WorldWideScience

Sample records for salt mixture heat

  1. Heat Transfer and Latent Heat Storage in Inorganic Molten Salts for Concentrating Solar Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Mathur, Anoop [Terrafore Inc.

    2013-08-14

    A key technological issue facing the success of future Concentrating Solar Thermal Power (CSP) plants is creating an economical Thermal Energy Storage (TES) system. Current TES systems use either sensible heat in fluids such as oil, or molten salts, or use thermal stratification in a dual-media consisting of a solid and a heat-transfer fluid. However, utilizing the heat of fusion in inorganic molten salt mixtures in addition to sensible heat , as in a Phase change material (PCM)-based TES, can significantly increase the energy density of storage requiring less salt and smaller containers. A major issue that is preventing the commercial use of PCM-based TES is that it is difficult to discharge the latent heat stored in the PCM melt. This is because when heat is extracted, the melt solidifies onto the heat exchanger surface decreasing the heat transfer. Even a few millimeters of thickness of solid material on heat transfer surface results in a large drop in heat transfer due to the low thermal conductivity of solid PCM. Thus, to maintain the desired heat rate, the heat exchange area must be large which increases cost. This project demonstrated that the heat transfer coefficient can be increase ten-fold by using forced convection by pumping a hyper-eutectic salt mixture over specially coated heat exchanger tubes. However,only 15% of the latent heat is used against a goal of 40% resulting in a projected cost savings of only 17% against a goal of 30%. Based on the failure mode effect analysis and experience with pumping salt at near freezing point significant care must be used during operation which can increase the operating costs. Therefore, we conclude the savings are marginal to justify using this concept for PCM-TES over a two-tank TES. The report documents the specialty coatings, the composition and morphology of hypereutectic salt mixtures and the results from the experiment conducted with the active heat exchanger along with the lessons learnt during

  2. Effects of heating on salt-occluded zeolite

    International Nuclear Information System (INIS)

    Lewis, M.A.; Hash, M.C.; Pereira, C.; Ackerman, J.P.

    1996-01-01

    The electrometallurgical treatment of spent nuclear fuel generates a waste stream of fission products in the electrolyte, LiCl-KCl eutectic salt. Argonne National Laboratory is developing a mineral waste form for this waste stream. The waste form consists of a composite formed by hot pressing salt-occluded zeolite and a glass binder. Pressing conditions must be judiciously chosen. For a given pressure, increasing temperatures and hold times give denser products but the zeolite is frequently converted to sodalite. Reducing the temperature or hold time leads to a porous zeolite composite. Therefore, conditions that affect the thermal stability of salt-occluded zeolite both with and without glass are being investigated in an ongoing study. The parameters varied in this stage of the work were heating time, temperature, salt loading, and glass content. The heat-treated samples were examined primarily by X-ray diffraction. Large variations were found in the rate at which salt-occluded zeolite converted to other phases such as nepheline, salt, and sodalite. The products depended on the initial salt loading. Heating times required for these transitions depended on the procedure and temperature used to prepare the salt-occluded zeolite. Mixtures of glass and zeolite reacted much faster than the pure salt-occluded zeolite and were almost always converted to sodalite

  3. Catalytic Gasification of Coal using Eutectic Salt Mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Atul Sheth; Pradeep Agrawal; Yaw D. Yeboah

    1998-12-04

    The objectives of this study are to: identify appropriate eutectic salt mixture catalysts for coal gasification; assess agglomeration tendency of catalyzed coal; evaluate various catalyst impregnation techniques to improve initial catalyst dispersion; evaluate effects of major process variables (such as temperature, system pressure, etc.) on coal gasification; evaluate the recovery, regeneration and recycle of the spent catalysts; and conduct an analysis and modeling of the gasification process to provide better understanding of the fundamental mechanisms and kinetics of the process. A review of the collected literature was carried out. The catalysts which have been used for gasification can be roughly classified under the following five groups: alkali metal salts; alkaline earth metal oxides and salts; mineral substances or ash in coal; transition metals and their oxides and salts; and eutectic salt mixtures. Studies involving the use of gasification catalysts have been conducted. However, most of the studies focused on the application of individual catalysts. Only two publications have reported the study of gasification of coal char in CO2 and steam catalyzed by eutectic salt mixture catalysts. By using the eutectic mixtures of salts that show good activity as individual compounds, the gasification temperature can be reduced possibly with still better activity and gasification rates due to improved dispersion of the molten catalyst on the coal particles. For similar metal/carbon atomic ratios, eutectic catalysts were found to be consistently more active than their respective single salts. But the exact roles that the eutectic salt mixtures play in these are not well understood and details of the mechanisms remain unclear. The effects of the surface property of coals and the application methods of eutectic salt mixture catalysts with coal chars on the reactivity of gasification will be studied. Based on our preliminary evaluation of the literature, a ternary

  4. Enhanced specific heat capacity of molten salt-based nanomaterials: Effects of nanoparticle dispersion and solvent material

    International Nuclear Information System (INIS)

    Jo, Byeongnam; Banerjee, Debjyoti

    2014-01-01

    This study investigated the effect of nanoparticle dispersion on the specific heat capacity for carbonate salt mixtures doped with graphite nanoparticles. The effect of the solvent material was also examined. Binary carbonate salt mixtures consisting of lithium carbonate and potassium carbonate were used as the base material for the graphite nanomaterial. The different dispersion uniformity of the nanoparticles was created by employing two distinct synthesis protocols for the nanomaterial. Different scanning calorimetry was employed to measure the specific heat capacity in both solid and liquid phases. The results showed that doping the molten salt mixture with the graphite nanoparticles significantly raised the specific heat capacity, even in minute concentrations of graphite nanoparticles. Moreover, greater enhancement in the specific heat capacity was observed from the nanomaterial samples with more homogeneous dispersion of the nanoparticles. A molecular dynamics simulation was also performed for the nanomaterials used in the specific heat capacity measurements to explain the possible mechanisms for the enhanced specific heat capacity, including the compressed layering and the species concentration of liquid solvent molecules

  5. Plasmachemical synthesis of nanopowders of yttria and zirconia from dispersed water-salt-organic mixtures

    Science.gov (United States)

    Novoselov, Ivan; Karengin, Alexander; Shamanin, Igor; Alyukov, Evgeny; Gusev, Alexander

    2018-03-01

    Article represents results on theoretical and experimental research of yttria and zirconia plasmachemical synthesis in air plasma from water-salt-organic mixtures "yttrium nitrate-water-acetone" and "zirconyl nitrate-water-acetone". On the basis of thermotechnical calculations the influence of organic component on lower heat value and adiabatic combustion temperature of water-salt-organic mixtures as well as compositions of mixtures providing their energy-efficient plasma treatment were determined. The calculations found the influence of mass fraction and temperature of air plasma supporting gas on the composition of plasma treatment products. It was determined the conditions providing yttria and zirconia plasmachemical synthesis in air plasma. During experiments it was b eing carried out the plasmachemical synthesis of yttria and zirconia powders in air plasma flow from water -salt-organic mixtures. Analysis of the results for obtained powders (scanning electron microscopy, X-ray diffraction analysis, BET analysis) confirm nanostructure of yttria and zirconia.

  6. Heat transfer investigation of molten salts under laminar and turbulent flow regimes

    International Nuclear Information System (INIS)

    Srivastava, A.K.; Vaidya, A.M.; Maheshwari, N.K.; Vijayan, P.K.

    2014-01-01

    High temperature reactor and solar thermal power plants use Molten Salt as a coolant, as it has low melting point and high boiling point, enabling us to operate the system at low pressure. Molten fluoride salt (eutectic mixture of LiF-NaF-KF) and molten nitrate salt (mixture of NaNO 3 and KNO 3 in 60:40 ratios by weight) are proposed as a candidate coolant for High Temperature Reactors (HTR) and solar power plant respectively. BARC is developing a 600 MWth pebble bed high temperature reactor, cooled by natural circulation of fluoride salt and capable of supplying process heat at 1000℃ to facilitate hydrogen production by splitting water. Beside this, BARC is also developing a 2MWe solar power tower system using molten nitrate salt as a primary coolant and storage medium. In order to design this, it is necessary to study the heat transfer characteristics of various molten salts. Most of the previous studies related to molten salts are based on the experimental works. These experiments essentially measured the physical properties of molten salts and their heat transfer characteristics. Ferri et al. introduced the property definitions for molten salts in the RELAP5 code to perform transient simulations at the ProvaCollettoriSolari (PCS) test facility. In this paper, a CFD analysis has been performed to study the heat transfer characteristics of molten fluoride salt and molten nitrate salt flowing in a circular pipe for various regimes of flow. Simulation is performed with the help of in-house developed CFD code, NAFA, acronym for Numerical Analysis of Flows in Axi-symmetric geometries. Uniform velocity and temperature distribution are set as the inlet boundary condition and pressure is employed at the outlet boundary condition. The inlet temperature for all simulation is set as 300℃ for nitrate salt and 500℃ for fluoride salt and the operating pressure is 1 atm in both the cases

  7. Experimental studies on seasonal heat storage based on stable supercooling of a sodium acetate water mixture

    DEFF Research Database (Denmark)

    Furbo, Simon; Dragsted, Janne; Fan, Jianhua

    2011-01-01

    to transfer heat to and from the module have been tested. Further, a solidification start method, based on a strong cooling of a small part of the salt water mixture in the module by boiling CO2 in a small brass tank in good thermal contact to the outer side of the module wall, has been tested. Tests......Laboratory tests of a 230 l seasonal heat storage module with a sodium acetate water mixture have been carried out. The aim of the tests is to elucidate how best to design a seasonal heat storage based on the salt water mixture, which supercools in a stable way. The module can be a part...... of a seasonal heat storage, that will be suitable for solar heating systems which can fully cover the yearly heat demand of Danish low energy buildings. The tested module has approximately the dimensions 2020 mm x 1285 mm x 80 mm. The module material is steel and the wall thickness is 2 mm. Different methods...

  8. Molten salt thermal energy storage systems: salt selection

    Energy Technology Data Exchange (ETDEWEB)

    Maru, H.C.; Dullea, J.F.; Huang, V.S.

    1976-08-01

    A research program aimed at the development of a molten salt thermal energy storage system commenced in June 1976. This topical report describes Work performed under Task I: Salt Selection is described. A total of 31 inorganic salts and salt mixtures, including 9 alkali and alkaline earth carbonate mixtures, were evaluated for their suitability as heat-of-fusion thermal energy storage materials at temperatures of 850 to 1000/sup 0/F. Thermophysical properties, safety hazards, corrosion, and cost of these salts were compared on a common basis. We concluded that because alkali carbonate mixtures show high thermal conductivity, low volumetric expansion on melting, low corrosivity and good stability, they are attractive as heat-of-fusion storage materials in this temperature range. A 35 wt percent Li/sub 2/CO/sub 3/-65 wt percent K/sub 2/CO/sub 3/ (50 mole percent Li/sub 2/CO/sub 3/-50 mole percent K/sub 2/CO/sub 3/) mixture was selected as a model system for further experimental work. This is a eutectoid mixture having a heat of fusion of 148 Btu/lb (82 cal/g) that forms an equimolar compound, LiKCO/sub 3/. The Li/sub 2/CO/sub 3/-K/sub 2/CO/sub 3/ mixture is intended to serve as a model system to define heat transfer characteristics, potential problems, and to provide ''first-cut'' engineering data required for the prototype system. The cost of a thermal energy storage system containing this mixture cannot be predicted until system characteristics are better defined. However, our comparison of different salts indicated that alkali and alkaline earth chlorides may be more attractive from a salt cost point of view. The long-term corrosion characteristics and the effects of volume change on melting for the chlorides should be investigated to determine their overall suitability as a heat-of-fusion storage medium.

  9. Transport properties of molten-salt reactor fuel mixtures: the case of Na, Li, Be/F and Li, Be, Th/F salts

    International Nuclear Information System (INIS)

    Ignatiev, V.; Merzlyakov, A.; Afonichkin, V.; Khokhlov, V.; Salyulev, A.

    2003-01-01

    In this paper we have compiled transport properties information, available, on two types of FLiBe based salt mixtures (Na,Li,Be/F and Li,Be,Th/F) that are presently of importance in the design of innovative molten-salt burner reactors. Estimated and/or experimental values measured (particularly, from prior US and Russian studies, as well our recent studies) are given for the following properties: viscosity, thermal conductivity, phase transition behaviour, heat capacity, density and thermal expansion. (author)

  10. Transport properties of molten-salt reactor fuel mixtures: the case of Na, Li, Be/F and Li, Be, Th/F salts

    Energy Technology Data Exchange (ETDEWEB)

    Ignatiev, V; Merzlyakov, A [Kurchatov Institute - KI (Russian Federation); Afonichkin, V; Khokhlov, V; Salyulev, A [Institute of High Temperature Electrochemisty (IHTE), RF Yuri Golovatov, Konstantin Grebenkine, Vladimir Subbotin Institute of Technical Physics (VNIITF) (Russian Federation)

    2003-07-01

    In this paper we have compiled transport properties information, available, on two types of FLiBe based salt mixtures (Na,Li,Be/F and Li,Be,Th/F) that are presently of importance in the design of innovative molten-salt burner reactors. Estimated and/or experimental values measured (particularly, from prior US and Russian studies, as well our recent studies) are given for the following properties: viscosity, thermal conductivity, phase transition behaviour, heat capacity, density and thermal expansion. (author)

  11. Hofmeister effect of salt mixtures on thermo-responsive poly(propylene oxide)

    DEFF Research Database (Denmark)

    Moghaddam, Saeed Zajforoushan; Thormann, Esben

    2015-01-01

    of aqueous solutions of poly(propylene oxide) is affected by mixtures of ions with different location in the Hofmeister series. Our results show that the Hofmeister effects of pure salt species are not always linearly additive and that the relative effect of some ions can be reversed depending...... on the composition of the salt mixture as well as by the absolute and relative concentration of the different species. We suggest that these results can lead to a better understanding of the potential role of the Hofmeister effect in regulation of biological processes, which does always take place in salt mixtures...... rather than solutions containing just single salt species....

  12. Study of the thermal and mechanical sensitivity of bitumen/oxygen salt mixtures

    International Nuclear Information System (INIS)

    Backof, E.; Diepold, W.

    1975-07-01

    The safe handling characteristics of radioactive wastes containing nitrate salts to be fixed in bitumen for ultimate storage in salt mines according to a process developed at the Karlsruhe Nuclear Research Center have been examined with respect to their combustibility and shock sensitivity in tests of inactive bitumen/salt mixtures. Samples containing 40% bitumen and 60% nitrates of alkali, alkaline earth, and heavy metals, organic acids and rare earths were used to determine the thermal sensitivity (ignition temperature, duration of burning, heating under contained conditions), the mechanical sensitivity (shock sensitivity) and, in order to simulate major shock stresses, the sensitivity against detonation stresses. A few basic experiments were also performed on some beta-irradiated inactive samples. It appeared that although the addition of nitrates increased the combustibility of bitumen, neither the high thermal nor the detonation stresses resulted in any explosion-type reaction. (orig.) [de

  13. Validation of a CFD model simulating charge and discharge of a small heat storage test module based on a sodium acetate water mixture

    DEFF Research Database (Denmark)

    Dannemand, Mark; Fan, Jianhua; Furbo, Simon

    2014-01-01

    Experimental and theoretical investigations are carried out to study the heating of a 302 x 302 x 55 mm test box of steel containing a sodium acetate water mixture. A thermostatic bath has been set up to control the charging and discharging of the steel box. The charging and discharging has been...... for a Computational Fluid Dynamics (CFD) model. The CFD calculated temperatures are compared to measured temperatures internally in the box to validate the CFD model. Four cases are investigated; heating the test module with the sodium acetate water mixture in solid phase from ambient temperature to 52˚C; heating...... the module starting with the salt water mixture in liquid phase from 72˚C to 95˚C; heating up the module from ambient temperature with the salt water mixture in solid phase, going through melting, ending in liquid phase at 78˚C/82˚C; and discharging the test module from liquid phase at 82˚C, going through...

  14. A binary mixture operated heat pump

    International Nuclear Information System (INIS)

    Hihara, E.; Saito, T.

    1991-01-01

    This paper evaluates the performance of possible binary mixtures as working fluids in high- temperature heat pump applications. The binary mixtures, which are potential alternatives of fully halogenated hydrocarbons, include HCFC142b/HCFC22, HFC152a/HCFC22, HFC134a/HCFC22. The performance of the mixtures is estimated by a thermodynamic model and a practical model in which the heat transfer is considered in heat exchangers. One of the advantages of binary mixtures is a higher coefficient of performance, which is caused by the small temperature difference between the heat-sink/-source fluid and the refrigerant. The mixture HCFC142b/HCFC22 is promising from the stand point of thermodynamic performance

  15. Low-melting point inorganic nitrate salt heat transfer fluid

    Science.gov (United States)

    Bradshaw, Robert W [Livermore, CA; Brosseau, Douglas A [Albuquerque, NM

    2009-09-15

    A low-melting point, heat transfer fluid made of a mixture of four inorganic nitrate salts: 9-18 wt % NaNO.sub.3, 40-52 wt % KNO.sub.3, 13-21 wt % LiNO.sub.3, and 20-27 wt % Ca(NO.sub.3).sub.2. These compositions can have liquidus temperatures less than 100 C; thermal stability limits greater than 500 C; and viscosity in the range of 5-6 cP at 300 C; and 2-3 cP at 400 C.

  16. A Design of He-Molten Salt Intermediate Heat Exchanger for VHTR

    International Nuclear Information System (INIS)

    Jeong, Hui Seong; Bang, Kwang Hyun

    2010-01-01

    The Very High Temperature Reactor (VHTR), one of the most challenging next generation nuclear reactors, has recently drawn an international interest due to its higher efficiency and the operating conditions adequate for supplying process heat to the hydrogen production facilities. To make the design of VHTR complete and plausible, the designs of the Intermediate Heat Transport Loop (IHTL) as well as the Intermediate Heat Exchanger (IHX) are known to be one of the difficult engineering tasks due to its high temperature operating condition (up to 950 .deg. C). A type of compact heat exchangers such as printed circuit heat exchanger (PCHE) has been recommended for the IHX in the technical and economical respects. Selection of the heat transporting fluid for the intermediate heat transport loop is important in consideration of safety and economical aspects. Although helium is currently the primary interest for the intermediate loop fluid, several safety concerns of gas fluids have been expressed. If the pressure boundary of the intermediate loop fails, the blowdown of the gas may overcool the reactor core and then the heat sink is lost after the blowdown. Also the large inventory of gas in the intermediate loop may leak into the primary side. There is also a recommendation that the nuclear plant and the hydrogen production plant be separated by a certain distance to ensure the safety of the nuclear plant in case of accidental heavy gas release from the chemical plant. In this circumstance, the pumping power of gas fluid in the intermediate loop will be large enough to degrade the economics of nuclear hydrogen.An alternative candidate for the intermediate loop fluid in consideration of these safety and economical problems of gas fluid can be molten salts. The Flinak molten salt, a eutectic mixture of LiF, NaF and KF (46.5:11.5:42.0 mole %) is considered to be a potential candidate for the heat transporting fluid in the IHTL due to its chemical stability against the

  17. Experimental investigations on prototype heat storage units utilizing stable supercooling of sodium acetate trihydrate mixtures

    DEFF Research Database (Denmark)

    Dannemand, Mark; Dragsted, Janne; Fan, Jianhua

    2016-01-01

    Laboratory tests of two heat storage units based on the principle of stable supercooling of sodium acetate trihydrate (SAT) mixtures were carried out. One unit was filled with 199.5 kg of SAT with 9% extra water to avoid phase separation of the incongruently melting salt hydrate. The other unit...

  18. Experimental results on salt concrete for barrier elements made of salt concrete in a repository for radioactive waste in a salt mine

    International Nuclear Information System (INIS)

    Gutsch, Alex-W.; Preuss, Juergen; Mauke, Ralf

    2012-01-01

    The Bartensleben rock salt mine in Germany was used as a repository for low and intermediate level radioactive waste from 1971 to 1991 and from 1994 to 1998. The repository with an overall volume of about 6 million m 3 has to be closed. Salt concrete is used for the refill of the voids of the repository. The concrete mixtures contain crushed salt instead of natural aggregates as the void filling material should be as similar to the salt rock as possible. Very high requirements regarding low heat development and little or even no cracking during concrete hardening had to be fulfilled even for the barrier elements made from salt concrete which separate the radioactive waste from the environment. Requirements for the salt concrete were set up with regard to the fluidity of the fresh concrete during the hardening process and its durability. In the view of a comprehensive numerical calculations of the temperature development and thermal stresses in the massive salt concrete elements of the backfill of the voids, experimental results for material properties of the salt concrete are presented: mixture of the salt concrete, thermodynamic properties (adiabatic heat release, thermal dilatation, thermal conductivity and heat capacity), mechanical short term properties, creep (under tension, under compression), autogenous shrinkage

  19. Liquid Salt Heat Exchanger Technology for VHTR Based Applications

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Mark; Sridhara, Kumar; Allen, Todd; Peterson, Per

    2012-10-11

    The objective of this research is to evaluate performance of liquid salt fluids for use as a heat carrier for transferring high-temperature process heat from the very high-temperature reactor (VHTR) to chemical process plants. Currently, helium is being considered as the heat transfer fluid; however, the tube size requirements and the power associated with pumping helium may not be economical. Recent work on liquid salts has shown tremendous potential to transport high-temperature heat efficiently at low pressures over long distances. This project has two broad objectives: To investigate the compatibility of Incoloy 617 and coated and uncoated SiC ceramic composite with MgCl2-KCl molten salt to determine component lifetimes and aid in the design of heat exchangers and piping; and, To conduct the necessary research on the development of metallic and ceramic heat exchangers, which are needed for both the helium-to-salt side and salt-to-process side, with the goal of making these heat exchangers technologically viable. The research will consist of three separate tasks. The first task deals with material compatibility issues with liquid salt and the development of techniques for on-line measurement of corrosion products, which can be used to measure material loss in heat exchangers. Researchers will examine static corrosion of candidate materials in specific high-temperature heat transfer salt systems and develop an in situ electrochemical probe to measure metallic species concentrations dissolved in the liquid salt. The second task deals with the design of both the intermediate and process side heat exchanger systems. Researchers will optimize heat exchanger design and study issues related to corrosion, fabrication, and thermal stresses using commercial and in-house codes. The third task focuses integral testing of flowing liquid salts in a heat transfer/materials loop to determine potential issues of using the salts and to capture realistic behavior of the salts in a

  20. Development of salt hydrate eutectics as latent heat storage for air conditioning and cooling

    International Nuclear Information System (INIS)

    Efimova, Anastasia; Pinnau, Sebastian; Mischke, Matthias; Breitkopf, Cornelia; Ruck, Michael; Schmidt, Peer

    2014-01-01

    Graphical abstract: - Highlights: • Inorganic salt hydrates. • Latent heat thermal energy storage. • Thermal behavior of melting and crystallization. • Cycling stability. • Nucleation. - Abstract: Sustainable air conditioning systems require heat reservoirs that operate between 4 and 20 °C. A systematic search for binary and ternary eutectics of inorganic salts and salt hydrates with melting temperatures in this temperature regime and with high enthalpies of fusion has been performed by means of differential scanning calorimetry (DSC). Promising results were obtained for the pseudo-ternary system Zn(NO 3 ) 2 ·6H 2 O, Mn(NO 3 ) 2 ·4H 2 O, and KNO 3 with the melting temperature range 18–21 °C and the enthalpy of fusion of about 110 kJ kg −1 . Suitable nucleating and thickening agents have been found and tested to prevent the mixture from supercooling and phase separation

  1. An Overview of Liquid Fluoride Salt Heat Transport Systems

    Energy Technology Data Exchange (ETDEWEB)

    Holcomb, David Eugene [ORNL; Cetiner, Sacit M [ORNL

    2010-09-01

    Heat transport is central to all thermal-based forms of electricity generation. The ever increasing demand for higher thermal efficiency necessitates power generation cycles transitioning to progressively higher temperatures. Similarly, the desire to provide direct thermal coupling between heat sources and higher temperature chemical processes provides the underlying incentive to move toward higher temperature heat transfer loops. As the system temperature rises, the available materials and technology choices become progressively more limited. Superficially, fluoride salts at {approx}700 C resemble water at room temperature being optically transparent and having similar heat capacity, roughly three times the viscosity, and about twice the density. Fluoride salts are a leading candidate heat-transport material at high temperatures. Fluoride salts have been extensively used in specialized industrial processes for decades, yet they have not entered widespread deployment for general heat transport purposes. This report does not provide an exhaustive screening of potential heat transfer media and other high temperature liquids such as alkali metal carbonate eutectics or chloride salts may have economic or technological advantages. A particular advantage of fluoride salts is that the technology for their use is relatively mature as they were extensively studied during the 1940s-1970s as part of the U.S. Atomic Energy Commission's program to develop molten salt reactors (MSRs). However, the instrumentation, components, and practices for use of fluoride salts are not yet developed sufficiently for commercial implementation. This report provides an overview of the current understanding of the technologies involved in liquid salt heat transport (LSHT) along with providing references to the more detailed primary information resources. Much of the information presented here derives from the earlier MSR program. However, technology has evolved over the intervening years

  2. Development of salt hydrate eutectics as latent heat storage for air conditioning and cooling

    Energy Technology Data Exchange (ETDEWEB)

    Efimova, Anastasia [Brandenburgische Technische Universität (BTU) Cottbus – Senftenberg, Chair of Inorganic Chemistry, Großenhainer Str. 57, 01968 Senftenberg (Germany); Pinnau, Sebastian; Mischke, Matthias; Breitkopf, Cornelia [Technische Universität Dresden, Chair of Technical Thermodynamics, Helmholtzstr. 14, 01069 Dresden (Germany); Ruck, Michael [Technische Universität Dresden, Chair of Inorganic Chemistry, Bergstr. 66, 01062 Dresden (Germany); Schmidt, Peer, E-mail: peer.schmidt@hs-lausitz.de [Brandenburgische Technische Universität (BTU) Cottbus – Senftenberg, Chair of Inorganic Chemistry, Großenhainer Str. 57, 01968 Senftenberg (Germany)

    2014-01-10

    Graphical abstract: - Highlights: • Inorganic salt hydrates. • Latent heat thermal energy storage. • Thermal behavior of melting and crystallization. • Cycling stability. • Nucleation. - Abstract: Sustainable air conditioning systems require heat reservoirs that operate between 4 and 20 °C. A systematic search for binary and ternary eutectics of inorganic salts and salt hydrates with melting temperatures in this temperature regime and with high enthalpies of fusion has been performed by means of differential scanning calorimetry (DSC). Promising results were obtained for the pseudo-ternary system Zn(NO{sub 3}){sub 2}·6H{sub 2}O, Mn(NO{sub 3}){sub 2}·4H{sub 2}O, and KNO{sub 3} with the melting temperature range 18–21 °C and the enthalpy of fusion of about 110 kJ kg{sup −1}. Suitable nucleating and thickening agents have been found and tested to prevent the mixture from supercooling and phase separation.

  3. Molten salt oxidation as a technique for decommissioning: selection of low melting point salt mixtures

    International Nuclear Information System (INIS)

    Lainetti, Paulo E.O.; Garcia, Vitor F.; Benvegnu, Guilherme

    2013-01-01

    During the 70 and 80 years, IPEN built several facilities in pilot scale, destined to the technological domain of the Nuclear Fuel Cycle. In the nineties, radical changes in the Brazilian nuclear policy determined the interruption of the activities and the shut-down of pilot plants. Nowadays, IPEN has been facing the problem of the dismantling and decommissioning of its Nuclear Fuel Cycle old facilities. The facility CELESTE-I of the IPEN is a laboratory where reprocessing studies were accomplished during the decade of 80 and in the beginning of the 90s. The last operations occurred in 92-93. The research activities generated radioactive wastes in the form of organic and aqueous solutions of different compositions and concentrations. For the treatment of these liquid wastes it was proposed a study of waste thermal decomposition based on the molten salt oxidation process.Decomposition tests of different organic wastes have been performed in laboratory equipment developed at IPEN, in the range of temperatures of 900 to 1020 deg C, demonstrating the complete oxidation of the compounds. The reduction of the process temperatures would be of crucial importance. Besides this, the selection of lower melting point salt mixtures would have an important impact in the reduction of equipment costs. Several experiments were performed to determine the most suitable salt mixtures, optimizing costs and melting temperatures as low as possible. This paper describes the main characteristics of the molten salt oxidation process, besides the selection of salt mixtures of binary and ternary compositions, respectively Na 2 CO 3 - NaOH and Na 2 CO 3 - K 2 CO 3 -Li 2 CO 3 . (author)

  4. Molten Chloride Salts for Heat Transfer in Nuclear Systems

    Science.gov (United States)

    Ambrosek, James Wallace

    2011-12-01

    A forced convection loop was designed and constructed to examine the thermal-hydraulic performance of molten KCl-MgCl2 (68-32 at %) salt for use in nuclear co-generation facilities. As part of this research, methods for prediction of the thermo-physical properties of salt mixtures for selection of the coolant salt were studied. In addition, corrosion studies of 10 different alloys were exposed to the KCl-MgCl2 to determine a suitable construction material for the loop. Using experimental data found in literature for unary and binary salt systems, models were found, or developed to extrapolate the available experimental data to unstudied salt systems. These property models were then used to investigate the thermo-physical properties of the LINO3-NaNO3-KNO 3-Ca(NO3), system used in solar energy applications. Using these models, the density, viscosity, adiabatic compressibility, thermal conductivity, heat capacity, and melting temperatures of higher order systems can be approximated. These models may be applied to other molten salt systems. Coupons of 10 different alloys were exposed to the chloride salt for 100 hours at 850°C was undertaken to help determine with which alloy to construct the loop. Of the alloys exposed, Haynes 230 had the least amount of weight loss per area. Nickel and Hastelloy N performed best based on maximum depth of attack. Inconel 625 and 718 had a nearly uniform depletion of Cr from the surface of the sample. All other alloys tested had depletion of Cr along the grain boundaries. The Nb in Inconel 625 and 718 changed the way the Cr is depleted in these alloys. Grain-boundary engineering (GBE) of Incoloy 800H improved the corrosion resistance (weight loss and maximum depth of attack) by nearly 50% as compared to the as-received Incoloy 800H sample. A high temperature pump, thermal flow meter, and pressure differential device was designed, constructed and tested for use in the loop, The heat transfer of the molten chloride salt was found to

  5. Study of acid-base properties in various water-salt and water-organic solvent mixtures

    International Nuclear Information System (INIS)

    Lucas, M.

    1969-01-01

    Acid-base reactions have been studied in water-salt mixtures and water organic solvent-mixtures. It has been possible to find some relations between the displacement of the equilibria and the numerical value of water activity in the mixture. First have been studied some equilibria H + + B ↔ HB + in salt-water mixtures and found a relation between the pK A value, the solubility of the base and water activity. The reaction HO - + H + ↔ H 2 O has been investigated and a relation been found between pK i values, water activity and the molar concentration of the salt in the mixture. This relation is the same for every mixture. Then the same reactions have been studied in organic solvent-water mixtures and a relation found in the first part of the work have been used with success. So it has been possible to explain easily some properties of organic water-mixture as the shape of the curves of the Hammett acidity function Ho. (authors) [fr

  6. In situ production of titanium dioxide nanoparticles in molten salt phase for thermal energy storage and heat-transfer fluid applications

    Energy Technology Data Exchange (ETDEWEB)

    Lasfargues, Mathieu, E-mail: m.lasfargues@outlook.com; Bell, Andrew, E-mail: A.bell@leeds.ac.uk [University of Leeds, School of Chemical and Process Engineering (United Kingdom); Ding, Yulong, E-mail: y.ding@bham.ac.uk [University of Birmingham, School of Chemical Engineering (United Kingdom)

    2016-06-15

    In this study, TiO{sub 2} nanoparticles (average particle size 16 nm) were successfully produced in molten salt phase and were showed to significantly enhance the specific heat capacity of a binary eutectic mixture of sodium and potassium nitrate (60/40) by 5.4 % at 390 °C and 7.5 % at 445 °C for 3.0 wt% of precursors used. The objective of this research was to develop a cost-effective alternate method of production which is potentially scalable, as current techniques utilized are not economically viable for large quantities. Enhancing the specific heat capacity of molten salt would promote more competitive pricing for electricity production by concentrating solar power plant. Here, a simple precursor (TiOSO{sub 4}) was added to a binary eutectic mixture of potassium and sodium nitrate, heated to 450 °C, and cooled to witness the production of nanoparticles.

  7. In situ production of titanium dioxide nanoparticles in molten salt phase for thermal energy storage and heat-transfer fluid applications

    International Nuclear Information System (INIS)

    Lasfargues, Mathieu; Bell, Andrew; Ding, Yulong

    2016-01-01

    In this study, TiO_2 nanoparticles (average particle size 16 nm) were successfully produced in molten salt phase and were showed to significantly enhance the specific heat capacity of a binary eutectic mixture of sodium and potassium nitrate (60/40) by 5.4 % at 390 °C and 7.5 % at 445 °C for 3.0 wt% of precursors used. The objective of this research was to develop a cost-effective alternate method of production which is potentially scalable, as current techniques utilized are not economically viable for large quantities. Enhancing the specific heat capacity of molten salt would promote more competitive pricing for electricity production by concentrating solar power plant. Here, a simple precursor (TiOSO_4) was added to a binary eutectic mixture of potassium and sodium nitrate, heated to 450 °C, and cooled to witness the production of nanoparticles.

  8. A non-ideal model for predicting the effect of dissolved salt on the flash point of solvent mixtures.

    Science.gov (United States)

    Liaw, Horng-Jang; Wang, Tzu-Ai

    2007-03-06

    Flash point is one of the major quantities used to characterize the fire and explosion hazard of liquids. Herein, a liquid with dissolved salt is presented in a salt-distillation process for separating close-boiling or azeotropic systems. The addition of salts to a liquid may reduce fire and explosion hazard. In this study, we have modified a previously proposed model for predicting the flash point of miscible mixtures to extend its application to solvent/salt mixtures. This modified model was verified by comparison with the experimental data for organic solvent/salt and aqueous-organic solvent/salt mixtures to confirm its efficacy in terms of prediction of the flash points of these mixtures. The experimental results confirm marked increases in liquid flash point increment with addition of inorganic salts relative to supplementation with equivalent quantities of water. Based on this evidence, it appears reasonable to suggest potential application for the model in assessment of the fire and explosion hazard for solvent/salt mixtures and, further, that addition of inorganic salts may prove useful for hazard reduction in flammable liquids.

  9. A DFT based equilibrium study of a chemical mixture Tachyhydrite and their lower hydrates for long term heat storage

    NARCIS (Netherlands)

    Pathak, A.D.; Gaastra - Nedea, S.V.; Zondag, H.A.; Rindt, C.C.M.; Smeulders, D.M.J.

    2016-01-01

    Chloride based salt hydrates are promising materials for seasonal heat storage. However, hydrolysis, a side reaction, deteriorates, their cycle stability. To improve the kinetics and durability, we have investigated the optimum operating conditions of a chemical mixture of CaCl2 and MgCl2 hydrates.

  10. Salt disposal of heat-generating nuclear waste

    International Nuclear Information System (INIS)

    Leigh, Christi D.; Hansen, Francis D.

    2011-01-01

    This report summarizes the state of salt repository science, reviews many of the technical issues pertaining to disposal of heat-generating nuclear waste in salt, and proposes several avenues for future science-based activities to further the technical basis for disposal in salt. There are extensive salt formations in the forty-eight contiguous states, and many of them may be worthy of consideration for nuclear waste disposal. The United States has extensive experience in salt repository sciences, including an operating facility for disposal of transuranic wastes. The scientific background for salt disposal including laboratory and field tests at ambient and elevated temperature, principles of salt behavior, potential for fracture damage and its mitigation, seal systems, chemical conditions, advanced modeling capabilities and near-future developments, performance assessment processes, and international collaboration are all discussed. The discussion of salt disposal issues is brought current, including a summary of recent international workshops dedicated to high-level waste disposal in salt. Lessons learned from Sandia National Laboratories' experience on the Waste Isolation Pilot Plant and the Yucca Mountain Project as well as related salt experience with the Strategic Petroleum Reserve are applied in this assessment. Disposal of heat-generating nuclear waste in a suitable salt formation is attractive because the material is essentially impermeable, self-sealing, and thermally conductive. Conditions are chemically beneficial, and a significant experience base exists in understanding this environment. Within the period of institutional control, overburden pressure will seal fractures and provide a repository setting that limits radionuclide movement. A salt repository could potentially achieve total containment, with no releases to the environment in undisturbed scenarios for as long as the region is geologically stable. Much of the experience gained from United

  11. Salt disposal of heat-generating nuclear waste.

    Energy Technology Data Exchange (ETDEWEB)

    Leigh, Christi D. (Sandia National Laboratories, Carlsbad, NM); Hansen, Francis D.

    2011-01-01

    This report summarizes the state of salt repository science, reviews many of the technical issues pertaining to disposal of heat-generating nuclear waste in salt, and proposes several avenues for future science-based activities to further the technical basis for disposal in salt. There are extensive salt formations in the forty-eight contiguous states, and many of them may be worthy of consideration for nuclear waste disposal. The United States has extensive experience in salt repository sciences, including an operating facility for disposal of transuranic wastes. The scientific background for salt disposal including laboratory and field tests at ambient and elevated temperature, principles of salt behavior, potential for fracture damage and its mitigation, seal systems, chemical conditions, advanced modeling capabilities and near-future developments, performance assessment processes, and international collaboration are all discussed. The discussion of salt disposal issues is brought current, including a summary of recent international workshops dedicated to high-level waste disposal in salt. Lessons learned from Sandia National Laboratories' experience on the Waste Isolation Pilot Plant and the Yucca Mountain Project as well as related salt experience with the Strategic Petroleum Reserve are applied in this assessment. Disposal of heat-generating nuclear waste in a suitable salt formation is attractive because the material is essentially impermeable, self-sealing, and thermally conductive. Conditions are chemically beneficial, and a significant experience base exists in understanding this environment. Within the period of institutional control, overburden pressure will seal fractures and provide a repository setting that limits radionuclide movement. A salt repository could potentially achieve total containment, with no releases to the environment in undisturbed scenarios for as long as the region is geologically stable. Much of the experience gained from

  12. Method to synthesize dense crystallized sodalite pellet for immobilizing halide salt radioactive waste

    International Nuclear Information System (INIS)

    Koyama, Tadafumi.

    1994-01-01

    A method is described for immobilizing waste chloride salts containing radionuclides such as cesium and strontium and hazardous materials such as barium. A sodalite intermediate is prepared by mixing appropriate amounts of silica, alumina and sodium hydroxide with respect to sodalite and heating the mixture to form the sodalite intermediate and water. Heating is continued to drive off the water to form a water-free intermediate. The water-free intermediate is mixed with either waste salt or waste salt which has been contacted with zeolite to concentrate the radionuclides and hazardous material. The waste salt-intermediate mixture is then compacted and heated under conditions of heat and pressure to form sodalite with the waste salt, radionuclides and hazardous material trapped within the sodalite cage structure. This provides a final product having excellent leach resistant capabilities

  13. Active heat exchange system development for latent heat thermal energy storage

    Science.gov (United States)

    Lefrois, R. T.; Mathur, A. K.

    1980-01-01

    Five tasks to select, design, fabricate, test and evaluate candidate active heat exchanger modules for future applications to solar and conventional utility power plants were discussed. Alternative mechanizations of active heat exchange concepts were analyzed for use with heat of fusion phase change materials (PCMs) in the temperature range of 250 to 350 C. Twenty-six heat exchange concepts were reviewed, and eight were selected for detailed assessment. Two candidates were selected for small-scale experimentation: a coated tube and shell heat exchanger and a direct contact reflux boiler. A dilute eutectic mixture of sodium nitrate and sodium hydroxide was selected as the PCM from over 50 candidate inorganic salt mixtures. Based on a salt screening process, eight major component salts were selected initially for further evaluation. The most attractive major components in the temperature range of 250 to 350 C appeared to be NaNO3, NaNO2, and NaOH. Sketches of the two active heat exchange concepts selected for test are given.

  14. Chemical implications of heat and radiation damage to rock salt

    International Nuclear Information System (INIS)

    Pederson, L.R.

    1984-11-01

    Chemical changes induced in Palo Duro and Paradox Basin natural rock salts and in synthetic NaCl by heat and gamma radiation were investigated. Heating of unirradiated natural rock salts to 300 0 C resulted in HCl (most prevalent), SO 2 , CO 2 , and H 2 S evolution, and increased the base content of the remaining salt by not more than 10 microequivalents per gram; whereas, heating of synthetic NaCl gave no product. Gamma irradiation produced sodium colloids and neutral chlorine in amounts similar to the results of Levy and coworkers. When the irradiated salts were heated, three reactions were apparent: (1) radiation-induced defects recombined; (2) neutral chlorine was evolved; and (3) HCl, SO 2 , CO 2 , and H 2 S were evolved, similar to results for unirradiated salts. Because reaction (1) appeared to dominate over reaction (2), it is expected that the influence of radiation damage to salt on the near-field chemical environment will be minor. 4 figures, 1 table

  15. Heat transfer performance of a pulsating heat pipe charged with acetone-based mixtures

    Science.gov (United States)

    Wang, Wenqing; Cui, Xiaoyu; Zhu, Yue

    2017-06-01

    Pulsating heat pipes (PHPs) are used as high efficiency heat exchangers, and the selection of working fluids in PHPs has a great impact on the heat transfer performance. This study investigates the thermal resistance characteristics of the PHP charged with acetone-based binary mixtures, where deionized water, methanol and ethanol were added to and mixed with acetone, respectively. The volume mixing ratios were 2:1, 4:1 and 7:1, and the heating power ranged from 10 to 100 W with filling ratios of 45, 55, 62 and 70%. At a low filling ratio (45%), the zeotropic characteristics of the binary mixtures have an influence on the heat transfer performance of the PHP. Adding water, which has a substantially different boiling point compared with that of acetone, can significantly improve the anti-dry-out ability inside the PHP. At a medium filling ratio (55%), the heat transfer performance of the PHP is affected by both phase transition characteristics and physical properties of working fluids. At high heating power, the thermal resistance of the PHP with acetone-water mixture is between that with pure acetone and pure water, whereas the thermal resistance of the PHP with acetone-methanol and acetone-ethanol mixtures at mixing ratios of 2:1 and 4:1 is less than that with the corresponding pure fluids. At high filling ratios (62 and 70%), the heat transfer performance of the PHP is mainly determined by the properties of working fluids that affects the flow resistance. Thus, the PHP with acetone-methanol and acetone-ethanol mixtures that have a lower flow resistance shows better heat transfer performance than that with acetone-water mixture.

