Escobedo, 76700 Queretaro (Mexico); Chapman, Thomas W. [Electrochemistry Department, Centro de Investigacion y Desarrollo Tecnologico en Electroquimica, Parque Tecnologico Queretaro Sanfandila, P.O. Box 064, Pedro Escobedo, 76700 Queretaro (Mexico); Meas-Vong, Yunny [Electrochemistry Department, Centro de Investigacion y Desarrollo Tecnologico en Electroquimica, Parque Tecnologico Queretaro Sanfandila, P.O. Box 064, Pedro Escobedo, 76700 Queretaro (Mexico)]. E-mail:


    Samarium-based films have been shown to form from aqueous solutions on the surfaces of metallic substrates such as steel or aluminum, and their presence has been reported to decrease substantially the corresponding corrosion rate of the underlying metallic substrate. Based on previous reports on the deposition of oxides or hydroxides of the closely related element cerium, this work demonstrates that samarium films are formed following a similar mechanism, which involves as the fundamental step an increase in interfacial pH resulting from cathodic oxygen-reduction or hydrogen-evolution reactions. With cyclic voltammetry (CV), electrochemical quartz-crystal microbalance (EQCM) measurements, rotating-disk electrode (RDE) tests, and surface characterization techniques, namely, scanning electron microscopy (SEM) and X-ray surface microanalysis (EDX), the postulated mechanism was verified, and the surface morphology of the resulting films was correlated with the nature of the reduction reaction that triggers film formation.

  20. Samarium Monosulfide (SmS): Reviewing Properties and Applications


    Sousanis, Andreas; Smet, Philippe; Poelman, Dirk


    In this review, we give an overview of the properties and applications of samarium monosulfide, SmS, which has gained considerable interest as a switchable material. It shows a pressure-induced phase transition from the semiconducting to the metallic state by polishing, and it switches back to the semiconducting state by heating. The material also shows a magnetic transition, from the paramagnetic state to an antiferromagnetically ordered state. The switching behavior between the semiconducti...

  1. Optical properties of zinc–vanadium glasses doped with samarium ...

    Indian Academy of Sciences (India)

    Abstract. Zinc–vanadium glasses doped with samarium oxide having the chemical composition Sm2O3(x). ZnO(40−x)V2O5(60)(where x = 0·1–0·5 mol%) were prepared by melt quenching method. The density of these glasses was measured by Archimedes method; the corresponding molar volumes have also been ...

  2. Synthesis of nano-pore samarium (III)-imprinted polymer for preconcentrative separation of samarium ions from other lanthanide ions via solid phase extraction

    Energy Technology Data Exchange (ETDEWEB)

    Shirvani-Arani, Simindokht [Center of Excellence in Electrochemistry, Department of Chemistry, University of Tehran, P.O.Box:14155-6455, Tehran (Iran, Islamic Republic of); Jaber Ibne Hayan Research Laboratories, Nuclear Science and Technology Research Institute, P.O. Box: 11365-8486, Tehran (Iran, Islamic Republic of); Ahmadi, Seyed Javad [Jaber Ibne Hayan Research Laboratories, Nuclear Science and Technology Research Institute, P.O. Box: 11365-8486, Tehran (Iran, Islamic Republic of)], E-mail:; Bahrami-Samani, Ali [Nuclear Engineering and Physics Department, Amir Kabir University, P.O.Box: 15875-4413, Tehran (Iran, Islamic Republic of); Jaber Ibne Hayan Research Laboratories, Nuclear Science and Technology Research Institute, P.O. Box: 11365-8486, Tehran (Iran, Islamic Republic of); Ghannadi-Maragheh, Mohammad [Jaber Ibne Hayan Research Laboratories, Nuclear Science and Technology Research Institute, P.O. Box: 11365-8486, Tehran (Iran, Islamic Republic of)


    A batch process was developed to separate samarium ions from some lanthanide ions by a novel solid phase which was prepared via the ion-imprinting technique. The samarium (III) ion-imprinted polymer (IIP) particles were synthesized by preparing the ternary complex of samarium ions with 5,7-dichloroquinoline-8-ol (DCQ) and 4-vinylpyridine (VP). Then, thermally copolymerization with styrene (functional monomer, STY) and divinylbenzene (cross-linking monomer, DVB) followed in the presence of 2-methoxy ethanol (porogen) and 2,2'-azobisisobutyronitrile (initiator, AIBN). The imprinted ion was removed by stirring the above particles with 50% (v/v) HCl to obtain the leached IIP particles. Moreover, control polymer (CP) particles were similarly prepared without the samarium ions. The unleached and leached IIP particles were characterized by X-ray diffraction (XRD), infra-red spectroscopy (IR), thermo gravimetric analysis (TGA) and scanning electron microscopy (SEM). Finally, preconcentration and selectivity studies for samarium and the other lanthanide ions were carried out. The preconcentration of the samarium (III) traces was studied during rebinding with the leached IIP particles as a function of pH, the weight of the polymer material, the preconcentration and the elution times, the eluent volume and the aqueous phase volume. These studies indicated that the samarium (III) amount as low as 1 {mu}g, present in 200 mL, could be preconcentrated into 25 mL of 1.0 M HCl.

  3. Modelling of the modulation properties of arsenide and nitride VCSELs (United States)

    Wasiak, Michał; Śpiewak, Patrycja; Moser, Philip; Gebski, Marcin; Schmeckebier, Holger; Sarzała, Robert P.; Lott, James A.


    In this paper, using our model of capacitance in vertical-cavity surface-emitting lasers (VCSELs), we analyze certain differences between an oxide-confined arsenide VCSEL emitting in the NIR region, and a nitride VCSEL emitting violet radiation. In the nitride laser its high differential resistance, caused partially by the low conductivity of p-type GaN material and the bottom contact configuration, is one of the main reasons why the nitride VCSEL has much worse modulation properties than the arsenide VCSEL. Using the complicated arsenide structure, we also analyze different possible ways of constructing the laser's equivalent circuit.

  4. Ellipsometric study of silicon nitride on gallium arsenide (United States)

    Alterovitz, S. A.; Bu-Abbud, G. H.; Woollam, J. A.; Liu, D.; Chung, Y.; Langer, D.


    A method for optimizing the sensitivity of ellipsometric measurements for thin dielectric films on semiconductors is described in simple physical terms. The technique is demonstrated for the case of sputtered silicon nitride films on gallium arsenide.

  5. Gallium Arsenide solar cell radiation damage experiment (United States)

    Maurer, R. H.; Kinnison, J. D.; Herbert, G. A.; Meulenberg, A.


    Gallium arsenide (GaAs) solar cells for space applications from three different manufactures were irradiated with 10 MeV protons or 1 MeV electrons. The electrical performance of the cells was measured at several fluence levels and compared. Silicon cells were included for reference and comparison. All the GaAs cell types performed similarly throughout the testing and showed a 36 to 56 percent power areal density advantage over the silicon cells. Thinner (8-mil versus 12-mil) GaAs cells provide a significant weight reduction. The use of germanium (Ge) substrates to improve mechanical integrity can be implemented with little impact on end of life performance in a radiation environment.

  6. Surface magnetism of gallium arsenide nanofilms (United States)

    Lu, Huan; Yu, Jin; Guo, Wanlin


    Gallium arsenide (GaAs) is the most widely used second-generation semiconductor with a direct band gap, and it is being increasingly used as nanofilms. However, the magnetic properties of GaAs nanofilms have never been studied. Here we find by comprehensive density-functional-theory calculations that GaAs nanofilms cleaved along the 〈111 〉 and 〈100 〉 directions become intrinsically metallic films with strong surface magnetism and the magnetoelectric effect. Surface magnetism and electrical conductivity are realized via a combined effect of charge transfer induced by spontaneous electric polarization through the film thickness and spin-polarized surface states. The surface magnetism of 〈111 〉 nanofilms can be significantly and linearly tuned by a vertically applied electric field, endowing the nanofilms with unexpectedly high magnetoelectric coefficients, which are tens of times higher than those of ferromagnetic metals and transition-metal oxides.

  7. Ionization of Samarium by Chemical Releases in the Upper Atmosphere (United States)

    Siefring, C. L.; Bernhardt, P. A.; Holmes, J. M.; Pedersen, T. R.; Caton, R.; Miller, D.; Groves, K. M.


    The release of Samarium vapor into the upper atmosphere was studied using during the Air Force Research Laboratory sponsored Metal Oxide Space Cloud (MOSC) rocket launches in May 2009. The Naval Research Laboratory supported these experiments with 3-D photochemical modeling of the artificial plasma cloud including (1) reactions with atomic oxygen, (2) photo excitation, (3) photoionization, (4) dissociative recombination, and (5) ion and neutral diffusion. NRL provided the experimental diagnostic instrument on the rocket which was a dual frequency radio beacon on the rocket to measure changes in total electron content. The AFRL provided ground based diagnostics of incoherent scatter radar and optical spectroscopy and imagery. The NRL Chemical Release Model (CRM) has over 600 excited states of atomic Samarium neutrals, atomic ions, along with Samarium Oxide Ions and electrons. Diffusive transport of neutrals in cylindrical geometry and ions along magnetic field lines is computed along with the reactive flow to predict the concentrations of Sm, Sm-Ion, Sm0, and SmO Ion. Comparison of the CRM with observations demonstrates that Sm release into the upper atmosphere initially produces enhanced electron densities and SmO-Ions. The diatomic ions recombine with electrons to yield neutral Sm and O. Only the photo ionization of Sm yields a stable atomic ion that does not substantially recombine. The MOSC releases in sunlight yielded long duration ion clouds that can be replicated with the CRM. The CRM predicts that Sm releases in darkness would not produce long duration plasma clouds because of the lack of photo excitation and photoionization.

  8. Reactive Materials for Evaporating Samarium (Pre-Print) (United States)


    SUBJECT TERMS energetic materials, heat sources, pyrotechnic charges, easily ionized metals 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF...experiments.    Keywords:  energetic  materials, heat sources, pyrotechnic charges, easily ionized metals  1. Introduction Ejection of clouds of...results  were  negatively  affected  by  reduced  efficiency   of  release  and  ionization of samarium [8]. It is possible that not the entire charge of

  9. Implementation of an analytical technique for Samarium; Implementacion de una tecnica analitica para Samario

    Energy Technology Data Exchange (ETDEWEB)

    Garcia G, N. [ININ, Carretera Mexico-Toluca Km. 36.5, 52045 Estado de Mexico (Mexico)


    Since the Samarium presents the same chemical properties that the plutonium, it has been used as homologous in studies that allow us to know the behavior that the plutonium presents in solution, with the advantage of working with an inactive and not very dangerous element. At the moment studies of sorption of plutonium or samarium are made on some mineral matrices that present certain surface properties. Due to the low concentrations that are used in the studies of sorption of samarium on those reagent substrates, their detection becomes very difficult for the conventional analysis media. The luminescence is a technique that can detect lower concentrations, smaller at 1 X 10{sup -} {sup 2} M, but when fluorofors are used this limit of detection increases in several orders of magnitude. In this work it has been used the arsenazo-III as fluorofor agent since it reacts in a specific way with the samarium, forming a complex that presents a proportional luminescence to the concentration of the present samarium. The advantage of making the quantification of samarium by luminescence is that it can use the same instrumental equipment to determine the speciation of the samarium sipped in the zircon. (Author)

  10. Synthesis of samarium binding bleomycin - a possible NCT radiosensitizer

    Energy Technology Data Exchange (ETDEWEB)

    Mendes, B.M., E-mail: bmm@cdtn.b [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil); Mendes, T.M.; Campos, T.P.R., E-mail: campos@nuclear.ufmg.b [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil)


    Bleomycin (BLM) is a drug that has attractive features for the development of a new radiopharmaceutical, particularly with regard to neutron capture therapy (NCT) sensitized by Sm-149. It has the ability to chelate many metal ions. In vitro studies have shown that up to 78% of BLM present in a cell is accumulated inside the nucleus or in the nuclear membrane. In addition, this drug has higher affinity for tumor tissues than for normal tissues. Radioactive isotopes carried by this antibiotic would be taken preferentially to one important cellular targets DNA. Besides, BLM displays intrinsic anti-tumor activity - it is a chemotherapic antibiotic clinically used against some cancers. This study aimed to obtain bleomycin molecules bound to samarium (BLM-Sm) for NCT studies in vitro and in vivo. The binding technique employed in this work has great simplicity and low cost. Thin layer chromatography, high performance liquid chromatography, fast protein liquid chromatography and analysis by ICP-AES were applied to verify the binding molecule. ICP-AES results showed the presence of samarium in the sample peaks related to BLM-Sm. However, efficiency and stability of this bond needs to be investigated. (author)

  11. Inhalation developmental toxicology studies: Gallium arsenide in mice and rats

    Energy Technology Data Exchange (ETDEWEB)

    Mast, T.J.; Greenspan, B.J.; Dill, J.A.; Stoney, K.H.; Evanoff, J.J.; Rommereim, R.L.


    Gallium arsenide is a crystalline compound used extensively in the semiconductor industry. Workers preparing solar cells and gallium arsenide ingots and wafers are potentially at risk from the inhalation of gallium arsenide dust. The potential for gallium arsenide to cause developmental toxicity was assessed in Sprague- Dawley rats and CD-1 (Swiss) mice exposed to 0, 10, 37, or 75 mg/m{sup 3} gallium arsenide, 6 h/day, 7 days/week. Each of the four treatment groups consisted of 10 virgin females (for comparison), and {approx}30 positively mated rats or {approx}24 positively mated mice. Mice were exposed on 4--17 days of gestation (dg), and rats on 4--19 dg. The day of plug or sperm detection was designated as 0 dg. Body weights were obtained throughout the study period, and uterine and fetal body weights were obtained at sacrifice (rats, 20 dg; mice, 18 dg). Implants were enumerated and their status recorded. Live fetuses were sexed and examined for gross, visceral, skeletal, and soft-tissue craniofacial defects. Gallium and arsenic concentrations were determined in the maternal blood and uterine contents of the rats (3/group) at 7, 14, and 20 dg. 37 refs., 11 figs., 30 tabs.

  12. Maskless proton beam writing in gallium arsenide

    Energy Technology Data Exchange (ETDEWEB)

    Mistry, P. [Ion Beam Centre, University of Surrey, Guildford GU2 7XH (United Kingdom) and Nano-Electronics Centre, Advanced Technology Institute, University of Surrey, Guildford GU2 7XH (United Kingdom)]. E-mail:; Gomez-Morilla, I. [Ion Beam Centre, University of Surrey, Guildford GU2 7XH (United Kingdom); Smith, R.C. [Nano-Electronics Centre, Advanced Technology Institute, University of Surrey, Guildford GU2 7XH (United Kingdom); Thomson, D. [Advanced Technology Institute, University of Surrey, Guildford GU2 7XH (United Kingdom); Grime, G.W. [Ion Beam Centre, University of Surrey, Guildford GU2 7XH (United Kingdom); Webb, R.P. [Ion Beam Centre, University of Surrey, Guildford GU2 7XH (United Kingdom); Gwilliam, R. [Ion Beam Centre, University of Surrey, Guildford GU2 7XH (United Kingdom); Jeynes, C. [Ion Beam Centre, University of Surrey, Guildford GU2 7XH (United Kingdom); Cansell, A. [Ion Beam Centre, University of Surrey, Guildford GU2 7XH (United Kingdom); Merchant, M. [Ion Beam Centre, University of Surrey, Guildford GU2 7XH (United Kingdom); Kirkby, K.J. [Ion Beam Centre, University of Surrey, Guildford GU2 7XH (United Kingdom)


    Proton beam writing (PBW) is a direct write technique that employs a focused MeV proton beam which is scanned in a pre-determined pattern over a target material which is subsequently electrochemically etched or chemically developed. By changing the energy of the protons the range of the protons can be changed. The ultimate depth of the structure is determined by the range of the protons in the material and this allows structures to be formed to different depths. PBW has been successfully employed on etchable glasses, polymers and semiconductor materials such as silicon (Si) and gallium arsenide (GaAs). This study reports on PBW in p-type GaAs and compares experimental results with computer simulations using the Atlas (copy right) semiconductor device package from SILVACO. It has already been proven that hole transport is required for the electrochemical etching of GaAs using Tiron (4,5-dihydroxy-m-benzenedisulfonic acid, di-sodium salt). PBW in GaAs results in carrier removal in the irradiated regions and consequently minimal hole transport (in these regions) during electrochemical etching. As a result the irradiated regions are significantly more etch resistant than the non-irradiated regions. This allows high aspect ratio structures to be formed.

  13. Evaluation of the carcinogenicity of gallium arsenide. (United States)

    Bomhard, Ernst M; Gelbke, Heinz-Peter; Schenk, Hermann; Williams, Gary M; Cohen, Samuel M


    Gallium arsenide (GaAs) is an important semiconductor material. In 2-year inhalation studies, GaAs increased the incidence of lung tumors in female rats, but not in male rats or male and female mice. Alveolar proteinosis followed by chronic active inflammation was the predominant non-neoplastic pulmonary findings. IARC classified GaAs as carcinogenic to humans (group 1) based on the assumption that As and Ga ions are bioavailable. The European Chemical Agency Risk Assessment Committee concluded that GaAs should be classified into Carcinogenicity Category 1B (presumed to have carcinogenic potential for humans; ECHA). We evaluate whether these classifications are justified. Physico-chemical properties of GaAs particles and the degree of mechanical treatment are critical in this evaluation. The available data on mode of action (MOA), genotoxicity and bioavailability do not support the contribution of As or Ga ions to the lung tumors in female rats. Most toxicological studies utilized small particles produced by strong mechanical treatment, destroying the crystalline structure. The resulting amorphous GaAs is not relevant to crystalline GaAs at production and processing sites. The likely tumorigenic MOA is lung toxicity related to particulate-induced inflammation and increased proliferation. It is concluded that there is no evidence for a primary carcinogenic effect of GaAs.

  14. Luminescent solutions and powders of new samarium complexes with N,N',O,O'-chelating ligands (United States)

    Kharcheva, Anastasia V.; Nikolskiy, Kirill S.; Borisova, Nataliya E.; Ivanov, Alexey V.; Reshetova, Marina D.; Yuzhakov, Viktor I.; Patsaeva, Svetlana V.


    Imaging techniques in biology and medicine are crucial tools to obtain information on structural and functional properties of living cells and organisms. To fulfill the requirements associated with application of these techniques it appears necessary to design markers with specific characteristics. Luminescent complexes of trivalent lanthanide ions with chelating ligands are of increasing importance in biomedical applications because of their millisecond luminescence lifetime, narrow emission band, high signal-to-noise ratio and minimal photodamage to biological samples. In order to extend the available emission wavelength range the luminescent samarium chelates are highly desirable. In this study the ligands with diamides of 2,2'-bipyridin-6,6'-dicarboxylic acid were used to improve photophysical characteristics of samarium complexes. We report the luminescence characteristics of samarium complexes with novel ligands. All complexes exhibited the characteristic emission of Sm (III) ion with the lines at 565, 597, 605, 645 and 654 nm, the intensity strongly depended on the ligand. Absorption and luminescence excitation spectra of Sm (III) complexes showed main peaks in the UV range demonstrating lanthanide coordination to the ligand. The absolute lumenescence quantum yield was measured for solutions in acetonitrile with excitation at 350 nm. The largest luminescence quantum yield was found for the samarium complex Bipy 6MePy Sm (3%) being much higher that for samarium complexes reported in the literature earlier. These results prove as well that samarium chelates are potential markers for multiparametric imaging techniques.

  15. Gallium arsenide processing for gate array logic (United States)

    Cole, Eric D.


    The development of a reliable and reproducible GaAs process was initiated for applications in gate array logic. Gallium Arsenide is an extremely important material for high speed electronic applications in both digital and analog circuits since its electron mobility is 3 to 5 times that of silicon, this allows for faster switching times for devices fabricated with it. Unfortunately GaAs is an extremely difficult material to process with respect to silicon and since it includes the arsenic component GaAs can be quite dangerous (toxic) especially during some heating steps. The first stage of the research was directed at developing a simple process to produce GaAs MESFETs. The MESFET (MEtal Semiconductor Field Effect Transistor) is the most useful, practical and simple active device which can be fabricated in GaAs. It utilizes an ohmic source and drain contact separated by a Schottky gate. The gate width is typically a few microns. Several process steps were required to produce a good working device including ion implantation, photolithography, thermal annealing, and metal deposition. A process was designed to reduce the total number of steps to a minimum so as to reduce possible errors. The first run produced no good devices. The problem occurred during an aluminum etch step while defining the gate contacts. It was found that the chemical etchant attacked the GaAs causing trenching and subsequent severing of the active gate region from the rest of the device. Thus all devices appeared as open circuits. This problem is being corrected and since it was the last step in the process correction should be successful. The second planned stage involves the circuit assembly of the discrete MESFETs into logic gates for test and analysis. Finally the third stage is to incorporate the designed process with the tested circuit in a layout that would produce the gate array as a GaAs integrated circuit.

  16. Australian manufacture of Quadramet{sup TM} (Samarium-153 EDTMP)

    Energy Technology Data Exchange (ETDEWEB)

    Wood, N.R.; Whitwell, J. [Australian Nuclear Science and Technology Organisation (ANSTO), Lucas Heights, NSW (Australia). Australian Radioisotopes


    Quadramet{sup T} (Samarium-153 EDTMP) has been shown overseas to be potentially useful in the palliation of painful osteoblastic skeletal metastases and has been approved this year for general marketing in the USA. Australian Radioisotopes (ARI) has licensed this product from the Australian patent holders, Dow Chemical. Within the facilities of ARI, a hot cell has been dedicated to this product and fitted out to manufacture it weekly on a cycle related to the operating cycle of the Australian reactor HIFAR. Due to neutron flux limitations of HIFAR, the local formulation has an elemental Samarium content up to 200{mu}g/mL whereas the overseas formulation has a level of 20-46{mu}g/mL. All other specifications of the two products are essentially the same. In 1995 and 1996 a small clinical trial with 19 patients was held which demonstrated that the pharmacokinetic behaviour was also essentially the same by measuring blood clearance rates and skeletal uptake dynamics. Soft tissue uptake was also qualitatively determined. The ARI version is now the subject of an application for general marketing within Australia. Some useful characteristics of this agent are: almost complete excretion or fixation in the skeleton within 6 hours, rapid onset of clinical effect, applicability in most cases where an abnormal diagnostic bone scan correlates with painful sites, dosage can be tailored to individual patient uptake due to easy dose measurement and retreatment is quite possible. The use of this class of agents in pain palliation continues to increase. Australian manufacture of Quadramet{sup TM} provides a further option in the management of these difficult cases

  17. Electrochemical extraction of samarium from molten chlorides in pyrochemical processes

    Energy Technology Data Exchange (ETDEWEB)

    Castrillejo, Y., E-mail: [QUIANE/Dept Quimica Analitica, F. de Ciencias, Universidad de Valladolid, Prado de la Magdalena s/n, 47005 Valladolid (Spain); Fernandez, P. [QUIANE/Dept Quimica Analitica, F. de Ciencias, Universidad de Valladolid, Prado de la Magdalena s/n, 47005 Valladolid (Spain); Medina, J. [Dept Fisica Materia Condensada Cristalografia y Mineralogia, F. de Ciencias, Universidad de Valladolid, Prado de la Magdalena s/n, 47005 Valladolid (Spain); Hernandez, P. [Centro de Investigaciones Quimicas, Universidad Autonoma del Estado de Hidalgo, Carr. Pachuca-Tulancingo Km. 4.5, C.P. 42076 Pachuca, Hidalgo (Mexico); Barrado, E. [QUIANE/Dept Quimica Analitica, F. de Ciencias, Universidad de Valladolid, Prado de la Magdalena s/n, 47005 Valladolid (Spain)


    This work concerns the electrochemical extraction of samarium from molten chlorides. In this way, the electrochemical behaviour of samarium ions has been investigated in the eutectic LiCl-KCl at the surface of tungsten, aluminium and aluminium coated tungsten electrodes. On a W inert electrode the electro-reduction of Sm(III) takes place in only one soluble-soluble electrochemical step Sm(III)/Sm(II). The electrochemical system Sm(II)/Sm(0) has not been observed within the electrochemical window, because of the prior reduction of Li(I) ions from the solvent, which inhibits the electro-extraction of Sm species from the salt on such a substrate. Sm metal in contact with the melt react to give Li(0) according to the reaction: Sm(0) + 2Li(I) {r_reversible} Sm(II) + 2Li(0). On the contrary, on reactive Al electrodes the electrochemical system Sm(II)/Sm(0) was observed within the electroactive range. The potential shift of the redox couple is caused by the decrease of Sm activity in the metal phase due to the formation of Sm-Al alloys at the interface. The formation mechanism of the intermetallic compounds was studied in a melt containing: (i) both Sm(III) and Al(III) ions, using W and Al coated tungsten electrodes, and (ii) Sm(III) ions using an Al electrode. Analysis of the samples after potentiostatic electrolysis by X-ray diffraction and scanning electron microscopy (SEM) with energy dispersive X-ray spectroscopy (EDS), allowed the identification of Al{sub 3}Sm and Al{sub 2}Sm.

  18. Electrooptic Waveguide Directional Coupler Modulator in Aluminum Gallium Arsenide-Gallium Arsenide. (United States)

    Khan, Mujibun Nisa

    A novel optical waveguide intensity modulator in aluminum gallium arsenide and gallium arsenide material system is modeled, designed, and experimentally demonstrated at 0.83 μm wavelength. The modulator utilizes the linear electrooptic effect in a coupled waveguide structure to achieve high extinction ratio at low drive voltage. The device structure consists of a differentially -etched ridge directional coupler, where the ridge height in the gap is smaller that that of the outer sides. The effective index and semivectorial finite difference modeling techniques are developed to analyze the single ridge guides and directional coupler structures. The mode structure results from the two models are compared and the limitations of the effective index method are determined. The differential -etch design is employed to reduce the length as well as the drive voltage of the modulator. A modulation voltage of 2 volts for a 3.5-mm-long device is achieved, which is the lowest reported in literature. These results are compared with those obtained from the simplified analytical expressions for conventional couplers, and higher performance expected from the differential-etch design is verified. The modulator extinction ratio is measured to be 13 dB at 2 volts. The measured optical propagation loss of approximately 3.4 dB/cm for the modulator is speculated to be primarily due to the surface morphology of the epitaxially-grown material, and the light scattering from rough ridge walls produced during the anisotropic dry etching process. The high microwave loss of 15 dB/cm calculated for the modulator electrode design suggests a trade-off between the modulation voltage and the bandwidth, which is expected to be limited to 500 MHz. The measurement of the modulator frequency response up to 100 KHz is presented, because of the test limitations at higher frequencies due to the weak modulated intensity signals.

  19. Optical analysis of samarium doped sodium bismuth silicate glass. (United States)

    Thomas, V; Sofin, R G S; Allen, M; Thomas, H; Biju, P R; Jose, G; Unnikrishnan, N V


    Samarium doped sodium bismuth silicate glass was synthesized using the melt quenching method. Detailed optical spectroscopic studies of the glassy material were carried out in the UV-Vis-NIR spectral range. Using the optical absorption spectra Judd-Ofelt (JO) parameters are derived. The calculated values of the JO parameters are utilized in evaluating the various radiative parameters such as electric dipole line strengths (Sed), radiative transition probabilities (Arad), radiative lifetimes (τrad), fluorescence branching ratios (β) and the integrated absorption cross- sections (σa) for stimulated emission from various excited states of Sm3+‡ ion. The principal fluorescence transitions are identified by recording the fluorescence spectrum. Our analysis revealed that the novel glassy system has the optimum values for the key parameters viz. spectroscopic quality factor, optical gain, stimulated emission cross section and quantum efficiency, which are required for a high performance optical amplifier. Calculated chromaticity co-ordinates (0.61, 0.38) also confirm its application potential in display devices. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Samarium Monosulfide (SmS): Reviewing Properties and Applications. (United States)

    Sousanis, Andreas; Smet, Philippe F; Poelman, Dirk


    In this review, we give an overview of the properties and applications of samarium monosulfide, SmS, which has gained considerable interest as a switchable material. It shows a pressure-induced phase transition from the semiconducting to the metallic state by polishing, and it switches back to the semiconducting state by heating. The material also shows a magnetic transition, from the paramagnetic state to an antiferromagnetically ordered state. The switching behavior between the semiconducting and metallic states could be exploited in several applications, such as high density optical storage and memory materials, thermovoltaic devices, infrared sensors and more. We discuss the electronic, optical and magnetic properties of SmS, its switching behavior, as well as the thin film deposition techniques which have been used, such as e-beam evaporation and sputtering. Moreover, applications and possible ideas for future work on this material are presented. Our scope is to present the properties of SmS, which were mainly measured in bulk crystals, while at the same time we describe the possible deposition methods that will push the study of SmS to nanoscale dimensions, opening an intriguing range of applications for low-dimensional, pressure-induced semiconductor-metal transition compounds.

  1. Excitation induced spectroscopic study and quenching effect in cerium samarium codoped lithium aluminoborate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Kaur, Parvinder; Kaur, Simranpreet [Department of Physics, Guru Nanak Dev University, Amritsar 143005 (India); Singh, Gurinder Pal [Department of Physics, Khalsa College, Amritsar 143002 (India); Arora, Deepawali; Kumar, Sunil [Department of Physics, Guru Nanak Dev University, Amritsar 143005 (India); Singh, D.P., E-mail: [Department of Physics, Guru Nanak Dev University, Amritsar 143005 (India)


    Lithium aluminium borate host has been codoped with cerium and samarium to prepare glass by conventional melt quench technique. Their structural and spectroscopic investigation has been carried out using XRD, FTIR and density measurements. The UV‐Vis absorption spectra and fluorescence spectra (λ{sub exc}.=380 nm and 400 nm) have been studied for spectroscopic analysis. The amorphous nature of the prepared samples is shown by XRD. The density is increasing with addition of cerium at the expense of aluminium, keeping other components constant. FTIR study also shows the presence of compact and stable tetrahedral BO{sub 4} units thus supporting the density results. The UV‐ Vis absorption spectra show a shift of optical absorption edge towards longer wavelength along with an increase in intensity of peaks with rising samarium concentration. The fluorescence spectra show a blue shift and subsequent suppression of cerium peaks with addition of samarium.

  2. Trap influence on the performance of gallium arsenide radiation detectors

    Energy Technology Data Exchange (ETDEWEB)

    Castaldini, A.; Cavallini, A.; Polenta, L. [Univ. of Bologna (Italy); Canali, C.; Nava, F. [Univ. of Modena (Italy); Papa, C. del [Univ. of Udine (Italy). Dept. of Physics


    Ohmic contacts play an important role in the performance of LEC gallium arsenide particle detectors since they possibly control the injection of charge carriers. Contact characteristics have been compared and related to electrically active defects induced during contact preparation and to the detector efficiency. The electric field distribution has also been analyzed. Spectroscopic investigations have put into evidence that the contact fabrication process significantly influences the trap density whilst it does not change their signatures.

  3. Effect of samarium doping on the dielectric behavior of barium zircomium titanate ceramic

    Energy Technology Data Exchange (ETDEWEB)

    Badapanda, T., E-mail: [Department of Physics, C.V. Raman College of Engineering, Bhubaneswar, Odisha-752054 (India); Sarangi, S.; Behera, B. [School of Physics, Sambalpur University, Jyoti Vihar Sambalpur, Odisha-768019 (India); Anwar, S. [Colloids and Materials Chemistry, Institute of Minerals and Materials Technology, Bhubaneswar, Odisha-751013 (India); Sinha, T. P. [Department of Physics, Bose Institute, Kolkata-700009 (India)


    Samarium doped Barium Zirconium Titanate ceramic with general formula Ba{sub 1−x}Sm{sub 2x/3}Zr{sub 0.05}Ti{sub 0.95}O{sub 3} [x=0.0,0.01,0.02,0.03,0.04] has been prepared by high energy ball milling. The X-ray diffraction (XRD) patterns confirmed that these ceramics have a single phase with perovskite-type upto x≤0.03 and a small secondary phase exist at x=0.04. The temperature dependent dielectric study shows a ferroelectric phase transition and transition temperature decreases with an increase in the Samarium content.

  4. Lithium Bromide/Water as Additives in Dearomatizing Samarium-Ketyl (Hetero)Arene Cyclizations. (United States)

    Rao, Chintada Nageswara; Bentz, Christoph; Reissig, Hans-Ulrich


    New conditions for dearomatizing samarium-ketyl (hetero)arene cyclizations are reported. In many examples of these samarium diiodide-mediated reactions, lithium bromide and water can be used as additives instead of the carcinogenic and mutagenic hexamethylphosphoramide (HMPA). The best results were obtained for the cyclizations of N-acylated indole derivatives delivering the expected indolines in good yields and excellent diastereoselectivities. A new type of cyclization delivering indolyl-substituted allene derivatives is also described. The scope and limitations of the lithium bromide/water system are discussed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. One-step synthesis of samarium-doped ceria and its CO catalysis

    Indian Academy of Sciences (India)

    The samarium-doped ceria (SDC) nanospheres were prepared by the one-step hydrothermal method and characterized by transmission electron microscope, scanning electron microscope, powder X-ray diffraction, X-ray photoelectron spectroscopy, energy-dispersive spectrometer and Raman spectra. According to the ...

  6. A spectroscopic comparison of samarium-doped LiYF4 and KY3F10

    NARCIS (Netherlands)

    Wells, J. P. R.; Sugiyama, A.; Han, T. P. J.; Gallagher, H. G.


    Laser selective excitation and fluorescence has been performed on LiYF4 and KY3F10 doped with samarium ions. In LiYF4, a single, tetragonal symmetry center associated with isovalent substitution of Sm3+ with lattice yttrium ions is present. By contrast, three Sm2+ centres and a single, tetragonal

  7. Laser and electron beam processing of silicon and gallium arsenide

    Energy Technology Data Exchange (ETDEWEB)

    Narayan, J.


    Laser (photon) and electron beams provide a controlled source of heat by which surface layers of silicon and gallium arsenide can be rapidly melted and cooled with rates exceeding 10/sup 80/C/sec. The melting process has been used to remove displacement damage in ion implanted Si and GaAs, to remove dislocations, loops and precipitates in silicon and to study impurity segregation and solubility limits. The mechanisms associated with various phenomena will be examined. The possible impact of laser and electron beam processing on device technology, particularly with respect to solar cells is discussed.

  8. Anomalous tensoelectric effects in gallium arsenide tunnel diodes

    Energy Technology Data Exchange (ETDEWEB)

    Alekseeva, Z.M.; Vyatkin, A.P.; Krivorotov, N.P.; Shchegol' , A.A.


    Anomalous tensoelectric phenomena induced in a tunnel p-n junction by a concentrated load and by hydrostatic compression were studied. The anomalous tensoelectric effects are caused by the action of concentrators of mechanical stresses in the vicinity of the p-n junction, giving rise to local microplastic strain. Under the conditions of hydrostatic compression prolate inclusions approx.100-200 A long play the role of concentrators. Analysis of irreversible changes in the current-voltage characteristics of tunnel p-n junctions made it possible to separate the energy levels of the defects produced with plastic strain of gallium arsenide.

  9. Anomalous tensoelectric effects in gallium arsenide tunnel diodes (United States)

    Alekseeva, Z. M.; Vyatkin, A. P.; Krivorotov, N. P.; Shchegol', A. A.


    Anomalous tensoelectric phenomena induced in a tunnel p-n junction by a concentrated load and by hydrostatic compression were studied. The anomalous tensoelectric effects are caused by the action of concentrators of mechanical stresses in the vicinity of the p-n junction, giving rise to local microplastic strain. Under the conditions of hydrostatic compression prolate inclusions ∿100 200 å long play the role of concentrators. Analysis of irreversible changes in the current-voltage characteristics of tunnel p-n junctions made it possible to separate the energy levels of the defects produced with plastic strain of gallium arsenide.

  10. Testing of gallium arsenide solar cells on the CRRES vehicle (United States)

    Trumble, T. M.

    A flight experiment was designed to determine the optimum design for gallium arsenide (GaAs) solar cell panels in a radiation environment. Elements of the experiment design include, different coverglass material and thicknesses, welded and soldered interconnects, different solar cell efficiencies, different solar cell types, and measurement of annealing properties. This experiment is scheduled to fly on the Combined Release and Radiation Effects Satellite (CRRES). This satellite will simultaneously measure the radiation environment and provide engineering data on solar cell degradation that can be directly related to radiation damage.

  11. The Use of a Flexible Calix[4]arene Template to Stabilize a Cyclooctatetraindiyl Samarium-Potassium Complex

    Directory of Open Access Journals (Sweden)

    Geoffroy Guillemot


    Full Text Available A sandwich compound of cyclooctatetraendiyl (COT2− samarium-potassium was synthesized and analyzed using a flexible calix[4]arene dianion. This compound, [p-tBu-calix[4]-(OMe2(O2]arenediyl-samarium-(η8-cyclooctatetraendiyl-potassium (tetrahydrofurane3, is constructed as a linear sequence L-Sm--K-, where L, , and are specific ligands with L = O,O-dimethyl-calix[4]arene2−, = cyclo-octatetraendiyl, and = tetrahydrofurane templates.

  12. Lattice parameters guide superconductivity in iron-arsenides (United States)

    Konzen, Lance M. N.; Sefat, Athena S.


    The discovery of superconducting materials has led to their use in technological marvels such as magnetic-field sensors in MRI machines, powerful research magnets, short transmission cables, and high-speed trains. Despite such applications, the uses of superconductors are not widespread because they function much below room-temperature, hence the costly cooling. Since the discovery of Cu- and Fe-based high-temperature superconductors (HTS), much intense effort has tried to explain and understand the superconducting phenomenon. While no exact explanations are given, several trends are reported in relation to the materials basis in magnetism and spin excitations. In fact, most HTS have antiferromagnetic undoped ‘parent’ materials that undergo a superconducting transition upon small chemical substitutions in them. As it is currently unclear which ‘dopants’ can favor superconductivity, this manuscript investigates crystal structure changes upon chemical substitutions, to find clues in lattice parameters for the superconducting occurrence. We review the chemical substitution effects on the crystal lattice of iron-arsenide-based crystals (2008 to present). We note that (a) HTS compounds have nearly tetragonal structures with a-lattice parameter close to 4 Å, and (b) superconductivity can depend strongly on the c-lattice parameter changes with chemical substitution. For example, a decrease in c-lattice parameter is required to induce ‘in-plane’ superconductivity. The review of lattice parameter trends in iron-arsenides presented here should guide synthesis of new materials and provoke theoretical input, giving clues for HTS.

  13. Evaluation of the male reproductive toxicity of gallium arsenide. (United States)

    Bomhard, Ernst M; Cohen, Samuel M; Gelbke, Heinz-Peter; Williams, Gary M


    Gallium arsenide is an important semiconductor material marketed in the shape of wafers and thus is not hazardous to the end user. Exposure to GaAs particles may, however, occur during manufacture and processing. Potential hazards require evaluation. In 14-week inhalation studies with small GaAs particles, testicular effects have been reported in rats and mice. These effects occurred only in animals whose lungs showed marked inflammation and also had hematologic changes indicating anemia and hemolysis. The time- and concentration-dependent progressive nature of the lung and blood effects together with bioavailability data on gallium and arsenic lead us to conclude that the testicular/sperm effects are secondary to hypoxemia resulting from lung damage rather than due to a direct chemical effect of gallium or arsenide. Conditions leading to such primary effects are not expected to occur in humans at production and processing sites. This has to be taken into consideration for any classification decision for reproductive toxicity; especially a category 1 according to the EU CLP system is not warranted. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. Macroscopic diffusion models for precipitation in crystalline gallium arsenide

    Energy Technology Data Exchange (ETDEWEB)

    Kimmerle, Sven-Joachim Wolfgang


    Based on a thermodynamically consistent model for precipitation in gallium arsenide crystals including surface tension and bulk stresses by Dreyer and Duderstadt, we propose two different mathematical models to describe the size evolution of liquid droplets in a crystalline solid. The first model treats the diffusion-controlled regime of interface motion, while the second model is concerned with the interface-controlled regime of interface motion. Our models take care of conservation of mass and substance. These models generalise the well-known Mullins- Sekerka model for Ostwald ripening. We concentrate on arsenic-rich liquid spherical droplets in a gallium arsenide crystal. Droplets can shrink or grow with time but the centres of droplets remain fixed. The liquid is assumed to be homogeneous in space. Due to different scales for typical distances between droplets and typical radii of liquid droplets we can derive formally so-called mean field models. For a model in the diffusion-controlled regime we prove this limit by homogenisation techniques under plausible assumptions. These mean field models generalise the Lifshitz-Slyozov-Wagner model, which can be derived from the Mullins-Sekerka model rigorously, and is well understood. Mean field models capture the main properties of our system and are well adapted for numerics and further analysis. We determine possible equilibria and discuss their stability. Numerical evidence suggests in which case which one of the two regimes might be appropriate to the experimental situation. (orig.)

  15. Solar nebula heterogeneity in p-process samarium and neodymium isotopes. (United States)

    Andreasen, Rasmus; Sharma, Mukul


    Bulk carbonaceous chondrites display a deficit of approximately 100 parts per million (ppm) in 144Sm with respect to other meteorites and terrestrial standards, leading to a decrease in their 142Nd/144Nd ratios by approximately 11 ppm. The data require that samarium and neodymium isotopes produced by the p process associated with photodisintegration reactions in supernovae were heterogeneously distributed in the solar nebula. Other samarium and neodymium isotopes produced by rapid neutron capture (r process) in supernovae and by slow neutron capture (s process) in red giants were homogeneously distributed. The supernovae sources supplying the p- and r-process nuclides to the solar nebula were thus disconnected or only weakly connected.

  16. Samarium(II) iodide-mediated reductive annulations of ketones bearing a distal vinyl epoxide moiety

    Energy Technology Data Exchange (ETDEWEB)

    Molander, G.A.; Shakya, S.R. [Univ. of Colorado, Boulder, CO (United States)


    It was found that samarium (II) iodide promotes the intramolecular coupling of ketones with distal epoxy olefins while in the presence of hexamethylphosphoramide (HPMA). A number of epoxide compounds (1 a-k) fragment to form carbocycles with allylic alcohol side chains with high diastereoselectivity (2 a-k). Substituting tetramethylguanidine for HPMA reduces the diastereoselectivity. Adding Pd(0) as a catalyst reverses the diastereoselective sense. 40 refs., 1 tab.

  17. A temporal three-dimensional simulation of samarium release in the ionosphere (United States)

    Zhao, Hai-Sheng; Feng, Jie; Xu, Zheng-Wen; Wu, Jian; Wu, Zhen-Sen; Xu, Bin; Xue, Kun; Xu, Tong; Hu, Yan-Li


    For understanding plasma processes of the ionosphere and magnetosphere, the alkali and alkaline-earth metals are usually released in space for artificially increasing the electron density. However, it is a limitation that these releases must be in sunlight where the photoionization can take place. In recent years, the lanthanide metals, such as samarium, have been released to produce electrons in reaction with atomic oxygen in the upper space. The reaction could proceed without sunlight so that the restriction on experimental periods is broken. Unfortunately, any sophisticated models even preliminary ones are unavailable yet in the literature. A temporal three-dimensional model is presented for the samarium release in detail with respect to various altitudes and mass. Especially, the plasma diffusion equation is remarkably extended from 2-D to 3-D by importing the influence of geomagnetic declination, which could be also useful for other chemical releases. The field-aligned terms are brought so as to the presented model can describe the diffusion along the geomagnetic field subtly. On the basis of the presented model, behaviors of radio waves propagating through the release area are simulated by using ray tracing. This model could be as the theoretical support for samarium releases, and it also helpful for the research on the generation and evolution of the ionosphere irregularities.

  18. First principles predictions of intrinsic defects in aluminum arsenide, AlAs : numerical supplement.

    Energy Technology Data Exchange (ETDEWEB)

    Schultz, Peter Andrew


    This Report presents numerical tables summarizing properties of intrinsic defects in aluminum arsenide, AlAs, as computed by density functional theory. This Report serves as a numerical supplement to the results published in: P.A. Schultz, 'First principles predictions of intrinsic defects in Aluminum Arsenide, AlAs', Materials Research Society Symposia Proceedings 1370 (2011; SAND2011-2436C), and intended for use as reference tables for a defect physics package in device models.

  19. Liquid–liquid anion exchange extraction studies of samarium(III from salicylate media using high molecular weight amine

    Directory of Open Access Journals (Sweden)

    Aniruddha M. Mandhare


    Full Text Available Liquid–liquid extraction and separation of samarium(III were carried out by using 0.025 mol dm−3 2-octylaminopyridine(2-OAP in xylene at 298 K. The extraction behavior of samarium was studied as a function of pH, weak acid concentration, extractant concentration, diluent, and equilibration time. Samarium was quantitatively extracted at pH 7.5 to 10.0 from 0.01 mol dm−3 sodium salicylate solution with 0.025 mol dm−3 2-OAP. The possible composition of the extracted species in organic phase has been determined by using model of slope analysis method and extraction mechanism was found to proceed via an anion exchange mechanism. The stripping efficiency was found to be quantitative in HNO3, HCl and CH3COOH. The robustness of the procedure was demonstrated by the average recoveries obtained (>99.6% for samarium(III extraction in the presence of several cations and anions which are commonly associated with it. The proposed method facilitates the separation and determination of samarium(III from binary and synthetic mixtures. The various thermodynamic functions like free energy (ΔG, enthalpy (ΔH and entropy (ΔS of extraction mechanism were discussed.

  20. Samarium(II) iodide-mediated intramolecular conjugate additions of alpha,beta-unsaturated lactones. (United States)

    Molander, Gary A; St Jean, David J


    Samarium(II) iodide, in the presence of catalytic amounts of nickel(II) iodide, has been used to promote intramolecular conjugate additions of alkyl halides onto alpha,beta-unsaturated lactones. This process has been shown to be applicable to a number of alpha,beta-unsaturated lactones, including tetrasubstituted olefins, and has been demonstrated to be quite general for the formation of saturated bicyclic and tricyclic lactones. The method presented herein provides a mild, efficient process to form structurally complex lactones from simple precursors.

  1. Speed gallium arsenide photoconductors; Photoconducteurs rapides en arseniure de gallium

    Energy Technology Data Exchange (ETDEWEB)

    Foulon, F.; Pochet, T. [CEA Centre d`Etudes de Saclay, 91 - Gif-sur-Yvette (France). Dept. d`Electronique et d`Instrumentation Nucleaire; Brullot, B. [CEA Centre d`Etudes de Bruyeres-le-Chatel, 91 (France)


    Gallium arsenide detectors are one of the most efficient gamma and X ray detectors at room temperature. Due to the high carrier mobility and short carrier lifetime, GaAs can be used for the detection of ultrafast gamma, X or laser pulses. GaAs photoconductors allow both pulse shape and intensity measurements. In this paper, we review the results of studies carried out jointly by the CEA/LETI/DEIN and CEA/DAM/CEM in France to improve the response of such detectors. The geometry of the photodetectors and their electrical contacts have been optimized for specific radiation measurements: low energy X rays (< 1 KeV), gamma rays or protons. It has been shown that a pre-irradiation treatment with fission neutrons at doses above 10{sup 14} n/cm{sup 2} induces a significant improvement of the response speed. This result from defect generation in the material and the subsequent carrier life time decrease. Detectors with sensitivities of about 10{sup -8} A/R.s for gamma rays and 10{sup -16} coulomb/proton, response times below 100 ps and good linearity over more than five decades are currently fabricated in our laboratory. (authors). 18 refs., 5 figs., 3 tabs.

  2. Magnetoelectric effect in layered structures of amorphous ferromagnetic alloy and gallium arsenide

    Energy Technology Data Exchange (ETDEWEB)

    Bichurin, M.I., E-mail:; Petrov, V.M.; Leontiev, V.S.; Ivanov, S.N.; Sokolov, O.V.


    A paper devotes to theoretical and experimental studying the magnetoelectric interaction in layered structures of amorphous ferromagnetic alloy and single- crystal gallium arsenide. The authors investigated the magnetoelectric effect in the (100) plane of gallium arsenide in the electromechanical resonance range of 200–240 kHz and obtained maximal ME voltage coefficient of 120 V/A at bias field equaled 3.6 kA/m for the direction parallel to the [011] axis. Also the magnetoelectric effect in the (110) and (111) planes is discussed. The results can be used for design of new electronic devices based on the magnetostrictive-semiconductor materials. - Highlights: • Theoretical modeling of ME interaction was conducted. • Experimental dependencies in the resonance range were done. • Maximal ME effect of gallium arsenide was observed.

  3. Surface-enhanced gallium arsenide photonic resonator with a quality factor of six million

    CERN Document Server

    Guha, Biswarup; Cadiz, Fabian; Morgenroth, Laurence; Ulin, Vladimir; Berkovitz, Vladimir; Lemaître, Aristide; Gomez, Carmen; Amo, Alberto; Combrié, Sylvian; Gérard, Bruno; Leo, Giuseppe; Favero, Ivan


    Gallium Arsenide and related compound semiconductors lie at the heart of optoelectronics and integrated laser technologies. Shaped at the micro and nano-scale, they allow strong interaction with quantum dots and quantum wells, and promise to result in stunning devices. However gallium arsenide optical structures presently exhibit lower performances than their silicon-based counterparts, notably in nanophotonics where the surface plays a chief role. Here we report on advanced surface control of miniature gallium arsenide optical resonators, using two distinct techniques that produce permanent results. One leads to extend the lifetime of free-carriers and enhance luminescence, while the other strongly reduces surface absorption originating from mid-gap states and enables ultra-low optical dissipation devices. With such surface control, the quality factor of wavelength-sized optical disk resonators is observed to rise up to six million at telecom wavelength, greatly surpassing previous realizations and opening n...

  4. The comparison between gallium arsenide and indium gallium arsenide as materials for solar cell performance using Silvaco application

    Energy Technology Data Exchange (ETDEWEB)

    Zahari, Suhaila Mohd; Norizan, Mohd Natashah; Mohamad, Ili Salwani; Osman, Rozana Aina Maulat; Taking, Sanna [School of Microelectronic Engineering, Universiti Malaysia Perlis, Kampus Pauh Putra, 02600 Arau, Perlis (Malaysia)


    The work presented in this paper is about the development of single and multilayer solar cells using GaAs and InGaAs in AM1.5 condition. The study includes the modeling structure and simulation of the device using Silvaco applications. The performance in term of efficiency of Indium Gallium Arsenide (InGaAs) and GaAs material was studied by modification of the doping concentration and thickness of material in solar cells. The efficiency of the GaAs solar cell was higher than InGaAs solar cell for single layer solar cell. Single layer GaAs achieved an efficiency about 25% compared to InGaAs which is only 2.65% of efficiency. For multilayer which includes both GaAs and InGaAs, the output power, P{sub max} was 8.91nW/cm² with the efficiency only 8.51%. GaAs is one of the best materials to be used in solar cell as a based compared to InGaAs.

  5. The comparison between gallium arsenide and indium gallium arsenide as materials for solar cell performance using Silvaco application (United States)

    Zahari, Suhaila Mohd; Norizan, Mohd Natashah; Mohamad, Ili Salwani; Osman, Rozana Aina Maulat; Taking, Sanna


    The work presented in this paper is about the development of single and multilayer solar cells using GaAs and InGaAs in AM1.5 condition. The study includes the modeling structure and simulation of the device using Silvaco applications. The performance in term of efficiency of Indium Gallium Arsenide (InGaAs) and GaAs material was studied by modification of the doping concentration and thickness of material in solar cells. The efficiency of the GaAs solar cell was higher than InGaAs solar cell for single layer solar cell. Single layer GaAs achieved an efficiency about 25% compared to InGaAs which is only 2.65% of efficiency. For multilayer which includes both GaAs and InGaAs, the output power, Pmax was 8.91nW/cm² with the efficiency only 8.51%. GaAs is one of the best materials to be used in solar cell as a based compared to InGaAs.

  6. Ekstraksi Pemisahan Neodimium dari Samarium, Itrium dan Praseodimium Memakai Tri Butil Fosfat

    Directory of Open Access Journals (Sweden)

    Maria Veronica Purwani


    Full Text Available The extraction of Nd(OH3 (neodymium hydroxide concentrate containing Y (yttrium, Sm (samarium and Pr (praseodymium as product of monazite processed has been done. The purpose of this study is to determine the separation of Nd from Y, Pr and Nd Sm in Nd concentrate. The aqueous phase was concentrated Nd (OH3 in HNO3 and extractant while organic phase was Tri Butyl Phosphate (TBP in kerosene. Parameters studied were pH and concentration feed, concentration of TBP in kerosene, extraction time and stirring speed. The result showed that the optimization of separation extraction neodymium from samarium, yttrium and praseodymium in Nd(OH3 concentrated with TBP, obtained the optimum condition of pH = 0.2, concentration of feed 100 g /L, concentration of TBP in kerosene 5%, extraction time 15 minutes and stirring speed 150 rpm. With the conditions, Separation Factor (SF obtained for Nd-Y, Nd-Pr, Nd-Sm are 2.242, 4.811, 4.002 respectively, while D and extraction efficiency of Nd are 0.236 and 19.07%.

  7. X-Band Microwave Reflection Properties of Samarium/Bismuth-Substituted Barium Lanthanum Titanate Ceramics (United States)

    Bahel, Shalini; Pubby, Kunal; Narang, Sukhleen Bindra


    Samarium/bismuth-substituted barium lanthanum titanate ceramics with chemical composition Ba4 (La_{1 - y - z} Smy Biz )_{9.33} Ti_{18} O_{54} ( y = 0.5, 0.7; z = 0.05, 0.10, 0.15), intended as microwave reflecting materials, have been investigated in microwave X-band (8.2 GHz to 12.4 GHz) and the effect of substitution on their dielectric properties, i.e., dielectric constant and dielectric loss tangent, has been studied by vector network analyzer. Dielectric analysis showed that the dielectric constant increased with increasing samarium as well as bismuth content. Dielectric relaxation was observed for all samples in the scanned frequency range. Microwave reflection and transmission analysis of ceramic pellets of thickness 4 mm was carried out using two methods, i.e., open- and short-circuit approach, both indicating very high values of reflected power and very low values of transmitted power for all the doped materials in comparison with the base composition. The doped compositions are therefore potential microwave shielding materials for use in anechoic chambers, microwave laboratories, and radar equipment. Double-layer reflectors are also proposed, having better reflection properties (˜99% reflection) compared with single-layer reflectors.

  8. Microstructure and hysteresis curves of samarium-holmium-iron garnet synthesized by coprecipitation

    Directory of Open Access Journals (Sweden)

    Caffarena Valeska da Rocha


    Full Text Available An investigation was made into the synthesis and magnetic properties of Sm(3-xHo xFe5O12 (samarium-holmium-iron garnet ferrite, as yet absent from the literature. The material in question was synthesized by co-precipitation, starting from hydrated chlorides of rare-earth elements and ferrous sulfate, and the mixed hydroxide co-precipitate was calcined at 1000 °C. Using PVA as a binder, rectangular cross section-shaped compacts were produced by means of steel-die pressing, drying and sintering from 1200 to 1450 °C. The main conclusions of this study were that the coercive force decreases as the sintering temperature increases, and that the effect of substituting holmium for samarium in SmIG is entirely different from that provided by replacing yttrium by gadolinium in YIG, which is the most important result of this work. An in-depth investigation will be necessary to determine the correlation between microstructure/magnetic properties and ceramic processing variables.

  9. Bone-seeking radiopharmaceuticals as targeted agents of osteosarcoma: samarium-153-EDTMP and radium-223. (United States)

    Anderson, Peter M; Subbiah, Vivek; Rohren, Eric


    Osteosarcoma is a cancer characterized by formation of bone by malignant cells. Routine bone scan imaging with Tc-99m-MDP is done at diagnosis to evaluate primary tumor uptake and check for bone metastases. At time of relapse the Tc-99m-MDP bone scan also provides a specific means to assess formation of bone by malignant osteosarcoma cells and the potential for bone-seeking radiopharmaceuticals to deliver radioactivity directly into osteoblastic osteosarcoma lesions. This chapter will review and compare a bone-seeking radiopharmaceutical that emits beta-particles, samarium-153-EDTMP, with an alpha-particle emitter, radium-223. The charged alpha particles from radium-223 have far more mass and energy than beta particles (electrons) from Sm-153-EDTMP. Because radium-223 has less marrow toxicity and more radiobiological effectiveness, especially if inside the bone forming cancer cell than samarium-153-EDTMP, radium-223 may have greater potential to become widely used against osteosarcoma as a targeted therapy. Radium-223 also has more potential to be used with chemotherapy against osteosarcoma and bone metastases. Because osteosarcoma makes bone and radium-223 acts like calcium, this radiopharmaceutical could possibly become a new targeted means to achieve safe and effective reduction of tumor burden as well as facilitate better surgery and/or radiotherapy for difficult to resect large, or metastatic tumors.

  10. Polypyrrole-coated samarium oxide nanobelts: fabrication, characterization, and application in supercapacitors (United States)

    Liu, Peng; Wang, Yunjiao; Wang, Xue; Yang, Chao; Yi, Yanfeng


    Polypyrrole-coated samarium oxide nanobelts were synthesized by the in situ chemical oxidative surface polymerization technique based on the self-assembly of pyrrole on the surface of the amine-functionalized Sm2O3 nanobelts. The morphologies of the polypyrrole/samarium oxide (PPy/Sm2O3) nanocomposites were characterized using transmission electron microscope. The UV-vis absorbance of these samples was also investigated, and the remarkable enhancement was clearly observed. The electrochemical behaviors of the PPy/Sm2O3 composites were investigated by cyclic voltammetry, electrochemical impedance spectroscopy, and galvanostatic charge-discharge. The results indicated that the PPy/Sm2O3 composite electrode was fully reversible and achieved a very fast Faradaic reaction. After being corrected into the weight percentage of the PPy/Sm2O3 composite at a current density of 20 mA cm-2 in a 1.0 M NaNO3 electrolyte solution, a maximum discharge capacity of 771 F g-1 was achieved in a half-cell setup configuration for the PPy/Sm2O3 composites electrode with the potential application to electrode materials for electrochemical capacitors.

  11. Polypyrrole-coated samarium oxide nanobelts: fabrication, characterization, and application in supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Liu Peng, E-mail:; Wang Yunjiao; Wang Xue; Yang Chao; Yi Yanfeng [College of Chemistry and Chemical Engineering, Lanzhou University, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry (China)


    Polypyrrole-coated samarium oxide nanobelts were synthesized by the in situ chemical oxidative surface polymerization technique based on the self-assembly of pyrrole on the surface of the amine-functionalized Sm{sub 2}O{sub 3} nanobelts. The morphologies of the polypyrrole/samarium oxide (PPy/Sm{sub 2}O{sub 3}) nanocomposites were characterized using transmission electron microscope. The UV-vis absorbance of these samples was also investigated, and the remarkable enhancement was clearly observed. The electrochemical behaviors of the PPy/Sm{sub 2}O{sub 3} composites were investigated by cyclic voltammetry, electrochemical impedance spectroscopy, and galvanostatic charge-discharge. The results indicated that the PPy/Sm{sub 2}O{sub 3} composite electrode was fully reversible and achieved a very fast Faradaic reaction. After being corrected into the weight percentage of the PPy/Sm{sub 2}O{sub 3} composite at a current density of 20 mA cm{sup -2} in a 1.0 M NaNO{sub 3} electrolyte solution, a maximum discharge capacity of 771 F g{sup -1} was achieved in a half-cell setup configuration for the PPy/Sm{sub 2}O{sub 3} composites electrode with the potential application to electrode materials for electrochemical capacitors.

  12. Behavior of Samarium III during the sorption process; Comportamiento del Samario-III durante el proceso de sorcion

    Energy Technology Data Exchange (ETDEWEB)

    Ordonez R, E.; Garcia G, N.; Garcia R, G. [ININ, Carr. Mexico-Toluca Km 36.5, Salazar, Estado de Mexico (Mexico)]. e-mail:


    In this work the results of the behavior of samarium in solution are presented, in front of a fine powder of zirconium silicate (zircon). For that which is necessary to characterize the zircon, studying the crystallinity, the morphology, the surface area and the isoelectric point. The behavior of samarium in solution is studied by means of the elaboration of isotherm of sorption, using the technique by lots. One observes that to pH values of nearer to the isoelectric point (pH = 7.23) the process of sorption of the samarium begins, reaching a maximum to near pH at 9. The technique of luminescence is used to determine the concentration of the sipped samarium (phosphorescence) and also to make the speciation of the species formed in the surface of the zircon (phosphorescence). The results can be extrapolated with the plutonium when making the modeling of the migration of alpha emitting coming from the repositories of radioactive waste since both they have similar chemical properties (they are homologous). (Author)

  13. Neutron and Charged-Particle Induced Cross Sections for Radiochemistry in the Region of Samarium, Europium, and Gadolinium

    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, R D; Kelley, K; Dietrich, F S; Bauer, R; Mustafa, M


    We have developed a set of modeled nuclear reaction cross sections for use in radiochemical diagnostics. Systematics for the input parameters required by the Hauser-Feshbach statistical model were developed and used to calculate neutron and proton induced nuclear reaction cross sections in the mass region of samarium, europium and gadolinium (62 {le} Z {le} 64, 82 {le} N {le} 96).

  14. Pemisahan Unsur Samarium dan Yttrium dari Mineral Tanah Jarang dengan Teknik Membran Cair Berpendukung (Supported Liquid Membrane

    Directory of Open Access Journals (Sweden)

    Amri Amin


    Full Text Available he increasing use of rare earth elements in high technology industries needs to be supported by developmental work for the separation of elements. The research objective is fiercely attracting and challenging considering the similarity of bath physical and chemical properties among these elements. The rate separation of samarium and yttrium elements using supported liquid membrane has been studied. Polytetrafluoroethylene (PTFE with pore size of 0.45 µm has been used as the membrane and di(2-ethylhexyl phosphate (D2EHP in hexane has been used as a carrier and nitric acid solution has been used as receiving phase. Result of experiments showed that the best separation rate of samarium and yttrium elements could be obtained at feeding phase of pH 3.0, di(2-ethylhexyl phosphate (D2EHP concentration of 0.3 M, agitation rate of 700 rpm, agitation time of 2 hours, and nitric acid and its solution concentrations of 1.0 M and 0.1 M, respectively. At this condition, separation rates of samarium and yttrium were 64.4 and 67.6%, respectively.   Keywords: liquid membrane, rare earth elements, samarium, yttrium

  15. Progress to a Gallium-Arsenide Deep-Center Laser

    Directory of Open Access Journals (Sweden)

    Janet L. Pan


    Full Text Available Although photoluminescence from gallium-arsenide (GaAs deep-centers was first observed in the 1960s, semiconductor lasers have always utilized conduction-to-valence-band transitions. Here we review recent materials studies leading to the first GaAs deep-center laser. First, we summarize well-known properties: nature of deep-center complexes, Franck-Condon effect, hotoluminescence. Second, we describe our recent work: insensitivity of photoluminescence with heating, striking differences between electroluminescence and photoluminescence, correlation between transitions to deep-states and absence of bandgap-emission. Room-temperature stimulated-emission from GaAs deep-centers was observed at low electrical injection, and could be tuned from the bandgap to half-the-bandgap (900–1,600 nm by changing the electrical injection. The first GaAs deep-center laser was demonstrated with electrical injection, and exhibited a threshold of less than 27 mA/cm2 in continuous-wave mode at room temperature at the important 1.54 μm fiber-optic wavelength. This small injection for laser action was explained by fast depopulation of the lower state of the optical transition (fast capture of free holes onto deep-centers, which maintains the population inversion. The evidence for laser action included: superlinear L-I curve, quasi-Fermi level separations satisfying Bernard-Duraffourg’s criterion, optical gains larger than known significant losses, clamping of the optical-emission from lossy modes unable to reach laser action, pinning of the population distribution during laser action.

  16. High-field phase-diagram of Fe arsenide superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Jo, Y.J.; Jaroszynski, J.; Yamamoto, A.; Gurevich, A.; Riggs, S.C.; Boebinger, G.S.; Larbalestier, D. [National High Magnetic Field Laboratory, Florida State University, Tallahassee-FL 32310 (United States); Wen, H.H. [Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Zhigadlo, N.D.; Katrych, S.; Bukowski, Z.; Karpinski, J. [Laboratory for Solid State Physics, ETH Zuerich, CH-8093 Zuerich (Switzerland); Liu, R.H.; Chen, H.; Chen, X.H. [Hefei National Laboratory for Physical Science a Microscale and Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Balicas, L., E-mail: balicas@magnet.fsu.ed [National High Magnetic Field Laboratory, Florida State University, Tallahassee-FL 32310 (United States)


    Here, we report an overview of the phase-diagram of single-layered and double-layered Fe arsenide superconductors at high magnetic fields. Our systematic magneto-transport measurements of polycrystalline SmFeAsO{sub 1-x}F{sub x} at different doping levels confirm the upward curvature of the upper critical magnetic field H{sub c2}(T) as a function of temperature T defining the phase boundary between the superconducting and metallic states for crystallites with the ab planes oriented nearly perpendicular to the magnetic field. We further show from measurements on single-crystals that this feature, which was interpreted in terms of the existence of two superconducting gaps, is ubiquitous among both series of single- and double-layered compounds. In all compounds explored by us the zero temperature upper critical field H{sub c2}(0), estimated either through the Ginzburg-Landau or the Werthamer-Helfand-Hohenberg single gap theories, strongly surpasses the weak-coupling Pauli paramagnetic limiting field. This clearly indicates the strong-coupling nature of the superconducting state and the importance of magnetic correlations for these materials. Our measurements indicate that the superconducting anisotropy, as estimated through the ratio of the effective masses gamma = (m{sub c}/m{sub ab}){sup 1/2} for carriers moving along the c-axis and the ab-planes, respectively, is relatively modest as compared to the high-T{sub c} cuprates, but it is temperature, field and even doping dependent. Finally, our preliminary estimations of the irreversibility field H{sub m}(T), separating the vortex-solid from the vortex-liquid phase in the single-layered compounds, indicates that it is well described by the melting of a vortex lattice in a moderately anisotropic uniaxial superconductor.

