WorldWideScience

Sample records for salt transfer method

  1. Engineering Evaluation of Proposed Alternative Salt Transfer Method for the Molten Salt Reactor Experiment for the Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    Carlberg, Jon A.; Roberts, Kenneth T.; Kollie, Thomas G.; Little, Leslie E.; Brady, Sherman D.

    2009-01-01

    This evaluation was performed by Pro2Serve in accordance with the Technical Specification for an Engineering Evaluation of the Proposed Alternative Salt Transfer Method for the Molten Salt Reactor Experiment at the Oak Ridge National Laboratory (BJC 2009b). The evaluators reviewed the Engineering Evaluation Work Plan for Molten Salt Reactor Experiment Residual Salt Removal, Oak Ridge National Laboratory, Oak Ridge, Tennessee (DOE 2008). The Work Plan (DOE 2008) involves installing a salt transfer probe and new drain line into the Fuel Drain Tanks and Fuel Flush Tank and connecting them to the new salt transfer line at the drain tank cell shield. The probe is to be inserted through the tank ball valve and the molten salt to the bottom of the tank. The tank would then be pressurized through the Reactive Gas Removal System to force the salt into the salt canisters. The Evaluation Team reviewed the work plan, interviewed site personnel, reviewed numerous documents on the Molten Salt Reactor (Sects. 7 and 8), and inspected the probes planned to be used for the transfer. Based on several concerns identified during this review, the team recommends not proceeding with the salt transfer via the proposed alternate salt transfer method. The major concerns identified during this evaluation are: (1) Structural integrity of the tanks - The main concern is with the corrosion that occurred during the fluorination phase of the uranium removal process. This may also apply to the salt transfer line for the Fuel Flush Tank. Corrosion Associated with Fluorination in the Oak Ridge National Laboratory Fluoride Volatility Process (Litman 1961) shows that this problem is significant. (2) Continued generation of Fluorine - Although the generation of Fluorine will be at a lower rate than experienced before the uranium removal, it will continue to be generated. This needs to be taken into consideration regardless of what actions are taken with the salt. (3) More than one phase of material

  2. Transfer characteristics of a lithium chloride–potassium chloride molten salt

    Directory of Open Access Journals (Sweden)

    Eve Mullen

    2017-12-01

    Full Text Available Pyroprocessing is an alternative method of reprocessing spent fuel, usually involving the dissolving spent fuel in a molten salt media. The National Nuclear Laboratory designed, built, and commissioned a molten salt dynamics rig to investigate the transfer characteristics of molten lithium chloride–potassium chloride eutectic salt. The efficacy and flow characteristics of a high-temperature centrifugal pump and argon gas lift were obtained for pumping the molten salt at temperatures up to 500°C. The rig design proved suitable on an industrial scale and transfer methods appropriate for use in future molten salt systems. Corrosion within the rig was managed, and melting techniques were optimized to reduce stresses on the rig. The results obtained improve the understanding of molten salt transport dynamics, materials, and engineering design issues and support the industrialization of molten salts pyroprocessing.

  3. Mass transfer and transport in salt repositories

    International Nuclear Information System (INIS)

    Pigford, T.H.; Chambre, P.L.; Lee, W.W.L.

    1989-02-01

    Salt is a unique rock isolation of nuclear waste because it is ''dry'' and nearly impermeable. In this paper we summarize some mass-transfer and transport analyses of salt repositories. First we analyses brine migration. Heating by high-level waste can cause brine in grain boundaries to move due to pressure-gradients. We analyze brine migration treating salt as a thermoelastic solid and found that brine migration is transient and localized. We use previously developed techniques to estimate release rates from waste packages by diffusion. Interbeds exist in salt and may be conduits for radionuclide migration. We analyze steady-state migration due to brine flow in the interbed, as a function of the Peclet number. Then we analyze transient mass transfer, both into the interbed and directly to salt, due only to diffusion. Finally we compare mass transfer rates of a waste cylinder in granite facing a fracture and in salt facing an interbed. In all cases, numerical illustrations of the analytic solution are given. 10 refs., 4 figs., 3 tabs

  4. A novel inverse numerical modeling method for the estimation of water and salt mass transfer coefficients during ultrasonic assisted-osmotic dehydration of cucumber cubes.

    Science.gov (United States)

    Kiani, Hosein; Karimi, Farzaneh; Labbafi, Mohsen; Fathi, Morteza

    2018-06-01

    The objective of this paper was to study the moisture and salt diffusivity during ultrasonic assisted-osmotic dehydration of cucumbers. Experimental measurements of moisture and salt concentration versus time were carried out and an inverse numerical method was performed by coupling a CFD package (OpenFOAM) with a parameter estimation software (DAKOTA) to determine mass transfer coefficients. A good agreement between experimental and numerical results was observed. Mass transfer coefficients were from 3.5 × 10 -9 to 7 × 10 -9  m/s for water and from 4.8 × 10 -9  m/s to 7.4 × 10 -9  m/s for salt at different conditions (diffusion coefficients of around 3.5 × 10 -12 -11.5 × 10 -12  m 2 /s for water and 5 × 10 -12  m/s-12 × 10 -12  m 2 /s for salt). Ultrasound irradiation could increase the mass transfer coefficient. The values obtained by this method were closer to the actual data. The inverse simulation method can be an accurate technique to study the mass transfer phenomena during food processing. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. The Radiative Heat Transfer Properties of Molten Salts and Their Relevance to the Design of Advanced Reactors

    Science.gov (United States)

    Chaleff, Ethan Solomon

    Molten salts, such as the fluoride salt eutectic LiF-NaF-KF (FLiNaK) or the transition metal fluoride salt KF-ZrF4, have been proposed as coolants for numerous advanced reactor concepts. These reactors are designed to operate at high temperatures where radiative heat transfer may play a significant role. If this is the case, the radiative heat transfer properties of the salt coolants are required to be known for heat transfer calculations to be performed accurately. Chapter 1 describes the existing literature and experimental efforts pertaining to radiative heat transfer in molten salts. The physics governing photon absorption by halide salts is discussed first, followed by a more specific description of experimental results pertaining to salts of interest. The phonon absorption edge in LiF-based salts such as FLiNaK is estimated and the technique described for potential use in other salts. A description is given of various spectral measurement techniques which might plausibly be employed in the present effort, as well as an argument for the use of integral techniques. Chapter 2 discusses the mathematical treatments required to approximate and solve for the radiative flux in participating materials. The differential approximation and the exact solutions to the radiative flux are examined, and methods are given to solve radiative and energy equations simultaneously. A coupled solution is used to examine radiative heat transfer to molten salt coolants. A map is generated of pipe diameters, wall temperatures, and average absorption coefficients where radiative heat transfer will increase expected heat transfer by more than 10% compared to convective methods alone. Chapter 3 presents the design and analysis of the Integral Radiative Absorption Chamber (IRAC). The IRAC employs an integral technique for the measurement of the entire electromagnetic spectrum, negating some of the challenges associated with the methods discussed in Chapter 1 at the loss of spectral

  6. Mass transfer in a salt repository

    International Nuclear Information System (INIS)

    Pigford, T.H.; Chambre, P.L.

    1985-05-01

    To meet regulatory requirements for radioactive waste in a salt repository it is necessary to predict the rates of corrosion of the waste container, the release rates of radionuclides from the waste package, and the cumulative release of radionuclides into the accessible environment. The mechanisms that may control these rates and an approach to predicting these rates from mass-transfer theory are described. This new mechanistic approach is suggested by three premises: (a) a brine inclusion originally in a salt crystal moves along grain boundaries after thermal-induced migration out of the crystal, (b) brine moves along a grain boundary under the influence of a pressure gradient, and (c) salt surrounding a heat-generating waste package will soon creep and consolidate as a monolithic medium surrounding and in contact with the waste package. After consolidation there may be very little migration of intergranular and intragranular brine to the waste package. The corrosion rate of the waste container may then be limited by the rate at which brine reaches the container and may be calculable from mass-transfer theory, and the rate at which dissolved radionuclides leave the waste package may be limited by molecular diffusion in intragranular brine and may be calculable from mass-transfer theory. If porous nonsalt interbeds intersect the waste-package borehole, the release rate of dissolved radionuclides to interbed brine may also be calculable from mass-transfer theory. The logic of these conclusions is described, as an aid in formulating the calculations that are to be made

  7. Heat transfer and flow characteristics of a cooling thimble in a molten salt reactor residual heat removal system

    Directory of Open Access Journals (Sweden)

    Zonghao Yang

    2017-12-01

    Full Text Available In the passive residual heat removal system of a molten salt reactor, one of the residual heat removal methods is to use the thimble-type heat transfer elements of the drain salt tank to remove the residual heat of fuel salts. An experimental loop is designed and built with a single heat transfer element to analyze the heat transfer and flow characteristics. In this research, the influence of the size of a three-layer thimble-type heat transfer element on the heat transfer rate is analyzed. Two methods are used to obtain the heat transfer rate, and a difference of results between methods is approximately 5%. The gas gap width between the thimble and the bayonet has a large effect on the heat transfer rate. As the gas gap width increases from 1.0 mm to 11.0 mm, the heat transfer rate decreases from 5.2 kW to 1.6 kW. In addition, a natural circulation startup process is described in this paper. Finally, flashing natural circulation instability has been observed in this thimble-type heat transfer element.

  8. Convective heat transfer characteristics in the turbulent region of molten salt in concentric tube

    International Nuclear Information System (INIS)

    Chen, Y.S.; Wang, Y.; Zhang, J.H.; Yuan, X.F.; Tian, J.; Tang, Z.F.; Zhu, H.H.; Fu, Y.; Wang, N.X.

    2016-01-01

    In order to better understand the heat transfer behavior and characteristics of molten salt in heat exchanger, the convective heat transfer characteristics of molten salt in salt-to-oil concentric tube are studied. Overall heat transfer coefficients of the heat exchanger are calculated using Wilson plots. Heat transfer coefficients of tube side molten salt with the range of Reynolds number from 10,000 to 50,000 and the Prandtl number from 11 to 27 are evaluated invoking the calculated overall heat transfer coefficients. The effects of velocity and temperature on the convective heat transfer in the turbulent region of molten salt are studied by comparing with the traditional correlations. The results show that the heat transfer characteristics of molten salt are in line with the empirical heat transfer correlation; however, Dittus–Boelter, Gnielinski, Sieder–Tate and Hausen correlations all give a larger deviation for the experimental data. Finally, based on the experimental data and Sieder–Tate correlation, a modified heat transfer correlation is proposed and good agreement is observed between the experimental data and the modified correlation. The results will also provide an important reference for the design of the heat exchangers in the Thorium-based Molten Salt Reactor.

  9. Performance Test of the Salt transfer and Pellet fabrication of UCl3 Making Equipment for Electrorefining

    International Nuclear Information System (INIS)

    Woo, M. S.; Jin, H. J.; Park, G. I.; Park, S. B.

    2014-01-01

    The process to produce a uranium chloride salt includes two steps: a reaction process of gaseous chlorine with liquid cadmium to form the CdCl 2 occurring in a Cd layer, followed by a process to produce UCl 3 by the reaction of U in the LiCl-KCl eutectic salt and CdCl 2 . Chemical reaction is next chlorination reaction; - Cd chlorination : Cd + Cl2 → CdCl 2 - U chlorination : 3CdCl2 + 2U → 3Cd + 2UCl 3 The apparatus for producing UCl 3 consists of a chlorine gas generator, a uranium chlorinator, a Cd distiller, the pelletizer, a off-gas wet scrubber and a dry scrubber. Salt transfer system set among reactors to transfer salt at 500 .deg. C. The temperature of the reactants is maintained at about 600 .deg. C. After the reaction is completed in the uranium chlorinator, The Salt product is transferred to the Cd distiller to decrease residual Cd concentration in the salts, and then salt is transferred to the mould of pelletizer by a transfer system to fabricate pellet type salt. Performance test of the salt transfer and pellet fabrication of its equipment was tested in this work. Performance test of the salt transfer and pellet fabrication of UCl3 making equipment for Electrorefining carried out in this work. The result of equipment test is that melted salt at 600 .deg. C was easy transferred by salt transfer equipment heated at 500 .deg. C. In this time, salt transfer was carried out by argon gas pressurization at 3bar. When velocity of salt transfer was controlled under reduce pressure, velocity of salt transfer was difficult to control. And when salt pellet was fabricated by the mold of pelletizer heated at 90 .deg. C better than mold of pelletizer heated at 200 .deg. C because salt melted prevent leakage from mold of pelletizer

  10. Performance Test of the Salt transfer and Pellet fabrication of UCl{sub 3} Making Equipment for Electrorefining

    Energy Technology Data Exchange (ETDEWEB)

    Woo, M. S.; Jin, H. J.; Park, G. I.; Park, S. B. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    The process to produce a uranium chloride salt includes two steps: a reaction process of gaseous chlorine with liquid cadmium to form the CdCl{sub 2} occurring in a Cd layer, followed by a process to produce UCl{sub 3} by the reaction of U in the LiCl-KCl eutectic salt and CdCl{sub 2}. Chemical reaction is next chlorination reaction; - Cd chlorination : Cd + Cl2 → CdCl{sub 2} - U chlorination : 3CdCl2 + 2U → 3Cd + 2UCl{sub 3} The apparatus for producing UCl{sub 3} consists of a chlorine gas generator, a uranium chlorinator, a Cd distiller, the pelletizer, a off-gas wet scrubber and a dry scrubber. Salt transfer system set among reactors to transfer salt at 500 .deg. C. The temperature of the reactants is maintained at about 600 .deg. C. After the reaction is completed in the uranium chlorinator, The Salt product is transferred to the Cd distiller to decrease residual Cd concentration in the salts, and then salt is transferred to the mould of pelletizer by a transfer system to fabricate pellet type salt. Performance test of the salt transfer and pellet fabrication of its equipment was tested in this work. Performance test of the salt transfer and pellet fabrication of UCl3 making equipment for Electrorefining carried out in this work. The result of equipment test is that melted salt at 600 .deg. C was easy transferred by salt transfer equipment heated at 500 .deg. C. In this time, salt transfer was carried out by argon gas pressurization at 3bar. When velocity of salt transfer was controlled under reduce pressure, velocity of salt transfer was difficult to control. And when salt pellet was fabricated by the mold of pelletizer heated at 90 .deg. C better than mold of pelletizer heated at 200 .deg. C because salt melted prevent leakage from mold of pelletizer.

  11. Conceptual Design of Forced Convection Molten Salt Heat Transfer Testing Loop

    Energy Technology Data Exchange (ETDEWEB)

    Manohar S. Sohal; Piyush Sabharwall; Pattrick Calderoni; Alan K. Wertsching; S. Brandon Grover

    2010-09-01

    This report develops a proposal to design and construct a forced convection test loop. A detailed test plan will then be conducted to obtain data on heat transfer, thermodynamic, and corrosion characteristics of the molten salts and fluid-solid interaction. In particular, this report outlines an experimental research and development test plan. The most important initial requirement for heat transfer test of molten salt systems is the establishment of reference coolant materials to use in the experiments. An earlier report produced within the same project highlighted how thermophysical properties of the materials that directly impact the heat transfer behavior are strongly correlated to the composition and impurities concentration of the melt. It is therefore essential to establish laboratory techniques that can measure the melt composition, and to develop purification methods that would allow the production of large quantities of coolant with the desired purity. A companion report describes the options available to reach such objectives. In particular, that report outlines an experimental research and development test plan that would include following steps: •Molten Salts: The candidate molten salts for investigation will be selected. •Materials of Construction: Materials of construction for the test loop, heat exchangers, and fluid-solid corrosion tests in the test loop will also be selected. •Scaling Analysis: Scaling analysis to design the test loop will be performed. •Test Plan: A comprehensive test plan to include all the tests that are being planned in the short and long term time frame will be developed. •Design the Test Loop: The forced convection test loop will be designed including extensive mechanical design, instrument selection, data acquisition system, safety requirements, and related precautionary measures. •Fabricate the Test Loop. •Perform the Tests. •Uncertainty Analysis: As a part of the data collection, uncertainty analysis will

  12. Heat transfer investigation of molten salts under laminar and turbulent flow regimes

    International Nuclear Information System (INIS)

    Srivastava, A.K.; Vaidya, A.M.; Maheshwari, N.K.; Vijayan, P.K.

    2014-01-01

    High temperature reactor and solar thermal power plants use Molten Salt as a coolant, as it has low melting point and high boiling point, enabling us to operate the system at low pressure. Molten fluoride salt (eutectic mixture of LiF-NaF-KF) and molten nitrate salt (mixture of NaNO 3 and KNO 3 in 60:40 ratios by weight) are proposed as a candidate coolant for High Temperature Reactors (HTR) and solar power plant respectively. BARC is developing a 600 MWth pebble bed high temperature reactor, cooled by natural circulation of fluoride salt and capable of supplying process heat at 1000℃ to facilitate hydrogen production by splitting water. Beside this, BARC is also developing a 2MWe solar power tower system using molten nitrate salt as a primary coolant and storage medium. In order to design this, it is necessary to study the heat transfer characteristics of various molten salts. Most of the previous studies related to molten salts are based on the experimental works. These experiments essentially measured the physical properties of molten salts and their heat transfer characteristics. Ferri et al. introduced the property definitions for molten salts in the RELAP5 code to perform transient simulations at the ProvaCollettoriSolari (PCS) test facility. In this paper, a CFD analysis has been performed to study the heat transfer characteristics of molten fluoride salt and molten nitrate salt flowing in a circular pipe for various regimes of flow. Simulation is performed with the help of in-house developed CFD code, NAFA, acronym for Numerical Analysis of Flows in Axi-symmetric geometries. Uniform velocity and temperature distribution are set as the inlet boundary condition and pressure is employed at the outlet boundary condition. The inlet temperature for all simulation is set as 300℃ for nitrate salt and 500℃ for fluoride salt and the operating pressure is 1 atm in both the cases

  13. Molten Chloride Salts for Heat Transfer in Nuclear Systems

    Science.gov (United States)

    Ambrosek, James Wallace

    2011-12-01

    A forced convection loop was designed and constructed to examine the thermal-hydraulic performance of molten KCl-MgCl2 (68-32 at %) salt for use in nuclear co-generation facilities. As part of this research, methods for prediction of the thermo-physical properties of salt mixtures for selection of the coolant salt were studied. In addition, corrosion studies of 10 different alloys were exposed to the KCl-MgCl2 to determine a suitable construction material for the loop. Using experimental data found in literature for unary and binary salt systems, models were found, or developed to extrapolate the available experimental data to unstudied salt systems. These property models were then used to investigate the thermo-physical properties of the LINO3-NaNO3-KNO 3-Ca(NO3), system used in solar energy applications. Using these models, the density, viscosity, adiabatic compressibility, thermal conductivity, heat capacity, and melting temperatures of higher order systems can be approximated. These models may be applied to other molten salt systems. Coupons of 10 different alloys were exposed to the chloride salt for 100 hours at 850°C was undertaken to help determine with which alloy to construct the loop. Of the alloys exposed, Haynes 230 had the least amount of weight loss per area. Nickel and Hastelloy N performed best based on maximum depth of attack. Inconel 625 and 718 had a nearly uniform depletion of Cr from the surface of the sample. All other alloys tested had depletion of Cr along the grain boundaries. The Nb in Inconel 625 and 718 changed the way the Cr is depleted in these alloys. Grain-boundary engineering (GBE) of Incoloy 800H improved the corrosion resistance (weight loss and maximum depth of attack) by nearly 50% as compared to the as-received Incoloy 800H sample. A high temperature pump, thermal flow meter, and pressure differential device was designed, constructed and tested for use in the loop, The heat transfer of the molten chloride salt was found to

  14. Steady state and transient heat transfer on molten salt natural circulation loop

    International Nuclear Information System (INIS)

    Kudariyawar, Jayaraj Y.; Vaidya, A.M.; Maheshwari, N.K.; Satyamurthy, P.

    2016-01-01

    In this work, heat transfer characteristics of Molten Salt Natural Circulation Loop (MSNCL) are studied using 3D CFD simulations. Molten Nitrate salt, NaNO_3+KNO_3 (60:40 ratio by weight), is used as a fluid in MSNCL. In the MSNCL, in heater section, flow is developing and also mixed convection flow regime exists. The local Nusselt number variation in heater is calculated from computed data and is compared with that from Boelter correlation. Steady state heat transfer characteristics are obtained using CFD simulations. Transient heat transfer characteristics in the oscillatory flow formed in MSNCL with horizontal heater configuration are also studied and are found to be different as compared to vertical heater configuration. (author)

  15. LiCl-KCl-UCl3 Salt production and Transfer for the Uranium Electrorefining

    International Nuclear Information System (INIS)

    Woo, Moon Sik; Kang, Hee Suk; Lee, Han Soo

    2009-01-01

    A pyrometallurgical partitioning technology to recover uranium from an uranium-TRU mixture which is the product material of electroreduction system is being developed at KAERI since 1997. In the process, the reactor of an electrorefiner consists of the electrodes and the molten chloride salt which is LiCl-KCl-UCl 3 . The role of uranium chloride salt (UCl 3 ) is to stabilize the initial cell voltage between electrodes in the electrorefining reactor. The process to produce a uranium chloride salt includes two steps: a reaction process of gaseous chlorine with liquid cadmium to form the CdCl 2 occurring in a Cd layer, followed by a process to produce UCl 3 by the reaction of U in the LiCl-KCl eutectic salt and CdCl 2 . The apparatus for producing UCl 3 consists of a chlorine gas generator, a chlorinator, and a off-gas wet scrubber. The temperature of the reactants are maintained at about 600 .deg. C . After the reaction is completed, the product salt is transferred from the vessel to the electrorefiner by a transfer system

  16. Method for making a Pellet-type LiCl-KCl-UCl3 SALT

    International Nuclear Information System (INIS)

    Woo, M. S.; JIN, H. J.; Lee, H. S.; Kim, J. G.

    2012-01-01

    A pyrometallurgical partitioning technology to recover uranium from a uranium-TRU mixture which is the product material of electroreduction system is being developed at KAERI since 1997. In the process, the reactor of an electrorefiner consists of the electrodes and the molten chloride salt which is LiCl-KCl-UCl 3 . The role of uranium chloride salt (UCl 3 ) is to stabilize the initial cell voltage between electrodes in the electrorefining reactor. The process to produce a uranium chloride salt includes two steps: a reaction process of gaseous chlorine with liquid cadmium to form CdCl 2 occurring in a Cd layer, followed by a process to produce UCl 3 by the reaction of U in the LiCl-KCl eutectic salt and CdCl 2 The apparatus for producing UCl 3 consists of a chlorine gas generator, a uranium chlorinator, a Cd distiller, the pelletizer, and a off-gas and a dry scrubber. The temperature of the reactants is maintained at about 600 .deg. C. After the reaction is completed in the uranium chlorinator, The salt products is transferred to the Cd distiller to decrease residual Cd concentration in the salts, and then salt is transferred to the mould of a pelletizer by a transfer system to make a pellet type salt

  17. Metallic conductivity in a disordered charge-transfer salt derived from cis-BET-TTF

    Energy Technology Data Exchange (ETDEWEB)

    Rovira, C. [Inst. de Ciencia de Materials de Barcelona (CSIC) (Spain); Tarres, J. [Inst. de Ciencia de Materials de Barcelona (CSIC) (Spain); Ribera, E. [Inst. de Ciencia de Materials de Barcelona (CSIC) (Spain); Veciana, J. [Inst. de Ciencia de Materials de Barcelona (CSIC) (Spain); Canadell, E. [Inst. de Ciencia de Materials de Barcelona (CSIC) (Spain); Molins, E. [Inst. de Ciencia de Materials de Barcelona (CSIC) (Spain); Mas, M. [Inst. de Ciencia de Materials de Barcelona (CSIC) (Spain); Laukhin, V. [Inst. de Ciencia de Materials de Barcelona (CSIC) (Spain)]|[Rossijskaya Akademiya Nauk, Chernogolovka (Russian Federation). Inst. Khimicheskoj Fiziki; Doublet, M.L. [Lab. de Structure et Dynamique (CNRS), Univ. de Montpellier 2 (France); Cowan, D.O. [Johns Hopkins Univ., Baltimore, MD (United States). Dept. of Chemistry; Yang, S. [Johns Hopkins Univ., Baltimore, MD (United States). Dept. of Chemistry

    1997-02-28

    The first example of a metallic charge-transfer salt derived from cis-bis(ethylenethio)-tetrathiafulvalene (BET-TTF) is reported. (BET-TTF){sub 2}SCN and (BET-TTF)SCN salts were obtained by electrocrystallization starting from trans-BET-TTF. X-ray crystal structure of the mixed-valence salt revealed that trans-cis isomerization occurs upon one electron oxidation. In spite of the structural disorder in both BET-TTF and the counterion, 2:1 salt is metallic down to 60 K and then resistance increases slowly down to 4 K. (orig.)

  18. Fuel processing for molten-salt reactors

    International Nuclear Information System (INIS)

    Hightower, J.R. Jr.

    1976-01-01

    Research devoted to development of processes for the isolation of protactinium and for the removal of fission products from molten-salt breeder reactors is reported. During this report period, engineering development progressed on continuous fluorinators for uranium removal, the metal transfer process for rare-earth removal, the fuel reconstitution step, and molten salt--bismuth contactors to be used in reductive extraction processes. The metal transfer experiment MTE-3B was started. In this experiment all parts of the metal transfer process for rare-earth removal are demonstrated using salt flow rates which are about 1 percent of those required to process the fuel salt in a 1000-MW(e) MSBR. During this report period the salt and bismuth phases were transferred to the experimental vessels, and two runs with agitator speeds of 5 rps were made to measure the rate of transfer of neodymium from the fluoride salt to the Bi--Li stripper solution. The uranium removed from the fuel salt by fluorination must be returned to the processed salt in the fuel reconstitution step before the fuel salt is returned to the reactor. An engineering experiment to demonstrate the fuel reconstitution step is being installed. In this experiment gold-lined equipment will be used to avoid introducing products of corrosion by UF 6 and UF 5 . Alternative methods for providing the gold lining include electroplating and mechanical fabrication

  19. Enhanced heat transfer performances of molten salt receiver with spirally grooved pipe

    International Nuclear Information System (INIS)

    Lu, Jianfeng; Ding, Jing; Yu, Tao; Shen, Xiangyang

    2015-01-01

    The enhanced heat transfer performances of solar receiver with spirally grooved pipe were theoretically investigated. The physical model of heat absorption process was proposed using the general heat transfer correlation of molten salt in smooth and spirally grooved pipe. According to the calculation results, the convective heat transfer inside the receiver can remarkably enhance the heat absorption process, and the absorption efficiency increased with the flow velocity and groove height, while the wall temperature dropped. As the groove height increased, the heat losses of convection and radiation dropped with the decrease of wall temperature, and the average absorption efficiency of the heat receiver can be increased. Compared with the heat receiver with smooth pipe, the heat absorption efficiency of heat receiver with spirally grooved pipe e/d = 0.0475 can rise for 0.7%, and the maximum bulk fluid temperature can be increased for 31.1 °C. As a conclusion, spirally grooved pipe can be a very effective way for heat absorption enhancement of solar receiver, and it can also increase the operating temperature of molten salt. - Highlights: • Spirally grooved tube is a very effective way for solar receiver enhancement. • Heat absorption model of receiver is proposed with general heat transfer correlation. • Spirally groove tube increases absorption efficiency and reduces wall temperature. • Operating temperature of molten salt remarkably increases with groove height. • Heat absorption performance is promoted for first and second thermodynamics laws

  20. Salt-assisted clean transfer of continuous monolayer MoS2 film for hydrogen evolution reaction

    Science.gov (United States)

    Cho, Heung-Yeol; Nguyen, Tri Khoa; Ullah, Farman; Yun, Jong-Won; Nguyen, Cao Khang; Kim, Yong Soo

    2018-03-01

    The transfer of two-dimensional (2D) materials from one substrate to another is challenging but of great importance for technological applications. Here, we propose a facile etching and residue-free method for transferring a large-area monolayer MoS2 film continuously grown on a SiO2/Si by chemical vapor deposition. Prior to synthesis, the substrate is dropped with water- soluble perylene-3, 4, 9, 10-tetracarboxylic acid tetrapotassium salt (PTAS). The as-grown MoS2 on the substrate is simply dipped in water to quickly dissolve PTAS to yield the MoS2 film floating on the water surface, which is subsequently transferred to the desired substrate. The morphological, optical and X-ray photoelectron spectroscopic results show that our method is useful for fast and clean transfer of the MoS2 film. Specially, we demonstrate that monolayer MoS2 film transferred onto a conducting substrate leads to excellent performance for hydrogen evolution reaction with low overpotential (0.29 V vs the reversible hydrogen electrode) and Tafel slope (85.5 mV/decade).

  1. Heat Transfer and Latent Heat Storage in Inorganic Molten Salts for Concentrating Solar Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Mathur, Anoop [Terrafore Inc.

    2013-08-14

    A key technological issue facing the success of future Concentrating Solar Thermal Power (CSP) plants is creating an economical Thermal Energy Storage (TES) system. Current TES systems use either sensible heat in fluids such as oil, or molten salts, or use thermal stratification in a dual-media consisting of a solid and a heat-transfer fluid. However, utilizing the heat of fusion in inorganic molten salt mixtures in addition to sensible heat , as in a Phase change material (PCM)-based TES, can significantly increase the energy density of storage requiring less salt and smaller containers. A major issue that is preventing the commercial use of PCM-based TES is that it is difficult to discharge the latent heat stored in the PCM melt. This is because when heat is extracted, the melt solidifies onto the heat exchanger surface decreasing the heat transfer. Even a few millimeters of thickness of solid material on heat transfer surface results in a large drop in heat transfer due to the low thermal conductivity of solid PCM. Thus, to maintain the desired heat rate, the heat exchange area must be large which increases cost. This project demonstrated that the heat transfer coefficient can be increase ten-fold by using forced convection by pumping a hyper-eutectic salt mixture over specially coated heat exchanger tubes. However,only 15% of the latent heat is used against a goal of 40% resulting in a projected cost savings of only 17% against a goal of 30%. Based on the failure mode effect analysis and experience with pumping salt at near freezing point significant care must be used during operation which can increase the operating costs. Therefore, we conclude the savings are marginal to justify using this concept for PCM-TES over a two-tank TES. The report documents the specialty coatings, the composition and morphology of hypereutectic salt mixtures and the results from the experiment conducted with the active heat exchanger along with the lessons learnt during

  2. An Investigation into the Effects of Temperature Gradient on the Soil Water–Salt Transfer with Evaporation

    Directory of Open Access Journals (Sweden)

    Rong Ren

    2017-06-01

    Full Text Available Temperature gradients exist in the field under brackish water irrigation conditions, especially in northern semi–arid areas of China. Although there are many investigators dedicated to studying the mechanism of brackish water irrigation and the effect of brackish water irrigation on crops, there are fewer investigations of the effects of temperature gradient on the water–salt transport. Based on the combination of a physical experiment and a mathematical model, this study was conducted to: (a build a physical model and observe the redistribution of soil water–heat–salt transfer; (b develop a mathematical model focused on the influence of a temperature gradient on soil water and salt redistribution based on the physical model and validate the proposed model using the measured data; and (c analyze the effects of the temperature gradient on the soil water–salt transport by comparing the proposed model with the traditional water–salt model in which the effects of temperature gradient on the soil water–salt transfer are neglected. Results show that the soil temperature gradient has a definite influence on the soil water–salt migration. Moreover, the effect of temperature gradient on salt migration was greater than that of water movement.

  3. Numerical study on heat transfer characteristics of liquid-fueled molten salt using OpenFOAM

    International Nuclear Information System (INIS)

    Jeong, Yeong Shin; Bang, In Cheol

    2017-01-01

    To pursue sustainability and safety enhancement of nuclear energy, molten salt reactor is regarded as a promising candidate among various types of gen-IV reactors. Besides, pyroprocessing, which treats molten salt containing fission products, should consider safety related to decay heat from fuel material. For design of molten salt-related nuclear system, it is required to consider both thermal-hydraulic characteristics and neutronic behaviors for demonstration. However, fundamental heat transfer study of molten salt in operation condition is not easy to be experimentally studied due to its large scale, high temperature condition as well as difficulties of treating fuel material. >From that reason, numerical study can have benefit to investigate behaviors of liquid-fueled molten salt in real condition. In this study, open source CFD package OpenFOAM was used to analyze liquid-fueled molten salt loop having internal heat source as a first step of research. Among various molten salts considered as a candidate of liquid fueled molten salt reactors, in this study, FLiBe was chosen as liquid salt. For simulating heat generation from fuel material within fluid flow, volumetric heat source was set for fluid domain and OpenFOAM solver was modified as fvOptions as customized. To investigate thermal-hydraulic behavior of molten salt, CFD model was developed and validated by comparing experimental results in terms of heat transfer and pressure drop. As preliminary stage, 2D cavity simulations were performed to validate the modeling capacity of modified solver of OpenFOAM by comparison with those of ANSYS-CFX. In addition, cases of external heat flux and internal heat source were compared to configure the effect of heat source setting in various operation condition. As a result, modified solver of OpenFOAM considering internal heat source have sufficient modeling capacity to simulate liquid-fueled molten salt systems including heat generation cases. (author)

  4. Method for making a Pellet-type LiCl-KCl-UCl{sub 3} SALT

    Energy Technology Data Exchange (ETDEWEB)

    Woo, M. S.; JIN, H. J.; Lee, H. S.; Kim, J. G. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-05-15

    A pyrometallurgical partitioning technology to recover uranium from a uranium-TRU mixture which is the product material of electroreduction system is being developed at KAERI since 1997. In the process, the reactor of an electrorefiner consists of the electrodes and the molten chloride salt which is LiCl-KCl-UCl{sub 3}. The role of uranium chloride salt (UCl{sub 3}) is to stabilize the initial cell voltage between electrodes in the electrorefining reactor. The process to produce a uranium chloride salt includes two steps: a reaction process of gaseous chlorine with liquid cadmium to form CdCl{sub 2} occurring in a Cd layer, followed by a process to produce UCl{sub 3} by the reaction of U in the LiCl-KCl eutectic salt and CdCl{sub 2} The apparatus for producing UCl{sub 3} consists of a chlorine gas generator, a uranium chlorinator, a Cd distiller, the pelletizer, and a off-gas and a dry scrubber. The temperature of the reactants is maintained at about 600 .deg. C. After the reaction is completed in the uranium chlorinator, The salt products is transferred to the Cd distiller to decrease residual Cd concentration in the salts, and then salt is transferred to the mould of a pelletizer by a transfer system to make a pellet type salt

  5. Complexes with charge transfer and ion-radical salts in catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Krylov, O V [AN SSSR, Moscow. Inst. Khimicheskoj Fiziki

    1978-01-01

    Considered are the data experimentally proving formation of complexes with charge transfer as intermediate complexes in homogeneous and heterogeneous catalysis. Catalytic activity correlations with charge transfer energy (and in heterogeneous catalysis with width of semiconductor forbidden band can be useful while selection of catalysts (MoO/sub 3//MgO; V/sub 2/O/sub 5//MgO; MoO/sub 3//Al/sub 2/O/sub 3/; V/sub 2/O/sub 5//Al/sub 2/O/sub 3/). A review of papers on catalytic activity of the previously prepared complexes with charge transfer and ion-radical salts is given. The use of alkali metal complexes with aromatic compounds showed their high activity in hydrogenation reactions and proved principle possibility of activation of hydrogen and hydrocarbons by the systems which do not contain transfer metals.

  6. Azidoimidazolinium Salts: Safe and Efficient Diazo-transfer Reagents and Unique Azido-donors.

    Science.gov (United States)

    Kitamura, Mitsuru

    2017-07-01

    2-Azido-1,3-dimethylimidazolinium chloride (ADMC) and its corresponding hexafluorophosphate (ADMP) were found to be efficient diazo-transfer reagents to various organic compounds. ADMC was prepared by the reaction of 2-chloro-1,3-dimethylimidazolinium chloride (DMC) and sodium azide. ADMP was isolated as a crystal having good thermal stability and low explosibility. ADMC and ADMP reacted with 1,3-dicarbonyl compounds under mild basic conditions to give 2-diazo-1,3-dicarbonyl compounds in high yields, which were easily isolated in virtue of the high water solubility of the by-products. ADMP showed high diazo-transfer ability to primary amines even in the absence of metal salt such as Cu(II). Using this diazotization approach, various alkyl/aryl azides were directly obtained from their corresponding primary amines in high yields. Furthermore, naphthols reacted with ADMC to give the corresponding diazonaphthoquinones in good to high yields. In addition, 2-azido-1,3-dimethylimidazolinium salts were employed as azide-transfer and migratory amidation reagents. © 2017 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Heat Transfer in Pebble-Bed Nuclear Reactor Cores Cooled by Fluoride Salts

    Science.gov (United States)

    Huddar, Lakshana Ravindranath

    With electricity demand predicted to rise by more than 50% within the next 20 years and a burgeoning world population requiring reliable emissions-free base-load electricity, can we design advanced nuclear reactors to help meet this challenge? At the University of California, Berkeley (UCB) Fluoride-salt-cooled High Temperature Reactors (FHR) are currently being investigated. FHRs are designed with better safety and economic characteristics than conventional light water reactors (LWR) currently in operation. These reactors operate at high temperature and low pressure making them more efficient and safer than LWRs. The pebble-bed FHR (PB-FHR) variant includes an annular nuclear reactor core that is filled with randomly packed pebble fuel. It is crucial to characterize the heat transfer within this unique geometry as this informs the safety limits of the reactor. The work presented in this dissertation focused on furthering the understanding of heat transfer in pebble-bed nuclear reactor cores using fluoride salts as a coolant. This was done through experimental, analytical and computational techniques. A complex nuclear system with a coolant that has never previously been in commercial use requires experimental data that can directly inform aspects of its design. It is important to isolate heat transfer phenomena in order to understand the underlying physics in the context of the PB-FHR, as well as to make decisions about further experimental work that needs to be done in support of developing the PB-FHR. Certain organic oils can simulate the heat transfer behaviour of the fluoride salt if relevant non-dimensional parameters are matched. The advantage of this method is that experiments can be done at a much lower temperature and at a smaller geometric scale compared to FHRs, thereby lowering costs. In this dissertation, experiments were designed and performed to collect data demonstrating similitude. The limitations of these experiments were also elucidated by

  8. Alternative methods of salt disposal at the seven salt sites for a nuclear waste repository

    International Nuclear Information System (INIS)

    1987-02-01

    This study discusses the various alternative salt management techniques for the disposal of excess mined salt at seven potentially acceptable nuclear waste repository sites: Deaf Smith and Swisher Counties, Texas; Richton and Cypress Creek Domes, Mississippi; Vacherie Dome, Louisiana; and Davis and Lavender Canyons, Utah. Because the repository development involves the underground excavation of corridors and waste emplacement rooms, in either bedded or domed salt formations, excess salt will be mined and must be disposed of offsite. The salt disposal alternatives examined for all the sites include commercial use, ocean disposal, deep well injection, landfill disposal, and underground mine disposal. These alternatives (and other site-specific disposal methods) are reviewed, using estimated amounts of excavated, backfilled, and excess salt. Methods of transporting the excess salt are discussed, along with possible impacts of each disposal method and potential regulatory requirements. A preferred method of disposal is recommended for each potentially acceptable repository site. 14 refs., 5 tabs

  9. Scaling options for integral experiments for molten salt fluid mechanics and heat transfer

    International Nuclear Information System (INIS)

    Philippe Bardet; Per F Peterson

    2005-01-01

    Full text of publication follows: Molten fluoride salts have potentially large benefits for use in high-temperature heat transport in fission and fusion energy systems, due to their very very low vapor pressures at high temperatures. Molten salts have high volumetric heat capacity compared to high-pressure helium and liquid metals, and have desirable safety characteristics due to their chemical inertness and low pressure. Therefore molten salts have been studied extensively for use in fusion blankets, as an intermediate heat transfer fluid for thermochemical hydrogen production in the Next Generation Nuclear Plant, as a primary coolant for the Advanced High Temperature Reactor, and as a solvent for fuel in the Molten Salt Reactor. This paper presents recent progress in the design and analysis of scaled thermal hydraulics experiments for molten salt systems. We have identified a category of light mineral oils that can be used for scaled experiments. By adjusting the length, velocity, average temperature, and temperature difference scales of the experiment, we show that it is possible to simultaneously match the Reynolds (Re), Froude (Fr), Prandtl (Pr) and Rayleigh (Ra) numbers in the scaled experiments. For example, the light mineral oil Penreco Drakesol 260 AT can be used to simulate the molten salt flibe (Li 2 BeF 4 ). At 110 deg. C, the oil Pr matches 600 deg. C flibe, and at 165 deg. C, the oil Pr matches 900 deg. C flibe. Re, Fr, and Ra can then be matched at a length scale of Ls/Lp = 0.40, velocity scale of U s /U p = 0.63, and temperature difference scale of ΔT s /ΔT p = 0.29. The Weber number is then matched within a factor of two, We s /We p = 0.7. Mechanical pumping power scales as Qp s /Qp p = 0.016, while heat inputs scale as Qh s /Qh p = 0.010, showing that power inputs to scaled experiments are very small compared to the prototype system. The scaled system has accelerated time, t s /t p = 0.64. When Re, Fr, Pr and Ra are matched, geometrically scaled

  10. Low-melting point inorganic nitrate salt heat transfer fluid

    Science.gov (United States)

    Bradshaw, Robert W [Livermore, CA; Brosseau, Douglas A [Albuquerque, NM

    2009-09-15

    A low-melting point, heat transfer fluid made of a mixture of four inorganic nitrate salts: 9-18 wt % NaNO.sub.3, 40-52 wt % KNO.sub.3, 13-21 wt % LiNO.sub.3, and 20-27 wt % Ca(NO.sub.3).sub.2. These compositions can have liquidus temperatures less than 100 C; thermal stability limits greater than 500 C; and viscosity in the range of 5-6 cP at 300 C; and 2-3 cP at 400 C.

  11. Various methods to improve heat transfer in exchangers

    Directory of Open Access Journals (Sweden)

    Pavel Zitek

    2015-01-01

    Full Text Available The University of West Bohemia in Pilsen (Department of Power System Engineering is working on the selection of effective heat exchangers. Conventional shell and tube heat exchangers use simple segmental baffles. It can be replaced by helical baffles, which increase the heat transfer efficiency and reduce pressure losses. Their usage is demonstrated in the primary circuit of IV. generation MSR (Molten Salt Reactors. For high-temperature reactors we consider the use of compact desk heat exchangers, which are small, which allows the integral configuration of reactor. We design them from graphite composites, which allow up to 1000°C and are usable as exchangers: salt-salt or salt-acid (e.g. for the hydrogen production. In the paper there are shown thermo-physical properties of salts, material properties and principles of calculations.

  12. Liquid Salts as Media for Process Heat Transfer from VHTR's: Forced Convective Channel Flow Thermal Hydraulics, Materials, and Coating

    Energy Technology Data Exchange (ETDEWEB)

    Sridharan, Kumar; Anderson, Mark; Allen, Todd; Corradini, Michael

    2012-01-30

    The goal of this NERI project was to perform research on high temperature fluoride and chloride molten salts towards the long-term goal of using these salts for transferring process heat from high temperature nuclear reactor to operation of hydrogen production and chemical plants. Specifically, the research focuses on corrosion of materials in molten salts, which continues to be one of the most significant challenges in molten salts systems. Based on the earlier work performed at ORNL on salt properties for heat transfer applications, a eutectic fluoride salt FLiNaK (46.5% LiF-11.5%NaF-42.0%KF, mol.%) and a eutectic chloride salt (32%MgCl2-68%KCl, mole %) were selected for this study. Several high temperature candidate Fe-Ni-Cr and Ni-Cr alloys: Hastelloy-N, Hastelloy-X, Haynes-230, Inconel-617, and Incoloy-800H, were exposed to molten FLiNaK with the goal of understanding corrosion mechanisms and ranking these alloys for their suitability for molten fluoride salt heat exchanger and thermal storage applications. The tests were performed at 850C for 500 h in sealed graphite crucibles under an argon cover gas. Corrosion was noted to occur predominantly from dealloying of Cr from the alloys, an effect that was particularly pronounced at the grain boundaries Alloy weight-loss due to molten fluoride salt exposure correlated with the initial Cr-content of the alloys, and was consistent with the Cr-content measured in the salts after corrosion tests. The alloys weight-loss was also found to correlate to the concentration of carbon present for the nominally 20% Cr containing alloys, due to the formation of chromium carbide phases at the grain boundaries. Experiments involving molten salt exposures of Incoloy-800H in Incoloy-800H crucibles under an argon cover gas showed a significantly lower corrosion for this alloy than when tested in a graphite crucible. Graphite significantly accelerated alloy corrosion due to the reduction of Cr from solution by graphite and formation

  13. Thermal performances of molten salt steam generator

    International Nuclear Information System (INIS)

    Yuan, Yibo; He, Canming; Lu, Jianfeng; Ding, Jing

    2016-01-01

    Highlights: • Thermal performances of molten salt steam generator were experimentally studied. • Overall heat transfer coefficient reached maximum with optimal molten salt flow rate. • Energy efficiency first rose and then decreased with salt flow rate and temperature. • Optimal molten salt flow rate and temperature existed for good thermal performance. • High inlet water temperature benefited steam generating rate and energy efficiency. - Abstract: Molten salt steam generator is the key technology for thermal energy conversion from high temperature molten salt to steam, and it is used in solar thermal power station and molten salt reactor. A shell and tube type molten salt steam generator was set up, and its thermal performance and heat transfer mechanism were studied. As a coupling heat transfer process, molten salt steam generation is mainly affected by molten salt convective heat transfer and boiling heat transfer, while its energy efficiency is also affected by the heat loss. As molten salt temperature increased, the energy efficiency first rose with the increase of heat flow absorbed by water/steam, and then slightly decreased for large heat loss as the absorbed heat flow still rising. At very high molten salt temperature, the absorbed heat flow decreased as boiling heat transfer coefficient dropping, and then the energy efficiency quickly dropped. As the inlet water temperature increased, the boiling region in the steam generator remarkably expanded, and then the steam generation rate and energy efficiency both rose with the overall heat transfer coefficient increasing. As the molten salt flow rate increased, the wall temperature rose and the boiling heat transfer coefficient first increased and then decreased according to the boiling curve, so the overall heat transfer coefficient first increased and then decreased, and then the steam generation rate and energy efficiency of steam generator both had maxima.

  14. Wall heat transfer coefficient in a molten salt bubble column: testing the experimental setup

    CSIR Research Space (South Africa)

    Skosana, PJ

    2014-10-01

    Full Text Available reactors that are highly exothermic or endothermic. This paper presents the design and operation of experimental setup used for measurement of the heat transfer coefficient in molten salt media. The experimental setup was operated with tap water, heat...

  15. Mass transport in bedded salt and salt interbeds

    International Nuclear Information System (INIS)

    Hwang, Y.; Pigford, T.H.; Chambre, P.L.; Lee, W.W.L.

    1989-08-01

    Salt is the proposed host rock for geologic repositories of nuclear waste in several nations because it is nearly dry and probably impermeable. Although experiments and experience at potential salt sites indicate that salt may contain brine, the low porosity, creep, and permeability of salt make it still a good choice for geologic isolation. In this paper we summarize several mass-transfer and transport analyses of salt repositories. The mathematical details are given in our technical reports

  16. Heat transfer analysis of the waste-container sleeve/salt configuration

    International Nuclear Information System (INIS)

    Callahan, G.D.; Ratigan, J.L.; Russell, J.E.; Fossum, A.F.

    1975-01-01

    Prior to this investigation, the heat transport considered was only that of straight conduction. The waste container, air gap, and sleeve arrangement was considered to be a single, consistent, time-dependent, heat-generating unit in intimate contact with the salt. The conduction model does not accurately model the heat transfer mechanisms available. Thus radiation and combined radiation and convection must also be considered in the determination of the temperature field. As would be expected, the canister temperatures are higher for the case of radiation across the airgap than those that result from conduction when the canister is in intimate contact with the salt. For the radiation case, the canister temperatures rise rapidly to a temperature of approximately 1,140 0 F and maintain an almost steady state condition for one year whereafter the temperatures slowly decrease. The far field temperatures, near the pillar centerline, are essentially equivalent for all cases. As time proceeds, the far field temperatures of the conduction models are about 15% different

  17. Surface characterization and surface electronic structure of organic quasi-one-dimensional charge transfer salts

    DEFF Research Database (Denmark)

    Sing, M.; Schwingenschlögl, U.; Claessen, R.

    2003-01-01

    We have thoroughly characterized the surfaces of the organic charge-transfer salts TTF-TCNQ and (TMTSF)(2)PF6 which are generally acknowledged as prototypical examples of one-dimensional conductors. In particular x-ray-induced photoemission spectroscopy turns out to be a valuable nondestructive...

  18. Radionuclides transfer into halophytes growing in tidal salt marshes from the Southwest of Spain

    International Nuclear Information System (INIS)

    Luque, Carlos J.; Vaca, Federico; García-Trapote, Ana; Hierro, Almudena; Bolívar, Juan P.; Castellanos, Eloy M.

    2015-01-01

    Estuaries are sinks of materials and substances which are released directly into them or transported from rivers that drain the basin. It is usual to find high organic matter loads and fine particles in the sediments. We analyzed radionuclide concentrations ("2"1"0Po, "2"3"0Th, "2"3"2Th, "2"3"4U, "2"3"8U, "2"2"6Ra, "2"2"8Th, "2"2"8Ra, "4"0K) in sediments and three different organs (roots, stems and leaves) of three species of halophytes plants (Spartina maritima, Spartina densiflora and Sarcocornia perennis). The study was carried out in two tidal salt marshes, one polluted by U-series radionuclides and another nearby that was unpolluted and was used as a control (or reference) area. The Tinto River salt marsh shows high levels of U-series radionuclides coming from mining and industrial discharges. On the contrary, the unperturbed Piedras River salt marsh is located about 25 km from the Tinto marsh, and shows little presence of contaminants and radionuclides. The results of this work have shown that natural radionuclide concentrations (specially the U-isotopes) in the Tinto salt marsh sediments are one order of magnitude higher than those in the Piedras marsh. These radionuclide enhancements are reflected in the different organs of the plants, which have similar concentration increases as the sediments where they have grown. Finally, the transfer factor (TF) of the most polluted radionuclides (U-isotopes and "2"1"0Po) in the Tinto area are one order of magnitude higher than in the Piedras area, indicating that the fraction of each radionuclide in the sediment originating from the pollution is more available for the plants than the indigenous fraction. This means that the plants of the salt marshes are unhelpful as bioindicators or for the phytoremediation of radionuclides. - Highlights: • Radionuclides were analyzed in sediments and plants in unpolluted salt marshes. • Plants uptake radionuclides in all organs in both salt marshes. • The transfer factors

  19. Improvement of seawater salt quality by hydro-extraction and re-crystallization methods

    Science.gov (United States)

    Sumada, K.; Dewati, R.; Suprihatin

    2018-01-01

    Indonesia is one of the salt producing countries that use sea water as a source of raw materials, the quality of salt produced is influenced by the quality of sea water. The resulting average salt quality contains 85-90% NaCl. The Indonesian National Standard (SNI) for human salt’s consumption sodium chloride content is 94.7 % (dry base) and for industrial salt 98,5 %. In this study developed the re-crystallization without chemical and hydro-extraction method. The objective of this research to choose the best methods based on efficiency. The results showed that re-crystallization method can produce salt with NaCl content 99,21%, while hydro-extraction method content 99,34 % NaCl. The salt produced through both methods can be used as a consumption and industrial salt, Hydro-extraction method is more efficient than re-crystallization method because re-crystallization method requires heat energy.

  20. Steam generator design for solar towers using solar salt as heat transfer fluid

    Science.gov (United States)

    González-Gómez, Pedro Ángel; Petrakopoulou, Fontina; Briongos, Javier Villa; Santana, Domingo

    2017-06-01

    Since the operation of a concentrating solar power plant depends on the intermittent character of solar energy, the steam generator is subject to daily start-ups, stops and load variations. Faster start-up and load changes increase the plant flexibility and the daily energy production. However, it involves high thermal stresses on thick-walled components. Continuous operational conditions may eventually lead to a material failure. For these reasons, it is important to evaluate the transient behavior of the proposed designs in order to assure the reliability. The aim of this work is to analyze different steam generator designs for solar power tower plants using molten salt as heat transfer fluid. A conceptual steam generator design is proposed and associated heat transfer areas and steam drum size are calculated. Then, dynamic models for the main parts of the steam generator are developed to represent its transient performance. A temperature change rate that ensures safe hot start-up conditions is studied for the molten salt. The thermal stress evolution on the steam drum is calculated as key component of the steam generator.

  1. Crystal growth of new charge-transfer salts based on π-conjugated donor molecules

    Energy Technology Data Exchange (ETDEWEB)

    Morherr, Antonia, E-mail: morherr@stud.uni-frankfurt.de [Physikalisches Institut, Goethe-Universität Frankfurt am Main, 60438 Frankfurt am Main (Germany); Witt, Sebastian [Physikalisches Institut, Goethe-Universität Frankfurt am Main, 60438 Frankfurt am Main (Germany); Chernenkaya, Alisa [Graduate School Materials Science in Mainz, 55128 Mainz (Germany); Institut für Physik, Johannes Gutenberg-Universität, 55099 Mainz (Germany); Bäcker, Jan-Peter [Physikalisches Institut, Goethe-Universität Frankfurt am Main, 60438 Frankfurt am Main (Germany); Schönhense, Gerd [Institut für Physik, Johannes Gutenberg-Universität, 55099 Mainz (Germany); Bolte, Michael [Institut für anorganische Chemie, Goethe-Universität Frankfurt am Main, 60438 Frankfurt am Main (Germany); Krellner, Cornelius [Physikalisches Institut, Goethe-Universität Frankfurt am Main, 60438 Frankfurt am Main (Germany)

    2016-09-01

    New charge transfer crystals of π-conjugated, aromatic molecules (phenanthrene and picene) as donors were obtained by physical vapor transport. The melting behavior, optimization of crystal growth and the crystal structure are reported for charge transfer salts with (fluorinated) tetracyanoquinodimethane (TCNQ-F{sub x}, x=0, 2, 4), which was used as acceptor material. The crystal structures were determined by single-crystal X-ray diffraction. Growth conditions for different vapor pressures in closed ampules were applied and the effect of these starting conditions for crystal size and quality is reported. The process of charge transfer was investigated by geometrical analysis of the crystal structure and by infrared spectroscopy on single crystals. With these three different acceptor strengths and the two sets of donor materials, it is possible to investigate the distribution of the charge transfer systematically. This helps to understand the charge transfer process in this class of materials with π-conjugated donor molecules.

  2. A new method of application of hydrated salts on textiles to achieve thermoregulating properties

    International Nuclear Information System (INIS)

    Kazemi, Zeinab; Mortazavi, Sayed Majid

    2014-01-01

    Graphical abstract: - Highlights: • No need to microencapsulate the salt. • New method Glauber's salt dehydration. • Supercooling decreased, heat storage increased. - Abstract: Recently there has been a lot of attention to fibers and fabrics with thermoregulatory effects. We can acquire this quality using Phase Change Materials (PCM). In this investigation a simple method was used to keep Na 2 SO 4 ·10H 2 O as an inorganic PCM on textile structure. By this method it is not necessary for PCMs to be microencapsulated. Thermophysical properties and thermal stability effects of treated fabric was checked out by differential scanning calorimetry (DSC) and thermo gravimetric analysis (TGA). Fourier transform infrared spectroscopy (FT-IR) and X-ray diffractometry (XRD) analysis were used to study the chemical structure of the fabric with PCMs. The air transfer, water permeability, and some physical properties of treated fabric were also investigated. The results showed that, silicone rubber polymer could be applied on textile structure to hold PCM without microencapsulating, and treated textile can be served as an appropriate smart thermal insulator

  3. A new method of application of hydrated salts on textiles to achieve thermoregulating properties

    Energy Technology Data Exchange (ETDEWEB)

    Kazemi, Zeinab; Mortazavi, Sayed Majid, E-mail: mortaza@cc.iut.ac.ir

    2014-08-10

    Graphical abstract: - Highlights: • No need to microencapsulate the salt. • New method Glauber's salt dehydration. • Supercooling decreased, heat storage increased. - Abstract: Recently there has been a lot of attention to fibers and fabrics with thermoregulatory effects. We can acquire this quality using Phase Change Materials (PCM). In this investigation a simple method was used to keep Na{sub 2}SO{sub 4}·10H{sub 2}O as an inorganic PCM on textile structure. By this method it is not necessary for PCMs to be microencapsulated. Thermophysical properties and thermal stability effects of treated fabric was checked out by differential scanning calorimetry (DSC) and thermo gravimetric analysis (TGA). Fourier transform infrared spectroscopy (FT-IR) and X-ray diffractometry (XRD) analysis were used to study the chemical structure of the fabric with PCMs. The air transfer, water permeability, and some physical properties of treated fabric were also investigated. The results showed that, silicone rubber polymer could be applied on textile structure to hold PCM without microencapsulating, and treated textile can be served as an appropriate smart thermal insulator.

  4. HIGH YIELD AND RAPID SYNTHESES METHODS FOR PRODUCING METALLO-ORGANIC SALTS

    DEFF Research Database (Denmark)

    2005-01-01

    A new method for preparing salts of metal cations and organic acids, especially divalent salts of alkaline earth metal ions from group II of the periodic system and carboxylic acids. The method comprising the use of a high temperature (about 90° or more) and, optionally. high pressure, in order...... to obtain a higher yield, purity and faster reaction speed than obtained with known synthesis methods. In particular, the present invention relates to the production of strontium salts of carboxylic acids. Novel strontium salts are also provided by the present method....

  5. Mixing Modeling Analysis For SRS Salt Waste Disposition

    International Nuclear Information System (INIS)

    Lee, S.

    2011-01-01

    Nuclear waste at Savannah River Site (SRS) waste tanks consists of three different types of waste forms. They are the lighter salt solutions referred to as supernate, the precipitated salts as salt cake, and heavier fine solids as sludge. The sludge is settled on the tank floor. About half of the residual waste radioactivity is contained in the sludge, which is only about 8 percentage of the total waste volume. Mixing study to be evaluated here for the Salt Disposition Integration (SDI) project focuses on supernate preparations in waste tanks prior to transfer to the Salt Waste Processing Facility (SWPF) feed tank. The methods to mix and blend the contents of the SRS blend tanks were evalutaed to ensure that the contents are properly blended before they are transferred from the blend tank such as Tank 50H to the SWPF feed tank. The work consists of two principal objectives to investigate two different pumps. One objective is to identify a suitable pumping arrangement that will adequately blend/mix two miscible liquids to obtain a uniform composition in the tank with a minimum level of sludge solid particulate in suspension. The other is to estimate the elevation in the tank at which the transfer pump inlet should be located where the solid concentration of the entrained fluid remains below the acceptance criterion (0.09 wt% or 1200 mg/liter) during transfer operation to the SWPF. Tank 50H is a Waste Tank that will be used to prepare batches of salt feed for SWPF. The salt feed must be a homogeneous solution satisfying the acceptance criterion of the solids entrainment during transfer operation. The work described here consists of two modeling areas. They are the mixing modeling analysis during miscible liquid blending operation, and the flow pattern analysis during transfer operation of the blended liquid. The modeling results will provide quantitative design and operation information during the mixing/blending process and the transfer operation of the blended

  6. Method for the production of uranium chloride salt

    Science.gov (United States)

    Westphal, Brian R.; Mariani, Robert D.

    2013-07-02

    A method for the production of UCl.sub.3 salt without the use of hazardous chemicals or multiple apparatuses for synthesis and purification is provided. Uranium metal is combined in a reaction vessel with a metal chloride and a eutectic salt- and heated to a first temperature under vacuum conditions to promote reaction of the uranium metal with the metal chloride for the production of a UCl.sub.3 salt. After the reaction has run substantially to completion, the furnace is heated to a second temperature under vacuum conditions. The second temperature is sufficiently high to selectively vaporize the chloride salts and distill them into a condenser region.

  7. Quenching of acridine orange fluorescence by salts in aqueous solutions: Effects of aggregation and charge transfer

    Energy Technology Data Exchange (ETDEWEB)

    Amado, A.M. [Departamento de Física, FFCLRP, USP (Brazil); Ramos, A.P. [Departamento de Química, FFCLRP, USP (Brazil); Silva, E.R. [Departamento de Física, FFCLRP, USP (Brazil); Borissevitch, I.E., E-mail: iouribor@usp.br [Departamento de Física, FFCLRP, USP (Brazil)

    2016-10-15

    Acridine orange (AO) is widely applied in biology and medicine as a fluorescence probe, an intracellular pH indicator, and a photosensitizer in photodynamic therapy due to its adequate spectroscopic characteristics and high affinity to biological structures. Being introduced in an organism, AO is dispersed in blood plasma characterized by high ionic strength (ca. 0.36 M in humans). We have investigated the effect of ionic strength upon AO spectral characteristics and fluorescence quenching. The effect of pH on these characteristics was also tested. Salts quench AO fluorescence, the quenching constant (k{sub q}) increasing with the AO concentration. Salts stimulate AO aggregation, the process depending weakly on the salt origin. On the other hand, k{sub q} does depend on the salt anion origin, increasing as the anion oxidation potential decreases, and is virtually independent of the cation origin. This means that at least two different mechanisms of the AO fluorescence quenching by salts exist: fluorescence intensity decrease due to AO aggregation and quenching by partial electron transfer from salt anion to AO molecule in its singlet excited state (the exciplex formation).

  8. Salt power - Is Neptune's ole salt a tiger in the tank

    Science.gov (United States)

    Wick, G. S.

    1980-02-01

    Methods of exploiting the 24 atm osmotic pressure difference between fresh and salt water to generate energy include reverse electrodialysis, wherein 80 millivolts of electricity cross each ion-selective membrane placed between solutions of fresh and salt water. Pressure-retarded osmosis, using pumps and pressure chambers, relies on semipermeable membranes that allow fresh water to flow into saline, with power generated by the permeated water being released through a turbine. In reverse vapor compression, water vapor rapidly transfers from fresh water to salt water in an evacuated chamber (due to the vapor pressure difference between them), and power can be extracted using 24 m diameter turbine blades. Environmental concerns include protecting estuaries from stress, managing sediments, and protecting marine animals, while filtration would be needed to keep the membranes free from corrosion, biological fouling, or silting.

  9. Molten salt as a heat transfer fluid for heating a subsurface formation

    Science.gov (United States)

    Nguyen, Scott Vinh; Vinegar, Harold J.

    2010-11-16

    A heating system for a subsurface formation includes a conduit located in an opening in the subsurface formation. An insulated conductor is located in the conduit. A material is in the conduit between a portion of the insulated conductor and a portion of the conduit. The material may be a salt. The material is a fluid at operating temperature of the heating system. Heat transfers from the insulated conductor to the fluid, from the fluid to the conduit, and from the conduit to the subsurface formation.

  10. Thermodynamics investigation of a solar power system integrated oil and molten salt as heat transfer fluids

    International Nuclear Information System (INIS)

    Liu, Qibin; Bai, Zhang; Sun, Jie; Yan, Yuejun; Gao, Zhichao; Jin, Hongguang

    2016-01-01

    Highlights: • A new concentrating solar power system with a dual-solar field is proposed. • The superheated steam with more than 773 K is produced. • The performances of the proposed system are demonstrated. • The economic feasibility of the proposed system is validated. - Abstract: In this paper, a new parabolic trough solar power system that incorporates a dual-solar field with oil and molten salt as heat transfer fluids (HTFs) is proposed to effectively utilize the solar energy. The oil is chosen as a HTF in the low temperature solar field to heat the feeding water, and the high temperature solar field uses molten salt to superheat the steam that the temperature is higher than 773 K. The produced superheated steam enters a steam turbine to generate power. Energy analysis and exergy analysis of the system are implemented to evaluate the feasibility of the proposed system. Under considerations of variations of solar irradiation, the on-design and off-design thermodynamic performances of the system and the characteristics are investigated. The annual average solar-to-electric efficiency and the nominal efficiency under the given condition for the proposed solar thermal power generation system reach to 15.86% and 22.80%, which are higher than the reference system with a single HTF. The exergy losses within the solar heat transfer process of the proposed system are reduced by 7.8% and 45.23% compared with the solar power thermal systems using oil and molten salt as HTFs, respectively. The integrated approach with oil and molten salt as HTFs can make full use of the different physical properties of the HTFs, and optimize the heat transfer process between the HTFs and the water/steam. The exergy loss in the water evaporation and superheated process are reduced, the system efficiency and the economic performance are improved. The research findings provide a new approach for the improvement of the performances of solar thermal power plants.

  11. Novel waste printed circuit board recycling process with molten salt.

    Science.gov (United States)

    Riedewald, Frank; Sousa-Gallagher, Maria

    2015-01-01

    The objective of the method was to prove the concept of a novel waste PCBs recycling process which uses inert, stable molten salts as the direct heat transfer fluid and, simultaneously, uses this molten salt to separate the metal products in either liquid (solder, zinc, tin, lead, etc.) or solid (copper, gold, steel, palladium, etc.) form at the operating temperatures of 450-470 °C. The PCB recovery reactor is essentially a U-shaped reactor with the molten salt providing a continuous fluid, allowing molten salt access from different depths for metal recovery. A laboratory scale batch reactor was constructed using 316L as suitable construction material. For safety reasons, the inert, stable LiCl-KCl molten salts were used as direct heat transfer fluid. Recovered materials were washed with hot water to remove residual salt before metal recovery assessment. The impact of this work was to show metal separation using molten salts in one single unit, by using this novel reactor methodology. •The reactor is a U-shaped reactor filled with a continuous liquid with a sloped bottom representing a novel reactor concept.•This method uses large PCB pieces instead of shredded PCBs as the reactor volume is 2.2 L.•The treated PCBs can be removed via leg B while the process is on-going.

  12. Novel waste printed circuit board recycling process with molten salt

    Science.gov (United States)

    Riedewald, Frank; Sousa-Gallagher, Maria

    2015-01-01

    The objective of the method was to prove the concept of a novel waste PCBs recycling process which uses inert, stable molten salts as the direct heat transfer fluid and, simultaneously, uses this molten salt to separate the metal products in either liquid (solder, zinc, tin, lead, etc.) or solid (copper, gold, steel, palladium, etc.) form at the operating temperatures of 450–470 °C. The PCB recovery reactor is essentially a U-shaped reactor with the molten salt providing a continuous fluid, allowing molten salt access from different depths for metal recovery. A laboratory scale batch reactor was constructed using 316L as suitable construction material. For safety reasons, the inert, stable LiCl–KCl molten salts were used as direct heat transfer fluid. Recovered materials were washed with hot water to remove residual salt before metal recovery assessment. The impact of this work was to show metal separation using molten salts in one single unit, by using this novel reactor methodology. • The reactor is a U-shaped reactor filled with a continuous liquid with a sloped bottom representing a novel reactor concept. • This method uses large PCB pieces instead of shredded PCBs as the reactor volume is 2.2 L. • The treated PCBs can be removed via leg B while the process is on-going. PMID:26150977

  13. Innovative methods to reduce salt water intrusion in harbours

    Science.gov (United States)

    Groenenboom, J.; Uittenbogaard, R.; Hulsen, L.; van der Kaaij, T.; Kielen, N.

    2017-12-01

    The availability of fresh water in densely populated estuarine environments will in the future more often be threatened due to both human (e.g. channel deepening) and natural (sea-level rise, storm surges, extremely low river discharges) causes. Here, the salt water intrusion into the New Waterway, the main navigation channel of the port of Rotterdam, is used as a case study to elaborate on two innovative ways to mitigate the effects of salt water intrusion. The first method is based on the concept that vertical mixing of a salt wedge reduces its intrusion length. The idea is to equip a vessel with cranes that hold perforated tubes close to the bed alongside the vessel. By connecting compressors to the perforated tubes, a bubble screen with an adjustable vertical location can be created. Since the horizontal location of the bubble screens is not fixed, the vessel can sail in the vicinity of the moving salt wedge therewith increasing the effectiveness of the method. Another advantage of this intervention is that it can be deployed temporarily when the urgency for the prevention of salt water intrusion is high. The second method originates from the Port of Rotterdam Authority and is inspired by a small bypass that is present between two parallel channels (New Waterway and Caland Canal) connecting the North Sea to the Port of Rotterdam. Due to the different hydrodynamic characteristics of the hinterland of both channels, a difference in salinity and water level is present between both ends of the bypass. As a result, a lateral inflow of water into the New Waterway occurs at the same moment that the flood velocities transport saline water landwards. The lateral inflow of water into this channel has no momentum in the landward direction and therefore decreases the landward flow velocity and therewith the salt water intrusion. In addition, the inflow drives a vertical circulation that mixes the water column close to the bypass. Similar to the bubble screens mentioned

  14. Molten salt electrorefining method

    International Nuclear Information System (INIS)

    Tanaka, Hiroshi; Nakamura, Hitoshi; Shoji, Yuichi; Matsumaru, Ken-ichi.

    1994-01-01

    A molten cadmium phase (lower side) and a molten salt phase (upper side) are filled in an electrolytic bath. A basket incorporating spent nuclear fuels is inserted/disposed in the molten cadmium phase. A rotatable solid cathode is inserted/disposed in the molten salt phase. The spent fuels, for example, natural uranium, incorporated in the basket is dissolved in the molten cadmium phase. In this case, the uranium concentration in the molten salt phase is determined as from 0.5 to 20wt%. Then, electrolysis is conducted while setting a stirring power for stirring at least the molten salt phase of from 2.5 x 10 2 to 1 x 10 4 based on a reynolds number. Crystalline nuclei of uranium are precipitated uniformly on the surface of the solid cathode, and they grow into fine dendrites. With such procedures, since short-circuit between the cathode precipitates and the molten cadmium phase (anode) is scarcely caused, to improve the recovering rate of uranium. (I.N.)

  15. Novel waste printed circuit board recycling process with molten salt

    OpenAIRE

    Riedewald, Frank; Sousa-Gallagher, Maria

    2015-01-01

    The objective of the method was to prove the concept of a novel waste PCBs recycling process which uses inert, stable molten salts as the direct heat transfer fluid and, simultaneously, uses this molten salt to separate the metal products in either liquid (solder, zinc, tin, lead, etc.) or solid (copper, gold, steel, palladium, etc.) form at the operating temperatures of 450?470??C. The PCB recovery reactor is essentially a U-shaped reactor with the molten salt providing a continuous fluid, a...

  16. Development of Molten-Salt Heat Transfer Fluid Technology for Parabolic Trough Solar Power Plants - Public Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Grogan, Dylan C. P.

    2013-08-15

    Executive Summary This Final Report for the "Development of Molten-Salt Heat Transfer Fluid (HTF) Technology for Parabolic Trough Solar Power Plants” describes the overall project accomplishments, results and conclusions. Phase 1 analyzed the feasibility, cost and performance of a parabolic trough solar power plant with a molten salt heat transfer fluid (HTF); researched and/or developed feasible component options, detailed cost estimates and workable operating procedures; and developed hourly performance models. As a result, a molten salt plant with 6 hours of storage was shown to reduce Thermal Energy Storage (TES) cost by 43.2%, solar field cost by 14.8%, and levelized cost of energy (LCOE) by 9.8% - 14.5% relative to a similar state-of-the-art baseline plant. The LCOE savings range met the project’s Go/No Go criteria of 10% LCOE reduction. Another primary focus of Phase 1 and 2 was risk mitigation. The large risk areas associated with a molten salt parabolic trough plant were addressed in both Phases, such as; HTF freeze prevention and recovery, collector components and piping connections, and complex component interactions. Phase 2 analyzed in more detail the technical and economic feasibility of a 140 MWe,gross molten-salt CSP plant with 6 hours of TES. Phase 2 accomplishments included developing technical solutions to the above mentioned risk areas, such as freeze protection/recovery, corrosion effects of applicable molten salts, collector design improvements for molten salt, and developing plant operating strategies for maximized plant performance and freeze risk mitigation. Phase 2 accomplishments also included developing and thoroughly analyzing a molten salt, Parabolic Trough power plant performance model, in order to achieve the project cost and performance targets. The plant performance model and an extensive basic Engineering, Procurement, and Construction (EPC) quote were used to calculate a real levelized cost of energy (LCOE) of 11.50

  17. ALTERNATIVE METHODS OF TECHNOLOGICAL PROCESSING TO REDUCE SALT IN MEAT PRODUCTS

    Directory of Open Access Journals (Sweden)

    E. K. Tunieva

    2017-01-01

    Full Text Available The world trends in table salt reduction in meat products contemplate the use of different methods for preservation of taste and consistency in finished products as well as shelf life prolongation. There are several approaches to a sodium chloride reduction in meat products. The paper presents a review of the foreign studies that give evidence of the possibility to maintain quality of traditional meat products produced with the reduced salt content. The studies in the field of salty taste perception established that a decrease in a salt crystal size to 20 µm enabled reducing an amount of added table salt due to an increase in the salty taste intensity in food products. Investigation of the compatibility of different taste directions is also interesting as one of the approaches to a sodium chloride reduction in food products. The use of water-in-oil-in-water (w/o/w double emulsions allows controlling a release of encapsulated ingredients (salt, which enables enhancement of salty taste. The other alternative method of technological processing of meat raw material for reducing salt in meat products is the use of high pressure processing. This method has several advantages and allows not only an increase in the salty taste intensity, but also formation of a stable emulsion, an increase in water binding capacity of minced meat and extension of shelf-life.