  16. The Radiative Heat Transfer Properties of Molten Salts and Their Relevance to the Design of Advanced Reactors

    Science.gov (United States)

    Chaleff, Ethan Solomon

    information. The IRAC design is validated by modeling the experiment in Fluent which shows that the IRAC should be capable of measuring absorption coefficients within 10%. Chapter 4 contains a parallel effort to experimental techniques, whereby information on absorption in salts is pursued using the Density Functional Theory code VASP. Photon-electron interactions are studied in pure salts such as LiF and are shown to be broadly transparent. Transition metal Fluoride salts such as KF-ZrF4 are shown to be broadly opaque. The addition of small amounts of transition metal impurities is studied by insertion of Chromium into the salt mixtures, which causes otherwise transparent salts to exhibit absorption coefficients significant to heat transfer. The spectral absorption coefficient for FLiNaK with Chromium is presented as is the average absorption coefficient as a function of impurity concentration. Chapter 5 discusses experimental efforts undertaken at The Ohio State University. Challenges with the constructed experimental apparatus are discussed and suggestions for future improvement on the technique are included. Finally, Chapter 6 contains broad conclusions pertaining to radiative transfer in advanced reactors.

  17. Latent energy storage with salt and metal mixtures for solar dynamic applications

    Science.gov (United States)

    Crane, R. A.; Konstantinou, K. S.

    1988-01-01

    This paper examines three design alternatives for the development of a solar dynamic heat receiver as applied to power systems operating in low earth orbit. These include a base line design used for comparison in ongoing NASA studies, a system incorporating a salt energy storage system with the salt dispersed within a metal mesh and a hybrid system incorporating both a molten salt and molten metal for energy storage. Based on a typical low earth orbit condition, designs are developed and compared to determine the effect of resultant conductivity, heat capacity and heat of fusion on system size, weight, temperature gradients, cycle turbine inlet temperature and material utilization.

  18. Influence of inorganic salts mixture and a commercial additive on the degradation of poly(vinyl chloride)

    International Nuclear Information System (INIS)

    Silva, Williams B. da; Vasconcelos, Henrique M. de; Aquino, Katia Aparecida da S.; Araujo, Elmo S. de

    2009-01-01

    Samples of commercial poly(vinyl chloride) (PVC) containing a Hindered Amine Stabilizer (HAS) and samples containing a salt mixture of CuCl 2 /KI both in 0.1, 0.3, 0.5 and 0.7wt% concentration of HAS or salt mixture were investigated. The samples were irradiated with gamma radiation ( 60 Co) at room temperature in air at 25 kGy, sterilization dose of PVC medical supplies. The viscosity-average molecular weight (Mv) was analyzed by viscosity technique. Comparison of viscosity results obtained before and after irradiation ( at 25 kGy) of PVC showed crosslinking effect is predominant. On the other hand the PVC-HAS systems and PVC-salt systems showed a decrease in Mv values on irradiated samples reflecting the main chain random scissions effect. However the PVC-salt at 0.5wt% concentration showed no significant degradation index value. This result suggests that salt keeps the good radiolytic stabilization behavior of gamma-irradiated PVC and the HAS additive is not efficient on radiolytic stabilization of PVC. The CuCl 2 /KI mixture at 0.5wt% in the PVC matrix influenced the thermal behavior of the polymer increasing of 42 deg C in maximum thermal degradation temperature. In addition, the salt mixture influences significantly the Young's Modulus of PVC increasing the rigidity of polymer. (author)

  19. Characterization of two-phase mixture (petroleum, salted water or gas) by gamma radiation transmission

    International Nuclear Information System (INIS)

    Eichlt, Jair Romeu

    2003-01-01

    A mathematical description was accomplished to determine the discrimination of a substance in a two-phase mixture, for one beam system, using the five energy lines (13.9, 17.8,26.35 and 59,54 keV) of the 241 Am source. The mathematical description was also accomplished to determine the discrimination of two substances in a three-phase mixture, for a double beam system.. he simulated mixtures for the one beam system were petroleum/salted water or gas. The materials considered in these simulations were: four oils types, denominated as A, B, Bell and Generic, one kind of natural gas and salted water with the following salinities: 35.5, 50, 100, 150, 200, 250 and 300 kg/m 3 of Na Cl. The simulation for the one beam system consisted of a box with acrylic walls and other situation with a box of epoxi walls reinforced with fiber of carbon. The epoxi with carbon fiber was used mainly due to the fact that this material offers little attenuation to the fotons and it resists great pressures. With the results of the simulations it was calculated tables of minimum discrimination for each possible two-phase mixture with petroleum, gas and salted water at several salinities. These discrimination tables are the theoretical forecasts for experimental measurements, since they supply the minimum mensurable percentage for each energy line, as well as the ideal energy for the measurement of each mixture, or situation. The simulated discrimination levels were tested employing experimental arrangements with conditions and materials similar to those of the simulations, for the case of box with epoxi wall reinforced with carbon fiber, at the energies of 20.8 and 59.54 keV. It was obtained good results. For example, for the mixture of salted water (35.5 kg/m 3 ) in paraffin (simulating the petroleum), it was obtained an experimental discrimination minimum of 10% of salted water for error statistics of 5% in I and I o , while the theoretical simulation foresaw the same discrimination level

  20. Fundamental study on the salt distillation from the mixtures of rare earth precipitates and LiCl-KCl eutectic salt

    International Nuclear Information System (INIS)

    Yang, H. C.; Eun, H. C.; Cho, Y. Z.; Lee, H. S.; Kim, I. T.

    2008-01-01

    An electrorefining process of spent nuclear fuel generates waste salt containing some radioactive metal chlorides. The most effective method to reduce salt waste volume is to separate radioactive metals from non-radioactive salts. A promising approach is to change radioactive metal chlorides into salt-insoluble oxides by an oxygen sparging. Following this, salt distillation process is available to effectively separate the precipitated particulate metal oxides from salt. This study investigated the distillation rates of LiCl-KCl eutectic salt under different vacuums at elevated temperatures. The first part study investigated distillation rates of eutectic salt under different vacuums at high temperatures by using thermo-gravimetric furnace system. In the second part, we tested the removal of eutectic salt from the RE precipitates by using the laboratory vacuum distillation furnace system. Investigated variables were the temperature of mixture, the degree of vacuum and the time

  1. Heat transfer from a high temperature condensable mixture

    International Nuclear Information System (INIS)

    Chan, S.H.; Cho, D.H.; Condiff, D.W.

    1978-01-01

    A new development in heat transfer is reported. It is concerned with heat transfer from a gaseous mixture that contains a condensable vapor and is at very high temperature. In the past, heat transfer associated with either a condensable mixture at low temperature or a noncondensable mixture at high temperature has been investigated. The former reduces to the classical problem of fog formation in, say, atmosphere where the rate of condensation is diffusion controlled (molecular or conductive diffusions). In the presence of noncondensable gases, heat transfer to a cooler boundary by this mechanism is known to be drastically reduced. In the latter case, where the high temperature mixture is noncondensable, radiative transfer may become dominant and a vast amount of existing literature exists on this class of problem. A fundamentally different type of problem of relevance to recent advances in open cycle MHD power plants and breeder reactor safety is considered. In the advanced coal-fired power plant using MHD as a topping cycle, a condensable mixture is encountered at temperatures of 2000 to 3000 0 . Condensation of the vaporized slag and seed materials at such a high temperature can take place in the MHD generator channel as well as in the radiant boiler. Similarly, in breeder reactor accident analyses involving hypothetical core disruptive accidents, a UO 2 vapor mixture at 400 0 K or higher is often considered. Since the saturation temperature of UO 2 at one atmosphere is close to 4000 0 K, condensation is also likely at a very high temperature. Accordingly, an objective of the present work is to provide an understanding of heat transfer and condensation mechanics insystems containing a high temperature condensable mixture. The results of the study show that, when a high temperature mixture is in contact with a cooler surface, a thermal boundary layer develops rapidly because of intensive radiative cooling from the mixture

  2. Measurement of water lost from heated geologic salt

    International Nuclear Information System (INIS)

    Hohlfelder, J.J.

    1979-07-01

    This report describes three methods used to measure the rate at which water is lost from heated geologic salt. The three methods were employed in each of a series of proof tests which were performed to evaluate instrumentation designed to measure the water-loss rate. It was found that the water lost from heated, 1-kg salt specimens which were measured according to these three methods was consistent to within an average 9 percent

  3. Heat transfer degradation during condensation of non-azeotropic mixtures

    Science.gov (United States)

    Azzolin, M.; Berto, A.; Bortolin, S.; Del, D., Col

    2017-11-01

    International organizations call for a reduction of the HFCs production and utilizations in the next years. Binary or ternary blends of hydroflourocarbons (HFCs) and hydrofluoroolefins (HFOs) are emerging as possible substitutes for high Global Warming Potential (GWP) fluids currently employed in some refrigeration and air-conditioning applications. In some cases, these mixtures are non-azeotropic and thus, during phase-change at constant pressure, they present a temperature glide that, for some blends, can be higher than 10 K. Such temperature variation during phase change could lead to a better matching between the refrigerant and the water temperature profiles in a condenser, thus reducing the exergy losses associated with the heat transfer process. Nevertheless, the additional mass transfer resistance which occurs during the phase change of zeotropic mixtures leads to a heat transfer degradation. Therefore, the design of a condenser working with a zeotropic mixture poses the problem of how to extend the correlations developed for pure fluids to the case of condensation of mixtures. Experimental data taken are very helpful in the assessment of design procedures. In the present paper, heat transfer coefficients have been measured during condensation of zeotropic mixtures of HFC and HFO fluids. Tests have been carried out in the test rig available at the Two Phase Heat Transfer Lab of University of Padova. During the condensation tests, the heat is subtracted from the mixture by using cold water and the heat transfer coefficient is obtained from the measurement of the heat flux on the water side, the direct measurements of the wall temperature and saturation temperature. Tests have been performed at 40°C mean saturation temperature. The present experimental database is used to assess predictive correlations for condensation of mixtures, providing valuable information on the applicability of available models.

  4. Heat transfer from a high temperature condensable mixture

    International Nuclear Information System (INIS)

    Chan, S.H.; Cho, D.H.; Condiff, D.W.

    1980-01-01

    Bulk condensation and heat transfer in a very hot gaseous mixture that contains a vapor component condensable at high temperature are investigated. A general formulation of the problem is presented in various forms. Analytical solutions for three specific cases involving both one- and two-component two-phase mixtures are obtained. It is shown that a detached fog formation is induced by rapid radiative cooling from the mixture. The formation of radiatively induced fog is found to be an interesting and important phenomenon as it not only exhibits unique features different from the conventional diffusion induced fog, but also greatly enhances heat transfer from the mixture to the boundary. (author)

  5. High electrical resistivity Nd-Fe-B die-upset magnet doped with eutectic DyF3–LiF salt mixture

    Directory of Open Access Journals (Sweden)

    K. M. Kim

    2017-05-01

    Full Text Available Nd-Fe-B-type die-upset magnet with high electrical resistivity was prepared by doping of eutectic DyF3–LiF salt mixture. Mixture of melt-spun Nd-Fe-B flakes (MQU-F: Nd13.6Fe73.6Co6.6Ga0.6B5.6 and eutectic binary (DyF3–LiF salt (25 mol% DyF3 – 75 mol% LiF was hot-pressed and then die-upset. By adding the eutectic salt mixture (> 4 wt%, electrical resistivity of the die-upset magnet was enhanced to over 400 μΩ.cm compared to 190 μΩ.cm of the un-doped magnet. Remarkable enhancement of the electrical resistivity was attributed to homogeneous and continuous coverage of the interface between flakes by the easily melted eutectic salt dielectric mixture. It was revealed that active substitution of the Nd atoms in neighboring flakes by the Dy atoms from the added (DyF3–LiF salt mixture had occurred during such a quick thermal processing of hot-pressing and die-upsetting. This Dy substitution led to coercivity enhancement in the die-upset magnet doped with the eutectic (DyF3–LiF salt mixture. Coercivity and remanence of the die-upset magnet doped with (DyF3–LiF salt mixture was as good as those of the DyF3-doped magnet.

  6. Convective heat transfer characteristics in the turbulent region of molten salt in concentric tube

    International Nuclear Information System (INIS)

    Chen, Y.S.; Wang, Y.; Zhang, J.H.; Yuan, X.F.; Tian, J.; Tang, Z.F.; Zhu, H.H.; Fu, Y.; Wang, N.X.

    2016-01-01

    In order to better understand the heat transfer behavior and characteristics of molten salt in heat exchanger, the convective heat transfer characteristics of molten salt in salt-to-oil concentric tube are studied. Overall heat transfer coefficients of the heat exchanger are calculated using Wilson plots. Heat transfer coefficients of tube side molten salt with the range of Reynolds number from 10,000 to 50,000 and the Prandtl number from 11 to 27 are evaluated invoking the calculated overall heat transfer coefficients. The effects of velocity and temperature on the convective heat transfer in the turbulent region of molten salt are studied by comparing with the traditional correlations. The results show that the heat transfer characteristics of molten salt are in line with the empirical heat transfer correlation; however, Dittus–Boelter, Gnielinski, Sieder–Tate and Hausen correlations all give a larger deviation for the experimental data. Finally, based on the experimental data and Sieder–Tate correlation, a modified heat transfer correlation is proposed and good agreement is observed between the experimental data and the modified correlation. The results will also provide an important reference for the design of the heat exchangers in the Thorium-based Molten Salt Reactor.

  7. A solar-thermal energy harvesting scheme: enhanced heat capacity of molten HITEC salt mixed with Sn/SiO(x) core-shell nanoparticles.

    Science.gov (United States)

    Lai, Chih-Chung; Chang, Wen-Chih; Hu, Wen-Liang; Wang, Zhiming M; Lu, Ming-Chang; Chueh, Yu-Lun

    2014-05-07

    We demonstrated enhanced solar-thermal storage by releasing the latent heat of Sn/SiO(x) core-shell nanoparticles (NPs) embedded in a eutectic salt. The microstructures and chemical compositions of Sn/SiO(x) core-shell NPs were characterized. In situ heating XRD provides dynamic crystalline information about the Sn/SiO(x) core-shell NPs during cyclic heating processes. The latent heat of ∼29 J g(-1) for Sn/SiO(x) core-shell NPs was measured, and 30% enhanced heat capacity was achieved from 1.57 to 2.03 J g(-1) K(-1) for the HITEC solar salt without and with, respectively, a mixture of 5% Sn/SiO(x) core-shell NPs. In addition, an endurance cycle test was performed to prove a stable operation in practical applications. The approach provides a method to enhance energy storage in solar-thermal power plants.

  8. Stability of Drugs of Abuse in Urine Samples at Room Temperature by Use of a Salts Mixture.

    Science.gov (United States)

    Pellegrini, Manuela; Graziano, Silvia; Mastrobattista, Luisa; Minutillo, Adele; Busardo, Francesco Paolo; Scarsella, Gianfranco

    2017-01-01

    It has long been recognized that ensuring analyte stability is of crucial importance in the use of any quantitative bioanalytical method. As analyses are usually not performed directly after collection of the biological samples, but after these have been processed and stored, it is essential that analyte stability can be maintained at storage conditions to ensure that the obtained concentration results adequately reflect those directly after sampling. The conservation of urine samples in refrigerated/ frozen conditions is strongly recommended; but not always feasible. The aim of this study was to assess the stability of some well-known drugs of abuse methamphetamine (MA), 11-nor-9-carboxy-Δ9- tetrahydrocannabinol (THC-COOH), benzoylecgonine (BE), and morphine (MOR) in urine samples kept at room temperature by adding a salt mixture (sodium citrate, sodium ascorbate, borax). Two different urine samples were prepared with and without salt mixture, stored at room temperature and then analyzed by gas chromatography-mass spectrometry at 0, 1, 7, 15, and 30 days after collection/preparation to look for eventual analyte degradation. Methamphetamine showed no significant changes with respect to the time of collection/ preparation (T0) up to 7 days later (T7), with or without salt mixture addiction. Then a significant degradation occurred in both salted and non salted urine. BE decrease was observed starting from day 1 after sample collection in salted and not salted samples, respectively. Salt addition seemed to reduce at least the initial BE degradation, with a significant difference (pstorage. However, the degradation was not more prevented in salted samples at 30 days of storage. A 20% decrease of MOR concentration was observed starting from day 1 after collection/preparation, both in salted and not salted samples with no subsequent decrease. With regard to THCCOOH, a significant decrease was observed starting from 7 days after collection/preparation, with of without

  9. Heating Performance Analysis of a Geothermal Heat Pump Working with Different Zeotropic and Azeotropic Mixtures

    Directory of Open Access Journals (Sweden)

    Robert Bedoić

    2018-06-01

    Full Text Available The aim of the paper is to examine the possibility of application of the spreadsheet calculator and Reference Fluid Thermodynamic and Transport Properties database to a thermodynamic process. The heating process of a real soil-to-water heat pump, including heat transfer in the borehole heat exchanger has been analysed. How the changes of condensing temperature, at constant evaporating temperature, influence the following: heating capacity, compressor effective power, heat supplied to evaporator, compression discharge temperature and coefficient of performance, are investigated. Also, the energy characteristics of a heat pump using different refrigerants for the same heating capacity and the same temperature regime are compared. The following refrigerants are considered: two zeotropic mixtures, R407C and R409A, a mixture with some zeotropic characteristics, R410A, and an azeotropic mixture, R507A.

  10. Numerical study on heat transfer characteristics of liquid-fueled molten salt using OpenFOAM

    International Nuclear Information System (INIS)

    Jeong, Yeong Shin; Bang, In Cheol

    2017-01-01

    To pursue sustainability and safety enhancement of nuclear energy, molten salt reactor is regarded as a promising candidate among various types of gen-IV reactors. Besides, pyroprocessing, which treats molten salt containing fission products, should consider safety related to decay heat from fuel material. For design of molten salt-related nuclear system, it is required to consider both thermal-hydraulic characteristics and neutronic behaviors for demonstration. However, fundamental heat transfer study of molten salt in operation condition is not easy to be experimentally studied due to its large scale, high temperature condition as well as difficulties of treating fuel material. >From that reason, numerical study can have benefit to investigate behaviors of liquid-fueled molten salt in real condition. In this study, open source CFD package OpenFOAM was used to analyze liquid-fueled molten salt loop having internal heat source as a first step of research. Among various molten salts considered as a candidate of liquid fueled molten salt reactors, in this study, FLiBe was chosen as liquid salt. For simulating heat generation from fuel material within fluid flow, volumetric heat source was set for fluid domain and OpenFOAM solver was modified as fvOptions as customized. To investigate thermal-hydraulic behavior of molten salt, CFD model was developed and validated by comparing experimental results in terms of heat transfer and pressure drop. As preliminary stage, 2D cavity simulations were performed to validate the modeling capacity of modified solver of OpenFOAM by comparison with those of ANSYS-CFX. In addition, cases of external heat flux and internal heat source were compared to configure the effect of heat source setting in various operation condition. As a result, modified solver of OpenFOAM considering internal heat source have sufficient modeling capacity to simulate liquid-fueled molten salt systems including heat generation cases. (author)

  11. Petrofabric changes in heated and irradiated salt from Project Salt Vault, Lyons, Kansas

    International Nuclear Information System (INIS)

    Holdoway, K.A.

    1972-01-01

    Rock salt was heated and irradiated in situ by implanted radioactive wastes during the Project Salt Vault experiment which was carried out at Lyons, Kansas, in the abandoned Carey Salt mine between 1965 and 1967. It was found that irradiation results in coloration of the salt, producing colors ranging from blue-black nearest the radiation source, to pale blue and purple farther from the source. Bleached areas are common in the radiation-colored salt, many representing trails produced by the migration of fluid inclusions towards the heat source. These visible trails are thought to have formed during the cooling down of the salt after the removal of the heaters and radiation sources. The distribution of primary structures in the salt suggests that little migration, if any, occurred during the course of the experiment. It is proposed that radiolysis of the brine within the inclusions may have led to the production of gases which impeded or prevented migration. Evidence of strain was observed in slip planes at 4 in. (10 cm) and between 5.5 and 10 in. (13.5 to 25.4 cm) from the array hole. Deformed bleached areas in the salt between the areas were slip planes are developed suggest that slight plastic deformation or flow may have occurred at 6 in. (15 cm) from the array hole. Differential thermal analysis shows that the maximum amount of stored energy also occurs at 6 in. (15 cm) from the array hole. This region may therefore represent the zone where the combined effect of stress and radiation was greatest

  12. Behavior of crushed salt under heat source in boreholes in a salt mine (Amelie Mine, Alsace Potash Mines, France)

    International Nuclear Information System (INIS)

    Ghoreychi, M.

    1991-01-01

    The study of thermomechanical interaction between rock salt and crushed salt, used as a backfilling material at the final stage of radioactive waste disposal in salt formations, led to perform an in situ test at the Amelie Mine(The Alsace Potash Mines in France). The field tests site is located at a depth of 520m and the tests were performed in six parallel boreholes. Five boreholes were backfilled using three types of crushed salt, changing by their grain size (fine = 0.4 mm; natural = 1 mm; coarse = 2 mm). The sixth borehole was not backfilled in order to witness for rock salt behavior without backfilling confinement. Except the first borehole used as a pilot test, the four backfilled boreholes were heated during four months with two levels of heat output (1.6 kW, then 2.2 kW). Cooling was also followed during four months after heating interruption. The maximum of temperature obtained on the wall of the backfilled boreholes was about 100 0 C during the first field test and 130 0 C during the second. The thermal diffusivity of rock mass and the coefficient of heat exchange by convection are studied. In spite of the case that the crushed salt thermal conductivity is initially ten times less than of rock salt, no excessive temperature concentration was obtained on the heat sources

  13. Microwaves in chemistry: Another way of heating reaction mixtures

    Science.gov (United States)

    Berlan, J.

    1995-04-01

    The question of a possible "microwave activation" of chemical reaction is discussed. In fact two cases should be distinguished: homogeneous or heterogeneous reaction mixtures. In homogeneous mixtures there are no (or very low) rate enhancements compared to a conventional heating, but some influence on chemioselectivity has been observed. These effects derive from fast and mass heating of microwaves, and probably, especially under reflux, from different boiling rates and/or overheating. With heterogeneous mixtures non conventional effects probably derive from mass heating and selective overheating. This is illustrated with several reactions: Diels-Alder, naphthalene sulphonation, preparation of cyanuric acid, hydrolysis of nitriles, transposition reaction on solid support.

  14. Molecular dynamics simulations of the structure and single-particle dynamics of mixtures of divalent salts and ionic liquids

    Energy Technology Data Exchange (ETDEWEB)

    Gómez-González, Víctor; Docampo-Álvarez, Borja; Gallego, Luis J.; Varela, Luis M., E-mail: luismiguel.varela@usc.es [Grupo de Nanomateriais e Materia Branda, Departamento de Física da Materia Condensada, Universidade de Santiago de Compostela, Campus Vida s/n, E-15782 Santiago de Compostela (Spain); Cabeza, Oscar [Facultade de Ciencias, Universidade da Coruña, Campus A Zapateira s/n, E-15008 A Coruña (Spain); Fedorov, Maxim [Department of Physics, Scottish University Physics Alliance (SUPA), University of Strathclyde, John Anderson Bldg., 107 Rottenrow East, Glasgow G4 0NG (United Kingdom); Lynden-Bell, Ruth M. [Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW (United Kingdom)

    2015-09-28

    We report a molecular dynamics study of the structure and single-particle dynamics of mixtures of a protic (ethylammonium nitrate) and an aprotic (1-butyl-3-methylimidazolium hexaflurophosphate [BMIM][PF{sub 6}]) room-temperature ionic liquids doped with magnesium and calcium salts with a common anion at 298.15 K and 1 atm. The solvation of these divalent cations in dense ionic environments is analyzed by means of apparent molar volumes of the mixtures, radial distribution functions, and coordination numbers. For the protic mixtures, the effect of salt concentration on the network of hydrogen bonds is also considered. Moreover, single-particle dynamics of the salt cations is studied by means of their velocity autocorrelation functions and vibrational densities of states, explicitly analyzing the influence of salt concentration, and cation charge and mass on these magnitudes. The effect of the valency of the salt cation on these properties is considered comparing the results with those for the corresponding mixtures with lithium salts. We found that the main structural and dynamic features of the local solvation of divalent cations in ionic liquids are similar to those of monovalent salts, with cations being localized in the polar nanoregions of the bulk mixture coordinated in monodentate and bidentate coordination modes by the [NO{sub 3}]{sup −} and [PF{sub 6}]{sup −} anions. However, stronger electrostatic correlations of these polar nanoregions than in mixtures with salts with monovalent cations are found. The vibrational modes of the ionic liquid (IL) are seen to be scarcely affected by the addition of the salt, and the effect of mass and charge on the vibrational densities of states of the dissolved cations is reported. Cation mass is seen to exert a deeper influence than charge on the low-frequency vibrational spectra, giving a red shift of the vibrational modes and a virtual suppression of the higher energy vibrational modes for the heavier Ca{sup 2

  15. Molecular dynamics simulations of the structure and single-particle dynamics of mixtures of divalent salts and ionic liquids

    International Nuclear Information System (INIS)

    Gómez-González, Víctor; Docampo-Álvarez, Borja; Gallego, Luis J.; Varela, Luis M.; Cabeza, Oscar; Fedorov, Maxim; Lynden-Bell, Ruth M.

    2015-01-01

    We report a molecular dynamics study of the structure and single-particle dynamics of mixtures of a protic (ethylammonium nitrate) and an aprotic (1-butyl-3-methylimidazolium hexaflurophosphate [BMIM][PF 6 ]) room-temperature ionic liquids doped with magnesium and calcium salts with a common anion at 298.15 K and 1 atm. The solvation of these divalent cations in dense ionic environments is analyzed by means of apparent molar volumes of the mixtures, radial distribution functions, and coordination numbers. For the protic mixtures, the effect of salt concentration on the network of hydrogen bonds is also considered. Moreover, single-particle dynamics of the salt cations is studied by means of their velocity autocorrelation functions and vibrational densities of states, explicitly analyzing the influence of salt concentration, and cation charge and mass on these magnitudes. The effect of the valency of the salt cation on these properties is considered comparing the results with those for the corresponding mixtures with lithium salts. We found that the main structural and dynamic features of the local solvation of divalent cations in ionic liquids are similar to those of monovalent salts, with cations being localized in the polar nanoregions of the bulk mixture coordinated in monodentate and bidentate coordination modes by the [NO 3 ] − and [PF 6 ] − anions. However, stronger electrostatic correlations of these polar nanoregions than in mixtures with salts with monovalent cations are found. The vibrational modes of the ionic liquid (IL) are seen to be scarcely affected by the addition of the salt, and the effect of mass and charge on the vibrational densities of states of the dissolved cations is reported. Cation mass is seen to exert a deeper influence than charge on the low-frequency vibrational spectra, giving a red shift of the vibrational modes and a virtual suppression of the higher energy vibrational modes for the heavier Ca 2+ cations. No qualitative

  16. Combustion of soybean oil and diesel mixtures for heating purposes

    Energy Technology Data Exchange (ETDEWEB)

    Guimaraes, Adriana Correa; Sanz, Jose Francisco [European University Miguel de Cervantes, Valladolid (Spain)], E-mail: acorrea@uemc.es; Hernandez, Salvador; Navas, Luis Manuel; Rodriguez, Elena; Ruiz, Gonzalo [University of Valladolid (Spain). Dept. of Agricultural and Forest Engineering; San Jose, Julio [University of Valladolid (Spain). Dept. of Energetic Engineering; Gomez, Jaime [University of Valladolid (Spain). Dept. of Communications and Signal Theory and Telematics Engineering

    2008-07-01

    Using blends of vegetable oils with petroleum derivates for heating purposes has several advantages over other energy application for vegetable oils. This paper presents the results of an investigation by use of soybean oil and diesel mixture as fuel for producing heat in conventional diesel installation. The paper is set out as follows: properties characterization of soybean oil as fuel and of diesel oil, as well as the mixture of both; selection of the mixture according to their physical chemical properties and how they adapt to conventional combustion installation; experimentation with the selected mixture, allowing the main combustion parameters to be measured; processing the collected data, values of combustion, efficiency and reduction of emissions. Conclusions show that the use of soybean oil and diesel mixture for producing heat energy in conventional equipment is feasible and beneficial for reduction emissions. (author)

  17. Disposition of the fluoride fuel and flush salts from the Molten Salt Reactor experiment at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Peretz, F.J.

    1996-01-01

    The Molten Salt Reactor Experiment (MSRE) is an 8 MW reactor that was operated at Oak Ridge National Laboratory (ORNL) from 1965 through 1969. The reactor used a unique liquid salt fuel, composed of a mixture of LIF, BeF 2 , ZrF 4 , and UF 4 , and operated at temperatures above 600 degrees C. The primary fuel salt circulation system consisted of the reactor vessel, a single fuel salt pump, and a single primary heat exchanger. Heat was transferred from the fuel salt to a coolant salt circuit in the primary heat exchanger. The coolant salt was similar to the fuel salt, except that it contains only LiF (66%) and BeF, (34%). The coolant salt passed from the primary heat exchanger to an air-cooled radiator and a coolant salt pump, and then returned to the primary heat exchanger. Each of the salt loops was provided with drain tanks, located such that the salt could be drained out of either circuit by gravity. A single drain tank was provided for the non-radioactive coolant salt. Two drain tanks were provided for the fuel salt. Since the fuel salt contained radioactive fuel, fission products, and activation products, and since the reactor was designed such that the fuel salt could be drained immediately into the drain tanks in the event of a problem in the fuel salt loop, the fuel salt drain tanks were provided with a system to remove the heat generated by radioactive decay. A third drain tank connected to the fuel salt loop was provided for a batch of flush salt. This batch of salt, similar in composition to the coolant salt, was used to condition the fuel salt loop after it had been exposed to air and to flush the fuel salt loop of residual fuel salt prior to accessing the reactor circuit for maintenance or experimental activities. This report discusses the disposition of the fluoride fuel and flush salt

  18. Novel ordered structures in the mixture of water/organic solvent/salts investigated by neutron scattering

    International Nuclear Information System (INIS)

    Sadakane, Koichiro

    2013-01-01

    The effect of an antagonistic salt on the phase behavior and nanoscale structure of a mixture of water/organic solvent was investigated by visual inspection, optical microscope, and small-angle neutron scattering (SANS). The addition of the antagonistic salt, namely sodium tetraphenylborate (NaBPh 4 ), induces the shrinking of the two-phase region in contrast to the case in which a normal (hydrophilic) salt is added. Below the phase separation point, the SANS profiles cannot be described by the Ornstein-Zernike function owing to the existence of a long-range periodic structure. With increasing salt concentration, the critical exponents change from the values of 3D-Ising and approach those of 2D-Ising. Furthermore, an ordered phase with multilamellar (onion) structures was confirmed in an off-critical mixture of D 2 O and 3-methylpyridine containing 85 mM of a NaBPh 4 although no surfactants or polymers are contained. (author)

  19. Lauric and palmitic acids eutectic mixture as latent heat storage material for low temperature heating applications

    International Nuclear Information System (INIS)

    Tuncbilek, Kadir; Sari, Ahmet; Tarhan, Sefa; Erguenes, Gazanfer; Kaygusuz, Kamil

    2005-01-01

    Palmitic acid (PA, 59.8 deg. C) and lauric acid (LA, 42.6 deg. C) are phase change materials (PCM) having quite high melting temperatures which can limit their use in low temperature solar applications such as solar space heating and greenhouse heating. However, their melting temperatures can be tailored to appropriate value by preparing a eutectic mixture of the lauric and the palmitic acids. In the present study, the thermal analysis based on differential scanning calorimetry (DSC) technique shows that the mixture of 69.0 wt% LA and 31 wt% PA forms a eutectic mixture having melting temperature of 35.2 deg. C and the latent heat of fusion of 166.3 J g -1 . This study also considers the experimental determination of the thermal characteristics of the eutectic mixture during the heat charging and discharging processes. Radial and axial temperature distribution, heat transfer coefficient between the heat transfer fluid (HTF) pipe and the PCM, heat recovery rate and heat charging and discharging fractions were experimentally established employing a vertical concentric pipe-in-pipe energy storage system. The changes of these characteristics were evaluated with respect to the effect of inlet HTF temperature and mass flow rate. The DSC thermal analysis and the experimental results indicate that the LA-PA eutectic mixture can be a potential material for low temperature thermal energy storage applications in terms of its thermo-physical and thermal characteristics

  20. Sulphate removal from sodium sulphate-rich brine and recovery of barium as a barium salt mixture.

    Science.gov (United States)

    Vadapalli, Viswanath R K; Zvimba, John N; Mulopo, Jean; Motaung, Solly

    2013-01-01

    Sulphate removal from sodium sulphate-rich brine using barium hydroxide and recovery of the barium salts has been investigated. The sodium sulphate-rich brine treated with different dosages of barium hydroxide to precipitate barium sulphate showed sulphate removal from 13.5 g/L to less than 400 mg/L over 60 min using a barium to sulphate molar ratio of 1.1. The thermal conversion of precipitated barium sulphate to barium sulphide achieved a conversion yield of 85% using coal as both a reducing agent and an energy source. The recovery of a pure mixture of barium salts from barium sulphide, which involved dissolution of barium sulphide and reaction with ammonium hydroxide resulted in recovery of a mixture of barium carbonate (62%) and barium hydroxide (38%), which is a critical input raw material for barium salts based acid mine drainage (AMD) desalination technologies. Under alkaline conditions of this barium salt mixture recovery process, ammonia gas is given off, while hydrogen sulfide is retained in solution as bisulfide species, and this provides basis for ammonium hydroxide separation and recovery for reuse, with hydrogen sulfide also recoverable for further industrial applications such as sulfur production by subsequent stripping.

  1. A numerical model for boiling heat transfer coefficient of zeotropic mixtures

    Science.gov (United States)

    Barraza Vicencio, Rodrigo; Caviedes Aedo, Eduardo

    2017-12-01

    Zeotropic mixtures never have the same liquid and vapor composition in the liquid-vapor equilibrium. Also, the bubble and the dew point are separated; this gap is called glide temperature (Tglide). Those characteristics have made these mixtures suitable for cryogenics Joule-Thomson (JT) refrigeration cycles. Zeotropic mixtures as working fluid in JT cycles improve their performance in an order of magnitude. Optimization of JT cycles have earned substantial importance for cryogenics applications (e.g, gas liquefaction, cryosurgery probes, cooling of infrared sensors, cryopreservation, and biomedical samples). Heat exchangers design on those cycles is a critical point; consequently, heat transfer coefficient and pressure drop of two-phase zeotropic mixtures are relevant. In this work, it will be applied a methodology in order to calculate the local convective heat transfer coefficients based on the law of the wall approach for turbulent flows. The flow and heat transfer characteristics of zeotropic mixtures in a heated horizontal tube are investigated numerically. The temperature profile and heat transfer coefficient for zeotropic mixtures of different bulk compositions are analysed. The numerical model has been developed and locally applied in a fully developed, constant temperature wall, and two-phase annular flow in a duct. Numerical results have been obtained using this model taking into account continuity, momentum, and energy equations. Local heat transfer coefficient results are compared with available experimental data published by Barraza et al. (2016), and they have shown good agreement.

  2. Thermophysical properties of reconsolidating crushed salt.

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, Stephen J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Urquhart, Alexander [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-03-01

    Reconsolidated crushed salt is being considered as a backfilling material placed upon nuclear waste within a salt repository environment. In-depth knowledge of thermal and mechanical properties of the crushed salt as it reconsolidates is critical to thermal/mechanical modeling of the reconsolidation process. An experimental study was completed to quantitatively evaluate the thermal conductivity of reconsolidated crushed salt as a function of porosity and temperature. The crushed salt for this study came from the Waste Isolation Pilot Plant (WIPP). In this work the thermal conductivity of crushed salt with porosity ranging from 1% to 40% was determined from room temperature up to 300°C, using two different experimental methods. Thermal properties (including thermal conductivity, thermal diffusivity and specific heat) of single-crystal salt were determined for the same temperature range. The salt was observed to dewater during heating; weight loss from the dewatering was quantified. The thermal conductivity of reconsolidated crushed salt decreases with increasing porosity; conversely, thermal conductivity increases as the salt consolidates. The thermal conductivity of reconsolidated crushed salt for a given porosity decreases with increasing temperature. A simple mixture theory model is presented to predict and compare to the data developed in this study.

  3. A quantitative analysis on latent heat of an aqueous binary mixture.

    Science.gov (United States)

    Han, Bumsoo; Choi, Jeung Hwan; Dantzig, Jonathan A; Bischof, John C

    2006-02-01

    The latent heat during phase change of water-NaCl binary mixture was measured using a differential scanning calorimeter, and the magnitude for two distinct phase change events, water/ice and eutectic phase change, were analyzed considering the phase change characteristics of a binary mixture. During the analysis, the latent heat associated with each event was calculated by normalizing the amount of each endothermic peak with only the amount of sample participating in each event estimated from the lever rule for the phase diagram. The resulting latent heat of each phase change measured is 303.7 +/- 2.5 J/g for water/ice phase change, and 233.0 +/- 1.6 J/g for eutectic phase change, respectively regardless of the initial concentration of mixture. Although the latent heats of water/ice phase change in water-NaCl mixtures are closely correlated, further study is warranted to investigate the reason for smaller latent heat of water/ice phase change than that in pure water (335 J/g). The analysis using the lever rule was extended to estimate the latent heat of dihydrate as 115 J/g with the measured eutectic and water/ice latent heat values. This new analysis based on the lever rule will be useful to estimate the latent heat of water-NaCl mixtures at various concentrations, and may become a framework for more general analysis of latent heat of various biological solutions.

  4. Energy-Storage Modules for Active Solar Heating and Cooling

    Science.gov (United States)

    Parker, J. C.

    1982-01-01

    34 page report describes a melting salt hydrate that stores 12 times as much heat as rocks and other heavy materials. Energy is stored mostly as latent heat; that is, heat that can be stored and recovered without any significant change in temperature. Report also describes development, evaluation and testing of permanently sealed modules containing salt hydrate mixture.

  5. Heat transfer and flow characteristics of a cooling thimble in a molten salt reactor residual heat removal system

    Directory of Open Access Journals (Sweden)

    Zonghao Yang

    2017-12-01

    Full Text Available In the passive residual heat removal system of a molten salt reactor, one of the residual heat removal methods is to use the thimble-type heat transfer elements of the drain salt tank to remove the residual heat of fuel salts. An experimental loop is designed and built with a single heat transfer element to analyze the heat transfer and flow characteristics. In this research, the influence of the size of a three-layer thimble-type heat transfer element on the heat transfer rate is analyzed. Two methods are used to obtain the heat transfer rate, and a difference of results between methods is approximately 5%. The gas gap width between the thimble and the bayonet has a large effect on the heat transfer rate. As the gas gap width increases from 1.0 mm to 11.0 mm, the heat transfer rate decreases from 5.2 kW to 1.6 kW. In addition, a natural circulation startup process is described in this paper. Finally, flashing natural circulation instability has been observed in this thimble-type heat transfer element.

  6. Interplay between structure and transport properties of molten salt mixtures of ZnCl2-NaCl-KCl: A molecular dynamics study.

    Science.gov (United States)

    Manga, Venkateswara Rao; Swinteck, Nichlas; Bringuier, Stefan; Lucas, Pierre; Deymier, Pierre; Muralidharan, Krishna

    2016-03-07

    Molten mixtures of network-forming covalently bonded ZnCl2 and network-modifying ionically bonded NaCl and KCl salts are investigated as high-temperature heat transfer fluids for concentrating solar power plants. Specifically, using molecular dynamics simulations, the interplay between the extent of the network structure, composition, and the transport properties (viscosity, thermal conductivity, and diffusion) of ZnCl2-NaCl-KCl molten salts is characterized. The Stokes-Einstein/Eyring relationship is found to break down in these network-forming liquids at high concentrations of ZnCl2 (>63 mol. %), while the Eyring relationship is seen with increasing KCl concentration. Further, the network modification due to the addition of K ions leads to formation of non-bridging terminal Cl ions, which in turn lead to a positive temperature dependence of thermal conductivity in these melts. This new understanding of transport in these ternary liquids enables the identification of appropriate concentrations of the network formers and network modifiers to design heat transfer fluids with desired transport properties for concentrating solar power plants.

  7. Thermophysical Properties of Fluid Latent Heat Storage Material using Urea-Water Mixture

    Science.gov (United States)

    Hokamura, Taku; Ohkubo, Hidetoshi; Ashizawa, Kiyonori

    This study is concerned with the measurement of thermophysical properties of a urea-water mixture with the aim of adopting the mixture as a latent heat storage material for air-conditioning systems. The urea-water mixture is made of natural substances and has a good fluidity. The urea concentration in the mixture was controlled by measuring the refractive index of the mixture. Being a multi-component substance, a urea-water solution has a liquid-solid co-existent phase on a phase-diagram. Therefore, the liquidus temperature was measured to establish a relationship between the fraction of the solid-phase and temperature. Furthermore, apparent values of specific heat and coefficient of viscosity were measured in the two-phase region where the solid phase is ice. The apparent specific heat and coefficient of viscosity were measure by using an adiabatic calorimeter and a stirring torque meter respectively. The results revealed that the urea-water mixture can probably be used as a latent heat storage material of good fluidity.