  17. Noble Metal Arsenides and Gold Inclusions in Northwest Africa 8186 (United States)

    Srinivasan, P.; McCubbin, F. M.; Rahman, Z.; Keller, L. P.; Agee, C. B.


    CK carbonaceous chondrites are a highly thermally altered group of carbonaceous chondrites, experiencing temperatures ranging between approximately 576-867 degrees Centigrade. Additionally, the mineralogy of the CK chondrites record the highest overall oxygen fugacity of all chondrites, above the fayalite-magnetite-quartz (FMQ) buffer. Me-tallic Fe-Ni is extremely rare in CK chondrites, but magnetite and Fe,Ni sulfides are commonly observed. Noble metal-rich inclusions have previously been found in some magnetite and sulfide grains. These arsenides, tellurides, and sulfides, which contain varying amounts of Pt, Ru, Os, Te, As, Ir, and S, are thought to form either by condensation from a solar gas, or by exsolution during metamorphism on the chondritic parent body. Northwest Africa (NWA) 8186 is a highly metamorphosed CK chondrite. This meteorite is predominately composed of NiO-rich forsteritic olivine (Fo65), with lesser amounts of plagioclase (An52), augite (Fs11Wo49), magnetite (with exsolved titanomagnetite, hercynite, and titanohematite), monosulfide solid solution (with exsolved pentlandite), and the phosphate minerals Cl-apatite and merrillite. This meteorite contains coarse-grained, homogeneous silicates, and has 120-degree triple junctions between mineral phases, which indicates a high degree of thermal metamorphism. The presence of NiO-rich olivine, oxides phases all bearing Fe3 plus, and the absence of metal, are consistent with an oxygen fugacity above the FMQ buffer. We also observed noble metal-rich phases within sulfide grains in NWA 8186, which are the primary focus of the present study.

  18. Indium Phosphide Window Layers for Indium Gallium Arsenide Solar Cells (United States)

    Jain, Raj K.


    Window layers help in reducing the surface recombination at the emitter surface of the solar cells resulting in significant improvement in energy conversion efficiency. Indium gallium arsenide (In(x)Ga(1-x)As) and related materials based solar cells are quite promising for photovoltaic and thermophotovoltaic applications. The flexibility of the change in the bandgap energy and the growth of InGaAs on different substrates make this material very attractive for multi-bandgap energy, multi-junction solar cell approaches. The high efficiency and better radiation performance of the solar cell structures based on InGaAs make them suitable for space power applications. This work investigates the suitability of indium phosphide (InP) window layers for lattice-matched In(0.53)Ga(0.47)As (bandgap energy 0.74 eV) solar cells. We present the first data on the effects of the p-type InP window layer on p-on-n lattice-matched InGaAs solar cells. The modeled quantum efficiency results show a significant improvement in the blue region with the InP window. The bare InGaAs solar cell performance suffers due to high surface recombination velocity (10(exp 7) cm/s). The large band discontinuity at the InP/InGaAs heterojunction offers a great potential barrier to minority carriers. The calculated results demonstrate that the InP window layer effectively passivates the solar cell front surface, hence resulting in reduced surface recombination and therefore, significantly improving the performance of the InGaAs solar cell.

  19. Effects of the atomic environment on the electron binding energies in samarium

    Energy Technology Data Exchange (ETDEWEB)

    Inoyatov, A.Kh., E-mail: [Laboratory of Nuclear Problems, JINR, Dubna, Moscow Region (Russian Federation); Institute of Applied Physics, National University, Tashkent, Republic of Uzbekistan (Uzbekistan); Kovalík, A. [Laboratory of Nuclear Problems, JINR, Dubna, Moscow Region (Russian Federation); Nuclear Physics Institute of the ASCR, CZ-25068 Řež near Prague (Czech Republic); Filosofov, D.V. [Laboratory of Nuclear Problems, JINR, Dubna, Moscow Region (Russian Federation); Ryšavý, M.; Vénos, D. [Nuclear Physics Institute of the ASCR, CZ-25068 Řež near Prague (Czech Republic); Yushkevich, Yu.V.; Perevoshchikov, L.L. [Laboratory of Nuclear Problems, JINR, Dubna, Moscow Region (Russian Federation); Zhdanov, V.S. [Nuclear Physics Institute, Almaty, Republic of Kazakhstan (Kazakhstan)


    Highlights: • Eight different matrices (evaporated and implanted at 30 keV) used. • The greatest average difference in the binding energies amounted to 3.1 ± 0.1 eV. • The presence of trivalent and divalent Sm ions found in some implanted samples. • No significant differences in Sm natural atomic level widths were observed. - Abstract: Effects of the atomic environment on the L{sub 1}, L{sub 2}, L{sub 3}, M{sub 1}, M{sub 2}, M{sub 3}, and N{sub 1} electron binding energies in samarium generated in the electron capture decay of radioactive {sup 149}Eu were investigated by means of the internal conversion electron spectroscopy using the conversion electron spectrum of the 22.5 keV M1 + E2 nuclear transition in the daughter {sup 149}Sm. In this investigation, four pairs of {sup 149}Eu sources prepared by vacuum evaporation deposition and by ion implantation at 30 keV with the use of four different source backing materials, namely polycrystalline carbon, aluminium, gadolinium and platinum foils, were employed. The greatest average difference of (3.1 ± 0.1) eV in the L{sub 1}, L{sub 2}, L{sub 3}, and M{sub 1} subshell electron binding energies was observed between the {sup 149}Eu sources prepared by ion implantation into the aluminium and platinum substrates. On the other hand, minimal differences in the electron binding energies were generally found between samarium generated in the evaporated layer and in the bulk for the individual investigated source backings with the exception of the gadolinium foil. A doublet structure of all investigated conversion electron lines with the average values of 8.1 ± 0.2 eV and 1.5 ± 0.1 for the separation energy and the intensity ratio of the low-energy to high-energy components, respectively, was observed for the {sup 149}Eu sources prepared by ion implantation into the aluminium and carbon foils. This structure was presumably caused by the presence of both the trivalent and divalent Sm ions in the sources. No

  20. Gallium arsenide integrated optical devices for high-speed diagnostic systems

    Energy Technology Data Exchange (ETDEWEB)

    McWright, G.; Lowry, M.; Takeuchi, E.; Murphy, G.; Tindall, W.; Koo, J.; Roeske, F.


    The design, fabrication, and evaluation of waveguide electro-optic modulators in gallium arsenide for application to high-speed diagnostic systems are discussed specifically. This paper is focused on high bandwidth, single event analog modulation, and radiation susceptibility of these devices.

  1. Multiphoton laser wave-mixing absorption spectroscopy for samarium using a graphite furnace atomizer

    Energy Technology Data Exchange (ETDEWEB)

    Maniaci, Michael J.; Tong, William G. E-mail:


    Nonlinear laser wave-mixing optical technique is presented as a sensitive atomic spectroscopic method for the analysis of rare earth elements using an unmodified commercially available graphite furnace (GF) atomizer. A simple nonplanar backward-scattering degenerate four-wave mixing optical arrangement offers sub-picogram detection sensitivity with sub-Doppler Lorentzian-broadened resolution. Nonlinear wave mixing is an unusually sensitive absorption-based optical method that offers both excellent detection sensitivity and sub-Doppler spectral resolution. A mass detection limit of 0.7 pg and a concentration detection limit of 70 pg/ml are determined for a rare earth element, samarium, using the 429.7-nm excitation line.

  2. Samarium Doped Cerium Oxide Clusters: a Study on the Modulation of Electronic Structure (United States)

    Topolski, Josey E.; Kafader, Jared O.; Marrero-Colon, Vicmarie; Chick Jarrold, Caroline


    Cerium oxide is known for its use in solid oxide fuel cells due to its high ionic conductivity. The doping of trivalent samarium atoms into cerium oxide is known to enhance the ionic conductivity through the generation of additional oxygen vacancies. This study probes the electronic structure of Sm_{x}Ce_{y}O_{z} (x+y=3, z=2-4) anion and neutral clusters. Anion photoelectron spectra of these mixed metal clusters exhibit additional spectral features not present in the previously studied cerium oxide clusters. Density functional theory calculations have been used to aid interpretation of collected spectra. The results of this work can be used to inform the design of materials used for solid oxide fuel cells.

  3. Chelating Ligand-Mediated Hydrothermal Synthesis of Samarium Orthovanadate with Decavanadate as Vanadium Source

    Directory of Open Access Journals (Sweden)

    Quanguo Li


    Full Text Available A new ethylenediaminetetraacetic acid- (EDTA- mediated hydrothermal route to prepare chrysanthemum-shaped samarium orthovanadate (SmVO4 nanocrystals with decavanadate (K6V10O28·9H2O as vanadium source has been developed. The present hydrothermal approach is simple and reproducible and employs a relatively mild reaction temperature. The EDTA, pH value, and temperature of the reaction systems play important roles in determining the morphologies and growth process of the SmVO4 products. The products have been characterized by X-ray diffraction (XRD, scanning electron microscopy (SEM, Fourier transform infrared spectroscopy (FT-IR, photoluminescence spectra (PL, and UV-Vis spectroscopy.

  4. The Magnetocaloric Effect and Heat Capacity of Suspensions of High-Dispersity Samarium Ferrite (United States)

    Korolev, V. V.; Aref'ev, I. M.; Ramazanova, A. G.


    The magnetocaloric effect and specific heat capacity of an aqueous suspension of samarium ferrite were determined calorimetrically over the temperature range 288-343 K in magnetic fields of 0-0.7 T. The data obtained were used to calculate changes in the magnetic component of the molar heat capacity and entropy of the magnetic phase and changes in the enthalpy of the process under an applied magnetic field. The magnetocaloric effect was found to increase nonlinearly as the magnetic field induction grew. The corresponding temperature dependences contained a maximum at 313 K related to the second-order magnetic phase transition at the Curie point. The field and temperature dependences of heat capacity contained a maximum in fields of 0.4 T and a minimum at the magnetic phase transition temperature.

  5. Preparation of hollow core/shell microspheres of hematite and its adsorption ability for samarium. (United States)

    Yu, Sheng-Hui; Yao, Qi-Zhi; Zhou, Gen-Tao; Fu, Sheng-Quan


    Hollow core/shell hematite microspheres with diameter of ca. 1-2 μm have been successfully achieved by calcining the precursor composite microspheres of pyrite and polyvinylpyrrolidone (PVP) in air. The synthesized products were characterized by a wide range of techniques including powder X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TEM), high-resolution TEM (HRTEM), thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC), and Brunauer-Emmett-Teller (BET) gas sorptometry. Temperature- and time-dependent experiments unveil that the precursor pyrite-PVP composite microspheres finally transform into hollow core/shell hematite microspheres in air through a multistep process including the oxidation and sulfation of pyrite, combustion of PVP occluded in the precursor, desulfation, aggregation, and fusion of nanosized hematite as well as mass transportation from the interior to the exterior of the microspheres. The formation of the hollow core/shell microspheres dominantly depends on the calcination temperature under current experimental conditions, and the aggregation of hematite nanocrystals and the core shrinking during the oxidation of pyrite are responsible for the formation of the hollow structures. Moreover, the adsorption ability of the hematite for Sm(III) was also tested. The results exhibit that the hematite microspheres have good adsorption activity for trivalent samarium, and that its adsorption capacity strongly depends on the pH of the solution, and the maximum adsorption capacity for Sm(III) is 14.48 mg/g at neutral pH. As samarium is a typical member of the lanthanide series, our results suggest that the hollow hematite microspheres have potential application in removal of rare earth elements (REEs) entering the water environment.

  6. The influence of the technological parameters on the ionic conductivity of samarium doped ceria thin films

    Directory of Open Access Journals (Sweden)

    Mantas Sriubas


    Full Text Available Sm0,20Ce0,80O2 powder was used for the formation of samarium doped cerium oxide (SDC thin films using e-beam. Surface area of powder was 34.9 m2/g and particle size – 0.3-0.5 μm. Thin films were deposited using physical vapor deposition system on SiO2 and Alloy 600 substrates. 2 Å/s – 16 Å/s growth rate and 20 °C – 600 °C substrate temperature were used during the deposition. Ionic conductivity investigation revealed that the maximum ionic conductivity (1.67 S/m has the thin film deposited on 300 °C temperature substrate using 4 Å/s growth rate. Minimum ionic conductivity (0.26 S/m has thin film which was deposited on 20 °C temperature substrate using 8 Å/s growth rate. Vacancy activation energies vary in 0.87 eV – 0.97 eV range. Furthermore the calculations of crystallite size revealed that crystallite size increases with increasing substrate temperature: from 7.50 nm to 46.23 nm on SiO2 substrate and from 9.30 nm to 44.62 nm on Alloy 600 substrate. Molar concentration of samarium in initial evaporated material is 19.38 mol% and varies from 11.37 mol% to 21 mol% in formed thin films depending on technological parameters.DOI:

  7. Formation of Core-Shell Nanoparticles Composed of Magnetite and Samarium Oxide in Magnetospirillum magneticum Strain RSS-1. (United States)

    Shimoshige, Hirokazu; Nakajima, Yoshikata; Kobayashi, Hideki; Yanagisawa, Keiichi; Nagaoka, Yutaka; Shimamura, Shigeru; Mizuki, Toru; Inoue, Akira; Maekawa, Toru


    Magnetotactic bacteria (MTB) synthesize magnetosomes composed of membrane-enveloped magnetite (Fe3O4) or greigite (Fe3S4) particles in the cells. Recently, several studies have shown some possibilities of controlling the biomineralization process and altering the magnetic properties of magnetosomes by adding some transition metals to the culture media under various environmental conditions. Here, we successfully grow Magnetospirillum magneticum strain RSS-1, which are isolated from a freshwater environment, and find that synthesis of magnetosomes are encouraged in RSS-1 in the presence of samarium and that each core magnetic crystal composed of magnetite is covered with a thin layer of samarium oxide (Sm2O3). The present results show some possibilities of magnetic recovery of transition metals and synthesis of some novel structures composed of magnetic particles and transition metals utilizing MTB.

  8. Co-reduction of aluminium and lanthanide ions in molten fluorides: Application to cerium and samarium extraction from nuclear wastes

    Energy Technology Data Exchange (ETDEWEB)

    Gibilaro, M. [Laboratoire de Genie Chimique UMR 5503, Departement Procedes Electrochimiques, Universite de Toulouse, 31062 Toulouse Cedex 9 (France); Massot, L. [Laboratoire de Genie Chimique UMR 5503, Departement Procedes Electrochimiques, Universite de Toulouse, 31062 Toulouse Cedex 9 (France)], E-mail:; Chamelot, P.; Taxil, P. [Laboratoire de Genie Chimique UMR 5503, Departement Procedes Electrochimiques, Universite de Toulouse, 31062 Toulouse Cedex 9 (France)


    This work concerns the method of co-reduction process with aluminium ions in LiF-CaF{sub 2} medium (79-21 mol.%) on tungsten electrode for cerium and samarium extraction. Electrochemical techniques such as cyclic and square wave voltammetries, and potentiostatic electrolyses were used to study the co-reduction of CeF{sub 3} and SmF{sub 3} with AlF{sub 3}. For each of these elements, specific peaks of Al-Ce and Al-Sm alloys formation were observed by voltammetry as well as peaks of pure cerium and aluminium, and pure samarium and aluminium respectively. The difference of potential measured between the solvent reduction and the alloy formation suggests expecting an extraction efficiency of 99.99% of each lanthanide by the process. Different intermetallic compounds were obtained for different potentiostatic electrolysis and were characterised by Scanning Electron Microscopy with EDS probe. The validity of the process was verified by carrying out cerium and samarium extractions in the form of Al-Ln alloy; the extraction efficiency was 99.5% for Ce(III) and 99.4% for Sm(III)

  9. A Study of Hydrogen Anion Substitution in 1111-type Iron Arsenides (United States)

    Hosono, Hideo


    Hydrogen is the simplest bipolar element and its valence state can be controlled from +1 to -1. We have synthesized the 1111-type iron arsenides CaFeAsH and LnFeAsO1 -xHx (Ln = lanthanide; 0 3d bands (dxy, dyz and dzx), which is caused not only by regularization of the tetrahedral shape of FeAs4 due to chemical pressure effects but also by selective band occupation with doped electrons. Very recently, a new AFM phase was found around x =0.5, suggesting that the double dome Tc structure reflects the presence of two AFM phases at x =0 and 0,5. In this talk, I review the recent progress in superconductivity in 1111-type iron (oxy)arsenides and related compounds induced by hydrogen anion substitution.

  10. An advanced space photovoltaic concentrator array using Fresnel lenses, gallium arsenide cells, and prismatic cell covers (United States)

    O'Neill, Mark J.; Piszczor, Michael F.


    The current status of a space concentrator array which uses refractive optics, gallium arsenide cells, and prismatic cell covers to achieve excellent performance at a very low array mass is documented. The prismatically covered cells have established records for space cell performance (24.2 percent efficient at 100 AM0 suns and 25 C) and terrestrial single-junction cell performance (29.3 percent efficient at 200 AM1.5 suns and 25 C).

  11. Structural and luminescence properties of samarium doped lead alumino borate glasses (United States)

    Mohan, Shaweta; Kaur, Simranpreet; Singh, D. P.; Kaur, Puneet


    The study reports the effect of samarium concentration on the physical, structural and spectroscopic characteristics of samarium doped lead alumino borate glasses having composition 20PbO-(10-x)Al2O3-70B2O3-xSm2O3; x = 0.1, 0.5, 1.0 and 2.0 mol %. The glasses were fabricated by conventional melt-quenching technique and then characterized by XRD, FTIR, optical absorption and fluorescence spectra. X-ray diffraction studies confirmed the amorphous nature of the prepared glasses. FTIR spectra indicate the presence of BO3, BO4, AlO6 and a few other structural groups. Various physical properties such as density, molar volume, refractive index, rare earth ion concentration, boron-boron distance and polarizability etc. were determined using conventional methods and standard formulae. The Judd-Ofelt theory was applied on the optical absorption spectra of the glasses to evaluate the three phenomenological intensity parameters Ω2, Ω4 and Ω6. The value of Ω2 was found to be highest for glass with 1 mol% Sm2O3 and attributed to the asymmetry of the ligand field at the rare earth ion site and the rare earth oxygen (Sm-O) covalency. The calculated intensity parameters and fluorescence spectra were further used to predict the radiative transition probability (A), radiative lifetime (τR), branching ratio (βR), peak wavelength (λp), effective line widths (Δλeff) and stimulated emission cross-section (σ) for the characteristic 4G5/2 → 6H5/2, 6H7/2 and 6H9/2 transitions of the Sm3+ ion. Concentration quenching was observed for 2 mol% concentration of Sm2O3 and ascribed to energy transfer through various cross-relaxation channels between Sm3+ ions. Reasonably high values of branching ratios and stimulated emission cross-section for the prepared glasses points towards their utility in the development of visible lasers emitting in the reddish-orange spectral region. However, the glass with 1 mol% Sm2O3 was found to show better radiative properties.

  12. Performance of a Medipix3RX spectroscopic pixel detector with a high resistivity gallium arsenide sensor. (United States)

    Hamann, Elias; Koenig, Thomas; Zuber, Marcus; Cecilia, Angelica; Tyazhev, Anton; Tolbanov, Oleg; Procz, Simon; Fauler, Alex; Baumbach, Tilo; Fiederle, Michael


    High resistivity gallium arsenide is considered a suitable sensor material for spectroscopic X-ray imaging detectors. These sensors typically have thicknesses between a few hundred μm and 1 mm to ensure a high photon detection efficiency. However, for small pixel sizes down to several tens of μm, an effect called charge sharing reduces a detector's spectroscopic performance. The recently developed Medipix3RX readout chip overcomes this limitation by implementing a charge summing circuit, which allows the reconstruction of the full energy information of a photon interaction in a single pixel. In this work, we present the characterization of the first Medipix3RX detector assembly with a 500 μm thick high resistivity, chromium compensated gallium arsenide sensor. We analyze its properties and demonstrate the functionality of the charge summing mode by means of energy response functions recorded at a synchrotron. Furthermore, the imaging properties of the detector, in terms of its modulation transfer functions and signal-to-noise ratios, are investigated. After more than one decade of attempts to establish gallium arsenide as a sensor material for photon counting detectors, our results represent a breakthrough in obtaining detector-grade material. The sensor we introduce is therefore suitable for high resolution X-ray imaging applications.

  13. Two years of on-orbit gallium arsenide performance from the LIPS solar cell panel experiment (United States)

    Francis, R. W.; Betz, F. E.


    The LIPS on-orbit performance of the gallium arsenide panel experiment was analyzed from flight operation telemetry data. Algorithms were developed to calculate the daily maximum power and associated solar array parameters by two independent methods. The first technique utilizes a least mean square polynomial fit to the power curve obtained with intensity and temperature corrected currents and voltages; whereas, the second incorporates an empirical expression for fill factor based on an open circuit voltage and the calculated series resistance. Maximum power, fill factor, open circuit voltage, short circuit current and series resistance of the solar cell array are examined as a function of flight time. Trends are analyzed with respect to possible mechanisms which may affect successive periods of output power during 2 years of flight operation. Degradation factors responsible for the on-orbit performance characteristics of gallium arsenide are discussed in relation to the calculated solar cell parameters. Performance trends and the potential degradation mechanisms are correlated with existing laboratory and flight data on both gallium arsenide and silicon solar cells for similar environments.

  14. X-ray Induced Luminescence Spectroscopy of Samarium Doped Barium Sulfate Prepared by Sintering Method (United States)

    Kumeda, T.; Maeda, K.; Shirano, Y.; Fujiwara, K.; Sakai, K.; Ikari, T.


    X-ray induced luminescence (XL) properties of phosphor materials made of samarium doped barium sulfate have been investigated. The samples were prepared by sintering method heated at 900-1250 °C for 3 hours in air from the mixture of BaSO4 and Sm2O3. The concentration of Sm were prepared from 0.01-6 at.%. In as-prepared sample, the Sm3+ was detected by photoluminescence (PL). The PL intensity is maximum about 2 at.% with Sm, and then starts decreasing. The PL intensity showed concentration quenching. The XL observed Sm2+ and Sm3+ ions. The XL was shown from the sample sintered up to 1200 °C. The XL intensity increased with Sm concentration up to 1 at.%. The intensity was almost constant larger than 1 at.% Sm. These concentration dependences is different since the X-ray energy absorbed to the host material at once, and the energy transferred to both Sm3+ and Sm2+ ions. Sm doped BaSO4 is found a host for XL phosphor materials.

  15. High-κ Samarium-Based Metal-Organic Framework for Gate Dielectric Applications. (United States)

    Pathak, Abhishek; Chiou, Guan Ru; Gade, Narsinga Rao; Usman, Muhammad; Mendiratta, Shruti; Luo, Tzuoo-Tsair; Tseng, Tien Wen; Chen, Jenq-Wei; Chen, Fu-Rong; Chen, Kuei-Hsien; Chen, Li-Chyong; Lu, Kuang-Lieh


    The self-assembly of a samarium-based metal-organic framework [Sm2(bhc)(H2O)6]n (1) in good yield was achieved by reacting Sm(NO3)3·6H2O with benzenehexacarboxylic acid (bhc) in a mixture of H2O-EtOH under hydrothermal conditions. A structural analysis showed that compound 1 crystallized in a space group of Pnmn and adopted a 3D structure with (4,8) connected nets. Temperature dependent dielectric measurements showed that compound 1 behaves as a high dielectric material with a high dielectric constant (κ = 45.1) at 5 kHz and 310 K, which is comparable to the values for some of the most commonly available dielectric inorganic metal oxides such as Sm2O3, Ta2O5, HfO2, and ZrO2. In addition, electrical measurements of 1 revealed an electrical conductivity of about 2.15 × 10-7 S/cm at a frequency of 5 kHz with a low leakage current (Ileakage = 8.13 × 10-12 Amm-2). Dielectric investigations of the Sm-based MOF provide an effective path for the development of high dielectric materials in the future.

  16. Pyroelectric properties and electrical conductivity in samarium doped BiFeO 3 ceramics

    KAUST Repository

    Yao, Yingbang


    Samarium (Sm 3+) doped BiFeO 3 (BFO) ceramics were prepared by a modified solid-state-reaction method which adopted a rapid heating as well as cooling during the sintering process. The pyroelectric coefficient increased from 93 to 137 μC/m 2 K as the Sm 3+ doping level increased from 1 mol% to 8 mol%. Temperature dependence of the pyroelectric coefficient showed an abrupt decrease above 80 °C in all samples, which was associated with the increase of electrical conductivity with temperature. This electrical conduction was attributed to oxygen vacancy existing in the samples. An activation energy of ∼0.7 eV for the conduction process was found to be irrespective of the Sm 3+ doping level. On the other hand, the magnetic Néel temperature (T N) decreased with increasing Sm 3+ doping level. On the basis of our results, the effects of Sm doping level on the pyroelectric and electrical properties of the BFO were revealed. © 2011 Elsevier Ltd. All rights reserved.

  17. Characterization of luminescent samarium doped HfO{sub 2} coatings synthesized by spray pyrolysis technique

    Energy Technology Data Exchange (ETDEWEB)

    Chacon-Roa, C [Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada-IPN, Legaria 694, Col. Irrigacion, C.P. 11500, Mexico D.F. (Mexico); Guzman-Mendoza, J [Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada-IPN, Legaria 694, Col. Irrigacion, C.P. 11500, Mexico D.F. (Mexico); Aguilar-Frutis, M [Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada-IPN, Legaria 694, Col. Irrigacion, C.P. 11500, Mexico D.F. (Mexico); Garcia-Hipolito, M [Departamento de Materiales Metalicos y Ceramicos, Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de Mexico, A.P. 70-360 Coyoacan 04510, Mexico, D.F. (Mexico); Alvarez-Fragoso, O [Departamento de Materiales Metalicos y Ceramicos, Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de Mexico, A.P. 70-360 Coyoacan 04510, Mexico, D.F. (Mexico); Falcony, C [Departamento de Fisica, CINVESTAV-IPN, A. P. 14-740, 07000 Mexico D.F. (Mexico)


    Trivalent samarium (Sm{sup 3+}) doped hafnium oxide (HfO{sub 2}) films were deposited using the spray pyrolysis deposition technique. The films were deposited on Corning glass substrates at temperatures ranging from 300 to 550 deg. C using chlorides as raw materials. Films, mostly amorphous, were obtained when deposition temperatures were below 350 deg. C. However, for temperatures higher than 400 deg. C, the films became polycrystalline, presenting the HfO{sub 2} monoclinic phase. Scanning electron microscopy of the films revealed a rough surface morphology with spherical particles. Also, electron energy dispersive analysis was performed on these films. The photoluminescence and cathodoluminescence characteristics of the HfO{sub 2} : SmCl{sub 3} films, measured at room temperature, exhibited four main bands centred at 570, 610, 652 and 716 nm, which are due to the well-known intra-4f transitions of the Sm{sup 3+} ion. It was found that the overall emission intensity rose as the deposition temperature was increased. Furthermore, a concentration quenching of the luminescence intensity was also observed.

  18. Samarium-153 EDTMP for metastatic bone pain palliation: the impact of europium impurities. (United States)

    Kalef-Ezra, J A; Valakis, S T; Pallada, S


    To evaluate the impact on the radiation protection policies of the radiocontaminants in Samarium-153 ethylenediamine tetramethylene phosphonate ((153)Sm-EDTMP). The internal contamination of patients treated with (153)Sm-EDMTP for palliation of painful disseminated multiple bone metastases due to long-lived impurities was assessed by direct measurements. These measurements were coupled with dose-rate measurements close to their bodies and spectroscopic analysis of the residual activity in post-treatment radiopharmaceutical vials. Whole-body counting carried out in six patients showed a 30-81-kBq europium -152 plus europium-154 contamination. The 0.85 mean (152)Eu- to -(154)Eu activity ratio obtained by direct counting was similar to that assessed by analysis of post-treatment residual activities in twelve radiopharmaceutical vials following radiopharmaceutical injection. The long-lived radiocontaminants in the patient's bodies and the treatment wastes require modifications of the applicable radiation protection policies. Copyright © 2014 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  19. Luminescence of trivalent samarium ions in silver and tin co-doped aluminophosphate glass (United States)

    Jiménez, José A.; Lysenko, Sergiy; Liu, Huimin; Sendova, Mariana


    This work presents the spectroscopic properties of trivalent samarium ions in a melt-quenched aluminophosphate glass containing silver and tin. Addition of 4 mol% of each Ag 2O and SnO into the glass system with 2 mol% Sm 2O 3 results in Sm 3+ ions luminescence under non-resonant UV excitation owing to energy transfer from single silver ions and/or twofold-coordinated Sn centers. Assessment of luminescence spectra and decay dynamics suggest the energy transfer mechanism to be essentially of the resonant radiative type. Moreover, a connection between the luminescent and structural properties of the rare-earth doped glass system was demonstrated. Raman spectroscopy characterization revealed that no significant variation in the glass matrix is induced by Sm 3+ doping at the concentration employed. A comparison was made with a structural study performed on the Eu 3+ doped system (containing 2 mol% Eu 2O 3 along with 4 mol% of each Ag 2O and SnO) where the radiative energy transfer mechanism was previously established. The data appears consistent regarding the lack of variation in glass structure upon the Eu 3+ and Sm 3+ doping in connection with the dominance of the radiative transfer in the matrix. Thermal treatment of the material leads to precipitation of Ag nanoparticles of a broad size range inside the dielectric as observed by transmission electron microspcopy. Assessment of 4G 5/2 excited state decay in Sm 3+ ions shows no influence from the silver particles.

  20. Samarium (III) adsorption on bentonite modified with N-(2-hydroxyethyl) ethylenediamine. (United States)

    Li, Dandan; Chang, Xijun; Hu, Zheng; Wang, Qihui; Li, Ruijun; Chai, Xiaoli


    A new material has been synthesized using dry process to activate bentonite followed by N-(2-hydroxyethyl) ethylenediamine connecting chlorosilane coupling agent. The synthesized new material was characterized by elemental analysis, FT-IR and thermogravimetry which proved that bentonite was successfully modified. The most interesting trait of the new material was its selective adsorption for rare earth elements. A variety of conditions of the new material were investigated for adsorption. The optimal conditions were determined with respect to pH and shaking time. Samarium (Sm) was quantitatively adsorbed at pH 4 and shaking time of 2 min onto the new material. Under these conditions the maximum static adsorption capacity of Sm(III) was found to be 17.7 mg g(-1). The adsorbed Sm(III) ion were quantitatively eluted by 2.0 mL 0.1 mol L(-1) HCl and 5% CS (NH(2))(2) solution. According to IUPAC definition, the detection limit (3σ) of this method was 0.60 ng mL(-1). The relative standard deviation (RSD) under optimum conditions was less than 3% (n=8). The new material also was applied for the preconcentration of trace Sm(III) in environmental samples with satisfactory results. Copyright © 2010 Elsevier B.V. All rights reserved.

  1. Samarium oxide as a radiotracer to evaluate the in vivo biodistribution of PLGA nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Mandiwana, Vusani, E-mail:; Kalombo, Lonji, E-mail: [Centre of Polymers and Composites, CSIR (South Africa); Venter, Kobus, E-mail: [South African Medical Research Council (South Africa); Sathekge, Mike, E-mail: [University of Pretoria and Steve Biko Academic Hospital, Department of Nuclear Medicine (South Africa); Grobler, Anne, E-mail:; Zeevaart, Jan Rijn, E-mail: [North-West University, DST/NWU Preclinical Drug Development Platform (South Africa)


    Developing nanoparticulate delivery systems that will allow easy movement and localization of a drug to the target tissue and provide more controlled release of the drug in vivo is a challenge in nanomedicine. The aim of this study was to evaluate the biodistribution of poly(d,l-lactide-co-glycolide) (PLGA) nanoparticles containing samarium-153 oxide ([{sup 153}Sm]Sm{sub 2}O{sub 3}) in vivo to prove that orally administered nanoparticles alter the biodistribution of a drug. These were then activated in a nuclear reactor to produce radioactive {sup 153}Sm-loaded-PLGA nanoparticles. The nanoparticles were characterized for size, zeta potential, and morphology. The nanoparticles were orally and intravenously (IV) administered to rats in order to trace their uptake through imaging and biodistribution studies. The {sup 153}Sm-loaded-PLGA nanoparticles had an average size of 281 ± 6.3 nm and a PDI average of 0.22. The zeta potential ranged between 5 and 20 mV. The [{sup 153}Sm]Sm{sub 2}O{sub 3} loaded PLGA nanoparticles, orally administered were distributed to most organs at low levels, indicating that there was absorption of nanoparticles. While the IV injected [{sup 153}Sm]Sm{sub 2}O{sub 3}-loaded PLGA nanoparticles exhibited the highest localization of nanoparticles in the spleen (8.63 %ID/g) and liver (3.07 %ID/g), confirming that nanoparticles are rapidly removed from the blood by the RES, leading to rapid uptake in the liver and spleen. From the biodistribution data obtained, it is clear that polymeric nanoscale delivery systems would be suitable for improving permeability and thus the bioavailability of therapeutic compounds.

  2. Samarium oxide as a radiotracer to evaluate the in vivo biodistribution of PLGA nanoparticles (United States)

    Mandiwana, Vusani; Kalombo, Lonji; Venter, Kobus; Sathekge, Mike; Grobler, Anne; Zeevaart, Jan Rijn


    Developing nanoparticulate delivery systems that will allow easy movement and localization of a drug to the target tissue and provide more controlled release of the drug in vivo is a challenge in nanomedicine. The aim of this study was to evaluate the biodistribution of poly( d, l-lactide- co-glycolide) (PLGA) nanoparticles containing samarium-153 oxide ([153Sm]Sm2O3) in vivo to prove that orally administered nanoparticles alter the biodistribution of a drug. These were then activated in a nuclear reactor to produce radioactive 153Sm-loaded-PLGA nanoparticles. The nanoparticles were characterized for size, zeta potential, and morphology. The nanoparticles were orally and intravenously (IV) administered to rats in order to trace their uptake through imaging and biodistribution studies. The 153Sm-loaded-PLGA nanoparticles had an average size of 281 ± 6.3 nm and a PDI average of 0.22. The zeta potential ranged between 5 and 20 mV. The [153Sm]Sm2O3 loaded PLGA nanoparticles, orally administered were distributed to most organs at low levels, indicating that there was absorption of nanoparticles. While the IV injected [153Sm]Sm2O3-loaded PLGA nanoparticles exhibited the highest localization of nanoparticles in the spleen (8.63 %ID/g) and liver (3.07 %ID/g), confirming that nanoparticles are rapidly removed from the blood by the RES, leading to rapid uptake in the liver and spleen. From the biodistribution data obtained, it is clear that polymeric nanoscale delivery systems would be suitable for improving permeability and thus the bioavailability of therapeutic compounds.

  3. Fabrication and properties of samarium doped calcium sulphate thin films using spray pyrolysis technique

    Energy Technology Data Exchange (ETDEWEB)

    Reghima, Meriem [Université Tunis El Manar, Faculté des Sciences de Tunis, Département de Physique, LR99ES13 Laboratoire de Physique de la Matière Condensée (LPMC), 2092 Tunis, Tunisie (Tunisia); Institut d' Electronique et des systèmes, Unité Mixte de Recherche 5214 UM2-CNRS (ST2i) – Université Montpellier, 860 rue de Saint Priest, Bâtiment 5, 34097 Montpellier (France); Faculté des Sciences de Bizerte, Université de Carthage, Zarzouna 7021 (Tunisia); Guasch, Cathy [Institut d' Electronique et des systèmes, Unité Mixte de Recherche 5214 UM2-CNRS (ST2i) – Université Montpellier, 860 rue de Saint Priest, Bâtiment 5, 34097 Montpellier (France); Azzaza, Sonia; Alleg, Safia [Laboratoire de Magnétisme et Spectroscopie des Solides (LM2S), Département de Physique, Faculté des Sciences, Université Badji Mokhtar Annaba, B.P. 12, 23000 Annaba (Algeria); Kamoun-Turki, Najoua [Université Tunis El Manar, Faculté des Sciences de Tunis, Département de Physique, LR99ES13 Laboratoire de Physique de la Matière Condensée (LPMC), 2092 Tunis, Tunisie (Tunisia)


    Using low cost spray pyrolysis technique, polycrystalline CaSO{sub 4} thin films were successfully grown on a glass substrate with a thickness of about 1 μm. Samarium doping has been performed on CaSO{sub 4} thin films to explore luminescence properties. The characterizations of these films were carried out using X-ray diffraction, Scanning Electron Microscopy and optical measurements. The structural analyses reveal the existence of hexagonal CaSO{sub 4} phase with a (200) preferred orientation belonging to CaS compound for substrate temperatures below 350 °C. It is shown that the crystallinity of the sprayed thin films can be improved by increasing substrate temperature up to 250 °C. Warren-Averbach analysis has been applied on X-ray diffractogram to determine structural parameters involving the phase with its amount, the grain size and the lattice parameters using Maud software. The surface topography shows a rough surface covered by densely packed agglomerated clusters having faceted and hexagonal shapes. Energy dispersive microscopy measurements confirm the presence of calcium and sulfur in equal proportions as well as high percentage of oxygen. Photoluminescence at room temperature revealed that luminescence peaks are attributed to the intrinsic emission of pure CaSO{sub 4} phase. - Highlights: • Warren Averbach analysis reveal the presence of hcp structure of CaSO{sub 4} phase. • A mixture of CaSO{sub 4} and CaHO{sub 4.5}S phases has been detected for lower T{sub s}. • For increasing T{sub s}, the CaHO{sub 4.5}S phase has been disappeared. • The origin of PL peaks has been identified.

  4. Effect of gallium-arsenide laser, gallium-aluminum-arsenide laser and healing ointment on cutaneous wound healing in Wistar rats

    Directory of Open Access Journals (Sweden)

    R.V. Gonçalves


    Full Text Available This study determined the effects of gallium-aluminum-arsenide laser (GaAlAs, gallium-arsenide laser (GaAs and Dersani® healing ointment on skin wounds in Wistar rats. The parameters analyzed were: type I and III collagen fiber concentrations as well as the rate of wound closure. Five wounds, 12 mm in diameter, were made on the animals’ backs. The depth of the surgical incision was controlled by removing the epithelial tissue until the dorsal muscular fascia was exposed. The animals were anesthetized with ketamine and xylazine via intraperitoneal injection. The rats were randomly divided into five groups of 6 animals each, according to the treatment received. Group 1 (L4: GaAs laser (4 J/cm²; group 2 (L30: GaAlAs laser (30 J/cm²; group 3 (L60: GaAlAs laser (60 J/cm²; group 4 (D: Dersani® ointment; group 5 (control: 0.9% saline. The applications were made daily over a period of 20 days. Tissue fragments were stained with picrosirius to distinguish type I collagen from type III collagen. The collagen fibers were photo-documented and analyzed using the Quantum software based on the primary color spectrum (red, yellow and blue. Significant results for wound closing rate were obtained for group 1 (L4, 7.37 mm/day. The highest concentration of type III collagen fibers was observed in group 2 (L30; 37.80 ± 7.10%, which differed from control (29.86 ± 5.15% on the 20th day of treatment. The type I collagen fibers of group 1 (L4; 2.67 ± 2.23% and group 2 (L30; 2.87 ± 2.40% differed significantly from control (1.77 ± 2.97% on the 20th day of the experiment.

  5. The role of the ohmic contact on the efficiency of gallium arsenide radiation detectors

    Energy Technology Data Exchange (ETDEWEB)

    Castaldini, A. [Bologna Univ. (Italy). Dept. of Phys.; Cavallini, A. [Bologna Univ. (Italy). Dept. of Phys.; Polenta, L. [Bologna Univ. (Italy). Dept. of Phys.; Canali, C. [Department of Engineering Sciences, University of Modena, Via Campi 213/B, Modena (Italy); Del Papa, C. [Department of Physics, University of Udine, Via delle Scienze, Udine (Italy); Nava, F. [Department of Physics, University of Modena, Via Campi 213/A, Modena (Italy)


    It has recently been found that in gallium arsenide radiation detectors injecting ohmic contacts impede charge collection efficiency to get 100%, since breakdown occurs as soon as the electric field reaches the contact itself. In the present contribution, this phenomenon is investigated by comparing two sets of ohmic contacts realized by different technological procedures. While the overall defective state results to be nearly the same for both contacts, their performance significantly differs. Deep level junction spectroscopy shows that the defects are the same in both sets whilst there is much difference in density between a few of them. (orig.).

  6. Efficiency Enhancement of Gallium Arsenide Photovoltaics Using Solution-Processed Zinc Oxide Nanoparticle Light Scattering Layers

    Directory of Open Access Journals (Sweden)

    Yangsen Kang


    Full Text Available We demonstrate a high-throughput, solution-based process for subwavelength surface texturing of a III-V compound solar cell. A zinc oxide (ZnO nanoparticle ink is spray-coated directly on top of a gallium arsenide (GaAs solar cell. The nanostructured ZnO films have demonstrated antireflection and light scattering properties over the visible/near-infrared (NIR spectrum. The results show a broadband spectral enhancement of the solar cell external quantum efficiency (EQE, a 16% enhancement of short circuit current, and a 10% increase in photovoltaic efficiency.

  7. Development of a Free Carrier Absorption Measurement Instrument for Indium Phosphide and Gallium Arsenide. (United States)


    AD-A174 ř DEVELOPMENT OF R FREE CARRIER ABSORPTION MEASUREMENT 1/2 INSTRUMENT FOR INDTU (U) EAGLE-PICHER RESEARCH LAB MIAMI OK SPECIALTY MATERIALS...SOBI S D Final Report Development of a Free Carrier Absorption Measurement Instrument For Indium Phosphide and Gallium Arsenide EAGLE PICHER R ES EA R CH...i P r OTic S D L C T DEC 0 3 ang Final Report Development of a Free Carrier Absorption Measurement Instrument For Indium Phosphide and Gallium

  8. High Pressure X-ray Diffraction Study on Icosahedral Boron Arsenide (B12As2)

    Energy Technology Data Exchange (ETDEWEB)

    J Wu; H Zhu; D Hou; C Ji; C Whiteley; J Edgar; Y Ma


    The high pressure properties of icosahedral boron arsenide (B12As2) were studied by in situ X-ray diffraction measurements at pressures up to 25.5 GPa at room temperature. B12As2 retains its rhombohedral structure; no phase transition was observed in the pressure range. The bulk modulus was determined to be 216 GPa with the pressure derivative 2.2. Anisotropy was observed in the compressibility of B12As2-c-axis was 16.2% more compressible than a-axis. The boron icosahedron plays a dominant role in the compressibility of boron-rich compounds.

  9. Surface plasma-enhanced internal photoemission in gallium arsenide Schottky diodes. (United States)

    Torosian, K M; Karakashian, A S; Teng, Y Y


    An aluminum on n-type gallium arsenide Schottky diode with a prism coupler on the front face was illuminated by a p-polarized Nd:YAG laser to excite the surface plasma resonance in the aluminum barrier contact. The internal photoemission current and reflectance were measured simultaneously as a function of the angle of incidence. The excitation of the surface plasma resonance was observed by a dip in the reflectance which occurred at the same angle as a peak in the photoemission current. These effects disappeared in the case of s-polarization. Enhancement in the photoemission current by as much as a factor of 3 was obtained.

  10. Optical properties and electronic transitions of zinc oxide, ferric oxide, cerium oxide, and samarium oxide in the ultraviolet and extreme ultraviolet

    DEFF Research Database (Denmark)

    Pauly, N; Yubero, F; Espinós, J P


    Optical properties and electronic transitions of four oxides, namely zinc oxide, ferric oxide, cerium oxide, and samarium oxide, are determined in the ultraviolet and extreme ultraviolet by reflection electron energy loss spectroscopy using primary electron energies in the range 0.3-2.0 keV. This...


    Directory of Open Access Journals (Sweden)

    Mustafa TEMİZ


    Full Text Available Multiple quantum-well (MQW electroabsorptive self electro optic-effect devices (SEEDs are being extensively studied for use in optical switching and computing. The self electro-optic-effect devices which has quantum-well structures is a new optoelectronic technology with capability to obtain both optical inputs and outputs for Gallium-Arsenide/Aluminum Gallium-Arsenide (GaAs/AlGaAs electronic circuits. The optical inputs and outputs are based on quantum-well absorptive properties. These quantum-well structures consist of many thin layers of semiconductors materials of GaAs/AlGaAs which have emerged some important directions recently. The most important advance in the physics of these materials since the early days has been invention of the heterojunction structures which is based at present on GaAs technology. GaAs/AlGaAs structures present some important advantages to relevant band gap and index of refraction which allow to form the quantum-well structures and also to make semiconductor lasers, dedectors and waveguide optical switches.

  12. Liquid immiscibility between arsenide and sulfide melts: evidence from a LA-ICP-MS study in magmatic deposits at Serranía de Ronda (Spain) (United States)

    Piña, R.; Gervilla, F.; Barnes, S.-J.; Ortega, L.; Lunar, R.


    The chromite-Ni arsenide (Cr-Ni-As) and sulfide-graphite (S-G) deposits from the Serranía de Ronda (Málaga, South Spain) contain an arsenide assemblage (nickeline, maucherite and nickeliferous löllingite) that has been interpreted to represent an arsenide melt and a sulfide-graphite assemblage (pyrrhotite, pentlandite, chalcopyrite and graphite) that has been interpreted to represent a sulfide melt, both of which have been interpreted to have segregated as immiscible liquids from an arsenic-rich sulfide melt. We have determined the platinum-group element (PGE), Au, Ag, Se, Sb, Bi and Te contents of the arsenide and sulfide assemblages using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) to establish their partitioning behaviour during the immiscibility of an arsenide melt from a sulfide melt. Previous experimental work has shown that PGE partition more strongly into arsenide melts than into sulfide melts and our results fit with this observation. Arsenide minerals are enriched in all PGE, but especially in elements with the strongest affinity for the arsenide melt, including Ir, Rh and Pt. In contrast and also in agreement with previous studies, Se and Ag partition preferentially into the sulfide assemblage. The PGE-depleted nature of sulfides in the S-G deposits along with the discordant morphologies of the bodies suggest that these sulfides are not mantle sulfides, but that they represent the crystallization product of a PGE-depleted sulfide melt due to the sequestering of PGE by an arsenide melt.

  13. Optical response and magnetic characteristic of samarium doped zinc phosphate glasses containing nickel nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Azmi, Siti Amlah M.; Sahar, M.R., E-mail:


    A magnetic glass of composition 40ZnO–(58−x) P{sub 2}O{sub 5}–1Sm{sub 2}O{sub 3}–xNiO, with x=0.0, 1.0, 1.5 and 2.0 mol% is prepared by melt-quenching technique. The glass is characterized by X-ray diffraction, high-resolution transmission electron microscope (HRTEM), photoluminescence (PL) spectroscopy and vibrating sample magnetometer (VSM) analysis. The X-rays diffraction confirms the amorphous nature of the glass while the HRTEM analysis reveals the presence of nickel nanoparticles in the glass samples. High-resolution TEM reveals that the lattice spacing of nickel nanoparticles is 0.35 nm at (100) plane. Photoluminescence emission shows the existence of four peaks that correspond to the transition from the upper level of {sup 4}G{sub 5/2} to the lower level of {sup 6}H{sub 5/2}, {sup 6}H{sub 7/2}, {sup 6}H{sub 9/2,} and {sup 6}H{sub 11/2.} It is observed that all peaks experience significant quenching effect with the increasing concentration of nickel nanoparticles, suggesting a strong energy transfer from excited samarium ions to the nickel ions. The glass magnetization and susceptibility at 12 kOe at room temperature are found to be in the range of (3.87±0.17×10{sup −2}–7.19±0.39×10{sup −2}) emu/g and (3.24±0.16×10{sup −6}–5.99±0.29×10{sup −6}) emu/Oe g respectively. The obtained hysteresis curve indicates that the glass samples are paramagnetic materials. The studied glass can be further used towards the development of magneto-optical functional glass. - Highlights: • Sm{sup 3+} doped zinc phosphate glass embedded with Ni NPs has been prepared. • The Laue pattern and lattice spacing of Ni NPs are confirmed by HRTEM image. • The magnetic response of glasses has been studied through VSM analysis. • Enhancement factor and decay half-lifetime are investigated.

  14. Treatment of bone pain secondary to metastases using samarium-153-EDTMP

    Directory of Open Access Journals (Sweden)

    Elba Cristina Sá de Camargo Etchebehere

    Full Text Available CONTEXT: More than 50% of patients with prostate, breast or lung cancer will develop painful bone metastases. The purpose of treating bone metastases is to relieve pain, reduce the use of steroids and to maintain motion. OBJECTIVE: To evaluate the use of samarium-153-EDTMP (153Sm-EDTMP for the treatment of bone pain secondary to metastases that is refractory to clinical management. TYPE OF STUDY: Retrospective. SETTING: Division of Nuclear Medicine, Universidade Estadual de Campinas (Unicamp. METHODS: Fifty-eight patients were studied (34 males with mean age 62 years; 31 patients had prostate cancer, 20 had breast cancer, three had lung cancer, one had lung hemangioendothelioma, one had parathyroid adenocarcinoma, one had osteosarcoma and one had an unknown primary tumor. All patients had multiple bone metastases demonstrated by bone scintigraphy using 99mTc-MDP,and were treated with 153Sm-EDTMP. Response to treatment was graded as good (pain reduction of 50-100%, intermediate (25-49% and poor (0-24%. RESULTS: All patients showed good uptake of 153Sm-EDTMP by bone metastases. Among the patients with prostate cancer, intermediate or good response to therapy occurred in 80.6% (25 patients and poor response in 19.4% (6. Among the patients with breast cancer, 85% (17 showed intermediate or good response to therapy while 15% (3 showed poor response. All three patients with lung cancer showed poor response to treatment. The lung hemangioendothelioma and unknown primary lesion patients showed intermediate response to treatment; the osteosarcoma and parathyroid adenocarcinoma patients showed good response to treatment. No significant myelotoxicity occurred. DISCUSSION: Pain control is important for improving the quality of life of patients with advanced cancers. The mechanism by which pain is relieved with the use of radionuclides is still not yet completely understood, however, the treatment is simple and provides a low risk of mielotoxicity

  15. Anchoring samarium oxide nanoparticles on reduced graphene oxide for high-performance supercapacitor

    Energy Technology Data Exchange (ETDEWEB)

    Dezfuli, Amin Shiralizadeh [Center of Excellence in Electrochemistry, Faculty of Chemistry, University of Tehran, Tehran (Iran, Islamic Republic of); Ganjali, Mohammad Reza, E-mail: [Center of Excellence in Electrochemistry, Faculty of Chemistry, University of Tehran, Tehran (Iran, Islamic Republic of); Biosensor Research Center, Endocrinology & Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Naderi, Hamid Reza [Center of Excellence in Electrochemistry, Faculty of Chemistry, University of Tehran, Tehran (Iran, Islamic Republic of)


    Highlights: • Samarium oxide nanoparticles have been anchored on the surface of reduced graphene oxide for the first time. • Sm{sub 2}O{sub 3}/RGO nanocomposite show high capacitance, good rate and cycling performance. • Sm{sub 2}O{sub 3}/RGO nanocomposite can serve as efficient electrode material for energy storage. • The best composite electrode exhibits specific capacitance of 321 F g{sup −1} in 2 mV s{sup −1}. - Abstract: We have synthesized Sm{sub 2}O{sub 3} nanoparticles (SmNs) and anchored them onto the surface of reduced graphene oxide (RGO) through a self-assembly thereof by utilizing a facile sonochemical procedure. The nanomaterials were characterized by means of powder X-ray diffraction (XRD), Field-emission scanning electron microscopy (FE-SEM), fourier transform infrared spectroscopy (FT-IR) spectra, and X-ray photoelectron spectroscopy (XPS). As the next step, the supercapacitive behavior of the resulting nanocomposites were investigated when used as electrode material, through with cyclic voltammetric (CV), galvanostatic charge-discharge and electrochemical impedance spectroscopy (EIS) techniques. The SmNs decorated RGO (SmN-RGO) nanocomposites were found to possess a specific capacitance (SC) of 321 F g{sup −1} when used in a 0.5 M Na{sub 2}SO{sub 4} solution as an electrolyte, in a scan rate of 2 mV s{sup −1}. The SC of the SmN-RGO based electrodes were also found to be 268 F g{sup −1} at a current density of 2 A g{sup −1} through galvanostatic charge-discharge tests. The outstanding properties of the SmN-RGOs were attributed to synergy of the high charge mobility of SmNs and the flexibility of the sheets of RGOs. Additionally, the nano-composite revealed a unique cycling durability (maintaining 99% of its SC even after 4000 cycles).

  16. A novel three-jet microreactor for localized metal-organic chemical vapour deposition of gallium arsenide : Design and simulation

    NARCIS (Netherlands)

    Konakov, S.A.; Krzhizhanovskaya, V.V.


    We present a novel three-jet microreactor design for localized deposition of gallium arsenide (GaAs) by low-pressure Metal-Organic Chemical Vapour Deposition (MOCVD) for semiconductor devices, microelectronics and solar cells. Our approach is advantageous compared to the standard lithography and

  17. Effect of Current Density on Thermodynamic Properties of Nanocrystalline Palladium Capped Samarium Hydride Thin Film Switchable Mirrors

    Directory of Open Access Journals (Sweden)

    Pushpendra Kumar


    Full Text Available A 55 nm samarium film capped with a 10 nm palladium overlayer switched from a metallic reflecting to a semiconducting, transparent in visible state during ex-situ hydrogen loading via electrochemical means in 1 M KOH electrolytic aqueous solution at room temperature. The switching between metal to semiconductor was accompanied by measurement of transmittance during hydrogen loading/unloading. The effect of current density on switching and thermodynamic properties was studied between dihydride state (FCC phase and trihydride state (hexagonal phase. From the plateau of partial pressure of hydrogen at x=2.6, enthalpy of formation was calculated at different current densities. The diffusion coefficients and switching kinetics are shown to depend on applied current density.

  18. Targeted bone marrow radioablation with 153Samarium-lexidronam promotes allogeneic hematopoietic chimerism and donor-specific immunologic hyporesponsiveness. (United States)

    Inverardi, Luca; Linetsky, Elina; Pileggi, Antonello; Molano, R Damaris; Serafini, Aldo; Paganelli, Giovanni; Ricordi, Camillo


    Transplantation tolerance, defined as acceptance of a graft by an otherwise fully immunocompetent host, has been an elusive goal. Although robust tolerance has been achieved by the induction of stable hematopoietic chimerism after bone marrow transplantation, lethal or sublethal radiation conditioning used to induce long-term chimerism precludes its clinical use. We studied whether targeted delivery of radiation to bone marrow could allow for bone marrow cell (BMC) engraftment, chimerism, and donor-specific tolerance in the absence of the side effects associated with external irradiation. We administered a radioactive bone-seeking compound (Samarium-Lexidronam, Quadramet, Berlex Laboratories, Wayne, NJ) together with transient T-cell costimulatory blockade to recipient mice. Allogeneic BMCs were given 7 or 14 days after preconditioning. Costimulatory blockade was obtained by the use of an anti-CD154 antibody for 4 weeks. Chimerism was assessed by flow cytometry. Mice then received donor-specific and third-party skin grafts. Graft survival was analyzed with mechanisms of donor-specific hyporesponsiveness. High levels of stable chimerism across an allogeneic barrier were achieved in mice by a single administration of Samarium-Lexidronam, transient T-cell costimulatory blockade, and BMC transplantation. A large percentage of chimeric animals retained donor-derived skin grafts for more than 120 days without requiring additional immunosuppression, suggesting that harsh cytotoxic preconditioning is not necessary to achieve stable chimerism and donor specific hyporesponsiveness. Analysis of the T-cell repertoire in chimeras indicates T-cell deletional mechanisms. These data broaden the potential use of BMC transplantation for tolerance induction and argue for its potential in treating autoimmune diseases.

  19. Sorption of samarium in soils: influence of soil properties and Sm concentration

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez-Guinart, Oriol; Salaberria, Aitor; Rigol, Anna; Vidal, Miquel [Analytical Chemistry department, Faculty of Chemistry, University of Barcelona, Marti i Franques 1-11, 08028, Barcelona (Spain)


    Due to the fact that barriers of Deep Geological Repositories (DGR) may lose efficiency before the radioisotopes present in the High Level Radioactive Waste (HLRW) completely decay, it is possible that, in the long-term, radioactive leachates may escape from the DGR and reach the soil and water compartments in the biosphere. Therefore, it is required to examine the interaction and mobility of radionuclides present in the HLRW, or their chemical analogues, to predict the impact of their eventual incorporation in the biosphere and to assess the derived risk. Although relevant data have been recently obtained for a few radionuclides in soils, there are still some important gaps for some radionuclides, such us for samarium (Sm). Sm is a lanthanide that, besides being considered as a natural analogue of actinides, may also be present in HLRW in the form of the radioactive isotope {sup 151}Sm. The main objective of this work was to obtain sorption data (K{sub d}) of {sup 151}Sm gathered from a set of soil samples physicochemical fully-characterized (pH, texture, cationic exchange capacity, soil solution cationic composition, organic matter, carbonate and metallic oxides content, etc.). Additionally, as an alternative for testing sorption capacity of radionuclides in soils is the use of the corresponding stable isotope or a chemical analogue, the influence of Sm concentration was also checked. To evaluate {sup 151}Sm sorption, batch assays were carried out for each soil sample, which consisted in a pre-equilibration step of 2 g of each soil with 50 ml of double deionised water, and a subsequent equilibration step with the same solution, but labelled with {sup 151}Sm. The activity of {sup 151}Sm in initial and final solutions was measured by liquid scintillation and K{sub d} ({sup 151}Sm) data were calculated. The reversibly sorbed fraction was estimated by the application of a single extraction test, with double deionised water, to soil residues coming from the previous

  20. Electronic structure, magnetic and superconducting properties of co-doped iron-arsenide superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Rosner, Helge; Schnelle, Walter; Nicklas, Michael; Leithe-Jasper, Andreas [MPI CPfS Dresden (Germany); Weikert, Franziska [Los Alamos National Laboratory, New Mexico (United States); HLD Dresden Rossendorf (Germany); Wosnitza, Joachim [HLD Dresden Rossendorf (Germany)


    We present a joint experimental and theoretical study of co-doped iron-arsenide superconductors of the 122 family A{sub 1-x}K{sub x}Fe{sub 2-y}T{sub y}As{sub 2} (A = Ba,Sr,Eu; T = Co,Ru,Rh). In these systems, the co-doping enables the separation of different parameters - like electron count, disorder or the specific geometry of the FeAs layer - with respect to the position of the respective compounds in the general 122 phase diagram. For a series of compounds, we investigate the relevance of the different parameters for the magnetic, thermodynamic and superconducting properties. Our experimental investigations are supported by density functional electronic structure calculations applying different approximations for doping and disorder.

  1. NMR studies on the new iron arsenide superconductors including the superconducting state

    Energy Technology Data Exchange (ETDEWEB)

    Grafe, Hans-Joachim; Lang, Guillaume; Hammerath, Franziska; Manthey, Katarina; Behr, Guenther; Werner, Jochen; Buechner, Bernd [IFW Dresden, Helmholtzstr. 20, D-01069 Dresden (Germany); Paar, Dalibor [IFW Dresden, Helmholtzstr. 20, D-01069 Dresden (Germany); Dept. of Physics, Faculty of Science, Univ. of Zagreb (Croatia); Curro, Nicholas [Dept. of Physics, Univ. of California, Davis, CA 95616 (United States)


    We summarize our Nuclear Magnetic Resonance (NMR) and Nuclear Quadrupole Resonance (NQR) results on the new iron arsenide superconductor LaO{sub 1-x}F{sub x}FeAs in the normal state, and show new NMR data in the superconducting state. Beyond early evidence of nodes and spin-singlet pairing[2], we find evidence of a deviation of the T{sup 3} behaviour of the spin lattice relaxation rate, 1/T{sub 1}, at temperatures significantly below T{sub c}, which would agree with the suggested extended s-wave symmetry. The deviation of the T{sup 3} behaviour is induced by the pair breaking effect of impurities. Different amounts of impurities would lead to different temperature dependences of 1/T{sub 1}, which would allow to differentiate between d-wave and extended s-wave symmetries.

  2. Systems engineering and technical assistance in support of digital gallium arsenide insertion projects (United States)

    Butler, Daniel H.


    Booz-Allen provided a high level of support, including systems engineering analyses and technical assistance for systems insertion efforts using digital Gallium Arsenide (GaAs). Once insertion candidates were chosen, Booz-Allen supported the insertion efforts by acting as a liaison between the government and GaAs contractors, attending and arranging contractor reviews, providing meeting facilities, and producing presentation materials. A major accomplishment under this contract was the development of a methodology for appraising the likelihood of a successful technology insertion. This methodology is described in detail. Systems analyses and other work performed according to the terms of the statement of work is described as well. The conclusion discusses accomplishments under this project and of the DARPA digital GaAs insertion program generally.

  3. Ultrafast photocurrents and terahertz radiation in gallium arsenide and carbon based nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Prechtel, Hans Leonhard


    In this thesis we developed a measurement technique based on a common pump-probe scheme and coplanar stripline circuits that enables time-resolved photocurrent measurements of contacted nanosystems with a micrometer spatial and a picosecond time resolution. The measurement technique was applied to lowtemperature grown gallium arsenide (LT-GaAs), carbon nanotubes (CNTs), graphene, and p-doped gallium arsenide (GaAs) nanowires. The various mechanisms responsible for the generation of current pulses by pulsed laser excitation were reviewed. Furthermore the propagation of the resulting electromagnetic radiation along a coplanar stripline circuit was theoretically and numerically treated. The ultrafast photocurrent response of low-temperature grown GaAs was investigated. We found two photocurrent pulses in the time-resolved response. We showed that the first pulse is consistent with a displacement current pulse. We interpreted the second pulse to result from a transport current process. We further determined the velocity of the photo-generated charge carriers to exceed the drift, thermal and quantum velocities of single charge carriers. Hereby, we interpreted the transport current pulse to stem from an electron-hole plasma excitation. We demonstrated that the photocurrent response of CNTs comprises an ultrafast displacement current and a transport current. The data suggested that the photocurrent is finally terminated by the recombination lifetime of the charge carriers. To the best of our knowledge, we presented in this thesis the first recombination lifetime measurements of contacted, suspended, CVD grown CNT networks. In addition, we studied the ultrafast photocurrent dynamics of freely suspended graphene contacted by metal electrodes. At the graphene-metal interface, we demonstrated that built-in electric fields give rise to a photocurrent with a full-width-half-maximum of a few picoseconds and that a photo-thermoelectric effect generates a current with a decay time

  4. Gallium arsenide quantum well-based far infrared array radiometric imager (United States)

    Forrest, Kathrine A.; Jhabvala, Murzy D.


    We have built an array-based camera (FIRARI) for thermal imaging (lambda = 8 to 12 microns). FIRARI uses a square format 128 by 128 element array of aluminum gallium arsenide quantum well detectors that are indium bump bonded to a high capacity silicon multiplexer. The quantum well detectors offer good responsivity along with high response and noise uniformity, resulting in excellent thermal images without compensation for variation in pixel response. A noise equivalent temperature difference of 0.02 K at a scene temperature of 290 K was achieved with the array operating at 60 K. FIRARI demonstrated that AlGaAS quantum well detector technology can provide large format arrays with performance superior to mercury cadmium telluride at far less cost.

  5. Crystal growth of semiorganic complex- samarium chloride coordinated thiourea-L-tartaric acid and its studies on structure and optical characteristics (United States)

    Slathia, Goldy; Singh, Harjinder; Ramya, E.; Rao, D. Narayana; Bamzai, K. K.


    The semi-organic complex of samarium chloride coordinated thiourea-L-tartaric acid (SCTLT) has been grown as a single crystal by slow evaporation technique at room temperature. For structural studies, the grown crystal was subjected to single crystal X-ray diffraction and Fourier transform infra-red (FTIR) spectroscopy. Low cut off wavelength and transparent characteristics were explored by UV-VIS optical characterization. Third-order nonlinear optical properties of grown crystal were investigated by Z-scan technique.

  6. In-Plane Electronic Anisotropy of Underdoped ___122___ Fe-Arsenide Superconductors Revealed by Measurements of Detwinned Single Crystals

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, Ian Randal


    The parent phases of the Fe-arsenide superconductors harbor an antiferromagnetic ground state. Significantly, the Neel transition is either preceded or accompanied by a structural transition that breaks the four fold symmetry of the high-temperature lattice. Borrowing language from the field of soft condensed matter physics, this broken discrete rotational symmetry is widely referred to as an Ising nematic phase transition. Understanding the origin of this effect is a key component of a complete theoretical description of the occurrence of superconductivity in this family of compounds, motivating both theoretical and experimental investigation of the nematic transition and the associated in-plane anisotropy. Here we review recent experimental progress in determining the intrinsic in-plane electronic anisotropy as revealed by resistivity, reflectivity and ARPES measurements of detwinned single crystals of underdoped Fe arsenide superconductors in the '122' family of compounds.