  18. Studies of thermal hydraulics and heat transfer in cascade subcritical molten salt reactor

    International Nuclear Information System (INIS)

    Aysen, E.M.; Sedov, A.A.; Subbotin, A.S.

    2005-01-01

    Full text of publication follows: Cascade Subcritical Molten Salt Reactor (CSMSR) consists of three main parts: accelerator-driven proton-bombarded target, central and peripheral zones. External neutrons generated in the result of interaction of protons with the target nuclei are multiplied then in the central zone and leak farther into the peripheral reactor zone, where an efficient burning of Minor Actinides dissolved in a molten salt fluoride composition is produced. The bunch of target and two zones is designed so that preset subcriticality of reactor would not be less than 1% of k eff . A characteristic feature of the reactor is a high density of neutron flux (2.10 15 n/cm 2 s) in the central zone and target and very high volumetric power rate (2000 - 6000 W/cm 3 ) in all the parts of CSMSR. To provide a workability of the core structures under condition of so big level of power rate it is necessary to impose strict limitations on the temperatures and temperature gradients developed in the coolants and constructions. In this reason it has been arranged a calculational-designing study to reveal the problems of heat transfer in the coolant and core structures and to find more appropriate variant of the core and target design, which is a compromise of contradictory requirements: provision of high neutron flux and coolability of the core structures. In this paper the results of studies of thermal hydraulics and heat transfer in the core zones and proton-beam target are presented. Different variants of the target and central zone design as well as application of different kind of coolants in them are discussed and the main problems of heat removal in their structures are analyzed. Multidimensional fields of velocity and temperature got in thermal hydraulics calculations for free flow of fuelled molten salt in cylindrical-cave peripheral CSMSR zone without structures inside are demonstrated. The role of turbulent exchange of momentum and heat for free flow in the

  19. Unsupervised detection of salt marsh platforms: a topographic method

    Science.gov (United States)

    Goodwin, Guillaume C. H.; Mudd, Simon M.; Clubb, Fiona J.

    2018-03-01

    Salt marshes filter pollutants, protect coastlines against storm surges, and sequester carbon, yet are under threat from sea level rise and anthropogenic modification. The sustained existence of the salt marsh ecosystem depends on the topographic evolution of marsh platforms. Quantifying marsh platform topography is vital for improving the management of these valuable landscapes. The determination of platform boundaries currently relies on supervised classification methods requiring near-infrared data to detect vegetation, or demands labour-intensive field surveys and digitisation. We propose a novel, unsupervised method to reproducibly isolate salt marsh scarps and platforms from a digital elevation model (DEM), referred to as Topographic Identification of Platforms (TIP). Field observations and numerical models show that salt marshes mature into subhorizontal platforms delineated by subvertical scarps. Based on this premise, we identify scarps as lines of local maxima on a slope raster, then fill landmasses from the scarps upward, thus isolating mature marsh platforms. We test the TIP method using lidar-derived DEMs from six salt marshes in England with varying tidal ranges and geometries, for which topographic platforms were manually isolated from tidal flats. Agreement between manual and unsupervised classification exceeds 94 % for DEM resolutions of 1 m, with all but one site maintaining an accuracy superior to 90 % for resolutions up to 3 m. For resolutions of 1 m, platforms detected with the TIP method are comparable in surface area to digitised platforms and have similar elevation distributions. We also find that our method allows for the accurate detection of local block failures as small as 3 times the DEM resolution. Detailed inspection reveals that although tidal creeks were digitised as part of the marsh platform, unsupervised classification categorises them as part of the tidal flat, causing an increase in false negatives and overall platform

  20. Unsupervised detection of salt marsh platforms: a topographic method

    Directory of Open Access Journals (Sweden)

    G. C. H. Goodwin

    2018-03-01

    Full Text Available Salt marshes filter pollutants, protect coastlines against storm surges, and sequester carbon, yet are under threat from sea level rise and anthropogenic modification. The sustained existence of the salt marsh ecosystem depends on the topographic evolution of marsh platforms. Quantifying marsh platform topography is vital for improving the management of these valuable landscapes. The determination of platform boundaries currently relies on supervised classification methods requiring near-infrared data to detect vegetation, or demands labour-intensive field surveys and digitisation. We propose a novel, unsupervised method to reproducibly isolate salt marsh scarps and platforms from a digital elevation model (DEM, referred to as Topographic Identification of Platforms (TIP. Field observations and numerical models show that salt marshes mature into subhorizontal platforms delineated by subvertical scarps. Based on this premise, we identify scarps as lines of local maxima on a slope raster, then fill landmasses from the scarps upward, thus isolating mature marsh platforms. We test the TIP method using lidar-derived DEMs from six salt marshes in England with varying tidal ranges and geometries, for which topographic platforms were manually isolated from tidal flats. Agreement between manual and unsupervised classification exceeds 94 % for DEM resolutions of 1 m, with all but one site maintaining an accuracy superior to 90 % for resolutions up to 3 m. For resolutions of 1 m, platforms detected with the TIP method are comparable in surface area to digitised platforms and have similar elevation distributions. We also find that our method allows for the accurate detection of local block failures as small as 3 times the DEM resolution. Detailed inspection reveals that although tidal creeks were digitised as part of the marsh platform, unsupervised classification categorises them as part of the tidal flat, causing an increase in false negatives

  1. A Two-Dimensional Numerical Study of Hydrodynamic, Heat and Mass Transfer and Stability in a Salt Gradient Solar Pond

    Directory of Open Access Journals (Sweden)

    Ali Ben Moussa

    2012-10-01

    Full Text Available In this work, the problem of hydrodynamic, heat and mass transfer and stability in a salt gradient solar pond has been numerically studied by means of computational fluid dynamics in transient regime. The body of the simulated pond is an enclosure of height H and length L wherein an artificial salinity gradient is created in order to suppress convective motions induced by solar radiation absorption and to stabilize the solar pond during the period of operation. Here we show the distribution of velocity, temperature and salt concentration fields during energy collection and storage in a solar pond filled with water and constituted by three different salinity zones. The bottom of the pond is blackened and the free-surface is subjected to heat losses by convection, evaporation and radiation while the vertical walls are adiabatic and impermeable. The governing equations of continuity, momentum, thermal energy and mass transfer are discretized by finite–volume method in transient regime. Velocity vector fields show the presence of thin convective cells in the upper convective zone (UCZ and large convective cells in the lower convective zone (LCZ. This study shows the importance of buoyancy ratio in the decrease of temperature in the UCZ and in the preservation of high temperature in the LCZ. It shows also the importance of the thickness of Non-Convective Zone (NCZ in the reduction of the upwards heat losses.

  2. Study on transfer of cadmium in soil-plant systems with the isotopic dilution method

    International Nuclear Information System (INIS)

    Wu Qitang; Morel, J.L.; Guckert, A.

    1993-01-01

    Experiments were conducted to determine the transfer rate from endogenous and exogenous cadmium in soil to plants. Soils were labelled with 109 Cd and amended with soluble cadmium salt or Cd containing sewage sludge. Ryegrass (Lolium perenne L.) were grown in pots and the effective transfer of cadmium from different sources to shoot of the plant were measured. The soils were also extracted with 0.1 M CaCl 2 , DTPA and 0.1 N HCl. The results showed that the addition of soluble cadmium salt substantially increased the plant cadmium content. Plant absorbed mainly the cadmium from exogenous sources in the soils treated with cadmium. The effective transfer rate of exogenous cadmium was higher than that of endogenous ones, and the soluble salt form was 2 to 3 times higher than that in the sewage sludge. 0.1 M CaCl 2 extracted Cd was significantly correlated with the plant cadmium content. The specific radioactivity of cadmium extracted by this reagent was nearer to the plant cadmium than that extracted by others. 0.1 N HCl extracted cadmium could not be absorbed by plants

  3. The influence of polarizability and charge transfer on specific ion effects in the dynamics of aqueous salt solutions

    Science.gov (United States)

    Nguyen, Mary; Rick, Steven W.

    2018-06-01

    The diffusion rates for water molecules in salt solutions depend on the identity of the ions, as well as their concentration. Among the alkali metal ions, cesium and potassium increase and sodium strongly decreases the diffusion constant of water. The origin of the difference can be understood by examining the simulation results using different potential models. In this work, aqueous solutions of salts are simulated with a variety of models. Commonly used non-polarizable models, which otherwise reproduce many experimental properties, do not capture the trend in the diffusion constant, while models which include polarization and/or charge transfer interactions do. For the non-polarizable models, the diffusion constant decreases too strongly with salt concentration. The changes in the water diffusion constant with increasing salt concentration match the diffusion constant of the ion. The ion diffusion constant is dependent on the residence time for water in the ion solvation shell. The non-polarizable models over-estimate the residence time, relative to the translational diffusion constant and so tend to under-estimate the ion and water diffusion constants.

  4. Making a Pellet-type LiCl-KCl-UCl3 salt for Electrorefining

    Energy Technology Data Exchange (ETDEWEB)

    Woo, M. S.; Jin, H. J.; Kim, I. T.; Kim, J. G. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-05-15

    The role of uranium chloride salt (UCl3) is to stabilize the initial cell voltage between electrodes in the electrorefining reactor. The process to produce a uranium chloride salt includes two steps: a reaction process of gaseous chlorine with liquid cadmium to form the CdCl2 occurring in a Cd layer, followed by a process to produce UCl3 by the reaction of U in the LiCl-KCl eutectic salt and CdCl2 The apparatus for producing UCl3 consists of a chlorine gas generator, a uranium chlorinator, a Cd distiller, the pelletizer, and a off-gas and a dry scrubber. The temperature of the reactants is maintained at about 600 .deg. C. After the reaction is completed in the uranium chlorinator, The salt products is transferred to the Cd distiller to decrease residual Cd concentration in the salts, and then salt is transferred to the mould of pelletizer by a transfer system to make pellet type salt. Making pellet type LiCl-KCl-UCl3 salt for electrorefining was carried out using the chlorinator, Cd distiller, and pelletizer. Salt transfer carried out by salt transfer equipment heated 500 .deg. C. The Cd concentration of final salt products distillated at 60 torr, 2 hrs, 600 .deg. C was 200 ppm from the ICP, XRD analysis. And pellet type salt products were fabricated by using the mould of pelletizer at 90∼130 .deg. C.

  5. Making a Pellet-type LiCl-KCl-UCl3 salt for Electrorefining

    International Nuclear Information System (INIS)

    Woo, M. S.; Jin, H. J.; Kim, I. T.; Kim, J. G.

    2013-01-01

    The role of uranium chloride salt (UCl3) is to stabilize the initial cell voltage between electrodes in the electrorefining reactor. The process to produce a uranium chloride salt includes two steps: a reaction process of gaseous chlorine with liquid cadmium to form the CdCl2 occurring in a Cd layer, followed by a process to produce UCl3 by the reaction of U in the LiCl-KCl eutectic salt and CdCl2 The apparatus for producing UCl3 consists of a chlorine gas generator, a uranium chlorinator, a Cd distiller, the pelletizer, and a off-gas and a dry scrubber. The temperature of the reactants is maintained at about 600 .deg. C. After the reaction is completed in the uranium chlorinator, The salt products is transferred to the Cd distiller to decrease residual Cd concentration in the salts, and then salt is transferred to the mould of pelletizer by a transfer system to make pellet type salt. Making pellet type LiCl-KCl-UCl3 salt for electrorefining was carried out using the chlorinator, Cd distiller, and pelletizer. Salt transfer carried out by salt transfer equipment heated 500 .deg. C. The Cd concentration of final salt products distillated at 60 torr, 2 hrs, 600 .deg. C was 200 ppm from the ICP, XRD analysis. And pellet type salt products were fabricated by using the mould of pelletizer at 90∼130 .deg. C

  6. Interaction Free Energies of Eight Sodium Salts and a Phosphatidylcholine Membrane

    DEFF Research Database (Denmark)

    Wang, C. H.; Ge, Y.; Mortensen, J.

    2011-01-01

    Many recent reports have discussed specific effects of anions on the properties of lipid membranes and possible roles of such effects within biochemistry. One key parameter in both theoretical and experimental treatments of membrane-salt interactions is the net affinity, that is, the free energy...... salts by dialysis equilibrium measurements. This method provides model free thermodynamic data and allows investigations in the dilute concentration range where solution nonideality and perturbation of membrane structure is limited. The transfer free energy of DMPC from water to salt solutions, Delta mu...

  7. Liquid Salt Heat Exchanger Technology for VHTR Based Applications

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Mark; Sridhara, Kumar; Allen, Todd; Peterson, Per

    2012-10-11

    The objective of this research is to evaluate performance of liquid salt fluids for use as a heat carrier for transferring high-temperature process heat from the very high-temperature reactor (VHTR) to chemical process plants. Currently, helium is being considered as the heat transfer fluid; however, the tube size requirements and the power associated with pumping helium may not be economical. Recent work on liquid salts has shown tremendous potential to transport high-temperature heat efficiently at low pressures over long distances. This project has two broad objectives: To investigate the compatibility of Incoloy 617 and coated and uncoated SiC ceramic composite with MgCl2-KCl molten salt to determine component lifetimes and aid in the design of heat exchangers and piping; and, To conduct the necessary research on the development of metallic and ceramic heat exchangers, which are needed for both the helium-to-salt side and salt-to-process side, with the goal of making these heat exchangers technologically viable. The research will consist of three separate tasks. The first task deals with material compatibility issues with liquid salt and the development of techniques for on-line measurement of corrosion products, which can be used to measure material loss in heat exchangers. Researchers will examine static corrosion of candidate materials in specific high-temperature heat transfer salt systems and develop an in situ electrochemical probe to measure metallic species concentrations dissolved in the liquid salt. The second task deals with the design of both the intermediate and process side heat exchanger systems. Researchers will optimize heat exchanger design and study issues related to corrosion, fabrication, and thermal stresses using commercial and in-house codes. The third task focuses integral testing of flowing liquid salts in a heat transfer/materials loop to determine potential issues of using the salts and to capture realistic behavior of the salts in a

  8. Thermal conductivity of crushed salt

    International Nuclear Information System (INIS)

    Kuehn, K.

    Heat transfer through an annular space filled with crushed salt depends primarily on the thermal conductivity, lambda, of the material. This report gives a formula with which lambda can be computed. The formula includes two quantities that can be influenced through screening of the salt smalls: the porosity, psi, and the fraction, alpha, of the more highly resistive heat-flow paths. The report computes and presents graphically the thermal conductivities for various values of psi and alpha. Heat-transfer properties are computed and compared for an annular space filled with crushed salt and for an air gap. The comparison shows that the properties of the annular space are larger only up to a certain temperature, because the properties of the air gap increase exponentially while those f the annular space increase only in an approximately linear way. Experimental results from Project Salt Vault in the U.S. are in good agreement with the calculations performed. Trials in Temperature Experimental Field 2 at the Asse II salt mine will provide an additional check on the calculations. 3 figures, 3 tables

  9. Covalent electron transfer chemistry of graphene with diazonium salts.

    Science.gov (United States)

    Paulus, Geraldine L C; Wang, Qing Hua; Strano, Michael S

    2013-01-15

    Graphene is an atomically thin, two-dimensional allotrope of carbon with exceptionally high carrier mobilities, thermal conductivity, and mechanical strength. From a chemist's perspective, graphene can be regarded as a large polycyclic aromatic molecule and as a surface without a bulk contribution. Consequently, chemistries typically performed on organic molecules and surfaces have been used as starting points for the chemical functionalization of graphene. The motivations for chemical modification of graphene include changing its doping level, opening an electronic band gap, charge storage, chemical and biological sensing, making new composite materials, and the scale-up of solution-processable graphene. In this Account, we focus on graphene functionalization via electron transfer chemistries, in particular via reactions with aryl diazonium salts. Because electron transfer chemistries depend on the Fermi energy of graphene and the density of states of the reagents, the resulting reaction rate depends on the number of graphene layers, edge states, defects, atomic structure, and the electrostatic environment. We limit our Account to focus on pristine graphene over graphene oxide, because free electrons in the latter are already bound to oxygen-containing functionalities and the resulting chemistries are dominated by localized reactivity and defects. We describe the reaction mechanism of diazonium functionalization of graphene and show that the reaction conditions determine the relative degrees of chemisorption and physisorption, which allows for controlled modulation of the electronic properties of graphene. Finally we discuss different applications for graphene modified by this chemistry, including as an additive in polymer matrices, as biosensors when coupled with cells and biomolecules, and as catalysts when combined with nanoparticles.

  10. Characterization of the effects of continuous salt processing on the performance of molten salt fusion breeder blankets

    International Nuclear Information System (INIS)

    Patterson-Hine, F.A.; Davidson, J.W.; Klein, D.E.; Lee, J.D.

    1985-01-01

    Several continuous salt processing options are available for use in molten salt fusion breeder blanket designs: fluorination only, fluorination plus reductive extraction, and fluorination, plus reductive extraction, plus metal transfer. The effects of processing on blanket performance have been assessed for these three levels of processing and various equilibrium uranium concentrations in the salt. A one-dimensional model of the blanket was used in the neutronics analysis, which incorporated transport calculations with time-dependent isotope generation and depletion calculations. The method of salt processing was found to have little affect on the level of radioactivity, toxicity, or the thermal behavior of the salt during operation of the reactor. The processing rates necessary to maintain the desired uranium concentrations in the suppressed-fission environment were quite low, which permitted only long-lived species to be removed from the salt. The effects of the processing therefore became apparent only after the radioactivity due to the short-lived species diminished. The effect of the additional processing (reductive extraction and metal transfer) could be seen after approximately 1 year of decay, but were not significant at times closer to shutdown. The reduced radioactivity and corresponding heat deposition were thus of no consequence in accident or maintenance situations. Net fissile production in the Be/MS blanket concept at a fusion power level of 3000 MW at 70% capacity ranged from 5100 kg/year to 5170 kg/year for uranium concentrations of 0.11% and 1.0% 233 U in thorium, respectively, with fluorination-only processing. The addition of processing by reductive extraction resulted in 5125 kg/year for the 0.11% 233 U case and 5225 kg/year for the 1.0% 233 U case

  11. Molten salts and nuclear energy production

    International Nuclear Information System (INIS)

    Le Brun, Christian

    2007-01-01

    Molten salts (fluorides or chlorides) were considered near the beginning of research into nuclear energy production. This was initially due to their advantageous physical and chemical properties: good heat transfer capacity, radiation insensitivity, high boiling point, wide range solubility for actinides. In addition it was realised that molten salts could be used in numerous situations: high temperature heat transfer, core coolants with solid fuels, liquid fuel in a molten salt reactor, solvents for spent nuclear solid fuel in the case of pyro-reprocessing and coolant and tritium production in the case of fusion. Molten salt reactors, one of the six innovative concepts chosen by the Generation IV international forum, are particularly interesting for use as either waste incinerators or thorium cycle systems. As the neutron balance in the thorium cycle is very tight, the possibility to perform online extraction of some fission product poisons from the salt is very attractive. In this article the most important questions that must be addressed to demonstrate the feasibility of molten salt reactor will be reviewed

  12. Evaluation of the Impact of Excipients and an Albendazole Salt on Albendazole Concentrations in Upper Small Intestine Using an In Vitro Biorelevant Gastrointestinal Transfer (BioGIT) System.

    Science.gov (United States)

    Kourentas, Alexandros; Vertzoni, Maria; Khadra, Ibrahim; Symillides, Mira; Clark, Hugh; Halbert, Gavin; Butler, James; Reppas, Christos

    2016-09-01

    An in vitro biorelevant gastrointestinal transfer (BioGIT) system was assessed for its ability to mimic recently reported albendazole concentrations in human upper small intestine after administration of free base suspensions to fasted adults in absence and in presence of supersaturation promoting excipients (hydroxypropylmethylcellulose and lipid self-emulsifying vehicles). The in vitro method was also used to evaluate the likely impact of using the sulfate salt on albendazole concentrations in upper small intestine. In addition, BioGIT data were compared with equilibrium solubility data of the salt and the free base in human aspirates and biorelevant media. The BioGIT system adequately simulated the average albendazole gastrointestinal transfer process and concentrations in upper small intestine after administration of the free base suspensions to fasted adults. However, the degree of supersaturation observed in the duodenal compartment was greater than in vivo. Albendazole sulfate resulted in minimal increase of albendazole concentrations in the duodenal compartment of the BioGIT, despite improved equilibrium solubility observed in human aspirates and biorelevant media, indicating that the use of a salt is unlikely to lead to any significant oral absorption advantage for albendazole. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  13. Heat transfer measurements in a forced convection loop with two molten-fluoride salts: LiF--BeF2--ThF2--UF4 and eutectic NaBF4--NaF

    International Nuclear Information System (INIS)

    Silverman, M.D.; Huntley, W.R.; Robertson, H.E.

    1976-10-01

    Heat transfer coefficients were determined experimentally for two molten-fluoride salts [LiF-BeF 2 -ThF 2 -UF 4 (72-16-12-0.3 mole %) and NaBF 4 -NaF (92-8 mole %] proposed as the fuel salt and coolant salt, respectively, for molten-salt breeder reactors. Information was obtained over a wide range of variables, with salt flowing through 12.7-mm-OD (0.5-in.) Hastelloy N tubing in a forced convection loop (FCL-2b). Satisfactory agreement with the empirical Sieder-Tate correlation was obtained in the fully developed turbulent region at Reynolds moduli above 15,000 and with a modified Hausen equation in the extended transition region (Re approx.2100-15,000). Insufficient data were obtained in the laminar region to allow any conclusions to be drawn. These results indicate that the proposed salts behave as normal heat transfer fluids with an extended transition region

  14. Transient core characteristics of small molten salt reactor coupling problem between heat transfer/flow and nuclear fission reaction

    International Nuclear Information System (INIS)

    Yamamoto, Takahisa; Mitachi, Koshi

    2004-01-01

    This paper performed the transient core analysis of a small Molten Salt Reactor (MSR). The emphasis is that the numerical model employed in this paper takes into account the interaction among fuel salt flow, nuclear reaction and heat transfer. The model consists of two group diffusion equations for fast and thermal neutron fluexs, balance equations for six-group delayed neutron precursors and energy conservation equations for fuel salt and graphite moderator. The results of transient analysis are that (1) fission reaction (heat generation) rate significantly increases soon after step reactivity insertion, e.g., the peak of fission reaction rate achieves about 2.7 times larger than the rated power 350 MW when the reactivity of 0.15% Δk/k 0 is inserted to the rated state, and (2) the self-control performance of the small MSR effectively works under the step reactivity insertion of 0.56% Δk/k 0 , putting the fission reaction rate back on the rated state. (author)

  15. The effects of pre-salting methods on salt and water distribution of heavily salted cod, as analyzed by 1H and 23Na MRI, 23Na NMR, low-field NMR and physicochemical analysis

    DEFF Research Database (Denmark)

    Guðjónsdóttir, María; Traoré, Amidou; Jónsson, Ásbjörn

    2015-01-01

    The effect of different pre-salting methods (brine injection with salt with/without polyphosphates, brining and pickling) on the water and salt distribution in dry salted Atlantic cod (Gadus morhua) fillets was studied with proton and sodium NMR and MRI methods, supported by physicochemical analy...

  16. Charge orders in organic charge-transfer salts

    International Nuclear Information System (INIS)

    Kaneko, Ryui; Valentí, Roser; Tocchio, Luca F; Becca, Federico

    2017-01-01

    Motivated by recent experimental suggestions of charge-order-driven ferroelectricity in organic charge-transfer salts, such as κ -(BEDT-TTF) 2 Cu[N(CN) 2 ]Cl, we investigate magnetic and charge-ordered phases that emerge in an extended two-orbital Hubbard model on the anisotropic triangular lattice at 3/4 filling. This model takes into account the presence of two organic BEDT-TTF molecules, which form a dimer on each site of the lattice, and includes short-range intramolecular and intermolecular interactions and hoppings. By using variational wave functions and quantum Monte Carlo techniques, we find two polar states with charge disproportionation inside the dimer, hinting to ferroelectricity. These charge-ordered insulating phases are stabilized in the strongly correlated limit and their actual charge pattern is determined by the relative strength of intradimer to interdimer couplings. Our results suggest that ferroelectricity is not driven by magnetism, since these polar phases can be stabilized also without antiferromagnetic order and provide a possible microscopic explanation of the experimental observations. In addition, a conventional dimer-Mott state (with uniform density and antiferromagnetic order) and a nonpolar charge-ordered state (with charge-rich and charge-poor dimers forming a checkerboard pattern) can be stabilized in the strong-coupling regime. Finally, when electron–electron interactions are weak, metallic states appear, with either uniform charge distribution or a peculiar 12-site periodicity that generates honeycomb-like charge order. (paper)

  17. Modeling and simulation of a molten salt cavity receiver with Dymola

    International Nuclear Information System (INIS)

    Zhang, Qiangqiang; Li, Xin; Wang, Zhifeng; Zhang, Jinbai; El-Hefni, Baligh; Xu, Li

    2015-01-01

    Molten salt receivers play an important role in converting solar energy to thermal energy in concentrating solar power plants. This paper describes a dynamic mathematical model of the molten salt cavity receiver that couples the conduction, convection and radiation heat transfer processes in the receiver. The temperature dependence of the material properties is also considered. The radiosity method is used to calculate the radiation heat transfer inside the cavity. The outlet temperature of the receiver is calculated for 11 sets of transient working conditions. The simulation results compare well with experimental data, thus the model can be further used in system simulations of entire power plants. - Highlights: • A detailed model for molten salt cavity receiver is presented. • The model couples the conduction, convection and thermal radiation. • The simulation results compare well with experimental data. • The model can be further used for many purposes.

  18. Immobilization of LiCl-Li 2 O pyroprocessing salt wastes in chlorosodalite using glass-bonded hydrothermal and salt-occlusion methods

    Energy Technology Data Exchange (ETDEWEB)

    Riley, Brian J.; Peterson, Jacob A.; Kroll, Jared O.; Frank, Steven M.

    2018-04-01

    In this study, salt occlusion and hydrothermal processes were used to make chlorosodalite through reaction with a high-LiCl salt simulating a waste stream following pyrochemical treatment of oxide-based used nuclear fuel. Some products were reacted with glass binders to increase chlorosodalite yield through alkali ion exchange and aide in densification. Hydrothermal processes included reaction of the salt simulant in an acid digestion vessel with either zeolite 4A or sodium aluminate and colloidal silica. Chlorosodalite yields in the crystalline products were nearly complete in the glass-bonded materials at values of 100 mass% for the salt-occlusion method, up to 99.0 mass% for the hydrothermal synthesis with zeolite 4A, and up to 96 mass% for the hydrothermal synthesis with sodium aluminate and colloidal silica. These results show promise for using chemically stable chlorosodalite to immobilize oxide reduction salt wastes.

  19. Immobilization of LiCl-Li2O pyroprocessing salt wastes in chlorosodalite using glass-bonded hydrothermal and salt-occlusion methods

    Science.gov (United States)

    Riley, Brian J.; Peterson, Jacob A.; Kroll, Jared O.; Frank, Steven M.

    2018-04-01

    In this study, hydrothermal and salt-occlusion processes were used to make chlorosodalite through reactions with a high-LiCl salt simulating a waste stream generated from pyrochemical treatment of oxide-based used nuclear fuel. Some products were reacted with glass binders to increase chlorosodalite yield through alkali ion exchange and to aid in densification. Hydrothermal processes included reaction of the salt simulant in an autoclave with either zeolite 4A or sodium aluminate and colloidal silica. Chlorosodalite yields in the crystalline products were nearly complete in the glass-bonded materials at values of 100 mass% for the salt-occlusion method, up to 99.0 mass% for the hydrothermal synthesis with zeolite 4A, and up to 96 mass% for the hydrothermal synthesis with sodium aluminate and colloidal silica. These results show promise for using chemically stable chlorosodalite to immobilize oxide reduction salt wastes.

  20. The absorption and transportation of ferric-salt in apple trees

    International Nuclear Information System (INIS)

    Xiong Zhixun; Chen Meihong

    1994-01-01

    59 Fe tracer technique was used to study the ferric-salt absorption, utilization and transportation in apple trees. The results indicated that absorption and utilization rate of ferric salt was 0.056%∼0.110% for roots and 30% for leaves, and that Fe is not easily to be transferred from one part to another. Fulvic acid iron had a better effect than ferrous sulfate. Ferric-salt absorption, utilization and transference were different among the cultivars. Intensive injections of ferrous salt into the apple trunks seemed to be more effective for correcting of chlorosis

  1. O-alkylation of disodium salt of diethyl 3,4-dihydroxythiophene-2,5-dicarboxylate with 1,2-dichloroethane catalyzed by ionic type phase transfer catalyst and potassium iodide

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Huasheng; Yin, Hengbo; Wang, Aili; Shen, Jun; Yan, Xiaobo; Liu, Yumin; Zhang, Changhua [Jiangsu University, Zhenjiang (China)

    2014-01-15

    Diethyl 3,4-ethylenedioxy thiophene-2,5-dicarboxylate was efficiently synthesized via the O-alkylation of disodium salt of diethyl 3,4-dihydroxy thiophene-2,5-dicarboxylate with 1,2-dichloroethane over ionic type phase transfer catalysts, such as tetrabutyl ammonium bromide and benzyl triethyl ammonium chloride. The ionic type phase transfer catalysts showed higher catalytic activities than the nonionic type phase transfer catalysts, such as triethylamine, pyridine, 18-crown-6, and polyethylene glycol 400/600, in the O-alkylation reaction. The conversion of the disodium salt of more than 97% and the selectivity of diethyl 3,4-ethylenedioxy thiophene-2,5-dicarboxylate of more than 98% were achieved when the O-alkylation reaction was synergistically catalyzed by tetrabutyl ammonium bromide and potassium iodide.

  2. Integration of membrane distillation into traditional salt farming method: Process development and modelling

    Science.gov (United States)

    Hizam, S.; Bilad, M. R.; Putra, Z. A.

    2017-10-01

    Farmers still practice the traditional salt farming in many regions, particularly in Indonesia. This archaic method not only produces low yield and poor salt quality, it is also laborious. Furthermore, the farming locations typically have poor access to fresh water and are far away from electricity grid, which restrict upgrade to a more advanced technology for salt production. This paper proposes a new concept of salt harvesting method that improves the salt yield and at the same time facilitates recovery of fresh water from seawater. The new concept integrates solar powered membrane distillation (MD) and photovoltaic cells to drive the pumping. We performed basic solar still experiments to quantify the heat flux received by a pond. The data were used as insight for designing the proposed concept, particularly on operational strategy and the most effective way to integrate MD. After the conceptual design had been developed, we formulated mass and energy balance to estimate the performance of the proposed concept. Based on our data and design, it is expected that the system would improve the yield and quality of the salt production, maximizing fresh water harvesting, and eventually provides economical gain for salt farmers hence improving their quality of life. The key performance can only be measured via experiment using gain output ratio as performance indicator, which will be done in a future study.

  3. Statistical methods for mechanistic model validation: Salt Repository Project

    International Nuclear Information System (INIS)

    Eggett, D.L.

    1988-07-01

    As part of the Department of Energy's Salt Repository Program, Pacific Northwest Laboratory (PNL) is studying the emplacement of nuclear waste containers in a salt repository. One objective of the SRP program is to develop an overall waste package component model which adequately describes such phenomena as container corrosion, waste form leaching, spent fuel degradation, etc., which are possible in the salt repository environment. The form of this model will be proposed, based on scientific principles and relevant salt repository conditions with supporting data. The model will be used to predict the future characteristics of the near field environment. This involves several different submodels such as the amount of time it takes a brine solution to contact a canister in the repository, how long it takes a canister to corrode and expose its contents to the brine, the leach rate of the contents of the canister, etc. These submodels are often tested in a laboratory and should be statistically validated (in this context, validate means to demonstrate that the model adequately describes the data) before they can be incorporated into the waste package component model. This report describes statistical methods for validating these models. 13 refs., 1 fig., 3 tabs

  4. [Comparison of dietary survey, frequency and 24 hour urinary Na methods in evaluation of salt intake in the population].

    Science.gov (United States)

    Li, Jianhong; Lu, Zilong; Yan, Liuxia; Zhang, Jiyu; Tang, Junli; Cai, Xiaoning; Guo, Xiaolei; Ma, Jixiang; Xu, Aiqiang

    2014-12-01

    To compare the difference and correlation between dietary salt intakes assessed by 24 hours urinary Na method, food weighted record method and food frequency questionnaire method. All 2 184 subjects aged 18 to 69 were selected by multi stage stratified cluster random sampling method in Shandong province in June to September, 2011. Dietary salt intakes were measured by 24 hours urinary Na method, food weighted record method and food frequency questionnaire method. The information on gender, age, dining locations and labour intensity of members dining at home for 3 days were recorded. And the dietary habits were surveyed by questionnaire. Salt intakes were 14.0, 12.0 and 10.5 g/d assessed by 24 hours urinary Na method, food weighted record method and food frequency questionnaire, respectively. Comparing with 24 hours urinary Na method, salt intakes assessed by food weighted record method and food frequency questionnaire method were 2.0 g (14.3% undervalued) and 3.4 g (24.3% undervalued) less, respectively. Comparing with 24 hours urinary Na method, the proportion of individuals with salt intake over-reported and under-reported were 42.4% (856/2 020) and 55.3% (1 117/2 020) by food weighted record method, and were 20.7% (418/2 020) and 16.3% (329/2 020) by food frequency questionnaire method, respectively; the proportion of individuals with salt intakes within ± 25% of 24 hours urinary Na method were 36.9% (745/2 020) and 28.4% (574/2 020), respectively. Salt intakes assessed by 24 hours urinary method correlated significantly with both salt intakes assessed by food weighted record method and food frequency questionnaire method; the correlation coefficients were 0.13 and 0.07, respectively. With the increasing of salt intakes by subjects' self-judgment, salt intakes were all rising significantly using three survey methods. Salt intakes of three group population of light, moderate and partial taste salty were 13.6, 13.6 and 14.7 g/d by 24 hours urinary Na method (F

  5. Sulfonium Salts as Alkylating Agents for Palladium-Catalyzed Direct Ortho Alkylation of Anilides and Aromatic Ureas.

    Science.gov (United States)

    Simkó, Dániel Cs; Elekes, Péter; Pázmándi, Vivien; Novák, Zoltán

    2018-02-02

    A novel method for the ortho alkylation of acetanilide and aromatic urea derivatives via C-H activation was developed. Alkyl dibenzothiophenium salts are considered to be new reagents for the palladium-catalyzed C-H activation reaction, which enables the transfer of methyl and other alkyl groups from the sulfonium salt to the aniline derivatives under mild catalytic conditions.

  6. The Characteristic of Molten Heat Salt Storage System Utilizing Solar Energy Combined with Valley Electric

    Directory of Open Access Journals (Sweden)

    LI .Jiu-ru

    2017-02-01

    Full Text Available With the environmental pollution and energy consumption clue to the large difference between peak and valley of power grid,the molten salt heat storage system(MSHSS utilizing solar Energy combined with valley electric is presented for good energy saving and low emissions. The costs of MSHSS utilizing solar Energy combined with valley electric are greatly reduced. The law of heat transfer in molten salt heat storage technology is studied with the method of grey correlation analysis. The results show the effect of elbow sizes on surface convective heat transfer coefficient with different flow velocities.

  7. Waste salt recovery, recycle, and destruction

    International Nuclear Information System (INIS)

    Hickman, R.G.

    1992-12-01

    Starting in 1943 and continuing into the 1970s, radioactive wastes resulting from plutonium processing at Hanford were stored underground in 149 single shell tanks. Of these tanks, 66 are known or believedto be leaking, and over a period are believed to have leaked about 750,000 gal into the surrounding soil. The bulk of the aqueous solution has been removed and transferred to double shell tanks, none of which are leaking. The waste consists of 37 million gallons of salt cake and sludge. Most of the salt cake is sodium nitrate and other sodium salts. A substantial fraction of the sludge is sodium nitrate. Small amounts of the radionuclides are present in the sludge as oxides or hydroxides. In addition, some of the tanks contain organic compounds and ferrocyanide complexes, many of which have undergone radiolytic induced chemical changes during the years of storage. As part of the Hanford site remediation effort, the tank wastes must be removed, treated, and the residuals must be immobilized and disposed of in an environmentally acceptable manner. Removal methods of the waste from the tanks fall generally into three approaches: dry removal, slurry removal, and solution removed. The latter two methods are likely to result in some additional leakage to the surrounding soil, but that may be acceptable if the tank can be emptied and remediated before the leaked material permeates deeply into the soil. This effort includes three parts: salt splitting, acid separation, and destruction, with initial emphasis on salt splitting

  8. Salt removal from tanks containing high-level radioactive waste

    International Nuclear Information System (INIS)

    Kiser, D.L.

    1981-01-01

    At the Savannah River Plant (SRP), there are 23 waste storage tanks containing high-level radioactive wastes that are to be retired. These tanks contain about 23 million liters of salt and about 10 million liters of sludge, that are to be relocated to new Type III, fully stress-relieved tanks with complete secondary containment. About 19 million liters of salt cake are to be dissolved. Steam jet circulators were originally proposed for the salt dissolution program. However, use of steam jet circulators raised the temperature of the tank contents and caused operating problems. These included increased corrosion risk and required long cooldown periods prior to transfer. Alternative dissolution concepts were investigated. Examination of mechanisms affecting salt dissolution showed that the ability of fresh water to contact the cake surface was the most significant factor influencing dissolution rate. Density driven and mechanical agitation techniques were developed on a bench scale and then were demonstrated in an actual waste tank. Actual waste tank demonstrations were in good agreement with bench-scale experiments at 1/85 scale. The density driven method utilizes simple equipment, but leaves a cake heel in the tank and is hindered by the presence of sludge or Zeolite in the salt cake. Mechanical agitation overcomes the problems found with both steam jet circulators and the density driven technique and is the best method for future waste tank salt removal

  9. Ion-specific weak adsorption of salts and water/octanol transfer free energy of a model amphiphilic hexapeptide.

    Science.gov (United States)

    Déjugnat, Christophe; Dufrêche, Jean-François; Zemb, Thomas

    2011-04-21

    An amphiphilic hexapeptide has been used as a model to quantify how specific ion effects induced by addition of four salts tune the hydrophilic/hydrophobic balance and induce temperature-dependant coacervate formation from aqueous solution. The hexapeptide chosen is present as a dimer with low transfer energy from water to octanol. Taking sodium chloride as the reference state in the Hofmeister scale, we identify water activity effects and therefore measure the free energy of transfer from water to octanol and separately the free energy associated to the adsorption of chaotropic ions or the desorption of kosmotropic ions for the same amphiphilic peptide. These effects have the same order of magnitude: therefore, both energies of solvation as well as transfer into octanol strongly depend on the nature of the electrolytes used to formulate any buffer. Model peptides could be used on separation processes based on criteria linked to "Hofmeister" but different from volume and valency.

  10. Method to synthesize dense crystallized sodalite pellet for immobilizing halide salt radioactive waste

    International Nuclear Information System (INIS)

    Koyama, Tadafumi.

    1994-01-01

    A method is described for immobilizing waste chloride salts containing radionuclides such as cesium and strontium and hazardous materials such as barium. A sodalite intermediate is prepared by mixing appropriate amounts of silica, alumina and sodium hydroxide with respect to sodalite and heating the mixture to form the sodalite intermediate and water. Heating is continued to drive off the water to form a water-free intermediate. The water-free intermediate is mixed with either waste salt or waste salt which has been contacted with zeolite to concentrate the radionuclides and hazardous material. The waste salt-intermediate mixture is then compacted and heated under conditions of heat and pressure to form sodalite with the waste salt, radionuclides and hazardous material trapped within the sodalite cage structure. This provides a final product having excellent leach resistant capabilities

  11. Adaptations to High Salt in a Halophilic Protist: Differential Expression and Gene Acquisitions through Duplications and Gene Transfers

    Science.gov (United States)

    Harding, Tommy; Roger, Andrew J.; Simpson, Alastair G. B.

    2017-01-01

    The capacity of halophiles to thrive in extreme hypersaline habitats derives partly from the tight regulation of ion homeostasis, the salt-dependent adjustment of plasma membrane fluidity, and the increased capability to manage oxidative stress. Halophilic bacteria, and archaea have been intensively studied, and substantial research has been conducted on halophilic fungi, and the green alga Dunaliella. By contrast, there have been very few investigations of halophiles that are phagotrophic protists, i.e., protozoa. To gather fundamental knowledge about salt adaptation in these organisms, we studied the transcriptome-level response of Halocafeteria seosinensis (Stramenopiles) grown under contrasting salinities. We provided further evolutionary context to our analysis by identifying genes that underwent recent duplications. Genes that were highly responsive to salinity variations were involved in stress response (e.g., chaperones), ion homeostasis (e.g., Na+/H+ transporter), metabolism and transport of lipids (e.g., sterol biosynthetic genes), carbohydrate metabolism (e.g., glycosidases), and signal transduction pathways (e.g., transcription factors). A significantly high proportion (43%) of duplicated genes were also differentially expressed, accentuating the importance of gene expansion in adaptation by H. seosinensis to high salt environments. Furthermore, we found two genes that were lateral acquisitions from bacteria, and were also highly up-regulated and highly expressed at high salt, suggesting that this evolutionary mechanism could also have facilitated adaptation to high salt. We propose that a transition toward high-salt adaptation in the ancestors of H. seosinensis required the acquisition of new genes via duplication, and some lateral gene transfers (LGTs), as well as the alteration of transcriptional programs, leading to increased stress resistance, proper establishment of ion gradients, and modification of cell structure properties like membrane

  12. Adaptations to High Salt in a Halophilic Protist: Differential Expression and Gene Acquisitions through Duplications and Gene Transfers

    Directory of Open Access Journals (Sweden)

    Tommy Harding

    2017-05-01

    Full Text Available The capacity of halophiles to thrive in extreme hypersaline habitats derives partly from the tight regulation of ion homeostasis, the salt-dependent adjustment of plasma membrane fluidity, and the increased capability to manage oxidative stress. Halophilic bacteria, and archaea have been intensively studied, and substantial research has been conducted on halophilic fungi, and the green alga Dunaliella. By contrast, there have been very few investigations of halophiles that are phagotrophic protists, i.e., protozoa. To gather fundamental knowledge about salt adaptation in these organisms, we studied the transcriptome-level response of Halocafeteria seosinensis (Stramenopiles grown under contrasting salinities. We provided further evolutionary context to our analysis by identifying genes that underwent recent duplications. Genes that were highly responsive to salinity variations were involved in stress response (e.g., chaperones, ion homeostasis (e.g., Na+/H+ transporter, metabolism and transport of lipids (e.g., sterol biosynthetic genes, carbohydrate metabolism (e.g., glycosidases, and signal transduction pathways (e.g., transcription factors. A significantly high proportion (43% of duplicated genes were also differentially expressed, accentuating the importance of gene expansion in adaptation by H. seosinensis to high salt environments. Furthermore, we found two genes that were lateral acquisitions from bacteria, and were also highly up-regulated and highly expressed at high salt, suggesting that this evolutionary mechanism could also have facilitated adaptation to high salt. We propose that a transition toward high-salt adaptation in the ancestors of H. seosinensis required the acquisition of new genes via duplication, and some lateral gene transfers (LGTs, as well as the alteration of transcriptional programs, leading to increased stress resistance, proper establishment of ion gradients, and modification of cell structure properties like

  13. Different Methods for Conditioning Chloride Salt Wastes

    International Nuclear Information System (INIS)

    De Angelis, G.; Fedeli, C.; Capone, M.; Marzo, G.A.; Mariani, M.; Da Ros, M.; Giacobbo, F.; Macerata, E.; Giola, M.

    2015-01-01

    Three different methods have been used to condition chloride salt wastes coming from pyro-processes. Two of them allow to synthesise sodalite, a naturally occurring mineral containing chlorine: the former, starting from Zeolite 4A, which transforms the zeolite into sodalite; the latter, which starts from kaolinite, giving sodalite as well. In addition, a new matrix, termed SAP (SiO 2 -Al 2 O 3 -P 2 O 5 ), has been synthesised. It is able to form different mineral phases which occlude fission metals. The products from the different processes have been fully characterised. In particular the chemical durability of the final waste forms has been determined using the standard product consistency test. According to the results obtained, SAP seems to be a promising matrix for the incorporation of chloride salt wastes from pyro-processes. Financial support from the Nuclear Fission Safety Programme of the European Union (projects ACSEPT, contract FP7-CP-2007- 211 267, and SACSESS, Collaborative Project 323282), as well as from Italian Ministry for Economic Development (Accordo di Programma: Piano Annuale di Realizzazione 2008-2009) is gratefully acknowledged. (authors)

  14. Development of a method for controlling salt and sodium use during meal preparation for food services

    Directory of Open Access Journals (Sweden)

    Cristina Barbosa Frantz

    2013-02-01

    Full Text Available OBJECTIVE: The study developed a method for controlling the amount of salt and sodium during food preparation, Controlling Salt and Sodium use During Meal Preparation for food services based on the Hazard Analysis and Critical Control Points principles. METHODS: The method was conceived and perfected during a study case in a commercial food service located in Florianópolis, Santa Catarina, Brazil. Data were collected from technical cards, recipes and measurements during food preparation. The preparations were monitored and compared with criteria about the use of salt and sodium found in the literature. Critical control points were identified and corrective measures were proposed. RESULTS: The result was a method consisting of 9 stages: (1 determination of the sodium content in the ingredients; (2 and 3 analysis of menu planning and sodium content; (4 follow-up of food preparation; (5 estimate of the amount of sodium used in the preparations; (6 and 7 selection and following of the preparations with average- and high-sodium content; (8 definition of the critical points and establishment of corrective actions for the use of salt and sodium; and (9 creation of recommendations for the use of salt and sodium. CONCLUSION: The Controlling Salt and Sodium use During Meal Preparation may contribute to global discussions regarding the reduction of salt and sodium intakes and collaborate for the supply of nutritionally and sensorially appropriate meals with respect to salt and sodium content. It may also help to prevent non-communicable chronic diseases.

  15. Polymer-Supported Cinchona Alkaloid-Derived Ammonium Salts as Recoverable Phase-Transfer Catalysts for the Asymmetric Synthesis of α-Amino Acids

    Directory of Open Access Journals (Sweden)

    Carmen Nájera

    2004-04-01

    Full Text Available Alkaloids such as cinchonidine, quinine and N-methylephedrine have been N-alkylated using polymeric benzyl halides or co-polymerized and then N-alkylated, thus affording a series of polymer-supported chiral ammonium salts which have been employed as phase-transfer catalysts in the asymmetric benzylation of an N-(diphenylmethyleneglycine ester. These new polymeric catalysts can be easily recovered by simple filtration after the reaction and reused. The best ee’s were achieved when Merrifield resin-anchored cinchonidinium ammonium salts were employed.

  16. ALTERNATIVE METHODS OF TECHNOLOGICAL PROCESSING TO REDUCE SALT IN MEAT PRODUCTS

    OpenAIRE

    E. K. Tunieva; N. A. Gorbunova

    2017-01-01

    The world trends in table salt reduction in meat products contemplate the use of different methods for preservation of taste and consistency in finished products as well as shelf life prolongation. There are several approaches to a sodium chloride reduction in meat products. The paper presents a review of the foreign studies that give evidence of the possibility to maintain quality of traditional meat products produced with the reduced salt content. The studies in the field of salty taste percep...

  17. Investigation of the source of residual phthalate in sundried salt.

    Science.gov (United States)

    Kim, Jin Hyo; Lee, Jin Hwan; Kim, So-Young

    2014-03-01

    Phthalate contamination in sundried salt has recently garnered interest in Korea. Phthalate concentrations were investigated in Korean sundried salts, source waters, and aqueous extracts from polyvinyl chloride materials used in salt ponds. Preliminary screening results for phthalates in Korean sundried salts revealed that only di(2-ethylhexyl)phthalate (DEHP) was over the limit of detection, with an 8.6% detection rate, and the concentration ranged from below the limit of detection to 0.189 mg/kg. The tolerable daily intake contribution ratio of the salt was calculated to be only 0.001%. Residual phthalates were below 0.026 mg/liter in source water, and the aqueous extracted di-n-butylphthalate, benzylbutylphthalate, and DEHP, which are considered endocrine disruptors, were below 0.029 mg/kg as derived from the polyvinyl chloride materials in salt ponds. The transfer ratios of the six phthalates from seawater to sundried salts were investigated; transfer ratio was correlated with vapor pressure (r(2) = 0.9875). Thus, di-n-butylphthalate, benzylbutylphthalate, DEHP, and di-n-octylphthalate can be considered highly likely residual pollutants in some consumer salts.

  18. In Situ Production of Copper Oxide Nanoparticles in a Binary Molten Salt for Concentrated Solar Power Plant Applications.

    Science.gov (United States)

    Lasfargues, Mathieu; Stead, Graham; Amjad, Muhammad; Ding, Yulong; Wen, Dongsheng

    2017-05-19

    Seeding nanoparticles in molten salts has been shown recently as a promising way to improve their thermo-physical properties. The prospect of such technology is of interest to both academic and industrial sectors in order to enhance the specific heat capacity of molten salt. The latter is used in concentrated solar power plants as both heat transfer fluid and sensible storage. This work explores the feasibility of producing and dispersing nanoparticles with a novel one pot synthesis method. Using such a method, CuO nanoparticles were produced in situ via the decomposition of copper sulphate pentahydrate in a KNO₃-NaNO₃ binary salt. Analyses of the results suggested preferential disposition of atoms around produced nanoparticles in the molten salt. Thermal characterization of the produced nano-salt suspension indicated the dependence of the specific heat enhancement on particle morphology and distribution within the salts.

  19. Salt intake and the validity of a salt intake assessment system based on a 24-h dietary recall method in pregnant Japanese women.

    Science.gov (United States)

    Satoh, Michihiro; Tanno, Yumi; Hosaka, Miki; Metoki, Hirohito; Obara, Taku; Asayama, Kei; Hoshi, Kazuhiko; Suzuki, Masakuni; Mano, Nariyasu; Imai, Yutaka

    2015-01-01

    Information regarding salt intake in pregnant women in Japan is limited. An electronic system for the assessment of salt intake using a 24-h dietary recall method has been developed in Japan. The objectives of the present study were to investigate salt intake in pregnant women and to compare the salt intake estimated by the electronic salt intake assessment system with that measured by 24-h urinary salt excretion (24-hUNaCl). Data were collected on 24-hUNaCl and salt intake estimated by the salt intake assessment system for 35 pregnant Japanese women at approximately 20 weeks of gestation. The adjusted 24-hUNaCl (24-hUNaCl/[the number of urinations during the examination day--the number of missing urine collections] × the number of urinations during the examination day, g/day) was used as a standard. The mean adjusted 24-hUNaCl was 7.7 ± 2.5 g/day, and mean systolic/diastolic blood pressure values were 106.1 ± 8.6/62.8 ± 6.5 mmHg. The adjusted 24-hUNaCl was significantly correlated with the salt intake estimated by the salt intake assessment system (r = 0.47, p = 0.004). Bland-Altman analysis showed no significant mean difference (adjusted 24-hUNaCl--salt intake estimated by the assessment system = -0.36 g/day, p = 0.4) and no significant proportional bias (p = 0.1). These results suggest that pregnant women in Japan restrict their salt intake, at least when they are being examined for salt intake. They also suggest that repeated use of the described system may be useful in estimating salt intake in pregnant women.

  20. Engineering development studies for molten-salt breeder reactor processing No. 22

    International Nuclear Information System (INIS)

    Hightower, J.R. Jr.

    1976-06-01

    Processing methods are being developed for use in a close-coupled facility for removing fission products, corrosion products, and fissile materials from the MSBR fuel. This report discusses the autoresistance heating for the continuous fluorinator, the metal transfer experiment, experiments for the salt-metal contactor, and fuel reconstitution. 10 fig

  1. Maternal diet during gestation and lactation modifies the severity of salt-induced hypertension and renal injury in Dahl salt-sensitive rats.

    Science.gov (United States)

    Geurts, Aron M; Mattson, David L; Liu, Pengyuan; Cabacungan, Erwin; Skelton, Meredith M; Kurth, Theresa M; Yang, Chun; Endres, Bradley T; Klotz, Jason; Liang, Mingyu; Cowley, Allen W

    2015-02-01

    Environmental exposure of parents or early in life may affect disease development in adults. We found that hypertension and renal injury induced by a high-salt diet were substantially attenuated in Dahl SS/JrHsdMcwiCrl (SS/Crl) rats that had been maintained for many generations on the grain-based 5L2F diet compared with SS/JrHsdMcwi rats (SS/Mcw) maintained on the casein-based AIN-76A diet (mean arterial pressure, 116±9 versus 154±25 mm Hg; urinary albumin excretion, 23±12 versus 170±80 mg/d). RNAseq analysis of the renal outer medulla identified 129 and 82 genes responding to a high-salt diet uniquely in SS/Mcw and SS/Crl rats, respectively, along with minor genetic differences between the SS substrains. The 129 genes responding to salt in the SS/Mcw strain included numerous genes with homologs associated with hypertension, cardiovascular disease, or renal disease in human. To narrow the critical window of exposure, we performed embryo-transfer experiments in which single-cell embryos from 1 colony (SS/Mcw or SS/Crl) were transferred to surrogate mothers from the other colony, with parents and surrogate mothers maintained on their respective original diet. All offspring were fed the AIN-76A diet after weaning. Salt-induced hypertension and renal injury were substantially exacerbated in rats developed from SS/Crl embryos transferred to SS/Mcw surrogate mothers. Conversely, salt-induced hypertension and renal injury were significantly attenuated in rats developed from SS/Mcw embryos transferred to SS/Crl surrogate mothers. Together, the data suggest that maternal diet during the gestational-lactational period has substantial effects on the development of salt-induced hypertension and renal injury in adult SS rats. © 2014 American Heart Association, Inc.

  2. Preparation and characterization of molten salt based nanothermic fluids with enhanced thermal properties for solar thermal applications

    International Nuclear Information System (INIS)

    Madathil, Pramod Kandoth; Balagi, Nagaraj; Saha, Priyanka; Bharali, Jitalaxmi; Rao, Peddy V.C.; Choudary, Nettem V.; Ramesh, Kanaparthi

    2016-01-01

    Highlights: • Prepared and characterized inorganic ternary molten salt based nanothermic fluids. • MoS_2 and CuO nanoparticles incorporated ternary molten salts have been prepared. • Thermal properties enhanced by the addition of MoS_2 and CuO nanoparticles. • The amount of nanoparticles has been optimized. - Abstract: In the current energy scenario, solar energy is attracting considerable attention as a renewable energy source with ample research and commercial opportunities. The novel and efficient technologies in the solar energy are directed to develop methods for solar energy capture, storage and utilization. High temperature thermal energy storage systems can deal with a wide range of temperatures and therefore they are highly recommended for concentrated solar power (CSP) applications. In the present study, a systematic investigation has been carried out to identify the suitable inorganic nanoparticles and their addition in the molten salt has been optimized. In order to enhance the thermo-physical properties such as thermal conductivity and specific heat capacity of molten salt based HTFs, we report the utilization of MoS_2 and CuO nanoparticles. The enhancement in the above mentioned thermo-physical properties has been demonstrated for optimized compositions and the morphologies of nanoparticle-incorporated molten salts have been studied by scanning electron microscopy (SEM). Nanoparticle addition to molten salts is an efficient method to prepare thermally stable molten salt based heat transfer fluids which can be used in CSP plants. It is also observed that the sedimentation of nanoparticles in molten salt is negligible compared to that in organic heat transfer fluids.

  3. Low temperature synthesis & characterization of lead-free BCZT ceramics using molten salt method

    Science.gov (United States)

    Jai Shree, K.; Chandrakala, E.; Das, Dibakar

    2018-04-01

    Piezoelectric properties are greatly influenced by the synthesis route, microstructure, stoichiometry of the chemical composition, purity of the starting materials. In this study, molten salt method was used to prepare lead-free BCZT ceramics. Molten salt method is one of the simplestmethods to prepare chemically-purified, single phase powders in high yield often at lower temperatures and shorten reaction time. Calcination of the molten salt synthesized powders resulted in asingle-phase perovskite structure at 1000 °C which is ˜ 350 °C less than the conventional solid-sate reaction method. With increasing calcination temperature the average template size was increased (˜ 0.5-2 µm). Formation of well dispersive templates improves the sinterability at lower temperatures. Lead-free BCZT ceramics sintered at 1500 °C for 2 h resulted in homogenous and highly dense microstructure with ˜92% of the theoretical density and a grain size of ˜ 35 µm. This highly dense microstructure could enhance the piezoelectric properties of the system.

  4. Ion-specific weak adsorption of salts and water/octanol transfer free energy of a model amphiphilic hexa-peptide

    International Nuclear Information System (INIS)

    Dejugnat, Ch.; Dufreche, J.F.; Zemb, Th.; Dejugnat, Ch.

    2011-01-01

    An amphiphilic hexa-peptide has been used as a model to quantify how specific ion effects induced by addition of four salts tune the hydrophilic/hydrophobic balance and induce temperature-dependant coacervate formation from aqueous solution. The hexa-peptide chosen is present as a dimer with low transfer energy from water to octanol. Taking sodium chloride as the reference state in the Hofmeister scale, we identify water activity effects and therefore measure the free energy of transfer from water to octanol and separately the free energy associated to the adsorption of chaotropic ions or the desorption of kosmotropic ions for the same amphiphilic peptide. These effects have the same order of magnitude: therefore, both energies of solvation as well as transfer into octanol strongly depend on the nature of the electrolytes used to formulate any buffer. Model peptides could be used on separation processes based on criteria linked to 'Hofmeister' but different from volume and valency. (authors)

  5. Landslides Monitoring on Salt Deposits Using Geophysical Methods, Case study - Slanic Prahova, Romania

    Science.gov (United States)

    Ovidiu, Avram; Rusu, Emil; Maftei, Raluca-Mihaela; Ulmeanu, Antonio; Scutelnicu, Ioan; Filipciuc, Constantina; Tudor, Elena

    2017-12-01

    Electrometry is most frequently applied geophysical method to examine dynamical phenomena related to the massive salt presence due to resistivity contrasts between salt, salt breccia and geological covering formations. On the vertical resistivity sections obtained with VES devices these three compartments are clearly differentiates by high resistivity for the massive salt, very low for salt breccia and variable for geological covering formations. When the land surface is inclined, shallow formations are moving gravitationally on the salt back, producing a landslide. Landslide monitoring involves repeated periodically measurements of geoelectrical profiles into a grid covering the slippery surface, in the same conditions (climate, electrodes position, instrument and measurement parameters). The purpose of monitoring landslides in Slanic Prahova area, was to detect the changes in resistivity distribution profiles to superior part of subsoil measured in 2014 and 2015. Measurement grid include several representative cross sections in susceptibility to landslides point of view. The results are graphically represented by changing the distribution of topography and resistivity differences between the two sets of geophysical measurements.

  6. Fuel processing for molten-salt reactors

    International Nuclear Information System (INIS)

    Hightower, J.R. Jr.

    1975-01-01

    Progress is reported on the development of processes for the isolation of protactinium and for the removal of fission products from molten-salt breeder reactors. The metal transfer experiment MTE-3 (for removing rare earths from MSRE fuel salt) was completed and the equipment used in that experiment was examined. The examination showed that no serious corrosion had occurred on the internal surfaces of the vessels, but that serious air oxidation occurred on the external surfaces of the vessels. Analyses of the bismuth phases indicated that the surfaces in contact with the salts were enriched in thorium and iron. Mass transfer coefficients in the mechanically agitated nondispersing contactors were measured in the Salt/Bismuth Flow-through Facility. The measured mass transfer coefficients are about 30 to 40 percent of those predicted by the preferred literature correlation, but were not as low as those seen in some of the runs in MTE-3. Additional studies using water--mercury systems to simulate molten salt-bismuth systems indicated that the model used to interpret results from previous measurements in the water--mercury system has significant deficiencies. Autoresistance heating studies were continued to develop a means of internal heat generation for frozen-wall fluorinators. Equipment was built to test a design of a side arm for the heating electrode. Results of experiments with this equipment indicate that for proper operation the wall temperature must be held much lower than that for which the equipment was designed. Studies with an electrical analog of the equipment indicate that no regions of abnormally high current density exist in the side arm. (JGB)

  7. Measurement of lithium ion transference numbers of electrolytes for lithium-ion batteries. A comparative study with five various methods.; Messung von Lithium-Ionen Ueberfuehrungszahlen an Elektrolyten fuer Lithium-Ionen Batterien. Eine vergleichende Studie mit fuenf verschiedenen Methoden

    Energy Technology Data Exchange (ETDEWEB)

    Zugmann, Sandra

    2011-03-30

    Transference numbers are decisive transport properties to characterize electrolytes. They state the fraction of a certain species at charge transport and are defined by the ratio of current Ii that is transported by the ionic species i to the total current I. They are very important for lithium-ion batteries, because they give information about the real lithium transport and the efficiency of the battery. If the transference number has a too small value, for example, the lithium cannot be ''delivered'' fast enough in the discharge process. This can lead to precipitation of the salt at the anode and to depletion of the electrolyte at the cathode. Currently only a few adequate measurement methods for non-aqueous lithium electrolytes exist. The aim of this work was the installation of measurement devices and the comparison of different methods of transference numbers for electrolytes in lithium-ion batteries. The advantages and disadvantages for every method should be analyzed and transference numbers of new electrolyte be measured. In this work a detailed comparison of different methods with electrochemical and spectroscopic factors was presented for the first time. The galvanostatic polarization, the potentiostatic polarization, the emf method, the determination by NMR and the determination by conductivity measurements were tested for their practical application and used for different lithium salts in several solvents. The results show clearly that the assumptions made for every method affect the measured transference number a lot. They can have different values depending on the used method and the concentration dependence can even have contrary tendencies for methods with electrochemical or spectroscopic aspects. The influence of ion pairs is the determining factor at the measurements. For a full characterization of electrolytes a complete set of transport parameters is necessary, including diffusion coefficients, conductivity, transference number and ideally

  8. Measurement of lithium ion transference numbers of electrolytes for lithium-ion batteries. A comparative study with five various methods.; Messung von Lithium-Ionen Ueberfuehrungszahlen an Elektrolyten fuer Lithium-Ionen Batterien. Eine vergleichende Studie mit fuenf verschiedenen Methoden

    Energy Technology Data Exchange (ETDEWEB)

    Zugmann, Sandra

    2011-03-30

    Transference numbers are decisive transport properties to characterize electrolytes. They state the fraction of a certain species at charge transport and are defined by the ratio of current Ii that is transported by the ionic species i to the total current I. They are very important for lithium-ion batteries, because they give information about the real lithium transport and the efficiency of the battery. If the transference number has a too small value, for example, the lithium cannot be ''delivered'' fast enough in the discharge process. This can lead to precipitation of the salt at the anode and to depletion of the electrolyte at the cathode. Currently only a few adequate measurement methods for non-aqueous lithium electrolytes exist. The aim of this work was the installation of measurement devices and the comparison of different methods of transference numbers for electrolytes in lithium-ion batteries. The advantages and disadvantages for every method should be analyzed and transference numbers of new electrolyte be measured. In this work a detailed comparison of different methods with electrochemical and spectroscopic factors was presented for the first time. The galvanostatic polarization, the potentiostatic polarization, the emf method, the determination by NMR and the determination by conductivity measurements were tested for their practical application and used for different lithium salts in several solvents. The results show clearly that the assumptions made for every method affect the measured transference number a lot. They can have different values depending on the used method and the concentration dependence can even have contrary tendencies for methods with electrochemical or spectroscopic aspects. The influence of ion pairs is the determining factor at the measurements. For a full characterization of electrolytes a complete set of transport parameters is necessary, including diffusion coefficients, conductivity, transference

  9. In Situ Production of Copper Oxide Nanoparticles in a Binary Molten Salt for Concentrated Solar Power Plant Applications

    Directory of Open Access Journals (Sweden)

    Mathieu Lasfargues

    2017-05-01

    Full Text Available Seeding nanoparticles in molten salts has been shown recently as a promising way to improve their thermo-physical properties. The prospect of such technology is of interest to both academic and industrial sectors in order to enhance the specific heat capacity of molten salt. The latter is used in concentrated solar power plants as both heat transfer fluid and sensible storage. This work explores the feasibility of producing and dispersing nanoparticles with a novel one pot synthesis method. Using such a method, CuO nanoparticles were produced in situ via the decomposition of copper sulphate pentahydrate in a KNO3-NaNO3 binary salt. Analyses of the results suggested preferential disposition of atoms around produced nanoparticles in the molten salt. Thermal characterization of the produced nano-salt suspension indicated the dependence of the specific heat enhancement on particle morphology and distribution within the salts.

  10. Waste treatment using molten salt oxidation

    International Nuclear Information System (INIS)

    Navratil, J.D.; Stewart, A.E.

    1996-01-01

    MSO technology can be characterized as a submerged oxidation process; the basic concept is to introduce air and wastes into a bed of molten salt, oxidize the organic wastes in the molten salt, use the heat of oxidation to keep the salt molten and remove the salt for disposal or processing and recycling. The molten salt (usually sodium carbonate at 900-1000 C) provides four waste management functions: providing a heat transfer medium, catalyzing the oxidation reaction, preventing the formation of acid gases by forming stable salts, and efficiently capturing ash particles and radioactive materials by the combined effects of wetting, encapsulation and dissolution. The MSO process requires no wet scrubbing system for off-gas treatment. The process has been developed through bench-scale and pilot-scale testing, with successful destruction demonstration of a wide variety of hazardous and mixed (radioactive and hazardous wastes). (author). 24 refs, 2 tabs, 2 figs

  11. Heat Transfer Salts for Nuclear Reactor Systems - Chemistry Control, Corrosion Mitigation, and Modeling

    International Nuclear Information System (INIS)

    Anderson, Mark; Sridharan, Kumar; Morgan, Dane; Peterson, Per; Calderoni, Pattrick; Scheele, Randall; Casekka, Andrew; McNamara, Bruce

    2015-01-01

    The concept of a molten salt reactor has existed for nearly sixty years. Previously all work was done during a large collaborative effort at Oak Ridge National Laboratory, culminating in a research reactor which operated for 15,000 hours without major error. This technical success has garnished interest in modern, high temperature, reactor schemes. Research using molten fluoride salts for nuclear applications requires a steady supply of high grade molten salts. There is no bulk supplier of research grade fluoride salts in the world, so a facility which could provide all the salt needed for testing at the University of Wisconsin had to be produced. Two salt purification devices were made for this purpose, a large scale purifier, and a small scale purifier, each designed to clean the salts from impurities and reduce their corrosion potential. As of now, the small scale has performed with flibe salt, hydrogen, and hydrogen fluoride, yielding clean salt. This salt is currently being used in corrosion testing facilities at the Massachusetts Institute of Technology and the University of Wisconsin. Working with the beryllium based salts requires extensive safety measures and health monitoring to prevent the development of acute or chronic beryllium disease, two pulmonary diseases created by an allergic reaction to beryllium in the lungs. Extensive health monitoring, engineering controls, and environment monitoring had to be set up with the University of Wisconsin department of Environment, Health and Safety. The hydrogen fluoride required for purification was also an extreme health hazard requiring thoughtful planning and execution. These dangers have made research a slow and tedious process. Simple processes, such as chemical handling and clean-up, can take large amounts of ingenuity and time. Other work has complemented the experimental research at Wisconsin to advance high temperature reactor goals. Modeling work has been performed in house to re

  12. Heat Transfer Salts for Nuclear Reactor Systems - Chemistry Control, Corrosion Mitigation, and Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Mark [Univ. of Wisconsin, Madison, WI (United States); Sridharan, Kumar [Univ. of Wisconsin, Madison, WI (United States); Morgan, Dane [Univ. of Wisconsin, Madison, WI (United States); Peterson, Per [Univ. of Wisconsin, Madison, WI (United States); Calderoni, Pattrick [Univ. of Wisconsin, Madison, WI (United States); Scheele, Randall [Univ. of Wisconsin, Madison, WI (United States); Casekka, Andrew [Univ. of Wisconsin, Madison, WI (United States); McNamara, Bruce [Univ. of Wisconsin, Madison, WI (United States)

    2015-01-22

    The concept of a molten salt reactor has existed for nearly sixty years. Previously all work was done during a large collaborative effort at Oak Ridge National Laboratory, culminating in a research reactor which operated for 15,000 hours without major error. This technical success has garnished interest in modern, high temperature, reactor schemes. Research using molten fluoride salts for nuclear applications requires a steady supply of high grade molten salts. There is no bulk supplier of research grade fluoride salts in the world, so a facility which could provide all the salt needed for testing at the University of Wisconsin had to be produced. Two salt purification devices were made for this purpose, a large scale purifier, and a small scale purifier, each designed to clean the salts from impurities and reduce their corrosion potential. As of now, the small scale has performed with flibe salt, hydrogen, and hydrogen fluoride, yielding clean salt. This salt is currently being used in corrosion testing facilities at the Massachusetts Institute of Technology and the University of Wisconsin. Working with the beryllium based salts requires extensive safety measures and health monitoring to prevent the development of acute or chronic beryllium disease, two pulmonary diseases created by an allergic reaction to beryllium in the lungs. Extensive health monitoring, engineering controls, and environment monitoring had to be set up with the University of Wisconsin department of Environment, Health and Safety. The hydrogen fluoride required for purification was also an extreme health hazard requiring thoughtful planning and execution. These dangers have made research a slow and tedious process. Simple processes, such as chemical handling and clean-up, can take large amounts of ingenuity and time. Other work has complemented the experimental research at Wisconsin to advance high temperature reactor goals. Modeling work has been performed in house to re

  13. Transfer matrix method for four-flux radiative transfer.

    Science.gov (United States)

    Slovick, Brian; Flom, Zachary; Zipp, Lucas; Krishnamurthy, Srini

    2017-07-20

    We develop a transfer matrix method for four-flux radiative transfer, which is ideally suited for studying transport through multiple scattering layers. The model predicts the specular and diffuse reflection and transmission of multilayer composite films, including interface reflections, for diffuse or collimated incidence. For spherical particles in the diffusion approximation, we derive closed-form expressions for the matrix coefficients and show remarkable agreement with numerical Monte Carlo simulations for a range of absorption values and film thicknesses, and for an example multilayer slab.

  14. A Simple Halide-to-Anion Exchange Method for Heteroaromatic Salts and Ionic Liquids

    Directory of Open Access Journals (Sweden)

    Neus Mesquida

    2012-04-01

    Full Text Available A broad and simple method permitted halide ions in quaternary heteroaromatic and ammonium salts to be exchanged for a variety of anions using an anion exchange resin (A− form in non-aqueous media. The anion loading of the AER (OH− form was examined using two different anion sources, acids or ammonium salts, and changing the polarity of the solvents. The AER (A− form method in organic solvents was then applied to several quaternary heteroaromatic salts and ILs, and the anion exchange proceeded in excellent to quantitative yields, concomitantly removing halide impurities. Relying on the hydrophobicity of the targeted ion pair for the counteranion swap, organic solvents with variable polarity were used, such as CH3OH, CH3CN and the dipolar nonhydroxylic solvent mixture CH3CN:CH2Cl2 (3:7 and the anion exchange was equally successful with both lipophilic cations and anions.

  15. Cloud-point measurement for (sulphate salts + polyethylene glycol 15000 + water) systems by the particle counting method

    International Nuclear Information System (INIS)

    Imani, A.; Modarress, H.; Eliassi, A.; Abdous, M.

    2009-01-01

    The phase separation of (water + salt + polyethylene glycol 15000) systems was studied by cloud-point measurements using the particle counting method. The effect of three kinds of sulphate salt (Na 2 SO 4 , K 2 SO 4 , (NH 4 ) 2 SO 4 ) concentration, polyethylene glycol 15000 concentration, mass ratio of polymer to salt on the cloud-point temperature of these systems have been investigated. The results obtained indicate that the cloud-point temperatures decrease linearly with increase in polyethylene glycol concentrations for different salts. Also, the cloud points decrease with an increase in mass ratio of salt to polymer.

  16. Steam gasification of plant biomass using molten carbonate salts

    International Nuclear Information System (INIS)

    Hathaway, Brandon J.; Honda, Masanori; Kittelson, David B.; Davidson, Jane H.