  8. Thermodynamic investigation of fluoride salts for nuclear energy production

    International Nuclear Information System (INIS)

    Beilmann, Markus

    2013-01-01

    In this work thermodynamic properties of molten fluoride salts and salt mixtures are investigated. Fluoride salts have advantageous properties to be used in energy producing systems based on the conversion from heat to energy like i.e in Molten Salt Reactors. For this purpose it is very important to have detailed information about the heat capacity of the pure salts and salt mixtures. To get a better understanding about the heat capacity in mixtures drop calorimetry measurements of mixtures of LiF with other alkali fluorides were conducted and compared. The investigation of fluoride salts at elevated temperatures is complicated by the fact that fluoride vapour is aggressive to many materials. In order to protect our sensitive measurement equipment the salt samples were encapsulated in nickel crucibles using a laser welding technique and afterwards the whole nickel capsule was measured. This method was verified by the measurement of unmixed CsF and KF where in both examples an excellent agreement with literature data was obtained. Afterwards various intermediate compositions of the systems LiF-KF, LiF-CsF and LiF-RbF were investigated and a general trend according to the difference in cation radii could be established. In combination with literature data for the LiF-NaF system the heat capacity of the liquid state follows the order LiF-NaF 2 -LaF 3 phase diagram was obtained. With the help of mathematical models the phase diagrams can be calculated and also higher order systems can be predicted. The LiF-NaF-CaF 2 -LaF 3 system was calculated with the classical polynomial model and the quasi-chemical model in parallel in order to evaluate which of the two models provide a better extrapolation to higher order systems (ternary or quaternary) based on the related binary systems. The two models behaved very similar at the investigated system and the quasi-chemical model was chosen for further assessments of phase diagrams. This model was selected, since it considers the

  9. CATALYTIC GASIFICATION OF COAL USING EUTECTIC SALT MIXTURES

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Yaw D. Yeboah; Dr. Yong Xu; Dr. Atul Sheth; Dr. Pradeep Agrawal

    2001-12-01

    The Gas Research Institute (GRI) estimates that by the year 2010, 40% or more of U.S. gas supply will be provided by supplements including substitute natural gas (SNG) from coal. These supplements must be cost competitive with other energy sources. The first generation technologies for coal gasification e.g. the Lurgi Pressure Gasification Process and the relatively newer technologies e.g. the KBW (Westinghouse) Ash Agglomerating Fluidized-Bed, U-Gas Ash Agglomerating Fluidized-Bed, British Gas Corporation/Lurgi Slagging Gasifier, Texaco Moving-Bed Gasifier, and Dow and Shell Gasification Processes, have several disadvantages. These disadvantages include high severities of gasification conditions, low methane production, high oxygen consumption, inability to handle caking coals, and unattractive economics. Another problem encountered in catalytic coal gasification is deactivation of hydroxide forms of alkali and alkaline earth metal catalysts by oxides of carbon (CO{sub x}). To seek solutions to these problems, a team consisting of Clark Atlanta University (CAU, a Historically Black College and University, HBCU), the University of Tennessee Space Institute (UTSI) and Georgia Institute of Technology (Georgia Tech) proposed to identify suitable low melting eutectic salt mixtures for improved coal gasification. The research objectives of this project were to: Identify appropriate eutectic salt mixture catalysts for coal gasification; Assess agglomeration tendency of catalyzed coal; Evaluate various catalyst impregnation techniques to improve initial catalyst dispersion; Determine catalyst dispersion at high carbon conversion levels; Evaluate effects of major process variables (such as temperature, system pressure, etc.) on coal gasification; Evaluate the recovery, regeneration and recycle of the spent catalysts; and Conduct an analysis and modeling of the gasification process to provide better understanding of the fundamental mechanisms and kinetics of the process.

  10. Salt appetite is not increased in summer heat.

    Science.gov (United States)

    Leshem, Micah

    2017-01-01

    We tested the hypothesis that salt appetite increases in summer heat due to increased sodium loss due to increased drinking and perspiration. A test battery in the same sample of healthy young people tested in summer and winter revealed no seasonal differences in salt appetite (or fluid intake) despite a 10 °C rise in mean environmental temperature. Unexpectedly, sweet preference is reduced in summer. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Molten salt as a heat transfer fluid for heating a subsurface formation

    Science.gov (United States)

    Nguyen, Scott Vinh; Vinegar, Harold J.

    2010-11-16

    A heating system for a subsurface formation includes a conduit located in an opening in the subsurface formation. An insulated conductor is located in the conduit. A material is in the conduit between a portion of the insulated conductor and a portion of the conduit. The material may be a salt. The material is a fluid at operating temperature of the heating system. Heat transfers from the insulated conductor to the fluid, from the fluid to the conduit, and from the conduit to the subsurface formation.

  12. Absorption behavior of iodine from molten salt mixture to zeolite

    International Nuclear Information System (INIS)

    Sugihara, Kei; Terai, Takayuki; Suzuki, Akihiro; Uozumi, Koichi; Tsukada, Takeshi; Koyama, Tadafumi

    2011-01-01

    Behavior of zeolite to absorb anion fission product (FP) elements in molten LiCl-KCl eutectic salt was studied using iodine. At first, zeolite-A was selected as the suitable type of zeolite among zeolite-A (powder), zeolite-X (powder and granule), and zeolite-Y (powder) through experiments to heat the zeolite together with LiCl-KCl-KI salt, respectively. As the next step, similar experiments to immerse zeolite-A in molten LiCl-KCl-KI salt containing various concentrations of iodine were performed. The affinity of iodine to zeolite was evaluated using the separation factor (SF) value, which is defined as [I/(I+Cl) mol ratio in zeolite after immersion]/[I/(I+Cl) mol ratio in salt after immersion]. Since the SF values ranged between 4.3 and 9.1, stronger affinity of iodine than chlorine to zeolite-A was revealed. Finally, influence of co-existing cation FPs was studied by similar absorption experiments in LiCl-KCl-KI salt containing CsCl, SrCl 2 , or NdCl 3 . The SF values were less than those obtained in the LiCl-KCl-KI salt and this can be ascribed to the sharing of inner space of zeolite cage among absorbed cations and anions. (author)

  13. Advanced heat exchanger development for molten salts

    Energy Technology Data Exchange (ETDEWEB)

    Sabharwall, Piyush, E-mail: Piyush.Sabharwall@inl.gov [Idaho National Laboratory, Idaho Falls, ID 83415 (United States); Clark, Denis; Glazoff, Michael [Idaho National Laboratory, Idaho Falls, ID 83415 (United States); Zheng, Guiqiu; Sridharan, Kumar; Anderson, Mark [University of Wisconsin, Madison (United States)

    2014-12-15

    Highlights: • Hastelloy N and 242, shows corrosion resistance to molten salt at nominal operating temperatures. • Both diffusion welds and sheet material in Hastelloy N were corrosion tested in at 650, 700, and 850 °C for 200, 500, and 1000 h. • Thermal gradients and galvanic couples in the molten salts enhance corrosion rates. • Corrosion rates found were typically <10 mils per year. - Abstract: This study addresses present work concerned with advanced heat exchanger development for molten salt in nuclear and non-nuclear thermal systems. The molten salt systems discussed herein use alloys, such as Hastelloy N and 242, that show good corrosion resistance in molten salt at nominal operating temperatures up to 700 °C. These alloys were diffusion welded, and the corresponding information is presented. Test specimens were prepared for exposing diffusion welds to molten salt environments. Hastelloy N and 242 were found to be weldable by diffusion welding, with ultimate tensile strengths about 90% of base metal values. Both diffusion welds and sheet material in Hastelloy N were corrosion tested in 58 mol% KF and 42 mol% ZrF{sub 4} at 650, 700, and 850 °C for 200, 500, and 1000 h. Corrosion rates were similar between welded and nonwelded materials, typically <100 μm per year after 1000 h of corrosion tests. No catastrophic corrosion was observed in the diffusion welded regions. For materials of construction, nickel-based alloys and alloys with dense nickel coatings are effectively inert to corrosion in fluorides, but not so in chlorides. Hence, additional testing of selected alloys for resistance to intergranular corrosion is needed, as is a determination of corrosion rate as a function of the type of salt impurity and alloy composition, with respect to chromium and carbon, to better define the best conditions for corrosion resistance. Also presented is the division of the nuclear reactor and high-temperature components per American Society of Mechanical

  14. Determination of Specific Heat Capacity on Composite Shape-Stabilized Phase Change Materials and Asphalt Mixtures by Heat Exchange System.

    Science.gov (United States)

    Ma, Biao; Zhou, Xue-Yan; Liu, Jiang; You, Zhanping; Wei, Kun; Huang, Xiao-Feng

    2016-05-19

    Previous research has shown that composite shape-stabilized phase change material (CPCM) has a remarkable capacity for thermal storage and stabilization, and it can be directly applied to highway construction without leakage. However, recent studies on temperature changing behaviors of CPCM and asphalt mixture cannot intuitively reflect the thermoregulation mechanism and efficiency of CPCM on asphalt mixture. The objective of this paper is to determine the specific heat capacity of CPCM and asphalt mixtures mixed with CPCM using the heat exchange system and the data acquisition system. Studies have shown that the temperature-rise curve of 5 °C CPCM has an obvious temperature plateau, while an asphalt mixture mixed with 5 °C CPCM does not; with increasing temperature, the specific heat capacities of both 5 °C CPCM and asphalt mixture first increase and then decrease, while the variation rate of 5 °C CPCM is larger than that of the asphalt mixture, and the maximum specific heat capacity of 5 °C CPCM appears around the initial phase change temperature. It is concluded that the temperature intervals of 5 °C CPCM are -18 °C-7 °C, 7 °C-25 °C and 25 °C-44 °C, respectively, and that of the asphalt mixture are -18 °C~10 °C, -10 °C~5 °C and 5 °C~28 °C. A low dosage of 5 °C CPCM has little influence on the specific heat capacity of asphalt mixture. Finally, the functions of specific heat capacities and temperature for CPCM and asphalt mixture mixed with CPCM were recommended by the sectional regression method.

  15. Solidification of high temperature molten salts for thermal energy storage systems

    Science.gov (United States)

    Sheffield, J. W.

    1981-01-01

    The solidification of phase change materials for the high temperature thermal energy storage system of an advanced solar thermal power system has been examined theoretically. In light of the particular thermophysical properties of candidate phase change high temperature salts, such as the eutectic mixture of NaF - MgF2, the heat transfer characteristics of one-dimensional inward solidification for a cylindrical geometry have been studied. The Biot number for the solidified salt is shown to be the critical design parameter for constant extraction heat flux. A fin-on-fin design concept of heat transfer surface augmentation is proposed in an effort to minimize the effects of the salt's low thermal conductivity and large volume change upon fusing.

  16. Enhanced heat transfer performances of molten salt receiver with spirally grooved pipe

    International Nuclear Information System (INIS)

    Lu, Jianfeng; Ding, Jing; Yu, Tao; Shen, Xiangyang

    2015-01-01

    The enhanced heat transfer performances of solar receiver with spirally grooved pipe were theoretically investigated. The physical model of heat absorption process was proposed using the general heat transfer correlation of molten salt in smooth and spirally grooved pipe. According to the calculation results, the convective heat transfer inside the receiver can remarkably enhance the heat absorption process, and the absorption efficiency increased with the flow velocity and groove height, while the wall temperature dropped. As the groove height increased, the heat losses of convection and radiation dropped with the decrease of wall temperature, and the average absorption efficiency of the heat receiver can be increased. Compared with the heat receiver with smooth pipe, the heat absorption efficiency of heat receiver with spirally grooved pipe e/d = 0.0475 can rise for 0.7%, and the maximum bulk fluid temperature can be increased for 31.1 °C. As a conclusion, spirally grooved pipe can be a very effective way for heat absorption enhancement of solar receiver, and it can also increase the operating temperature of molten salt. - Highlights: • Spirally grooved tube is a very effective way for solar receiver enhancement. • Heat absorption model of receiver is proposed with general heat transfer correlation. • Spirally groove tube increases absorption efficiency and reduces wall temperature. • Operating temperature of molten salt remarkably increases with groove height. • Heat absorption performance is promoted for first and second thermodynamics laws

  17. Hydrous mineral dehydration around heat-generating nuclear waste in bedded salt formations.

    Science.gov (United States)

    Jordan, Amy B; Boukhalfa, Hakim; Caporuscio, Florie A; Robinson, Bruce A; Stauffer, Philip H

    2015-06-02

    Heat-generating nuclear waste disposal in bedded salt during the first two years after waste emplacement is explored using numerical simulations tied to experiments of hydrous mineral dehydration. Heating impure salt samples to temperatures of 265 °C can release over 20% by mass of hydrous minerals as water. Three steps in a series of dehydration reactions are measured (65, 110, and 265 °C), and water loss associated with each step is averaged from experimental data into a water source model. Simulations using this dehydration model are used to predict temperature, moisture, and porosity after heating by 750-W waste canisters, assuming hydrous mineral mass fractions from 0 to 10%. The formation of a three-phase heat pipe (with counter-circulation of vapor and brine) occurs as water vapor is driven away from the heat source, condenses, and flows back toward the heat source, leading to changes in porosity, permeability, temperature, saturation, and thermal conductivity of the backfill salt surrounding the waste canisters. Heat pipe formation depends on temperature, moisture availability, and mobility. In certain cases, dehydration of hydrous minerals provides sufficient extra moisture to push the system into a sustained heat pipe, where simulations neglecting this process do not.

  18. Process Heat Exchanger Options for Fluoride Salt High Temperature Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Piyush Sabharwall; Eung Soo Kim; Michael McKellar; Nolan Anderson

    2011-04-01

    The work reported herein is a significant intermediate step in reaching the final goal of commercial-scale deployment and usage of molten salt as the heat transport medium for process heat applications. The primary purpose of this study is to aid in the development and selection of the required heat exchanger for power production and process heat application, which would support large-scale deployment.

  19. Process Heat Exchanger Options for Fluoride Salt High Temperature Reactor

    International Nuclear Information System (INIS)

    Sabharwall, Piyush; Kim, Eung Soo; McKellar, Michael; Anderson, Nolan

    2011-01-01

    The work reported herein is a significant intermediate step in reaching the final goal of commercial-scale deployment and usage of molten salt as the heat transport medium for process heat applications. The primary purpose of this study is to aid in the development and selection of the required heat exchanger for power production and process heat application, which would support large-scale deployment.

  20. Investigation of complexing in solutions of salt mixture In(NO3)3-NaVO3

    International Nuclear Information System (INIS)

    Nakhodnova, A.N.; Listratenko, I.V.

    1987-01-01

    Spectrophotometry, conductometry and pH-metry are used to investigate properties and composition of the solid phases of isomolar series of In(NO 3 ) 3 -NaVO 3 salt mixture solutions and series of solutions having constant concentration of one of the components and varied of the other. Results of investigation are presented. It is stated that in the investigated solution series in weakly acid media HPA with the ratios [In 3+ ]:[V 5+ ] being equal to 11:1, 6:1, and 1:9, are formed. Composition of the complexes is mainly defined by the ratio of the components in In(NO 3 ) 3 and NaVO 3 salt mixture solutions and the medium acidity. Compounds of Na 2 OxIn 2 O 3 x2.5V 2 O 5 x8.5H 2 O and Cs 2 OxIn 2 O 3 x6V 2 O 5 x6.5H 2 O empirical formulae are separated. Results of IR spectroscopy, derivatography and X-ray phase analysis of the corresponding salts are presented

  1. Influence of the Microwave Heating Time on the Self-Healing Properties of Asphalt Mixtures

    Directory of Open Access Journals (Sweden)

    Jose Norambuena-Contreras

    2017-10-01

    Full Text Available This paper aims to evaluate the influence of the microwave heating time on the self-healing properties of fibre-reinforced asphalt mixtures. To this purpose, self-healing properties of dense asphalt mixtures with four different percentages of steel wool fibres were evaluated as the three-point bending strength before and after healing via microwave heating at four different heating times. Furthermore, the thermal behaviour of asphalt mixtures during microwave heating was also evaluated. With the aim of quantifying the efficiency of the repair process, ten damage-healing cycles were done in the test samples. In addition, self-healing results were compared with the fibre spatial distribution inside asphalt samples evaluated by CT-scans. Crack-size change on asphalt samples during healing cycles was also evaluated through optical microscopy. It was found that the heating time is the most influential variable on the healing level reached by the asphalt mixtures tested by microwave radiation. CT-Scans results proved that fibre spatial distribution into the asphalt mixtures play an important role in the asphalt healing level. Finally, it was concluded that 40 s was the optimum heating time to reach the highest healing levels with the lowest damage on the asphalt samples, and that heating times over 30 s can seal the cracks, thus achieving the self-healing of asphalt mixtures via microwave heating.

  2. CATALYTIC GASIFICATION OF COAL USING EUTECTIC SALT MIXTURES; FINAL

    International Nuclear Information System (INIS)

    Dr. Yaw D. Yeboah; Dr. Yong Xu; Dr. Atul Sheth; Dr. Pradeep Agrawal

    2001-01-01

    The Gas Research Institute (GRI) estimates that by the year 2010, 40% or more of U.S. gas supply will be provided by supplements including substitute natural gas (SNG) from coal. These supplements must be cost competitive with other energy sources. The first generation technologies for coal gasification e.g. the Lurgi Pressure Gasification Process and the relatively newer technologies e.g. the KBW (Westinghouse) Ash Agglomerating Fluidized-Bed, U-Gas Ash Agglomerating Fluidized-Bed, British Gas Corporation/Lurgi Slagging Gasifier, Texaco Moving-Bed Gasifier, and Dow and Shell Gasification Processes, have several disadvantages. These disadvantages include high severities of gasification conditions, low methane production, high oxygen consumption, inability to handle caking coals, and unattractive economics. Another problem encountered in catalytic coal gasification is deactivation of hydroxide forms of alkali and alkaline earth metal catalysts by oxides of carbon (CO(sub x)). To seek solutions to these problems, a team consisting of Clark Atlanta University (CAU, a Historically Black College and University, HBCU), the University of Tennessee Space Institute (UTSI) and Georgia Institute of Technology (Georgia Tech) proposed to identify suitable low melting eutectic salt mixtures for improved coal gasification. The research objectives of this project were to: Identify appropriate eutectic salt mixture catalysts for coal gasification; Assess agglomeration tendency of catalyzed coal; Evaluate various catalyst impregnation techniques to improve initial catalyst dispersion; Determine catalyst dispersion at high carbon conversion levels; Evaluate effects of major process variables (such as temperature, system pressure, etc.) on coal gasification; Evaluate the recovery, regeneration and recycle of the spent catalysts; and Conduct an analysis and modeling of the gasification process to provide better understanding of the fundamental mechanisms and kinetics of the process

  3. Experimental investigation of molten salt droplet quenching and solidification processes of heat recovery in thermochemical hydrogen production

    International Nuclear Information System (INIS)

    Ghandehariun, S.; Wang, Z.; Naterer, G.F.; Rosen, M.A.

    2015-01-01

    Highlights: • Thermal efficiency of a thermochemical cycle of hydrogen production is improved. • Direct contact heat recovery from molten salt is analyzed. • Falling droplets quenched into water are investigated experimentally. - Abstract: This paper investigates the heat transfer and X-ray diffraction patterns of solidified molten salt droplets in heat recovery processes of a thermochemical Cu–Cl cycle of hydrogen production. It is essential to recover the heat of the molten salt to enhance the overall thermal efficiency of the copper–chlorine cycle. A major portion of heat recovery within the cycle can be achieved by cooling and solidifying the molten salt exiting an oxygen reactor. Heat recovery from the molten salt is achieved by dispersing the molten stream into droplets. In this paper, an analytical study and experimental investigation of the thermal phenomena of a falling droplet quenched into water is presented, involving the droplet surface temperature during descent and resulting composition change in the quench process. The results show that it is feasible to quench the molten salt droplets for an efficient heat recovery process without introducing any material imbalance for the overall cycle integration.

  4. Density of molten salt Mixtures of eutectic LiCl-KCl containing UCl{sub 3}, CeCl{sub 3}, or LaCl{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, C.; Simpson, M. F. [Dept. of Metallurgical Engineering, University of Utah, Salt Lake City (United States)

    2017-06-15

    Densities of molten salt mixtures of eutectic LiCl-KCl with UCl{sub 3}, CeCl{sub 3}, or LaCl{sub 3} at various concentrations (up to 13 wt%) were measured using a liquid surface displacement probe. Linear relationships between the mixture density and the concentration of the added salt were observed. For LaCl{sub 3} and CeCl{sub 3}, the measured densities were signifcantly higher than those previously reported from Archimedes’ method. In the case of LiCl-KCl-UCl{sub 3}, the data ft the ideal mixture density model very well. For the other salts, the measured densities exceeded the ideal model prediction by about 2%.

  5. Brine Migration in Heated Salt: Lessons Learned from Field Experiments

    Science.gov (United States)

    Kuhlman, K. L.; Matteo, E. N.; Mills, M.

    2017-12-01

    We summarize several interesting brine migration related phenomena hinted at in field experiments from field testing related to salt radioactive waste repositories in Germany and the US. Past heater tests in salt have shown 1) thermal-hydrological-mechanical coupling is quite strong during both heating and cooling; 2) chemical composition of brine evolves during heating, and comprises a mix of several water sources; and 3) acid gas (HCl) generation has been observed during past heater tests and may have multiple mechanisms for formation. We present a heated brine migration test design, formulated with these complexities in mind. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

  6. Study of the multiplication and kinetic effects of salt mixtures and salt blanket micromodels on thermal neutron spectra of heavy water MAKET facility

    International Nuclear Information System (INIS)

    Titarenko, Yu.E.; Batyaev, V.F.; Borovlev, S.P.; Gladkikh, N.G.; Igumnov, M.M.; Legostaev, V.O.; Karpikhin, E.I.; Konev, V.N.; Kushnerev, Yu.T.; Ryazhsky, V.I.; Spiridonov, V.G.; Chernyavsky, E.V.; Shvedov, O.V.

    2009-10-01

    The main goal of the Project is to study and evaluate nuclear characteristics of materials and isotopes involved in processes of irradiated nuclear fuel transmutation. This principal task is subdivided into 9 subtasks subject to the neutron or proton source used, the type of the nuclear process under study, isotope collection, characteristics of which are to be investigated, etc. In the presented extract of the Project Activity report the measurements there were used the MAKET zero-power heavy-water reactor in the measurements there was employed a large set of minor actinide samples highly enriched with the main isotope. The samples were obtained with mass-separator SM-2 (VNIIEF). At the heavy-water reactor MAKET (ITEP) there were measured multiplying and kinetic characteristics of salt mixtures basing on the spectra of fast and thermal neutrons. The salt mixtures of zirconium and sodium fluorides were available in salt blanket models (SBM) of cylindrical shape. There were measured the neutron spectra formed by this micro-model as well as the effective fission cross-sections of neptunium, plutonium, americium and curium isotopes caused by SBM neutrons. The neutron spectra in the measurement positions were determined from activation reaction rates. (author)

  7. Solution of heat removal from nuclear reactors by natural convection

    Directory of Open Access Journals (Sweden)

    Zitek Pavel

    2014-03-01

    Full Text Available This paper summarizes the basis for the solution of heat removal by natural convection from both conventional nuclear reactors and reactors with fuel flowing coolant (such as reactors with molten fluoride salts MSR.The possibility of intensification of heat removal through gas lift is focused on. It might be used in an MSR (Molten Salt Reactor for cleaning the salt mixture of degassed fission products and therefore eliminating problems with iodine pitting. Heat removal by natural convection and its intensification increases significantly the safety of nuclear reactors. Simultaneously the heat removal also solves problems with lifetime of pumps in the primary circuit of high-temperature reactors.

  8. Development of seasonal heat storage based on stable supercooling of a sodium acetate water mixture

    DEFF Research Database (Denmark)

    Furbo, Simon; Fan, Jianhua; Andersen, Elsa

    2012-01-01

    A number of heat storage modules for seasonal heat storages based on stable supercooling of a sodium acetate water mixture have been tested by means of experiments in a heat storage test facility. The modules had different volumes and designs. Further, different methods were used to transfer heat...... to and from the sodium acetate water mixture in the modules. By means of the experiments: • The heat exchange capacity rates to and from the sodium acetate water mixture in the heat storage modules were determined for different volume flow rates. • The heat content of the heat storage modules were determined....... • The reliability of the supercooling was elucidated for the heat storage modules for different operation conditions. • The reliability of a cooling method used to start solidification of the supercooled sodium acetate water mixture was elucidated. The method is making use of boiling CO2 in a small tank in good...

  9. The effect of heat exchanger parameters on performance predictions for nonazeotropic refrigerant mixtures in liquid-liquid heat pumps

    International Nuclear Information System (INIS)

    Stanger, S.; Den Braven, K.R.; Owre, T.A.S.

    1990-01-01

    The effects of constant heat exchanger area on the coefficient of performance (COP) for liquid-liquid heat pumps were analyzed for systems which use nonazeotropic mixtures as the working fluid. For this analysis, two different computer models were compared. In the first, the log mean temperature differences (LMTDs) through the heat exchangers were specified, and were held constant for all refrigerant compositions. The second method was constructed so that the heat exchanger UA product was held constant, thus approximating constant heat exchanger area over a range of refrigerant compositions. Results from these models show only a one percent difference in COP prediction between holding LMTD constant and holding UA constant over the range of mixture composition. This paper reports the models compared using mixtures of R-22/R-11 and R-22/R-114. It is also shown that changes in glide and lift temperatures have little influence on the differences between the two models

  10. Structure and thermodynamics of molten salts

    International Nuclear Information System (INIS)

    Papatheodorou, G.N.

    1983-01-01

    This chapter investigates single-component molten salts and multicomponent salt mixtures. Molten salts provide an important testing ground for theories of liquids, solutions, and plasmas. Topics considered include molten salts as liquids (the pair potential, the radial distribution function, methods of characterization), single salts (structure, thermodynamic correlations), and salt mixtures (the thermodynamics of mixing; spectroscopy and structure). Neutron and X-ray scattering techniques are used to determine the structure of molten metal halide salts. The corresponding-states theory is used to obtain thermodynamic correlations on single salts. Structural information on salt mixtures is obtained by using vibrational (Raman) and electronic absorption spectroscopy. Charge-symmetrical systems and charge-unsymmetrical systems are used to examine the thermodynamics of salt mixtures

  11. Potential of organic Rankine cycle using zeotropic mixtures as working fluids for waste heat recovery

    International Nuclear Information System (INIS)

    Li, You-Rong; Du, Mei-Tang; Wu, Chun-Mei; Wu, Shuang-Ying; Liu, Chao

    2014-01-01

    The performance of the ORC (organic Rankine cycle) systems using zeotropic mixtures as working fluids for recovering waste heat of flue gas from industrial boiler is examined on the basis of thermodynamics and thermo-economics under different operating conditions. In order to explore the potential of the mixtures as the working fluids in the ORC, the effects of various mixtures with different components and composition proportions on the system performance have been analyzed. The results show that the compositions of the mixtures have an important effect on the ORC system performance, which is associated with the temperature glide during the phase change of mixtures. From the point of thermodynamics, the performance of the ORC system is not always improved by employing the mixtures as the working fluids. The merit of the mixtures is related to the restrictive conditions of the ORC, different operating conditions results in different conclusions. At a fixed pinch point temperature difference, the small mean heat transfer temperature difference in heat exchangers will lead to a larger heat transfer area and the larger total cost of the ORC system. Compared with the ORC with pure working fluids, the ORC with the mixtures presents a poor economical performance. - Highlights: • Organic Rankine cycle system with the mixture working fluids for recovering waste heat is analyzed. • The performance of the mixture-fluid ORC is related to temperature glide in phase change of mixture working fluids. • The relative merit of the mixture working fluids depends on the restrictive operation conditions of the ORC. • The ORC with mixture working fluid presents a poor economical performance compared with the pure working fluid case

  12. The thermo-mechanical behaviour of a salt dome with a heat-generating waste repository

    International Nuclear Information System (INIS)

    Janssen, L.G.J.; Prij, J.; Kevenaar, J.W.A.M.; Jong, C.J.T.; Klok, J.; Beemsterboer, C.

    1984-01-01

    This report reviews the analytical work on the disposal of radioactive waste in salt domes performed at ECN in the period 1 January 1980 to 31 December 1982. Chapter 4 in the main report covers the global temperature and deformation analyses of the salt dome and the surrounding rocks. The attached three topical reports cover self-contained parts of the study. The computer program TASTE developed to analyse, at acceptable cost and with, for engineering purposes, sufficient accuracies, the temperature rises in the salt dome due to the stored heat-generating waste is described in Annex 1. Annex 2 gives a description of the extended finite element program GOLIA. The program has been extended to make it suitable for the creep analysis of salt domes with repositories of heat-generating waste. The study on the closing and sealing of boreholes wit heat-generating waste is reported in Annex 3

  13. Self-healing properties of recycled asphalt mixtures containing metal waste: An approach through microwave radiation heating.

    Science.gov (United States)

    González, A; Norambuena-Contreras, J; Storey, L; Schlangen, E

    2018-05-15

    The concept of self-healing asphalt mixtures by bitumen temperature increase has been used by researchers to create an asphalt mixture with crack-healing properties by microwave or induction heating. Metals, normally steel wool fibers (SWF), are added to asphalt mixtures prepared with virgin materials to absorb and conduct thermal energy. Metal shavings, a waste material from the metal industry, could be used to replace SWF. In addition, reclaimed asphalt pavement (RAP) could be added to these mixtures to make a more sustainable road material. This research aimed to evaluate the effect of adding metal shavings and RAP on the properties of asphalt mixtures with crack-healing capabilities by microwave heating. The research indicates that metal shavings have an irregular shape with widths larger than typical SWF used with asphalt self-healing purposes. The general effect of adding metal shavings was an improvement in the crack-healing of asphalt mixtures, while adding RAP to mixtures with metal shavings reduced the healing. The average surface temperature of the asphalt samples after microwave heating was higher than temperatures obtained by induction heating, indicating that shavings are more efficient when mixtures are heated by microwave radiation. CT scan analysis showed that shavings uniformly distribute in the mixture, and the addition of metal shavings increases the air voids. Overall, it is concluded that asphalt mixtures with RAP and waste metal shavings have the potential of being crack-healed by microwave heating. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Fluctuation theory for transport properties in multicomponent mixtures: thermodiffusion and heat conductivity

    DEFF Research Database (Denmark)

    Shapiro, Alexander

    2004-01-01

    The theory of transport properties in multicomponent gas and liquid mixtures, which was previously developed for diffusion coefficients, is extended onto thermodiffusion coefficients and heat conductivities. The derivation of the expressions for transport properties is based on the general statis...... of the heat conductivity coefficient for ideal gas. (C) 2003 Elsevier B.V. All rights reserved.......The theory of transport properties in multicomponent gas and liquid mixtures, which was previously developed for diffusion coefficients, is extended onto thermodiffusion coefficients and heat conductivities. The derivation of the expressions for transport properties is based on the general...

  15. Heat transfer analysis of the waste-container sleeve/salt configuration

    International Nuclear Information System (INIS)

    Callahan, G.D.; Ratigan, J.L.; Russell, J.E.; Fossum, A.F.

    1975-01-01

    Prior to this investigation, the heat transport considered was only that of straight conduction. The waste container, air gap, and sleeve arrangement was considered to be a single, consistent, time-dependent, heat-generating unit in intimate contact with the salt. The conduction model does not accurately model the heat transfer mechanisms available. Thus radiation and combined radiation and convection must also be considered in the determination of the temperature field. As would be expected, the canister temperatures are higher for the case of radiation across the airgap than those that result from conduction when the canister is in intimate contact with the salt. For the radiation case, the canister temperatures rise rapidly to a temperature of approximately 1,140 0 F and maintain an almost steady state condition for one year whereafter the temperatures slowly decrease. The far field temperatures, near the pillar centerline, are essentially equivalent for all cases. As time proceeds, the far field temperatures of the conduction models are about 15% different

  16. Steady state and transient heat transfer on molten salt natural circulation loop

    International Nuclear Information System (INIS)

    Kudariyawar, Jayaraj Y.; Vaidya, A.M.; Maheshwari, N.K.; Satyamurthy, P.

    2016-01-01

    In this work, heat transfer characteristics of Molten Salt Natural Circulation Loop (MSNCL) are studied using 3D CFD simulations. Molten Nitrate salt, NaNO_3+KNO_3 (60:40 ratio by weight), is used as a fluid in MSNCL. In the MSNCL, in heater section, flow is developing and also mixed convection flow regime exists. The local Nusselt number variation in heater is calculated from computed data and is compared with that from Boelter correlation. Steady state heat transfer characteristics are obtained using CFD simulations. Transient heat transfer characteristics in the oscillatory flow formed in MSNCL with horizontal heater configuration are also studied and are found to be different as compared to vertical heater configuration. (author)

  17. Conceptual Design of Forced Convection Molten Salt Heat Transfer Testing Loop

    Energy Technology Data Exchange (ETDEWEB)

    Manohar S. Sohal; Piyush Sabharwall; Pattrick Calderoni; Alan K. Wertsching; S. Brandon Grover

    2010-09-01

    This report develops a proposal to design and construct a forced convection test loop. A detailed test plan will then be conducted to obtain data on heat transfer, thermodynamic, and corrosion characteristics of the molten salts and fluid-solid interaction. In particular, this report outlines an experimental research and development test plan. The most important initial requirement for heat transfer test of molten salt systems is the establishment of reference coolant materials to use in the experiments. An earlier report produced within the same project highlighted how thermophysical properties of the materials that directly impact the heat transfer behavior are strongly correlated to the composition and impurities concentration of the melt. It is therefore essential to establish laboratory techniques that can measure the melt composition, and to develop purification methods that would allow the production of large quantities of coolant with the desired purity. A companion report describes the options available to reach such objectives. In particular, that report outlines an experimental research and development test plan that would include following steps: •Molten Salts: The candidate molten salts for investigation will be selected. •Materials of Construction: Materials of construction for the test loop, heat exchangers, and fluid-solid corrosion tests in the test loop will also be selected. •Scaling Analysis: Scaling analysis to design the test loop will be performed. •Test Plan: A comprehensive test plan to include all the tests that are being planned in the short and long term time frame will be developed. •Design the Test Loop: The forced convection test loop will be designed including extensive mechanical design, instrument selection, data acquisition system, safety requirements, and related precautionary measures. •Fabricate the Test Loop. •Perform the Tests. •Uncertainty Analysis: As a part of the data collection, uncertainty analysis will

  18. Scaling options for integral experiments for molten salt fluid mechanics and heat transfer

    International Nuclear Information System (INIS)

    Philippe Bardet; Per F Peterson

    2005-01-01

    Full text of publication follows: Molten fluoride salts have potentially large benefits for use in high-temperature heat transport in fission and fusion energy systems, due to their very very low vapor pressures at high temperatures. Molten salts have high volumetric heat capacity compared to high-pressure helium and liquid metals, and have desirable safety characteristics due to their chemical inertness and low pressure. Therefore molten salts have been studied extensively for use in fusion blankets, as an intermediate heat transfer fluid for thermochemical hydrogen production in the Next Generation Nuclear Plant, as a primary coolant for the Advanced High Temperature Reactor, and as a solvent for fuel in the Molten Salt Reactor. This paper presents recent progress in the design and analysis of scaled thermal hydraulics experiments for molten salt systems. We have identified a category of light mineral oils that can be used for scaled experiments. By adjusting the length, velocity, average temperature, and temperature difference scales of the experiment, we show that it is possible to simultaneously match the Reynolds (Re), Froude (Fr), Prandtl (Pr) and Rayleigh (Ra) numbers in the scaled experiments. For example, the light mineral oil Penreco Drakesol 260 AT can be used to simulate the molten salt flibe (Li 2 BeF 4 ). At 110 deg. C, the oil Pr matches 600 deg. C flibe, and at 165 deg. C, the oil Pr matches 900 deg. C flibe. Re, Fr, and Ra can then be matched at a length scale of Ls/Lp = 0.40, velocity scale of U s /U p = 0.63, and temperature difference scale of ΔT s /ΔT p = 0.29. The Weber number is then matched within a factor of two, We s /We p = 0.7. Mechanical pumping power scales as Qp s /Qp p = 0.016, while heat inputs scale as Qh s /Qh p = 0.010, showing that power inputs to scaled experiments are very small compared to the prototype system. The scaled system has accelerated time, t s /t p = 0.64. When Re, Fr, Pr and Ra are matched, geometrically scaled

  19. Phenotypic effects of salt and heat stress over three generations in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Léonie Suter

    Full Text Available Current and predicted environmental change will force many organisms to adapt to novel conditions, especially sessile organisms such as plants. It is therefore important to better understand how plants react to environmental stress and to what extent genotypes differ in such responses. It has been proposed that adaptation to novel conditions could be facilitated by heritable epigenetic changes induced by environmental stress, independent of genetic variation. Here we assessed phenotypic effects of heat and salt stress within and across three generations using four highly inbred Arabidopsis thaliana genotypes (Col, Cvi, Ler and Sha. Salt stress generally decreased fitness, but genotypes were differently affected, suggesting that susceptibility of A. thaliana to salt stress varies among genotypes. Heat stress at an early rosette stage had less detrimental effects but accelerated flowering in three out of four accessions. Additionally, we found three different modes of transgenerational effects on phenotypes, all harboring the potential of being adaptive: heat stress in previous generations induced faster rosette growth in Sha, both under heat and control conditions, resembling a tracking response, while in Cvi, the phenotypic variance of several traits increased, resembling diversified bet-hedging. Salt stress experienced in earlier generations altered plant architecture of Sha under salt but not control conditions, similar to transgenerational phenotypic plasticity. However, transgenerational phenotypic effects depended on the type of stress as well as on genotype, suggesting that such effects may not be a general response leading to adaptation to novel environmental conditions in A. thaliana.

  20. Ethanol steam reforming heated up by molten salt CSP : reactor assessment

    NARCIS (Netherlands)

    Falco, de M.; Gallucci, F.

    2010-01-01

    In this paper hydrogen production via reforming of ethanol has been studied in a novel hybrid plant consisting in a ethanol reformer and a concentrating solar power (CSP) plant using molten salt as heat carrier fluid. The heat needed for the reforming of ethanol has been supplied to the system by

  1. Ethanol steam reforming heated up by molten salt CSP: Reactor assessment

    NARCIS (Netherlands)

    De Falco, Marcello; Gallucci, F.

    2010-01-01

    In this paper hydrogen production via reforming of ethanol has been studied in a novel hybrid plant consisting in a ethanol reformer and a concentrating solar power (CSP) plant using molten salt as heat carrier fluid. The heat needed for the reforming of ethanol has been supplied to the system by

  2. ABA Is Required for Plant Acclimation to a Combination of Salt and Heat Stress.

    Directory of Open Access Journals (Sweden)

    Nobuhiro Suzuki

    Full Text Available Abiotic stresses such as drought, heat or salinity are a major cause of yield loss worldwide. Recent studies revealed that the acclimation of plants to a combination of different environmental stresses is unique and cannot be directly deduced from studying the response of plants to each of the different stresses applied individually. Here we report on the response of Arabidopsis thaliana to a combination of salt and heat stress using transcriptome analysis, physiological measurements and mutants deficient in abscisic acid, salicylic acid, jasmonic acid or ethylene signaling. Arabidopsis plants were found to be more susceptible to a combination of salt and heat stress compared to each of the different stresses applied individually. The stress combination resulted in a higher ratio of Na+/K+ in leaves and caused the enhanced expression of 699 transcripts unique to the stress combination. Interestingly, many of the transcripts that specifically accumulated in plants in response to the salt and heat stress combination were associated with the plant hormone abscisic acid. In accordance with this finding, mutants deficient in abscisic acid metabolism and signaling were found to be more susceptible to a combination of salt and heat stress than wild type plants. Our study highlights the important role abscisic acid plays in the acclimation of plants to a combination of two different abiotic stresses.

  3. Material Research on Salt Hydrates for Seasonal Heat Storage Application in a Residential Environment

    Energy Technology Data Exchange (ETDEWEB)

    Ferchaud, C.J.; Zondag, H.A.; De Boer, R. [ECN Biomass and Energy Efficiency, Petten (Netherlands)

    2013-09-15

    Water vapor sorption in salt hydrates is a promising method to realize seasonal solar heat storage in the residential sector. Several materials already showed promising performance for this application. However, the stability of these materials needs to be improved for long-term (30 year) application in seasonal solar heat storages. The purpose of this article is to identify the influence of the material properties of the salt hydrates on the performance and the reaction kinetics of the sorption process. The experimental investigation presented in this article shows that the two salt hydrates Li2SO4.H2O and CuSO4.5H2O can store and release heat under the operating conditions of a seasonal solar heat storage in a fully reversible way. However, these two materials show differences in terms of energy density and reaction kinetics. Li2SO4.H2O can release heat with an energy density of around 0.80 GJ/m{sup 3} within 4 hours of rehydration at 25C, while CuSO4.5H2O needs around 130 hours at the same temperature to be fully rehydrated and reaches an energy density of 1.85 GJ/m{sup 3}. Since the two salts are dehydrated and hydrated under the same conditions, this difference in behavior is directly related to the intrinsic properties of the materials.

  4. Aerosol formation from heat and mass transfer in vapour-gas mixtures

    International Nuclear Information System (INIS)

    Clement, C.F.

    1985-01-01

    Heat and mass transfer equations and their coupling to the equation for the aerosol size distribution are examined for mixtures in which pressure changes are slow. Specific results in terms of Cn (the condensation number) and Le (the Lewis number - the ratio of the relative rates of evaporation and condensation) are obtained for the proportion of vapour condensing as a aerosol during the cooling and heating of a mixture in a well-mixed cavity. The assumption of allowing no supersaturations, the validity of which is examined, is shown to lead to maximum aerosol formation. For water vapour-air mixtures predictions are made as to temperature regions in which aerosols will evaporate or not form in cooling processes. The results are also qualitatively applied to some atmospheric effects as well as to water aerosols formed in the containment of a pressurized water reactor following a possible accident. In this context, the present conclusion that the whereabouts of vapour condensation is controlled by heat and mass transfer, contrasts with previous assumptions that the controlling factor is relative surface areas. (U.K.)

  5. Specific-heat measurements on dilute 3He-4He mixtures

    International Nuclear Information System (INIS)

    Zeeuw, H.C.M. van der.

    1985-01-01

    The author measured the specific heat of dilute 3 He- 4 He mixtures in the concentration range from X = 1 x 10 -3 to X = 3 x 10 -3 and in the temperature range from 100 mK to 600 mK. This has been done by means of a thermal relaxation method. This method provides some interesting features and is applied, to our knowledge, for the first time to dilute 3 He- 4 He mixtures. To reach the required temperature range for our experiments a 4 He circulating 3 He- 4 He dilution refrigerator has been constructed. The results confirm the deviation of the 3 He contribution to the specific heat from the ideal Fermi gas behaviour. (Auth.)