  7. Sorption of samarium in iron (II) and (III) phosphates in aqueous systems; Sorcion de samario en fosfatos de hierro (II) y (III) en sistemas acuosos

    Energy Technology Data Exchange (ETDEWEB)

    Diaz F, J.C


    The radioactive residues that are stored in the radioactive confinements its need to stay isolated of the environment while the radioactivity levels be noxious. An important mechanism by which the radioactive residues can to reach the environment, it is the migration of these through the underground water. That it makes necessary the investigation of reactive materials that interacting with those radionuclides and that its are able to remove them from the watery resources. The synthesis and characterization of materials that can be useful in Environmental Chemistry are very important because its characteristics are exposed and its behavior in chemical phenomena as the sorption watery medium is necessary to use it in the environmental protection. In this work it was carried out the sorption study of the samarium III ion in the iron (II) and (III) phosphate; obtaining the sorption isotherms in function of pH, of the phosphate mass and of the concentration of the samarium ion using UV-visible spectroscopy to determine the removal percentage. The developed experiments show that as much the ferrous phosphate as the ferric phosphate present a great affinity by the samarium III, for what it use like reactive material in contention walls can be very viable because it sorption capacity has overcome 90% to pH values similar to those of the underground and also mentioning that the form to obtain these materials is very economic and simple. (Author)

  8. Trace amounts of rare earth elements in high purity samarium oxide by sector field inductively coupled plasma mass spectrometry after separation by HPLC

    Energy Technology Data Exchange (ETDEWEB)

    Pedreira, W.R. [Instituto de Geociencias, Universidade de Brasilia (UnB), 70910-900 Brasilia, DF (Brazil) and Fundacao Jorge Duprat Figueiredo de Seguranca e Medicina do Trabalho (FUNDACENTRO), 05409-002 Sao Paulo, SP (Brazil)]. E-mail:; Queiroz, C.A. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), 05508-900 Sao Paulo, SP (Brazil); Abrao, A. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), 05508-900 Sao Paulo, SP (Brazil); Rocha, S.M. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), 05508-900 Sao Paulo, SP (Brazil); Vasconcellos, M.E. de [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), 05508-900 Sao Paulo, SP (Brazil); Boaventura, G.R. [Instituto de Geociencias, Universidade de Brasilia (UnB), 70910-900 Brasilia, DF (Brazil); Pimentel, M.M. [Instituto de Geociencias, Universidade de Brasilia (UnB), 70910-900 Brasilia, DF (Brazil)


    Today there is an increasing need for high purity rare earth compounds in various fields, the optical, the electronics, the ceramic, the nuclear and geochemistry. Samarium oxide has special uses in glass, phosphors, lasers and thermoelectric devices. Calcium chloride crystals treated with samarium have been employed in lasers, which produce light beams intense enough to burn metal. In general, the inductively coupled plasma mass spectrometry (ICP-MS) presents some advantages for trace element analysis, due to high sensitivity and resolution, when compared with other analytical techniques such as ICP optical emission spectrometry (ICP-OES). In this work, sector field inductively coupled plasma mass spectrometry was used. Sixteen elements (Sc, Y and 14 lanthanides) were determined selectively with the ICP-MS system using a concentration gradient method. The detection limits with the ICP-MS system were about 0.2 (La) pg mL{sup -1} to 8 (Gd) pg mL{sup -1}. The %R.S.D. of the methods varying between 0.9 and 1.5% for a set of five (n = 5) replicates was found for the IPEN's material and for the certificate reference sample. Determination of trace REEs in two high pure samarium oxides samples (IPEN and JMC) was performed. IPEN's material is highly pure (>99.99%) and was successfully analyzed without spectral interference (MO{sup +} and MOH{sup +})

  9. Modelling of the small pixel effect in gallium arsenide X-ray imaging detectors

    CERN Document Server

    Sellin, P J


    A Monte Carlo simulation has been carried out to investigate the small pixel effect in highly pixellated X-ray imaging detectors fabricated from semi-insulating gallium arsenide. The presence of highly non-uniform weighting fields in detectors with a small pixel geometry causes the majority of the induced signal to be generated when the moving charges are close to the pixellated contacts. The response of GaAs X-ray imaging detectors is further complicated by the presence of charge trapping, particularly of electrons. In this work detectors are modelled with a pixel pitch of 40 and 150 mu m, and with thicknesses of 300 and 500 mu m. Pulses induced in devices with 40 mu m pixels are due almost totally to the movement of the lightly-trapped holes and can exhibit significantly higher charge collection efficiencies than detectors with large electrodes, in which electron trapping is significant. Details of the charge collection efficiencies as a function of interaction depth in the detector and of the incident phot...

  10. Transport-reaction model for defect and carrier behavior within displacement cascades in gallium arsenide

    Energy Technology Data Exchange (ETDEWEB)

    Wampler, William R.; Myers, Samuel Maxwell,


    A model is presented for recombination of charge carriers at displacement damage in gallium arsenide, which includes clustering of the defects in atomic displacement cascades produced by neutron or ion irradiation. The carrier recombination model is based on an atomistic description of capture and emission of carriers by the defects with time evolution resulting from the migration and reaction of the defects. The physics and equations on which the model is based are presented, along with details of the numerical methods used for their solution. The model uses a continuum description of diffusion, field-drift and reaction of carriers and defects within a representative spherically symmetric cluster. The initial radial defect profiles within the cluster were chosen through pair-correlation-function analysis of the spatial distribution of defects obtained from the binary-collision code MARLOWE, using recoil energies for fission neutrons. Charging of the defects can produce high electric fields within the cluster which may influence transport and reaction of carriers and defects, and which may enhance carrier recombination through band-to-trap tunneling. Properties of the defects are discussed and values for their parameters are given, many of which were obtained from density functional theory. The model provides a basis for predicting the transient response of III-V heterojunction bipolar transistors to pulsed neutron irradiation.

  11. Fabrication and applications of orientation-patterned gallium arsenide for mid-infrared generation

    Energy Technology Data Exchange (ETDEWEB)

    Grisard, A.; Gutty, F.; Lallier, E. [Thales Research and Technology France, 1 av. Augustin Fresnel, 91767 Palaiseau Cedex (France); Gerard, B. [III-V Lab, 1 av. Augustin Fresnel, 91767 Palaiseau Cedex (France); Jimenez, J. [GdS Optronlab, Fisica Materia Condensada, Universidad de Valladolid, 47011 Valladolid (Spain)


    Nonlinear optical materials play a key role in the development of coherent sources of radiation, by frequency conversion of light from other light sources, e.g. diode, solid-state, and fiber lasers, into spectral ranges where few lasers exist or perform poorly. Based on the principle of the quasi-phase matching, the design and fabrication of orientation-patterned Gallium Arsenide crystals (OP-GaAs) has recently led to demonstrations of second harmonic generation, optical parametric generation, amplification and oscillation from 1 to 12 {mu}m. The most efficient fabrication route for these crystals relies on the use of the near-equilibrium growth process HVPE (Hydride Vapour Phase Epitaxy), by orientation-selective regrowth on OP-GaAs template wafers with a thickness suited to bulk nonlinear optics. This work deals with recent characterizations based on optical experiments and cathodoluminescence measurements, targeting the identification of the main defects, their spatial distribution, and their relation to the optical propagation losses. Latest improvements of the HVPE growth step have enabled to reach an unprecedented level of losses, below 0.016 cm{sup -1}, and a large range of available QPM periods and thickness of structures (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  12. Light transport through disordered layers of dense gallium arsenide submicron particles (United States)

    van der Beek, T.; Barthelemy, P.; Johnson, P. M.; Wiersma, D. S.; Lagendijk, A.


    We present a study of optical transport properties of powder layers with submicrometer, strongly scattering gallium arsenide (GaAs) particles. Uniform, thin samples with well controlled thicknesses were created through the use of varying grinding times, sedimentation fractionation, annealing, and a new sedimentation technique. These fabrication parameters were optimized to produce maximum scattering and minimum absorption. The physical properties were characterized using scanning electron microscopy (SEM) and x-ray diffraction. The optical transport mean-free path, absorption length, and the diffusion constant were determined for each sample using both continuous wave and time-resolved methods. The samples scatter strongly in the near infrared region. Total reflection and transmission measurements show that all of these samples have high absorption. X-ray diffraction results suggest that the source of this absorption is grinding induced strain and/or defects in the crystal structure. For all the different grinded GaAs powder samples that we investigated, the absorption length was less than ten micrometers.

  13. X-Ray diffraction observation of surface damage in chemical-mechanical polished gallium arsenide (United States)

    Wang, V. S.; Matyi, R. J.


    Two novel x-ray diffraction techniques with enhanced surface sensitivity, grazing incidence x-ray diffraction (GIXD) and inclined Bragg plane x-ray diffraction (IBXD), have been used to study surface damage in gallium arsenide (GaAs) due to bromine/methanol (Br2/MeOH) chemical mechanical (CM) polishing. A factorial design was implemented to determine the effects of four polishing variables on the surface structure of GaAs. Precise lattice parameter measurements were made in both the surface regions using GIXD and deeper into subsurface regions using IBXD after the various CM polishing treatments. Bromine concentration was found to primarily affect the surface lattice parameter, while the total polish time influenced both the surface and subsurface lattice parameters in GaAs samples that were heavily damaged prior to CM polishing. The combined effect of polishing pad rotation speed and the force exerted on the sample was found to have a much greater effect on the surface lattice parameter than either variable had alone.

  14. Dynamics and control of gold-encapped gallium arsenide nanowires imaged by 4D electron microscopy. (United States)

    Chen, Bin; Fu, Xuewen; Tang, Jau; Lysevych, Mykhaylo; Tan, Hark Hoe; Jagadish, Chennupati; Zewail, Ahmed H


    Eutectic-related reaction is a special chemical/physical reaction involving multiple phases, solid and liquid. Visualization of a phase reaction of composite nanomaterials with high spatial and temporal resolution provides a key understanding of alloy growth with important industrial applications. However, it has been a rather challenging task. Here, we report the direct imaging and control of the phase reaction dynamics of a single, as-grown free-standing gallium arsenide nanowire encapped with a gold nanoparticle, free from environmental confinement or disturbance, using four-dimensional (4D) electron microscopy. The nondestructive preparation of as-grown free-standing nanowires without supporting films allows us to study their anisotropic properties in their native environment with better statistical character. A laser heating pulse initiates the eutectic-related reaction at a temperature much lower than the melting points of the composite materials, followed by a precisely time-delayed electron pulse to visualize the irreversible transient states of nucleation, growth, and solidification of the complex. Combined with theoretical modeling, useful thermodynamic parameters of the newly formed alloy phases and their crystal structures could be determined. This technique of dynamical control aided by 4D imaging of phase reaction processes on the nanometer-ultrafast time scale opens new venues for engineering various reactions in a wide variety of other systems. Copyright © 2017 the Author(s). Published by PNAS.

  15. Effectiveness of radiation synovectomy with samarium-{sup 153} particulate hydroxyapatite in rheumatoid arthritis patients with knee synovitis: a controlled randomized double-blind trial

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Marla Francisca dos; Furtado, Rita Nely Vilar; Konai, Monique Sayuri; Natour, Jamil, E-mail: jnatour@unifesp.b [Universidade Federal de Sao Paulo (UNIFESP-EPM), Sao Paulo, SP (Brazil). Divisao de Reumatologia; Castiglioni, Mario Luiz Vieira; Marchetti, Renata Rosa [Universidade Federal de Sao Paulo (UNIFESP-EPM), Sao Paulo, SP (Brazil). Divisao de Medicina Nuclear


    Objectives: the aim of the present study was to investigate the effectiveness of Samarium{sup 153}-particulate hydroxyapatite radiation synovectomy in rheumatoid arthritis patients with chronic knee synovitis. Methods: fifty-eight rheumatoid arthritis patients (60 knees) with chronic knee synovitis participated in a controlled double-blinded trial. Patients were randomized to receive either an intra-articular injection with 40 mg triamcinolone hexacetonide alone (TH group) or 40 mg triamcinolone hexacetonide combined with 15 mCi Samarium{sup 153}-particulate hydroxyapatite (Sm/TH group). Blinded examination at baseline (T0) and at 1 (T1), 4 (T4), 12 (T12), 32 (T32), and 48 (T48) weeks post-intervention were performed on all patients and included a visual analog scale for joint pain and swelling as well as data on morning stiffness, flexion, extension, knee circumference, Likert scale of improvement, percentage of improvement, SF-36 generic quality of life questionnaire, Stanford Health Assessment Questionnaire (HAQ), Lequesne index, use of non-steroidal anti-inflammatory drugs or oral corticosteroids, events and adverse effects, calls to the physician, and hospital visits. Results: the sample was homogeneous at baseline, and there were no withdrawals. Improvement was observed in both groups in relation to T0, but no statistically significant differences between groups were observed regarding all variables at the time points studied. The Sm/TH group exhibited more adverse effects at T1 (p<0.05), but these were mild and transitory. No severe adverse effects were reported during follow-up. Conclusion: intra-articular injection of Samarium{sup 153}-particulate hydroxyapatite (15 mCi) with 40 mg of triamcinolone hexacetonide is not superior to triamcinolone hexacetonide alone for the treatment of knee synovitis in patients with rheumatoid arthritis at 1 y of follow-up. (author)

  16. The properties of samarium-doped zinc oxide/phthalocyanine structure for optoelectronics prepared by pulsed laser deposition and organic molecular evaporation

    Czech Academy of Sciences Publication Activity Database

    Novotný, Michal; Marešová, Eva; Fitl, Přemysl; Vlček, Jan; Bergmann, M.; Vondráček, Martin; Yatskiv, Roman; Bulíř, Jiří; Hubík, Pavel; Hruška, Petr; Drahokoupil, Jan; Abdellaoui, N.; Vrňata, M.; Lančok, Ján


    Roč. 122, č. 3 (2016), 1-8, č. článku 225. ISSN 0947-8396 R&D Projects: GA MŠk(CZ) LG15050; GA ČR(CZ) GAP108/11/0958; GA MŠk(CZ) LM2011029; GA ČR(CZ) GA14-10279S; GA MŠk(CZ) 7AMB14FR010 Institutional support: RVO:68378271 ; RVO:67985882 Keywords : samarium-doped zinc oxide zinc/phthalocyanine deposition * evaporation * pulsed laser deposition * thin films Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.455, year: 2016

  17. An Indium Gallium Arsenide Visible/SWIR Focal Plane Array for Low Light Level Imaging (United States)

    Cohen, Marshall J.; Ettenberg, Martin H.; Lange, Michael J.; Olsen, Gregory H.


    PIN photodiodes fabricated from indium gallium arsenide lattice-matched to indium phosphide substrates (In(.53)Ga(.47)As/InP) exhibit low reverse saturation current densities (JD 10(exp 6) omega-sq cm) at T=290K. Backside-illuminated, hybrid-integrated InGaAs FPAs are sensitive from 0.9 micrometers to 1.7 micrometers. 290K detectivities, D(*), greater than 10(exp 14) cm-(square root of Hz/W) are demonstrated. This represents the highest room temperature detectivity of any infrared material. The long wavelength cutoff (1.7 micrometers) makes In(.53)Ga(.47)As an idea match to the available airglow that has major peaks at 1.3 micrometers and 1.6 micrometers. The short wavelength 'cut-on' at 0.9 micrometers is due to absorption in the InP substrate. We will report on new InGaAs FPA epitaxial structures and processing techniques. These have resulted in improved performance in the form of a 10 x increase in detectivity and visible response via removal of the InP substrate. The resulting device features visible and SWIR response with greater than 15% quantum efficiency at 0.5 micrometers while maintaining the long wavelength cutoff. Imaging has been demonstrated under overcast starlight/urban glow conditions with cooling provided by a single stage thermoelectric cooler. Details on the material structure and device fabrication, quantitative characterization of spectral response and detectivity, as well as examples of night vision imagery are presented.

  18. Neutron Activated Samarium-153 Microparticles for Transarterial Radioembolization of Liver Tumour with Post-Procedure Imaging Capabilities (United States)

    Hashikin, Nurul Ab. Aziz; Yeong, Chai-Hong; Abdullah, Basri Johan Jeet; Ng, Kwan-Hoong; Chung, Lip-Yong; Dahalan, Rehir; Perkins, Alan Christopher


    Introduction Samarium-153 (153Sm) styrene divinylbenzene microparticles were developed as a surrogate for Yttrium-90 (90Y) microspheres in liver radioembolization therapy. Unlike the pure beta emitter 90Y, 153Sm possess both therapeutic beta and diagnostic gamma radiations, making it possible for post-procedure imaging following therapy. Methods The microparticles were prepared using commercially available cation exchange resin, Amberlite IR-120 H+ (620–830 μm), which were reduced to 20–40 μm via ball mill grinding and sieve separation. The microparticles were labelled with 152Sm via ion exchange process with 152SmCl3, prior to neutron activation to produce radioactive 153Sm through 152Sm(n,γ)153Sm reaction. Therapeutic activity of 3 GBq was referred based on the recommended activity used in 90Y-microspheres therapy. The samples were irradiated in 1.494 x 1012 neutron flux for 6 h to achieve the nominal activity of 3.1 GBq.g-1. Physicochemical characterisation of the microparticles, gamma spectrometry, and in vitro radiolabelling studies were carried out to study the performance and stability of the microparticles. Results Fourier Transform Infrared (FTIR) spectroscopy of the Amberlite IR-120 resins showed unaffected functional groups, following size reduction of the beads. However, as shown by the electron microscope, the microparticles were irregular in shape. The radioactivity achieved after 6 h neutron activation was 3.104 ± 0.029 GBq. The specific activity per microparticle was 53.855 ± 0.503 Bq. Gamma spectrometry and elemental analysis showed no radioactive impurities in the samples. Radiolabelling efficiencies of 153Sm-Amberlite in distilled water and blood plasma over 48 h were excellent and higher than 95%. Conclusion The laboratory work revealed that the 153Sm-Amberlite microparticles demonstrated superior characteristics for potential use in hepatic radioembolization. PMID:26382059

  19. Monte Carlo simulation to calculate the rate of 137Cs gamma rays dispersion in gallium arsenide compound (United States)

    Haider, F. A.; Chee, F. P.; Abu Hassan, H.; Saafie, S.


    Radiation effects on Gallium Arsenide (GaAs) have been tested by exposing samples to Cesium-137 (137Cs) gamma rays. Gallium Arsenide is a basic photonic material for most of the space technology communication, and, therefore, lends itself for applications where this is of concern. Monte Carlo simulations of interaction between direct ionizing radiation and GaAs structure have been performed in TRIM software, being part of SRIM 2011 programming package. An adverse results shows that energy dose does not govern the displacement of atoms and is dependent on the changes of incident angles and thickness of the GaAs target element. At certain thickness of GaAs and incident angle of 137Cs ion, the displacement damage is at its highest value. From the simulation result, it is found that if the thickness of the GaAs semiconductor material is small compared to the projected range at that particular incident energy, the energy loss in the target GaAs will be small. Hence, when the depth of semiconductor material is reduced, the range of damage in the target also decreased. However, the other factors such as quantum size effect, the energy gap between the conduction and valence band must also be taken into consideration when the dimension of the device is diminished.

  20. Preparation and examination of properties of samarium-153-EDTMP complex; Otrzymywanie chelatu kwasu etylenodiaminotetrametylenofosfonowego (EDTMP) z samarem-153 i badanie jego wlasciwosci

    Energy Technology Data Exchange (ETDEWEB)

    Nowak, M. [Institute of Atomic Energy, Otwock-Swierk (Poland); Garnuszek, P.; Lukasiewicz, A.; Wozniak, I.; Zulczyk, W. [Osrodek Badawczo-Rozwojowy Izotopow, Otwock-Swierk (Poland); Licinska, I. [Instytut Lekow, Warsaw (Poland)


    Preparation and properties of ethylenediaminetetramethylenephosphonic acid (EDTMP) as well as some properties of {sup 153}Sm-EDTMP chelate have been examined. The chelate formed by samarium-153 (46.3 h, {beta}{sup -}-decay) with EDTMP exhibits high bone uptake and can be used for treatment of disseminated, painful skeletal metastases. The purity and stability of solutions of {sup 153}Sm-EDTMP chelate were examined in a broad range of samarium concentration and {sup 153}Sm specific activity. The complex under study was examined by radio-TLC, -electrophoresis and radio-HPLC. The results obtained suggest the small size of molecules of {sup 153}Sm-EDTMP chelate as compared with molecules of ``free``EDTMP. The results of biodistribution of {sup 153}Sm-EDTMP determined in rats indicate the quick blood clearance, high deposition of radioactivity in bone and quick excretion of radioactivity into urine. No specific uptake of {sup 153}Sm-EDTMP in extra-skeletal organs was found. (author). 42 refs, 13 figs, 22 tabs.

  1. Recovery of gallium and arsenic from gallium arsenide waste in the electronics industry

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Wei-Ting [Doctoral Program, Graduate School of Engineering Science and Technology, National Yunlin University of Science and Technology (NYUST), Douliou, Yunlin (China); Tsai, Lung-Chang; Shu, Chi-Min [Department of Safety, Health, and Environmental Engineering, NYUST, Douliou, Yunlin (China); Tsai, Fang-Chang [Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, Faculty of Materials Science and Engineering, Hubei University, Wuhan (China)


    Gallium arsenide (GaAs) has both high saturated electron velocity and high electron mobility, making it useful as a semiconductor material in a variety of applications, including light-emitting diodes (LEDs), integrated circuits (ICs), and microwave appliances. A side effect of the use of gallium (Ga) is the production of a relatively large amount of hazardous waste. This study aimed at the recovery of Ga and arsenic (As) from GaAs waste using hydrometallurgical methods involving leaching and coagulation and a dry annealing process that involves annealing, vacuum separation, and sublimation by heating. Our research has shown that GaAs can be leached using nitric acid (HNO{sub 3}) to obtain 100% Ga and As with a leaching solution at pH 0.1, with subsequent adjustment of the leaching solution to pH 3 with sodium hydroxide (NaOH). Another method used a leaching solution at pH 2, then adjusting to pH 11 using NaOH. Ferric hydroxide (FeO(OH)) was added at 90 C after NaOH was added to the leaching solution. At pH 2 and 11, 55.5 and 21.9% of the As could be removed from the hazardous waste, respectively. The Ga could also be precipitated. When GaAs powder was heated to 1000 C over 3 h, 100% As removal was achieved, and 92.6% of the Ga was removed by formation of 99.9% gallium trioxide (Ga{sub 2}O{sub 3}). Arsenic was vaporized when the temperature was elevated to 1000 C, allowing arsenic trioxide (As{sub 2}O{sub 3}) to condense with 99.2% purity. The Ga{sub 2}O{sub 3} powder produced was then dissolved and electrolyzed, allowing for 95.9% recovery of Ga with a purity of 99.9%. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  2. The Level of Europium-154 Contaminating Samarium-153-EDTMP Activates the Radiation Alarm System at the US Homeland Security Checkpoints

    Directory of Open Access Journals (Sweden)

    Mohammed Najeeb Al Hallak


    Full Text Available 153Sm-EDTMP is a radiopharmaceutical composed of EDTMP (ethylenediamine-tetramethylenephosphonate and Samarium-153 [1]. 153Sm-EDTMP has an affinity for skeletal tissue and concentrates in areas with increased bone turnover; thus, it is successfully used in relieving pain related to diffuse bone metastases [1]. The manufacturing process of 153Sm-EDTMP leads to contamination with 154Eu (Europium-154 [2]. A previous study only alluded to the retention of 154Eu in the bones after receiving treatment with 153Sm-EDTMP [2]. Activation of the alarm at security checkpoints after 153Sm-EDTMP therapy has not been previously reported. Two out of 15 patients who received 153Sm-EDTMP at Roger Maris Cancer Center (Fargo, N. Dak., USA activated the radiation activity sensors while passing through checkpoints; one at a US airport and the other while crossing theAmerican-Canadian border. We assume that the 154Eu which remained in the patients’ bones activated the sensors. Methods: In order to investigate this hypothesis, we obtained the consent from 3 of our 15 patients who received 153Sm-EDTMP within the previous 4 months to 2 years, including the patient who had activated the radiation alarm at the airport. The patients were scanned with a handheld detector and a gamma camera for energies from 511 keV to 1.3 MeV. Results: All three patients exhibited identical spectral images, and further analysis showed that the observed spectra are the result of 154Eu emissions. Conclusion: Depending on the detection thresholds and windows used by local and federal authorities, the remaining activity of 154Eu retained in patients who received 153Sm-EDTMP could be sufficient enough to increase the count rates above background levels and activate the sensors. At Roger Maris Cancer Center, patients are now informed of the potential consequences of 153Sm-EDTMP therapy prior to initiating treatment. In addition, patients treated with 153Sm-EDTMP at Roger Maris Cancer Center

  3. The Level of Europium-154 Contaminating Samarium-153-EDTMP Activates the Radiation Alarm System at the US Homeland Security Checkpoints. (United States)

    Najeeb Al Hallak, Mohammed; McCurdy, Matt; Zouain, Nicolas; Hayes, Justin


    (153)Sm-EDTMP is a radiopharmaceutical composed of EDTMP (ethylenediamine-tetramethylenephosphonate) and Samarium-153 [1]. (153)Sm-EDTMP has an affinity for skeletal tissue and concentrates in areas with increased bone turnover; thus, it is successfully used in relieving pain related to diffuse bone metastases [1]. The manufacturing process of (153)Sm-EDTMP leads to contamination with (154)Eu (Europium-154) [2]. A previous study only alluded to the retention of (154)Eu in the bones after receiving treatment with (153)Sm-EDTMP [2]. Activation of the alarm at security checkpoints after (153)Sm-EDTMP therapy has not been previously reported. Two out of 15 patients who received (153)Sm-EDTMP at Roger Maris Cancer Center (Fargo, N. Dak., USA) activated the radiation activity sensors while passing through checkpoints; one at a US airport and the other while crossing the American-Canadian border. We assume that the (154)Eu which remained in the patients' bones activated the sensors. METHODS: In order to investigate this hypothesis, we obtained the consent from 3 of our 15 patients who received (153)Sm-EDTMP within the previous 4 months to 2 years, including the patient who had activated the radiation alarm at the airport. The patients were scanned with a handheld detector and a gamma camera for energies from 511 keV to 1.3 MeV. RESULTS: All three patients exhibited identical spectral images, and further analysis showed that the observed spectra are the result of (154)Eu emissions. CONCLUSION: Depending on the detection thresholds and windows used by local and federal authorities, the remaining activity of (154)Eu retained in patients who received (153)Sm-EDTMP could be sufficient enough to increase the count rates above background levels and activate the sensors. At Roger Maris Cancer Center, patients are now informed of the potential consequences of (153)Sm-EDTMP therapy prior to initiating treatment. In addition, patients treated with (153)Sm-EDTMP at Roger Maris Cancer

  4. Structural and electrooptical characteristics of quantum dots emitting at 1.3 μm on gallium arsenide

    DEFF Research Database (Denmark)

    Fiore, A.; Oesterle, U.; Stanley, R.P.


    of approximate to1.8 ns is measured at room temperature, which confirms the excellent structural quality. A fast PL rise (tau (rise) = 10 +/-2 ps) is observed at all temperatures, indicating the potential for high-speed modulation. High-efficiency light-emitting diodes (LEDs) based on these dots are demonstrated......We present a comprehensive study of the structural and emission properties of self-assembled InAs quantum dots emitting at 1.3 mum. The dots are grown by molecular beam epitaxy on gallium arsenide substrates. Room-temperature emission at 1.3 mum is obtained by embedding the dots in an InGaAs layer...

  5. Photodetectors based on carbon nanotubes deposited by using a spray technique on semi-insulating gallium arsenide

    Directory of Open Access Journals (Sweden)

    Domenico Melisi


    Full Text Available In this paper, a spray technique is used to perform low temperature deposition of multi-wall carbon nanotubes on semi-insulating gallium arsenide in order to obtain photodectors. A dispersion of nanotube powder in non-polar 1,2-dichloroethane is used as starting material. The morphological properties of the deposited films has been analysed by means of electron microscopy, in scanning and transmission mode. Detectors with different layouts have been prepared and current–voltage characteristics have been recorded in the dark and under irradiation with light in the range from ultraviolet to near infrared. The device spectral efficiency obtained from the electrical characterization is finally reported and an improvement of the photodetector behavior due to the nanotubes is presented and discussed.

  6. Characteristics of trap-filled gallium arsenide photoconductive switches used in high gain pulsed power applications

    Energy Technology Data Exchange (ETDEWEB)



    The electrical properties of semi-insulating (SI) Gallium Arsenide (GaAs) have been investigated for some time, particularly for its application as a substrate in microelectronics. Of late this material has found a variety of applications other than as an isolation region between devices, or the substrate of an active device. High resistivity SI GaAs is increasingly being used in charged particle detectors and photoconductive semiconductor switches (PCSS). PCSS made from these materials operating in both the linear and non-linear modes have applications such as firing sets, as drivers for lasers, and in high impedance, low current Q-switches or Pockels cells. In the non-linear mode, it has also been used in a system to generate Ultra-Wideband (UWB) High Power Microwaves (HPM). The choice of GaAs over silicon offers the advantage that its material properties allow for fast, repetitive switching action. Furthermore photoconductive switches have advantages over conventional switches such as improved jitter, better impedance matching, compact size, and in some cases, lower laser energy requirement for switching action. The rise time of the PCSS is an important parameter that affects the maximum energy transferred to the load and it depends, in addition to other parameters, on the bias or the average field across the switch. High field operation has been an important goal in PCSS research. Due to surface flashover or premature material breakdown at higher voltages, most PCSS, especially those used in high power operation, need to operate well below the inherent breakdown voltage of the material. The lifetime or the total number of switching operations before breakdown, is another important switch parameter that needs to be considered for operation at high bias conditions. A lifetime of {approximately} 10{sup 4} shots has been reported for PCSS's used in UWB-HPM generation [5], while it has exceeded 10{sup 8} shots for electro-optic drivers. Much effort is currently

  7. Cascaded Orientation-Patterned Gallium Arsenide Optical Parametric Oscillator for Improved Longwave Infrared Conversion Efficiency (United States)

    Feaver, Ryan K.

    Optical parametric oscillators (OPOs) utilizing quasi-phase matched materials offer an appealing alternative to direct laser sources. Quasi-phase matched materials provide a useful alternative to traditional birefringent nonlinear optical materials and through material engineering, higher nonlinear coefficients can now be accessed. Orientation patterned gallium arsenide (OPGaAs) is an ideal material because of its broad IR transmission and large nonlinear coefficient. In contrast to ferroelectric materials, such as lithium niobate, where the pattern is fabricated through electric poling, zincblende materials, like OPGaAs, are grown epitaxially with the designed pattern. Generating longwave output from a much shorter pump wavelength, however, is relatively inefficiency due to the large quantum defect when compared to similar devices operating in the 3 - 5 mum regime. One method to increase pump to idler conversion efficiency is to recycle the undesired and higher energy signal photons into additional idler photons via a second nonlinear stage. An external amplifier stage can be utilized, where the signal and idler from the OPO are sent to a second nonlinear crystal in which the idler is amplified at the expense of the signal. Alternatively, the second crystal can be placed within the original OPO cavity where the signal from the first-stage acts as the pump for the second crystal and the resonant intensity of the signal is higher. Pumping the second crystal within the OPO should lead to higher conversion efficiency into the longwave idler. The grating period needed for the second crystal to use the signal from the first crystal to produce additional idler has the fortuitous advantage that it will not phase match to the original pump wavelength, avoiding unwanted nonlinear interactions. Therefore, a simple linear cavity can be utilized where the pump from the first-stage will simply propagate through the second crystal without undesired results. Without this feature

  8. Formation of a new adduct based on fullerene tris-malonate samarium salt C60-[C60(=C(COO)2)3]Sm2 (United States)

    Petrov, A. A.; Keskinov, V. A.; Semenov, K. N.; Charykov, N. A.; Letenko, D. G.; Nikitin, V. A.


    Gram quantities of a new adduct based on light fullerene tris-malonate samarium salt C60 [C60(=C(COO)2)3]Sm2 are obtained via the reaction of ion exchange. The obtained adduct is studied by means of electron and infrared spectroscopy, X-ray and elemental analysis, electron microscopy, and thermogravimetry. The polythermal solubility of [C60(=C(COO)2)3]Sm2 in water is determined in ampoules via saturation within 20-70°C. The composition of crystalline hydrate [C60(=C(COO)2)3]Sm2 · 36H2O, which exists in equilibrium with the saturated solution, is estimated.

  9. Biodistribution of samarium-153-EDTMP in rats treated with docetaxel Biodistribuição de EDTMP-153-samário em ratos tratados com docetaxel

    Directory of Open Access Journals (Sweden)

    Arthur Villarim Neto


    Full Text Available PURPOSE: Many patients with metastatic bone disease have to use radiopharmaceuticals associated with chemotherapy to relieve bone pain. The aim of this study was to assess the influence of docetaxel on the biodistribution of samarium-153-EDTMP in bones and other organs of rats. METHODS: Wistar male rats were randomly allocated into 2 groups of 6 rats each. The DS (docetaxel/samarium group received docetaxel (15 mg/kg intraperitoneally in two cycles 11 days apart. The S (samarium/control group rats were not treated with docetaxel. Nine days after chemotherapy, all the rats were injected with 0.1ml of samarium-153-EDTMP via orbital plexus (25µCi. After 2 hours, the animals were killed and samples of the brain, thyroid, lung, heart, stomach, colon, liver, kidney and both femurs were removed. The percentage radioactivity of each sample (% ATI/g was determined in an automatic gamma-counter (Wizard-1470, Perkin-Elmer, Finland. RESULTS: On the 9th day after the administration of the 2nd chemotherapy cycle, the rats had a significant weight loss (314.50±22.09g compared (pOBJETIVO: Muitos pacientes com metástases ósseas são tratados com radiofármacos associados com quimioterapia para alívio da dor óssea. O objetivo do trabalho foi estudar a influência do docetaxel na biodistribuição do EDTMP-153-samário nos ossos e outros órgãos de ratos. MÉTODOS: Ratos Wistar foram aleatoriamente alocados em 2 grupos de 6 animais cada. O grupo DS (docetaxel/samário recebeu docetaxel (15 mg/kg intraperitoneal em dois ciclos com 11 dias de intervalo. Os ratos do grupo S (samário/controle não foram tratados com docetaxel. Nove dias após a quimioterapia, todos os animais receberam 0,1ml de EDTMP-153-samário via plexo orbital (25µCi. Após 2 horas, os animais foram mortos e feitas biópsias de cérebro, tireóide, pulmão, coração, estômago, cólon, fígado, rim e fêmures. O percentual de radioatividade por grama (%ATI/g de tecido de cada bi

  10. Marrow irradiation with high-dose 153Samarium-EDTMP followed by chemotherapy and hematopoietic stem cell infusion for acute myelogenous leukemia. (United States)

    Rodriguez, Vilmarie; Anderson, Peter M; Litzow, Mark R; Erlandson, Linda; Trotz, Barbara A; Arndt, Carola A S; Khan, Shakila P; Wiseman, Gregory A


    In four patients, aged 15 - 20 years, with high-risk acute myeloid leukemia (AML), high-dose samarium 153-labelled ethylenediaminetetramethylenephosphonate (153Sm-EDTMP) was used for targeted marrow irradiation before preparative chemotherapy conditioning regimens and allogeneic (three patients) or autologous (one patient) hematopoietic stem cell transplantation. The dose of 153Sm-EDTMP was 703 MBq/kg (n = 1) or 1110 MBq/kg (n = 3). No side-effects occurred during the 30-min infusion of 153Sm-EDTMP. Samarium - melphalan regimens were given to three patients; one had 153Sm-EDTMP - busulfan + cyclophosphamide. Total body radioactivity was below the 133 MBq safe limit before infusion of stem cells (day 14 after 153Sm-EDTMP). No hemorrhagic cystitis, nephrotoxicity or serious infections occurred. Leukocyte engraftment (white blood cell count >0.5 x 10(9)/l) occurred between 12 and 23 days after stem cell infusion (mean of 17 days). Complete cytogenetic and morphologic remission of AML was evident on follow-up marrow aspirate and biopsy specimens from all patients. In two of the four study patients, the disease remains in complete remission and the patients have an excellent quality of life (Eastern Cooperative Oncology Group performance status 0; no medications) and no organ toxicity more than 2 years and more than 4 years, respectively, after their blood and bone marrow transplantations. Thus, in adolescents and adults, 153Sm-EDTMP may provide a relatively simple and effective means for using irradiation to eliminate AML within the marrow.

  11. Electron tunneling transport across heterojunctions between europium sulfide and indium arsenide (United States)

    Kallaher, Raymond L.

    This dissertation presents research done on utilizing the ferromagnetic semiconductor europium sulfide (EuS) to inject spin polarized electrons into the non-magnetic semiconductor indium arsenide (InAs). There is great interest in expanding the functionality of modern day electronic circuits by creating devices that depend not only on the flow of charge in the device, but also on the transport of spin through the device. Within this mindset, there is a concerted effort to establish an efficient means of injecting and detecting spin polarized electrons in a two dimensional electron system (2DES) as the first step in developing a spin based field effect transistor. Thus, the research presented in this thesis has focused on the feasibility of using EuS, in direct electrical contact with InAs, as a spin injecting electrode into an InAs 2DES. Doped EuS is a concentrated ferromagnetic semiconductor, whose conduction band undergoes a giant Zeeman splitting when the material becomes ferromagnetic. The concomitant difference in energy between the spin-up and spin-down energy bands makes the itinerant electrons in EuS highly spin polarized. Thus, in principle, EuS is a good candidate to be used as an injector of spin polarized electrons into non-magnetic materials. In addition, the ability to adjust the conductivity of EuS by varying the doping level in the material makes EuS particularly suited for injecting spins into non-magnetic semiconductors and 2DES. For this research, thin films of EuS have been grown via e-beam evaporation of EuS powder. This growth technique produces EuS films that are sulfur deficient; these sulfur vacancies act as intrinsic electron donors and the resulting EuS films behave like heavily doped ferromagnetic semiconductors. The growth parameters and deposition procedures were varied and optimized in order to fabricate films that have minimal crystalline defects. Various properties and characteristics of these EuS films were measured and compared to

  12. Synthesis of samarium complexes with the derivative binder of Schiff Quinolinic base. Characterization and photophysical study; Sintesis de complejos de samario con el ligante derivado de base de Schiff Quinolinica. Caracterizacion y estudio fotofisico

    Energy Technology Data Exchange (ETDEWEB)

    Lucas H, J.


    In this work we determined the metal: binder stoichiometry of the species formed during the UV/Vis spectrophotometric titration of the derivative binder of Schiff quinolinic base, L1 with the samarium nitrate pentahydrate in methanol. Statistical analysis of the data allowed proposing the metal: binder stoichiometry for the synthesis of the complexes which was one mole of samarium salt by 2.5 moles of binder and thus favor the formation of complexes with 1M: 1L and 1M: 2L stoichiometries. They were synthesized in aqueous-organic medium (water-ethanol), isolated and purified two complexes with stoichiometry 1 Sm: 1 L1, complex 1 and 1 Sm: 2 L1, complex 2. The overall yield of the reaction was 76%. The characterization of the formed complexes was performed by visible ultraviolet spectrometry (UV/Vis), nuclear magnetic resonance, X-ray photoelectron spectroscopy (XP S), thermal gravimetric analysis with differential scanning calorimetry (TGA/DSC), and radial distribution function. These complexes were studied by fluorescence and emission phosphorescence at variable temperature. Spectroscopic techniques used in both solution and solid demonstrated the formation and stability of these complexes. In addition XP S indicated that in both complexes the samarium retains its oxidation state 3+. Luminescence studies indicated that there is intra-binding charge transfer which decreases the transfer of light energy from the binder to the samarium. Based on the experimental results, L1 binder molecules and complexes 1 and 2 were modeled that demonstrated the proposed Nc for each complex, as well as allowed to visualize the structural arrangement of the molecules, complexes and binder. (Author)

  13. Point defects and electric compensation in gallium arsenide single crystals; Punktdefekte und elektrische Kompensation in Galliumarsenid-Einkristallen

    Energy Technology Data Exchange (ETDEWEB)

    Kretzer, Ulrich


    In the present thesis the point-defect budget of gallium arsenide single crystals with different dopings is studied. It is shown, in which way the concentration of the single point defects depende on the concentration of the dopants, the stoichiometry deviation, and the position of the Fermi level. For this serve the results of the measurement-technical characterization of a large number of samples, in the fabrication of which these parameters were directedly varied. The main topic of this thesis lies in the development of models, which allow a quantitative description of the experimentally studied electrical and optical properties of gallium arsenide single crystals starting from the point-defect concentrations. Because from point defects charge carriers can be set free, their concentration determines essentially the charge-carrier concentration in the bands. In the ionized state point defects act as scattering centers for free charge carriers and influence by this the drift mobility of the charge carriers. A thermodynamic modeling of the point-defect formation yields statements on the equilibrium concentrations of the point defects in dependence on dopant concentration and stoichiometry deviation. It is show that the electrical properties of the crystals observed at room temperature result from the kinetic suppression of processes, via which the adjustment of a thermodynamic equilibrium between the point defects is mediated. [German] In der vorliegenden Arbeit wird der Punktdefekthaushalt von Galliumarsenid-Einkristallen mit unterschiedlichen Dotierungen untersucht. Es wird gezeigt, in welcher Weise die Konzentration der einzelnen Punktdefekte von der Konzentration der Dotierstoffe, der Stoechiometrieabweichung und der Lage des Ferminiveaus abhaengen. Dazu dienen die Ergebnisse der messtechnischen Charakterisierung einer grossen Anzahl von Proben, bei deren Herstellung diese Parameter gezielt variiert wurden. Der Schwerpunkt der Arbeit liegt in der Entwicklung

  14. A novel three-jet microreactor for localized metal-organic chemical vapour deposition of gallium arsenide: design and simulation (United States)

    Konakov, S. A.; Krzhizhanovskaya, V. V.


    We present a novel three-jet microreactor design for localized deposition of gallium arsenide (GaAs) by low-pressure Metal-Organic Chemical Vapour Deposition (MOCVD) for semiconductor devices, microelectronics and solar cells. Our approach is advantageous compared to the standard lithography and etching technology, since it preserves the nanostructure of the deposited material, it is less time-consuming and less expensive. We designed two versions of reactor geometry with a 10-micron central microchannel for precursor supply and with two side jets of a dilutant to control the deposition area. To aid future experiments, we performed computational modeling of a simplified-geometry (twodimensional axisymmetric) microreactor, based on Navier-Stokes equations for a laminar flow of chemically reacting gas mixture of Ga(CH3)3-AsH3-H2. Simulation results show that we can achieve a high-rate deposition (over 0.3 μm/min) on a small area (less than 30 μm diameter). This technology can be used in material production for microelectronics, optoelectronics, photovoltaics, solar cells, etc.

  15. A final report for Gallium arsenide P-I-N detectors for high-sensitivity imaging of thermal neutrons

    CERN Document Server

    Vernon, S M


    This SBIR Phase I developed neutron detectors made FR-om gallium arsenide (GaAs) p-type/ intrinsic/n-type (P-I-N) diodes grown by metalorganic chemical vapor deposition (MOCVD) onto semi-insulating (S1) bulk GaAs wafers. A layer of isotonically enriched boron-10 evaporated onto the FR-ont surface serves to convert incoming neutrons into lithium ions and a 1.47 MeV alpha particle which creates electron-hole pairs that are detected by the GaAs diode. Various thicknesses of ''intrinsic'' (I) undoped GaAs were tested, as was use of a back-surface field (BSF) formed FR-om a layer of Al sub x Ga sub 1 sub - sub x As. Schottky-barrier diodes formed FR-om the same structures without the p+ GaAs top layer were tested as a comparison. After mesa etching and application of contacts, devices were tested in visible light before application of the boron coating. Internal quantum efficiency (IQE) of the best diode near the GaAs bandedge is over 90%. The lowest dark current measured is 1 x 10 sup - sup 1 sup 2 amps at -1 V o...

  16. Non-local exchange correlation functionals impact on the structural, electronic and optical properties of III-V arsenides

    KAUST Repository

    Anua, N. Najwa


    Exchange correlation (XC) energy functionals play a vital role in the efficiency of density functional theory (DFT) calculations, more soundly in the calculation of fundamental electronic energy bandgap. In the present DFT study of III-arsenides, we investigate the implications of XC-energy functional and corresponding potential on the structural, electronic and optical properties of XAs (X = B, Al, Ga, In). Firstly we report and discuss the optimized structural lattice parameters and the band gap calculations performed within different non-local XC functionals as implemented in the DFT-packages: WIEN2k, CASTEP and SIESTA. These packages are representative of the available code in ab initio studies. We employed the LDA, GGA-PBE, GGA-WC and mBJ-LDA using WIEN2k. In CASTEP, we employed the hybrid functional, sX-LDA. Furthermore LDA, GGA-PBE and meta-GGA were employed using SIESTA code. Our results point to GGA-WC as a more appropriate approximation for the calculations of structural parameters. However our electronic bandstructure calculations at the level of mBJ-LDA potential show considerable improvements over the other XC functionals, even the sX-LDA hybrid functional. We report also the optical properties within mBJ potential, which show a nice agreement with the experimental measurements in addition to other theoretical results. © 2013 IOP Publishing Ltd.

  17. Pyrolysis result of polyethylene waste as fuel for solid oxide fuel cell with samarium doped-ceria (SDC)-carbonate as electrolyte (United States)

    Syahputra, R. J. E.; Rahmawati, F.; Prameswari, A. P.; Saktian, R.


    In this research, the result of pyrolysis on polyethylene was used as fuel for a solid oxide fuel cell (SOFC). The pyrolysis result is a liquid which consists of hydrocarbon chains. According to GC-MS analysis, the hydrocarbons mainly consist of C7 to C20 hydrocarbon chain. Then, the liquid was applied to a single cell of NSDC-L | NSDC | NSDC-L. NSDC is a composite SDC (samarium doped-ceria) with sodium carbonate. Meanwhile, NSDC-L is a composite of NSDC with LiNiCuO (LNC). NSDC and LNC were analyzed by X-ray diffraction to understand their crystal structure. The result shows that presence of carbonate did not change the crystal structure of SDC. SEM EDX analysis for fuel cell before and after being loaded with polyethylene oil to get information of element diffusion to the electrolyte. Meanwhile, the conductivity properties were investigated through impedance measurement. The presence of carbonate even increases the electrical conductivity. The single cell test with the pyrolysis result of polyethylene at 300 - 600 °C, found that the highest power density is at 600 °C with the maximum power density of 0.14 mW/cm2 and open circuit voltage of 0.4 Volt. Elemental analysis at three point spots of single cell NDSC-L |NSDC|NSDC-L found that a migration of ions was occurred during fuel operation at 300 - 600 °C.

  18. Effects of some rare earth and carbonate-based co-dopants on structural and electrical properties of samarium doped ceria (SDC) electrolytes for solid oxide fuel cells (United States)

    Anwar, Mustafa; Khan, Zuhair S.; Mustafa, Kamal; Rana, Akmal


    In the present study, samarium doped ceria (SDC) and SDC-based composite with the addition of K2CO3 were prepared by co-precipitation route and effects of pH of the solution and calcination temperature on microstructure of SDC and SDC-K2CO3, respectively, were investigated. Furthermore, experimentation was performed to investigate into the ionic conductivity of pure SDC by co-doping with yttrium i.e., YSDC, XRD and SEM studies show that the crystallite size and particle size of SDC increases with the increase in pH. The SEM images of all the samples of SDC synthesized at different pH values showed the irregular shaped and dispersed particles. SDC-K2CO3 was calcined at 600∘C, 700∘C and 800∘C for 4 h and XRD results showed that crystallite size increases while lattice strain, decreases with the increase in calcination temperature and no peaks were detected for K2CO3 as it is present in an amorphous form. The ionic conductivity of the electrolytes increases with the increase in temperature and SDC-K2CO3 shows the highest value of ionic conductivity as compared to SDC and YSDC. Chemical compatibility tests were performed between the co-doped electrolyte and lithiated NiO cathode at high temperature. It revealed that the couple could be used up to the temperature of 700∘C.

  19. Calculation of the Dose of Samarium-153-Ethylene Diamine Tetramethylene Phosphonate (153Sm-EDTMP as a Radiopharmaceutical for Pain Relief of bone Metastasis

    Directory of Open Access Journals (Sweden)

    Fatemeh Razghandi


    Full Text Available Introduction One of the important applications of nuclear physics in medicine is the use of radioactive elements as radiopharmaceuticals. Metastatic bone disease is the most common form of malignant bone tumors. Samarium-153-ethylene diamine tetramethylene phosphonate (153Sm-EDTMP as a radiopharmaceutical is used for pain palliation. This radiopharmaceutical usually emits beta particles, which have a high uptake in bone tissues. The purpose of this study was to calculate the radiation dose distribution of 153Sm-EDTMP in bone and other tissues, using MCNPX Monte Carlo code in the particle transport model. Materials and Methods Dose delivery to the bone was simulated by seeking radiopharmaceuticals on the bone surface. The phantom model had a simple cylindrical geometry and included bone, bone marrow, and soft tissue. Results The simulation results showed that a significant amount of radiation dose was delivered to the bone by the use of this radiopharmaceutical. Conclusion Thebone acted as a fine protective shield against rays for the bone marrow. Therefore, the trivial absorbed dose by the bone marrow caused less damage to bone-making cells. Also, the high absorbed dose of the bone could destroy cancer cells and relieve the pain in the bone.

  20. Synthesis, quality control and biological evaluation of tris[(1,10-phenanthroline)[{sup 153}Sm]samarium(III)]trithiocyanate complex as a therapeutic agent

    Energy Technology Data Exchange (ETDEWEB)

    Naseri, Z.; Kharat, A. Nemati [Tehran Univ. (Iran, Islamic Republic of). Inorganic Chemistry Dept.; Hakimi, A. [Islamic Azad Univ., Tehran (Iran, Islamic Republic of). Dept. of Nuclear Engineering, Science and Research Branch; Jalilian, A.R.; Shirvani-Arani, S.; Bahrami-Samani, A.; Ghannadi-Maragheh, M. [Nuclear Science and Technology Research Institute (NSTRI), Tehran (IR). Radiopharmaceutical Research and Development Lab (RRDL)


    Therapeutic radiopharmaceuticals are designed to deliver high doses of radiation to selected target organs or tissues with an aim of minimizing unwanted radiation to surrounding healthy tissue. In this work, [tris(1,10-phenanthroline)[{sup 153}Sm]samarium(III)]trithiocyanate ({sup 153}Sm-TPTTC) was developed for possible therapeutic properties. The cold compound, i.e. {sup nat}Sm-TPTTC was prepared and characterized by IR, UV, mass and {sup 1}H-NMR spectroscopy. {sup 153}Sm-TPTTC was prepared in two steps using [{sup 153}Sm]SmCl{sub 3}, obtained by neutron activation of an enriched {sup 152}Sm sample. Stability tests, partition coefficient determination, toxicity tests and biodistribution studies of the complex in wild-type and fibrosarcoma-bearing mice were determined. The radiolabeled complex was prepared in high radiochemical purity (> 99% precipitation method) and specific activity of 278 GBq/mmol and demonstrated significant stability at 4, 25 and 37 C (in presence of human serum). Initial complex biodistribution data showed significant liver accumulation in wild-type mice and significant tumor accumulation in fibrosarcoma-bearing mice with tumor:blood and tumor:muscle ratios of 3.55 (2 h) and 38.26 (96 h) respectively. {sup 153}Sm-TPTTC properties suggest an efficient tumor targeting agent with high tumor-avidity. Further investigation on the therapeutic properties must be conducted. (orig.)

  1. Retention capacity of samarium (III) in zircon for it possible use in retaining walls for confinement of nuclear residues; Capacidad de retencion de samario (III) en circon para su posible uso en barreras de contencion para confinamiento de residuos nucleares

    Energy Technology Data Exchange (ETDEWEB)

    Garcia G, N


    Mexico, as country that produces part of its electric power by nuclear means, should put special emphasis in the development of technologies guided to the sure and long term confinement of the high level nuclear residuals. This work studies the capacity that has the natural zircon to retain to the samarium (III) in solution, by what due, firstly, to characterize the zircon for technical instrumental to determine the purity and characteristic of the mineral in study. The instrumental techniques that were used to carry out the physicochemical characterization were the neutron activation analysis (NAA), the infrared spectroscopy (IS), the thermal gravimetric analysis (TGA), scanning electron microscopy (SEM), transmission electron microscopy (TEM), semiquantitative analysis, dispersive energy spectroscopy (EDS), X-ray diffraction (XRD) and luminescence technique. The characterization of the surface properties carries out by means of the determination of the surface area using the BET multipoint technique, acidity constants, hydration time, the determination of the point of null charge (pH{sub PCN}) and density of surface sites (D{sub s}). The luminescence techniques were useful to determine the optimal point hydration of the zircon and for the quantification of the samarium, for that here intends the development of both analysis techniques. With the adjustment of the titration curves in the FITEQL 4 package the constants of surface acidity in the solid/liquid interface were determined. To the finish of this study it was corroborated that the zircon is a mineral that presents appropriate characteristics to be proposed as a contention barrier for the deep geologic confinement. With regard to the study of adsorption that one carries out the samarium retention it is superior to 90% under the described conditions. This investigation could also be applicable in the confinement of dangerous industrial residuals. (Author)

  2. SU-C-201-06: Utility of Quantitative 3D SPECT/CT Imaging in Patient Specific Internal Dosimetry of 153-Samarium with GATE Monte Carlo Package

    Energy Technology Data Exchange (ETDEWEB)

    Fallahpoor, M; Abbasi, M [Tehran University of Medical Sciences, Vali-Asr Hospital, Tehran, Tehran (Iran, Islamic Republic of); Sen, A [University of Houston, Houston, TX (United States); Parach, A [Shahid Sadoughi University of Medical Sciences, Yazd, Yazd (Iran, Islamic Republic of); Kalantari, F [UT Southwestern Medical Center, Dallas, TX (United States)


    Purpose: Patient-specific 3-dimensional (3D) internal dosimetry in targeted radionuclide therapy is essential for efficient treatment. Two major steps to achieve reliable results are: 1) generating quantitative 3D images of radionuclide distribution and attenuation coefficients and 2) using a reliable method for dose calculation based on activity and attenuation map. In this research, internal dosimetry for 153-Samarium (153-Sm) was done by SPECT-CT images coupled GATE Monte Carlo package for internal dosimetry. Methods: A 50 years old woman with bone metastases from breast cancer was prescribed 153-Sm treatment (Gamma: 103keV and beta: 0.81MeV). A SPECT/CT scan was performed with the Siemens Simbia-T scanner. SPECT and CT images were registered using default registration software. SPECT quantification was achieved by compensating for all image degrading factors including body attenuation, Compton scattering and collimator-detector response (CDR). Triple energy window method was used to estimate and eliminate the scattered photons. Iterative ordered-subsets expectation maximization (OSEM) with correction for attenuation and distance-dependent CDR was used for image reconstruction. Bilinear energy mapping is used to convert Hounsfield units in CT image to attenuation map. Organ borders were defined by the itk-SNAP toolkit segmentation on CT image. GATE was then used for internal dose calculation. The Specific Absorbed Fractions (SAFs) and S-values were reported as MIRD schema. Results: The results showed that the largest SAFs and S-values are in osseous organs as expected. S-value for lung is the highest after spine that can be important in 153-Sm therapy. Conclusion: We presented the utility of SPECT-CT images and Monte Carlo for patient-specific dosimetry as a reliable and accurate method. It has several advantages over template-based methods or simplified dose estimation methods. With advent of high speed computers, Monte Carlo can be used for treatment planning

  3. Fabrication of catalytically active nanocrystalline samarium (Sm)-doped cerium oxide (CeO2) thin films using electron beam evaporation (United States)

    Kundu, Subrata; Sutradhar, Narottam; Thangamuthu, R.; Subramanian, B.; Panda, Asit Baran; Jayachandran, M.


    Samarium (Sm)-doped cerium oxide (CeO2) thin films were fabricated using electron beam evaporation technique. The synthesized films were deposited either on glass or ITO substrates and studied their nature by annealing at different temperatures. The optical properties and other morphological studies were done by UV-Vis, XRD, XPS, SEM, EDS, and FT-IR analysis. XRD and XPS analysis clearly confirm the presence of Sm in the ceria site. From the SEM study, it was found that after annealing at high temperature ( 300 or 500 °C), the particles size was reduced due to breakdown of large aggregates of particles which is also confirmed from UV-Vis, XPS, and XRD analyses. The FT-IR study proves the presence of -COO-, -OH, or ammonium group on the particles surface. The deposition of Sm-doped CeO2 nanomaterials was found more feasible on ITO substrate compared to that of glass substrate in terms of stability and depth of film thickness. The Sm-doped CeO2 nanomaterial acts as a re-usable catalyst for the reduction of organic dye molecules in the presence of NaBH4. The catalysis rate was compared by considering the electron transfer process during the reduction. The synthesized Sm-doped CeO2 thin films might find wide variety of applications in various emerging fields like solid oxide fuel cells (SOFCs), oxygen sensor or as catalyst in different types of organic and inorganic catalytic reactions. The fabrication process is very simple, straightforward, less time consuming, and cost effective.

  4. Fabrication of catalytically active nanocrystalline samarium (Sm)-doped cerium oxide (CeO{sub 2}) thin films using electron beam evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Kundu, Subrata, E-mail: [Council of Scientific and Industrial Research (CSIR), Electrochemical Materials Science (ECMS) Division, Central Electrochemical Research Institute - CECRI (India); Sutradhar, Narottam [G. B. Marg, Central Salt and Marine Chemical Research Institute - CSIR (India); Thangamuthu, R.; Subramanian, B. [Council of Scientific and Industrial Research (CSIR), Electrochemical Materials Science (ECMS) Division, Central Electrochemical Research Institute - CECRI (India); Panda, Asit Baran [G. B. Marg, Central Salt and Marine Chemical Research Institute (CSIR) (India); Jayachandran, M., E-mail: [Council of Scientific and Industrial Research (CSIR), Electrochemical Materials Science (ECMS) Division, Central Electrochemical Research Institute - CECRI (India)


    Samarium (Sm)-doped cerium oxide (CeO{sub 2}) thin films were fabricated using electron beam evaporation technique. The synthesized films were deposited either on glass or ITO substrates and studied their nature by annealing at different temperatures. The optical properties and other morphological studies were done by UV-Vis, XRD, XPS, SEM, EDS, and FT-IR analysis. XRD and XPS analysis clearly confirm the presence of Sm in the ceria site. From the SEM study, it was found that after annealing at high temperature ({approx}300 or 500 Degree-Sign C), the particles size was reduced due to breakdown of large aggregates of particles which is also confirmed from UV-Vis, XPS, and XRD analyses. The FT-IR study proves the presence of -COO-, -OH, or ammonium group on the particles surface. The deposition of Sm-doped CeO{sub 2} nanomaterials was found more feasible on ITO substrate compared to that of glass substrate in terms of stability and depth of film thickness. The Sm-doped CeO{sub 2} nanomaterial acts as a re-usable catalyst for the reduction of organic dye molecules in the presence of NaBH{sub 4}. The catalysis rate was compared by considering the electron transfer process during the reduction. The synthesized Sm-doped CeO{sub 2} thin films might find wide variety of applications in various emerging fields like solid oxide fuel cells (SOFCs), oxygen sensor or as catalyst in different types of organic and inorganic catalytic reactions. The fabrication process is very simple, straightforward, less time consuming, and cost effective.Graphical Abstract.

  5. Crystal structure of monoclinic samarium and cubic europium sesquioxides and bound coherent neutron scattering lengths of the isotopes {sup 154}Sm and {sup 153}Eu

    Energy Technology Data Exchange (ETDEWEB)

    Kohlmann, Holger [Leipzig Univ. (Germany). Inst. of Inorganic Chemistry; Hein, Christina; Kautenburger, Ralf [Saarland Univ., Saarbruecken (Germany). Inorganic Solid State Chemistry; Hansen, Thomas C.; Ritter, Clemens [Institut Laue-Langevin, Grenoble (France); Doyle, Stephen [Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen (Germany). Inst. for Synchrotron Radiation (ISS)


    The crystal structures of monoclinic samarium and cubic europium sesquioxide, Sm{sub 2}O{sub 3} and Eu{sub 2}O{sub 3}, were reinvestigated by powder diffraction methods (laboratory X-ray, synchrotron, neutron). Rietveld analysis yields more precise structural parameters than previously known, especially for oxygen atoms. Interatomic distances d(Sm-O) in Sm{sub 2}O{sub 3} range from 226.3(4) to 275.9(2) pm [average 241.6(3) pm] for the monoclinic B type Sm{sub 2}O{sub 3} [space group C2/m, a = 1418.04(3) pm, b = 362.660(7) pm, c = 885.48(2) pm, β = 100.028(1) ], d(Eu-O) in Eu{sub 2}O{sub 3} from 229.9(2) to 238.8(2) pm for the cubic bixbyite (C) type [space group Ia anti 3, a = 1086.87(1) pm]. Neutron diffraction at 50 K and 2 K did not show any sign for magnetic ordering in Sm{sub 2}O{sub 3}. Isotopically enriched {sup 154}Sm{sub 2}O{sub 3} and {sup 153}Eu{sub 2}O{sub 3} were used for the neutron diffraction work because of the enormous absorption cross section of the natural isotopic mixtures for thermal neutrons. The isotopic purity was determined by inductively coupled plasma - mass spectrometry to be 98.9% for {sup 154}Sm and 99.8% for {sup 153}Eu. Advanced analysis of the neutron diffraction data suggest that the bound coherent scattering lengths of {sup 154}Sm and {sup 153}Eu need to be revised. We tentatively propose b{sub c}({sup 154}Sm) = 8.97(6) fm and b{sub c}({sup 153}Eu) = 8.85(3) fm for a neutron wavelength of 186.6 pm to be better values for these isotopes, showing up to 8% deviation from accepted literature values. It is shown that inaccurate scattering lengths may result in severe problems in crystal structure refinements causing erroneous structural details such as occupation parameters, which might be critically linked to physical properties like superconductivity in multinary oxides.

  6. One watt gallium arsenide class-E power amplifier with a thin-film bulk acoustic resonator filter embedded in the output network

    Directory of Open Access Journals (Sweden)

    Kyle Holzer


    Full Text Available Integration of a class-E power amplifier (PA and a thin-film bulk acoustic wave resonator (FBAR filter is shown to provide high power added efficiency in addition to superior out-of-band spectrum suppression. A discrete gallium arsenide pseudomorphic high-electron-mobility transistor is implemented to operate as a class-E amplifier from 2496 to 2690 MHz. The ACPF7041 compact bandpass FBAR filter is incorporated to replace the resonant LC tank in a traditional class-E PA. To reduce drain voltage stress, the supply choke is replaced by a finite inductance. The fabricated PA provides up to 1 W of output power with a peak power added efficiency (PAE of 58%. The improved out-of-band spectrum filtering is compared to a traditional class-E with discrete LC resonant filtering. Such PAs can be combined with linearisation techniques to reduce out-of-band emissions.

  7. Two new arsenides, Eu7Cu44As23 and Sr7Cu44As23, with a new filled variety of the BaHg11 structure. (United States)

    Charkin, Dmitri O; Demchyna, Roman; Prots, Yurii; Borrmann, Horst; Burkhardt, Ulrich; Schwarz, Ulrich; Schnelle, Walter; Plokhikh, Igor V; Kazakov, Sergey M; Abakumov, Artem M; Batuk, Dmitry; Verchenko, Valery Yu; Tsirlin, Alexander A; Curfs, Caroline; Grin, Yuri; Shevelkov, Andrei V


    Two new ternary arsenides, namely, Eu7Cu44As23 and Sr7Cu44As23, were synthesized from elements at 800 °C. Their crystal structure represents a new filled version of the BaHg11 motif with cubic voids alternately occupied by Eu(Sr) and As atoms, resulting in a 2 × 2 × 2 superstructure of the aristotype: space group Fm3̅m, a = 16.6707(2) Å and 16.7467(2) Å, respectively. The Eu derivative exhibits ferromagnetic ordering below 17.5 K. In agreement with band structure calculations both compounds are metals, exhibiting relatively low thermopower, but high electrical and low thermal conductivity.

  8. Indium Arsenide Nanowires

    DEFF Research Database (Denmark)

    Madsen, Morten Hannibal

    -ray diffraction. InAs NWs can be used in a broad range of applications, including detectors, high speed electronics and low temperature transport measurements, but in this thesis focus will be put on biological experiments on living cells. Good control of Au-assisted InAs NW growth has been achieved...... by a systematic study to optimize the growth conditions; first the Au deposition, then the growth temperature and finally the beam fluxes. For further control of the growth, Au droplets have been positioned with electron beam lithography and large scale arrays with a > 99 % yield have been made on 2 inch...... and its dependence on growth parameters. By fabricating the NWs on silicon-on-insulator substrates we demonstrate electrically addressable NWs that are still standing vertically on the substrate and can potentially be used for intra-cellular recordings. Devices for biological experiments using vertically...

  9. Highly CO2-Tolerant Cathode for Intermediate-Temperature Solid Oxide Fuel Cells: Samarium-Doped Ceria-Protected SrCo0.85Ta0.15O3-δ Hybrid. (United States)

    Li, Mengran; Zhou, Wei; Zhu, Zhonghua


    Susceptibility to CO2 is one of the major challenges for the long-term stability of the alkaline-earth-containing cathodes for intermediate-temperature solid oxide fuel cells. To alleviate the adverse effects from CO2, we incorporated samarium-stabilized ceria (SDC) into a SrCo0.85Ta0.15O3-δ (SCT15) cathode by either mechanical mixing or a wet impregnation method and evaluated their cathode performance stability in the presence of a gas mixture of 10% CO2, 21% O2, and 69% N2. We observed that the CO2 tolerance of the hybrid cathode outperforms the pure SCT15 cathode by over 5 times at 550 °C. This significant enhancement is likely attributable to the low CO2 adsorption and reactivity of the SDC protective layer, which are demonstrated through thermogravimetric analysis, energy-dispersive spectroscopy, and electrical conductivity study.