    2013-01-01

    This paper explores the use of molten alkali-carbonate salts as a reaction and heat transfer medium for steam gasification of plant biomass with the objectives of enhanced heat transfer, faster kinetics, and increased thermal capacitance compared to gasification in an inert gas. The intended application is a solar process in which concentrated solar radiation is the sole source of heat to drive the endothermic production of synthesis gas. The benefits of gasification in a molten ternary blend of lithium, potassium, and sodium carbonate salts is demonstrated for cellulose, switchgrass, a blend of perennial plants, and corn stover through measurements of reaction rate and product composition in an electrically heated reactor. The feedstocks are gasified with steam at 1200 K in argon and in the molten salt. The use of molten salt increases the total useful syngas production by up to 25%, and increases the reactivity index by as much as 490%. Secondary products, in the form of condensable tar, are reduced by 77%. -- Highlights: ► The presence of molten salt increases the rate of gasification by up to 600%. ► Reaction rates across various feedstocks are more uniform with salt present. ► Useful syngas yield is increased by up to 30% when salt is present. ► Secondary production of liquid tars are reduced by 77% when salt is present.

  17. Rare Earth Electrochemical Property Measurements and Phase Diagram Development in a Complex Molten Salt Mixture for Molten Salt Recycle

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jinsuo; Guo, Shaoqiang

    2018-03-30

    Pyroprocessing is a promising alternative for the reprocessing of used nuclear fuel (UNF) that uses electrochemical methods. Compared to the hydrometallurgical reprocessing method, pyroprocessing has many advantages such as reduced volume of radioactive waste, simple waste processing, ability to treat refractory material, and compatibility with fast reactor fuel recycle. The key steps of the process are the electro-refining of the spent metallic fuel in the LiCl-KCl eutectic salt, which can be integrated with an electrolytic reduction step for the reprocessing of spent oxide fuels. During the electro-refining process, actinides and active fission products such rare earth (RE) elements are dissolved into the molten salt from the spent fuel at an anode basket. Then U and Pu are electro-deposited on the cathodes while REs with relatively negative reduction potentials are left in the molten salt bath. However, with the accumulation of lanthanides in the salt, the reduction potentials of REs will approach the values for U and Pu, affecting the recovery efficiency of U and Pu. Hence, RE drawdown is necessary to reduce salt waste after uranium and minor actinides recovery, which can also be performed by electrochemical separations. To separate various REs and optimize the drawdown process, physical properties of REs in LiCl-KCl salt and their concentration dependence are essential. Thus, the primary goal of present research is to provide fundamental data of REs and deduce phase diagrams of LiCl-KCl-RECl3 based complex molten salts. La, Nd and Gd are three representative REs that we are particularly interested in due to the high ratio of La and Nd in UNF, highest standard potential of Gd among all REs, and the existing literature data in dilute solution. Electrochemical measurements are performed to study the thermodynamics and transport properties of LaCl3, GdCl3, NdCl3, and NdCl2 in LiCl-KCl eutectic in the temperature range 723-823 K. Test are conducted in LiCl-KCl melt

  18. Optimization of the southern electrophoretic transfer method

    International Nuclear Information System (INIS)

    Allison, M.A.; Fujimura, R.K.

    1987-01-01

    The technique of separating DNA fragments using agarose gel electrophoresis is essential in the analysis of nucleic acids. Further, after the method of transferring specific DNA fragments from those agarose gels to cellulose nitrate membranes was developed in 1975, a method was developed to transfer DNA, RNA, protein and ribonucleoprotein particles from various gels onto diazobenzyloxymethyl (DBM) paper using electrophoresis as well. This paper describes the optimum conditions for quantitative electrophoretic transfer of DNA onto nylon membranes. This method exemplifies the ability to hybridize the membrane more than once with specific RNA probes by providing sufficient retention of the DNA. Furthermore, the intrinsic properties of the nylon membrane allow for an increase in the efficiency and resolution of transfer while using somewhat harsh alkaline conditions. The use of alkaline conditions is of critical importance since we can now denature the DNA during transfer and thus only a short pre-treatment in acid is required for depurination. 9 refs., 7 figs

  19. Art Appreciation and the Method of Aesthetic Transfer

    Directory of Open Access Journals (Sweden)

    Zupančič Tomaž

    2013-11-01

    Full Text Available The method of aesthetic transfer is a modern teaching method in art education. It emphasizes the pedagogic value of the aesthetic experience. It is a comprehensive method, as it encompasses different parameters of art didactics. It affects lesson time allocation and determines content, methods, and teaching modes. It also affects motivation and final evaluation. The essence of the method of aesthetic transfer lies in transferring aesthetic messages from the artwork to students. The foundation and condition for a successful implementation of the method of aesthetic transfer is a high-quality art appreciation. There are several ways and methods for successfully developing art appreciation, the common objective of all being to allow students to see, perceive, and enjoy a work of art. Thus they enrich their artistic and aesthetic development, and establish a positive attitude towards art, while this method at the same time encourages their own artistic exploration.

  20. Surface functionalization of cyclic olefin copolymer with aryldiazonium salts: A covalent grafting method

    International Nuclear Information System (INIS)

    Brisset, Florian; Vieillard, Julien; Berton, Benjamin; Morin-Grognet, Sandrine; Duclairoir-Poc, Cécile; Le Derf, Franck

    2015-01-01

    Graphical abstract: - Highlights: • An effective method to modify cyclic olefin copolymer surface. • The surface of COC was modified by covalent grafting of aryl diazonium salts. • The wettability of COC surface was modulated by diazonium salts. • Photoinitiation and chemical reduction have to be combined to graft diazonium salt on COC surface. - Abstract: Covalent immobilization of biomolecules on the surface of cyclic olefin copolymer (COC) is still a tough challenge. We developed a robust method for COC surface grafting through reaction with aryldiazonium. Chemical diazonium reduction generated an aryl radical and the formation of a grafted film layer on the organic surface. We also demonstrated that the chemical reduction of diazonium salt was not sufficient to form a film on the COC surface. UV illumination had to be combined with chemical reduction to graft an aryl layer onto the COC surface. We optimized organic film deposition by using different chemical reducers, different reaction times and reagent proportions. We characterized surface modifications by fluorescence microscopy and contact angle measurements, infrared spectroscopy, X-ray photoemission spectroscopy and Raman spectroscopy, and assessed the topography of the aryl film by atomic force microscopy. This original strategy allowed us to evidence various organic functions to graft biomolecules onto COC surfaces with a fast and efficient technique

  1. Surface functionalization of cyclic olefin copolymer with aryldiazonium salts: A covalent grafting method

    Energy Technology Data Exchange (ETDEWEB)

    Brisset, Florian, E-mail: florian.brisset@etu.univ-rouen.fr [UMR CNRS 6014 COBRA, FR 3038, Université de Rouen, 55 rue Saint Germain, 27000 Evreux (France); Vieillard, Julien, E-mail: julien.vieillard@univ-rouen.fr [UMR CNRS 6014 COBRA, FR 3038, Université de Rouen, 55 rue Saint Germain, 27000 Evreux (France); Berton, Benjamin, E-mail: benjamin.berton@univ-rouen.fr [EA 3233 SMS, Université de Rouen, 1 rue du 7ème Chasseurs, BP281, 27002 Evreux Cedex (France); Morin-Grognet, Sandrine, E-mail: sandrine.morin@univ-rouen.fr [EA 3829 MERCI, Université de Rouen, 1 rue du 7ème Chasseurs, BP281, 27002 Evreux Cedex (France); Duclairoir-Poc, Cécile, E-mail: cecile.duclairoir@univ-rouen.fr [EA 4312 LMSM, Université de Rouen, 55 rue Saint Germain, 27000 Evreux (France); Le Derf, Franck, E-mail: franck.lederf@univ-rouen.fr [UMR CNRS 6014 COBRA, FR 3038, Université de Rouen, 55 rue Saint Germain, 27000 Evreux (France)

    2015-02-28

    Graphical abstract: - Highlights: • An effective method to modify cyclic olefin copolymer surface. • The surface of COC was modified by covalent grafting of aryl diazonium salts. • The wettability of COC surface was modulated by diazonium salts. • Photoinitiation and chemical reduction have to be combined to graft diazonium salt on COC surface. - Abstract: Covalent immobilization of biomolecules on the surface of cyclic olefin copolymer (COC) is still a tough challenge. We developed a robust method for COC surface grafting through reaction with aryldiazonium. Chemical diazonium reduction generated an aryl radical and the formation of a grafted film layer on the organic surface. We also demonstrated that the chemical reduction of diazonium salt was not sufficient to form a film on the COC surface. UV illumination had to be combined with chemical reduction to graft an aryl layer onto the COC surface. We optimized organic film deposition by using different chemical reducers, different reaction times and reagent proportions. We characterized surface modifications by fluorescence microscopy and contact angle measurements, infrared spectroscopy, X-ray photoemission spectroscopy and Raman spectroscopy, and assessed the topography of the aryl film by atomic force microscopy. This original strategy allowed us to evidence various organic functions to graft biomolecules onto COC surfaces with a fast and efficient technique.

  2. Mathematical model of salt cavern leaching for gas storage in high-insoluble salt formations.

    Science.gov (United States)

    Li, Jinlong; Shi, Xilin; Yang, Chunhe; Li, Yinping; Wang, Tongtao; Ma, Hongling

    2018-01-10

    A mathematical model is established to predict the salt cavern development during leaching in high-insoluble salt formations. The salt-brine mass transfer rate is introduced, and the effects of the insoluble sediments on the development of the cavern are included. Considering the salt mass conservation in the cavern, the couple equations of the cavern shape, brine concentration and brine velocity are derived. According to the falling and accumulating rules of the insoluble particles, the governing equations of the insoluble sediments are deduced. A computer program using VC++ language is developed to obtain the numerical solution of these equations. To verify the proposed model, the leaching processes of two salt caverns of Jintan underground gas storage are simulated by the program, using the actual geological and technological parameters. The same simulation is performed by the current mainstream leaching software in China. The simulation results of the two programs are compared with the available field data. It shows that the proposed software is more accurate on the shape prediction of the cavern bottom and roof, which demonstrates the reliability and applicability of the model.

  3. The Ideal Ionic Liquid Salt Bridge for the Direct Determination of Gibbs Energies of Transfer of Single Ions, Part I: The Concept.

    Science.gov (United States)

    Radtke, Valentin; Ermantraut, Andreas; Himmel, Daniel; Koslowski, Thorsten; Leito, Ivo; Krossing, Ingo

    2018-02-23

    Described is a procedure for the thermodynamically rigorous, experimental determination of the Gibbs energy of transfer of single ions between solvents. The method is based on potential difference measurements between two electrochemical half cells with different solvents connected by an ideal ionic liquid salt bridge (ILSB). Discussed are the specific requirements for the IL with regard to the procedure, thus ensuring that the liquid junction potentials (LJP) at both ends of the ILSB are mostly canceled. The remaining parts of the LJPs can be determined by separate electromotive force measurements. No extra-thermodynamic assumptions are necessary for this procedure. The accuracy of the measurements depends, amongst others, on the ideality of the IL used, as shown in our companion paper Part II. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Fundamentals of molten-salt thermal technology

    International Nuclear Information System (INIS)

    1980-08-01

    This book has been published by the Society of Molten-Salt Thermal Technology to publish a part of the achievement of its members. This book is composed of seven chapters. The chapter 1 is Introduction. The chapter 2 explains the physical properties of molten salts, such as thermal behavior, surface tension, viscosity, electrical conductivity and others. The chapter 3 presents the compatibility with construction materials. Corrosion in molten salts, the electrochemical behavior of fluoride ions on carbon electrodes in fluoride melts, the behaviors of hastelloy N and metals in melts are items of this chapter. The equipments and instruments for molten salts are described in chapter 4. The heat transfer in molten salts is discussed in chapter 5. The chapter 6 explains the application of molten salt technology. The molten salt technology can be applied not only to thermal engineering and energy engineering but also to chemical and nuclear engineerings, and the technical fundamentals, current development status, technical problems and the perspective for the future are outlined. The chapter 7 is the summary of this book. The commercialization of molten salt power reactors is discussed at the end of this book. (Kato, T.)

  5. A NOVEL PROTON TRANSFER COMPOUND (A NEW ...

    African Journals Online (AJOL)

    Preferred Customer

    intermolecular proton transfer from (MoO4H2) to (OHRNH2) results in the formation of a new molybdate salt that ... KEY WORDS: Proton transfer, Molybdate salt, X-ray structure, MoO2(acac)2, 2-Amino-2-methyl-1-propanol ..... data can be obtained free of charge on application to The Director, CCDC, 12 Union Road,.

  6. Molten salt thermal energy storage systems: salt selection

    Energy Technology Data Exchange (ETDEWEB)

    Maru, H.C.; Dullea, J.F.; Huang, V.S.

    1976-08-01

    A research program aimed at the development of a molten salt thermal energy storage system commenced in June 1976. This topical report describes Work performed under Task I: Salt Selection is described. A total of 31 inorganic salts and salt mixtures, including 9 alkali and alkaline earth carbonate mixtures, were evaluated for their suitability as heat-of-fusion thermal energy storage materials at temperatures of 850 to 1000/sup 0/F. Thermophysical properties, safety hazards, corrosion, and cost of these salts were compared on a common basis. We concluded that because alkali carbonate mixtures show high thermal conductivity, low volumetric expansion on melting, low corrosivity and good stability, they are attractive as heat-of-fusion storage materials in this temperature range. A 35 wt percent Li/sub 2/CO/sub 3/-65 wt percent K/sub 2/CO/sub 3/ (50 mole percent Li/sub 2/CO/sub 3/-50 mole percent K/sub 2/CO/sub 3/) mixture was selected as a model system for further experimental work. This is a eutectoid mixture having a heat of fusion of 148 Btu/lb (82 cal/g) that forms an equimolar compound, LiKCO/sub 3/. The Li/sub 2/CO/sub 3/-K/sub 2/CO/sub 3/ mixture is intended to serve as a model system to define heat transfer characteristics, potential problems, and to provide ''first-cut'' engineering data required for the prototype system. The cost of a thermal energy storage system containing this mixture cannot be predicted until system characteristics are better defined. However, our comparison of different salts indicated that alkali and alkaline earth chlorides may be more attractive from a salt cost point of view. The long-term corrosion characteristics and the effects of volume change on melting for the chlorides should be investigated to determine their overall suitability as a heat-of-fusion storage medium.

  7. Characteristics analysis of salt vacuum distillation equipment

    International Nuclear Information System (INIS)

    Im, Hun Suk; Oh, Seung Chul; Hong, Sun Seok; Hur, Jin Mok; Lee, Hyo Jik

    2016-01-01

    A new technique for pyroprocessing was designed by adding an oxide reduction process to the previous one. It is regarded as a promising process to treat and recycle oxide spent fuels owing to its enhanced nuclear proliferation resistance and the simplified process equipment and the low process costing. Spent oxide fuel is reduced into a metal by an electrochemical method while using a high-temperature molten salt as the reaction medium. After being subjected to electrorefining and electrowinning processes, the reduced metal fuel can be used in sodium-cooled fast reactors. The salt vacuum distillation process termed cathode processing follows the oxide reduction stage and has been developed to remove the residual salt, allowing for clear fuel metal to be supplied to the next step, which is electrorefining. KAERI has manufactured this apparatus in several sizes and has been able to achieve a fuel recovery rate of 95%. However it is very difficult to scale up the equipment. Because all transport phenomena, including heat transfer and fluid flow, depend on the size and structure of the apparatus used. The ideal method for overcoming this issue is nondimensionalization, which allows one to determine the characteristic properties of a system. A comparison of the dimensionless variables corresponding to the M-type and P-type apparatuses performed on the basis of phase-transition phenomena as well as the results of the above-mentioned analysis elucidated the differences between the two apparatuses. It also means that the structure of the nozzle throat can be the one of the several causes for the recovery performance. First, the standard model (i.e., the M-type apparatus) was analyzed using dimensionless parameters. The characteristics of this apparatus were the following: 1) the diameter of the outlet of the nozzle throat was twice that of the inlet, 2) the ratio of the length to the diameter (L/D) was 8, and 3) the modified heat-transfer factor was 220-270. It indicates

  8. Characteristics analysis of salt vacuum distillation equipment

    Energy Technology Data Exchange (ETDEWEB)

    Im, Hun Suk; Oh, Seung Chul; Hong, Sun Seok; Hur, Jin Mok; Lee, Hyo Jik [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    A new technique for pyroprocessing was designed by adding an oxide reduction process to the previous one. It is regarded as a promising process to treat and recycle oxide spent fuels owing to its enhanced nuclear proliferation resistance and the simplified process equipment and the low process costing. Spent oxide fuel is reduced into a metal by an electrochemical method while using a high-temperature molten salt as the reaction medium. After being subjected to electrorefining and electrowinning processes, the reduced metal fuel can be used in sodium-cooled fast reactors. The salt vacuum distillation process termed cathode processing follows the oxide reduction stage and has been developed to remove the residual salt, allowing for clear fuel metal to be supplied to the next step, which is electrorefining. KAERI has manufactured this apparatus in several sizes and has been able to achieve a fuel recovery rate of 95%. However it is very difficult to scale up the equipment. Because all transport phenomena, including heat transfer and fluid flow, depend on the size and structure of the apparatus used. The ideal method for overcoming this issue is nondimensionalization, which allows one to determine the characteristic properties of a system. A comparison of the dimensionless variables corresponding to the M-type and P-type apparatuses performed on the basis of phase-transition phenomena as well as the results of the above-mentioned analysis elucidated the differences between the two apparatuses. It also means that the structure of the nozzle throat can be the one of the several causes for the recovery performance. First, the standard model (i.e., the M-type apparatus) was analyzed using dimensionless parameters. The characteristics of this apparatus were the following: 1) the diameter of the outlet of the nozzle throat was twice that of the inlet, 2) the ratio of the length to the diameter (L/D) was 8, and 3) the modified heat-transfer factor was 220-270. It indicates

  9. Experimental investigation of a molten salt thermocline storage tank

    Science.gov (United States)

    Yang, Xiaoping; Yang, Xiaoxi; Qin, Frank G. F.; Jiang, Runhua

    2016-07-01

    Thermal energy storage is considered as an important subsystem for solar thermal power stations. Investigations into thermocline storage tanks have mainly focused on numerical simulations because conducting high-temperature experiments is difficult. In this paper, an experimental study of the heat transfer characteristics of a molten salt thermocline storage tank was conducted by using high-temperature molten salt as the heat transfer fluid and ceramic particle as the filler material. This experimental study can verify the effectiveness of numerical simulation results and provide reference for engineering design. Temperature distribution and thermal storage capacity during the charging process were obtained. A temperature gradient was observed during the charging process. The temperature change tendency showed that thermocline thickness increased continuously with charging time. The slope of the thermal storage capacity decreased gradually with the increase in time. The low-cost filler material can replace the expensive molten salt to achieve thermal storage purposes and help to maintain the ideal gravity flow or piston flow of molten salt fluid.

  10. Gas Turbine/Solar Parabolic Trough Hybrid Design Using Molten Salt Heat Transfer Fluid: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Turchi, C. S.; Ma, Z.

    2011-08-01

    Parabolic trough power plants can provide reliable power by incorporating either thermal energy storage (TES) or backup heat from fossil fuels. This paper describes a gas turbine / parabolic trough hybrid design that combines a solar contribution greater than 50% with gas heat rates that rival those of natural gas combined-cycle plants. Previous work illustrated benefits of integrating gas turbines with conventional oil heat-transfer-fluid (HTF) troughs running at 390?C. This work extends that analysis to examine the integration of gas turbines with salt-HTF troughs running at 450 degrees C and including TES. Using gas turbine waste heat to supplement the TES system provides greater operating flexibility while enhancing the efficiency of gas utilization. The analysis indicates that the hybrid plant design produces solar-derived electricity and gas-derived electricity at lower cost than either system operating alone.

  11. Method for calculating the steady-state distribution of tritium in a molten-salt breeder reactor plant

    International Nuclear Information System (INIS)

    Briggs, R.B.; Nestor, C.W.

    1975-04-01

    Tritium is produced in molten salt reactors primarily by fissioning of uranium and absorption of neutrons by the constituents of the fuel carrier salt. At the operating temperature of a large power reactor, tritium is expected to diffuse from the primary system through pipe and vessel walls to the surroundings and through heat exchanger tubes into the secondary system which contains a coolant salt. Some tritium will pass from the secondary system into the steam power system. This report describes a method for calculating the steady state distribution of tritium in a molten salt reactor plant and a computer program for making the calculations. The method takes into account the effects of various processes for removing tritium, the addition of hydrogen or hydrogenous compounds to the primary and secondary systems, and the chemistry of uranium in the fuel salt. Sample calculations indicate that 30 percent or more of the tritium might reach the steam system in a large power reactor unless special measures are taken to confine the tritium. (U.S.)

  12. Numerical analysis of impurity separation from waste salt by investigating the change of concentration at the interface during zone refining process

    Science.gov (United States)

    Choi, Ho-Gil; Shim, Moonsoo; Lee, Jong-Hyeon; Yi, Kyung-Woo

    2017-09-01

    The waste salt treatment process is required for the reuse of purified salts, and for the disposal of the fission products contained in waste salt during pyroprocessing. As an alternative to existing fission product separation methods, the horizontal zone refining process is used in this study for the purification of waste salt. In order to evaluate the purification ability of the process, three-dimensional simulation is conducted, considering heat transfer, melt flow, and mass transfer. Impurity distributions and decontamination factors are calculated as a function of the heater traverse rate, by applying a subroutine and the equilibrium segregation coefficient derived from the effective segregation coefficients. For multipass cases, 1d solutions and the effective segregation coefficient obtained from three-dimensional simulation are used. In the present study, the topic is not dealing with crystal growth, but the numerical technique used is nearly the same since the zone refining technique was just introduced in the treatment of waste salt from nuclear power industry because of its merit of simplicity and refining ability. So this study can show a new application of single crystal growth techniques to other fields, by taking advantage of the zone refining multipass possibility. The final goal is to achieve the same high degree of decontamination in the waste salt as in zone freezing (or reverse Bridgman) method.

  13. Engineering development studies for molten-salt breeder reactor processing No. 18

    International Nuclear Information System (INIS)

    Hightower, J.R. Jr.

    1975-03-01

    A water--mercury system was used to study the effect of geometric variations on mass transfer rates in rectangular contractors similar to those proposed for the molten-salt breeder reactor (MSBR) fuel reprocessing scheme. Since mass transfer rates were not accurately predicted by the Lewis correlation, other correlations were investigated. A correlation which was found to fit the experimental results is given. Mass transfer rates are being measured in a fluoride salt--bismuth contactor. Experimental results indicate that the mass transfer rates in the salt--bismuth system fall between the Lewis correlation and the modified correlation given above. Autoresistance heating tests were continued in the fluorinator mock-up using LiF--BeF 2 --ThF 4 (72-16-12 mole percent) salt. The equipment was returned to operating condition, and five experiments were run. Although correct steady-state operation was not achieved, the results were encouraging. A two-dimensional electrical analog was constructed to study current flow through the electrode sidearm and other critical areas of the test vessel. These studies indicate that no regions of abnormally high current density existed in the first nine runs with the present autoresistance heating equipment. Localized heating had previously been the suspected cause for the failure to achieve proper operation of this equipment. (U.S.)

  14. Method for estimating road salt contamination of Norwegian lakes

    Science.gov (United States)

    Kitterød, Nils-Otto; Wike Kronvall, Kjersti; Turtumøygaard, Stein; Haaland, Ståle

    2013-04-01

    Consumption of road salt in Norway, used to improve winter road conditions, has been tripled during the last two decades, and there is a need to quantify limits for optimal use of road salt to avoid further environmental harm. The purpose of this study was to implement methodology to estimate chloride concentration in any given water body in Norway. This goal is feasible to achieve if the complexity of solute transport in the landscape is simplified. The idea was to keep computations as simple as possible to be able to increase spatial resolution of input functions. The first simplification we made was to treat all roads exposed to regular salt application as steady state sources of sodium chloride. This is valid if new road salt is applied before previous contamination is removed through precipitation. The main reasons for this assumption are the significant retention capacity of vegetation; organic matter; and soil. The second simplification we made was that the groundwater table is close to the surface. This assumption is valid for major part of Norway, which means that topography is sufficient to delineate catchment area at any location in the landscape. Given these two assumptions, we applied spatial functions of mass load (mass NaCl pr. time unit) and conditional estimates of normal water balance (volume of water pr. time unit) to calculate steady state chloride concentration along the lake perimeter. Spatial resolution of mass load and estimated concentration along the lake perimeter was 25 m x 25 m while water balance had 1 km x 1 km resolution. The method was validated for a limited number of Norwegian lakes and estimation results have been compared to observations. Initial results indicate significant overlap between measurements and estimations, but only for lakes where the road salt is the major contribution for chloride contamination. For lakes in catchments with high subsurface transmissivity, the groundwater table is not necessarily following the

  15. Road deicing salt irreversibly disrupts osmoregulation of salamander egg clutches

    International Nuclear Information System (INIS)

    Karraker, Nancy E.; Gibbs, James P.

    2011-01-01

    It has been postulated that road deicing salts are sufficiently diluted by spring rains to ameliorate any physiological impacts to amphibians breeding in wetlands near roads. We tested this conjecture by exposing clutches of the spotted salamander (Ambystoma maculatum) to three chloride concentrations (1 mg/L, 145 mg/L, 945 mg/L) for nine days, then transferred clutches to control water for nine days, and measured change in mass at three-day intervals. We measured mass change because water uptake by clutches reduces risks to embryos associated with freezing, predation, and disease. Clutches in controls sequestered water asymptotically. Those in the moderate concentrations lost 18% mass initially and regained 14% after transfer to control water. Clutches in high concentration lost 33% mass and then lost an additional 8% after transfer. Our results suggest that spring rains do not ameliorate the effects of deicing salts in wetlands with extremely high chloride concentrations. - Road deicing salts irreversibly disrupts osmoregulation of salamander egg clutches.

  16. Road deicing salt irreversibly disrupts osmoregulation of salamander egg clutches

    Energy Technology Data Exchange (ETDEWEB)

    Karraker, Nancy E., E-mail: karraker@hku.hk [Department of Environmental and Forest Biology, State University of New York, College of Environmental Science and Forestry, Syracuse, NY 13210 (United States); Gibbs, James P [Department of Environmental and Forest Biology, State University of New York, College of Environmental Science and Forestry, Syracuse, NY 13210 (United States)

    2011-03-15

    It has been postulated that road deicing salts are sufficiently diluted by spring rains to ameliorate any physiological impacts to amphibians breeding in wetlands near roads. We tested this conjecture by exposing clutches of the spotted salamander (Ambystoma maculatum) to three chloride concentrations (1 mg/L, 145 mg/L, 945 mg/L) for nine days, then transferred clutches to control water for nine days, and measured change in mass at three-day intervals. We measured mass change because water uptake by clutches reduces risks to embryos associated with freezing, predation, and disease. Clutches in controls sequestered water asymptotically. Those in the moderate concentrations lost 18% mass initially and regained 14% after transfer to control water. Clutches in high concentration lost 33% mass and then lost an additional 8% after transfer. Our results suggest that spring rains do not ameliorate the effects of deicing salts in wetlands with extremely high chloride concentrations. - Road deicing salts irreversibly disrupts osmoregulation of salamander egg clutches.

  17. A μSR study of the metamagnetic phase transition in the electron-transfer salt [FeCp2*][TCNQ

    International Nuclear Information System (INIS)

    Blundell, Stephen J.; Lancaster, Tom; Brooks, Michael L.; Pratt, Francis L.; Taliaferro, Michelle L.; Miller, Joel S.

    2006-01-01

    We have used muon-spin rotation (μSR) to study the metamagnetic transition in [FeCp 2 *][TCNQ] where Cp*=C 5 Me 5 and TCNQ is 7,7,8,8-tetracyano-p-quinodimethane. This electron-transfer salt contains parallel chains of alternating [FeCp 2 *] + cations and [TCNQ] - anions. Our zero-field μSR data show the 2.5K transition and show that a static, but disordered, internal field distribution develops below this. High-transverse-field μSR has also been used to study the metamagnetic transition and the data illustrate how the internal field distribution changes through this transition

  18. Neutronics methods for thermal radiative transfer

    International Nuclear Information System (INIS)

    Larsen, E.W.

    1988-01-01

    The equations of thermal radiative transfer are time discretized in a semi-implicit manner, yielding a linear transport problem for each time step. The governing equation in this problem has the form of a neutron transport equation with fission but no scattering. Numerical methods are described, whose origins lie in neutron transport, and that have been successfully adapted to this new problem. Acceleration methods that have been developed specifically for the radiative transfer problem, but may have generalizations applicable in neutronics problems, are also discussed

  19. Innovative method and apparatus for the deep cleaning of soluble salts from mortars and lithic materials

    Science.gov (United States)

    Gaggero, Laura; Ferretti, Maurizio; Torrielli, Giulia; Caratto, Valentina

    2016-04-01

    Porous materials (e.g. plasters, mortars, concrete, and the like) used in the building industry or in artworks fail to develop, after their genesis, salts such as nitrates, carbonates (e.g. potassium carbonate, magnesium carbonate, calcium carbonate), chlorides (e.g. sodium chloride) and/or others, which are a concurrent cause of material deterioration phenomena. In the case of ancient or cultural heritage buildings, severe damage to structures and works of art, such as fresco paintings are possible. In general, in situ alteration pattern in mortars and frescoes by crystallization of soluble salts from solutions is caused by capillar rise or circulation in damp walls. Older buildings can be more subject to capillary rise of ion-rich waters, which, as water evaporates, create salt crystals inside the walls. If this pattern reveals overwhelming upon other environmental decay factors, the extraction of salts is the first restoration to recover the artpiece after the preliminary assessment and mitigation of the causes of soaking. A new method and apparatus, patented by University of Genoa [1] improves the quality and durability of decontamination by soluble salts, compared with conventional application of sepiolite or cellulose wraps. The conventional application of cellulose or sepiolite requires casting a more or less thick layer of wrap on the mortar, soaking with distilled water, and waiting until dry. The soluble salts result trapped within the wrap. A set of artificial samples reproducing the stratigraphy of frescoes was contaminated with saline solution of known concentration. The higher quality of the extraction was demonstrated by trapping the salts within layers of Japanese paper juxtaposed to the mortar; the extraction with the dedicated apparatus was operated in a significantly shorter time than with wraps (some hours vs. several days). Two cycles of about 15 minutes are effective in the deep cleaning from contaminant salts. The decontamination was

  20. 14 CFR 1260.69 - Electronic funds transfer payment methods.

    Science.gov (United States)

    2010-01-01

    ... Government by electronic funds transfer through the Treasury Fedline Payment System (FEDLINE) or the... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Electronic funds transfer payment methods... COOPERATIVE AGREEMENTS General Special Conditions § 1260.69 Electronic funds transfer payment methods...

  1. Molten salt breeder reactor

    International Nuclear Information System (INIS)

    Furukawa, Kazuo; Tsukada, Kineo; Nakahara, Yasuaki; Oomichi, Toshihiko; Oono, Hideo.

    1982-01-01

    Purpose: To simplify the structure, as well as improve the technical reliability and safety by the elimination of a proton beam entering window. Constitution: The nuclear reactor container main body is made of Hastelloy N and provided at the inner surface with two layers of graphite shields except for openings. An aperture was formed in the upper surface of the container, through which protons accelerated by a linear accelerator are directly entered to the liquid surface of molten salts such as 7LiF-BeF 2 -ThF 4 , 7LiF-NaF-ThF 4 , 7LiF-Rb-UF 4 , NaF-KF-UF 4 and the like. The heated molten salts are introduced by way of a pipeway into a heat exchanger where the heat is transferred to coolant salts and electric generation is conducted by way of heated steams. (Furukawa, Y.)

  2. Solidification of high temperature molten salts for thermal energy storage systems

    Science.gov (United States)

    Sheffield, J. W.

    1981-01-01

    The solidification of phase change materials for the high temperature thermal energy storage system of an advanced solar thermal power system has been examined theoretically. In light of the particular thermophysical properties of candidate phase change high temperature salts, such as the eutectic mixture of NaF - MgF2, the heat transfer characteristics of one-dimensional inward solidification for a cylindrical geometry have been studied. The Biot number for the solidified salt is shown to be the critical design parameter for constant extraction heat flux. A fin-on-fin design concept of heat transfer surface augmentation is proposed in an effort to minimize the effects of the salt's low thermal conductivity and large volume change upon fusing.

  3. TRANSFER PRICES: MECHANISMS, METHODS AND INTERNATIONAL APPROACHES

    Directory of Open Access Journals (Sweden)

    Pop Cosmina

    2008-05-01

    Full Text Available Transfer prices are considered the prices paid for the goods or services in a cross-border transaction between affiliates companies, often significant reduced or increased in order to avoid the higher imposing rates from one jurisdiction. Presently, over 60% of cross-border transfers are represented by intra-group transfers. The paper presents the variety of methods and mechanisms used by the companies to transfer the funds from one tax jurisdiction to another in order to avoid over taxation.

  4. Simulation of NaCl and KCl mass transfer during salting of Prato cheese in brine with agitation: a numerical solution

    Directory of Open Access Journals (Sweden)

    E. Bona

    2007-09-01

    Full Text Available The association of dietary NaCl with arterial hypertension has led to a reduction in the levels of this salt in cheeses. For salting, KCl has been used as a partial substitute for NaCl, which cannot be completely substituted without affecting product acceptability. In this study a sensorially adequate saline solution (NaCl/KCl was simultaneously diffused during salting of Prato cheese in brine with agitation. The simultaneous multicomponent diffusion during the process was modeled with Fick’s second generalized law. The system of partial differential equations formed was solved by the finite element method (FEM. In the experimental data concentration the deviation for NaCl was of 7.3% and for KCl of 5.4%, both of which were considered acceptable. The simulation of salt diffusion will allow control and modulation of salt content in Prato cheese, permitting the prediction of final content from initial conditions.

  5. Investigation of Climate Change Impact on Salt Lake by Statistical Methods

    Directory of Open Access Journals (Sweden)

    Osman Orhan

    2017-03-01

    Full Text Available The main purpose of this paper is to investigate climate change impact that have been occurred on Salt Lake located in the central Anatolia is one of the area that has been faced to extinction. In order to monitor current status of the Salt Lake, Landsat satellite images has been obtained between the year of 2000 and 2014 (for the months of February, May, August and November. Satellite images has been processed by using ArcGIS and ERDAS softwares and the water surface area has been determined. The time series of water surface areas has been analyzed with auto-correlation method and repeated pattern has been detected. The seasonal part of the time series which period is 1 year and causes about 400 km² fluctuations has been removed with Moving Average filter, successfully. As a result of filtration process, non-seasonal time series of water surface area of Salt Lake were obtained. It is understood from the non-seasonal time series that the water surface area showed variability between 2000 and 2010 and after 2010 it is stable until 2014. In order to explain the variability, meteorological data (precipitation and temperature of the surrounding area has been acquired from the related service. The cross-correlation analyses has been performed with the movement of the water surface area and meteorological time series. As a result of analysis, the relationship between water surface changes in Salt Lake and meteorological data have correlated up to 80%. Consequently, several conclusion have been detected that the topography of the region play a direct role of the correlation coefficients and the water surface changes are effected from the environmental events that is occurred in the south of Salt Lake sub-Basin.

  6. Hydrological methods preferentially recover cesium from nuclear waste salt cake

    International Nuclear Information System (INIS)

    Brooke, J.N.; Hamm, L.L.

    1997-01-01

    The Savannah River Site is treating high level radioactive waste in the form of insoluble solids (sludge), crystallized salt (salt cake), and salt solutions. High costs and operational concerns have prompted DOE to look for ways to improve the salt cake treatment process. A numerical model was developed to evaluate the feasibility of pump and treat technology for extracting cesium from salt cake. A modified version of the VAM3DCG code was used to first establish a steady-state flow field, then to simulate 30 days of operation. Simulation results suggest that efficient cesium extraction can be obtained with low displacement volumes. The actual extraction process will probably be less impressive because of nonuniform properties. 2 refs., 2 figs

  7. Domestic Material Content in Molten-Salt Concentrating Solar Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Turchi, Craig [National Renewable Energy Lab. (NREL), Golden, CO (United States); Kurup, Parthiv [National Renewable Energy Lab. (NREL), Golden, CO (United States); Akar, Sertac [National Renewable Energy Lab. (NREL), Golden, CO (United States); Flores, Francisco [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-08-26

    This study lists material composition data for two concentrating solar power (CSP) plant designs: a molten-salt power tower and a hypothetical parabolic trough plant, both of which employ a molten salt for the heat transfer fluid (HTF) and thermal storage media. The two designs have equivalent generating and thermal energy storage capacities. The material content of the saltHTF trough plant was approximately 25% lower than a comparably sized conventional oil-HTF parabolic trough plant. The significant reduction in oil, salt, metal, and insulation mass by switching to a salt-HTF design is expected to reduce the capital cost and LCOE for the parabolic trough system.

  8. Molten salt reactor concept

    International Nuclear Information System (INIS)

    Sood, D.D.

    1980-01-01

    Molten salt reactor is an advanced breeder concept which is suited for the utilization of thorium for nuclear power production. This reactor is based on the use of solutions of uranium or plutonium fluorides in LiF-BeF 2 -ThF 4 as fuel. Unlike the conventional reactors, no external coolant is used in the reactor core and the fuel salt itself is circulated through heat exchangers to transfer the fission produced heat to a secondary salt (NaF-NaBF 4 ) for steam generation. A part of the fuel stream is continuously processed to isolate 233 Pa, so that it can decay to fissile 233 U without getting converted to 234 Pa, and for the removal of neutron absorbing fission products. This on-line processing scheme makes this reactor concept to achieve a breeding ratio of 1.07 which is the highest for any thermal breeder reactor. Experimental studies at the Bhabha Atomic Research Centre, Bombay, have established the use of plutonium as fuel for this reactor. This molten salt reactor concept is described and the work conducted at the Bhabha Atomic Research Centre is summarised. (auth.)

  9. Morphology-controlled synthesis of CdWO4 nanorods and nanoparticles via a molten salt method

    International Nuclear Information System (INIS)

    Wang Yonggang; Ma Junfeng; Tao Jiantao; Zhu Xiaoyi; Zhou Jun; Zhao Zhongqiang; Xie Lijin; Tian Hua

    2006-01-01

    Cadmium tungstate (CdWO 4 ) nanoparticles and nanorods have been successfully synthesized by a molten salt method at 270 deg. C, and the morphology of the nanocrystals can be controlled by adjusting such reaction conditions as the calcined time and the weight ratio of the salt to the CdWO 4 precursor. The resultant sample is a pure phase of CdWO 4 without any other impurities

  10. Continuous Preparation of 1:1 Haloperidol-Maleic Acid Salt by a Novel Solvent-Free Method Using a Twin Screw Melt Extruder.

    Science.gov (United States)

    Lee, Hung Lin; Vasoya, Jaydip M; Cirqueira, Marilia de Lima; Yeh, Kuan Lin; Lee, Tu; Serajuddin, Abu T M

    2017-04-03

    Salts are generally prepared by acid-base reaction in relatively large volumes of organic solvents, followed by crystallization. In this study, the potential for preparing a pharmaceutical salt between haloperidol and maleic acid by a novel solvent-free method using a twin-screw melt extruder was investigated. The pH-solubility relationship between haloperidol and maleic acid in aqueous medium was first determined, which demonstrated that 1:1 salt formation between them was feasible (pH max 4.8; salt solubility 4.7 mg/mL). Extrusion of a 1:1 mixture of haloperidol and maleic acid at the extruder barrel temperature of 60 °C resulted in the formation of a highly crystalline salt. The effects of operating temperature and screw configuration on salt formation were also investigated, and those two were identified as key processing parameters. Salts were also prepared by solution crystallization from ethyl acetate, liquid-assisted grinding, and heat-assisted grinding and compared with those obtained by melt extrusion by using DSC, PXRD, TGA, and optical microscopy. While similar salts were obtained by all methods, both melt extrusion and solution crystallization yielded highly crystalline materials with identical enthalpies of melting. During the pH-solubility study, a salt hydrate form was also identified, which, upon heating, converted to anhydrate similar to that obtained by other methods. There were previous reports of the formation of cocrystals, but not salts, by melt extrusion. 1 H NMR and single-crystal X-ray diffraction confirmed that a salt was indeed formed in the present study. The haloperidol-maleic acid salt obtained was nonhygroscopic in the moisture sorption study and converted to the hydrate form only upon mixing with water. Thus, we are reporting for the first time a relatively simple and solvent-free twin-screw melt extrusion method for the preparation of a pharmaceutical salt that provides material comparable to that obtained by solution

  11. Disposition of the fluoride fuel and flush salts from the Molten Salt Reactor experiment at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Peretz, F.J.

    1996-01-01

    The Molten Salt Reactor Experiment (MSRE) is an 8 MW reactor that was operated at Oak Ridge National Laboratory (ORNL) from 1965 through 1969. The reactor used a unique liquid salt fuel, composed of a mixture of LIF, BeF 2 , ZrF 4 , and UF 4 , and operated at temperatures above 600 degrees C. The primary fuel salt circulation system consisted of the reactor vessel, a single fuel salt pump, and a single primary heat exchanger. Heat was transferred from the fuel salt to a coolant salt circuit in the primary heat exchanger. The coolant salt was similar to the fuel salt, except that it contains only LiF (66%) and BeF, (34%). The coolant salt passed from the primary heat exchanger to an air-cooled radiator and a coolant salt pump, and then returned to the primary heat exchanger. Each of the salt loops was provided with drain tanks, located such that the salt could be drained out of either circuit by gravity. A single drain tank was provided for the non-radioactive coolant salt. Two drain tanks were provided for the fuel salt. Since the fuel salt contained radioactive fuel, fission products, and activation products, and since the reactor was designed such that the fuel salt could be drained immediately into the drain tanks in the event of a problem in the fuel salt loop, the fuel salt drain tanks were provided with a system to remove the heat generated by radioactive decay. A third drain tank connected to the fuel salt loop was provided for a batch of flush salt. This batch of salt, similar in composition to the coolant salt, was used to condition the fuel salt loop after it had been exposed to air and to flush the fuel salt loop of residual fuel salt prior to accessing the reactor circuit for maintenance or experimental activities. This report discusses the disposition of the fluoride fuel and flush salt

  12. Treatment method for stabilization of radioactive exchange resin

    International Nuclear Information System (INIS)

    Hideo, Oni; Takashi, Miyake; Hitoshi, Miyamoto; Toshio, Funakoshi; Yuzo, Inagaki.

    1988-01-01

    This is a method for eluting radioactive nuclides from a radioactive ion exchange resin in which it has been absorbed. First, the Cs in this resin is extracted using a neutral salt solution which contains Na + . The Cs that has been transferred to the neutral salt solution is absorbed and expelled by inorganic ion exchangers. Then the Co, Fe, Mn and Sr in said resin are eluted using an acidic solution; the Co, Fe, Mn and Sr that have been transferred to the acidic solution are separated from that solution by means of a diffusion dialysis vat. This process is a unique characteristic of this ion exchange resin treatment method. 1 fig

  13. High Temperature Fluoride Salt Test Loop

    Energy Technology Data Exchange (ETDEWEB)

    Aaron, Adam M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Cunningham, Richard Burns [Univ. of Tennessee, Knoxville, TN (United States); Fugate, David L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Holcomb, David Eugene [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Kisner, Roger A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Peretz, Fred J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Robb, Kevin R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wilson, Dane F. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Yoder, Jr, Graydon L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-12-01

    Effective high-temperature thermal energy exchange and delivery at temperatures over 600°C has the potential of significant impact by reducing both the capital and operating cost of energy conversion and transport systems. It is one of the key technologies necessary for efficient hydrogen production and could potentially enhance efficiencies of high-temperature solar systems. Today, there are no standard commercially available high-performance heat transfer fluids above 600°C. High pressures associated with water and gaseous coolants (such as helium) at elevated temperatures impose limiting design conditions for the materials in most energy systems. Liquid salts offer high-temperature capabilities at low vapor pressures, good heat transport properties, and reasonable costs and are therefore leading candidate fluids for next-generation energy production. Liquid-fluoride-salt-cooled, graphite-moderated reactors, referred to as Fluoride Salt Reactors (FHRs), are specifically designed to exploit the excellent heat transfer properties of liquid fluoride salts while maximizing their thermal efficiency and minimizing cost. The FHR s outstanding heat transfer properties, combined with its fully passive safety, make this reactor the most technologically desirable nuclear power reactor class for next-generation energy production. Multiple FHR designs are presently being considered. These range from the Pebble Bed Advanced High Temperature Reactor (PB-AHTR) [1] design originally developed by UC-Berkeley to the Small Advanced High-Temperature Reactor (SmAHTR) and the large scale FHR both being developed at ORNL [2]. The value of high-temperature, molten-salt-cooled reactors is also recognized internationally, and Czechoslovakia, France, India, and China all have salt-cooled reactor development under way. The liquid salt experiment presently being developed uses the PB-AHTR as its focus. One core design of the PB-AHTR features multiple 20 cm diameter, 3.2 m long fuel channels

  14. Molten salt processes in special materials preparation

    International Nuclear Information System (INIS)

    Krishnamurthy, N.; Suri, A.K.

    2013-01-01

    As a class, molten salts are the largest collection of non aqueous inorganic solvents. On account of their stability at high temperature and compatibility to a number of process requirements, molten salts are considered indispensable to realize many of the numerous benefits of high temperature technology. They play a crucial role and form the basis for numerous elegant processes for the preparation of metals and materials. Molten salt are considered versatile heat transfer media and have led to the evolution of many interesting reactor concepts in fission and possibly in fusion. They also have been the basis of thinking for few novel processes for power generation. While focusing principally on the actual utilization of molten salts for a variety of materials preparation efforts in BARC, this lecture also covers a few of the other areas of technological applications together with the scientific basis for considering the molten salts in such situations. (author)

  15. A radioactive tracer dilution method to determine the mass of molten salt

    International Nuclear Information System (INIS)

    Lei Cao; Jarrell, Josh; Hardtmayer, D.E.; White, Susan; Herminghuysen, Kevin; Kauffman, Andrew; Sanders, Jeff; Li, Shelly

    2017-01-01

    A new technique for molten salt mass determination, termed radioactive tracer dilution, that uses 22 Na as a tracer was validated at bench scale. It has been a challenging problem to determine the mass of molten salt in irregularly shaped containers, where a highly radioactive, high-temperature molten salt was used to process nuclear spent/used fuel during electrochemical recycling (pyro-processing) or for coolant/fuel salt from molten salt reactors. A radioactive source with known activity is dissolved into the salt. After a complete mixture, a small amount of the salt is sampled and measured in terms of its mass and radioactivity. By finding the ratio of the mass to radioactivity, the unknown salt mass in the original container can be precisely determined. (author)

  16. Hydrogen permeation through Flinabe fluoride molten salts for blanket candidates

    Energy Technology Data Exchange (ETDEWEB)

    Nishiumi, Ryosuke, E-mail: r.nishiumi@aees.kyushu-u.ac.jp; Fukada, Satoshi; Nakamura, Akira; Katayama, Kazunari

    2016-11-01

    Highlights: • H{sub 2} diffusivity, solubility and permeability in Flinabe as T breeder are determined. • Effects in composition differences among Flibe, Fnabe and Flinabe are compared. • Changes of pressure dependence of Flinabe permeation rate are clarified. - Abstract: Fluoride molten salt Flibe (2LiF + BeF{sub 2}) is a promising candidate for the liquid blanket of a nuclear fusion reactor, because of its large advantages of tritium breeding ratio and heat-transfer fluid. Since its melting point is higher than other liquid candidates, another new fluoride molten salt Flinabe (LiF + NaF + BeF{sub 2}) is recently focused on because of its lower melting point while holding proper breeding properties. In this experiment, hydrogen permeation behavior through the three molten salts of Flibe (2LiF + BeF{sub 2}), Fnabe (NaF + BeF{sub 2}) and Flinabe are investigated in order to clarify the effects of their compositions on hydrogen transfer properties. After making up any of the three molten salts and purifying it using HF, hydrogen permeability, diffusivity and solubility of the molten salts are determined experimentally by using a system composed of tertiary cylindrical tubes. Close agreement is obtained between experimental data and analytical solutions. H{sub 2} permeability, diffusivity and solubility are correlated as a function of temperature and are compared among the three molten salts.

  17. Molten salt reactor type

    International Nuclear Information System (INIS)

    1977-01-01

    This document is one of the three parts of a first volume devoted to the compilations of American data on the molten salt reactor concept. This part 'CIRCUITS' regroups under a condensed form - in French and using international units - the essential information contained in both basic documents of the American project for a molten-salt breeder power plant. This part is only dealing with things relating to the CEA-EDF workshop 'CIRCUITS'. It is not concerned with information on: the reactor and the moderator replacement, the primary and secondary salts, and the fuel salt reprocessing, that are dealt with in parts 'CORE' and 'CHEMISTRY' respectively. The possible evolutions in the data - and solutions - taken by the American designers for their successive projects (1970 to 1972) are shown. The MSBR power plant comprises three successive heat transfer circuits. The primary circuit (Hastelloy N), radioactive and polluted, containing the fuel salt, includes the reactor, pumps and exchangers. The secondary circuit (pipings made of modified Hastelloy N) contaminated in the exchanger, ensures the separation between the fuel and the fluid operating the turbo-alternator. The water-steam circuit feeds the turbine with steam. This steam is produced in the steam generator flowed by the secondary fluid. Some subsidiary circuits (discharge and storage of the primary and secondary salts, ventilation of the primary circuit ...) complete the three principal circuits which are briefly described. All circuits are enclosed inside the controlled-atmosphere building of the nuclear boiler. This building also ensures the biological protection and the mechanical protection against outer aggressions [fr

  18. An Overview of Liquid Fluoride Salt Heat Transport Systems

    Energy Technology Data Exchange (ETDEWEB)

    Holcomb, David Eugene [ORNL; Cetiner, Sacit M [ORNL

    2010-09-01

    Heat transport is central to all thermal-based forms of electricity generation. The ever increasing demand for higher thermal efficiency necessitates power generation cycles transitioning to progressively higher temperatures. Similarly, the desire to provide direct thermal coupling between heat sources and higher temperature chemical processes provides the underlying incentive to move toward higher temperature heat transfer loops. As the system temperature rises, the available materials and technology choices become progressively more limited. Superficially, fluoride salts at {approx}700 C resemble water at room temperature being optically transparent and having similar heat capacity, roughly three times the viscosity, and about twice the density. Fluoride salts are a leading candidate heat-transport material at high temperatures. Fluoride salts have been extensively used in specialized industrial processes for decades, yet they have not entered widespread deployment for general heat transport purposes. This report does not provide an exhaustive screening of potential heat transfer media and other high temperature liquids such as alkali metal carbonate eutectics or chloride salts may have economic or technological advantages. A particular advantage of fluoride salts is that the technology for their use is relatively mature as they were extensively studied during the 1940s-1970s as part of the U.S. Atomic Energy Commission's program to develop molten salt reactors (MSRs). However, the instrumentation, components, and practices for use of fluoride salts are not yet developed sufficiently for commercial implementation. This report provides an overview of the current understanding of the technologies involved in liquid salt heat transport (LSHT) along with providing references to the more detailed primary information resources. Much of the information presented here derives from the earlier MSR program. However, technology has evolved over the intervening years

  19. Modeling of electromigration salt removal methods in building materials

    DEFF Research Database (Denmark)

    Johannesson, Björn; Ottosen, Lisbeth M.

    2008-01-01

    for salt attack of various kinds, is one potential method to preserve old building envelopes. By establishing a model for ionic multi-species diffusion, which also accounts for external applied electrical fields, it is proposed that an important complement to the experimental tests and that verification...... with its ionic mobility properties. It is, further, assumed that Gauss’s law can be used to calculate the internal electrical field induced by the diffusion it self. In this manner the external electrical field applied can be modeled, simply, by assigning proper boundary conditions for the equation...

  20. Salt disposal: Paradox Basin, Utah

    International Nuclear Information System (INIS)

    1983-04-01

    This report presents the findings of a study conducted for the National Waste Terminal Storage (NWTS) Program. Permanent disposal options are examined for salt resulting from the excavation of a waste repository in the bedded salt deposits of the Paradox Basin of southeastern Utah. The study is based on a repository salt backfill compaction of 60% of the original density which leaves a total of 8 million tons of 95% pure salt to be disposed of over a 30-year period. The feasibility, impacts, and mitigation methods are examined for five options: commercial disposal, permanent onsite surface disposal, permanent offsite disposal, deepwell injection, and ocean and Great Salt Lake disposal. The study concludes the following: Commercial marketing of all repository salt would require a subsidy for transportation to major salt markets. Permanent onsite surface storage is both economically and technically feasible. Permanent offsite disposal is technically feasible but would incur additional transportation costs. Selection of an offsite location would provide a means of mitigating impacts associated with surface storage at the repository site. Deepwell injection is an attractive disposal method; however, the large water requirement, high cost of development, and poor performance of similar operating brine disposal wells eliminates this option from consideration as the primary means of disposal for the Paradox Basin. Ocean disposal is expensive because of high transportation cost. Also, regulatory approval is unlikely. Ocean disposal should be eliminated from further consideration in the Paradox Basin. Great Salt Lake disposal appears to be technically feasible. Great Salt Lake disposal would require state approval and would incur substantial costs for salt transportation. Permanent onsite disposal is the least expensive method for disposal of all repository salt

  1. A novel method for transferring graphene onto PDMS

    International Nuclear Information System (INIS)

    Hiranyawasit, Witchawate; Punpattanakul, Krirktakul; Pimpin, Alongkorn; Kim, Houngkyung; Jeon, Seokwoo; Srituravanich, Werayut

    2015-01-01

    Graphical abstract: - Highlights: • A novel method for graphene transfer onto PDMS substrates established. • SU-8 layer is used to strengthen the adhesion between graphene and PDMS substrate. • A great potential for the development of graphene-based microfluidic devices. - Abstract: Graphene has been attracting great attention from scientific community due to its astonishing mechanical, optical, and electrical properties, especially, graphene films synthesized by chemical vapor deposition (CVD) method are large, uniform and high-quality. CVD-grown graphene films have been successfully transferred onto various kinds of substrates such as SiO 2 /Si, quartz, PET, and plastics. However, graphene transfer onto polydimethylsiloxane (PDMS) substrates for device development has been limited due to the very low surface energy of PDMS. Here, we present a novel method to transfer graphene onto PDMS substrates by utilizing a thin layer of SU-8 as an adhesion layer. The SU-8 adhesion layer significantly improves the adhesion between the graphene layer and the PDMS substrate resulting in successful graphene transfer onto the PDMS substrate. This opens up a great potential of using graphene on PDMS substrates for the development of a wide range of graphene-based transparent and flexible devices.

  2. A novel method for transferring graphene onto PDMS

    Energy Technology Data Exchange (ETDEWEB)

    Hiranyawasit, Witchawate; Punpattanakul, Krirktakul; Pimpin, Alongkorn [Department of Mechanical Engineering, Chulalongkorn University, Pathumwan, Bangkok 10330 (Thailand); Kim, Houngkyung; Jeon, Seokwoo [Department of Materials Science and Engineering, Korea Advanced Institute of Science & Technology (KAIST), Daejeon 305-701 (Korea, Republic of); Srituravanich, Werayut, E-mail: werayut.s@chula.ac.th [Department of Mechanical Engineering, Chulalongkorn University, Pathumwan, Bangkok 10330 (Thailand)

    2015-12-15

    Graphical abstract: - Highlights: • A novel method for graphene transfer onto PDMS substrates established. • SU-8 layer is used to strengthen the adhesion between graphene and PDMS substrate. • A great potential for the development of graphene-based microfluidic devices. - Abstract: Graphene has been attracting great attention from scientific community due to its astonishing mechanical, optical, and electrical properties, especially, graphene films synthesized by chemical vapor deposition (CVD) method are large, uniform and high-quality. CVD-grown graphene films have been successfully transferred onto various kinds of substrates such as SiO{sub 2}/Si, quartz, PET, and plastics. However, graphene transfer onto polydimethylsiloxane (PDMS) substrates for device development has been limited due to the very low surface energy of PDMS. Here, we present a novel method to transfer graphene onto PDMS substrates by utilizing a thin layer of SU-8 as an adhesion layer. The SU-8 adhesion layer significantly improves the adhesion between the graphene layer and the PDMS substrate resulting in successful graphene transfer onto the PDMS substrate. This opens up a great potential of using graphene on PDMS substrates for the development of a wide range of graphene-based transparent and flexible devices.

  3. Experimental and numerical analysis of sodium-carbonate salt gradient solar-pond performance under simulated solar-radiation

    Energy Technology Data Exchange (ETDEWEB)

    Kurt, Hueseyin; Ozkaymak, Mehmet [Zonguldak Karaelmas University, Technical Education Faculty, 78200 Karabuk (Turkey); Binark, A. Korhan [Marmara University, Technical Education Faculty, 34722 Kuyubasi-Istanbul (Turkey)

    2006-04-01

    The objective of this study is to investigate experimentally and theoretically whether sodium carbonate (Na{sub 2}CO{sub 3}) salt is suitable for establishing a salinity gradient in a salt-gradient solar-pond (SGSP). For this purpose, a small-scale prismatic solar-pond was constructed. Experiments were conducted in the laboratory under the incident radiation from two halogen-lamps acting as a solar simulator. Furthermore, a one-dimensional transient mathematical model that describes the heat and mass transfer behaviour of the SGSP was developed. The differential equations obtained were solved numerically using a finite-difference method. It was found from the experiments that the density gradient, achieved using sodium carbonate salt, can suppress convection from the bottom to the surface of the pond. (author)

  4. Experimental and numerical analysis of sodium-carbonate salt gradient solar-pond performance under simulated solar-radiation

    International Nuclear Information System (INIS)

    Kurt, Hueseyin; Ozkaymak, Mehmet; Binark, A. Korhan

    2006-01-01

    The objective of this study is to investigate experimentally and theoretically whether sodium carbonate (Na 2 CO 3 ) salt is suitable for establishing a salinity gradient in a salt-gradient solar-pond (SGSP). For this purpose, a small-scale prismatic solar-pond was constructed. Experiments were conducted in the laboratory under the incident radiation from two halogen-lamps acting as a solar simulator. Furthermore, a one-dimensional transient mathematical model that describes the heat and mass transfer behaviour of the SGSP was developed. The differential equations obtained were solved numerically using a finite-difference method. It was found from the experiments that the density gradient, achieved using sodium carbonate salt, can suppress convection from the bottom to the surface of the pond

  5. Assessment of the Use of Nitrogen Trifluoride for Purifying Coolant and Heat Transfer Salts in the Fluoride Salt-Cooled High-Temperature Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Scheele, Randall D.; Casella, Andrew M.

    2010-09-28

    This report provides an assessment of the use of nitrogen trifluoride for removing oxide and water-caused contaminants in the fluoride salts that will be used as coolants in a molten salt cooled reactor.

  6. Case studies of sealing methods and materials used in the salt and potash mining industries

    International Nuclear Information System (INIS)

    Eyermann, T.J.; Sambeek, L.L. Van; Hansen, F.D.

    1995-11-01

    Sealing methods and materials currently used in salt and potash industries were surveyed to determine if systems analogous to the shaft seal design proposed for the Waste Isolation Pilot Plant (WIPP) exist. Emphasis was first given to concrete and then expanded to include other materials. Representative case studies could provide useful design, construction, and performance information for development of the WIPP shaft seal system design. This report contains a summary of engineering and construction details of various sealing methods used by mining industries for bulkheads and shaft liners. Industrial experience, as determined from site visits and literature reviews, provides few examples of bulkheads built in salt and potash mines for control of water. Sealing experiences representing site-specific conditions often have little engineering design to back up the methods employed and even less quantitative evaluation of seal performance. Cases examined include successes and failures, and both contribute to a database of experiences. Mass salt-saturated concrete placement under ground was accomplished under several varied conditions. Information derived from this database has been used to assess the performance of concrete as a seal material. Concrete appears to be a robust material with successes in several case studies. 42 refs

  7. Case studies of sealing methods and materials used in the salt and potash mining industries

    Energy Technology Data Exchange (ETDEWEB)

    Eyermann, T.J.; Sambeek, L.L. Van [RE/SPEC Inc., Rapid City, SD (United States); Hansen, F.D. [Sandia National Labs., Albuquerque, NM (United States). Repository Isolation Systems Dept.

    1995-11-01

    Sealing methods and materials currently used in salt and potash industries were surveyed to determine if systems analogous to the shaft seal design proposed for the Waste Isolation Pilot Plant (WIPP) exist. Emphasis was first given to concrete and then expanded to include other materials. Representative case studies could provide useful design, construction, and performance information for development of the WIPP shaft seal system design. This report contains a summary of engineering and construction details of various sealing methods used by mining industries for bulkheads and shaft liners. Industrial experience, as determined from site visits and literature reviews, provides few examples of bulkheads built in salt and potash mines for control of water. Sealing experiences representing site-specific conditions often have little engineering design to back up the methods employed and even less quantitative evaluation of seal performance. Cases examined include successes and failures, and both contribute to a database of experiences. Mass salt-saturated concrete placement under ground was accomplished under several varied conditions. Information derived from this database has been used to assess the performance of concrete as a seal material. Concrete appears to be a robust material with successes in several case studies. 42 refs.

  8. Thermochemical investigation of molten fluoride salts for Generation IV nuclear applications - an equilibrium exercise

    NARCIS (Netherlands)

    van der Meer, J.P.M.

    2006-01-01

    The concept of the Molten Salt Reactor, one of the so-called Generation IV future reactors, is that the fuel, a fissile material, which is dissolved in a molten fluoride salt, circulates through a closed circuit. The heat of fission is transferred to a second molten salt coolant loop, the heat of

  9. Improvements and validation of the transient analysis code MOREL for molten salt reactors

    International Nuclear Information System (INIS)

    Zhuang Kun; Zheng Youqi; Cao Liangzhi; Hu Tianliang; Wu Hongchun

    2017-01-01

    The liquid fuel salt used in the molten salt reactors (MSRs) serves as the fuel and coolant simultaneously. On the one hand, the delayed neutron precursors circulate in the whole primary loop and part of them decay outside the core. On the other hand, the fission heat is carried off directly by the fuel flow. These two features require new analysis method with the coupling of fluid flow, heat transfer and neutronics. In this paper, the recent update of MOREL code is presented. The update includes: (1) the improved quasi-static method for the kinetics equation with convection term is developed. (2) The multi-channel thermal hydraulic model is developed based on the geometric feature of MSR. (3) The Variational Nodal Method is used to solve the neutron diffusion equation instead of the original analytic basis functions expansion nodal method. The update brings significant improvement on the efficiency of MOREL code. And, the capability of MOREL code is extended for the real core simulation with feedback. The numerical results and experiment data gained from molten salt reactor experiment (MSRE) are used to verify and validate the updated MOREL code. The results agree well with the experimental data, which prove the new development of MOREL code is correct and effective. (author)

  10. Preliminary Study of Single-Phase Natural Circulation for Lab-scaled Molten Salt Application

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Yukyung; Kang, Sarah; Kim, In Guk; Seo, Seok Bin; Bang, In Cheol [UNIST, Ulsan (Korea, Republic of); Park, Seong Dae [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    Advanced reactors such as MSR (FHR), VHTR and AHTR utilized molten salt as a coolant for efficiency and safety which has advantages in higher heat capacity, lower pumping power and scale compared to liquid metal. It becomes more necessary to study on the characteristics of molten salt. However, due to several characteristics such as high operating temperature, large-scale facility and preventing solidification, satisfying that condition for study has difficulties. Thus simulant fluid was used with scaling method for lab-scale experiment. Scaled experiment enables simulant fluid to simulate fluid mechanics and heat transfer behavior of molten salt on lower operating temperature and reduced scale. In this paper, as a proof test of the scaled experiment, simplified single-phase natural circulation loop was designed in a lab-scale and applied to the passive safety system in advanced reactor in which molten salt is considered as a major coolant of the system. For the application of the improved safety system, prototype was based on the primary loop of the test-scale DRACS, the main passive safety system in FHR, developed at the OSU. For preliminary experiment, single-phase natural circulation under low power was performed. DOWTHERM A and DOWTHERM RP were selected as simulant candidates. Then, study of feasibility with simulant was conducted based on the scaling law for heat transfer characteristics and geometric parameters. Additionally, simulation with MARS code and ANSYS-CFX with the same condition of natural circulation was carried out as verification. For the accurate code simulation, thermo-physical properties of DOWTHERM A and RP were developed and implemented into MARS code. In this study, single-phase natural circulation experiment was performed with simulant oil, DOWTHERM RP, based on the passive safety system of FHR. Feasibility of similarity experiment for molten salt with oil simulant was confirmed by scaling method. In addition, simulation with two

  11. Superconductivity under uniaxial compression in β-(BDA-TTP) salts

    International Nuclear Information System (INIS)

    Suzuki, T.; Onari, S.; Ito, H.; Tanaka, Y.

    2009-01-01

    In order to clarify the mechanism of organic superconductor β-(BDA-TTP) salts. We study the superconductivity under uniaxial compression with non-dimerized two-band Hubbard model. We have calculated the uniaxial compression dependence of T c by solving the Eliashberg's equation using the fluctuation exchange (FLEX) approximation. The transfer integral under the uniaxial compression was estimated by the extended Huckel method. We have found that non-monotonic behaviors of T c in experimental results under uniaxial compression are understood taking the spin frustration and spin fluctuation into account.

  12. Superconductivity under uniaxial compression in β-(BDA-TTP) salts

    Science.gov (United States)

    Suzuki, T.; Onari, S.; Ito, H.; Tanaka, Y.

    2009-10-01

    In order to clarify the mechanism of organic superconductor β-(BDA-TTP) salts. We study the superconductivity under uniaxial compression with non-dimerized two-band Hubbard model. We have calculated the uniaxial compression dependence of T c by solving the Eliashberg’s equation using the fluctuation exchange (FLEX) approximation. The transfer integral under the uniaxial compression was estimated by the extended Huckel method. We have found that non-monotonic behaviors of T c in experimental results under uniaxial compression are understood taking the spin frustration and spin fluctuation into account.

  13. Superconductivity under uniaxial compression in beta-(BDA-TTP) salts

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, T., E-mail: suzuki@rover.nuap.nagoya-u.ac.j [Department of Applied Physics and JST, TRIP, Nagoya University, Chikusa, Nagoya 464-8603 (Japan); Onari, S.; Ito, H.; Tanaka, Y. [Department of Applied Physics and JST, TRIP, Nagoya University, Chikusa, Nagoya 464-8603 (Japan)

    2009-10-15

    In order to clarify the mechanism of organic superconductor beta-(BDA-TTP) salts. We study the superconductivity under uniaxial compression with non-dimerized two-band Hubbard model. We have calculated the uniaxial compression dependence of T{sub c} by solving the Eliashberg's equation using the fluctuation exchange (FLEX) approximation. The transfer integral under the uniaxial compression was estimated by the extended Huckel method. We have found that non-monotonic behaviors of T{sub c} in experimental results under uniaxial compression are understood taking the spin frustration and spin fluctuation into account.

  14. ADR salt pill design and crystal growth process for hydrated magnetic salts

    Science.gov (United States)

    Shirron, Peter J. (Inventor); DiPirro, Michael J. (Inventor); Canavan, Edgar R. (Inventor)

    2013-01-01

    A process is provided for producing a salt pill for use in very low temperature adiabatic demagnetization refrigerators (ADRs). The method can include providing a thermal bus in a housing. The thermal bus can include an array of thermally conductive metal conductors. A hydrated salt can be grown on the array of thermally conductive metal conductors. Thermal conductance can be provided to the hydrated salt.

  15. Nuclear EMP: stripline test method for measuring transfer impedance

    International Nuclear Information System (INIS)

    Miller, J.S.

    1975-11-01

    A method for measuring the transfer impedance of flat metal joints for frequencies to 100 MHz has been developed which makes use of striplines. The stripline method, which has similarities to the quadraxial method used for cylindrical components, is described and sets of test results are given. The transfer impedance of a simple joint is modeled as a spurious hyperbolic curve, and a close curve fit to transfer impedance test data from various samples is demonstrated for both the stripline and the quadraxial methods. Validity checks of the test data are discussed using the curve model and other criteria. The method was developed for testing riveted joints which form the avionics bays on B-1s. The joints must provide shielding from EMP currents

  16. Synthesis and Characterization of New Silver (I N-Heterocyclic Ccarbene Ccomplex Dderived from Imidazol-2-ylidene salt

    Directory of Open Access Journals (Sweden)

    Mohammedl Mujbe Hasson

    2018-04-01

    Full Text Available A new N, N'-imidazolium salt 1-(2,6-diisopropylphenyl-3- (4,6-dimorpholino -1,3,5-traizine-2-yl-1H-imidazol-3-ium chloride as a precursor of N - heterocyclic carbene ligand was prepared via the reaction of 1 - (2, 6 - diisopropyl phenyl - 1H - imidazole with 1, 3, 5 - triazine derivative bearing morpholine substituent (2, 6 -dimorpholine - 6- chloro-1, 3, 5-triaziazine. Linear coordi-nated Ag (І NHC complex was synthesised via deprotonation of the imidazolium salt and reac-tion with Ag2O in darkness at room temperature by in situ method. The complex was synthesised for using as transfer agent to prepare another transition metals complexes by transmetallation method in the future. The imidazolium salt and their silver complex have been characterized by 1 H and 13C NMR spectroscopy as well as mass spectrometry.

  17. Multiferroicity in an organic charge-transfer salt that is suggestive of electric-dipole-driven magnetism

    Science.gov (United States)

    Lunkenheimer, Peter; Müller, Jens; Krohns, Stephan; Schrettle, Florian; Loidl, Alois; Hartmann, Benedikt; Rommel, Robert; de Souza, Mariano; Hotta, Chisa; Schlueter, John A.; Lang, Michael

    2012-09-01

    Multiferroics, showing simultaneous ordering of electrical and magnetic degrees of freedom, are remarkable materials as seen from both the academic and technological points of view. A prominent mechanism of multiferroicity is the spin-driven ferroelectricity, often found in frustrated antiferromagnets with helical spin order. There, as for conventional ferroelectrics, the electrical dipoles arise from an off-centre displacement of ions. However, recently a different mechanism, namely purely electronic ferroelectricity, where charge order breaks inversion symmetry, has attracted considerable interest. Here we provide evidence for ferroelectricity, accompanied by antiferromagnetic spin order, in a two-dimensional organic charge-transfer salt, thus representing a new class of multiferroics. We propose a charge-order-driven mechanism leading to electronic ferroelectricity in this material. Quite unexpectedly for electronic ferroelectrics, dipolar and spin order arise nearly simultaneously. This can be ascribed to the loss of spin frustration induced by the ferroelectric ordering. Hence, here the spin order is driven by the ferroelectricity, in marked contrast to the spin-driven ferroelectricity in helical magnets.

  18. Teaching Analytical Method Transfer through Developing and Validating Then Transferring Dissolution Testing Methods for Pharmaceuticals

    Science.gov (United States)

    Kimaru, Irene; Koether, Marina; Chichester, Kimberly; Eaton, Lafayette

    2017-01-01

    Analytical method transfer (AMT) and dissolution testing are important topics required in industry that should be taught in analytical chemistry courses. Undergraduate students in senior level analytical chemistry laboratory courses at Kennesaw State University (KSU) and St. John Fisher College (SJFC) participated in development, validation, and…

  19. THE HYDROLOGIC CYCLE, UNIDIRECTIONAL CHARTER OF THE DISSOLVED SALTS AND SUSPENDED LOAD

    Directory of Open Access Journals (Sweden)

    Nicolae Florea

    2012-12-01

    Full Text Available In this paper it is underlined that the hydrologic cycle in nature, reversible and regenerating of fresh water, carries out also an unidirectional and irreversible circulation – by means of a fragment of the hydrologic cycle – of the dissolved salts and stream’s suspended load, entailed by the water drained from continents to ocean. The trend is to transfer soluble salts from land to ocean in the same time with the running water on land in the portion of the hydrologic cycle which refers to the water transfer from continents to ocean in order to equilibrate the annual water balance of the hydrologic cycle. But, one can realize here and there some local salt accumulations in salt soils or in salt lakes within areas without drainage in arid climate; these salts accumulations are cases of local hydrologic cycles „grafted” along the way of water on land (to ocean. The energy necessary to the hydrologic cycle in nature is delivered by the Sun, and the entropy remains at a low level as a consequence of the elimination in this cycle of water vapors with high entropy, and of the receiving of liquid or solid water with low entropy, so that the annual level of entropy is maintained at a low level.

  20. Where Does Road Salt Go - a Static Salt Model

    Science.gov (United States)

    Yu, C. W.; Liu, F.; Moriarty, V. W.