  6. The development of a lower heat concrete mixture for mass concrete placement conditions

    Science.gov (United States)

    Crowley, Aaron Martin

    The hydration process of portland cement (PC) is exothermic; therefore, the thermal behavior of concrete has to be taken into consideration when placed in a large mass. The research presented involves a Tennessee Department of Transportation (TDOT) Class S (seal) portland cement concrete (PCC) which is used as a foundation seal during construction of bridge abutments and piers. A Class S PCC mixture meeting the 2006 TDOT specifications has the potential to generate excessive amounts of heat and induce thermal cracking in structural elements. The purpose of the study is to reduce the heat generation of a Class S PCC while maintaining adequate values of other engineering properties. Due to the possibility of underwater placement of a Class S PCC, reduction in the total cementing materials content were not considered in this study. Five candidate mixtures were used to compare against a typical TDOT Class S mixture. The five candidate Class S-LH (lower heat) mixtures were 45, 60, 70% Grade 120 slag substitutions for PC as well as two ternary mixtures containing Grade 120 slag and Class F fly ash. Ten batches of each mixture were produced. All plastic and hardened properties met TDOT 604.03 Class S requirements for analytical comparison. The 70% Grade 120 slag Class S-LH mixture was analytically superior for all hardened properties and at reducing heat generation. Since the 70% Grade 120 slag Class S-LH mixture proved to be superior in laboratory conditions; it was selected for further evaluation in the field testing portion of the research. The 70% Grade 120 slag mixture produced a significantly lower maximum temperature as well as a significantly lower maximum differential temperature than a TDOT Class S mixture with 20% Class C fly ash in side-by-side 18 cubic yard cube field placements. Research results and literature recommend that engineers should decide when mass concrete conditions are appropriate during construction practices. When mass concrete conditions are

  7. The Characteristic of Molten Heat Salt Storage System Utilizing Solar Energy Combined with Valley Electric

    Directory of Open Access Journals (Sweden)

    LI .Jiu-ru

    2017-02-01

    Full Text Available With the environmental pollution and energy consumption clue to the large difference between peak and valley of power grid,the molten salt heat storage system(MSHSS utilizing solar Energy combined with valley electric is presented for good energy saving and low emissions. The costs of MSHSS utilizing solar Energy combined with valley electric are greatly reduced. The law of heat transfer in molten salt heat storage technology is studied with the method of grey correlation analysis. The results show the effect of elbow sizes on surface convective heat transfer coefficient with different flow velocities.

  8. An experimental test plan for the characterization of molten salt thermochemical properties in heat transport systems

    International Nuclear Information System (INIS)

    Calderoni, Pattrick

    2010-01-01

    Molten salts are considered within the Very High Temperature Reactor program as heat transfer media because of their intrinsically favorable thermo-physical properties at temperatures starting from 300 C and extending up to 1200 C. In this context two main applications of molten salt are considered, both involving fluoride-based materials: as primary coolants for a heterogeneous fuel reactor core and as secondary heat transport medium to a helium power cycle for electricity generation or other processing plants, such as hydrogen production. The reference design concept here considered is the Advanced High Temperature Reactor (AHTR), which is a large passively safe reactor that uses solid graphite-matrix coated-particle fuel (similar to that used in gas-cooled reactors) and a molten salt primary and secondary coolant with peak temperatures between 700 and 1000 C, depending upon the application. However, the considerations included in this report apply to any high temperature system employing fluoride salts as heat transfer fluid, including intermediate heat exchangers for gas-cooled reactor concepts and homogeneous molten salt concepts, and extending also to fast reactors, accelerator-driven systems and fusion energy systems. The purpose of this report is to identify the technical issues related to the thermo-physical and thermo-chemical properties of the molten salts that would require experimental characterization in order to proceed with a credible design of heat transfer systems and their subsequent safety evaluation and licensing. In particular, the report outlines an experimental R and D test plan that would have to be incorporated as part of the design and operation of an engineering scaled facility aimed at validating molten salt heat transfer components, such as Intermediate Heat Exchangers. This report builds on a previous review of thermo-physical properties and thermo-chemical characteristics of candidate molten salt coolants that was generated as part

  9. An experimental test plan for the characterization of molten salt thermochemical properties in heat transport systems

    Energy Technology Data Exchange (ETDEWEB)

    Pattrick Calderoni

    2010-09-01

    Molten salts are considered within the Very High Temperature Reactor program as heat transfer media because of their intrinsically favorable thermo-physical properties at temperatures starting from 300 C and extending up to 1200 C. In this context two main applications of molten salt are considered, both involving fluoride-based materials: as primary coolants for a heterogeneous fuel reactor core and as secondary heat transport medium to a helium power cycle for electricity generation or other processing plants, such as hydrogen production. The reference design concept here considered is the Advanced High Temperature Reactor (AHTR), which is a large passively safe reactor that uses solid graphite-matrix coated-particle fuel (similar to that used in gas-cooled reactors) and a molten salt primary and secondary coolant with peak temperatures between 700 and 1000 C, depending upon the application. However, the considerations included in this report apply to any high temperature system employing fluoride salts as heat transfer fluid, including intermediate heat exchangers for gas-cooled reactor concepts and homogenous molten salt concepts, and extending also to fast reactors, accelerator-driven systems and fusion energy systems. The purpose of this report is to identify the technical issues related to the thermo-physical and thermo-chemical properties of the molten salts that would require experimental characterization in order to proceed with a credible design of heat transfer systems and their subsequent safety evaluation and licensing. In particular, the report outlines an experimental R&D test plan that would have to be incorporated as part of the design and operation of an engineering scaled facility aimed at validating molten salt heat transfer components, such as Intermediate Heat Exchangers. This report builds on a previous review of thermo-physical properties and thermo-chemical characteristics of candidate molten salt coolants that was generated as part of the

  10. Trial production of ceramic heat storage unit and study on thermal properties and thermal characteristics of the heat storage unit. Mixed salts of Na2CO3, MgCl2 and CaCl2 as heat storage medium

    International Nuclear Information System (INIS)

    Shiina, Yasuaki

    1998-12-01

    Heat storage technique of high temperature and high density latent heat can be applied to an accumulator of heat generated by nuclear power plant in the night and to a thermal load absorber. For the practical use of the heat storage technique, it is important to improve heat exchange characteristics between heat storage medium, such as molten salts, and heat transfer fluid because of low thermal conductivity of the molten salts, to improve durability among molten salt and structure materials and to develop the molten salt with stable thermal properties for a long period. Considering the possibility for the improvement of heat exchange characteristics of phase change heat storage system by absorbing molten salt in porous ceramics with high thermal conductivity, high temperature proof and high resistance to corrosion, several samples of the ceramics heat storage unit were made. Basic characteristics of the samples (strength, thermal properties, temperature characteristics during phase change) were measured experimentally and analytically to study the utility and applicability of the samples for the heat storage system. The results show that the heat storage unit should be used in inactive gas condition because water in the air absorbed in the molten salts would yield degeneration of properties and deterioration of strength and that operation temperature should be confined near fusion temperature because some molten salts would be vaporized and mass would be decreased in considerable high temperature. The results also show that when atmospheric temperature changes around the melting temperature, change in ceramic temperature becomes small. This result suggests the possibility that ceramic heat storage unit could be used as thermal load absorber. (J.P.N.)

  11. Phase change and heat transfer characteristics of a eutectic mixture of palmitic and stearic acids as PCM in a latent heat storage system

    International Nuclear Information System (INIS)

    Baran, Guelseren; Sari, Ahmet

    2003-01-01

    The phase change and heat transfer characteristics of a eutectic mixture of palmitic and stearic acids as phase change material (PCM) during the melting and solidification processes were determined experimentally in a vertical two concentric pipes energy storage system. This study deals with three important subjects. First is determination of the eutectic composition ratio of the palmitic acid (PA) and stearic acid (SA) binary system and measurement of its thermophysical properties by differential scanning calorimetry (DSC). Second is establishment of the phase transition characteristics of the mixture, such as the total melting and solidification temperatures and times, the heat transfer modes in the melted and solidified PCM and the effect of Reynolds and Stefan numbers as initial heat transfer fluid (HTF) conditions on the phase transition behaviors. Third is calculation of the heat transfer coefficients between the outside wall of the HTF pipe and the PCM, the heat recovery rates and heat fractions during the phase change processes of the mixture and also discussion of the effect of the inlet HTF parameters on these characteristics. The DSC results showed that the PA-SA binary system in the mixture ratio of 64.2:35.8 wt% forms a eutectic, which melts at 52.3 deg. C and has a latent heat of 181.7 J g -1 , and thus, these properties make it a suitable PCM for passive solar space heating and domestic water heating applications with respect to climate conditions. The experimental results also indicated that the eutectic mixture of PA-SA encapsulated in the annulus of concentric double pipes has good phase change and heat transfer characteristics during the melting and solidification processes, and it is an attractive candidate as a potential PCM for heat storage in latent heat thermal energy storage systems

  12. Flow boiling heat transfer coefficients at cryogenic temperatures for multi-component refrigerant mixtures of nitrogen-hydrocarbons

    Science.gov (United States)

    Ardhapurkar, P. M.; Sridharan, Arunkumar; Atrey, M. D.

    2014-01-01

    The recuperative heat exchanger governs the overall performance of the mixed refrigerant Joule-Thomson cryocooler. In these heat exchangers, the non-azeotropic refrigerant mixture of nitrogen-hydrocarbons undergoes boiling and condensation simultaneously at cryogenic temperature. Hence, the design of such heat exchanger is crucial. However, due to lack of empirical correlations to predict two-phase heat transfer coefficients of multi-component mixtures at low temperature, the design of such heat exchanger is difficult.

  13. Retrieving simulated volcanic, desert dust and sea-salt particle properties from two/three-component particle mixtures using UV-VIS polarization lidar and T matrix

    Directory of Open Access Journals (Sweden)

    G. David

    2013-07-01

    Full Text Available During transport by advection, atmospheric nonspherical particles, such as volcanic ash, desert dust or sea-salt particles experience several chemical and physical processes, leading to a complex vertical atmospheric layering at remote sites where intrusion episodes occur. In this paper, a new methodology is proposed to analyse this complex vertical layering in the case of a two/three-component particle external mixtures. This methodology relies on an analysis of the spectral and polarization properties of the light backscattered by atmospheric particles. It is based on combining a sensitive and accurate UV-VIS polarization lidar experiment with T-matrix numerical simulations and air mass back trajectories. The Lyon UV-VIS polarization lidar is used to efficiently partition the particle mixture into its nonspherical components, while the T-matrix method is used for simulating the backscattering and depolarization properties of nonspherical volcanic ash, desert dust and sea-salt particles. It is shown that the particle mixtures' depolarization ratio δ p differs from the nonspherical particles' depolarization ratio δns due to the presence of spherical particles in the mixture. Hence, after identifying a tracer for nonspherical particles, particle backscattering coefficients specific to each nonspherical component can be retrieved in a two-component external mixture. For three-component mixtures, the spectral properties of light must in addition be exploited by using a dual-wavelength polarization lidar. Hence, for the first time, in a three-component external mixture, the nonsphericity of each particle is taken into account in a so-called 2β + 2δ formalism. Applications of this new methodology are then demonstrated in two case studies carried out in Lyon, France, related to the mixing of Eyjafjallajökull volcanic ash with sulfate particles (case of a two-component mixture and to the mixing of dust with sea-salt and water-soluble particles

  14. Influence of a hindered amine stabilizer (HAS) and inorganic salt mixture on degradation of poly(methyl methacrylate)

    International Nuclear Information System (INIS)

    Silva, Williams B. da; Vasconcelos, Henrique M. de; Aquino, Katia Aparecida da S.; Araujo, Elmo S.

    2009-01-01

    Commercial poly(methyl methacrylate) (PMMA) is used as medical supplies, which is sterilized by gamma irradiation at 25 kGy dose. However, when the PMMA is exposed to gamma rays it undergoes main chain scissions with changes in its properties. Samples of commercial PMMA containing a Hindered Amine Stabilizer (PMMA-HAS) and samples containing a salt mixture of CuCl 2 /KI (PMMA-salt) both at 0.3wt% concentration were investigated. The PMMA samples were purified by re-precipitation in methanol. The samples were irradiated with gamma radiation ( 60 Co) at room temperature in air at dose range of 15-100 kGy. The viscosity- average molecular weight (M v ) was analyzed by viscosity technique. Comparison of viscosity results obtained before and after irradiation of PMMA showed a decrease in Mv values on irradiated samples with the increase in dose, reflecting the random scissions that occurred in the main chain. However the decrease on M v is less in PMMA-HAS samples than control PMMA. The G value (scissions/100 eV of energy transferred to the system) obtained by viscosity analysis were used to calculated the protection value of HAS on PMMA matrix. The HAS showed a protection of 61% on PMMA molecules exposed to gamma irradiation. No efficiency action of salt mixture was observed on radiolytic degradation of PMMA. On the other hand the CuCl 2 /KI mixture influenced the mechanical behavior of PMMA and the HAS additive increased the maximum thermal degradation temperature of PMMA matrix. (author)

  15. Nonequimolar Mixture of Organic Acids and Bases: An Exception to the Rule of Thumb for Salt or Cocrystal.

    Science.gov (United States)

    Pratik, Saied Md; Datta, Ayan

    2016-08-04

    Formation of salt and/or cocrystal from organic acid-base mixtures has significant consequences in the pharmaceutical industry and its related intellectual property rights (IPR). On the basis of calculations using periodic dispersion corrected DFT (DFT-D2) on formic acid-pyridine adduct, we have demonstrated that an equimolar stoichiometric ratio (1:1) exists as a neutral cocrystal. On the other hand, the nonequimolar stoichiometry (4:1) readily forms an ionic salt. While the former result is in agreement with the ΔpKa rule between the base and the acid, the latter is not. Calculations reveal that, within the equimolar manifold (n:n; n = 1-4), the mixture exists as a hydrogen bonded complex in a cocrystal-like environment. However, the nonequimolar mixture in a ratio of 5:1 and above readily forms salt-like structures. Because of the cooperative nature of hydrogen bonding, the strength of the O-H···N hydrogen bond increases and eventually transforms into O(-)···H-N(+) (complete proton transfer) as the ratio of formic acid increases and forms salt as experimentally observed. Clearly, an enhanced polarization of formic acid on aggregation increases its acidity and, hence, facilitates its transfer to pyridine. Motion of the proton from formic acid to pyridine is shown to follow a relay mechanism wherein the proton that is far away from pyridine is ionized and is subsequently transferred to pyridine via hopping across the neutral formic acid molecules (Grotthuss type pathway). The dynamic nature of protons in the condensed phase is also evident for cocrystals as the barrier of intramolecular proton migration in formic acid (leading to tautomerism), ΔH(⧧)tautomer = 17.1 kcal/mol in the presence of pyridine is half of that in free formic acid (cf. ΔH(⧧)tautomer = 34.2 kcal/mol). We show that an acid-base reaction can be altered in the solid state to selectively form a cocrystal or salt depending on the strength and nature of aggregation.

  16. Use of additives to improve the capacity of bituminous mixtures to be heated by means of microwaves

    International Nuclear Information System (INIS)

    Gallego, J.; Val, M.A. del; Contreras, V.; Páez, A.

    2017-01-01

    This study examines the potential of adding electric arc furnace slag to bituminous mixtures to be heated by microwaves. The susceptibility of bituminous mixtures to microwave energy is limited and so, in order to improve the energy performance of the heating process, it is necessary to incorporate additives or components to the mixture so as to improve the capacity for microwave heating. The article presents the results of adding various components, (steel wool, scrap tire wire, silicon carbide, iron filings) and an alternative aggregate: electric arc furnace slag. According to the results obtained in the laboratory, slag addition of at least 5% by weight of the bituminous mixture represents the best option for both technical and economic reasons. The results may promote the valorization of this steel industry residue in bituminous mixtures by improving microwave heating response. [es

  17. Salt hydrates and other phase-change materials

    Energy Technology Data Exchange (ETDEWEB)

    Cantor, S.

    1978-01-01

    The objectives of the project are: to ascertain thermal performance of Na/sub 2/SO/sub 4/ . 10H/sub 2/O and other incongruently melting salt hydrates by calorimetric investigation of melting and freezing; and select compounds and mixtures suitable for isothermal heat storage within the range, 90 to 250/sup 0/C. Selection is to be used on laboratory evaluation as well as on economic and technical screening criteria.

  18. Mixtures of lecithin and bile salt can form highly viscous wormlike micellar solutions in water.

    Science.gov (United States)

    Cheng, Chih-Yang; Oh, Hyuntaek; Wang, Ting-Yu; Raghavan, Srinivasa R; Tung, Shih-Huang

    2014-09-02

    The self-assembly of biological surfactants in water is an important topic for study because of its relevance to physiological processes. Two common types of biosurfactants are lecithin (phosphatidylcholine) and bile salts, which are both present in bile and involved in digestion. Previous studies on lecithin-bile salt mixtures have reported the formation of short, rodlike micelles. Here, we show that lecithin-bile salt micelles can be further induced to grow into long, flexible wormlike structures. The formation of long worms and their resultant entanglement into transient networks is reflected in the rheology: the fluids become viscoelastic and exhibit Maxwellian behavior, and their zero-shear viscosity can be up to a 1000-fold higher than that of water. The presence of worms is further confirmed by data from small-angle neutron and X-ray scattering and from cryo-transmission electron microscopy (cryo-TEM). We find that micellar growth peaks at a specific molar ratio (near equimolar) of bile salt:lecithin, which suggests a strong binding interaction between the two species. In addition, micellar growth also requires a sufficient concentration of background electrolyte such as NaCl or sodium citrate that serves to screen the electrostatic repulsion of the amphiphiles and to "salt out" the amphiphiles. We postulate a mechanism based on changes in the molecular geometry caused by bile salts and electrolytes to explain the micellar growth.

  19. Studies on the formation of aluminides in heated Nb–Al powder mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Sina, H.; Iyengar, S.

    2015-04-15

    Highlights: • Combustion initiates with NbAl{sub 3} formation above the melting point of aluminum. • Nb + 3Al samples yield almost 100% NbAl{sub 3} after combustion. • Nb-rich samples yield multi-phase products after heating to 1000 °C. • Reacted Nb-rich samples yield stable phases on reheating. • For NbAl{sub 3}, calculations show ΔH{sub formation} = −153 ± 15, E{sub activation} = 255 ± 26 kJ mol{sup −1}. - Abstract: The formation of aluminides during the heating of Nb–Al powder mixtures with different initial compositions (25, 33.3 and 75 at.% Al) has been studied using a differential scanning calorimeter. The effect of parameters like particle size, compaction and heating rate on the onset temperature of reaction has been determined. The results show that an increase in heating rate leads to an increase in onset temperature for compacted as well as loose powder samples in the particle size range considered. For Al-rich mixtures, compaction increases the onset temperature irrespective of particle size. For all samples, finer aluminum particles and slower heating rates resulted in a decrease in onset temperature while higher aluminum contents in the mixture led to a higher reaction temperature. In Nb-rich samples, compaction led to a decrease in the onset temperatures. NbAl{sub 3} was the first compound to form in all the mixtures, irrespective of the initial composition. After heating to 1000 °C, EDS and XRD analyses confirmed the formation of only NbAl{sub 3} in Al-rich samples and a mixture of NbAl{sub 3} and Nb{sub 2}Al along with unreacted niobium particles in Nb-rich samples. A subsequent heat treatment was necessary to obtain a single aluminide corresponding to the initial composition. These observations can be explained on the basis of niobium dissolution in molten aluminum and subsequent precipitation of NbAl{sub 3} in Al-rich samples and solid state diffusion through Nb{sub 3}Al and Nb{sub 2}Al phases in Nb-rich samples. For Nb

  20. Improving the performance of booster heat pumps using zeotropic mixtures

    DEFF Research Database (Denmark)

    Zühlsdorf, B.; Meesenburg, W.; Ommen, T. S.

    2018-01-01

    Abstract This study demonstrated an increase in the thermodynamic performance of a booster heat pump, which was achieved by choosing the working fluid among pure and mixed fluids. The booster heat pump was integrated in an ultra-low-temperature district heating network with a forward temperature...... of 40 °C to produce domestic hot water, by heating part of the forward stream to 60 °C, while cooling the remaining part to the return temperature of 25 °C. The screening of working fluids considered 18 pure working fluids and all possible binary mixtures of these fluids. The most promising solutions...... heat supply system while being economically competitive to pure fluids....

  1. Heat transfer in nucleate boiling of R134a/R152a mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Kehong [Hugo Kern und Liebers GmbH and Co. KG, Schramberg (Germany); Spindler, Klaus; Hahne, Erich [Universitaet Stuttgart ITW, Stuttgart (Germany)

    2010-11-15

    Heat transfer coefficients were measured on a horizontal platinum wire and converted to data on horizontal copper tubes. The measurements spanned a large region of pressures p*=p/p{sub crit}=0.05-0.50 and heat fluxes of q=10{sup 3}-1.5 x 10{sup 5} W/m{sup 2}. The preparation of the test equipment is described. The effects of pressure and concentration on the heat transfer coefficients are shown. The mixture behaves very much like an azeotropic mixture; concentration has only a small effect, the heat transfer coefficients can be obtained from the heat transfer coefficients of the pure components according to their molar fractions. The conversion steps from wire- to tube-data are presented. A comparison of wire-data with correlations given in literature is shown. It renders good agreement. (orig.)

  2. Use of salt hydrates as a heat storage medium for loading latent heat stores

    Energy Technology Data Exchange (ETDEWEB)

    Wasel-Nielen, J.; Merkenich, K.; Gehrig, O.; Sommer, K.

    1985-05-15

    The use of salt hydrate melting in the loading process is not favourable from the technical and energy point of view. According to the invention, a saturated solution is filled into the store at the required phase conversion point. This can be done by neutralization (e.g. a reaction between H/sub 3/PO4/NaOH/H/sub 2/O in the mol ratio of 1/2/10 gives Na/sub 2/HPO/sub 4/.12H/sub 2/O corresponding to Na/sub 2/SO/sub 4/.10H/sub 2/O), or by conversion of acid/basic salts with bases/acids respectively (e.g.Na/sub 3/PO/sub 4//H/sub 3/PO/sub 4//H/sub 2/O in the ratio 2/1/36 to Na/sub 2/HPO/sub 4/.12H/sub 2/O, analogous to K/sub 3/PO/sub 4/.7H/sub 2/O, KF.4H/sub 2/O or CaCl/sub 2/.6H/sub 2/O). During the process one must ensure accurate dosing and good mixing. A saturated solution is also available by dissolving salts free of water/or with little water in appropriate quantities of water below the melting point of the required hydrate. Such systems are used where the phase change heat exceeds the heat capacity of the water at this temperature and the hydrates should contain at least three crystal water molecules more than the nearest hydrate.

  3. Behavior study on Na heat pipe in passive heat removal system of new concept molten salt reactor

    International Nuclear Information System (INIS)

    Wang Chenglong; Tian Wenxi; Su Guanghui; Zhang Dalin; Wu Yingwei; Qiu Suizheng

    2013-01-01

    The high temperature Na heat pipe is an effective device for transporting heat, which is characterized by remarkable advantages in conductivity, isothermally and passively working. The application of Na heat pipe on passive heat removal system of new concept molten salt reactor (MSR) is significant. The transient performance of high temperature Na heat pipe was simulated by numerical method under the MSR accident. The model of the Na heat pipe was composed of three conjugate heat transfer zones, i.e. the vapor, wick and wall. Based on finite element method, the governing equations were solved by making use of FORTRAN to acquire the profiles of the temperature, velocity and pressure for the heat pipe transient operation. The results show that the high temperature Na heat pipe has a good performance on operating characteristics and high heat transfer efficiency from the frozen state. (authors)

  4. Investigation of complexing in solutions of salt mixture In(NO/sub 3/)/sub 3/-NaVO/sub 3/

    Energy Technology Data Exchange (ETDEWEB)

    Nakhodnova, A N; Listratenko, I V

    1987-05-01

    Spectrophotometry, conductometry and pH-metry are used to investigate properties and composition of the solid phases of isomolar series of In(NO/sub 3/)/sub 3/-NaVO/sub 3/ salt mixture solutions and series of solutions having constant concentration of one of the components and varied of the other. Results of investigation are presented. It is stated that in the investigated solution series in weakly acid media HPA with the ratios (In/sup 3+/):(V/sup 5+/) being equal to 11:1, 6:1, and 1:9, are formed. Composition of the complexes is mainly defined by the ratio of the components in In(NO/sub 3/)/sub 3/ and NaVO/sub 3/ salt mixture solutions and the medium acidity. Compounds of Na/sub 2/OxIn/sub 2/O/sub 3/x2.5V/sub 2/O/sub 5/x8.5H/sub 2/O and Cs/sub 2/OxIn/sub 2/O/sub 3/x6V/sub 2/O/sub 5/x6.5H/sub 2/O empirical formulae are separated. Results of IR spectroscopy, derivatography and X-ray phase analysis of the corresponding salts are presented.

  5. Pressure-driven brine migration in a salt repository

    International Nuclear Information System (INIS)

    Hwang, Y.; Chambre, P.L.; Pigford, T.H.; Lee, W.W.L.

    1989-01-01

    The traditional view is that salt is the ideal rock for isolation of nuclear waste because it is ''dry'' and probably ''impermeable.'' The existence of salt through geologic time is prima facie evidence of such properties. Experiments and experience at potential salt sites for geologic repositories have indicated that while porosity and permeability of salt are low, the salt may be saturated with brine. If this hypothesis is correct, then it is possible to have brine flow due to pressure differences within the salt. If there is pressure-driven brine migration in salt repositories then it is paramount to know the magnitude of such flow because inward brine flow would affect the corrosion rate of nuclear waste containers and outward brine flow might affect radionuclide transport rates. Brine exists in natural salt as inclusions in salt crystals and in grain boundaries. Brine inclusions in crystals move to nearby grain boundaries when subjected to a temperature gradient, because of temperature-dependent solubility of salt. Brine in grain boundaries moves under the influence of a pressure gradient. When salt is mined to create a waste repository, brine from grain boundaries will migrate into the rooms, tunnels and boreholes because these cavities are at atmospheric pressure. After a heat-emitting waste package is emplaced and backfilled, the heat will impose a temperature gradient in the surrounding salt that will cause inclusions in the nearby salt to migrate to grain boundaries within a few years, adding to the brine that was already present in the grain boundaries. The formulation of brine movement with salt as a thermoelastic porous medium, in the context of the continuum theory of mixtures, has been described. In this report we show the mathematical details and discuss the results predicted by this analysis

  6. Wall heat transfer coefficient in a molten salt bubble column: testing the experimental setup

    CSIR Research Space (South Africa)

    Skosana, PJ

    2014-10-01

    Full Text Available reactors that are highly exothermic or endothermic. This paper presents the design and operation of experimental setup used for measurement of the heat transfer coefficient in molten salt media. The experimental setup was operated with tap water, heat...

  7. Process for using a saturated salt hydrate solution as a heat storing material in a latent heat storage device. Anvendelse av en mettet salthydratloesning som varme-lagringsmateriale i et latent varmemagasin

    Energy Technology Data Exchange (ETDEWEB)

    Wasel-Nielen, J.; Merkenich, K.; Gehrig, O.; Sommer, K.

    1984-06-12

    Disclosed is a process for preparing a salt composition having a phase transition heat greater than the heat capacity of water at a corresponding temperature, for charging a latent heat storage device. The process comprises the steps of providing an acid component of the salt hydrate; providing a base component of the salt hydrate, wherein at least one of the acid or base components comprises a liquid; and mixing the acid component and the base component together to cause a neutralization reaction. The acid and base components are mixed in a ratio and in respective concentrations to produce a salt hydrate solution saturated at the desired phase transition point. The claims concern the use of saturated salt hydrate solution with a certain phase transition heat produced in a particular way.

  8. SALT-INDUCED TRANSITION FROM A MICELLAR TO A LAMELLAR LIQUID-CRYSTALLINE PHASE IN DILUTE MIXTURES OF ANIONIC AND NONIONIC SURFACTANTS IN AQUEOUS-SOLUTION

    NARCIS (Netherlands)

    SEIN, A; ENGBERTS, JBFN; VANDERLINDEN, E; VANDEPAS, JC

    In dilute mixtures of anionic surfactant, sodium dodecylbenzenesulfonate (NaDoBS), and nonionic poly(ethylene oxide) alkyl monoether (C13-15E(7)) a transition from a micellar to a lamellar phase is found at high salting-out electrolyte (NaCit) concentrations. With an increase of the salt

  9. Melting and solidification characteristics of a mixture of two types of latent heat storage material in a vessel

    Science.gov (United States)

    Yu, JikSu; Horibe, Akihiko; Haruki, Naoto; Machida, Akito; Kato, Masashi

    2016-11-01

    In this study, we investigated the fundamental melting and solidification characteristics of mannitol, erythritol, and their mixture (70 % by mass mannitol: 30 % by mass erythritol) as potential phase-change materials (PCMs) for latent heat thermal energy storage systems, specifically those pertaining to industrial waste heat, having temperatures in the range of 100-250 °C. The melting point of erythritol and mannitol, the melting peak temperature of their mixture, and latent heat were measured using differential scanning calorimetry. The thermal performance of the mannitol mixture was determined during melting and solidification processes, using a heat storage vessel with a pipe heat exchanger. Our results indicated phase-change (fusion) temperatures of 160 °C for mannitol and 113 and 150 °C for the mannitol mixture. Nondimensional correlation equations of the average heat transfer during the solidification process, as well as the temperature and velocity efficiencies of flowing silicon oil in the pipe and the phase-change material (PCM), were derived using several nondimensional parameters.

  10. Mineral and sensory profile of seasoned cracked olives packed in diverse salt mixtures.

    Science.gov (United States)

    Moreno-Baquero, J M; Bautista-Gallego, J; Garrido-Fernández, A; López-López, A

    2013-05-01

    This work studies the effect of packing cracked seasoned olives with NaCl, KCl, and CaCl(2) mixture brines on their mineral nutrients and sensory attributes, using RSM methodology. The Na, K, Ca, and residual natural Mn contents in flesh as well as saltiness, bitterness and fibrousness were significantly related to the initial concentrations of salts in the packing solution. This new process led to table olives with a significantly lower sodium content (about 31%) than the traditional product but fortified in K and Ca. High levels of Na and Ca in the flesh led to high scores of acidity and saltiness (the first descriptor) and bitterness (the second) while the K content was unrelated to any sensory descriptor. The new presentations using moderate proportions of alternative salts will therefore have improved nutritional value and healthier characteristics but only a slightly modified sensory profile. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Radiochemical determination of Beryllium-7 in a fission-product mixture containing many inorganic salts

    International Nuclear Information System (INIS)

    Prigent, Y.; Van Kote, F.

    1969-01-01

    A radiochemical method is described for analysing beryllium-7 in a mixture of fission products containing many inorganic salts. By studying the influence of various parameters it has been possible to speed up the decontamination on an anionic resin using an HCl isopropanol mixture, as proposed by KORKISCH- and al. Be(OH) 2 is first precipitated in the presence of E.D.T.A.; the main contaminants are then fixed on Dowex 1 x 10 in 12 M HCl and on Dowex 1 x 8 in a 3 M HCl (20 per cent)-isopropanol (80 per cent) (vol/vol) mixture. The Be, which is not fixed, is precipitated by NH 4 H 2 PO 4 in the presence of E.D.T.A., ignited as Be 2 P 2 O 7 , filtered, weighed, and analyzed by gamma spectrometry. The method makes it possible to dose 4 samples in 16 hours with a chemical yield of 80 per cent, using a 4 day-old fission product solution. The overall decontamination factor, exceeds 10 8 . (authors) [fr

  12. Investigation of Boiling Heat Transfer of Binary Mixture from Vertical Tube Embedded in porous Media

    Institute of Scientific and Technical Information of China (English)

    HailongMo; TongzeMa; 等

    1996-01-01

    Ethanol-water binary mixtures with 7 different mole fractions of ethanol ranging from 0 to 1 were adopted as testing liquids in the experiment.The vertical heating tube was inserted in porous matrix composed of five well sorted glass beads whise diameters range from 0.5 to 4.3mm.Due to the effect of composition,the trend of combination of vapor bubbles was reduced.resulting in the increase of peak heat flux of binary mixture,With the increase of ethanol mole fraction,0.5mm diameter bead of peak heat flux of binary mixture.with the increase of ethanol mole fraction.0.5mm diameter bead had lower value of peak heat flux,while for pure liquid the critical state is difficult to appear,with given diameter of glass bead,there existed an optimum value of mole fraction of ethanol,which was decreased with the increase of bead diameter,A dimensionless heat transfer coefficient was predicted through the introduction of a dimensionless parameter of porous matrix which agreed with the experimental results satisfactorily.

  13. Intermediate heat exchanger and steam generator designs for the HYLIFE-II fusion power plant using molten salts

    International Nuclear Information System (INIS)

    Lee, Y.T.; Hoffman, M.A.

    1992-01-01

    The HYLIFE-II fusion power plant employs the molten salt, Flibe, for the liquid jets which form the self-healing 'first wall' of the reactor. The molten salt, sodium fluoroborate then transports the heat from the IHX's to the steam generators. The design and optimization of the IHX's and the steam generators for use with molten salts has been done as part of the HYLIFE-II conceptual design study. The results of this study are described, and reference designs of these large heat exchangers are selected to minimize the cost of electricity while satisfying other important constraints

  14. Facile preparation of highly pure KF-ZrF4 molten salt

    Science.gov (United States)

    Zong, Guoqiang; Cui, Zhen-Hua; Zhang, Zhi-Bing; Zhang, Long; Xiao, Ji-Chang

    2018-03-01

    The preparation of highly pure KF-ZrF4 (FKZr) molten salt, a potential secondary coolant in molten salt reactors, was realized simply by heating a mixture of (NH4)2ZrF6 and KF. X-ray diffraction analysis indicated that the FKZr molten salt was mainly composed of KZrF5 and K2ZrF6. The melting point of the prepared FKZr molten salt was 420-422 °C under these conditions. The contents of all metal impurities were lower than 20 ppm, and the content of oxygen was lower than 400 ppm. This one-step protocol avoids the need for a tedious procedure to prepare ZrF4 and for an additional purification process to remove oxide impurities, and is therefore a convenient, efficient and economic preparation method for high-purity FKZr molten salt.

  15. Experimental studies on natural circulation in molten salt loops

    International Nuclear Information System (INIS)

    Srivastava, A.K.; Borgohain, A.; Maheshwari, N.K.; Vijayan, P.K.

    2015-01-01

    Molten salts are increasingly getting attention as a coolant and storage medium in solar thermal power plants and as a liquid fuel, blanket and coolant in Molten Salt Reactors (MSR’s). Two different test facilities named Molten Salt Natural Circulation Loop (MSNCL) and Molten Active Fluoride salt Loop (MAFL) have been setup for thermal hydraulics, instrument development and material related studies relevant to MSR and solar power plants. The working medium for MSNCL is a molten nitrate salt which is a mixture of NaNO 3 and KNO 3 in 60:40 ratio and proposed as one of the coolant option for molten salt based reactor and coolant as well as storage medium for solar thermal power application. On the other hand, the working medium for MAFL is a eutectic mixture of LiF and ThF 4 and proposed as a blanket salt for Indian Molten Salt Breeder Reactor (MSBR). Steady state natural circulation experiments at different power level have been performed in the MSNCL. Transient studies for startup of natural circulation, loss of heat sink, heater trip and step change in heater power have also been carried out in the same. A 1D code LeBENC, developed in-house to simulate the natural circulation characteristics in closed loops, has been validated with the experimental data obtained from MSNCL. Further, LeBENC has been used for Pretest analysis of MAFL. This paper deals with the description of both the loops and experimental studies carried out in MSNCL. Validation of LeBENC along with the pretest analysis of MAFL using the same are also reported in this paper. (author)

  16. Accuracy analysis of the thermal diffusivity measurement of molten salts by stepwise heating method

    International Nuclear Information System (INIS)

    Kato, Yoshio; Furukawa, Kazuo

    1976-11-01

    The stepwise heating method for measuring thermal diffusivity of molten salts is based on the electrical heating of a thin metal plate as a plane heat source in the molten salt. In this method, the following estimations on error are of importance: (1) thickness effect of the metal plate, (2) effective length between the plate and a temperature measuring point and (3) effect of the noise on the temperature rise signal. In this report, a measuring apparatus is proposed and measuring conditions are suggested on the basis of error estimations. The measurements for distilled water and glycerine were made first to test the performance; the results agreed well with standard values. The thermal diffusivities of molten NaNO 3 at 320-380 0 C and of molten Li 2 BeF 4 at 470-700 0 C were measured. (auth.)

  17. Heat transfer and pressure drop for air-water mixtures in an isoflux vertical annulus

    International Nuclear Information System (INIS)

    Khattab, M.; El-Sallak, M.; Morcos, S.M.; Salama, A.

    1996-01-01

    Heat transfer and pressure drop in flows of air-water mixtures have been investigated experimentally in an isoflux vertical annulus. The superficial liquid Reynolds number, as a reference parameter, varied from 4500 to 30 000, at different values of gas-to-liquid superficial velocity ratios up to 20 and surface heat fluxes from 50 to 240 kW/m 2 . Enhancement of the two-phase heat transfer coefficient is pronounced particularly at low liquid superficial velocities. The results are correlated and compared with some models of two-phase, two-component flows for air-water mixtures within their range of validity. Satisfactory agreement is obtained from the trend of the experimental data. (orig.) [de

  18. Study of mixtures based on hydrocarbons used in ORC (Organic Rankine Cycle) for engine waste heat recovery

    International Nuclear Information System (INIS)

    Shu, Gequn; Gao, Yuanyuan; Tian, Hua; Wei, Haiqiao; Liang, Xingyu

    2014-01-01

    For high temperature ORC (Organic Rankine Cycle) used in engine waste heat recovery, it's very critical to select a high temperature working fluid. HCs (Hydrocarbons) usually have excellent cycle performance, but the flammability limits their practical application. Considering that some retardants can be used to suppress flammability, the paper presents an application of mixtures based on hydrocarbons blending with refrigerant retardants to engine waste heat ORC. Three pure hydrocarbons (cyclopentane, cyclohexane, benzene) and two retardants (R11, R123) are selected for combination. Thermal efficiency and exergy loss are selected as the main objective functions. Based on thermodynamic model, the effects of retardants mass fraction, evaporation temperature and IHE (internal heat exchanger) are investigated. Results show that zeotropic mixtures do have higher thermal efficiency and lower exergy loss than pure fluids, at a certain mixture ratio. There exists the OMR (optimal mixture ratio) for different mixtures, and it changes with the evaporation temperature. When adding IHE to system, cycle performance could be obviously improved, and for benzene/R11 (0.7/0.3), the efficiency growth is about 7.12%∼9.72%. Using it, the maximum thermal efficiency of the system can achieve 16.7%, and minimum exergy loss is only 30.76 kW. - Highlights: • A theoretical analysis of Organic Rankine Cycle for engine exhaust heat recovery is proposed. • Mixtures based on hydrocarbons as working fluids have been suggested. • Effects of the IHE (internal heat exchanger) on ORC system are investigated. • OMR (Optimal mixture ratio) changes with the evaporation temperature. • Using the system, maximum thermal efficiency can achieve 16.7%

  19. Numerical research on natural convection in molten salt reactor with non-uniformly distributed volumetric heat generation

    International Nuclear Information System (INIS)

    Qian Libo; Qiu Suizheng; Zhang Dalin; Su Guanghui; Tian Wenxi

    2010-01-01

    Molten salt reactor is one of the six Generation IV systems capable of breeding and transmutation of actinides and long-lived fission products, which uses the liquid molten salt as the fuel solvent, coolant and heat generation simultaneously. The present work presents a numerical investigation on natural convection with non-uniform heat generation through which the heat generated by the fluid fuel is removed out of the core region when the reactor is under post-accident condition or zero-power condition. The two-group neutron diffusion equation is applied to calculated neutron flux distribution, which leads to non-uniform heat generation. The SIMPLER algorithm is used to calculate natural convective heat transfer rate with isothermal or adiabatic rigid walls. These two models are coupled through the temperature field and heat sources. The peculiarities of natural convection with non-uniform heat generation are investigated in a range of Ra numbers (10 3 ∼ 10 7 ) for the laminar regime of fluid motion. In addition, the numerical results are also compared with those containing uniform heat generation.

  20. Influence of the ammonium salt anion on the synergistic solvent extraction of lanthanides with mixtures of thenoyltrifluoroacetone and tridecylamine

    International Nuclear Information System (INIS)

    Dukov, I.L.; Jordanov, V.M.

    1998-01-01

    The synergistic solvent extraction of Pr, Gd and Yb with mixtures of thenoyltrifluoroacetone (HTTA) and primary ammonium salt (tridecylammonium chloride or perchlorate, TDAH(Cl, ClO 4 )) in C 6 H 6 has been studied. The composition of the extracted species have been determined as Ln(TTA) 3 TDAHA(A - = Cl - or ClO 4 - ). The values of the equilibrium constant K T,S have been calculated. The influence of the ammonium salt anion on the extraction process has been discussed. The separation factors of the pairs Gd/Pr and Yb/Gd have been determined

  1. Heat transfer correlations for evaporation of refrigerant mixtures flowing inside horizontal microfin tubes

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiaoyan [School of Energy Engineering, Xi' an University of Science and Technology, 58 Yanta Street, Xi' an, Shaanxi 710054 (China); School of Energy and Power Engineering, Xi' an Jiaotong University, 28 Xianning Road, Xi' an, Shaanxi 710049 (China); Yuan, Xiuling [School of Energy and Power Engineering, Xi' an Jiaotong University, 28 Xianning Road, Xi' an, Shaanxi 710049 (China)

    2008-11-15

    Based on the experimental results of R417A flowing inside horizontal microfin tubes, the present work deals with the development of prediction methods for evaporation heat transfer of refrigerant mixtures in microfin tube. The microfin model by Thome et al. is modified by adjusting the convective heat transfer term, and the other microfin model is developed by introducing the enhancement factor into the modified-Kattan model. The comparison of the calculations by several microfin models and the experimental results reveals that the new microfin models developed at the present study are in much better agreement with the experimental results with the reducing average deviation by 30-50% than the models by Thome et al. and Cavallini et al., and are recommended for the prediction of evaporation heat transfer coefficients for non-azeotropic refrigerant mixtures inside microfin tubes. (author)

  2. Heat transfer correlations for evaporation of refrigerant mixtures flowing inside horizontal microfin tubes

    Energy Technology Data Exchange (ETDEWEB)

    Xiaoyan, Zhang [School of Energy Engineering, Xi' an University of Science and Technology, 58 Yanta Street, Xi' an, Shaanxi 710054 (China); School of Energy and Power Engineering, Xi' an Jiaotong University, 28 Xianning Road, Xi' an, Shaanxi 710049 (China)], E-mail: gqzxy@sohu.com; Xiuling, Yuan [School of Energy and Power Engineering, Xi' an Jiaotong University, 28 Xianning Road, Xi' an, Shaanxi 710049 (China)

    2008-11-15

    Based on the experimental results of R417A flowing inside horizontal microfin tubes, the present work deals with the development of prediction methods for evaporation heat transfer of refrigerant mixtures in microfin tube. The microfin model by Thome et al. is modified by adjusting the convective heat transfer term, and the other microfin model is developed by introducing the enhancement factor into the modified-Kattan model. The comparison of the calculations by several microfin models and the experimental results reveals that the new microfin models developed at the present study are in much better agreement with the experimental results with the reducing average deviation by 30-50% than the models by Thome et al. and Cavallini et al., and are recommended for the prediction of evaporation heat transfer coefficients for non-azeotropic refrigerant mixtures inside microfin tubes.