  10. Ferrites Ni{sub 0,5}Zn{sub 0,5}Fe{sub 2}O{sub 4} doped with samarium: structural analysis, morphological and electromagnetic; Ferritas Ni{sub 0,5}Zn{sub 0,5}Fe{sub 2}O{sub 4} dopada com samario: analise estrutural, morfologica e eletromagnetica

    Energy Technology Data Exchange (ETDEWEB)

    Costa, A.C.F.M.; Diniz, A.P., E-mail: [Universidade Federal de Campina Grande (UFCG), PB (Brazil). Unidade Academinca de Engenharia de Materiais; Viana, K.M.S. [Universidade Federal do Rio Grande do Norte (UFRN), Natal, PE (Brazil). Escola de Ciencias e Tecnologia; Cornejo, D.R. [Universidade de Sao Paulo (USP), SP (Brazil). Instituto de Fisica; Kiminami, R.H.G.A. [Universidade Federal de Sao Carlos (UFSCar), SP (Brazil). Departamento de Engenharia de Materiais


    This paper proposes to investigate the sintering at 1200 deg C/2h of Ni{sub 0.5}Zn{sub 0.5}Fe{sub 2-x}Sm{sub x}O{sub 4} ferrite doped with 0.05; 0.075 e 0.1 mol of Sm synthesized by combustion reaction to evaluate the performance materials as absorbers of electromagnetic radiation. The influence of the concentration of samarium on the structure, morphology and electromagnetic properties of ferrites was studied. The resulting samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), magnetic measurements and reflectivity measurements in the frequency range between 8-12 GHz. The results showed that increasing the concentration of samarium caused a decrease in particle size of the samples, encouraging, therefore, to obtain materials with better values of magnetization and reflectivity, allowing for use as absorbers in narrow-band frequency between 9-10 GHz. (author)

  11. The effect of gallium arsenide aluminum laser therapy in the management of cervical myofascial pain syndrome: a double blind, placebo-controlled study. (United States)

    Dundar, U; Evcik, D; Samli, F; Pusak, H; Kavuncu, V


    The efficacy of low-level laser therapy (LLLT) in myofascial pain syndrome (MPS) seems controversial. A prospective, double-blind, randomized controlled trial was conducted in patients with chronic MPS in the neck to evaluate the effects of low-level 830-nm gallium arsenide aluminum (Ga-As-Al) laser therapy. The study group consisted of 64 MPS patients. The patients were randomly assigned into two groups. In group 1 (n = 32), Ga-As-Al laser treatment was applied over three trigger points bilaterally for 2 min over each point once a day for 15 days during a period of 3 weeks. In group 2 (n = 32), the same treatment protocol was given, but the laser instrument was switched off during applications. All patients in both groups performed daily isometric exercise and stretching exercises for cervical region. Parameters were measured at baseline and after 4 weeks. All patients were evaluated with respect to pain (at rest, movement, and night) and assessed by visual analog scale, measurement of active range of motion using an inclinometer and a goniometer, and the neck disability index. In both groups, statistically significant improvements were detected in all outcome measures compared with baseline (p 0.05). In conclusion, although the laser therapy has no superiority over placebo groups in this study, we cannot exclude the possibility of effectivity with another treatment regimen including different laser wavelengths and dosages (different intensity and density and/or treatment interval).

  12. A novel wide range, real-time neutron fluence monitor based on commercial off the shelf gallium arsenide light emitting diodes (United States)

    Mukherjee, B.; Hentschel, R.; Lambert, J.; Deya, W.; Farr, J.


    Displacement damage produced by high-energy neutrons in gallium arsenide (GaAs) light emitting diodes (LED) results in the reduction of light output. Based on this principle we have developed a simple, cost effective, neutron detector using commercial off the shelf (COTS) GaAs-LED for the assessment of neutron fluence and KERMA at critical locations in the vicinity of the 230 MeV proton therapy cyclotron operated by Westdeutsches Protonentherapiezentrum Essen (WPE). The LED detector response (mV) was found to be linear within the neutron fluence range of 3.0×10 8-1.0×10 11 neutron cm -2. The response of the LED detector was proportional to neutron induced displacement damage in LED; hence, by using the differential KERMA coefficient of neutrons in GaAs, we have rescaled the calibration curve for two mono-energetic sources, i.e. 1 MeV neutrons and 14 MeV neutrons generated by D+T fusion reaction. In this paper we present the principle of the real-time GaAs-LED based neutron fluence monitor as mentioned above. The device was calibrated using fast neutrons produced by bombarding a thick beryllium target with 14 MeV deuterons from a TCC CV 28 medical cyclotron of the Strahlenklinik University Hospital Essen.

  13. Correlation between non-Fermi-liquid behavior and superconductivity in (Ca, La)(Fe,Co)As2 iron arsenides: A high-pressure study (United States)

    Zhou, W.; Ke, F.; Xu, Xiaofeng; Sankar, R.; Xing, X.; Xu, C. Q.; Jiang, X. F.; Qian, B.; Zhou, N.; Zhang, Y.; Xu, M.; Li, B.; Chen, B.; Shi, Z. X.


    Non-Fermi-liquid (NFL) phenomena associated with correlation effects have been widely observed in the phase diagrams of unconventional superconducting families. Exploration of the correlation between the normal state NFL, regardless of its microscopic origins, and the superconductivity has been argued as a key to unveiling the mystery of the high-Tc pairing mechanism. Here we systematically investigate the pressure-dependent in-plane resistivity (ρ ) and Hall coefficient (RH) of a high-quality 112-type Fe-based superconductor Ca1 -xLaxFe1 -yCoyAs2 (x =0.2 ,y =0.02 ). With increasing pressure, the normal-state resistivity of the studied sample exhibits a pronounced crossover from non-Fermi-liquid to Fermi-liquid behaviors. Accompanied with this crossover, Tc is gradually suppressed. In parallel, the extremum in the Hall coefficient RH(T ) curve, possibly due to anisotropic scattering induced by spin fluctuations, is also gradually suppressed. The symbiosis of NFL and superconductivity implies that these two phenomena are intimately related. Further study on the pressure-dependent upper critical field reveals that the two-band effects are also gradually weakened with increasing pressure and reduced to the one-band Werthamer-Helfand-Hohenberg limit in the low-Tc regime. Overall, our paper supports the picture that NFL, multigap, and extreme RH(T ) are all of the same magnetic origin, i.e., the spin fluctuations in the 112 iron arsenide superconductors.

  14. Platinum-group elements fractionation by selective complexing, the Os, Ir, Ru, Rh-arsenide-sulfide systems above 1020 °C (United States)

    Helmy, Hassan M.; Bragagni, Alessandro


    The platinum-group element (PGE) contents in magmatic ores and rocks are normally in the low μg/g (even in the ng/g) level, yet they form discrete platinum-group mineral (PGM) phases. IPGE (Os, Ir, Ru) + Rh form alloys, sulfides, and sulfarsenides while Pt and Pd form arsenides, tellurides, bismuthoids and antimonides. We experimentally investigate the behavior of Os, Ru, Ir and Rh in As-bearing sulfide system between 1300 and 1020 °C and show that the prominent mineralogical difference between IPGE (+Rh) and Pt and Pd reflects different chemical preference in the sulfide melt. At temperatures above 1200 °C, Os shows a tendency to form alloys. Ruthenium forms a sulfide (laurite RuS2) while Ir and Rh form sulfarsenides (irarsite IrAsS and hollingworthite RhAsS, respectively). The chemical preference of PGE is selective: IPGE + Rh form metal-metal, metal-S and metal-AsS complexes while Pt and Pd form semimetal complexes. Selective complexing followed by mechanical separation of IPGE (and Rh)-ligand from Pt- and Pd-ligand associations lead to PGE fractionation.

  15. Solubility of platinum-arsenide melt and sperrylite in synthetic basalt at 0.1 MPa and 1200 °C with implications for arsenic speciation and platinum sequestration in mafic igneous systems (United States)

    Canali, A. C.; Brenan, J. M.; Sullivan, N. A.


    To better understand the Pt-As association in natural magmas, experiments were done at 1200 °C and 0.1 MPa to measure the solubility of Pt and Pt-arsenide phases (melt and sperrylite, PtAs2), as well as to determine the oxidation state, and identify evidence for Pt-As complexing, in molten silicate. Samples consisting of synthetic basalt contained in chromite crucibles were subject to three experimental procedures. In the first, platinum solubility in the synthetic basalt was determined without added arsenic by equilibrating the sample with a platinum source (embedded wire or bead) in a gas-mixing furnace. In the second, the sample plus a Pt-arsenide source was equilibrated in a vacuum-sealed fused quartz tube containing a solid-oxide oxygen buffer. The third approach involved two steps: first equilibrating the sample in a gas-mixing furnace, then with added arsenide melt in a sealed quartz tube. Oxygen fugacity was estimated in the latter step using chromite/melt partitioning of vanadium. Method two experiments done at high initial arsenic activity (PtAs melt + PtAs2), showed significant loss of arsenic from the sample, the result of vapour transfer to newly-formed arsenide phases in the buffer. Method three experiments showed no loss of arsenic, yielding a uniform final distribution in the sample. Analyses of run-product glasses from experiments which did not show arsenic loss reveal significant increase in arsenic concentrations with fO2, varying from ∼10 ppm (FMQ-3.25) to >10,000 ppm (FMQ + 5.5). Despite very high arsenic loadings (>1000 ppm), the solubility of Pt is similar in arsenic-bearing and arsenic-free glasses. The variation in arsenic solubility with fO2 shows a linear relationship, that when corrected for the change in the activity of dissolved arsenic with the melt ferric/ferrous ratio, yields a solubility-fO2 relationship consistent with As3+ as the dissolved species. This result is confirmed by X-ray absorption near edge structure (XANES

  16. High Final Energy of Low-Level Gallium Arsenide Laser Therapy Enhances Skeletal Muscle Recovery without a Positive Effect on Collagen Remodeling. (United States)

    de Freitas, Carlos Eduardo Assumpção; Bertaglia, Raquel Santilone; Vechetti Júnior, Ivan José; Mareco, Edson Assunção; Salomão, Rondinelle Artur Simões; de Paula, Tassiana Gutierrez; Nai, Gisele Alborghetti; Carvalho, Robson Francisco; Pacagnelli, Francis Lopes; Dal-Pai-Silva, Maeli


    The aim of this study was to evaluate the effects of a Gallium Arsenide (GaAs) laser, using a high final energy of 4.8 J, during muscle regeneration after cryoinjury. Thirty Wistar rats were divided into three groups: Control (C, n = 10); Injured (I, n = 10) and Injured and laser treated (Injured/LLLT, n = 10). The cryoinjury was induced in the central region of the tibialis anterior muscle (TA). The applications of the laser (904 nm, 50 mW average power) were initiated 24 h after injury, at energy density of 69 J cm(-1) for 48 s, for 5 days, to two points of the lesion. Twenty-four hours after the final application, the TA muscle was removed and frozen in liquid nitrogen to assess the general muscle morphology and the gene expression of TNF-α, TGF-β, MyoD, and Myogenin. The Injured/LLLT group presented a higher number of regenerating fibers and fewer degenerating fibers (P < 0.05) without changes in the collagen remodeling. In addition, the Injured/LLLT group presented a significant decrease in the expression of TNF-α and myogenin compared to the injured group (P < 0.05). The results suggest that the GaAs laser, using a high final energy after cryoinjury, promotes muscle recovery without changing the collagen remodeling in the muscle extracellular matrix. © 2015 The American Society of Photobiology.

  17. Retrospective evaluation of bone pain palliation after samarium-153-EDTMP therapy Avaliação retrospectiva do tratamento da dor óssea metastática com Samário-153-EDTMP

    Directory of Open Access Journals (Sweden)

    Marcelo Tatit Sapienza


    Full Text Available PURPOSE: The aim of this study was to evaluate the degree of metastatic bone pain palliation and medullar toxicity associated with samarium-153-EDTMP treatment. METHODS: Seventy-three patients with metastatic bone pain having previously undergone therapy with samarium-153-EDTMP (1 mCi/kg were retrospectively evaluated. Routine follow-up included pain evaluation and blood counts for 2 months after treatment. Pain was evaluated using a subjective scale (from 0 to 10 before and for 8 weeks after the treatment. Blood counts were obtained before treatment and once a week for 2 months during follow-up. Dosimetry, based upon the urinary excretion of the isotope, was estimated in 41 individuals, and the resulting radiation absorbed doses were correlated with hematological data. RESULTS: Reduction in pain scores of 75% to 100% was obtained in 36 patients (49%, with a decrease of 50% to 75%, 25% to 50%, and 0% to 25% in, respectively, 20 (27%, 10 (14%, and 7 (10% patients. There was no significant relationship between the pain response and location of the primary tumor (breast or prostate cancer. Mild to moderate myelosuppression was noted in 75.3% of patients, usually with hematological recovery at 8 weeks. The mean bone marrow dose was 347 ± 65 cGy, and only a weak correlation was found between absorbed dose and myelosuppression (Pearson coefficient = .4. CONCLUSIONS: Samarium-153-EDTMP is a valuable method for metastatic bone pain palliation. A mild to moderate and transitory myelosuppression is the main toxicity observed after samarium therapy, showing a weak correlation with dosimetric measures.OBJETIVO: O presente trabalho teve por objetivo avaliar o efeito paliativo da dor e a toxicidade medular associados ao tratamento com Samário-153-EDTMP em pacientes com metástases ósseas. MÉTODOS: O estudo foi realizado de forma retrospectiva, a partir do levantamento de prontuário de 178 pacientes submetidos a tratamento com 1mCi/kg de 153Sm

  18. The dynamics of the laser-induced metal-semiconductor phase transition of samarium sulfide (SmS); Die Dynamik des laserinduzierten Metall-Halbleiter-Phasenuebergangs von Samariumsulfid (SmS)

    Energy Technology Data Exchange (ETDEWEB)

    Kaempfer, Tino


    The present thesis is dedicated to the experimental study of the metal-semiconductor phase transition of samarium sulfide (SmS): Temperature- and time-resolved experiments on the characterization of the phase transition of mixed-valence SmS samples (M-SmS) are presented. The measurement of the dynamics of the laser-induced phase transition pursues via time-resolved ultrashort-time microscopy and by X-ray diffraction with sub-picosecond time resolution. The electronic and structural processes, which follow an excitation of M-SmS with infrared femtosecond laser pulses, are physically interpreted on the base of the results obtained in this thesis and model imaginations. [German] Die vorliegende Arbeit ist der experimentellen Untersuchung des Metall-Halbleiter-Phasenuebergangs von Samariumsulfid (SmS) gewidmet. Es werden temperatur- und zeitaufgeloeste Experimente zur Charakterisierung des Phasenuebergangs gemischt-valenter SmS Proben (M-SmS) vorgestellt. Die Messung der Dynamik des laserinduzierten Phasenuebergangs erfolgt ueber zeitaufgeloeste Ultrakurzzeit-Mikroskopie und durch Roentgenbeugung mit subpikosekunden Zeitaufloesung. Die elektronischen und strukturellen Prozesse, welche einer Anregung von M-SmS mit infraroten Femtosekunden-Laserpulsen folgen, werden auf der Basis der in dieser Arbeit gewonnenen Ergebnisse und Modellvorstellungen physikalisch interpretiert. (orig.)

  19. Quantificaion of ion diffusion in gallium arsenide-based spintronic Light-Emitting Diode devices using time-of-flight secondary ion mass spectrometry (United States)

    Cogswell, Jeffrey Ryan

    Depth profiling using Secondary Ion Mass Spectrometry (SIMS) is a direct method to measure diffusion of atomic or molecular species that have migrated distances of nanometers/micrometers in a specific material. For this research, the diffusion of Mn, sequentially Ga ions, in Gallium Arsenide (GaAs)-based spin Light Emitting Diode (LED) devices is studied by quantitative Time-of-Flight (ToF) SIMS. The goal is to prove conclusively the driving force and mechanism behind Mn diffusion in GaAs by quantifying the diffusion of these ions in each device. Previous work has identified two competing processes for the movement of Mn in GaAs: diffusion and phase separation. The process is dependent on the temperature the sample is exposed to, either by post-annealing, or during the molecular beam epitaxy (MBE) growth process. The hypothesis is that Manganese Arsenide (MnAs) is thermodynamically more stable than randomly distributed Mn ions in GaAs, and that by annealing at a certain temperature, a pure MnAs layer can be produced from a GaMnAs layer in a working spin LED device. Secondly, the spin efficiencies will be measured and the difference will be related to the formation of a pure MnAs layer. The first chapter of this dissertation discusses the history of spintronic devices, including details on the established methods for characterization, the importance for potential application to the semiconductor industry, and the requirements for the full implementation of spintronic devices in modern-day computers. MnAs and GaMnAs devices are studied, their preparation and properties are described, and the study's experimental design is covered in the latter part of Chapter 1. Chapter 2 includes a review of diffusion in semiconductors, including the types of diffusion, mechanisms they follow, and the different established experimental methods for studying diffusion. The later sections include summaries of Mn diffusion and previous studies investigating Mn diffusion in different

  20. Wet chemical functionalization of III-V semiconductor surfaces: alkylation of gallium arsenide and gallium nitride by a Grignard reaction sequence. (United States)

    Peczonczyk, Sabrina L; Mukherjee, Jhindan; Carim, Azhar I; Maldonado, Stephen


    Crystalline gallium arsenide (GaAs) (111)A and gallium nitride (GaN) (0001) surfaces have been functionalized with alkyl groups via a sequential wet chemical chlorine activation, Grignard reaction process. For GaAs(111)A, etching in HCl in diethyl ether effected both oxide removal and surface-bound Cl. X-ray photoelectron (XP) spectra demonstrated selective surface chlorination after exposure to 2 M HCl in diethyl ether for freshly etched GaAs(111)A but not GaAs(111)B surfaces. GaN(0001) surfaces exposed to PCl(5) in chlorobenzene showed reproducible XP spectroscopic evidence for Cl-termination. The Cl-activated GaAs(111)A and GaN(0001) surfaces were both reactive toward alkyl Grignard reagents, with pronounced decreases in detectable Cl signal as measured by XP spectroscopy. Sessile contact angle measurements between water and GaAs(111)A interfaces after various levels of treatment showed that GaAs(111)A surfaces became significantly more hydrophobic following reaction with C(n)H(2n-1)MgCl (n = 1, 2, 4, 8, 14, 18). High-resolution As 3d XP spectra taken at various times during prolonged direct exposure to ambient lab air indicated that the resistance of GaAs(111)A to surface oxidation was greatly enhanced after reaction with Grignard reagents. GaAs(111)A surfaces terminated with C(18)H(37) groups were also used in Schottky heterojunctions with Hg. These heterojunctions exhibited better stability over repeated cycling than heterojunctions based on GaAs(111)A modified with C(18)H(37)S groups. Raman spectra were separately collected that suggested electronic passivation by surficial Ga-C bonds at GaAs(111)A. Specifically, GaAs(111)A surfaces reacted with alkyl Grignard reagents exhibited Raman signatures comparable to those of samples treated with 10% Na(2)S in tert-butanol. For GaN(0001), high-resolution C 1s spectra exhibited the characteristic low binding energy shoulder demonstrative of surface Ga-C bonds following reaction with CH(3)MgCl. In addition, 4

  1. Quaternary rare-earth arsenides REAg{sub 1−x}Zn{sub y}As{sub 2} (RE=La–Nd, Sm, Gd–Dy) with tetragonal SrZnBi{sub 2}- and HfCuSi{sub 2}-type structures

    Energy Technology Data Exchange (ETDEWEB)

    Ramachandran, Krishna K.; Genet, Clément; Mar, Arthur, E-mail:


    Reactions of the elements at 800 °C with the nominal compositions REAg{sub 1−x}Zn{sub x}As{sub 2} resulted in quaternary arsenides REAg{sub 1−x}Zn{sub y}As{sub 2} in which the combined Ag and Zn content deviates increasingly from unity in the Zn-richer phases, reflecting the transition from the fully stoichiometric ternary silver-containing arsenides REAgAs{sub 2} to the substoichiometric zinc-containing ones REZn{sub 0.67}As{sub 2}. Powder X-ray diffraction analysis indicated SrZnBi{sub 2}-type (space group I4/mmm, Z=4; RE=La, Ce) and HfCuSi{sub 2}-type structures (space group P4/nmm, Z=2; RE=Pr, Nd, Sm, Gd, Tb, Dy). Single-crystal X-ray diffraction analysis performed on LaAg{sub 0.5}Zn{sub 0.5}As{sub 2}, PrAg{sub 0.5}Zn{sub 0.5}As{sub 2}, and NdAg{sub 0.5}Zn{sub 0.5}As{sub 2} indicated that the Ag and Zn atoms are disordered within metal-centred tetrahedra and provided no evidence for distortion of the square As nets. The small electron excess tolerated in these quaternary arsenides and the absence of distortion in the square nets can be traced to the occurrence of As–As states that are only weakly antibonding near the Fermi level. PrAg{sub 0.5}Zn{sub 0.5}As{sub 2} and NdAg{sub 0.5}Zn{sub 0.5}As{sub 2} are paramagnetic with effective magnetic moments consistent with trivalent RE species. - Graphical abstract: On proceeding from fully stoichiometric REAgAs{sub 2} to substoichiometric REZn{sub 0.67}As{sub 2}, deficiencies in Zn content become increasingly prominent in quaternary arsenides REAg{sub 1−x}Zn{sub y}As{sub 2}. - Highlights: • Ag and Zn atoms are disordered within quaternary arsenides REAg{sub 1−x}Zn{sub y}As{sub 2}. • In Zn-richer phases, Zn deficiencies develop to counteract electron excess. • Distortions of square As net appear to be suppressed.


    African Journals Online (AJOL)

    INTRODUCTION. Fluorescent materials, particularly blue fluorescent materials have gained strong interest because ... emitting complexes in different technical applications, such as emitting materials for organic light emitting ..... properties of three novel two-dimensional lanthanide coordination polymers with mixed aromatic ...

  3. Pyroelectric Ferroelectric and Resistivity Studies on Samarium ...

    African Journals Online (AJOL)

    Barium Strontium Sodium Niobate (Ba1-xSrx)2NaNb5O15 (BSNN) belongs to tungsten bronze ferroelectric morphotrophic phase boundary (MPB) system at x = 0.6, having large spontaneous polarisation, pyroelectric coefficient and low dielectic constant and is expected to be applicable for piezoceramic filter and ...


    African Journals Online (AJOL)

    emitting complexes in different technical applications, such as emitting materials for organic light emitting diodes, sensitizers in solar energy conversion, chemical sensors and so forth [6-9]. The ability of bipy to act as a rigid ..... properties of three-dimensional organic-inorganic hybrids based on α-metatungstate. Inorg. Chim.

  5. Determination of specific radioactivity of samarium-153 product. 1. Quantitative determination of samarium by spectrophotometry

    Energy Technology Data Exchange (ETDEWEB)

    Izumo, Mishiroku [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Nemoto, Masahiro [Tokyo Nuclear Service Co., Ltd., Tokyo (Japan)


    On the specific radioactivity of Sm-153 for the radiotherapy of cancers, a simple method for determination of the amount of Sm was described. The method used Arsenazo III as a colorimetric reagent. The sample irradiated in the reactor was dissolved in 1M HCl solution. A small part of it was taken and mixed with Arsenazo III at pH 3.2, and the amount of Sm was determined by the spectrophotometric method at a wavelength of 652 nm. The molar absorptivity of Sm at 652 nm was 6.6x10{sup 3} m{sup -1}{center_dot}mm{sup -1}. The error of measurement in the partial different conditions was about 2% of the value determined. The effects of impurities, Fe, Zn and Cu mixing in the Sm during operation, were clarified. (author)

  6. Efficient injection of spin-polarized electrons from manganese arsenide contacts into aluminum gallium arsenide/gallium arsenide spin LEDs (United States)

    Schweidenback, Lars

    In this thesis we describe two spectroscopic projects project on semiconductor heterostructures, as well as putting together and testing a micro-photoluminescence/7 tesla magnet system for the study of micron size two-dimensional crystals. Below we discuss the three parts in more detail. i) MnAs-based spin light emitting diodes. We have studied the injection of spin-polarized electrons from a ferromagnetic MnAs contact into an AlGaAs(n)/GaAs(i)/AlGaAs(p) n-i-p light emitting diode. We have recorder the emitted electroluminescence as function of magnetic field applied at right angles to the device plane in the 7-300 K temperature range. It was found that at 7 Kelvin the emitted light is circularly polarized with a polarization that is proportional to the MnAs contact magnetization with a saturation value of 26% for B > 1.25 tesla. The polarization persists up to room temperature with a saturation value of 6%. ii) Optical Aharonov-Bohm effect in InGaAs quantum wells. The excitonic photoluminescence intensity from InGaAs quantum wells as function of magnetic field exhibits two local maxima superimposed on a decreasing background. The maxima are attributed to the optical Aharonov-Bohm effect of electrons orbiting around a hole localized at the center of an Indium rich InGaAs islands detected by cross sectional scanning tunneling microscopy. Analysis of the position of the maxima yields a value of the electron orbit radius. iii) Micro-Photoluminescence. We have put together a micro-photoluminescence /7 tesla system for the study of two dimensional crystals. The samples are placed inside a continuous flow cryostat whose tail is positioned in the bore of the 7 tesla magnet. A microscope objective is used to focus the exciting laser light and collect the emitted photoluminescence. The system was tested by recording the photoluminescence spectra of WS2 and WSe 2 monolayers at T = 77 K.

  7. Phonon heat transport in gallium arsenide

    Indian Academy of Sciences (India)

    [7] P Erdos and S B Haley, Phys. Rev. 184, 951 (1969). [8] M G Holland, Phys. Rev. 132, 2461 (1963). [9] M G Holland, Phys. Rev. 134, A471 (1963). [10] P G Klemens, Proc. R. Soc. London A68, 1113 (1965). [11] P C Sharma, K S Dubey and G S Verma, Phys. Rev. B3, 1985 (1971). [12] M D Tiwari and Bal K Agrawal, Phys.

  8. Gallium Arsenide and Related Compounds, 1986. (United States)


    Neida, S JPearton, MStavola and R Caruso 63-68 The use of selective pair luminescence to characterize semi-insulating GaAs E S Koteles, J Kafalas, S...changing the charge state iy t he neutron irradiation. 4. Summary The main acceptor in urdoped LEC SI-GaAs has been considered to be carbon. However, the...1986 Correlation between melt stoichiometry and activation efficiency in Si-implanted GaAs A. R. Von Neida, S. J. Pearton, M. Stavola, and R. Caruso AT&T

  9. Thin Crystalline Gallium Arsenide Optoelectronic Devices (United States)

    Patkar, Mahesh Pandharinath


    The numerous existing and developing applications for two closely related devices, III-V light emitting diode (LEDs) and solar cells, demand improved device efficiencies. Removing the substrate should increase the efficiency of both LEDs and solar cells by eliminating the absorption losses in the substrate. We have used the phenomenon of photon recycling in thin-crystalline device geometries to enhance efficiencies of LEDs and solar cells. GaAs LEDs were fabricated and removed from the substrate by the epitaxial lift-off process. Devices with and without an underlying GaAs substrate were then characterized by optical and electrical measurements. Efficiency enhancements of up to a factor of six were achieved. By carefully analyzing the electrical and optical measurements, we demonstrate that the device operation can be explained in terms of accepted theories for radiative recombination and photon recycling which supports our hypothesis that the efficiency enhancement is due to photon recycling in the thin-crystalline device structure. Electrical and optical characterization of ELO LEDs is also shown to be a convenient diagnostic tool for examining recombination losses in thin-crystalline solar cells. Thin crystalline solar cells were fabricated and characterized by I-V and QE measurements. Alloyed ohmic contacts are used extensively for GaAs devices. However, alloyed contacts produce rough interfaces that do not make good reflectors needed for many optoelectronic devices. Non-alloyed ohmic contacts to optoelectronic devices could make good reflectors, if one uses highly reflective metal like Au to make an ohmic contact. Ex-situ non-alloyed contacts to n-GaAs were made by using low temperature molecular beam epitaxy. Ag and Ti/Au contacts to this structure exhibited specific contact resistivities of mid 10^{-7} Omega-cm^2. Low temperature molecular beam epitaxy of GaAs with high concentrations of Be followed by an anneal under As over pressure was used to minimize the fast diffusing interstitial Be concentration in p^{++}-GaAs. Non-alloyed Ti/Au ohmic contacts to such p-type GaAs exhibited specific contact resistivities of about 10^{ -7} Omega-cm^2. A new amalgamation technique was developed for mounting thin crystalline devices on a substrate different from a host substrate.

  10. Deep Impurity States in Gallium Arsenide. (United States)


    the conduccion band of the host i o o t) do ,;e 𔃼 i ,’ to , V. "owtilj M-terid 1) , as a :uwhti(’ of disepQa"I C in ’~~’ ,t,’ied i nont’. ’n.1 ea:" d

  11. Effect of dislocations on gallium arsenide FETs (United States)

    Barrett, D. L.; McGuigan, S.; Eldridge, G. W.; Swanson, B. W.; Thomas, R. N.


    Indium doping at 5 x 10 to the 19th power/cc was found to be optimum for the growth of low-dislocation GaAs crystals, and to avoid constitutional supercooling effects. Dislocation etch pit densities of near 200/cc were measured in the central region of In-doped crystals, increasing to above 1000/sq cm in the peripheral regions. Based on the concept that dislocations are generated to relieve excess thermoelastic stress, a preliminary thermal model was used to design a hot zone shield to reduce thermal gradients during growth. An optimum combination of indium-doping, reduced thermal gradient growth, and appropriate growth parameters are expected to yield completely dislocation-free GaAs crystals. A FET metrology mask has been fabricated and preliminary FET device Fabrication begun, for evaluation of the effects of dislocations on FET device parameters. Twenty state-of-the-art, low dislocation, indium-doped GaAs wafers were delivered to the contractor for DARPA-related program evaluation.

  12. Radiolesão vascular como efeito deletério da braquiterapia intra-arterial com dose elevada de Samário-153 em coelhos hipercolesterolêmicos Vascular radiolesion as a deleterious effect of high-dose-rate intraarterial brachytherapy with Samarium-153 in hypercholesterolemic rabbits

    Directory of Open Access Journals (Sweden)

    Dalton Bertolim Précoma


    Full Text Available OBJETIVO: Este estudo tem por objetivo avaliar as alterações vasculares morfológicas e morfométricas induzidas pela braquiterapia com Samário-153 (153 Sm em coelhos hipercolesterolêmicos, com doses elevadas. MÉTODOS: Foram analisados 43 coelhos hipercolesterolêmicos, brancos, da raça New Zealand, e o total de 86 artérias ilíacas submetidas a lesão por balão de angioplastia. Divididos em três grupos: dois (GI irradiados com as doses de 15Gy (n=14 e 60Gy (n=36 e um grupo controle (n=36. Foram realizadas avaliação histológica morfométrica e análise histológica qualitativa para análise tecidual. RESULTADOS: Foram observadas uma redução significativa da neoproliferação intimal (NPI no GI 15 Gy (pOBJECTIVE: This study was designed to evaluate vascular morphological and morphometric changes induced by brachytherapy with samarium-153 (Sm-153 at high doses in hypercholesterolemic rabbits. METHODS: Forty-three New Zealand White hypercholesterolemic rabbits were analyzed, and the total of 86 iliac arteries underwent balloon angioplasty injury. The rabbits were divided into three different groups: two irradiation groups (IG assigned to 15 Gy (n=14 and 60 Gy (n=36 irradiation doses, respectively, and a control group (n = 36. Histomorphometric and qualitative histological analyses were performed for tissue evaluation. RESULTS: Significant reductions were found in neointimal proliferation (NIP (p< 0.0001, media area (MA (p<0.0001 and percent stenosis (p<0.0001 in the 15-Gy IG, compared to the other groups. The 60-Gy IG had the higher rate of NIP, increase in media and vessel areas (VA and percent stenosis. The 60-Gy IG also showed the greatest number of xanthomatous cells (60-Gy IG: 86.11% and 15-Gy IG: 14.29%, p<0.0001 and the highest amount of hyaline amorphous tissue (60-Gy IG:58.33% and 15-Gy IG:0%, p=0.0001 and vascular proliferation (60-Gy IG:30.56% and 15-Gy IG:0%, p=0.0221. No statistically significant differences were found

  13. Uso do laser arseneto de gálio (904nm após excisão artroplástica da cabeça do fêmur em cães Use of low-power gallium arsenide laser (904nm after arthroplasty excision of the femoral head in dogs

    Directory of Open Access Journals (Sweden)

    Julia Maria Matera


    Full Text Available OBJETIVO: Avaliar a ação do laser diodo Arseneto de Gálio na evolução pós-operatória de cães submetidos à excisão artroplástica da cabeça e colo do fêmur. MÉTODOS: Treze cães portadores de Legg-Calvé-Perthes Disease ou Necrose Asséptica da Cabeça do Fêmur (NACF foram divididos em dois grupos: (I sete cães que não foram irradiados - grupo controle; (II seis cães irradiados uma vez ao dia durante cinco dias consecutivos com o laser Arseneto de Gálio (904nm, densidade de energia 4J/cm2 e tempo de exposição automaticamente ajustado pelo aparelho. Para a avaliação da evolução pós-operatória preencheu-se protocolo com graduação da dor de apoio do membro operado. Utilizou-se teste estatístico não paramétrico U de Mann-Whitney para análise dos resultados. RESULTADOS: O grupo I iniciou o apoio do membro com uma média de 12 dias de pós-operatório e o grupo II com uma média de quatro dias de pós-operatório, sendo estatisticamente significante (p=0.0012. CONCLUSÃO: A irradiação com o laser de baixa potência Arseneto de Gálio (904nm na dose 4J/cm2, periarticular, promoveu rápido retorno da função do membro em cães após a excisão artroplástica da cabeça do fêmur, otimizando a recuperação pós-operatória.PURPOSE: Evaluate the action of the Gallium Arsenide semiconductor laser in the post-operative evolution in dogs after the femoral head and neck artroplastic excision. METHODS: Thirteen dogs bearing Legg-Calvé-Perthes Disease were divided into two groups: (I 7 non-radiated dogs - control group; (II 6 dogs irradiated once a day for 5 consecutive days with the Galium Arsenide laser (904nm, energy density 4J/cm² and exposition time automatically adjusted by the device. In order to evaluate the post-operative evolution it was needed to fill a report stating the degree of the pain as well as the weight bearing of the affected limb. A U non-parametric statistics test of Mann-Whitney was used to perform

  14. Studies of electron traps in gallium arsenide and gallium arsenide phosphide by deep level transient spectroscopy (United States)

    Day, D. Y. S.


    System effects and data analysis for deep level transient spectroscopy (DLTS) have been examined and applied to study the deel levels in the GaAs-GaP system. Studies of typical DLTS systems using either the lock-in amplifier or the dual-channel boxcar averager are presented. The effects of non-zero gate width for the boxcar averager, phase angle adjustment for the lock-in amplifier, and response time of a typical commercial capacitance meter are investigated. Errors introduced in the measurements by these effects are calculated for typical cases. Measurements of gold level in silicon are presented, along with calculated corrections. We find the correction to be minimal in the boxcar-averager method, but significant in the lock-in amplifier approach. A DLTS system is described for measuring deep levels in diodes exhibiting large leakage currents. A capacitance bridge is used employing the diode to be tested along with a dummy diode of similar characteristics. The DLTS spectrum of a leaky GaAs planar diode is measured and compared to experimental results obtained with two standard DLTS systems . It is shown that measurements with the standard systems are impossible in certain temperature ranges because of overloading problems. The approach described here, however, gives the DLTS spectrum between 77 K and 300 K.

  15. Characterizing and engineering tunable spin functionality inside indium arsenide/gallium arsenide quantum dot molecules (United States)

    Liu, Weiwen

    The continual downsizing of the basic functional units used in the electronics industry has motivated the study of the quantum computation and related topics. To overcome the limitations of classical physics and engineering, some unique quantum mechanical features, especially entanglement and superpositions have begun to be considered as important properties for future bits. Including these quantum mechanical features is attractive because the ability to utilize quantum mechanics can dramatically enhance computational power. Among the various ways of constructing the basic building blocks for quantum computation, we are particularly interested in using spins inside epitaxially grown InAs/GaAs quantum dot molecules as quantum bits (qubits). The ability to design and engineer nanostructures with tailored quantum properties is critical to engineering quantum computers and other novel electro-optical devices and is one of the key challenges for scaling up new ideas for device application. In this thesis, we will focus on how the structure and composition of quantum dot molecules can be used to control spin properties and charge interactions. Tunable spin and charge properties can enable new, more scalable, methods of initializing and manipulating quantum information. In this thesis, we demonstrate one method to enable electric-field tunability of Zeeman splitting for a single electron spin inside a quantum dot molecules by using heterostructure engineering techniques to modify the barrier that separates quantum dots. We describe how these structural changes to the quantum dot molecules also change charge interactions and propose ways to use this effect to enable accurate measurement of coulomb interactions and possibly charge occupancy inside these complicated quantum dot molecules.

  16. Experimental Studies of Lateral Electron Transport in Gallium Arsenide-Aluminum Gallium Arsenide Heterostructures. (United States)


    34A new field-effect transistor with selectively doped GaAs/n-Al xGa As teoucin. u. L. A2I. EhM ., vol. 19, pp. L225-L227, 190 h 12. D. Delagebeaudeuf, P...photoconductivity in thin epitaxial GaAs," 1. Anl. EhMs ., vol. 52, pp. 5718-5721, 1981. 129. K. Hess and N. Holonyak, Jr., "Hot electrons in layered

  17. Electroluminescence Studies on Longwavelength Indium Arsenide Quantum Dot Microcavities Grown on Gallium Arsenide (United States)


    committee members, Dr. Bill Siskaninetz, Dr. Ronald Coutu, and Dr. Michael Marciniak for their assistance and the extraordinary amount of patience...6 2.2. (a) Structure of a through DBR contacted VCSEL and ( b ) an...DBR mirror and a ( b ) bottom DBR mirror ......8 2.4. Calculated power reflectance, transmittance, and absorptance of a DBR

  18. Optical characteristics of transparent samarium oxide thin films ...

    Indian Academy of Sciences (India)


    Oct 7, 2016 ... 1Department of Physics, Faculty of Science, Taif University, Taif 888, Saudi Arabia. 2Department of Physics, Faculty of Education, Ain Shams University, Roxy 11757, Cairo, Egypt. 3Materials Science Unit, Department of Chemistry, Faculty of Science, Tanta University, 31725 Tanta, Egypt. 4Department of ...

  19. Optical properties of lead–tellurite glasses doped with samarium ...

    Indian Academy of Sciences (India)

    The optical properties of a new family of Sm2O3–(40–)PbO–60TeO2 glasses are investigated. The optical absorption spectra were recorded at ... The refractive index, molar refraction and polarizability of oxide ions have been calculated by using Lorentz–Lorentz relations. The non-linear variations of the above optical ...

  20. Optical properties of lead–tellurite glasses doped with samarium ...

    Indian Academy of Sciences (India)


    Abstract. The optical properties of a new family of xSm2O3–(40–x)PbO–60TeO2 glasses are investigated. The optical absorption spectra were recorded at room temperature in the UV-visible region. From the absorption edge studies, the values of optical bandgap energies have been evaluated. The refractive index, molar ...

  1. Measurement of radiative lifetime in atomic samarium using ...

    Indian Academy of Sciences (India)


    Feb 8, 2014 ... In this paper, we report the investigations of lifetime measurement of odd-parity energy level 19009.52 cm. −1 .... introduced by an electronic delay generator between the two Q-switch pulses of Nd-YAG laser. The slope of the .... Our values of the lifetimes are free from the common systematic errors. Thus ...

  2. A novel samarium complex with interesting photoluminescence and ...

    African Journals Online (AJOL)

    The 4,4'-Hbipy moieties, isolated nitrates and [Sm(H2O)4(NO3)3] species are held together via hydrogen bonds and p…p interactions to form a 3-D supramolecular framework. Luminescent investigation reveals a strong emission in blue region. Optical absorption spectrum of 1 reveals the presence of an optical gap of 3.60 ...

  3. Lithium samarium polyphosphate, LiSm(PO34

    Directory of Open Access Journals (Sweden)

    Dan Zhao


    Full Text Available The mixed-metal rare-earth polyphosphate LiSm(PO34 consists of a three-dimensional framework in which zigzag [(PO3n]n− chains with a periodicity of four PO4 tetrahedra are connected through Li+ and Sm3+ ions (both with 2. symmetry.

  4. Sodium samarium tetrakis(polyphosphate, NaSm(PO34

    Directory of Open Access Journals (Sweden)

    Dan Zhao


    Full Text Available NaSm(PO34 has been prepared by solid state reactions. It belongs to type II of the structural family of MILnIII(PO34 compounds (MI = alkali metal and LnIII = rare earth metal and is composed of ∞(PO3n]n− polyphosphate chains with a repeating unit of four PO4 tetrahedra. The chains extend parallel to [100] and share O atoms with irregular SmO8 polyhedra, forming a three-dimensional framework which delimits tunnels occupied by Na+ cations in a distorted octahedral environment.

  5. Isotopic Ratios of Samarium by TIMS for Nuclear Forensic Application

    Energy Technology Data Exchange (ETDEWEB)

    Louis Jean, James [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Inglis, Jeremy David [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)


    The isotopic ratio of Nd, Sm, and Gd can provide important information regarding fissile material (nuclear devices, reactors), neutron environment, and device yield. These studies require precise measurement of Sm isotope ratios, by either TIMS or MC-ICP-MS. There has been an increasing trend to measure smaller and smaller quantities of Sm bearing samples. In nuclear forensics 10-100 ng of Sm are needed for precise measurement. To measure sub-ng Sm samples using TIMS for nuclear forensic analysis.

  6. Synthesis of copper, silver, and samarium chalcogenides by mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Ohtani, T.; Maruyama, K.; Ohshima, K. [Okayama Univ. of Science (Japan). Lab. for Solid State Chemistry


    CuInX{sub 2} (X = S, Se, Te), Ag{sub 2}S, Ag{sub 2}Se, Ag{sub 3}Te{sub 2}, Ag{sub 1.9}Te, AgCuSe, Sm{sub 3}Se{sub 4}, Sm{sub 2}Se{sub 3}, and SmTe were synthesized by a mechanical alloying method, using a high-energy planetary ball mill. The compounds were obtained by milling mixtures of the elements with desired ratios in agate or Cu-Be vials for 60--180 min.

  7. Oriented growth of thin films of samarium oxide by MOCVD

    Indian Academy of Sciences (India)


    Abstract. Thin films of Sm2O3 have been grown on Si(100) and fused quartz by low-pressure chemical va- pour deposition using an adducted β-diketonate precursor. The films on quartz are cubic, with no preferred orientation at lower growth temperatures (~ 550°C), while they grow with a strong (111) orientation as the.

  8. 150 KVA Samarium Cobalt VSCF Starter Generator Electrical System (United States)


    considerable hand labor. Addition of a provision for suitable electrical connection by the SCR manufacturer wou;d be desirable for production runs. Predicted...licen- sing the holder or any other person or corporation, or conveying any rights or permission to manufacture , use, or sell any patented invent,’n...tesile strength to contain the magnets and pole pieces up through the overspeed rating of the rotor. The cho.;en process uses maraging steel as the

  9. Optical properties of samarium doped zinc–tellurite glasses

    Indian Academy of Sciences (India)

    Glasses with the composition, (Sm2O3)(ZnO)(40–)(TeO2)(60), were prepared by conventional melt quenching method. The density, molar volume, and optical energy band gap of these glasses have been measured. The refractive index, molar refraction and polarizability of oxide ion have been calculated by using ...

  10. Clinical evaluation of dentin hypersensitivity treatment with the low intensity Gallium-Aluminum-Arsenide laser - AsGaAl Avaliação clínica do tratamento da hiperestesia dentinária com laser de baixa potência de Arseniato de Gálio-Alumínio - AsGaAl

    Directory of Open Access Journals (Sweden)

    Luciana Chucre Gentile


    Full Text Available The dentin hypersensitivity is a painful condition rather prevalent in the general population. There are several ways of treatment for such condition, including the low intensity lasers. The proposal of this study was to verify the effectiveness of the Gallium-Aluminum-Arsenide diode laser in the treatment of this painful condition, using a placebo as control. MATERIALS AND METHODS: Thirty-two patients were selected, 22 females and 10 males, with ages ranging from 20 to 52 years old. The 32 patients were randomly distributed into two groups, treated and control; the sample consisted of 68 teeth, 35 in the treated group and 33 in the control group. The treated group was exposed to six laser applications with intervals from 48 to 72 hours, and the control group received, as placebo, applications of a curing light. RESULTS: A significant reduction was observed in the pain condition between the initial phase and after six laser applications; however, such reduction could also be observed for the control group exposed to the placebo. CONCLUSION: Therapy with the low intensity Gallium-Aluminum-Arsenide laser - AsGaAl induces a statistically significant reduction in the painful condition after each application and between the beginning and end of treatment, although there was no statistically significant difference between the treated group (laser and the control group (placebo at the end of treatment and after the mediate evaluation results (after 6 weeks, this way impairing the real measurement of laser effectiveness and placebo effect.A hiperestesia dentinária trata-se de uma condição dolorosa bastante prevalente nas populações mundiais. Várias são as modalidades de tratamento para tal condição, entre elas, os lasers de baixa potência. A proposta deste estudo foi a de verificar a efetividade do laser de diodo de Arseniato de Gálio-Alumínio no tratamento desta condição dolorosa, utilizando-se um placebo como controle. MATERIAIS E M

  11. Photoluminescence Study of Ion Implantation Damage in Gallium Arsenide. (United States)


    The completion of this thesis was a very gratifying and educational experience. It provided valuable exposure to topics which were heretofore...Engjineering, Air Force, Institute of Technology, December 1978. 21. Yu , P. W . and Y’. S. Park. "PhoLel uminlescence in M11- implmnted GaiAs --anm...1946 in Caracas, Venezuela, the son of Edward and Margaret Key. Ile received his high school education at Riverside Military Academy in Gainesville

  12. Noise-margin limitations on gallium-arsenide VLSI (United States)

    Long, Stephen I.; Sundaram, Mani


    Two factors which limit the complexity of GaAs MESFET VLSI circuits are considered. Power dissipation sets an upper complexity limit for a given logic circuit implementation and thermal design. Uniformity of device characteristics and the circuit configuration determines the electrical functional yield. Projection of VLSI complexity based on these factors indicates that logic chips of 15,000 gates are feasible with the most promising static circuits if a maximum power dissipation of 5 W per chip is assumed. While lower power per gate and therefore more gates per chip can be obtained by using a popular E/D FET circuit, yields are shown to be small when practical device parameter tolerances are applied. Further improvements in materials, devices, and circuits wil be needed to extend circuit complexity to the range currently dominated by silicon.

  13. Measurement of the thermopower anisotropy in iron arsenide

    Energy Technology Data Exchange (ETDEWEB)

    Fujii, T., E-mail: [Cryogenic Research Center, the University of Tokyo, 2-11-16 Yayoi, Bunkyo, Tokyo 113-0032 (Japan); Shirachi, T. [Department of Applied Physics, the University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656 (Japan); Asamitsu, A. [Cryogenic Research Center, the University of Tokyo, 2-11-16 Yayoi, Bunkyo, Tokyo 113-0032 (Japan); Department of Applied Physics, the University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656 (Japan); Ashikaga Institute of Technology, 268-1 Omae, Ashikaga, Tochigi 326-8558 (Japan)


    Highlights: • In this study, in order to investigate the origin of the in-plane anisotropy, the in-plane anisotropy of the thermopower was measured for the detwined single crystals of BFe{sub 2}As{sub 2}. And, we found no anisotropy in the thermopower above T{sub AFO}, although there is a large anisotropy in the resistivity. This result gives evidence that the anisotropy in the resistivity arise from the anisotropy of the scattering time, and the energy dependence of the scattering time can be considered negligible. In the case of iron pnictides, the proposed orbital ordering more likely results in an anisotropy of electronic structure below T{sub AFO}, whereas the spin-nematic ordering leads to an anisotropy of electron scattering above T{sub AFO}. Therefore, our results suggest that nematicity above T{sub AFO} results from anisotropic magnetic scattering. - Abstract: We investigated the in-plane anisotropy of the thermopower and electrical resistivity on detwinned single crystals of BaFe{sub 2}As{sub 2}. The in-plane anisotropy of the resistivity was clearly observed far above the magnetostructural transition temperature T{sub AFO}. While, the thermopower showed the in-plane anisotropy only below T{sub AFO}. These results are associated with the different origin of the anisotropy above and below T{sub AFO}. Since the thermopower does not depend on the scattering time, the anisotropy of the resistivity above T{sub AFO} is considered to be due to the anisotropic scattering. On the other hand, the anisotropy in the thermopower below T{sub AFO} is ascribed to the reconstructed Fermi surface.

  14. Radiation annealing of gallium arsenide implanted with sulphur

    CERN Document Server

    Ardyshev, V M


    Sulfur ions were implanted in a semi-insulating GaAs. Photon annealing (805 deg C/(10-12) s) and the thermal one (800 deg C/30 min) were conducted under SiO sub 2 -films coating obtained by different ways. Contents of GaAs components in films were determined from Rutherford backscattering spectra; concentration profiles of electrons were measured by the voltage-capacitance method. Diffusion of sulfur was shown to go in two directions - to the surface and into bulk of GaAs. The first process was induced by vacancies that had been formed near the surface of semiconductors during the dielectric coating. The coefficient of the bulk-diffusion and diffusion-to-surface of sulfur ions under photon annealing was twice as much as that under thermal one. The doping efficiency was also larger

  15. Epitaxial metal-gallium arsenide contacts via electrodeposition (United States)

    Bao, Zhi Liang

    The fabrication of epitaxial metal-GaAs contacts via electrodeposition and the electrical properties of the Schottky diodes are reported in this dissertation. Epitaxial electrodeposition of copper, iron, cobalt, iron-nickel, and bismuth on GaAs was discovered to rely on three major factors: the preparation of the GaAs surface by (NH4)OH etching, the addition of (NH 4)2SO4 to the electrolytes, and the control of deposition current density. The surface preparation by (NH4)OH provides a hydrophilic surface likely due to passivation via a layer of hydroxide bonds. Ammonium sulphate inhibits oxidation of the metal cations and likely acts as a surfactant both on the metal and GaAs surfaces. Control of adatom flux, similar to vacuum deposition techniques such as molecular beam epitaxy, determined the crystallinity, varying from polycrystalline to epitaxial to dendritic for current densities from 0.01 to 1 mA/mm2. The effects of other electrodeposition conditions including pH and electrolyte temperature were also investigated. Neutral electrolytes are needed for copper, iron, nickel-iron alloy, and cobalt epitaxial deposition, while acidic solution works for bismuth deposition indicating that the control of hydrogen evolution may be important. Cobalt nanodisc formation was obtained for lower temperatures (2 - 22°C) while optimal copper, iron, and bismuth epitaxy required higher deposition temperatures, 53, 56, and 70°C, respectively. The growth is via island nucleation and coalescence. The iron films develop a small decrease in lattice constant with residual compressive stress, which is a function of temperature. This is likely due to an impurity such as oxygen. Copper and cobalt formed nanometer scale reacted interfaces with GaAs, while iron and bismuth/GaAs formed abrupt interfaces. The electrical properties of these Schottky diodes were, nevertheless, found to be close to ideal and comparable to vacuum deposited diodes. Fe and Co/GaAs diodes showed identical electrical properties for GaAs (100), (110) and (111)B substrate orientations, consistent with uniform and defect-free interfaces. Cu and Bi/GaAs showed a much greater orientational dependence perhaps due to the larger lattice mismatch. Iron and nickel-iron alloy films showed anisotropic magnetic properties consistent with single crystalline material. These metal/GaAs contacts are potentially interesting for spintronics applications. Keywords. electrodeposition; epitaxy; metal-GaAs; Spintronics; (NH4)2SO4

  16. The effects of radiation on gallium arsenide radiation detectors

    CERN Document Server

    Bates, R L; D'Auria, S D; O'Shea, V; Raine, C; Smith, K M


    Semi-insulating, undoped, Liquid Encapsulated Czochralski (SI-U LEC) GaAs detectors have been irradiated with 1MeV neutrons, 24GeV/c protons, and 300MeV/c pions. The maximum fluences used were 6, 3, and 1.8~10$^{14}$ particles/cm$^{2}$ respectively. For all three types of irradiation the charge collection efficiencies (cce) of the detector are reduced due to the reduction in the electron and hole mean free paths. Pion and proton irradiations produce a greater reduction in cce than neutron irradiation with the pions having the greatest effect. The effect of annealing the detectors at room temperature, at 200$^{o}$C and at 450$^{o}$C with a flash lamp have been shown to reduce the leakage current and increase the cce of the irradiated detectors. The flash-lamp anneal produced the greatest increase in the cce from 26% to 70% by increasing the mean free path of the electrons. Two indium-doped samples were irradiated with 24GeV/c protons and demonstrated no improvement over SI U GaAs with respect to post-irradiati...

  17. Gallium Arsenide Pilot Line for High Performance Components (United States)


    generally accepted values and/or the values in the center of the reported ranges.) Table 6 gives expected lifetimes for aluminum at 2.0 x 05 Acn - 2 (the...iew This sijxe g"v& an~~I ehbrodance W-lo (e* aw powd Oft" ad 41111ago She dwo bwmodswo u64nd Gmma s Linds U SP~aRAPTow 1~bm30 𔃻 BYA PI ol

  18. Gallium arsenide based surface plasmon resonance for glucose monitoring (United States)

    Patil, Harshada; Sane, Vani; Sriram, G.; Indumathi, T. S; Sharan, Preeta


    The recent trends in the semiconductor and microwave industries has enabled the development of scalable microfabrication technology which produces a superior set of performance as against its counterparts. Surface Plasmon Resonance (SPR) based biosensors are a special class of optical sensors that become affected by electromagnetic waves. It is found that bio-molecular recognition element immobilized on the SPR sensor surface layer reveals a characteristic interaction with various sample solutions during the passage of light. The present work revolves around developing painless glucose monitoring systems using fluids containing glucose like saliva, urine, sweat or tears instead of blood samples. Non-invasive glucose monitoring has long been simulated using label free detection mechanisms and the same concept is adapted. In label-free detection, target molecules are not labeled or altered, and are detected in their natural forms. Label-free detection mechanisms involves the measurement of refractive index (RI) change induced by molecular interactions. These interactions relates the sample concentration or surface density, instead of total sample mass. After simulation it has been observed that the result obtained is highly accurate and sensitive. The structure used here is SPR sensor based on channel waveguide. The tools used for simulation are RSOFT FULLWAVE, MEEP and MATLAB etc.

  19. Subthreshold Laser Radiation of Rhesus Monkey Retina. Gallium Arsenide Bioeffects. (United States)


    hrs but they could find no histologic or fluorescein leakage correlate. If comparable at all to this study, then t" the appearance of the pale PE cells... ANATOMY 9 BORWdEIN AUG 82 UNCLASSIFIEDi DAMDi7-81-6-9489 F/6 6/18 N U EUEEECEE .. . .... -.!-4 . -- - - 111 L4.0 L2 .m1208 JfJ .11111 .45 111.6...Development Command Fort Detrick, Frederick, Maryland 21701-5012 .Grant No. DAD17-81-G-9489D, o.°,,o.DTIC .’ Department of Anatomy IELECTEr’ The University

  20. Structural and optical properties of porous gallium arsenide

    Energy Technology Data Exchange (ETDEWEB)

    Belogorokhov, A.I. [Institute of Rare Metals, 119017 Moscow (Russian Federation); Gavrilov, S.A. [Moscow Institute of Electronic Technology (Technical University), 103498 Moscow (Russian Federation); Belogorokhov, I.A. [Physics Department, M.V. Lomonosov Moscow State University, 119899 Moscow (Russian Federation)


    The optical and structural properties of a porous GaAs have been studied. The samples a of porous GaAs were fabricated by an electrochemical method on n- and p-type GaAs(100). The GaAs wafer doping type considerably affects nanocrystal shape, nanocrystal average diameter and chemical surface states. Low-frequency Raman shift of the peaks, conditioned by the main optical phonons, in the Raman spectra of the porous GaAs was observed. The values of the frequencies of surface phonons obtained from the Raman spectra and Infrared reflectivity spectra well coincide. Comparing the reflectivity spectra of porous GaAs with the ones of the single crystal GaAs, the changes in the spectral dependencies of the reflectance within the phonon resonance region may be seen which coincide with appearance of additional oscillators caused by sized confinement of the lattice vibrations of GaAs nanocrystals. The surface morphology of porous GaAs prepared on the substrate of n-type GaAs has been studied using atomic-force microscopy. Nanosized contour of the porous GaAs surface was watched. Estimations of the size of nanocrystals in a porous GaAs by the Raman and Infrared spectroscopy, photoluminescence (PL) and atomic-force microscopy well agree with each other. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  1. High Efficiency Solar Panel. Phase II. Gallium Arsenide. (United States)


    distance apartare lowered onto an interconnect/cell assembly with a calibrated force. Activation of an electrical switch introduces a voltage and current...the working area of the parallel gap Aelder is shown in Figure 8. Here two electrodes, a set distance apartare lowered onto an interconnect/cell

  2. Gallium Arsenide Pilot Line for High Performance Components (United States)


    a self - consistent solution of the coupled, nonlinear Poisson - Schrodinger equations for the SARGIC HFET heterostructures.) These models were used in...will be functional at 200 MHz. This expectation is based on the consistency of the measured and simulated results obtained at AT&T-Reading, AT&T...CAD tools. The layout floorplan consists of 33 blocks. These blocks were carefully arranged to butt next to each other without using routing channels

  3. a 9-BIT, Pipelined Gallium Arsenide Analog-Digital Converter (United States)

    Breevoort, Cornelius Marius


    Excellent Short Take-Off and Landing (STOL) performance is achieved by Upper Surface Blowing (USB) aircraft as a result of mounting high by-pass turbofan engines over the forward part of the wing. High lift levels are generated by directing the engine exhaust over the wing upper surface to entrain additional airflow and by using the Coanda effect to turn the exhaust flow downward over a large radius "Coanda" flap. Commercial application of USB technology could reduce airport congestion and community noise if future configurations can be designed with economically acceptable cruise drag levels. An experimental investigation of the high speed aerodynamics of USB aircraft configurations has been conducted to accurately define the magnitude and causes of the powered configuration cruise drag. A highly instrumented wind tunnel model of a realistic USB configuration has been used which permitted parametric variations in the number and spanwise location of the nacelles and accurately modeled the engine power effects with turbofan propulsion simulators. The measured force data provides an accurate definition of the cruise drag penalty associated with each configuration and the constructed pressure contour plots provide detailed insight into their causes. It was found that the high speed aerodynamics of USB configurations is a complex interaction of jet induced and wing transonic flowfields. The presence of the nacelles on the wing upper surface created a severe drag penalty which increased with freestream Mach number, power setting and angle of attack. The more widely spaced two nacelle configurations exhibited improved flowfields at moderate Mach numbers but suffered from drag levels comparable to the baseline configuration for high speed cruise conditions. At high Mach numbers and power settings, all of the tested configurations displayed strong shocks and separated zones in the wing/nacelle junction regions. Detailed discussions of the causes of the cruise drag penalty and recommended future design improvements are presented.

  4. Gallium Arsenide Field Effect Transistors with Semi-Insulated Gates. (United States)


    insulating substrate. Ohmic source and drain contacts of width Z are placed as shown. Between them is a Schottky barrier “gate” of l ength ~,. In norma this manner is given in Figure 22. FETs were fabricated from this material using two different procedures. Both are essential l y the norma l...Forward, and H. L. Hartnagel , App l . Phys. Lett. 26, 569 (1975). 3. a. R. Pr un iaux , J. C. North , and A. V. Payer, IEEE Trans. Electron Devices ED

  5. Spin dynamics of equilibrium electrons in gallium arsenide

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, Georg Martin


    In this dissertation, spin noise spectroscopy is applied to study spin dynamics in GaAs based semiconductor structures close to thermal equilibrium. Semiconductor spin noise spectroscopy measures the stochastic spin polarization of the electron ensemble via off-resonant Faraday rotation. Correspondingly, no energy has to be deposited in the sample system contrary to other experimental techniques, in which the dephasing or the depolarization of an artificially injected spin polarization is measured. Since the spin fluctuations are measured in real-time, spin noise spectroscopy had been hitherto limited to frequencies below 1 GHz. This thesis introduces the experimental advancement of ultrafast spin noise spectroscopy, in which the fluctuations are probed by pulsed light, and detection of spin noise at frequencies up to 16 GHz is demonstrated. These frequencies exceed the bandwidth of the photoreceiver by a factor of around 200. To further explore the limitations of the finite bandwidth of the detection system, electrical frequency mixing is applied for down-conversion of the electrical spin noise signal. Furthermore, spin noise measurements are simulated revealing that also ultrafast digitizers with low resolution can be utilized for spectral analysis in spin noise spectroscopy without any significant loss of sensitivity. The spin dynamics in a symmetrically grown, modulation-doped, (110)-oriented GaAs/AlGaAs multiple quantum well structure are investigated in this work. This experiment represents the first spin noise measurements on a semiconductor system of reduced effective dimensionality. The Dyakonov-Perel mechanism that usually dominates spin dephasing of free electrons in GaAs is ineffective in (110)-oriented structures for spins along the growth direction. Nevertheless, the correspondingly anticipated long spin dephasing times in (110) GaAs/AlGaAs quantum wells at low temperatures are not accessible with conventional experiments that rely on optical spin orientation since the photocreation of holes obviates the observed spin dephasing times due to the Bir-Aronov-Pikus mechanism. Spin noise spectroscopy however enables measurements in the absence of optically created holes and the measured spin dephasing times in this work represent the longest reported spin dephasing times for delocalized electrons in GaAs quantum wells. Additionally, the anisotropic spin dynamics, which result from the Dyakonov-Perel mechanism that is still effective for the spins in the quantum well plane, as well as the time-of-flight broadening of the spin noise spectra, which originates from the finite transit time of the electrons through the probe volume, are experimentally investigated. The experimental technique of ultrafast spin noise spectroscopy enables investigation of spin dynamics in n-type bulk GaAs at high magnetic fields. The examined samples have a doping concentration slightly below and above the metal-to-insulator transition. The temperature, doping and magnetic field dependence of the effective electron Lande factor is studied as well as the spin dephasing in a transverse magnetic field. Finally, semiconductor spin noise spectroscopy is carried out with a magnetic field oriented with an arbitrary angle to the direction of light propagation while usually the magnetic field is applied transverse to the light wavevector. This novel geometry for spin noise spectroscopy allows the investigation of spin dephasing and spin relaxation in a single measurement. (orig.)

  6. Threshold extension of gallium arsenide/aluminum(x) gallium(1-x) arsenide terahertz detectors and switching in heterostructures (United States)

    Rinzan, Mohamed B.

    In this work, homojunction interfacial workfunction internal photoemission (HIWIP) detectors based on GaAs, and heterojunction interfacial workfunction internal photoemission (HEIWIP) detectors based mainly on the GaAs/Al xGa1-xAs material system are presented. Design principles of HIWIP and HEIWIP detectors, such as free carrier absorption, photocarrier generation, photoemission, and responsivity, are discussed in detail. Results of p-type HIWIPs based on GaAs material are presented. Homojunction detectors based on p-type GaAs were found to limit their operating wavelength range. This is mainly due to band depletion arising through carrier transitions from the heavy/light hole bands to the split off band. Designing n-type GaAs HIWIP detectors is difficult as it is strenuous to control their workfunction. Heterojunction detectors based on GaAs/AlxGa 1-xAs material system will allow tuning their threshold wavelength by adjusting the alloy composition of the Al xGa1-xAs barrier, while keeping a fixed doping density in the emitter. The detectors covered in this work operate from 1 to 128 microm (300 to 2.3 THz). Enhancement of detector response using resonance cavity architecture is demonstrated. Threshold wavelength extension of HEIWIPs by varying the Al composition of the barrier was investigated. The threshold limit of ˜ 3.3 THz (92 microm), due to a practical Al fraction limit of ˜ 0.005, can be overcome by replacing GaAs emitters in GaAs/AlxGa1-xAs HEIWIPs with AlxGa1-xAs emitters. As the initial step, terahertz absorption for 1 microm-thick Be-doped AlxGa1-xAs epilayers (with different Al fraction and doping density) grown on GaAs substrates was measured. The absorption probability of the epilayers was derived from these absorption measurements. Based on the terahertz absorption results, an AlxGa1-xAs/GaAs HEIWIP detector was designed and the extension of threshold frequency ( f0) to 2.3 THz was successfully demonstrated. In a different study, switching in GaAs/AlxGa1- xAs heterostructures from a tunneling dominated low conductance branch to a thermal emission dominated high conductance branch was investigated. This bistability leads to neuron-like voltage pulses observed in some heterostructure devices. The bias field that initiates the switching was determined from an iterative method that uses feedback information, such as carrier drift velocity and electron temperature, from hot carrier transport. The bias voltage needed to switch the device was found to decrease with the increasing device temperature.