    2017-12-01

    Each winter, more than 15 million tons of road salt is applied in the United States for the de-icing purpose. Considerable amount of chloride in road salt flows into streams/drainage systems with the snow melt runoff and spring storms, and eventually goes into ecologically sensitive low-lying areas in the watershed, such as ponds and lakes. In many watersheds in the northern part of US, the chloride level in the water body has increased significantly in the past decades, and continues an upward trend. The environmental and ecological impact of the elevated chloride level can no longer be ignored. However although there are many studies on the biological impact of elevated chloride levels, there are few investigations on how the spatially distributed road salt application affects various parts of the watershed. In this presentation, we propose a static road salt model as a first-order metric to address spacial distribution of salt loading. Derived from the Topological Wetness Index (TWI) in many hydrological models, this static salt model provides a spatial impact as- sessment of road salt applications. To demonstrate the effectiveness of the static model, National Elevation Dataset (NED) of ten-meter resolution of Lake George watershed in New York State is used to generate the TWI, which is used to compute a spatially dis- tributed "salt-loading coefficient" of the whole watershed. Spatially varying salt applica- tion rate is then aggregated, using the salt-loading coefficients as weights, to provide salt loading assessments of streams in the watershed. Time-aggregated data from five CTD (conductivity-temperature-depth) sensors in selected streams are used for calibration. The model outputs and the sensor data demonstrate a strong linear correlation, with the R value of 0.97. The investigation shows that the static modeling approach may provide an effective method for the understanding the input and transport of road salt to within watersheds.

  1. A simple, rapid method to isolate salt glands for three-dimensional visualization, fluorescence imaging and cytological studies

    Directory of Open Access Journals (Sweden)

    Lim Tit-Meng

    2010-10-01

    Full Text Available Abstract Background Some plants inhabiting saline environment remove salts via the salt glands embedded in the epidermal tissues. Cytological studies of salt glands will provide valuable information to our understanding of the secretory process. Previous studies on salt gland histology relied mainly on two-dimensional microscopic observations of microtome sections. Optical sectioning properties of confocal laser scanning microscope offer alternative approach for obtaining three-dimensional structural information of salt glands. Difficulty in light penetration through intact leaves and interference from neighbouring leaf cells, however, impede the acquiring of good optical salt gland sections and limit its applications in salt gland imaging. Freeing the glands from adjacent leaf tissues will allow better manipulations for three-dimensional imaging through confocal laser scanning microscopy. Results Here, we present a simple and fast method for the isolation of individual salt glands released from the interference of neighbouring cells. About 100-200 salt glands could be isolated from just one cm2 of Avicennia officinalis leaf within hours and microscopic visualization of isolated salt glands was made possible within a day. Using these isolated glands, confocal laser scanning microscopic techniques could be applied and better resolution salt gland images could be achieved. By making use of their intrinsic fluorescent properties, optical sections of the gland cells could be acquired without the use of fluorescent probes and the corresponding three-dimensional images constructed. Useful cytological information of the salt gland cells could also be obtained through the applications of fluorescent dyes (e.g., LysoTracker® Red, FM®4-64, Texas Red®. Conclusions The study of salt glands directly at the glandular level are made possible with the successful isolation of these specialized structures. Preparation of materials for subsequent microscopic

  2. Liquid Fluoride Salt Experimentation Using a Small Natural Circulation Cell

    Energy Technology Data Exchange (ETDEWEB)

    Yoder Jr, Graydon L [ORNL; Heatherly, Dennis Wayne [ORNL; Williams, David F [ORNL; Elkassabgi, Yousri M. [Texas A& M University, Kingsville; Caja, Joseph [Electrochemical Systems, Inc.; Caja, Mario [ORNL; Jordan, John [Texas A& M University, Kingsville; Salinas, Roberto [Texas A& M University, Kingsville

    2014-04-01

    A small molten fluoride salt experiment has been constructed and tested to develop experimental techniques for application in liquid fluoride salt systems. There were five major objectives in developing this test apparatus: Allow visual observation of the salt during testing (how can lighting be introduced, how can pictures be taken, what can be seen) Determine if IR photography can be used to examine components submerged in the salt Determine if the experimental configuration provides salt velocity sufficient for collection of corrosion data for future experimentation Determine if a laser Doppler velocimeter can be used to quantify salt velocities. Acquire natural circulation heat transfer data in fluoride salt at temperatures up to 700oC All of these objectives were successfully achieved during testing with the exception of the fourth: acquiring velocity data using the laser Doppler velocimeter. This paper describes the experiment and experimental techniques used, and presents data taken during natural circulation testing.

  3. Self-monitoring of urinary salt excretion as a method of salt-reduction education: a parallel, randomized trial involving two groups.

    Science.gov (United States)

    Yasutake, Kenichiro; Miyoshi, Emiko; Misumi, Yukiko; Kajiyama, Tomomi; Fukuda, Tamami; Ishii, Taeko; Moriguchi, Ririko; Murata, Yusuke; Ohe, Kenji; Enjoji, Munechika; Tsuchihashi, Takuya

    2018-02-20

    The present study aimed to evaluate salt-reduction education using a self-monitoring urinary salt-excretion device. Parallel, randomized trial involving two groups. The following parameters were checked at baseline and endline of the intervention: salt check sheet, eating behaviour questionnaire, 24 h home urine collection, blood pressure before and after urine collection. The intervention group self-monitored urine salt excretion using a self-measuring device for 4 weeks. In the control group, urine salt excretion was measured, but the individuals were not informed of the result. Seventy-eight individuals (control group, n 36; intervention group, n 42) collected two 24 h urine samples from a target population of 123 local resident volunteers. The samples were then analysed. There were no differences in clinical background or related parameters between the two groups. The 24 h urinary Na:K ratio showed a significant decrease in the intervention group (-1·1) compared with the control group (-0·0; P=0·033). Blood pressure did not change in either group. The results of the salt check sheet did not change in the control group but were significantly lower in the intervention group. The score of the eating behaviour questionnaire did not change in the control group, but the intervention group showed a significant increase in eating behaviour stage. Self-monitoring of urinary salt excretion helps to improve 24 h urinary Na:K, salt check sheet scores and stage of eating behaviour. Thus, usage of self-monitoring tools has an educational potential in salt intake reduction.

  4. Molten Salt Breeder Reactor Analysis Methods

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jinsu; Jeong, Yongjin; Lee, Deokjung [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of)

    2015-05-15

    Utilizing the uranium-thorium fuel cycle shows considerable potential for the possibility of MSR. The concept of MSBR should be revised because of molten salt reactor's advantage such as outstanding neutron economy, possibility of continuous online reprocessing and refueling, a high level of inherent safety, and economic benefit by keeping off the fuel fabrication process. For the development of MSR research, this paper provides the MSBR single-cell, two-cell and whole core model for computer code input, and several calculation results including depletion calculation of each models. The calculations are carried out by using MCNP6, a Monte Carlo computer code, which has CINDER90 for depletion calculation using ENDF-VII nuclear data. From the calculation results of various reactor design parameters, the temperature coefficients are all negative at the initial state and MTC becomes positive at the equilibrium state. From the results of core rod worth, the graphite control rod alone cannot makes the core subcritical at initial state. But the equilibrium state, the core can be made subcritical state only by graphite control rods. Through the comparison of the results of each models, the two-cell method can represent the MSBR core model more accurately with a little more computational resources than the single-cell method. Many of the thermal spectrum MSR have adopted a multi-region single-fluid strategy.

  5. The modification of glassy carbon and gold electrodes with aryl diazonium salt: The impact of the electrode materials on the rate of heterogeneous electron transfer

    International Nuclear Information System (INIS)

    Liu Guozhen; Liu Jingquan; Boecking, Till; Eggers, Paul K.; Gooding, J. Justin

    2005-01-01

    The heterogeneous electron-transfer properties of ferrocenemethylamine coupled to a series of mixed 4-carboxyphenyl/phenyl monolayers on glassy carbon (GC) and gold electrodes were investigated, by cyclic voltammetry, in aqueous buffer solutions. The electrodes were derivatized in a step-wise process. Electrochemical reduction of mixtures of 4-carboxyphenyl and phenyl diazonium salts on the electrode surfaces yielded stable monolayers. The introduction of carboxylic acid moieties onto the surfaces was verified by X-ray photoelectron spectroscopy. Subsequently the 4-carboxyphenyl moieties were activated using water-soluble carbodiimide and N-hydroxysuccinimide and reacted with ferrocenemethylamine. The rate constants of electron transfer through the monolayer systems were determined from cyclic voltammograms using the Marcus theory for electron transfer and were found to be an order of magnitude higher for the ferrocene-modified monolayer systems on gold than those on GC electrodes. The results suggest the electrode material has an important influence on the rate of electron transfer

  6. Heat transfer unit and method for prefabricated vessel

    Science.gov (United States)

    Tamburello, David A.; Kesterson, Matthew R; Hardy, Bruce J.

    2017-11-07

    Vessel assemblies, heat transfer units for prefabricated vessels, and methods for heat transfer prefabricated vessel are provided. A heat transfer unit includes a central rod, and a plurality of peripheral rods surrounding the central rod and connected to the central rod. The plurality of peripheral rods are movable between a first collapsed position and a second bowed position, wherein in the second bowed position a midpoint of each of the plurality of peripheral rods is spaced from the central rod relative to in the first position. The heat transfer unit further includes a heat transfer element connected to one of the plurality of peripheral rods.

  7. Reintroduction of salt marsh vegetation and phosphorus fertilisation improve plant colonisation on seawater-contaminated cutover bogs

    Directory of Open Access Journals (Sweden)

    C. Emond

    2016-07-01

    Full Text Available Coastal bogs that are used for peat extraction are prone to contamination by seawater during storm events. Once contaminated, they remain mostly bare because of the combination of high salinity, low pH, high water table and low nutrient availability. The goal of this research was to investigate how plant colonisation at salt-contaminated bogs can be accelerated, in order to prevent erosion and fluvial export of the peat. At two seawater-contaminated bogs, we tested the application of rock phosphate and dolomitic lime in combination with five plant introduction treatments: transplantation of Carex paleacea; transplantation of Spartina pectinata; transfer of salt marsh diaspores in July; transfer of salt marsh diaspores in August; and no treatment (control. The effects of different doses of lime on the growth of C. paleacea and S. pectinata were also investigated in a greenhouse experiment. In the field, phosphorus fertilisation improved plant growth. Transplantation of C. paleacea resulted in the highest plant colonisation, whereas salt marsh diaspore transfer led to the highest species diversity. Lime applications did not improve plant establishment in either the field or the greenhouse. To promote revegetation of seawater-contaminated cutover bogs, adding P is an asset, Carex paleacea is a good species to transplant, and the transfer of salt marsh diaspores improves plant diversity.

  8. Structure and thermodynamics of molten salts

    International Nuclear Information System (INIS)

    Papatheodorou, G.N.

    1983-01-01

    This chapter investigates single-component molten salts and multicomponent salt mixtures. Molten salts provide an important testing ground for theories of liquids, solutions, and plasmas. Topics considered include molten salts as liquids (the pair potential, the radial distribution function, methods of characterization), single salts (structure, thermodynamic correlations), and salt mixtures (the thermodynamics of mixing; spectroscopy and structure). Neutron and X-ray scattering techniques are used to determine the structure of molten metal halide salts. The corresponding-states theory is used to obtain thermodynamic correlations on single salts. Structural information on salt mixtures is obtained by using vibrational (Raman) and electronic absorption spectroscopy. Charge-symmetrical systems and charge-unsymmetrical systems are used to examine the thermodynamics of salt mixtures

  9. Tests of prototype salt stripper system for IFR fuel cycle

    International Nuclear Information System (INIS)

    Carls, E.L.; Blaskovitz, R.J.; Johnson, T.R.; Ogata, T.

    1993-01-01

    One of the waste treatment steps for the on-site reprocessing of spent fuel from the Integral Fast Reactor fuel cycles is stripping of the electrolyte salt used in the electrorefining process. This involves the chemical reduction of the actinides and rare earth chlorides forming metals which then dissolve in a cadmium pool. To develop the equipment for this step, a prototype salt stripper system has been installed in an engineering scale argon-filled glovebox. Pumping trails were successful in transferring 90 kg of LiCl-KCl salt containing uranium and rare earth metal chlorides at 500 degree C from an electrorefiner to the stripper vessel at a pumping rate of about 5 L/min. The freeze seal solder connectors which were used to join sections of the pump and transfer line performed well. Stripping tests have commenced employing an inverted cup charging device to introduce a Cd-15 wt % Li alloy reductant to the stripper vessel

  10. Improvement Method of Gene Transfer in Kappaphycus Alvarezii

    OpenAIRE

    Triana, St. Hidayah; Alimuddin,; Widyastuti, Utut; Suharsono,; Suryati, Emma; Parenrengi, Andi

    2016-01-01

    Method of foreign gene transfer in red seaweed Kappaphycus alvarezii has been reported, however, li-mited number of transgenic F0 (broodstock) was obtained. This study was conducted to improve the method of gene transfer mediated by Agrobacterium tumefaciens in order to obtain high percentage of K. alvarezii transgenic. Superoxide dismutase gene from Melastoma malabatrichum (MmCu/Zn-SOD) was used as model towards increasing adaptability of K. alvarezii to environmental stress. The treat-ment...

  11. Sub-stoichiometric isotope dilution analysis method for the determination of iodine in common salts using iodine-131 tracer

    International Nuclear Information System (INIS)

    Singh, Vivek; Garg, A.N.

    1994-01-01

    A sub-stoichiometric isotope dilution analysis (SIDA) method was developed for the determination of iodine in different brands of common salts. An aqueous salt solution containing 131 I tracer and NaI as carrier is oxidized by tartaric acid and KIO 3 and the liberated iodine is extracted with CCl 4 . To the extract an aqueous solution of AgNO 3 is added in substoichiometric amount to obtain a colloidal solution of AgI. On adding sodium thiosulfate solution, the NaI so formed passes into aqueous solution, which is then counted. Several different brands of salt were analysed. The method is especially suitable for the determination of microgram amounts of iodide in the presence of excess of chloride. (Author)

  12. Novel phosphonium salts and bifunctional organocatalysts in asymmetric synthesis

    OpenAIRE

    Moore, Graham

    2013-01-01

    This thesis details the syntheses of catalysts and their applications in asymmetric reactions. Initially, the project focused on phase transfer catalysts; quaternary phosphonium salts derived from diethyl tartrate or from commercially available phosphorus compounds and their use primarily in the alkylation of N,N-diphenyl methylene glycine tert-butyl ester. Although some of the salts showed the ability to catalyse the alkylation reaction, all products obtained were racemic. The project then f...

  13. Compatibility tests between molten salts and metal materials (2)

    International Nuclear Information System (INIS)

    Shiina, Yasuaki

    2003-08-01

    Latent heat storage technology using molten salts can reduce temperature fluctuations of heat transfer fluid by latent heat for middle and high temperature regions. This enables us to operate several heat utilization systems in cascade connected to High Temperature Gas Cooled Reactors (HTGRs) from high to low temperature range by setting the latent heat storage system after a heat utilization system to reduce thermal load after the heat utilization systems. This latent heat technology is expected to be used for effective use of heat such as equalization of electric load between night and daytime. In the application of the latent heat technology, compatibility between molten salts and metal materials is very important because molten salts are corrosive, and heat transfer pipes and vessels will contact with the molten salts. It will be necessary to prevail the latent heat storage technique that normal metal materials can be used for the pipes and vessels. However, a few studies have been reported of compatibility between molten salts and metals in middle and high temperature ranges. In this study, four molten salts, range of the melting temperature from 490degC to 800degC, are selected and five metals, high temperature and corrosion resistance steels of Alloy600, HastelloyB2, HastelloyC276, SUS310S and pure Nickel are selected for the test with the consideration of metal composition. Test was performed in an electric furnace by setting the molten salts and the metals in melting pots in an atmosphere of nitrogen. Results revealed excellent corrosion resistance of pure Nickel and comparatively low corrosion resistance of nickel base alloys such as Alloy600 and Hastelloys against Li 2 CO 3 . Corrosion resistance of SUS310S was about same as nickel based alloys. Therefore, if some amount of corrosion is permitted, SUS310S would be one of the candidate alloys for structure materials. These results will be used as reference data to select metals in latent heat technology

  14. Accuracy analysis of the thermal diffusivity measurement of molten salts by stepwise heating method

    International Nuclear Information System (INIS)

    Kato, Yoshio; Furukawa, Kazuo

    1976-11-01

    The stepwise heating method for measuring thermal diffusivity of molten salts is based on the electrical heating of a thin metal plate as a plane heat source in the molten salt. In this method, the following estimations on error are of importance: (1) thickness effect of the metal plate, (2) effective length between the plate and a temperature measuring point and (3) effect of the noise on the temperature rise signal. In this report, a measuring apparatus is proposed and measuring conditions are suggested on the basis of error estimations. The measurements for distilled water and glycerine were made first to test the performance; the results agreed well with standard values. The thermal diffusivities of molten NaNO 3 at 320-380 0 C and of molten Li 2 BeF 4 at 470-700 0 C were measured. (auth.)

  15. Nanoparticles for heat transfer and thermal energy storage

    Science.gov (United States)

    Singh, Dileep; Cingarapu, Sreeram; Timofeeva, Elena V.; Moravek, Michael

    2015-07-14

    An article of manufacture and method of preparation thereof. The article of manufacture and method of making the article includes an eutectic salt solution suspensions and a plurality of nanocrystalline phase change material particles having a coating disposed thereon and the particles capable of undergoing the phase change which provides increase in thermal energy storage. In addition, other articles of manufacture can include a nanofluid additive comprised of nanometer-sized particles consisting of copper decorated graphene particles that provide advanced thermal conductivity to heat transfer fluids.

  16. Optical Modeling of Sea Salt Aerosols: The Effects of Nonsphericity and Inhomogeneity

    Science.gov (United States)

    Bi, Lei; Lin, Wushao; Wang, Zheng; Tang, Xiaoyun; Zhang, Xiaoyu; Yi, Bingqi

    2018-01-01

    The nonsphericity and inhomogeneity of marine aerosols (sea salts) have not been addressed in pertinent radiative transfer calculations and remote sensing studies. This study investigates the optical properties of nonspherical and inhomogeneous sea salts using invariant imbedding T-matrix simulations. Dry sea salt aerosols are modeled based on superellipsoidal geometries with a prescribed aspect ratio and roundness parameter. Wet sea salt particles are modeled as coated superellipsoids, as spherical particles with a superellipsoidal core, and as homogeneous spheres depending on the level of relative humidity. Aspect ratio and roundness parameters are found to be critical to interpreting the linear depolarization ratios (LDRs) of NaCl crystals from laboratory measurements. The optimal morphology parameters of NaCl necessary to reproduce the measurements are found to be consistent with data gleaned from an electron micrograph. The LDRs of wet sea salts are computed based on inhomogeneous models and compared with the measured data from ground-based LiDAR. The dependence of the LDR on relative humidity is explicitly considered. The increase in the LDR with relative humidity at the initial phase of deliquescence is attributed to both the size increase and the inhomogeneity effect. For large humidity values, the LDR substantially decreases because the overall particle shape becomes more spherical and the inhomogeneity effect in a particle on the LDR is suppressed for submicron sea salts. However, the effect of inhomogeneity on optical properties is pronounced for coarse-mode sea salts. These findings have important implications for atmospheric radiative transfer and remote sensing involving sea salt aerosols.

  17. Assessment of Candidate Molten Salt Coolants for the Advanced High Temperature Reactor (AHTR)

    Energy Technology Data Exchange (ETDEWEB)

    Williams, D.F.

    2006-03-24

    The Advanced High-Temperature Reactor (AHTR) is a novel reactor design that utilizes the graphite-matrix high-temperature fuel of helium-cooled reactors, but provides cooling with a high-temperature fluoride salt. For applications at temperatures greater than 900 C the AHTR is also referred to as a Liquid-Salt-Cooled Very High-Temperature Reactor (LS-VHTR). This report provides an assessment of candidate salts proposed as the primary coolant for the AHTR based upon a review of physical properties, nuclear properties, and chemical factors. The physical properties most relevant for coolant service were reviewed. Key chemical factors that influence material compatibility were also analyzed for the purpose of screening salt candidates. Some simple screening factors related to the nuclear properties of salts were also developed. The moderating ratio and neutron-absorption cross-section were compiled for each salt. The short-lived activation products, long-lived transmutation activity, and reactivity coefficients associated with various salt candidates were estimated using a computational model. Table A presents a summary of the properties of the candidate coolant salts. Certain factors in this table, such as melting point, vapor pressure, and nuclear properties, can be viewed as stand-alone parameters for screening candidates. Heat-transfer properties are considered as a group in Sect. 3 in order to evaluate the combined effects of various factors. In the course of this review, it became apparent that the state of the properties database was strong in some areas and weak in others. A qualitative map of the state of the database and predictive capabilities is given in Table B. It is apparent that the property of thermal conductivity has the greatest uncertainty and is the most difficult to measure. The database, with respect to heat capacity, can be improved with modern instruments and modest effort. In general, ''lighter'' (low-Z) salts tend to

  18. Performance assessment plans and methods for the Salt Repository Project

    International Nuclear Information System (INIS)

    1984-08-01

    This document presents the preliminary plans and anticipated methods of the Salt Repository Project (SRP) for assessing the postclosure and radiological aspects of preclosure performance of a nuclear waste repository in salt. This plan is intended to be revised on an annual basis. The emphasis in this preliminary effort is on the method of conceptually dividing the system into three subsystems (the very near field, the near field, and the far field) and applying models to analyze the behavior of each subsystem and its individual components. The next revision will contain more detailed plans being developed as part of Site Characterization Plan (SCP) activities. After a brief system description, this plan presents the performance targets which have been established for nuclear waste repositories by regulatory agencies (Chapter 3). The SRP approach to modeling, including sensitivity and uncertainty techniques is then presented (Chapter 4). This is followed by a discussion of scenario analysis (Chapter 5), a presentation of preliminary data needs as anticipated by the SRP (Chapter 6), and a presentation of the SRP approach to postclosure assessment of the very near field, the near field, and the far field (Chapters 7, 8, and 9, respectively). Preclosure radiological assessment is discussed in Chapter 10. Chapter 11 presents the SRP approach to code verification and validation. Finally, the Appendix lists all computer codes anticipated for use in performance assessments. The list of codes will be updated as plans are revised

  19. Basic studies for molten-salt reactor engineering in Japan

    International Nuclear Information System (INIS)

    Ishiguro, R.; Sugiyama, K.; Sakashita, H.

    1985-01-01

    A research project of nuclear engineering for the molten-salt reactor is underway which is supported by the Grant-in-Aid for Scientific Research of the Ministry of Education of Japan. At present, the major effort is devoted only to basic engineering problems because of the limited amount of the grant. The reporters introduce these and related studies that have been carrying out in Japanese universities. Discussions on the following four subjects are summerized in this report: a) Vapour explosion when hight temperature molten-salts are brought into direct contact with water. b) Measurements of exact thermophysical properties of molten-salt. c) Free convection heat transfer with uniform internal heat generation and a constant heating rate from the bottem. d) Stability of frozen salt film on the container surface. (author)

  20. Two-Centre Close-Coupling method in charge transfer

    Directory of Open Access Journals (Sweden)

    Reza Bagheri

    2017-09-01

    Full Text Available In the present work, the transition matrix elements as well as differential and total scattering cross-sections for positronium formation in Positron-Hydrogen atom collision and hydrogen formation in Positronium-Hydrogen ion collision, through the charge transfer channel by Two-Centre Close-Coupling method up to a first order approximation have been calculated. The charge transfer collision is assumed to be a three-body reaction, while the projectile is a plane wave. Additionally, the hydrogen and positronium atoms are assumed, initially, to be in their ground states. For the case of charge transfer in the scattering of positron by hydrogen atoms, the differential cross sections are plotted for the energy range of 50eV to 10keV, where the Thomas peak is clearly observable. Finally, the total scattering cross-section for the charge transfer in the collision of Positron-Hydrogen and Positronium-Hydrogen ion are plotted as a function of projectile energies and compared with other methods in the literature.

  1. Engineering development studies for molten-salt breeder reactor processing No. 21

    International Nuclear Information System (INIS)

    Hightower, J.R. Jr.

    1976-03-01

    The status of the following programs is reported: (1) continuous fluorinator development: autoresistance heating test AHT-4; (2) development of the metal transfer process; (3) salt-metal contactor development: experiments with a mechanically agitated, nondispersing contactor using water and mercury and in the salt-bismuth flowthrough facility; and (4) fuel reconstitution development: installation of equipment for a fuel reconstitution engineering experiment

  2. Salt geologic evaluation of the impact of cryogenic fissures and halokinetic deformation processes on the integrity of the geological barrier of the salt dome Gorleben

    International Nuclear Information System (INIS)

    Hammer, Joerg; Fleig, Stephanie; Mingerzahn, Gerhard

    2012-07-01

    In several salt domes of the area close to Hannover fissures were observed that might be caused by thermally induced fissure formation due to cold periods (cryogenic fissures). Comprehensive substantial-structural analyses are performed as an example for the salt dome Bokeloh with respect to genesis and transferability to the salt dome Gorleben. Based on recent structure-geological, mineralogical-geochemical and micro-paleontological studies and thermo-mechanical modeling a solely thermally induced fissure formation due to cold periods is unlikely for the salt dome Bokeloh. There is a direct relation between the genesis of the salt dome Bokeloh, its regional tectonic site and the fissure formation. Due to the completely different genesis and another regional-tectonic situation the existence of cryogenic fissures is excluded for the salt dome Gorleben. The salt-geologic and experimental studies on the deformation of anhydrite layers in salt domes are summarized and evaluated with respect to the long-term consequences for a potential final repository for high-level heat-generating radioactive waste in the salt dome Gorleben. The studies confirm the older BGR studies that anhydrite layers do not represent hydraulic potential ling-distance liquid paths.

  3. Development of High-Temperature Transport System for Molten Salt in Pyroprocessing

    International Nuclear Information System (INIS)

    Lee, Sung Ho; Kim, In Tae; Park, Sung Bin

    2014-01-01

    The electrorefining process, which is a key process in pyroprocessing, is composed of two parts, electrorefining to deposit a uranium with a solid cathode and electrowinning to co-deposit TRU and RE with a liquid cadmium cathode (LCC). As the electrorefining operation proceedes, TRU and RE are accumulated in electrolyte LiCl-KCl salt, and after the electrorefining process, the molten salt used in an electrorefining reactor should by transported to the next process, the electrowinning process, to recover U/TRU/RE; Thus, a molten salt transfer system by suction is now being developed. An apparatus for suction transport experiments was designed and constructed for the development of high- temperature molten salt transport technology. Suction transport experiments were performed using LiC-KCl eutectic salt. The feasibility of pyro-reprocessing has been demonstrated through many laboratory-scale experiments. In pyroprocessing, a eutectic LiCl-KCl salt was used as a liquid elextrolyte for a recovery of actinides. However, reliable transport technologies for these high temperature liquids have not yet been developed. A preliminary study on high-temperature transport technology for molten salt by suction is now being carried out. In this study, three different salt transport technologies (gravity, suction pump, and centrifugal pump) were investigated to select the most suitable method for molten salt transport. An apparatus for suction transport experiments was designed and installed for the development of high-temperature molten salt transport technology. Basic preliminary suction transport experiments were carried out using the prepared LiC-KCl eutectic salt at 500 .deg. C to observe the transport behavior of LiCl-KCl molten salt. In addition, a PRIDE salt transport system was designed and installed for an engineering-scale salt transport demonstration. Several types of suction transport experiments using molten salt (LiCl-KCl eutectics) for the development of a high

  4. Development of High-Temperature Transport System for Molten Salt in Pyroprocessing

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sung Ho; Kim, In Tae; Park, Sung Bin [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    The electrorefining process, which is a key process in pyroprocessing, is composed of two parts, electrorefining to deposit a uranium with a solid cathode and electrowinning to co-deposit TRU and RE with a liquid cadmium cathode (LCC). As the electrorefining operation proceedes, TRU and RE are accumulated in electrolyte LiCl-KCl salt, and after the electrorefining process, the molten salt used in an electrorefining reactor should by transported to the next process, the electrowinning process, to recover U/TRU/RE; Thus, a molten salt transfer system by suction is now being developed. An apparatus for suction transport experiments was designed and constructed for the development of high- temperature molten salt transport technology. Suction transport experiments were performed using LiC-KCl eutectic salt. The feasibility of pyro-reprocessing has been demonstrated through many laboratory-scale experiments. In pyroprocessing, a eutectic LiCl-KCl salt was used as a liquid elextrolyte for a recovery of actinides. However, reliable transport technologies for these high temperature liquids have not yet been developed. A preliminary study on high-temperature transport technology for molten salt by suction is now being carried out. In this study, three different salt transport technologies (gravity, suction pump, and centrifugal pump) were investigated to select the most suitable method for molten salt transport. An apparatus for suction transport experiments was designed and installed for the development of high-temperature molten salt transport technology. Basic preliminary suction transport experiments were carried out using the prepared LiC-KCl eutectic salt at 500 .deg. C to observe the transport behavior of LiCl-KCl molten salt. In addition, a PRIDE salt transport system was designed and installed for an engineering-scale salt transport demonstration. Several types of suction transport experiments using molten salt (LiCl-KCl eutectics) for the development of a high

  5. A method for polymerizing insaturated monomers through irradiation in the presence of a salt

    International Nuclear Information System (INIS)

    Phalangas, C.J.; Restaino, A.J.; Yun, Hanbo.

    1975-01-01

    The method consists in irradiating an aqueous solution with a pH between about 2 and 12, comprising from 10 to 40% about an ethylene-insaturated monomer or of mixtures thereof with vinyl-sulfonic acid, an alkaline metal salt of said acid or acrylamide diacetone and at least 3% of a potassium, sodium, lithium, ammonium or aluminium salt, by means of highly powerful radiations, e.g. gamma rays, the radiation intensity being between 1000 and 200000 rads per hour and the overall radiation dose being in the 1000-30000 rads. The obtained product is a polymer aqueous solution either in the liquid state or in the form of a gel [fr

  6. Balancing sub- and supra-salt strain in salt-influenced rifts: Implications for extension estimates

    Science.gov (United States)

    Coleman, Alexander J.; Jackson, Christopher A.-L.; Duffy, Oliver B.

    2017-09-01

    The structural style of salt-influenced rifts may differ from those formed in predominantly brittle crust. Salt can decouple sub- and supra-salt strain, causing sub-salt faults to be geometrically decoupled from, but kinematically coupled to and responsible for, supra-salt forced folding. Salt-influenced rifts thus contain more folds than their brittle counterparts, an observation often ignored in extension estimates. Fundamental to determining whether sub- and supra-salt structures are kinematically coherent, and the relative contributions of thin- (i.e. gravity-driven) and thick-skinned (i.e. whole-plate stretching) deformation to accommodating rift-related strain, is our ability to measure extension at both structural levels. We here use published physical models of salt-influenced extension to show that line-length estimates yield more accurate values of sub- and supra-salt extension compared to fault-heave, before applying these methods to seismic data from the Halten Terrace, offshore Norway. We show that, given the abundance of ductile deformation in salt-influenced rifts, significant amounts of extension may be ignored, leading to the erroneous interpretations of thin-skinned, gravity-gliding. If a system is kinematically coherent, supra-salt structures can help predict the occurrence and kinematics of sub-salt faults that may be poorly imaged and otherwise poorly constrained.

  7. Test procedures for salt rock

    International Nuclear Information System (INIS)

    Dusseault, M.B.

    1985-01-01

    Potash mining, salt mining, design of solution caverns in salt rocks, disposal of waste in salt repositories, and the use of granular halite backfill in underground salt rock mines are all mining activities which are practised or contemplated for the near future. Whatever the purpose, the need for high quality design parameters is evident. The authors have been testing salt rocks in the laboratory in a number of configurations for some time. Great care has been given to the quality of sample preparation and test methodology. This paper describes the methods, presents the elements of equipment design, and shows some typical results

  8. Study of the pyrochemical treatment-recycling process of the Molten Salt Reactor fuel

    International Nuclear Information System (INIS)

    Boussier, H.; Heuer, D.

    2010-01-01

    The Separation Processes Studies Laboratory (Commissariat a l'energie Atomique) has made a preliminary assessment of the reprocessing system associated with Molten Salt Fast Reactor (MSFR). The scheme studied in this paper is based on the principle of reductive extraction and metal transfer that constituted the core process designed for the Molten Salt Breeder Reactor (MSBR), although the flow diagram has been adapted to the current needs of the Molten Salt Reactor Fast (MSFR).

  9. HEAT TRANSFER METHOD

    Science.gov (United States)

    Gambill, W.R.; Greene, N.D.

    1960-08-30

    A method is given for increasing burn-out heat fluxes under nucleate boiling conditions in heat exchanger tubes without incurring an increase in pumping power requirements. This increase is achieved by utilizing a spinning flow having a rotational velocity sufficient to produce a centrifugal acceleration of at least 10,000 g at the tube wall. At this acceleration the heat-transfer rate at burn out is nearly twice the rate which can be achieved in a similar tube utilizing axial flow at the same pumping power. At higher accelerations the improvement over axial flow is greater, and heat fluxes in excess of 50 x 10/sup 6/ Btu/hr/sq ft can be achieved.

  10. Improved Design and Fabrication of Hydrated-Salt Pills

    Science.gov (United States)

    Shirron, Peter J.; DiPirro, Michael J.; Canavan, Edgar R.

    2011-01-01

    A high-performance design, and fabrication and growth processes to implement the design, have been devised for encapsulating a hydrated salt in a container that both protects the salt and provides thermal conductance between the salt and the environment surrounding the container. The unitary salt/container structure is known in the art as a salt pill. In the original application of the present design and processes, the salt is, more specifically, a hydrated paramagnetic salt, for use as a refrigerant in a very-low-temperature adiabatic demagnetization refrigerator (ADR). The design and process can also be applied, with modifications, to other hydrated salts. Hydrated paramagnetic salts have long been used in ADRs because they have the desired magnetic properties at low temperatures. They also have some properties, disadvantageous for ADRs, that dictate the kind of enclosures in which they must be housed: Being hydrated, they lose water if exposed to less than 100-percent relative humidity. Because any dehydration compromises their magnetic properties, salts used in ADRs must be sealed in hermetic containers. Because they have relatively poor thermal conductivities in the temperature range of interest (<0.1 K), integral thermal buses are needed as means of efficiently transferring heat to and from the salts during refrigeration cycles. A thermal bus is typically made from a high-thermal-conductivity met al (such as copper or gold), and the salt is configured to make intimate thermal contact with the metal. Commonly in current practice (and in the present design), the thermal bus includes a matrix of wires or rods, and the salt is grown onto this matrix. The density and spacing of the conductors depend on the heat fluxes that must be accommodated during operation.

  11. Determination and correlation of mass transfer coefficients in a stirred cell

    International Nuclear Information System (INIS)

    Herranz, J.; Bloxom, S.R.; Keeler, J.B.; Roth, S.R.

    1975-01-01

    In the proposed Molten Salt Breeder Reactor flowsheet, a fraction of the rare earth fission products is removed from the fuel salt in mass transfer cells. To obtain design parameters for this extraction, the effect of cell size, blade diameter, phase volume, and agitation rate on the mass transfer for a high density ratio system (mercury/water) in nondispersing square cross section contactors was determined. Aqueous side mass transfer coefficients were measured by polarography over a wide range of operating conditions. Correlations for the experimental mass transfer coefficients as functions of the operating parameters are presented. Several techniques for measuring mercury-side mass transfer coefficients were evaluated and a new one is recommended

  12. Monte Carlo method for polarized radiative transfer in gradient-index media

    International Nuclear Information System (INIS)

    Zhao, J.M.; Tan, J.Y.; Liu, L.H.

    2015-01-01

    Light transfer in gradient-index media generally follows curved ray trajectories, which will cause light beam to converge or diverge during transfer and induce the rotation of polarization ellipse even when the medium is transparent. Furthermore, the combined process of scattering and transfer along curved ray path makes the problem more complex. In this paper, a Monte Carlo method is presented to simulate polarized radiative transfer in gradient-index media that only support planar ray trajectories. The ray equation is solved to the second order to address the effect induced by curved ray trajectories. Three types of test cases are presented to verify the performance of the method, which include transparent medium, Mie scattering medium with assumed gradient index distribution, and Rayleigh scattering with realistic atmosphere refractive index profile. It is demonstrated that the atmospheric refraction has significant effect for long distance polarized light transfer. - Highlights: • A Monte Carlo method for polarized radiative transfer in gradient index media. • Effect of curved ray paths on polarized radiative transfer is considered. • Importance of atmospheric refraction for polarized light transfer is demonstrated

  13. An experimental test facility to support development of the fluoride-salt-cooled high-temperature reactor

    International Nuclear Information System (INIS)

    Yoder, Graydon L.; Aaron, Adam; Cunningham, Burns; Fugate, David; Holcomb, David; Kisner, Roger; Peretz, Fred; Robb, Kevin; Wilgen, John; Wilson, Dane

    2014-01-01

    Highlights: • • A forced convection test loop using FLiNaK salt was constructed to support development of the FHR. • The loop is built of alloy 600, and operating conditions are prototypic of expected FHR operation. • The initial test article is designed to study pebble bed heat transfer cooled by FLiNaK salt. • The test facility includes silicon carbide test components as salt boundaries. • Salt testing with silicon carbide and alloy 600 confirmed acceptable loop component lifetime. - Abstract: The need for high-temperature (greater than 600 °C) energy transport systems is significantly increasing as the world strives to improve energy efficiency and develop alternatives to petroleum-based fuels. Liquid fluoride salts are one of the few energy transport fluids that have the capability of operating at high temperatures in combination with low system pressures. The fluoride-salt-cooled high-temperature reactor design uses fluoride salt to remove core heat and interface with a power conversion system. Although a significant amount of experimentation has been performed with these salts, specific aspects of this reactor concept will require experimental confirmation during the development process. The experimental facility described here has been constructed to support the development of the fluoride-salt-cooled high-temperature reactor concept. The facility is capable of operating at up to 700 °C and incorporates a centrifugal pump to circulate FLiNaK salt through a removable test section. A unique inductive heating technique is used to apply heat to the test section, allowing heat transfer testing to be performed. An air-cooled heat exchanger removes added heat. Supporting loop infrastructure includes a pressure control system, a trace heating system, and a complement of instrumentation to measure salt flow, temperatures, and pressures around the loop. The initial experiment is aimed at measuring fluoride-salt heat transfer inside a heated pebble bed

  14. Road deicing salt irreversibly disrupts osmoregulation of salamander egg clutches.

    Science.gov (United States)

    Karraker, Nancy E; Gibbs, James P

    2011-03-01

    It has been postulated that road deicing salts are sufficiently diluted by spring rains to ameliorate any physiological impacts to amphibians breeding in wetlands near roads. We tested this conjecture by exposing clutches of the spotted salamander (Ambystoma maculatum) to three chloride concentrations (1 mg/L, 145 mg/L, 945 mg/L) for nine days, then transferred clutches to control water for nine days, and measured change in mass at three-day intervals. We measured mass change because water uptake by clutches reduces risks to embryos associated with freezing, predation, and disease. Clutches in controls sequestered water asymptotically. Those in the moderate concentrations lost 18% mass initially and regained 14% after transfer to control water. Clutches in high concentration lost 33% mass and then lost an additional 8% after transfer. Our results suggest that spring rains do not ameliorate the effects of deicing salts in wetlands with extremely high chloride concentrations. Copyright © 2010 Elsevier Ltd. All rights reserved.

  15. Physicochemical investigations on the extraction mechanism of some elements and inorganic acids by quaternary ammonium salts

    International Nuclear Information System (INIS)

    Szeglowski, Z.

    1974-01-01

    The extraction of rare earth and transplutonium elements, Tl, Pb, Bi, and Po, and also of HNO 3 and HCl, with chloroform solutions of cetylpyridinium salts solutions showed that the salts aggregate in chloroform solutions, forming micelles above a concentration of about 10 -2 M. Surface tension and surface potential measurements proved that cetylpyridinium nitrate is not transferred to HNO 3 solutions in the extraction system, while cetylpyridinium chloride is transferred to ECl solutions. (author)

  16. Gibbs free energy of transfer of a methylene group on {UCON + (sodium or potassium) phosphate salts} aqueous two-phase systems: Hydrophobicity effects

    International Nuclear Information System (INIS)

    Silverio, Sara C.; Rodriguez, Oscar; Teixeira, Jose A.; Macedo, Eugenia A.

    2010-01-01

    The Gibbs free energy of transfer of a suitable hydrophobic probe can be regarded as a measure of the relative hydrophobicity of the different phases. The methylene group (CH 2 ) can be considered hydrophobic, and thus be a suitable probe for hydrophobicity. In this work, the partition coefficients of a series of five dinitrophenylated-amino acids were experimentally determined, at 23 o C, in three different tie-lines of the biphasic systems: (UCON + K 2 HPO 4 ), (UCON + potassium phosphate buffer, pH 7), (UCON + KH 2 PO 4 ), (UCON + Na 2 HPO 4 ), (UCON + sodium phosphate buffer, pH 7), and (UCON + NaH 2 PO 4 ). The Gibbs free energy of transfer of CH 2 units were calculated from the partition coefficients and used to compare the relative hydrophobicity of the equilibrium phases. The largest relative hydrophobicity was found for the ATPS formed by dihydrogen phosphate salts.

  17. Determination and evaluation of the thermophysical properties of an alkali carbonate eutectic molten salt.

    Science.gov (United States)

    An, Xuehui; Cheng, Jinhui; Zhang, Peng; Tang, Zhongfeng; Wang, Jianqiang

    2016-08-15

    The thermal physical properties of Li2CO3-Na2CO3-K2CO3 eutectic molten salt were comprehensively investigated. It was found that the liquid salt can remain stable up to 658 °C (the onset temperature of decomposition) by thermal analysis, and so the investigations on its thermal physical parameters were undertaken from room temperature to 658 °C. The density was determined using a self-developed device, with an uncertainty of ±0.00712 g cm(-3). A cooling curve was obtained from the instrument, giving the liquidus temperature. For the first time, we report the obtainment of the thermal diffusivity using a laser flash method based on a special crucible design and establishment of a specific sample preparation method. Furthermore, the specific heat capacity was also obtained by use of DSC, and combined with thermal diffusivity and density, was used to calculate the thermal conductivity. We additionally built a rotating viscometer with high precision in order to determine the molten salt viscosity. All of these parameters play an important part in the energy storage and transfer calculation and safety evaluation for a system.

  18. Luminescence properties of NaY(WO{sub 4}){sub 2}:Sm{sup 3+}, Eu{sup 3+} phosphors prepared by molten salt method

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Ting; Meng, Qingyu, E-mail: qingyumeng163@163.com; Sun, Wenjun

    2016-02-15

    Sm{sup 3+} singly doped NaY(WO{sub 4}){sub 2} and Sm{sup 3+}, Eu{sup 3+} co-doped NaY(WO{sub 4}){sub 2} phosphors have been synthesized by molten salt method. The crystal structure and morphology were characterized by means of X-ray powder diffraction (XRD) and field emission scanning electron microscopy (FE-SEM). In Sm{sup 3+} singly doped NaY(WO{sub 4}){sub 2} phosphors, the suitable doping concentration was proved. In Sm{sup 3+}, Eu{sup 3+} co-doped NaY(WO{sub 4}){sub 2} phosphors, the energy transfer from Sm{sup 3+} to Eu{sup 3+} is confirmed by the luminescent spectra. A strong absorption line at 405 nm can be generated from {sup 6}H{sub 5/2}-{sup 4}K{sub 11/2} ({sup 4}F{sub 7/2}) transition of Sm{sup 3+} in Sm{sup 3+}, Eu{sup 3+} co-doped NaY(WO{sub 4}){sub 2} phosphors, which is suitable for the emission of the near-ultraviolet light-emitting diodes. The energy transfer efficiency, energy transfer rate and average distance between Sm{sup 3+} and Eu{sup 3+} in the NaY(WO{sub 4}){sub 2}:Sm{sup 3+}, Eu{sup 3+} phosphors have been calculated based on the fluorescent dynamic analysis. Finally, the energy transfer mechanism between Sm{sup 3+} and Eu{sup 3+} is confirmed, the energy transfer occurs between {sup 4}G{sub 5/2} state of Sm{sup 3+} ions and {sup 5}D{sub 0} state rather than {sup 5}D{sub 1} state of Eu{sup 3+} ions.

  19. Synthesis and properties of new carboxyborate lithium salts as electrolytes for lithium-ion batteries

    International Nuclear Information System (INIS)

    Gładka, Dorota; Krajewski, Mariusz; Młynarska, Sandra; Galińska, Justyna; Zygadło-Monikowska, Ewa

    2017-01-01

    Bis(carboxytrifluoroborate lithium) salts [R(CH 2 COOBF 3 Li) 2 ] with oxyethylene groups R of oligomeric molar masses [R = O(CH 2 CH 2 O) n , where n = 3 or 11, BCB3 and BCB11, respectively] were synthesized via reaction of carboxylates salts with boron fluoride. The new salts were characterized by spectroscopic analysis. The physical properties of the salts were determined by oxyethylene chain length. For n = 3 the salt was crystalline with m p = 197 °C and for n = 11 it showed properties of an ionic liquid at ambient temperature. Their thermal stability was at least 250 °C. The values of lithium-ion transference numbers (T + ) of the solutions in polar aprotic solvents, determined by a well established steady-state technique, were in the range of 0.2–0.6. Electrochemical impedance spectroscopy analysis of solid polymer electrolytes (SPEs) based on PEO and studied salts with different concentration (from 24 to 94 wt %) was carried out. The ionic conductivity of SPEs was in the order of 10 −8 –10 −7 S cm −1 at room temperature and 10 −4 S cm −1 at 80 °C. A distinguishing feature of SPEs with the studied new salts is the high immobilization of anions, which causes almost a monoconducting character of charge transport. Lithium transference numbers (T + ) exceed 0.9.

  20. Measurement of heat transfer coefficient using termoanemometry methods

    Science.gov (United States)

    Dančová, P.; Sitek, P.; Vít, T.

    2014-03-01

    This work deals with a measurement of heat transfer from a heated flat plate on which a synthetic jet impacts perpendicularly. Measurement of a heat transfer coefficient (HTC) is carried out using the hot wire anemometry method with glue film probe Dantec 55M47. The paper brings also results of velocity profiles measurements and turbulence intensity calculations.

  1. Impact of hydrotreaters ammonium chloride salt deposition of refinery operations; Formacao de depositos de sais de amonio em Unidades de Hidrotramento (HDT'S)

    Energy Technology Data Exchange (ETDEWEB)

    Fernandes, Nelmo Furtado; Cunha, Fabiana A; Alvise, Paulo Pio [PETROBRAS, Rio de Janeiro, RJ (Brazil)

    2008-07-01

    Fouling and consequent under deposit corrosion caused by ammonium salts, especially ammonium chloride, have serious impact on the reliability of operation of various process units. In hydrotreating units salt deposition on heat exchanger tubes causes a decrease in heat transfer efficiency, decrease hydrotreating efficiency, increased pressure drops, and corrosion. This paper will discuss the causes of ammonium chloride fouling,methods to help prevent and/or mitigate the fouling, and provide a case history demonstrating the effects of ammonium chloride formations in one refinery operation. (author)

  2. Experimental study on method for heat transfer enhancement using a porous material

    International Nuclear Information System (INIS)

    Shimura, Takuya; Takeda, Tetsuaki

    2011-01-01

    There are several methods for enhancement of heat transfer; for example, there are attaching various fins on the heat transfer surface, processing the surface roughly, and so on. When cooling high temperature circular or rectangular channels by forced convection of gas, there are several methods for enhancement of heat transfer such as attaching radial or spiral fins on the channel surface or inserting twisted tape in the channel. In the case of the gas heating type steam reformer, disk type fins are attached on the outside surface of the reformer tube, and the tube is inserted into the guide tube to increase an amount of heat transferred from the high temperature gas. However, it has to take into consideration the deterioration of the structure strength by attaching the fins on the tube surface with the design of the steam reformer. The objective of this study is to clarify performances of a method for heat transfer enhancement using porous material with high porosity. The experiment has been performed using an apparatus which simulated the passage structure of the steam reformer to obtain characteristics of heat transfer and pressure drop. From the results obtained in this experiment, the heat transfer rate by this method showed a good performance in the laminar flow region. It was also found that the method for heat transfer enhancement using porous material with high porosity is further improved under the high temperature condition as compared with the other methods for heat transfer enhancement. (author)

  3. The structure and behavior of salts in kraft recovery boilers

    Energy Technology Data Exchange (ETDEWEB)

    Backman, R.; Badoi, R.D.; Enestam, S. [Aabo Akademi Univ., Turku (Finland). Combustion Chemistry Research Group

    1997-10-01

    The melting behavior in the salt system (Na,K)(CO{sub 3},SO{sub 4},S,Cl,OH) is investigated by laboratory methods to enhance and further develop a chemical model for salt mixtures with compositions relevant for recovery boilers. The model, based on both literature data and experimental work can be used as (a) submodel in models for the over-all chemistry in recovery boilers and to estimate (b) deposit formation on heat transfer surfaces (fouling), (c) the melting properties of the fly ash, and (d) the smelt bed in recovery boilers. Experimental techniques used are thermal analysis, high temperature microscopy` and scanning electron microscopy. The model is implemented in a global calculation model which can handle both gas phases and condensed phases in the recovery boiler. The model gives a detailed description of the chemical reactions involved in the fume and dust formation in different locations of the flue gas channel in the boiler. (orig.)

  4. Reporting of embryo transfer methods in IVF research: a cross-sectional study.

    Science.gov (United States)

    Gambadauro, Pietro; Navaratnarajah, Ramesan

    2015-02-01

    The reporting of embryo transfer methods in IVF research was assessed through a cross-sectional analysis of randomized controlled trials (RCTs) published between 2010 and 2011. A systematic search identified 325 abstracts; 122 RCTs were included in the study. Embryo transfer methods were described in 42 out of 122 articles (34%). Catheters (32/42 [76%]) or ultrasound guidance (31/42 [74%]) were most frequently mentioned. Performer 'blinding' (12%) or technique standardization (7%) were seldom reported. The description of embryo transfer methods was significantly more common in trials published by journals with lower impact factor (less than 3, 39.6%; 3 or greater, 21.5%; P = 0.037). Embryo transfer methods were reported more often in trials with pregnancy as the main end-point (33% versus 16%) or with positive outcomes (37.8% versus 25.0%), albeit not significantly. Multivariate logistic regression confirmed that RCTs published in higher impact factor journals are less likely to describe embryo transfer methods (OR 0.371; 95% CI 0.143 to 0.964). Registered trials, trials conducted in an academic setting, multi-centric studies or full-length articles were not positively associated with embryo transfer methods reporting rate. Recent reports of randomized IVF trials rarely describe embryo transfer methods. The under-reporting of research methods might compromise reproducibility and suitability for meta-analysis. Copyright © 2014 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.

  5. Removal of salt from high-level waste tanks by density-driven circulation or mechanical agitation

    International Nuclear Information System (INIS)

    Kiser, D.L.

    1981-01-01

    Twenty-two high-level waste storage tanks at the Savannah River Plant are to be retired in the tank replacement/waste transfer program. The salt-removal portion of this program requires dissolution of about 19 million liters of salt cake. Steam circulation jets were originally proposed to dissolve the salt cake. However, the jets heated the waste tank to 80 to 90 0 C. This high temperature required a long cooldown period before transfer of the supernate by jet, and increased the risk of stress-corrosion cracking in these older tanks. A bench-scale investigation at the Savannah River Laboratory developed two alternatives to steam-jet circulation. One technique was density-driven circulation, which in bench tests dissolved salt at the same rate as a simulated steam circulation jet but at a lower temperature. The other technique was mechanical agitation, which dissolved the salt cake faster and required less fresh water than either density-driven circulation or the simulated steam circulation jet. Tests in an actual waste tank verified bench-scale results and demonstrated the superiority of mechanical agitation

  6. Discontinuous Galerkin finite element methods for radiative transfer in spherical symmetry

    Science.gov (United States)

    Kitzmann, D.; Bolte, J.; Patzer, A. B. C.

    2016-11-01

    The discontinuous Galerkin finite element method (DG-FEM) is successfully applied to treat a broad variety of transport problems numerically. In this work, we use the full capacity of the DG-FEM to solve the radiative transfer equation in spherical symmetry. We present a discontinuous Galerkin method to directly solve the spherically symmetric radiative transfer equation as a two-dimensional problem. The transport equation in spherical atmospheres is more complicated than in the plane-parallel case owing to the appearance of an additional derivative with respect to the polar angle. The DG-FEM formalism allows for the exact integration of arbitrarily complex scattering phase functions, independent of the angular mesh resolution. We show that the discontinuous Galerkin method is able to describe accurately the radiative transfer in extended atmospheres and to capture discontinuities or complex scattering behaviour which might be present in the solution of certain radiative transfer tasks and can, therefore, cause severe numerical problems for other radiative transfer solution methods.

  7. Molten salt based nanofluids based on solar salt and alumina nanoparticles: An industrial approach

    Science.gov (United States)

    Muñoz-Sánchez, Belén; Nieto-Maestre, Javier; Guerreiro, Luis; Julia, José Enrique; Collares-Pereira, Manuel; García-Romero, Ana

    2017-06-01

    Thermal Energy Storage (TES) and its associated dispatchability is extremely important in Concentrated Solar Power (CSP) plants since it represents the main advantage of CSP technology in relation to other renewable energy sources like photovoltaic (PV). Molten salts are used in CSP plants as a TES material because of their high operational temperature and stability of up to 600°C. Their main problems are their relative poor thermal properties and energy storage density. A simple cost-effective way to improve the thermal properties of molten salts is to dope them with nanoparticles, thus obtaining the so-called salt-based nanofluids. Additionally, the use of molten salt based nanofluids as TES materials and Heat Transfer Fluid (HTF) has been attracting great interest in recent years. The addition of tiny amounts of nanoparticles to the base salt can improve its specific heat as shown by different authors1-3. The application of these nano-enhanced materials can lead to important savings on the investment costs in new TES systems for CSP plants. However, there is still a long way to go in order to achieve a commercial product. In this sense, the improvement of the stability of the nanofluids is a key factor. The stability of nanofluids will depend on the nature and size of the nanoparticles, the base salt and the interactions between them. In this work, Solar Salt (SS) commonly used in CSP plants (60% NaNO3 + 40% KNO3 wt.) was doped with alumina nanoparticles (ANPs) at a solid mass concentration of 1% wt. at laboratory scale. The tendency of nanoparticles to agglomeration and sedimentation is tested in the molten state by analyzing their size and concentration through the time. The specific heat of the nanofluid at 396 °C (molten state) is measured at different times (30 min, 1 h, 5 h). Further research is needed to understand the mechanisms of agglomeration. A good understanding of the interactions between the nanoparticle surface and the ionic media would provide

  8. A mass transfer in heterogeneous systems by the adsorption method (

    Directory of Open Access Journals (Sweden)

    N. Bošković-Vragolović

    2009-01-01

    Full Text Available A mass transfer coefficient between: a liquid and single sphere and a liquid and column wall in packed and fluidized beds of a spherical inert particle have been studied experimentally using the adsorption method. The experiments were conducted in a column 40 mm in diameter for packed and fluidized beds, and in a two-dimensional column 140 mm×10 mm for the flow past single sphere. In all runs, the mass transfer rates were determined in the presence of spherical glass particles, 3 mm in diameter, for packed and fluidized beds. The mass transfer data were obtained by studying transfer for flow past single sphere, 20 mm in diameter. This paper discusses the possibilities of application of the adsorption method for fluid flow visualization. Local and average mass transfer coefficients were determined from the color intensity of the surface of the foils of silica gel. Correlations, Sh = f(Re and jD = f(Re, were derived using the mass transfer coefficient data.

  9. Hybrid transfer-matrix FDTD method for layered periodic structures.

    Science.gov (United States)

    Deinega, Alexei; Belousov, Sergei; Valuev, Ilya

    2009-03-15

    A hybrid transfer-matrix finite-difference time-domain (FDTD) method is proposed for modeling the optical properties of finite-width planar periodic structures. This method can also be applied for calculation of the photonic bands in infinite photonic crystals. We describe the procedure of evaluating the transfer-matrix elements by a special numerical FDTD simulation. The accuracy of the new method is tested by comparing computed transmission spectra of a 32-layered photonic crystal composed of spherical or ellipsoidal scatterers with the results of direct FDTD and layer-multiple-scattering calculations.

  10. Spontaneous modification of carbon surface with neutral red from its diazonium salts for bioelectrochemical systems.

    Science.gov (United States)

    Guo, Kun; Chen, Xin; Freguia, Stefano; Donose, Bogdan C

    2013-09-15

    This study introduces a novel and simple method to covalently graft neutral red (NR) onto carbon surfaces based on spontaneous reduction of in situ generated NR diazonium salts. Immobilization of neutral red on carbon surface was achieved by immersing carbon electrodes in NR-NaNO2-HCl solution. The functionalized electrodes were characterized by cyclic voltammetry (CV), atomic force microscope (AFM), and X-ray photoelectron spectroscopy (XPS). Results demonstrated that NR attached in this way retains high electrochemical activity and proved that NR was covalently bound to the carbon surface via the pathway of reduction of aryl diazonium salts. The NR-modified electrodes showed a good stability when stored in PBS solution in the dark. The current output of an acetate-oxidising microbial bioanode made of NR-modified graphite felts were 3.63±0.36 times higher than the unmodified electrodes, which indicates that covalently bound NR can act as electron transfer mediator to facilitate electron transfer from bacteria to electrodes. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Application of the collapsing method to acoustic emissions in a rock salt sample during a triaxial compression experiment

    International Nuclear Information System (INIS)

    Manthei, G.; Eisenblaetter, J.; Moriya, H.; Niitsuma, H.; Jones, R.H.

    2003-01-01

    Collapsing is a relatively new method. It is used for detecting patterns and structures in blurred and cloudy pictures of multiple soundings. In the case described here, the measurements were made in a very small region with a length of only a few decimeters. The events were registered during a triaxial compression experiment on a compact block of rock salt. The collapsing method showed a cellular structure of the salt block across the whole length of the test piece. The cells had a length of several cm, enclosing several grains of salt with an average grain size of less than one cm. In view of the fact that not all cell walls corresponded to acoustic emission events, it was assumed that only those grain boundaries are activated that are oriented at a favourable angle to the field of tension of the test piece [de

  12. Measurement of heat transfer coefficient using termoanemometry methods

    Directory of Open Access Journals (Sweden)

    Dančová P.

    2014-03-01

    Full Text Available This work deals with a measurement of heat transfer from a heated flat plate on which a synthetic jet impacts perpendicularly. Measurement of a heat transfer coefficient (HTC is carried out using the hot wire anemometry method with glue film probe Dantec 55M47. The paper brings also results of velocity profiles measurements and turbulence intensity calculations.

  13. Bioanalytical method transfer considerations of chromatographic-based assays.

    Science.gov (United States)

    Williard, Clark V

    2016-07-01

    Bioanalysis is an important part of the modern drug development process. The business practice of outsourcing and transferring bioanalytical methods from laboratory to laboratory has increasingly become a crucial strategy for successful and efficient delivery of therapies to the market. This chapter discusses important considerations when transferring various types of chromatographic-based assays in today's pharmaceutical research and development environment.

  14. Investigation of Improved Methods in Power Transfer Efficiency for Radiating Near-Field Wireless Power Transfer

    Directory of Open Access Journals (Sweden)

    Hesheng Cheng

    2016-01-01

    Full Text Available A metamaterial-inspired efficient electrically small antenna is proposed, firstly. And then several improving power transfer efficiency (PTE methods for wireless power transfer (WPT systems composed of the proposed antenna in the radiating near-field region are investigated. Method one is using a proposed antenna as a power retriever. This WPT system consisted of three proposed antennas: a transmitter, a receiver, and a retriever. The system is fed by only one power source. At a fixed distance from receiver to transmitter, the distance between the transmitter and the retriever is turned to maximize power transfer from the transmitter to the receiver. Method two is using two proposed antennas as transmitters and one antenna as receiver. The receiver is placed between the two transmitters. In this system, two power sources are used to feed the two transmitters, respectively. By adjusting the phase difference between the two feeding sources, the maximum PTE can be obtained at the optimal phase difference. Using the same configuration as method two, method three, where the maximum PTE can be increased by regulating the voltage (or power ratio of the two feeding sources, is proposed. In addition, we combine the proposed methods to construct another two schemes, which improve the PTE at different extent than classical WPT system.

  15. Comparison of vibrational conductivity and radiative energy transfer methods

    Science.gov (United States)

    Le Bot, A.

    2005-05-01

    This paper is concerned with the comparison of two methods well suited for the prediction of the wideband response of built-up structures subjected to high-frequency vibrational excitation. The first method is sometimes called the vibrational conductivity method and the second one is rather known as the radiosity method in the field of acoustics, or the radiative energy transfer method. Both are based on quite similar physical assumptions i.e. uncorrelated sources, mean response and high-frequency excitation. Both are based on analogies with some equations encountered in the field of heat transfer. However these models do not lead to similar results. This paper compares the two methods. Some numerical simulations on a pair of plates joined along one edge are provided to illustrate the discussion.

  16. History and future of human cadaver preservation for surgical training: from formalin to saturated salt solution method.

    Science.gov (United States)

    Hayashi, Shogo; Naito, Munekazu; Kawata, Shinichi; Qu, Ning; Hatayama, Naoyuki; Hirai, Shuichi; Itoh, Masahiro

    2016-01-01

    Traditionally, surgical training meant on-the-job training with live patients in an operating room. However, due to advancing surgical techniques, such as minimally invasive surgery, and increasing safety demands during procedures, human cadavers have been used for surgical training. When considering the use of human cadavers for surgical training, one of the most important factors is their preservation. In this review, we summarize four preservation methods: fresh-frozen cadaver, formalin, Thiel's, and saturated salt solution methods. Fresh-frozen cadaver is currently the model that is closest to reality, but it also presents myriad problems, including the requirement of freezers for storage, limited work time because of rapid putrefaction, and risk of infection. Formalin is still used ubiquitously due to its low cost and wide availability, but it is not ideal because formaldehyde has an adverse health effect and formalin-embalmed cadavers do not exhibit many of the qualities of living organs. Thiel's method results in soft and flexible cadavers with almost natural colors, and Thiel-embalmed cadavers have been appraised widely in various medical disciplines. However, Thiel's method is relatively expensive and technically complicated. In addition, Thiel-embalmed cadavers have a limited dissection time. The saturated salt solution method is simple, carries a low risk of infection, and is relatively low cost. Although more research is needed, this method seems to be sufficiently useful for surgical training and has noteworthy features that expand the capability of clinical training. The saturated salt solution method will contribute to a wider use of cadavers for surgical training.

  17. Radiative heat transfer by the Monte Carlo method

    CERN Document Server

    Hartnett †, James P; Cho, Young I; Greene, George A; Taniguchi, Hiroshi; Yang, Wen-Jei; Kudo, Kazuhiko

    1995-01-01

    This book presents the basic principles and applications of radiative heat transfer used in energy, space, and geo-environmental engineering, and can serve as a reference book for engineers and scientists in researchand development. A PC disk containing software for numerical analyses by the Monte Carlo method is included to provide hands-on practice in analyzing actual radiative heat transfer problems.Advances in Heat Transfer is designed to fill the information gap between regularly scheduled journals and university level textbooks by providing in-depth review articles over a broader scope than journals or texts usually allow.Key Features* Offers solution methods for integro-differential formulation to help avoid difficulties* Includes a computer disk for numerical analyses by PC* Discusses energy absorption by gas and scattering effects by particles* Treats non-gray radiative gases* Provides example problems for direct applications in energy, space, and geo-environmental engineering

  18. Coumarin or benzoxazinone bearing benzimidazolium and bis(benzimidazolium salts; involvement in transfer hydrogenation of acetophenone derivatives and hCA inhibition

    Directory of Open Access Journals (Sweden)

    Mert Olgun Karataş

    2015-10-01

    Full Text Available Four new salts of benzimidazolium and bis(benzimidazolium which include coumarin or benzoxazinone moieties were synthesized and the structures of the newly synthesized compounds were elucidated on the basis of spectral analyses such as 1H-NMR, 13C-NMR, HSQC, IR, LC-MS and elemental analysis. Benzimidazolium salts were used intensively as N-heterocyclic carbene (NHC precursors in the various catalytic reactions such as transfer hydrogenation (TH, C-H bond activation, Heck, Suzuki reaction etc. With the prospect of potential NHC precursor properties of the synthesized compounds, they were employed in the (TH reaction of p-substitute acetophenones (acetophenone, p-methyl acetophenone, p-chloro acetophenone and good yields were observed. Coumarin compounds are known as inhibitor of carbonic anhydrase and inhibition effects of the synthesized compounds on human carbonic anhydrases (hCA were investigated as in vitro. The in vitro results demonstrated that all compounds inhibited hCA I and hCA II activity. Among the synthesized compounds 1,4-bis(1-((6,8-dimethyl-2H-chromen-2-one-4-ylmethylbenzimidazolium-3-ylbutane dichloride was found to be the most active IC50= 5.55 mM and 6.06 mM for hCA I and hCA II, respectively.

  19. Review of PCMS and heat transfer enhancement methods applied ...

    African Journals Online (AJOL)

    Most available PCMs have low thermal conductivity making heat transfer enhancement necessary for power applications. The various methods of heat transfer enhancement in latent heat storage systems were also reviewed systematically. The review showed that three commercially - available PCMs are suitable in the ...

  20. Impacts of using salt and salt brine for roadway deicing.

    Science.gov (United States)

    2014-06-01

    Idaho Transportation Department (ITD) uses a variety of methods to help ensure safe travel on the state highway system : following winter storm events. These methods include plowing, use of sand to improve traction, and use of salt and chemical : com...

  1. Zechstein salt Denmark. Vol. 1

    International Nuclear Information System (INIS)

    Lyngsie Jacobsen, F.; Soenderholm, M.; Springer, N.; Gutzon Larsen, J.; Lagoni, P.; Fabricius, J.

    1984-01-01

    The Salt Research Project EFP-81 has mainly been aiming upon an elucidation of the stratigraphy of the Danish Zechstein evaporites. Also an attempt to clarify the connection between the fabric and the strength of the strongly deformed domal rock salt is performed. The unravelling of the stratigraphy is carried out by means of renewed interpretations of new and old data from all the wells drilling in the Danish Permian basin in connection with a revaluation of the core descriptions. By means of trace elements analysis it is possible to some extent to distinguish between Zestein 1 and 2 ''grey salt''. A description of the transition zone between Zechstein 1 and 2 is carried out. New methods of fabric analyses are introduced and the strength measurements of the rock salt are treated statistically in connection with new defined rock salt parameters. An investigation of fluid inclusions in halite and quartz crystals from dome salt has resulted in the determination of salinity and chemical composition of the brines present in the salt. Temperatures and corresponding pressures during the evolution of the salt pillow and salt dome have been established. The dehydration conditions of natural carnallite in situ are clarified. (author)

  2. 14 CFR 1274.931 - Electronic funds transfer payment methods.

    Science.gov (United States)

    2010-01-01

    ... cooperative agreement will be made by the Government by electronic funds transfer through the Treasury Fedline... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Electronic funds transfer payment methods... COOPERATIVE AGREEMENTS WITH COMMERCIAL FIRMS Other Provisions and Special Conditions § 1274.931 Electronic...

  3. A summary of methods for approximating salt creep and disposal room closure in numerical models of multiphase flow

    Energy Technology Data Exchange (ETDEWEB)

    Freeze, G.A.; Larson, K.W. [INTERA, Inc., Albuquerque, NM (United States); Davies, P.B. [Sandia National Labs., Albuquerque, NM (United States)

    1995-10-01

    Eight alternative methods for approximating salt creep and disposal room closure in a multiphase flow model of the Waste Isolation Pilot Plant (WIPP) were implemented and evaluated: Three fixed-room geometries three porosity functions and two fluid-phase-salt methods. The pressure-time-porosity line interpolation method is the method used in current WIPP Performance Assessment calculations. The room closure approximation methods were calibrated against a series of room closure simulations performed using a creep closure code, SANCHO. The fixed-room geometries did not incorporate a direct coupling between room void volume and room pressure. The two porosity function methods that utilized moles of gas as an independent parameter for closure coupling. The capillary backstress method was unable to accurately simulate conditions of re-closure of the room. Two methods were found to be accurate enough to approximate the effects of room closure; the boundary backstress method and pressure-time-porosity line interpolation. The boundary backstress method is a more reliable indicator of system behavior due to a theoretical basis for modeling salt deformation as a viscous process. It is a complex method and a detailed calibration process is required. The pressure lines method is thought to be less reliable because the results were skewed towards SANCHO results in simulations where the sequence of gas generation was significantly different from the SANCHO gas-generation rate histories used for closure calibration. This limitation in the pressure lines method is most pronounced at higher gas-generation rates and is relatively insignificant at lower gas-generation rates. Due to its relative simplicity, the pressure lines method is easier to implement in multiphase flow codes and simulations have a shorter execution time.

  4. A summary of methods for approximating salt creep and disposal room closure in numerical models of multiphase flow

    International Nuclear Information System (INIS)

    Freeze, G.A.; Larson, K.W.; Davies, P.B.

    1995-10-01

    Eight alternative methods for approximating salt creep and disposal room closure in a multiphase flow model of the Waste Isolation Pilot Plant (WIPP) were implemented and evaluated: Three fixed-room geometries three porosity functions and two fluid-phase-salt methods. The pressure-time-porosity line interpolation method is the method used in current WIPP Performance Assessment calculations. The room closure approximation methods were calibrated against a series of room closure simulations performed using a creep closure code, SANCHO. The fixed-room geometries did not incorporate a direct coupling between room void volume and room pressure. The two porosity function methods that utilized moles of gas as an independent parameter for closure coupling. The capillary backstress method was unable to accurately simulate conditions of re-closure of the room. Two methods were found to be accurate enough to approximate the effects of room closure; the boundary backstress method and pressure-time-porosity line interpolation. The boundary backstress method is a more reliable indicator of system behavior due to a theoretical basis for modeling salt deformation as a viscous process. It is a complex method and a detailed calibration process is required. The pressure lines method is thought to be less reliable because the results were skewed towards SANCHO results in simulations where the sequence of gas generation was significantly different from the SANCHO gas-generation rate histories used for closure calibration. This limitation in the pressure lines method is most pronounced at higher gas-generation rates and is relatively insignificant at lower gas-generation rates. Due to its relative simplicity, the pressure lines method is easier to implement in multiphase flow codes and simulations have a shorter execution time

  5. Salt briquette: the form of salt monopoly in madura, 1883-1911

    Science.gov (United States)

    Wisnu; Alrianingrum, S.; Artono; Liana, C.

    2018-01-01

    This study describes the history of the salt monopoly in Indonesia because it is associated with the issue of salt crisis lately, widely reported in various media. This study tried to find answers to the relationship between monopoly and crisis events through the study of history. Monopoly policy by the government of the colonial period is actually an industrial modernization effort, but it turned out another impact. Although the colonial government wanted to issue a policy that ends strengthens the position of the government in the industry, but ultimately backfire and disasters in the salt industry at the time. This article discusses only the focus of the salt monopoly in Madura as a selection of events, arguing the island as a center of salt in Indonesia. The method used in this study using a review of history. Therefore, their explanations using historical sources. Methodologically through the process of collecting historical sources, criticize these sources, synthesize and interpret the analysis in an array of historical writing. In conclusion, although the salt monopoly policy gives a great advantage to the colonial government, but the overall population of Madura remains in a poor state. It is evident that the Madurese to migrate Madurese to various areas outside the island of Madura, to fix the economy.

  6. A new shape design method of salt cavern used as underground gas storage

    International Nuclear Information System (INIS)

    Wang, Tongtao; Yan, Xiangzhen; Yang, Henglin; Yang, Xiujuan; Jiang, Tingting; Zhao, Shuai

    2013-01-01

    Graphical abstract: Safety factor contours of four salt cavern gas storages after running 10 years. Highlights: ► We propose a new model to design the shape of salt cavern gas storage. ► The concepts of slope instability and pressure arch are introduced into the shape design. ► The max. gas pressure determines the shapes and dimensions of cavern lower structure. ► The min. gas pressure decides the shapes and dimensions of cavern upper structure. - Abstract: A new model used to design the shape and dimension of salt cavern gas storage is proposed in the paper. In the new model, the cavern is divided into two parts, namely the lower and upper structures, to design. The concepts of slope instability and pressure arch are introduced into the shape design of the lower and upper structures respectively. Calculating models are established according to the concepts. Field salt cavern gas storage in China is simulated as examples, and its shape and dimension are proposed. The effects of gas pressure, friction angle and cohesion of rock salt on the cavern stability are discussed. Moreover, the volume convergence, displacement, plastic volume rate, safety factor, and effective strain are compared with that of three other existing shapes salt caverns to validate the performance of newly proposed cavern. The results show that the max. gas pressure determines the shape and dimension of cavern lower structure, while the min. gas pressure decides that of cavern upper structure. With the increase of friction angle and cohesion of rock salt, the stability of salt cavern is increased. The newly proposed salt cavern gas storage has more notable advantages than the existing shapes of salt cavern in volume convergence, displacement, plastic volume rate, safety factor, and effective strain under the same conditions

  7. Criticality considerations for salt-cake disolution in DOE waste tanks

    International Nuclear Information System (INIS)

    Trumble, E.F.; Niemer, K.A.