  3. Heat transfer correlations for evaporation of refrigerant mixtures flowing inside horizontal microfin tubes

    International Nuclear Information System (INIS)

    Zhang Xiaoyan; Yuan Xiuling

    2008-01-01

    Based on the experimental results of R417A flowing inside horizontal microfin tubes, the present work deals with the development of prediction methods for evaporation heat transfer of refrigerant mixtures in microfin tube. The microfin model by Thome et al. is modified by adjusting the convective heat transfer term, and the other microfin model is developed by introducing the enhancement factor into the modified-Kattan model. The comparison of the calculations by several microfin models and the experimental results reveals that the new microfin models developed at the present study are in much better agreement with the experimental results with the reducing average deviation by 30-50% than the models by Thome et al. and Cavallini et al., and are recommended for the prediction of evaporation heat transfer coefficients for non-azeotropic refrigerant mixtures inside microfin tubes

  4. Rapid insight into heating-induced phase transformations in the solid state of the calcium salt of atorvastatin using multivariate data analysis

    DEFF Research Database (Denmark)

    Christensen, Niels Peter Aae; Van Eerdenbrugh, Bernard; Kwok, Kaho

    2013-01-01

    To investigate the heating-induced dehydration and melting behavior of the trihydrate phase of the calcium salt of atorvastatin.......To investigate the heating-induced dehydration and melting behavior of the trihydrate phase of the calcium salt of atorvastatin....

  5. Effect of preparation temperature and cycling voltage range on molten salt method prepared SnO2

    CSIR Research Space (South Africa)

    Reddy, MV

    2013-09-01

    Full Text Available We prepared nano-sized tin (IV) oxide (SnO(sub2)) via molten-salt technique: heating a mixture of tin tetrachloride, lithium nitrate and lithium chloride at 280 °C in air. The powders are characterized by X-ray diffraction and transmission scanning...

  6. Specific heat of 4He and 3He--4He mixtures at their lambda transition

    International Nuclear Information System (INIS)

    Gasparini, F.M.; Moldover, M.R.

    1975-01-01

    We have measured the specific heat near the lambda transition of pure 4 He and of five 3 He-- 4 He mixtures up to a mole fraction of 0.39 3 He in 4 He. Our data for 4 He confirm the results of Ahlers revealing an asymmetry in the exponents above and below T/sub lambda/ when the specific heat is represented by a simple-power-law temperature dependence. Our results for these exponents (α = 0.012 plus-or-minus 0.002 and α' = -0.012 plus-or-minus 0.004) differ somewhat from Ahlers's. Our results can be reconciled with the requirement of scaling (α = α') only by supposing substantial contributions to C/sub p/ are made by singular correction terms to a simple power law. The measured specific heat of the mixtures richest in 3 He appears to be finite, continuous, and cusped at the lambda line. These qualitative features have been termed ''renormalization'' by Fisher. An analysis of our mixture data with a power-law temperature dependence does not yield a fully renormalized exponent, but rather an effective exponent. Derivatives at the lambda line were used to calculate the specific heat along paths of constant pressure and constant relative chemical potential.This specific heat behaves very much like C/sub p/ of pure 4 He, this behavior supporting the idea of universality for the specific-heat exponents. It is also true that the same asymmetry in the branches above and below T/sub lambda/ which is []bserved in pure 4 He is retained in the mixtures. The persistence of the asymmetry of C/subp//sub phi/ as one moves along the lambda line towards increasing 3 He concentration (at the saturated vapor pressure of the mixtures) is analogous to the persistence of the asymmetry of C/subp/ as one moves along the lambda line towards increasing pressure in pure 4 He

  7. Thermal performances of molten salt steam generator

    International Nuclear Information System (INIS)

    Yuan, Yibo; He, Canming; Lu, Jianfeng; Ding, Jing

    2016-01-01

    Highlights: • Thermal performances of molten salt steam generator were experimentally studied. • Overall heat transfer coefficient reached maximum with optimal molten salt flow rate. • Energy efficiency first rose and then decreased with salt flow rate and temperature. • Optimal molten salt flow rate and temperature existed for good thermal performance. • High inlet water temperature benefited steam generating rate and energy efficiency. - Abstract: Molten salt steam generator is the key technology for thermal energy conversion from high temperature molten salt to steam, and it is used in solar thermal power station and molten salt reactor. A shell and tube type molten salt steam generator was set up, and its thermal performance and heat transfer mechanism were studied. As a coupling heat transfer process, molten salt steam generation is mainly affected by molten salt convective heat transfer and boiling heat transfer, while its energy efficiency is also affected by the heat loss. As molten salt temperature increased, the energy efficiency first rose with the increase of heat flow absorbed by water/steam, and then slightly decreased for large heat loss as the absorbed heat flow still rising. At very high molten salt temperature, the absorbed heat flow decreased as boiling heat transfer coefficient dropping, and then the energy efficiency quickly dropped. As the inlet water temperature increased, the boiling region in the steam generator remarkably expanded, and then the steam generation rate and energy efficiency both rose with the overall heat transfer coefficient increasing. As the molten salt flow rate increased, the wall temperature rose and the boiling heat transfer coefficient first increased and then decreased according to the boiling curve, so the overall heat transfer coefficient first increased and then decreased, and then the steam generation rate and energy efficiency of steam generator both had maxima.

  8. Rheology Of MonoSodium Titanate (MST) And Modified Mst (mMST) Mixtures Relevant To The Salt Waste Processing Facility

    Energy Technology Data Exchange (ETDEWEB)

    Koopman, D. C.; Martino, C. J.; Shehee, T. C.; Poirier, M. R.

    2013-07-31

    The Savannah River National Laboratory performed measurements of the rheology of suspensions and settled layers of treated material applicable to the Savannah River Site Salt Waste Processing Facility. Suspended solids mixtures included monosodium titanate (MST) or modified MST (mMST) at various solid concentrations and soluble ion concentrations with and without the inclusion of kaolin clay or simulated sludge. Layers of settled solids were MST/sludge or mMST/sludge mixtures, either with or without sorbed strontium, over a range of initial solids concentrations, soluble ion concentrations, and settling times.

  9. Rheology Of MonoSodium Titanate (MST) And Modified Mst (mMST) Mixtures Relevant To The Salt Waste Processing Facility

    International Nuclear Information System (INIS)

    Koopman, D. C.; Martino, C. J.; Shehee, T. C.; Poirier, M. R.

    2013-01-01

    The Savannah River National Laboratory performed measurements of the rheology of suspensions and settled layers of treated material applicable to the Savannah River Site Salt Waste Processing Facility. Suspended solids mixtures included monosodium titanate (MST) or modified MST (mMST) at various solid concentrations and soluble ion concentrations with and without the inclusion of kaolin clay or simulated sludge. Layers of settled solids were MST/sludge or mMST/sludge mixtures, either with or without sorbed strontium, over a range of initial solids concentrations, soluble ion concentrations, and settling times

  10. Experimental facilities for research of properties and behaviour of fluoride salts

    International Nuclear Information System (INIS)

    Hosnedl, P.; Jilek, M.; Kroc, V.; Pedal, L.; Valenta, V.; Vodicka, J.

    1999-01-01

    SKODA JS s.r.o. (Czech leading nuclear technology manufacturer) prepared and manufactured experimental loops for research and verification of properties and behaviour of fluoride salts for primary and secondary circuit, construction materials and ADTT systems technological components for the operation in the Nuclear Research Institute Rez plc fluorine chemistry laboratory. This paper presents charts and experimental program for molten fluoride salts experimental loops with natural circulation. Further on, the paper describes extension of the loops for research with forced circulation and next works for steam generator model verification and connection with the loop of Energovyzkum Brno. The loops are designed and constructed to obtain a sufficient amount of experience on ADTT technology. The research and utilisation program covers questions of corrosion and intergranular corrosion of structural materials, research of material properties and welding, research of fluoride fluid properties, measuring of thermo-hydraulic properties of molten salt fluoride fluids, heat transfer and hydraulics, development and tests of some plant components (steam generators, heat exchangers, pumps, valves) and other engineering issues. Two electrolyzers have been manufactured for the research of fuel/coolant fluoride salts mixture purification. One for the production of hydrogen fluoride, and the other for the research of salts purification. (author)

  11. Autoignited laminar lifted flames of methane/hydrogen mixtures in heated coflow air

    KAUST Repository

    Choi, Byungchul; Chung, Suk-Ho

    2012-01-01

    Autoignited lifted flame behavior in laminar jets of methane/hydrogen mixture fuels has been investigated experimentally in heated coflow air. Three regimes of autoignited lifted flames were identified depending on initial temperature and hydrogen

  12. Liquid Salts as Media for Process Heat Transfer from VHTR's: Forced Convective Channel Flow Thermal Hydraulics, Materials, and Coating

    Energy Technology Data Exchange (ETDEWEB)

    Sridharan, Kumar; Anderson, Mark; Allen, Todd; Corradini, Michael

    2012-01-30

    The goal of this NERI project was to perform research on high temperature fluoride and chloride molten salts towards the long-term goal of using these salts for transferring process heat from high temperature nuclear reactor to operation of hydrogen production and chemical plants. Specifically, the research focuses on corrosion of materials in molten salts, which continues to be one of the most significant challenges in molten salts systems. Based on the earlier work performed at ORNL on salt properties for heat transfer applications, a eutectic fluoride salt FLiNaK (46.5% LiF-11.5%NaF-42.0%KF, mol.%) and a eutectic chloride salt (32%MgCl2-68%KCl, mole %) were selected for this study. Several high temperature candidate Fe-Ni-Cr and Ni-Cr alloys: Hastelloy-N, Hastelloy-X, Haynes-230, Inconel-617, and Incoloy-800H, were exposed to molten FLiNaK with the goal of understanding corrosion mechanisms and ranking these alloys for their suitability for molten fluoride salt heat exchanger and thermal storage applications. The tests were performed at 850C for 500 h in sealed graphite crucibles under an argon cover gas. Corrosion was noted to occur predominantly from dealloying of Cr from the alloys, an effect that was particularly pronounced at the grain boundaries Alloy weight-loss due to molten fluoride salt exposure correlated with the initial Cr-content of the alloys, and was consistent with the Cr-content measured in the salts after corrosion tests. The alloys weight-loss was also found to correlate to the concentration of carbon present for the nominally 20% Cr containing alloys, due to the formation of chromium carbide phases at the grain boundaries. Experiments involving molten salt exposures of Incoloy-800H in Incoloy-800H crucibles under an argon cover gas showed a significantly lower corrosion for this alloy than when tested in a graphite crucible. Graphite significantly accelerated alloy corrosion due to the reduction of Cr from solution by graphite and formation

  13. Thermal signature measurements for ammonium nitrate/fuel mixtures by laser heating

    International Nuclear Information System (INIS)

    Nazarian, Ashot; Presser, Cary

    2016-01-01

    Highlights: • LDTR is a useful diagnostic for characterizing AN/fuel mixture thermochemical behavior. • Each AN/fuel mixture thermal signature was different. • AN/fuel mixture signature features were defined by the individual constituents. • Baseline signatures changed after an experiment. - Abstract: Measurements were carried out to obtain thermal signatures of several ammonium nitrate/fuel (ANF) mixtures, using a laser-heating technique referred to as the laser-driven thermal reactor (LDTR). The mixtures were ammonium nitrate (AN)/kerosene, AN/ethylene glycol, AN/paraffin wax, AN/petroleum jelly, AN/confectioner's sugar, AN/cellulose (tissue paper), nitromethane/cellulose, nitrobenzene/cellulose, AN/cellulose/nitromethane, AN/cellulose/nitrobenzene. These mixtures were also compared with AN/nitromethane and AN/diesel fuel oil, obtained from an earlier investigation. Thermograms for the mixtures, as well as individual constituents, were compared to better understand how sample thermal signature changes with mixture composition. This is the first step in development of a thermal-signature database, to be used along with other signature databases, to improve identification of energetic substances of unknown composition. The results indicated that each individual thermal signature was associated unambiguously with a particular mixture composition. The signature features of a particular mixture were shaped by the individual constituent signatures. It was also uncovered that the baseline signature was modified after an experiment due to coating of unreacted residue on the substrate surface and a change in the reactor sphere oxide layer. Thus, care was required to pre-oxidize the sphere prior to an experiment. A minimum sample mass (which was dependent on composition) was required to detect the signature characteristics. Increased laser power served to magnify signal strength while preserving the signature features. For the mixtures examined, the thermal

  14. Device for determining heat capacity of gases and gas mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Nachev, N

    1980-01-01

    This article describes the use of a capillary-flow colorimeter to determine the heat capacity of gases and gaseous mixtures. The research and tests confirm the possibility and advisability of making these measurements. The calorimeters are graduated to allow for the influence of the pressure and temperature of the investigated gas and exchange with the environment.

  15. Numerical investigation of boiling heat transfer on hydrocarbon mixture refrigerant in vertical rectangular minichannel

    OpenAIRE

    Huixing Li; Yu Liu

    2016-01-01

    In order to investigate the characteristics of boiling heat transfer for hydrocarbon mixture refrigerant in plate-fin heat exchanger which is used in the petrochemical industry field, a model was established on boiling heat transfer in vertical rectangular channel. The simulated results were compared with the experimental data from literature. The results show that the deviation between the simulated results and experimental data is within ±15%. Meanwhile, the characteristic of boiling heat t...

  16. Heat pulses in dilute 3He-4He mixtures

    International Nuclear Information System (INIS)

    Husson, L.P.J.

    1983-01-01

    The propagation of heat pulses in dilute 3 He- 4 He mixtures under pressure along a tube, which is long compared to its diameter, is discussed. At high temperatures, where the excitations are in local equilibrium with one another, the propagation of heat pulses in the liquid is determined by the phenomenon of second sound, which is essentially a density wave in the excitation gas. The velocity and attenuation of second sound can be determined from the shape of the transmitted pulse. Measurements on the scattering and absorption of phonons are presented, together with a detailed description of the experimental technique and the electronic equipment. Measurements on the velocity and absorption of second sound are presented. From the results for the velocity of second sound in pure 4 He, values of the phonon and roton parameters are deduced. The velocity data in the mixtures have been used to calculate values of the effective mass of 3 He in superfluid 4 He. The results of these calculations have been compared with values of the effective mass obtained by other authors. The coefficient of second-sound absorption in pure 4 He is computed from theory, making use of the phonon and roton parameters calculated from the second-sound velocity data in pure 4 He. The experimental results on the scattering and absorption of phonons have been analysed. The empirical expressions for the scattering and absorption rates obtained from the diffusive phonon signals were compared with the results of the Baym-Ebner theory, and have also been used to calculate the coefficient of thermal conductivity in dilute 3 He- 4 He mixtures. (Auth.)

  17. Interfacial energies of aqueous mixtures and porous coverings for enhancing pool boiling heat transfer

    Energy Technology Data Exchange (ETDEWEB)

    Melendez, Elva [CIICAp, Universidad Autonoma del Estado de Morelos, 62210 (Mexico); Reyes, Rene [Departamento de Ingenieria Quimica y Alimentos, Universidad de las Americas Puebla, Santa Catarina Martir Cholula, Puebla 72820 (Mexico)

    2006-08-15

    The interfacial energies effects on pool boiling were measured for combinations of aqueous ethanol mixtures and cationic surfactants. The mixture with 16% ethanol by weight had the lowest contact angle (associated to the highest wettability) and produced the highest convective heat transfer coefficient, h, among the aqueous ethanol mixtures. The surfactant sodium-lauryl-sulfate added at 100 ppm (its calculated critical micelle concentration CMC) to the 16% ethanol aqueous mixture produced an additional increment of the wettability of the mixture and of the h values; other concentrations of the surfactant reduced de contact angle and h values. The effect of these interfacial energies represents a mass-transfer contribution to pool boiling and the proposal of mixture effects both as increased spreadability and as micelle states. Several randomly constructed porous coverings, contributing to the breakage of vapor slugs around the heater, were tested; produced the highest h values for average pore diameters of 0.5 mm, and covering thickness of 0.972 mm. The synergistic effect on h of the interfacial energies of mixtures at their critical micelle concentration, and porous coverings was measured. Therefore, the independent driving forces combined in this study for increasing pool boiling heat transfer are (a) spreadability of the liquid on the solid; (b) the bubble's size reduction, achieved by micelle states; and (c) the bubble's breakage, induced by the porous coverings, for vapor flow not under pressure drop control. (author)

  18. Synthesis and characterization of completely soluble polyaniline salts via inverse emulsion polymerization using a mixture of chloroform and 2- butanol as a dispersing medium

    International Nuclear Information System (INIS)

    Gul, S.; Bilal, S.

    2011-01-01

    Polyaniline (PANI) is one of the most promising candidates for possible technological applications. PANI has potential applications in batteries, anion exchanger, tissue engineering, inhibition of steel corrosion, fuel cell, sensors and so on. However, its insolubility in common organic solvents limits its range of applications. In the present study an attempt has been made to synthesize soluble polyaniline salt via inverse polymerization pathway using benzoyl peroxide as oxidant and dodecylbenzenesulfonic acid (DBSA) as dopant as well as a surfactant. A mixture of chloroform and 2-butanol was used as dispersion medium for the first time. The influence of synthesis parameters such as concentration of aniline, benzoyl peroxide and DBSA on the yield and other properties of the resulting PANI salt was studied. The synthesized PANI salt was found to be completely soluble in DMSO, DMF, chloroform and in a mixture of toluene and 2-propanol. The synthesized polymer salt was also characterized with cyclic voltammetry, SEM, XRD, UV-Vis spectroscopy and viscosity measurements. TGA was used to analyze the thermal properties of synthesized polymer. The extent of doping of the PANI salt was determined from UV-Vis spectra and TGA analysis. The activation energy for the degradation of the polymer was calculated with the help of TGA. (author)

  19. An Assessment of Transport Property Estimation Methods for Ammonia–Water Mixtures and Their Influence on Heat Exchanger Size

    DEFF Research Database (Denmark)

    Kærn, Martin Ryhl; Modi, Anish; Jensen, Jonas Kjær

    2015-01-01

    Transport properties of fluids are indispensable for heat exchanger design. The methods for estimating the transport properties of ammonia–water mixtures are not well established in the literature. The few existent methods are developed from none or limited, sometimes inconsistent experimental...... of ammonia–water mixtures. Firstly, the different methods are introduced and compared at various temperatures and pressures. Secondly, their individual influence on the required heat exchanger size (surface area) is investigated. For this purpose, two case studies related to the use of the Kalina cycle...... the interpolative methods in contrast to the corresponding state methods. Nevertheless, all possible mixture transport property combinations used herein resulted in a heat exchanger size within 4.3 % difference for the flue-gas heat recovery boiler, and within 12.3 % difference for the oil-based boiler....

  20. Thermal Signature Measurements for Ammonium Nitrate/Fuel Mixtures by Laser Heating.

    Science.gov (United States)

    Nazarian, Ashot; Presser, Cary

    2016-01-10

    Measurements were carried out to obtain thermal signatures of several ammonium nitrate/fuel (ANF) mixtures, using a laser-heating technique referred to as the laser-driven thermal reactor (LDTR). The mixtures were ammonium nitrate (AN)/kerosene, AN/ethylene glycol, AN/paraffin wax, AN/petroleum jelly, AN/confectioner's sugar, AN/cellulose (tissue paper), nitromethane/cellulose, nitrobenzene/cellulose, AN/cellulose/nitromethane, AN/cellulose/nitrobenzene. These mixtures were also compared with AN/nitromethane and AN/diesel fuel oil, obtained from an earlier investigation. Thermograms for the mixtures, as well as individual constituents, were compared to better understand how the sample thermal signature changes with mixture composition. This is the first step in development of a thermal-signature database, to be used along with other signature databases, to improve identification of energetic substances of unknown composition. The results indicated that each individual thermal signature was associated unambiguously with a particular mixture composition. The signature features of a particular mixture were shaped by the individual constituent signatures. It was also uncovered that the baseline signature was modified after an experiment due to coating of unreacted residue on the substrate surface and a change in the reactor sphere oxide layer. Thus, care was required to pre-oxidize the sphere prior to an experiment. A minimum sample mass (which was dependent on composition) was required to detect the signature characteristics. Increased laser power served to magnify signal strength while preserving the signature features. For the mixtures examined, the thermal response of each ANF mixture was found to be different, which was based on the mixture composition and the thermal behavior of each mixture constituent.

  1. Fluoride salts and container materials for thermal energy storage applications in the temperature range 973 - 1400 K

    Science.gov (United States)

    Misra, Ajay K.; Whittenberger, J. Daniel

    1987-01-01

    Multicomponent fluoride salt mixtures were characterized for use as latent heat of fusion heat storage materials in advanced solar dynamic space power systems with operating temperatures in the range of 973 to 1400 K. The melting points and eutectic composition for many systems with published phase diagrams were verified, and several new eutectic compositions were identified. Additionally, the heats of fusion of several binary and ternary eutectics and congruently melting intermediate compounds were measured by differential scanning calorimetry. The extent of corrosion of various metals by fluoride melts was estimated from thermodynamic considerations, and equilibrium conditions inside a containment vessel were calculated as functions of the initial moisture content of the salt and free volume above the molten salt. Preliminary experimental data on the corrosion of commercial, high-temperature alloys in LiF-19.5CaF2 and NaF-27CaF2-36MgF2 melts are presented and compared to the thermodynamic predictions.

  2. Effects assessment of 10 functioning years on the main components of the molten salt PCS experimental facility of ENEA

    Science.gov (United States)

    Gaggioli, Walter; Di Ascenzi, Primo; Rinaldi, Luca; Tarquini, Pietro; Fabrizi, Fabrizio

    2016-05-01

    In the frame of the Solar Thermodynamic Laboratory, ENEA has improved CSP Parabolic Trough technologies by adopting new advanced solutions for linear tube receivers and by implementing a binary mixture of molten salt (60% NaNO3 and 40% KNO3) [1] as both heat transfer fluid and heat storage medium in solar field and in storage tanks, thus allowing the solar plants to operate at high temperatures up to 550°C. Further improvements have regarded parabolic mirror collectors, piping and process instrumentation. All the innovative components developed by ENEA, together with other standard parts of the plant, have been tested and qualified under actual solar operating conditions on the PCS experimental facility at the ENEA Casaccia Research Center in Rome (Italy). The PCS (Prova Collettori Solari, i.e. Test of Solar Collectors) facility is the main testing loop built by ENEA and it is unique in the world for what concerns the high operating temperature and the fluid used (mixture of molten salt). It consists in one line of parabolic trough collectors (test section of 100 m long life-size solar collectors) using, as heat transfer fluid, the aforesaid binary mixture of molten salt up to 10 bar, at high temperature in the range 270° and 550°C and a flow rate up to 6.5 kg/s. It has been working since early 2004 [2] till now; it consists in a unique closed loop, and it is totally instrumented. In this paper the effects of over ten years qualification tests on the pressurized tank will be presented, together with the characterization of the thermal losses of the piping of the molten salt circuit, and some observations performed on the PCS facility during its first ten years of operation.

  3. Effects of Imide–Orthoborate Dual-Salt Mixtures in Organic Carbonate Electrolytes on the Stability of Lithium Metal Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xing [Energy and Environment; School of Materials Science and Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, China; Zheng, Jianming [Energy and Environment; Engelhard, Mark H. [Environmental Molecular; Mei, Donghai [Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States; Li, Qiuyan [Energy and Environment; Jiao, Shuhong [Energy and Environment; Liu, Ning [Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States; State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China; Zhao, Wengao [Energy and Environment; School of Energy Research, Xiamen University, Xiamen, Fujian 361102, China; Zhang, Ji-Guang [Energy and Environment; Xu, Wu [Energy and Environment

    2018-01-09

    The effects of lithium imide and lithium orthoborate dual-salt electrolytes of different salt chemistries in carbonate solvents on the cycling stability of Li metal batteries were systematically and comparatively investigated. Two imide salts (LiTFSI and LiFSI) and two orthoborate salts (LiBOB and LiDFOB) were chosen for this study and compared with the conventional LiPF6 salt. The cycling stability of the Li metal cells with the electrolytes follows the order from good to poor as LiTFSI-LiBOB > LiTFSI-LiDFOB > LiPF6 > LiFSI-LiBOB > LiFSI-LiDFOB, indicating that LiTFSI behaves better than LiFSI and LiBOB over LiDFOB in these four dual-salt mixtures. The LiTFSI-LiBOB can effectively protect the Al substrate and form a more robust surface film on Li metal anode, while the LiFSI-LiBOB results in serious corrosion to the stainless steel cell case and a thicker and looser surface film on Li anode. Computational calculations indicate that the chemical and electrochemical stabilities also follow the order of LiTFSI-LiBOB > LiTFSI-LiDFOB > LiFSI-LiBOB > LiFSI-LiDFOB. The key findings of this work emphasize that the salt chemistry is critically important for enhancing the interfacial stability of Li metal anode and should be carefully manipulated in the development of high performance Li metal batteries.

  4. Convective boiling heat transfer of mixture of immiscible two-liquids

    International Nuclear Information System (INIS)

    Hijikata, K.; Ito, H.; Mori, Y.

    1987-01-01

    Thermal energy conversion of low or middle temperature difference to electric power is conventionally made by the Rankine cycle using the organic compound as a working fluid. However, the energy conversion efficiency from thermal energy to electric power is limited by the pinch point temperature difference in the high temperature side heat exchanging. In order to avoid the efficiency ceiling due to the pinch point temperature difference, utilization of mixture of miscible two liquids as the working fluid of the Rankine cycle has been proposed and its cycle efficiency has been calculated. However, in the miscible mixture, mutual diffusion process is considered to greatly affect the thermo-fluid characteristics, but has not been clarified yet because of its complexity

  5. Effect of inorganic salts on the volatility of organic acids.

    Science.gov (United States)

    Häkkinen, Silja A K; McNeill, V Faye; Riipinen, Ilona

    2014-12-02

    Particulate phase reactions between organic and inorganic compounds may significantly alter aerosol chemical properties, for example, by suppressing particle volatility. Here, chemical processing upon drying of aerosols comprised of organic (acetic, oxalic, succinic, or citric) acid/monovalent inorganic salt mixtures was assessed by measuring the evaporation of the organic acid molecules from the mixture using a novel approach combining a chemical ionization mass spectrometer coupled with a heated flow tube inlet (TPD-CIMS) with kinetic model calculations. For reference, the volatility, i.e. saturation vapor pressure and vaporization enthalpy, of the pure succinic and oxalic acids was also determined and found to be in agreement with previous literature. Comparison between the kinetic model and experimental data suggests significant particle phase processing forming low-volatility material such as organic salts. The results were similar for both ammonium sulfate and sodium chloride mixtures, and relatively more processing was observed with low initial aerosol organic molar fractions. The magnitude of low-volatility organic material formation at an atmospherically relevant pH range indicates that the observed phenomenon is not only significant in laboratory conditions but is also of direct atmospheric relevance.

  6. An experimental investigation of the isochoric heat capacity of superheated steam and mixtures of superheated steam and hydrogen gas

    International Nuclear Information System (INIS)

    Nowak, E.S.; Chan, J.S.

    1975-01-01

    Measurements on the specific heat at constant volume of superheated steam and hydrogen gas mixtures at concentrations varying from 1.6 to 0.8 moles of water vapor per mole of hydrogen gas were made for temperatures ranging from 240 to 400 deg C. It was found that the experimental specific heat values of the mixtures are in good agreement with the ideal mixture values only near the saturation temperature of steam. The difference between the measured and the calculated ideal mixture values is a function of temperature, pressure and composition varying from about 11 to 24% at conditions far removed from the saturation temperature of steam. This indicates the heat of mixing is of significance in the steam-hydrogen system

  7. Behaviour of I/Br/Cl-THMs and their projected toxicities under simulated cooking conditions: Effects of heating, table salt and residual chlorine

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Mingquan, E-mail: yanmq@pku.edu.cn; Li, Mingyang; Han, Xuze

    2016-08-15

    Highlights: • Additions of KI and KIO{sub 3}-fortified table salt cause I-THMs to increase. • CHCl{sub 2}I is the predominant I-THM formed in the presence of KIO{sub 3}-fortified table salt. • >90% of CHCl{sub 2}I is removed by heating, but concentrations of the other I-THMs increase. • Additions of KI or KIO{sub 3}-fortified salt increase the cytotoxicity due to I-THM formed. • Heating causes cytotoxicity to decrease for KIO{sub 3}-fortified salt but increase for KI. - Abstract: This study examined the effects of heating, residual chlorine and concentration of table salt on the generation of iodine-, bromine- and chlorine-containing trihalomethanes (THMs) under simulated cooking conditions. In the case of addition of either KI- or KIO{sub 3}-fortified salt, total I-THM concentrations increased with increasing iodine concentration, while total Cl/Br-THM concentrations decreased. CHCl{sub 2}I, CHBrClI, CHBrI{sub 2}, CHBr{sub 2}I and CHI{sub 3} were formed in the presence of KI salt, while only CHCl{sub 2}I was formed in the presence of KIO{sub 3} salt. CHCl{sub 2}I was unstable under cooking conditions, and >90% of this DBP was removed during heating, which in some cases increased the concentrations of the other I-THMs. The calculated cytotoxicity increased with addition of KI- or KIO{sub 3}-fortified salt due to the generation of I-THMs, whose impact on the cytotoxicity at room temperature was equal to or five times higher, respectively, than the cytotoxicity of the simultaneously formed Cl/Br-THMs for the cases of salts. Heating decreased the cytotoxicity, except for the case of addition of KI salt, in which the calculated cytotoxicity of I-THMs increased above 150% as the temperature was increased up to 100 °C. The reported results may have important implications for epidemiologic exposure assessments and, ultimately, for public health protection.

  8. Reactions of solid CaSO{sub 4} and Na{sub 2}CO{sub 3} and formation of sodium carbonate sulfate double salts

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jinsheng; Wu, Yinghai; Anthony, Edward J. [CANMET Energy Technology Centre, Natural Resources Canada, 1 Haanel Dr., Ottawa, Ontario K1A 1M1 (Canada)

    2007-07-01

    High-temperature chemical reactions in mixtures of solid CaSO{sub 4} and Na{sub 2}CO{sub 3} were investigated in order to explore the mechanisms of enhanced sulfur capture by limestones doped with Na{sub 2}CO{sub 3} in fluidized bed combustion. Drastic weight loss of the mixtures was observed in a thermogravimetric analyzer near the melting temperature of Na{sub 2}CO{sub 3}, indicating chemical reaction. X-ray diffraction analysis for a mixture of the solids following a heat treatment at 850 C revealed the existence of two sodium carbonate sulfate double salts that have not been reported before for the present system. The formation of Na{sub 2}SO{sub 4} in the melt of Na{sub 2}CO{sub 3} appears to precede the formation of the double salts. The two double salts are believed to have high porosity and specific surface area similar to those of a better-known double salt, burkeite. The implications of these findings for the enhancement of limestone sulfation by Na{sub 2}CO{sub 3} are also discussed. (author)

  9. Reactions of solid CaSO{sub 4} and Na{sub 2}CO{sub 3} and formation of sodium carbonate sulfate double salts

    Energy Technology Data Exchange (ETDEWEB)

    Wang Jinsheng [CANMET Energy Technology Centre, Natural Resources Canada, 1 Haanel Dr., Ottawa, Ontario K1A 1M1 (Canada)]. E-mail: jiwang@nrcan.gc.ca; Wu Yinghai [CANMET Energy Technology Centre, Natural Resources Canada, 1 Haanel Dr., Ottawa, Ontario K1A 1M1 (Canada); Anthony, Edward J. [CANMET Energy Technology Centre, Natural Resources Canada, 1 Haanel Dr., Ottawa, Ontario K1A 1M1 (Canada)

    2007-07-01

    High-temperature chemical reactions in mixtures of solid CaSO{sub 4} and Na{sub 2}CO{sub 3} were investigated in order to explore the mechanisms of enhanced sulfur capture by limestones doped with Na{sub 2}CO{sub 3} in fluidized bed combustion. Drastic weight loss of the mixtures was observed in a thermogravimetric analyzer near the melting temperature of Na{sub 2}CO{sub 3}, indicating chemical reaction. X-ray diffraction analysis for a mixture of the solids following a heat treatment at 850 deg. C revealed the existence of two sodium carbonate sulfate double salts that have not been reported before for the present system. The formation of Na{sub 2}SO{sub 4} in the melt of Na{sub 2}CO{sub 3} appears to precede the formation of the double salts. The two double salts are believed to have high porosity and specific surface area similar to those of a better-known double salt, burkeite. The implications of these findings for the enhancement of limestone sulfation by Na{sub 2}CO{sub 3} are also discussed.

  10. A modeling approach for heat conduction and radiation diffusion in plasma-photon mixture in temperature nonequilibrium

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Chong [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-08-09

    We present a simple approach for determining ion, electron, and radiation temperatures of heterogeneous plasma-photon mixtures, in which temperatures depend on both material type and morphology of the mixture. The solution technique is composed of solving ion, electron, and radiation energy equations for both mixed and pure phases of each material in zones containing random mixture and solving pure material energy equations in subdivided zones using interface reconstruction. Application of interface reconstruction is determined by the material configuration in the surrounding zones. In subdivided zones, subzonal inter-material energy exchanges are calculated by heat fluxes across the material interfaces. Inter-material energy exchange in zones with random mixtures is modeled using the length scale and contact surface area models. In those zones, inter-zonal heat flux in each material is determined using the volume fractions.

  11. A modeling approach for heat conduction and radiation diffusion in plasma-photon mixture in temperature nonequilibrium

    International Nuclear Information System (INIS)

    Chang, Chong

    2016-01-01

    We present a simple approach for determining ion, electron, and radiation temperatures of heterogeneous plasma-photon mixtures, in which temperatures depend on both material type and morphology of the mixture. The solution technique is composed of solving ion, electron, and radiation energy equations for both mixed and pure phases of each material in zones containing random mixture and solving pure material energy equations in subdivided zones using interface reconstruction. Application of interface reconstruction is determined by the material configuration in the surrounding zones. In subdivided zones, subzonal inter-material energy exchanges are calculated by heat fluxes across the material interfaces. Inter-material energy exchange in zones with random mixtures is modeled using the length scale and contact surface area models. In those zones, inter-zonal heat flux in each material is determined using the volume fractions.

  12. SEPARATION OF METAL SALTS BY ADSORPTION

    Science.gov (United States)

    Gruen, D.M.

    1959-01-20

    It has been found that certain metal salts, particularly the halides of iron, cobalt, nickel, and the actinide metals, arc readily absorbed on aluminum oxide, while certain other salts, particularly rare earth metal halides, are not so absorbed. Use is made of this discovery to separate uranium from the rare earths. The metal salts are first dissolved in a molten mixture of alkali metal nitrates, e.g., the eutectic mixture of lithium nitrate and potassium nitrate, and then the molten salt solution is contacted with alumina, either by slurrying or by passing the salt solution through an absorption tower. The process is particularly valuable for the separation of actinides from lanthanum-group rare earths.

  13. Heat Transfer in Pebble-Bed Nuclear Reactor Cores Cooled by Fluoride Salts

    Science.gov (United States)

    Huddar, Lakshana Ravindranath

    With electricity demand predicted to rise by more than 50% within the next 20 years and a burgeoning world population requiring reliable emissions-free base-load electricity, can we design advanced nuclear reactors to help meet this challenge? At the University of California, Berkeley (UCB) Fluoride-salt-cooled High Temperature Reactors (FHR) are currently being investigated. FHRs are designed with better safety and economic characteristics than conventional light water reactors (LWR) currently in operation. These reactors operate at high temperature and low pressure making them more efficient and safer than LWRs. The pebble-bed FHR (PB-FHR) variant includes an annular nuclear reactor core that is filled with randomly packed pebble fuel. It is crucial to characterize the heat transfer within this unique geometry as this informs the safety limits of the reactor. The work presented in this dissertation focused on furthering the understanding of heat transfer in pebble-bed nuclear reactor cores using fluoride salts as a coolant. This was done through experimental, analytical and computational techniques. A complex nuclear system with a coolant that has never previously been in commercial use requires experimental data that can directly inform aspects of its design. It is important to isolate heat transfer phenomena in order to understand the underlying physics in the context of the PB-FHR, as well as to make decisions about further experimental work that needs to be done in support of developing the PB-FHR. Certain organic oils can simulate the heat transfer behaviour of the fluoride salt if relevant non-dimensional parameters are matched. The advantage of this method is that experiments can be done at a much lower temperature and at a smaller geometric scale compared to FHRs, thereby lowering costs. In this dissertation, experiments were designed and performed to collect data demonstrating similitude. The limitations of these experiments were also elucidated by

  14. Experimental investigation of moderately high temperature water source heat pump with non-azeotropic refrigerant mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Shengjun; Wang, Huaixin; Guo, Tao [Department of Thermal Energy and Refrigeration Engineering, School of Mechanical Engineering, Tianjin University, Tianjin 300072 (China)

    2010-05-15

    Experimental investigations were carried out on non-azeotropic refrigerant mixtures, named M1A (mass fraction of 20%R152a and 80%R245fa), M1B (mass fraction of 37% R152a and 63%R245fa) and M1C (mass fraction of 50%R152a and 50%R245fa), based on a water-to-water heat pump system in the condensing temperature range of 70-90 C with a cycle temperature lift of 45 C. Performance of R245fa was tested for comparison. Unfair factors in experimental comparative evaluation research with the same apparatus were identified and corrected. Experimental cycle performance of the mixtures were tested and compared with improved experimental assessment methodology. The results show that all of the mixtures deliver higher discharge temperature, higher heating capacity, higher COP and higher {epsilon}{sub h,c} than R245fa. M1B presents the most excellent cycle performance and is recommended as working fluid for moderate/high temperature heat pump. (author)

  15. Fluoride salts and container materials for thermal energy storage applications in the temperature range 973 to 1400 K

    Science.gov (United States)

    Misra, Ajay K.; Whittenberger, J. Daniel

    1987-01-01

    Multicomponent fluoride salt mixtures were characterized for use as latent heat of fusion heat storage materials in advanced solar dynamic space power systems with operating temperatures in the range of 973 to 1400 K. The melting points and eutectic composition for many systems with published phase diagrams were verified, and several new eutectic compositions were identified. Additionally, the heats of fusion of several binary and ternary eutectics and congruently melting intermediate compounds were measured by differential scanning calorimetry. The extent of corrosion of various metals by fluoride melts was estimated from thermodynamic considerations, and equilibrium conditions inside a containment vessel were calculated as functions of the initial moisture content of the salt and free volume above the molten salt. Preliminary experimental data on the corrosion of commercial, high-temperature alloys in LiF-19.5CaF2 and NaF-27CaF2-36MgF2 melts are presented and compared to the thermodynamic predictions.

  16. Influence of the ammonium salt anion on the synergistic solvent extraction of lanthanides with mixtures of thenoyltrifluoroacetone and tridecylamine

    Energy Technology Data Exchange (ETDEWEB)

    Dukov, I.L.; Jordanov, V.M. [Univ. of Chemical Technology and Metallurgy, Sofia (Bulgaria). Dept. of Inorganic Chemistry

    1998-08-01

    The synergistic solvent extraction of Pr, Gd and Yb with mixtures of thenoyltrifluoroacetone (HTTA) and primary ammonium salt (tridecylammonium chloride or perchlorate, TDAH(Cl, ClO{sub 4})) in C{sub 6}H{sub 6} has been studied. The composition of the extracted species have been determined as Ln(TTA){sub 3}TDAHA(A{sup {minus}} = Cl{sup {minus}} or ClO{sub 4}{sup {minus}}). The values of the equilibrium constant K{sub T,S} have been calculated. The influence of the ammonium salt anion on the extraction process has been discussed. The separation factors of the pairs Gd/Pr and Yb/Gd have been determined.

  17. A thermodynamic analysis of a transcritical cycle with refrigerant mixture R32/R290 for a small heat pump water heater

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Jianlin; Xu, Zong; Tian, Gaolei [Department of Refrigeration and Cryogenic Engineering, School of Energy and Power Engineering, Xi' an Jiaotong University, West Xianning Road, No. 28, Xianning West Road, Xi' an Shaanxi 710049 (China)

    2010-12-15

    In this study, a thermodynamic analysis on the performance of a transcritical cycle using azeotropic refrigerant mixtures of R32/R290 with mass fraction of 70/30 has been performed. The main purpose of this study is to theoretically verify the possibility of applying the chosen refrigerant mixture in small heat pumps for high temperature water heating applications. Performance evaluation has been carried out for a simple azeotropic mixture R32/R290 transcritical cycle by varying evaporator temperature, outlet temperature of gas cooler and compressor discharge pressure. Furthermore, the effects of an internal heat exchanger on the transcritical R32/R290 cycle have been presented at different operating conditions. The results show that high heating coefficient of performance (COP{sub h}) and volumetric heating capacity can be achieved by using this transcritical cycle. It is desirable to apply the chosen refrigerant mixture R32/R290 in small heat pump water heater for high temperature water heating applications, which may produce hot water with temperature up to 90 C. (author)

  18. Effect of interaction between inclusions in a gas-liquid mixture on interphase heat and mass transfer

    International Nuclear Information System (INIS)

    Nigmatulin, B.I.; Kroshilin, A.E.; Kroshilin, V.E.