  7. Doped Aluminum Gallium Arsenide (AlGaAs)/Gallium Arsenide (GaAs) Photoconductive Semiconductor Switch (PCSS) Fabrication (United States)


    test devices without anti- reflection (AR) protection caps but now serve as duplicate devices to combat fabrication yield issues. The columns of...step. 2. Methods, Assumptions, and Procedures 2.1 Alignment Marks Due to the negligible effect the n-type dopant annealing has on the surface of the...A-1 of the Appendix, photoresist makes an adequate mask for this short plasma etch. The etch is a simple boron trichloride (BCl3) and argon (Ar

  8. Contribution to the study of samarium-151 excited levels; Contribution a l'etude des niveaux excites du samarium-151

    Energy Technology Data Exchange (ETDEWEB)

    Locard, P. [Commissariat a l' Energie Atomique, Centre d' Etudes Nucleaires de Grenoble, 38 (France)


    The nucleus of {sup 151}Sm, which has 89 neutrons, happens to be on the lower edge of the deformed nuclei of region II. Therefore, the study of its levels is very interesting for the verification of the goodness of the collective models for deformed nuclei when the deformation is small (we introduce these models in the first chapter). {sup 151}Sm has often been studied, but the direct gamma spectrum measured with a lithium drift-germanium detector (chapter 3) shows many high energy transitions which did not appear in the previous level schemes. In order to settle these transitions, we have undertaken gamma-gamma coincidence spectra (as well as sum-coincidence spectra) experiments with a scintillation spectrometer designed in our laboratory (chapter 2). The investigation of the intensities of these coincidences leads us to modify the last proposed level schemes: we suppress the levels at 405,5 and 650 keV, we add levels at 245,6 - 306,6 - 522 - 952 and 962 keV. We have also verified the multipolarities of the main transitions and measured the half-lives of a few levels (chapter 3) (we find a half-life of 1.1 {+-} 0.5 nanosecond for the level at 167,7 keV). In chapter 4, we compare our results to the predictions of the models described in chapter 1. (author) [French] Le noyau de {sup 151}Sm, qui possede 89 neutrons, se trouve a la limite inferieure des noyaux deformes de la region II. L'etude de ses niveaux excites est donc d'un interet tout particulier pour la verification de la validite des differents modeles collectifs pour les noyaux deformes, lorsque la deformation est petite (nous introduisons ces modeles dans un premier chapitre). Le {sup 151}Sm a deja fait l'objet de nombreuses etudes, mais le spectre gamma direct fait avec une jonction de germanium compense au lithium (chapitre 3), nous a montre l'existence d'un grand nombre de transitions de hautes energies qui ne sont pas placees dans les schemas proposes jusqu'a ce jour. Pour preciser la place de ces transitions, nous avons donc entrepris des experiences de coincidences gamma-gamma (et de ''spectre de somme'') a l'aide d'un ensemble de spectrometrie a scintillation realise au laboratoire (chapitre 2). L'etude des intensites de ces coincidences (chapitre 3) nous amene a modifier le dernier schema propose: nous supprimons les niveaux a 405,5 et 650 keV, nous ajoutons des niveaux a 245,6 - 306,6 - 522 - 952 et 962 keV. Nous avons egalement verifie la multipolarite des principales transitions et mesure la duree de vie de certains des niveaux (chapitre 3) (nous trouvons une periode de 1,1 {+-} 0,5) nanoseconde pour le niveau a 167,7 keV). Le chapitre 4 est enfin consacre a la comparaison de nos resultats avec les predictions des differents modeles decrits au chapitre 1. (auteur)

  9. Efeito da terapia com laser de arsenieto de gálio e alumínio (660Nm sobre a recuperação do nervo ciático de ratos após lesão por neurotmese seguida de anastomose epineural: análise funcional Effect of gallium-aluminum-arsenide laser therapy (660Nm on recovery of the sciatic nerve in rats following neurotmesis lesion and epineural anastomosis: functional analysis

    Directory of Open Access Journals (Sweden)

    FA Reis


    Full Text Available CONTEXTUALIZAÇÃO: As lesões nervosas periféricas podem comprometer atividades diárias de um indivíduo e resultam em perda da sensibilidade e motricidade do território inervado. OBJETIVO: Com o intuito de acelerar os processos regenerativos, objetivou-se analisar a influência da aplicação do laser de arsenieto de gálio e alumínio (AsGaAl, 660Nm sobre a recuperação funcional do nervo ciático de ratos. MATERIAIS E MÉTODOS: O nervo ciático de 12 ratos Wistar foi submetido à lesão por neurotmese e anastomose epineural e divididos em dois grupos: controle e laserterapia. Após a lesão, utilizou-se o laser de GaAlAs, 660Nm, 4J/cm², 26,3mW, feixe de 0,63cm², em três pontos eqüidistantes sobre a lesão, por 20 dias. As impressões das pegadas dos animais foram obtidas antes e após (sete, 14 e 21 dias pós-operatórios o procedimento cirúrgico e calculou-se o índice funcional do ciático (IFC. RESULTADOS: A comparação do IFC não resultou em diferença significante (p>0,05 entre os grupos. CONCLUSÕES: Conclui-se que os parâmetros e métodos empregados na laserterapia demonstram resultados nulos sobre o IFC no período avaliado.CONTEXT: Peripheral nerve injuries result in sensory and motor losses in the innervated area and can hinder individuals’ daily activities. Objective: The objective was to analyze the influence of applying gallium-aluminum-arsenide (GaAlAs laser (660Nm on the functional recovery of the sciatic nerve in rats. METHODS: The sciatic nerve of 12 Wistar rats was subjected to injury consisting of neurotmesis and epineural anastomosis. The rats were divided into two groups: control and laser therapy. After the injury, a GaAlAs laser was used (660Nm, 4J/cm², 26.3mW and 0.63cm² beam at three equidistant points on the injury, for 20 days. Footprint impressions were obtained from the animals before and seven, 14 and 21 days after the surgical procedure and the sciatic functional index (SFI was calculated

  10. One-step synthesis of samarium-doped ceria and its CO catalysis

    Indian Academy of Sciences (India)


    Key Laboratory for Special Functional Aggregate Materials of Education Ministry,. School of Chemistry and Chemical ... been flourishing since its excellent electric properties were discovered in the 1980s.1 At present SDC is ... absolute ethanol three times and dried in an electric oven at 60°C overnight, and then calcined at ...

  11. Trichloridotris{N-[phenyl(pyridin-2-ylmethylidene]hydroxylamine-κ2N,N′}samarium(III

    Directory of Open Access Journals (Sweden)

    Yahong Li


    Full Text Available The SmIII ion in the title compound, [SmCl3(C12H10N2O3], shows a coordination number of nine with a slightly distorted tricapped trigonal prismatic geometry based on a Cl3N6 donor set. The molecular structure is stabilized by three intramolecular O—H...Cl hydrogen bonds.

  12. Biological studies of samarium-153 bleomycin complex in human breast cancer murine xenografts for therapeutic applications

    Energy Technology Data Exchange (ETDEWEB)

    Bahrami-Samani, A. [Faculty of Nuclear Engineering and Physics, Amirkabir Univ. of Tech., Tehran (Iran); Ghannadi-Maragheh, M. [Faculty of Nuclear Engineering and Physics, Amirkabir Univ. of Tech., Tehran (Iran); Radiopharmaceutical Research and Development Lab. (RRDL), Nuclear Science and Technology Research Inst. (NSTRI), Tehran (Iran); Jalilian, A.R.; Mazidi, M. [Radiopharmaceutical Research and Development Lab. (RRDL), Nuclear Science and Technology Research Inst. (NSTRI), Tehran (Iran)


    In this work, a potential therapeutic DNA targeting agent, {sup 153}Sm-bleomycin complex ({sup 153}Sm-BLM), was developed and the tumor accumulation studies were performed using single photon emission computed tomography (SPECT) and scarification studies. {sup 153}Sm-BLM was prepared at optimized conditions (room temperature, 4-8 h, 0.1 mg bleomycin for 740-3700 MBq {sup 153}SmCl{sub 3}, radiochemical purity over 98%, HPLC, specific activity = 55 TBq/mmol). {sup 153}Sm-BLM was administered into human breast cancer murine xenografts and the biodistribution and imaging studies were performed up to 48 h. {sup 153}Sm-BLM demonstrated superior tumor accumulation properties in contrast with the other radiolabeled bleomycins with tumor:blood ratios of 41, 72 and 182 at 4, 24 and 48 h, respectively, and tumor:muscle ratios of 23, 33 and > 1490 at 4, 24 and 48 h, respectively, while administered intravenously. The SPECT images also demonstrated the obvious tumor uptake at the chest region of the breast-tumor bearing mice. These initial experiments demonstrate significant accumulation of {sup 153}Sm-BLM in tumor tissues. (orig.)

  13. Samarium oxide as a radiotracer to evaluate the in vivo biodistribution of PLGA nanoparticles

    CSIR Research Space (South Africa)

    Mandiwana, V


    Full Text Available .63 %ID/g) and liver (3.07 %ID/g), confirming that nanoparticles are rapidly removed from the blood by the RES, leading to rapid uptake in the liver and spleen. From the biodistribution data obtained, it is clear that polymeric nanoscale delivery systems...

  14. Nanostructured Samarium Doped Fluorapatites and Their Catalytic Activity towards Synthesis of 1,2,4-Triazoles

    National Research Council Canada - National Science Library

    Gangu, Kranthi Kumar; Maddila, Suresh; Maddila, Surya Narayana; Jonnalagadda, Sreekantha B


    ...) and their properties. The nanostructured Sm doped fluorapatites (Sm-FAp) were prepared by a co-precipitation method using four different amino acids, namely glutamic acid, aspartic acid, glycine and histidine...

  15. Samarium(III) picrate tetraethylene glycol complex: Photoluminescence study and active material in monolayer electroluminescent

    Energy Technology Data Exchange (ETDEWEB)

    Kusrini, Eny, E-mail: [Department of Chemical Engineering, Faculty of Engineering, Universitas Indonesia, 16424 Depok (Indonesia); Saleh, Muhammad I. [School of Chemical Sciences, Universiti Sains Malaysia, 11800 Penang (Malaysia); Yulizar, Yoki [Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, 16424 Depok (Indonesia); Za' aba, Noor K.; Abd. Majid, W.H. [Solid State Research Laboratory, Department of Physics, Universiti Malaya, 50603 Kuala Lumpur (Malaysia)


    A mononuclear Sm(III) complex involving Pic and EO4 (where Pic=picrate anion and EO4=tetraethylene glycol) has been studied. It shows a bright-orange emission when used as active material in a monolayer electroluminescent device of ITO/EO4-Sm-Pic/Al. The crystal structure of the complex consists of [Sm(Pic){sub 2}(H{sub 2}O)(EO4)]{sup +} cation and [Pic]{sup -} anion. The Sm(III) ion is coordinated with nine oxygen atoms from one EO4 ligand in a pentadentate mode, two Pic anions each in bidentate and monodentate modes, and one water molecule. Both the terminal alcohol groups of the acyclic EO4 ligand were involved in the O-H...O hydrogen bonding by infinite one-dimensional (1D) chain within a symmetry direction [0 1 0]. The photoluminescence (PL) spectrum of the thin film shows the typical spectral features of the Sm(III) ion ({sup 4}G{sub 5/2}{yields}{sup 6}H{sub 7/2} transitions). The root-mean-square (rms) of the roughness of thin film is 30.605 nm and indicates that the formation of the monolayer electroluminescent device is not uniform and retains a high crystallinity. Typical semiconductor current-voltage (I-V) property was also observed in this device with threshold and turn voltages of 2.8 and 6.2 V, respectively. The [Sm(Pic){sub 2}(H{sub 2}O)(EO4)](Pic).H{sub 2}O complex can be applied as a luminescent center in OLED for bright-orange emission. - Highlights: > The [Sm(Pic){sub 2}(H{sub 2}O)(EO4)](Pic).H{sub 2}O complex is crystallized in triclinic with space group P-1. > The complex is applied as a emissive center in monolayer device structure of ITO/EO4-Sm-Pic/Al. > The photoluminescence spectrum of the crystalline and thin film shows a bright-orange emission. > The current-voltage property showed the turn on voltage of 6.2 V.

  16. Pulsed laser deposition and optical characterizations of the magnetic samarium orthoferrite

    Energy Technology Data Exchange (ETDEWEB)

    Berini, Bruno, E-mail: [Groupe d' Etude de la Matiere Condensee (GEMAC), CNRS, Universite de Versailles St. Quentin, 45, Av. des Etats-Unis, 78035 Versailles Cedex (France); Mistrik, Jan [Institute of Applied Physics and Mathematics, Faculty of Chemical Technology, University of Pardubice, Studentska 84, 532 10 Pardubice (Czech Republic); Dumont, Yves; Popova, Elena; Fouchet, Arnaud; Scola, Joseph; Keller, Niels [Groupe d' Etude de la Matiere Condensee (GEMAC), CNRS, Universite de Versailles St. Quentin, 45, Av. des Etats-Unis, 78035 Versailles Cedex (France)


    Pulsed Laser Deposition of magnetically ordered polycrystalline SmFeO{sub 3} films has been optimized onto SiO{sub 2} glass substrates as function of substrate temperature, oxygen pressure and pulsed laser fluency. Using a KrF excimer laser, crystallization temperature is found to be about 1048 K for a weak fluency of only 1.7 J cm{sup -2}. We show that this growth temperature can be reduced using higher fluency and that it is possible to obtain a film texturation along the c axis by reducing the oxygen pressure at given temperature and fluency. In a second part, we focus on the SmFeO{sub 3} optical constants determined by in situ ellipsometry using a stacking model and the Cauchy dispersion relation for SmFeO{sub 3} layer. We show a good correlation between the transmission and reflection calculated from these data and measured by ex situ spectrophotometry in the visible range.

  17. Nanostructured Samarium Doped Fluorapatites and Their Catalytic Activity towards Synthesis of 1,2,4-Triazoles

    Directory of Open Access Journals (Sweden)

    Kranthi Kumar Gangu


    Full Text Available An investigation was conducted into the influence of the amino acids as organic modifiers in the facile synthesis of metal incorporated fluorapatites (FAp and their properties. The nanostructured Sm doped fluorapatites (Sm-FAp were prepared by a co-precipitation method using four different amino acids, namely glutamic acid, aspartic acid, glycine and histidine. The materials were characterized by various techniques including X-ray diffraction (XRD, Fourier transform infra-red spectroscopy (FT-IR, field emission scanning electron microscopy (FE-SEM, energy-dispersive X-ray spectroscopy (EDX, high resolution transmission electron microscopy (HR-TEM, N2-adsorption/desorption isotherm, temperature programmed desorption (TPD and fluorescence spectrophotometry. Under similar conditions, Sm-FAp prepared using different amino acids exhibited distinctly different morphological structures, surface area and pore properties. Their activity as catalysts was assessed and Sm-FAp/Glycine displayed excellent efficiency in the synthesis of 1,2,4-triazole catalyzing the reaction between 2-nitrobenzaldehyde and thiosemicarbazide with exceptional selectivity and 98% yield in a short time interval (10 min. The study provides an insight into the role of organic modifiers as controllers of nucleation, growth and aggregation which significantly influence the nature and activity of the catalytic sites on Sm-FAp. Sm-FAp could also have potential as photoactive material.

  18. Body composition analysis by DEXA by using dynamically changing samarium filtration

    DEFF Research Database (Denmark)

    Gotfredsen, Arne; Baeksgaard, L; Hilsted, J


    , which depends on the current-absorber thickness. With this system we found a good agreement (r = 0.99) between reference and measured amounts of tissue or fat percentages in a plastic phantom and in smaller (approximately 0.5-4 kg) and larger (approximately 5-20 kg) piles of tissue (ox muscle and lard......). Scans of six healthy volunteers covered with combinations of beef and lard (approximately 5-15 kg) showed a good agreement (r = 0.99) between reference and DEXA values of added soft tissue mass and fat percentage. We conclude that the DEXA method (and, in particular, the Norland XR-36 using dynamic...

  19. Synthesis, thermal and photoluminescent properties of ZnSe- based oxyfluoride glasses doped with samarium (United States)

    Kostova, I.; Okada, G.; Pashova, T.; Tonchev, D.; Kasap, S.


    Rare earth (RE) doped glasses and glass ceramic materials have recently received considerable attention because of their potential or realized applications as X-ray intensifying screens, phosphors, detectors, waveguides, lasers etc. [1]. In this work, we present a new RE doped ZnO-ZnSe-SrF2-P2O5-B2O3-Sm2O3-SmF3 (ZSPB) glass system synthesized by melt quenching technique. The resulting glasses were visually fully transparent and stable with glass the transition temperatures around 530°C. The thermal properties of this glass system were characterized by Modulated Differential Scanning Calorimetry (MDSC) measurements before and after annealing at 650°C. We have characterized these glasses by Raman spectroscopy and photoluminescence (PL) measurements over the UV-VIS range using light emitting diodes (LED) and laser diodes (LD) excitation sources. We have also irradiated thermally treated and non-treated glass samples by X-rays and have studied the resulting PL. We discuss the results in terms of previously reported models for Sm-doped Zn-borophosphate oxide, oxyfluoride and oxyselenide glasses.

  20. Laser-Induced Luminescence Study of Samarium(III) Thiodiglycolate Complexes

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Dong Yong; Lee, Eil Hee [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Kimura, Takaumi [Japan Atomic Energy Research Institute, Ibaraki-ken (Japan)


    The hydration number of Sm(III) has been obtained by using the difference in the decay rate constants in H{sub 2}O and D{sub 2}O solutions. In general, k{sub obs}(H{sub 2}O) >> k{sub obs}(D{sub 2}O), k{sub obs}(D{sub 2}O) ≅ constant, and ligands are not as effective in causing non-radiative de-excitation of the excited state. For Sm(III), a relationship has been proposed in which the hydration number is related directly to the decay rate constant in H{sub 2}O. If there is no contribution from the ligand to the de-excitation of the luminescence excited state, the hydration of Sm(III) in the different complexes can be obtained directly from the values of k{sub obs} measured in H{sub 2}O. The number and the geometric distribution of solvent molecules around a metal ion in solution are an important factor in the structural and chemical behavior of cation. Indeed, such information has been utilized to design novel ionophores and receptors. However, there have been few studies of hydration structure for lanthanides. The fact that many f-element salts which have relatively large lattice energies are fairly soluble in water is a reflection of the strength of the interactions between the metal cations and water molecules.

  1. Oxygen Fugacity of the Martian Mantle from Pigeonite/Melt Partitioning of Samarium, Europium and Gadolinium (United States)

    Musselwhite, S.; Jones, J. H.; Shearer, C.


    This study is part of an ongoing effort to calibrate the pyroxene/melt Eu oxybarometer for conditions relevant to the martian meteorites. There is fairly good agreement between a determinations using equilibria between Fe-Ti oxides and the estimates from Eu anomalies in shergottite augites in tenns of which meteorites are more or less oxidized. The Eu calibration was for angrite composition pyroxenes which are rather extreme. However, application of a calibration for martian composition augites 113 does not significantly reduce the discrepancy between the two methods. One possible reason for this discrepancy is that augites are non-liquidus. The use of pigeonite rather than augite as the oxy-barometer phase is considered. We have conducted experiments on martian composition pigeonite/melt REE partitioning as a function of fO2.

  2. Doping controlled spin reorientation in dysprosium-samarium orthoferrite single crystals (United States)

    Cao, Shixun; Zhao, Weiyao; Kang, Baojuan; Zhang, Jincang; Ren, Wei


    As one of the most important phase transitions, spin reorientation (SR) in rare earth transition metal oxides draws much attention of emerging materials technologies. The origin of SR is the competition between different spin configurations which possess different free energy. We report the control of spin reorientation (SR) transition in perovskite rare earth orthoferrite Dy1-xSmxFeO3, a whole family of single crystals grown by optical floating zone method from x =0 to 1. Temperature dependence of the magnetizations under zero-field-cooling (ZFC) and field-cooling (FC) processes are studied. We have found a remarkable linear change of SR transition temperature in Sm-rich samples for x>0.2, which covers an extremely wide temperature range including room temperature. The a-axis magnetization curves under FCC process bifurcate from and then jump down to that of warming process (ZFC and FCW curves) in single crystals when x =0.5-0.9, suggesting complicated 4f-3d electron interactions among Dy3+-Sm3+, Dy3+-Fe3+, and Sm3+-Fe3+ sublattices of diverse magnetic configurations for materials physics and design. The magnetic properties and the doping effect on SR transition temperature in these single crystals might be useful in the spintronics device application. This work is supported by the National Key Basic Research Program of China (Grant No. 2015CB921600), and the National Natural Science Foundation of China (NSFC, Nos. 51372149, 50932003, 11274222).

  3. Synthesis, crystal structure and luminescent properties of a new samarium-fluorescein metal-organic framework (United States)

    Thomas, Jesty; Ambili, K. S.


    A new metal-organic framework with empirical formula C43H30NO12Sm was solvothermally synthesized using SmCl3, fluorescein and N, N-Dimethyl formamide (DMF) and characterized by single crystal X-ray diffraction, powder X-ray diffraction, infrared spectroscopy, UV-Visible spectroscopy, scanning electron microscopy, optical microscopy, photoluminescence spectroscopy, CHN elemental analysis and thermogravimetric analysis. Single crystal X-ray diffraction revealed that the crystal structure belongs to the triclinic system, P-1 space group with a = 12.113 (6) Å, b = 12.1734 (7) Å, c = 13.2760(8) Å, α = 67.930(3)⁰, β = 87.779(3)⁰, γ = 77.603(3)⁰ and V = 1769.71 (17) Å3. The photoluminescence spectrum showed emission peaks at 550 nm, 600 nm and 647 nm due to the characteristic transitions 4G5/2 to 6H5/2, 4G5/2 to 6H7/2 and 4G5/2 to 6H9/2 respectively, when excited at 398 nm.

  4. High-temperature heat capacity of samarium and erbium titanates with pyrochlore structure (United States)

    Denisova, L. T.; Chumilina, L. G.; Denisov, V. M.; Ryabov, V. V.


    Titanates Sm2Ti2O7 and Er2Ti2O7 with pyrochlore structure have been prepared by solid-phase synthesis in air from stoichiometric Sm2O3 (Er2O3)-TiO2 mixtures sequentially at 1673 and 1773 K. Hightemperature heat capacity of the oxide compounds has been determined by differential scanning calorimetry. Their thermodynamic properties have been calculated from experimental temperature dependence C p = f( T).

  5. Multiband Gutzwiller theory of the band magnetism of LaO iron arsenide; Multiband Gutzwiller-Theorie des Bandmagnetismus von LaO-Eisen-Arsenid

    Energy Technology Data Exchange (ETDEWEB)

    Schickling, Tobias


    In this work we apply the Gutzwiller theory for various models for LaOFeAs. It was discovered in 2008 that doped LaOFeAs is superconducting below a temperature of T{sub c} = 28 K. Soon after that discovery, more iron based materials were found which have an atomic structure that is similar to the one of LaOFeAs and which are also superconducting. These materials form the class of iron-based superconductors. Many properties of this material class are in astonishing agreement with the properties of the cuprates. Therefore, studying this new material may promote our understanding of high-T{sub c} superconductivity. Despite great efforts, however, Density Functional Theory calculations cannot reproduce the small magnetic moment in the ground state of undoped LaOFeAs. Such calculations overestimate the magnetic moment by a factor 2-3. Within our Gutzwiller approach, we take additional local Coulomb correlations into account. We show that it is necessary to work with the iron 3d-orbitals and the arsenic 4p-orbitals to obtain a realistic description of LaOFeAs. For a broad parameter regime of the electronic interactions, we find a magnetic moment that is in the region of the experimentally observed values. We claim that the magnetic phase in LaOFeAs can be described as a spin-density wave of Landau-Gutzwiller quasi-particles.

  6. Bragg Reflector-Induced Increased Nonradiative Lifetime in Gallium Arsenide (GaAs)/Aluminum Gallium Arsenide (AlGaAs) Double Heterostructures (United States)


    ORGANIZATION NAME(S) AND ADDRESS(ES) US Army Research Laboratory ATTN: RDRL-SED-E 2800 Powder Mill Road Adelphi, MD 20783-1138 8. cell uses a GaAs/AlGaAs DH with a roughly 1–2 µm GaAs active region on top of an internal distributed Bragg reflector (BR) to take advantage minimize the laser scattering signal, with a fast 300-µm diameter silicon (Si) photodiode. Data were acquired on a PCI averager card. The system

  7. Design of Indium Arsenide nanowire sensors for pH and biological sensing and low temperature transport through p-doped Indium Arsenide nanowires

    DEFF Research Database (Denmark)

    Upadhyay, Shivendra

    the fabrication of nanowire transistors using UV and electron beam lithography as well as the steps to encapsulate the nanowire transistors into a sensor. Several iterations of experiments demonstrating pH sensitivity of the NW sensor are presented. Having established and tested a stable sensing platform via p......H sensing, we apply the same to a more complex system - proteins. The sensing protocol involves the functionalization of the sensor surface with a receptor protein followed by the addition of the protein of interest. Sensor response to oppositely charged proteins is used to confirm the sensitivity...... of the sensor to the protein charge....

  8. The Photoresponse of the Gallium Arsenide Metal Semiconductor Field Effect Transistor (United States)

    Paolella, Arthur

    The combining of optical and microwave technology is imminent, especially the integration of optical and microwave circuit functions on the same circuit or chip. Exploring the properties of the metal semiconductor field effect transistor (MESFET) as an optical detector for the detection of microwave and control signals in fiber optic links make sense because the MESFET is the main active component of GaAs MMICs. In this thesis, photocurrents and photovoltages of three MESFETs were measured as a function of the optical input (wavelength, intensity and modulation frequency), electrical input (gate voltage and gate resistance), and device characteristics. A model of the photoresponse, based on the drift and diffusion equations for the current density was developed, which established the internal photovoltaic effect at the channel-substrate interface as the dominant mechanism for the generation of photocurrent in the MESFET. The gain, bandwidth and gain-bandwidth products for each of the major photoeffects were determined mathematically. A maximum photocurrent of 16 mA, and an internal photovoltage of -0.5 volts was measured at 3.5 mW of optical power. The addition of a resistance in the gate circuit enhanced the photoresponse. With a resistor of 1 MOmega, the maximum photocurrent produced was 84.0 mA, resulting from an external photovoltage of 3.07 volts. The dynamic photoresponse of the MESFET as measured, showed a strong dependence with the intensity of the optical signal as well as with bias. The low frequency response varied from -15 dB to -41 dB, and the bandwidth changed from 50 MHz to 5 MHz as the optical signal decreased 18 dB. The low frequency response and bandwidth also showed strong dependence of bias. The low frequency response varied over a 7 dB range and the bandwidth changed from 45 MHz to 100 MHz as the gate was reversed biased (0 to -3.0 volts). Used as an optical detector, the MESFET function successfully in controlling the gain (15 dB) and phase (360^circ) of a T/R module as well as in switching functions of microwave MMICs. The techniques used were compatible with present MMIC processing technology.

  9. Gallium arsenide single crystal solar cell structure and method of making (United States)

    Stirn, Richard J. (Inventor)


    A production method and structure for a thin-film GaAs crystal for a solar cell on a single-crystal silicon substrate (10) comprising the steps of growing a single-crystal interlayer (12) of material having a closer match in lattice and thermal expansion with single-crystal GaAs than the single-crystal silicon of the substrate, and epitaxially growing a single-crystal film (14) on the interlayer. The material of the interlayer may be germanium or graded germanium-silicon alloy, with low germanium content at the silicon substrate interface, and high germanium content at the upper surface. The surface of the interface layer (12) is annealed for recrystallization by a pulsed beam of energy (laser or electron) prior to growing the interlayer. The solar cell structure may be grown as a single-crystal n.sup.+ /p shallow homojunction film or as a p/n or n/p junction film. A Ga(Al)AS heteroface film may be grown over the GaAs film.

  10. Synthesis and characterization of rare-earth oxide transition-metal arsenides and selenides

    Energy Technology Data Exchange (ETDEWEB)

    Peschke, Simon Friedrich


    The present thesis includes two different quaternary systems that have been studied extensively. On the one hand, several samples of the REFeAsO{sub 1-x}F{sub x} family of iron-based superconductors were prepared using a novel solid state metathesis reaction, which also provided a possibility to prepare late rare-earth compounds of this family at ambient pressure. Comparison of structural and physical properties of those samples with samples from conventional solid state and high pressure syntheses revealed both, commonalities as well as striking differences. The observations gave reason to the conclusion that superconducting properties strongly depend, beside electronic infl uence, on the structural parameters. On the other hand, the quaternary system RE-T-Se-O with T = Ti-Mn was investigated using a NaI/KI flux mediated synthesis route. It has been shown that oC -La{sub 2}O{sub 2}MnSe{sub 2} is exclusively accessible in su fficient purity by the use of a fl ux material. Therefore, further syntheses in this quaternary system were performed by a flux mediated synthesis route leading to a large amount of new materials. Among them, a new polymorph mC-La{sub 2}O{sub 2}MnSe{sub 2} which forms, together with La{sub 4}MnSe{sub 3}O{sub 4} and La{sub 6}MnSe{sub 4}O{sub 6}, the series La{sub 2n+2}MnSe{sub n+2}O{sub 2n+2}. In addition, the alternative preparation method also enabled a large scale synthesis of the first examples of rare-earth chromium oxyselenides with chromium in the oxidation state +II, namely RE{sub 2}CrSe{sub 2}O{sub 2} (RE = La-Nd), which opened the door to study their magnetism in detail by powder neutron diffraction and muon spin rotation techniques. Research into the La-V-Se-O system revealed the first fi ve quaternary compounds of this family with interesting magnetic properties including ferromagnetism, antiferromagnetism, metamagnetism and more complex behaviour. In addition, the crystal structure of two new quaternary titanium containing oxyselenides were identifi ed and revealed unique structural building blocks that have not been observed in these systems before. The results of this thesis demonstrate not only the power of alternative preparation methods, but also the still increasing structural variety in the discussed quaternary systems. Strategic research in the field of transition-metal oxypnictides and oxychalcogenides, which still include a multiplicity of unknown materials, revealed numerous compounds with interesting physical properties and further investigations will probably uncover also new superconducting materials.

  11. Morphology- and orientation-controlled gallium arsenide nanowires on silicon substrates. (United States)

    Ihn, Soo-Ghang; Song, Jong-In; Kim, Tae-Wook; Leem, Dong-Seok; Lee, Takhee; Lee, Sang-Geul; Koh, Eui Kwan; Song, Kyung


    GaAs nanowires were epitaxially grown on Si(001) and Si(111) substrates by using Au-catalyzed vapor-liquid-solid (VLS) growth in a solid source molecular beam epitaxy system. Scanning electron microscopy analysis revealed that almost all the GaAs nanowires were grown along directions on both Si substrates for growth conditions investigated. The GaAs nanowires had a very uniform diameter along the growth direction. X-ray diffraction data and transmission electron microscopy analysis revealed that the GaAs nanowires had a mixed crystal structure of the hexagonal wurtzite and the cubic zinc-blende. Current-voltage characteristics of junctions formed by the epitaxially grown GaAs nanowires and the Si substrate were investigated by using a current-sensing atomic force microscopy.

  12. Direct Electrical Probing of Periodic Modulation of Zinc-Dopant Distributions in Planar Gallium Arsenide Nanowires. (United States)

    Choi, Wonsik; Seabron, Eric; Mohseni, Parsian K; Kim, Jeong Dong; Gokus, Tobias; Cernescu, Adrian; Pochet, Pascal; Johnson, Harley T; Wilson, William L; Li, Xiuling


    Selective lateral epitaxial (SLE) semiconductor nanowires (NWs), with their perfect in-plane epitaxial alignment, ability to form lateral complex p-n junctions in situ, and compatibility with planar processing, are a distinctive platform for next-generation device development. However, the incorporation and distribution of impurity dopants in these planar NWs via the vapor-liquid-solid growth mechanism remain relatively unexplored. Here, we present a detailed study of SLE planar GaAs NWs containing multiple alternating axial segments doped with Si and Zn impurities by metalorganic chemical vapor deposition. The dopant profile of the lateral multi-p-n junction GaAs NWs was imaged simultaneously with nanowire topography using scanning microwave impedance microscopy and correlated with infrared scattering-type near-field optical microscopy. Our results provide unambiguous evidence that Zn dopants in the periodically twinned and topologically corrugated p-type segments are preferentially segregated at twin plane boundaries, while Si impurity atoms are uniformly distributed within the n-type segments of the NWs. These results are further supported by microwave impedance modulation microscopy. The density functional theory based modeling shows that the presence of Zn dopant atoms reduces the formation energy of these twin planes, and the effect becomes significantly stronger with a slight increase of Zn concentration. This implies that the twin formation is expected to appear when a threshold planar concentration of Zn is achieved, making the onset and twin periodicity dependent on both Zn concentration and nanowire diameter, in perfect agreement with our experimental observations.

  13. System architecture of a gallium arsenide one-gigahertz digital IC tester (United States)

    Fouts, Douglas J.; Johnson, John M.; Butner, Steven E.; Long, Stephen I.


    The design for a 1-GHz digital integrated circuit tester for the evaluation of custom GaAs chips and subsystems is discussed. Technology-related problems affecting the design of a GaAs computer are discussed, with emphasis on the problems introduced by long printed-circuit-board interconnect. High-speed interface modules provide a link between the low-speed microprocessor and the chip under test. Memory-multiplexer and memory-shift register architectures for the storage of test vectors are described in addition to an architecture for local data storage consisting of a long chain of GaAs shift registers. The tester is constructed around a VME system card cage and backplane, and very little high-speed interconnect exists between boards. The tester has a three part self-test consisting of a CPU board confidence test, a main memory confidence test, and a high-speed interface module functional test.

  14. Improved defect analysis of Gallium Arsenide solar cells using image enhancement (United States)

    Kilmer, Louis C.; Honsberg, Christiana; Barnett, Allen M.; Phillips, James E.


    A new technique has been developed to capture, digitize, and enhance the image of light emission from a forward biased direct bandgap solar cell. Since the forward biased light emission from a direct bandgap solar cell has been shown to display both qualitative and quantitative information about the solar cell's performance and its defects, signal processing techniques can be applied to the light emission images to identify and analyze shunt diodes. Shunt diodes are of particular importance because they have been found to be the type of defect which is likely to cause failure in a GaAs solar cell. The presence of a shunt diode can be detected from the light emission by using a photodetector to measure the quantity of light emitted at various current densities. However, to analyze how the shunt diodes affect the quality of the solar cell the pattern of the light emission must be studied. With the use of image enhancement routines, the light emission can be studied at low light emission levels where shunt diode effects are dominant.

  15. Noise suppression and long-range exchange coupling for gallium arsenide spin qubits

    DEFF Research Database (Denmark)

    Malinowski, Filip

    of the qubit splitting with respect to gate voltages. We show that for singlet-triplet and resonant exchange qubit this can be achieved by operating a quantum dot array in a highly symmetric configuration. The symmetrization approach results in a factor-of-six improvement of the double dot singlet......-triplet exchange oscillations quality factor while the dephasing times for the threeelectron resonant exchange qubit are marginally longer. Second, we present the study of the Overhauser field noise arising due to interaction with the nuclear spin bath. We show that the Overhauser field noise conforms to classical...... dot in nine different charge occupancies and identify ground state spin in all cases. For even-occupied spin-1/2 multielectron quantum dot a variation of the gate voltage by a few milivolts in the vicinity of the charge transition leads to sign change of the exchange interaction with a single...

  16. Development of Ultra-Low Resistance Ohmic Contacts for indium gallium arsenide/indium phosphide HBTs (United States)

    Baraskar, Ashish

    With the continued scaling of transistors to obtain increased transistor bandwidth and packing density, achieving very low resistance metal-semiconductor contacts becomes crucial. The base and emitter contact resistivities in heterojunction bipolar transistors (HBTs) must decrease in proportion to the inverse square of the transistor cutoff frequency. Similarly for field-effect transistors (FETs), progressive reduction in contact resistivity is required for both increased speed of operation and increased device packing density. Contact resistivities less than 10-8 O-cm2 are required for III-V HBTs and FETs for having simultaneous 1.5 THz current-gain (ft) and power-gain (fmax) cut-off frequencies. Owing to higher electron velocity, higher transistor bandwidths are more readily obtained in InGaAs than in Si, hence there is strong motivation to develop low resistance ohmic contacts to InGaAs. This dissertation focuses on development of ultra-low resistance ohmic contacts to n-In0.53Ga0.47As, n-InAs and p-In0.53 Ga0.47As for their application in InP based HBTs. There were four main challenges in obtaining ultra-low contact resistivities: 1. High doping: Attainment of high active carrier concentration which is required for reducing the depletion region in the semiconductor. Reduced depletion region results in enhanced tunneling of carriers across the metal semiconductor junction. 2. Surface preparation: Contact resistivity strongly depends on surface preparation and obtaining resistivities less than 10-8 O-cm 2 requires a significant attention to removal of semiconductor surface oxides before the contacts are made. 3. Refractory metal contact: Owing to high current densities (≈ 50 mA/mum2) and high temperatures involved during fabrication of scaled HBTs and FETs, it becomes important to keep the metal semiconductor junctions thermally stable for their continued operation as desired. To achieve thermal stability, it is required to use refractory metals for making the contact. 4. Accurate extraction of contact resistivities. In this work, molecular beam epitaxy thin-film growth technique was used to grow the semiconductor thin films. After careful growth optimization and calibrations, the highest active carrier concentration obtained was 6 x 1019 cm-3, 1 x 1020 cm -3 (record highest) and 2.2 x 1020 cm -3 for n-In0.53Ga0.47As, n-InAs and p-In 0.53Ga0.47As, respectively. W, Mo and Ir refractory metals were chosen to form contacts to these semiconductors to achieve thermal stability. Transmission line model structures were designed to accurately determine the contact resistivities. The lowest contact resistivities obtained were (0.9 +/- 0.5) x 10-8 O-cm2, (0.6 +/- 0.4) x 10-8 O-cm2 and (0.6 +/- 0.5) x 10-8 O-cm2 for contacts to n- In0.53Ga0.47As, n-InAs and p-In0.53Ga 0.47As, respectively, which are the lowest contact resistivities reported to date for these semiconductors. Contacts to n-In0.53Ga0.47 As and n-InAs were found to remain thermally stable. However, slight degradation on annealing was observed for contacts made to p-In0.53Ga 0.47As. We have also developed theoretical models to validate our experimental data. The models are extended to calculate the lowest possible contact resistivities for GaAs, InP, InSb and GaSb. In summary, the ultra-low resistance, refractory metal contacts developed in this work make them a potential candidate to be applied in highly scaled HBTs and other devices of near-terahertz bandwidths.

  17. Radiation and temperature effects in gallium arsenide, indium phosphide, and silicon solar cells (United States)

    Weinberg, I.; Swartz, C. K.; Hart, R. E., Jr.; Statler, R. L.


    The effects of radiation on performance are determined for both n+p and p+n GaAs and InP cells and for silicon n+p cells. It is found that the radiation resistance of InP is greater than that of both GaAs and Si under 1-MeV electron irradiation. For silicon, the observed decreased radiation resistance with decreased resistivity is attributed to the presence of a radiation-induced boron-oxygen defect. Comparison of radiation damage in both p+n and n+p GaAs cells yields a decreased radiation resistance for the n+p cell attributable to increased series resistance, decreased shunt resistance, and relatively greater losses in the cell's p-region. For InP, the n+p configuration is found to have greater radiation resistance than the p+n cell. The increased loss in this latter cell is attributed to losses in the cell's emitter region. Temperature dependency results are interpreted using a theoretical relation for dVoc/dT, which predicts that increased Voc should result in decreased numerical values for dPm/dT. The predicted correlation is observed for GaAs but not for InP, a result which is attributed to variations in cell processing.

  18. Dose rate effects on damage formation in ion-implanted gallium arsenide

    Energy Technology Data Exchange (ETDEWEB)

    Haynes, T.E.; Holland, O.W.


    The residual damage in GaAs was measured by ion channeling following implantation of either 100 keV {sup 30}Si{sup +} at temperatures of 300K or 77K, or 360 keV {sup 120}Sn{sup +} at 300K. For room-temperature Si implants and fluences between 1 and 10 {times} 10{sup 14} Si/cm{sup 2}, the amount of damage created was strongly dependent upon the ion current density, which was varied between 0.05 and 12 {mu}A/cm{sup 2}. Two different stages of damage growth were identified by an abrupt increase in the damage growth rate as a function of fluence, and the threshold fluence for the onset of the second stage was found to be dependent on the dose rate. The dose rate effect on damage was substantially weaker for {sup 120}Sn{sup +} implants and was negligible for Si implants at 77K. The damage was found to be most sensitive to the average current density, demonstrating that the defects which are the precursors to the residual dose-rate dependent damage have active lifetimes of at least 3 {times} 10{sup {minus}4} s. The dose rate effect and its variation with ion mass and temperature are discussed in the context of homogeneous nucleation and growth of damage during ion irradiation.

  19. Microwave Semiconductor Research - Materials, Devices and Circuits and Gallium Arsenide Ballistic Electron Transistors. (United States)


    Semiconductors", L.F. Eastman, Third Inter. Conf. on Hot Carriers in Semiconductors, Montpellier , France (July 1981); J. de Physique, Col. C7, Sup. 010, Tome...ballistic electrons, the verage electron velocity is as high as 8 x 107cm/s across a short drift pace (< .5-.75 micron for ion density at or below

  20. Femtosecond Laser Machining of Gallium Arsenide Wafers for the Creation of Quasi-Phasematched Devices (United States)


    visible structural damage, creating a tightly fitting sample as shown in the optical micrographs in Figure 5.5 below. Figure 5.5 Interlaced ...power photonics group at Heriot Watt University. The CO2 laser, operating at a wavelength of 10.6µm was a pulsed laser with variable repetition rate...above that of GaAs. Their Tg would be ~160°C”. In this case we could heat up a “blob” of glass on top of the interlaced comb structure, and let it flow

  1. Advanced Composite High-k Gate Stack for Mixed Anion Arsenide-Antimonide Quantum Well Transistors (United States)


    and interface defect scattering5 dominate. Shubnikov-de Haas ( SdH ) oscillations (Fig. 8a) are observed at low temperature (2- 15K) and high magnetic...the amplitude of SdH oscillations, which is lower than 0.05m0 reported for InAs QW due to quantization and band non-parabolicity6. FFT of SdH ...ρ 0 1/B [T-1] 2K 4K 6K 10K 15K Δ(1/B) = 0.024 T -1 m*=.043m0 (b) Fig. 8 (a) Shubnikov-de Haas ( SdH ) oscillations in the sheet resistance

  2. Structural features of indium antimonide quantum dots on the indium arsenide substrate

    Directory of Open Access Journals (Sweden)

    Liliya A. Sokura


    Full Text Available The properties of InSb/InAs quantum dots (QDs have been investigated by transmission electron microscopy (TEM. Specific features of diffraction contrast were discovered in plan-view TEM images of big (9–10 nm in height and 38–50 nm in diameter InSb QDs. To understand the origin of such distortions, a model of an InSb QD on InAs substrate containing a partial Frank dislocation (FD was developed and used for calculations of the displacement field and the subsequent diffraction image simulation of an InSb QD for the first time. The shape of the QD was established to have an insignificant influence on the magnitude of radial displacements. The insertion of a misfit defect (a partial Frank dislocation into the QD reduces the strain at the edges of the QD almost by 30%. The comparison of experimental and simulated data allowed us to explain the observed features of the moiré pattern in the image of a big InSb QD by the presence of a misfit defect at the QD-substrate interface.

  3. Covalent Surface Modification of Gallium Arsenide Photocathodes for Water Splitting in Highly Acidic Electrolyte. (United States)

    Garner, Logan E; Steirer, K Xerxes; Young, James L; Anderson, Nicholas C; Miller, Elisa M; Tinkham, Jonathan S; Deutsch, Todd G; Sellinger, Alan; Turner, John A; Neale, Nathan R


    Efficient water splitting using light as the only energy input requires stable semiconductor electrodes with favorable energetics for the water-oxidation and proton-reduction reactions. Strategies to tune electrode potentials using molecular dipoles adsorbed to the semiconductor surface have been pursued for decades but are often based on weak interactions and quickly react to desorb the molecule under conditions relevant to sustained photoelectrolysis. Here, we show that covalent attachment of fluorinated, aromatic molecules to p-GaAs(1 0 0) surfaces can be employed to tune the photocurrent onset potentials of p-GaAs(1 0 0) photocathodes and reduce the external energy required for water splitting. Results indicate that initial photocurrent onset potentials can be shifted by nearly 150 mV in pH -0.5 electrolyte under 1 Sun (1000 W m-2 ) illumination resulting from the covalently bound surface dipole. Though X-ray photoelectron spectroscopy analysis reveals that the covalent molecular dipole attachment is not robust under extended 50 h photoelectrolysis, the modified surface delays arsenic oxide formation that results in a p-GaAs(1 0 0) photoelectrode operating at a sustained photocurrent density of -20.5 mA cm-2 within -0.5 V of the reversible hydrogen electrode. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Superconductor-semiconductor-superconductor planar junctions of aluminium on DELTA-doped gallium arsenide

    DEFF Research Database (Denmark)

    Taboryski, Rafael Jozef; Clausen, Thomas; Kutchinsky, jonatan


    We have fabricated and characterized planar superconductor-semiconductor-superconductor (S-Sm-S) junctions with a high quality (i.e. low barrier) interface between an n++ modulation doped conduction layer in MBE grown GaAs and in situ deposited Al electrodes. The Schottky barrier at the S...

  5. Investigations into molecular beam epitaxial growth of Indium Arsenide/Gallium antimonide superlattices (United States)

    Murray, Lee Michael

    InAs/GaSb superlattices are a material system well suited to growth via molecular beam epitaxy. The ability to tune the band gap over the entire mid and long wave infrared spectrum gives a large number of applications for devices made from InAs/GaSb superlattice material. The growth of high quality InAs/GaSb superlattice material requires a careful study of the parameters used during epitaxial growth. This work investigates the growth of tunnel junctions for InAs/GaSb based superlattice light emitting diodes, the presence of defects in GaSb homoepitaxial layers, and variations in the growth rate of InAs/GaSb superlattice samples. Tunnel junctions in cascaded structures must provide adequate barriers to prevent carriers from leaking from one emission region to the next without first recombining radiatively, while at the same time remain low in tunneling resistance for current recycling. A variety of tunnel junction designs are compared in otherwise identical four stage InAs/GaSb superlattice light emitting diodes, which past studies have found hole confinement to be problematic. GaSb was used on the p-side of the junction, while various materials were used on the n-side. Al0.20In0.80As0.73Sb0.27 tunnel junctions function best due to the combination of favorable band alignment and ease of growth. Pyramidal defects have been observed in layers of GaSb grown by molecular beam epitaxy on GaSb substrates. These defects are typically 3-8 nanometers high, 1-3 microns in diameter, and shaped like pyramids. Their occurrence in the growth of GaSb buffer layers can propagate into subsequent layers. Defects are nucleated during the early stages of growth after the thermal desorption of native oxide from the GaSb substrate. These defects grow into pyramids due to a repulsive Ehrlich-Schwoebel potential on atomic step edges leading to an upward adatom current. The defects reduce in density with growth of GaSb. The insertion of a thin AlAsSb layer into the early stages of the GaSb buffer increases the rate of elimination of the defects, resulting in a smooth surface within 500nm. The acceleration of defect reduction is due to the temporary interruption of step-flow growth induced by the AlAsSb layer. This leads to a reduced isolation of the pyramids from the GaSb epitaxial layer, and allows the pyramidal defects to smooth out. Investigations into varying the superlattice growth rate have not been reported widely in the literature. Due to the frequent use of soaks, growth interrupts, and other interface structuring steps the superlattice growth rate and the interface layer sequence are linked. In order to properly study the effects of growth rate variations and interface design changes it is necessary to account for the effect on growth rate due to the interfaces. To this end it is useful to think of the effective growth rate of the superlattice, which is the total layer thickness divided by the total time, per superlattice period. Varying the effective growth rate of superlattice photoluminescence samples shows a peak in output at ~0.5 monolayers per second. Investigations into the structural properties of the superlattices show no decrease in structural uniformity for effective growth rates up to ~1.4 monolayers per second.

  6. Gallium arsenide p+–n–p+-structures with impoverished base area

    Directory of Open Access Journals (Sweden)

    Karimov A. V.


    Full Text Available It is displayed experimentally, that the current transport’s mechanism through p+GaAs–nGaAs–p+GaAs-structure is formed by injection-tunnel and generation-recombination mechanisms. Injection-tunnel current prevails at modulation of base’s part which contains defects, and generation-recombination currents are determinative at modulation of base’s part with lesser defectiveness. p+GaAs–nGaAs–p+GaAs-structures are of interest for creating voltage suppressors and electronic switches on their base.

  7. Pilot Line 3: Gallium Arsenide Pilot Line for High Performance Components (United States)


    C&onVoJud Im"pedanco DESCRIPTON 4 t taw OpO ~’* On-Package The MLC44 package is 8 highspeed muiUa’,w ceamc package developed at c~m TrQuint...will be a cluster of early failures ( infant mortality), usually followed by failure mechanisms that take longer to occur. For integrated circuit...production, the infant mortality failures are removed before shipment by a bum-in procedure. For this program, a bum-in operation will not be performed on

  8. Indium arsenide as a material for biological applications: Assessment of surface modifications, toxicity, and biocompatibility (United States)

    Jewett, Scott A.

    III-V semiconductors such as InAs have recently been employed in a variety of applications where the electronic and optical characteristics of traditional, silicon-based materials are inadequate. InAs has a narrow band gap and very high electron mobility in the near-surface region, which makes it very attractive for high performance transistors, optical applications, and chemical sensing. However, InAs forms an unstable surface oxide layer in ambient conditions, which can corrode over time and leach toxic indium and arsenic components. Current research has gone into making InAs more attractive for biological applications through passivation of the surface by adlayer adsorption. In particular, wet-chemical methods are current routes of exploration due to their simplicity, low cost, and flexibility in the type of passivating molecule. This dissertation focuses on surface modifications of InAs using wet-chemical methods in order to further its use in biological applications. First, the adsorption of collagen binding peptides and mixed peptide/thiol adlayers onto InAs was assessed. X-ray photoelectron spectroscopy (XPS) along with atomic force microscopy (AFM) data suggested that the peptides successfully adsorbed onto InAs, but were only able to block oxide regrowth to a relatively low extent. This low passivation ability is due to the lack of covalent bonds of the peptide to InAs, which are necessary to effectively block oxide regrowth. The addition of a thiol, in the form of mixed peptide/thiol adlayers greatly enhanced passivation of InAs while maintaining peptide presence on the surface. Thiols form tight, covalent bonds with InAs, which prevents oxide regrowth. The presence of the collagen-binding peptide on the surface opens the door to subsequent modification with collagen or polyelectrolyte-based adlayers. Next, the stability and toxicity of modified InAs substrates were determined using inductively coupled plasma mass spectrometry (ICP-MS) and zebrafish studies. InAs substrates modified with a poly(ethylene glycol) (PEG) based adlayer showed the highest stability in physiological conditions by leaching the lowest amounts of indium and arsenic. Modified substrates also showed no toxicity to zebrafish after incubation for 120 hours. Overall, these findings suggest that a variety of adlayers can be functionalized onto InAs surfaces and successfully passivate the surface, along with decreasing InAs toxicity. Finally, we demonstrate how surface modifications can be applied to a different III-V semiconductor, GaN, in order to modulate cellular adhesion. Modification of GaN with a laminin-derived peptide increases the adhesion of PC12 neuronal cells and alters the physical morphology of the adhered cells. Additionally, no toxicity to cells is observed, further demonstrating the potential for employing III-V semiconductors in biological applications.

  9. Gallium Arsenide detectors for X-ray and electron (beta particle) spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Lioliou, G.; Barnett, A.M.


    Results characterizing GaAs p{sup +}-i-n{sup +} mesa photodiodes with a 10 µm i layer for their spectral response under illumination of X-rays and beta particles are presented. A total of 22 devices, having diameters of 200 µm and 400 µm, were electrically characterized at room temperature. All devices showed comparable characteristics with a measured leakage current ranging from 4 nA/cm{sup 2} to 67 nA/cm{sup 2} at an internal electric field of 50 kV/cm. Their unintentionally doped i layers were found to be almost fully depleted at 0 V due to their low doping density. {sup 55}Fe X-ray spectra were obtained using one 200 µm diameter device and one 400 µm diameter device. The best energy resolution (FWHM at 5.9 keV) achieved was 625 eV using the 200 µm and 740 eV using the 400 µm diameter device, respectively. Noise analysis showed that the limiting factor for the energy resolution of the system was the dielectric noise; if this noise was eliminated by better design of the front end of the readout electronics, the achievable resolution would be 250 eV. {sup 63}Ni beta particle spectra obtained using the 200 µm diameter device showed the potential utility of these detectors for electron and beta particle detection. The development of semiconductor electron spectrometers is important particularly for space plasma physics; such devices may find use in future space missions to study the plasma environment of Jupiter and Europa and the predicted electron impact excitation of water vapor plumes from Europa hypothesized as a result of recent Hubble Space Telescope (HST) UV observations.

  10. Cathodoluminescence on the Effects of Te Implantation and Laser Annealing in Gallium Arsenide. (United States)


    to me by Jim Miskimen , George Gergal , and Ron Gabriel of the AFIT Physics Laboratory staff . Finally , I would like to thank my wife for her...wavelength counter) . The spectrometer could also be driven externally by signals from a step motor driver designed and constructed by G . Gergal (Ref 13

  11. FUNDAMENTAL AREAS OF PHENOMENOLOGY (INCLUDING APPLICATIONS): Mechanism of Current Oscillations in Gallium Arsenide Photoconductive Semiconductor Switches (United States)

    Tian, Li-Qiang; Shi, Wei


    Semi-insulating photoconductive semiconductor switch with an electrode gap of 4 mm, triggered by a laser pulse with energy of 0.5mJ, and applied bias of 2.5kV, the periodicity current oscillation with a cycle of 12ns is obtained. It is indicated that the current oscillation is one mode of transferred electron effect, namely quenched domain mode. This mode of trans-electron oscillator is obtained when the instantaneous bias electric field drops below the sustaining field (the minimum electric field required to support the domain) before the domain reaches the anode, which leads to the domain disappears somewhere in the bulk of the switch and away from the ohmic contacts. We mainly analyse the time-dependent characteristic of the mode, the theoretical analysis results are in excellent agreement with the experiment.

  12. Density functional study of optical properties of beryllium chalcogenides compounds in nickel arsenide B8 structure

    Energy Technology Data Exchange (ETDEWEB)

    Al-Douri, Y., E-mail: [Institute of Nano Electronic Engineering, University Malaysia Perlis, 01000 Kangar, Perlis (Malaysia); Baaziz, H., E-mail: [Physics Department, Faculty of Science University of M' sila, 28000 M' sila (Algeria); Charifi, Z. [Physics Department, Faculty of Science University of M' sila, 28000 M' sila (Algeria); Reshak, Ali H. [School of complex systems, FFWP-South Bohemia University, Nove Hrady 37333 (Czech Republic); School of Material Engineering, Malaysia University of Perlis, P.O. Box 77, d/a Pejabat Pos Besar, 01007 Kangar, Perlis (Malaysia)


    The structural, electronic and optical properties of beryllium chalcogenides BeS, BeSe and BeTe using the full-potential linear augmented plane wave (FP-LAPW) method are investigated. The exchange-correlation energy within the local density approximation (LDA) and the generalized gradient approximation (GGA) are described. The Engel-Vosko (EVGGA) formalism is applied for electronic and optical properties. The structural parameters of our model and the transition pressure from zinc-blende (B3) to the NiAs (B8) phase are confirmed. It is found that these compounds have indirect band gaps except for BeTe in NiAs (B8) phase. The results of reflectivity, refractive index and optical dielectric functions of Be compounds are investigated. An agreement is found between our results and those of other theoretical calculations and the experimental data.

  13. Triple crystal x-ray diffraction analysis of chemical-mechanical polished gallium arsenide (United States)

    Wang, V. S.; Matyi, R. J.


    High-resolution triple crystal x-ray diffraction has been used to monitor the magnitude of diffuse scattering from chemical-mechanical (CM) polished GaAs. The diffuse scattering, which is attributed to kinematic scattering arising from polish-induced crystallographic defects, was found to be only slightly affected when each of four CM polish parameters (bromine concentration in Br2/methanol, total polish time, polish pad rotation speed, and force on sample) was varied individually. The combined effect of increases in both the pad rotation speed and the force on the sample increased the magnitude of the diffuse scattering, suggesting the generation of mechanical damage. When all four variables were increased to their maximum values, the diffuse scattering increased dramatically and became anisotropic. We have expressed the magnitude of the diffuse scattering in terms of an ``excess intensity'' in reciprocal space to provide a semi-quantitative relation between CM polish parameters and the generation of polish-induced damage.

  14. The attachment and characterization of DNA probes on gallium arsenide-based semiconductor surfaces (United States)

    Yang, Joonhyuk


    Immobilization of nucleic acid molecules on solid surfaces is the core of numerous important technologies in the genomics, disease diagnostics and biosensors applications. The architecture and density of immobilized probe molecules depend on the type of the solid surface on which they are anchored. Even though many different types of surfaces have been studied as substrates for deoxyribonucleic acid (DNA) attachment, the development of a new type of substrate, which is reproducible, stable, highly controlled and easily transferred to practical applications, is still needed. Recent studies have shown that As terminated GaAs-based semiconductors can be used as substrates for immobilized DNA layers. In this study, I aim to understand the attachment of nucleic acid onto the surfaces of As-terminated GaAs-based semiconductors and focus on improving the "brush-structure", which is essential for high quality of biochip based on a DNA layer. Attachment of 8-base and 100-base thiolated ssDNA layers on arsenic terminated GaAs(001) was achieved and characterized. The covalent bonds between the thiolated oligonucleotides with As atoms on the GaAs surface were investigated using x-ray photoelectron spectroscopy (XPS), and the surface morphology was obtained using atomic force microscopy (AFM) and field emission scanning electron microscopy (FESEM). In addition, I studied the effect of DNA length and the presence of a good solvent, such as water, on the oligonucleotides on a GaAs surface. I also investigated the effects of the thiol-based spacer and electrolyte concentration to improve the brush-like structure of the DNA layer. Finally, irradiation effects and AlGaAs resonators have been studied for the applications of DNA brush layer on GaAs as biosensor during the change of attachment probe DNA and hybridization to target DNA. For the 8-base thiolated ssDNA case, AFM results showed that the layer thickness was about ˜2.2 nm in dry mode and increased in wet mode. Replacement reaction from N-, O-As bonds to S-As bonds was observed with addition of MCH as indicated by analysis of XPS spectra. The concentration of electrolyte affected the brush like layer structure. In the case of the longer, more flexible DNA with 100 bases, the DNA molecules strongly interacted with each other and formed big cluster, of 330˜440nm in diameter on the surface. Finally, for the applications, a high level of radiation destroyed the brush layer. An AlGaAs resonator used as proof of concept a change in mass by a change in resonance frequency under hybridization reaction with complementary target DNA. This result shows that the design is viable and has a defection of ˜25pg.

  15. Lower critical field and SNS-Andreev spectroscopy of 122-arsenides: Evidence of nodeless superconducting gap (United States)

    Abdel-Hafiez, M.; Pereira, P. J.; Kuzmichev, S. A.; Kuzmicheva, T. E.; Pudalov, V. M.; Harnagea, L.; Kordyuk, A. A.; Silhanek, A. V.; Moshchalkov, V. V.; Shen, B.; Wen, Hai-Hu; Vasiliev, A. N.; Chen, Xiao-Jia


    Using two experimental techniques, we studied single crystals of the 122-FeAs family with almost the same critical temperature, Tc. We investigated the temperature dependence of the lower critical field Hc1(T ) of a Ca0.32Na0.68Fe2As2 (Tc≈34K) single crystal under static magnetic fields H parallel to the c axis. The temperature dependence of the London penetration depth can be described equally well either by a single anisotropic s-wave-like gap or by a two-gap model, while a d-wave approach cannot be used to fit the London penetration depth data. Intrinsic multiple Andreev reflection effect spectroscopy was used to detect bulk gap values in single crystals of the intimate compound Ba0.65K0.35Fe2As2, with the same Tc. We estimated the range of the large gap value ΔL=6-8 meV (depending on small variation of Tc) and its a k space anisotropy of about 30%, and the small gap ΔS≈1.7±0.3 meV. This clearly indicates that the gap structure of our investigated systems more likely corresponds to a nodeless s-wave two gaps.

  16. Formation of defects at high temperature plastic deformation of gallium arsenide

    Energy Technology Data Exchange (ETDEWEB)

    Mikhnovich, V.V.


    The purpose of the present thesis consists in acquiring more concrete information concerning the mechanism of the movement of dislocations and types of defects that appear during the process of dislocation motion on the basis of systematic experimental studies of the GaAs deformation. Experimental studies concerning the dependence of the stress of the samples from their deformation at different values of the deformation parameters (like temperature and deformation speed) were conducted in this paper. To determine the concentration of defects introduced in samples during the deformation process the positron annihilation spectroscopy (PAS) method was used. The second chapter of this paper deals with models of movement of dislocations and origination of defects during deformation of the samples. In the third chapter channels and models of positron annihilation in the GaAs samples are investigated. In the forth chapter the used experimental methods, preparation procedure of test samples and technical data of conducted experiments are described. The fifth chapter shows the results of deformation experiments. The sixth chapter shows the results of positron lifetime measurements by the PAS method. In the seventh chapter one can find analyses of the values of defects concentration that were introduced in samples during deformation. (orig.)

  17. The scaling of the effective band gaps in indium-arsenide quantum dots and wires. (United States)

    Wang, Fudong; Yu, Heng; Jeong, Sohee; Pietryga, Jeffrey M; Hollingsworth, Jennifer A; Gibbons, Patrick C; Buhro, William E


    Colloidal InAs quantum wires having diameters in the range of 5-57 nm and narrow diameter distributions are grown from Bi nanoparticles by the solution-liquid-solid (SLS) mechanism. The diameter dependence of the effective band gaps (DeltaE(g)s) in the wires is determined from photoluminescence spectra and compared to the experimental results for InAs quantum dots and rods and to the predictions of various theoretical models. The DeltaE(g) values for InAs quantum dots and wires are found to scale linearly with inverse diameter (d(-1)), whereas the simplest confinement models predict that DeltaE(g) should scale with inverse-square diameter (d(-2)). The difference in the observed and predicted scaling dimension is attributed to conduction-band nonparabolicity induced by strong valence-band-conduction-band coupling in the narrow-gap InAs semiconductor.

  18. Computer modeling characterization, and applications of Gallium Arsenide Gunn diodes in radiation environments

    Energy Technology Data Exchange (ETDEWEB)

    El- Basit, Wafaa Abd; El-Ghanam, Safaa Mohamed; Kamh, Sanaa Abd El-Tawab [Electronics Research Laboratory, Physics Department, Faculty of Women for Arts, Science and Education, Ain-Shams University, Cairo (Egypt); Abdel-Maksood, Ashraf Mosleh; Soliman, Fouad Abd El-Moniem Saad [Nuclear Materials Authority, Cairo (Egypt)


    The present paper reports on a trial to shed further light on the characterization, applications, and operation of radar speed guns or Gunn diodes on different radiation environments of neutron or γ fields. To this end, theoretical and experimental investigations of microwave oscillating system for outer-space applications were carried out. Radiation effects on the transient parameters and electrical properties of the proposed devices have been studied in detail with the application of computer programming. Also, the oscillation parameters, power characteristics, and bias current were plotted under the influence of different γ and neutron irradiation levels. Finally, shelf or oven annealing processes were shown to be satisfactory techniques to recover the initial characteristics of the irradiated devices.

  19. Origin of optical losses in gallium arsenide disk whispering gallery resonators

    CERN Document Server

    Parrain, David; Wang, Guillaume; Guha, Biswarup; Santos, Eduardo Gil; Lemaitre, Aristide; Senellart, Pascale; Leo, Giuseppe; Ducci, Sara; Favero, Ivan


    Whispering gallery modes in GaAs disk resonators reach half a million of optical quality factor. These high Qs remain still well below the ultimate design limit set by bending losses. Here we investigate the origin of residual optical dissipation in these devices. A Transmission Electron Microscope analysis is combined with an improved Volume Current Method to precisely quantify optical scattering losses by roughness and waviness of the structures, and gauge their importance relative to intrinsic material and radiation losses. The analysis also provides a qualitative description of the surface reconstruction layer, whose optical absorption is then revealed by comparing spectroscopy experiments in air and in different liquids. Other linear and nonlinear optical loss channels in the disks are evaluated likewise. Routes are given to further improve the performances of these miniature GaAs cavities.

  20. Size-effects in indium gallium arsenide nanowire field-effect transistors

    Energy Technology Data Exchange (ETDEWEB)

    Zota, Cezar B., E-mail:; Lind, E. [Department of Electrical and Information Technology, Lund University, Lund 22101 (Sweden)


    We fabricate and analyze InGaAs nanowire MOSFETs with channel widths down to 18 nm. Low-temperature measurements reveal quantized conductance due to subband splitting, a characteristic of 1D systems. We relate these features to device performance at room-temperature. In particular, the threshold voltage versus nanowire width is explained by direct observation of quantization of the first sub-band, i.e., band gap widening. An analytical effective mass quantum well model is able to describe the observed band structure. The results reveal a compromise between reliability, i.e., V{sub T} variability, and on-current, through the mean free path, in the choice of the channel material.

  1. Gate Last Indium-Gallium-Arsenide MOSFETs with Regrown Source-Drain Regions and ALD Dielectrics (United States)

    Carter, Andrew Daniel

    III-V-based MOSFETs have the potential to exceed the performance of silicon-based MOSFETs due to the semiconductor's small electron effective mass. Modern silicon-based MOSFETs with 22 nm gate lengths utilize high-k gate insulators and non-planar device geometries to optimize device performance. III-V HEMT technology has achieved similar gate lengths, but large source-drain access resistances and the lack of high-quality gate insulators prevent further device performance scaling. Sub-22 nm gate length III-V MOSFETs require metal-semiconductor contact resistivity to be less than 1 ohm-micron squared, gate insulators with less than 1 nm effective oxide thickness, and semiconductor-insulator interface trap densities less than 2E12 per square centimeter per electron volt. This dissertation presents InGaAs-based III-V MOSFET process flows and device results to assess their use in VLSI circuits. Previous III-V MOSFET results focused on long (>100 nm) gate lengths and ion implantation for source-drain region formation. Scaling III-V MOSFETs to shorter gate lengths requires source-drain regions that have low sheet resistance, high mobile charge densities, and low metal-semiconductor contact resistance. MBE- and MOCVD-based raised epitaxial source-drain regrowth meet these requirements. MBE InAs source-drain regrowth samples have shown 0.5 to 2 ohm-micron squared metal semiconductor contact resistivities. MOCVD InGaAs source-drain regrowth samples have shown resistance to InGaAs MOSFETs. Gate insulators on III-V materials require large conduction band offsets to the channel, high dielectric permittivities, and low semiconductor-insulator interface trap densities. An in-situ hydrogen plasma / trimethylaluminum treatment has been developed to lower the gate semiconductor-insulator interface trap density. This treatment, done immediately before gate insulator deposition, has been shown to lower MOS capacitor interface trap densities by more than a factor of two. Devices using gate-first MBE regrowth, gate-last MBE regrowth, and gate-last MOCVD regrowth were fabricated and resulting devices characterized. 65 nm gate length gate-first MBE regrowth devices employing a 2.2 nm EOT Al 2O3 gate insulator show peak transconductances of 0.3 mS/micron at 1 V Vds. Gate-first FET performance scaling is limited by processed-induced damage and ungated access regions. 64 nm gate length gate-last MBE regrowth devices employing a 1.21 nm EOT Al2O 3 / HfO2 bi-layer gate insulator show peak transconductances of 1.4 mS/micron at 0.5 V Vds. Other gate-last MBE samples had long channel subthreshold swings as low as 117 mV/dec. 48 nm gate length gate-last MOCVD MOSFETs employing a 0.8 nm EOT HfO2 gate insulator and digital channel etching show peak transconductances of 2 mS/micron at 0.5 V Vds, with long channel devices having 97 mV/dec subthreshold swing.