    1995-01-01

    A large amount of high-level waste is being stored in the form of salt cake at the Savannah River site (SRS) in large (1.3 x 106 gal) underground tanks awaiting startup of the Defense Waste Processing Facility (DWPF). This salt cake will be dissolved with water, and the solution will be fed to DWPF for immobilization in borosilicate glass. Some of the waste that was transferred to the tanks contained enriched uranium and plutonium from chemical reprocessing streams. As water is added to these tanks to dissolve the salt cake, the insoluble portion of this fissile material will be left behind in the tank as the salt solution is pumped out. Because the salt acts as a diluent to the fissile material, the process of repeated water addition, salt dissolution, and salt solution removal will act as a concentrating mechanism for the undissolved fissile material that will remain in the tank. It is estimated that tank 41 H at SRS contains 20 to 120 kg of enriched uranium, varying from 10 to 70% 235 U, distributed nonuniformly throughout the tank. This paper discusses the criticality concerns associated with the dissolution of salt cake in this tank. These concerns are also applicable to other salt cake waste tanks that contain significant quantities of enriched uranium and/or plutonium

  8. Method for excluding salt and other soluble materials from produced water

    Science.gov (United States)

    Phelps, Tommy J [Knoxville, TN; Tsouris, Costas [Oak Ridge, TN; Palumbo, Anthony V [Oak Ridge, TN; Riestenberg, David E [Knoxville, TN; McCallum, Scott D [Knoxville, TN

    2009-08-04

    A method for reducing the salinity, as well as the hydrocarbon concentration of produced water to levels sufficient to meet surface water discharge standards. Pressure vessel and coflow injection technology developed at the Oak Ridge National Laboratory is used to mix produced water and a gas hydrate forming fluid to form a solid or semi-solid gas hydrate mixture. Salts and solids are excluded from the water that becomes a part of the hydrate cage. A three-step process of dissociation of the hydrate results in purified water suitable for irrigation.

  9. Ultrasonic Technique for Predicting Grittiness of Salted Duck Egg

    Science.gov (United States)

    Erawan, S.; Budiastra, I. W.; Subrata, I. D. M.

    2018-05-01

    Grittiness of egg yolk is a major factor in consumer acceptance of salted duck egg product. Commonly, the grittiness level is determined by the destructive method. Salted egg industries need a grading system that can judge the grittiness accurately and nondestructively. The purpose of this study was to develop a method for determining grittiness of salted duck eggs nondestructively based on ultrasonic method. This study used 100 samples of salted duck eggs with 7,10,14 and 21 days of salting age. Velocity and attenuation were measured by an ultrasonic system at frequency 50 kHz, followed by physicochemical properties measurement (hardness of egg yolks and salt content), and organoleptic test. Ultrasonic wave velocity in salted duck eggs ranged from 620.6 m/s to 1334.6 m/s, while the coefficient of attenuation value ranged from – 0.76 dB/m to -0.51 dB/m. Yolk hardness was 2.68 N at 7 days to 5.54 N at 21 days of salting age. Salt content was 1.81 % at 7 days to 5.71 % at 21 days of salting age. Highest scores of organoleptic tests on salted duck eggs were 4.23 and 4.18 for 10 and 14 days of salting age, respectively. Discriminant function using ultrasonic velocity variables in minor and major diameter could predict grittiness with 95 % accuracy.

  10. Sol-gel processing with inorganic metal salt precursors

    Science.gov (United States)

    Hu, Zhong-Cheng

    2004-10-19

    Methods for sol-gel processing that generally involve mixing together an inorganic metal salt, water, and a water miscible alcohol or other organic solvent, at room temperature with a macromolecular dispersant material, such as hydroxypropyl cellulose (HPC) added. The resulting homogenous solution is incubated at a desired temperature and time to result in a desired product. The methods enable production of high quality sols and gels at lower temperatures than standard methods. The methods enable production of nanosize sols from inorganic metal salts. The methods offer sol-gel processing from inorganic metal salts.

  11. Electrochemical ion separation in molten salts

    Science.gov (United States)

    Spoerke, Erik David; Ihlefeld, Jon; Waldrip, Karen; Wheeler, Jill S.; Brown-Shaklee, Harlan James; Small, Leo J.; Wheeler, David R.

    2017-12-19

    A purification method that uses ion-selective ceramics to electrochemically filter waste products from a molten salt. The electrochemical method uses ion-conducting ceramics that are selective for the molten salt cations desired in the final purified melt, and selective against any contaminant ions. The method can be integrated into a slightly modified version of the electrochemical framework currently used in pyroprocessing of nuclear wastes.

  12. Comparison of transfer entropy methods for financial time series

    Science.gov (United States)

    He, Jiayi; Shang, Pengjian

    2017-09-01

    There is a certain relationship between the global financial markets, which creates an interactive network of global finance. Transfer entropy, a measurement for information transfer, offered a good way to analyse the relationship. In this paper, we analysed the relationship between 9 stock indices from the U.S., Europe and China (from 1995 to 2015) by using transfer entropy (TE), effective transfer entropy (ETE), Rényi transfer entropy (RTE) and effective Rényi transfer entropy (ERTE). We compared the four methods in the sense of the effectiveness for identification of the relationship between stock markets. In this paper, two kinds of information flows are given. One reveals that the U.S. took the leading position when in terms of lagged-current cases, but when it comes to the same date, China is the most influential. And ERTE could provide superior results.

  13. A review of salt transport in porous media : assessment methods and salt reduction treatments

    NARCIS (Netherlands)

    Sawdy - Heritage, A.M.; Heritage, A.; Pel, L.

    2008-01-01

    It is an unpalatable fact that while objects can deteriorate through lack of care and attention, they can also deteriorate as a result of inappropriate and misguided interventions. This is particularly the case with regard to salt-related deterioration problems. A successful treatment outcome using

  14. Impact of hydrotreaters ammonium chloride salt deposition of refinery operations; Formacao de depositos de sais de amonio em Unidades de Hidrotramento (HDT'S)

    Energy Technology Data Exchange (ETDEWEB)

    Fernandes, Nelmo Furtado; Cunha, Fabiana A.; Alvise, Paulo Pio [PETROBRAS, Rio de Janeiro, RJ (Brazil)

    2008-07-01

    Fouling and consequent under deposit corrosion caused by ammonium salts, especially ammonium chloride, have serious impact on the reliability of operation of various process units. In hydrotreating units salt deposition on heat exchanger tubes causes a decrease in heat transfer efficiency, decrease hydrotreating efficiency, increased pressure drops, and corrosion. This paper will discuss the causes of ammonium chloride fouling,methods to help prevent and/or mitigate the fouling, and provide a case history demonstrating the effects of ammonium chloride formations in one refinery operation. (author)

  15. Molten salt processing of mixed wastes with offgas condensation

    International Nuclear Information System (INIS)

    Cooper, J.F.; Brummond, W.; Celeste, J.; Farmer, J.; Hoenig, C.; Krikorian, O.H.; Upadhye, R.; Gay, R.L.; Stewart, A.; Yosim, S.

    1991-01-01

    We are developing an advanced process for treatment of mixed wastes in molten salt media at temperatures of 700--1000 degrees C. Waste destruction has been demonstrated in a single stage oxidation process, with destruction efficiencies above 99.9999% for many waste categories. The molten salt provides a heat transfer medium, prevents thermal surges, and functions as an in situ scrubber to transform the acid-gas forming components of the waste into neutral salts and immobilizes potentially fugitive materials by a combination of particle wetting, encapsulation and chemical dissolution and solvation. Because the offgas is collected and assayed before release, and wastes containing toxic and radioactive materials are treated while immobilized in a condensed phase, the process avoids the problems sometimes associated with incineration processes. We are studying a potentially improved modification of this process, which treats oxidizable wastes in two stages: pyrolysis followed by catalyzed molten salt oxidation of the pyrolysis gases at ca. 700 degrees C. 15 refs., 5 figs., 1 tab

  16. Thermophysical properties of reconsolidating crushed salt.

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, Stephen J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Urquhart, Alexander [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-03-01

    Reconsolidated crushed salt is being considered as a backfilling material placed upon nuclear waste within a salt repository environment. In-depth knowledge of thermal and mechanical properties of the crushed salt as it reconsolidates is critical to thermal/mechanical modeling of the reconsolidation process. An experimental study was completed to quantitatively evaluate the thermal conductivity of reconsolidated crushed salt as a function of porosity and temperature. The crushed salt for this study came from the Waste Isolation Pilot Plant (WIPP). In this work the thermal conductivity of crushed salt with porosity ranging from 1% to 40% was determined from room temperature up to 300°C, using two different experimental methods. Thermal properties (including thermal conductivity, thermal diffusivity and specific heat) of single-crystal salt were determined for the same temperature range. The salt was observed to dewater during heating; weight loss from the dewatering was quantified. The thermal conductivity of reconsolidated crushed salt decreases with increasing porosity; conversely, thermal conductivity increases as the salt consolidates. The thermal conductivity of reconsolidated crushed salt for a given porosity decreases with increasing temperature. A simple mixture theory model is presented to predict and compare to the data developed in this study.

  17. Versatile Polymer-Free Graphene Transfer Method and Applications.

    Science.gov (United States)

    Zhang, Guohui; Güell, Aleix G; Kirkman, Paul M; Lazenby, Robert A; Miller, Thomas S; Unwin, Patrick R

    2016-03-01

    A new method for transferring chemical vapor deposition (CVD)-grown monolayer graphene to a variety of substrates is described. The method makes use of an organic/aqueous biphasic configuration, avoiding the use of any polymeric materials that can cause severe contamination problems. The graphene-coated copper foil sample (on which graphene was grown) sits at the interface between hexane and an aqueous etching solution of ammonium persulfate to remove the copper. With the aid of an Si/SiO2 substrate, the graphene layer is then transferred to a second hexane/water interface to remove etching products. From this new location, CVD graphene is readily transferred to arbitrary substrates, including three-dimensional architectures as represented by atomic force microscopy (AFM) tips and transmission electron microscopy (TEM) grids. Graphene produces a conformal layer on AFM tips, to the very end, allowing easy production of tips for conductive AFM imaging. Graphene transferred to copper TEM grids provides large-area, highly electron-transparent substrates for TEM imaging. These substrates can also be used as working electrodes for electrochemistry and high-resolution wetting studies. By using scanning electrochemical cell microscopy, it is possible to make electrochemical and wetting measurements at either a freestanding graphene film or a copper-supported graphene area and readily determine any differences in behavior.

  18. A new computational method for the detection of horizontal gene transfer events.

    Science.gov (United States)

    Tsirigos, Aristotelis; Rigoutsos, Isidore

    2005-01-01

    In recent years, the increase in the amounts of available genomic data has made it easier to appreciate the extent by which organisms increase their genetic diversity through horizontally transferred genetic material. Such transfers have the potential to give rise to extremely dynamic genomes where a significant proportion of their coding DNA has been contributed by external sources. Because of the impact of these horizontal transfers on the ecological and pathogenic character of the recipient organisms, methods are continuously sought that are able to computationally determine which of the genes of a given genome are products of transfer events. In this paper, we introduce and discuss a novel computational method for identifying horizontal transfers that relies on a gene's nucleotide composition and obviates the need for knowledge of codon boundaries. In addition to being applicable to individual genes, the method can be easily extended to the case of clusters of horizontally transferred genes. With the help of an extensive and carefully designed set of experiments on 123 archaeal and bacterial genomes, we demonstrate that the new method exhibits significant improvement in sensitivity when compared to previously published approaches. In fact, it achieves an average relative improvement across genomes of between 11 and 41% compared to the Codon Adaptation Index method in distinguishing native from foreign genes. Our method's horizontal gene transfer predictions for 123 microbial genomes are available online at http://cbcsrv.watson.ibm.com/HGT/.

  19. PRE design of a molten salt thorium reactor loop

    International Nuclear Information System (INIS)

    Caire, Jean-Pierre; Roure, Anthony

    2007-01-01

    This study is a contribution to the 2004 PCR-RSF program of the Centre National de la Recherche Scientifique (CNRS) devoted to research on high temperature thorium molten salt reactors. A major issue of high temperature molten salt reactors is the very large heat duty to be transferred from primary to secondary loop of the reactor with minimal thermal losses. A possible inner loop made of a series of conventional graphite filter plate exchangers, pipes and pumps was investigated. The loop was assumed to use two counter current flows of the same LiF, BeF 2 , ZrF 4 , UF 4 molten salt flowing through the reactor. The 3D model used the coupling of k-ε turbulent Navier-Stokes equations and thermal applications of the Heat Transfer module of COMSOL Multiphysics. For a reactor delivering 2700 MWth, the model required a set of 114 identical exchangers. Each one was optimized to limit the heat losses to 2882 W. The pipes made of a succession of graphite, ceramics, Hastelloy-N alloy and insulating Microtherm layers led to a thermal loss limited to 550 W per linear meter. In such conditions, the global thermal losses represent only 0.013% of the reactor thermal power for elements covered with an insulator only 3 cm thick. (author)

  20. Geometric optical transfer function and tis computation method

    International Nuclear Information System (INIS)

    Wang Qi

    1992-01-01

    Geometric Optical Transfer Function formula is derived after expound some content to be easily ignored, and the computation method is given with Bessel function of order zero and numerical integration and Spline interpolation. The method is of advantage to ensure accuracy and to save calculation

  1. Anticipating hidden text salting in emails (extended abstract)

    OpenAIRE

    Lioma, Christina; Moens, Marie-Francine; Gomez, Juan Carlos; De Beer, Jan; Bergholz, Andre; Paass, Gerhard; Horkan, Patrick

    2008-01-01

    Salting is the intentional addition or distortion of content, aimed to evade automatic filtering. Salting is usually found in spam emails. Salting can also be hidden in phishing emails, which aim to steal personal information from users. We present a novel method that detects hidden salting tricks as visual anomalies in text. We solely use these salting tricks to successfully classify emails as phishing (F-measure >90%).

  2. One-dimensional transient radiative transfer by lattice Boltzmann method.

    Science.gov (United States)

    Zhang, Yong; Yi, Hongliang; Tan, Heping

    2013-10-21

    The lattice Boltzmann method (LBM) is extended to solve transient radiative transfer in one-dimensional slab containing scattering media subjected to a collimated short laser irradiation. By using a fully implicit backward differencing scheme to discretize the transient term in the radiative transfer equation, a new type of lattice structure is devised. The accuracy and computational efficiency of this algorithm are examined firstly. Afterwards, effects of the medium properties such as the extinction coefficient, the scattering albedo and the anisotropy factor, and the shapes of laser pulse on time-resolved signals of transmittance and reflectance are investigated. Results of the present method are found to compare very well with the data from the literature. For an oblique incidence, the LBM results in this paper are compared with those by Monte Carlo method generated by ourselves. In addition, transient radiative transfer in a two-Layer inhomogeneous media subjected to a short square pulse irradiation is investigated. At last, the LBM is further extended to study the transient radiative transfer in homogeneous medium with a refractive index discontinuity irradiated by the short pulse laser. Several trends on the time-resolved signals different from those for refractive index of 1 (i.e. refractive-index-matched boundary) are observed and analysed.

  3. Evaporation of a sessile water drop and a drop of aqueous salt solution.

    Science.gov (United States)

    Misyura, S Y

    2017-11-07

    The influence of various factors on the evaporation of drops of water and aqueous salt solution has been experimentally studied. Typically, in the studies of drop evaporation, only the diffusive vapor transfer, radiation and the molecular heat conduction are taken into account. However, vapor-gas convection plays an important role at droplet evaporation. In the absence of droplet boiling, the influence of gas convection turns out to be the prevailing factor. At nucleate boiling, a prevailing role is played by bubbles generation and vapor jet discharge at a bubble collapse. The gas convection behavior for water and aqueous salt solution is substantially different. With a growth of salt concentration over time, the influence of the convective component first increases, reaches an extremum and then significantly decreases. At nucleate boiling in a salt solution it is incorrect to simulate the droplet evaporation and the heat transfer in quasi-stationary approximation. The evaporation at nucleate boiling in a liquid drop is divided into several characteristic time intervals. Each of these intervals is characterized by a noticeable change in both the evaporation rate and the convection role.

  4. Liquid salt environment stress-rupture testing

    Science.gov (United States)

    Ren, Weiju; Holcomb, David E.; Muralidharan, Govindarajan; Wilson, Dane F.

    2016-03-22

    Disclosed herein are systems, devices and methods for stress-rupture testing selected materials within a high-temperature liquid salt environment. Exemplary testing systems include a load train for holding a test specimen within a heated inert gas vessel. A thermal break included in the load train can thermally insulate a load cell positioned along the load train within the inert gas vessel. The test specimen can include a cylindrical gage portion having an internal void filled with a molten salt during stress-rupture testing. The gage portion can have an inner surface area to volume ratio of greater than 20 to maximize the corrosive effect of the molten salt on the specimen material during testing. Also disclosed are methods of making a salt ingot for placement within the test specimen.

  5. Solar gasification of biomass: design and characterization of a molten salt gasification reactor

    Science.gov (United States)

    Hathaway, Brandon Jay

    The design and implementation of a prototype molten salt solar reactor for gasification of biomass is a significant milestone in the development of a solar gasification process. The reactor developed in this work allows for 3 kWth operation with an average aperture flux of 1530 suns at salt temperatures of 1200 K with pneumatic injection of ground or powdered dry biomass feedstocks directly into the salt melt. Laboratory scale experiments in an electrically heated reactor demonstrate the benefits of molten salt and the data was evaluated to determine the kinetics of pyrolysis and gasification of biomass or carbon in molten salt. In the presence of molten salt overall gas yields are increased by up to 22%; pyrolysis rates double due to improved heat transfer, while carbon gasification rates increase by an order of magnitude. Existing kinetic models for cellulose pyrolysis fit the data well, while carbon gasification in molten salt follows kinetics modeled with a 2/3 order shrinking-grain model with a pre-exponential factor of 1.5*106 min-1 and activation energy of 158 kJ/mol. A reactor concept is developed based around a concentric cylinder geometry with a cavity-style solar receiver immersed within a volume of molten carbonate salt. Concentrated radiation delivered to the cavity is absorbed in the cavity walls and transferred via convection to the salt volume. Feedstock is delivered into the molten salt volume where biomass gasification reactions will be carried out producing the desired product gas. The features of the cavity receiver/reactor concept are optimized based on modeling of the key physical processes. The cavity absorber geometry is optimized according to a parametric survey of radiative exchange using a Monte Carlo ray tracing model, resulting in a cavity design that achieves absorption efficiencies of 80%-90%. A parametric survey coupling the radiative exchange simulations to a CFD model of molten salt natural convection is used to size the annulus

  6. A comparison of hydroponic and soil-based screening methods to identify salt tolerance in the field in barley

    Science.gov (United States)

    Tavakkoli, Ehsan; Fatehi, Foad; Rengasamy, Pichu; McDonald, Glenn K.

    2012-01-01

    Success in breeding crops for yield and other quantitative traits depends on the use of methods to evaluate genotypes accurately under field conditions. Although many screening criteria have been suggested to distinguish between genotypes for their salt tolerance under controlled environmental conditions, there is a need to test these criteria in the field. In this study, the salt tolerance, ion concentrations, and accumulation of compatible solutes of genotypes of barley with a range of putative salt tolerance were investigated using three growing conditions (hydroponics, soil in pots, and natural saline field). Initially, 60 genotypes of barley were screened for their salt tolerance and uptake of Na+, Cl–, and K+ at 150 mM NaCl and, based on this, a subset of 15 genotypes was selected for testing in pots and in the field. Expression of salt tolerance in saline solution culture was not a reliable indicator of the differences in salt tolerance between barley plants that were evident in saline soil-based comparisons. Significant correlations were observed in the rankings of genotypes on the basis of their grain yield production at a moderately saline field site and their relative shoot growth in pots at ECe 7.2 [Spearman’s rank correlation (rs)=0.79] and ECe 15.3 (rs=0.82) and the crucial parameter of leaf Na+ (rs=0.72) and Cl– (rs=0.82) concentrations at ECe 7.2 dS m−1. This work has established screening procedures that correlated well with grain yield at sites with moderate levels of soil salinity. This study also showed that both salt exclusion and osmotic tolerance are involved in salt tolerance and that the relative importance of these traits may differ with the severity of the salt stress. In soil, ion exclusion tended to be more important at low to moderate levels of stress but osmotic stress became more important at higher stress levels. Salt exclusion coupled with a synthesis of organic solutes were shown to be important components of salt

  7. Method for converting UF5 to UF4 in a molten fluoride salt

    International Nuclear Information System (INIS)

    Bennett, M.R.; Bamberge, C.E.; Kelmers, A.D.

    1980-01-01

    The subject relates to fuel preparation for molten salt breeder reactors, and more particularly to the reconstitution of spent molten fuel salt after fission product removal. During the course of reactor operation, fission products including rare earths and bred-in protactinium build up in the fuel salt and adversely affect the nuclear properties of the fuel. In order to more efficiently operate the reactor, the level of neutron poison fission products must be kept at a minimum. This is accomplished by continuously removing spent fuel from the primary circuit, processing it to remove fission products, and returning the reprocessed molten salt to the primary circuit. It is desirable for safety and economy that the fuel processing plant be a component of the reactor itself and that the salt be kept in the molten state throughout the processing system. (auth)

  8. Principles of the radiosity method versus radiative transfer for canopy reflectance modeling

    Science.gov (United States)

    Gerstl, Siegfried A. W.; Borel, Christoph C.

    1992-01-01

    The radiosity method is introduced to plant canopy reflectance modeling. We review the physics principles of the radiosity method which originates in thermal radiative transfer analyses when hot and cold surfaces are considered within a given enclosure. The radiosity equation, which is an energy balance equation for discrete surfaces, is described and contrasted with the radiative transfer equation, which is a volumetric energy balance equation. Comparing the strengths and weaknesses of the radiosity method and the radiative transfer method, we conclude that both methods are complementary to each other. Results of sample calculations are given for canopy models with up to 20,000 discrete leaves.

  9. The introduction of the safety of molten salt reactor

    International Nuclear Information System (INIS)

    Zuo Jiaxu; Zhang Chunming

    2011-01-01

    This paper introduces the generation TV Nuclear Energy Systems and molten salt reactor which is the only fluid fuel reactor in the Gen-TV. Safety features and attributes of MSR are described. The supply of fuel and the minimum of waste are described. The clean molten salt in the secondary heat transport system transfers the heat from the primary heat exchanger to a high-temperature Brayton cycle that converts the heat to electricity. With the Brayton cycle, the thermal efficiency of the system will be improved. Base on the MSR, the thorium-uranium fuel cycle is also introduced. (authors)

  10. PRECONDITIONED BI-CONJUGATE GRADIENT METHOD FOR RADIATIVE TRANSFER IN SPHERICAL MEDIA

    International Nuclear Information System (INIS)

    Anusha, L. S.; Nagendra, K. N.; Paletou, F.; Leger, L.

    2009-01-01

    A robust numerical method called the Preconditioned Bi-Conjugate Gradient (Pre-BiCG) method is proposed for the solution of the radiative transfer equation in spherical geometry. A variant of this method called Stabilized Preconditioned Bi-Conjugate Gradient (Pre-BiCG-STAB) is also presented. These are iterative methods based on the construction of a set of bi-orthogonal vectors. The application of the Pre-BiCG method in some benchmark tests shows that the method is quite versatile, and can handle difficult problems that may arise in astrophysical radiative transfer theory.

  11. Caenorhabditis elegans response to salt

    NARCIS (Netherlands)

    O.O. Umuerri (Oluwatoroti Omowayewa)

    2012-01-01

    textabstractThis thesis describes my work, where I used genetic methods to identify new genes involved in salt taste in C. elegans. In addition, I used calcium imaging to characterize the cellular response of C. elegans to salt. The thesis is divided into five sections and each section is summarized

  12. Heat transfer analysis of the geologic disposal of spent fuel and high-level waste storage canisters

    International Nuclear Information System (INIS)

    Allen, G.K.

    1980-08-01

    Near-field temperatures resulting from the storage of high-level waste canisters and spent unreprocessed fuel assembly canisters in geologic formations were determined. Preliminary design of the repository was modeled for a heat transfer computer code, HEATING5, which used the Crank-Nicolson finite difference method to evaluate transient heat transfer. The heat transfer system was evaluated with several two- and three-dimensional models which transfer heat by a combination of conduction, natural convention, and radiation. Physical properties of the materials in the model were based upon experimental values for the various geologic formations. The effects of canister spacing, fuel age, and use of an overpack were studied for the analysis of the spent fuel canisters; salt, granite, and basalt were considered as the storage media for spent fuel canisters. The effects of canister diameter and use of an overpack were studied for the analysis of the high-level waste canisters; salt was considered as the only storage media for high-level waste canisters. Results of the studies on spent fuel assembly canisters showed that the canisters could be stored in salt formations with a maximum heat loading of 134 kw/acre without exceeding the temperature limits set for salt stability. The use of an overpack had little effect on the peak canister temperatures. When the total heat load per acre decreased, the peak temperatures reached in the geologic formations decreased; however, the time to reach the peak temperatures increased. Results of the studies on high-level waste canisters showed that an increased canister diameter will increase the canister interior temperatures considerably; at a constant areal heat loading, a 381 mm diameter canister reached almost a 50 0 C higher temperature than a 305 mm diameter canister. An overpacked canister caused almost a 30 0 C temperature rise in either case

  13. Assessment of the Use of Nitrogen Trifluoride for Purifying Coolant and Heat Transfer Salts in the Fluoride Salt-Cooled High-Temperature Reactor

    International Nuclear Information System (INIS)

    Scheele, Randall D.; Casella, Andrew M.

    2010-01-01

    developed and are used to destroy the NF 3 in a facility's gaseous effluent stream. A process has been developed and used to recover and recycle NF 3 . The electronics industry is actively pursuing alternative methods to control NF 3 releases. In comparison, HF has not been identified to be a potential global warming gas nor has it been determined to have any other environmental affect. Also because of the high solubility of HF in water and aqueous caustic solutions, the HF industry has developed and used aqueous scrubbers to effectively prevent its release into the environment. Care appears to be necessary when using NF 3 in a plant. Precautions must be taken to prevent adiabatic compression and make sure that NF 3 thermal decomposition does not occur in unplanned locations. The system must be engineered to avoid the use of ball valves and sharp bends. The materials of construction that will be required to contain NF 3 and anhydrous HF will be similar. If water is present such as in the process effluent, HF is more corrosive than NF 3 and its containment would require nickel or nickel-based alloys. Both of these fluorinating agents become more reactive with increasing temperature and would require pure nickel or nickel-based alloys for containment until the gas stream has cooled. With respect to the cost of the fluoride, HF is about one third the cost of NF 3 on a fluorine basis. Of the fluorine-containing chemicals, more HF is produced than any other. NF 3 is produced on an industrial scale and its capacity has grown each year since being identified as a useful etchant. Both NF 3 and HF have been demonstrated to be effective at removing oxide, hydroxide, and water contamination from fluoride salts during melt processing of fluoride glasses while HF in combination with H 2 has been demonstrated to be effective for some of the candidate coolant salts and some of their individual constituents such as beryllium oxide (BeO). HF has a limited solubility in molten 66 mol% LiF-33

  14. Ritual as a method of social memory content transfer

    Directory of Open Access Journals (Sweden)

    Utkina Anna N.

    2016-01-01

    Full Text Available The paper deals with a ritual as a method of social memory content transfer. To reveal dialectics of ritual phenomenon formation and development, hermeneutical, dialectical and general scientific approaches as well as analysis and synthesis are applied. Social memory is considered as a complex of essential information for a society rooted in a social medium mentality and transferred from one generation to another. In terms of analyzed theoretical approaches to ritual and social memory the authors conclude that a ritual is capable of transferring social memory from one social stratum to another retaining its content. By means of a ritual, the process of conversation between different individuals is implemented, and the unity of memories is formed. Ritual instability allows changing its form dialectically retaining its content unvaried. Ritual preserves, presents and keeps its content current taking into account changing forms of manifestation that define the dynamics of society development. Reflecting the inner content of a social memory ritual contributes to its literal perception in the modern world and, as a consequence, to the reduction of social conscience manipulation. The development of society is in great necessity in such methods of social memory transfer that are capable of responding to social changes retaining important information for society ungarbled. The authors consider a ritual as one of such methods.

  15. A fresh method of DNA transformation to the seeds irradiated by Co ...

    African Journals Online (AJOL)

    Jane

    2011-06-29

    Jun 29, 2011 ... To find out a simpler method that can directly transfer the aim gene into plant ... Key words: DNA transformation, irradiated seeds, purple medic, salt screening. ..... characterization of a maize mitochondrial plasmid-like DNA.

  16. An experimental test plan for the characterization of molten salt thermochemical properties in heat transport systems

    International Nuclear Information System (INIS)

    Calderoni, Pattrick

    2010-01-01

    Molten salts are considered within the Very High Temperature Reactor program as heat transfer media because of their intrinsically favorable thermo-physical properties at temperatures starting from 300 C and extending up to 1200 C. In this context two main applications of molten salt are considered, both involving fluoride-based materials: as primary coolants for a heterogeneous fuel reactor core and as secondary heat transport medium to a helium power cycle for electricity generation or other processing plants, such as hydrogen production. The reference design concept here considered is the Advanced High Temperature Reactor (AHTR), which is a large passively safe reactor that uses solid graphite-matrix coated-particle fuel (similar to that used in gas-cooled reactors) and a molten salt primary and secondary coolant with peak temperatures between 700 and 1000 C, depending upon the application. However, the considerations included in this report apply to any high temperature system employing fluoride salts as heat transfer fluid, including intermediate heat exchangers for gas-cooled reactor concepts and homogeneous molten salt concepts, and extending also to fast reactors, accelerator-driven systems and fusion energy systems. The purpose of this report is to identify the technical issues related to the thermo-physical and thermo-chemical properties of the molten salts that would require experimental characterization in order to proceed with a credible design of heat transfer systems and their subsequent safety evaluation and licensing. In particular, the report outlines an experimental R and D test plan that would have to be incorporated as part of the design and operation of an engineering scaled facility aimed at validating molten salt heat transfer components, such as Intermediate Heat Exchangers. This report builds on a previous review of thermo-physical properties and thermo-chemical characteristics of candidate molten salt coolants that was generated as part

  17. An experimental test plan for the characterization of molten salt thermochemical properties in heat transport systems

    Energy Technology Data Exchange (ETDEWEB)

    Pattrick Calderoni

    2010-09-01

    Molten salts are considered within the Very High Temperature Reactor program as heat transfer media because of their intrinsically favorable thermo-physical properties at temperatures starting from 300 C and extending up to 1200 C. In this context two main applications of molten salt are considered, both involving fluoride-based materials: as primary coolants for a heterogeneous fuel reactor core and as secondary heat transport medium to a helium power cycle for electricity generation or other processing plants, such as hydrogen production. The reference design concept here considered is the Advanced High Temperature Reactor (AHTR), which is a large passively safe reactor that uses solid graphite-matrix coated-particle fuel (similar to that used in gas-cooled reactors) and a molten salt primary and secondary coolant with peak temperatures between 700 and 1000 C, depending upon the application. However, the considerations included in this report apply to any high temperature system employing fluoride salts as heat transfer fluid, including intermediate heat exchangers for gas-cooled reactor concepts and homogenous molten salt concepts, and extending also to fast reactors, accelerator-driven systems and fusion energy systems. The purpose of this report is to identify the technical issues related to the thermo-physical and thermo-chemical properties of the molten salts that would require experimental characterization in order to proceed with a credible design of heat transfer systems and their subsequent safety evaluation and licensing. In particular, the report outlines an experimental R&D test plan that would have to be incorporated as part of the design and operation of an engineering scaled facility aimed at validating molten salt heat transfer components, such as Intermediate Heat Exchangers. This report builds on a previous review of thermo-physical properties and thermo-chemical characteristics of candidate molten salt coolants that was generated as part of the

  18. Chemical interactions and thermodynamic studies in aluminum alloy/molten salt systems

    Science.gov (United States)

    Narayanan, Ramesh

    The recycling of aluminum and aluminum alloys such as Used Beverage Container (UBC) is done under a cover of molten salt flux based on (NaCl-KCl+fluorides). The reactions of aluminum alloys with molten salt fluxes have been investigated. Thermodynamic calculations are performed in the alloy/salt flux systems which allow quantitative predictions of the equilibrium compositions. There is preferential reaction of Mg in Al-Mg alloy with molten salt fluxes, especially those containing fluorides like NaF. An exchange reaction between Al-Mg alloy and molten salt flux has been demonstrated. Mg from the Al-Mg alloy transfers into the salt flux while Na from the salt flux transfers into the metal. Thermodynamic calculations indicated that the amount of Na in metal increases as the Mg content in alloy and/or NaF content in the reacting flux increases. This is an important point because small amounts of Na have a detrimental effect on the mechanical properties of the Al-Mg alloy. The reactions of Al alloys with molten salt fluxes result in the formation of bluish purple colored "streamers". It was established that the streamer is liquid alkali metal (Na and K in the case of NaCl-KCl-NaF systems) dissipating into the melt. The melts in which such streamers were observed are identified. The metal losses occurring due to reactions have been quantified, both by thermodynamic calculations and experimentally. A computer program has been developed to calculate ternary phase diagrams in molten salt systems from the constituting binary phase diagrams, based on a regular solution model. The extent of deviation of the binary systems from regular solution has been quantified. The systems investigated in which good agreement was found between the calculated and experimental phase diagrams included NaF-KF-LiF, NaCl-NaF-NaI and KNOsb3-TINOsb3-LiNOsb3. Furthermore, an insight has been provided on the interrelationship between the regular solution parameters and the topology of the phase

  19. Fundamental study on the salt distillation from the mixtures of rare earth precipitates and LiCl-KCl eutectic salt

    International Nuclear Information System (INIS)

    Yang, H. C.; Eun, H. C.; Cho, Y. Z.; Lee, H. S.; Kim, I. T.

    2008-01-01

    An electrorefining process of spent nuclear fuel generates waste salt containing some radioactive metal chlorides. The most effective method to reduce salt waste volume is to separate radioactive metals from non-radioactive salts. A promising approach is to change radioactive metal chlorides into salt-insoluble oxides by an oxygen sparging. Following this, salt distillation process is available to effectively separate the precipitated particulate metal oxides from salt. This study investigated the distillation rates of LiCl-KCl eutectic salt under different vacuums at elevated temperatures. The first part study investigated distillation rates of eutectic salt under different vacuums at high temperatures by using thermo-gravimetric furnace system. In the second part, we tested the removal of eutectic salt from the RE precipitates by using the laboratory vacuum distillation furnace system. Investigated variables were the temperature of mixture, the degree of vacuum and the time

  20. Modified coaxial wire method for measurement of transfer impedance of beam position monitors

    Science.gov (United States)

    Kumar, Mukesh; Babbar, L. K.; Deo, R. K.; Puntambekar, T. A.; Senecha, V. K.

    2018-05-01

    The transfer impedance is a very important parameter of a beam position monitor (BPM) which relates its output signal with the beam current. The coaxial wire method is a standard technique to measure transfer impedance of the BPM. The conventional coaxial wire method requires impedance matching between coaxial wire and external circuits (vector network analyzer and associated cables). This paper presents a modified coaxial wire method for bench measurement of the transfer impedance of capacitive pickups like button electrodes and shoe box BPMs. Unlike the conventional coaxial wire method, in the modified coaxial wire method no impedance matching elements have been used between the device under test and the external circuit. The effect of impedance mismatch has been solved mathematically and a new expression of transfer impedance has been derived. The proposed method is verified through simulation of a button electrode BPM using cst studio suite. The new method is also applied to measure transfer impedance of a button electrode BPM developed for insertion devices of Indus-2 and the results are also compared with its simulations. Close agreement between measured and simulation results suggests that the modified coaxial wire setup can be exploited for the measurement of transfer impedance of capacitive BPMs like button electrodes and shoe box BPM.

  1. Modified coaxial wire method for measurement of transfer impedance of beam position monitors

    Directory of Open Access Journals (Sweden)

    Mukesh Kumar

    2018-05-01

    Full Text Available The transfer impedance is a very important parameter of a beam position monitor (BPM which relates its output signal with the beam current. The coaxial wire method is a standard technique to measure transfer impedance of the BPM. The conventional coaxial wire method requires impedance matching between coaxial wire and external circuits (vector network analyzer and associated cables. This paper presents a modified coaxial wire method for bench measurement of the transfer impedance of capacitive pickups like button electrodes and shoe box BPMs. Unlike the conventional coaxial wire method, in the modified coaxial wire method no impedance matching elements have been used between the device under test and the external circuit. The effect of impedance mismatch has been solved mathematically and a new expression of transfer impedance has been derived. The proposed method is verified through simulation of a button electrode BPM using cst studio suite. The new method is also applied to measure transfer impedance of a button electrode BPM developed for insertion devices of Indus-2 and the results are also compared with its simulations. Close agreement between measured and simulation results suggests that the modified coaxial wire setup can be exploited for the measurement of transfer impedance of capacitive BPMs like button electrodes and shoe box BPM.

  2. A difference quotient-numerical integration method for solving radiative transfer problems

    International Nuclear Information System (INIS)

    Ding Peizhu

    1992-01-01

    A difference quotient-numerical integration method is adopted to solve radiative transfer problems in an anisotropic scattering slab medium. By using the method, the radiative transfer problem is separated into a system of linear algebraic equations and the coefficient matrix of the system is a band matrix, so the method is very simple to evaluate on computer and to deduce formulae and easy to master for experimentalists. An example is evaluated and it is shown that the method is precise

  3. Development of electrowinner and salt regenerator for PRIDE

    Energy Technology Data Exchange (ETDEWEB)

    Paek, S. W.; Lee, H. S.; Hur, J. M. [KAERI, Daejeon (Korea, Republic of); and others

    2011-11-15

    A scope of this study includes an manufacturing an electrowinning equipment of LCC(Liquid Cadmium Cathode) to recover actinides such as uranium and TRU(Np, Pu, Am, Cm) remained in the molten salt(LiCl-KCl) transferred after an electrorefining process which collects uranium of high purity and an salt regeneration equipment to remove RE(Rare Earth) from the remaining salt after electrowinning process by oxidation and precipitation. The design capacity to recover actinide metals for PRIDE electrowinner was determined to 1 kg/batch and the amount of cadmium and LiCl-KCl eutectic salt were 10 kg and 50 kg, respectively. The equipment was designed based on the operation experiences of lab-scale LCC apparatus but the concepts of remote operation were introduced. PRIDE scale oxidative precipitation precipitation apparatus whose maximum batch size is 20kg-salt/batch was designed and installed. It consists of four parts: oxidation reactor, oxygen sparing unit, flange moving device and crucible unit. To avoid a severe corrosion problem due to a high temperature, oxygen and chloride salt atmosphere, the oxidation reaction is conducted in an 100% Ta crucible. A 3D test was conducted to review the possibility of the remote operation for the equipment and the test results were applied to the design improvement. The mock-up equipment were prepared on the basis of 3D test results and after the test of remote operation, the final equipment for PRIDE were manufactured.

  4. Liking, salt taste perception and use of table salt when consuming reduced-salt chicken stews in light of South Africa's new salt regulations.

    Science.gov (United States)

    De Kock, H L; Zandstra, E H; Sayed, N; Wentzel-Viljoen, E

    2016-01-01

    This study investigated the impact of salt reduction on liking, salt taste perception, and use of table salt when consuming chicken stew in light of South Africa's new salt recommendations. In total, 432 South-African consumers (aged 35.2 ± 12.3 years) consumed a full portion of a chicken stew meal once at a central location. Four stock cube powders varying in salt content were used to prepare chicken stews: 1) no reduction - 2013 Na level; regular salt level as currently available on the South African market (24473 mg Na/100 g), 2) salt reduction smaller than 2016 level, i.e. 10%-reduced (22025 mg Na/100 g), 3) 2016 salt level, as per regulatory prescriptions (18000 mg Na/100 g), 4) 2019 salt level, as per regulatory prescriptions (13000 mg Na/100 g). Consumers were randomly allocated to consume one of the four meals. Liking, salt taste perception, and use of table salt and pepper were measured. Chicken stews prepared with reduced-salt stock powders were equally well-liked as chicken stews with the current salt level. Moreover, a gradual reduction of the salt in the chicken stews resulted in a reduced salt intake, up to an average of 19% for the total group compared to the benchmark 2013 Na level stew. However, 19% of consumers compensated by adding salt back to full compensation in some cases. More salt was added with increased reductions of salt in the meals, even to the point of full compensation. Further investigation into the impacts of nutrition communication and education about salt reduction on salt taste perception and use is needed. This research provides new consumer insights on salt use and emphasises the need for consumer-focused behaviour change approaches, in addition to reformulation of products. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Development of High Throughput Salt Separation System with Integrated Liquid Salt Separation - Salt Distillation Assembly

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Sangwoon; Park, K. M.; Kim, J. G.; Jeong, J. H.; Lee, S. J.; Park, S. B.; Kim, S. S.

    2013-01-15

    The capacity of a salt distiller should be sufficiently large to reach the throughput of uranium electro-refining process. In this study, an assembly composing a liquid separation sieve and a distillation crucible was developed for the sequential operation of a liquid salt separation and a vacuum distillation in the same tower. The feasibility of the sequential salt separation was examined by the rotation test of the sieve-crucible assembly and sequential operation of a liquid salt separation and a vacuum distillation. The adhered salt in the uranium deposits was removed successfully. The salt content in the deposits was below 0.1 wt% after the sequential operation of the liquid salt separation - salt distillation. From the results of this study, it could be concluded that efficient salt separation can be realized by the sequential operation of liquid salt separation and vacuum distillation in one distillation tower since the operation procedures are simplified and no extra operation of cooling and reheating is necessary.

  6. Sea Salt vs. Table Salt: What's the Difference?

    Science.gov (United States)

    ... and healthy eating What's the difference between sea salt and table salt? Answers from Katherine Zeratsky, R.D., L.D. The main differences between sea salt and table salt are in their taste, texture ...

  7. Salt stripping: a pyrochemical approach to the recovery of plutonium electrorefining salt residues

    International Nuclear Information System (INIS)

    Christensen, D.C.; Mullins, L.J.

    1982-10-01

    A pyrochemical process has been developed to take the salt residue from the plutonium electrorefining process and strip the plutonium from it. The process, called salt stripping, uses calcium as a reducing/coalescing agent. In a one-day operation, greater than 95% of the plutonium can be recovered as a metallic button. As much as 88% of the residue is either reused as metal or discarded as a clean salt. A thin layer of black salts, which makes up the bulk of the unrecovered Pu, is a by-product of the initial reductions. A number of black salts can be collected together and re-reduced in a second step. Greater than 88% of this plutonium can be successfully recovered in this second stage with the resulting residues being discardable. The processing time, number of processor hours, and the volume of secondary residues are greatly reduced over the classical aqueous recovery methods. In addition, the product metal is of sufficient quality to be fed directly to the electrorefining process for purification. 8 figures, 7 tables

  8. Calculation of β-effective of a molten salt reactor

    International Nuclear Information System (INIS)

    Hirakawa, N.; Sakaba, H.

    1987-01-01

    A method to calculate the β eff of a molten salt reactor was developed taking the effect of the flow of the molten salt into account. The method was applied to the 1000MW MSR design made by ORNL. The change in β eff due to the change in the residence time outside of the core of the fuel salt and to the change in the flow velocity when the total amount of the fuel salt is kept constant were investigated. It was found that β eff was reduced to 47.9% of the value when the fuel salt is at rest for the present design. (author)

  9. Method and apparatus for nuclear heating of oil-bearing formations

    International Nuclear Information System (INIS)

    Alspaw, D.I.

    1979-01-01

    A method and apparatus are provided for using heat generated by absorption of radiation from nuclear waste materials to reduce the viscosity of petroleum products contained within a subsurface earth formation. The nuclear waste material is positioned in a salt water formation underlying the subsurface earth formation so that the radiation emitted by the material heats the salt water formation. conduction and convection transfer the heat to the subsurface earth formation, raising the temperature and thereby reducing the viscosity of the petroleum products. To prevent radioactive contamination within the salt water formation, the nuclear waste material may be encapsulated in a material selected to absorb alpha and beta radiation

  10. Facilitated transport of hydrophilic salts by mixtures of anion and cation carriers and by ditopic carriers

    NARCIS (Netherlands)

    Chrisstoffels, L.A.J.; de Jong, Feike; Reinhoudt, David; Sivelli, Stefano; Gazzola, Licia; Casnati, Alessandro; Ungaro, Rocco

    1999-01-01

    Anion transfer to the membrane phase affects the extraction efficiency of salt transport by cation carriers 1 and 3. Addition of anion receptors 5 or 6 to cation carriers 1, 3, or 4 in the membrane phase enhances the transport of salts under conditions in which the cation carriers alone do not

  11. A cluster approximation for the transfer-matrix method

    International Nuclear Information System (INIS)

    Surda, A.

    1990-08-01

    A cluster approximation for the transfer-method is formulated. The calculation of the partition function of lattice models is transformed to a nonlinear mapping problem. The method yields the free energy, correlation functions and the phase diagrams for a large class of lattice models. The high accuracy of the method is exemplified by the calculation of the critical temperature of the Ising model. (author). 14 refs, 2 figs, 1 tab

  12. Method of removing radioactive waste from oil

    International Nuclear Information System (INIS)

    Belanger, R.L.

    1986-01-01

    This patent describes a method of removing particulates, radioactive contaminants, and moisture from oil, which consists of: straining out the particulates by passing the oil through a coarse filter screen to a receiving vessel; forming an upper stratum of oil and a lower stratum of sludge, consisting of mud, oil, particulates, and moisture, by heating the upper two-thirds of the receiving vessel; skimming off the stratum of oil from the receiving vessel; transferring the sludge from the receiving vessel to a container; transferring additional separated oil to the receiving vessel; conveying the oil skimmed from the receiving vessel to a mixing vessel; adding an effective amount of Calcium Hypochlorite crystals containing 65% free Chlorine to the mixing vessel to initiate salt formation with the radioactive contaminants; mixing the contents of the mixing vessel for at least ten minutes; transferring the mixture from the mixing vessel to a circulating heater; outputting the mixture from the circulating heater to a second mixing vessel; removing moisture from the oil; and filtering from the oil, the solid radioactive contaminant-salts and residual particulate matter

  13. Non-linear heat transfer computer code by finite element method

    International Nuclear Information System (INIS)

    Nagato, Kotaro; Takikawa, Noboru

    1977-01-01

    The computer code THETA-2D for the calculation of temperature distribution by the two-dimensional finite element method was made for the analysis of heat transfer in a high temperature structure. Numerical experiment was performed for the numerical integration of the differential equation of heat conduction. The Runge-Kutta method of the numerical experiment produced an unstable solution. A stable solution was obtained by the β method with the β value of 0.35. In high temperature structures, the radiative heat transfer can not be neglected. To introduce a term of the radiative heat transfer, a functional neglecting the radiative heat transfer was derived at first. Then, the radiative term was added after the discretion by variation method. Five model calculations were carried out by the computer code. Calculation of steady heat conduction was performed. When estimated initial temperature is 1,000 degree C, reasonable heat blance was obtained. In case of steady-unsteady temperature calculation, the time integral by THETA-2D turned out to be under-estimation for enthalpy change. With a one-dimensional model, the temperature distribution in a structure, in which heat conductivity is dependent on temperature, was calculated. Calculation with a model which has a void inside was performed. Finally, model calculation for a complex system was carried out. (Kato, T.)

  14. Effective Methods of Nuclear Power Technology Transfer

    International Nuclear Information System (INIS)

    Shave, D. F.; Kent, G. F.; Giambusso, A.

    1987-01-01

    An effective technology transfer program is a necessary and significant step towards independence in nuclear power technology. Attaining success in the conduct of such a program is a result of a) the donor and recipient jointly understanding the fundamental concepts of the learning process, b) sharing a mutual philosophy involving a partnership relationship, c) joint and careful planning, d) rigorous adherence to proven project management techniques, and e) presence of adequate feedback to assure continuing success as the program proceeds. Several years ago, KEPCO President Park, Jung-KI presented a paper on technology in which he stated, 'Nuclear technology is an integration of many unit disciplines, and thus requires extensive investment and training in order to establish the base for efficient absorption of transferred technology.' This paper addresses President Park's observations by discussing the philosophy, approach, and mechanisms that are necessary to support an efficient and effective process of nuclear power technology transfer. All technical content and presentation methods discussed are based on a technology transfer program developed by Stone and Webster, as an Engineer/Constructor for nuclear power plants, and are designed and implemented to promote the primary program goal - the ability of the trainees and the organization to perform specific nuclear power related multi-discipline function independently and competitively

  15. Extraction, scrub, and strip test results for the solvent transfer to salt waste processing facility

    Energy Technology Data Exchange (ETDEWEB)

    Peters, T. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-09-07

    The Savannah River National Laboratory (SRNL) prepared approximately 240 gallons of Caustic-Side Solvent Extraction (CSSX) solvent for use at the Salt Waste Processing Facility (SWPF). An Extraction, Scrub, and Strip (ESS) test was performed on a sample of the prepared solvent using a salt solution prepared by Parsons to determine cesium distribution ratios (D(Cs)), and cesium concentration in the strip effluent (SE) and decontaminated salt solution (DSS) streams. This data will be used by Parsons to help qualify the solvent for use at the SWPF. The ESS test showed acceptable performance of the solvent for extraction, scrub, and strip operations. The extraction D(Cs) measured 15.5, exceeding the required value of 8. This value is consistent with results from previous ESS tests using similar solvent formulations. Similarly, scrub and strip cesium distribution ratios fell within acceptable ranges.

  16. Risk-based transfer responses to climate change, simulated through autocorrelated stochastic methods

    Science.gov (United States)

    Kirsch, B.; Characklis, G. W.

    2009-12-01

    Maintaining municipal water supply reliability despite growing demands can be achieved through a variety of mechanisms, including supply strategies such as temporary transfers. However, much of the attention on transfers has been focused on market-based transfers in the western United States largely ignoring the potential for transfers in the eastern U.S. The different legal framework of the eastern and western U.S. leads to characteristic differences between their respective transfers. Western transfers tend to be agricultural-to-urban and involve raw, untreated water, with the transfer often involving a simple change in the location and/or timing of withdrawals. Eastern transfers tend to be contractually established urban-to-urban transfers of treated water, thereby requiring the infrastructure to transfer water between utilities. Utilities require the tools to be able to evaluate transfer decision rules and the resulting expected future transfer behavior. Given the long-term planning horizons of utilities, potential changes in hydrologic patterns due to climate change must be considered. In response, this research develops a method for generating a stochastic time series that reproduces the historic autocorrelation and can be adapted to accommodate future climate scenarios. While analogous in operation to an autoregressive model, this method reproduces the seasonal autocorrelation structure, as opposed to assuming the strict stationarity produced by an autoregressive model. Such urban-to-urban transfers are designed to be rare, transient events used primarily during times of severe drought, and incorporating Monte Carlo techniques allows for the development of probability distributions of likely outcomes. This research evaluates a system risk-based, urban-to-urban transfer agreement between three utilities in the Triangle region of North Carolina. Two utilities maintain their own surface water supplies in adjoining watersheds and look to obtain transfers via

  17. Genetic transformation of Populus tomentosa to improve salt tolerance

    Science.gov (United States)

    Ningxia Du; Xin Liu; Yun Li; Shouyi Chen; Jinsong Zhang; Da Ha; Wenguang Deng; Chunkui Sun; Yingzhi Zhang; Paula M Pijut

    2012-01-01

    Soil salinity can be a limiting factor for productivity in agriculture and forestry. In order to fully utilize saline lands productively in plantation forestry for pulp production, the genetic modification of tree species for salt tolerance may be required. The AhDREB1 gene, a DREB-like transcription factor gene, was transferred into ...

  18. Analysis of Power Transfer Efficiency of Standard Integrated Circuit Immunity Test Methods

    Directory of Open Access Journals (Sweden)

    Hai Au Huynh

    2015-01-01

    Full Text Available Direct power injection (DPI and bulk current injection (BCI methods are defined in IEC 62132-3 and IEC 62132-4 as the electromagnetic immunity test method of integrated circuits (IC. The forward power measured at the RF noise generator when the IC malfunctions is used as the measure of immunity level of the IC. However, the actual power that causes failure in ICs is different from forward power measured at the noise source. Power transfer efficiency is used as a measure of power loss of the noise injection path. In this paper, the power transfer efficiencies of DPI and BCI methods are derived and validated experimentally with immunity test setup of a clock divider IC. Power transfer efficiency varies significantly over the frequency range as a function of the test method used and the IC input impedance. For the frequency range of 15 kHz to 1 GHz, power transfer efficiency of the BCI test was constantly higher than that of the DPI test. In the DPI test, power transfer efficiency is particularly low in the lower test frequency range up to 10 MHz. When performing the IC immunity tests following the standards, these characteristics of the test methods need to be considered.

  19. System design description of forced-convection molten-salt corrosion loops MSR-FCL-3 and MSR-FCL-4

    International Nuclear Information System (INIS)

    Huntley, W.R.; Silverman, M.D.

    1976-11-01

    Molten-salt corrosion loops MSR-FCL-3 and MSR-FCL-4 are high-temperature test facilities designed to evaluate corrosion and mass transfer of modified Hastelloy N alloys for future use in Molten-Salt Breeder Reactors. Salt is circulated by a centrifugal sump pump to evaluate material compatibility with LiF-BeF 2 -ThF 4 -UF 4 fuel salt at velocities up to 6 m/s (20 fps) and at salt temperatures from 566 to 705 0 C (1050 to 1300 0 F). The report presents the design description of the various components and systems that make up each corrosion facility, such as the salt pump, corrosion specimens, salt piping, main heaters, salt coolers, salt sampling equipment, and helium cover-gas system, etc. The electrical systems and instrumentation and controls are described, and operational procedures, system limitations, and maintenance philosophy are discussed

  20. Salicornia europaea L. Na⁺/H⁺ antiporter gene improves salt tolerance in transgenic alfalfa (Medicago sativa L.).

    Science.gov (United States)

    Zhang, L Q; Niu, Y D; Huridu, H; Hao, J F; Qi, Z; Hasi, A

    2014-07-24

    In order to obtain a salt-tolerant perennial alfalfa (Medicago sativa L.), we transferred the halophyte Salicornia europaea L. Na(+)/H(+) antiporter gene, SeNHX1, to alfalfa by using the Agrobacterium-mediated transformation method. The transformants were confirmed by both PCR and RT-PCR analyses. Of 197 plants that were obtained after transformation, 36 were positive by PCR analysis using 2 primer pairs for the CaMV35S-SeNHX1 and SeNHX1-Nos fragments; 6 plants survived in a greenhouse. RT-PCR analysis revealed that SeNHX1 was expressed in 5 plants. The resultant transgenic alfalfa had better salt tolerance. After stress treatment for 21 days with 0.6% NaCl, the chlorophyll and MDA contents in transgenic plants were lower, but proline content and SOD, POD, and CAT activities were higher than those in wild-type plants. These results suggest that the salt tolerance of transgenic alfalfa was improved by the overexpression of the SeNHX1 gene.

  1. Salt separation of uranium deposits generated from electrorefining in pyro process

    International Nuclear Information System (INIS)

    Kwon, S. W.; Park, K. M.; Jeong, J. H.; Lee, H. S.; Kim, J. G.

    2012-01-01

    Electrorefining is a key step in a pyro processing. Electrorefining process is generally composed of two recovery steps- deposit of uranium onto a solid cathode(electrorefining) and then the recovery of the remaining uranium and TRU(TransUranic) elements simultaneously by a liquid cadmium cathode(electrowinning). The uranium ingot is prepared from the deposits after the salt separation. In this study, the sequential operation of the liquid salt separation? distillation of the residual salt was attempted for the achievement of high throughput performance in the salt separation. The effects of deposit size and packing density were also investigated with steel chips, steel chips, and uranium dendrites. The apparent evaporation rate decreased with the increasing packing density or the increasing size of deposits due to the hindrance of the vapor transport by the deposits. It was found that the packing density and the geometry of deposit crucible are important design parameters for the salt separation system. Base on the results of the study, an engineering scale salt distiller was developed and installed in the argon cell. The salt distiller is a batch-type, and the process capacity to about 50 kg U-deposits/day. The design of the salt distiller is based on the remote operation by Master Slave Manipulator (MSM) and a hoist. The salt distiller is composed of two large blocks of the distillation tower and the crucible loading system for the transportation to maintenance room via the Large Transfer Lock (LTL)

  2. Salt separation of uranium deposits generated from electrorefining in pyro process

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, S. W.; Park, K. M.; Jeong, J. H.; Lee, H. S.; Kim, J. G. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-03-15

    Electrorefining is a key step in a pyro processing. Electrorefining process is generally composed of two recovery steps- deposit of uranium onto a solid cathode(electrorefining) and then the recovery of the remaining uranium and TRU(TransUranic) elements simultaneously by a liquid cadmium cathode(electrowinning). The uranium ingot is prepared from the deposits after the salt separation. In this study, the sequential operation of the liquid salt separation? distillation of the residual salt was attempted for the achievement of high throughput performance in the salt separation. The effects of deposit size and packing density were also investigated with steel chips, steel chips, and uranium dendrites. The apparent evaporation rate decreased with the increasing packing density or the increasing size of deposits due to the hindrance of the vapor transport by the deposits. It was found that the packing density and the geometry of deposit crucible are important design parameters for the salt separation system. Base on the results of the study, an engineering scale salt distiller was developed and installed in the argon cell. The salt distiller is a batch-type, and the process capacity to about 50 kg U-deposits/day. The design of the salt distiller is based on the remote operation by Master Slave Manipulator (MSM) and a hoist. The salt distiller is composed of two large blocks of the distillation tower and the crucible loading system for the transportation to maintenance room via the Large Transfer Lock (LTL)

  3. Evaluation of the salt deposition on the canister surface of concrete cask. Part 3. Long-term measurement of salt concentration in air and evaluation of the salt deposition

    International Nuclear Information System (INIS)

    Wataru, Masumi; Takeda, Hirofumi

    2015-01-01

    To realize the dry storage using concrete cask in Japan, it is important to develop the evaluation method of the SCC of the canister. One of the key issues is sea salt deposition on the canister surface during the storage period. If the amount of salt deposition exceeds the critical value, the SCC may occur. The amount of salt deposition depends on the ambient air condition. We developed the measurement device of salt in air to make clear the ambient condition. The device sucks the air including sea salt and the sea salt dissolves in water. We analyze the water including sea salt. This device works automatically for one or two months. In this study, the performance of this device was verified comparing the data obtained by the air sampler using filter pack. In Yokosuka area of CRIEPI, we measured the ambient air condition using this device for three years. Furthermore, we performed the salt deposition test using the small ducts in the same area. The ambient air including sea salt flows in the duct and the sea salt deposits on the test specimen put on the duct inner surface. We took out the specimen after certain time and measured the salt amount on the test specimen. Using these data, we obtained the relation between the salt deposition and the time on this ambient condition. The results of this study are useful to evaluate the SCC of the canister. (author)

  4. Heat exchanger device and method for heat removal or transfer

    Science.gov (United States)

    Koplow, Jeffrey P

    2013-12-10

    Systems and methods for a forced-convection heat exchanger are provided. In one embodiment, heat is transferred to or from a thermal load in thermal contact with a heat conducting structure, across a narrow air gap, to a rotating heat transfer structure immersed in a surrounding medium such as air.

  5. The simplified convergence rate calculation for salt grit backfilled caverns in rock salt

    International Nuclear Information System (INIS)

    Navarro, Martin

    2013-03-01

    Within the research and development project 3609R03210 of the German Federal Ministry for the Environment, Nature Conservation and Nuclear Safety, different methods were investigated, which are used for the simplified calculation of convergence rates for mining cavities in salt rock that have been backfilled with crushed salt. The work concentrates on the approach of Stelte and on further developments based on this approach. The work focuses on the physical background of the approaches. Model specific limitations are discussed and possibilities for further development are pointed out. Further on, an alternative approach is presented, which implements independent material laws for the convergence of the mining cavity and the compaction of the crushed salt backfill.

  6. Steady state investigation on neutronics of a molten salt reactor considering the flow effect of fuel salt

    Institute of Scientific and Technical Information of China (English)

    ZHANG Da-Lin; QIU Sui-Zheng; LIU Chang-Liang; SU Guang-Hui

    2008-01-01

    The Molten Salt Reactor (MSR),one of the‘Generation Ⅳ'concepts,is a liquid-fuel reactor,which is different from the conventional reactors using solid fissile materials due to the flow effect of fuel salt.The study on its neutronice considering the fuel salt flow,which is the base of the thermal-hydraulic calculation and safety analysis,must be done.In this paper,the theoretical model on neutronics under steady condition for a single-liquid-fueled MSR is conducted and calculated by numerical method.The neutronics model consists of two group neutron diffusion equations for fast and thermal neutron fluxes,and balance equations for six-group delayed neutron precursors considering the flow effect of fuel salt. The spatial discretization of the above models is based on the finite volume method,and the discretization equations are computed by the source iteration method.The distributions of neutron fluxes and the distributions of the delayed neutron precursors in the core are obtained.The numerical calculated results show that,the fuel salt flow has little effect on the distribution of fast and thermal neutron fluxes and the effective multiplication factor;however,it affects the distribution of the delayed neutron precursors significantly,especially the long-lived one.In addition,it could be found that the delayed neutron precursors influence the nentronics slightly under the steady condition.

  7. Steady state investigation on neutronics of a molten salt reactor considering the flow effect of fuel salt

    International Nuclear Information System (INIS)

    Zhang Dalin; Qiu Suizheng; Su Guanghui; Liu Changliang

    2008-01-01

    The Molten Salt Reactor (MSR), one of the 'Generation IV' concepts, is a liquid-fuel reactor, which is different from the conventional reactors using solid fissile materials due to the flow effect of fuel salt. The study on its neutronics considering the fuel salt flow, which is the base of the thermal-hydraulic calculation and safety analysis, must be done. In this paper, the theoretical model on neutronics under steady condition for a single-liquid-fueled MSR is conducted and calculated by numerical method. The neutronics model consists of two group neutron diffusion equations for fast and thermal neutron fluxes, and balance equations for six-group delayed neutron precursors considering the flow effect of fuel salt. The spatial discretization of the above models is based on the finite volume method, and the discretization equations are computed by the source iteration method. The distributions of neutron fluxes and the distributions of the delayed neutron precursors in the core are obtained. The numerical calculated results show that, the fuel salt flow has little effect on the distribution of fast and thermal neutron fluxes and the effective multiplication factor; however, it affects the distribution of the delayed neutron precursors significantly, especially the long-lived one. In addition, it could be found that the delayed neutron precursors influence the neutronics slightly under the steady condition. (authors)

  8. New primary energy source by thorium molten-salt reactor technology

    International Nuclear Information System (INIS)

    Furukawa, Kazuo; Kato, Yoshio; Furuhashi, Akira; Numata, Hiroo; Mitachi, Koushi; Yoshioka, Ritsuo; Sato, Yuzuru; Arakawa, Kazuto

    2005-01-01

    Among the next 30 years, we have to implement a practical measure in the global energy/environmental problems, solving the followings: (1) replacing the fossil fuels without CO 2 emission, (2) no severe accidents, (3) no concern on military, (4) minimizing wastes, (5) economical, (6) few R and D investment and (7) rapid/huge global application supplying about half of the total primary energy till 50 years later. For this purpose the following system was proposed: THORIMS-NES [Thorium Molten-Salt Nuclear Energy Synergetic System], which is composed of (A) simple fission Molten-Salt power stations (FUJI), and (B) fissile-producing Accelerator Molten-Salt Breeder (AMSB). It has been internationally prepared a practical Developmental Program for its huge-size industrialization of Th breeding fuel cycle to produce a new rational primary energy. Here it is explained the social meaning, the conceptual system design and technological bases, especially, including the molten fluoride salt technology, which was developed as the triple-functional medium for nuclear-engineering, heat-transfer and chemical engineering. The complex function of this system is fully achieved by the simplified facility using a single phase molten-salt only. (author)

  9. Preliminary model validation for integral stability behavior in molten salt natural circulation

    International Nuclear Information System (INIS)

    Cai Chuangxiong; He Zhaozhong; Chen Kun

    2017-01-01

    Passive safety system is an important characteristic of Fluoride-Salt-Cooled High-Temperature Reactor (FHR). In order to remove the decay heat, a direct reactor auxiliary cooling system (DRACS) which uses the passive safety technology is proposed to the FHR as the ultimate heat sink. The DRACS is relying on the natural circulation, so the study of molten salt natural circulation plays an important role at TMSR. A high-temperature molten salt natural circulation test loop has been designed and constructed at the TMSR center of the Chinese Academy of Sciences (CAS) to understand the characteristics of the natural circulation and verify the design model. It adopts nitrate salt as the working fluid to simulate fluoride salts, and uses air as the ultimate heat sink. The test shows the operation very well and has a very nice performance, the Heat transfer coefficients (salt-salt or salt-air), power of the loop, heat loss of molten salt pool (or molten salt pipe or air cooling tower), starting time of the loop, flow rate that can be verified in this loop. A series of experiments have been done and the results show that the experimental data are well matched with the design data. This paper aims at analyzing the molten salt circulation model, studying the characteristics of the natural circulation, and verifying the Integral stability behavior by three different natural circulation experiments. Also, the experiment is going on, and more experiments will been carry out to study the molten salt natural circulation for optimizing the design. (author)

  10. Methods of characterization of salt formations in view of spent fuel final disposal

    International Nuclear Information System (INIS)

    Diaconu, Daniela; Balan, Valeriu; Mirion, Ilie

    2002-01-01

    Deep disposal in geological formations of salt, granite and clay seems to be at present the most proper and commonly adopted solution for final disposal of high-level radioactive wastes and spent fuel. Disposing such wastes represents the top-priority issue of the European research community in the field of nuclear power. Although seemingly premature for Romanian power system, the interest for final disposal of spent fuel is justified by the long duration implied by the studies targeting this objective. At the same time these studies represent the Romanian nuclear research contribution in the frame of the efforts of integration within the European research field. Although Romania has not made so far a decision favoring a given geological formation for the final disposal of spent fuel resulting from Cernavoda NPP, the most generally taken into consideration appears the salt formation. The final decision will be made following the evaluation of its performances to spent fuel disposal based on the values of the specific parameters of the geological formation. In order to supply the data required as input parameters in the codes of evaluation of the geological formation performances, the INR Pitesti initiated a package of modern and complex methodologies for such determinations. The studies developed so far followed up the special phenomenon of salt convergence, a phenomenon characteristic for only this kind of rock, as well as the radionuclide migration. These studies allow a better understanding of these processes of upmost importance for disposal's safety. The methods and the experimental installation designed and realized at INR Pitesti aimed at determination of thermal expansion coefficient, thermal conductivity, specific heat, which are all parameters of high specific interest for high level radioactive waste or spent fuel disposal. The paper presents the results of these studies as well as the methodologies, the experimental installations and the findings

  11. Nonlinear response matrix methods for radiative transfer

    International Nuclear Information System (INIS)

    Miller, W.F. Jr.; Lewis, E.E.

    1987-01-01

    A nonlinear response matrix formalism is presented for the solution of time-dependent radiative transfer problems. The essential feature of the method is that within each computational cell the temperature is calculated in response to the incoming photons from all frequency groups. Thus the updating of the temperature distribution is placed within the iterative solution of the spaceangle transport problem, instead of being placed outside of it. The method is formulated for both grey and multifrequency problems and applied in slab geometry. The method is compared to the more conventional source iteration technique. 7 refs., 1 fig., 4 tabs

  12. Investigation of Various LiCl Waste Salt Purification Technologies

    International Nuclear Information System (INIS)

    Yung-Zun Cho; Hee-Chul Yang; Han-Soo Lee; In-Tae Kim

    2008-01-01

    Various purification research of LiCl waste molten salt generated from electroreduction process were tested. The purification of the LiCl waste salt very important in a various aspects, where the purification means separation of cesium and strontium form LiCl salt melts. In this study, for the separation of cesium and strontium from LiCl salt melts, precipitant agent addition techniques such as sulfate and carbonate addition method and, as a new attempt, zone freezing technique for concentration of cesium and strontium elements was investigated. As a results of this research, only strontium was carbonated by reaction with Li 2 CO 3 (cesium did not react with Li 2 CO 3 ). In case of sulfate addition method, both cesium and strontium were converted into their sulfate that is Cs 2 S 2 O 6 and SrSO 4 and maximum sulfate efficiency of cesium and strontium were about 72% and 95%, respectively. Cesium and strontium involved in LiCl molten salt could be concentrated in the molten salt by using zone freezing method. (authors)

  13. Determination of the calcium salt content on the trunk skeleton and on the peripheral bone applying the Compton backscattering method and the ashing method

    International Nuclear Information System (INIS)

    Schmitt, K.W.

    1974-01-01

    The Compton backscattering method is applied to determine the bone decalcification. Post mortal excised calcanei and vertebral bodies of 50 people are taken as investigation objects which are examined for their calcium salt content and are then ashed for control measurement. The results show that the method would be better suited to early diagnosis of calcipenic osteopathy than the densitometric method used today on extremity bones. (ORU/LH) [de

  14. Discretionary salt use in airline meal service.

    Science.gov (United States)

    Wallace, S; Wellman, N S; Dierkes, K E; Johnson, P M

    1987-02-01

    Salt use in airline meal service was studied through observation of returned meal trays of 932 passengers. Observation and weighing of salt packets on returned trays revealed that 64% of passengers did not salt their airline dinner, while 6% used the entire salt packet, 0.92 gm NaCl (362 mg Na). Average discretionary salt use among the 234 passengers (25%) who added salt was 0.57 gm NaCl (232 mg Na). Estimates of total sodium in the four airline dinners averaged 2.0 gm NaCl (786 mg Na). Laboratory assays of menu items produced by the airline foodservice differed 3% to 19% from estimated values. Sodium content of the four airline dinner menus was similar and did not affect salt use. Discretionary salt use was related to the total amount of entrée consumed but was not affected by the amount of salad consumed. It is postulated that salt use in the "captive" airline situation is predicated on consistent, habitual practices. Lowering sodium consumption in this setting may require alteration in both food preparation methods and quantity of salt presented in the packets.

  15. Thermal energy storage using chloride salts and their eutectics

    International Nuclear Information System (INIS)

    Myers, Philip D.; Goswami, D. Yogi

    2016-01-01

    Achieving the goals of the U.S. Department of Energy (DOE) Sunshot initiative requires (1) higher operating temperatures for concentrating solar power (CSP) plants to increase theoretical efficiency, and (2) effective thermal energy storage (TES) strategies to ensure dispatchability. Current inorganic salt-based TES systems in large-scale CSP plants generally employ molten nitrate salts for energy storage, but nitrate salts are limited in application to lower temperatures—generally, below 600 °C. These materials are sufficient for parabolic trough power plants, but they are inadequate for use at higher temperatures. At the higher operating temperatures achievable in solar power tower-type CSP plants, chloride salts are promising candidates for application as TES materials, owing to their thermal stability and generally lower cost compared to nitrate salts. In light of this, a recent study was conducted, which included a preliminary survey of chloride salts and binary eutectic systems that show promise as high temperature TES media. This study provided some basic information about the salts, including phase equilibria data and estimates of latent heat of fusion for some of the eutectics. Cost estimates were obtained through a review of bulk pricing for the pure salts among various vendors. This review paper updates that prior study, adding data for additional salt eutectic systems obtained from the literature. Where possible, data are obtained from the thermodynamic database software, FactSage. Radiative properties are presented, as well, since at higher temperatures, thermal radiation becomes a significant mode of heat transfer. Material compatibility for inorganic salts is another important consideration (e.g., with regard to piping and/or containment), so a summary of corrosion studies with various materials is also presented. Lastly, cost data for these systems are presented, allowing for meaningful comparison among these systems and other materials for TES

  16. Salt drying: a low-cost, simple and efficient method for storing plants in the field and preserving biological repositories for DNA diversity research.