    1979-01-01

    The effect of interaction between inclusions in a gas-liquid mixture on interphase heat and mass transfer is analyzed. It is taken into account that inclusions (bubbles or drops) are not in a pure carrier phase, but in a disperse medium, mean properties of which are determined by the presence of other inclusions in it and by a temperature field around them. The consideration is carried out in the framework of two model of monodisperse mixture, i.e. that with a chaotic distribution of inclusions, and that with a regular distribution, when the distance between centers of inclusions is fixed. The correlation functions method is shown to be effective for the both models. Mean temperature fields around inclusions are determined along with the intensity of interphase heat and mass transfer. The dependences obtained are in a satisfactory agreement with experimental data. The dependence of interphase heat and mass transfer on the structure of disperse mixture is analyzed

  19. Chemical and physical parameters of dried salted pork meat

    Directory of Open Access Journals (Sweden)

    Petronela Cviková

    2016-07-01

    Full Text Available The aim of the present study was analysed and evaluated chemical and physical parameters of dried salted pork neck and ham. Dried salted meat is one of the main meat products typically produced with a variety of flavors and textures. Neck (14 samples and ham (14 samples was salted by nitrite salt mixture during 1week. The nitrite salt mixture for salting process (dry salting was used. This salt mixture contains: salt, dextrose, maltodextrin, flavourings, stabilizer E316, taste enhancer E621, nitrite mixture. The meat samples were dried at 4 °C and relative humudity 85% after 1 week salting. The weight of each sample was approximately 1 kg. After salting were vacuum-packed and analysed after 1 week. The traditional dry-cured meat such as dry-cured ham and neck obtained after 12 - 24 months of ripening under controlled conditions. The average protein content was significantly (p <0.001 lower in dried pork neck in comparison with dried salted pork ham. The average intramuscular fat was significantly (p <0.001 lower in dried pork ham in comparison with dried salted pork neck. The average moisture was significantly lower (p ≤0.05 in dried salted ham in comparison with dried pork neck. The average pH value was 5.50 in dried salted pork ham and 5.75 in dried salted pork neck. The content of arginine, phenylalanine, isoleucine, leucine and threonine in dried salted ham was significantly lower (p <0.001 in comparison with dried salted pork neck. The proportion of analysed amino acids from total proteins was 56.31% in pork salted dried ham and 56.50% in pork salted dried neck.  Normal 0 21 false false false EN-GB X-NONE X-NONE Normal 0 21 false false false SK X-NONE X-NONE

  20. Effect of Heat Treatment and Salt Concentration on Free Amino Acids Composition of Sudanese Braided (Muddaffara Cheese during Storage

    Directory of Open Access Journals (Sweden)

    Mohamed O. E. Altahir

    2014-07-01

    Full Text Available The aim of this study was to assess the effect of heat treatment and salt concentrations (0, 5, and 10% on the free amino acids (FAA composition of Sudanese braided cheese (BC ripened for up to 3 months at 5±2°C. Heat and salt concentration significantly affected the FAA of braided cheese. The free amino acids concentrations of BC ripened in 0%, 5%, and 10% salted whey (SW were significantly fluctuated. Under ripening conditions tested (salt level + time, braided cheese made from pasteurized milk (BCPM had consistently lower values of FAA than braided cheese made from raw milk (BCRM. In fresh cheese, the major FAA in BCRM were Glu (36.12 nmol/ml, Leu (26.77nmol/ml and Lys (14.51 nmol/ml while the major ones in BCPM were Lys (2.94 nmol/ml and Ala (2.45 nmol/ml. BCPM stored in 10% SW had shorter quality life compared to that stored in 5% salted whey.

  1. Rare Earth Electrochemical Property Measurements and Phase Diagram Development in a Complex Molten Salt Mixture for Molten Salt Recycle

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jinsuo; Guo, Shaoqiang

    2018-03-30

    novel process using a galvanic couple between a cathode basket made of stainless steel and a Gd rod is investigated in LiCl-KCl-UCl3-MgCl2. The process shows rapid reduction of UCl3 to U and MgCl2 to Mg without any co-reduction of LaCl3, NdCl3, or CeCl3 because of the higher standard potential of Gd3+/Gd. Electrolysis of the molten salt results in a perturbation of the composition, which in turn can affect the equilibrium phase behavior. Studies on phase behavior in more complex salt mixtures as will be encountered in real electrorefiner salt drawdown are very limited. In present research, the solidus and liquidus temperatures for four quaternary LiCl-KCl-CsCl-RECl3 (RE = La, Nd, Ce, and Gd) salt systems are analyzed by differential scanning calorimetry (DSC) measurement. The presence of CsCl causes a slight depression in the liquidus temperature for all of the four rare earth chloride mixtures when compared to the corresponding ternary system liquidus temperatures in the absence of any CsCl. Thermodynamic assessment for the LiCl-KCl-LnCl3 ternary system(here Gd as a reprehensive of Ln) has been carried out by CALPHAD method using two-sublattice model. From the optimized phase diagram, the solubility of GdCl3 in LiCl-KCl eutectic is obtained. This model can also be applied to other salt system to evaluate the thermodynamic properties of other REs in pyroprocessing salt systems with more components. In the end, an electrolysis model is developed to predict the electrolysis process for RE drawdown from LiCl-KCl salt. The model considers both the diffusion in electrolyte and Faraday process on the electrode surface and a surface layer is introduced to account for the fact that diffusion current is not necessarily equal to the current due to the Butler-Volmer equation. Using the fundamental data obtained from this study, the proposed model is validated by chronoamperometry and chronopotentiometry experimental data.

  2. Immobilization of IFR salt wastes in mortar

    International Nuclear Information System (INIS)

    Fischer, D.F.; Johnson, T.R.

    1988-01-01

    Portland cement-base mortars are being considered for immobilizing chloride salt wastes produced by the fuel cycles of Integral Fast Reactors (IFR). The IFR is a sodium-cooled fast reactor with metal alloy fuels. It has a close-coupled fuel cycle in which fission products are separated from the actinides in an electrochemical cell operating at 500/degree/C. This cell has a liquid cadmium anode in which the fuels are dissolved and a liquid salt electrolyte. The salt will be a mixture of either lithium, potassium, and sodium chlorides or lithium, calcium, barium, and sodium chlorides. One method being considered for immobilizing the treated nontransuranic salt waste is to disperse the salt in a portland cement-base mortar that will be sealed in corrosion-resistant containers. For this application, the grout must be sufficiently fluid that it can be pumped into canister-molds where it will solidify into a strong, leach-resistant material. The set times must be longer than a few hours to allow sufficient time for processing, and the mortar must reach a reasonable compressive strength (/approximately/7 MPa) within three days to permit handling. Because fission product heating will be high, about 0.6 W/kg for a mortar containing 10% waste salt, the effects of elevated temperatures during curing and storage on mortar properties must be considered

  3. Increment of specific heat capacity of solar salt with SiO2 nanoparticles.

    Science.gov (United States)

    Andreu-Cabedo, Patricia; Mondragon, Rosa; Hernandez, Leonor; Martinez-Cuenca, Raul; Cabedo, Luis; Julia, J Enrique

    2014-01-01

    Thermal energy storage (TES) is extremely important in concentrated solar power (CSP) plants since it represents the main difference and advantage of CSP plants with respect to other renewable energy sources such as wind, photovoltaic, etc. CSP represents a low-carbon emission renewable source of energy, and TES allows CSP plants to have energy availability and dispatchability using available industrial technologies. Molten salts are used in CSP plants as a TES material because of their high operational temperature and stability of up to 500°C. Their main drawbacks are their relative poor thermal properties and energy storage density. A simple cost-effective way to improve thermal properties of fluids is to dope them with nanoparticles, thus obtaining the so-called salt-based nanofluids. In this work, solar salt used in CSP plants (60% NaNO3 + 40% KNO3) was doped with silica nanoparticles at different solid mass concentrations (from 0.5% to 2%). Specific heat was measured by means of differential scanning calorimetry (DSC). A maximum increase of 25.03% was found at an optimal concentration of 1 wt.% of nanoparticles. The size distribution of nanoparticle clusters present in the salt at each concentration was evaluated by means of scanning electron microscopy (SEM) and image processing, as well as by means of dynamic light scattering (DLS). The cluster size and the specific surface available depended on the solid content, and a relationship between the specific heat increment and the available particle surface area was obtained. It was proved that the mechanism involved in the specific heat increment is based on a surface phenomenon. Stability of samples was tested for several thermal cycles and thermogravimetric analysis at high temperature was carried out, the samples being stable. 65.: Thermal properties of condensed matter; 65.20.-w: Thermal properties of liquids; 65.20.Jk: Studies of thermodynamic properties of specific liquids.

  4. Reconciling estimates of the ratio of heat and salt fluxes at the ice-ocean interface

    Science.gov (United States)

    Keitzl, T.; Mellado, J. P.; Notz, D.

    2016-12-01

    The heat exchange between floating ice and the underlying ocean is determined by the interplay of diffusive fluxes directly at the ice-ocean interface and turbulent fluxes away from it. In this study, we examine this interplay through direct numerical simulations of free convection. Our results show that an estimation of the interface flux ratio based on direct measurements of the turbulent fluxes can be difficult because the flux ratio varies with depth. As an alternative, we present a consistent evaluation of the flux ratio based on the total heat and salt fluxes across the boundary layer. This approach allows us to reconcile previous estimates of the ice-ocean interface conditions. We find that the ratio of heat and salt fluxes directly at the interface is 83-100 rather than 33 as determined by previous turbulence measurements in the outer layer. This can cause errors in the estimated ice-ablation rate from field measurements of up to 40% if they are based on the three-equation formulation.

  5. Thermal properties and reliability of eutectic mixture of stearic acid-acetamide as phase change material for latent heat storage

    International Nuclear Information System (INIS)

    Ma, Guixiang; Han, Lipeng; Sun, Jinhe; Jia, Yongzhong

    2017-01-01

    Highlights: • The system of stearic acid-acetamide binary mixtures were studied as phase change material. • The eutectic mixtures featured low melting temperatures and high latent heats of fusion for latent heat storage. • Solid-liquid phase diagrams for the system were constructed. • Negligible change in stability after 500 heating/cooling cycles. - Abstract: The thermal properties and reliability of the stearic acid (SA) with acetamide (AC) binary mixture were characterized using differential scanning calorimetry (DSC), powder X-ray diffraction (XRD), thermogravimetric analysis (TG) and Fourier transform infrared spectroscopy (FT-IR). The phase diagrams for the SA-AC binary mixture with AC in the metastable and the stable form were constructed. The eutectic system with stable AC is 0.604 mol fraction SA, and displayed a melting temperature (T m ) of 64.55 °C and latent heat of melting (ΔH m ) of 193.87 J·g −1 . The eutectic systems with metastable AC are 0.397 and 0.604 mol fraction SA. The melting temperatures are 62.23 °C and 62.54 °C, and latent heats of fusion are 222.10 J·g −1 and 194.28 J·g −1 , respectively. Following accelerated thermal cycling tests, TG and FT-IR analysis indicate that the eutectic mixture (χ SA = 0.397) with the metastable AC has good cyclic and thermal stability. The results show that the SA-AC eutectic mixture use as phase change material (PCM) possess good prospect for low temperature thermal energy storage (TES) applications.

  6. Effects of nanoparticle heating on the structure of a concentrated aqueous salt solution.

    Science.gov (United States)

    Sindt, Julien O; Alexander, Andrew J; Camp, Philip J

    2017-12-07

    The effects of a rapidly heated nanoparticle on the structure of a concentrated aqueous salt solution are studied using molecular dynamics simulations. A diamond-like nanoparticle of radius 20 Å is immersed in a sodium-chloride solution at 20% above the experimental saturation concentration and equilibrated at T = 293 K and P = 1 atm. The nanoparticle is then rapidly heated to several thousand degrees Kelvin, and the system is held under isobaric-isoenthalpic conditions. It is observed that after 2-3 ns, the salt ions are depleted far more than water molecules from a proximal zone 15-25 Å from the nanoparticle surface. This leads to a transient reduction in molality in the proximal zone and an increase in ion clustering in the distal zone. At longer times, ions begin to diffuse back into the proximal zone. It is speculated that the formation of proximal and distal zones, and the increase in ion clustering, plays a role in the mechanism of nonphotochemical laser-induced nucleation.

  7. Effects of nanoparticle heating on the structure of a concentrated aqueous salt solution

    Science.gov (United States)

    Sindt, Julien O.; Alexander, Andrew J.; Camp, Philip J.

    2017-12-01

    The effects of a rapidly heated nanoparticle on the structure of a concentrated aqueous salt solution are studied using molecular dynamics simulations. A diamond-like nanoparticle of radius 20 Å is immersed in a sodium-chloride solution at 20% above the experimental saturation concentration and equilibrated at T = 293 K and P = 1 atm. The nanoparticle is then rapidly heated to several thousand degrees Kelvin, and the system is held under isobaric-isoenthalpic conditions. It is observed that after 2-3 ns, the salt ions are depleted far more than water molecules from a proximal zone 15-25 Å from the nanoparticle surface. This leads to a transient reduction in molality in the proximal zone and an increase in ion clustering in the distal zone. At longer times, ions begin to diffuse back into the proximal zone. It is speculated that the formation of proximal and distal zones, and the increase in ion clustering, plays a role in the mechanism of nonphotochemical laser-induced nucleation.

  8. Experimental and theoretical studies in Molten Salt Natural Circulation Loop (MSNCL)

    International Nuclear Information System (INIS)

    Srivastava, A.K.; Borgohain, A.; Jana, S.S.; Bagul, R.K.; Singh, R.R.; Maheshwari, N.K.; Belokar, D.G.; Vijayan, P.K.

    2014-12-01

    High Temperature Reactors (HTR) and solar thermal power plants use molten salt as a coolant, as it has low melting point and high boiling point, enabling us to operate the system at low pressure. Molten fluoride salt and molten nitrate salt are proposed as a candidate coolant for High Temperature Reactors (HTR) and solar power plant respectively. BARC is developing a 600 MWth pebble bed high temperature reactor, cooled by natural circulation of fluoride salt and capable of supplying process heat at 1000°C to facilitate hydrogen production by splitting water. Beside this, BARC is also developing a 2MWe solar power tower system using molten nitrate salt. With these requirements, a Molten Salt Natural Circulation Loop (MSNCL) has been designed, fabricated, installed and commissioned in Hall-7, BARC for thermal hydraulic, instrumentation development and material compatibility related studies. Steady state natural circulation experiments with molten nitrate salt (mixture of NaNO 3 and KNO 3 in 60:40 ratio) have been carried out in the loop at different power level. Various transients viz. startup of natural circulation, step power change, loss of heat sink and heater trip has also been studied in the loop. A well known steady state correlation given by Vijayan et. al. has been compared with experimental data. In-house developed code LeBENC has also been validated against all steady state and transient experimental results. The detailed description of MSNCL, steady state and transient experimental results and validation of in-house developed code LeBENC have been described in this report. (author)

  9. Thermal properties and thermal reliability of eutectic mixtures of some fatty acids as latent heat storage materials

    International Nuclear Information System (INIS)

    Sari, Ahmet; Sari, Hayati; Oenal, Adem

    2004-01-01

    The present study deals with two subjects. The first one is to determine the thermal properties of lauric acid (LA)-stearic acid (SA), myristic acid (MA)-palmitic acid (PA) and palmitic acid (PA)-stearic acid (SA) eutectic mixtures as latent heat storage material. The properties were measured by the differential scanning calorimetry (DSC) analysis technique. The second one is to study the thermal reliability of these materials in view of the change in their melting temperatures and latent heats of fusion with respect to repeated thermal cycles. For this aim, the eutectic mixtures were subjected to 360 repeated melt/freeze cycles, and their thermal properties were measured after 0, 90,180 and 360 thermal cycles by the technique of DSC analysis. The DSC thermal analysis results show that the binary systems of LA-SA in the ratio of 75.5:24.5 wt.%, MA-PA in the ratio of 58:42 wt.% and PA-SA in the ratio of 64.2:35.8 wt.% form eutectic mixtures with melting temperatures of 37.0, 42.60 and 52.30 deg. C and with latent heats of fusion of 182.7, 169.7 and 181.7 J g -1 , respectively. These thermal properties make them possible for heat storage in passive solar heating applications with respect to climate conditions. The accelerated thermal cycle tests indicate that the changes in the melting temperatures and latent heats of fusion of the studied eutectic mixtures are not regular with increasing number of thermal cycles. However, these materials, latent heat energy storage materials, have good thermal reliability in terms of the change in their thermal properties with respect to thermal cycling for about a one year utility period

  10. Computation fluid dynamic modelling of natural convection heat flow in unpumped molten salt fuel tubes

    International Nuclear Information System (INIS)

    Leefe, S.; Jackson-Laver, P.; Scott, I.R.

    2015-01-01

    Use of static molten salt nuclear fuel in simple tubes was discarded in 1949 without considering how convection could affect its utility. This poster describes CFD studies showing that such tubes are practical as fuel elements in essentially conventional fuel assemblies. They can achieve power densities above 250kW per liter of fuel salt (higher than PWR's) and do so without causing the tube wall to heat to dangerous levels. This discovery enables the achievement of the many benefits of molten salt fuel while utilizing the highly developed technology, regulatory, non proliferation and safety benefits of current fuel assembly technology. (author)

  11. Eutectic mixtures of some fatty acids for latent heat storage: Thermal properties and thermal reliability with respect to thermal cycling

    International Nuclear Information System (INIS)

    Sari, Ahmet

    2006-01-01

    Accelerated thermal cycle tests have been conducted to study the change in melting temperatures and latent heats of fusion of the eutectic mixtures of lauric acid (LA)-myristic acid (MA), lauric acid (LA)-palmitic acid (PA) and myristic acid (MA)-stearic acid (SA) as latent heat storage materials. The thermal properties of these materials were determined by the differential scanning calorimetry (DSC) analysis method. The thermal reliability of the eutectic mixtures after melt/freeze cycles of 720, 1080 and 1460 was also evaluated using the DSC curves. The accelerated thermal cycle tests indicate that the melting temperatures usually tend to decrease, and the variations in the latent heats of fusion are irregular with increasing number of thermal cycles. Moreover, the probable reasons for the change in thermal properties of the eutectic mixtures after repeated thermal cycles were investigated. Fourier Transform Infrared (FT-IR) spectroscopic analysis indicates that the accelerated melt/freeze processes do not cause any degradation in the chemical structure of the mixtures. The change in thermal properties of the eutectic mixtures with increasing number of thermal cycles is only because of the presence of certain amounts of impurities in the fatty acids used in their preparation. It is concluded that the tested eutectic mixtures have reasonable thermal properties and thermal reliability as phase change materials (PCMs) for latent heat storage in any solar heating applications that include a four year utilization period

  12. Assay of uranium in fused salt cake generated at the natural uranium metal fuel fabrication plants by gamma-ray spectrometry

    International Nuclear Information System (INIS)

    Kalsi, P.C.; Bhanu, A.U.; Sahoo, S.; Iyer, R.H.

    1986-01-01

    A passive gamma-ray spectroscopic method is employed for the assay of uranium in fused salt cake, a scrap produced at the natural uranium metal fuel fabrication plants. The method makes use of NaI(TI) detector coupled with a multichannel analyser. The 1 MeV gamma-ray of 238 U was used for the calibration. The calibration curve was made by counting synthetic mixtures made of U 3 O 8 powder, the heat treatment salt and iron in the form of fine powder. The uranium content in these synthetic mixtures was kept in the range of 1-11 per cent. 23 lots of the fused salt cake taken from three different batches of the salt cake were then analysed by this method. The uranium content of fused salt cake was found to be in the range of 1.70-11.43 per cent. To compare the gamma spectrometric results with a completely independent method, chemical analysis of all the fused salt cakes were also carried out. The NDA results were found to agree within ± 17 per cent with the chemical analysis results. (author)

  13. Heat and mass transfer prediction of binary refrigerant mixtures condensing in a horizontal microfin tube

    Energy Technology Data Exchange (ETDEWEB)

    Koyama, Shigeru; Yu, Jian; Ishibashi, Akira

    1999-07-01

    In the face of the phase-out of HCFC22 for its effect on globe environment, the alternative refrigerant has been paid attention in the refrigeration and heat pump industry. In the present stage, it is found that any pure refrigerant is not a good substitute of HCFC22 for the system in use. The authors have to use binary or ternary refrigerant mixtures as the substitute to meet industrial requirement. But until now, although the heat transfer characteristics of the refrigerant mixtures can be measured in experiments and predicted in some degree, the mass transfer characteristics in condensation process, which is a main part in most systems, can not be clarified by both experimental and theoretical methods. In the present study a non-equilibrium model for condensation of binary refrigerant mixtures inside a horizontal microfin tube is proposed. In this model it is assumed that the phase equilibrium is only established at the vapor-liquid interface, while the bulk vapor and the bulk liquid are in non-equilibrium in the same cross section. The mass transfer characteristic in vapor core is obtained from the analogy between mass and momentum transfer. In the liquid layer, the mass fraction distribution is neglected, but the mass transfer coefficient is treated as infinite that can keep a finite value for the mass transfer rate in liquid phase. From the calculation results compared with the experimental ones for the condensation of HFC134a/HCFC123 and HCFC22/CFC114 mixtures, it is found that the calculated heat flux distribution along the tube axis is in good agreement with that of experiment, and the calculated values of condensing length agree well with the experimental ones. Using the present model, the local mass faction distribution, the diffusion mass transfer rate and the mass transfer characteristics in both vapor and liquid phase are demonstrated. From these results, the effect of mass transfer resistance on condensation heat transfer characteristics for binary

  14. Studies of thermal hydraulics and heat transfer in cascade subcritical molten salt reactor

    International Nuclear Information System (INIS)

    Aysen, E.M.; Sedov, A.A.; Subbotin, A.S.

    2005-01-01

    Full text of publication follows: Cascade Subcritical Molten Salt Reactor (CSMSR) consists of three main parts: accelerator-driven proton-bombarded target, central and peripheral zones. External neutrons generated in the result of interaction of protons with the target nuclei are multiplied then in the central zone and leak farther into the peripheral reactor zone, where an efficient burning of Minor Actinides dissolved in a molten salt fluoride composition is produced. The bunch of target and two zones is designed so that preset subcriticality of reactor would not be less than 1% of k eff . A characteristic feature of the reactor is a high density of neutron flux (2.10 15 n/cm 2 s) in the central zone and target and very high volumetric power rate (2000 - 6000 W/cm 3 ) in all the parts of CSMSR. To provide a workability of the core structures under condition of so big level of power rate it is necessary to impose strict limitations on the temperatures and temperature gradients developed in the coolants and constructions. In this reason it has been arranged a calculational-designing study to reveal the problems of heat transfer in the coolant and core structures and to find more appropriate variant of the core and target design, which is a compromise of contradictory requirements: provision of high neutron flux and coolability of the core structures. In this paper the results of studies of thermal hydraulics and heat transfer in the core zones and proton-beam target are presented. Different variants of the target and central zone design as well as application of different kind of coolants in them are discussed and the main problems of heat removal in their structures are analyzed. Multidimensional fields of velocity and temperature got in thermal hydraulics calculations for free flow of fuelled molten salt in cylindrical-cave peripheral CSMSR zone without structures inside are demonstrated. The role of turbulent exchange of momentum and heat for free flow in the

  15. Assessing Energy Efficiency of Compression Heat Pumps in Drying Processes when Zeotropic Hydrocarbon Mixtures are Used as Working Agents

    Directory of Open Access Journals (Sweden)

    Shurayts Alexander

    2016-01-01

    Full Text Available Presents the results of studies of innovative materials in the field of renewable energy.The paper proposes a design and a formula for assessing energy efficiency of the heat pump air dryer, which uses zeotropic hydrocarbon mixtures of saturated hydrocarbons as a working agent and applies the principle of a counter-current heat exchanger with a variable temperature of both the working and the drying agents. Energy efficiency of the heat pump is achieved by means of obtaining a greater part of heat from renewable energy sources, in this case by cooling the air and condensing the water vapors in the heat pump. A conducted analysis identified correlations in establishing the marginal real coefficient of performance of the compression heat pump dryer running on zeotropic hydrocarbon mixtures and operating a cycle with variable temperatures of both the working and the drying agent in the evaporator and the condenser of the heat pump. According to the established correlations, the marginal real coefficient of performance of the compression heat pump dryers running on zeotropic hydrocarbon mixtures of 40 mol% of R600a and 60 mol% of R601 is 1.92 times higher than that of the same dryers running on only R600 (n-butane.

  16. Low-melting point heat transfer fluid

    Science.gov (United States)

    Cordaro, Joseph Gabriel; Bradshaw, Robert W.

    2010-11-09

    A low-melting point, heat transfer fluid made of a mixture of five inorganic salts including about 29.1-33.5 mol % LiNO.sub.3, 0-3.9 mol % NaNO.sub.3, 2.4-8.2 mol % KNO.sub.3, 18.6-19.9 mol % NaNO.sub.2, and 40-45.6 mol % KNO.sub.2. These compositions can have liquidus temperatures below 80.degree. C. for some compositions.

  17. Analysis of ORC (Organic Rankine Cycle) systems with pure hydrocarbons and mixtures of hydrocarbon and retardant for engine waste heat recovery

    International Nuclear Information System (INIS)

    Song, Jian; Gu, Chun-wei

    2015-01-01

    The Organic Rankine Cycle (ORC) has been demonstrated to be a promising technology for the recovery of engine waste heat. Systems with hydrocarbons as the working fluids exhibit good thermal performance. However, the flammability of hydrocarbons limits their practical applications because of safety concerns. This paper examines the potential of using mixtures of a hydrocarbon and a retardant in an ORC system for engine waste heat recovery. Refrigerants R141b and R11 are selected as the retardants and blended with the hydrocarbons to form zeotropic mixtures. The flammability is suppressed, and in addition, zeotropic mixtures provide better temperature matches with the heat source and sink, which reduces the exergy loss within the heat exchange processes, thereby increasing the cycle efficiency. Energetic and exergetic analysis of ORC systems with pure hydrocarbons and with mixtures of a hydrocarbon and a retardant are conducted and compared. The net power output and the second law efficiency are chosen as the evaluation criteria to select the suitable working fluid compositions and to define the optimal set of thermodynamic parameters. The simulation results reveal that the ORC system with cyclohexane/R141b (0.5/0.5) is optimal for this engine waste heat recovery case, thereby increasing the net power output of the system by 13.3% compared to pure cyclohexane. - Highlights: • ORC with zeotropic mixtures for engine waste heat recovery is discussed. • Energetic and exergetic analysis of ORC system are conducted. • Optimal mixture working fluid composition is identified. • Greater utilization of jacket water and lower irreversible loss are important.

  18. Condensation heat transfer characteristics of R410A-oil mixture in 5 mm and 4 mm outside diameter horizontal microfin tubes

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Xiangchao; Ding, Guoliang; Hu, Haitao; Zhu, Yu [Institute of Refrigeration and Cryogenics, Shanghai Jiaotong University, Shanghai 200240 (China); Gao, Yifeng [International Copper Association Shanghai Office, Shanghai 200020 (China); Deng, Bin [Institute of Heat Transfer Technology, Golden Dragon Precise Copper Tube Group Inc., Shanghai 200135 (China)

    2010-10-15

    Condensation heat transfer characteristics of R410A-oil mixture in 5 mm and 4 mm outside diameter horizontal microfin tubes were investigated experimentally. The experimental condensing temperature is 40 C, and nominal oil concentration range is from 0% to 5%. The test results indicate that the presence of oil deteriorates the heat transfer. The deterioration effect is negligible at nominal oil concentration of 1%, and becomes obvious with the increase of nominal oil concentration. At 5% nominal oil concentration, the heat transfer coefficient of R410A-oil mixture is found to have a maximum reduction of 25.1% and 23.8% for 5 mm and 4 mm tubes, respectively. The predictabilities of the existing condensation heat transfer correlations were verified with the experimental data, and Yu and Koyama correlation shows the best predictability. By replacing the pure refrigerant properties with the mixture's properties, Yu and Koyama correlation has a deviation of -15% to + 20% in predicting the local condensation heat transfer coefficient of R410A-oil mixture. (author)

  19. A model for radiative heat transfer in mixtures of a hot solid or molten material with water and steam

    International Nuclear Information System (INIS)

    Vaeth, L.

    1997-05-01

    A model has been devised for describing the radiative heat transfer in mixtures of a hot radiant material with water and steam, to be used, e.g., in the framework of a multiphase, multicomponent flow simulation. The main features of the model are: 1. The radiative heat transfer is modelled for a homogeneous mixture of one continuous material with droplets/bubbles of the other two, of the kind normally assumed for the material distribution in one cell of a bigger calculational problem. Neither the heat transfer over the cell boundaries nor the finite dimensions of the cell are taken into account. 2. The geometry of the mixture (radiant material continuous or discontinuous, droplet/bubble diameters and number densities) is taken into account. 3. The optical properties of water and water vapour are modelled as functions of the temperature of the radiant and, in the case of water vapour, also of the absorbing material. 4. The model distinguishes between heat transfer to the surface of the water (leading to evaporation) and into the bulk of the water (pure heating). (orig./DG) [de

  20. Formulation of Spices mixture for preparation of Chicken Curry

    Directory of Open Access Journals (Sweden)

    Deogade

    2008-02-01

    Full Text Available Considering the scope of utilization of processed chicken in convenient form, a study was undertaken to optimize the levels of spice mixture salt and commercial chicken masala in a spice formulation to be used for preparation of chicken curry. The sensory quality of ready to eat chicken curry added with hot spice mixture containing salt and chicken masala, revealed that the flavour, juiciness, texture and overall palatability scores of chicken curry improved significantly with addition of 3.0 % salt level as compared to that of 2.5, 3.5 and 4.0 %. Spice mixture containing 1.0 % commercial chicken masala exhibited significantly higher scores for all the sensory attributes over 0.5 and 1.5%.It is thus concluded added that spice mixture added 3.0 % salt and 1.0 % commercial chicken masala was more suitable to enhance the sensory quality of ready to eat chicken curry. [Veterinary World 2008; 1(1.000: 18-20

  1. Formulation of Spices mixture for preparation of Chicken Curry

    Directory of Open Access Journals (Sweden)

    Deogade

    2008-01-01

    Full Text Available Considering the scope of utilization of processed chicken in convenient form, a study was undertaken to optimize the levels of spice mixture salt and commercial chicken masala in a spice formulation to be used for preparation of chicken curry. The sensory quality of ready to eat chicken curry added with hot spice mixture containing salt and chicken masala, revealed that the flavour, juiciness, texture and overall palatability scores of chicken curry improved significantly with addition of 3.0 % salt level as compared to that of 2.5, 3.5 and 4.0 %. Spice mixture containing 1.0 % commercial chicken masala exhibited significantly higher scores for all the sensory attributes over 0.5 and 1.5%.It is thus concluded added that spice mixture added 3.0 % salt and 1.0 % commercial chicken masala was more suitable to enhance the sensory quality of ready to eat chicken curry. [Vet World 2008; 1(1.000: 18-20

  2. Steam generator design for solar towers using solar salt as heat transfer fluid

    Science.gov (United States)

    González-Gómez, Pedro Ángel; Petrakopoulou, Fontina; Briongos, Javier Villa; Santana, Domingo

    2017-06-01

    Since the operation of a concentrating solar power plant depends on the intermittent character of solar energy, the steam generator is subject to daily start-ups, stops and load variations. Faster start-up and load changes increase the plant flexibility and the daily energy production. However, it involves high thermal stresses on thick-walled components. Continuous operational conditions may eventually lead to a material failure. For these reasons, it is important to evaluate the transient behavior of the proposed designs in order to assure the reliability. The aim of this work is to analyze different steam generator designs for solar power tower plants using molten salt as heat transfer fluid. A conceptual steam generator design is proposed and associated heat transfer areas and steam drum size are calculated. Then, dynamic models for the main parts of the steam generator are developed to represent its transient performance. A temperature change rate that ensures safe hot start-up conditions is studied for the molten salt. The thermal stress evolution on the steam drum is calculated as key component of the steam generator.

  3. Recirculation within a glass mixture subjected to external and resistive heating

    International Nuclear Information System (INIS)

    Pepper, D.W.

    1985-01-01

    Convective motion within a glass mixture undergoing external and resistive (joule) heating is numerically simulated. A time-split finite element technique and a pseudo-pressure formulation are used to solve the two- and three-dimensional primitive equations of motion. The viscosity, thermal diffusivity, and electrical conductivity vary as a function of temperature; the temperature varies from ambient to 1150 0 C. 15 refs., 4 figs

  4. Condensation heat transfer correlation for water-ethanol vapor mixture flowing through a plate heat exchanger

    Science.gov (United States)

    Zhou, Weiqing; Hu, Shenhua; Ma, Xiangrong; Zhou, Feng

    2018-04-01

    Condensation heat transfer coefficient (HTC) as a function of outlet vapor quality was investigated using water-ethanol vapor mixture of different ethanol vapor concentrations (0%, 1%, 2%, 5%, 10%, 20%) under three different system pressures (31 kPa, 47 kPa, 83 kPa). A heat transfer coefficient was developed by applying multiple linear regression method to experimental data, taking into account the dimensionless numbers which represents the Marangoni condensation effects, such as Re, Pr, Ja, Ma and Sh. The developed correlation can predict the condensation performance within a deviation range from -22% to 32%. Taking PHE's characteristic into consideration and bringing in Ma number and Sh number, a new correlation was developed, which showed a much more accurate prediction, within a deviation from -3.2% to 7.9%.

  5. The Use of Computer-Based Image Analysis on Colour Determination of Liquid Smoked Trout (Oncorhynchus mykiss Treated with Different Dry Salt-Sugar Mixtures

    Directory of Open Access Journals (Sweden)

    Zayde Ayvaz

    2017-12-01

    Full Text Available In this study, the changes in % yield, dry matter, ash, lipid, protein content, water activity, pH, total volatile basic nitrogen (TVB-N, total viable aerobic count (TVC, yeast and mold count, lactic acid bacteria (LAB, colour parameters and sensorial properties were analysed in rainbow trout (Oncorhynchus mykiss exposed to either salt only or two different salt-sugar mixture treatments. For this purpose, three groups were formed. For the first, second and third group, fish samples were treated with only salt (S, salt and sugar blend (WS and salt and brown sugar blend (BS, respectively. Then, the samples were vacuum packaged and stored at +4°C for 3 months. Overall, salt treatments, liquid smoking and cooking as well as storage generally caused remarkable changes in the parameters of interest. However, except for the sensory analysis, not a remarkable change was seen when the three groups were compared among themselves. The results of experienced panelists suggested that group BS samples had superior appearance, taste, odor and texture and therefore expected to be more preferred by the potential consumers.

  6. Mixture for producing fracture-resistant, fiber-reinforced ceramic material by microwave heating

    Science.gov (United States)

    Meek, T.T.; Blake, R.D.

    1985-04-03

    A fracture-resistant, fiber-reinforced ceramic substrate is produced by a method which involves preparing a ceramic precursor mixture comprising glass material, a coupling agent, and resilient fibers, and then exposing the mixture to microwave energy. The microwave field orients the fibers in the resulting ceramic material in a desired pattern wherein heat later generated in or on the substrate can be dissipated in a desired geometric pattern parallel to the fiber pattern. Additionally, the shunt capacitance of the fracture-resistant, fiber-reinforced ceramic substrate is lower which provides for a quicker transit time for electronic pulses in any conducting pathway etched into the ceramic substrate.

  7. Deriving guidelines for the design of plate evaporators in heat pumps using zeotropic mixtures

    DEFF Research Database (Denmark)

    Mancini, Roberta; Zühlsdorf, Benjamin; Jensen, Jonas Kjær

    2018-01-01

    This paper presents a derivation of design guidelines for plate heat exchangers used for evaporation of zeotropic mixtures in heat pumps. A mapping of combined heat exchanger and cycle calculations for different combinations of geometrical parameters and working fluids allowed estimating the trade....... It was found that the pressure drop limit leading to infeasible designs was dependent on the working fluid, thereby making it impossible to define a guideline based on maximum allowable pressure drops. It was found that economically feasible designs could be obtained by correlating the vapour Reynolds number...

  8. Data in support of intermolecular interactions at early stage of protein/detergent particle association induced by salt/polyethylene glycol mixtures

    Directory of Open Access Journals (Sweden)

    Takayuki Odahara

    2016-06-01

    Full Text Available The data provide information in support of the research article, “Intermolecular interactions at early stage of protein/detergent particle association induced by salt/polyethylene glycol mixtures” [1]. The data regarding variation of absorption spectra is used as an indicator of the duration of Rp. viridis PRU and RC, Rb. sphaeroides RC and LH2, and Rb. capsulatus LH2 in the native state in the presence of NaCl/polyethylene glycol (PEG mixture. The data about minimum concentrations of salt and PEG whose aqueous phases are mutually separated presents information on additional influence of Tris buffer and N-octyl-β-d-glucoside on the salt–PEG phase separation.

  9. Effects of Cations on Corrosion of Inconel 625 in Molten Chloride Salts

    Science.gov (United States)

    Zhu, Ming; Ma, Hongfang; Wang, Mingjing; Wang, Zhihua; Sharif, Adel

    2016-04-01

    Hot corrosion of Inconel 625 in sodium chloride, potassium chloride, magnesium chloride, calcium chloride and their mixtures with different compositions is conducted at 900°C to investigate the effects of cations in chloride salts on corrosion behavior of the alloy. XRD, SEM/EDS were used to analyze the compositions, phases, and morphologies of the corrosion products. The results showed that Inconel 625 suffers more severe corrosion in alkaline earth metal chloride molten salts than alkaline metal chloride molten salts. For corrosion in mixture salts, the corrosion rate increased with increasing alkaline earth metal chloride salt content in the mixture. Cations in the chloride molten salts mainly affect the thermal and chemical properties of the salts such as vapor pressure and hydroscopicities, which can affect the basicity of the molten salt. Corrosion of Inconel 625 in alkaline earth metal chloride salts is accelerated with increasing basicity.

  10. Mixing of zeolite powders and molten salt

    International Nuclear Information System (INIS)

    Pereira, C.; Zyryanov, V.N.; Lewis, M.A.; Ackerman, J.P.

    1996-01-01

    Transuranics and fission products in a molten salt can be incorporated into zeolite A by an ion exchange process and by a batch mixing or blending process. The zeolite is then mixed with glass and consolidated into a monolithic waste form for geologic disposal. Both processes require mixing of zeolite powders with molten salt at elevated temperatures (>700 K). Complete occlusion of salt and a uniform distribution of chloride and fission products are desired for incorporation of the powders into the final waste form. The relative effectiveness of the blending process was studied over a series of temperature, time, and composition profiles. The major criteria for determining the effectiveness of the mixing operations were the level and uniformity of residual free salt in the mixtures. High operating temperatures (>775 K) improved salt occlusion. Reducing the chloride levels in the mixture to below 80% of the full salt capacity of the zeolite significantly reduced the free salt level in the final product

  11. Study of structure and chemical interactions in molten salt mixtures on the base of tantalum fluorides

    International Nuclear Information System (INIS)

    Agulyanskij, A.I.; Kirillov, S.A.; Prysyazhnyj, V.D.; AN Ukrainskoj SSR, Kiev. Inst. Obshchej i Neorganicheskoj Khimii)

    1980-01-01

    Using the method of IR-spectroscopy molten salt mixture containing K 2 TaF 7 , KF, KCl are investigated. It is detected that in the process of K 2 TaF 7 melting the TaF 6 - and TaF 7 2- ions are present in melt. When adding KF and KCl to the melt the equilibrium is shifted the direction of the TaF 7 2- and TaF 6 Cl 2- heptahaloid complexing respectively. In the melts with the composition close to the industrial electrolytes, containing K 2 TaF 7 , KF and KCl heptacoordinated tantalate ion is a prevailing one

  12. Estimation of performance of a J-T refrigerators operating with nitrogen-hydrocarbon mixtures and a coiled tubes-in-tube heat exchanger

    Science.gov (United States)

    Satya Meher, R.; Venkatarathnam, G.

    2018-06-01

    The exergy efficiency of Joule-Thomson (J-T) refrigerators operating with mixtures (MRC systems) strongly depends on the choice of refrigerant mixture and the performance of the heat exchanger used. Helically coiled, multiple tubes-in-tube heat exchangers with an effectiveness of over 96% are widely used in these types of systems. All the current studies focus only on the different heat transfer correlations and the uncertainty in predicting performance of the heat exchanger alone. The main focus of this work is to estimate the uncertainty in cooling capacity when the homogenous model is used by comparing the theoretical and experimental studies. The comparisons have been extended to some two-phase models present in the literature as well. Experiments have been carried out on a J-T refrigerator at a fixed heat load of 10 W with different nitrogen-hydrocarbon mixtures in the evaporator temperature range of 100-120 K. Different heat transfer models have been used to predict the temperature profiles as well as the cooling capacity of the refrigerator. The results show that the homogenous two-phase flow model is probably the most suitable model for rating the cooling capacity of a J-T refrigerator operating with nitrogen-hydrocarbon mixtures.

  13. New hybrid nanofluid containing encapsulated paraffin wax and sand nanoparticles in propylene glycol-water mixture: Potential heat transfer fluid for energy management

    International Nuclear Information System (INIS)

    Manikandan, S.; Rajan, K.S.

    2017-01-01

    Highlights: • Hybrid nanofluid containing sand nanoparticles & encapsulated paraffin wax prepared. • Specific heat of hybrid nanofluid 9% greater than that of PG-water mixture. • Specific heat & thermal conductivity enhanced at optimum paraffin wax concentration. • Hybrid nanofluid with 1 wt.% paraffin wax & 1 vol% sand nanoparticles best suited. - Abstract: The reduction in specific heat commonly encountered due to the addition of nanoparticles to a heat transfer fluid such as propylene glycol-water mixture, can be overcome by co-dispersing surfactant-encapsulated paraffin wax, leading to formation of a hybrid nanofluid. Experimental investigations have been carried out on the preparation and evaluation of thermophysical properties of a hybrid nanofluid containing pluronic P-123 encapsulated paraffin wax (70–120 nm diameter, 1–5 wt.%) and sand nanoparticles (1 vol%) in propylene glycol-water mixture. The comparison of results of differential scanning calorimetry of pure paraffin wax and encapsulated paraffin wax revealed encapsulation efficiency of 84.4%. The specific heat of hybrid nanofluids monotonously increased with paraffin wax concentration, with 9.1% enhancement in specific heat for hybrid nanofluid containing 5 wt.% paraffin wax, in comparison to propylene glycol-water mixture. There exists an optimum paraffin wax concentration (1 wt.%) for the hybrid nanofluid at which the combination of various thermophysical properties such as specific heat, thermal conductivity and viscosity are favorable for use as heat transfer fluid. Such a hybrid nanofluid can be used as a substitute for propylene glycol-water mixture in solar thermal systems.