  2. Atomistic simulation studies of iron sulphide, platinum antimonide and platinum arsenide

    CSIR Research Space (South Africa)

    Ngoepe, PE


    Full Text Available The authors present the results of atomistic simulations using derived interatomic potentials for the pyrite-structured metal chalcogenides FeS2, PtSb2 and PtAs2. Structural and elastic constants were calculated and compared with experimental...

  3. Quasilinear quantum magnetoresistance in pressure-induced nonsymmorphic superconductor chromium arsenide. (United States)

    Niu, Q; Yu, W C; Yip, K Y; Lim, Z L; Kotegawa, H; Matsuoka, E; Sugawara, H; Tou, H; Yanase, Y; Goh, Swee K


    In conventional metals, modification of electron trajectories under magnetic field gives rise to a magnetoresistance that varies quadratically at low field, followed by a saturation at high field for closed orbits on the Fermi surface. Deviations from the conventional behaviour, for example, the observation of a linear magnetoresistance, or a non-saturating magnetoresistance, have been attributed to exotic electron scattering mechanisms. Recently, linear magnetoresistance has been observed in many Dirac materials, in which the electron-electron correlation is relatively weak. The strongly correlated helimagnet CrAs undergoes a quantum phase transition to a nonmagnetic superconductor under pressure. Here we observe, near the magnetic instability, a large and non-saturating quasilinear magnetoresistance from the upper critical field to 14 T at low temperatures. We show that the quasilinear magnetoresistance may arise from an intricate interplay between a nontrivial band crossing protected by nonsymmorphic crystal symmetry and strong magnetic fluctuations.

  4. Digital Logic and Reconfigurable Interconnects Using Aluminum Gallium Arsenide Electro-Optic Fredkin Gates (United States)


    growth and characte . Anthony Ticknor, of Lockheed, was responsbe for the beam propagation method computer program. I have also enjoyed valuable...134. R. J. Pressley , ed., Handbook of Lasers With Selected Data on Optical Technolgav, CRC Press, Cleveland, OH, 1971. 135. A. Kurnar and T. P

  5. Fluorescence enhancement of samarium (III) perchlorate by 1,10-phenanthroline on Phenylnaphthoylmethyl sulfoxide complex and luminescence mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Li, Wen-Xian, E-mail:; Feng, Shu-Yan; Liu, Yu; Zhang, Jing; Xin, Xiao-Dong; Ao, Bo-Yang; Li, Ying-Jie


    A novel ligand, Phenylnaphthoylmethyl sulfoxide, was synthesized by a new method. Its novel binary complex, SmL{sub 5}·(ClO{sub 4}){sub 3}·2H{sub 2}O, and the ternary complex, SmL{sub 4}·L′(ClO{sub 4}){sub 3}·2H{sub 2}O, had been synthesized (using Phenylnaphthoylmethyl sulfoxide as the first ligand L, 1,10-phenanthroline as the second ligand L′). The complexes were characterized by element analysis, coordination titration, molar conductivity, IR, TG-DSC, {sup 1}HNMR and UV spectra. Their fluorescence emission mechanism, fluorescence intensities and phosphorescence spectra of the two ligands were also investigated by comparison. Fluorescent spectra illustrated that the ternary rare-earth complex presented stronger fluorescence intensity than the binary rare-earth complex in such material. The strongest characteristic fluorescence emission intensity of the ternary system was 1.81 times as strong as that of the binary system. By the analysis of fluorescence and phosphorescence spectra, it was found that the Phenylnaphthoylmethyl sulfoxide and phen had the advantage to absorb and transfer energy to Sm (III) ions effectively, and then the complexes emitted the characteristic fluorescence of Sm (III) ions. The phosphorescence spectra and fluorescence lifetime of the complexes were also measured. -- Highlights: • A novel ligand, Phenylnaphthoylmethyl sulfoxide, has been synthesized. • Its novel ternary complex and the binary complex have been synthesized. • The fluorescence emission intensity of ternary rare earth complex exhibit obvious enhancement. • The fluorescence emission mechanism and phosphorescence spectra are also investigated.

  6. Polypropylene oil as fuel for solid oxide fuel cell with samarium doped-ceria (SDC)-carbonate as electrolyte (United States)

    Syahputra, R. J. E.; Rahmawati, F.; Prameswari, A. P.; Saktian, R.


    The research focusses on converting polypropylene oil as pyrolysis product of polypropylene plastic into an electricity. The converter was a direct liquid fuel-solid oxide fuel cell (SOFC) with cerium oxide based material as electrolyte. The polypropylene vapor flowed into fuel cell, in the anode side and undergo oxidation reaction, meanwhile, the Oxygen in atmosphere reduced into oxygen ion at cathode. The fuel cell test was conducted at 400 - 600 °C. According to GC-MS analysis, the polypropylene oil consist of C8 to C27 hydrocarbon chain. The XRD analysis result shows that Na2CO3 did not change the crystal structure of SDC even increases the electrical conductivity. The maximum power density is 0.079 at 773 K. The open circuite voltage is 0.77 volt. Chemical stability test by analysing the single cell at before and after fuel cell test found that ionic migration occured during fuel cell operation. It is supported by the change of elemental composition in the point position of electrolyte and at the electrolyte-electrode interface

  7. A distribution pattern of cadmium, gadolinium and samarium in Phaseolus vulgaris (L) plants as assessed by dynamic neutron radiography (United States)

    Kőrösi, Ferenc; Balaskó, Márton; Sváb, Erzsébet


    The qualitative and semi-quantitative distributions, presumably apoplast transport patterns for the Gd, Sm and Cd were investigated in the primordial leaf tissues of the bean using dynamic neutron radiography. According to the applied 3D, 2D images and the pixel count distribution histograms of the considered gray levels, peculiar distribution patterns were postulated for the elements. Main and lateral vascular systems for Gd, the cell walls as well as intercellular spaces for Sm and the main leaf vein for Cd assumed to be the apoplast transport spaces and volumes.

  8. Ab initio calculation of the migration free energy of oxygen diffusion in pure and samarium-doped ceria (United States)

    Koettgen, Julius; Schmidt, Peter C.; Bučko, Tomáš; Martin, Manfred


    We have studied the free energy migration barriers Δ F‡ for oxygen diffusion in pure ceria and Sm-doped ceria for the temperatures 300, 700, and 1000 K. We used the density functional theory in the generalized gradient approximation and an additional Hubbard U parameter for the Ce 4 f electronic states. We compare the results for the free energy deduced from three different methods. First, a static harmonic approach is applied in which the temperature dependent vibrational contributions to energy and entropy are deduced from the phonon frequencies of supercells with a fixed volume. Second, a static quasiharmonic approach is used in which a part of the anharmonicity effect is introduced via an implicit dependence of the harmonic frequencies on the thermally expanding cell volume. Third, the free energy barriers are calculated using metadynamics and molecular dynamics in which anharmonicity effects are naturally taken into account. The three methods examined in this study lead to distinctly different results. According to the harmonic approximation, the migration free energy difference Δ F‡ increases with increasing temperature due to an increasing entropic contribution. According to the quasiharmonic approximation, the migration free energy is independent of temperature. Finally, molecular dynamics predicts a thermally induced increase in the migration free energy. We conclude that temperature dependent experimental lattice constants cancel out the increasing entropic contribution with increasing temperature in the static quasiharmonic approach. The full consideration of anharmonicity effects in the metadynamics method again leads to a temperature dependent migration free energy.

  9. Studies on the preparation and stability of samarium-153 propylene diamine tetramethylene phosphonate (PDTMP) complex as a bone seeker

    Energy Technology Data Exchange (ETDEWEB)

    Majali, M.A. E-mail:; Mathakar, A.R.; Shimpi, H.H.; Banerjee, Sharmila; Samuel, Grace


    Propylene diamine tetra methylene phosphonate (PDTMP) was synthesised by modifying a method reported for the synthesis of EDTMP. Complexation of the synthesised phosphonate ligand with {sup 153}Sm was carried out by varying the experimental parameters and the complex was radiochemically characterized. Biodistribution studies showed that the uptake by bone in rats was 2% per g of bone, which was retained up to 48 h. The uptake by other organs was insignificant, except by the liver which showed a slightly higher absorption.

  10. Crystal structure of a samarium(III nitrate chain cross-linked by a bis-carbamoylmethylphosphine oxide ligand

    Directory of Open Access Journals (Sweden)

    Julie A. Stoscup


    Full Text Available In the title compound poly[aquabis(μ-nitrato-κ4O,O′:O,O′′tetrakis(nitrato-κ2O,O′{μ4-tetraethyl [(ethane-1,2-diylbis(azanediylbis(2-oxoethane-2,1-diyl]diphosphonate-κ2O,O′}disamarium(III], [Sm2(NO36(C14H30N2O8P2(H2O]n, a 12-coordinate SmIII and a nine-coordinate SmIII cation are alternately linked via shared bis-bidentate nitrate anions into a corrugated chain extending parallel to the a axis. The nine-coordinate SmIII atom of this chain is also chelated by a bidentate, yet flexible, carbamoylmethylphoshine oxide (CMPO ligand and bears one water molecule. This water molecule is hydrogen bonded to nitrate groups bonded to the 12-coordinate SmIII cation. The CMPO ligand, which lies about an inversion center, links neighboring chains along the c axis, forming sheets parallel to the ac plane. Hydrogen bonds between the amide NH group and metal-bound nitrate anions are also present in these sheets. The sheets are packed along the b axis through only van der Waals interactions.

  11. Structure, reactivity, electronic configuration and magnetism of samarium atomic layers deposited on Si(0 0 1) by molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Gheorghe, Nicoleta G.; Lungu, George A.; Husanu, Marius A.; Costescu, Ruxandra M.; Macovei, Dan [National Institute of Materials Physics, Atomistilor 105 b, 077125 Magurele-Ilfov (Romania); Teodorescu, Cristian M., E-mail: [National Institute of Materials Physics, Atomistilor 105 b, 077125 Magurele-Ilfov (Romania)


    The surface structure, interface reactivity, electron configuration and magnetic properties of Sm layers deposited on Si(0 0 1) at various temperatures are investigated by low-energy electron diffraction (LEED), X-ray photoelectron spectroscopy (XPS), X-ray absorption spectroscopy (XAS) and magneto-optical Kerr effect (MOKE). It is found that metal Sm is present on samples prepared at low temperature, with an interface layer containing SmSi{sub 2} and Sm{sub 4}Si{sub 3}. When samples are prepared at high temperature, much less metal Sm is found, with an increasing amount of SmSi{sub 2}. Room temperature ferromagnetism is observed for all prepared layers, with a decrease of the saturation magnetization when samples are prepared at high temperature. It is found that ferromagnetism implies mostly a compound with approximate stoichiometry Sm{sub 4}Si{sub 3}. Also, the decrease in the intensity of the XAS 2p{sub 3/2} → 3d white lines with the corresponding increasing amount of SmSi{sub 2} may be explained by assuming a higher occupancy of Sm 5d orbitals (5d{sup 2} configuration), most probably due to hybridation effects.

  12. Calculation and comparison of xenon and samarium reactivities of the HEU, LEU core in the low power research reactor. (United States)

    Dawahra, S; Khattab, K; Saba, G


    Comparative studies for the conversion of the fuel from HEU to LEU in the Miniature Neutron Source Reactor (MNSR) have been performed using the MCNP4C and GETERA codes. The precise calculations of (135)Xe and (149)Sm concentrations and reactivities were carried out and compared during the MNSR operation time and after shutdown for the existing HEU fuel (UAl4-Al, 90% enriched) and the potential LEU fuels (U3Si2-Al, U3Si-Al, U9Mo-Al, 19.75% enriched and UO2, 12.6% enriched) in this paper using the MCNP4C and GETERA codes. It was found that the (135)Xe and (149)Sm reactivities did not reach their equilibrium reactivities during the daily operating time of the reactor. The (149)Sm reactivities could be neglected compared to (135)Xe reactivities during the reactor operating time and after shutdown. The calculations for the UAl4-Al produced the highest (135)Xe reactivity in all the studied fuel group during the reactor operation (0.39 mk) and after the reactor shutdown (0.735 mk), It followed by U3Si-Al (0.34 mk, 0.653 mk), U3Si2-Al (0.33 mk, 0.634 mk), U9Mo-Al (0.3 mk, 0.568 mk) and UO2 (0.24 mk, 0.448 mk) fuels, respectively. Finally, the results showed that the UO2 was the best candidate for fuel conversion to LEU in the MNSR since it gave the lowest (135)Xe reactivity during the reactor operation and after shutdown. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Development of samarium [{sup 32}P] phosphate colloid for radiosynoviorthesis applications: Preparation, biological and preliminary clinical studies experience

    Energy Technology Data Exchange (ETDEWEB)

    Prabhakar, G. [Radiopharmaceuticals Programme, Board of Radiation and Isotope Technology (BRIT), BARC Vashi Complex, Sector-20, Navi Mumbai 400 705 (India)], E-mail:; Sachdev, Satbir S.; Umamaheswari, S.; Sivaprasad, N.; Bhatia, Manohar H. [Radiopharmaceuticals Programme, Board of Radiation and Isotope Technology (BRIT), BARC Vashi Complex, Sector-20, Navi Mumbai 400 705 (India); Chaudhari, Pradip R. [Laboratory Nuclear Medicine Services, BARC, Mumbai 400 012 (India); Solav, Srikant V. [Spect Lab, Nuclear Medicine Services, Opposite Dinanath Mangeshkar Hospital, Pune 411004 (India)


    A new therapeutic radio colloid for radiosynoviorthesis (RS) applications is reported. The method of preparation involves the reaction of SmCl{sub 3} carrier with carrier added [{sup 32}P]H{sub 3}PO{sub 4} in the presence of gelatin. The pure colloid was recovered by dialysis purification leading to radiochemical yield of around 90%. The radiochemical purity of the pure colloid formulated in isotonic saline was over 98%, for the usage period of 14 days, as assessed by paper chromatography. Ninety percent of colloid particles were in the size of 1-10 {mu}m as evident from the laser diffraction particle size analysis, ideally suitable for the intended end use. Animal studies revealed complete retention of the radio colloid in the rabbit knee joint. The results of clinical trials in humans are satisfactory and encouraging, satisfactory retention of the colloid in the knee joint and negligible leakage into the systemic circulation.

  14. Optimization and Characterization of Indium Arsenide Quantum Dots for Application in III-V Material Solar Cells (United States)

    Podell, Adam P.

    In this work, InAs quantum dots grown by organometallic vapor-phase epitaxy (OMVPE) are investigated for application in III - V material solar cells. The first focus is on the opti- mization of growth parameters to produce high densities of uniform defect-free quantum dots via growth on 2" vicinal GaAs substrates. Parameters studied are InAs coverage, V/III ratio and growth rate. QDs are grown by the Stranski-Krastanov (SK) growth mode on (100) GaAs substrates misoriented toward (110) or (111) planes with various degrees of misorientation from 0° to 6°. Atomic force microscopy results indicated that as misorientation angle increased toward(110),critical thickness for quantum dot formation increased with theta c =1.8ML,1.9ML and 2.0 ML corresponding to 0°, 2° and 6°, respectively. Results for quantum dots grown on (111) misoriented substrates indicated, on average, that higher densities of quantum dots were achieved, compared with similar growths on substrates misoriented toward (110). Most notably, a stable average number density of 8 x 1010cm -2 was observed over a range of growth rates of 0.1ML/s - 0.4ML/s on (111) misoriented substrates compared with a decreasing number density as low as 2.85 x 1010cm -2 corresponding to a growth rate of 0.4ML/s grown on (110) misoriented substrates. p-i-n solar cell devices with a 10-layer quantum dot super- lattice imbedded in the i-region were also grown on (100) GaAs substrates misoriented 0°, 2° and 6° toward (110) as well as a set of devices grown on substrates misoriented toward (111). Device results showed a 1.0mA/cm2 enhancement to the short-circuit current for a v 2° misoriented device with 2.2 ML InAs coverage per quantum dot layer. Spectral response measurements were performed and integrated spectral response showed sub-GaAs bandgap short-circuit contribution which increased with increasing InAs coverage in the quantum dot layers from 0.04mA/cm2/ML, 0.28mA/cm2/ ML and 0.19mA/cm2/ML corresponding to 0°, 2° and 6° misorientation, respectively. The second focus of this study was on the OMVPE growth of InAs quantum dots in a large-area commercial reactor. Quantum dot growth parameters require careful balancing in the large-scale reactor due to different thermodynamic and flow profiles compared with smaller- area reactors. The goal of the work was to control the growth process in order to produce high densities of uniform quantum dots for inclusion in double and triple junction III - V material solar cells. Initial growth proved unsuccessful due to lack of familiarity with the process but through balancing of injector flows of alkyl gasses, coherent and optically active quantum dots were able to first be formed at low densities (0.5 - 0.7 x 1010 cm-2). Further optimization included increased quantum dot growth times leading to number densities in the (2.1-2.7x10 10cm-2 with improved optical performance as measured by photoluminescence (PL) spectroscopy. Finally, an investigation of GaAs spacer layer thickness for improved optical coupling was performed, indicating that a combined low temperature and high temperature GaAs thickness of 9.3nm led to strong PL intensity indicating good optical coupling of QD layers. Ge/(In)GaAs double junction solar cells were grown and fabricated with and without quantum dots in the (In)GaAs cell to investigate the effect of quantum dot inclusion on device performance. AM 0 measurements showed an average increase of 1.0mA/cm 2 in short-circuit current for these devices. Integrated spectral response measurements revealed a contribution to short-circuit current of 0.02mA/cm2/QDlayer which is consistent with reports seen in literature. The current improvement for the double junction solar cells motivated the investigation of quantum dot inclusion in the (In)GaAs junction of a Ge/(In)GaAs/InGaP triple junction solar cell. AM0 measurements on these cells did not reveal any increase in current for quantum dot enhanced devices over a baseline device. Integrated spectral response for each junction revealed an increase of 0.3mA/cm 2 in current for the middle junction and the top junction, respectively, compared with baseline results for these junctions, but also that the InGaP top junction was current limiting. This potentially is due to poor material quality in the InGaP junction as a result of quantum dot inclusion in the junction beneath it or to strain effects re- sulting from quantum dot inclusion. This current limiting nature of the top junction may have led to a reduced efficiency for quantum dot devices compared with a baseline and further opti- mization is required in order increase the efficiency of the quantum dot device compared with a baseline device.

  15. Thin films of gallium arsenide on low-cost substrates. Final report, July 5, 1976--July 2, 1977

    Energy Technology Data Exchange (ETDEWEB)

    Ruth, R.P.; Dapkus, P.D.; Dupuis, R.D.; Campbell, A.G.; Johnson, R.E.; Manasevit, H.M.; Moudy, L.A.; Yang, J.J.; Yingling, R.D.


    The metalorganic chemical vapor deposition (MO-CVD) technique has been applied to the growth of thin films of GaAs and GaAlAs on inexpensive polycrystalline or amorphous substrate materials (glasses, glass-ceramics, alumina ceramics, and metals) for use in fabrication of large-area low-cost photovoltaic device structures. Trimethylgallium (TMG), arsine (AsH/sub 3/), and trimethylaluminum (TMAl) are mixed in appropriate concentrations at room temperature in the gaseous state and pyrolyzed at the substrate, which is heated in a vertical reactor chamber to temperature in the range 600 to 800/sup 0/C, to produce the desired film composition and properties. Of ten candidate low-cost substrates initially identified for investigation, Corning Code 0317 glass and composites of CVD Ge/glass and sputtered Mo/glass were found to be the most satisfactory, the latter eventually serving as a reference substrate against which to compare the performance of other substrates. Single-crystal window-type solar cells, polycrystalline Schottky-barrier cells, and deposited-junction polycrystalline cells have been grown, fabricated, and characterized. Epitaxial GaAlAs/GaAs p-n junction cells with thin (approx. 500A) Ga/sub 0/ /sub 2/Al/sub 0/ /sub 8/As windows and GaAs:Zn - GaAs:Se junctions were made with AMO efficiencies as high as 12.8 percent with no AR coating. Schottky barrier cells with efficiencies of 2.25 percent AMO (no AR coating) have been made on n/n polycrystalline GaAs structures on Mo/glass composite substrates, with short-circuit current densities up to 12.5 mA/cm/sup 2/. Also, results of analyses of material and processing costs associated with fabrication of thin-film GaAlAs/GaAs solar cells by the MO-CVD process are discussed.

  16. Gallium arsenide-based apertured vertical-cavity surface-emitting lasers and microcavity light emitting diodes (United States)

    Chen, Hao

    A new design approach for all all-epitaxial index-guiding VCSEL fabrication with self-aligned current and optical confinement is proposed and demonstrated using MBE regrowth. The epitaxial regrowth approach has significant advantages over oxide confinement due to elimination of strain, aperture size controllability across wafer, and the aperture size controllability from wafer to wafer. A simple microcavity model is used to demonstrate the lateral mode confinement effect obtained by blue-shifting resonance frequency in the lateral regions of cavity, which leads to the new design concept for engineering waveguided VCSELs by modulation of the optical cavity length through MBE regrowth over selectively etched surface structures. The lithographically-defined aperture can be scaled to submicron level---simplifying its post-growth processing and thus making it easier to incorporate additional structural modifications (such as air-gap DBR VCSELs) for improved device performance. Enabling techniques, which include various surface protection and current blocking methods, have been developed in this work for the epitaxial regrowth approach. In-situ low-temperature-grown InAs capping is used to protect the first-step-grown wafer from standard chemical process, and is gently evaporated inside growth chamber before regrowth. Various current blocking structures have been investigated including reversed p-n junction assisted with resistive LT material, buried tunnel junction, and implanted current aperture. Excellent current confinement is achieved, which consequently leads to the first demonstration of GaAs-based air-gap DBR VCSELs and buried tunnel junction (BTJ) VCSELs. A novel fabrication process of air-gap/GaAs DBR mirrors has been realized by selectively removing AlGaAs sacrificial layers. Air-gap/GaAs DBR mirrors have the highest achievable refractive index contrast. This allows Air-gap/GaAs DBR mirrors to achieve desirable features, including a higher reflectivity, wider reflection stopband, lower diffraction loss, and smaller penetration depth than conventional DBR mirrors. An electrically-pumped MBE-regrown 980 nm VCSELs using p-type air-gap DBRs is demonstrated with a low threshold current density of 764 A/cm2 at room temperature under continuous-wave operation. (Abstract shortened by UMI.)

  17. Formation of indium arsenide atomic wires on the In/Si(111)-4 × 1 surface (United States)

    Guerrero-Sánchez, J.


    Density functional theory calculations have been applied to describe the formation of InAs atomic-size wires on the In/Si(111)-4 × 1 surface. Two different coverages, ¼ ML and ½ ML, were considered. We have taken in to consideration different high symmetry sites for As adsorption. At ¼ ML coverage, in the energetically stable configuration, As and In atoms form atomic wires. Upon increasing the coverage up to ½ ML of As, a pair of InAs atomic wires are formed. Surface formation energy calculations help to clarify the stability ranges of these structures: for arsenic poor conditions the stable configuration corresponds to the In/Si(111)-4 × 1 surface (with no As atoms). Increasing the arsenic content, for intermediate to rich As conditions, results in the formation of an InAs wire. At the arsenic rich limit, the formation of two InAs wires is favorable. The InAs wires are highly symmetric, and charge density distributions and projected density of states show the covalent character of the Insbnd As bonds of the wire. These results demonstrate that the In/Si(111)-4 × 1 surface may be used as a substrate to growth quasi-unidimensional InAs wires.

  18. Boron, bismuth co-doping of gallium arsenide and other compounds for photonic and heterojunction bipolar transistor devices (United States)

    Mascarenhas, Angelo


    Isoelectronic co-doping of semiconductor compounds and alloys with acceptors and deep donors is sued to decrease bandgap, to increase concentration of the dopant constituents in the resulting alloys, and to increase carrier mobilities lifetimes. For example, Group III-V compounds and alloys, such as GaAs and GaP, are isoelectronically co-doped with, for example, B and Bi, to customize solar cells, and other semiconductor devices. Isoelectronically co-doped Group II-VI compounds and alloys are also included.

  19. Boron, bismuth co-doping of gallium arsenide and other compounds for photonic and heterojunction bipolar transistor devices

    Energy Technology Data Exchange (ETDEWEB)

    Mascarenhas, Angelo


    Isoelectronic co-doping of semiconductor compounds and alloys with acceptors and deep donors is used to decrease bandgap, to increase concentration of the dopant constituents in the resulting alloys, and to increase carrier mobilities lifetimes. For example, Group III-V compounds and alloys, such as GaAs and GaP, are isoelectronically co-doped with, for example, B and Bi, to customize solar cells, and other semiconductor devices. Isoelectronically co-doped Group II-VI compounds and alloys are also included.

  20. Optical and Electrical Characterization of Melt-Grown Bulk Indium Gallium Arsenide and Indium Arsenic Phosphide Alloys (United States)


    Russia semiconductor web: SVA /NSM/Semicond/ 119 6.4 Refractive Index Measurements Refractive index measurements on wafer shaped...coefficient”, Appl. Phys. Lett. 66 (16) p2101-2103, (1995). 76. SVA /NSM/Semicond 77. Sadao Adachi, “Band gaps and refractive indices

  1. Ohmic contact formation process on low n-type gallium arsenide (GaAs) using indium gallium zinc oxide (IGZO)

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Seong-Uk [Samsung-SKKU Graphene Center and School of Electronics and Electrical Engineering, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Product and Test Engineering Team, System LSI Division, Samsung Electronics Co., Ltd, Yongin 446-711 (Korea, Republic of); Jung, Woo-Shik [Department of Electrical Engineering, Stanford University, Stanford, CA 94305 (United States); Lee, In-Yeal; Jung, Hyun-Wook; Kim, Gil-Ho [Samsung-SKKU Graphene Center and School of Electronics and Electrical Engineering, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Park, Jin-Hong, E-mail: [Samsung-SKKU Graphene Center and School of Electronics and Electrical Engineering, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of)


    Highlights: • We propose a method to fabricate non-gold Ohmic contact on low n-type GaAs with IGZO. • 0.15 A/cm{sup 2} on-current and 1.5 on/off-current ratio are achieved in the junction. • InAs and InGaAs formed by this process decrease an electron barrier height. • Traps generated by diffused O atoms also induce a trap-assisted tunneling phenomenon. - Abstract: Here, an excellent non-gold Ohmic contact on low n-type GaAs is demonstrated by using indium gallium zinc oxide and investigating through time of flight-secondary ion mass spectrometry, X-ray photoelectron spectroscopy, transmission electron microscopy, J–V measurement, and H [enthalpy], S [entropy], Cp [heat capacity] chemistry simulation. In is diffused through GaAs during annealing and reacts with As, forming InAs and InGaAs phases with lower energy bandgap. As a result, it decreases the electron barrier height, eventually increasing the reverse current. In addition, traps generated by diffused O atoms induce a trap-assisted tunneling phenomenon, increasing generation current and subsequently the reverse current. Therefore, an excellent Ohmic contact with 0.15 A/cm{sup 2} on-current density and 1.5 on/off-current ratio is achieved on n-type GaAs.

  2. Infrared focal plane array based on gallium indium arsenideGaInAs/InP quantum well infrared photodetectors (United States)

    Jiang, Jutao

    There are many military and commercial applications for Infrared (IR) focal plane arrays (FPAs). Today, most IR FPAs are made with intrinsic HgCdTe (MCT) photodetectors. IR photodetectors based on intersubband-transition mechanism, such as quantum well infrared photodetectors (QWIPs), possess many advantages by comparing with MCTs. The goal of this research is to develop IR FPAs based on these novel QWIPS. First, the relevant theoretical basis for intersubband n-type QWIP and infrared imaging array will be presented. Next, the material growth and characterization using low-pressure metalorganic chemical vapor deposition technique will be discussed in detail. Developing a FPA fabrication process is the most important part of this work and it will be given in detail. The important technologies and equipment involved in the fabrication process will also be described. The FPA sample is bonded to a 256 x 256 Litton readout integrated circuit chip for testing. Important aspects related to the Litton chip will also be discussed. Finally, the infrared FPA testing and results will be described in detail. Additionally, to prepare for our long-term goal---monolithic integration of focal plane array with Silicon based readout circuit, the growth technique of QWIP on Si substrate is also studied in this work. The culmination of this work includes many "best" and "first" reported results: a record high detectivity of QWIP grown on Si substrate and the first reported long-wavelength IR FPA based on Al-free corrugated InGaAs/InP QWIPs.

  3. A Novel Approach to Modeling the Effects of Radiation in Gallium-Arsenide Solar Cells Using Silvaco's ATLAS Software

    National Research Council Canada - National Science Library

    Crespin, Aaron


    The effects of radiation in GaAs solar cells has been extensively researched and the results of numerous investigation have yielded a considerable amount of information about the degradation in irradiated solar cells...

  4. Physicochemical conditions for the stability of manganese-doped nanolayers of gallium arsenide and its iso-electronic analogues

    Directory of Open Access Journals (Sweden)

    Yu. V. Terenteva


    Full Text Available In this paper research of stability of nanolayers of manganese doped materials of AIIIBV and AIIBIVСV2 types holding much promise as spintronic semiconductor compounds is described. The method of non-local density functional has been applied to calculate bonding energies {εij (r} in atomic pairs for structures of AIIIBV and AIIBIVСV2 types and for MnAs. According to the calculations of internal energy, entropy and free energy of Helmholtz (Т = 298К, in the context of used models, addition of manganese to the arsenide’s AIIIBV and AIIBIVСV2 nanolayers affects its stability in different ways depending on its morphology and substitution mode. However, a critical instability in nanofilm leading to the tendency of growing of a new phase germ may be formed under any manganese concentrations. This leads to deterioration of electrophysical parameters of magnetic semiconductor compounds that is agreed with experimental data.

  5. The galium arsenide (GaAs laser radiation in the radial nerve regeneration submitted to secundary surgical repair

    Directory of Open Access Journals (Sweden)

    Daniel Roulim Stainki


    Full Text Available Vinte e quatro cães adultos, sem raça definida, foram separados em quatro grupos e submetidos a neurotomia bilateral do nervo radial, em nível do terço distal do úmero e, 21 dias após, sofreram anastomose epineural secundária, término-terminal. Nos 10 dias subseqüentes à neuroanastomose, o membro esquerdo de todos os cães foi irradiado com laser arseneto de gálio no intuito de investigar sua influência na regeneração do nervo. O membro contralateral serviu como testemunha. A recuperação funcional foi verificada através da característica da deambulação, testes de sensibilidade e avaliação motora. Foram efetuadas biópsias bilaterais, na região de anastomose, aos 10 dias (grupo A, 30 dias (grupo B, 60 dias (grupo C e 90 dias (grupo D após a reconstituição cirúrgica, para estudo morfológico em microscopia óptica. A proliferação de tecido conjuntivo na linha de anastomose é a complicação mais séria no processo de regeneração nervosa. A radiação laser diminui a intensidade da resposta inflamatória ao fio de sutura, mas pode contribuir para a formação de neuroma mais exuberante.

  6. Terahertz sources based on intracavity parametric frequency down-conversion using quasi-phase-matched gallium arsenide (United States)

    Schaar, Joseph Eden

    Three types of micro-structured GaAs have been used to generate THz radiation by parametric frequency down-conversion: (i) orientation-patterned GaAs, OP-GaAs, (ii) optically contacted GaAs wafers, OC-GaAs, and (iii) diffusion-bonded GaAs plates, DB-GaAs. THz frequencies between 0.5--3.5 THz were generated using the various GaAs samples. THz average powers as large as 1 mW generated from a pump power of 8.5 W, corresponding to an optical-to-THz power conversion efficiency of 1.2 x 10-4, were observed by placing the GaAs inside a doubly resonant synchronously pumped optical parametric oscillator. The quantum conversion efficiencies were as large as 1.2%. The parametric conversion efficiency for THz generation is inherently small since the ratio of the THz and optical frequencies is small. Difference-frequency generation (DFG) between the intracavity signal and idler waves generated the THz radiation. The doubly resonant optical parametric oscillator (DRO) resonated the signal and idler pulses, with picosecond-scale pulse widths and greater than 50 W of average power in each wave at lambda ≈ 2 microm. The frequency splitting between the signal and idler waves was tuned by adjusting the temperature of the DRO gain material, periodically poled LiNbO3 (PPLN). The bandwidths of the resonant signal and idler waves were between 100--200 GHz since the OPO process used Type-II QPM where the signal and idler fields were orthogonally polarized. Designs for maximizing the THz power for both the singly and doubly resonant OPOs were described yielding expressions for the THz, signal, idler, and pump powers in terms of crystal length, optical beam size, and optical absorption coefficient. A THz-cascading process was observed during which the THz wave was amplified in the GaAs crystal by multiple pairs of infrared waves. Quantum-mechanically, THz cascading corresponds to the generation of multiple THz photons from a single infrared photon. For proper designs of the OPO-cavity losses and compensation of the dispersion of the intracavity PPLN and GaAs crystals, quantum conversion efficiencies far greater than 100% can be achieved. An electronic feedback system was developed to stabilize the intracavity power of the DRO as well as the generated THz power. Locked operation lasted as long as 30 minutes limited only by the thermal expansion of the optical table and the finite expansion of the PZT element. A passive thermo-optic feedback effect also stabilized the DRO power, where absorbed optical power in the GaAs deposited heat leading to a rise in the refractive index of the GaAs. A characterization of this thermo-optic effect in terms of a negative feedback system has been described. Independently varying the signal and idler cavity lengths in the DRO led to the discovery of certain cavity-length regimes where oscillation may not occur as well as cavity-length regimes where the temporal overlap of the signal and idler pulses is maximized. A numerical simulation was developed modeling the temporal features of the DRO. The results of the numerical simulations agreed well with experimental measurements. The temporal overlap of the pulses was calculated for several values of parametric gain and DRO round-trip loss, and operating regimes where the pulses were symmetric and the temporal overlap was nearly maximized were identified. An approach to re-time the pulses using a pair of intracavity birefringent crystals, such that the temporal overlap is maximized, is described. Fluctuations of the intracavity power of the synchronously pumped optical parametric oscillator were measured. Over certain cavity-length detunings, the fluctuations were aperiodic with microsecond-scale transients. At longer cavity-length detunings, the fluctuations were periodic (and nearly sinusoidal) with fundamental frequencies between 200--700 kHz. The numerical simulations reproduced the fluctuations and showed that the minimum set of physical effects necessary to produce the fluctuations are three-wave mixing, group-velocity mismatch, and self-phase-modulation of the resonant wave in the case of a singly resonant oscillator. The fluctuations were also observed in the doubly resonant OPO both experimentally and in the results of the numerical simulations. Operating regimes that evade the appearance of these oscillations were identified. (Abstract shortened by UMI.)

  7. Experimental Determination of Quantum and Centroid Capacitance in Arsenide-Antimonide Quantum-Well MOSFETs Incorporating Nonparabolicity Effect (United States)


    14]. While extracting the effective mass from SdH oscillations, the background magnetoresistance was corrected as follows. The envelope of maxima... magnetoresistance that was subtracted from the measured ρXX. Fig. 10 shows the periodic SdH oscillations in ΔρXX/ρ0 (after removing the background...demonstration of metal gate plasmon screening and channel strain engineering in high-κ/metal-gate CMOS transistors, and the investigation of the

  8. Growth of thick lattice mismatched layers of gallium indium arsenic antimonide on gallium arsenide substrates from quaternary melts (United States)

    Kumar, Anika

    Compound semiconductors (III-V, II-VI, IV-IV) with variable band gaps are desirable to obtain high performance electronic and optoelectronic devices. Currently, lattice mismatched epilayers of variable bandgap semiconductors are grown on commercially available binary substrates by non-equilibrium growth techniques (such as MOCVD and MBE) using a variety of buffer layer schemes. Although thick epilayers are observed to result in lower dislocation densities even for large lattice mismatches, achieving thick epitaxial layers remains a challenge due to the slow growth rates of MBE and MOCVD techniques that are commonly used in the industry. Hence, there is a necessity for devising a technique that will grow thick layers of lattice mismatched compounds at high growth rates. In this research, we have demonstrated a new quaternary melt thermochemistry to grow thick layers of uniform composition of desired ternaries and quaternaries on commercially available binary substrates (such as GaAs). Using this approach, we have achieved the growth of thick (˜ 100 mum) uniform composition GaxIn1-xAs, InxGa1-xSb yAs1-y and InAs ySb1-y layers on GaAs substrate. The growth rates achieved in our growth experiments are significantly higher than any other traditional epitaxial growth process. One of the interesting features observed in our growth experiments is the occurance of a compositionally graded quaternary buffer layer between the substrate and the final layer (of uniform composition). This is found to efficiently relieve misfit strain and lead to lower dislocation densities in the epilayers. It is important to point out that no specific efforts were made to change growth conditions (during epi-growth) to compositionally grade the buffer layers, making this growth scheme extremely simple to implement for large scale applications. One of the key achievements of this work is the growth of thick In xGa1-xAs ySb1-y layers of constant composition with cut off wavelength of 10 mum on GaAs substrates. The dislocation densities were found to be as low as 7 x 105 cm -2 for a lattice mismatch of 13.08% which is considerable less than any reported value for similar mismatches. The layers had a room temperature electron mobility as high as 1.4 x 104 cm2/Vs and carrier concentration of 4.2 x 1016 cm-3 has been achieved indicating the high quality of the grown epilayers and potential applications for infra-red detectors. Transmission electron microscopy studies have been used to investigate the interfacial and crystalline quality of the epilayers. It is observed that the dissolution of GaAs by the InSb melt leads to the delineation of the (111) family of planes. Twin ning is also observed within the epilayer. These observations have helped us arrive at a model for the growth mechanism and the explanation of the polycrystallinity of the epilayer.

  9. Transient Velocity Assessment in Gallium Arsenide, and of Other GaAs Characteristics Related to Device Functions. (United States)


    it is vital that it be amenable to comp- lete control, since the existence of SI GaAs grown by the "undoped LEC" method in a boron nitride crucible is...cation Crystals used or Journal Date (a) Based on Etch Pit Counting Grant at a1. Evian Conf. 1982 50 n LEC (lIP) Mosaic sap display of EPD bonnet at al...34 " 1982 50 n LEC (RP) Mosaic map of EPD Holnes at al. A.P.L. 1983 75 a LEC (HP) Radial line trace of EPD Nmtsusura et al. J.J.A.P. 1983 50 - LEC (HP

  10. Tetrakis(μ-propanoato-κ2O:O′bis[(1,10-phenanthroline-κ2N,N′(propanoato-κ2O,O′samarium(III

    Directory of Open Access Journals (Sweden)

    Chun-Xiang Wang


    Full Text Available The title complex, [Sm2(C3H5O26(C12H8N22], is a dinuclear centrosymmetric molecule, in which two crystallographically equivalent Sm atoms, separated by 3.9502 (2 Å, are bridged by four propanoate anions. Each Sm atom is coordinated by two N atoms from one chelating phenanthroline ligand and seven carboxylate O atoms from five propanoate anions, to form a distorted tricapped trigonal prism.

  11. Processing of composites based on NiO, samarium-doped ceria and carbonates (NiO-SDCC as anode support for solid oxide fuel cells

    Directory of Open Access Journals (Sweden)

    Lily Siong Mahmud


    Full Text Available NiO-SDCC composites consisting of NiO mixed with Sm-doped ceria (SDC and carbonates (Li2CO3 and Na2CO3 were sintered at different temperatures and reduced at 550 °C. The influence of reduction on structure of the NiO-SDCC anode support for solid oxide fuel cells (SOFCs was investigated. Raman spectra of the NiO-SDCC samples sintered at 500, 600 and 700 °C showed that after reducing at 550 °C NiO was reduced to Ni. In addition, SDC and carbonates (Li2CO3 and Na2CO3 did not undergo chemical transformation after reduction and were still detected in the samples. However, no Raman modes of carbonates were identified in the NiO-SDCC pellet sintered at 1000 °C and reduced at 550 °C. It is suspected that carbonates were decomposed at high sintering temperature and eliminated due to the reaction between the CO32– and hydrogen ions during reduction in humidified gases at 550 °C. The carbonate decomposition increased porosity in the Ni-SDCC pellets and consequently caused formation of brittle and fragile structure unappropriated for SOFC application. Because of that composite NiO-SDC samples without carbonates were also analysed to determine the factors affecting the crack formation. In addition, it was shown that the different reduction temperatures also influenced the microstructure and porosity of the pellets. Thus, it was observed that Ni-SDC pellet reduced at 800 °C has higher electrical conductivity of well-connected microstructures and sufficient porosity than the pellet reduced at 550 °C.

  12. The single cell of low temperature solid oxide fuel cell with sodium carbonate-SDC (samarium-doped ceria) as electrolyte and biodiesel as fuel (United States)

    Rahmawati, F.; Nuryanto, A.; Nugrahaningtyas, K. D.


    In this research NSDC (composite of Na2CO3-SDC) was prepared by the sol-gel method to produce NSDC1 and also by the ceramic method to produce NSDC2. The prepared NSDC then were analyzed by XRD embedded with Le Bail refinement to study the change of characteristic peaks, their crystal structure, and their cell parameters. Meanwhile, the measurement of impedance was conducted to study the electrical conductivity of the prepared materials. A single cell was prepared by coating NSDC-L (a composite of NSDC with Li0.2Ni0.7Cu0.1O2) on both surfaces of NSDC. The NSDC-L was used as anode and cathode. The ionic conductivity of NSDC1 and NSDC2 at 400 oC are 4.1109 x 10-2 and 1.6231 x 10-2, respectively. Both electrolytes have ionic conductivity higher than 1 x 10-4, therefore, can be categorized as good electrolyte [1]. However, the NSDC1 shows electrodeelectrolyte conduction. It indicates the existence of electronic migration from electrolyte- electrode or vice versa. Those may cause a short circuit during fuel cell operation and will reduce the fuel cell performance fastly. The single cell tests were conducted at 300, 400, 500 and 600 °C. The single fuel cell with NSDC1 and NSDC2 as electrolyte show maximum power density at 400 °C with the power density of 3.736 x 10-2 and 2.245 x 10-2, respectively.

  13. Samarium-neodymium chronology and rubidium-strontium systematics of an Allende calcium-aluminum-rich inclusion with implications for 146Sm half-life (United States)

    Marks, N. E.; Borg, L. E.; Hutcheon, I. D.; Jacobsen, B.; Clayton, R. N.


    Calcium-aluminum-rich inclusions (CAIs) are primitive objects that formed within the protoplanetary disk surrounding the young Sun. Recent Pb-Pb chronologic studies have demonstrated that CAIs are the oldest solar system solids, crystallizing 4567 Ma ago (Amelin et al., 2002; Connelly et al., 2012). The isotope systematics of CAIs therefore provide critical insight into the earliest history of the Solar System. Although Sm-Nd and Rb-Sr geochronometers are highly effective tools for investigating cosmochemical evolution in the early Solar System, previous studies of CAIs have revealed evidence for isotopically disturbed systems. Here we report new age data for Allende CAI Al3S4 derived from both the long-lived (147Sm-143Nd) and short-lived (146Sm-142Nd) isotopic systems. The 147Sm-143Nd chronometer yields an age of 4560 ± 34 Ma that is concordant with 207Pb-206Pb ages for CAIs and indicates that the Sm-Nd system was not significantly disturbed by secondary alteration or nucleosynthetic processes. The slope of the 146Sm-142Nd isochron defines the Solar System initial 146Sm/144Sm of 0.00828 ± 0.00044. This value is significantly different from the value of 0.0094 determined by Kinoshita et al. (2012). Ages recalculated from all published 146Sm-142Nd isochron data using the traditional 103 Ma half-life and the initial 146Sm/144Sm value determined here closely match Pb-Pb and 147Sm-143Nd ages determined on the same samples. In contrast, ages recalculated using the 68 Ma half-life determined by Kinoshita et al. (2012) and either of the initial 146Sm/144Sm values are often anomalously old. This is particularly true for the youngest samples with 146Sm-142Nd isochron ages that are most sensitive to the choice of 146Sm half-life used in the age calculation. In contrast to the Sm-Nd isotope system, the Rb-Sr system is affected by alteration but yields an apparent isochron with a slope corresponding to a much younger age of 4247 ± 110 Ma. Although the Rb-Sr system in CAIs appears to be disturbed, the initial 87Sr/86Sr value determined from the isochron is 0.698942 ± 0.000008, and closely approximates estimates of the initial Solar System value. Although this isochron may be a mixing line, it might also record alteration on the Allende parent body in which Rb was added to the Al3S4 CAI that was initially largely devoid of Rb.

  14. Anthropogenic dissolved and colloid/nanoparticle-bound samarium, lanthanum and gadolinium in the Rhine River and the impending destruction of the natural rare earth element distribution in rivers (United States)

    Kulaksız, Serkan; Bau, Michael


    The strong increase in the consumption of rare earth elements (REE) in high-tech products and processes is accompanied by increasing amounts of REE released into the environment. Following the first report of Gd contamination of the hydrosphere in 1996, anthropogenic Gd originating from contrast agents has now been reported worldwide from river and estuarine waters, coastal seawater, groundwater and tap water. Recently, microcontamination with La, that is derived from a point source where catalysts for petroleum refining are produced, has been detected in the Rhine River in Germany and the Netherlands. Here we report the occurrence of yet another REE microcontamination of river water: in addition to anthropogenic Gd and La, the Rhine River now also shows significant amounts of anthropogenic Sm. The anthropogenic Sm, which enters the Rhine River north of Worms, Germany, with the same industrial wastewater that carries the anthropogenic La, can be traced through the Middle and Lower Rhine to the Netherlands. At Leverkusen, Germany, some 250 km downstream from the point source at Worms, anthropogenic Sm still contributes up to 87% of the total dissolved Sm concentration of the Rhine River. Results from ultrafiltration suggest that while the anthropogenic Gd is not particle-reactive and hence exclusively present in the truly dissolved REE pool (Worms get close to and well-above, respectively, the levels at which ecotoxicological effects have been documented. Because of the increasing use of REE and other formerly "exotic" trace elements in high-tech applications, these critical metals have now become emerging contaminants that should be monitored, and it appears that studies of their biogeochemical behavior in natural freshwaters might soon no longer be possible.

  15. Ultra-Sensitive Nano Optical Sensor Samarium-Doxycycline Doped in Sol Gel Matrix for Assessment of Glucose Oxidase Activity in Diabetics Disease. (United States)

    Tharwat, Marwa M; Attia, M S; Alghamdi, M S; Mahros, Amr M


    A low cost and very sensitive method for the determination of the activity of glucose oxidase enzyme in different diabetics serum samples was developed. The method based on the assessment of the H2O2 concentration produced from the reaction of the glucose oxidase (GOx) enzyme with glucose as substrate in the serum of diabetics patients by nano optical sensor Sm-doxycycline doped in sol gel matrix. H2O2 enhances the luminescence intensity of all bands of the nano Sm-doxycycline complex [Sm-(DC)2](+) doped in sol-gel matrix, especially the 645 nm band at λex = 400 nm and pH 7.0 in water. The influence of the different analytical parameters that affect the luminescence intensity of the nano optical sensor, e.g. pH, H2O2 concentration and foreign ions concentrations were studied. The remarkable enhancement of the luminescence intensity of nano optical sensor [Sm-(DC)2](+) complex in water at 645 nm by the addition of various concentrations of H2O2 was successfully used as an optical sensor for the assessment of the activity of the glucose oxidase enzyme in different diabetics serum samples. The calibration plot was achieved over the activity range 0.1-240 U/L with a correlation coefficient of 0.999 and a detection limit of 0.05 U/L.

  16. Effect of Mg doping and sintering temperature on structural and morphological properties of samarium-doped ceria for IT-SOFC electrolyte (United States)

    Ahmad, Syed Ismail; Mohammed, Tasneem; Bahafi, Amal; Suresh, Madireddy Buchi


    Samples of Sm and Mg co-doped ceria electrolyte of Ce1- x Sm x- y Mg y O2- δ ( x = 0.2; y = 0.00, 0.05, 0.1, 0.15, and 0.175) were synthesized by sol-gel process. The prepared samples were sintered at 1100 and 1400 °C for 4 h. The bulk densities were measured by Archimedes method. XRD measurements indicate that the synthesized samples were in single-phase cubic fluorite structure (space group Fm3m). The cell parameters decrease with the concentration of Mg, and 2 θ values slightly shift towards right. The particle sizes obtained were between 7.14 and 17.44 nm. The sintered sample achieved 95% of theoretical density. FTIR spectra of samples sintered at 1400 °C indicates weak interactions between 3550-3400 cm-1 and 1600-1300 cm-1 are attributed to O-H stretching modes and strong bonds 850-450 cm-1 are assigned to characteristic Ce-O vibrations. The surface morphology and chemical composition were analyzed by SEM and EDS, SEM micrographs show spherical faceted grains, and the samples were crack free, dense material with some pores on surface which are inconsistent with density results. The average grain size obtained was 0.5 μm. Particle size obtained by TEM was in agreement with that obtained by XRD. The high-density ceria co-doped ceramic can be used as electrolyte in SOFC.

  17. Synthesis, spectroscopic, thermal and antimicrobial studies of neodymium(III) and samarium(III) complexes derived from tetradentate ligands containing N and S donor atoms (United States)

    Ain, Qurratul; Pandey, S. K.; Pandey, O. P.; Sengupta, S. K.


    Trivalent lanthanide complexes of the type [Ln(L)Cl(H2O)2] (where Ln = Nd(III) or Sm(III) and LH2 = Schiff bases derived by the condensation of 3-(phenyl/substitutedphenyl)-4-amino-5-mercapto-1,2,4-triazole with diacetyl/benzil) have been synthesized by the reactions of anhydrous lanthanide(III) chloride with Schiff bases in methanol. The structures of the complexes have been proposed on the basis of elemental analysis, electrical conductance, magnetic moment, spectroscopic measurements (IR, 1H, 13C NMR and UV-vis spectra) and X-ray diffraction studies. The spectral data reveal that the Schiff base ligands behave as dibasic tetradentate chelating agents having coordination sites at two thiol sulfur atoms and two azomethine nitrogen atoms. The presence of coordinated water in metal complexes was confirmed by thermal and IR data of the complexes. All the Schiff bases and their metal complexes have also been screened for their antibacterial activity against Bacillus subtilis, Staphylococcus aureus and antifungal activities against Aspergillus niger, Curvularia pallescens and Colletotrichum capsici.

  18. Logarithmic temperature dependence of samarium ion valence in the heavy-fermion S mxL a1 -xO s4S b12 (United States)

    Fushiya, Kengo; Miyazaki, Ryoichi; Higashinaka, Ryuji; Yamada, Akira; Mizumaki, Masaichiro; Tsutsui, Satoshi; Nitta, Kiyofumi; Uruga, Tomoya; Suemitsu, Bunya; Sato, Hideyuki; Aoki, Yuji


    We have measured x-ray absorption spectra at the Sm L3 edge to investigate the Sm-ion valence of (S mxL a1 -x) O s4S b12 , in which field-insensitive heavy-fermion behavior appears at low temperatures for x =1 . It has been found that the Sm-ion valance shifts to 2 + with La ion substitution; from v =+2.78 (x =1 ) to v =+2.73 (x =0.2 ) at 10 K. For all x investigated, its temperature dependence shows a logT behavior, indicating that the valence change is caused by "an unconventional Kondo effect" associated with Sm 4 f -electron charge degrees of freedom. Almost x independence of "the associated Kondo temperature" (T˜K=56 ±10 K ) indicates that the Kondo effect has a local nature, attributable to the cage structure of the filled skutterudite.

  19. Rare earth elements in the aragonitic shell of freshwater mussel Corbicula fluminea and the bioavailability of anthropogenic lanthanum, samarium and gadolinium in river water

    Energy Technology Data Exchange (ETDEWEB)

    Merschel, Gila, E-mail:; Bau, Michael


    High-technology metals — such as the rare earth elements (REE) — have become emerging contaminants in the hydrosphere, yet little is known about their bioavailability. The Rhine River and the Weser River in Germany are two prime examples of rivers that are subjected to anthropogenic REE input. While both rivers carry significant loads of anthropogenic Gd, originating from contrast agents used for magnetic resonance imaging, the Rhine River also carries large amounts of anthropogenic La and lately Sm which are discharged into the river from an industrial point source. Here, we assess the bioavailability of these anthropogenic microcontaminants in these rivers by analyzing the aragonitic shells of the freshwater bivalve Corbicula fluminea. Concentrations of purely geogenic REE in shells of comparable size cover a wide range of about one order of magnitude between different sampling sites. At a given sampling site, geogenic REE concentrations depend on shell size, i.e. mussel age. Although both rivers show large positive Gd anomalies in their dissolved loads, no anomalous enrichment of Gd relative to the geogenic REE can be observed in any of the analyzed shells. This indicates that the speciations of geogenic and anthropogenic Gd in the river water differ from each other and that the geogenic, but not the anthropogenic Gd is incorporated into the shells. In contrast, all shells sampled at sites downstream of the industrial point source of anthropogenic La and Sm in the Rhine River show positive La and Sm anomalies, revealing that these anthropogenic REE are bioavailable. Only little is known about the effects of long-term exposure to dissolved REE and their general ecotoxicity, but considering that anthropogenic Gd and even La have already been identified in German tap water and that anthropogenic La and Sm are bioavailable, this should be monitored and investigated further. - Highlights: • Corbicula fluminea shells are bioarchives of dissolved geogenic REE in rivers. • Anthropogenic La and Sm in the Rhine River are bioavailable, hence incorporated. • Anthropogenic Gd from contrast agents is not incorporated, i.e. not bioavailable. • REE concentrations in Corbicula shells decrease with increasing size, i.e. age.

  20. Mechanically induced strong red emission in samarium ions doped piezoelectric semiconductor CaZnOS for dynamic pressure sensing and imaging (United States)

    Wang, Wei; Peng, Dengfeng; Zhang, Hanlu; Yang, Xiaohong; Pan, Caofeng


    Piezoelectric semiconductor with optical, electrical and mechanical multifunctions has great potential applications in future optoelectronic devices. The rich properties and applications mainly encompass the intrinsic structures and their coupling effects. Here, we report that lanthanide ions doped piezoelectric semiconductor CaZnOS:Sm3+ showing strong red emission induced by dynamic mechanical stress. Under moderate mechanical load, the doped piezoelectric semiconductor exhibits strong visible red emission to the naked eyes even under the day light. A flexible dynamic pressure sensor device is fabricated based on the prepared CaZnOS:Sm3+ powders. The mechanical-induced emission properties of the device are investigated by the optical fiber spectrometer. The linear characteristic emissions are attributed to the 4G5/2→6H5/2 (566 nm), 4G5/2→6H7/2 (580-632 nm), 4G5/2→6H9/2 (653-673 nm) and 4G5/2→6H11/2 (712-735 nm) f-f transitions of Sm3+ ions. The integral emission intensity is proportional to the value of applied pressure. By using the linear relationship between integrated emission intensity and the dynamic pressure, the real-time pressure distribution is visualized and recorded. Our results highlight that the incorporation of lanthanide luminescent ions into piezoelectric semiconductors as smart materials could be applied into the flexible mechanical-optical sensor device without additional auxiliary power, which has great potential for promising applications such as mapping of personalized handwriting, smart display, and human machine interface.

  1. Investigation of oxidative coupling of methane over bismuth oxychloride, samarium chloride, or manganese chloride supported on lithium carbonate-magnesia systems

    Energy Technology Data Exchange (ETDEWEB)

    Khan, A.Z.; Ruckenstein, E. (State Univ. of New York, Buffalo, NY (United States))


    The magnesia-supported bismuth oxychloride with lithium carbonate present is significantly more effective and stable with time-on-stream than the unsupported or supported systems free of Li[sub 2]CO[sub 3] in the oxidative coupling of methane at 750[degrees]C, P[sub CH[sub 4

  2. Rare earth elements in the aragonitic shell of freshwater mussel Corbicula fluminea and the bioavailability of anthropogenic lanthanum, samarium and gadolinium in river water. (United States)

    Merschel, Gila; Bau, Michael


    High-technology metals - such as the rare earth elements (REE) - have become emerging contaminants in the hydrosphere, yet little is known about their bioavailability. The Rhine River and the Weser River in Germany are two prime examples of rivers that are subjected to anthropogenic REE input. While both rivers carry significant loads of anthropogenic Gd, originating from contrast agents used for magnetic resonance imaging, the Rhine River also carries large amounts of anthropogenic La and lately Sm which are discharged into the river from an industrial point source. Here, we assess the bioavailability of these anthropogenic microcontaminants in these rivers by analyzing the aragonitic shells of the freshwater bivalve Corbicula fluminea. Concentrations of purely geogenic REE in shells of comparable size cover a wide range of about one order of magnitude between different sampling sites. At a given sampling site, geogenic REE concentrations depend on shell size, i.e. mussel age. Although both rivers show large positive Gd anomalies in their dissolved loads, no anomalous enrichment of Gd relative to the geogenic REE can be observed in any of the analyzed shells. This indicates that the speciations of geogenic and anthropogenic Gd in the river water differ from each other and that the geogenic, but not the anthropogenic Gd is incorporated into the shells. In contrast, all shells sampled at sites downstream of the industrial point source of anthropogenic La and Sm in the Rhine River show positive La and Sm anomalies, revealing that these anthropogenic REE are bioavailable. Only little is known about the effects of long-term exposure to dissolved REE and their general ecotoxicity, but considering that anthropogenic Gd and even La have already been identified in German tap water and that anthropogenic La and Sm are bioavailable, this should be monitored and investigated further. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Samario-153-Lexidronam (EDTMP) en el tratamiento de las metástasis óseas Samarium-153-Lexidronam (EDTMP) for the management of bone metastases


    F. Torre; C. Gómez-Vega; A. Callejo; J. Genolla


    Las metástasis óseas son una complicación frecuente en pacientes neoplásicos, en este sentido, el tejido óseo ocupa el tercer lugar de todos los órganos y sistemas con metástasis después del pulmón e hígado. Aproximadamente un 75% de los enfermos con metástasis óseas sufrirán dolor, siendo estas la causa más frecuente de dolor en pacientes con cáncer. El dolor óseo aumenta con los movimientos y a la presión, limitando la autonomía del enfermo y su calidad de vida. El tratamiento incluye vario...

  4. Morphology and orientation of β-BaB{sub 2}O{sub 4} crystals patterned by laser in the inside of samarium barium borate glass

    Energy Technology Data Exchange (ETDEWEB)

    Nishii, Akihito; Shinozaki, Kenji; Honma, Tsuyoshi; Komatsu, Takayuki, E-mail:


    Nonlinear optical β-BaB{sub 2}O{sub 4} crystal lines (β-BBO) were patterned in the inside of 8Sm{sub 2}O{sub 3}–42BaO–50B{sub 2}O{sub 3} glass by irradiations of continuous-wave Yb:YVO{sub 4} lasers with a wavelength of 1080 nm (power: P=0.8–1.0 W, scanning speed: S=0.2–2.5 μm/s), in which the laser focal position was moved gradually from the surface to the inside. The morphology, size, and orientation of β-BBO crystals were examined from polarization optical microscope and birefringence imaging observations. It was demonstrated that c-axis oriented β-BBO crystals with long lengths (e.g., 20 mm) were patterned in the inside of the glass. The morphology of β-BBO in the cross-section of lines was a rectangular shape with rounded corners, and the volume of β-BBO formed increased with increasing laser power and with decreasing laser scanning speed. The maximum depth in the inside from the surface for β-BBO patterning increased with increasing laser power, e.g., D{sub max}∼100 μm at P=0.8 W, D{sub max}∼170 μm at P=0.9 W, and D{sub max}∼200 μm at P=1 W. The present study proposes that the laser-induced crystallization opens a new door for applied engineering in glassy solids. - Graphical abstract: This figure shows the POM photographs for β-BaB{sub 2}O{sub 4} crystal lines patterned by cw Yb:YVO{sub 4} fiber laser irradiations with a laser power of P=0.8 W and a laser scanning speed S=2 μm/s in the glass. The laser focal point was moved gradually from the surface into the inside. The results shown in Fig. 1 demonstrate that it is possible to pattern highly oriented β-BaB{sub 2}O{sub 4} crystals even in the inside of glasses. - Highlights: • β-BaB{sub 2}O{sub 4} crystal lines were patterned in the inside of a glass by lasers. • Laser focal position was moved gradually from the surface to the inside. • Birefringence imaging was observed. • Morphology, size, and orientation of crystals were clarified. • Crystal lines with long lengths (e.g., 20 mm) were patterned at the depth of 200 μm.

  5. 10 CFR Appendix C to Part 20 - Quantities 1 of Licensed Material Requiring Labeling (United States)


    ... Samarium-151 10 Samarium-153 100 Samarium-155 1,000 Samarium-156 1,000 Europium-145 100 Europium-146 100 Europium-147 100 Europium-148 10 Europium-149 100 Europium-150 (12.62h) 100 Europium-150 (34.2y) 1 Europium-152m 100 Europium-152 1 Europium-154 1 Europium-155 10 Europium-156 100 Europium-157 100 Europium-158 1...

  6. An experiment using neutron activation analysis and a rare earth element to mark cotton plants and two insects that feed on them

    Energy Technology Data Exchange (ETDEWEB)

    Showler, Allan T. [USDA-ARS IFNRRU, Kika de la Garza Subtropical Agricultural Research Center, 2413 East Highway 83, Weslaco, TX 78596 (United States)]. E-mail:; James, William D. [Elemental Analysis Laboratory, 3144 Texas A and M University, College Station, TX 77843-3144 (United States); Armstrong, John S. [USDA-ARS BIRU, Kika de la Garza Subtropical Agricultural Research Center, 2413 East Highway 83, Weslaco, TX 78596 (United States); Westbrook, John K. [USDA-ARS APMRU, 2771 F and B Road, College Station, TX 77845-4966 (United States)


    Studies on insect dispersal and other behaviors can benefit from using markers that will not alter flight and fitness. Rare earth elements, such as samarium (Sm), have been used as ingested markers of some insects and detected using neutron activation analysis (NAA). In this study, samarium nitrate hexahydrate was mixed into artificial diet for boll weevils, Anthonomus grandis grandis Boheman (Coleoptera: Curculionidae), at different dosages and in water used to irrigate cotton, Gossypium hirsutum L. Samarium was detected in adult boll weevils fed on the samarium-labeled diet, but not after 5 or 10 days of being switched to non-labeled diet, even if the insects were given labeled diet for as long as 7 consecutive days. Introduced in irrigation water, 1% samarium (m/m) was detectable in cotton squares and leaf tissue. However, boll weevil adults fed samarium-labeled squares did not retain detectable levels of samarium, nor did boll weevil adults reared to adulthood from samarium-labeled squares. Fourth instar beet armyworms, Spodoptera exigua (Huebner) (Noctuidae: Lepidoptera), fed on samarium-labeled cotton leaves obtained enough samarium for NAA detection, but adult moths reared from them did not have detectable amounts of samarium. Although samarium can be useful as a marker when insects are presented with a continuous pulse of the label, elements that are assimilated by the insect would be more useful if a continuous infusion of the marker cannot be provided.

  7. RF-to-DC Characteristics of Direct Irradiated On-Chip Gallium Arsenide Schottky Diode and Antenna for Application in Proximity Communication System

    Directory of Open Access Journals (Sweden)

    Farahiyah Mustafa


    Full Text Available We report the RF-to-DC characteristics of the integrated AlGaAs/GaAs Schottky diode and antenna under the direct injection and irradiation condition. The conversion efficiency up to 80% under direct injection of 1 GHz signal to the diode was achieved. It was found that the reduction of series resistance and parallel connection of diode and load tend to lead to the improvement of RF-to-DC conversion efficiency. Under direct irradiation from antenna-to-antenna method, the output voltage of 35 mV was still obtainable for the distance of 8 cm between both antennas in spite of large mismatch in the resonant frequency between the diode and the connected antenna. Higher output voltage in volt range is expected to be achievable for the well-matching condition. The proposed on-chip AlGaAs/GaAs HEMT Schottky diode and antenna seems to be a promising candidate to be used for application in proximity communication system as a wireless low power source as well as a highly sensitive RF detector.

  8. Lifetime Measurements of High Polarization Strained-Superlattice Gallium Arsenide at Beam Current > 1 Milliamp using a New 100kV Load Lock Photogun

    Energy Technology Data Exchange (ETDEWEB)

    J. M. Grames; P. A. Adderley; J. Brittian; J. Clark; J. Hansknecht; D. Machie; M. Poelker; M. L. Stutzman; R. Suleiman; K. E. L. Surles-Law


    A new 100 kV GaAs DC Load Lock Photogun has been constructed at Jefferson Laboratory, with improvements for photocathode preparation and for operation in a high voltage, ultra-high vacuum environment. Although difficult to gauge directly, we believe that the new gun design has better vacuum conditions compared to the previous gun design, as evidenced by longer photocathode lifetime, that is, the amount of charge extracted before the quantum efficiency of the photocathode drops by 1/e of the initial value via the ion back-bombardment mechanism. Photocathode lifetime measurements at DC beam intensity of up to 10 mA have been performed to benchmark operation of the new gun and for fundamental studies of the use of GaAs photocathodes at high average current*. These measurements demonstrate photocathode lifetime longer than one million Coulombs per square centimeter at a beam intensity higher than 1 mA. The photogun has been reconfigured with a high polarization strained superlattice photocathode (GaAs/GaAsP) and a mode-locked Ti:Sapphire laser operating near band-gap. Photocathode lifetime measurements at beam intensity greater than 1 mA are measured and presented for comparison.