    Science.gov (United States)

    Carrió, Elena; Rosselló, Josep A

    2014-03-01

    Although a variety of methods have been optimized for the collection and storage of plant specimens, most of these are not suited for field expeditions for a variety of logistic reasons. Drying specimens with silica gel in polyethylene bags is currently the standard for field-sampling methods that are suitable for subsequent DNA extraction. However, silica-gel repositories are not readily available in remote areas, and its use is not very cost-effective for the long-term storage of collections or in developing countries with limited research budgets. Salting is an ancient and traditional drying process that preserves food samples by dehydrating tissues and inhibiting water-dependent cellular metabolism. We compared salt and silica-gel drying methods with respect to dehydration rates overtime, DNA quality and polymerase chain reaction(PCR) success to assess whether dry salting can be used as an effective plant preservation method for DNA analysis. Specimens from eleven plant species covering a variety of leaf structures, leaf thicknesses and water contents were analysed. Experimental work indicated that (i) levels of dehydration in sodium chloride were usually comparable to those obtained when silica gel was used, (ii) no spoilage, fungal or bacterial growth was observed for any of the species with all drying treatments and (iii) good yields of quality genomic DNA suitable for PCR applications were obtained in the salt-drying treatments. The preservation of plant tissues in commercial table salt appears to be a satisfactory, and versatile method that may be suitable in remote areas where cryogenic resources and silica repositories are not available. © 2013 John Wiley & Sons Ltd.

  17. FBILI method for multi-level line transfer

    Science.gov (United States)

    Kuzmanovska, O.; Atanacković, O.; Faurobert, M.

    2017-07-01

    Efficient non-LTE multilevel radiative transfer calculations are needed for a proper interpretation of astrophysical spectra. In particular, realistic simulations of time-dependent processes or multi-dimensional phenomena require that the iterative method used to solve such non-linear and non-local problem is as fast as possible. There are several multilevel codes based on efficient iterative schemes that provide a very high convergence rate, especially when combined with mathematical acceleration techniques. The Forth-and-Back Implicit Lambda Iteration (FBILI) developed by Atanacković-Vukmanović et al. [1] is a Gauss-Seidel-type iterative scheme that is characterized by a very high convergence rate without the need of complementing it with additional acceleration techniques. In this paper we make the implementation of the FBILI method to the multilevel atom line transfer in 1D more explicit. We also consider some of its variants and investigate their convergence properties by solving the benchmark problem of CaII line formation in the solar atmosphere. Finally, we compare our solutions with results obtained with the well known code MULTI.

  18. Salt Reductions in Some Foods in The Netherlands: Monitoring of Food Composition and Salt Intake

    Directory of Open Access Journals (Sweden)

    Elisabeth H. M. Temme

    2017-07-01

    Full Text Available Background and objectives. High salt intake increases blood pressure and thereby the risk of chronic diseases. Food reformulation (or food product improvement may lower the dietary intake of salt. This study describes the changes in salt contents of foods in the Dutch market over a five-year period (2011–2016 and differences in estimated salt intake over a 10-year period (2006–2015. Methods. To assess the salt contents of foods; we obtained recent data from chemical analyses and from food labels. Salt content of these foods in 2016 was compared to salt contents in the 2011 version Dutch Food Composition Database (NEVO, version 2011, and statistically tested with General Linear Models. To estimate the daily dietary salt intake in 2006, 2010, and 2015, men and women aged 19 to 70 years were recruited through random population sampling in Doetinchem, a small town located in a rural area in the eastern part of the Netherlands. The characteristics of the study population were in 2006: n = 317, mean age 49 years, 43% men, in 2010: n = 342, mean age 46 years, 45% men, and in 2015: n = 289, mean age 46 years, 47% men. Sodium and potassium excretion was measured in a single 24-h urine sample. All estimates were converted to a common metric: salt intake in grams per day by multiplication of sodium with a factor of 2.54. Results. In 2016 compared to 2011, the salt content in certain types of bread was on average 19 percent lower and certain types of sauce, soup, canned vegetables and legumes, and crisps had a 12 to 26 percent lower salt content. Salt content in other types of foods had not changed significantly. Between 2006, 2010 and 2015 the estimated salt intake among adults in Doetinchem remained unchanged. In 2015, the median estimated salt intake was 9.7 g per day for men and 7.4 g per day for women. As in 2006 and 2010, the estimated salt intake in 2015 exceeded the recommended maximum intake of 6 g per day set by the Dutch Health Council

  19. IMPROVEMENT METHOD OF GENE TRANSFER IN Kappaphycus alvarezii

    Directory of Open Access Journals (Sweden)

    St. Hidayah Triana

    2016-11-01

    Full Text Available Method of foreign gene transfer in red seaweed Kappaphycus alvarezii has been reported, however, li-mited number of transgenic F0 (broodstock was obtained. This study was conducted to improve the method of gene transfer mediated by Agrobacterium tumefaciens in order to obtain high percentage of K. alvarezii transgenic. Superoxide dismutase gene from Melastoma malabatrichum (MmCu/Zn-SOD was used as model towards increasing adaptability of K. alvarezii to environmental stress. The treat-ments were the culture media and recovery duration, and each treatment consisted of three replica-tions. The best method was co-cultivation using liquid media, then recovery was conducted in liquid media for 10 days. That treatment allowed higher transformation percentage (90%, regeneration effi-ciency (90%, putative bud efficiency (100%, number of buds and explants sprouted (100% and transgenic explants (100%. The transgenic explants showed an amplification PCR product of Mm-Cu/Zn-SOD gene fragment, whereas the non-transgenic explants showed no amplification product.  All results revealed that suitable method of transgenesis for K. alvarezii has been developed. Keywords:       Agrobacterium tumefaciens, culture media, Kappaphycus alvarezii, recovery duration, transformation

  20. Molten salt reactors - safety options galore

    International Nuclear Information System (INIS)

    Gat, U.; Dodds, H.L.

    1997-01-01

    Safety features and attributes of molten salt reactors (MSR) are described. The unique features of fluid fuel reactors of on-line continuous processing and the ability for so-called external cooling result in simple and safe designs with low excess reactivity, low fission product inventory, and small source term. These, in turn, make a criticality accident unlikely and reduce the severity of a loss of coolant to where they are no longer severe accidents. A melt down is not an accident for a reactor that uses molten fuel. The molten salts are stable, non-reactive and efficient heat transfer media that operate at high temperatures at low pressures and are highly compatible with selected structural materials. All these features reduce the accident plethora. Freeze valves can be used for added safety. An ultimate safe reactor (U.S.R) is described with safety features that are passive, inherent and non-tamperable (PINT)

  1. RAS1, a quantitative trait locus for salt tolerance and ABA sensitivity in Arabidopsis

    KAUST Repository

    Ren, Zhonghai

    2010-03-08

    Soil salinity limits agricultural production and is a major obstacle for feeding the growing world population. We used natural genetic variation in salt tolerance among different Arabidopsis accessions to map a major quantitative trait locus (QTL) for salt tolerance and abscisic acid (ABA) sensitivity during seed germination and early seedling growth. A recombinant inbred population derived from Landsberg erecta (Ler; salt and ABA sensitive) x Shakdara (Sha; salt and ABA resistant) was used for QTL mapping. High-resolution mapping and cloning of this QTL, Response to ABA and Salt 1 (RAS1), revealed that it is an ABA- and salt stress-inducible gene and encodes a previously undescribed plant-specific protein. A premature stop codon results in a truncated RAS1 protein in Sha. Reducing the expression of RAS1 by transfer-DNA insertion in Col or RNA interference in Ler leads to decreased salt and ABA sensitivity, whereas overexpression of the Ler allele but not the Sha allele causes increased salt and ABA sensitivity. Our results suggest that RAS1 functions as a negative regulator of salt tolerance during seed germination and early seedling growth by enhancing ABA sensitivity and that its loss of function contributes to the increased salt tolerance of Sha.

  2. Behavior study on Na heat pipe in passive heat removal system of new concept molten salt reactor

    International Nuclear Information System (INIS)

    Wang Chenglong; Tian Wenxi; Su Guanghui; Zhang Dalin; Wu Yingwei; Qiu Suizheng

    2013-01-01

    The high temperature Na heat pipe is an effective device for transporting heat, which is characterized by remarkable advantages in conductivity, isothermally and passively working. The application of Na heat pipe on passive heat removal system of new concept molten salt reactor (MSR) is significant. The transient performance of high temperature Na heat pipe was simulated by numerical method under the MSR accident. The model of the Na heat pipe was composed of three conjugate heat transfer zones, i.e. the vapor, wick and wall. Based on finite element method, the governing equations were solved by making use of FORTRAN to acquire the profiles of the temperature, velocity and pressure for the heat pipe transient operation. The results show that the high temperature Na heat pipe has a good performance on operating characteristics and high heat transfer efficiency from the frozen state. (authors)

  3. Electrochemical energy: the green face of the salt-affected lands

    International Nuclear Information System (INIS)

    Ashraf, M.; Mahmood, K.; Waheed, A.

    2013-01-01

    A high soluble salt content make the salt-stressed terrestrial and the aquatic habitats electrically more active than the normal ecosystems. The salt-tolerant plants and the microbial populations adapted to the salt-stressed environments have developed special mechanisms to resist the ionic and the osmotic stresses. The study evaluated the bioelectricity or electrochemical energy potential of soil and bio-resources of a salt-affected land. The electrical conductivity and the charge resistance ability exhibited the various categories of salt-tolerant plants suitable for a range of salt-stressed conditions and the root activities including extrusion of proton (H+) in the rooting media. The microbial biofilms formed with plant roots, soil particles and the solid surface by exo-polysaccharides producing biofilm bacteria could regulate and monitor ion flux across the bio-membranes and the electrode surfaces. The ionic gradients thus created by plants and the microbial processes could be a continuous and uninterrupted valuable source of bio-energy of the salt-stressed and contaminated soil and water habitats. The bio-energy can be harnessed and utilized by especially designed microbial biofuel cells (MBFC). The biofilms developed on anode or cathode of MBFC could act as half cells for source and sink of the electrons released during oxidation reduction processes carried by microbial consortia while the exo-polysaccharides, the microbial biopolymer could support transfer of charge to the electrodes. The salt-affected soil and the soil organic matter constituents, microbial biopolymers and the brackish water, as a mediators and the cathode passivation inhibitors, thus could help enhance and increase the output intensity of the electrochemical energy and efficiency of the biofuel cells. The study suggested an enormous potential of the salt-affected lands for non-conventional renewable bio-energy source useful in the remote areas and for the small power requiring electrical

  4. Simultaneous heat and moisture transfer in porous elements: transfer function method

    International Nuclear Information System (INIS)

    Souza, H.A. de.

    1985-01-01

    The presence of moisture in a porous element may strongly affect the transfer of heat through this element due to the processes which occur associated with the phase changes at the boundary surfaces and internally in the wall body. In addition, the structural properties of the element may also be meaningfully affected. The formulation of mathematical models for the simultaneous heat and mass transfer in porous elements results in a pair of nonlinear coupled equations for the temperature and moisture content distributions, in the material. It is supposed, in this work, that the actual variation of the properties of the porous medium is small in the range of variables which describe the specific problem to be analyzed. This enables us to work with linearized equations, making possible the use of linear solution methods. In this context, the present work deals with a linear procedure for the solution of simultaneous heat and moisture transfer problems in porous elements, sujected to arbitrary boundary conditions. This results in a linear relation between the heat and mass flux densities through the boundary surfaces of the elements and their associated potentials. It is shown that the model is consistent in asymptotical limiting cases; the model is then used for analyzing the drying process of a porous element, subjected to ambient actual conditions. (Author) [pt

  5. Advances in electron transfer chemistry

    CERN Document Server

    Mariano, Patrick S

    1995-01-01

    Advances in Electron Transfer Chemistry, Volume 4 presents the reaction mechanisms involving the movement of single electrons. This book discusses the electron transfer reactions in organic, biochemical, organometallic, and excited state systems. Organized into four chapters, this volume begins with an overview of the photochemical behavior of two classes of sulfonium salt derivatives. This text then examines the parameters that control the efficiencies for radical ion pair formation. Other chapters consider the progress in the development of parameters that control the dynamics and reaction p

  6. Molten salt/metal extractions for recovery of transuranic elements

    International Nuclear Information System (INIS)

    Chow, L.S.; Basco, J.K.; Ackerman, J.P.; Johnson, T.R.

    1992-01-01

    The integral fast reactor (EFR) is an advanced reactor concept that incorporates metallic driver and blanket fuels, an inherently safe, liquid-sodium-cooled, pool-type, reactor design, and on-site pyrochemical reprocessing (including electrorefining) of spent fuels and wastes. This paper describes a pyrochemical method that is being developed at Argonne National Laboratory to recover transuranic elements from the EFR electrorefiner process salt. The method uses multistage extractions between molten chloride salts and cadmium metal at high temperatures. The chemical basis of the salt extraction method, the test equipment, and a test plan are discussed

  7. Salt bridges: geometrically specific, designable interactions.

    Science.gov (United States)

    Donald, Jason E; Kulp, Daniel W; DeGrado, William F

    2011-03-01

    Salt bridges occur frequently in proteins, providing conformational specificity and contributing to molecular recognition and catalysis. We present a comprehensive analysis of these interactions in protein structures by surveying a large database of protein structures. Salt bridges between Asp or Glu and His, Arg, or Lys display extremely well-defined geometric preferences. Several previously observed preferences are confirmed, and others that were previously unrecognized are discovered. Salt bridges are explored for their preferences for different separations in sequence and in space, geometric preferences within proteins and at protein-protein interfaces, co-operativity in networked salt bridges, inclusion within metal-binding sites, preference for acidic electrons, apparent conformational side chain entropy reduction on formation, and degree of burial. Salt bridges occur far more frequently between residues at close than distant sequence separations, but, at close distances, there remain strong preferences for salt bridges at specific separations. Specific types of complex salt bridges, involving three or more members, are also discovered. As we observe a strong relationship between the propensity to form a salt bridge and the placement of salt-bridging residues in protein sequences, we discuss the role that salt bridges might play in kinetically influencing protein folding and thermodynamically stabilizing the native conformation. We also develop a quantitative method to select appropriate crystal structure resolution and B-factor cutoffs. Detailed knowledge of these geometric and sequence dependences should aid de novo design and prediction algorithms. Copyright © 2010 Wiley-Liss, Inc.

  8. Energy Dissipation-Based Method for Fatigue Life Prediction of Rock Salt

    Science.gov (United States)

    He, Mingming; Huang, Bingqian; Zhu, Caihui; Chen, Yunsheng; Li, Ning

    2018-05-01

    The fatigue test for rock salt is conducted under different stress amplitudes, loading frequencies, confining pressures and loading rates, from which the evaluation rule of the dissipated energy is revealed and analysed. The evolution of energy dissipation under fatigue loading is divided into three stages: the initial stage, the second stage and the acceleration stage. In the second stage, the energy dissipation per cycle remains stable and shows an exponential relation with the stress amplitude; the failure dissipated energy only depends on the mechanical behaviour of the rock salt and confining pressure, but it is immune to the loading conditions. The energy dissipation of fatigued rock salt is discussed, and a novel model for fatigue life prediction is proposed on the basis of energy dissipation. A simple model for evolution of the accumulative dissipated energy is established. Its prediction results are compared with the test results, and the proposed model is validated.

  9. 21 CFR 100.155 - Salt and iodized salt.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Salt and iodized salt. 100.155 Section 100.155 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION GENERAL Specific Administrative Rulings and Decisions § 100.155 Salt and iodized salt. (a) For the purposes of this section, the...

  10. Comparison of a rational vs. high throughput approach for rapid salt screening and selection.

    Science.gov (United States)

    Collman, Benjamin M; Miller, Jonathan M; Seadeek, Christopher; Stambek, Julie A; Blackburn, Anthony C

    2013-01-01

    In recent years, high throughput (HT) screening has become the most widely used approach for early phase salt screening and selection in a drug discovery/development setting. The purpose of this study was to compare a rational approach for salt screening and selection to those results previously generated using a HT approach. The rational approach involved a much smaller number of initial trials (one salt synthesis attempt per counterion) that were selected based on a few strategic solubility determinations of the free form combined with a theoretical analysis of the ideal solvent solubility conditions for salt formation. Salt screening results for sertraline, tamoxifen, and trazodone using the rational approach were compared to those previously generated by HT screening. The rational approach produced similar results to HT screening, including identification of the commercially chosen salt forms, but with a fraction of the crystallization attempts. Moreover, the rational approach provided enough solid from the very initial crystallization of a salt for more thorough and reliable solid-state characterization and thus rapid decision-making. The crystallization techniques used in the rational approach mimic larger-scale process crystallization, allowing smoother technical transfer of the selected salt to the process chemist.

  11. Compatibility of molten salt and structural materials

    International Nuclear Information System (INIS)

    Kawakami, Masahiro

    1994-01-01

    As the important factors for considering the compatibility of fuel salt and coolant salt with structural materials in molten salt reactors, there are the moisture remaining in molten salt and the fluorine potential in molten salt. In this study, as for the metals which are the main components of corrosion resistant alloys, the corrosion by the moisture remaining in molten salt and the dependence of the corrosion on fluorine potential were examined. As the molten salts, an eutectic molten salt LiF-BeF 2 was mainly used, and LiF-KF was used in combination. As the metallic materials, Cr, Ni and Cu which are the main components of corrosion resistant and heat resistant alloys, Hastelloy and Monel, were used. In the experiment, the metal pieces were immersed in the molten salt, and by sampling the molten salt, the change with time lapse of the concentration of the dissolved metals was examined. Besides, the electrochemical measurement was carried out for Cr, of which the corrosion was remarkable, and the change with time lapse of the dissolved ions was examined. The experimental setup, the experimental method, and the results of the immersion test and the electrochemical test are reported. The experiment on the corrosion of metals depending on fluorine potential is also reported. (K.I.)

  12. On the hydrophilicity of polyzwitterion poly (N,N-dimethyl-N-(3-(methacrylamido)propyl)ammoniopropane sulfonate) in water, deuterated water, and aqueous salt solutions.

    Science.gov (United States)

    Hildebrand, Viet; Laschewsky, André; Zehm, Daniel

    2014-01-01

    A series of zwitterionic model polymers with defined molar masses up to 150,000 Da and defined end groups are prepared from sulfobetaine monomer N,N-dimethyl-N-(3-(methacrylamido)propyl)ammoniopropanesulfonate (SPP). Polymers are synthesized by reversible addition-fragmentation chain transfer polymerization (RAFT) using a functional chain transfer agent labeled with a fluorescent probe. Their upper critical solution temperature-type coil-to-globule phase transition in water, deuterated water, and various salt solutions is studied by turbidimetry. Cloud points increase with polyzwitterion concentration and molar mass, being considerably higher in D2O than in H2O. Moreover, cloud points are strongly affected by the amount and nature of added salts. Typically, they increase with increasing salt concentration up to a maximum value, whereas further addition of salt lowers the cloud points again, mostly down to below freezing point. The different salting-in and salting-out effects of the studied anions can be correlated with the Hofmeister series. In physiological sodium chloride solution and in phosphate buffered saline (PBS), the cloud point is suppressed even for high molar mass samples. Accordingly, SPP-polymers behave strongly hydrophilic under most conditions encountered in biomedical applications. However, the direct transfer of results from model studies in D2O, using, e.g. (1)H NMR or neutron scattering techniques, to 'normal' systems in H2O is not obvious.

  13. Method of transferring regular shaped vessel into cell

    International Nuclear Information System (INIS)

    Murai, Tsunehiko.

    1997-01-01

    The present invention concerns a method of transferring regular shaped vessels from a non-contaminated area to a contaminated cell. A passage hole for allowing the regular shaped vessels to pass in the longitudinal direction is formed to a partitioning wall at the bottom of the contaminated cell. A plurality of regular shaped vessel are stacked in multiple stages in a vertical direction from the non-contaminated area present below the passage hole, allowed to pass while being urged and transferred successively into the contaminated cell. As a result, since they are transferred while substantially closing the passage hole by the regular shaped vessels, radiation rays or contaminated materials are prevented from discharging from the contaminated cell to the non-contaminated area. Since there is no requirement to open/close an isolation door frequently, the workability upon transfer can be improved remarkably. In addition, the sealing member for sealing the gap between the regular shaped vessel passing through the passage hole and the partitioning wall of the bottom is disposed to the passage hole, the contaminated materials in the contaminated cells can be prevented from discharging from the gap to the non-contaminated area. (N.H.)

  14. Evaluation of the salt deposition on the canister surface of concrete cask. Part 2. Measurement test of the salt concentration in air and salt deposition in the field

    International Nuclear Information System (INIS)

    Wataru, Masumi

    2012-01-01

    Concerning the storage facility of spent nuclear fuel using the concrete cask, there is an issue of stress corrosion cracking(SCC). The cooling air goes up along the canister surface in the concrete cask. To evaluate the initiation of SCC or rusting, it is important to verify the estimation method of the sea salt deposition on the metal canister surface transported by cooling air including sea salt particles. To measure the deposition rate, field tests were performed in Choushi test center. In the field test, it was found that the amount of sea salt deposition was very low because the density of the atmospheric sea salt concentration was very low compared with the laboratory test. Using relation between laboratory data and filed data, it is possible to evaluate the salt deposition rate on the canister surface. We also measured atmospheric sea salt concentration in Choushi test center to make the environment condition clear and compared the measurement data with the calculation data to verify the evaluation model. We are developing the automatic measuring device for atmospheric sea salt concentration. To check its performance, we are measuring atmospheric sea salt concentration in Yokosuka Area of CRIEPI and it was confirmed that the device works for one month automatically and fulfills its specifications. (author)

  15. Community solar salt production in Goa, India.

    Science.gov (United States)

    Mani, Kabilan; Salgaonkar, Bhakti B; Das, Deepthi; Bragança, Judith M

    2012-12-01

    Traditional salt farming in Goa, India has been practised for the past 1,500 years by a few communities. Goa's riverine estuaries, easy access to sea water and favourable climatic conditions makes salt production attractive during summer. Salt produced through this natural evaporation process also played an important role in the economy of Goa even during the Portuguese rule as salt was the chief export commodity. In the past there were 36 villages involved in salt production, which is now reduced to 9. Low income, lack of skilled labour, competition from industrially produced salt, losses incurred on the yearly damage of embankments are the major reasons responsible for the reduction in the number of salt pans.Salt pans (Mithagar or Mithache agor) form a part of the reclaimed waterlogged khazan lands, which are also utilised for aquaculture, pisciculture and agriculture. Salt pans in Goa experience three phases namely, the ceased phase during monsoon period of June to October, preparatory phase from December to January, and salt harvesting phase, from February to June. After the monsoons, the salt pans are prepared manually for salt production. During high tide, an influx of sea water occurs, which enters the reservoir pans through sluice gates. The sea water after 1-2 days on attaining a salinity of approximately 5ºBé, is released into the evaporator pans and kept till it attains a salinity of 23 - 25ºBé. The brine is then released to crystallizer pans, where the salt crystallises out 25 - 27ºBé and is then harvested.Salt pans form a unique ecosystem where succession of different organisms with varying environmental conditions occurs. Organisms ranging from bacteria, archaea to fungi, algae, etc., are known to colonise salt pans and may influence the quality of salt produced.The aim of this review is to describe salt farming in Goa's history, importance of salt production as a community activity, traditional method of salt production and the biota

  16. Heat transfer and flow in solar energy and bioenergy systems

    Science.gov (United States)

    Xu, Ben

    culture raceway for biofuel production. According to the proposed flow field design of ARID-HV algal raceway, experiments and numerical simulation have been conducted to understand the enhancement of flow mixing in the flow field of ARID-HV raceway by cutting slots on top of the dam near the dead zones. A new method was proposed to quantitatively evaluate the flow mixing by using the statistics of temporal and spatial distribution of the massless fluid particles (centered in each cell at the inlet surface) in the raceway collecting the data of path-lines of fluid particles from CFD results. It is hoped that this method can be applied to assist the algal raceway flow field design as well as other engineering applications. The third part introduces the details about the construction work of a high temperature molten salt test loop. Because of the limited operating temperature of conventional synthetic oils, in order to obtain higher energy conversion efficiency, higher operating temperature is always desirable in a CSP plant which leads to the requirement of new generation of HTF. Currently, a halide salt eutectic mixture (NaCl-KCl-ZnCl2) as a potential HTF for future CSP applications has been proposed by a multi-institute research team, led by University of Arizona. The thermophysical properties of the halide eutectic salt have been measured. However, this new developed halide eutectic salt has not been tested in a circulating loop at a high operating temperature for the measurement of heat transfer coefficient. It is a significant effort to build such a test system due to extremely high operating temperature. As a consequence, in the third part of this dissertation, details about the design of the lab-scale test system and all the equipment items will be introduced. The investigations included in this dissertation for the heat transfer and flow in solar energy and bioenergy systems are of particular interest to the renewable energy engineering community. It is expected

  17. Ferromagnetic behavior in linear charge-transfer complexes. Structural and magnetic characterization of octamethylferrocene salts: (Fe(C sub 5 Me sub 4 H) sub 2 ) sup sm bullet + (A) sup sm bullet minus (A = TCNE, TCNQ)

    Energy Technology Data Exchange (ETDEWEB)

    Miller, J.S.; Glatzhofer, D.T.; O' Hare, D.M. (E.I. de Pont de Nemours and Co., Inc., Wilmington, DE (USA)); Reiff, W.M. (Northeastern Univ., Boston, MA (USA)); Chakraborty, A.; Epstein, A.J. (Ohio Sate Univ., Columbus (USA))

    1989-07-26

    The reaction of Fe{sup II}({eta}{sup 5}-C{sub 5}Me{sub 4}H){sub 2} with cyano acceptors A (A = TCNE (tetracyanoethylene), TCNQ (7,7,8,8-tetracyano-p-quanodimethane), n-C{sub 4}(CN){sub 6} (n-hexacyanobutadiene), C{sub 6}(CN){sub 6} (tris(dicyanomethylene)cyclopropane), DDQ (2,3-dichloro-5,6-dicyanobenzoquinone), TCNQF{sub 4} (perfluoro-7,7,8,8-tetracyano-p-quinodimethane) results in formation of 1:1 charge-transfer salts of (Fe{sup III})(C{sub 5}Me{sub 4}H){sub 2}){sup {sm bullet}+}(A){sup {sm bullet}{minus}} composition. The TCNE and TCNQ complexes have been structurally characterized. The high-temperature magnetic susceptibility for polycrystalline samples of these complexes can be fit by the Curie-Qeiss law, {chi} = C(T-{theta}){sup {minus}1}, with {theta} = +0.5 {plus minus} 2.2 K, and {mu}{sub eff} ranges from 2.71 to 3.97 {mu}{sub B}, suggesting that the polycrystalline samples measured had varying degrees of orientation. The 7.0 K EPR spectrum of the radical cation exhibits an axially symmetric powder pattern with g{sub {parallel}} = 4.11 and g{sub {perpendicular}} = 1.42, and the EPR parameters are essentially identical with those reported for ferrocenium and decamethylferrocenium. No EPR spectrum is observed at 78 K. Akin to the (Fe(C{sub 5}Me{sub 5}){sub 2}){sup {sm bullet}+} salts, these salts have {sup 57}Fe Moessbauer spectra consistent with complete charge transfer; however, unlike the case for the former complexes, quadrupole splittings of 0.30 and 0.220 mm/s are observed at 4.8 and 298 K, respectively. The absence of strong interionic magnetic coupling for the (Fe(C{sub 5}Me{sub 4}H){sub 2}){sup {sm bullet}+} salts contrasts with the behavior of the (Fe(C{sub 5}Me{sub 5}){sub 2}){sup {sm bullet}+} salts. 26 refs., 13 figs., 8 tabs.

  18. A method for the direct generation of comprehensive numerical solar building transfer functions

    Energy Technology Data Exchange (ETDEWEB)

    Chen, T.Y. [The Hong Kong Polytechnic University (China). Dept. of Building Services Engineering

    2003-02-01

    This paper describes a method for the direct generation of comprehensive numerical room transfer functions with any derived parameters as output, such as operative temperature or thermal load. Complex conductive, convective and radiant heat transfer processes, or any derived thermal parameters in buildings can be explicitly and precisely described by a generalized thermal network. This allows the s-transfer and z-transfer functions to be directly generated, using semi-symbolic analysis techniques, Cayley's expansion of determinant and Heaviside's expansion theorem. A simple algorithm is developed for finding the roots of the denominator in the inverse transform of the s-transfer functions, which ensures that no single root is missing. The techniques have been applied to generating the transfer functions of a passive solar room with floor heating. The example calculation demonstrates the high efficiency of the computational method. (author)

  19. Neutronic design of a Liquid Salt-cooled Pebble Bed Reactor (LSPBR)

    International Nuclear Information System (INIS)

    De Zwaan, S. J.; Boer, B.; Lathouwers, D.; Kloosterman, J. L.

    2006-01-01

    A renewed interest has been raised for liquid salt cooled nuclear reactors. The excellent heat transfer properties of liquid salt coolants provide several benefits, like lower fuel temperatures, higher coolant outlet temperatures, increased core power density and better decay heat removal. In order to benefit from the online refueling capability of a pebble bed reactor, the Liquid Salt Pebble Bed Reactor (LSPBR) is proposed. This is a high temperature pebble-bed reactor with a fuel design similar to existing HTRs, but using a liquid salt as a coolant. In this paper, the selection criteria for the liquid salt coolant are described. Based on its neutronic properties, LiF-BeF 2 (FLIBE) was selected for the LSPBR. Two designs of the LSPBR were considered: a cylindrical core and an annular core with a graphite inner reflector. Coupled neutronic-thermal hydraulic calculations were performed to obtain the steady state power distribution and the corresponding fuel temperatures. Finally, calculations were performed to investigate the decay heat removal capability in a protected loss-of-forced cooling accident. The maximum allowable power that can be produced with the LSPBR is hereby determined. (authors)

  20. Theoretical study on thermal stability of molten salt for solar thermal power

    International Nuclear Information System (INIS)

    Wei, Xiaolan; Peng, Qiang; Ding, Jing; Yang, Xiaoxi; Yang, Jianping; Long, Bin

    2013-01-01

    Molten salt (HTS) composed of 53% KNO 3 , 40% NaNO 2 and 7 wt.% NaNO 3 has been used as heat transfer media and thermal storage fluid in the solar thermal power, but thermal decomposition will occur at higher temperature because of the oxidation of nitrite to nitrate in the air. In this paper, the reaction mechanism of NO 2 − oxidation is researched by quantum mechanical method. The results show that two components of the transition state (O 2 NO 2 − ) and intermediate ([NO 4 − ]) are found in the reaction. This reaction is an exothermic reaction and the activation barrier is 94.0 kJ mol −1 . The energy difference of this reaction is very large, so the reaction rate is very slow. -- Highlights: ► The mechanism of the oxidation of nitrite salt in HTS is explained. ► Two components of the transition state (O 2 NO 2 − ) and intermediate ([NO 4 − ]) are found. ► The activation barrier of the nitrite oxidation is determined

  1. Heat transfer studies in salt and granite

    International Nuclear Information System (INIS)

    Just, R.A.

    1978-10-01

    Results are presented of a scoping study on the feasibility of using a multi-layer terminal repository design in both salt and granite formations to store either high-level waste or spent fuel. Calculations have been made to determine temperature profiles within the repository and to provide an estimate of the thermal uplift that can be expected. Near-field models developed to compare temperature profiles in the regions close to the waste canisters indicated that maximum thermal gradients and maximum temperature increases could be significantly reduced by changing from a single to a multi-layer repository design. For both high-level waste and for spent fuel, the maximum temperature increase in the multi-level repositories was reduced to approximately 60 percent of the temperature increase predicted for the single-level repositories at the same areal loading. After the near-field models had verified that maximum thermal gradients and temperature increases could be reduced by using a multilevel repository design, a series of far-field models was developed. The far-field models used to provide qualitative comparisons of the maximum thermal uplift indicate that the thermal uplift is roughly proportional to the energy supplied to the formation. Changing from a single- to a multi-layer repository but keeping the areal loading constant results in increased thermal uplifts

  2. Development and Optimization of Voltammetric Methods for Real Time Analysis of Electrorefiner Salt with High Concentrations of Actinides and Fission Products

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, Michael F.; Phongikaroon, Supathorn; Zhang, Jinsuo

    2018-03-30

    This project addresses the problem of achieving accurate material control and accountability (MC&A) around pyroprocessing electrorefiner systems. Spent nuclear fuel pyroprocessing poses a unique challenge with respect to reprocessing technology in that the fuel is never fully dissolved in the process fluid. In this case, the process fluid is molten, anhydrous LiCl-KCl salt. Therefore, there is no traditional input accountability tank. However, electrorefiners (ER) accumulate very large quantities of fissile nuclear material (including plutonium) and should be well safeguarded in a commercial facility. Idaho National Laboratory (INL) currently operates a pyroprocessing facility for treatment of spent fuel from Experimental Breeder Reactor-II with two such ER systems. INL implements MC&A via a mass tracking model in combination with periodic sampling of the salt and other materials followed by destructive analysis. This approach is projected to be insufficient to meet international safeguards timeliness requirements. A real time or near real time monitoring method is, thus, direly needed to support commercialization of pyroprocessing. A variety of approaches to achieving real time monitoring for ER salt have been proposed and studied to date—including a potentiometric actinide sensor for concentration measurements, a double bubbler for salt depth and density measurements, and laser induced breakdown spectroscopy (LIBS) for concentration measurements. While each of these methods shows some promise, each also involves substantial technical complexity that may ultimately limit their implementation. Yet another alternative is voltammetry—a very simple method in theory that has previously been tested for this application to a limited extent. The equipment for a voltammetry system consists of off-the-shelf components (three electrodes and a potentiostat), which results in substantial benefits relative to cost and robustness. Based on prior knowledge of electrochemical

  3. Novel DNA sequence detection method based on fluorescence energy transfer

    International Nuclear Information System (INIS)

    Kobayashi, S.; Tamiya, E.; Karube, I.

    1987-01-01

    Recently the detection of specific DNA sequence, DNA analysis, has been becoming more important for diagnosis of viral genomes causing infections disease and human sequences related to inherited disorders. These methods typically involve electrophoresis, the immobilization of DNA on a solid support, hybridization to a complementary probe, the detection using labeled with /sup 32/P or nonisotopically with a biotin-avidin-enzyme system, and so on. These techniques are highly effective, but they are very time-consuming and expensive. A principle of fluorescene energy transfer is that the light energy from an excited donor (fluorophore) is transferred to an acceptor (fluorophore), if the acceptor exists in the vicinity of the donor and the excitation spectrum of donor overlaps the emission spectrum of acceptor. In this study, the fluorescence energy transfer was applied to the detection of specific DNA sequence using the hybridization method. The analyte, single-stranded DNA labeled with the donor fluorophore is hybridized to a probe DNA labeled with the acceptor. Because of the complementary DNA duplex formation, two fluorophores became to be closed to each other, and the fluorescence energy transfer was occurred

  4. Variance-based Salt Body Reconstruction

    KAUST Repository

    Ovcharenko, Oleg

    2017-05-26

    Seismic inversions of salt bodies are challenging when updating velocity models based on Born approximation- inspired gradient methods. We propose a variance-based method for velocity model reconstruction in regions complicated by massive salt bodies. The novel idea lies in retrieving useful information from simultaneous updates corresponding to different single frequencies. Instead of the commonly used averaging of single-iteration monofrequency gradients, our algorithm iteratively reconstructs salt bodies in an outer loop based on updates from a set of multiple frequencies after a few iterations of full-waveform inversion. The variance among these updates is used to identify areas where considerable cycle-skipping occurs. In such areas, we update velocities by interpolating maximum velocities within a certain region. The result of several recursive interpolations is later used as a new starting model to improve results of conventional full-waveform inversion. An application on part of the BP 2004 model highlights the evolution of the proposed approach and demonstrates its effectiveness.

  5. Chemical characterisation of himalayan rock salt

    International Nuclear Information System (INIS)

    Hassan, A.U.; Din, M.U.

    2017-01-01

    Present study involves the chemical evaluation of rock salt samples collected from the plugging sites of Himalayan salt (Khewra salt mines and Kalabagh salt mines) for their moisture content, water insoluble matter, calcium, magnesium, sulphate content and trace minerals such as Fe,Cu,Cd,Pb,As,Ag and Zn determined by atomic absorption spectroscopy. Moisture content of Khewra and Kalabagh salt samples ranged from 0.03 wt. % to 0.09 wt. % and 0.06 % to 0.08 %, respectively. Water insoluble matter ranged from 0.08 wt. % to 1.4 wt. % and 1.5 wt. % to 2.8wt. % for Khewra and Kalabagh salt samples, respectively. Sulphate content for Khewra salt sample was from 0.39 % to 0.91 % and for Kalabagh salt mines from 0.75 wt. % to 0.95 wt. %. For Khewra salt mines calcium ranged 0.15 wt. % to 0.32 wt. % and for Kalabagh salt samples from 0.1 wt. % to 0.27 wt. %. Magnesium ranged from 0.11 wt. % to 0.35 wt. % for Khewra salt mines, while for Kalabagh salt samples its range was 0.18 wt. % to 0.89 wt. %. Trace metals had the concentration ranges between 0.2 to 1.85 mg/kg for copper; between 0.21 to 0.42 mg/kg for manganese; between 0.04 to 0.06 mg/kg for zinc; between 0.12 to 0.18 mg/kg for arsenic and between 0.03 and 0.05 mg/kg for lead while cadmium content was either below the method's detection limits or in very trace amounts. The results show that the concentrations of all the parameters studied are below the limits set by World Health Organization (WHO) and Food and Agriculture Organization (FAO). Therefore, it can be concluded from the paper that the Himalayan salt from the plugging sites of Khewra and Kalabagh salt mines are safe to use. (author)

  6. Heat Transfer and Fluid Mechanics Institute, Meeting, 25th, University of California, Davis, Calif., June 21-23, 1976, Proceedings

    Science.gov (United States)

    Mckillop, A. A.; Baughn, J. W.; Dwyer, H. A.

    1976-01-01

    Major research advances in heat transfer and fluid dynamics are outlined, with particular reference to relevant energy problems. Of significant importance are such topics as synthetic fuels in combustion, turbulence models, combustion modeling, numerical methods for interacting boundary layers, and light-scattering diagnostics for gases. The discussion covers thermal convection, two-phase flow and boiling heat transfer, turbulent flows, combustion, and aerospace heat transfer problems. Other areas discussed include compressible flows, fluid mechanics and drag, and heat exchangers. Featured topics comprise heat and salt transfer in double-diffusive systems, limits of boiling heat transfer in a liquid-filled enclosure, investigation of buoyancy-induced flow stratification in a cylindrical plenum, and digital algorithms for dynamic analysis of a heat exchanger. Individual items are announced in this issue.

  7. ISDP salt batch #2 supernate qualification

    Energy Technology Data Exchange (ETDEWEB)

    Peters, T. B. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Nash, C. A. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Fink, S. D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2009-01-05

    This report covers the laboratory testing and analyses of the second Integrated Salt Disposition Project (ISDP) salt supernate samples, performed in support of initial radioactive operations of Actinide Removal Process (ARP) and Modular Caustic-Side Solvent Extraction Unit (MCU). Major goals of this work include characterizing Tank 22H supernate, characterizing Tank 41H supernate, verifying actinide and strontium adsorption with a standard laboratory-scale test using monosodium titanate (MST) and filtration, and checking cesium mass transfer behavior for the MCU solvent performance when contacted with the liquid produced from MST contact. This study also includes characterization of a post-blend Tank 49H sample as part of the Nuclear Criticality Safety Evaluation (NCSE). This work was specified by Task Technical Request and by Task Technical and Quality Assurance Plan (TTQAP). In addition, a sampling plan will be written to guide analytical future work. Safety and environmental aspects of the work were documented in a Hazard Assessment Package.

  8. Catalyst of a metal heteropoly acid salt that is insoluble in a polar solvent on a non-metallic porous support and method of making

    Science.gov (United States)

    Wang, Yong [Richland, WA; Peden, Charles H. F. [West Richland, WA; Choi, Saemin [Richland, WA

    2002-10-29

    The present invention includes a catalyst having (a) a non-metallic support having a plurality of pores; (b) a metal heteropoly acid salt that is insoluble in a polar solvent on the non-metallic support; wherein at least a portion of the metal heteropoly acid salt is dispersed within said plurality of pores. The present invention also includes a method of depositing a metal heteropoly acid salt that is insoluble in a polar solvent onto a non-metallic support having a plurality of pores. The method has the steps of: (a) obtaining a first solution containing a first precursor of a metal salt cation; (b) obtaining a second solution containing a second precursor of a heteropoly acid anion in a solvent having a limited dissolution potential for said first precursor; (c) impregnating the non-metallic support with the first precursor forming a first precursor deposit within the plurality of pores, forming a first precursor impregnated support; (d) heating said first precursor impregnated support forming a bonded first precursor impregnated support; (e) impregnating the second precursor that reacts with the precursor deposit and forms the metal heteropoly acid salt.

  9. Comparison methods between methane and hydrogen combustion for useful transfer in furnaces

    International Nuclear Information System (INIS)

    Ghiea, V.V.

    2009-01-01

    The advantages and disadvantages of hydrogen use by industrial combustion are critically presented. Greenhouse effect due natural water vapors from atmosphere and these produced by hydrogen industrial combustion is critically analyzed, together with problems of gas fuels containing hydrogen as the relative largest component. A comparison method between methane and hydrogen combustion for pressure loss in burner feeding pipe, is conceived. It is deduced the ratio of radiation useful heat transfer characteristics and convection heat transfer coefficients from combustion gases at industrial furnaces and heat recuperators for hydrogen and methane combustion, establishing specific comparison methods. Using criterial equations special processed for convection heat transfer determination, a calculation generalizing formula is established. The proposed comparison methods are general valid for different gaseous fuels. (author)

  10. An analytical optimization method for electric propulsion orbit transfer vehicles

    International Nuclear Information System (INIS)

    Oleson, S.R.

    1993-01-01

    Due to electric propulsion's inherent propellant mass savings over chemical propulsion, electric propulsion orbit transfer vehicles (EPOTVs) are a highly efficient mode of orbit transfer. When selecting an electric propulsion device (ion, MPD, or arcjet) and propellant for a particular mission, it is preferable to use quick, analytical system optimization methods instead of time intensive numerical integration methods. It is also of interest to determine each thruster's optimal operating characteristics for a specific mission. Analytical expressions are derived which determine the optimal specific impulse (Isp) for each type of electric thruster to maximize payload fraction for a desired thrusting time. These expressions take into account the variation of thruster efficiency with specific impulse. Verification of the method is made with representative electric propulsion values on a LEO-to-GEO mission. Application of the method to specific missions is discussed

  11. Assessment of the Capability of Molten Salt Reactors as a Next Generation High Temperature Reactors

    International Nuclear Information System (INIS)

    Elsheikh, B.M.

    2017-01-01

    Molten Salt Reactor according to Aircraft Reactor Experiment (ARE) and the Molten Salt Reactor Experiment (MSRE) programs, was designed to be the first full-scale, commercial nuclear power plant utilizing molten salt liquid fuels that can be used for producing electricity, and producing fissile fuels (breeding)burning actinides. The high temperature in the primary cycle enables the realization of efficient thermal conversion cycles with net thermal efficiencies reach in some of the designs of nuclear reactors greater than 45%. Molten salts and liquid salt because of their low vapor pressure are excellent candidates for meeting most of the requirements of these high temperature reactors. There is renewed interest in MSRs because of changing goals and new technologies in the use of high-temperature reactors. Molten Salt Reactors for high temperature create substantial technical challenges to have high effectiveness intermediate heat transfer loop components. This paper will discuss and investigate the capability and compatibility of molten salt reactors, toward next generation high temperature energy system and its technical challenges

  12. Discrete-ordinates finite-element method for atmospheric radiative transfer and remote sensing

    International Nuclear Information System (INIS)

    Gerstl, S.A.W.; Zardecki, A.

    1985-01-01

    Advantages and disadvantages of modern discrete-ordinates finite-element methods for the solution of radiative transfer problems in meteorology, climatology, and remote sensing applications are evaluated. After the common basis of the formulation of radiative transfer problems in the fields of neutron transport and atmospheric optics is established, the essential features of the discrete-ordinates finite-element method are described including the limitations of the method and their remedies. Numerical results are presented for 1-D and 2-D atmospheric radiative transfer problems where integral as well as angular dependent quantities are compared with published results from other calculations and with measured data. These comparisons provide a verification of the discrete-ordinates results for a wide spectrum of cases with varying degrees of absorption, scattering, and anisotropic phase functions. Accuracy and computational speed are also discussed. Since practically all discrete-ordinates codes offer a builtin adjoint capability, the general concept of the adjoint method is described and illustrated by sample problems. Our general conclusion is that the strengths of the discrete-ordinates finite-element method outweight its weaknesses. We demonstrate that existing general-purpose discrete-ordinates codes can provide a powerful tool to analyze radiative transfer problems through the atmosphere, especially when 2-D geometries must be considered

  13. Salt supply to and significance of asymmetric salt diapirs

    DEFF Research Database (Denmark)

    Koyi, H.; Burliga, S.; Chemia, Zurab

    2012-01-01

    Salt diapirs can be asymmetric both internally and externally reflecting their evolution history. As such, this asymmetry bear a significant amount of information about the differential loading (± lateral forces) and in turn the salt supply that have shaped the diapir. In two dimensions......, In this study we compare results of analogue and numerical models of diapirs with two natural salt diapris (Klodawa and Gorleben diapirs) to explain their salt supply and asymmetric evolution. In a NW-SE section, the Gorleben salt diapir possesses an asymmetric external geometry represented by a large...... southeastern overhang due to salt extrusion during Middle Cretaceous followed by its burial in Tertiary. This external asymmetry is also reflected in the internal configuration of the diapir which shows different rates of salt flow on the two halves of the structure. The asymmetric external and internal...

  14. Long-term interactions of full-scale cemented waste simulates with salt brines

    Energy Technology Data Exchange (ETDEWEB)

    Kienzler, B.; Borkel, C.; Metz, V.; Schlieker, M.

    2016-07-01

    Since 1967 radioactive wastes have been disposed of in the Asse II salt mine in Northern Germany. A significant part of these wastes originated from the pilot reprocessing plant WAK in Karlsruhe and consisted of cemented NaNO{sub 3} solutions bearing fission products, actinides, as well as process chemicals. With respect to the long-term behavior of these wastes, the licensing authorities requested leaching experiments with full scale samples in relevant salt solutions which were performed since 1979. The experiments aimed at demonstrating the transferability of results obtained with laboratory samples to real waste forms and at the investigation of the effects of the industrial cementation process on the properties of the waste forms. This research program lasted until 2013. The corroding salt solutions were sampled several times and after termination of the experiments, the solid materials were analyzed by various methods. The results presented in this report cover the evolution of the solutions and the chemical and mineralogical characterization of the solids including radionuclides and waste components, and the paragenesis of solid phases (corrosion products). The outcome is compared to the results of model calculations. For safety analysis, conclusions are drawn on radionuclide retention, evolution of the geochemical environment, evolution of the density of solutions, and effects of temperature and porosity of the cement waste simulates on cesium mobilization.

  15. Long-term interactions of full-scale cemented waste simulates with salt brines

    International Nuclear Information System (INIS)

    Kienzler, B.; Borkel, C.; Metz, V.; Schlieker, M.

    2016-01-01

    Since 1967 radioactive wastes have been disposed of in the Asse II salt mine in Northern Germany. A significant part of these wastes originated from the pilot reprocessing plant WAK in Karlsruhe and consisted of cemented NaNO 3 solutions bearing fission products, actinides, as well as process chemicals. With respect to the long-term behavior of these wastes, the licensing authorities requested leaching experiments with full scale samples in relevant salt solutions which were performed since 1979. The experiments aimed at demonstrating the transferability of results obtained with laboratory samples to real waste forms and at the investigation of the effects of the industrial cementation process on the properties of the waste forms. This research program lasted until 2013. The corroding salt solutions were sampled several times and after termination of the experiments, the solid materials were analyzed by various methods. The results presented in this report cover the evolution of the solutions and the chemical and mineralogical characterization of the solids including radionuclides and waste components, and the paragenesis of solid phases (corrosion products). The outcome is compared to the results of model calculations. For safety analysis, conclusions are drawn on radionuclide retention, evolution of the geochemical environment, evolution of the density of solutions, and effects of temperature and porosity of the cement waste simulates on cesium mobilization.

  16. A new method to evaluate the sealing reliability of the flanged connections for Molten Salt Reactors

    International Nuclear Information System (INIS)

    Li, Qiming; Tian, Jian; Zhou, Chong; Wang, Naxiu

    2015-01-01

    Highlights: • We novelly valuate the sealing reliability of the flanged connections for MSRs. • We focus on the passive decrease of the leak impetus in flanged connections. • The modified flanged connections are acquired a sealing ability of self-adjustment. • Effects of redesigned flange configurations on molten salt leakage are discussed. - Abstract: The Thorium based Molten Salt Reactor (TMSR) project is a future Generation IV nuclear reactor system proposed by the Chinese Academy of Sciences with the strategic goal of meeting the growing energy needs in the Chinese economic development and social progress. It is based on liquid salts served as both fuel and primary coolant and consequently great challenges are brought into the sealing of the flanged connections. In this study, an improved prototype flange assembly is performed on the strength of the Freeze-Flange initially developed by Oak Ridge National Laboratory (ORNL). The calculation results of the finite element model established to analyze the temperature profile of the Freeze-Flange agree well with the experimental data, which indicates that the numerical simulation method is credible. For further consideration, the ideal-gas thermodynamic model, together with the mathematical approximation, is novelly borrowed to theoretically evaluate the sealing performance of the modified Freeze-Flange and the traditional double gaskets bolted flange joint. This study focuses on the passive decrease of the leak driving force due to multiple gaskets introduced in flanged connections for MSR. The effects of the redesigned flange configuration on molten salt leakage resistance are discussed in detail

  17. A new method to evaluate the sealing reliability of the flanged connections for Molten Salt Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Li, Qiming, E-mail: liqiming@sinap.ac.cn [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Key Laboratory of Nuclear Radiation and Nuclear Energy Technology, Chinese Academy of Sciences, Shanghai 201800 (China); Tian, Jian; Zhou, Chong [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Key Laboratory of Nuclear Radiation and Nuclear Energy Technology, Chinese Academy of Sciences, Shanghai 201800 (China); Wang, Naxiu, E-mail: wangnaxiu@sinap.ac.cn [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Key Laboratory of Nuclear Radiation and Nuclear Energy Technology, Chinese Academy of Sciences, Shanghai 201800 (China)

    2015-06-15

    Highlights: • We novelly valuate the sealing reliability of the flanged connections for MSRs. • We focus on the passive decrease of the leak impetus in flanged connections. • The modified flanged connections are acquired a sealing ability of self-adjustment. • Effects of redesigned flange configurations on molten salt leakage are discussed. - Abstract: The Thorium based Molten Salt Reactor (TMSR) project is a future Generation IV nuclear reactor system proposed by the Chinese Academy of Sciences with the strategic goal of meeting the growing energy needs in the Chinese economic development and social progress. It is based on liquid salts served as both fuel and primary coolant and consequently great challenges are brought into the sealing of the flanged connections. In this study, an improved prototype flange assembly is performed on the strength of the Freeze-Flange initially developed by Oak Ridge National Laboratory (ORNL). The calculation results of the finite element model established to analyze the temperature profile of the Freeze-Flange agree well with the experimental data, which indicates that the numerical simulation method is credible. For further consideration, the ideal-gas thermodynamic model, together with the mathematical approximation, is novelly borrowed to theoretically evaluate the sealing performance of the modified Freeze-Flange and the traditional double gaskets bolted flange joint. This study focuses on the passive decrease of the leak driving force due to multiple gaskets introduced in flanged connections for MSR. The effects of the redesigned flange configuration on molten salt leakage resistance are discussed in detail.

  18. Control of Electron Transfer from Lead-Salt Nanocrystals to TiO 2

    KAUST Repository

    Hyun, Byung-Ryool

    2011-05-11

    The roles of solvent reorganization energy and electronic coupling strength on the transfer of photoexcited electrons from PbS nanocrystals to TiO 2 nanoparticles are investigated. We find that the electron transfer depends only weakly on the solvent, in contrast to the strong dependence in the nanocrystal-molecule system. This is ascribed to the larger size of the acceptor in this system, and is accounted for by Marcus theory. The electronic coupling of the PbS and TiO 2 is varied by changing the length, aliphatic and aromatic structure, and anchor groups of the linker molecules. Shorter linker molecules consistently lead to faster electron transfer. Surprisingly, linker molecules of the same length but distinct chemical structures yield similar electron transfer rates. In contrast, the electron transfer rate can vary dramatically with different anchor groups. © 2011 American Chemical Society.

  19. Crown ethers and phase transfer catalysis in polymer science

    CERN Document Server

    Carraher, Charles

    1984-01-01

    Phase transfer catalysis or interfacial catalysis is a syn­ thetic technique involving transport of an organic or inorganic salt from a solid or aqueous phase into an organic liquid where reaction with an organic-soluble substrate takes place. Over the past 15 years there has been an enormous amount of effort invested in the development of this technique in organic synthe­ sis. Several books and numerous review articles have appeared summarizing applications in which low molecular weight catalysts are employed. These generally include either crown ethers or onium salts of various kinds. While the term phase transfer catalysis is relatively new, the concept of using a phasetrans­ fer agent (PTA) is much older~ Both Schnell and Morgan employed such catalysts in synthesis of polymeric species in the early 1950's. Present developments are really extensions of these early applications. It has only been within the last several years that the use of phase transfer processes have been employed in polymer synthesis...

  20. Impact of Light Salt Substitution for Regular Salt on Blood Pressure of Hypertensive Patients

    Directory of Open Access Journals (Sweden)

    Carolina Lôbo de Almeida Barros

    2015-02-01

    Full Text Available Background: Studies have shown sodium restriction to have a beneficial effect on blood pressure (BP of hypertensive patients. Objective: To evaluate the impact of light salt substitution for regular salt on BP of hypertensive patients. Methods: Uncontrolled hypertensive patients of both sexes, 20 to 65 years-old, on stable doses of antihypertensive drugs were randomized into Intervention Group (IG - receiving light salt and Control Group (CG - receiving regular salt. Systolic BP (SBP and diastolic BP (DBP were analyzed by using casual BP measurements and Home Blood Pressure Monitoring (HBPM, and sodium and potassium excretion was assessed on 24-hour urine samples. The patients received 3 g of salt for daily consumption for 4 weeks. Results: The study evaluated 35 patients (65.7% women, 19 allocated to the IG and 16 to the CG. The mean age was 55.5 ± 7.4 years. Most participants had completed the Brazilian middle school (up to the 8th grade; n = 28; 80.0%, had a family income of up to US$ 600 (n = 17; 48.6% and practiced regular physical activity (n = 19; 54.3%. Two patients (5.7% were smokers and 40.0% consumed alcohol regularly (n = 14. The IG showed a significant reduction in both SBP and DBP on the casual measurements and HBPM (p < 0.05 and in sodium excretion (p = 0.016. The CG showed a significant reduction only in casual SBP (p = 0.032. Conclusions: The light salt substitution for regular salt significantly reduced BP of hypertensive patients.

  1. Temperature and salt addition effects on the solubility behaviour of some phenolic compounds in water

    International Nuclear Information System (INIS)

    Noubigh, Adel; Abderrabba, Manef; Provost, Elise

    2007-01-01

    Solubility-temperature dependence data for six phenolic compounds (PhC), contained in olive mill wastewater (OMWW), in water and in some chloride salts (KCl, NaCl, and LiCl) aqueous solutions have been presented and solution standard molar enthalpies (Δ sol H 0 ) were determined using Van't Hoff plots. The temperature was varied from 293.15 K to 318.15 K. Solubility data were estimated using a thermostated reactor and HPLC analysis. It has been observed that solubility, in pure water and in aqueous chloride solutions, increases with increasing temperature. The salting-out LiCl > NaCl > KCl order obtained at 298.15 K is confirmed. Results were interpreted in terms of the salt hydration shells and the ability of the solute to form hydrogen-bond with water. The standard molar Gibbs free energies of transfer of PhC (Δ tr G 0 ) from pure water to aqueous solutions of the chloride salts have been calculated from the solubility data. In order to estimate the contribution of enthalpic and entropic terms, standard molar enthalpies (Δ tr H 0 ) and entropies (Δ tr S 0 ) of transfer have also been calculated. The decrease in solubility is correlated to the positive Δ tr G 0 value which is mainly of enthalpic origin

  2. Compatibility of molten salt and structural materials

    Energy Technology Data Exchange (ETDEWEB)

    Kawakami, Masahiro [Toyohashi Univ. of Technology, Aichi (Japan)

    1994-12-01

    As the important factors for considering the compatibility of fuel salt and coolant salt with structural materials in molten salt reactors, there are the moisture remaining in molten salt and the fluorine potential in molten salt. In this study, as for the metals which are the main components of corrosion resistant alloys, the corrosion by the moisture remaining in molten salt and the dependence of the corrosion on fluorine potential were examined. As the molten salts, an eutectic molten salt LiF-BeF{sub 2} was mainly used, and LiF-KF was used in combination. As the metallic materials, Cr, Ni and Cu which are the main components of corrosion resistant and heat resistant alloys, Hastelloy and Monel, were used. In the experiment, the metal pieces were immersed in the molten salt, and by sampling the molten salt, the change with time lapse of the concentration of the dissolved metals was examined. Besides, the electrochemical measurement was carried out for Cr, of which the corrosion was remarkable, and the change with time lapse of the dissolved ions was examined. The experimental setup, the experimental method, and the results of the immersion test and the electrochemical test are reported. The experiment on the corrosion of metals depending on fluorine potential is also reported. (K.I.).

  3. Static fuel molten salt reactors - simpler, cheaper and safer

    International Nuclear Information System (INIS)

    Scott, Ian

    2015-01-01

    The many conceptual designs for Molten Salt Reactors (MSR's) today are all evolutions from the prototype MSR that went critical at Oak Ridge 50 years ago. Critically, they are based on pumping the molten fuel salt from a reaction chamber where the fuel achieves critical mass through a heat exchanger where the resulting heat is transferred to another working fluid. This basic concept was not the first idea that the Oak Ridge scientists considered. Their initial preference was to put the molten salt fuel into tubes, just like solid fuel pellets in their cladding, and circulate a coolant past the tubes. They concluded however that the low thermal conductivity of the salt meant that the tubes could be no wider than 2mm which would be entirely impractical. In this analysis they ignored the contribution of convection to heat transfer in fluids, probably because they were designing an aircraft engine where varying g forces would make convection unreliable. Moltex Energy has re-examined this decision using the modern tools of computational fluid dynamics to simulate convective flow in the molten salt and discovered that in fact tubes of similar diameter to those used for solid fuels are entirely practical. Power densities of 250kW/litre of fuel salt are readily attainable providing a higher overall power density than a PWR reactor. This discovery permits MSR's to be built without any of the complex pumping, passively safe drain systems, on line degassing, filtration and chemical processing needed in pumped MSR's. Their design is very simple and they have many intrinsic safety factors including low pressure operation, chemically unreactive fluids and strongly negative fuel thermal and coolant voiding reactivity coefficients. Most importantly, the highly radioactive fission products are retained in non-volatile form within the fuel tubes in the reactor core. Radioactive fuel salt never leaves the reactor vessel except in an immobile frozen form during

  4. A transfer method and apparatus therefore

    International Nuclear Information System (INIS)

    Billington, A.J.; Brown, S.C.N.; Snelson, B.; Drayton, J.H.; Wood, S.A.; Desborough, P.H.; Slater, S.

    1990-01-01

    In a method and apparatus for transferring relatively light objects, such as nuclear fuel pellets, the objects are supported on a cushion element having a multiplicity of extremely fine and relatively short flexible fibres packed at an ultra high density pile in a backing. The fibres are aligned at an angle or inclination with respect to the base so that when the cushion element or the object is vibrated the objects are transferred in the direction of lay of the fibres. The cushion element may be supported by a base with the object resting on the fibres, or the cushion element may be secured to the underside of the object so that the fibres rest on the base. The pile may have (68-80) x 10 6 fibres per square metre, with a fibre length/thickness ratio of about 50:1. The fibres may be 43-45 microns thick and up to 2.5 mm in length. The support may be in the form of a V-section track and used in conjunction with an inspection device, or have an orienting function. (author)

  5. Projection methods for line radiative transfer in spherical media.

    Science.gov (United States)

    Anusha, L. S.; Nagendra, K. N.

    An efficient numerical method called the Preconditioned Bi-Conjugate Gradient (Pre-BiCG) method is presented for the solution of radiative transfer equation in spherical geometry. A variant of this method called Stabilized Preconditioned Bi-Conjugate Gradient (Pre-BiCG-STAB) is also presented. These methods are based on projections on the subspaces of the n dimensional Euclidean space mathbb {R}n called Krylov subspaces. The methods are shown to be faster in terms of convergence rate compared to the contemporary iterative methods such as Jacobi, Gauss-Seidel and Successive Over Relaxation (SOR).

  6. Context-driven Salt Seeking Test (Rats)

    Science.gov (United States)

    Chang, Stephen E.; Smith, Kyle S.

    2018-01-01

    Changes in reward seeking behavior often occur through incremental learning based on the difference between what is expected and what actually happens. Behavioral flexibility of this sort requires experience with rewards as better or worse than expected. However, there are some instances in which behavior can change through non-incremental learning, which requires no further experience with an outcome. Such an example of non-incremental learning is the salt appetite phenomenon. In this case, animals such as rats will immediately seek out a highly-concentrated salt solution that was previously undesired when they are put in a novel state of sodium deprivation. Importantly, this adaptive salt-seeking behavior occurs despite the fact that the rats never tasted salt in the depleted state, and therefore never tasted it as a highly desirable reward. The following protocol is a method to investigate the neural circuitry mediating adaptive salt seeking using a conditioned place preference (CPP) procedure. The procedure is designed to provide an opportunity to discover possible dissociations between the neural circuitry mediating salt seeking and salt consumption to replenish the bodily deficit after sodium depletion. Additionally, this procedure is amenable to incorporating a number of neurobiological techniques for studying the brain basis of this behavior.

  7. Finite element method for radiation heat transfer in multi-dimensional graded index medium

    International Nuclear Information System (INIS)

    Liu, L.H.; Zhang, L.; Tan, H.P.

    2006-01-01

    In graded index medium, ray goes along a curved path determined by Fermat principle, and curved ray-tracing is very difficult and complex. To avoid the complicated and time-consuming computation of curved ray trajectories, a finite element method based on discrete ordinate equation is developed to solve the radiative transfer problem in a multi-dimensional semitransparent graded index medium. Two particular test problems of radiative transfer are taken as examples to verify this finite element method. The predicted dimensionless net radiative heat fluxes are determined by the proposed method and compared with the results obtained by finite volume method. The results show that the finite element method presented in this paper has a good accuracy in solving the multi-dimensional radiative transfer problem in semitransparent graded index medium

  8. [Study on quality standards of decoction pieces of salt Alpinia].

    Science.gov (United States)

    Li, Wenbing; Hu, Changjiang; Long, Lanyan; Huang, Qinwan; Xie, Xiuqiong

    2010-12-01

    To establish the quality criteria for decoction pieces of salt Alpinia. Decoction pieces of salt Alpinia were measured with moisture, total ash, acid-insoluble ash, water-extract and volatile oils according to the procedures recorded in the Chinese Pharmacopoeia 2010. The content of Nootkatone was determined by HPLC, and NaCl, by chloridion electrode method. We obtained results of total ash, acid-insoluble ash, water-extract and volatile oils of 10 batches of decoction pieces of salt Alpinia moisture; Meanwhile we set the HPLC and chloridion electrode method. This research established a fine quality standard for decoction pieces of salt Alpinia.

  9. Ion clustering in aqueous salt solutions near the liquid/vapor interface

    Directory of Open Access Journals (Sweden)

    J.D. Smith

    2016-03-01

    Full Text Available Molecular dynamics simulations of aqueous NaCl, KCl, NaI, and KI solutions are used to study the effects of salts on the properties of the liquid/vapor interface. The simulations use the models which include both charge transfer and polarization effects. Pairing and the formation of larger ion clusters occurs both in the bulk and surface region, with a decreased tendency to form larger clusters near the interface. An analysis of the roughness of the surface reveals that the chloride salts, which have less tendency to be near the surface, have a roughness that is less than pure water, while the iodide salts, which have a greater surface affinity, have a larger roughness. This suggests that ions away from the surface and ions near the surface affect the interface in opposite ways.

  10. Measurement of water lost from heated geologic salt

    International Nuclear Information System (INIS)

    Hohlfelder, J.J.

    1979-07-01

    This report describes three methods used to measure the rate at which water is lost from heated geologic salt. The three methods were employed in each of a series of proof tests which were performed to evaluate instrumentation designed to measure the water-loss rate. It was found that the water lost from heated, 1-kg salt specimens which were measured according to these three methods was consistent to within an average 9 percent

  11. Determination of transference numbers in ionic conductors by the EMF method with active load

    International Nuclear Information System (INIS)

    Gorelov, V.P.

    1988-01-01

    Method for determining transference numbers in ionic conductors by means of measuring EMF of concentration cell with accout of polarization resistance of electrodes is suggested. The method enables to determine easily very small transference numbers of electron component against the background of predominating ionic conductivity. To illustrate the method there were determined transference numbers for the sample of industrial solid electrolyte in the cell; O 2 Pt|0.91ZrO 2 +0.09Y 2 O 3 |Pt, air

  12. Continuous extraction of molten chloride salts with liquid cadmium alloys

    International Nuclear Information System (INIS)

    Chow, L.S.; Basco, J.K.; Ackerman, J.P.; Johnson, T.R.

    1993-01-01

    A pyrochemical method is being developed at Argonne National Laboratory (ANL) to provide contnuous multistage extractions between molten chloride salts and liquid cadmium alloys at 500 degrees C. The extraction method will be used to recover transuranic (TRU) elements from the process salt in the electroretiner used in the pyrochemical reprocessing of spent fuel from the Integral Fast Reactor (IFR). The IFR is one of the Department of Energy's advanced power reactor concepts. The recovered TRU elements are returned to the electrorefiner. The extracted salt undergoes further processing to remove rare earths and other fission products so that most of the purified salt can also be returned to the electrorefiner, thereby extending the useful life of the process salt many times

  13. Genetic Adaptation to Salt Stress in Experimental Evolution of Desulfovibrio vulgaris Hildenborough

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Aifen; Hillesland, Kristina; He, Zhili; Joachimiak, Marcin; Zane, Grant; Dehal, Paramvir; Arkin, Adam; Stahl, David; Wall, Judy; Hazen, Terry; Zhou, Jizhong; Baidoo, Edward; Benke, Peter; Mukhopadhyay, Aindrila

    2010-05-17

    High salinity is one of the most common environmental stressors. In order to understand how environmental organisms adapt to salty environment, an experiment evolution with sulfate reducing bacteria Desulfovibrio vugaris Hildenborough was conducted. Control lines and salt-stressed lines (6 lines each) grown in minimal medium LS4D or LS4D + 100 mM NaCl were transferred for 1200 generations. The salt tolerance was tested with LS4D supplemented with 250 mM NaCl. Statistical analysis of the growth data suggested that all lines adapted to their evolutionary environment. In addition, the control lines performed better than the ancestor with faster growth rate, higher biomass yield and shorter lag phase under salty environment they did not evolve in. However, the salt-adapted lines performed better than the control lines on measures of growth rate and yield under salty environment, suggesting that the salt?evolved lines acquired mutations specific to having extra salt in LS4D. Growth data and gene transcription data suggested that populations tended to improve till 1000 generations and active mutations tended to be fixed at the stage of 1000 generations. Point mutations and insertion/deletions were identified in isolated colonies from salt-adapted and control lines via whole genome sequencing. Glu, Gln and Ala appears to be the major osmoprotectant in evolved salt-stressed line. Ongoing studies are now characterizing the contribution of specific mutations identified in the salt-evolved D. vulgaris.

  14. Salt-assisted and salt-suppressed sol-gel transitions of methylcellulose in water.

    Science.gov (United States)

    Xu, Y; Wang, C; Tam, K C; Li, L

    2004-02-03

    The effects of various salts on the sol-gel transition of aqueous methylcellulose (MC) solutions have been studied systematically by means of a micro differential scanning calorimeter. It was found that the heating process was endothermic while the cooling process was exothermic for both MC solutions with and without salts. The addition of salts did not change the patterns of gelation and degelation of MC. However, the salts could shift the sol-gel transition and the gel-sol transition to lower or higher temperatures from a pure MC solution, depending on the salt type. These opposite effects were termed the salt-assisted and salt-suppressed sol-gel transitions. Either the salt-assisted transition or the salt-suppressed sol-gel transition was a function of salt concentration. In addition, each salt was found to have its own concentration limit for producing a stable aqueous solution of MC at a given concentration of MC, which was related to the anionic charge density of the salt. Cations were proved to have weaker effects than anions. The "salt-out strength", defined as the salt effect per mole of anion, was obtained for each anion studied. The thermodynamic mechanisms involved in the salt-assisted and salt-suppressed sol-gel transitions are discussed.

  15. Cathodic processes in high-temperature molten salts for the development of new materials processing methods

    International Nuclear Information System (INIS)

    Schwandt, Carsten

    2017-01-01

    Molten salts play an important role in the processing of a range of commodity materials. This includes the large-scale production of iron, aluminium, magnesium and alkali metals as well as the refining of nuclear fuel materials. This presentation focuses on two more recent concepts in which the cathodic reactions in molten salt electrolytic cells are used to prepare high-value-added materials. Both were developed and advanced at the Department of Materials Science and Metallurgy at the University of Cambridge and are still actively being pursued. One concept is now generally known as the FFC-Cambridge process. The presentation will highlight the optimisation of the process towards high selectivities for tubes or particles depict a modification of the method to synthesize tin-filled carbon nanomaterial, and illustrate the implementation of a novel type of process control to enable the preparation of gramme quantities of material within a few hours with simple laboratory equipment. Also discussed will be the testing of these materials in lithium ion batteries

  16. Simulation of salt behavior using in situ response

    International Nuclear Information System (INIS)

    Li, W.T.

    1986-01-01

    The time-dependent nonlinear structural behavior in a salt formation around the openings can be obtained by either performing computational analysis of measuring in situ responses. However, analysis using laboratory test data may often deviate from the actual in situ conditions and geomechanical instruments can provide information only up to the time when the measurements were taken. A method has been suggested for simulating the salt behavior by utilizing the steady-state portion of in situ response history. Governing equations for computational analysis were normalized to the creep constant, the equations were solved, and the analytical response history was then computed in terms of normalized time. By synchronizing the response history obtained from the analysis to the one measured at the site, the creep constant was determined. Then the structural response of the salt was computed. This paper presents an improved method for simulating the salt behavior. In this method, the governing equations are normalized to the creep function, which represents the transient and the steady-state creep behavior. Both the transient and the steady-state portions of in situ response history are used in determining the creep function. Finally, a nonlinear mapping process relating the normalized and real time domains determines the behavior of the salt

  17. Long-term sealing of openings in salt formations

    International Nuclear Information System (INIS)

    Walter, F.; Stockmann, N.; Yaramanci, U.; Laurens, J.F.

    1993-01-01

    Radioactive wastes can be disposed of in deep salt formations. Rock salt is a suitable geologic medium because of its unique characteristics. Open boreholes, shafts and drifts are created to provide physical access to the repository. Long-term seals must be emplaced in those potential pathways to prevent radioactive release to the biosphere. The sealing materials must be mechanically and, most important, geochemically stable within the host rock. Salt bricks made of compressed salt-powder are understood to be the first choice long-term sealing material. Seals built from salt bricks will be ductile. The permeability of the salt bricks is assumed to be in the order of 2*10 -15 m 2 . Large sealing systems are built by combining the individual bricks with mortar. Raw materials for mortar are fine-grained halite powder and ground saliferous clay. The permeability of the mortar decreases with its salt content to approx. 2*10 -14 m 2 . Moistened saliferous clay may show temporary swelling. Sealing experiments will be carried out in the Asse salt mine. Long-term seals will be built into holes of 1 m diameter. The contact and merging of the brick-wall with the surrounding rock salt will be investigated in long-term tests. Within the in situ sealing program a number of geophysical methods are applied. Acoustic emission measurements are used to study the effects of high pressure gas injection and a geoelectrical observation program is aiming to estimate the permeability in and around the long-term seal. High frequency electromagnetic methods contribute to the knowledge of the petrophysical rock properties. 11 refs., 12 figs

  18. Chemical perspectives on alkali and earth alkaline nitrate and nitrite salts for concentrated solar power applications

    Energy Technology Data Exchange (ETDEWEB)

    Cordaro, Joseph G. [Sandia National Labsoratories, Livermore, CA (United States)

    2013-04-01

    Molten salts have been widely considered as the leading candidate heat transfer fluids (HTF) used in high temperature, concentrated solar power plants. Specifically, nitrate and nitrite based salts have been investigated as a HTF and even deployed in pilot plants generating up to 19.9 MW of electricity at operating temperatures above 500 C. New plant designs requiring higher operating temperatures for better efficiencies are pushing the stability limit of HTF. This paper presents an overview of the thermophysical properties of nitrate and nitrite salts and discusses thermodynamic and kinetic stability limitations as they relate to concentrated solar power generation. (orig.)