  14. Induction of heat shock proteins DnaK, GroEL, and GroES by salt stress in Lactococcus lactis

    DEFF Research Database (Denmark)

    Kilstrup, Mogens; Jacobsen, Susanne; Hammer, Karin

    1997-01-01

    The bacterium Lactococcus lactis has become a model organism in studies of growth physiology and membrane transport, as a result of its simple fermentative metabolism. It is also used as a model for studying the importance of specific genes and functions during lie in excess nutrients, by compari...... the timing during heat stress although at a lower induction level. These data indicate an overlap between the heat shock and salt stress responses in L. lactis......., by comparison of prototrophic wild-type strains and auxotrophic domesticated (daily) strains. In a study of the capacity of domesticated strains to perform directed responses toward various stress conditions, we have analyzed the heat and salt stress response in the established L,. lactis subsp. cremoris...... laboratory strain MG1363, which was originally derived from a dairy strain, After two-dimensional separation of proteins, the DnaK, GroEL, and GroES heat shock proteins, the HrcA (Orf1) heat shack repressor, and the glycolytic enzymes pyruvate kinase, glyceral-dehyde-3-phosphate dehydrogenase...

  15. Seaglider surveys at Ocean Station Papa: Diagnosis of upper-ocean heat and salt balances using least squares with inequality constraints

    Science.gov (United States)

    Pelland, Noel A.; Eriksen, Charles C.; Cronin, Meghan F.

    2017-06-01

    Heat and salt balances in the upper 200 m are examined using data from Seaglider spatial surveys June 2008 to January 2010 surrounding a NOAA surface mooring at Ocean Station Papa (OSP; 50°N, 145°W). A least-squares approach is applied to repeat Seaglider survey and moored measurements to solve for unknown or uncertain monthly three-dimensional circulation and vertical diffusivity. Within the surface boundary layer, the estimated heat and salt balances are dominated throughout the surveys by turbulent flux, vertical advection, and for heat, radiative absorption. When vertically integrated balances are considered, an estimated upwelling of cool water balances the net surface input of heat, while the corresponding large import of salt across the halocline due to upwelling and diffusion is balanced by surface moisture input and horizontal import of fresh water. Measurement of horizontal gradients allows the estimation of unresolved vertical terms over more than one annual cycle; diffusivity in the upper-ocean transition layer decreases rapidly to the depth of the maximum near-surface stratification in all months, with weak seasonal modulation in the rate of decrease and profile amplitude. Vertical velocity is estimated to be on average upward but with important monthly variations. Results support and expand existing evidence concerning the importance of horizontal advection in the balances of heat and salt in the Gulf of Alaska, highlight time and depth variability in difficult-to-measure vertical transports in the upper ocean, and suggest avenues of further study in future observational work at OSP.

  16. Thermodynamics investigation of a solar power system integrated oil and molten salt as heat transfer fluids

    International Nuclear Information System (INIS)

    Liu, Qibin; Bai, Zhang; Sun, Jie; Yan, Yuejun; Gao, Zhichao; Jin, Hongguang

    2016-01-01

    Highlights: • A new concentrating solar power system with a dual-solar field is proposed. • The superheated steam with more than 773 K is produced. • The performances of the proposed system are demonstrated. • The economic feasibility of the proposed system is validated. - Abstract: In this paper, a new parabolic trough solar power system that incorporates a dual-solar field with oil and molten salt as heat transfer fluids (HTFs) is proposed to effectively utilize the solar energy. The oil is chosen as a HTF in the low temperature solar field to heat the feeding water, and the high temperature solar field uses molten salt to superheat the steam that the temperature is higher than 773 K. The produced superheated steam enters a steam turbine to generate power. Energy analysis and exergy analysis of the system are implemented to evaluate the feasibility of the proposed system. Under considerations of variations of solar irradiation, the on-design and off-design thermodynamic performances of the system and the characteristics are investigated. The annual average solar-to-electric efficiency and the nominal efficiency under the given condition for the proposed solar thermal power generation system reach to 15.86% and 22.80%, which are higher than the reference system with a single HTF. The exergy losses within the solar heat transfer process of the proposed system are reduced by 7.8% and 45.23% compared with the solar power thermal systems using oil and molten salt as HTFs, respectively. The integrated approach with oil and molten salt as HTFs can make full use of the different physical properties of the HTFs, and optimize the heat transfer process between the HTFs and the water/steam. The exergy loss in the water evaporation and superheated process are reduced, the system efficiency and the economic performance are improved. The research findings provide a new approach for the improvement of the performances of solar thermal power plants.

  17. Heat of Absorption of CO2 in Aqueous Solutions of DEEA, MAPA and their Mixture

    DEFF Research Database (Denmark)

    Waseem Arshad, Muhammad; von Solms, Nicolas; Thomsen, Kaj

    2013-01-01

    A reaction calorimeter was used to measure the differential heat of absorption of CO2 in phase change solvents as a function of temperature, CO2 loading and solvent composition. The measurements were taken for aqueous solutions of 2-(diethylamino)ethanol (DEEA), 3-(methylamino)propylamine (MAPA......) and their mixture. The tested compositions were 5M DEEA, 2M MAPA and their mixture, 5M DEEA + 2M MAPA which gives two liquid phases on reacting with CO2. Experimental measurements were also carried out for 30% MEA used as a base case. The measurements were taken isothermally at three different temperatures 40, 80...... and 120°C at a CO2 feed pressure of 600kPa. In single aqueous amine solutions, heat of absorption increases with increase in temperature and depends on thetype of amine used. DEEA, a tertiary amine, has lower heat of absorption compared to MAPA being a diamine with primary and secondary amine functional...

  18. Salted, dried and smoked fish

    International Nuclear Information System (INIS)

    Lamprecht, E.; Riley, F.R.; Vermaak, K.; Venn, C.

    1986-01-01

    Heat resistance tests were carried out using a heat resistant strain of red halophiles isolated from a commercial salt and comparing this with three known species, i.e. Halobacterium halobium, H. salinarum and H. antirubrum. These four halophic strains were used to prepare artificially infected salts which were then subjected to three different forms of heat treatment: heat-treatment in oil bath, microwave heating and gamma radiation. The conclusion was made that gamma radiation appears to be less effective than microwave heating at the levels tested

  19. Behaviour of I/Br/Cl-THMs and their projected toxicities under simulated cooking conditions: Effects of heating, table salt and residual chlorine.

    Science.gov (United States)

    Yan, Mingquan; Li, Mingyang; Han, Xuze

    2016-08-15

    This study examined the effects of heating, residual chlorine and concentration of table salt on the generation of iodine-, bromine- and chlorine-containing trihalomethanes (THMs) under simulated cooking conditions. In the case of addition of either KI- or KIO3-fortified salt, total I-THM concentrations increased with increasing iodine concentration, while total Cl/Br-THM concentrations decreased. CHCl2I, CHBrClI, CHBrI2, CHBr2I and CHI3 were formed in the presence of KI salt, while only CHCl2I was formed in the presence of KIO3 salt. CHCl2I was unstable under cooking conditions, and >90% of this DBP was removed during heating, which in some cases increased the concentrations of the other I-THMs. The calculated cytotoxicity increased with addition of KI- or KIO3-fortified salt due to the generation of I-THMs, whose impact on the cytotoxicity at room temperature was equal to or five times higher, respectively, than the cytotoxicity of the simultaneously formed Cl/Br-THMs for the cases of salts. Heating decreased the cytotoxicity, except for the case of addition of KI salt, in which the calculated cytotoxicity of I-THMs increased above 150% as the temperature was increased up to 100°C. The reported results may have important implications for epidemiologic exposure assessments and, ultimately, for public health protection. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Dilute acid/metal salt hydrolysis of lignocellulosics

    Science.gov (United States)

    Nguyen, Quang A.; Tucker, Melvin P.

    2002-01-01

    A modified dilute acid method of hydrolyzing the cellulose and hemicellulose in lignocellulosic material under conditions to obtain higher overall fermentable sugar yields than is obtainable using dilute acid alone, comprising: impregnating a lignocellulosic feedstock with a mixture of an amount of aqueous solution of a dilute acid catalyst and a metal salt catalyst sufficient to provide higher overall fermentable sugar yields than is obtainable when hydrolyzing with dilute acid alone; loading the impregnated lignocellulosic feedstock into a reactor and heating for a sufficient period of time to hydrolyze substantially all of the hemicellulose and greater than 45% of the cellulose to water soluble sugars; and recovering the water soluble sugars.

  1. Derivation of guidelines for the design of plate evaporators in heat pumps using zeotropic mixtures

    DEFF Research Database (Denmark)

    Elmegaard, Brian; Mancini, Roberta; Zühlsdorf, Benjamin

    2017-01-01

    integration in a spray drying facility. A numerical model of the evaporator is combined with cycle calculations, for estimating the impact of heat transfer area and pressure drop on the coefficient of performance and costs. Common trends are obtained as optimal configurations for the four considered fluids...... minimization of area and pressure drop is found by assessing the relative impact on costs of the heat exchanger area and pressure losses of both working fluid and heat source. The result shows that it is not always convenient to minimize the heat transfer area, since the mixture pressure drop negatively...

  2. Experimental Study on Compression/Absorption High-Temperature Hybrid Heat Pump with Natural Refrigerant Mixture

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ji Young; Park, Seong Ryong; Baik, Young Jin; Chang, Ki Chang; Ra, Ho Sang; Kim, Min Sung [Korea Institute of Energy Research, Daejeon (Korea, Republic of); Kim, Yong Chan [Korea University, Seoul (Korea, Republic of)

    2011-12-15

    This research concerns the development of a compression/absorption high-temperature hybrid heat pump that uses a natural refrigerant mixture. Heat pumps based on the compression/absorption cycle offer various advantages over conventional heat pumps based on the vapor compression cycle, such as large temperature glide, temperature lift, flexible operating range, and capacity control. In this study, a lab-scale prototype hybrid heat pump was constructed with a two-stage compressor, absorber, desorber, desuperheater, solution heat exchanger, solution pump, liquid/vapor separator, and rectifier as the main components. The hybrid heat pump system operated at 10-kW-class heating capacity producing hot water whose temperature was more than 90 .deg. C when the heat source and sink temperatures were 50 .deg. C. Experiments with various NH{sub 3}/H{sub 2}O mass fractions and compressor/pump circulation ratios were performed on the system. From the study, the system performance was optimized at a specific NH{sub 3} concentration.

  3. Transient core characteristics of small molten salt reactor coupling problem between heat transfer/flow and nuclear fission reaction

    International Nuclear Information System (INIS)

    Yamamoto, Takahisa; Mitachi, Koshi

    2004-01-01

    This paper performed the transient core analysis of a small Molten Salt Reactor (MSR). The emphasis is that the numerical model employed in this paper takes into account the interaction among fuel salt flow, nuclear reaction and heat transfer. The model consists of two group diffusion equations for fast and thermal neutron fluexs, balance equations for six-group delayed neutron precursors and energy conservation equations for fuel salt and graphite moderator. The results of transient analysis are that (1) fission reaction (heat generation) rate significantly increases soon after step reactivity insertion, e.g., the peak of fission reaction rate achieves about 2.7 times larger than the rated power 350 MW when the reactivity of 0.15% Δk/k 0 is inserted to the rated state, and (2) the self-control performance of the small MSR effectively works under the step reactivity insertion of 0.56% Δk/k 0 , putting the fission reaction rate back on the rated state. (author)

  4. An assessment of in-tube flow boiling correlations for ammonia-water mixtures and their influence on heat exchanger size

    DEFF Research Database (Denmark)

    Kærn, Martin Ryhl; Modi, Anish; Jensen, Jonas Kjær

    2016-01-01

    on the required heat exchanger size (surface area)is investigated during numerical design. For this purpose, two case studies related to the use of the Kalina cycle are considered: a flue gas based heat recovery boiler for acombined cycle power plant and a hot oil based boiler for a solar thermal power plant......Heat transfer correlations for pool and flow boiling are indispensable for boiler design. The correlations for predicting in-tube flow boiling heat transfer ofammonia-water mixtures are not well established in the open literature and there is a lack of experimental measurements for the full range...... of composition, vapor qualities, fluid conditions, etc. This paper presents a comparison of several flow boiling heat transfer prediction methods (correlations) for ammonia-water mixtures. Firstly, these methods are reviewed and compared at various fluid conditions. The methods include: (1) the ammonia...

  5. An Investigation on the Thermophysical Properties of a Binary Molten Salt System Containing Both Aluminum Oxide and Titanium Oxide Nanoparticle Suspensions

    Science.gov (United States)

    Giridhar, Kunal

    Molten salts are showing great potential to replace current heat transfer and thermal energy storage fluids in concentrated solar plants because of their capability to maximize thermal energy storage, greater stability, cost effectiveness and significant thermal properties. However one of the major drawbacks of using molten salt as heat transfer fluid is that they are in solid state at room temperature and they have a high freezing point. Hence, significant resources would be required to maintain it in liquid form. If molten salt freezes while in operation, it would eventually damage piping network due to its volume shrinkage along with rendering the entire plant inoperable. It is long known that addition of nanoparticle suspensions has led to significant changes in thermal properties of fluids. In this investigation, aluminum oxide and titanium oxide nanoparticles of varying concentrations are added to molten salt/solar salt system consisting of 60% sodium nitrate and 40% potassium nitrate. Using differential scanning calorimeter, an attempt will be made to investigate changes in heat capacity of system, depression in freezing point and changes in latent heat of fusion. Scanning electron microscope will be used to take images of samples to study changes in micro-structure of mixture, ensure uniform distribution of nanoparticle in system and verify authenticity of materials used for experimentation. Due to enormous magnitude of CSP plant, actual implementation of molten salt system is on a large scale. With this investigation, even microscopic enhancement in heat capacity and slight lowering of freezing point will lead to greater benefits in terms of efficiency and cost of operation of plant. These results will further the argument for viability of molten salt as a heat transfer fluid and thermal storage system in CSP. One of the objective of this experimentation is to also collect experimental data which can be used for establishing relation between concentration

  6. Proteome Profiling of Heat, Oxidative, and Salt Stress Responses in Thermococcus kodakarensis KOD1

    Directory of Open Access Journals (Sweden)

    Baolei eJia

    2015-06-01

    Full Text Available The thermophilic species, Thermococcus kodakarensis KOD1, a model microorganism for studying hyperthermophiles, has adapted to optimal growth under conditions of high temperature and salinity. However, the environmental conditions for the strain are not always stable, and this strain might face different stresses. In the present study, we compared the proteome response of T. kodakarensis to heat, oxidative, and salt stresses using two-dimensional electrophoresis, and protein spots were identified through MALDI-TOF/MS. Fifty-nine, forty-two, and twenty-nine spots were induced under heat, oxidative, and salt stresses, respectively. Among the up-regulated proteins, four proteins (a hypothetical protein, pyridoxal biosynthesis lyase, peroxiredoxin, and protein disulphide oxidoreductase were associated with all three stresses. Gene ontology analysis showed that these proteins were primarily involved metabolic and cellular processes. The KEGG pathway analysis suggested that the main metabolic pathways involving these enzymes were related to carbohydrate metabolism, secondary metabolite synthesis, and amino acid biosynthesis. These data might enhance our understanding of the functions and molecular mechanisms of thermophilic Archaea for survival and adaptation in extreme environments.

  7. Analysis of ammonia/water and ammonia/salt mixture absorption cycles for refrigeration purposes in fishing ships

    International Nuclear Information System (INIS)

    Táboas, Francisco; Bourouis, Mahmoud; Vallès, Manel

    2014-01-01

    In this work, the use of waste heat energy of jacket water in diesel engines of fishing ships was analysed for use as a heat source for absorption refrigeration systems. The thermodynamic simulation of an absorption refrigeration cycle with three different working fluid mixtures that use ammonia as a refrigerant was carried out. This analysis was assessed in terms of the cooling demand and cycle performance as a function of the evaporator, condenser and generator temperatures. Moreover, the need for rectifying the vapour stream leaving the generator was analysed together with the drag of the fraction of non-evaporated liquid to the absorber. The results show that the NH 3 /(LiNO 3  + H 2 O) and NH 3 /LiNO 3 fluid mixtures have higher values of COP as compared to NH 3 /H 2 O fluid mixture, the differences being more pronounced at low generation temperatures. If the activation temperature is set to 85 °C, the minimum evaporation temperatures that can be achieved are −18.8 °C for the cycle with NH 3 /LiNO 3 , −17.5 °C for the cycle with NH 3 /(LiNO 3  + H 2 O) cycle and −13.7 °C for the NH 3 /H 2 O cycle at a condensing temperature of 25 °C. Also, for the NH 3 /(LiNO 3  + H 2 O) fluid mixture, it has been demonstrated that the absorption refrigeration cycle can be operated without a distillation column and in this case the water content in the refrigerant stream entering the evaporator is less than 1.5% in weight at the operating conditions selected. - Highlights: •Ammonia absorption systems can provide refrigeration necessities for fishing ships. •Absorption refrigeration systems reduce the energy consumption of fishing ships. •The NH 3 /(LiNO 3  + H 2 O) mixture is recommended for absorption refrigeration cycles

  8. Recovery from heat, salt and osmotic stress in Physcomitrella patens requires a functional small heat shock protein PpHsp16.4.

    Science.gov (United States)

    Ruibal, Cecilia; Castro, Alexandra; Carballo, Valentina; Szabados, László; Vidal, Sabina

    2013-11-05

    Plant small heat shock proteins (sHsps) accumulate in response to various environmental stresses, including heat, drought, salt and oxidative stress. Numerous studies suggest a role for these proteins in stress tolerance by preventing stress-induced protein aggregation as well as by facilitating protein refolding by other chaperones. However, in vivo evidence for the involvement of sHsps in tolerance to different stress factors is still missing, mainly due to the lack of appropriate mutants in specific sHsp genes. In this study we characterized the function of a sHsp in abiotic stress tolerance in the moss Physcomitrella patens, a model for primitive land plants. Using suppression subtractive hybridization, we isolated an abscisic acid-upregulated gene from P. patens encoding a 16.4 kDa cytosolic class II sHsp. PpHsp16.4 was also induced by salicylic acid, dithiothreitol (DTT) and by exposure to various stimuli, including osmotic and salt stress, but not by oxidative stress-inducing compounds. Expression of the gene was maintained upon stress relief, suggesting a role for this protein in the recovery stage. PpHsp16.4 is encoded by two identical genes arranged in tandem in the genome. Targeted disruption of both genes resulted in the inability of plants to recover from heat, salt and osmotic stress. In vivo localization studies revealed that PpHsp16.4 localized in cytosolic granules in the vicinity of chloroplasts under non stress conditions, suggesting possible distinct roles for this protein under stress and optimal growth. We identified a member of the class II sHsp family that showed hormonal and abiotic stress gene regulation. Induction of the gene by DTT treatment suggests that damaged proteins may act as signals for the stress-induction of PpHsp16.4. The product of this gene was shown to localize in cytosolic granules near the chloroplasts, suggesting a role for the protein in association with these organelles. Our study provides the first direct genetic

  9. Reactor chemical considerations of the accelerator molten-salt breeders

    International Nuclear Information System (INIS)

    Furukawa, Kazuo; Kato, Yoshio; Ohno, Hideo; Ohmichi, Toshihiko

    1982-01-01

    A single phase of the molten fluoride mixture is simultaneously functionable as a nuclear reaction medium, a heat medium and a chemical processing medium. Applying this characteristics of molten salts, the single-fluid type accelerator molten-salt breeder (AMSB) concept was proposed, in which 7 LiF-BeF 2 -ThF 4 was served as a target-and-blanket salt (Fig. 1 and Table 1), and the detailed discussion on the chemical aspects of AMSB are presented (Tables 2 -- 4 and Fig.2). Owing to the small total amount of radiowaste and the low concentrations of each element in target salt, AMSB would be chemically managable. The performance of the standard-type AMSB is improved by adding 0.3 -- 0.8 m/o 233 UF 4 as follows(Tables 1 and 4, and Figs. 2 and 3): (a) this ''high-gain'' type AMSB is feasible to design chemically, in which still only small amount of radiowaste is included ; (b) the fissile material production rate will be increased significantly; (c) this target salt is straightly fed as an 233 U additive to the fuel of molten-salt converter reactor (MSCR) ; (d) the dirty fuel salt suctioned from MSCR is batch-reprocessed in the safeguarded regional center, in which many AMSB are facilitated ; (e) the isolated 233 UF 4 is blended in the target salt sent to many MSCRs, and the cleaned residual fertile salt is used as a diluent of AMSB salt ; (f) this simple and rational thorium fuel breeding cycle system is also suitable for the nuclear nonproliferation and for the fabrication of smaller size power-stations. (author)

  10. Brine flow in heated geologic salt.

    Energy Technology Data Exchange (ETDEWEB)

    Kuhlman, Kristopher L.; Malama, Bwalya

    2013-03-01

    This report is a summary of the physical processes, primary governing equations, solution approaches, and historic testing related to brine migration in geologic salt. Although most information presented in this report is not new, we synthesize a large amount of material scattered across dozens of laboratory reports, journal papers, conference proceedings, and textbooks. We present a mathematical description of the governing brine flow mechanisms in geologic salt. We outline the general coupled thermal, multi-phase hydrologic, and mechanical processes. We derive these processes governing equations, which can be used to predict brine flow. These equations are valid under a wide variety of conditions applicable to radioactive waste disposal in rooms and boreholes excavated into geologic salt.

  11. Water desalting schemes when using heat gas-vapor mixture in front of contact condenser

    OpenAIRE

    Kuznetsova, Svitlana A.

    2016-01-01

    Ukraine is a country with low quality of fresh water; there are regions with its deficiency. One of the possible solutions to this problem is the desalination of the brackish water from surface and groundwater sources by using heat of the mixture before the contact condenser in gas-steam turbine plants. The plants produce electricity and heat energy for the needs of the industrial, agricultural complexes and the population of Kherson, Nikolaev and Odessa regions. The studies were carried out ...

  12. Study on subcooled-forced flow boiling heat transfer and critical heat flux of solid particle-water two-phase mixture

    International Nuclear Information System (INIS)

    Koizumi, Yasuo; Mochizuki, Manabu; Ohtake, Hiroyasu

    1999-01-01

    The effect of solid particle introduction on forced flow boiling and the critical heat flux was examined for the mixture of subcooled-water and 0.6 mm glass beads. When the particles were introduced, the growth on of a superheated layer near a wall seemed to be suppressed and the onset of nucleate boiling was delayed. The particles tempted for bubbles to condense at nucleation sites, and then the initiation of net vapor generation was also delayed and sifted to a high wall-superheat region. The nucleate boiling heat transfer was augmented by the particles, which considered to be caused by the combination of the suppression of the superheated layer growth and the promotion of the condensation and dissipation of the bubbles. The wall superheat at the critical heat flux condition was sifted to a high wall superheat region and the critical heat flux itself was also elevated a little. (author)

  13. Gas Turbine/Solar Parabolic Trough Hybrid Design Using Molten Salt Heat Transfer Fluid: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Turchi, C. S.; Ma, Z.

    2011-08-01

    Parabolic trough power plants can provide reliable power by incorporating either thermal energy storage (TES) or backup heat from fossil fuels. This paper describes a gas turbine / parabolic trough hybrid design that combines a solar contribution greater than 50% with gas heat rates that rival those of natural gas combined-cycle plants. Previous work illustrated benefits of integrating gas turbines with conventional oil heat-transfer-fluid (HTF) troughs running at 390?C. This work extends that analysis to examine the integration of gas turbines with salt-HTF troughs running at 450 degrees C and including TES. Using gas turbine waste heat to supplement the TES system provides greater operating flexibility while enhancing the efficiency of gas utilization. The analysis indicates that the hybrid plant design produces solar-derived electricity and gas-derived electricity at lower cost than either system operating alone.

  14. The performance of a residential heat pump operating with a nonazeotropic binary refrigerant mixture

    Science.gov (United States)

    Didion, D.; Mulroy, W.

    Results of laboratory measurement of the performance change of a substantially unmodified residential heat pump designed for 222 when charged with a non azeotropic, binary mixture of R1381 and R152a is presented. Results are presented for various sizes of fixed expansion devices. The effect of gliding temperature in the saturation zone was found to be small. The effect of compositions shift by flash distillation in the accumulator was found to measurably improve low temperature heating performance. It was further observed that some system modification (such as the addition of a receiver) could have further enhanced this low temperature heating performance improvement.

  15. Heat transfer analysis of porous media receiver with different transport and thermophysical models using mixture as feeding gas

    International Nuclear Information System (INIS)

    Wang, Fuqiang; Tan, Jianyu; Wang, Zhiqiang

    2014-01-01

    Highlights: • Using local thermal non-equilibrium model to solve heat transfer of porous media. • CH 4 /H 2 O mixture is adopted as feeding gas of porous media receiver. • Radiative transfer equation between porous strut is solved by Rosseland approximation. • Transport and thermophysical models not included in Fluent are programmed by UDFs. • Variations of model on thermal performance of porous media receiver are studied. - Abstract: The local thermal non-equilibrium model is adopted to solve the steady state heat and mass transfer problems of porous media solar receiver. The fluid entrance surface is subjected to concentrated solar radiation, and CH 4 /H 2 O mixture is adopted as feeding gas. The radiative heat transfer equation between porous strut is solved by Rosseland approximation. The impacts of variation in transport and thermophysical characteristics model of gas mixture on thermal performance of porous media receiver are investigated. The transport and thermophysical characteristics models which are not included in software Fluent are programmed by user defined functions (UDFs). The numerical results indicate that models of momentum source term for porous media receiver have significant impact on pressure drop and static pressure distribution, and the radiative heat transfer cannot be omitted during the thermal performance analysis of porous media receiver

  16. Molten salt hazardous waste disposal process utilizing gas/liquid contact for salt recovery

    International Nuclear Information System (INIS)

    Grantham, L.F.; McKenzie, D.E.

    1984-01-01

    The products of a molten salt combustion of hazardous wastes are converted into a cooled gas, which can be filtered to remove hazardous particulate material, and a dry flowable mixture of salts, which can be recycled for use in the molten salt combustion, by means of gas/liquid contact between the gaseous products of combustion of the hazardous waste and a solution produced by quenching the spent melt from such molten salt combustion. The process results in maximizing the proportion of useful materials recovered from the molten salt combustion and minimizing the volume of material which must be discarded. In a preferred embodiment a spray dryer treatment is used to achieve the desired gas/liquid contact

  17. Molten salt breeder reactor

    International Nuclear Information System (INIS)

    Furukawa, Kazuo; Tsukada, Kineo; Nakahara, Yasuaki; Oomichi, Toshihiko; Oono, Hideo.

    1982-01-01

    Purpose: To simplify the structure, as well as improve the technical reliability and safety by the elimination of a proton beam entering window. Constitution: The nuclear reactor container main body is made of Hastelloy N and provided at the inner surface with two layers of graphite shields except for openings. An aperture was formed in the upper surface of the container, through which protons accelerated by a linear accelerator are directly entered to the liquid surface of molten salts such as 7LiF-BeF 2 -ThF 4 , 7LiF-NaF-ThF 4 , 7LiF-Rb-UF 4 , NaF-KF-UF 4 and the like. The heated molten salts are introduced by way of a pipeway into a heat exchanger where the heat is transferred to coolant salts and electric generation is conducted by way of heated steams. (Furukawa, Y.)

  18. Analysis and hazard evaluation of heat-transfer fluids for the direct contact cooling system

    International Nuclear Information System (INIS)

    Hong, Joo Hi; Lee, Yeon Hee; Shin, You Hwan; Karng, Sarng Woo; Kim, Seo Young; Kim, Young Gil

    2006-01-01

    This paper discusses several low-temperature heat-transfer fluids, including water-based inorganic salt, organic salt, alcohol/glycol mixtures, silicones, and halogenated hydrocarbons in order to choose the best heat-transfer fluid for the newly designed direct contact refrigeration system. So, it contains a survey on commercial products such as propylene glycol and potassium formate as newly used in super market and food processing refrigeration. The stability of commercial fluids at the working temperature of -20 .deg. C was monitored as a function of time up to two months. And organic and inorganic compositions of candidate fluids were obtained by analytical instruments such as ES, XRF, AAS, ICP-AES, GC, and GC-MS. Analysis results indicate that commercial propylene glycol is very efficient and safe heat transfer fluids for the direct cooling system with liquid phase

  19. Performance simulation of an absorption heat transformer operating with partially miscible mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Alonso, D.; Cachot, T.; Hornut, J.M. [LSGC-CNRS-ENSIC, Nancy (France); Univ. Henri Poincare, Nancy (France). IUT

    2002-07-08

    This paper proposes to study the thermodynamics performances of a new absorption heat-transformer cycle, where the separation step is obtained by the cooling and settling of a partially miscible mixture at low temperature. This new cycle has been called an absorption-demixing heat transformer (ADHT) cycle. A numerical simulation code has been written, and has allowed us to evaluate the temperature lift and thermal yield of 2 working pairs. Both high qualitative and quantitative performances have been obtained, so demonstrating the feasibility and industrial interest for such a cycle. Moreover a comparison of the simulation results with performances really obtained on an experimental ADHT has confirmed the pertinence of the simulation code.(author)

  20. Salt Block II: description and results

    International Nuclear Information System (INIS)

    Hohlfelder, J.J.

    1980-06-01

    A description of and results from the Salt Block II experiment, which involved the heating of and measurement of water transport within a large sample of rock salt, are presented. These results include the measurement of water released into a heated borehole in the sample as well as measured temperatures within the salt. Measured temperatures are compared with the results of a mathematical model of the experiment

  1. Water uptake by salts during the electrolyte processing for thermal batteries

    Science.gov (United States)

    Masset, Patrick; Poinso, Jean-Yves; Poignet, Jean-Claude

    Water uptake of single salts and electrolytes were measured in industrial conditions (dry-room). The water uptake rate ϑ (g h -1 cm -2) was expressed with respect to the apparent area of contact of the salt with atmosphere of the dry room. The water uptake by potassium-based salts was very low. LiF and LiCl salts were found to behave similarly. For LiBr- and LiI-based salts and mixtures, we pointed out a linear relationship between the water uptake and the elapsed time. Water uptake by magnesium oxide reached a limit after 200 h. This work provides a set of data concerning the rate of water uptake by single salts, salt mixtures and magnesia used in thermal battery electrolytes.

  2. Gases in molten salts

    CERN Document Server

    Tomkins, RPT

    1991-01-01

    This volume contains tabulated collections and critical evaluations of original data for the solubility of gases in molten salts, gathered from chemical literature through to the end of 1989. Within the volume, material is arranged according to the individual gas. The gases include hydrogen halides, inert gases, oxygen, nitrogen, hydrogen, carbon dioxide, water vapor and halogens. The molten salts consist of single salts, binary mixtures and multicomponent systems. Included also, is a special section on the solubility of gases in molten silicate systems, focussing on slags and fluxes.

  3. Kinetics of heat-induced color change of a tuna-vegetable mixture

    OpenAIRE

    Scherer, Erika; Sandoval, Aleida J; Barreiro, José A

    2009-01-01

    Heat induced color change kinetics in a tuna-vegetable mixture was evaluated by measuring color parameter "L" (Hunter-Lab) and 5-hydroxi-methyl-furfural (5-HMF) accumulation. For this purpose small reusable stainless steel TDT cans were used and the kinetic studies performed in a temperature range characteristic of thermal processing of low acid canned foods (110-125°C). The color parameter L was better described by a pseudo zero order while a pseudo first order reaction was found for 5-HMF a...

  4. Waste form evaluation for RECl 3 and REO x fission products separated from used electrochemical salt

    Energy Technology Data Exchange (ETDEWEB)

    Riley, Brian J.; Pierce, David A.; Crum, Jarrod V.; Williams, Benjamin D.; Snyder, Michelle M. V.; Peterson, Jacob A.

    2018-04-01

    The work presented here is based off the concept that the rare earth chloride (RECl3) fission products mixture within the used electrorefiner (ER) salt can be selectively removed as RECl3 (not yet demonstrated) or precipitated out as REOCl through oxygen sparging (has been demonstrated). This paper presents data showing the feasibility of immobilizing a mixture of RECl3’s at 10 mass% into a TeO2-PbO glass and it shows that this same mixture of RECl3’s can be oxidized to REOCl at 300°C and then to REOx by 1200°C. When the REOx mixture is heated at temperatures >1200°C, the ratios of REOx’s change. The mixture of REOx was then immobilized in a LABS glass at a high loading of 60 mass%. Both the TeO2-PbO glass and LABS glass systems show good chemical durability. The advantages and disadvantages of tellurite and LABS glasses are compared.

  5. Numerical investigation of boiling heat transfer on hydrocarbon mixture refrigerant in vertical rectangular minichannel

    Directory of Open Access Journals (Sweden)

    Huixing Li

    2016-05-01

    Full Text Available In order to investigate the characteristics of boiling heat transfer for hydrocarbon mixture refrigerant in plate-fin heat exchanger which is used in the petrochemical industry field, a model was established on boiling heat transfer in vertical rectangular channel. The simulated results were compared with the experimental data from literature. The results show that the deviation between the simulated results and experimental data is within ±15%. Meanwhile, the characteristic of boiling heat transfer was investigated in vertical rectangular minichannel of plate-fin heat exchanger. The results show that the boiling heat transfer coefficient increases with the increase in quality and mass flux and is slightly impacted by the heat flux. This is because that the main boiling mechanism is forced convective boiling while the contribution of nucleate boiling is slight. The correlation of Liu and Winterton is in good agreement with the simulation results. The deviation between correlation calculations and simulation results is mostly less than ±15%. These results will provide some constructive instructions for the understanding of saturated boiling mechanism in a vertical rectangular minichannel and the prediction of heat transfer performance in plate-fin heat exchanger.

  6. Thermodynamic characterization of salt components for the Molten Salt Reactor Fuel - 15573

    International Nuclear Information System (INIS)

    Capelli, E.; Konings, R.J.M.; Benes, A.

    2015-01-01

    Molten fluoride salts are considered as primary candidates for nuclear fuel in the Molten Salt Reactor (MSR), one of the 6 generation IV nuclear reactor designs. In order to determine the safety limits and to access the properties of the potential fuel mixtures, thermodynamic studies are very important. This study is a combination of experimental work and thermodynamic modelling and focusses on the fluoride systems with alkaline and alkaline earth fluorides as matrix and ThF 4 , UF 4 and PuF 3 as fertile and fissile materials. The purification of the single components was considered as essential first step for the study of more complex systems and ternary phase diagrams were described using Differential Scanning Calorimetry (DSC) and drop calorimetry, which are used to measure phase transitions, enthalpy of mixing and heat capacity. In addition to the calorimetric techniques, Knudsen Effusion Mass Spectrometry (KEMS) and X-ray Diffraction (XRD) were used to collect data on vapour pressure and crystal structure of fluorides. The results are then coupled with thermodynamic modelling using the Calphad method for the assessment of the phase diagrams. A thermodynamic database describing the most important systems for MSR application has been developed and it has been used to optimize the fuel composition in view of the relevant properties such as melting temperature. A reliable database of thermodynamic properties of fluoride salts has been generated. It includes the key systems for the MSR fuel and it is very useful to predict the properties of the fuel

  7. Effects of laboratory heating, cyclic pore pressure, and cyclic loading on fracture properties of asphalt mixture.

    Science.gov (United States)

    2012-04-01

    This study involved the identification and evaluation of laboratory conditioning methods and testing protocols considering heat oxidation, moisture, and load that more effectively simulate asphalt mixture aging in the field, and thereby help to prope...

  8. Compatibility tests between molten salts and metal materials (2)

    International Nuclear Information System (INIS)

    Shiina, Yasuaki

    2003-08-01

    Latent heat storage technology using molten salts can reduce temperature fluctuations of heat transfer fluid by latent heat for middle and high temperature regions. This enables us to operate several heat utilization systems in cascade connected to High Temperature Gas Cooled Reactors (HTGRs) from high to low temperature range by setting the latent heat storage system after a heat utilization system to reduce thermal load after the heat utilization systems. This latent heat technology is expected to be used for effective use of heat such as equalization of electric load between night and daytime. In the application of the latent heat technology, compatibility between molten salts and metal materials is very important because molten salts are corrosive, and heat transfer pipes and vessels will contact with the molten salts. It will be necessary to prevail the latent heat storage technique that normal metal materials can be used for the pipes and vessels. However, a few studies have been reported of compatibility between molten salts and metals in middle and high temperature ranges. In this study, four molten salts, range of the melting temperature from 490degC to 800degC, are selected and five metals, high temperature and corrosion resistance steels of Alloy600, HastelloyB2, HastelloyC276, SUS310S and pure Nickel are selected for the test with the consideration of metal composition. Test was performed in an electric furnace by setting the molten salts and the metals in melting pots in an atmosphere of nitrogen. Results revealed excellent corrosion resistance of pure Nickel and comparatively low corrosion resistance of nickel base alloys such as Alloy600 and Hastelloys against Li 2 CO 3 . Corrosion resistance of SUS310S was about same as nickel based alloys. Therefore, if some amount of corrosion is permitted, SUS310S would be one of the candidate alloys for structure materials. These results will be used as reference data to select metals in latent heat technology

  9. Thermal conductivity of crushed salt

    International Nuclear Information System (INIS)

    Kuehn, K.

    Heat transfer through an annular space filled with crushed salt depends primarily on the thermal conductivity, lambda, of the material. This report gives a formula with which lambda can be computed. The formula includes two quantities that can be influenced through screening of the salt smalls: the porosity, psi, and the fraction, alpha, of the more highly resistive heat-flow paths. The report computes and presents graphically the thermal conductivities for various values of psi and alpha. Heat-transfer properties are computed and compared for an annular space filled with crushed salt and for an air gap. The comparison shows that the properties of the annular space are larger only up to a certain temperature, because the properties of the air gap increase exponentially while those f the annular space increase only in an approximately linear way. Experimental results from Project Salt Vault in the U.S. are in good agreement with the calculations performed. Trials in Temperature Experimental Field 2 at the Asse II salt mine will provide an additional check on the calculations. 3 figures, 3 tables

  10. Excess Molar Volume,Viscosity and Heat Capacity for the Mixture of 1,2—Propanediol—Water at Different Temperatures

    Institute of Scientific and Technical Information of China (English)

    杨长生; 马沛生; 唐多强; 靳凤民

    2003-01-01

    Experimental densities,viscosities and heat capacities at different emperatures were presented over the entire mole fraction range for the binary mixture of 1,2-propanediol and water,Density values were used in the determination of excess molar volumes,VE,At the same time,the excess viscosity was in vestigated,The values of VE and ηE were fitted to the Redlich-kister equation.Good agreement was observed,The excess volumes are negative over the entire range of composition.They show an U-shaped-concentration dependence and decrease in abolute values with increase of temperature,Values of ηE are negative over the entire range of the composition,and has a trend very similar to that of VE ,The analysis shows that at any temperature the specific heat of mixture is a linear function of the composition as x1>20%,All the extended lines intersect at one point.An empirical equation is obtained to calculate the specific heat to mixture at any composition and temperature in the experimental range.

  11. Thermo-Economic and Heat Transfer Optimization of Working-Fluid Mixtures in a Low-Temperature Organic Rankine Cycle System

    Directory of Open Access Journals (Sweden)

    Oyeniyi A. Oyewunmi

    2016-06-01

    Full Text Available In the present paper, we consider the employment of working-fluid mixtures in organic Rankine cycle (ORC systems with respect to thermodynamic and heat-transfer performance, component sizing and capital costs. The selected working-fluid mixtures promise reduced exergy losses due to their non-isothermal phase-change behaviour, and thus improved cycle efficiencies and power outputs over their respective pure-fluid components. A multi-objective cost-power optimization of a specific low-temperature ORC system (operating with geothermal water at 98 °C reveals that the use of working-fluid-mixtures does indeed show a thermodynamic improvement over the pure-fluids. At the same time, heat transfer and cost analyses, however, suggest that it also requires larger evaporators, condensers and expanders; thus, the resulting ORC systems are also associated with higher costs. In particular, 50% n-pentane + 50% n-hexane and 60% R-245fa + 40% R-227ea mixtures lead to the thermodynamically optimal cycles, whereas pure n-pentane and pure R-245fa have lower plant costs, both estimated as having ∼14% lower costs per unit power output compared to the thermodynamically optimal mixtures. These conclusions highlight the importance of using system cost minimization as a design objective for ORC plants.

  12. Ultrasonic-assisted synthesis of aqueous CdTe/CdS QDs in salt water bath heating

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Yinglian [College of Food Science and Engineering, Ocean University of China, Qingdao 266003, Shandong Province (China); College of Food Science and Engineering, Qingdao Agricultural University of China, Qingdao 266109, Shandong Province (China); Li, Chunsheng; Xu, Ying [College of Food Science and Engineering, Ocean University of China, Qingdao 266003, Shandong Province (China); Wang, Dongfeng, E-mail: wangdf@ouc.edu.cn [College of Food Science and Engineering, Ocean University of China, Qingdao 266003, Shandong Province (China)

    2014-09-01

    Highlights: • Ultrasonic promotes formation of crystal nucleus and QDs were synthesized in 0.5 h. • The new heating method provides a PLQY of up to 97.13%. • The synthesis mechanism of the core shell structure of the CdTe/CdS QDs was inferred. • The preparation method was efficient, simple and clean. - Abstract: A novel simple method for fast and efficient synthesis of aqueous CdTe/CdS quantum dots (QDs) with core–shell structure was developed by using salt water bath heating with the ultrasonic-assisted technique in this paper. The formation of crystal nucleus was promoted by ultrasonic and CdTe/CdS QDs with blue fluorescence were synthesized only in 0.5 h. The heat source was bath heating in salt water solution at 60% NaCl and the heating temperature could reach 105 °C. The heating method solved the biggest drawback of low photoluminescence quantum yield (PLQY) of ordinal bath heating in water. The preparation was cheap, simple and had less pollution to the environment. The properties of the CdTe/CdS QDs were thoroughly investigated by ultraviolet–visible (UV–vis), photoluminescence (PL), transmission electron microscope (TEM), laser size analysis, fourier transform infrared spectra (FTIR), X-ray diffraction (XRD) and energy dispersive X-ray spectroscopy (EDS). Different CdTe/CdS QDs with core shell structure were efficiently synthesized and the maximum PLQY could reach 97.13% when refluxing at 105 °C for 2 h. These QDs exhibited uniform dispersity, high fluorescence intensity, good optical property and long life of fluorescent. The synthesis mechanism of the core shell structure of the QDs was inferred that the Cd{sup 2+} might coordinate with sulfur (S) as well as thiol propionate (–SCH{sub 2}CH{sub 2}COO{sup −1}) to constitute two relatively thick compound layers on the QDs surface as passive shells.