  9. A Novel Approach to Modeling the Effects of Radiation in Gallium-Arsenide Solar Cells Using Silvaco’s ATLAS Software (United States)


    software version 5.6.0.R, Silvaco International, Sunnyvale, CA, 2003. 7. Kasap , S.O., Principles of Electronic Materials and Devices , McGraw Hill, New... electron , displacement damage, trap, ATLAS, Silvaco, GaAs, AlGaAs, physically based device simulation, simulation, model 16. PRICE CODE 17. SECURITY...obtained from an article published in IEEE Trans- actions on Electronic Devices , written by Robert Y. Loo, Sanj iv Kamath, and Sheng S. Li in 1990

  10. Synergic phototoxic effect of visible light or Gallium-Arsenide laser in the presence of different photo-sensitizers on Porphyromonas gingivalis and Fusobacterium nucleatum

    Directory of Open Access Journals (Sweden)

    Habibollah Ghanbari


    Conclusion: Within the limitations of this study, the synergic phototoxic effect of visible light in combination with each of the photosensitizers on P. gingivalis and F. nucleatum. However, the synergic phototoxic effect of laser exposure and hydrogen peroxide and curcumin as photosensitizers on F. nucleatum was not shown.

  11. Pre-Irradiation of blood by gallium aluminum arsenide (830 nm) low-level laser enhances peripheral endogenous opioid analgesia in rats. (United States)

    Hagiwara, Satoshi; Iwasaka, Hideo; Hasegawa, Akira; Noguchi, Takayuki


    Low-level laser therapy (LLLT) has been reported to relieve pain, free of side effects. However, the mechanisms underlying LLLT are not well understood. Recent studies have also demonstrated that opioid-containing immune cells migrate to inflamed sites and release beta-endorphins to inhibit pain as a mode of peripheral endogenous opioid analgesia. We investigated whether pre-irradiation of blood by LLLT enhances peripheral endogenous opioid analgesia. The effect of LLLT pretreatment of blood on peripheral endogenous opioid analgesia was evaluated in a rat model of inflammation. Additionally, the effect of LLLT on opioid production was also investigated in vitro in rat blood cells. The expression of the beta-endorphin precursors, proopiomelanocortin and corticotrophin releasing factor, were investigated by reverse transcription polymerase chain reaction. LLLT pretreatment produced an analgesic effect in inflamed peripheral tissue, which was transiently antagonized by naloxone. Correspondingly, beta-endorphin precursor mRNA expression increased with LLLT, both in vivo and in vitro. These findings suggest that that LLLT pretreatment of blood induces analgesia in rats by enhancing peripheral endogenous opioid production, in addition to previously reported mechanisms.

  12. Surface passivation and performance characteristics of type-II indium arsenide/gallium antimonide superlattice infrared photodetectors for focal plane arrays (United States)

    Hood, Andrew D.

    Leakage currents limit the operation of high performance type II InAs/GaSb superlattice photodiode technology. Surface leakage current becomes a dominant, limiting factor to the ideal performance of a photodiode, especially at the scale of a focal plane array pixel (cleaning, prior to passivation, is demonstrated as well. Some sample preparation suggestions are given to reduce the formation of oxides and adsorption of deleterious process contaminants on the semiconductor surface. In addition to work centered on surface passivation, type II photodetector performance characteristics will be analyzed and discussed. These will include capacitance voltage measurements done on type II superlattice photodiodes to identify record low residual impurity background concentration values, indicating very high quality material growth. Additionally, enhancement of the device quantum efficiency for LWIR photodetectors is shown through modeling and growth optimization. Two custom designed systems are also presented, which include a portable, reconfigurable infrared and UV camera system as well as a mid infrared free-space communications system operating at room temperature with a quantum cascade laser as the source and a mid infrared type II InAs/GaSb superlattice photodiode as the receiver.

  13. Time-resolved characterization of InAs/InGaAs quantum dot gain material for 1.3 µm lasers on gallium arsenide

    DEFF Research Database (Denmark)

    Fiore, Andrea; Borri, Paola; Langbein, Wolfgang


    The time-resolved optical characterization of InAs/InGaAs quantum dots emitting at 1.3 ìm is presented. A photoluminescence decay time of 1.8 ns and a fast rise time of 10ps are measured close to room temperature.......The time-resolved optical characterization of InAs/InGaAs quantum dots emitting at 1.3 ìm is presented. A photoluminescence decay time of 1.8 ns and a fast rise time of 10ps are measured close to room temperature....

  14. An experimental investigation of the feasibility of using silicone and gallium arsenide solar batteries on space vehicles for receiving energy of laser infrared emission (United States)

    Bogushevskaya, V. A.; Zhalnin, B. V.; Zayats, O. V.; Maslyakov, Ya. N.; Matsak, I. S.; Nikonov, A. A.; Obrucheva, Ye. V.; Tugaenko, V. Yu.


    The feasibility of transmitting electric power in space to solar batteries of space vehicles via the channel of laser infrared emission is shown. Evaluation of the efficiency of solar batteries for the given type of power transmission has been made. Possible methods of optimizing the design of space solar batteries in regard to conditions of detection of energy of laser infrared emission have been discussed.

  15. Initial hafnium oxide growth on silicon(100) and gallium arsenide(100) substrates using TEMAH+water and TDMAH+water ALD processes (United States)

    Hackley, Justin Cain

    Atomic layer deposition (ALD) is a cyclic growth process that is distinguished by a self-limiting, two-step surface reaction that results in precise growth control and high quality, conformal thin films. Due to the continuous downscaling of MOSFET devices, a large interest has recently developed in the ALD of high-kappa dielectric materials as gate oxide layers on Si and III-V substrates. The ALD of HfO2 is an established process; however, there is still controversy over the initial growth mechanisms on differently prepared Si surfaces. This motivated a comparison of the nucleation stage of HfO 2 films grown on OH-(Si-OH) and H-terminated (Si-H) Si(100) surfaces. Two different ALD chemistries are investigated, including tetrakis[ethylmethylamino]hafnium (Hf[N(CH3)(C2H5)]4), abbreviated as TEMAH, and tetrakis[dimethylamino]hafnium (Hf[N(CH3)2] 4, abbreviated as TDMAH. H2O is used as the oxidizing precursor. Deposition temperatures of 250-275°C result in a linear growth per cycle of 1 A/cycle. Techniques including Rutherford backscattering spectrometry (RBS), X-ray photoelectron spectroscopy (XPS), spectroscopic ellipsometry (SE), and transmission electron microscopy are used to examine the film interface and initial film growth. HfO2 films are also subjected to post-deposition anneals, and the film morphology is examined with X-ray diffraction, Fourier transform infrared spectroscopy and atomic force microscopy. GaAs MOSFET devices have long proven elusive due to the lack of a stable native oxide. Recent research into high-kappa dielectric materials for use in Si-based devices has presented many new options for insulating layers on GaAs. HfO2 growth on GaAs(100) from a TDMAH+H2O ALD process is studied here. Three different GaAs surface treatments are examined, including buffered oxide etch (BOE), NH4OH, and a simple acetone/methanol wash (to retain the native oxide surface). Initial HfO2 growth on these surfaces is characterized with RBS and SE. The interfacial composition is examined with XPS both before and after HfO2 deposition. Also, an interesting native oxide 'consumption' mechanism is investigated, which involves the dissolution of the GaAs native oxide during the ALD process. This project presents the first detailed study of HfO2 growth on GaAs with the TDMAH/H2O ALD chemistry, providing XPS, RBS and SE characterization of early film growth.

  16. Local Orthorhombicity in the Magnetic C4 Phase of the Hole-Doped Iron-Arsenide Superconductor Sr1 -xNax Fe2 As2 (United States)

    Frandsen, Benjamin A.; Taddei, Keith M.; Yi, Ming; Frano, Alex; Guguchia, Zurab; Yu, Rong; Si, Qimiao; Bugaris, Daniel E.; Stadel, Ryan; Osborn, Raymond; Rosenkranz, Stephan; Chmaissem, Omar; Birgeneau, Robert J.


    We report on temperature-dependent pair distribution function measurements of Sr1 -xNax Fe2 As2 , an iron-based superconductor system that contains a magnetic phase with reentrant tetragonal symmetry, known as the magnetic C4 phase. Quantitative refinements indicate that the instantaneous local structure in the C4 phase comprises fluctuating orthorhombic regions with a length scale of ˜2 nm , despite the tetragonal symmetry of the average static structure. Additionally, local orthorhombic fluctuations exist on a similar length scale at temperatures well into the paramagnetic tetragonal phase. These results highlight the exceptionally large nematic susceptibility of iron-based superconductors and have significant implications for the magnetic C4 phase and the neighboring C2 and superconducting phases.

  17. Local Orthorhombicity in the Magnetic C_{4} Phase of the Hole-Doped Iron-Arsenide Superconductor Sr_{1-x}Na_{x}Fe_{2}As_{2}. (United States)

    Frandsen, Benjamin A; Taddei, Keith M; Yi, Ming; Frano, Alex; Guguchia, Zurab; Yu, Rong; Si, Qimiao; Bugaris, Daniel E; Stadel, Ryan; Osborn, Raymond; Rosenkranz, Stephan; Chmaissem, Omar; Birgeneau, Robert J


    We report on temperature-dependent pair distribution function measurements of Sr_{1-x}Na_{x}Fe_{2}As_{2}, an iron-based superconductor system that contains a magnetic phase with reentrant tetragonal symmetry, known as the magnetic C_{4} phase. Quantitative refinements indicate that the instantaneous local structure in the C_{4} phase comprises fluctuating orthorhombic regions with a length scale of ∼2  nm, despite the tetragonal symmetry of the average static structure. Additionally, local orthorhombic fluctuations exist on a similar length scale at temperatures well into the paramagnetic tetragonal phase. These results highlight the exceptionally large nematic susceptibility of iron-based superconductors and have significant implications for the magnetic C_{4} phase and the neighboring C_{2} and superconducting phases.

  18. Obtention of Samarium and Gadolinium concentrates by solvent extraction using mono-2-ethylhexyl ester of 2-ethylhexyl phosphonic acid; Obtencao de concentrados de samario e gadolinio via extracao por solventes com o ester mono-2-etilhexil do acido 2-etilhexilfosfonico

    Energy Technology Data Exchange (ETDEWEB)

    Miranda Junior, Pedro


    The rare earth chlorides solution employed in this study, which is constituted by medium and heavy fractions, is derived from monazite processing accomplished by NUCLEMON-Mineroquimica (SP). This solution shows an acidity about 1.18 M and 189 g/L of rare earth oxides, containing as main constituents: Sm(34.55%), Gd(23.85%), Dy (6.82%), and Y (24.45%). It was used, as organic phase, 2-ethylhexyl phosphonic acid, mono-2-ethylhexylester diluted to 1 M in isododecane. (author)

  19. Poly(dl)lactic acid/polyglycolic acid/iron and poly(dl)lactic acid/polyglycolic acid/samarium cobalt composites for use as a delivery mechanism for magnetically directed chondrogenesis (United States)

    Oppermann, Dean Alan

    Magnetically directed chondrogenesis (MDC) is a fundamental approach to articular cartilage repair. In MDC a magnet is implanted into the subchondral trabecular bone underlying a cartilage defect and used to attract chondrocytes, magnetically tagged with Fe nanoparticles, to the defect site. Pilot studies by Halpern, Crimp and Grande, using solid neodymium (Nd) magnets, indicated optimistic results by producing a hyaline-like articular cartilage after 8 weeks implantation. Since solid Nd magnets introduce long-term biocompatibility issues, the focus of this dissertation was to develop P(dl)A/PGA/Fe and P(dl)A/PGA/SmCo 5 implants for use in MDC. The effect of implant porosity, implant composition and magnetic material (Fe or SmCo5) on the initial and degraded magnetic properties were evaluated. The biocompatibility of P(dl)A/PGA/Fe implants were investigated by implantation into New Zealand white rabbits for 8 weeks. The effect of hydrogen peroxide (H2O2) and ethylene oxide (EO) sterilization techniques on the molecular weight and chemical structure of P(dl)A/PGA polymers were evaluated using gel permeation chromatography and Fourier transform infrared spectroscopy. The effect of implant morphology, size and number on the von Mises stress in the trabecular bone surrounding the implant was evaluated using a finite element model. In general, SmCo5 implants resulted in higher magnetic fields initially and after 8 weeks of degradation than comparable Fe implants. Increases in magnetic field strength were achieved by increasing the volume fraction of magnetic material and by increasing the PGA concentration. The magnetic field strength degradation rate decreased with increases in volume fraction of magnetic material and increases in PLA concentration. Implantation studies indicated that 50/50 P(dl)A/PGA were more bioactive than 75/25 P(dl)A/PGA with an increased cellular response that is specific to bone growth. The compressive strength and elastic modulus of porous implants were comparable to trabecular bone, and the compressive strength and elastic modulus of solid implants was higher than trabecular bone but less than cortical bone. Finite element modeling showed that the implantation of solid and porous P(dl)A/PGA/Fe implants did not significantly increase the von Mises stress concentration adjacent to the implant. The von Mises stress surrounding porous implants was higher than the solid implants which predicts faster bone remodeling. Comparing single implants to multiple implants indicated a significant decrease in von Mises stress between the implants. This would predict bone resorption in that area. H2O2 sterilization resulted in a gradual decrease in the molecular weight of P(dl)A/PGA polymers that was a result of hydrolytic scission of the ester bonds present between the individual monomers. The polymers were less affected by EO sterilization with only the 75/25 P(dl)A/PGA, indicating a decrease in molecular weight. From these results, it was concluded that solid 50/50 P(dl)A/PGA/SmCo 5 implants that span the entire width of the cartilage defect should be used to optimize the attraction potential and bioactivity of the implant. Also ethylene oxide, which caused less premature implant degradation, should be used for sterilization.

  20. Fabrication of a new samarium(III) ion-selective electrode based on 3-{l_brace}[2-oxo-1(2h)-acenaphthylenyliden]amino{r_brace}-2-thioxo -1,3-thiazolidin-4-one

    Energy Technology Data Exchange (ETDEWEB)

    Zamani, Hassan Ali [Islamic Azad University, Quchan (Iran, islamic Republic of). Quchan Branch. Dept. of Chemistry]. E-mail:; Ganjali, Mohammad Reza [Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of). Endocrine and Metabolism Research Center; Adib, Mehdi [University of Tehran, Tehran (Iran, Islamic Republic of). Faculty of Chemistry. Center of Excellence in Electrochemistry


    This paper introduces the development of an original PVC membrane electrode, based on 3-{l_brace}[2-oxo-1(2H)-acenaphthylenyliden]amino{r_brace}-2-thioxo-1,3-thiazolidin-4-one (ATTO) which has revealed to be a suitable carrier for Sm{sup 3+} ions. The resulting data illustrated that the electrode shows a Nernstian slope of 19.3 {+-} 0.6 mV per decade for Sm{sup 3+} ions over a broad working concentration range of 1.0 X 10{sup -6} to 1.0 X 10{sup -1} mol L{sup -1}. The lower detection limit was found to be equal to (5.5{+-} 0.3) X 10{sup -7} mol L{sup -}'1 in the pH range of 3.5-7.5, and the response time was very short ({approx}10 s). The potentiometric sensor displayed good selectivities for a number of cations such as alkali, alkaline earth, transition and heavy metal ions. (author)



  2. Assessment of Non-Traditional Isotopic Ratios by Mass Spectrometry for Analysis of Nuclear Activities (United States)


    distinguish between commercial nuclear reactor fuel cycles, fuel cycles for weapons grade plutonium , and products from nuclear weapons explosions. Methods will...Isotopic ratios will be calculated for radionuclides produced in commercial nuclear reactor fuel cycles, fuel cycles for weapons grade plutonium , and... chemistry for analysis of samarium. The chemical form of samarium required for analysis varies for different mass spectrometry techniques

  3. The Critical Technologies Project Executive Summary (United States)


    Materials with the Not covered Chalcopyrite Structure 7.8.23 Rare Earth- Transition Metal Permanent Not covered I Magnets (exanple: samarium cobalt and... Transition Metal Permanent - Magnets (example: samarium cobalt I and substituted samarium cobalt) New 7.8.24 Gadolinium Gallium Garnet (GGG) - - and...III T i mm~ 1.W 8 Poesse Maclw Tools 1110 1129. 1131 133 1142 0 F -~, oO 16.qm P c Metals 1145, 1203, 1236 4203 1365 00, awm.wq *4 1303 1311

  4. sup 8 sup 9 Sr and sup 1 sup 5 sup 3 Sm-EDTMP therapy of disseminated skeletal metastasis

    CERN Document Server

    Zhang Jun Ning; Zhu Shou Peng


    A retrospective analysis was performed on 72 patients with disseminated skeletal metastasis to evaluate the effect of strontium-89 or samarium-153 EDTMP therapy. There existed 87.88% of clinical response, 12.12% of no response in the group treated with strontium-89 as compared with 90.24% of clinical response, 9.76% no response in one treated with samarium-153 EDTMP; and there were no correlation between the treatment results and the amounts of isotopes administrated. The results suggest that strontium-89 or samarium-153 EDTMP therapy is a method of first choice in the palliative treatment for disseminated skeletal metastasis

  5. Onboard high data rate signal processing and storage (United States)

    Miller, Warner H.


    The objective is to advance the state of the art in onboard image data processing and storage through the use of advanced gallium arsenide integrated circuit technology. Viewgraphs are given on research and development efforts, an adaptive programmable processor chip set, design characteristics of an eight bit general processor, and a density comparison of silicon and gallium arsenide integrated circuits.

  6. Compression and Associated Properties of Boron Carbide (United States)


    arsenide have been associated with icosahedron - chain modes (Tallent et al., 1989). Therefore, we tentatively assign these features in B4C to... icosahedron - chain modes. In boron arsenide, the intensity of these modes was found to be immensely sensitive to the crystalline orientation and a

  7. General Information about Osteosarcoma and Malignant Fibrous Histiocytoma of Bone (United States)

    ... providers who are experts in treating cancer in children. Treatment for osteosarcoma or malignant fibrous histiocytoma may cause side effects. Four types of standard treatment are used: Surgery Chemotherapy Radiation therapy Samarium New types of treatment are ...

  8. Treatment Option Overview (Osteosarcoma and Malignant Fibrous Histiocytoma of Bone) (United States)

    ... providers who are experts in treating cancer in children. Treatment for osteosarcoma or malignant fibrous histiocytoma may cause side effects. Four types of standard treatment are used: Surgery Chemotherapy Radiation therapy Samarium New types of treatment are ...

  9. Maximum Permissible Concentrations and Negligible Concentrations for Rare Earth Elements (REEs)

    NARCIS (Netherlands)

    Sneller FEC; Kalf DF; Weltje L; Wezel AP van; CSR


    In dit rapport worden maximaal toelaatbare risiconiveaus (MTR) en verwaarloosbare risiconiveaus (VR) afgeleid voor zeldzame aardmetalen (ZAM). De geselecteerde ZAMs zijn Yttrium (Y), Lanthanum (La), Cerium (Ce), Praseodymium (Pr), Neodymium (Nd), Samarium (Sm), Gadolinium (Gd), en Dysprosium

  10. Bulletin of the Chemical Society of Ethiopia - Vol 31, No 3 (2017)

    African Journals Online (AJOL)

    A novel samarium complex with interesting photoluminescence and semiconductive properties · EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT. D. W. Zhang, W. T. Chen, Y. F.Wang, 435-444 ...

  11. Specialty Metals: DOD Dissemination of National Security Waiver Information Could Enhance Awareness and Compliance with Restrictions (United States)


    Restrictions Why GAO Did This Study Specialty metals—such as titanium, certain steel alloys , and samarium- cobalt alloy magnets—are essential to DOD...highly magnetic, lightweight, corrosion resistant, or having high durability. Among these metals are samarium- cobalt alloy magnets used to make radar...the following elements: aluminum, chromium , cobalt , columbium, molybdenum, nickel, titanium, tungsten, or vanadium. Specialty metals were added

  12. Development of a methodology for the separation of europium and samarium from a mixture of rare earth oxides by electroreduction/ precipitation; Desenvolvimento de uma metodologia para a separacao de samario e europio a partir de mistura de oxidos de terras raras por reducao eletroquimica/precipitacao

    Energy Technology Data Exchange (ETDEWEB)

    Chepcanoff, Vera


    The rare earths (RE) were first used in 1903, when Welsbach developed a lighter that is still used today. Nowadays, the RE are employed in many different fields, as in the production of super-alloys , as catalysts for petroleum industry, in the manufacture of non-ferrous alloys, color television tubes, x-ray screens, special glasses, ceramics, computer industries, nuclear medicine, lasers, pigments, etc., moving, in the last decade , a market of US$ 2 billions per year. Due to their similar properties, the RE elements are very difficult to separate, requiring complex processes, what make the products very expensive. Elements like Eu and Sm, which contents in the minerals are low (0.05% and 2.0%, respectively, in monazite) are extremely expensive, but their field of application justifies the research for looking for other processes, more simple and/or more effective. Trivalent state is a characteristic of all RE, but some of them presents oxidation state +2, like Ce, Eu, Sm and Yb. In the case of Eu and Sm, the focus of the present work, the divalent state is achieved by electro-reduction in the potentials -0.65 and -1.55 (SCE), respectively. This makes possible the separation of these elements from the other rare earths and from each other. Thus, making use of this characteristic, a process for the individual separation of Eu and Sm in (NH{sub 4}){sub 2}SO{sub 4} solution by electro-reduction/precipitation is proposed, where Sm is first separated from the solution as sulfate, and Eu, that remains in the solution, is precipitated after the decrease of temperature and potential applied. The process developed from a synthetic Eu and Sm solution was applied to a mixture of semi-heavy RE oxide, produced at IPEN-CNEN/SP, obtaining the separation of Sm. This product was analyzed by spectrophotometry, showing high purity. (author)

  13. Tetrakis[μ-2-(3,4-dimethoxyphenylacetato]-κ4O:O′;κ3O,O′:O;κ3O:O,O′-bis{[2-(3,4-dimethoxyphenylacetato-κ2O,O′](1,10-phenanthroline-κ2N,N′samarium(III}

    Directory of Open Access Journals (Sweden)

    Jia-Lu Liu


    Full Text Available In the centrosymmetric dinuclear title complex, [Sm2(C10H11O46(C12H8N22], the SmIII ion is nine-coordinated by seven O atoms of five 2-(3,4-dimethoxyphenylacetate (DMPA ligands and two N atoms of one bis-chelating 1,10-phenanthroline (phen ligand, forming a distorted tricapped trigonal-prismatic environment. The DMPA ligands coordinate in bis-chelate, bridging and bridging tridentate modes. An intramolecular C—H...O hydrogen bond occurs. Intermolecular C—H...O interactions are also present in the crystal.

  14. Polarized electron sources

    Energy Technology Data Exchange (ETDEWEB)

    Prepost, R. [Univ. of Wisconsin, Madison, WI (United States)


    The fundamentals of polarized electron sources are described with particular application to the Stanford Linear Accelerator Center. The SLAC polarized electron source is based on the principle of polarized photoemission from Gallium Arsenide. Recent developments using epitaxially grown, strained Gallium Arsenide cathodes have made it possible to obtain electron polarization significantly in excess of the conventional 50% polarization limit. The basic principles for Gallium and Arsenide polarized photoemitters are reviewed, and the extension of the basic technique to strained cathode structures is described. Results from laboratory measurements of strained photocathodes as well as operational results from the SLAC polarized source are presented.

  15. Preparation, and Luminescence Properties of SiO2@Sm(MABA-Siphen Core-Shell Structure Nanometer Composite

    Directory of Open Access Journals (Sweden)

    Feng Li-Na


    Full Text Available A novel ternary samarium complex was prepared using HOOCC6H4N(CONH(CH23Si- (OCH2CH332 (MABA-Si as first ligand, and phen as second ligand. The corresponding SiO2@Sm(MABA-Siphen core-shell structure nanometer composite was synthesized as well, and the silica spheres was the core, and the ternary samarium complex was the shell layer. The ternary samarium complex has been characterized by element analysis, molar conductivity and IR spectra. The results show that the chemical formula of the complex is Sm(MABA-Si(phen2(ClO43·2H2O. The fluorescent spectra illustrat that the luminescence properties of the samarium complex are superior. The core-shell structure of SiO2@Sm(MABA-Siphen nanometer composite is characterized by SEM, TEM and IR spectra. The SiO2@Sm(MABA-Siphen core-shell structure composites exhibit stronger emission intensity than the ternary samarium complex. The fluorescence lifetime of the complex and core-shell structure composite is measured as well.

  16. NREL preprints for the 23rd IEEE Photovoltaic Specialists Conference

    Energy Technology Data Exchange (ETDEWEB)

    Fitzgerald, M. [ed.


    Topics covered include various aspects of solar cell fabrication and performance. Aluminium-gallium arsenides, cadmium telluride, amorphous silicon, and copper-indium-gallium selenides are all characterized in their applicability in solar cells.

  17. High-power X- and Ka-band Gallium Nitride Amplifiers with Exceptional Efficiency Project (United States)

    National Aeronautics and Space Administration — Achieving very high-power amplification with maximum efficiency at X- and Ka-band is challenging using solid-state technology. Gallium Arsenide (GaAs) has been the...


    A process was developed for the recovery of both arsenic and gallium from gallium arsenide polishing wastes. The economics associated with the current disposal techniques utilizing ferric hydroxide precipitation dictate that sequential recovery of toxic arsenic and valuble galliu...

  19. Suitability of integrated protection diodes from diverse semiconductor technologies

    NARCIS (Netherlands)

    van Wanum, Maurice; Lebouille, Tom; Visser, Guido; van Vliet, Frank Edward


    Abstract In this article diodes from three different semiconductor technologies are compared based on their suitability to protect a receiver. The semiconductor materials involved are silicon, gallium arsenide and gallium nitride. The diodes in the diverse semiconductor technologies themselves are

  20. Point Source X-Ray Lithography System for Sub-0.15 Micron Design Rules

    National Research Council Canada - National Science Library

    Henson, Richard


    .... Sanders is leading development of gallium arsenide wafer processing technology for the MMIC "T" gate process, and is carrying out a prototype fabrication run of 35 GHz MMIC low noise amplifiers...

  1. Ultra-broadband optical signal processing using AlGaAs-OI devices

    DEFF Research Database (Denmark)

    Galili, Michael; Da Ros, Francesco; Hu, Hao


    Aluminum Gallium Arsenide on insulator (AlGaAs-OI) has recently been developed into a very attractive platform for optical signal processing. This paper reviews key results of broadband optical signal processing using this platform.......Aluminum Gallium Arsenide on insulator (AlGaAs-OI) has recently been developed into a very attractive platform for optical signal processing. This paper reviews key results of broadband optical signal processing using this platform....

  2. Inflammatory process decrease by gallium-aluminium-arsenide (GaAlAs) low intensity laser irradiation on postoperative extraction of impacted lower third molar; Reducao de processo inflamatorio com aplicacao de laser de arseneto de galio aluminio ({lambda}=830 nm) em pos-operatorio de exodontia de terceiros molares inferiores inclusos ou semi-inclusos

    Energy Technology Data Exchange (ETDEWEB)

    Atihe, Mauricio Martins


    This study aimed the observation of inflammatory process decrease by the use of GaAlAs Low Intensity Laser ({lambda}=830 nm; 40 mW) irradiation. Five patients were selected and submitted to surgery of impacted lower third molars, both right and left sides at different occasions. On a first stage, a tooth of a random chosen side - right or left - was extracted by conventional surgery, without LILT. The inflammatory process was measured at postoperative on the first, third and seventh days. This side was then called 'control side'. After 21 days, period in which the inflammatory process of the first surgery was terminated, the other side surgery took place, this time using LILT (4 J at four spots) at postoperative, first and third days. As the previous surgery, the inflammatory process was also measured at postoperative on the first, third and seventh days. This side was called 'experimental or lased side'. The inflammatory process was evaluated by measuring its four characteristic signs: swelling, pain, color and temperature. It was clearly observed a decrease for swelling, pain and color on the lased side which presented significant inference and descriptive statistics. It can be concluded that GaAlAs Low Intensity Laser ({lambda}=830 nm) can surely be used as an additional and important anti-inflammatory source on impacted lower third molar surgeries. (author)

  3. Udvikling af materialer til brintpermeable membraner

    DEFF Research Database (Denmark)

    Bentzer, Henrik Karnøe

    Due to global warming as well as other factors, it is necessary to find alternatives to the current consumption of fossil fuels. Oxide materials with high protonic conductivity can potentially find application within many different technological fields in a society that is based on renewable energy...... doped samarium titanate, lanthanum magnesium titanate and strontium cerate doped with yttrium and nickel. Concentration cell measurements were used to estimate transport numbers for protons and oxide ions in yttrium doped strontium cerate and calcium doped samarium titanate. Furthermore, the voltage...

  4. {6,6′-Dimethoxy-2,2′-[ethane-1,2-diylbis(nitrilomethylidyne]diphenolato-1κ4O1,O1′,O6,O6′:2κ4O1,N,N′,O1′}(ethanol-1κO-μ-nitrato-1:2κ2O:O′-dinitrato-1κ4O,O′-samarium(IIIzinc(II

    Directory of Open Access Journals (Sweden)

    Qiang Huang


    Full Text Available In the title heteronuclear ZnII–SmIII complex, [SmZn(C18H18N2O4(NO33(CH3CH2OH], with the hexadentate Schiff base compartmental ligand N,N′-bis(3-methoxysalicylideneethylenediamine (H2L, the SmIII and ZnII ions are triply bridged by two phenolate O atoms from the Schiff base ligand and one nitrate anion. The five-coordinate ZnII ion is in a square-pyramidal geometry formed by the donor centers of two imine N atoms, two phenolate O atoms and one of the bridging nitrate O atoms. The SmIII center is in a ten-fold coordination of O atoms, involving the phenolate O atoms, two methoxy O atoms, one ethanol O atom, and two O atoms from two nitrate anions and one from the bridging nitrate anion. In the crystal, intermolecular O—H...O and C—H...O interactions generate a layer structure extending parallel to (101.

  5. Performance Characterization of a Novel Plasma Thruster to Provide a Revolutionary Operationally Responsive Space Capability with Micro- and Nano-Satellites (United States)


    Einstein Spontaneous Emission Rate Coefficient Electrical Utilization Efficiency Electron Electron Density...0.135 Tesla samarium cobalt (SmCo) permanent magnet from Electron Energy Corp. in Landisville, PA. Encapsulating the assembly is a simple aluminum...unlike some well-developed technologies, such as solid fueled rocket motors , an electric propulsion system could simultaneously contribute to all three

  6. Xe-135 and Sm-149 Isotopic Evolution Analysis Xesamo code; Analisis de la Evolucion Isotopica del Xe-135 y Sm-149. Programa Xesamo

    Energy Technology Data Exchange (ETDEWEB)

    Caro, R.; Gallego, J.; Martinez Fanegas, R.


    In this report the time evolution analysis of the nuclides concentration Xe-135 and Sm-149 as a function of the neutron flux is carried out. The neutron flux may be any function of time. It is analyzed as well the reactivity changes associated with the xenon and samarium concentration variations. (Author) 5 refs.

  7. Thermoluminescence characteristics of Sm doped NaYF4 crystals

    Indian Academy of Sciences (India)


    Jun 28, 2006 ... temperature peaks also vary in relation to the Sm3+ con- centration in NaYF4. This indicates a probable change in the trap structure of NaYF4 with the doping concentration of samarium impurity. This observation is in conformity with the earlier studies (Narasimha Reddy et al 1987;. Gopal Reddy et al 1988; ...

  8. Multiplet effects in the electronic structure of light rare-earth metals

    NARCIS (Netherlands)

    Lebegue, S.; Svane, A.; Katsnelson, M.I.; Lichtenstein, A.I.; Eriksson, O.


    The excited-state properties of the light rare-earth elemental metals praseodymium, neodymium, and samarium are studied within the Hubbard-I formalism. This method describes the multiplets of the rare-earth f shell by an exact diagonalization of the two-body part of the Hamiltonian. Subsequently,

  9. Structural, dielectric and electrical properties of Sm-modified Pb ...

    Indian Academy of Sciences (India)

    It is observed that. the dielectric permittivity () and loss tangent (tan ) are dependent on frequency,; the temperature of dielectric permittivity maximum shifts toward lower temperature side with the increase of samarium ion (Sm+3) concentration at the Pb sites, and; observed and calculated -values of XRD patterns show ...

  10. Ironless-armature brushless motor (United States)

    Fisher, R. L.


    Device uses 12-pole samarium cobalt permanent-magnet rotor and three Hall-effect sensors for commutation. In prototype motor, torque constant (3-phase delta) is 65 oz-in/amp; electrical time constant (L/R) is 0.2 x 0.001 sec, and armature resistance is 20 ohms.

  11. Measurement of total angular momentum values of high-lying even ...

    Indian Academy of Sciences (India)

    Measurement of total angular momentum values of high-lying even-parity atomic states of samarium by spectrally resolved laser-induced fluorescence technique. A K PULHANI∗, M L SHAH, G P GUPTA and B M SURI. Laser and Plasma Technology Division, Bhabha Atomic Research Centre,. Mumbai 400 085, India.

  12. Measurement of total angular momentum values of high-lying even ...

    Indian Academy of Sciences (India)

    Spectrally resolved laser-induced fluorescence technique was used to uniquely assign total angular momentum () values to high-lying even-parity energy levels of atomic samarium. Unique value assignment was done for seven energy levels in the energy region 34,800–36,200 cm-1 , recently observed and reported in ...

  13. X-Ray studies reveal lanthanide binding sites at the A/B5 interface of E. coli heat labile enterotoxin

    NARCIS (Netherlands)

    Sixma, Titia K.; Terwisscha van Scheltinga, Anke C.; Kalk, Kor H.; Zhou, Kangjing; Wartna, Ellen S.; Hol, Wim G.J.


    The crystal structure determination of heat labile enterotoxin (LT) bound to two different lanthanide ions, erbium and samarium, revealed two distinct ion binding sites in the interface of the A subunit and the B pentamer of the toxin. One of the interface sites is conserved in the very similar


    NARCIS (Netherlands)



    The crystal structure determination of heat labile enterotoxin (LT) bound to two different lanthanide ions, erbium and samarium, revealed two distinct ion binding sites in the interface of the A subunit and the B pentamer of the toxin. One of the interface sites is conserved in the very similar

  15. Author Details

    African Journals Online (AJOL)

    Prasad, T.N.V.K.. Vol 12, No 2 (2003) - Articles Pyroelectric Ferroelectric and Resistivity Studies on Samarium Modified Barium Strontium Sodium Niobate Ceramics Abstract. ISSN: 1019-1593. AJOL African Journals Online. HOW TO USE AJOL... for Researchers · for Librarians · for Authors · FAQ's · More about AJOL ...

  16. Thermoluminescent coactivated rare earth oxyhalide phosphors and X-ray image converters utilizing said phosphors

    Energy Technology Data Exchange (ETDEWEB)

    Rabatin, J.G.


    Oxyhalides of lanthanum, gadolinium and lutetium coactivated with a first activator selected from bismuth and samarium to provide the color of light emission and a second coactivator which increases the amount of stored energy in a stored radiographic latent image are found to be superior in their conversion efficiency of x-rays to visible light.

  17. Interactions between exogenous rare earth elements and phosphorus leaching in packed soil columns (United States)

    Rare earth elements (REEs) increasingly used in agriculture as an amendment for crop growth may help to lessen environmental losses of phosphorus (P) from heavily fertilized soils. The vertical transport characteristics of P and REEs, lanthanum (La), neodymium (Nd), samarium (Sm), and cerium (Ce), w...

  18. Simplified syntheses of the water-soluble chiral shift reagents Sm-(R)-pdta and Sm-(S)-pdta

    Czech Academy of Sciences Publication Activity Database

    Hrubá, L.; Buděšínský, Miloš; Pícha, Jan; Jiráček, Jiří; Vaněk, Václav


    Roč. 54, č. 47 (2013), s. 6296-6297 ISSN 0040-4039 Institutional support: RVO:61388963 Keywords : NMR * chiral shift reagents * Sm-pdta * PDTA * samarium * 1,2-diaminopropane Subject RIV: CC - Organic Chemistry Impact factor: 2.391, year: 2013

  19. Perovskite catalysts for oxidative coupling (United States)

    Campbell, Kenneth D.


    Perovskites of the structure A.sub.2 B.sub.2 C.sub.3 O.sub.10 are useful as catalysts for the oxidative coupling of lower alkane to heavier hydrocarbons. A is alkali metal; B is lanthanide or lanthanum, cerium, neodymium, samarium, praseodymium, gadolinium or dysprosium; and C is titanium.

  20. Lanthanide(III) complexes with tridentate Schiff base ligand ...

    African Journals Online (AJOL)

    The tridentate N4-type Schiff base was synthesized from the condensation reaction of 2-hydrazinopyridine and pyridine-2-carbaldehyde. Neodymium and Samarium complexes were isolated when the corresponding nitrate salt was added to the solution of the ligand. The isolated compounds were characterized by ...

  1. Author Details

    African Journals Online (AJOL)

    T. Chen, W. Vol 31, No 3 (2017) - Articles A novel samarium complex with interesting photoluminescence and semiconductive properties. Abstract PDF. ISSN: 1726-801X. AJOL African Journals Online. HOW TO USE AJOL... for Researchers · for Librarians · for Authors · FAQ's · More about AJOL · AJOL's Partners · Terms ...

  2. The effect of rare-earth filtration on organ doses in intraoral radiography

    Energy Technology Data Exchange (ETDEWEB)

    Asako, Satoshi; Satoh, Kenji; Furumoto, Keiichi (Nippon Dental Univ., Tokyo (Japan))


    Filters of rare-earth elements such as lanthanum (La, Z=57), samarium (Sm, Z=62), gadolinium (Gd, Z=64) and erbium (Er, Z=68) are frequently used in radiography for the purpose of reducing the patient dose by eliminating low-energy and high-energy X-rays which are not involved in imaging. It is useful to evaluate the dose reduction achieved by these rare-earth filters in terms of organ dose, and the effective dose equivalent, which is used for evaluating carcinogenic risks and hereditary effects of X-ray irradiation, for the purpose of optimizing the radiographic technique and radiation protection. Therefore, we calculated the organ dose and effective dose equivalent during intraoral radiography of the maxillary incisor region by simulation using samarium or erbium, typical rare-earth elements, in filtration. We evaluated the effects of these metals in dose reduction. When samarium or erbium, 0.1 mm thick, was used in added filtration at tube voltage of 60, 70, 80 and 90 kV, the time required for radiography almost doubled, respectively. The organ dose at each tube voltage was the largest in the parathyroid and thyroid glands, followed by bone surfaces and the optic lenses, skin, red bone marrow and salivary glands, larynx, and brain, in that order. The organ dose at sites other than the larynx and brain decreased as the quality of the incident X-ray beam was hardened. When samarium or erbium was added at each voltage, the effective dose equivalent was reduced by about 20% to 45%. Erbium was more effective than samarium in reducing the effective dose equivalent, and either of the two elements decreased its effectiveness with an increase in tube voltage. (author) 43 refs.

  3. Space-based solar power conversion and delivery systems study. Volume 4: Energy conversion systems studies (United States)


    Solar cells and optical configurations for the SSPS were examined. In this task, three specific solar cell materials were examined: single crystal silicon, single crystal gallium arsenide, and polycrystalline cadmium sulfide. The comparison of the three different cells on the basis of a subsystem parametric cost per kW of SSPS-generated power at the terrestrial utility interface showed that gallium arsenide was the most promising solar cell material at high concentration ratios. The most promising solar cell material with no concentration, was dependent upon the particular combination of parameters representing cost, mass and performance that were chosen to represent each cell in this deterministic comparative analysis. The potential for mass production, based on the projections of the present state-of-the-art would tend to favor cadmium sulfide in lieu of single crystal silicon or gallium arsenide solar cells.

  4. Space station automation study: Automation requriements derived from space manufacturing concepts,volume 2 (United States)


    Automation reuirements were developed for two manufacturing concepts: (1) Gallium Arsenide Electroepitaxial Crystal Production and Wafer Manufacturing Facility, and (2) Gallium Arsenide VLSI Microelectronics Chip Processing Facility. A functional overview of the ultimate design concept incoporating the two manufacturing facilities on the space station are provided. The concepts were selected to facilitate an in-depth analysis of manufacturing automation requirements in the form of process mechanization, teleoperation and robotics, sensors, and artificial intelligence. While the cost-effectiveness of these facilities was not analyzed, both appear entirely feasible for the year 2000 timeframe.

  5. Electrochemical capacitance-voltage measurements and modeling of GaAs nanostructures with delta-doped layers (United States)

    Shestakova, L.; Yakovlev, G.; Zubkov, V.


    The paper presents the results of electrochemical capacitance-voltage profiling and simulation of quantum-sized semiconductor structures with quantum wells and delta-doped layers based on gallium arsenide. The experimental ECV data were obtained by superposition of measured capacitance-voltage characteristics during the gradual etching of the nanostructure. As a result of simulation, the concentration distribution and energy lineups for structures with delta-layers and quantum wells in gallium arsenide were calculated. The results of simulation are in qualitative agreement with the experimental results and data found in literature.

  6. Current switching in superconductor semiconductor bilayers (United States)

    Rahman, F.; Thornton, T. J.; Huber, R.


    We describe results of electrical transport experiments on niobium-on-indium arsenide and aluminium-on-indium arsenide bilayers. The temperature-dependent properties of electrical conduction in these bilayers is examined first in order to characterize the quality of super-semi interfaces. Next, we look at the differential resistance of the bilayers as a function of bias current. The switching of current between the metal and semiconductor components of the bilayer gives rise to a quasi-inductive effect as it causes voltage spikes in the composite system. Also described is the variation of critical current for these bilayers with temperature and magnetic field.

  7. Feasibility of producing photodiode bases on a single crystal strip of germanium obtained by Stephanov's method

    CERN Document Server

    Menshikova, V A; Zatalovskii, L M; Chaikin, P M; Frimer, A I


    The single-crystal strip was obtained by Stepanov's method. involving the use of a fusing shaper and a flexible priming wire holder. The epitaxial growth of a gallium arsenide layer on this strip was then studied, and photodiodes were prepared from it. The surface properties of the strip were investigated microstructurally and deposition rates for gallium arsenide recorded at different temperatures. At each stage the figures were compared with results obtained with common germanium. The characteristics of photodiodes prepared from the single-crystal strip and common germanium were compared, and the former gave greater integral sensitivity. (3 refs).

  8. Semiconducting III-V compounds

    CERN Document Server

    Hilsum, C; Henisch, Heinz R


    Semiconducting III-V Compounds deals with the properties of III-V compounds as a family of semiconducting crystals and relates these compounds to the monatomic semiconductors silicon and germanium. Emphasis is placed on physical processes that are peculiar to III-V compounds, particularly those that combine boron, aluminum, gallium, and indium with phosphorus, arsenic, and antimony (for example, indium antimonide, indium arsenide, gallium antimonide, and gallium arsenide).Comprised of eight chapters, this book begins with an assessment of the crystal structure and binding of III-V compounds, f

  9. LPEE Growth and Characterization of InxGa(1-x)ASySb(1-y) Lattice Matched to GaSb and InAs for Photodetectors (United States)


    S. Nishiyama, S. Isozumi and K.Nakajima, Appl.Phys.Lett. 56, 239 (1990). 25. S.J.Eglash and H.K. Choi , Gallium Arsenide and Related Compounds. 1991...51 (1986). 3*S. J, Eglash and H. K. Choi , in Gallium Arsenide and Related Compounds, 1991, edited by G. B. Stringfellow (IOP, London, 1992), p...GalnAsSb layers on a (100) GaSb substrate. Considering the fact that this is a quater- nary alloy system and hence even a small statistical inho

  10. Simple intrinsic defects in GaAs : numerical supplement.

    Energy Technology Data Exchange (ETDEWEB)

    Schultz, Peter Andrew


    This Report presents numerical tables summarizing properties of intrinsic defects in gallium arsenide, GaAs, as computed by density functional theory. This Report serves as a numerical supplement to the results published in: P.A. Schultz and O.A. von Lilienfeld, 'Simple intrinsic defects in GaAs', Modelling Simul. Mater. Sci Eng., Vol. 17, 084007 (2009), and intended for use as reference tables for a defect physics package in device models. The numerical results for density functional theory calculations of properties of simple intrinsic defects in gallium arsenide are presented.

  11. Temperature Insensitive and Radiation Hard Photonics (United States)


    stacks of InAs quantum dots in an InGaAs quantum well , the so-called DWELL structure. These layers are separated by GaAs barriers grown by elemental...layers buffering the gain region act as the optical waveguide boundaries as well as strain mitigation. A low step index, 30% AlGaAs cladding...HR High-Reflection InAs Indium Arsenide InGaAs Indium Gallium Arsenide LEO Low Earth Orbit MBE Molecular Beam Epitaxy QD Quantum Dot QDMLL Quantum

  12. Modeling the cutoff frequency of single-heterojunction bipolar transistors subjected to high collector-layer current (United States)

    Liou, J. J.; Lindholm, F. A.; Wu, B. S.


    High current densities in the collector layer reduce the cutoff frequency of heterojunction bipolar transistors. A model is developed based on analytical expressions that describe this reduction. These expressions represent the contributions from each of six regions defined in the output current-voltage characteristic. The model has parameters determined entirely by device physical makeup. It has no fitting parameters. Its predictions agree well with experimental data taken on two N/p+/n aluminum-gallium-arsenide/gallium-arsenide transistors having abrupt junctions grown by molecular-beam epitaxy. The development of the model considers the effects that compound-semiconductor properties, such as velocity overshoot, have on the cutoff frequency.

  13. None

    Energy Technology Data Exchange (ETDEWEB)

    Cason, D.L. [ed.; Kane, L.S.; Henline, D.M.


    Photovoltaic Energy: Electricity from Sunlight (PHV) announces on a bimonthly basis the current worldwide information available on all aspects of photovoltaic amorphous technology, polycrystalline thin films, gallium arsenide, crystalline silicon, concentrator technology, and systems research. This publication contains the abstracts of DOE reports, journal articles, conference papers, patents, theses, and monographs added to the Energy Science and Technology Database during the past two months.

  14. None

    Energy Technology Data Exchange (ETDEWEB)

    Cason, D.L.; Hicks, S.C. [eds.


    This publication announces on a bimonthly basis the current worldwide information available on all aspects of photovoltaic amporphous technology, polycrystalline thin films, gallium arsenide, crystalline silicon, concentrator technology, and systems research. The abstracts are arranged under the headings Solar Cells, and Photovoltaic Power Supplies.

  15. Modulation of fluorescence signals from biomolecules along nanowires due to interaction of light with oriented nanostructures

    DEFF Research Database (Denmark)

    Frederiksen, Rune Schøneberg; Alarcon-Llado, Esther; Madsen, Morten H.


    High aspect ratio nanostructures have gained increasing interest as highly sensitive platforms for biosensing. Here, well-defined biofunctionalized vertical indium arsenide nanowires are used to map the interaction of light with nanowires depending on their orientation and the excitation waveleng...

  16. Notch filtering the nuclear environment of a spin qubit

    DEFF Research Database (Denmark)

    Malinowski, F. K.; Martins, F.; Nissen, P. D.


    Electron spins in gate-defined quantum dots provide a promising platform for quantum computation. In particular, spin-based quantum computing in gallium arsenide takes advantage of the high quality of semiconducting materials, reliability in fabricating arrays of quantum dots, and accurate qubit ...

  17. Endangered Elements of the Periodic Table

    Indian Academy of Sciences (India)

    (Z = 47), tin (Z = 50), and lead (Z = 82), 70% of gold (Z = 79) and zinc (Z = 30), and 50% of copper (Z = 29) and ... indium is obtained as a byproduct during the extraction. Since 1960's gallium arsenide-based ... recovery of indium from unwanted devices is not very cost effec- tive. So scientists are thinking of alternatives to ...

  18. Resonance-like tunneling across a barrier with adjacent wells

    Indian Academy of Sciences (India)

    Furthermore, with the advent of nanotechnology it is envisaged .... we describe the potential application of the concept of resonant tunneling in the design of novel electronic devices using the electrical properties of gallium arsenide and SiO2. In the emerging era of nanoscience these concepts will have wider appli- cations.

  19. Nonlinear optical study of ultrafast carrier dynamics in GaAs

    NARCIS (Netherlands)

    Jong, W. de


    This thesis reports on optical second harmonic generation (SHG) and electric field induced SHG (EFISHG) studies performed on gold-gallium arsenide (Au-GaAs) Schottky barrier (SB) systems. The most interesting are the dynamics of excited carriers behind the Schottky barrier interface which are

  20. Fiber grating sensing interrogation based on an InGaAs photodiode linear array. (United States)

    Li, Guoyu; Guo, Tuan; Zhang, Hao; Gao, Hongwei; Zhang, Jian; Liu, Bo; Yuan, Shuzhong; Kai, Guiyun; Dong, Xiaoyi


    We present a new method of the fiber grating sensing interrogation technique by utilizing an indium gallium arsenide photodiode linear array and blazed fiber Bragg gratings. An interrogation system based on an InGaAs photodiode linear array is designed, and the system performance is analyzed. The interrogation system shows a good prospect for smart sensing.

  1. Suitability of integrated protection diodes from diverse semiconductor technologies

    NARCIS (Netherlands)

    Wanum, M. van; Lebouille, T.T.N.; Visser, G.C.; Vliet, F.E. van


    In this article diodes from three different semiconductor technologies are compared based on their suitability to protect a receiver. The semiconductor materials involved are Silicon, Gallium Arsenide and Gallium Nitride. The diodes in the diverse semiconductor technologies themselves are close in

  2. Hybrid Spintronic Structures With Magnetic Oxides and Heusler Alloys

    DEFF Research Database (Denmark)

    Xu, Y. B.; Hassan, S. S. A.; Wong, P. K. J.


    As(100) and the unit cell of the Fe3O4 was found to be rotated by 45 degrees to match the gallium arsenide GaAs. The films were found to have a bulk-like moment down to 3-4 nm and a low coercivity indicating a high-quality magnetic interface. The magnetization hysteresis loops of the ultrathin films...

  3. Alkali Metal Thermal to Electric Conversion Research. (United States)


    Acquisition System GaAs Gallium Arsenide HCI Hydrochloric Acid Mo Molybdenum Na Sodium NaS Sodium Sulfur PL Phillips Laboratory Si Silicon TC Thermocouple...back to the heat source and the hot liquid reservoir to complete the thermodynamic cycle. The Sodium - Sulfur (NaS) battery differs from AMTEC only in

  4. The Physics and Operations of Ultra-Submicron Length Semiconductor Devices (United States)


    Shaw, P. R. Solomon , and H. L. Grubin, IBM J. Res. Dev: 13, 587 (1%9). 26 INTRODUCTION TO THE PHYSICS OF GALLIUM ARSENIDE DEVICES 17. E. M. Azoff...and P. Kocevar, Phys. Rev. B 28, 7040 (1980). 9. M. Asche and 0. G. Sarbei, Phys. Stat. Sol. (b) 126, 607 (1984). 10. M. A. Osman, U. Ravaioli, R

  5. Quaterly Assessment of Irradiance Variation on Power Output and Storable Excess Power of Solar Panels

    National Research Council Canada - National Science Library

    T O Familusi; Y K Sanusi; H O Efunwole; A M Raimi


      This paper verified the input solar irradiance and average power output per day of a 10W polycrystalline silicon solar panel and a 10W gallium arsenide solar panel, both of dimension 350x290x25mm^sup 3^, fill-factor...

  6. Modeling the Growth of Aluminum Gallium Nitride ((Al)GaN) Films Grown on Aluminum Nitride (AlN) Substrates (United States)


    cadmium zinc telluride ( CdZnTe or CZT) on Si using a superlattice (SL) in which the SL layers had different compositions (10). We found that the...Abbreviations, and Acronyms (Al)GaN aluminum gallium arsenide AlN aluminum nitride ARL U.S. Army Research Laboratory CdZnTe or CZT cadmium zinc

  7. Surround-gated vertical nanowire quantum dots

    NARCIS (Netherlands)

    Van Weert, M.H.M.; Den Heijer, M.; Van Kouwen, M.P.; Algra, R.E.; Bakkers, E.P.A.M.; Kouwenhoven, L.P.; Zwiller, V.


    We report voltage dependent photoluminescence experiments on single indium arsenide phosphide (InAsP) quantum dots embedded in vertical surround-gated indium phosphide (InP) nanowires. We show that by tuning the gate voltage, we can access different quantum dot charge states. We study the

  8. Low temperature transport in p-doped InAs nanowires

    DEFF Research Database (Denmark)

    Upadhyay, Shivendra; Jespersen, Thomas Sand; Madsen, Morten Hannibal


    We present low temperature electrical measurements of p-type Indium Arsenide nanowires grown via molecular beam epitaxy using Beryllium as a dopant. Growth of p-type wires without stacking faults is demonstrated. Devices in field-effect geometries exhibit ambipolar behavior, and the temperature d...

  9. The Effects of Strain on the Electrical Properties of Thin Evaporated Films of Semiconductor Compounds (United States)

    Steel, G. G.


    Reports on project intended to establish how electrical resistance, Hall voltage, and magnetoresistance change when a thin film specimen is subjected to mechanical strain. Found resistance of semiconducting film of indium arsenide and indium antimonide decreases with tension and increases with compression. (LS)

  10. Simple intrinsic defects in InAs :

    Energy Technology Data Exchange (ETDEWEB)

    Schultz, Peter Andrew


    This Report presents numerical tables summarizing properties of intrinsic defects in indium arsenide, InAs, as computed by density functional theory using semi-local density functionals, intended for use as reference tables for a defect physics package in device models.

  11. 500 MHz transient digitizers based on GaAs CCds (charged coupled devices)

    Energy Technology Data Exchange (ETDEWEB)

    Bryman, D.; Cresswell, J.V.; LeNoble, M.; Poutissou, R.


    A wide bandwidth transient digitizer based on a recently produced gallium arsenide charge coupled device (CCD) is under development. The CCD's have 128 pixels and operate at 500 MHz. Initial testing of prototype modules in Experiment 787 at Brookhaven National Laboratory is reported. 8 refs., 6 figs.

  12. 500 MHz transient digitizers based on GaAs CCDs (United States)

    Bryman, D.; Cresswell, J. V.; LeNoble, M.; Poutissou, R.


    A wide-bandwidth transient digitizer based on a gallium arsenide charged-coupled device (CCD) is under development. The CCDs have 128 pixels and operate at 500 MHz. Prototype CCD digitizers which sample at 2-ns intervals for a period of 256 ns have been constructed and tested in Experiment 787 at Brookhaven National Laboratory.

  13. 500 MHz transient digitizers based on GaAs CCDs (United States)

    Bryman, D. A.; Constable, M.; Cresswell, J. V.; Daviel, A.; LeNoble, M.; Mildenberger, J.; Poutissou, R.


    A system of 500 MHz transient digitizers based on gallium arsenide resistive gate charged coupled devices has been developed for an experiment to study rare K decays. CCDs with dynamic range of 8-bits and 128 or 320 pixels are used as analog pipelines. The CCDs are driven by a single phase transport system. Data readout and manipulation occurs at 15.6 MHz.

  14. Extreme sensitivity of superconductivity to stoichiometry in Fe1+?Se

    NARCIS (Netherlands)

    McQueen, T.M.; Huang, Q.; Ksenofontov, V.; Felser, C.; Xu, Q.; Zandbergen, H.; Hor, Y.S.; Allred, J.; Williams, A.J.; Qu, D.; Checkelsky, J.; Ong, N.P.; Cava, R.J.


    The recently discovered iron arsenide superconductors appear to display a universal set of characteristic features, including proximity to a magnetically ordered state and robustness of the superconductivity in the presence of disorder. Here we show that superconductivity in Fe1+?Se, which can be

  15. Modeling of High Efficiency Solar Cells Under Laser Pulse for Power Beaming Applications (United States)

    Jain, Raj K.; Landis, Geoffrey A.


    Solar cells may be used as receivers for laser power beaming. To understand the behavior of solar cells when illuminated by a pulsed laser, the time response of gallium arsenide and silicon solar cells to pulsed monochromatic input has been modeled using a finite element solar cell model.

  16. High-performance green flexible electronics based on biodegradable cellulose nanofibril paper (United States)

    Yei Hwan Jung; Tzu-Hsuan Chang; Huilong Zhang; Chunhua Yao; Qifeng Zheng; Vina W. Yang; Hongyi Mi; Munho Kim; Sang June Cho; Dong-Wook Park; Hao Jiang; Juhwan Lee; Yijie Qiu; Weidong Zhou; Zhiyong Cai; Shaoqin Gong; Zhenqiang Ma


    Today’s consumer electronics, such as cell phones, tablets and other portable electronic devices, are typically made of non-renewable, non-biodegradable, and sometimes potentially toxic (for example, gallium arsenide) materials. These consumer electronics are frequently upgraded or discarded, leading to serious environmental contamination. Thus, electronic systems...

  17. Phase equilibria in a ternary fullerenol-d(C60(OH)22-24)-SmCl3-H2O system at 25°C (United States)

    Yur'ev, G. O.; Keskinov, V. A.; Semenov, K. N.; Charykov, N. A.


    The solubility in a ternary fullerenol-d (C60(OH)22-24)-SmCl3-H2O system at 25°C is studied via isothermal saturation in ampules. The solubility diagram is shown to be a simple eutonic one that consists of two branches corresponding to the crystallization of fullerenol-d (C60(OH)22-24 · 30H2O) and samarium(III) chloride SmCl3 · 6H2O crystallohydrates and contains one nonvariant eutonic point corresponding to saturation with both crystallohydrates. The long branch of C60(OH)22-24 · 30H2O crystallization shows the effect of fullerenol-d salting out of saturated solutions; in contrast, the short branch of SmCl3 · 6H2O crystallization shows the pronounced salting-in effect of samarium(III) chloride.

  18. Alkaline and alkaline earth metal phosphate halides and phosphors (United States)

    Lyons, Robert Joseph; Setlur, Anant Achyut; Cleaver, Robert John


    Compounds, phosphor materials and apparatus related to nacaphite family of materials are presented. Potassium and rubidium based nacaphite family compounds and phosphors designed by doping divalent rare earth elements in the sites of alkaline earth metals in the nacaphite material families are descried. An apparatus comprising the phosphors based on the nacaphite family materials are presented herein. The compounds presented is of formula A.sub.2B.sub.1-yR.sub.yPO.sub.4X where the elements A, B, R, X and suffix y are defined such that A is potassium, rubidium, or a combination of potassium and rubidium and B is calcium, strontium, barium, or a combination of any of calcium, strontium and barium. X is fluorine, chlorine, or a combination of fluorine and chlorine, R is europium, samarium, ytterbium, or a combination of any of europium, samarium, and ytterbium, and y ranges from 0 to about 0.1.

  19. Reductive trapping of [(OC){sub 5}W-W(CO){sub 5}]{sup 2-} in a mixed-valent Sm{sup II/III} calix[4]pyrrolide sandwich

    Energy Technology Data Exchange (ETDEWEB)

    Deacon, Glen B.; Guo, Zhifang [School of Chemistry, Monash University, VIC (Australia); Junk, Peter C.; Wang, Jun [College of Science and Engineering, James Cook University, Townsville, QLD (Australia)


    Reduction of tungsten hexacarbonyl by the divalent samarium(II) complex [Sm{sub 2}(N{sub 4}Et{sub 8})(thf){sub 4}] ((N{sub 4}Et{sub 8}){sup 4-}=meso-octaethylcalix[4]pyrrolide) in toluene at ambient temperature gave the remarkable heteronuclear mixed-valent samarium(II/III)/tungsten complex [{(thf)_2Sm"I"I(N_4Et_8)Sm"I"I"I(thf)}{sub 2}{(μ-OC)_2W_2(CO)_8}], which features the trapping of a rare [W{sub 2}(CO){sub 10}]{sup 2-} anion with an unsupported W-W bond. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  20. Preparation and dosimetry of radiotherapeutic particles for arthropaties; Preparacion y dosimetria de particulas radioterapeuticas para artropatias

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez Z, M.A. [Departamento de Medicina Nuclear, Instituto Nacional de Pediatria (Mexico); Ferro F, G. [Departamento de Materiales Radiactivos, Instituto nacional de Investigaciones Nucleares, Salazar, Estado de Mexico C.P. 52045 (Mexico); Rivera M, T.; Azorin N, J. [Departamento de Fisica, UAM Iztapalapa, Mexico D.F. (Mexico)


    It was developed a new formulation of macro aggregates of Samarium 153 ({sup 153} Sm-MH) for the arthropaties treatment. The radio pharmaceutic was prepared by reaction of Samarium 153 chloride (SmCl{sub 3}) in aqueous environment with sodium boron hydride in NaOH 0.5 N. The microscopic analysis shown that the particles have an average size of 4% m (range 1-14 {mu} m). The velocity of sedimentation was 0.008 cm/min with high stability in vitro in human serum. The biological studies in healthy rabbits, shown that the complex is retained inside the articulation still eight days after of the administration of the radiopharmaceutical. Likewise, it is presented the data of absorbed dose in the different target organs, which was determined by thermoluminescent dosimetry (TLD) through the use of a REMCAL phantom (radiation equivalent manikin calibration). (Author)

  1. Ion-exchange separation of the rare earth elements by means of solution of ammonium phthalate and chloride

    Energy Technology Data Exchange (ETDEWEB)

    Hubicki, W.; Ozga, W. (Uniwersytet Marii Curie-Sklodowskiej, Lublin (Poland))


    A new method of ion exchange separation of lanthanons by the use of equimolar solution of ammonium phthalate and ammonium chloride as an eluent was elaborated. This method allows to separate light lanthanons and to obtain concentrate of samarium and heavy lanthanons. 99.99% Y/sub 2/O/sub 3/ was obtained from non-neodymium concentration with 47.4% efficiency. The influence of change in concentration and pH of eluent on the effectiveness of separation was examined. It was found that an increase in concentration of eluent and pH leads to quick separation of yttrium from samarium and heavy lanthanons. However, the efficiency of pure Y/sub 2/O/sub 3/ decreases distinctly.

  2. Large directional optical anisotropy in multiferroic ferroborate (United States)

    Kuzmenko, A. M.; Dziom, V.; Shuvaev, A.; Pimenov, Anna; Schiebl, M.; Mukhin, A. A.; Ivanov, V. Yu.; Gudim, I. A.; Bezmaternykh, L. N.; Pimenov, A.


    One of the most fascinating and counterintuitive recent effects in multiferroics is directional anisotropy, the asymmetry of light propagation with respect to the direction of propagation. In such case the absorption in a material can be different for opposite directions. Besides absorption, different velocities of light for different directions of propagation may be also expected, which is termed directional birefringence. In this work, we demonstrate large directional anisotropy in multiferroic samarium ferroborate. The effect is observed for linear polarization of light in the range of millimeter wavelengths, and it survives down to low frequencies. The dispersion and absorption close to the electromagnon resonance can be controlled by external magnetic field and are fully suppressed in one direction. By changing the geometry of the external field, samarium ferroborate shows giant optical activity, which makes this material a universal tool for optical control: with a magnetic field as an external parameter it allows switching between two functionalities: polarization rotation and directional anisotropy.

  3. Ionic liquid technology for recovery and separation of rare earths


    Binnemans, Koen


    End-of-life neodymium-iron-boron and samarium-cobalt permanent magnets, fluorescent lamps and metal hydride batteries are valuable secondary resources of rare earths. These resources are characterised by relatively small volumes, but high concentrations of rare earths [1]. On the other hand, industrial process residues such as bauxite residue (red mud) and phosphogypsum contain low concentrations of rare earths, but are available in huge volumes [2]. Recovery of rare earths from end-of-life c...

  4. Ternary rare earth-lanthanide sulfides (United States)

    Takeshita, Takuo; Gschneidner, Jr., Karl A.; Beaudry, Bernard J.


    A new ternary rare earth sulfur compound having the formula: La.sub.3-x M.sub.x S.sub.4 where M is a rare earth element selected from the group europium, samarium and ytterbium and x=0.15 to 0.8. The compound has good high-temperature thermoelectric properties and exhibits long-term structural stability up to C.

  5. Structural and physical properties of Sm doped magnesium zinc ...

    Indian Academy of Sciences (India)


    Sep 22, 2017 ... Abstract. Samarium (Sm3+) doped magnesium zinc sulfophosphate glass system of composition (60–x)P2O5–20MgO–. 20ZnSO4–xSm2O3 (x = 0.0, 0.5, 1.0, 1.5 and 2.0 mol%) were synthesized using melt-quenching technique. The structure and physical properties of prepared glass samples were ...

  6. Structural aspects of displacive transformations: what can optical microscopy contribute? Dehydration of Sm2(C2O4)3·10H2O as a case study. (United States)

    Matvienko, Alexander A; Maslennikov, Daniel V; Zakharov, Boris A; Sidelnikov, Anatoly A; Chizhik, Stanislav A; Boldyreva, Elena V


    For martensitic transformations the macroscopic crystal strain is directly related to the corresponding structural rearrangement at the microscopic level. In situ optical microscopy observations of the interface migration and the change in crystal shape during a displacive single crystal to single crystal transformation can contribute significantly to understanding the mechanism of the process at the atomic scale. This is illustrated for the dehydration of samarium oxalate decahydrate in a study combining optical microscopy and single-crystal X-ray diffraction.

  7. The growth and reactivity of the {Sm}/{Si(100)} interface (United States)

    Onsgaard, J.; Christiansen, M.; Ørskov, F.; Godowski, P. J.


    The growth of the {Sm}/{Si(100)} interface is described and discussed in the context of the increasing experimental insight into lanthanide/semiconductor interfaces. Silicide formation takes place in the 1 to 5 monolayers coverage region. Different ordered structures, dependent on the initial coverage and temperature treatment, are observed. Oxygen adsorption and binding is strongly promoted, both when Sm is present at the surface and when oxygen reacts with a samarium-suicide film.