  19. N-Heterocyclic Carbene-Catalyzed Olefination of Aldehydes with Vinyliodonium Salts To Generate α,β-Unsaturated Ketones.

    Science.gov (United States)

    Rajkiewicz, Adam A; Kalek, Marcin

    2018-04-06

    An organocatalyzed metal-free, direct olefination of aldehydes with vinyliodonium salts has been achieved by an N-heterocyclic carbene-promoted C-H bond activation. The reaction proceeds under very mild conditions, delivering a range of (hetero)aryl-vinyl ketones in good yields. The retention of the double bond configuration is uniformly observed, and the application of 2-methoxyphenyl auxiliary group in iodonium salts secures a complete selectivity of the vinyl transfer.

  20. Measurement of emittance of metal interface in molten salt

    International Nuclear Information System (INIS)

    Araki, N.; Makino, A.; Nakamura, Y.

    1995-01-01

    A new technique for measuring the total normal emittance of a metal in a semi-transparent liquid has been proposed and this technique has been applied to measure the emittance of stainless steel (SUS304), nickel, and gold in molten potassium nitrate KNO 3 . These emittance data are indispensable to analyzing the radiative heat transfer between a metal and a semitransparent liquid, such as a molten salt

  1. Residual salt separation from simulated spent nuclear fuel reduced in a LiCl-Li2O salt

    International Nuclear Information System (INIS)

    Hur, Jin-Mok; Hong, Sun-Seok; Seo, Chung-Seok

    2006-01-01

    The electrochemical reduction of spent nuclear fuel in LiCl-Li 2 O molten salt for the conditioning of spent nuclear fuel requires the separation of the residual salts from a reduced metal product after the reduction process. Considering the behavior of spent nuclear fuel during the electrochemical reduction process, a surrogate material matrix was constructed and inactive tests on a salt separation were carried out to produce the data required for active tests. Fresh uranium metal prepared from the electrochemical reduction of U 3 O 8 powder was used as the surrogates of the spent nuclear fuel Atomic Energy Society of Japan, Tokyo, Japan, All rights reservedopyriprocess. LiCl, Li 2 O, Y 2 O 3 and SrCl 2 were selected as the components of the residual salts. Interactions between the salts and their influence on the separation of the residual salts were analyzed by differential scanning calorimetry (DSC) and thermogravimetry (TG). Eutectic melting of LiCl-Li 2 O and LiCl-SrCl 2 led to a melting point which was lower than that of the LiCl molten salt was observed. Residual salts were separated by a vaporization method. Co-vaporization of LiCl-Li 2 O and LiCl-SrCl 2 was achieved below the temperatures which could make the uranium metal oxidation by Li 2 O possible. The salt vaporization rates at 950degC were measured as follows: LiCl-8 wt% Li 2 O>LiCl>LiCl-8 wt% SrCl 2 >SrCl 2 . (author)

  2. Residual Salt Separation from the Metal Products Reduced in a LiCl-Li2O Molten Salt

    International Nuclear Information System (INIS)

    Hur, Jin Mok; Hong, Sun Seok; Kang, Dae Seung; Jeong, Meong Soo; Seo, Chung Seok

    2006-02-01

    The electrochemical reduction of spent nuclear fuel in a LiCl-Li 2 O molten salt for the conditioning of spent nuclear fuel requires the separation of the residual salts from a reduced metal product after the reduction process. Considering the behavior of spent nuclear fuel during the electrochemical reduction process, a surrogate material matrix was constructed and inactive tests on a salt separation were carried out to produce the data required for the active tests. Fresh uranium metal prepared from the electrochemical reduction of U 3 O 8 powder was used as the surrogates of the spent nuclear fuel components which might be metallized by the electrochemical reduction process. LiCl, Li 2 O, Y 2 O 3 and SrCl 2 were selected as the components of the residual salts. Interactions between the salts and their influence on the separation of the residual salts were analyzed by differential scanning calorimetry (DSC) and thermogravimetry (TG). Eutectic melting of LiCl-Li 2 O and LiCl-SrCl 2 led to a melting point which was lower than that of a LiCl molten salt was observed. Residual salts were separated by a vaporization method. Co-vaporization of LiCl-Li 2 O and LiCl-SrCl 2 was achieved below temperatures which could make the uranium metal oxidation by Li 2 O possible. The salt vaporization rates at 950 .deg. C were measured as follows: LiCl-8 wt% Li 2 O > LiCl > LiCl-8 wt% SrCl 2 > SrCl 2

  3. Salt-bridge energetics in halophilic proteins.

    Science.gov (United States)

    Nayek, Arnab; Sen Gupta, Parth Sarthi; Banerjee, Shyamashree; Mondal, Buddhadev; Bandyopadhyay, Amal K

    2014-01-01

    Halophilic proteins have greater abundance of acidic over basic and very low bulky hydrophobic residues. Classical electrostatic stabilization was suggested as the key determinant for halophilic adaptation of protein. However, contribution of specific electrostatic interactions (i.e. salt-bridges) to overall stability of halophilic proteins is yet to be understood. To understand this, we use Adaptive-Poison-Boltzmann-Solver Methods along with our home-built automation to workout net as well as associated component energy terms such as desolvation energy, bridge energy and background energy for 275 salt-bridges from 20 extremely halophilic proteins. We then perform extensive statistical analysis on general and energetic attributes on these salt-bridges. On average, 8 salt-bridges per 150 residues protein were observed which is almost twice than earlier report. Overall contributions of salt-bridges are -3.0 kcal mol-1. Majority (78%) of salt-bridges in our dataset are stable and conserved in nature. Although, average contributions of component energy terms are equal, their individual details vary greatly from one another indicating their sensitivity to local micro-environment. Notably, 35% of salt-bridges in our database are buried and stable. Greater desolvation penalty of these buried salt-bridges are counteracted by stable network salt-bridges apart from favorable equal contributions of bridge and background terms. Recruitment of extensive network salt-bridges (46%) with a net contribution of -5.0 kcal mol-1 per salt-bridge, seems to be a halophilic design wherein favorable average contribution of background term (-10 kcal mol-1) exceeds than that of bridge term (-7 kcal mol-1). Interiors of proteins from halophiles are seen to possess relatively higher abundance of charge and polar side chains than that of mesophiles which seems to be satisfied by cooperative network salt-bridges. Overall, our theoretical analyses provide insight into halophilic signature in its

  4. Determination of the diffusion coefficient of salts in non-Newtonian liquids by the Taylor dispersion method

    Energy Technology Data Exchange (ETDEWEB)

    Mey, Paula; Varges, Priscilla R.; Mendes, Paulo R. de Souza [Dept. of Mechanical Engineering. Pontificia Universidade Catolica do RJ (PUC-Rio), RJ (Brazil)], e-mails: prvarges@puc-rio.br, pmendes@puc-rio.br

    2010-07-01

    This research looked for a method to determine the binary diffusion coefficient D of salts in liquids (especially in drilling fluids) not only accurately, but in a reasonable time. We chose to use the Taylor Dispersion Method. This technique has been used for measuring binary diffusion coefficients in gaseous, liquid and supercritical fluids, due to its simplicity and accuracy. In the method, the diffusion coefficient is determined by the analysis of the dispersion of a pulse of soluble material in a solvent flowing laminarly through a tube. This work describes the theoretical basis and the experimental requirements for the application of the Taylor Dispersion Method, emphasizing the description of our experiment. A mathematical formulation for both Newtonian and non-Newtonian fluids is presented. The relevant sources of errors are discussed. The experimental procedure and associated analysis are validated by applying the method in well known systems, such as NaCl in water.D of salts in liquids (especially in drilling fluids) not only accurately, but in a reasonable time. We chose to use the Taylor Dispersion Method. This technique has been used for measuring binary diffusion coefficients in gaseous, liquid and supercritical fluids, due to its simplicity and accuracy. In the method, the diffusion coefficient is determined by the analysis of the dispersion of a pulse of soluble material in a solvent flowing laminarly through a tube. This work describes the theoretical basis and the experimental requirements for the application of the Taylor Dispersion Method, emphasizing the description of our experiment. A mathematical formulation for both Newtonian and non-Newtonian fluids is presented. The relevant sources of errors are discussed. The experimental procedure and associated analysis are validated by applying the method in well known systems, such as NaCl in water. (author)

  5. Laboratory simulation of heat exchange for liquids with Pr > 1: Heat transfer

    Science.gov (United States)

    Belyaev, I. A.; Zakharova, O. D.; Krasnoshchekova, T. E.; Sviridov, V. G.; Sukomel, L. A.

    2016-02-01

    Liquid metals are promising heat transfer agents in new-generation nuclear power plants, such as fast-neutron reactors and hybrid tokamaks—fusion neutron sources (FNSs). We have been investigating hydrodynamics and heat exchange of liquid metals for many years, trying to reproduce the conditions close to those in fast reactors and fusion neutron sources. In the latter case, the liquid metal flow takes place in a strong magnetic field and strong thermal loads resulting in development of thermogravitational convection in the flow. In this case, quite dangerous regimes of magnetohydrodynamic (MHD) heat exchange not known earlier may occur that, in combination with other long-known regimes, for example, the growth of hydraulic drag in a strong magnetic field, make the possibility of creating a reliable FNS cooling system with a liquid metal heat carrier problematic. There exists a reasonable alternative to liquid metals in FNS, molten salts, namely, the melt of lithium and beryllium fluorides (Flibe) and the melt of fluorides of alkali metals (Flinak). Molten salts, however, are poorly studied media, and their application requires detailed scientific substantiation. We analyze the modern state of the art of studies in this field. Our contribution is to answer the following question: whether above-mentioned extremely dangerous regimes of MHD heat exchange detected in liquid metals can exist in molten salts. Experiments and numerical simulation were performed in order to answer this question. The experimental test facility represents a water circuit, since water (or water with additions for increasing its electrical conduction) is a convenient medium for laboratory simulation of salt heat exchange in FNS conditions. Local heat transfer coefficients along the heated tube, three-dimensional (along the length and in the cross section, including the viscous sublayer) fields of averaged temperature and temperature pulsations are studied. The probe method for measurements in

  6. A meshless method for modeling convective heat transfer

    Energy Technology Data Exchange (ETDEWEB)

    Carrington, David B [Los Alamos National Laboratory

    2010-01-01

    A meshless method is used in a projection-based approach to solve the primitive equations for fluid flow with heat transfer. The method is easy to implement in a MATLAB format. Radial basis functions are used to solve two benchmark test cases: natural convection in a square enclosure and flow with forced convection over a backward facing step. The results are compared with two popular and widely used commercial codes: COMSOL, a finite element model, and FLUENT, a finite volume-based model.

  7. Preliminary safety analysis of molten salt breeder reactor

    International Nuclear Information System (INIS)

    Cheng Maosong; Dai Zhimin

    2013-01-01

    Background: The molten salt reactor is one of the six advanced reactor concepts identified by the Generation IV International Forum as a candidate for cooperative development, which is characterized by remarkable advantages in inherent safety, fuel cycle, miniaturization, effective utilization of nuclear resources and proliferation resistance. ORNL finished the conceptual design of Molten Salt Breeder Reactor (MSBR) based on the design, building and operation of Molten Salt Reactor Experiment (MSRE). Purpose: We attempt to implement the preliminary safety analysis of MSBR in order to provide a reference for the design and optimization of MSBR in the future. Methods: According to the conceptual design of MSBR, a model of safety analysis using point kinetics coupled with the simplified heat transfer mechanism is presented. The model is applied to simulate the transient phenomena of MSBR initiated by an abnormal step reactivity addition and an abnormal ramp reactivity addition at full-power equilibrium condition. Results: The thermal power in the core increases rapidly at the beginning and is accompanied by a rise of the fuel and graphite temperatures after 100, 300, 500 and 600 pcm reactivity addition. The maximum outlet temperature of the fuel in the core is at 1250℃ in 500 pcm reactivity addition, but up to 1350℃ in 600 pcm reactivity addition. The maximum of the power and the temperature are delayed and lower in the ramp reactivity addition rather than in the step reactivity addition. Conclusions: Based on the results, when the reactivity inserted is less than 500 pcm in maximum at full power equilibrium condition, the structural material in Hastelloy-N is not melted and can keep integrity without external control action. And it is necessary to try to avoid inserting a reactivity at short time. (authors)

  8. Electrokinetic removal of salt from brick masonry

    DEFF Research Database (Denmark)

    Ottosen, Lisbeth M.; Pedersen, Anne Juul; Rörig-Dalgaard, Inge

    2006-01-01

    A method to effectively remove salts from masonry is lacking. The present study aims at determining the removal efficiency of salts from bricks in an applied low current electric DC field. At first an investigation on removal of NaCl and Na(NO3)2 from spiked bricks in laboratory scale was conducted...

  9. Symbolic phase transfer entropy method and its application

    Science.gov (United States)

    Zhang, Ningning; Lin, Aijing; Shang, Pengjian

    2017-10-01

    In this paper, we introduce symbolic phase transfer entropy (SPTE) to infer the direction and strength of information flow among systems. The advantages of the proposed method are investigated by simulations on synthetic signals and real-world data. We demonstrate that symbolic phase transfer entropy is a robust and efficient tool to infer the information flow between complex systems. Based on the study of the synthetic data, we find a significant advantage of SPTE is its reduced sensitivity to noise. In addition, SPTE requires less amount of data than symbolic transfer entropy(STE). We analyze the direction and strength of information flow between six stock markets during the period from 2006 to 2016. The results indicate that the information flow among stocks varies over different periods. We also find that the interaction network pattern among stocks undergoes hierarchial reorganization with transition from one period to another. It is shown that the clusters are mainly classified according to period, and then by region. The stocks during the same time period are shown to drop into the same cluster.

  10. Treatment of waste salt from the advanced spent fuel conditioning process (I): characterization of Zeolite A in Molten LiCl Salt

    International Nuclear Information System (INIS)

    Kim, Jeong Guk; Lee, Jae Hee; Yoo, Jae Hyung; Kim, Joon Hyung

    2004-01-01

    The oxide fuel reduction process based on the electrochemical method (Advanced spent fuel Conditioning Process; ACP) and the long-lived radioactive nuclides partitioning process based on electro-refining process, which are being developed ay the Korea Atomic Energy Research Institute (KAERI), are to generate two types of molten salt wastes such as LiCl salt and LiCl-KCl eutectic salt, respectively. These waste salts must meet some criteria for disposal. A conditioning process for LiCl salt waste from ACP has been developed using zeolite A. This treatment process of waste salt using zeolite A was first developed by US ANL (Argonne National Laboratory) for LiCl-KCl eutectic salt waste from an electro-refining process of EBR (Experimental Breeder Reactor)-II spent fuel. This process has been developed recently, and a ceramic waste form (CWF) is produced in demonstration-scale V-mixer (50 kg/batch). However, ANL process is different from KAERI treatment process in waste salt, the former is LiCl-KCl eutectic salt and the latter is LiCl salt. Because of melting point, the immobilization of eutectic salt is carried out at about 770 K, whereas LiCl salt at around 920 K. Such difference has an effect on properties of immobilization media, zeolite A. Here, zeolite A in high-temperature (923 K) molten LiCl salt was characterized by XRD, Ion-exchange, etc., and evaluated if a promising media or not

  11. Experimental facilities for research of properties and behaviour of fluoride salts

    International Nuclear Information System (INIS)

    Hosnedl, P.; Jilek, M.; Kroc, V.; Pedal, L.; Valenta, V.; Vodicka, J.

    1999-01-01

    SKODA JS s.r.o. (Czech leading nuclear technology manufacturer) prepared and manufactured experimental loops for research and verification of properties and behaviour of fluoride salts for primary and secondary circuit, construction materials and ADTT systems technological components for the operation in the Nuclear Research Institute Rez plc fluorine chemistry laboratory. This paper presents charts and experimental program for molten fluoride salts experimental loops with natural circulation. Further on, the paper describes extension of the loops for research with forced circulation and next works for steam generator model verification and connection with the loop of Energovyzkum Brno. The loops are designed and constructed to obtain a sufficient amount of experience on ADTT technology. The research and utilisation program covers questions of corrosion and intergranular corrosion of structural materials, research of material properties and welding, research of fluoride fluid properties, measuring of thermo-hydraulic properties of molten salt fluoride fluids, heat transfer and hydraulics, development and tests of some plant components (steam generators, heat exchangers, pumps, valves) and other engineering issues. Two electrolyzers have been manufactured for the research of fuel/coolant fluoride salts mixture purification. One for the production of hydrogen fluoride, and the other for the research of salts purification. (author)

  12. Molten salt fueled reactors with a fast salt draining

    International Nuclear Information System (INIS)

    Ventre, Edmond; Blum, J.M.

    1976-01-01

    This invention relates to a molten salt nuclear reactor which comprises a new arrangement for shutting it down in complete safety. This nuclear reactor has a molten salt primary circuit comprising, in particular, the core of this reactor. It includes a leak tight vessel the capacity of which is appreciably greater than that of the molten salt volume of the circuit and placed so that the level of the molten salt, when all the molten salt of the circuit is contained in this vessel, is less than that of the base of the core. There are facilities for establishing and maintaining an inert gas pressure in the vessel above the molten salt, for releasing the compressed gas and for connecting the vessel to the primary circuit entering this vessel at a lower level than that of the molten salt and enabling molten salt to enter or leave the vessel according to the pressure of the inert gas. The particular advantage of this reactor is that it can be shut down safely since the draining of the primary circuit no longer results from a 'positive action' but from the suppression of an arrangement essential for the operation of the reactor consisting of the build-up of the said inert gas pressure in the said vessel [fr

  13. Large-scale synthesis of Pb1-xLa xTiO3 ceramic powders by molten salt method

    International Nuclear Information System (INIS)

    Cai Zongying; Xing Xianran; Yu Ranbo; Liu Guirong; Xing Qifeng

    2006-01-01

    The ferroelectric perovskite type lanthanum doped lead titanate (PLT) ceramic powders were synthesized in one step with the starting materials of PbC 2 O 4 , La 2 O 3 and TiO 2 in NaCl-KCl molten salts in the temperature range of 700-950 deg. C. It was found that molten salt method was a large scale and easy preparation way to produce PLT powders with high dispersity. Tetragonal phase Pb 1-x La x TiO 3 ceramic powders were identified by XRD in the composition range 0 ≤ x ≤ 0.3 and mono-dispersed particles with spheric shape and less than 100 nm size were observed by SEM. The grain sizes of Pb 1-x La x TiO 3 ceramic powders increased with the increase of La content and decreased with calcination temperature. The grain growth progress and the possible reaction mechanism in molten salts and its influencing factors were discussed in this work. The grain growth process was the main influencing factor of the grain size, which depended on the solubility in the flux

  14. Methods and results of the investigation of the thermomechanical behaviour of rock salt with regard to the final disposal of high-level radioactive wastes

    International Nuclear Information System (INIS)

    Wieczorek, K.; Klarr, K.

    1993-01-01

    This report summarizes the knowledge about thermal and mechanical behaviour of rock salt that has been accumulated by various R and D institutions in Germany from laboratory and in situ investigations. An important objective is to give a comprehensive overview of the investigation methods and instruments available and to discuss these methods and instruments with regard to their applicability and reliability for the investigation of the thermomechanical effects of high level radioactive waste emplacement in rock salt formations. The report is focused on the activities of the GSF-Institut fur Tieflagerung in the Asse mine regarding the disposal of high and intermediate level radioactive waste during the last decades. The design and the results of the most important in situ experiments are presented and discussed in detail. The results are compared to model calculations in order to evaluate the reliability of both the measurements and the calculation results. The relevance of the results for the situation in Spain is discussed in a separate chapter. As the investigations in Germany have been performed in domal salt, while the Spanish concept is based on waste disposal in bedded salt, significant differences in the thermomechanical behaviour cannot be excluded. The investigation methods, however, will be applicable. (Author)

  15. Effects of salting processes and time on the chemical composition, textural properties, and microstructure of cooked duck egg.

    Science.gov (United States)

    Kaewmanee, Thammarat; Benjakul, Soottawat; Visessanguan, Wonnop

    2011-03-01

    Chemical composition, textural properties, and microstructure of cooked duck egg salted by 2 methods (coating and immersing) were determined during 4 wk of salting. As the salting time increased, moisture content increased and salt content decreased for both cooked salted egg white and yolk. Oil exudation of cooked yolk and expressible water content of cooked egg white obtained from both salting methods increased as salting proceeded (P cooking, oil exudation accompanied by the solubilized pigments, especially at the outer layer of yolk, was obtained. At week 3 of salting, egg yolk from coating method had the higher egg exudation than that from immersing method. As the salting times increased, the lower hardness, springiness, gumminess, chewiness, and resilience with higher adhesiveness and cohesiveness were generally found in cooked salted egg white (P cooked yolk increased continuously and reached the maximum at week 2 and 2 to 3 for immersing and coating method (P egg after heating, compared with the fresh counterpart. As visualized by scanning electron microscope, gel of cooked salted egg white was coagulum type with larger voids. Salting methods determined oil exudation in egg yolk and texture profile of egg white gel after cooking; however, those attributes were also governed by the salting time. Salted duck egg can be made by 2 methods (coating and immersing) affecting the characteristic of salted egg white and yolk after cooking. Desirable cooked salted egg having the red yolk with hardness and high oil exudation could be obtained when salting was carried out for 3 and 4 wk for immersing and coating method, respectively.

  16. Salt effects on ionization equilibria of histidines in myoglobin.

    Science.gov (United States)

    Kao, Y H; Fitch, C A; Bhattacharya, S; Sarkisian, C J; Lecomte, J T; García-Moreno E, B

    2000-09-01

    The salt dependence of histidine pK(a) values in sperm whale and horse myoglobin and in histidine-containing peptides was measured by (1)H-NMR spectroscopy. Structure-based pK(a) calculations were performed with continuum methods to test their ability to capture the effects of solution conditions on pK(a) values. The measured pK(a) of most histidines, whether in the protein or in model compounds, increased by 0.3 pH units or more between 0.02 M and 1.5 M NaCl. In myoglobin two histidines (His(48) and His(36)) exhibited a shallower dependence than the average, and one (His(113)) showed a steeper dependence. The (1)H-NMR data suggested that the salt dependence of histidine pK(a) values in the protein was determined primarily by the preferential stabilization of the charged form of histidine with increasing salt concentrations rather than by screening of electrostatic interactions. The magnitude and salt dependence of interactions between ionizable groups were exaggerated in pK(a) calculations with the finite-difference Poisson-Boltzmann method applied to a static structure, even when the protein interior was treated with arbitrarily high dielectric constants. Improvements in continuum methods for calculating salt effects on pK(a) values will require explicit consideration of the salt dependence of model compound pK(a) values used for reference in the calculations.

  17. Molten salt oxidation of organic hazardous waste with high salt content.

    Science.gov (United States)

    Lin, Chengqian; Chi, Yong; Jin, Yuqi; Jiang, Xuguang; Buekens, Alfons; Zhang, Qi; Chen, Jian

    2018-02-01

    Organic hazardous waste often contains some salt, owing to the widespread use of alkali salts during industrial manufacturing processes. These salts cause complications during the treatment of this type of waste. Molten salt oxidation is a flameless, robust thermal process, with inherent capability of destroying the organic constituents of wastes, while retaining the inorganic ingredients in the molten salt. In the present study, molten salt oxidation is employed for treating a typical organic hazardous waste with a high content of alkali salts. The hazardous waste derives from the production of thiotriazinone. Molten salt oxidation experiments have been conducted using a lab-scale molten salt oxidation reactor, and the emissions of CO, NO, SO 2 , HCl and dioxins are studied. Impacts are investigated from the composition of the molten salts, the types of feeding tube, the temperature of molten carbonates and the air factor. Results show that the waste can be oxidised effectively in a molten salt bath. Temperature of molten carbonates plays the most important role. With the temperature rising from 600 °C to 750 °C, the oxidation efficiency increases from 91.1% to 98.3%. Compared with the temperature, air factor has but a minor effect, as well as the composition of the molten salts and the type of feeding tube. The molten carbonates retain chlorine with an efficiency higher than 99.9% and the emissions of dioxins are below 8 pg TEQ g -1 sample. The present study shows that molten salt oxidation is a promising alternative for the disposal of organic hazardous wastes containing a high salt content.

  18. In situ production of titanium dioxide nanoparticles in molten salt phase for thermal energy storage and heat-transfer fluid applications

    Energy Technology Data Exchange (ETDEWEB)

    Lasfargues, Mathieu, E-mail: m.lasfargues@outlook.com; Bell, Andrew, E-mail: A.bell@leeds.ac.uk [University of Leeds, School of Chemical and Process Engineering (United Kingdom); Ding, Yulong, E-mail: y.ding@bham.ac.uk [University of Birmingham, School of Chemical Engineering (United Kingdom)

    2016-06-15

    In this study, TiO{sub 2} nanoparticles (average particle size 16 nm) were successfully produced in molten salt phase and were showed to significantly enhance the specific heat capacity of a binary eutectic mixture of sodium and potassium nitrate (60/40) by 5.4 % at 390 °C and 7.5 % at 445 °C for 3.0 wt% of precursors used. The objective of this research was to develop a cost-effective alternate method of production which is potentially scalable, as current techniques utilized are not economically viable for large quantities. Enhancing the specific heat capacity of molten salt would promote more competitive pricing for electricity production by concentrating solar power plant. Here, a simple precursor (TiOSO{sub 4}) was added to a binary eutectic mixture of potassium and sodium nitrate, heated to 450 °C, and cooled to witness the production of nanoparticles.

  19. In situ production of titanium dioxide nanoparticles in molten salt phase for thermal energy storage and heat-transfer fluid applications

    International Nuclear Information System (INIS)

    Lasfargues, Mathieu; Bell, Andrew; Ding, Yulong

    2016-01-01

    In this study, TiO_2 nanoparticles (average particle size 16 nm) were successfully produced in molten salt phase and were showed to significantly enhance the specific heat capacity of a binary eutectic mixture of sodium and potassium nitrate (60/40) by 5.4 % at 390 °C and 7.5 % at 445 °C for 3.0 wt% of precursors used. The objective of this research was to develop a cost-effective alternate method of production which is potentially scalable, as current techniques utilized are not economically viable for large quantities. Enhancing the specific heat capacity of molten salt would promote more competitive pricing for electricity production by concentrating solar power plant. Here, a simple precursor (TiOSO_4) was added to a binary eutectic mixture of potassium and sodium nitrate, heated to 450 °C, and cooled to witness the production of nanoparticles.

  20. Assessment of iodine concentration in dietary salt at household level in Morocco.

    Science.gov (United States)

    Zahidi, Ahmed; Zahidi, Meriem; Taoufik, Jamal

    2016-05-20

    Following WHO recommendations, Morocco adopted in 1995 the universal salt iodization (USI) as a strategy to prevent and control iodine deficiency disorders. In 2009, the standard salt iodine concentration was adjusted to 15-40 mg/kg. The success of USI for the control of iodine deficiency disorders requires an evaluation of iodine concentration in salt prior to assessing the iodine nutritional status of a population. In our study we refer to the anterior studies that were made in Morocco in 1993 and 1998. 178 salt samples from households were tested for iodine using spot-testing kits. The iodometric titration method was used to analyze accurately the concentration of iodine in the 178 household salt samples. An empiric polling method was adopted, using a non-probability sampling method; across the different twelve regions in the country. The median and interquartile range iodine concentration in salt was 2.9 mg/kg (IQR: 2.4-3.7). The results show that only 25 % of households use iodized salt. The recommended iodine concentration in salt of 15-40 mg/kg was met only in 4.5 % of salt samples. The bulk salt is used by 8 % of households. All samples of this bulk salt were found in rural areas. According to nonparametric appropriate tests used, there is no significant difference in iodine concentrations between regions, between urban and rural areas and between packaged and bulk salt. Two decades since introducing legislation on Universal Salt Iodization, our survey shows that generalization of iodized salt is far from being reached. In 2015, only a quarter of Moroccan households use the iodized salt and only 4.5 % of salt is in conformity with regulations. The use of bulk salt by households in rural areas constitutes a major obstacle to the success of USI. The National Iodine Deficiency Disorders Control Program can only be achieved if an internal follow-up and a control of external quality of program is put in place.

  1. An Investigation on the Thermophysical Properties of a Binary Molten Salt System Containing Both Aluminum Oxide and Titanium Oxide Nanoparticle Suspensions

    Science.gov (United States)

    Giridhar, Kunal

    Molten salts are showing great potential to replace current heat transfer and thermal energy storage fluids in concentrated solar plants because of their capability to maximize thermal energy storage, greater stability, cost effectiveness and significant thermal properties. However one of the major drawbacks of using molten salt as heat transfer fluid is that they are in solid state at room temperature and they have a high freezing point. Hence, significant resources would be required to maintain it in liquid form. If molten salt freezes while in operation, it would eventually damage piping network due to its volume shrinkage along with rendering the entire plant inoperable. It is long known that addition of nanoparticle suspensions has led to significant changes in thermal properties of fluids. In this investigation, aluminum oxide and titanium oxide nanoparticles of varying concentrations are added to molten salt/solar salt system consisting of 60% sodium nitrate and 40% potassium nitrate. Using differential scanning calorimeter, an attempt will be made to investigate changes in heat capacity of system, depression in freezing point and changes in latent heat of fusion. Scanning electron microscope will be used to take images of samples to study changes in micro-structure of mixture, ensure uniform distribution of nanoparticle in system and verify authenticity of materials used for experimentation. Due to enormous magnitude of CSP plant, actual implementation of molten salt system is on a large scale. With this investigation, even microscopic enhancement in heat capacity and slight lowering of freezing point will lead to greater benefits in terms of efficiency and cost of operation of plant. These results will further the argument for viability of molten salt as a heat transfer fluid and thermal storage system in CSP. One of the objective of this experimentation is to also collect experimental data which can be used for establishing relation between concentration

  2. Modeling of Salt Solubilities in Mixed Solvents

    DEFF Research Database (Denmark)

    Chiavone-Filho, O.; Rasmussen, Peter

    2000-01-01

    A method to correlate and predict salt solubilities in mixed solvents using a UNIQUAC+Debye-Huckel model is developed. The UNIQUAC equation is applied in a form with temperature-dependent parameters. The Debye-Huckel model is extended to mixed solvents by properly evaluating the dielectric...... constants and the liquid densities of the solvent media. To normalize the activity coefficients, the symmetric convention is adopted. Thermochemical properties of the salt are used to estimate the solubility product. It is shown that the proposed procedure can describe with good accuracy a series of salt...

  3. Textural improvement of salt-reduced Alaska pollack (Theragra chalcogramma) roe product by CaCl2.

    Science.gov (United States)

    Chen, Chaoping; Okazaki, Emiko; Osako, Kazufumi

    2016-12-15

    Salt-reduced Alaska pollack roe benefits public health by decreasing NaCl intake; however, it has a poor texture with low breaking strength. This study addresses the feasibility of NaCl reduction in salted roe products, with focusing on the improvement of breaking strength using CaCl2. Salted roe products were prepared by immersing Alaska pollack roe in either NaCl solutions (3.5, 7.0, 15.0, 20.0, and 25.0%) or 7.0% NaCl solutions with added CaCl2 (0.0, 0.5, 1.0, 2.0, and 3.0%). Breaking strength, moisture and salt contents, eggshell protein composition of the salted roe products, as well as total endogenous transglutaminase (TGase) activity in various NaCl and CaCl2 concentrations were analyzed. CaCl2 addition enhanced eggshell protein crosslinking and breaking strength of the salt-reduced roe products. An acyl transfer reaction catalyzed by calcium-dependent TGase may be responsible for the eggshell protein crosslinking and improved texture. Thus, we successfully developed a salt-reduced Alaska roe product using CaCl2. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Band extension in digital methods of transfer function determination – signal conditioners asymmetry error corrections

    Directory of Open Access Journals (Sweden)

    Zbigniew Staroszczyk

    2014-12-01

    Full Text Available [b]Abstract[/b]. In the paper, the calibrating method for error correction in transfer function determination with the use of DSP has been proposed. The correction limits/eliminates influence of transfer function input/output signal conditioners on the estimated transfer functions in the investigated object. The method exploits frequency domain conditioning paths descriptor found during training observation made on the known reference object.[b]Keywords[/b]: transfer function, band extension, error correction, phase errors

  5. A transfer-matrix method for spatially modulated structures

    International Nuclear Information System (INIS)

    Surda, A.

    1991-03-01

    A cluster transfer-matrix method convenient for calculation of spatially modulated structures of a wide class of lattice-gas models is developed. The method formulates the problem of calculation of the partition function in terms of non-linear mapping of effective multi-site fields. It is applied to a lattice-gas model qualitatively describing the system of oxygen atoms in the basal planes of high-temperature superconductors. The properties of an incommensurate structure occurring at intermediate temperatures are discussed in detail. (author). 21 refs, 15 figs

  6. Heat transfer simulation of motorcycle fins under varying velocity using CFD method

    Science.gov (United States)

    Shahril, K.; Mohd Kasim, Nurhayati Binti; Sabri, M.

    2013-12-01

    Motorcycle engine releases heat to the atmosphere through the mode of force convection. To solve this, fins are provided on the outer of the cylinder. The heat transfer rate is defined depending on the velocity of vehicle, fin geometry and the ambient temperature. Increasing the temperature difference between the object and the environment, increasing the convection heat transfer coefficient, or increasing the surface area of the object increases the heat transfer. Many experimental methods are available in literature to analyze the effect of these factors on the heat transfer rate. However, CFD analysis will be use to simulate the heat transfer of the engine block. ANSYS software is selected to run the simulation.

  7. Control of Electron Transfer from Lead-Salt Nanocrystals to TiO 2

    KAUST Repository

    Hyun, Byung-Ryool; Bartnik, A. C.; Sun, Liangfeng; Hanrath, Tobias; Wise, F. W.

    2011-01-01

    The roles of solvent reorganization energy and electronic coupling strength on the transfer of photoexcited electrons from PbS nanocrystals to TiO 2 nanoparticles are investigated. We find that the electron transfer depends only weakly

  8. Genetic predisposition to salt-sensitivity : a systematic review

    NARCIS (Netherlands)

    Beeks, Esther; Kessels, Alfons G H; Kroon, Abraham A; van der Klauw, Melanie M; de Leeuw, Peter W

    PURPOSE: To assess the role of genetic polymorphisms in salt sensitivity of blood pressure. DATA IDENTIFICATION: We conducted a systematic review by searching the Medline literature from March 1993 to June 2003. Each paper was scrutinized and data concerning study population, method of salt

  9. Electrochemical performance of BaSnO3 anode material for lithium-ion battery prepared by molten salt method

    CSIR Research Space (South Africa)

    Nithyadharseni, P

    2016-01-01

    Full Text Available Perovskite-like structure BaSnO(sub3) ceramic oxide has been prepared by low temperature molten salt method using KOH as a flux and Ba(OH)(sub2) and BaCl(sub2) as precursors. The as-prepared compounds were characterized by various techniques...

  10. An Appraisal of Methods Recently Recommended for Testing Salt Sensitivity of Blood Pressure

    Czech Academy of Sciences Publication Activity Database

    Kurtz, T. W.; DiCarlo, S. E.; Pravenec, Michal; Morris Jr., R. C.

    2017-01-01

    Roč. 6, č. 4 (2017), č. článku e005653. ISSN 2047-9980 Grant - others:AV ČR(CZ) AP1502 Program:Akademická prémie - Praemium Academiae Institutional support: RVO:67985823 Keywords : hypertension * salt intake * salt sensitivity hypertension * sodium Subject RIV: FA - Cardiovascular Diseases incl. Cardiotharic Surgery OBOR OECD: Cardiac and Cardiovascular systems Impact factor: 4.863, year: 2016

  11. Evaluation of salt content in school meals

    Directory of Open Access Journals (Sweden)

    Cláudia Alexandra Colaço Lourenço Viegas

    2015-04-01

    Full Text Available OBJECTIVE: High blood pressure is a major rick factor for cardiovascular disease, and it is closely associated with salt intake. Schools are considered ideal environments to promote health and proper eating habits. Therefore the objective of this study was to evaluate the amount of salt in meals served in school canteens and consumers' perceptions about salt. METHODS: Meals, including all the components (bread, soup, and main dish were retrieved from school canteens. Salt was quantified by a portable salt meter. For food perception we constructed a questionnaire that was administered to high school students. RESULTS: A total of 798 food samples were analysed. Bread had the highest salt content with a mean of 1.35 g/100 g (SD=0.12. Salt in soups ranged from 0.72 g/100 g to 0.80 g/100 g (p=0.05 and, in main courses, from 0.71 g/100 to 0.97 g/100g (p=0.05. The salt content of school meals is high with a mean value of 2.83 to 3.82 g of salt per meal. Moreover, a high percentage of students consider meals neither salty nor bland, which shows they are used to the intensity/amount of salt consumed. CONCLUSION: The salt content of school meals is high, ranging from 2 to 5 times more than the Recommended Dietary Allowances for children, clearly exceeding the needs for this population, which may pose a health risk. Healthy choices are only possible in environments where such choices are possible. Therefore, salt reduction strategies aimed at the food industry and catering services should be implemented, with children and young people targeted as a major priority.

  12. Temperature and salt addition effects on the solubility behaviour of some phenolic compounds in water

    Energy Technology Data Exchange (ETDEWEB)

    Noubigh, Adel [Laboratoire de Physico-chimie des materiaux, IPEST, BP51, 2070 La MARSA (Tunisia)]. E-mail: Adel.anoubigh@ipest.rnu.tn; Abderrabba, Manef [Laboratoire de Physico-chimie des materiaux, IPEST, BP51, 2070 La MARSA (Tunisia); Provost, Elise [Laboratoire Chimie et procedes, ENSTA, 32 Rue de Boulevard Victor, 75739 Paris, Cedex 15 (France)

    2007-02-15

    Solubility-temperature dependence data for six phenolic compounds (PhC), contained in olive mill wastewater (OMWW), in water and in some chloride salts (KCl, NaCl, and LiCl) aqueous solutions have been presented and solution standard molar enthalpies ({delta}{sub sol} H {sup 0}) were determined using Van't Hoff plots. The temperature was varied from 293.15 K to 318.15 K. Solubility data were estimated using a thermostated reactor and HPLC analysis. It has been observed that solubility, in pure water and in aqueous chloride solutions, increases with increasing temperature. The salting-out LiCl > NaCl > KCl order obtained at 298.15 K is confirmed. Results were interpreted in terms of the salt hydration shells and the ability of the solute to form hydrogen-bond with water. The standard molar Gibbs free energies of transfer of PhC ({delta}{sub tr} G {sup 0}) from pure water to aqueous solutions of the chloride salts have been calculated from the solubility data. In order to estimate the contribution of enthalpic and entropic terms, standard molar enthalpies ({delta}{sub tr} H {sup 0}) and entropies ({delta}{sub tr} S {sup 0}) of transfer have also been calculated. The decrease in solubility is correlated to the positive {delta}{sub tr} G {sup 0} value which is mainly of enthalpic origin.

  13. Study of the moderating effect of salts on the sodium-water reaction on the cleaning of irradiated fuel assemblies from fast neutron reactors, using fluid sodium heat transfer

    International Nuclear Information System (INIS)

    Lacroix, Marie

    2014-01-01

    Within the framework of the development of generation IV reactors one of the research tracks is related to the development of fast neutron reactors using fluid sodium heat transfer. The CEA (French Alternative Energies and Atomic Energy Commission) plans to build a prototype of reactor of this type called 'ASTRID'. To address development requirements for this prototype, research is in progress on the reactor's availability and in particular on the reduction of the washing duration for residual sodium fuel assemblies during their discharge. In fact, because sodium is very reactive with water (presently the only available process), the washing is done, for example, by very gradual addition. A solution currently being studied at the CEA and which is the subject of this thesis report consists of the addition of an aqueous salts solutions to the washing water in order to slow down the kinetic reaction. This doctoral dissertation describes the various salts, which have been evaluated and aims to explain their action mode. (author) [fr

  14. Fuel salt reprocessing influence on the MSFR behavior and on its associated reprocessing unit

    International Nuclear Information System (INIS)

    Doligez, X.

    2010-10-01

    In order to face with the growing of the energy demand, the nuclear industry has to reach the fourth generation technology. Among those concept, molten salt reactor, and especially the fast neutron spectrum configuration, seems very promising: indeed breeding is achievable while the feedback coefficient are still negative. However, the reprocessing salt scheme is not totally set down yet. A lot of uncertainties remain on chemical properties of the salt. Thanks to numerical simulation we studied the behavior of the molten Salt Fast Reactor coupled to a nominal reprocessing unit. We are now able to determine heat transfer and radiation in each elementary step of the unit and, by this way determine those that need special study for radioprotection. We also studied which elements are fundamental to extract for the reactor operation. Finally, we present a sensibility analysis of the chemical uncertainties to few relevant properties of the reactor behavior. (author)

  15. Salt site performance assessment activities

    International Nuclear Information System (INIS)

    Kircher, J.F.; Gupta, S.K.

    1983-01-01

    During this year the first selection of the tools (codes) for performance assessments of potential salt sites have been tentatively selected and documented; the emphasis has shifted from code development to applications. During this period prior to detailed characterization of a salt site, the focus is on bounding calculations, sensitivity and with the data available. The development and application of improved methods for sensitivity and uncertainty analysis is a focus for the coming years activities and the subject of a following paper in these proceedings. Although the assessments to date are preliminary and based on admittedly scant data, the results indicate that suitable salt sites can be identified and repository subsystems designed which will meet the established criteria for protecting the health and safety of the public. 36 references, 5 figures, 2 tables

  16. A Methyl Substituted Thiophenic-TTF Donor and its Salts

    OpenAIRE

    Silva, Rafaela A. L.; Santos, Isabel C.; Lopes, Elsa B.; Rabaça, Sandra; Galindo, Sergi; Mas-Torrent, Marta; Rovira Angulo, Concepció

    2015-01-01

    α-Methyldithiophene–tetrathiafulvalene (α-mDT-TTF), the first alkyl-substituted thiophene–tetrathiafulvalene electronic donor, and some of its charge-transfer salts were explored. The crystal structure of α-mDT-TTF is composed of molecular stacks aligned parallel to each other. Its cyclic voltammetry shows higher electron-donor ability than the unsubstituted analogue. This material was employed as a semiconductor in an organic field-effect transistor and showed a mobil...

  17. Process for improving the energy density of feedstocks using formate salts

    Energy Technology Data Exchange (ETDEWEB)

    Wheeler, Marshall Clayton; van Heiningen, Adriaan R.P.; Case, Paige A.

    2015-09-01

    Methods of forming liquid hydrocarbons through thermal deoxygenation of cellulosic compounds are disclosed. Aspects cover methods including the steps of mixing a levulinic acid salt-containing feedstock with a formic acid salt, exposing the mixture to a high temperature condition to form hydrocarbon vapor, and condensing the hydrocarbon vapor to form liquid hydrocarbons, where both the formic acid salt and the levulinic acid salt-containing feedstock decompose at the high temperature condition and wherein one or more of the mixing, exposing, and condensing steps is carried out a pressure between about vacuum and about 10 bar.

  18. Efeito da impregnação a vácuo na transferência de massa durante o processo de salga de cortes de peito de frango Effect of vacuum impregnation on mass transfer during the salting process of chicken breast cuts

    Directory of Open Access Journals (Sweden)

    Franciny Campos Schmidt

    2008-06-01

    Full Text Available A impregnação a vácuo (IV tem sido estudada como uma alternativa para reduzir o tempo dos processos de salga aplicados a diversos alimentos. Neste trabalho, foi investigada a influência da aplicação de vácuo no processo de salga de cortes de peito de frango. Os cortes foram submersos em soluções com diferentes concentrações de NaCl para a avaliação de dois processos distintos de impregnação de sal: a processo inteiramente a pressão atmosférica (IPA; e b com aplicação de vácuo seguido do restabelecimento da pressão atmosférica (IV. A transferência de massa entre a amostra e a solução salina foi avaliada através das determinações de ganho de água (GA, ganho de sal (GS e ganho de massa total (GM pelas amostras submetidas à IV e à IPA. A comparação entre os processos de IV e IPA, com 6 horas de imersão, indicou que a utilização de um período inicial de vácuo pode incrementar o GA, GS e GM em 78, 25 e 54%, respectivamente. Isso se deve à contribuição sinérgica do mecanismo hidrodinâmico (HDM aos mecanismos osmóticos e difusivos existentes. Deste modo, a IV pode ser considerada como uma alternativa de processo para a salga de cortes de carne de frango. No entanto, deve-se estar atento para que os ganhos de água e sal sejam compatíveis com as exigências legais e tecnológicas.Vacuum impregnation has been studied as an alternative for reducing time in the salting process applied to different kinds of food. In this study, the influence of vacuum application on the salting process of chicken breast cuts was evaluated. The chicken samples were submerged in solutions with different NaCl concentrations and two processes were evaluated: a a process entirely under atmospheric pressure (API; and b a process with vacuum application followed by atmospheric pressure restoration (VI. Mass transfers were characterized by water gain (WG, salt gain (SG, and total weight increment (WI. The comparison between the VI and API

  19. In-situ stress measurements - results of experiments performed at the ASSE salt mine - Federal Republic of Germany

    International Nuclear Information System (INIS)

    Feddersen, H.K.

    1989-01-01

    High-level nuclear wastes are heat generating wastes. Heat will be transferred to the surrounding salt formation. This heating of the host rock will result in an increased temperature and in stress changes. From 1983 through 1985 two underground tests were conducted in the Asse Salt Mine (Federal Republic of Germany) in which, among others, thermally induced stress changes were investigated. These tests are discussed in this paper

  20. An integrated model of tritium transport and corrosion in Fluoride Salt-Cooled High-Temperature Reactors (FHRs) – Part I: Theory and benchmarking

    Energy Technology Data Exchange (ETDEWEB)

    Stempien, John D., E-mail: john.stempien@inl.gov; Ballinger, Ronald G., E-mail: hvymet@mit.edu; Forsberg, Charles W., E-mail: cforsber@mit.edu

    2016-12-15

    Highlights: • A model was developed for use with FHRs and benchmarked with experimental data. • Model results match results of tritium diffusion experiments. • Corrosion simulations show reasonable agreement with molten salt loop experiments. • This is the only existing model of tritium transport and corrosion in FHRs. • Model enables proposing and evaluating tritium control options in FHRs. - Abstract: The Fluoride Salt-Cooled High-Temperature Reactor (FHR) is a pebble bed nuclear reactor concept cooled by a liquid fluoride salt known as “flibe” ({sup 7}LiF-BeF{sub 2}). A model of TRITium Diffusion EvolutioN and Transport (TRIDENT) was developed for use with FHRs and benchmarked with experimental data. TRIDENT is the first model to integrate the effects of tritium production in the salt via neutron transmutation, with the effects of the chemical redox potential, tritium mass transfer, tritium diffusion through pipe walls, tritium uptake by graphite, selective chromium attack by tritium fluoride, and corrosion product mass transfer. While data from a forced-convection polythermal loop of molten salt containing tritium did not exist for comparison, TRIDENT calculations were compared to data from static salt diffusion tests in flibe and flinak (0.465LiF-0.115NaF-0.42KF) salts. In each case, TRIDENT matched the transient and steady-state behavior of these tritium diffusion experiments. The corrosion model in TRIDENT was compared against the natural convection flow-loop experiments at the Oak Ridge National Laboratory (ORNL) from the 1960s and early 1970s which used Molten Salt Reactor Experiment (MSRE) fuel-salt containing UF{sub 4}. Despite the lack of data required by TRIDENT for modeling the loops, some reasonable results were obtained. The TRIDENT corrosion rates follow the experimentally observed dependence on the square root of the product of the chromium solid-state diffusion coefficient with time. Additionally the TRIDENT model predicts mass

  1. Barium titanate coated with magnesium titanate via fused salt method and its dielectric property

    International Nuclear Information System (INIS)

    Chen Renzheng; Cui Aili; Wang Xiaohui; Li Longtu

    2003-01-01

    Barium titanate fine particles were coated homogeneously with magnesium titanate via the fused salt method. The thickness of the magnesium titanate film is 20 nm, as verified by TEM and XRD. The mechanism of the coating is that: when magnesium chloride is liquated in 800 deg. C, magnesium will replace barium in barium titanate, and form magnesium titanate film on the surface of barium titanate particles. Ceramics sintered from the coated particles show improved high frequency ability. The dielectric constant is about 130 at the frequency from 1 to 800 MHz

  2. Energy-dependent applications of the transfer matrix method

    International Nuclear Information System (INIS)

    Oeztunali, O.I.; Aronson, R.

    1975-01-01

    The transfer matrix method is applied to energy-dependent neutron transport problems for multiplying and nonmultiplying media in one-dimensional plane geometry. Experimental cross sections are used for total, elastic, and inelastic scattering and fission. Numerical solutions are presented for the problem of a unit point isotropic source in an infinite medium of water and for the problem of the critical 235 U slab with finite water reflectors. No iterations were necessary in this method. Numerical results obtained are consistent with physical considerations and compare favorably with the moments method results for the problem of the unit point isotropic source in an infinite water medium. (U.S.)

  3. National waste terminal storage repository in a bedded salt formation for spent unreprocessed fuel. Special study No. 3. Waste retrieval from backfilled regions

    International Nuclear Information System (INIS)

    1978-09-01

    Methods and costs were studied for delayed canister retrieval from rooms that had been backfilled immediately after canister storage. The effects of this method of storage on mine geometry, thermal and rock mechanics environments, mine development and operations, mine ventilation, time schedule, retrieval machinery and safety were investigated. Salt and air temperatures were determined. Pillar width, number of rooms, extraction ratio, tonnages of mined salt, and salt handling and hoisting requirements were calculated. The required changes in mining equipment were established. Salt handling and elapsed time schedules were developed. Ventilation requirements - size and number of shafts, size the arrangement of airways, number of stacks, and size and number of fans were then calculated. The development sequence of these facilities was established. Canister retrieval problems were analyzed for canisters stuck in the hole as well as free. Retrieval methods and machinery were studied and are described. Safety with respect to both radiation and room collapse was studied and compared with CDR safety conditions. The effects of a reduced themal loading of 30 KW/acre on temperatures, room closure, mine layout, ventilation and ground control were studied and reported. A cost estimate was prepared, giving cost differentials between the base CDR costs and Special Study No. 3. Two appendices are included. The first contains nine Heat Transfer memoranda that state the thermal basis of this study. The second appendix provides a detailed operating time analysis of the retrieval machinery

  4. Development of a three dimension multi-physics code for molten salt fast reactor

    International Nuclear Information System (INIS)

    Cheng Maosong; Dai Zhimin

    2014-01-01

    Molten Salt Reactor (MSR) was selected as one of the six innovative nuclear reactors by the Generation IV International Forum (GIF). The circulating-fuel in the can-type molten salt fast reactor makes the neutronics and thermo-hydraulics of the reactor strongly coupled and different from that of traditional solid-fuel reactors. In the present paper: a new coupling model is presented that physically describes the inherent relations between the neutron flux, the delayed neutron precursor, the heat transfer and the turbulent flow. Based on the model, integrating nuclear data processing, CAD modeling, structured and unstructured mesh technology, data analysis and visualization application, a three dimension steady state simulation code system (MSR3DS) for the can-type molten salt fast reactor is developed and validated. In order to demonstrate the ability of the code, the three dimension distributions of the velocity, the neutron flux, the delayed neutron precursor and the temperature were obtained for the simplified MOlten Salt Advanced Reactor Transmuter (MOSART) using this code. The results indicate that the MSR3DS code can provide a feasible description of multi-physical coupling phenomena in can-type molten salt fast reactor. Furthermore, the code can well predict the flow effect of fuel salt and the transport effect of the turbulent diffusion. (authors)

  5. Mined salt storage feasibility: Engineering study report

    International Nuclear Information System (INIS)

    1987-07-01

    This study addresses a method of eliminating the surface storage of mined salt at the Deaf Smith repository site. It provides rough estimates of the logistics and costs of transporting 3.7 million tons of salt from the repository to the salt disposal site near Carlsbad, New Mexico and returning it to the repository for decommissioning backfill. The study assumes that a railcar/truck system will be installed and that the excavated salt will be transported from the repository to an existing potash mine located near Carlsbad, New Mexico approximately 300 miles from the repository. The 3.7 million tons of salt required for repository decommissioning backfill can be stored in the potash mines along with the excess salt, with no additional capital costs required for either a railcar or a truck transportation system. The capital cost for facilities to reclaim the 3.7 million tons of salt from the potash mine is estimated to be $4,400,000 with either a rail or truck transportation system. Segregating the 3.7 million tons of backfill salt in a surface storage area at the potash mine requires a capital cost of $13,900,000 with a rail system or $11,400,000 with a truck system. Transportation costs are estimated at $0.08/ton-mile for rail and $0.13/ton-mile for truck. 2 figs., 5 tabs

  6. Romanian experience with rock salt characterisation methods and the implications for disposal of spent nuclear fuel

    International Nuclear Information System (INIS)

    Diaconu, Daniela; Balan, Valeriu; Mirion, Ilie

    2001-01-01

    The disposal in deep geological formations as rock salt, granite or clay seems to be now the most appropriate solution for final storage of the spent fuel. At this moment, rock salt is one of the Romanian options for spent fuel disposal, but the final decision will be made only after a performance assessment of this geological formation, having as input data the specific characteristics of the salt rock. In order to provide the data requested by the safety assessment programs, the Institute for Nuclear Research - Pitesti developed complex and modern methodologies for thermodynamic parameter determination as well as studies on salt convergence and radionuclide migration. The methodologies pursued to determine those thermal properties specific for spent fuel disposal as dilatation coefficient, heat conductivity and specific heat. The convergence and migration studies pursued a better understanding of these processes, very important in the disposal safety. The paper is a review of those studies and presents the methodologies and the main results obtained on salt samples from Slanic Prahova Salt Mine. (authors)

  7. Communication: Modeling of concentration dependent water diffusivity in ionic solutions: Role of intermolecular charge transfer

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Yi; Berkowitz, Max L., E-mail: maxb@unc.edu, E-mail: ykanai@unc.edu; Kanai, Yosuke, E-mail: maxb@unc.edu, E-mail: ykanai@unc.edu [Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 (United States)

    2015-12-28

    The translational diffusivity of water in solutions of alkali halide salts depends on the identity of ions, exhibiting dramatically different behavior even in solutions of similar salts of NaCl and KCl. The water diffusion coefficient decreases as the salt concentration increases in NaCl. Yet, in KCl solution, it slightly increases and remains above bulk value as salt concentration increases. Previous classical molecular dynamics simulations have failed to describe this important behavior even when polarizable models were used. Here, we show that inclusion of dynamical charge transfer among water molecules produces results in a quantitative agreement with experiments. Our results indicate that the concentration-dependent diffusivity reflects the importance of many-body effects among the water molecules in aqueous ionic solutions. Comparison with quantum mechanical calculations shows that a heterogeneous and extended distribution of charges on water molecules around the ions due to ion-water and also water-water charge transfer plays a very important role in controlling water diffusivity. Explicit inclusion of the charge transfer allows us to model accurately the difference in the concentration-dependent water diffusivity between Na{sup +} and K{sup +} ions in simulations, and it is likely to impact modeling of a wide range of systems for medical and technological applications.

  8. Saturated salt method determination of hysteresis of Pinus sylvestris L. wood for 35 ºC isotherms

    Directory of Open Access Journals (Sweden)

    García Esteban, L.

    2004-12-01

    Full Text Available The saturated salts method was used in this study to quantify hysteresis in Pinus sylvestris L. wood, in an exercise that involved plotting the 35 ºC desorption and sorption isotherms. Nine salts were used, all of which establish stable and known relative humidity values when saturated in water The wood was kept at the relative humidity generated by each of these salts until the equilibrium moisture content (EMC was reached, both in the water loss or desorption, and the water uptake or sorption processes. The Guggenheim method was used to fit the values obtained to the respective curves. Hysteresis was evaluated in terms of the hysteresis coefficient, for which a mean value of 0.87 was found.

    Con este trabajo se ha cuantificado la histéresis de la madera de Pinus sylvestris L. Para ello, se han construido las isotermas de 35 ºC de adsorción y sorción, mediante el método de las sales saturadas. Se han utilizado nueve sales que cuando se saturan en agua dan lugar a unas humedades relativas estables y conocidas. La madera fue colocada bajo las distintas humedades relativas que confieren cada una de las sales hasta que alcanzaron las distintas humedades de equilibrio higroscópico, tanto en el proceso de pérdida de agua o desorción, como en el de adquisición de agua o de sorción. Los valores obtenidos fueron ajustados a las respectivas sigmoides, haciendo uso del método de Guggenheim. La valoración de la histéresis se determinó mediante el coeficiente de histéresis, obteniendo un valor medio de 0,87.

  9. Comparative Effects of Gibberellin and Paclobutrazol on Na and K Content, Phenolic Compounds and the Activity of Some Enzymesin its Biosynthesis Pathway in Sweet Sorghum (Sorghum bicolor under Salt Stress

    Directory of Open Access Journals (Sweden)

    Amir Hosein Fhrghani

    2017-08-01

    salt–stricken plants. PBZ treatment decreased negative effects of salinity and increased potassium (K+ content in roots and its transfer from root to shoot. Whereas, translocation factor of sodium was increased about 39% by GA treatment at the presence of 150mM salt. PBZ enhanced phenol content in shoots by increasing PAL activity. Therefore, GA and PBZ improved salt tolerance by transferring some ions toward shoot and root respectively. It seemed that, PBZ has an effective role in salt resistance by increasing of root growth, phenol content and maintaining the ionic balance

  10. Evaluation of biolistic gene transfer methods in vivo using non-invasive bioluminescent imaging techniques

    Directory of Open Access Journals (Sweden)

    Daniell Henry

    2011-06-01

    Full Text Available Abstract Background Gene therapy continues to hold great potential for treating many different types of disease and dysfunction. Safe and efficient techniques for gene transfer and expression in vivo are needed to enable gene therapeutic strategies to be effective in patients. Currently, the most commonly used methods employ replication-defective viral vectors for gene transfer, while physical gene transfer methods such as biolistic-mediated ("gene-gun" delivery to target tissues have not been as extensively explored. In the present study, we evaluated the efficacy of biolistic gene transfer techniques in vivo using non-invasive bioluminescent imaging (BLI methods. Results Plasmid DNA carrying the firefly luciferase (LUC reporter gene under the control of the human Cytomegalovirus (CMV promoter/enhancer was transfected into mouse skin and liver using biolistic methods. The plasmids were coupled to gold microspheres (1 μm diameter using different DNA Loading Ratios (DLRs, and "shot" into target tissues using a helium-driven gene gun. The optimal DLR was found to be in the range of 4-10. Bioluminescence was measured using an In Vivo Imaging System (IVIS-50 at various time-points following transfer. Biolistic gene transfer to mouse skin produced peak reporter gene expression one day after transfer. Expression remained detectable through four days, but declined to undetectable levels by six days following gene transfer. Maximum depth of tissue penetration following biolistic transfer to abdominal skin was 200-300 μm. Similarly, biolistic gene transfer to mouse liver in vivo also produced peak early expression followed by a decline over time. In contrast to skin, however, liver expression of the reporter gene was relatively stable 4-8 days post-biolistic gene transfer, and remained detectable for nearly two weeks. Conclusions The use of bioluminescence imaging techniques enabled efficient evaluation of reporter gene expression in vivo. Our results

  11. Roadmap for disposal of Electrorefiner Salt as Transuranic Waste.

    Energy Technology Data Exchange (ETDEWEB)

    Rechard, Robert P. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Trone, Janis R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Kalinina, Elena Arkadievna [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Wang, Yifeng [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hadgu, Teklu [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sanchez, Lawrence C. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-12-01

    The experimental breeder reactor (EBR-II) used fuel with a layer of sodium surrounding the uranium-zirconium fuel to improve heat transfer. Disposing of EBR-II fuel in a geologic repository without treatment is not prudent because of the potentially energetic reaction of the sodium with water. In 2000, the US Department of Energy (DOE) decided to treat the sodium-bonded fuel with an electrorefiner (ER), which produces metallic uranium product, a metallic waste, mostly from the cladding, and the salt waste in the ER, which contains most of the actinides and fission products. Two waste forms were proposed for disposal in a mined repository; the metallic waste, which was to be cast into ingots, and the ER salt waste, which was to be further treated to produce a ceramic waste form. However, alternative disposal pathways for metallic and salt waste streams may reduce the complexity. For example, performance assessments show that geologic repositories can easily accommodate the ER salt waste without treating it to form a ceramic waste form. Because EBR-II was used for atomic energy defense activities, the treated waste likely meets the definition of transuranic waste. Hence, disposal at the Waste Isolation Pilot Plant (WIPP) in southern New Mexico, may be feasible. This report reviews the direct disposal pathway for ER salt waste and describes eleven tasks necessary for implementing disposal at WIPP, provided space is available, DOE decides to use this alternative disposal pathway in an updated environmental impact statement, and the State of New Mexico grants permission.

  12. Salt brickwork as long-term sealing in salt formations

    International Nuclear Information System (INIS)

    Walter, F.; Yaramanci, U.

    1993-01-01

    Radioactive wastes can be disposed of in deep salt formations. Rock salt is a suitable geologic medium because of its unique characteristics. Open boreholes, shafts and drifts are created to provide physical access to the repository. Long-term seals must be emplaced in these potential pathways to prevent radioactive release into the biosphere. The sealing materials must be mechanically and, most important, geochemically stable within the host rock. Salt bricks made from compressed salt-powder are understood to be the first choice long-term sealing material. Seals built of salt bricks will be ductile. Large sealing systems are built by combining the individual bricks with mortar. Raw materials for mortar are fine-grained halite powder and ground saliferous clay. This provides for the good adhesive strength of the mortar to the bricks and the high shear-strength of the mortar itself. To test the interaction of rock salt with an emplaced long-term seal, experiments will be carried out in situ, in the Asse salt mine in Germany. Simple borehole sealing experiments will be performed in horizontal holes and a complicated drift sealing experiment is planned, to demonstrate the technology of sealing a standard size drift or shaft inside a disturbed rock mass. Especially, the mechanical stability of the sealing system has to be demonstrated

  13. An immersed-boundary method for conjugate heat transfer analysis

    Energy Technology Data Exchange (ETDEWEB)

    Song, Jeong Chul; Lee, Joon Sik [Seoul National University, Seoul (Korea, Republic of); Ahn, Joon [Kookmin University, Seoul (Korea, Republic of)

    2017-05-15

    An immersed-boundary method is proposed for the analysis of conjugate problems of convective heat transfer in conducting solids. In- side the solid body, momentum forcing is applied to set the velocity to zero. A thermal conductivity ratio and a heat capacity ratio, between the solid body and the fluid, are introduced so that the energy equation is reduced to the heat diffusion equation. At the solid fluid interface, an effective conductivity is introduced to satisfy the heat flux continuity. The effective thermal conductivity is obtained by considering the heat balance at the interface or by using a harmonic mean formulation. The method is first validated against the analytic solution to the heat transfer problem in a fully developed laminar channel flow with conducting solid walls. Then it is applied to a laminar channel flow with a heated, block-shaped obstacle to show its validity for geometry with sharp edges. Finally the validation for a curvilinear solid body is accomplished with a laminar flow through arrayed cylinders.

  14. A systematic technique for the sequential restoration of salt structures

    Science.gov (United States)

    Rowan, Mark G.

    1993-12-01

    A method is described for the sequential restoration of cross sections in areas of salt tectonics where deformation is confined to the salt and higher layers. The subsurface geometry evolves with time through the interaction of various processes: sedimentation, compaction, isostatic adjustment, thermal subsidence (if present), faulting, and salt withdrawal/ diapirism. The technique systematically calculates and removes the effects of each of these processes during specified time intervals defined by the interpreted horizons. It makes no assumptions about salt kinematics and generally results in the area of the salt layer changing through time. The method is described for restoration of extensional terranes, but it is also suitable for areas of contractional salt tectonics with only minor modifications. After converting an interpreted seismic profile to depth, the top layer is stripped off and the underlying section is decompacted according to standard porosity-depth functions. A deep baseline, unaffected by compaction or deformation, is used to restore any isostatic compensation or thermal subsidence. Isostasy is calculated according to the Airy model, and differential sedimentary loading across a section is shown to be approximately balanced by changes in salt thickness so that the load is evenly distributed. After these processes have been reversed, the resulting geometry and the seismic data are used to create the sea-floor template for structural restoration. Fault offsets are removed and the layers down to the top salt are restored to this template, while the base salt remains fixed. The resulting space between the restored top salt and the fixed base salt defines the restored salt geometry. In addition, the difference between the sea-floor template and a fixed sea level provides a measure of the change in water depth (ignoring eustatic changes in sea level). The technique is applied to an interpreted seismic profile from the eastern Green Canyon/Ewing Bank

  15. Simple simultaneous determination of soluble and insoluble trace metal components in sea salts by a combined coprecipitation/X-ray fluorescence method

    International Nuclear Information System (INIS)

    Iwatsuki, Masaaki; Ali, Muhammad; Kyotani, Tomohiro; Fukasawa, Tsutomu

    1996-01-01

    An X-ray fluorescence method using the coprecipitation-preconcentration technique has been developed for simple determination of both acid-soluble and insoluble trace metal components, such as manganese, iron, nickel, copper and zinc in sea salts. A salt sample is dissolved in a nitric acid solution, and the residue is filtered off onto a membrane filter. After the pH is adjusted to 7-8, the filtrate is boiled, followed by addition of aluminum carrier, oxine and thionalide solutions. The solution is re-adjusted to pH 9, and kept at 80-85degC for 60 min. The precipitates are filtered off onto another membrane filter. X-Ray fluorescence intensities from two filters loaded with the residue and precipitates are measured and the concentrations of the elements are determined simultaneously using the calibration curves. Detection limits were 0.01 μg g -1 for manganese and copper, 0.04 μg g -1 for nickel and zinc, and 0.05 μg g -1 for iron, regardless of the soluble and the insoluble components. The present method was successfully applied to the analysis of sea salt samples. (author)

  16. Salt fortified with diethylcarbamazine (DEC) as an effective intervention for lymphatic filariasis, with lessons learned from salt iodization programmes.

    Science.gov (United States)

    Houston, R

    2000-01-01

    DEC-fortified salt has been used successfully as a principal public health tool to eliminate lymphatic filariasis (LF) in China and, less extensively, in several other countries. Studies from 1967 to the present conducted in Brazil, Japan, Tanzania, India, China, and Taiwan involving administration of DEC salt for 18 days to 1 year, have shown this intervention to be effective for both bancroftian and brugian filariasis, as measured by reductions in both microfilarial density and positivity, and in some studies through reduction in mosquito positivity rates as well. Furthermore, studies suggest specific advantages from using DEC salt, including lack of side effects, particularly for bancroftian filariasis, and ability to reduce prevalence below 1% when used in conjunction with standard regimens of DEC tablets. However, use of DEC salt as a control tool suffers from a concern that health authorities might find it difficult to manage a programme involving a commodity such as salt. In the past decade, the very successful global efforts to eliminate iodine deficiency through universal salt iodization have demonstrated that partnership with the salt industry can be both successful and effective as a public health tool. Use of DEC salt can be most successfully implemented in areas in which (a) there is adequate governmental support for its use and for elimination of filariasis, (b) filariasis-endemic areas are clearly defined, (c) political leaders, health officials and the salt industry agree that DEC salt is an appropriate intervention, (d) the salt industry is well-organized and has known distribution patterns, (e) a successful national salt iodization effort exists, (f) a monitoring system exists that ensures adequacy of salt iodine content during production and that can also measure household coverage, and (g) measurement of impact on transmission of LF with the new antigen or filarial DNA detection methods can be established. There are advantages and disadvantages

  17. Radioactive air emissions notice of construction use of a portable exhauster on single-shell tanks (SSTs) during salt well pumping and other activities

    International Nuclear Information System (INIS)

    GRANDO, C.J.

    1999-01-01

    This document serves as a notice of construction (NOC), pursuant to the requirements of Washington Administrative Code (WAC) 246-247-060, and as a request for approval to construct, pursuant to 40 Code of Federal Regulations (CFR) 61.07, portable exhausters for use on single-shell tanks (SSTs) during salt well pumping. Table 1-1 lists 18 SSTs covered by this NOC. This NOC also addresses other activities that are performed in support of salt well pumping but do not require the application of a portable exhauster. Specifically this NOC analyzes the following three activities that have the potential for emissions. (1) Salt well pumping (i.e., the actual transferring of waste from one tank to another) under nominal tank operating conditions. Nominal tank operating conditions include existing passive breathing rates. (2) Salt well pumping (the actual transferring of waste from one tank to another) with use of a portable exhauster. (3) Use of a water lance on the waste to facilitate salt well screen and salt well jet pump installation into the waste. This activity is to be performed under nominal (existing passive breathing rates) tank operating conditions. The use of portable exhausters represents a cost savings because one portable exhauster can be moved back and forth between SSTs as schedules for salt well pumping dictate. A portable exhauster also could be used to simultaneously exhaust more than one SST during salt well pumping

  18. Analytical methods of heat transfer compared with numerical methods as related to nuclear waste repositories

    International Nuclear Information System (INIS)

    Estrada-Gasca, C.A.

    1986-01-01

    Analytical methods were applied to the prediction of the far-field thermal impact of a nuclear waste repository. Specifically, the transformation of coordinates and the Kirchhoff transformation were used to solve one-dimensional nonlinear heat conduction problems. Calculations for the HLW and TRU nuclear waste with initial areal thermal loadings of 12 kW/acre and 0.7 kW/acre, respectively, are carried out for various models. Also, finite difference and finite element methods are applied. The last method is used to solve two-dimensional linear and nonlinear heat conduction problems. Results of the analysis are temperature distributions and temperature histories. Explicit analytical expressions of the maximum temperature rise as a function of the system parameters are presented. The theoretical approaches predict maximum temperature increases in the overburden with an error of 10%. When the finite solid one-dimensional NWR thermal problem is solved with generic salt and HLW thermal load as parameters, the maximum temperature rises predicted by the finite difference and finite element methods had maximum errors of 2.6 and 6.7%, respectively. In all the other cases the finite difference method also gave a smaller error than the finite element method

  19. Residual Salt Separation from the Metal Products Reduced in a LiCl-Li{sub 2}O Molten Salt

    Energy Technology Data Exchange (ETDEWEB)

    Hur, Jin Mok; Hong, Sun Seok; Kang, Dae Seung; Jeong, Meong Soo; Seo, Chung Seok

    2006-02-15

    The electrochemical reduction of spent nuclear fuel in a LiCl-Li{sub 2}O molten salt for the conditioning of spent nuclear fuel requires the separation of the residual salts from a reduced metal product after the reduction process. Considering the behavior of spent nuclear fuel during the electrochemical reduction process, a surrogate material matrix was constructed and inactive tests on a salt separation were carried out to produce the data required for the active tests. Fresh uranium metal prepared from the electrochemical reduction of U{sub 3}O{sub 8} powder was used as the surrogates of the spent nuclear fuel components which might be metallized by the electrochemical reduction process. LiCl, Li{sub 2}O, Y{sub 2}O{sub 3} and SrCl{sub 2} were selected as the components of the residual salts. Interactions between the salts and their influence on the separation of the residual salts were analyzed by differential scanning calorimetry (DSC) and thermogravimetry (TG). Eutectic melting of LiCl-Li{sub 2}O and LiCl-SrCl{sub 2} led to a melting point which was lower than that of a LiCl molten salt was observed. Residual salts were separated by a vaporization method. Co-vaporization of LiCl-Li{sub 2}O and LiCl-SrCl{sub 2} was achieved below temperatures which could make the uranium metal oxidation by Li{sub 2}O possible. The salt vaporization rates at 950 .deg. C were measured as follows: LiCl-8 wt% Li{sub 2}O > LiCl > LiCl-8 wt% SrCl{sub 2} > SrCl{sub 2}.

  20. Photobleachable Diazonium Salt-Phenolic Resin Two-Layer Resist System

    Science.gov (United States)

    Uchino, Shou-ichi; Iwayanagi, Takao; Hashimoto, Michiaki

    1988-01-01

    This article describes a new negative two-layer photoresist system formed by a simple, successive spin-coating method. An aqueous acetic acid solution of diazonium salt and poly(N-vinylpyrrolidone) is deposited so as to contact a phenolic resin film spin-coated on a silicon wafer. The diazonium salt diffuses into the phenolic resin layer after standing for several minutes. The residual solution on the phenolic resin film doped with diazonium salt is spun to form the diazonium salt-poly(N-vinylpyrrolidone) top layer. This forms a uniform two-layer resist without phase separation or striation. Upon UV exposure, the diazonium salt in the top layer bleaches to act as a CEL dye, while the diazonium salt in the bottom layer decomposes to cause insolubilization. Half μm line-and-space patterns are obtained with an i-line stepper using 4-diazo-N,N-dimethylaniline chloride zinc chloride double salt as the diazonium salt and a cresol novolac resin for the bottom polymer layer. The resist formation processes, insolubilization mechanism, and the resolution capability of the new two-layer resist are discussed.