  8. Installation of electric generators on turbine engines (United States)

    Demel, H. F.


    The installation of generators on turbine aircraft is discussed. Emphasis is placed on the use of the samarium cobalt generator. Potential advantages of an electric secondary power system at the engine level are listed. The integrated generator and the externally mounted generator are discussed. It is concluded that the integrated generator is best used in turbojet and low bypass ratio engines where there is no easy way of placing generators externally without influencing frontal areas.

  9. Fabrication of Material and Devices for Very High Density Information Storage. (United States)


    crystal bismuth doped garnets , having properties equivalent to IPE grown materials,,’., onto gadolinium gallium garnet substrates. There was speculation... LPE onto0 (111)-.""’’ oriented calcium-, magnesium- or zirconium-substituted gadolinium, samarium or neodymium gallium /’’’ garnet substrates. Garnet of LPE garnetmusesit favor garnets a s a t arting poiut. ref og Vmagnetic and m g e-optical po et s o a- , pae d m u , alu inu-%, li

  10. Macrocyclic aminophosphonic acid complexes, their preparation, formulations and use; Fremgangsmaate for fremstilling av et makrocyklisk aminofosfonsyrekompleks eller et fysiologisk akseptabelt salt derav

    Energy Technology Data Exchange (ETDEWEB)

    Simon, J.; Wilson, D.A.; Garlich, J.R.; Troutner, D.E.


    Particle emitting radionuclides, e.g. Samarium-153, have been complexed with certain macrocyclic aminophosphonic acids wherein the nitrogen and phosphorus are interconnected by an alkylene group or substituted alkylene group. A composition is now disclosed which comprises a complex having a macrocyclic aminophosphonic acid, containing 1,4,7,10-tetraazycyclododecane as the macrocyclic moiety, or a physiologically, acceptable salt thereof, wherein the nitrogen and phosphorus are interconnected by an alkylene or substituted alkylene radical. 10 tabs.

  11. Effect of Flake Thickness on Coercivity of Nanocrystalline SmCo5 Bulk Prepared from Anisotropic Nanoflake Powder (Postprint) (United States)


    flake thickness. 15. SUBJECT TERMS rare earth magnets , samarium cobalt magnets , permanent magnets 16. SECURITY CLASSIFICATION OF: 17...nanoflakes have attractive magnetic properties ; coercivity of up to 21 kOe and maximum energy product of up to 22 MGOe.9 Thus, the nanoflake powders...less reported on correlation between nanoflake morphology and final properties of the SmCo5 bulk magnets . In this study, we prepared SmCo5 nanoflakes

  12. Cross sections of deuteron induced reactions on $^{nat}$Sm for production of the therapeutic radionuclide $^{145}$Sm and $^{153}$Sm


    Tárkányi, F.; Hermanne, A.; Takács, S.; Ditrói, F.; Csikai, J.; Ignatyuk, A. V.


    At present, targeted radiotherapy (TR) is acknowledged to have great potential in oncology. A large list of interesting radionuclides is identified, including several radioisotopes of lanthanides, amongst them $^{145}$Sm and $^{153}$Sm. In this work the possibility of their production at a cyclotron was investigated using a deuteron beam and a samarium target. The excitation functions of the $^{nat}$Sm(d,x)$^{145153}$Sm reactions were determined for deuteron energies up to 50 MeV using the st...

  13. High-temperature optically activated GaAs power switching for aircraft digital electronic control (United States)

    Berak, J. M.; Grantham, D. H.; Swindal, J. L.; Black, J. F.; Allen, L. B.


    Gallium arsenide high-temperature devices were fabricated and assembled into an optically activated pulse-width-modulated power control for a torque motor typical of the kinds used in jet engine actuators. A bipolar heterojunction phototransistor with gallium aluminum arsenide emitter/window, a gallium arsenide junction field-effect power transistor and a gallium arsenide transient protection diode were designed and fabricated. A high-temperature fiber optic/phototransistor coupling scheme was implemented. The devices assembled into the demonstrator were successfully tested at 250 C, proving the feasibility of actuator-located switching of control power using optical signals transmitted by fibers. Assessments of the efficiency and technical merits were made for extension of this high-temperature technology to local conversion of optical power to electrical power and its control at levels useful for driving actuators. Optical power sources included in the comparisons were an infrared light-emitting diode, an injection laser diode, tungsten-halogen lamps and arc lamps. Optical-to-electrical power conversion was limited to photovoltaics located at the actuator. Impedance matching of the photovoltaic array to the load was considered over the full temperature range, -55 C to 260 C. Loss of photovoltaic efficiency at higher temperatures was taken into account. Serious losses in efficiency are: (1) in the optical source and the cooling which they may require in the assumed 125 C ambient, (2) in the decreased conversion efficiency of the gallium arsenide photovoltaic at 260 C, and (3) in impedance matching. Practical systems require improvements in these areas.

  14. Annealing furnace for III-V semiconductor devices (United States)

    O'Connor, J. M.; Hier, H. S.; Ketchum, R. M.


    A furnace for annealing ion implantation damage in III-V semiconductors has been built and tested. Designed for research applications, the furnace can accommodate odd shapes of material up to 2 in. in diameter. Samples are loaded onto a novel cantilevered support and are not moved during the annealing operation, facilitating proximity annealing techniques. Both chambers of this dual chambered system are O-ring sealed for added safety during annealing in an arsine gas ambient. Electron mobilities between 4400 and 4600 cm2/V s at 300 K are routinely measured for 2×1017 cm-3 gallium arsenide material annealed in this sytem. The system has been used to anneal indium phosphide as well as gallium arsenide wafers.

  15. High-performance green flexible electronics based on biodegradable cellulose nanofibril paper (United States)

    Jung, Yei Hwan; Chang, Tzu-Hsuan; Zhang, Huilong; Yao, Chunhua; Zheng, Qifeng; Yang, Vina W.; Mi, Hongyi; Kim, Munho; Cho, Sang June; Park, Dong-Wook; Jiang, Hao; Lee, Juhwan; Qiu, Yijie; Zhou, Weidong; Cai, Zhiyong; Gong, Shaoqin; Ma, Zhenqiang


    Today's consumer electronics, such as cell phones, tablets and other portable electronic devices, are typically made of non-renewable, non-biodegradable, and sometimes potentially toxic (for example, gallium arsenide) materials. These consumer electronics are frequently upgraded or discarded, leading to serious environmental contamination. Thus, electronic systems consisting of renewable and biodegradable materials and minimal amount of potentially toxic materials are desirable. Here we report high-performance flexible microwave and digital electronics that consume the smallest amount of potentially toxic materials on biobased, biodegradable and flexible cellulose nanofibril papers. Furthermore, we demonstrate gallium arsenide microwave devices, the consumer wireless workhorse, in a transferrable thin-film form. Successful fabrication of key electrical components on the flexible cellulose nanofibril paper with comparable performance to their rigid counterparts and clear demonstration of fungal biodegradation of the cellulose-nanofibril-based electronics suggest that it is feasible to fabricate high-performance flexible electronics using ecofriendly materials. PMID:26006731

  16. Solar-electrochemical power system for a Mars mission (United States)

    Withrow, Colleen A.; Morales, Nelson


    This report documents a sizing study of a variety of solar electrochemical power systems for the intercenter NASA study known as 'Mars Exploration Reference Mission'. Power systems are characterized for a variety of rovers, habitation modules, and space transport vehicles based on requirements derived from the reference mission. The mission features a six-person crew living on Mars for 500 days. Mission power requirements range from 4 kWe to 120 kWe. Primary hydrogen and oxygen fuel cells, regenerative hydrogen and oxygen fuel cells, sodium sulfur batteries advanced photovoltaic solar arrays of gallium arsenide on germanium with tracking and nontracking mechanisms, and tent solar arrays of gallium arsenide on germanium are evaluated and compared.

  17. 31% European InGaP/GaAs/InGaAs Solar Cells for Space Application

    Directory of Open Access Journals (Sweden)

    Campesato Roberta


    Full Text Available We report a triple junction InGaP/GaAs/InGaNAs solar cell with efficiency of ~31% at AM0, 25 °C fabricated using a combined molecular beam epitaxy (MBE and metal-organic chemical vapour deposition (MOCVD processes. The prototype cells comprise of InGaNAs (Indium Gallium Nitride Arsenide bottom junction grown on a GaAs (Gallium Arsenide substrate by MBE and middle and top junctions deposited by MOCVD. Repeatable cell characteristics and uniform efficiency pattern over 4-inch wafers were obtained. Combining the advantages offered by MBE and MOCVD opens a new perspective for fabrication of high-efficiency space tandem solar cells with three or more junctions. Results of radiation resistance of the sub-cells are also presented and critically evaluated to achieve high efficiency in EOL conditions.

  18. Terminal tungsten pnictide complex formation through pnictaethynolate decarbonylation. (United States)

    Joost, Maximilian; Transue, Wesley J; Cummins, Christopher C


    Tungsten(iv) tetrakis(2,6-diisopropylphenoxide) (1) has been demonstrated to be a competent platform for decarbonylative formation of anionic terminal pnictide complexes upon treatment with pnictaethynolate anions: cyanate, 2-phosphaethynolate, and 2-arsaethynolate. These transformations constitute the first examples of terminal phosphide and arsenide complex formation at a transition metal center from OCP- and OCAs-, respectively. The phosphide and arsenide complexes are also the first to be isolated in a tetragonal, all-oxygen ligand environment. The scalar NMR coupling constants between tungsten-183 and nitrogen-15 or phosphorus-31 have been measured and contextualized using natural bond orbital (NBO) methods in terms of s orbital character in the σ bonding orbital and pnictide lone pair.

  19. Coherent Cancellation of Photothermal Noise in GaAs/Al$_{0.92}$Ga$_{0.08}$As Bragg Mirrors

    CERN Document Server

    Chalermsongsak, Tara; Cole, Garrett D; Follman, David; Seifert, Frank; Arai, Koji; Gustafson, Eric K; Smith, Joshua R; Aspelmeyer, Markus; Adhikari, Rana X


    Thermal noise is a limiting factor in many high-precision optical experiments. A search is underway for novel optical materials with reduced thermal noise. One such pair of materials, gallium arsenide and aluminum-alloyed gallium arsenide (collectively referred to as AlGaAs), shows promise for its low Brownian noise when compared to conventional materials such as silica and tantala. However, AlGaAs has the potential to produce a high level of thermo-optic noise. We have fabricated a set of AlGaAs crystalline coatings, transferred to fused silica substrates, whose layer structure has been optimized to reduce thermo-optic noise by inducing coherent cancellation of the thermoelastic and thermorefractive effects. By measuring the photothermal transfer function of these mirrors, we find evidence that this optimization has been successful.

  20. Space station automation study. Automation requirements derived from space manufacturing concepts. Volume 1: Executive summary (United States)


    The two manufacturing concepts developed represent innovative, technologically advanced manufacturing schemes. The concepts were selected to facilitate an in depth analysis of manufacturing automation requirements in the form of process mechanization, teleoperation and robotics, and artificial intelligence. While the cost effectiveness of these facilities has not been analyzed as part of this study, both appear entirely feasible for the year 2000 timeframe. The growing demand for high quality gallium arsenide microelectronics may warrant the ventures.

  1. Textural, mineralogical and stable isotope studies of hydrothermal alteration in the main sulfide zone of the Great Dyke, Zimbabwe and the precious metals zone of the Sonju Lake Intrusion, Minnesota, USA (United States)

    Li, C.; Ripley, E.M.; Oberthur, T.; Miller, J.D.; Joslin, G.D.


    Stratigraphic offsets in the peak concentrations of platinum-group elements (PGE) and base-metal sulfides in the main sulfide zone of the Great Dyke and the precious metals zone of the Sonju Lake Intrusion have, in part, been attributed to the interaction between magmatic PGE-bearing base-metal sulfide assemblages and hydrothermal fluids. In this paper, we provide mineralogical and textural evidence that indicates alteration of base-metal sulfides and mobilization of metals and S during hydrothermal alteration in both mineralized intrusions. Stable isotopic data suggest that the fluids involved in the alteration were of magmatic origin in the Great Dyke but that a meteoric water component was involved in the alteration of the Sonju Lake Intrusion. The strong spatial association of platinum-group minerals, principally Pt and Pd sulfides, arsenides, and tellurides, with base-metal sulfide assemblages in the main sulfide zone of the Great Dyke is consistent with residual enrichment of Pt and Pd during hydrothermal alteration. However, such an interpretation is more tenuous for the precious metals zone of the Sonju Lake Intrusion where important Pt and Pd arsenides and antimonides occur as inclusions within individual plagioclase crystals and within alteration assemblages that are free of base-metal sulfides. Our observations suggest that Pt and Pd tellurides, antimonides, and arsenides may form during both magmatic crystallization and subsolidus hydrothermal alteration. Experimental studies of magmatic crystallization and hydrothermal transport/deposition in systems involving arsenides, tellurides, antimonides, and base metal sulfides are needed to better understand the relative importance of magmatic and hydrothermal processes in controlling the distribution of PGE in mineralized layered intrusions of this type. ?? Springer-Verlag 2007.

  2. Use of accelerated helium-3 ions for determining oxygen and carbon impurities in some pure materials (United States)

    Aleksandrova, G. I.; Borisov, G. I.; Demidov, A. M.; Zakharov, Y. A.; Sukhov, G. V.; Shmanenkova, G. I.; Shchelkova, V. P.


    Methods are developed for the determination of O impurity in Be and Si carbide and concurrent determination of C and O impurities in Si and W by irradiation with accelerated He-3 ions and subsequent activity measurements of C-11 and F-18 formed from C and O with the aid of a gamma-gamma coincidence spectrometer. Techniques for determining O in Ge and Ga arsenide with radiochemical separation of F-18 are also described.

  3. Use of a semiconductor-diode laser in urology (United States)

    Watson, Graham M.


    The gallium arsenide semiconductor laser can emit in the near infrared where the depth of penetration into tissue is great although scattering is less than with the Nd:YAG laser. The laser is highly compact. It runs off a normal electrical outlet with no cooling requirement. It is therefore quiet and convenient. The laser has been assessed in a wide variety of applications in our urological department.

  4. Optical beam induced current investigations of particle detectors

    Energy Technology Data Exchange (ETDEWEB)

    Castaldini, A.; Cavallini, A.; Polenta, L. [INFM, Bologna (Italy)


    OBIC analyses of particle detectors are presented. The depletion layer width W of semi-insulating gallium arsenide Schottky detectors versus biasing has been studied and it is concluded that at high voltages W linearly increases with the applied bias. Furthermore, the electric field distribution in silicon p-i-n detectors has been investigated before and after heavy irradiation and a V-shaped distribution has been assessed. (orig.)

  5. None

    Energy Technology Data Exchange (ETDEWEB)

    Cason, D.L.; Hicks, S.C. [eds.


    This publication announces, bimonthly, current worldwide information available on all aspects of photovoltaic amorphous technology, polycrystalline thin films, gallium arsenide, crystalline silicon, concentrator technology, and systems research. It contains abstracts of DOE reports, journal articles, conference papers, patents, theses, and monographs added to the Energy Science and Technology Database during the past two months. Also included are U.S. information obtained through acquisition programs or interagency agreements and international information.

  6. The AMOS cell - An improved metal-semiconductor solar cell. [Antireflection coated Metal Oxide Semiconductor (United States)

    Stirn, R. J.; Yeh, Y.-C. M.


    A new fabrication process is being developed which significantly improves the efficiency of metal-semiconductor solar cells. The resultant effect, a marked increase in the open-circuit voltage, is produced by the addition of an interfacial layer oxide on the semiconductor. Cells using gold on n-type gallium arsenide have been made in small areas (0.17 sq cm) with conversion efficiencies of 15% in terrestrial sunlight.

  7. JPRS Report, Science & Technology, Europe (United States)


    Microprocessor Program Launched [R. Loukil; Paris INDUSTRIES ET TECHNIQUES, 20 Sep 91] 43 Eastern German Firm Becomes Sole European Gallium Arsenide Producer...that the reaction of tissues in contact with a nickel-titanium prosthesis stabilizes, as with stainless steel, within the first 3 months after...many others, has been brought to its knees by Japan, could adopt SLMI, since it is a highly innovative product that can be used to develop an

  8. Embedment of metal nanoparticles in GaAs and Si for plasmonic absorption enhancement in intermediate band solar cells


    Moura Dias Mendes, Manuel Joao de; Hernández Martín, Estela; Tobías Galicia, Ignacio; Martí Vega, Antonio; Luque López, Antonio


    The high near-field enhancement occurring in the vicinity of metallic nanoparticles (MNPs) sustaining surface plasmons can only be fully exploited in photovoltaic devices if the MNPs are placed inside their semiconducting material, in the photoactive region. In this work an experimental procedure is studied to embed MNPs in gallium arsenide (GaAs) and silicon (Si), which can be applied to other semiconductor host materials. The approach consists in spin-coating colloidal MNPs dispersed i...

  9. Spatial light modulation in compound semiconductor materials (United States)

    Cheng, Li-Jen (Inventor); Gheen, Gregory O. (Inventor); Partovi, Afshin (Inventor)


    Spatial light modulation (22) in a III-V single crystal (12), e.g., gallium arsenide, is achieved using the photorefractive effect. Polarization rotation created by beam coupling is utilized in one embodiment. In particular, information (16)on a control beam (14) incident on the crystal is transferred to an input beam (10), also incident on the crystal. An output beam (18) modulated in intensity is obtained by passing the polarization-modulated input beam through a polarizer (20).

  10. Base-Level Management of Laser Radiation Protection Program (United States)


    gallium-aluminum-arsenide (GaAlAs), or alexandrite. Liquid materials that are used as active mediums include: rhodamine dye and coumarin . Section D...a source of radiation and the dye emits radiation at a longer wavelength. Coumarin dyes are useful as active media for emissions inthe blue to green...plastic, or quartz. Optical fibers have found uses in many areas including: industrial laser welding; medical surgery; dental work; product-code

  11. Failure Mechanisms of GaAs Transistors - A Literature Survey (United States)


    Orito et al, Large Size Dislocation-Free Gallium Arsenide Single Crystals for LSI Applications, GaAs IC Symposium, October 1986, Technical Digest 1986...the channel resistance is modulated by the channel dimensions and the transconductance is degraded by the parasitic resistance. gn = gmo /(l+Rs gmo is the terminal transconductance, gmo is the internal (Rs=0 ) transconductance and Rs is the parasitic source resistance. It’s obvious that it’s

  12. Diffusion theory and optimization of ohmic contacts to n-layer of bipolar nanoheterostructures (United States)

    Nezhentsev, A. V.; Zemlyakov, V. E.; Egorkin, V. I.; Garmash, V. I.


    Ohmic contacts to n-layers of gallium arsenide-based heterobipolar nanoheterostructures obtained by layer electron-beam evaporation Ge/Au/Ni/Au are studied. Time and temperature dependencies of diffusion profiles of doping Ge distribution are calculated. The interface of metal-semiconductor is analyzed with SEM, then an RTA installation design and methodology of RTA are suggested based on the results of this study. This allows to obtain ohmic contacts with low resistance and minimum transition layer.

  13. Lunar Laser Communication System (United States)


    gallium arsenide ( InGaAs ) quad- rant detector enables fast spatial acqui- sition and coarse tracking of the optical uplink. Transmit and receive...October–November 2013 month-long demonstration of the high-data-rate transmission from a lunar-orbiting satellite. The array of transmit apertures is...located above the array of receive apertures. This work is sponsored by the National Aeronautics and Space Administration under U.S. Air Force

  14. [Use of laser therapy in inflammatory diseases of the paranasal sinuses]. (United States)

    Elistratov, V V; Naumov, G P; Naumov, O G; Fishkin, V A


    105 patients with acute and chronic inflammation of the paranasal sinuses were exposed to the radiation of the semiconductor laser Uzor using gallium arsenide. The treatment combined antiinflammatory drugs with vasoconstrictive nasal drops, maxillary puncture and laser radiation. Intolerance to laser effects was registered in 3 patients. The course of treatment included 5-6 sessions in acute sinusitis and 10 sessions in chronic sinusitis. Laser therapy was found effective as it reduced the time of treatment by 1-2 days.

  15. Small Business Innovations (Photodetector) (United States)


    Epitaxx, Inc. of Princeton, NJ, developed the Epitaxx Near Infrared Room Temperature Indium-Gallium-Arsenide (InGaAs) Photodetector based on their Goddard Space Flight Center Small Business Innovation Research (SBIR) contract work to develop a linear detector array for satellite imaging applications using InGaAs alloys that didn't need to be cooled to (difficult and expensive) cryogenic temperatures. The photodetectors can be used for remote sensing, fiber optic and laser position-sensing applications.

  16. Design and characterization of a novel diamond resonator


    Maricar, Mohamed Ismaeel; Glover, James; Evans, Gwynne; Khalid, Ata-ul-Habib; Cumming, David; Oxley, Chris


    In this article, the resonant frequency and quality factor of a novel coplanar waveguide (cpw) diamond-shaped resonator were analyzed using advanced design system-2009 momentum model software. The diamond resonator was compared with the cpw radial stub resonator on gallium arsenide (GaAs); the work indicated that the diamond resonator had a smaller physical size and higher quality factor (Q) at millimetric wave frequencies. Experimentally measured diamond cpw resonators fabricated on GaAs wer...

  17. Kondo physics in tunable semiconductor nanowire quantum dots


    Jespersen, T. S.; Aagesen, M.; Soerensen, C.; Lindelof, P. E.; Nygaard, J.


    We have observed the Kondo effect in strongly coupled semiconducting nanowire quantum dots. The devices are made from indium arsenide nanowires, grown by molecular beam epitaxy, and contacted by titanium leads. The device transparency can be tuned by changing the potential on a gate electrode, and for increasing transparencies the effects dominating the transport changes from Coulomb Blockade to Universal Conductance Fluctuations with Kondo physics appearing in the intermediate region.

  18. TEM EDS analysis of epitaxially-grown self-assembled indium islands

    Directory of Open Access Journals (Sweden)

    Jasmine Sears


    Full Text Available Epitaxially-grown self-assembled indium nanostructures, or islands, show promise as nanoantennas. The elemental composition and internal structure of indium islands grown on gallium arsenide are explored using Transmission Electron Microscopy (TEM Energy Dispersive Spectroscopy (EDS. Several sizes of islands are examined, with larger islands exhibiting high (>94% average indium purity and smaller islands containing inhomogeneous gallium and arsenic contamination. These results enable more accurate predictions of indium nanoantenna behavior as a function of growth parameters.

  19. Low-level laser therapy: Case-control study in dogs with sterile pyogranulomatous pododermatitis


    Roberta Perego; Proverbio, D.; Zuccaro, A.; Spada, E.


    Aim: Low-level laser therapy (LLLT) is a therapeutic photobiostimulation with properties in reducing swelling, inflammation, and promoting tissue healing. The objective of this pilot study was to evaluate LLLT in sterile pyogranulomatous pododermatitis in five dogs. Materials and Methods: In each dog, one lesion was designated as the control (treated with a 0.0584% hydrocortisone aceponate spray), and one or more other lesions were treated with a gallium aluminum arsenide-laser, daily for ...

  20. Air Force Manufacturing Technology Electronics Program, FY72-FY85. (United States)


    magnetic films of the composition Yl.52 EuO.30 TmO.30 CaO.88 Fe4.12 012 on 1.5 inch and 2.0 inch gadolinium gallium garnet substrates. Ten film were...economical and reliable manufacture of complex thin walled extruded aluminum alloy precision parts for antenna systems. Process 42 quantities of gallium ... gallium arsenide materials, mini traveling wave tubes, polyimide printed wiring boards, hermetic chip carriers, and the laser pattern generator to

  1. Low power laser irradiation does not affect the generation of signals in a sensory receptor

    Energy Technology Data Exchange (ETDEWEB)

    Lundeberg, T.; Zhou, J.


    The effect of low power Helium-Neon (He-Ne) and Gallium-Arsenide (Ga-As) laser on the slowly adapting crustacean stretch receptor was studied. The results showed that low power laser irradiation did not affect the membrane potential of the stretch receptor. These results are discussed in relation to the use of low power laser irradiation on the skin overlaying acupuncture points in treatment of pain syndrome.

  2. ONR Far East Scientific Bulletin. Volume 7. Number 1, January-March 1982. (United States)


    of deep levels and Shanghai Institute of Metallurgy space charge in Gallium Arsenide Chinese Academy of Sciences 865 Change Ning Road Shanghai 200050...plant for Kuwait, equipment for a power plant in Shanghai for steel manufacture, and an impressive control system for subways in Hong Kong. A great deal...are primarily towards small refrigerators of LOW capacity at 4.2 K for use as onboard refrigerators on MAGLEV vehicles and foi cryopumps. When

  3. SPS Energy Conversion Power Management Workshop (United States)


    Energy technology concerning photovoltaic conversion, solar thermal conversion systems, and electrical power distribution processing is discussed. The manufacturing processes involving solar cells and solar array production are summarized. Resource issues concerning gallium arsenides and silicon alternatives are reported. Collector structures for solar construction are described and estimates in their service life, failure rates, and capabilities are presented. Theories of advanced thermal power cycles are summarized. Power distribution system configurations and processing components are presented.

  4. Manhattan Project Technical Series The Chemistry of Uranium (I) Chapters 1-10

    Energy Technology Data Exchange (ETDEWEB)

    Rabinowitch, E. I. [Argonne National Laboratory (ANL), Argonne, IL (United States); Katz, J. J. [Argonne National Laboratory (ANL), Argonne, IL (United States)


    This constitutes Chapters 1 through 10. inclusive, of The Survey Volume on Uranium Chemistry prepared for the Manhattan Project Technical Series. Chapters are titled: Nuclear Properties of Uranium; Properties of the Uranium Atom; Uranium in Nature; Extraction of Uranium from Ores and Preparation of Uranium Metal; Physical Properties of Uranium Metal; Chemical Properties of Uranium Metal; Intermetallic Compounds and Alloy systems of Uranium; the Uranium-Hydrogen System; Uranium Borides, Carbides, and Silicides; Uranium Nitrides, Phosphides, Arsenides, and Antimonides.

  5. Monolithic AlGaAs second-harmonic nanoantennas

    CERN Document Server

    Gili, V F; Locatelli, A; Rocco, D; Finazzi, M; Ghirardini, L; Favero, I; Gomez, C; Lemaître, A; Celebrano, M; De Angelis, C; Leo, G


    We demonstrate monolithic aluminum gallium arsenide (AlGaAs) optical anoantennas. Using a selective oxidation technique, we fabricate such epitaxial semiconductor nanoparticles on an aluminum oxide substrate. Second harmonic generation from an AlGaAs nanocylinder of height h=400 nm and varying radius pumped with femtosecond pulses delivered at 1554-nm wavelength has been measured, revealing a peak conversion efficiency exceeding 10-5 for nanocylinders with an otpimized geometry.

  6. Influence of Substrate Material on Radiation Characteristics of THz Photoconductive Emitters

    Directory of Open Access Journals (Sweden)

    Jens Klier


    Full Text Available We present in this paper spectral and spatial characteristics of terahertz emission from standard dipole antenna structures used as emitters depending on the substrate material. All antenna structures were lithographically fabricated on low-temperature (LT grown, few-micrometers-thick gallium arsenide (GaAs layers. To investigate the effect of the substrate material on the radiation pattern of terahertz beams, either semi-insulating gallium arsenide or high-resistivity silicon substrate wafers have been used. As detector a standard 40 µm long dipole antenna on a semi-insulating GaAs substrate with a low-temperature grown gallium arsenide layer on it has been employed; this configuration allows for broadband detection and is still efficient enough for the characterization purpose. Strong dependence of the radiation pattern on the substrate used for the terahertz source is demonstrated. The measured patterns and differences between the two cases of substrates are well explained by means of classical diffraction.

  7. A statistical analysis of the initial biodistribution of {sup 153}Sm-EDTMP in a canine

    Energy Technology Data Exchange (ETDEWEB)

    Galiano, Eduardo [Department of Physics, Laurentian University, Ramsey Lake Road, Sudbury, Ont., P3E 2C6 (Canada)]. E-mail:; Stradiotto, Marco [Department of Physics, Laurentian University, Ramsey Lake Road, Sudbury, Ont., P3E 2C6 (Canada)


    {sup 153}Sm (t{sub 1/2}=46h) emits a 103keV gamma photon and two medium-energy beta particles. Five mCi of Samarium-153 ethylenediaminetetramethylenephosphonic acid ({sup 153}Sm-EDTMP) were administered to a clinically normal dog and whole body scans were obtained at 15min, 2h, and 24h post-injection (PI). Regions of interest (ROIs) were drawn representing abdomen, knee, rib, vertebral bodies, bladder, kidney, and liver, in each image. For each ROI, the mean intensity and standard deviation were computed, and a histogram was created. Clinically significant increased uptakes were found in liver and kidney.

  8. Coprecipitation experiment with Sm hydroxide using a multitracer produced by nuclear spallation reaction: A tool for chemical studies with superheavy elements. (United States)

    Kasamatsu, Yoshitaka; Yokokita, Takuya; Toyomura, Keigo; Shigekawa, Yudai; Haba, Hiromitsu; Kanaya, Jumpei; Huang, Minghui; Ezaki, Yutaka; Yoshimura, Takashi; Morita, Kosuke; Shinohara, Atsushi


    To establish a new methodology for superheavy element chemistry, the coprecipitation behaviors of 34 elements with samarium hydroxide were investigated using multitracer produced by a spallation of Ta. The chemical reactions were rapidly equilibrated within 10s for many elements. In addition, these elements exhibited individual coprecipitation behaviors, and the behaviors were qualitatively related to their hydroxide precipitation behaviors. It was demonstrated that the ammine and hydroxide complex formations of superheavy elements could be investigated using the established method. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Radiological response of lanthanum guiding seeds in brachytherapy implants; Resposta radiologica de sementes guia de lantanio em implantes braquiterapicos

    Energy Technology Data Exchange (ETDEWEB)

    Silva, L.S.R.; Machado, E.D.P., E-mail: [Centro Federal de Educacao Tecnologica de Minas Gerais, Belo Horizonte, MG (Brazil). Departamento de Engenharia de Materiais; Campos, T.P.R. [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Departamento de Engenharia Nuclear; Roberto, W.S. [Centro Federal de Educacao Tecnologica de Minas Gerais, Belo Horizonte, MG (Brazil). Departamento de Fisica e Matematica


    Ceramic seeds with La-139 incorporated were synthesized to be used as radiological guides in brachytherapy implants. The synthesis was performed based on the sol-gel method. The seeds were subjected to characterization by Scanning Electron Microscopy, X-ray diffraction and Energy-Dispersive X-ray Spectroscopy. Furthermore, the contrast from a radiographic film was evaluated to lanthanum, samarium and holmium seeds. Radiological response on a phantom at different depths with lanthanum seeds and metal seeds was also investigated. Based on the values of contrast, the synthesized lanthanum seeds can be considered efficient as radiological guides when implanted together with pure Ho-165 and Sm-152 seeds. (author)

  10. Understanding the photoluminescence characteristics of Eu{sup 3+}-doped double-perovskite by electronic structure calculation

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Binita [St. Paul’s Cathedral Mission College, 33/1Raja Rammohan Roy Road, Kolkata 700009 (India); Halder, Saswata; Sinha, T. P. [Department of Physics, Bose Institute, 93/1 Acharya Prafulla Chandra Road, Kolkata 700009 (India); Das, Sayantani [Department of Physics, University of Calcutta, 92 Acharya Prafulla Chandra Road, Kolkata 700009 (India)


    Europium-doped luminescent barium samarium tantalum oxide Ba{sub 2}SmTaO{sub 6} (BST) has been investigated by first-principles calculation, and the crystal structure, electronic structure, and optical properties of pure BST and Eu-doped BST have been examined and compared. Based on the calculated results, the luminescence properties and mechanism of Eu-doped BST has been discussed. In the case of Eu-doped BST, there is an impurity energy band at the Fermi level, which is formed by seven spin up energy levels of Eu and act as the luminescent centre, which is evident from the band structure calculations.

  11. Geochronology and structuring of the Ceara State: Borborema Province northwestern part, NE Brazil; Geocronologia e estruturacao do estado do Ceara: NW da provincia Borborema, NE, Brasil

    Energy Technology Data Exchange (ETDEWEB)

    Fetter, A.; Van Schmus, W.R. [Kansas Univ., Lawrence, KS (United States). Dept. of Geology; Santos, Ticiano J. Saraiva dos [UNESP, Rio Claro, SP (Brazil). Inst. de Geociencias e Ciencias Exatas; Arthaud, M.; Nogueira Neto, J. [Ceara Univ., Fortaleza, CE (Brazil). Dept. de Geologia


    The work confirms that the geochronological new data U/Pb in zircon and Samarium/Neodymium from the Ceara State furnished a refined chronology of the geological activity in the NW part of the Borborema Province, indicating an evolutive history since 2,78 Ga and 532 Ma. Furthermore, these data facilitated the different crust domain outlines in the region, putting age maximum limits in the pre-brasilianas supracrusts rocks deposition, and evidencing the epoch and duration of the Brasiliano magmatism and metamorphism in the northwest part of the State

  12. Structural aspects of displacive transformations: what can optical microscopy contribute? Dehydration of Sm2(C2O43·10H2O as a case study

    Directory of Open Access Journals (Sweden)

    Alexander A. Matvienko


    Full Text Available For martensitic transformations the macroscopic crystal strain is directly related to the corresponding structural rearrangement at the microscopic level. In situ optical microscopy observations of the interface migration and the change in crystal shape during a displacive single crystal to single crystal transformation can contribute significantly to understanding the mechanism of the process at the atomic scale. This is illustrated for the dehydration of samarium oxalate decahydrate in a study combining optical microscopy and single-crystal X-ray diffraction.

  13. Synthesis and application of a new fluorous-tagged ammonia equivalent

    DEFF Research Database (Denmark)

    Nielsen, Simon Dalsgaard; Smith, Garrick; Begtrup, Mikael


    A novel fluorous-tagged ammonia equivalent has been developed. It is based on a nitrogen-oxygen bond, which can be cleaved in a traceless manner by a molybdenum complex or samarium diiodide. The application in the synthesis of ureas, amides, sulfonamides, and carbamates is described. The scope of...... of the fluorous N--O linker is exemplified by the synthesis of itopride, a drug used for the treatment of functional dyspepsia. Itopride was synthesized with the aid of fluorous purification methods and the product was isolated in good overall yield, with high purity....

  14. Synthesis and application of a new fluorous-tagged ammonia equivalent. (United States)

    Nielsen, Simon D; Smith, Garrick; Begtrup, Mikael; Kristensen, Jesper L


    A novel fluorous-tagged ammonia equivalent has been developed. It is based on a nitrogen-oxygen bond, which can be cleaved in a traceless manner by a molybdenum complex or samarium diiodide. The application in the synthesis of ureas, amides, sulfonamides, and carbamates is described. The scope of the fluorous N-O linker is exemplified by the synthesis of itopride, a drug used for the treatment of functional dyspepsia. Itopride was synthesized with the aid of fluorous purification methods and the product was isolated in good overall yield, with high purity. Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Jaderné kolektivní stupně volnosti a Skyrme funkcionál


    Božík, Daniel


    Title: Energy functional theories in nuclear physics Author: Daniel Božík Department: Institute of Particle and Nuclear Physics of Charles University Supervisor: prof. RNDr. Jan Kvasil, DrSc. Supervisor's e-mail address: Abstract: In the present work we study the giant resonances of the chain of even-even samarium nuclei 144−154 Sm. The numerical calculations are provided by a chain of numer- ical codes. Mean field is calculated by the HFB method for the Skyrme d...

  16. Geochronology Intermediary Laboratory implantation at the Rio Grande do Norte Federal University: the dating of the Serrinha Granitoid (RN) and the correlate Brasiliana extensional deformation; Implantacao do Laboratorio Intermediario de Geocronologia na UFRN: a datacao do granitoide de Serrinha (RN) e da deformacao extensional brasiliana correlata

    Energy Technology Data Exchange (ETDEWEB)

    Macedo, Maria Helena F.; Sa, Emanuel F. Jardim de; Souza, Zorano S. [Pernambuco Univ., Recife, PE (Brazil). Nucleo de Pesquisa em Geodinamica e Geofisica; Mendes, Franklin S. [Pernambuco Univ., Recife, PE (Brazil). Curso de Quimica; Ramalho, Karlos A.C. [Pernambuco Univ., Recife, PE (Brazil). Curso de Geologia


    The article describes the activities developed by the Geochronology Intermediary Laboratory at the Federal University of the Rio Grande do Norte, a Brazilian university, where there were the preoccupation of establishing strategies for a geochronological development. It relates the Rubidium-Strontium (Rb/Sr) and Samarium-Neodymium (Sm/Nd) methods, describing the analysis realized in these methodologies. Afterward, it presents the geological and petrographic situation of the Granitoide de Serrinha, located at Rio Grande do Norte State, Brazil and its geochronological data 8 refs., 2 figs.

  17. ACR-ASTRO practice guideline for the performance of therapy with unsealed radiopharmaceutical sources. (United States)

    Henkin, Robert E; Del Rowe, John D; Grigsby, Perry W; Hartford, Alan C; Jadvar, Hossein; Macklis, Roger M; Parker, J Anthony; Wong, Jeffrey Y C; Rosenthal, Seth A


    This guideline is intended to guide appropriately trained and licensed physicians performing therapy with unsealed radiopharmaceutical sources. Adherence to this guideline should help to maximize the efficacious use of these procedures, maintain safe conditions, and ensure compliance with applicable regulations. The topics dealt with in this guideline include indications for the use of iodine-131, both for the treatment of hyperthyroidism and thyroid carcinoma. In addition, indications for other less common procedures include those for the use of phosphorous-32 in its liquid and colloidal forms, strontium-89, samarium-153, and the use of Y-90 antibodies.

  18. Accumulation of rare earth elements by siderophore-forming Arthrobacter luteolus isolated from rare earth environment of Chavara, India. (United States)

    Emmanuel, E S Challaraj; Ananthi, T; Anandkumar, B; Maruthamuthu, S


    In this study, Arthrobacter luteolus, isolated from rare earth environment of Chavara (Quilon district, Kerala, India), were found to produce catechol-type siderophores. The bacterial strain accumulated rare earth elements such as samarium and scandium. The siderophores may play a role in the accumulation of rare earth elements. Catecholate siderophore and low-molecular-weight organic acids were found to be present in experiments with Arthrobacter luteolus. The influence of siderophore on the accumulation of rare earth elements by bacteria has been extensively discussed.

  19. Synthesis of 2-(9,10-Dihydro-9,10-propanoanthracen-9-yl-N-methylethanamine via a [4+2] Cycloaddition

    Directory of Open Access Journals (Sweden)

    Usama Karama


    Full Text Available The synthesis of the tetracyclic molecule 2-(9,10-dihydro-9,10-propano-anthracen-9-yl-N-methylethanamine(2as a homologue of the antidepressant 1-(9,10-dihydro-9,10-ethanoanthracen-9-yl-N-methylmethaneamine (1 was described. The key intermediate 9-(prop-2-en-1-yl-9,10-dihydro-9,10-propanoanthracen-12-one (7was successfully synthesized via a [4+2] cycloaddition of α-bromoacrolein and 9-allyl-anthracene, followed by ring expansion and samarium diiodide deoxygenation.

  20. Synthesis of 2-(9,10-dihydro-9,10-propanoanthracen-9-yl)-N-methylethanaminevia a [4+2] cycloaddition. (United States)

    Karama, Usama; Al-Saidey, Adel; Al-Othman, Zeid; Almansour, Abdel Rahman


    The synthesis of the tetracyclic molecule 2-(9,10-dihydro-9,10-propano-anthracen-9-yl)-N-methylethanamine (2) as a homologue of the antidepressant 1-(9,10-dihydro-9,10-ethanoanthracen-9-yl)-N-methylmethaneamine (1) was described. The key intermediate 9-(prop-2-en-1-yl)-9,10-dihydro-9,10-propanoanthracen-12-one (7) was successfully synthesized via a [4+2] cycloaddition of alpha-bromoacrolein and 9-allyl-anthracene, followed by ring expansion and samarium diiodide deoxygenation.


    Directory of Open Access Journals (Sweden)

    Sergiy Smola


    Full Text Available Four new heteronuclear lanthanide complexes with general formula [Ge(OH(μ-HDTPALnGe(OH (μ-DTPA] (Ln = Sm – Dy were synthesized and subsequently characterized by different physico- chemical methods. The structures of new compounds have been proposed. In considered complexes the 4f-luminescence of three-charged ions of samarium, europium, terbium and dysprosium is realized at UV-excitation. It is noteworthy that it is the first observation of 4f-luminescence in water solutions of heteronuclear f-p-complexes. The comparison of luminescent characteristics of hetero- and homonuclear landthanide complexes is described and discussed as well.

  2. Die selfverstaan van die Samaritane soos dit uit- drukking vind in die feesliturgie צלות מוצד השמיני

    Directory of Open Access Journals (Sweden)

    J. Beyers


    Full Text Available The self-understanding of the Samaritans, as expressed in the liturgy of the צלות מוצד השמיני festivalThis study is concerned with the identity and religion of the Samaritans. The way in which the Samaritans understood their identity is highlighted by their perception of God, by the traditions they adhered to and by the selection of texts from the Pentateuch they used in their liturgy. The beliefs and rituals of the Samarium faith found their way into the Samaritan Liturgy. The study of a part of the Samaritan Liturgy shows that the Samaritans are heirs to the religion of the northern tibes of Israel.

  3. Development of atomic spectroscopy technology -Development of ultrasensitive spectroscopic analysis technology

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Hyung Kee; Song Kyoo Suk; Kim, Duk Hyun; Hong, Suk Kyung; Lee, Yong Joo; Lee, Jong Hoon; Yang, Kee Hoh [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)


    For the resonance ionization spectroscopy experiment, erbium and samarium were chosen as test elements and their optimum photoionization schemes for trace analysis have been investigated by using multiphoton spectroscopic techniques. With the optimum scheme, the detection limit of various atoms were measured. For the test of laser induced fluorescence system, calibration curves obtained from lead and cadmium standard solutions were made and Pb concentrations of various unknown solutions were determined. By using the developed differential absorption lidar system, backscattering signals from aerosol and ozone have been measured. Error source, error calibration and data interpretation techniques have been also studied. 60 figs, 8 pix, 28 tabs, 30 refs. (Author).

  4. Detection of rare earth elements in Powder River Basin sub-bituminous coal ash using laser-induced breakdown spectroscopy (LIBS)

    Energy Technology Data Exchange (ETDEWEB)

    Tran, Phuoc [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United State; Mcintyre, Dustin [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United State


    We reported our preliminary results on the use of laser-induced breakdown spectroscopy to analyze the rare earth elements contained in ash samples from Powder River Basin sub-bituminous coal (PRB-coal). We have identified many elements in the lanthanide series (cerium, europium, holmium, lanthanum, lutetium, praseodymium, promethium, samarium, terbium, ytterbium) and some elements in the actinide series (actinium, thorium, uranium, plutonium, berkelium, californium) in the ash samples. In addition, various metals were also seen to present in the ash samples

  5. Giant magneto resistance and temperature coefficient of resistance in Sm0.55Sr0.30Ag0.15MnO3 perovskite


    Bhat, Masroor Ahmad; Zargar, Rayees A.; Modi, Anchit; Arora, Manju; Gaur, N K


    Silver ions substituted samarium strontium manganite (Sm0.55Sr0.30Ag0.15MnO3) pervoskite was synthesized by using respective oxides in stoichiometric ratio through solid state reaction. The as-prepared sample was characterized by various analytical techniques to confirm its formation and understand the effect of monovalent silver ions in pervoskite lattice. X-ray diffraction pattern confirms the single phase formation while grain morphology in SEM image indicates good connectivity among the g...

  6. Synergistic Effects of Sm and C Co-Doped Mixed Phase Crystalline TiO₂ for Visible Light Photocatalytic Activity. (United States)

    Peng, Fuchang; Gao, Honglin; Zhang, Genlin; Zhu, Zhongqi; Zhang, Jin; Liu, Qingju


    Mixed phase TiO₂ nanoparticles with element doping by Sm and C were prepared via a facile sol-gel procedure. The UV-Vis light-diffuse reflectance spectroscopy analysis showed that the absorption region of co-doped TiO₂ was shifted to the visible-light region, which was attributed to incorporation of samarium and carbon into the TiO₂ lattice during high-temperature reaction. Samarium effectively decreased the anatase-rutile phase transformation. The grain size can be controlled by Sm doping to achieve a large specific surface area useful for the enhancement of photocatalytic activity. The photocatalytic activities under visible light irradiation were evaluated by photocatalytic degradation of methylene blue (MB). The degradation rate of MB over the Sm-C co-doped TiO₂ sample was the best. Additionally, first-order apparent rate constants increased by about 4.3 times compared to that of commercial Degusssa P25 under the same experimental conditions. Using different types of scavengers, the results indicated that the electrons, holes, and •OH radicals are the main active species for the MB degradation. The high visible-light photocatalytic activity was attributed to low recombination of the photo-generated electrons and holes which originated from the synergistic effect of the co-doped ions and the heterostructure.

  7. Molecular electrophosphorescence in (Sm, Gd)-{beta}-diketonate complex blend for OLED applications

    Energy Technology Data Exchange (ETDEWEB)

    Reyes, R., E-mail: [Facultad de Ingenieria Quimica y Textil, Universidad Nacional de Ingenieria, UNI, Av. Tupac Amaru 210, Lima 31, Peru (Peru); Cremona, M. [DIMAT - Divisao de Metrologia de Materiais, Instituto Nacional de Metrologia, Normalizacao e Qualidade Industrial, INMETRO, Duque de Caxias, RJ (Brazil); Departamento de Fisica, Pontificia Universidade Catolica do Rio de Janeiro, PUC-Rio, C.P. 38071, Rio de Janeiro, RJ, CEP 22453-970 (Brazil); Teotonio, E.E.S. [Departamento de Quimica, CCEN, Universidade Federal da Paraiba, UFPB, C.P. 5093, Joao Pessoa, PB, CEP 5805-970 (Brazil); Brito, H.F. [Instituto de Quimica, Universidade de Sao Paulo, USP, C.P. 26077, Sao Paulo, SP, CEP 05599-970 (Brazil); Malta, O.L. [Departamento de Quimica Fundamental, CCEN, Universidade Federal de Pernambuco, Cidade Universitaria, Recife, PE, CEP 50670-901 (Brazil)


    In this work the preparation and characterization of the triple-layer organic light-emitting diode (OLED) using a mixture of the samarium and gadolinium {beta}-diketonate complexes [Sm{sub 0.5}Gd{sub 0.5}(TTA){sub 3}(TPPO){sub 2}] as emitting layer is reported. The OLED's devices contain 1-(3-methylphenyl)-1,2,3,4-tetrahydroquinoline-6-carboxyaldehyde-1, 1'-diphenylhydrazone (MTCD) as hole-transporting layer and tris(8-hydroxyquinoline aluminum) (Alq{sub 3}) as electron transporting layer. The electroluminescence spectrum present emission narrow bands from the {sup 4}G{sub 5/2}{yields}{sup 6}H{sub J} transitions (where J=5/2, 7/2 and 9/2) characteristic of the Sm{sup 3+} ion. These sharp lines are overlapped with a broad band attributed to the electrophosphorescence from the T{sub 1}{yields}S{sub 0} transition in the ligand TTA. The intramolecular energy transfer is discussed and applied on the change of the emission color of the organic LEDs at different bias voltages. - Highlights: Black-Right-Pointing-Pointer Samarium and gadolinium complexes. Black-Right-Pointing-Pointer OLED with complex blend (Sm,Gd). Black-Right-Pointing-Pointer Electrophosphorescence emission detection. Black-Right-Pointing-Pointer Application in OLED changing the color emission.

  8. Spontaneous and stimulated emission in Sm{sup 3+}-doped YAl{sub 3}(BO{sub 3}){sub 4} single crystal

    Energy Technology Data Exchange (ETDEWEB)

    Ryba-Romanowski, Witold [Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okólna 2, 50-422 Wrocław (Poland); Lisiecki, Radosław, E-mail: [Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okólna 2, 50-422 Wrocław (Poland); Beregi, Elena [Research Institute for Solid State Physics and Optics, Hungarian Academy of Sciences, Budapest (Hungary); Martín, I.R. [Departamento de Física, Instituto de Materiales y Nanotecnología (IMN), Universidad de La Laguna, 38206 S/C de Tenerife, Laguna (Spain)


    Single crystals of YAl{sub 3}(BO{sub 3}){sub 4} doped with trivalent samarium were grown by the top-seeded high temperature solution method and their absorption and emission spectra were investigated. Optical pumping into prominent absorption band around 405 nm feeds the {sup 4}G{sub 5/2} metastable level giving rise to intense visible luminescence distributed in several spectral lines with the most intense line around 600 nm characterized by a branching ratio of 0.42 and peak emission cross section of 0.25×10{sup −20} cm{sup 2}. Optical amplification at 600 nm with a gain coefficient of 2.9 cm{sup −1} was achieved during a pump-and-probe experiment. - Highlights: • YAB:Sm crystal grown by the top-seeded high temperature solution method. • Spectroscopic qualities relevant for visible laser operation. • YAB:Sm single crystal used in a pump-and-probe experiment. • Optical amplification properties of samarium doped YAl{sub 3}(BO{sub 3}){sub 4}.

  9. Synthesis of Sm2(WO4)3 nanocrystals via a statistically optimized route and their photocatalytic behavior (United States)

    Mahdi Pourmortazavi, Seied; Rahimi-Nasrabadi, Mehdi; Aghazadeh, Mustafa; Ganjali, Mohammad Reza; Sadeghpour Karimi, Meisam; Norouzi, Parviz


    The application of a Taguchi approach to the optimization of the precipitation reaction between Sm3+ and {{{{WO}}}{{4}}}2- as a rapid procedure for the preparation of Sm2(WO4)3 nanoparticles as a photocatalyst is evaluated. The effect of the prominent operating factors on the product are evaluated so as to yield the best synthesis conditions, leading to the finest product particles of the desired morphologies, which can turn the rather primitive precipitation reaction into a powerful tool for the preparation of nanostructured crystals of insoluble salts. The effects of the alteration of the studied factors on the final properties of the product are further evaluated through characterization techniques, including x-ray diffraction, energy-dispersive x-ray analysis, scanning electron microscopy, transmission electron microscopy and Fourier transform infrared spectroscopy. The results of the study, together with the analysis of variance operations, revealed that through the control of samarium and tungstate concentrations, and temperature, considerable results can be achieved in terms of the product dimensions, morphology, purity and structure. Moreover, the photocatalytic behavior of the synthesized samarium tungstate nanoparticles for the photocatalytic degradation of methylene blue under ultraviolet light is investigated and compared with titanium dioxide as a well-known photocatalyst.

  10. High-pressure synthesis and exotic heavy-fermion behaviour of the filled skutterudite SmPt{sub 4}Ge{sub 12}

    Energy Technology Data Exchange (ETDEWEB)

    Gumeniuk, R; Leithe-Jasper, A; Schnelle, W; Nicklas, M; Rosner, H; Ormeci, A; Burkhardt, U; Schmidt, M; Schwarz, U; Grin, Yu [Max-Planck-Institut fuer Chemische Physik fester Stoffe, Noethnitzer Strasse 40, 01187 Dresden (Germany); Schoeneich, M; Ruck, M, E-mail: schnelle@cpfs.mpg.d [Anorganische Chemie, Technische Universitaet Dresden, 01062 Dresden (Germany)


    Ternary samarium-filled platinum-germanium skutterudite SmPt{sub 4}Ge{sub 12} was prepared at a pressure of 5.0(0.5) GPa and a temperature of 1070(70) K. The compound crystallizes in the cubic space group Im 3-bar (a=8.6069(4) A) and is isotypic with LaFe{sub 4}P{sub 12}. X-ray absorption spectroscopy measurements show that samarium in SmPt{sub 4}Ge{sub 12} has a temperature-independent intermediate valence ({nu}=2.90{+-}0.03). Magnetization data reveal Van Vleck paramagnetism above {approx}50 K. The low-temperature specific heat displays a broad anomaly centred at 2.9 K and a large linear coefficient {gamma} ' =450 mJ mol{sup -1} K{sup -2} suggesting heavy-fermion behaviour. Low-temperature electrical resistivity shows a temperature dependence reminiscent of the Kondo effect. Density functional calculations result in an electronic structure that is, apart from the Sm 4f contributions, very similar to LaPt{sub 4}Ge{sub 12}.

  11. Ni-Zn-Sm nanopowder ferrites: Morphological aspects and magnetic properties (United States)

    Costa, A. C. F. M.; Diniz, A. P. A.; de Melo, A. G. B.; Kiminami, R. H. G. A.; Cornejo, D. R.; Costa, A. A.; Gama, L.

    Ni-Zn ferrites have been widely used in components for high-frequency range applications due to their high electrical resistivity, mechanical strength and chemical stability. Ni-Zn ferrite nanopowders doped with samarium with a nominal composition of Ni 0.5Zn 0.5Fe 2-xSm xO 4 ( x=0.0, 0.05, and 0.1 mol) were obtained by combustion synthesis using nitrates and urea as fuel. The morphological aspects of Ni-Zn-Sm ferrite nanopowders were investigated by X-ray diffraction, nitrogen adsorption by BET, sedimentation, scanning electron microscopy and magnetic properties. The results indicated that the Ni-Zn-Sm ferrite nanopowders were composed of soft agglomerates of nanoparticles with a high surface area (55.8-64.8 m 2/g), smaller particles (18-20 nm) and nanocrystallite size particles. The addition of samarium resulted in a reduction of all the magnetic parameters evaluated, namely saturation magnetization (24-40 emu/g), remanent magnetization (2.2-3.5 emu/g) and coercive force (99.3-83.3 Oe).

  12. Magnetic and magnetoelastic properties of epitaxial SmFe{sub 2} thin film

    Energy Technology Data Exchange (ETDEWEB)

    Fuente, C de la; Arnaudas, J I; Ciria, M; Del Moral, A [Departamento de Magnetismo de Solidos and Departamento de Fisica de la Materia Condensada, Instituto de Ciencia de los Materiales de Aragon and Universidad de Zaragoza, 50071, Zaragoza (Spain); Dufour, C; Dumesnil, K, E-mail: cesar@unizar.e [Laboratoire de Metallurgie Physique et de Science des Materiaux, Universite Henry Poincare, Nancy 1, BP 239, 54506 (France)


    We report on magnetic and magnetoelastic measurements for a 5000 A (110) SmFe{sub 2} thin film, which was successfully analyzed by means of a point charge model for describing the effect of the epitaxial growth in this kind of system. Some of the main conclusions of the Moessbauer and magnetoelastic results and the new magnetization results up to 5 T allow us to get a full description of the crystal electric field, exchange, and magnetoelastic behavior in this compound. So, new single-ion parameters are obtained for the crystal field interaction of samarium ions, A{sub 4}(r{sup 4}) = +755 K/ion and A{sub 6}(r{sup 6}) = -180 K/ion, and new single-ion magnetoelastic coupling B{sup gamma}{sup ,2}approx =-200 MPa and B{sup epsilon}{sup ,2}approx =800 MPa, which represent the tetragonal and the in-plane shear deformations, respectively. Moreover, the new thermal behavior of the samarium magnetic moment, the exchange coupling parameter, and the magnetocrystalline anisotropy of the iron sublattice are obtained too. From these, the softening of the spin reorientation transition with respect to the bulk case could be accounted for.

  13. Synergistic Effects of Sm and C Co-Doped Mixed Phase Crystalline TiO2 for Visible Light Photocatalytic Activity

    Directory of Open Access Journals (Sweden)

    Fuchang Peng


    Full Text Available Mixed phase TiO2 nanoparticles with element doping by Sm and C were prepared via a facile sol-gel procedure. The UV-Vis light-diffuse reflectance spectroscopy analysis showed that the absorption region of co-doped TiO2 was shifted to the visible-light region, which was attributed to incorporation of samarium and carbon into the TiO2 lattice during high-temperature reaction. Samarium effectively decreased the anatase-rutile phase transformation. The grain size can be controlled by Sm doping to achieve a large specific surface area useful for the enhancement of photocatalytic activity. The photocatalytic activities under visible light irradiation were evaluated by photocatalytic degradation of methylene blue (MB. The degradation rate of MB over the Sm-C co-doped TiO2 sample was the best. Additionally, first-order apparent rate constants increased by about 4.3 times compared to that of commercial Degusssa P25 under the same experimental conditions. Using different types of scavengers, the results indicated that the electrons, holes, and •OH radicals are the main active species for the MB degradation. The high visible-light photocatalytic activity was attributed to low recombination of the photo-generated electrons and holes which originated from the synergistic effect of the co-doped ions and the heterostructure.

  14. Viability of biocompatible and biodegradable seeds production with incorporated radionuclides; Viabilidade da producao de sementes biocompativeis e biodegradaveis com radionuclideos incorporados

    Energy Technology Data Exchange (ETDEWEB)

    Roberto, W.S. [Centro Federal de Educacao Tecnologica de Ouro Preto (CEFET/OP), MG (Brazil); Pereira, M.M.; Vasconcelos, W.L.; Campos, T.P.R. [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil)], e-mail:


    The present work aims the development of radioactive seeds, biocompatible and biodegradable, with the objective of adding options in the cancer treatment. The work focus on the production of seeds biodegradable that incorporate radioisotopes with half life inferior than the degradation time of the material. The idea of producing devices with biodegradable materials impregnated with radioisotopes of short half life will offer new possibilities in the cancer treatment, since they can be used following the same procedures of the permanent interstitial brachytherapy, but using degradable materials compatible with the physiological environment. It will be discussed in particular the possible application of these seeds in the treatment of prostate cancer. A review of the subject and a preliminary evaluation of the viability of production of the seeds will be presented. The method of production of the seeds is based on the incorporation of Iodine and Samarium in glass matrixes obtained by sol-gel processing. X-ray fluorescence was done in the samples produced and the incorporation of Iodine and Samarium atoms was confirmed. (author)

  15. Scanning Electron Microscope-Cathodoluminescence Analysis of Rare-Earth Elements in Magnets. (United States)

    Imashuku, Susumu; Wagatsuma, Kazuaki; Kawai, Jun


    Scanning electron microscope-cathodoluminescence (SEM-CL) analysis was performed for neodymium-iron-boron (NdFeB) and samarium-cobalt (Sm-Co) magnets to analyze the rare-earth elements present in the magnets. We examined the advantages of SEM-CL analysis over conventional analytical methods such as SEM-energy-dispersive X-ray (EDX) spectroscopy and SEM-wavelength-dispersive X-ray (WDX) spectroscopy for elemental analysis of rare-earth elements in NdFeB magnets. Luminescence spectra of chloride compounds of elements in the magnets were measured by the SEM-CL method. Chloride compounds were obtained by the dropwise addition of hydrochloric acid on the magnets followed by drying in vacuum. Neodymium, praseodymium, terbium, and dysprosium were separately detected in the NdFeB magnets, and samarium was detected in the Sm-Co magnet by the SEM-CL method. In contrast, it was difficult to distinguish terbium and dysprosium in the NdFeB magnet with a dysprosium concentration of 1.05 wt% by conventional SEM-EDX analysis. Terbium with a concentration of 0.02 wt% in an NdFeB magnet was detected by SEM-CL analysis, but not by conventional SEM-WDX analysis. SEM-CL analysis is advantageous over conventional SEM-EDX and SEM-WDX analyses for detecting trace rare-earth elements in NdFeB magnets, particularly dysprosium and terbium.

  16. Uptake and effect of rare earth elements on gene expression in Methylosinus trichosporium OB3b. (United States)

    Gu, Wenyu; Farhan Ul Haque, Muhammad; DiSpirito, Alan A; Semrau, Jeremy D


    It is well known that Methylosinus trichosporium OB3b has two forms of methane monooxygenase (MMO) responsible for the initial conversion of methane to methanol, a cytoplasmic (soluble) methane monooxygenase and a membrane-associated (particulate) methane monooxygenase, and that copper strongly regulates expression of these alternative forms of MMO. More recently, it has been discovered that M. trichosporium OB3b has multiple types of the methanol dehydrogenase (MeDH), i.e. the Mxa-type MeDH (Mxa-MeDH) and Xox-type MeDH (Xox-MeDH), and the expression of these two forms is regulated by the availability of the rare earth element (REE), cerium. Here, we extend these studies and show that lanthanum, praseodymium, neodymium and samarium also regulate expression of alternative forms of MeDH. The effect of these REEs on MeDH expression, however, was only observed in the absence of copper. Further, a mutant of M. trichosporium OB3b, where the Mxa-MeDH was knocked out, was able to grow in the presence of lanthanum, praseodymium and neodymium, but was not able to grow in the presence of samarium. Collectively, these data suggest that multiple levels of gene regulation by metals exist in M. trichosporium OB3b, but that copper overrides the effect of other metals by an as yet unknown mechanism. © FEMS 2016. All rights reserved. For permissions, please e-mail:

  17. Threshold sensitivity of quartz variometers with negative feedback (United States)

    Odintsov, V. I.; Petrov, V. G.


    The maximum achievable parameters of magnetometers based on optomechanical quartz variometers are studied in connection with the planned transition of the international network Intermagnet to 1-s recording and the need to provide the network of Russian geomagnetic observatories with domestic magnetometers that satisfy Intermagnet requirements. The mechanism of negative feedback effect on the sensitivity threshold of a variometer with an optoelectronic angle transducer is shown. The optimization criterion for the size and shape of the magnets made of different magnetic materials is defined by the maximum ratio of the magnetic moment to the inertial moment. Theoretical and experimental evaluation of the variometer noise level is based on vicalloy and samarium-cobalt. It is shown that the frequency range of magnetometers with variometers based on vicalloy and samarium-cobalt will be bounded from above by frequencies of 1.6 and 6.4 Hz, respectively, at a threshold sensitivity of about 1 pT. These ratios of the frequency and threshold sensitivity for the given magnetic materials are probably limited for quartz variometers with an optoelectronic angle transducer.

  18. Measurement of solubility of plutonium trifluoride and rare-earth fluorides in molten LiF-BeF{sub 2}-ZrF{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Naumov, V.S.; Bychkov, A.V.; Kormilitsyn, M.V. [and others


    Data on behavior of plutonium fluoride and fission products (FP) dissolved in fuel composition are needed to calculate the duration of an operating cycle of the ADTT facility (Accelerator-Driver Transmutation Technologies) and to determine the effect of their equilibrium concentrations on nuclear-physical characteristics of reactor operation. The data on the FP fluoride solubility in the molten salts are of great important for some industrial processes (electrolytical metal deposition, development of physical-chemical mean for processes of chemical technology, etc.) As noted above, some information on this question is given in monography and articles. Data concerning fluoride salts are given in reports. However, it was impossible to make the substantial analysis of mutual solubility of fluoride melts. The primary investigation of CeF{sub 3} and neodymium, samarium and lanthanum fluorides showed that the solubility of the melt LiF-BeF{sub 2} and LiF-BeF{sub 2}-ThF{sub 4} was a linear function of reverse temperature and increases from lanthanum to samarium in the row of rare-earth elements. Disagreement in estimation of plutonium trifluoride solubility and incomplete data on the solubility of rare-earth elements prompted this study.

  19. Determination of the Speciation and Bioavailability of Sm to Chlamydomonas reinhardtii in the Presence of Natural Organic Matter. (United States)

    Rowell, Justine-Anne; Fillion, Marc-Alexandre; Smith, Scott; Wilkinson, Kevin J


    As technological interest and environmental emissions of the rare earth elements (REE) increase, it is becoming more important to assess their potential environmental impact. Samarium (Sm) is a lanthanide of intermediate molar mass that is used in numerous high technology applications including wind turbines, solar panels and electric vehicles. The present study relates the speciation of samarium (Sm) determined in the presence of natural organic matter (NOM) to its bioavailability to the unicellular green alga, Chlamydomonas reinhardtii. The free ion concentration was determined using a cation exchange resin (IET) in dynamic mode and compared to thermodynamic modelling. Short-term biouptake experiments were performed in the presence of 4 types of NOM: Suwannee River fulvic acids, Pahokee Peat fulvic acids, Suwannee River humic acids and a Luther Marsh dissolved organic matter isolate (90-95% humic acids). The results clearly showed that even a small amount of NOM (0.5 mg C L-1 ) resulted in a significant decrease (10x) in the Sm internalization fluxes. Furthermore, complexation with humic acids (and the corresponding reduction in Sm bioavailability) was stronger than for the fulvic acids. The results showed that the experimentally measured (free) Sm was a better predictor of Sm internalization than either the total concentrations or the free ion concentrations obtained using thermodynamic modelling. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  20. Improved transistor-controlled and commutated brushless DC motors for electric vehicle propulsion (United States)

    Demerdash, N. A.; Miller, R. H.; Nehl, T. W.; Nyamusa, T. A.


    The development, design, construction, and testing processes of two electronically (transistor) controlled and commutated permanent magnet brushless dc machine systems, for propulsion of electric vehicles are detailed. One machine system was designed and constructed using samarium cobalt for permanent magnets, which supply the rotor (field) excitation. Meanwhile, the other machine system was designed and constructed with strontium ferrite permanent magnets as the source of rotor (field) excitation. These machine systems were designed for continuous rated power output of 15 hp (11.2 kw), and a peak one minute rated power output of 35 hp (26.1 kw). Both power ratings are for a rated voltage of 115 volts dc, assuming a voltage drop in the source (battery) of about 5 volts. That is, an internal source voltage of 120 volts dc. Machine-power conditioner system computer-aided simulations were used extensively in the design process. These simulations relied heavily on the magnetic field analysis in these machines using the method of finite elements, as well as methods of modeling of the machine power conditioner system dynamic interaction. These simulation processes are detailed. Testing revealed that typical machine system efficiencies at 15 hp (11.2 kw) were about 88% and 84% for the samarium cobalt and strontium ferrite based machine systems, respectively. Both systems met the peak one minute rating of 35 hp.