  1. Kinetics study of thermal decomposition of calcium carboxylate salts

    International Nuclear Information System (INIS)

    Landoll, Michael P.; Holtzapple, Mark T.

    2013-01-01

    The MixAlco™ process ferments lignocellulosic biomass to carboxylate salts that are thermally decomposed into ketones, which are then chemically converted to a wide variety of chemicals and fuels. To perform these decompositions, suitable reaction models are necessary to properly design, scale, and optimize commercial reactors. For three salt types (calcium acetate, and two types of mixed calcium carboxylate salts), activation energy was determined using three isoconversional methods that employed TGA curves at different heating rates. For all three salt types, activation energy varied significantly with conversion. The average activation energy for calcium acetate was 556.75 kJ mol −1 , and the activation energies for the two mixed calcium carboxylate salts were 232.87, and 176.55 kJ mol −1 . In addition, three functions of conversion were employed to see which one best modeled the experimental data. The Sestak–Berggren model provides the best universal fit for all three salt types. -- Highlights: •Calcium carboxylate salts from fermentation broth thermally decompose to ketones. •Activation energy varies with conversion for all three salt types. •Sestak–Berggren model provides best fit overall for all three salt types

  2. Kinetics study of thermal decomposition of sodium carboxylate salts

    International Nuclear Information System (INIS)

    Landoll, Michael P.; Holtzapple, Mark T.

    2012-01-01

    The MixAlco™ process ferments lignocellulosic biomass to carboxylate salts that are thermally decomposed into ketones, which are then chemically converted to a wide variety of chemicals and fuels. To perform these decompositions, suitable reaction models are necessary to properly design, scale, and optimize commercial reactors. For three salt types (sodium acetate, and two types of mixed sodium carboxylate salts), activation energy was determined using three isoconversional methods that employed TGA curves at different heating rates. For all three salt types, activation energy varied significantly with conversion. The average activation energy for sodium acetate was 226.65 kJ/mol, and the activation energies for the two mixed sodium carboxylate salts were 195.61, and 218.18 kJ/mol. In addition, three functions of conversion were employed to see which one best modeled the experimental data. The Sestak-Berggren model fits all three salt types best. -- Highlights: ► Sodium carboxylate salts from fermentation broth thermally decompose to ketones. ► Activation energy varies with conversion for all three salt types. ► Sestak-Berggren model provides best fit for all three salt types.

  3. Emulsifying salt increase stability of cheese emulsions during holding

    DEFF Research Database (Denmark)

    Hougaard, Anni Bygvrå; Sijbrandij, Anna G.; Varming, Camilla

    2015-01-01

    In cheese powder production, cheese is mixed and melted with water and emulsifying salt to form an emulsion (cheese feed) which is required to remain stable at 60°C for 1h and during further processing until spray drying. Addition of emulsifying salts ensures this, but recent demands for reduction...... of sodium and phosphate in foods makes production of cheese powder without or with minimal amounts of emulsifying salts desirable. The present work uses a centrifugation method to characterize stability of model cheese feeds. Stability of cheese feed with emulsifying salt increased with holding time at 60°C......, especially when no stirring was applied. No change in stability during holding was observed in cheese feeds without emulsifying salt. This effect is suggested to be due to continued exerted functionality of the emulsifying salt, possibly through reorganizations of the mineral balance....

  4. Status of iodized salt coverage in urban slums of Cuttack City, Orissa

    Directory of Open Access Journals (Sweden)

    Panigrahi Ansuman

    2009-01-01

    Full Text Available Background: For sustainable elimination of iodine deficiency disorders (IDD, it is necessary to consume adequately iodized salt on a regular basis and optimal iodine nutrition can be achieved through universal salt iodization. Objective: To assess the extent of use of adequately iodized salt in the urban slums of Cuttack. Materials and Methods: Using a stratified random multi-stage cluster sampling design, a cross-sectional study involving 336 households and 33 retail shops selected randomly from 11 slums of Cuttack was conducted in 2005. A predesigned pretested schedule was used to obtain relevant information and salt iodine was estimated qualitatively by using a spot testing kit and quantitatively using the iodometric titration method. Statistical Analysis: Proportion, Chi-square test. Results: Only 60.1% of the households in urban slums of Cuttack were using adequately iodized salt i.e., the iodine level in the salt was ≥15 ppm. Iodine deficiency was significantly marked in sample salts collected from katcha houses as compared with salts collected from pucca houses. Households with low financial status were using noniodized/inadequately-iodized salt. Both crystalline and refined salts were sold at all retail shops. Crystalline salts collected from all retailers had an iodine content < 15 ppm and refined salts collected from one retailer had iodine content < 15 ppm. About 48.5% of salt samples collected from retail shops were adequately iodized. Conclusion: In the urban slums of Cuttack, retailers were selling crystalline salts, which were inadequately iodized- this would be a setback in the progress towards eliminating IDD.

  5. Specific investigations related to salt rock behaviour

    International Nuclear Information System (INIS)

    Vons, L.H.

    1985-01-01

    In this paper results are given of work in various countries in rather unrelated areas of research. Nevertheless, since the studies have been undertaken to better understand salt behaviour, both from mechanical and chemical points of view, some connection between the studies can be found. In the French contribution the geological conditions have been investigated that might promote or prevent the formation of salt domes from layers in view of possible use of the latter type of formation. This was done theoretically by the finite element method, and a start was made with centrifuge tests. The density of a number of samples from salt and overburden from the Bresse basin was measured and it was shown that a favourable condition exists in this region for waste disposal. In the German contribution various subjects are touched upon, one being the effect of water on the mobility in the early stages of salt dome formation. Evidence was found for an anisotropy in salt. One Dutch contribution describes results of studies on the effect of small amounts of water on the rheology of salt. The results imply that flow laws obtained for salt at rapid strain rates and/or low confining pressure cannot be reliably extrapolated to predict the long term behaviour of wet or even very dry material under natural conditions. Preliminary results on the effect of water upon ion-mobility indicate a certain pseudo-absorptive capacity of salt e.g. for Sr

  6. Probabilistic methods as a tool aiding dimensioning drift and shaft seals for a repository in rock salt

    Energy Technology Data Exchange (ETDEWEB)

    Roehlig, Klaus-Juergen; Plischke, Elmar; Li, Xiaoshuo [TU Clausthal, Clausthal-Zellerfeld (Germany). Inst. of Disposal Research (IELF)

    2015-07-01

    For repositories in rock salt, demonstrating the integrity of drift and shaft seals is an indispensable part of the long-term safety case. In this study, probabilistic methods are applied to assess the fictitious abutment length for a shaft seal and the effective permeability of a drift seal (dam), i.e. the integral entity for the whole structure including contact zone and damaged salt zone. For the seal permeability, the question arises how to derive it based on permeability measurements with a limited number of samples due to cost restrictions. Furthermore, it is of interest which conclusions can be derived regarding the minimum length of drift seals if the failure probability should be smaller than e.g. 10{sup -4}. Based on numerical experiments it was demonstrated that small-scale measurements can be upscale using known averaging methods. This suggests that dimensioning can be carried out based on cautions average estimates and the required reliability statement (e.g. about a failure probability smaller than e.g. 10{sup -4}) can be derived for realistic dam lengths. However, due to the limited amount of data available there are remaining uncertainties concerning the underlying model assumptions.

  7. Probabilistic methods as a tool aiding dimensioning drift and shaft seals for a repository in rock salt

    International Nuclear Information System (INIS)

    Roehlig, Klaus-Juergen; Plischke, Elmar; Li, Xiaoshuo

    2015-01-01

    For repositories in rock salt, demonstrating the integrity of drift and shaft seals is an indispensable part of the long-term safety case. In this study, probabilistic methods are applied to assess the fictitious abutment length for a shaft seal and the effective permeability of a drift seal (dam), i.e. the integral entity for the whole structure including contact zone and damaged salt zone. For the seal permeability, the question arises how to derive it based on permeability measurements with a limited number of samples due to cost restrictions. Furthermore, it is of interest which conclusions can be derived regarding the minimum length of drift seals if the failure probability should be smaller than e.g. 10 -4 . Based on numerical experiments it was demonstrated that small-scale measurements can be upscale using known averaging methods. This suggests that dimensioning can be carried out based on cautions average estimates and the required reliability statement (e.g. about a failure probability smaller than e.g. 10 -4 ) can be derived for realistic dam lengths. However, due to the limited amount of data available there are remaining uncertainties concerning the underlying model assumptions.

  8. Preparation of pyrolytic carbon coating on graphite for inhibiting liquid fluoride salt and Xe135 penetration for molten salt breeder reactor

    International Nuclear Information System (INIS)

    Song, Jinliang; Zhao, Yanling; He, Xiujie; Zhang, Baoliang; Xu, Li; He, Zhoutong; Zhang, DongSheng; Gao, Lina; Xia, Huihao; Zhou, Xingtai; Huai, Ping; Bai, Shuo

    2015-01-01

    Highlights: • Rough laminar pyrolytic carbon coating (RLPyC) is prepared by a fixed-bed method. • The salt-infiltration into IG-110 is 13.5%, less than 0.01% of RLPyC under 1.5 atm. • The helium diffusion coefficient of RLPyC coated graphite is 2.16 × 10 −8 cm 2 /s. • The coated graphite can inhibit the liquid fluoride salt and Xe 135 penetration. - Abstract: A fixed-bed deposition method was used to prepare rough laminar pyrolytic carbon coating (RLPyC) on graphite for inhibiting liquid fluoride salt and Xe 135 penetration during use in molten salt breeder reactor. The RLPyC coating possessed a graphitization degree of 44% and had good contact with graphite substrate. A high-pressure reactor was constructed to evaluate the molten salt infiltration in the isostatic graphite (IG-110, TOYO TANSO CO., LTD.) and RLPyC coated graphite under 1.01, 1.52, 3.04, 5.07 and 10.13 × 10 5 Pa for 12 h. Mercury injection and molten-salt infiltration experiments indicated the porosity and the salt-infiltration amount of 18.4% and 13.5 wt% under 1.52 × 10 5 Pa of IG-110, which was much less than 1.2% and 0.06 wt% under 10.13 × 10 5 Pa of the RLPyC, respectively. A vacuum device was constructed to evaluate the Xe 135 penetration in the graphite. The helium diffusion coefficient of RLPyC coated graphite was 2.16 × 10 −12 m 2 /s, much less than 1.21 × 10 −6 m 2 /s of the graphite. Thermal cycle experiment indicated the coatings possessed excellent thermal stability. The coated graphite could effectively inhibit the liquid fluoride salt and Xe 135 penetration

  9. Study on corrosion of metal materials in nitrate molten salts

    Science.gov (United States)

    Zhai, Wei; Yang, Bo; Li, Maodong; Li, Shiping; Xin, Mingliang; Zhang, Shuanghong; Huang, Guojia

    2017-01-01

    High temperature molten salts as a heat transfer heat storage medium has been more widely used in the field of concentrated solar thermal power generation. In the thermal heat storage system, metal material stability and performance at high temperatures are of one major limitation in increasing this operating temperature. In this paper, study on corrosion of 321H, 304, 316L, P91 metal materials in modified solar two molten salts. The corrosion kinetics of 304, 316L, 321H, P91 metal material in the modified solar two molten salts at 450°C, 500°C is also investigated. Under the same condition it was found that 304, 321H corroded at a rate of 40% less than P91. Spallation of corrosion products was observed on P91 steel, while no obvious observed on other kinds of stainless steel. Corrosion rates of 304, 321H, and 316L slowly increased with temperature. Oxidation mechanisms little varied with temperature. Corrosion products of metal materials observed at 450°C, 500°C were primarily Fe oxide and Fe, Cr oxide.

  10. Determination of acoustical transfer functions using an impulse method

    Science.gov (United States)

    MacPherson, J.

    1985-02-01

    The Transfer Function of a system may be defined as the relationship of the output response to the input of a system. Whilst recent advances in digital processing systems have enabled Impulse Transfer Functions to be determined by computation of the Fast Fourier Transform, there has been little work done in applying these techniques to room acoustics. Acoustical Transfer Functions have been determined for auditoria, using an impulse method. The technique is based on the computation of the Fast Fourier Transform (FFT) of a non-ideal impulsive source, both at the source and at the receiver point. The Impulse Transfer Function (ITF) is obtained by dividing the FFT at the receiver position by the FFT of the source. This quantity is presented both as linear frequency scale plots and also as synthesized one-third octave band data. The technique enables a considerable quantity of data to be obtained from a small number of impulsive signals recorded in the field, thereby minimizing the time and effort required on site. As the characteristics of the source are taken into account in the calculation, the choice of impulsive source is non-critical. The digital analysis equipment required for the analysis is readily available commercially.

  11. Fluorescence Resonance Energy Transfer of the Tb(III)-Nd(III) Binary System in Molten LiCl-KCl Eutectic Salt

    Energy Technology Data Exchange (ETDEWEB)

    Kim, B. Y. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Yun, J. I. [KAIST, Daejeon (Korea, Republic of)

    2015-05-15

    The lanthanides act as a neutron poison in nuclear reactor with large neutron absorption cross section. For that reason, very low amount of lanthanides is required in the recovered U/TRU ingot product from pyrochemical process. In view of that, the investigation of thermodynamic properties and chemical behaviors of lanthanides in molten chloride salt are necessary to estimate the performance efficiency of pyrochemical process. However, there are uncertainties about knowledge and understanding of basic mechanisms in pyrochemical process, such as chemical speciation and redox behaviors due to the lack of in-situ monitoring methods for high temperature molten salt. The spectroscopic analysis is one of the probable techniques for in-situ qualitative and quantitative analysis. Recently, a few fluorescence spectroscopic measurements on single lanthanide element in molten LiCl-KCl eutectic have been investigated. The fluorescence intensity and the fluorescence lifetime of Tb(III) were decreased as increasing the concentration of Nd(III), demonstrating collisional quenching between donor ions and acceptor ions. The Forster distance (..0) of Tb(III)-Nd(III) binary system in molten LiCl-KCl eutectic was determined in the specific range of .... (0.1-1.0) and .. (1.387-1.496)

  12. Saturated salt solution method: a useful cadaver embalming for surgical skills training.

    Science.gov (United States)

    Hayashi, Shogo; Homma, Hiroshi; Naito, Munekazu; Oda, Jun; Nishiyama, Takahisa; Kawamoto, Atsuo; Kawata, Shinichi; Sato, Norio; Fukuhara, Tomomi; Taguchi, Hirokazu; Mashiko, Kazuki; Azuhata, Takeo; Ito, Masayuki; Kawai, Kentaro; Suzuki, Tomoya; Nishizawa, Yuji; Araki, Jun; Matsuno, Naoto; Shirai, Takayuki; Qu, Ning; Hatayama, Naoyuki; Hirai, Shuichi; Fukui, Hidekimi; Ohseto, Kiyoshige; Yukioka, Tetsuo; Itoh, Masahiro

    2014-12-01

    This article evaluates the suitability of cadavers embalmed by the saturated salt solution (SSS) method for surgical skills training (SST). SST courses using cadavers have been performed to advance a surgeon's techniques without any risk to patients. One important factor for improving SST is the suitability of specimens, which depends on the embalming method. In addition, the infectious risk and cost involved in using cadavers are problems that need to be solved. Six cadavers were embalmed by 3 methods: formalin solution, Thiel solution (TS), and SSS methods. Bacterial and fungal culture tests and measurement of ranges of motion were conducted for each cadaver. Fourteen surgeons evaluated the 3 embalming methods and 9 SST instructors (7 trauma surgeons and 2 orthopedists) operated the cadavers by 21 procedures. In addition, ultrasonography, central venous catheterization, and incision with cauterization followed by autosuture stapling were performed in some cadavers. The SSS method had a sufficient antibiotic effect and produced cadavers with flexible joints and a high tissue quality suitable for SST. The surgeons evaluated the cadavers embalmed by the SSS method to be highly equal to those embalmed by the TS method. Ultrasound images were clear in the cadavers embalmed by both the methods. Central venous catheterization could be performed in a cadaver embalmed by the SSS method and then be affirmed by x-ray. Lungs and intestines could be incised with cauterization and autosuture stapling in the cadavers embalmed by TS and SSS methods. Cadavers embalmed by the SSS method are sufficiently useful for SST. This method is simple, carries a low infectious risk, and is relatively of low cost, enabling a wider use of cadavers for SST.

  13. Incorporation of charge transfer into the explicit polarization fragment method by grand canonical density functional theory.

    Science.gov (United States)

    Isegawa, Miho; Gao, Jiali; Truhlar, Donald G

    2011-08-28

    Molecular fragmentation algorithms provide a powerful approach to extending electronic structure methods to very large systems. Here we present a method for including charge transfer between molecular fragments in the explicit polarization (X-Pol) fragment method for calculating potential energy surfaces. In the conventional X-Pol method, the total charge of each fragment is preserved, and charge transfer between fragments is not allowed. The description of charge transfer is made possible by treating each fragment as an open system with respect to the number of electrons. To achieve this, we applied Mermin's finite temperature method to the X-Pol wave function. In the application of this method to X-Pol, the fragments are open systems that partially equilibrate their number of electrons through a quasithermodynamics electron reservoir. The number of electrons in a given fragment can take a fractional value, and the electrons of each fragment obey the Fermi-Dirac distribution. The equilibrium state for the electrons is determined by electronegativity equalization with conservation of the total number of electrons. The amount of charge transfer is controlled by re-interpreting the temperature parameter in the Fermi-Dirac distribution function as a coupling strength parameter. We determined this coupling parameter so as to reproduce the charge transfer energy obtained by block localized energy decomposition analysis. We apply the new method to ten systems, and we show that it can yield reasonable approximations to potential energy profiles, to charge transfer stabilization energies, and to the direction and amount of charge transferred. © 2011 American Institute of Physics

  14. Assimilation and Translocation of Dry Matter and Phosphorus in Rice Genotypes Affected by Salt-Alkaline Stress

    Directory of Open Access Journals (Sweden)

    Zhijie Tian

    2016-06-01

    Full Text Available Salt-alkaline stress generally leads to soil compaction and fertility decline. It also restricts rice growth and phosphorus acquisition. In this pot experiment, two relatively salt-alkaline tolerant (Dongdao-4 and Changbai-9 and sensitive (Changbai-25 and Tongyu-315 rice genotypes were planted in sandy (control and salt-alkaline soil to evaluate the characteristics of dry matter and phosphorus assimilation and translocation in rice. The results showed that dry matter and phosphorus assimilation in rice greatly decreased under salt-alkaline stress as the plants grew. The translocation and contribution of dry matter and phosphorus to the grains also increased markedly; different performances were observed between genotypes under salt-alkaline stress. D4 and C9 showed higher dry matter translocation, translocation efficiency and contribution of dry matter assimilation to panicles than those of C25 and T315. These changes in D4 and C9 indexes occurred at low levels of salt-alkaline treatment. Higher phosphorus acquisition efficiency of D4 and C9 were also found under salt-alkaline conditions. Additionally, the phosphorus translocation significantly decreased in C25 and T315 in the stress treatment. In conclusion, the results indicated that salt-alkaline-tolerant rice genotypes may have stronger abilities to assimilate and transfer biomass and phosphorus than sensitive genotypes, especially in salt-alkaline conditions.

  15. Methanol Steam Reforming Promoted by Molten Salt-Modified Platinum on Alumina Catalysts

    Science.gov (United States)

    Kusche, Matthias; Agel, Friederike; Ní Bhriain, Nollaig; Kaftan, Andre; Laurin, Mathias; Libuda, Jörg; Wasserscheid, Peter

    2014-01-01

    We herein describe a straight forward procedure to increase the performance of platinum-on-alumina catalysts in methanol steam reforming by applying an alkali hydroxide coating according to the “solid catalyst with ionic liquid layer” (SCILL) approach. We demonstrate by diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) and temperature-programmed desorption (TPD) studies that potassium doping plays an important role in the catalyst activation. Moreover, the hygroscopic nature and the basicity of the salt modification contribute to the considerable enhancement in catalytic performance. During reaction, a partly liquid film of alkali hydroxides/carbonates forms on the catalyst/alumina surface, thus significantly enhancing the availability of water at the catalytically active sites. Too high catalyst pore fillings with salt introduce a considerable mass transfer barrier into the system as indicated by kinetic studies. Thus, the optimum interplay between beneficial catalyst modification and detrimental mass transfer effects had to be identified and was found on the applied platinum-on-alumina catalyst at KOH loadings around 7.5 mass %. PMID:25124120

  16. Ambazone-lipoic acid salt: Structural and thermal characterization

    Energy Technology Data Exchange (ETDEWEB)

    Kacso, Irina [National Institute for Research and Development of Isotopic and Molecular Technologies, 65-103 Donath street, 400293 Cluj-Napoca (Romania); Racz, Csaba-Pal; Santa, Szabolcs [Babes-Bolyai' University, Faculty of Chemistry, 11 Arany Janos street, Cluj-Napoca (Romania); Rus, Lucia [' Iuliu Hatieganu' University of Medicine and Pharmacy, Faculty of Pharmacy, 6 Louis Pasteur street, 400349 Cluj-Napoca (Romania); Dadarlat, Dorin; Borodi, Gheorghe [National Institute for Research and Development of Isotopic and Molecular Technologies, 65-103 Donath street, 400293 Cluj-Napoca (Romania); Bratu, Ioan, E-mail: ibratu@gmail.com [National Institute for Research and Development of Isotopic and Molecular Technologies, 65-103 Donath street, 400293 Cluj-Napoca (Romania)

    2012-12-20

    Highlights: Black-Right-Pointing-Pointer Salt of Ambazone with lipoic acid obtained by solvent-drop grinding. Black-Right-Pointing-Pointer Ambazone lipoate salt crystallizes in monoclinic system. Black-Right-Pointing-Pointer FTIR data suggest the deprotonation of the lipoic acid. Black-Right-Pointing-Pointer Thermal behaviour different of ambazone salt as compared to the starting compounds. - Abstract: A suitable method for increasing the solubility, dissolution rate and consequently the bioavailability of poor soluble acidic or basic drugs is their salt formation. The aim of this study is to investigate the structural and thermal properties of the compound obtained by solvent drop grinding (SDG) method at room temperature, starting from the 1:1 molar ratios of ambazone (AMB) and {alpha}-lipoic acid (LA). The structural characterization was performed with X-ray powder diffraction (XRPD) and infrared spectroscopy (FTIR). The thermal behaviour of the obtained compound (AMB{center_dot}LA) was investigated by differential scanning calorimetry (DSC) and thermogravimetry (TG). The photopyroelectric calorimetry, in front detection configuration (FPPE), was applied to measure and compare the room temperature values of one dynamic thermal parameter (thermal effusivity) for starting and resulting compounds. Both structural and supporting calorimetric techniques pointed out a salt structure for AMB{center_dot}LA compound as compared to those of the starting materials.

  17. Comparative miRomics of Salt-Tolerant and Salt-Sensitive Rice

    Directory of Open Access Journals (Sweden)

    Goswami Kavita

    2017-06-01

    Full Text Available Increase in soil salt causes osmotic and ionic stress to plants, which inhibits their growth and productivity. Rice production is also hampered by salinity and the effect of salt is most severe at the seedling and reproductive stages. Salainity tolerance is a quantitative property controlled by multiple genes coding for signaling molecules, ion transporters, metabolic enzymes and transcription regulators. MicroRNAs are key modulators of gene-expression that act at the post-transcriptional level by translation repression or transcript cleavage. They also play an important role in regulating plant’s response to salt-stress. In this work we adopted the approach of comparative and integrated data-mining to understand the miRNA-mediated regulation of salt-stress in rice. We profiled and compared the miRNA regulations using natural varieties and transgenic lines with contrasting behaviors in response to salt-stress. The information obtained from sRNAseq, RNAseq and degradome datasets was integrated to identify the salt-deregulated miRNAs, their targets and the associated metabolic pathways. The analysis revealed the modulation of many biological pathways, which are involved in salt-tolerance and play an important role in plant phenotype and physiology. The end modifications of the miRNAs were also studied in our analysis and isomiRs having a dynamic role in salt-tolerance mechanism were identified.

  18. Synthesis of quaternary aryl phosphonium salts: photoredox-mediated phosphine arylation.

    Science.gov (United States)

    Fearnley, A F; An, J; Jackson, M; Lindovska, P; Denton, R M

    2016-04-11

    We report a synthesis method for the construction of quaternary aryl phoshonium salts at ambient temperature. The regiospecific reaction involves the coupling of phosphines with aryl radicals derived from diaryliodonium salts under photoredox conditions.

  19. Cooking without salt

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/patientinstructions/000760.htm Cooking without salt To use the sharing features on ... other dishes to add zest. Try Salt-free Cooking Explore cooking with salt substitutes. Add a splash ...

  20. Immobilization of IFR salt wastes in mortar

    International Nuclear Information System (INIS)

    Fisher, D.F.; Johnson, T.R.

    1988-01-01

    Portland cement-base mortars are being considered for immobilizing chloride salt wastes from the fuel cycle of an integral fast reactor (IFR). The IFR is a sodium-cooled fast reactor with metal fuel. It has a close-coupled fuel cycle in which fission products are separated from the actinides in an electrochemical cell operating at 500 degrees C. This cell has a cadmium anode and a liquid salt electrolyte. The salt will be a low-melting mixture of alkaline and alkaline earth chlorides. This paper discusses one method being considered for immobilizing this treated salt, to disperse it in a portland cement-base motar, which would then be sealed in corrosion-resistant containers. For this application, the grout must be sufficiently fluid that it can be pumped into canisters where it will solidify into a strong, leach-resistant material

  1. Calculations of the electromechanical transfer processes using implicit methods of numerical integration

    Energy Technology Data Exchange (ETDEWEB)

    Pogosyan, T A

    1983-01-01

    The article is dedicated to the solution of systems of differential equations which describe the transfer processes in an electric power system (EES) by implicit methods of numerical integration. The distinguishing feature of the implicit methods (Euler's reverse method and the trapeze method) is their absolute stability and, consequently, the relatively small accumulation of errors in each step of integration. Therefore, they are found to be very convenient for solving problems of electric power engineering, when the transfer processes are described by a rigid system of differential equations. The rigidity is associated with the range of values of the time constants considered. The advantage of the implicit methods over explicit are shown in a specific example (calculation of the dynamic stability of the simplest electric power system), along with the field of use of the implicit methods and the expedience of their use in power engineering problems.

  2. A Simplified Method for Stationary Heat Transfer of a Hollow Core Concrete Slab Used for TABS

    DEFF Research Database (Denmark)

    Yu, Tao; Heiselberg, Per Kvols; Lei, Bo

    2014-01-01

    Thermally activated building systems (TABS) have been an energy efficient way to improve the indoor thermal comfort. Due to the complicated structure, heat transfer prediction for a hollow core concrete used for TABS is difficult. This paper proposes a simplified method using equivalent thermal...... resistance for the stationary heat transfer of this kind of system. Numerical simulations are carried out to validate this method, and this method shows very small deviations from the numerical simulations. Meanwhile, this method is used to investigate the influence of the thickness of insulation on the heat...... transfer. The insulation with a thickness of more than 0.06 m can keep over 95 % of the heat transferred from the lower surface, which is beneficial to the radiant ceiling cooling. Finally, this method is extended to involve the effect of the pipe, and the numerical comparison results show that this method...

  3. Hygroscopic behavior of atmospheric aerosols containing nitrate salts and water-soluble organic acids

    Science.gov (United States)

    Jing, Bo; Wang, Zhen; Tan, Fang; Guo, Yucong; Tong, Shengrui; Wang, Weigang; Zhang, Yunhong; Ge, Maofa

    2018-04-01

    While nitrate salts have critical impacts on environmental effects of atmospheric aerosols, the effects of coexisting species on hygroscopicity of nitrate salts remain uncertain. The hygroscopic behaviors of nitrate salt aerosols (NH4NO3, NaNO3, Ca(NO3)2) and their internal mixtures with water-soluble organic acids were determined using a hygroscopicity tandem differential mobility analyzer (HTDMA). The nitrate salt / organic acid mixed aerosols exhibit varying phase behavior and hygroscopic growth depending upon the type of components in the particles. Whereas pure nitrate salt particles show continuous water uptake with increasing relative humidity (RH), the deliquescence transition is still observed for ammonium nitrate particles internally mixed with organic acids such as oxalic acid and succinic acid with a high deliquescence point. The hygroscopicity of submicron aerosols containing sodium nitrate and an organic acid is also characterized by continuous growth, indicating that sodium nitrate tends to exist in a liquid-like state under dry conditions. It is observed that in contrast to the pure components, the water uptake is hindered at low and moderate RH for calcium nitrate particles containing malonic acid or phthalic acid, suggesting the potential effects of mass transfer limitation in highly viscous mixed systems. Our findings improve fundamental understanding of the phase behavior and water uptake of nitrate-salt-containing aerosols in the atmospheric environment.

  4. Optical power transfer and communication methods for wireless implantable sensing platforms.

    Science.gov (United States)

    Mujeeb-U-Rahman, Muhammad; Adalian, Dvin; Chang, Chieh-Feng; Scherer, Axel

    2015-09-01

    Ultrasmall scale implants have recently attracted focus as valuable tools for monitoring both acute and chronic diseases. Semiconductor optical technologies are the key to miniaturizing these devices to the long-sought sub-mm scale, which will enable long-term use of these devices for medical applications. This can also enable the use of multiple implantable devices concurrently to form a true body area network of sensors. We demonstrate optical power transfer techniques and methods to effectively harness this power for implantable devices. Furthermore, we also present methods for optical data transfer from such implants. Simultaneous use of these technologies can result in miniaturized sensing platforms that can allow for large-scale use of such systems in real world applications.

  5. Salt Tolerance

    OpenAIRE

    Xiong, Liming; Zhu, Jian-Kang

    2002-01-01

    Studying salt stress is an important means to the understanding of plant ion homeostasis and osmo-balance. Salt stress research also benefits agriculture because soil salinity significantly limits plant productivity on agricultural lands. Decades of physiological and molecular studies have generated a large body of literature regarding potential salt tolerance determinants. Recent advances in applying molecular genetic analysis and genomics tools in the model plant Arabidopsis thaliana are sh...

  6. Insight into solid-liquid phase transfer catalyzed synthesis of ...

    Indian Academy of Sciences (India)

    Ganapati D Yadav

    2017-11-16

    Nov 16, 2017 ... Mecoprop ester using K2CO3 as base and development of new kinetic model ... acid family.1 Several salts and esters of Mecoprop are used as active ..... Influence of mass transfer was determined by varying the stirring speed ...

  7. Evaluation method for radiative heat transfer in polydisperse water droplets

    International Nuclear Information System (INIS)

    Maruyama, Shigenao; Nakai, Hirotaka; Sakurai, Atsushi; Komiya, Atsuki

    2008-01-01

    Simplifications of the model for nongray radiative heat transfer analysis in participating media comprised of polydisperse water droplets are presented. Databases of the radiative properties for a water droplet over a wide range of wavelengths and diameters are constructed using rigorous Mie theory. The accuracy of the radiative properties obtained from the database interpolation is validated by comparing them with those obtained from the Mie calculations. The radiative properties of polydisperse water droplets are compared with those of monodisperse water droplets with equivalent mean diameters. Nongray radiative heat transfer in the anisotropic scattering fog layer, including direct and diffuse solar irradiations and infrared sky flux, is analyzed using REM 2 . The radiative heat fluxes within the fog layer containing polydisperse water droplets are compared with those in the layer containing monodisperse water droplets. Through numerical simulation of the radiative heat transfer, polydisperse water droplets can be approximated by using the Sauter diameter, a technique that can be useful in several research fields, such as engineering and atmospheric science. Although this approximation is valid in the case of pure radiative transfer problems, the Sauter diameter is reconfirmed to be the appropriate diameter for approximating problems in radiative heat transfer, although volume-length mean diameter shows better accordance in some cases. The CPU time for nongray radiative heat transfer analysis with a fog model is evaluated. It is proved that the CPU time is decreased by using the databases and the approximation method for polydisperse particulate media

  8. Method to eliminate flux linkage DC component in load transformer for static transfer switch.

    Science.gov (United States)

    He, Yu; Mao, Chengxiong; Lu, Jiming; Wang, Dan; Tian, Bing

    2014-01-01

    Many industrial and commercial sensitive loads are subject to the voltage sags and interruptions. The static transfer switch (STS) based on the thyristors is applied to improve the power quality and reliability. However, the transfer will result in severe inrush current in the load transformer, because of the DC component in the magnetic flux generated in the transfer process. The inrush current which is always 2 ~ 30 p.u. can cause the disoperation of relay protective devices and bring potential damage to the transformer. The way to eliminate the DC component is to transfer the related phases when the residual flux linkage of the load transformer and the prospective flux linkage of the alternate source are equal. This paper analyzes how the flux linkage of each winding in the load transformer changes in the transfer process. Based on the residual flux linkage when the preferred source is completely disconnected, the method to calculate the proper time point to close each phase of the alternate source is developed. Simulation and laboratory experiments results are presented to show the effectiveness of the transfer method.

  9. Transcriptome analyses of a salt-tolerant cytokinin-deficient mutant reveal differential regulation of salt stress response by cytokinin deficiency.

    Directory of Open Access Journals (Sweden)

    Rie Nishiyama

    Full Text Available Soil destruction by abiotic environmental conditions, such as high salinity, has resulted in dramatic losses of arable land, giving rise to the need of studying mechanisms of plant adaptation to salt stress aimed at creating salt-tolerant plants. Recently, it has been reported that cytokinins (CKs regulate plant environmental stress responses through two-component systems. A decrease in endogenous CK levels could enhance salt and drought stress tolerance. Here, we have investigated the global transcriptional change caused by a reduction in endogenous CK content under both normal and salt stress conditions. Ten-day-old Arabidopsis thaliana wild-type (WT and CK-deficient ipt1,3,5,7 plants were transferred to agar plates containing either 0 mM (control or 200 mM NaCl and maintained at normal growth conditions for 24 h. Our experimental design allowed us to compare transcriptome changes under four conditions: WT-200 mM vs. WT-0 mM, ipt1,3,5,7-0 mM vs. WT-0 mM, ipt1,3,5,7-200 mM vs. ipt1,3,5,7-0 mM and ipt1,3,5,7-200 mM vs. WT-200 mM NaCl. Our results indicated that the expression of more than 10% of all of the annotated Arabidopsis genes was altered by CK deficiency under either normal or salt stress conditions when compared to WT. We found that upregulated expression of many genes encoding either regulatory proteins, such as NAC, DREB and ZFHD transcription factors and the calcium sensor SOS3, or functional proteins, such as late embryogenesis-abundant proteins, xyloglucan endo-transglycosylases, glycosyltransferases, glycoside hydrolases, defensins and glyoxalase I family proteins, may contribute to improved salt tolerance of CK-deficient plants. We also demonstrated that the downregulation of photosynthesis-related genes and the upregulation of several NAC genes may cause the altered morphological phenotype of CK-deficient plants. This study highlights the impact of CK regulation on the well-known stress-responsive signaling pathways, which

  10. A new version of transfer matrix method for multibody systems

    Energy Technology Data Exchange (ETDEWEB)

    Rui, Xiaoting, E-mail: ruixt@163.net [Nanjing University of Science and Technology, Institute of Launch Dynamics (China); Bestle, Dieter, E-mail: bestle@b-tu.de [Brandenburg University of Technology, Engineering Mechanics and Vehicle Dynamics (Germany); Zhang, Jianshu, E-mail: zhangdracpa@sina.com; Zhou, Qinbo, E-mail: zqb912-new@163.com [Nanjing University of Science and Technology, Institute of Launch Dynamics (China)

    2016-10-15

    In order to avoid the global dynamics equations and increase the computational efficiency for multibody system dynamics (MSD), the transfer matrix method of multibody system (MSTMM) has been developed and applied very widely in research and engineering in recent 20 years. It differs from ordinary methods in multibody system dynamics with respect to the feature that there is no need for a global dynamics equation, and it uses low-order matrices for high computational efficiency. For linear systems, MSTMM is exact even if continuous elements like beams are involved. The discrete time MSTMM, however, has to use local linearization. In order to release the method from such approximations, a new version of MSTMM is presented in this paper where translational and angular accelerations, on the one hand, and internal forces and moments, on the other hand, are used as state variables. Already linear relationships among these quantities are utilized, which results in new element transfer matrices and algorithms making the study of multibody systems as simple as the study of single bodies. The proposed approach also allows combining MSTMM with any general numerical integration procedure. Some numerical examples of MSD are given to demonstrate the proposed method.

  11. Linear model correction: A method for transferring a near-infrared multivariate calibration model without standard samples

    Science.gov (United States)

    Liu, Yan; Cai, Wensheng; Shao, Xueguang

    2016-12-01

    Calibration transfer is essential for practical applications of near infrared (NIR) spectroscopy because the measurements of the spectra may be performed on different instruments and the difference between the instruments must be corrected. For most of calibration transfer methods, standard samples are necessary to construct the transfer model using the spectra of the samples measured on two instruments, named as master and slave instrument, respectively. In this work, a method named as linear model correction (LMC) is proposed for calibration transfer without standard samples. The method is based on the fact that, for the samples with similar physical and chemical properties, the spectra measured on different instruments are linearly correlated. The fact makes the coefficients of the linear models constructed by the spectra measured on different instruments are similar in profile. Therefore, by using the constrained optimization method, the coefficients of the master model can be transferred into that of the slave model with a few spectra measured on slave instrument. Two NIR datasets of corn and plant leaf samples measured with different instruments are used to test the performance of the method. The results show that, for both the datasets, the spectra can be correctly predicted using the transferred partial least squares (PLS) models. Because standard samples are not necessary in the method, it may be more useful in practical uses.

  12. Biochemical solubilization of toxic salts from residual geothermal brines and waste waters

    Science.gov (United States)

    Premuzic, Eugene T.; Lin, Mow S.

    1994-11-22

    A method of solubilizing metal salts such as metal sulfides in a geothermal sludge using mutant Thiobacilli selected for their ability to metabolize metal salts at high temperature is disclosed, The method includes the introduction of mutated Thiobacillus ferrooxidans and Thiobacillus thiooxidans to a geothermal sludge or brine. The microorganisms catalyze the solubilization of metal salts, For instance, in the case of metal sulfides, the microorganisms catalyze the solubilization to form soluble metal sulfates.

  13. Molecular interactions between selected sodium salts of bile acids and morphine hydrochloride.

    Science.gov (United States)

    Poša, Mihalj; Csanádi, János; Kövér, Katalin E; Guzsvány, Valéria; Batta, Gyula

    2012-06-01

    The objective of this study was to understand the prolonged analgesic action of morphine hydrochloride observed in the presence of sodium 12-oxochenodeoxycholanate. Based on literature, this phenomenon may be due to the formation of aggregates in the cell between the molecules of bile acids and morphine. In addition to the sodium 12-oxochenodeoxycholanate, the present investigation also included salts of cholic and 7-oxodeoxycholic acids. Saturation transfer difference NMR experiments showed that morphine binds to the bile acid molecule close to the aromatic protons H1 and H2 provided that the concentration of the bile acid salt approaches the critical micellar concentration (CMC). The spin-lattice relaxation times (T(1)) of the affected protons decrease significantly in the presence of micellar solutions of the bile acid salts, and the most pronounced change in T(1) was observed for sodium 7-oxodeoxycholate. Diffusion-ordered NMR experiments suggested that morphine hydrochloride can interact only with sodium 7-oxochenodeoxycholate. It can be supposed that the molecular ratio of sodium 7-oxodeoxycholate and morphine hydrochloride in the mixed micelle is 2:1. The CMC values of mixed micelles do not differ from the CMC values of the micelle constituents, which suggests that the binding of morphine hydrochloride does not perturb the hydrophobic domain of the bile acid molecule. In the presence of bile acids, the transfer rate constant (k(12)) of morphine hydrochloride from the buffered aqueous solution to chloroform (model of the cell membrane) shows a decrease. A significant decrease of the k(12) was also observed in the presence of micellar solutions. Kinetic measurements indicated that, in addition to micellar interaction between morphine hydrochloride and sodium salts of bile acids, a complex may also be formed in chloroform via hydrogen bonds formed between the drug and bile acid molecules. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Salt zone cementing; Cimentacao em zonas de sal

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Fernando Jose Parente Neiva; Miranda, Cristiane Richard de; Martins, Andre Leibsohn [PETROBRAS, Rio de Janeiro, RJ (Brazil). Centro de Pesquisas

    1994-07-01

    This work introduces new concepts in the proposal of NaCl concentrations i cement slurry and operational parameters for cementing halite salt zones. Experiments carried out in the laboratory and in the Surface Hydraulic Simulator using real halite coring allowed the determination of halite dissolution rates in relation to flow, contact time, and initial Na Cl concentration in the cement slurries. An experimental procedure was developed to measure the adherence strength of hardened cement on halite formations. A Computer Simulator was developed with the adjustment of a model representing the physical phenomenon of mass transfer to the experimental results obtained, which enable us to calculate the Na Cl concentration profile on cement slurry after its positioning in the well's annular region, as well as the total mass of dissolved salt. Employment of the methodology developed in this work shall reduce risk of collapsed casing as well as the cost of the slurry. (author)

  15. Special problems in making geotechnical measurements in salt

    International Nuclear Information System (INIS)

    Verslvis, S.; Lindner, E.N.

    1983-01-01

    The transfer of experience, theory, and instrumentation suitable for hard rock media has posed numerous problems which this paper will address. Foremost of these pertains to the time-dependent (creep) behavior of salt. The theoretical mechanism is elusive; creep laws formulated to predict this behavior represent the state of the art in regression analysis. Furthermore, long term experiments (1 year) that would be necessary to determine creep mechanism(s) are enormously expensive and tie-up test equipment. Second, tests for determining in situ stress are based on the theory of elasticity. However anelastic (non-recoverable) strains contribute a significant portion of the material behavior precluding back calculating in situ stresses. Another problem pertains to the rate-dependent behavior of salt. Loading and temperature gradients experienced in the laboratory are more severe than would be experienced in a repository. Significant differences in material behavior can be expected along with special problems with instrumentation

  16. Salt zone cementing; Cimentacao em zonas de sal

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Fernando Jose Parente Neiva; Miranda, Cristiane Richard de; Martins, Andre Leibsohn [PETROBRAS, Rio de Janeiro, RJ (Brazil). Centro de Pesquisas

    1994-07-01

    This work introduces new concepts in the proposal of NaCl concentrations i cement slurry and operational parameters for cementing halite salt zones. Experiments carried out in the laboratory and in the Surface Hydraulic Simulator using real halite coring allowed the determination of halite dissolution rates in relation to flow, contact time, and initial Na Cl concentration in the cement slurries. An experimental procedure was developed to measure the adherence strength of hardened cement on halite formations. A Computer Simulator was developed with the adjustment of a model representing the physical phenomenon of mass transfer to the experimental results obtained, which enable us to calculate the Na Cl concentration profile on cement slurry after its positioning in the well's annular region, as well as the total mass of dissolved salt. Employment of the methodology developed in this work shall reduce risk of collapsed casing as well as the cost of the slurry. (author)

  17. Global transcriptional, physiological and metabolite analyses of Desulfovibrio vulgaris Hildenborough responses to salt adaptation

    Energy Technology Data Exchange (ETDEWEB)

    He, Z.; Zhou, A.; Baidoo, E.; He, Q.; Joachimiak, M. P.; Benke, P.; Phan, R.; Mukhopadhyay, A.; Hemme, C.L.; Huang, K.; Alm, E.J.; Fields, M.W.; Wall, J.; Stahl, D.; Hazen, T.C.; Keasling, J.D.; Arkin, A.P.; Zhou, J.

    2009-12-01

    The response of Desulfovibrio vulgaris Hildenborough to salt adaptation (long-term NaCl exposure) was examined by physiological, global transcriptional, and metabolite analyses. The growth of D. vulgaris was inhibited by high levels of NaCl, and the growth inhibition could be relieved by the addition of exogenous amino acids (e.g., glutamate, alanine, tryptophan) or yeast extract. Salt adaptation induced the expression of genes involved in amino acid biosynthesis and transport, electron transfer, hydrogen oxidation, and general stress responses (e.g., heat shock proteins, phage shock proteins, and oxidative stress response proteins). Genes involved in carbon metabolism, cell motility, and phage structures were repressed. Comparison of transcriptomic profiles of D. vulgaris responses to salt adaptation with those of salt shock (short-term NaCl exposure) showed some similarity as well as a significant difference. Metabolite assays showed that glutamate and alanine were accumulated under salt adaptation, suggesting that they may be used as osmoprotectants in D. vulgaris. A conceptual model is proposed to link the observed results to currently available knowledge for further understanding the mechanisms of D. vulgaris adaptation to elevated NaCl.

  18. Internally Pressurized Spherical and Cylindrical Cavities in Rock Salt

    DEFF Research Database (Denmark)

    Krenk, Steen

    1978-01-01

    -linear zone and the volume reduction. Results are given for cavities in rock salt, and a comparison with measured stress concentrations is used to support the assumption of a hydrostatic stress state in undisturbed salt formations. Finally a method to estimate convergence due to creep is outlined....

  19. Sea salt

    OpenAIRE

    Galvis-Sánchez, Andrea C.; Lopes, João Almeida; Delgadillo, Ivone; Rangel, António O. S. S.

    2013-01-01

    The geographical indication (GI) status links a product with the territory and with the biodiversity involved. Besides, the specific knowledge and cultural practices of a human group that permit transforming a resource into a useful good is protected under a GI designation. Traditional sea salt is a hand-harvested product originating exclusively from salt marshes from specific geographical regions. Once salt is harvested, no washing, artificial drying or addition of anti-caking agents are all...

  20. The Robin Hood method - A novel numerical method for electrostatic problems based on a non-local charge transfer

    International Nuclear Information System (INIS)

    Lazic, Predrag; Stefancic, Hrvoje; Abraham, Hrvoje

    2006-01-01

    We introduce a novel numerical method, named the Robin Hood method, of solving electrostatic problems. The approach of the method is closest to the boundary element methods, although significant conceptual differences exist with respect to this class of methods. The method achieves equipotentiality of conducting surfaces by iterative non-local charge transfer. For each of the conducting surfaces, non-local charge transfers are performed between surface elements, which differ the most from the targeted equipotentiality of the surface. The method is tested against analytical solutions and its wide range of application is demonstrated. The method has appealing technical characteristics. For the problem with N surface elements, the computational complexity of the method essentially scales with N α , where α < 2, the required computer memory scales with N, while the error of the potential decreases exponentially with the number of iterations for many orders of magnitude of the error, without the presence of the Critical Slowing Down. The Robin Hood method could prove useful in other classical or even quantum problems. Some future development ideas for possible applications outside electrostatics are addressed

  1. Free energy landscape of a minimalist salt bridge model.

    Science.gov (United States)

    Li, Xubin; Lv, Chao; Corbett, Karen M; Zheng, Lianqing; Wu, Dongsheng; Yang, Wei

    2016-01-01

    Salt bridges are essential to protein stability and dynamics. Despite the importance, there has been scarce of detailed discussion on how salt bridge partners interact with each other in distinct solvent exposed environments. In this study, employing a recent generalized orthogonal space tempering (gOST) method, we enabled efficient molecular dynamics simulation of repetitive breaking and reforming of salt bridge structures within a minimalist salt-bridge model, the Asp-Arg dipeptide and thereby were able to map its detailed free energy landscape in aqueous solution. Free energy surface analysis shows that although individually-solvated states are more favorable, salt-bridge states still occupy a noticeable portion of the overall population. Notably, the competing forces, e.g. intercharge attractions that drive the formation of salt bridges and solvation forces that pull the charged groups away from each other, are energetically comparable. As the result, the salt bridge stability is highly tunable by local environments; for instance when local water molecules are perturbed to interact more strongly with each other, the population of the salt-bridge states is likely to increase. Our results reveal the critical role of local solvent structures in modulating salt-bridge partner interactions and imply the importance of water fluctuations on conformational dynamics that involves solvent accessible salt bridge formations. © 2015 The Protein Society.

  2. Submarine Salt Karst Terrains

    Directory of Open Access Journals (Sweden)

    Nico Augustin

    2016-06-01

    Full Text Available Karst terrains that develop in bodies of rock salt (taken as mainly of halite, NaCl are special not only for developing in one of the most soluble of all rocks, but also for developing in one of the weakest rocks. Salt is so weak that many surface-piercing salt diapirs extrude slow fountains of salt that that gravity spread downslope over deserts on land and over sea floors. Salt fountains in the deserts of Iran are usually so dry that they flow at only a few cm/yr but the few rain storms a decade so soak and weaken them that they surge at dm/day for a few days. We illustrate the only case where the rates at which different parts of one of the many tens of subaerial salt karst terrains in Iran flows downslope constrains the rates at which its subaerial salt karst terrains form. Normal seawater is only 10% saturated in NaCl. It should therefore be sufficiently aggressive to erode karst terrains into exposures of salt on the thousands of known submarine salt extrusions that have flowed or are still flowing over the floors of hundreds of submarine basins worldwide. However, we know of no attempt to constrain the processes that form submarine salt karst terrains on any of these of submarine salt extrusions. As on land, many potential submarine karst terrains are cloaked by clastic and pelagic sediments that are often hundreds of m thick. Nevertheless, detailed geophysical and bathymetric surveys have already mapped likely submarine salt karst terrains in at least the Gulf of Mexico, and the Red Sea. New images of these two areas are offered as clear evidence of submarine salt dissolution due to sinking or rising aggressive fluids. We suggest that repeated 3D surveys of distinctive features (± fixed seismic reflectors of such terrains could measure any downslope salt flow and thus offer an exceptional opportunity to constrain the rates at which submarine salt karst terrains develop. Such rates are of interest to all salt tectonicians and the many

  3. Polymeric salt bridges for conducting electric current in microfluidic devices

    Science.gov (United States)

    Shepodd, Timothy J [Livermore, CA; Tichenor, Mark S [San Diego, CA; Artau, Alexander [Humacao, PR

    2009-11-17

    A "cast-in-place" monolithic microporous polymer salt bridge for conducting electrical current in microfluidic devices, and methods for manufacture thereof is disclosed. Polymeric salt bridges are formed in place in capillaries or microchannels. Formulations are prepared with monomer, suitable cross-linkers, solvent, and a thermal or radiation responsive initiator. The formulation is placed in a desired location and then suitable radiation such as UV light is used to polymerize the salt bridge within a desired structural location. Embodiments are provided wherein the polymeric salt bridges have sufficient porosity to allow ionic migration without bulk flow of solvents therethrough. The salt bridges form barriers that seal against fluid pressures in excess of 5000 pounds per square inch. The salt bridges can be formulated for carriage of suitable amperage at a desired voltage, and thus microfluidic devices using such salt bridges can be specifically constructed to meet selected analytical requirements.

  4. Preparation of pyrolytic carbon coating on graphite for inhibiting liquid fluoride salt and Xe{sup 135} penetration for molten salt breeder reactor

    Energy Technology Data Exchange (ETDEWEB)

    Song, Jinliang [Key Laboratory of Nuclear Radiation and Nuclear Energy Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Zhao, Yanling, E-mail: jlsong1982@yeah.net [School of Materials Science and Engineering, University of Jinan, Jinan 250022 (China); He, Xiujie; Zhang, Baoliang [Key Laboratory of Nuclear Radiation and Nuclear Energy Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Xu, Li [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); He, Zhoutong; Zhang, DongSheng; Gao, Lina; Xia, Huihao; Zhou, Xingtai; Huai, Ping [Key Laboratory of Nuclear Radiation and Nuclear Energy Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Bai, Shuo [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China)

    2015-01-15

    Highlights: • Rough laminar pyrolytic carbon coating (RLPyC) is prepared by a fixed-bed method. • The salt-infiltration into IG-110 is 13.5%, less than 0.01% of RLPyC under 1.5 atm. • The helium diffusion coefficient of RLPyC coated graphite is 2.16 × 10{sup −8} cm{sup 2}/s. • The coated graphite can inhibit the liquid fluoride salt and Xe{sup 135} penetration. - Abstract: A fixed-bed deposition method was used to prepare rough laminar pyrolytic carbon coating (RLPyC) on graphite for inhibiting liquid fluoride salt and Xe{sup 135} penetration during use in molten salt breeder reactor. The RLPyC coating possessed a graphitization degree of 44% and had good contact with graphite substrate. A high-pressure reactor was constructed to evaluate the molten salt infiltration in the isostatic graphite (IG-110, TOYO TANSO CO., LTD.) and RLPyC coated graphite under 1.01, 1.52, 3.04, 5.07 and 10.13 × 10{sup 5} Pa for 12 h. Mercury injection and molten-salt infiltration experiments indicated the porosity and the salt-infiltration amount of 18.4% and 13.5 wt% under 1.52 × 10{sup 5} Pa of IG-110, which was much less than 1.2% and 0.06 wt% under 10.13 × 10{sup 5} Pa of the RLPyC, respectively. A vacuum device was constructed to evaluate the Xe{sup 135} penetration in the graphite. The helium diffusion coefficient of RLPyC coated graphite was 2.16 × 10{sup −12} m{sup 2}/s, much less than 1.21 × 10{sup −6} m{sup 2}/s of the graphite. Thermal cycle experiment indicated the coatings possessed excellent thermal stability. The coated graphite could effectively inhibit the liquid fluoride salt and Xe{sup 135} penetration.

  5. Optimal Selection Method of Process Patents for Technology Transfer Using Fuzzy Linguistic Computing

    Directory of Open Access Journals (Sweden)

    Gangfeng Wang

    2014-01-01

    Full Text Available Under the open innovation paradigm, technology transfer of process patents is one of the most important mechanisms for manufacturing companies to implement process innovation and enhance the competitive edge. To achieve promising technology transfers, we need to evaluate the feasibility of process patents and optimally select the most appropriate patent according to the actual manufacturing situation. Hence, this paper proposes an optimal selection method of process patents using multiple criteria decision-making and 2-tuple fuzzy linguistic computing to avoid information loss during the processes of evaluation integration. An evaluation index system for technology transfer feasibility of process patents is designed initially. Then, fuzzy linguistic computing approach is applied to aggregate the evaluations of criteria weights for each criterion and corresponding subcriteria. Furthermore, performance ratings for subcriteria and fuzzy aggregated ratings of criteria are calculated. Thus, we obtain the overall technology transfer feasibility of patent alternatives. Finally, a case study of aeroengine turbine manufacturing is presented to demonstrate the applicability of the proposed method.

  6. A direct metal transfer method for cross-bar type polymer non-volatile memory applications

    International Nuclear Information System (INIS)

    Kim, Tae-Wook; Lee, Kyeongmi; Oh, Seung-Hwan; Wang, Gunuk; Kim, Dong-Yu; Jung, Gun-Young; Lee, Takhee

    2008-01-01

    Polymer non-volatile memory devices in 8 x 8 array cross-bar architecture were fabricated by a non-aqueous direct metal transfer (DMT) method using a two-step thermal treatment. Top electrodes with a linewidth of 2 μm were transferred onto the polymer layer by the DMT method. The switching behaviour of memory devices fabricated by the DMT method was very similar to that of devices fabricated by the conventional shadow mask method. The devices fabricated using the DMT method showed three orders of magnitude of on/off ratio with stable resistance switching, demonstrating that the DMT method can be a simple process to fabricate organic memory array devices

  7. Catalytic Gasification of Coal using Eutectic Salt Mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Atul Sheth; Pradeep Agrawal; Yaw D. Yeboah

    1998-12-04

    The objectives of this study are to: identify appropriate eutectic salt mixture catalysts for coal gasification; assess agglomeration tendency of catalyzed coal; evaluate various catalyst impregnation techniques to improve initial catalyst dispersion; evaluate effects of major process variables (such as temperature, system pressure, etc.) on coal gasification; evaluate the recovery, regeneration and recycle of the spent catalysts; and conduct an analysis and modeling of the gasification process to provide better understanding of the fundamental mechanisms and kinetics of the process. A review of the collected literature was carried out. The catalysts which have been used for gasification can be roughly classified under the following five groups: alkali metal salts; alkaline earth metal oxides and salts; mineral substances or ash in coal; transition metals and their oxides and salts; and eutectic salt mixtures. Studies involving the use of gasification catalysts have been conducted. However, most of the studies focused on the application of individual catalysts. Only two publications have reported the study of gasification of coal char in CO2 and steam catalyzed by eutectic salt mixture catalysts. By using the eutectic mixtures of salts that show good activity as individual compounds, the gasification temperature can be reduced possibly with still better activity and gasification rates due to improved dispersion of the molten catalyst on the coal particles. For similar metal/carbon atomic ratios, eutectic catalysts were found to be consistently more active than their respective single salts. But the exact roles that the eutectic salt mixtures play in these are not well understood and details of the mechanisms remain unclear. The effects of the surface property of coals and the application methods of eutectic salt mixture catalysts with coal chars on the reactivity of gasification will be studied. Based on our preliminary evaluation of the literature, a ternary

  8. Electrodialysis-based separation process for salt recovery and recycling from waste water

    Science.gov (United States)

    Tsai, Shih-Perng

    1997-01-01

    A method for recovering salt from a process stream containing organic contaminants is provided, comprising directing the waste stream to a desalting electrodialysis unit so as to create a concentrated and purified salt permeate and an organic contaminants containing stream, and contacting said concentrated salt permeate to a water-splitting electrodialysis unit so as to convert the salt to its corresponding base and acid.

  9. Adaptation of the delta-m and δ-fit truncation methods to vector radiative transfer: Effect of truncation on radiative transfer accuracy

    International Nuclear Information System (INIS)

    Sanghavi, Suniti; Stephens, Graeme

    2015-01-01

    In the presence of aerosol and/or clouds, the use of appropriate truncation methods becomes indispensable for accurate but cost-efficient radiative transfer computations. Truncation methods allow the reduction of the large number (usually several hundreds) of Fourier components associated with particulate scattering functions to a more manageable number, thereby making it possible to carry out radiative transfer computations with a modest number of streams. While several truncation methods have been discussed for scalar radiative transfer, few rigorous studies have been made of truncation methods for the vector case. Here, we formally derive the vector form of Wiscombe's delta-m truncation method. Two main sources of error associated with delta-m truncation are identified as the delta-separation error (DSE) and the phase-truncation error (PTE). The view angles most affected by truncation error occur in the vicinity of the direction of exact backscatter. This view geometry occurs commonly in satellite based remote sensing applications, and is hence of considerable importance. In order to deal with these errors, we adapt the δ-fit approach of Hu et al. (2000) [17] to vector radiative transfer. The resulting δBGE-fit is compared with the vectorized delta-m method. For truncation at l=25 of an original phase matrix consisting of over 300 Fourier components, the use of the δBGE-fit minimizes the error due to truncation at these view angles, while practically eliminating error at other angles. We also show how truncation errors have a distorting effect on hyperspectral absorption line shapes. The choice of the δBGE-fit method over delta-m truncation minimizes errors in absorption line depths, thus affording greater accuracy for sensitive retrievals such as those of XCO 2 from OCO-2 or GOSAT measurements. - Highlights: • Derives vector form for delta-m truncation method. • Adapts δ-fit truncation approach to vector RTE as δBGE-fit. • Compares truncation

  10. GAUSS-SEIDEL AND SUCCESSIVE OVERRELAXATION METHODS FOR RADIATIVE TRANSFER WITH PARTIAL FREQUENCY REDISTRIBUTION

    International Nuclear Information System (INIS)

    Sampoorna, M.; Bueno, J. Trujillo

    2010-01-01

    The linearly polarized solar limb spectrum that is produced by scattering processes contains a wealth of information on the physical conditions and magnetic fields of the solar outer atmosphere, but the modeling of many of its strongest spectral lines requires solving an involved non-local thermodynamic equilibrium radiative transfer problem accounting for partial redistribution (PRD) effects. Fast radiative transfer methods for the numerical solution of PRD problems are also needed for a proper treatment of hydrogen lines when aiming at realistic time-dependent magnetohydrodynamic simulations of the solar chromosphere. Here we show how the two-level atom PRD problem with and without polarization can be solved accurately and efficiently via the application of highly convergent iterative schemes based on the Gauss-Seidel and successive overrelaxation (SOR) radiative transfer methods that had been previously developed for the complete redistribution case. Of particular interest is the Symmetric SOR method, which allows us to reach the fully converged solution with an order of magnitude of improvement in the total computational time with respect to the Jacobi-based local accelerated lambda iteration method.

  11. Gauss-Seidel and Successive Overrelaxation Methods for Radiative Transfer with Partial Frequency Redistribution

    Science.gov (United States)

    Sampoorna, M.; Trujillo Bueno, J.

    2010-04-01

    The linearly polarized solar limb spectrum that is produced by scattering processes contains a wealth of information on the physical conditions and magnetic fields of the solar outer atmosphere, but the modeling of many of its strongest spectral lines requires solving an involved non-local thermodynamic equilibrium radiative transfer problem accounting for partial redistribution (PRD) effects. Fast radiative transfer methods for the numerical solution of PRD problems are also needed for a proper treatment of hydrogen lines when aiming at realistic time-dependent magnetohydrodynamic simulations of the solar chromosphere. Here we show how the two-level atom PRD problem with and without polarization can be solved accurately and efficiently via the application of highly convergent iterative schemes based on the Gauss-Seidel and successive overrelaxation (SOR) radiative transfer methods that had been previously developed for the complete redistribution case. Of particular interest is the Symmetric SOR method, which allows us to reach the fully converged solution with an order of magnitude of improvement in the total computational time with respect to the Jacobi-based local accelerated lambda iteration method.

  12. Prediction of moisture transfer parameters for convective drying of shrimp at different pretreatments

    Directory of Open Access Journals (Sweden)

    Marcus Vinicius da COSTA

    2018-04-01

    Full Text Available Abstract By the analytical model proposed by Dincer and Dost, the mass transfer parameters (moisture transfer coefficient and moisture diffusivity of shrimp samples were determined. Three sets of drying experiments were performed with three samples of shrimp: without boiling (WB, boiled in salt solution (SB and boiled in salt solution and subjected to liquid smoking process (SBS. The experiments were performed under controlled conditions of drying air at temperature of 60°C and velocity of 1.5 m/s. Experimental dimensionless moisture content data were used to calculate the drying coefficients and lag factors, which were then incorporated into the analytical model for slab and cylinder shapes. The results showed an adequate fit between the experimental data and the values predicted from the correlation. The boiling is the most recommended pretreatment, because provided a shorter drying time, with high values of moisture transfer coefficient and moisture diffusivity.

  13. Analysis and hazard evaluation of heat-transfer fluids for the direct contact cooling system

    International Nuclear Information System (INIS)

    Hong, Joo Hi; Lee, Yeon Hee; Shin, You Hwan; Karng, Sarng Woo; Kim, Seo Young; Kim, Young Gil

    2006-01-01

    This paper discusses several low-temperature heat-transfer fluids, including water-based inorganic salt, organic salt, alcohol/glycol mixtures, silicones, and halogenated hydrocarbons in order to choose the best heat-transfer fluid for the newly designed direct contact refrigeration system. So, it contains a survey on commercial products such as propylene glycol and potassium formate as newly used in super market and food processing refrigeration. The stability of commercial fluids at the working temperature of -20 .deg. C was monitored as a function of time up to two months. And organic and inorganic compositions of candidate fluids were obtained by analytical instruments such as ES, XRF, AAS, ICP-AES, GC, and GC-MS. Analysis results indicate that commercial propylene glycol is very efficient and safe heat transfer fluids for the direct cooling system with liquid phase

  14. Actinide removal from molten salts by chemical oxidation and salt distillation

    Energy Technology Data Exchange (ETDEWEB)

    McNeese, J.A.; Garcia, E.; Dole, V.R. [Los Alamos National Laboratory, NM (United States)] [and others

    1995-10-01

    Actinide removal from molten salts can be accomplished by a two step process where the actinide is first oxidized to the oxide using a chemical oxidant such as calcium carbonate or sodium carbonate. After the actinide is precipitated as an oxide the molten salt is distilled away from the actinide oxides leaving a oxide powder heel and an actinide free distilled salt that can be recycled back into the processing stream. This paper discusses the chemistry of the oxidation process and the physical conditions required to accomplish a salt distillation. Possible application of an analogous process sequence for a proposed accelerator driven transmutation molten salt process is also discussed.

  15. Actinide removal from molten salts by chemical oxidation and salt distillation

    International Nuclear Information System (INIS)

    McNeese, James A.; Garcia, Eduardo; Dole, Vonda R.; Griego, Walter J.

    1995-01-01

    Actinide removal from molten salts can be accomplished by a two step process where the actinide is first oxidized to the oxide using a chemical oxidant such as calcium carbonate or sodium carbonate. After the actinide is precipitated as an oxide the molten salt is distilled away from the actinide oxides leaving a oxide powder heel and an actinide free distilled salt that can be recycled back into the processing stream. This paper discusses the chemistry of the oxidation process and the physical conditions required to accomplish a salt distillation. Possible application of an analogous process sequence for a proposed accelerator driven transmutation molten salt process is also discussed

  16. Salt consumption and the effect of salt on mineral metabolism in horses.

    Science.gov (United States)

    Schryver, H F; Parker, M T; Daniluk, P D; Pagan, K I; Williams, J; Soderholm, L V; Hintz, H F

    1987-04-01

    The voluntary salt consumption of mature unexercised horses was measured weekly for up to 45 weeks. Voluntary intake among horses was quite variable ranging from 19 to 143 g of salt per day and was inversely related to total salt intake (salt in feeds plus voluntary intake). Mean daily voluntary salt consumption was 53 g. Season of the year did not influence voluntary intake. In preference tests which evaluated every two choice combination of 0.2% and 4% NaCl in test diets fed daily for four days, ponies generally preferred diets containing the lower amount of salt. In similar preference studies which used NaHCO3 as a sodium source, ponies always preferred the diet containing the lower level of NaHCO3. Metabolism studies employing diets containing 1, 3 or 5% NaCl showed that urinary excretion was the major excretory pathway for sodium and chloride. Fecal excretion, intestinal absorption and retention of sodium were not affected by level of salt intake. Urinary calcium excretion was unaffected by salt intake but calcium and phosphorus absorption and retention were enhanced when ponies were fed diets containing 3 or 5% sodium chloride. Magnesium and copper metabolism were unaffected by salt intake. Horses voluntarily consume relatively large amounts of sodium chloride but it is likely that not all voluntary consumption is related to the salt requirement of the horse. Habit and taste preference could also be involved. Salt consumption at the levels used in these studies does not appear to be detrimental to the metabolism of other minerals in the horse.

  17. Quantitative mineral salt evaluation in the calcaneous bone using computed tomography, 125I-photon absorption and chemical analysis to compare the value of the individual methods

    International Nuclear Information System (INIS)

    Hitzler, H.J.

    1983-01-01

    It was the aim of the study described here to verify the accuracy of two different methods for the quantitative evaluation of mineral salts, which were the 125I-photon absorption technique on the one hand and wholebody CT on the other hand. For this purpose, post-mortem examinations of 31 calcaneous bones were carried out to evaluate their individual mineral salt contents in vitro using either of the above-mentioned methods. The results obtained were subsequently contrasted with calcium concentrations determined by chemical analysis. A comparison of the individual mineral salt evaluations with the results from calcium analyses pointed to a highly significant correlation (p=0.001) for both methods under investigation. The same held for the correlation of findings from CT and the 125I-hydroxylapatite technique, where the level of significance was also p=0.001. The above statements must, however, be modified in as much as the mineral salt values measured by CT were consistently lower than those obtained on the basis of 125I-photon absorption. These deviations are chiefly attributable to the fact that the values provided by CT are more susceptible to influences from the fat contained in the bones. In 125I-photon absorption a special formula may be derived to allow for the bias occurring here, provided that the composition of the bone is known. To summarise, the relative advantages and drawbacks of CT and 125I-photon absorption are carefully balanced. Mineral salt evaluations by CT permit incipient losses to be ascertained even in the trunk. The 125I-photon absorption technique would appear to be the obvious method for any kind of follow-up examination in the peripheral skeleton, as it is easily reproducible and radiation exposure can be kept to minimum. (TRV) [de

  18. Salting our landscape: An integrated catchment model using readily accessible data to assess emerging road salt contamination to streams

    International Nuclear Information System (INIS)

    Jin Li; Whitehead, Paul; Siegel, Donald I.; Findlay, Stuart

    2011-01-01

    A new integrated catchment model for salinity has been developed to assess the transport of road salt from upland areas in watersheds to streams using readily accessible landscape, hydrologic, and meteorological data together with reported salt applications. We used Fishkill Creek (NY) as a representative watershed to test the model. Results showed good agreement between modeled and measured stream water chloride concentrations. These results suggest that a dominant mode of catchment simulation that does not entail complex deterministic modeling is an appropriate method to model salinization and to assess effects of future applications of road salt to streams. We heuristically increased and decreased salt applications by 100% and results showed that stream chloride concentrations increased by 13% and decreased by 7%, respectively. The model suggests that future management of salt application can reduce environmental concentrations, albeit over some time. - Highlights: → A new Integrated Catchment Model (INCA-Cl) is developed to simulate salinity. → Road salt application is important in controlling stream chloride concentration. → INCA-Cl can be used to manage and forecast the input and transport of chloride to the rivers. - A newly developed integrated catchment model for salinity can be used to manage and forecast the inputs and transport of chloride to streams.

  19. Salting our landscape: An integrated catchment model using readily accessible data to assess emerging road salt contamination to streams

    Energy Technology Data Exchange (ETDEWEB)

    Jin Li, E-mail: li.jin@ouce.ox.ac.uk [Earth Sciences Department, Syracuse University, Syracuse, NY 13210 (United States); School of Geography and the Environment, University of Oxford, Oxford, OX1 3QY (United Kingdom); Whitehead, Paul [School of Geography and the Environment, University of Oxford, Oxford, OX1 3QY (United Kingdom); Siegel, Donald I. [Earth Sciences Department, Syracuse University, Syracuse, NY 13210 (United States); Findlay, Stuart [Cary Institute of Ecosystem Studies, 2801 Sharon Turnpike, Millbrook, NY 12545 (United States)

    2011-05-15

    A new integrated catchment model for salinity has been developed to assess the transport of road salt from upland areas in watersheds to streams using readily accessible landscape, hydrologic, and meteorological data together with reported salt applications. We used Fishkill Creek (NY) as a representative watershed to test the model. Results showed good agreement between modeled and measured stream water chloride concentrations. These results suggest that a dominant mode of catchment simulation that does not entail complex deterministic modeling is an appropriate method to model salinization and to assess effects of future applications of road salt to streams. We heuristically increased and decreased salt applications by 100% and results showed that stream chloride concentrations increased by 13% and decreased by 7%, respectively. The model suggests that future management of salt application can reduce environmental concentrations, albeit over some time. - Highlights: > A new Integrated Catchment Model (INCA-Cl) is developed to simulate salinity. > Road salt application is important in controlling stream chloride concentration. > INCA-Cl can be used to manage and forecast the input and transport of chloride to the rivers. - A newly developed integrated catchment model for salinity can be used to manage and forecast the inputs and transport of chloride to streams.

  20. Natural element method for radiative heat transfer in a semitransparent medium with irregular geometries

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yong [School of Energy Science and Engineering, Harbin Institute of Technology, 92 West Dazhi Street, Harbin 150001 (China); Yi, Hong-Liang, E-mail: yihongliang@hit.edu.cn [School of Energy Science and Engineering, Harbin Institute of Technology, 92 West Dazhi Street, Harbin 150001 (China); Tan, He-Ping, E-mail: tanheping@hit.edu.cn [School of Energy Science and Engineering, Harbin Institute of Technology, 92 West Dazhi Street, Harbin 150001 (China)

    2013-05-15

    This paper develops a numerical solution to the radiative heat transfer problem coupled with conduction in an absorbing, emitting and isotropically scattering medium with the irregular geometries using the natural element method (NEM). The walls of the enclosures, having temperature and mixed boundary conditions, are considered to be opaque, diffuse as well as gray. The NEM as a meshless method is a new numerical scheme in the field of computational mechanics. Different from most of other meshless methods such as element-free Galerkin method or those based on radial basis functions, the shape functions used in NEM are constructed by the natural neighbor interpolations, which are strictly interpolant and the essential boundary conditions can be imposed directly. The natural element solutions in dealing with the coupled heat transfer problem for the mixed boundary conditions have been validated by comparison with those from Monte Carlo method (MCM) generated by the authors. For the validation of the NEM solution to radiative heat transfer in the semicircular medium with an inner circle, the results by NEM have been compared with those reported in the literatures. For pure radiative transfer, the upwind scheme is employed to overcome the oscillatory behavior of the solutions in some conditions. The steady state and transient heat transfer problem combined with radiation and conduction in the semicircular enclosure with an inner circle are studied. Effects of various parameters such as the extinction coefficient, the scattering albedo, the conduction–radiation parameter and the boundary emissivity are analyzed on the radiative and conductive heat fluxes and transient temperature distributions.