  13. Laboratory test of a prototype heat storage module based on stable supercooling of sodium acetate trihydrate

    DEFF Research Database (Denmark)

    Dannemand, Mark; Kong, Weiqiang; Fan, Jianhua

    2015-01-01

    Laboratory test of a long term heat storage module utilizing the principle of stable supercooling of 199.5 kg of sodium acetate water mixture has been carried out. Avoiding phase separation of the incongruently melting salt hydrate by using the extra water principle increased the heat storage...... capacity. An external expansion vessel minimized the pressure built up in the module while heating and reduced the risk of instable supercooling. The module was stable supercooled at indoor ambient temperature for up to two months after which it was discharged. The energy discharged after activating...

  14. Long-wavelength limit of the static structure factors for mixtures of two simple molten salts with a common ion and generalized Bhatia-Thornton formalism: Molecular dynamics study of molten mixture Ag(Br0.7I0.3)

    International Nuclear Information System (INIS)

    Bitrian, Vicente; Trullas, Joaquim; Silbert, Moises

    2008-01-01

    The relation between thermodynamic properties and the long-wavelength limit of the structure factors for mixtures of two simple molten salts with a common ion is derived. While the long-wavelength limit of the partial structure factors for binary ionic systems is directly related to the isothermal compressibility, for ternary ionic systems it is shown that it is also related to the mean square thermal fluctuation in the relative concentration of the non-common ions. This result leads to a generalization of the Bhatia-Thornton formalism. From the local fluctuations in the total number-density, charge-density, and relative concentration, six static structure factors, and the corresponding spatial correlation functions, are defined. By introducing three complementary structure factors, it is possible to describe either these mixtures as a system of cations and anions irrespective of the species of the non-common ions, or solely the binary subsystem of the non-common ions. The generalized structure factors and their long-wavelength limits are illustrated by molecular dynamics simulation results of the molten mixture Ag(Br 0.7 I 0.3 ). The mixture retains the charge order characteristic of pure molten monovalent salts and the topological order observed in monovalent ionic melts in which the cations are smaller than the anions, while the main trends of the anionic chemical order are those of simple binary alloys. The long-wavelength fluctuations in the local relative concentration are found to be very sensitive to the choice of the short-range interactions between the non-common ions

  15. The capric and lauric acid mixture with chemical additives as latent heat storage materials for cooling application

    Energy Technology Data Exchange (ETDEWEB)

    Roxas-Dimaano, M.N. [University of Santo Tomas, Manila (Philippines). Research Center for the Natural Sciences; Watanabe, T. [Tokyo Institute of Technology (Japan). Research Laboratory for Nuclear Reactors

    2002-09-01

    The mixture of capric acid and lauric acid (C-L acid), with the respective mole composition of 65% and 35%, is a potential phase change material (PCM). Its melting point of 18.0{sup o}C, however, is considered high for cooling application of thermal energy storage. The thermophysical and heat transfer characteristics of the C-L acid with some organic additives are investigated. Compatibility of C-L acid combinations with additives in different proportions and their melting characteristics are analyzed using the differential scanning calorimeter (DSC). Among the chemical additives, methyl salicylate, eugenol, and cineole presented the relevant melting characteristics. The individual heat transfer behavior and thermal storage performance of 0.1 mole fraction of these additives in the C-L acid mixture are evaluated. The radial and axial temperature distribution during charging and discharging at different concentrations of selected PCM combinations are experimentally determined employing a vertical cylindrical shell and tube heat exchanger. The methyl salicylate in the C-L acid provided the most effective additive in the C-L acid. It demonstrated the least melting band width aimed at lowering the melting point of the C-L acid with the highest heat of fusion value with relatively comparable rate of heat transfer. Furthermore, the thermal performance based on the total amount of transferred energy and their rates, established the PCM's latent heat storage capability. (author)

  16. Determination of tungsten in high-alloy steels and heat resisting alloys by isotope dilution-spark source mass spectrometry

    International Nuclear Information System (INIS)

    Saito, Morimasa; Yamada, Kei; Okochi, Haruno; Hirose, Fumio

    1983-01-01

    Tungsten in high-alloy steels and heat-resisting alloys was determined by isotope dilution method combined with spark source mass spectrometry by using 183 W enriched tungsten. The spike solution was prepared by fusing tungsten trioxide in sodium carbonate. A high-alloy steel sample was dissolved in the mixture of sulfuric acid and phosphoric acid together with the spike solution; a sample of heat resisting alloy was similarly dissolved in the mixture of hydrochloric acid, nitric acid, sulfuric acid, and phosphoric acid. The solution was evaporated to give dense white fumes. Tungsten was separated from the residue by a conventional cinchonine salt-precipitation method. The salt was ignited, and the residue was mixed with graphite powder and pressed into electrodes. The isotope 183 W and 184 W were measured. The method was applied to the determination of tungsten in JSS and NBS standard high-alloy steels and JAERI standard nickel- and NBS standard cobalt-base heat resisting alloys containing more than 0.05% tungsten. The results were obtained with satisfactory precision and accuracy. However, the results obtained for JSS standard high- speed steels containing molybdenum tended to be significantly lower than the certified values. (author)

  17. 2D-Ising critical behavior in mixtures of water and 3-methylpyridine

    International Nuclear Information System (INIS)

    Sadakane, Koichiro; Iguchi, Kazuya; Nagao, Michihiro; Seto, Hideki

    2011-01-01

    The effect of an antagonistic salt on the phase behavior and nanoscale structure of a mixture of D 2 O and 3-methylpyridine was investigated by visual inspection and small-angle neutron scattering (SANS). The addition of the antagonistic salt, namely sodium tetraphenylborate (NaBPh 4 ), induces the shrinking of the two-phase region in contrast to the case in which a normal (hydrophilic) salt is added. Below the phase separation point, the SANS profiles cannot be described by the Ornstein-Zernike function owing to the existence of a long-range periodic structure. With increasing salt concentration, the critical exponents change from the values of 3D-Ising and approach those of 2D-Ising. These results suggest that the concentration fluctuation of the mixture of solvents is limited to a quasi two-dimensional space by the periodic structure induced by the adding the salt. The same behaviors were also observed in mixtures composed of water, 3-methylpyridine, and ionic surfactant.

  18. Full-scale borehole sealing test in salt under simulated downhole conditions. Volume 2

    International Nuclear Information System (INIS)

    Scheetz, B.E.; Licastro, P.H.; Roy, D.M.

    1986-05-01

    Large-scale testing of the permeability by brine of a salt/grout sample designed to simulate a borehole plug was conducted. The results of these tests showed that a quantity of fluid equivalent to a permeability of 3 microdarcys was collected during the course of the test. This flow rate was used to estimate the smooth bore aperture. Details of this test ware presented in Volume 1 of this report. This report, Volume 2, covers post-test characterization including a detailed study of the salt/grout interface, as well as determination of the physical/mechanical properties of grout samples molded at Terra Tek, Inc. at the time of the large-scale test. Additional studies include heat of hydration, radial stress, and longitudinal volume changes for an equivalent grout mixture

  19. Analysis of Steam Heating of a Two-Layer TBP/N-Paraffin/Nitric Acid Mixtures

    International Nuclear Information System (INIS)

    Laurinat, J.E.; Hassan, N.M.; Rudisill, T.S.; Askew, N.M.

    1998-01-01

    This report presents an analysis of steam heating of a two-layer tri-n-butyl phosphate (TBP)/n-paraffin-nitric acid mixture.The purpose of this study is to determine if the degree of mixing provided by the steam jet or by bubbles generated by the TBP/nitric acid reaction is sufficient to prevent a runaway reaction

  20. COBALT SALTS PRODUCTION BY USING SOLVENT EXTRACTION

    Directory of Open Access Journals (Sweden)

    Liudmila V. Dyakova

    2010-06-01

    Full Text Available The paper deals with the extracting cobalt salts by using mixtures on the basis of tertiary amine from multicomponent solutions from the process of hydrochloride leaching of cobalt concentrate. The optimal composition for the extraction mixture, the relationship between the cobalt distribution coefficients and modifier’s nature and concentration, and the saltingout agent type have been determined. A hydrochloride extraction technology of cobalt concentrate yielding a purified concentrated cobalt solution for the production of pure cobalt salts has been developed and introduced at Severonikel combine.

  1. Effect of materials mixture on the higher heating value: Case of biomass, biochar and municipal solid waste.

    Science.gov (United States)

    Boumanchar, Imane; Chhiti, Younes; M'hamdi Alaoui, Fatima Ezzahrae; El Ouinani, Amal; Sahibed-Dine, Abdelaziz; Bentiss, Fouad; Jama, Charafeddine; Bensitel, Mohammed

    2017-03-01

    The heating value describes the energy content of any fuel. In this study, this parameter was evaluated for different abundant materials in Morocco (two types of biochar, plastic, synthetic rubber, and cardboard as municipal solid waste (MSW), and various types of biomass). Before the evaluation of their higher heating value (HHV) by a calorimeter device, the thermal behavior of these materials was investigated using thermogravimetric (TGA) and Differential scanning calorimetry (DSC) analyses. The focus of this work is to evaluate the calorific value of each material alone in a first time, then to compare the experimental and theoretical HHV of their mixtures in a second time. The heating value of lignocellulosic materials was between 12.16 and 20.53MJ/kg, 27.39 for biochar 1, 32.60MJ/kg for biochar 2, 37.81 and 38.00MJ/kg for plastic and synthetic rubber respectively and 13.81MJ/kg for cardboard. A significant difference was observed between the measured and estimated HHVs of mixtures. Experimentally, results for a large variety of mixture between biomass/biochar and biomass/MSW have shown that the interaction between biomass and other compounds expressed a synergy of 2.37% for biochar 1 and 6.11% for biochar 2, 1.09% for cardboard, 5.09% for plastic and 5.01% for synthetic rubber. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Experimental study of heat exchange coefficients, critical heat flux and charge losses, using water-steam mixtures in turbulent flow in a vertical tube

    International Nuclear Information System (INIS)

    Perroud, P.; De La Harpe, A.; Rebiere, J.

    1960-12-01

    Two stainless steel tubes were used (with diameters of 5 and 10 mm, lengths 400 and 600 mm respectively), heated electrically (50 Hz). The mixture flows from top to bottom. The work was carried out mainly on mixtures of high concentration (x > 0.1), at pressures between 50 and 60 kg/cm 2 , flowing as a liquid film on the walls of the tube with droplets suspended in the central current of steam. By analysis of the heat transfer laws the exchange mechanisms were established, and the conditions under which the critical heat flux may be exceeded without danger of actual burnout were determined. In this way high output concentrations (x s > 0.9) may be obtained. An attempt has been made to find out to what extent existing correlation formulae can be used to account for the phenomena observed. It is shown that those dealing with exchange coefficients can only be applied in a first approximation in cases where exchange by convection is preponderant, and only below the critical flux. The formulae proposed by WAPD and CISE do not give a satisfactory estimation of the critical heat flux, and the essential reasons for this inadequacy are explained. Lastly, the Martinelli and Nelson method may be used to an approximation of 30 per cent for the calculation of charge losses. (author) [fr

  3. Improving efficiency of heat pumps by use of zeotropic mixtures for different temperature glides

    DEFF Research Database (Denmark)

    Zühlsdorf, Benjamin; Jensen, Jonas Kjær; Cignitti, Stefano

    2017-01-01

    The present study demonstrates the optimization of a heat pump for an application with a large temperature glide on the sink and a smaller temperature glide on the source side. The study includes a simulation of a heat pump cycle for all possible binary mixtures from a list of 14 natural...... refrigerants, which enables a match of the temperature glide of sink and source with the temperature of the working fluid during phase change and thus, a reduction of the exergy destruction due to heat transfer. The model was evaluated for four different boundary conditions. For a separated evaluation...... of the irreversibility solely caused by the fluid properties, the exergy destruction in the heat exchangers has been distinguished accordingly and an indicator quantifying the glide match has been defined to analyse the influence on the performance. It was observed that a good glide match can contribute to an increased...

  4. Thermal energy storage using chloride salts and their eutectics

    International Nuclear Information System (INIS)

    Myers, Philip D.; Goswami, D. Yogi

    2016-01-01

    Achieving the goals of the U.S. Department of Energy (DOE) Sunshot initiative requires (1) higher operating temperatures for concentrating solar power (CSP) plants to increase theoretical efficiency, and (2) effective thermal energy storage (TES) strategies to ensure dispatchability. Current inorganic salt-based TES systems in large-scale CSP plants generally employ molten nitrate salts for energy storage, but nitrate salts are limited in application to lower temperatures—generally, below 600 °C. These materials are sufficient for parabolic trough power plants, but they are inadequate for use at higher temperatures. At the higher operating temperatures achievable in solar power tower-type CSP plants, chloride salts are promising candidates for application as TES materials, owing to their thermal stability and generally lower cost compared to nitrate salts. In light of this, a recent study was conducted, which included a preliminary survey of chloride salts and binary eutectic systems that show promise as high temperature TES media. This study provided some basic information about the salts, including phase equilibria data and estimates of latent heat of fusion for some of the eutectics. Cost estimates were obtained through a review of bulk pricing for the pure salts among various vendors. This review paper updates that prior study, adding data for additional salt eutectic systems obtained from the literature. Where possible, data are obtained from the thermodynamic database software, FactSage. Radiative properties are presented, as well, since at higher temperatures, thermal radiation becomes a significant mode of heat transfer. Material compatibility for inorganic salts is another important consideration (e.g., with regard to piping and/or containment), so a summary of corrosion studies with various materials is also presented. Lastly, cost data for these systems are presented, allowing for meaningful comparison among these systems and other materials for TES

  5. Design of a natural draft air-cooled condenser and its heat transfer characteristics in the passive residual heat removal system for 10 MW molten salt reactor experiment

    International Nuclear Information System (INIS)

    Zhao, Hangbin; Yan, Changqi; Sun, Licheng; Zhao, Kaibin; Fa, Dan

    2015-01-01

    As one of the Generation IV reactors, Molten Salt Reactor (MSR) has its superiorities in satisfying the requirements on safety. In order to improve its inherent safety, a concept of passive residual heat removal system (PRHRS) for the 10 MW Molten Salt Reactor Experiment (MSRE) was put forward, which mainly consisted of a fuel drain tank, a feed water tank and a natural draft air-cooled condenser (NDACC). Besides, several valves and pipes are also included in the PRHRS. A NDACC for the PRHRS was preliminarily designed in this paper, which contained a finned tube bundle and a chimney. The tube bundle was installed at the bottom of the chimney for increasing the velocity of the air across the bundle. The heat transfer characteristics of the NDACC were investigated by developing a model of the PRHRS using C++ code. The effects of the environmental temperature, finned tube number and chimney height on heat removal capacity of the NDACC were analyzed. The results show that it has sufficient heat removal capacity to meet the requirements of the residual heat removal for MSRE. The effects of these three factors are obvious. With the decay heat reducing, the heat dissipation power declines after a short-time rise in the beginning. The operation of the NDACC is completely automatic without the need of any external power, resulting in a high safety and reliability of the reactor, especially once the accident of power lost occurs to the power plant. - Highlights: • A model to study the heat transfer characteristics of the NDACC was developed. • The NDACC had sufficient heat removal capacity to remove the decay heat of MSRE. • NDACC heat dissipation power depends on outside temperature and condenser geometry. • As time grown, the effects of outside temperature and condenser geometry diminish. • The NDACC could automatically adjust its heat removal capacity

  6. Hydrogen Generation in Microbial Reverse-Electrodialysis Electrolysis Cells Using a Heat-Regenerated Salt Solution

    KAUST Repository

    Nam, Joo-Youn

    2012-05-01

    Hydrogen gas can be electrochemically produced in microbial reverse-electrodialysis electrolysis cells (MRECs) using current derived from organic matter and salinity-gradient energy such as river water and seawater solutions. Here, it is shown that ammonium bicarbonate salts, which can be regenerated using low-temperature waste heat, can also produce sufficient voltage for hydrogen gas generation in an MREC. The maximum hydrogen production rate was 1.6 m3 H2/m3·d, with a hydrogen yield of 3.4 mol H2/mol acetate at a salinity ratio of infinite. Energy recovery was 10% based on total energy applied with an energy efficiency of 22% based on the consumed energy in the reactor. The cathode overpotential was dependent on the catholyte (sodium bicarbonate) concentration, but not the salinity ratio, indicating high catholyte conductivity was essential for maximizing hydrogen production rates. The direction of the HC and LC flows (co- or counter-current) did not affect performance in terms of hydrogen gas volume, production rates, or stack voltages. These results show that the MREC can be successfully operated using ammonium bicarbonate salts that can be regenerated using conventional distillation technologies and waste heat making the MREC a useful method for hydrogen gas production from wastes. © 2012 American Chemical Society.

  7. An investigation on the application of ohmic heating of cold water shrimp and brine mixtures

    DEFF Research Database (Denmark)

    Pedersen, Søren Juhl; Feyissa, Aberham Hailu; Brøkner Kavli, Sissel Therese

    2016-01-01

    Cooking is an important unit-operation in the production of cooked and peeled shrimps. The present study explores the feasibility of using ohmic heating for cooking of shrimps. The focus is on investigating the effects of different process parameters on heating time and quality of ohmic cooked...... shrimps (Pandalus Borelias). The shrimps were heated to a core temperature of 72 °C in a brine solution using a small batch ohmic heater. Three experiments were performed: 1) a comparative analyses of the temperature development between different sizes of shrimps and thickness (head and tail region...... of the shrimp) over varying salt concentrations (10 kg m−3 to 20 kg m−3) and electric field strengths (1150 V m−1 to 1725 V m−1) with the heating time as the response; 2) a 2 level factorial experiment for screening the impact of processing conditions using electric field strengths of 1250 V m−1 and 1580 V m−1...

  8. Brine Transport Experiments in Granular Salt

    Energy Technology Data Exchange (ETDEWEB)

    Jordan, Amy B. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Boukhalfa, Hakim [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Caporuscio, Florie Andre [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Stauffer, Philip H. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-06-06

    To gain confidence in the predictive capability of numerical models, experimental validation must be performed to ensure that parameters and processes are correctly simulated. The laboratory investigations presented herein aim to address knowledge gaps for heat-generating nuclear waste (HGNW) disposal in bedded salt that remain after examination of prior field and laboratory test data. Primarily, we are interested in better constraining the thermal, hydrological, and physicochemical behavior of brine, water vapor, and salt when moist salt is heated. The target of this work is to use run-of-mine (RoM) salt; however during FY2015 progress was made using high-purity, granular sodium chloride.

  9. Elaboration of garlic and salt spice with reduced sodium intake.

    Science.gov (United States)

    Rodrigues, Jéssica F; Junqueira, Gabriela; Gonçalves, Carla S; Carneiro, João D S; Pinheiro, Ana Carla M; Nunes, Cleiton A

    2014-12-01

    Garlic and salt spice is widely used in Brazilian cookery, but it has a high sodium content; as high sodium intake has been strongly correlated to the incidence of chronic diseases. This study aimed to develop a garlic and salt spice with reduced sodium intake. Sensory evaluation was conducted by applying the spices to cooked rice. First, the optimal concentration of spice added during rice preparation was determined. Subsequently, seasonings (3:1) were prepared containing 0%, 50% and 25% less NaCl using a mixture of salts consisting of KCl and monosodium glutamate; a seasoning with a 0% NaCl reduction was established as a control. Three formulations of rice with different spices were assessed according to sensory testing acceptance, time-intensity and temporal domain of sensations. The proportions of salts used in the garlic and salt spice did not generate a strange or bad taste in the products; instead, the mixtures were less salty. However, the seasonings with lower sodium levels (F2 and F3) were better accepted in comparison to the traditional seasoning (F1). Therefore, a mixture of NaCl, KCl and monosodium glutamate is a viable alternative to develop a garlic and salt spice with reduced sodium intake.

  10. Molten salts in nuclear reactors

    International Nuclear Information System (INIS)

    Dirian, J.; Saint-James

    1959-01-01

    Collection of references dealing with the physicochemical studies of fused salts, in particular the alkali and alkali earth halides. Numerous binary, ternary and quaternary systems of these halides with those of uranium and thorium are examined, and the physical properties, density, viscosity, vapour pressure etc... going from the halides to the mixtures are also considered. References relating to the corrosion of materials by these salts are included and the treatment of the salts with a view to recuperation after irradiation in a nuclear reactor is discussed. (author) [fr

  11. Ionic Liquids for Utilization of Waste Heat from Distributed Power Generation Systems

    Energy Technology Data Exchange (ETDEWEB)

    Joan F. Brennecke; Mihir Sen; Edward J. Maginn; Samuel Paolucci; Mark A. Stadtherr; Peter T. Disser; Mike Zdyb

    2009-01-11

    The objective of this research project was the development of ionic liquids to capture and utilize waste heat from distributed power generation systems. Ionic Liquids (ILs) are organic salts that are liquid at room temperature and they have the potential to make fundamental and far-reaching changes in the way we use energy. In particular, the focus of this project was fundamental research on the potential use of IL/CO2 mixtures in absorption-refrigeration systems. Such systems can provide cooling by utilizing waste heat from various sources, including distributed power generation. The basic objectives of the research were to design and synthesize ILs appropriate for the task, to measure and model thermophysical properties and phase behavior of ILs and IL/CO2 mixtures, and to model the performance of IL/CO2 absorption-refrigeration systems.

  12. Development of a mathematical model of the heating phase of rubber mixture and development of the synthesis of the heating control algorithm using the Pontryagin maximum principle

    Directory of Open Access Journals (Sweden)

    V. S. Kudryashov

    2017-01-01

    Full Text Available The article is devoted to the development of the algorithm of the heating phase control of a rubber compound for CJSC “Voronezh tyre plant”. The algorithm is designed for implementation on basis of controller Siemens S-300 to control the RS-270 mixer. To compile the algorithm a systematic analysis of the heating process has been performed as a control object, also the mathematical model of the heating phase has been developed on the basis of the heat balance equation, which describes the process of heating of a heat-transfer agent in the heat exchanger and further heating of the mixture in the mixer. The dynamic characteristics of temperature of the heat exchanger and the rubber mixer have been obtained. Taking into account the complexity and nonlinearity of the control object – a rubber mixer, as well as the availability of methods and great experience in managing this machine in an industrial environment, the algorithm has been implemented using the Pontryagin maximum principle. The optimization problem is reduced to determining the optimal control (heating steam supply and the optimal path of the object’s output coordinates (the temperature of the mixture which ensure the least flow of steam while heating a rubber compound in a limited time. To do this, the mathematical model of the heating phase has been written in matrix form. Coefficients matrices for each state of the control, control and disturbance vectors have been created, the Hamilton function has been obtained and time switching points have been found for constructing an optimal control and escape path of the object. Analysis of the model experiments and practical research results in the process of programming of the controller have showed a decrease in the heating steam consumption by 24.4% during the heating phase of the rubber compound.

  13. The structure and behavior of salts in kraft recovery boilers

    Energy Technology Data Exchange (ETDEWEB)

    Backman, R.; Badoi, R.D.; Enestam, S. [Aabo Akademi Univ., Turku (Finland). Combustion Chemistry Research Group

    1997-10-01

    The melting behavior in the salt system (Na,K)(CO{sub 3},SO{sub 4},S,Cl,OH) is investigated by laboratory methods to enhance and further develop a chemical model for salt mixtures with compositions relevant for recovery boilers. The model, based on both literature data and experimental work can be used as (a) submodel in models for the over-all chemistry in recovery boilers and to estimate (b) deposit formation on heat transfer surfaces (fouling), (c) the melting properties of the fly ash, and (d) the smelt bed in recovery boilers. Experimental techniques used are thermal analysis, high temperature microscopy` and scanning electron microscopy. The model is implemented in a global calculation model which can handle both gas phases and condensed phases in the recovery boiler. The model gives a detailed description of the chemical reactions involved in the fume and dust formation in different locations of the flue gas channel in the boiler. (orig.)

  14. Long-wavelength limit of the static structure factors for mixtures of two simple molten salts with a common ion and generalized Bhatia-Thornton formalism: Molecular dynamics study of molten mixture Ag(Br{sub 0.7}I{sub 0.3})

    Energy Technology Data Exchange (ETDEWEB)

    Bitrian, Vicente [Departament de Fisica i Enginyeria Nuclear, Universitat Politecnica de Catalunya, Campus Nord UPC, Edifici B4-B5, Despatx B4-204, Jordi Girona 1-3, 08034 Barcelona (Spain); Trullas, Joaquim [Departament de Fisica i Enginyeria Nuclear, Universitat Politecnica de Catalunya, Campus Nord UPC, Edifici B4-B5, Despatx B4-204, Jordi Girona 1-3, 08034 Barcelona (Spain)], E-mail: quim.trullas@upc.edu; Silbert, Moises [School of Mathematics, University of East Anglia, Norwich NR4 7QF (United Kingdom)

    2008-12-15

    The relation between thermodynamic properties and the long-wavelength limit of the structure factors for mixtures of two simple molten salts with a common ion is derived. While the long-wavelength limit of the partial structure factors for binary ionic systems is directly related to the isothermal compressibility, for ternary ionic systems it is shown that it is also related to the mean square thermal fluctuation in the relative concentration of the non-common ions. This result leads to a generalization of the Bhatia-Thornton formalism. From the local fluctuations in the total number-density, charge-density, and relative concentration, six static structure factors, and the corresponding spatial correlation functions, are defined. By introducing three complementary structure factors, it is possible to describe either these mixtures as a system of cations and anions irrespective of the species of the non-common ions, or solely the binary subsystem of the non-common ions. The generalized structure factors and their long-wavelength limits are illustrated by molecular dynamics simulation results of the molten mixture Ag(Br{sub 0.7}I{sub 0.3}). The mixture retains the charge order characteristic of pure molten monovalent salts and the topological order observed in monovalent ionic melts in which the cations are smaller than the anions, while the main trends of the anionic chemical order are those of simple binary alloys. The long-wavelength fluctuations in the local relative concentration are found to be very sensitive to the choice of the short-range interactions between the non-common ions.

  15. Kinetics of oil saponification by lead salts in ancient preparations of pharmaceutical lead plasters and painting lead mediums.

    Science.gov (United States)

    Cotte, M; Checroun, E; Susini, J; Dumas, P; Tchoreloff, P; Besnard, M; Walter, Ph

    2006-12-15

    Lead soaps can be found in archaeological cosmetics as well as in oil paintings, as product of interactions of lead salts with oil. In this context, a better understanding of the formation of lead soaps allows a follow-up of the historical evolution of preparation recipes and provides new insights into conservation conditions. First, ancient recipes of both pharmaceutical lead plasters and painting lead mediums, mixtures of oil and lead salts, were reconstructed. The ester saponification by lead salts is determined by the preparation parameters which were quantified by FT-IR spectrometry. In particular, ATR/FT-IR spectrometer was calibrated by the standard addition method to quantitatively follow the kinetics of this reaction. The influence of different parameters such as temperature, presence of water and choice of lead salts was assessed: the saponification is clearly accelerated by water and heating. This analysis provides chemical explanations to the historical evolution of cosmetic and painting preparation recipes.

  16. Molten Salt Fuel Version of Laser Inertial Fusion Fission Energy (LIFE)

    International Nuclear Information System (INIS)

    Moir, R.W.; Shaw, H.F.; Caro, A.; Kaufman, L.; Latkowski, J.F.; Powers, J.; Turchi, P.A.

    2008-01-01

    Molten salt with dissolved uranium is being considered for the Laser Inertial Confinement Fusion Fission Energy (LIFE) fission blanket as a backup in case a solid-fuel version cannot meet the performance objectives, for example because of radiation damage of the solid materials. Molten salt is not damaged by radiation and therefore could likely achieve the desired high burnup (>99%) of heavy atoms of 238 U. A perceived disadvantage is the possibility that the circulating molten salt could lend itself to misuse (proliferation) by making separation of fissile material easier than for the solid-fuel case. The molten salt composition being considered is the eutectic mixture of 73 mol% LiF and 27 mol% UF 4 , whose melting point is 490 C. The use of 232 Th as a fuel is also being studied. ( 232 Th does not produce Pu under neutron irradiation.) The temperature of the molten salt would be ∼550 C at the inlet (60 C above the solidus temperature) and ∼650 C at the outlet. Mixtures of U and Th are being considered. To minimize corrosion of structural materials, the molten salt would also contain a small amount (∼1 mol%) of UF 3 . The same beryllium neutron multiplier could be used as in the solid fuel case; alternatively, a liquid lithium or liquid lead multiplier could be used. Insuring that the solubility of Pu 3+ in the melt is not exceeded is a design criterion. To mitigate corrosion of the steel, a refractory coating such as tungsten similar to the first wall facing the fusion source is suggested in the high-neutron-flux regions; and in low-neutron-flux regions, including the piping and heat exchangers, a nickel alloy, Hastelloy, would be used. These material choices parallel those made for the Molten Salt Reactor Experiment (MSRE) at ORNL. The nuclear performance is better than the solid fuel case. At the beginning of life, the tritium breeding ratio is unity and the plutonium plus 233 U production rate is ∼0.6 atoms per 14.1 MeV neutron

  17. Study of acid-base properties in various water-salt and water-organic solvent mixtures; Etude de proprietes acides-bases dans divers melanges eau-sels et eau-solvants organiques

    Energy Technology Data Exchange (ETDEWEB)

    Lucas, M [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1968-02-01

    Acid-base reactions have been studied in water-salt mixtures and water organic solvent-mixtures. It has been possible to find some relations between the displacement of the equilibria and the numerical value of water activity in the mixture. First have been studied some equilibria H{sup +} + B {r_reversible} HB{sup +} in salt-water mixtures and found a relation between the pK{sub A} value, the solubility of the base and water activity. The reaction HO{sup -} + H{sup +} {r_reversible} H{sub 2}O has been investigated and a relation been found between pK{sub i} values, water activity and the molar concentration of the salt in the mixture. This relation is the same for every mixture. Then the same reactions have been studied in organic solvent-water mixtures and a relation found in the first part of the work have been used with success. So it has been possible to explain easily some properties of organic water-mixture as the shape of the curves of the Hammett acidity function Ho. (authors) [French] Nous avons envisage l'etude des reactions acides-bases dans des melanges eau-sels MX et des melanges d'eau et de solvants organiques. Les uns et les autres ont ete choisis de facon a ce que la basicite du solvant ou celle de l'anion X{sup -} soit negligeable devant celle de l'eau dans les melanges consideres. Dans un premier temps nous avons etudie dans les melanges eau-sels MX les equilibres H{sup +} + B {r_reversible} HB{sup +} et HA {r_reversible} H{sup +} + A{sup -}. On montre que connaissant la valeur de la solubilite de la base B et de l'acide HA dans le melange eau-sel considere et dans l'eau pure et celle de l'activite de l'eau dans le melange, il est possible de prevoir la valeur de la constante de l'equilibre acide-base etudiee. Dans un deuxieme temps nous avons cherche a generaliser ces resultats, lorsque l'on remplace le sel MX dans le melange avec l'eau par un solvant organique. De meme que precedemment, nous avons compare les constantes d'equilibre du type HB

  18. Waste treatment using molten salt oxidation

    International Nuclear Information System (INIS)

    Navratil, J.D.; Stewart, A.E.

    1996-01-01

    MSO technology can be characterized as a submerged oxidation process; the basic concept is to introduce air and wastes into a bed of molten salt, oxidize the organic wastes in the molten salt, use the heat of oxidation to keep the salt molten and remove the salt for disposal or processing and recycling. The molten salt (usually sodium carbonate at 900-1000 C) provides four waste management functions: providing a heat transfer medium, catalyzing the oxidation reaction, preventing the formation of acid gases by forming stable salts, and efficiently capturing ash particles and radioactive materials by the combined effects of wetting, encapsulation and dissolution. The MSO process requires no wet scrubbing system for off-gas treatment. The process has been developed through bench-scale and pilot-scale testing, with successful destruction demonstration of a wide variety of hazardous and mixed (radioactive and hazardous wastes). (author). 24 refs, 2 tabs, 2 figs

  19. Influence of special attributes of zeotropic refrigerant mixtures on design and operation of vapour compression refrigeration and heat pump systems

    International Nuclear Information System (INIS)

    Rajapaksha, Leelananda

    2007-01-01

    The use of zeotropic refrigerant mixtures introduces a number of novel issues that affect the established design and operational practices of vapour compression systems used in refrigeration, air conditioning and heat pump applications. Two attributes; composition shift and temperature glide, associated with the phase changing process of zeotropic mixtures are the primary phenomena that bring in these issues. However, relevant researches are uncovering ways how careful system designs and selection of operational parameters allow improving the energy efficiency and the capacity of vapour compression refrigeration systems. Most of these concepts exploit the presence of composition shift and temperature glide. This paper qualitatively discusses how the mixture attributes influence the established heat exchanger design practices, performance and operation of conventional vapour compression systems. How the temperature glide and composition shift can be incorporated to improve the system performance and the efficiency are also discussed

  20. Development of Molten-Salt Heat Transfer Fluid Technology for Parabolic Trough Solar Power Plants - Public Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Grogan, Dylan C. P.

    2013-08-15

    Executive Summary This Final Report for the "Development of Molten-Salt Heat Transfer Fluid (HTF) Technology for Parabolic Trough Solar Power Plants” describes the overall project accomplishments, results and conclusions. Phase 1 analyzed the feasibility, cost and performance of a parabolic trough solar power plant with a molten salt heat transfer fluid (HTF); researched and/or developed feasible component options, detailed cost estimates and workable operating procedures; and developed hourly performance models. As a result, a molten salt plant with 6 hours of storage was shown to reduce Thermal Energy Storage (TES) cost by 43.2%, solar field cost by 14.8%, and levelized cost of energy (LCOE) by 9.8% - 14.5% relative to a similar state-of-the-art baseline plant. The LCOE savings range met the project’s Go/No Go criteria of 10% LCOE reduction. Another primary focus of Phase 1 and 2 was risk mitigation. The large risk areas associated with a molten salt parabolic trough plant were addressed in both Phases, such as; HTF freeze prevention and recovery, collector components and piping connections, and complex component interactions. Phase 2 analyzed in more detail the technical and economic feasibility of a 140 MWe,gross molten-salt CSP plant with 6 hours of TES. Phase 2 accomplishments included developing technical solutions to the above mentioned risk areas, such as freeze protection/recovery, corrosion effects of applicable molten salts, collector design improvements for molten salt, and developing plant operating strategies for maximized plant performance and freeze risk mitigation. Phase 2 accomplishments also included developing and thoroughly analyzing a molten salt, Parabolic Trough power plant performance model, in order to achieve the project cost and performance targets. The plant performance model and an extensive basic Engineering, Procurement, and Construction (EPC) quote were used to calculate a real levelized cost of energy (LCOE) of 11.50

  1. Experimental Investigation Evaporation of Liquid Mixture Droplets during Depressurization into Air Stream

    Science.gov (United States)

    Liu, L.; Bi, Q. C.; Terekhov, Victor I.; Shishkin, Nikolay E.

    2010-03-01

    The objective of this study is to develop experimental method to study the evaporation process of liquid mixture droplets during depressurization and into air stream. During the experiment, a droplet was suspended on a thermocouple; an infrared thermal imager was used to measure the droplet surface temperature transition. Saltwater droplets were used to investigate the evaporation process during depressurization, and volatile liquid mixtures of ethanol, methanol and acetone in water were applied to experimentally research the evaporation into air stream. According to the results, the composition and concentration has a complex influence on the evaporation rate and the temperature transition. With an increase in the share of more volatile component, the evaporation rate increases. While, a higher salt concentration in water results in a lower evaporation rate. The shape variation of saltwater droplet also depends on the mass concentration in solution, whether it is higher or lower than the eutectic point (22.4%). The results provide important insight into the complex heat and mass transfer of liquid mixture during evaporation.

  2. Experimental Setup for Determining Ammonia-Salt Adsorption and Desorption Behavior Under Typical Heat Pump Conditions. Experimental Results

    Energy Technology Data Exchange (ETDEWEB)

    Van der Pal, M.; De Boer, R.; Veldhuis, J.B.J. [ECN Biomass and Energy Efficiency, Petten (Netherlands)

    2013-09-15

    For the aim of obtaining a better understanding of the performance of a salt-ammonia sorption reactor/heat exchanger a new test-rig was developed. This test-rig enables the measurement of the performance in adsorption and desorption mode of different sorption reactor designs. It measures the speed of uptake and release of ammonia gas of various salt-ammonia reactions under well-controlled and well-monitored process conditions, similar to the heat pump conditions. The test-rig measures the ammonia uptake and release under controlled pressure and temperature conditions. Temperatures of the salt reactor can be varied from ambient temperature up to 200{sup o}C and the ammonia pressure can be varied between 0.02 to 2 MPa. These conditions can be set independently and repeated at regular time-intervals. Besides NH3-mass-flow meters, pressure and temperature sensors, the setup also contains an endoscope to observe any macroscopic structural changes in the material during uptake and release of ammonia. Measurements so far have shown a liquid phase of LiCl.3NH3 at pressures of 0.5 MPa and temperatures exceeding 90{sup o}C. Voilent foaming is observed at 120{sup o}C resulting in salt losses. A correlation was determined between the reaction rate of MgCl{sub 2}(2-6)NH3 and the relative pressure gradient yielding a reaction time of about 1500 seconds for a relative pressure difference of 1. Multiple sorption cycles of the CaCl{sub 2}(2-4)NH3 reaction, showed a reduced activity from 85% of the theoretical maximum sorbed mass at the first sorption cycle, to 15% after 300+ cycles.

  3. Effect of Al_2O_3 nanoparticle dispersion on the specific heat capacity of a eutectic binary nitrate salt for solar power applications

    International Nuclear Information System (INIS)

    Hu, Yanwei; He, Yurong; Zhang, Zhenduo; Wen, Dongsheng

    2017-01-01

    Highlights: • Stable binary nitrate eutectic salt based Al_2O_3 nanofluids were prepared. • A maximum enhancement of 8.3% on c_p was obtained at 2.0 wt.% nanoparticles. • MD simulation results show good agreement with experimental data. • The change in Coulombic energy contributed to most of the large change in c_p. - Abstract: Molten salts can be used as heat transfer fluids or thermal storage materials in a concentrated solar power plant. Improving the thermal properties can influence the utilization efficiency of solar energy. In this study, the effect of doping eutectic binary salt solvent with Al_2O_3 nanoparticles on its specific heat capacity (c_p) was investigated. The effects of the mass fraction of nanoparticles on the c_p of the composite nanofluid were analyzed, using both differential scanning calorimetry measurements and molecular dynamics simulations. The specific heat capacity of the nanocomposites was enhanced by increasing the nanoparticle concentration. The maximum enhancement was found to be 8.3%, at a nanoparticle concentration of 2.0%. A scanning electron microscope was used to analyze the material morphology. It was observed that special nanostructures were formed and the specific heat capacity of the nanocomposites was enhanced by increasing the quantity of nanostructures. Simulation results of c_p agreed well with the experimental data, and the potential energy and interaction energy in the system were analyzed. The change in Coulombic energy contributed to most of the large change in c_p, which explains the discrepancy in values between conventional nanofluids and molten salt-based nanofluids.

  4. Evaluation of dried salted pork ham and neck quality

    OpenAIRE

    Simona Kunová; Juraj Čuboň; Ondřej Bučko; Miroslava Kačániová; Jana Tkáčová; Lukáš Hleba; Peter Haščík; Ľubomír Lopašovský

    2015-01-01

    The aim of the present study was analysed chemical and physical parameters of dried salted pork ham and neck. Dry-cured meat is a traditional dry-cured product obtained after 12 - 24 months of ripening under controlled environmental conditions.  Ham and neck was salted by nitrite salt mixture during 1 week. Salted meat products were dried at 4 °C and relative humidity 85% 1 week after salting. The quality of dry-cured meat is influenced by the processing technology, f...

  5. Temperature and air-fuel ratio dependent specific heat ratio functions for lean burned and unburned mixture

    International Nuclear Information System (INIS)

    Ceviz, M.A.; Kaymaz, I.

    2005-01-01

    The most important thermodynamic property used in heat release calculations for engines is the specific heat ratio. The functions proposed in the literature for the specific heat ratio are temperature dependent and apply at or near stoichiometric air-fuel ratios. However, the specific heat ratio is also influenced by the gas composition in the engine cylinder and especially becomes important for lean combustion engines. In this study, temperature and air-fuel ratio dependent specific heat ratio functions were derived to minimize the error by using an equilibrium combustion model for burned and unburned mixtures separately. After the error analysis between the equilibrium combustion model and the derived functions is presented, the results of the global specific heat ratio function, as varying with mass fraction burned, were compared with the proposed functions in the literature. The results of the study showed that the derived functions are more feasible at lean operating conditions of a spark ignition engine

  6. Gene Expression, Protein Function and Pathways of Arabidopsis thaliana Responding to Silver Nanoparticles in Comparison to Silver Ions, Cold, Salt, Drought, and Heat

    Directory of Open Access Journals (Sweden)

    Eisa Kohan-Baghkheirati

    2015-03-01

    Full Text Available Silver nanoparticles (AgNPs have been widely used in industry due to their unique physical and chemical properties. However, AgNPs have caused environmental concerns. To understand the risks of AgNPs, Arabidopsis microarray data for AgNP, Ag+, cold, salt, heat and drought stresses were analyzed. Up- and down-regulated genes of more than two-fold expression change were compared, while the encoded proteins of shared and unique genes between stresses were subjected to differential enrichment analyses. AgNPs affected the fewest genes (575 in the Arabidopsis genome, followed by Ag+ (1010, heat (1374, drought (1435, salt (4133 and cold (6536. More genes were up-regulated than down-regulated in AgNPs and Ag+ (438 and 780, respectively while cold down-regulated the most genes (4022. Responses to AgNPs were more similar to those of Ag+ (464 shared genes, cold (202, and salt (163 than to drought (50 or heat (30; the genes in the first four stresses were enriched with 32 PFAM domains and 44 InterPro protein classes. Moreover, 111 genes were unique in AgNPs and they were enriched in three biological functions: response to fungal infection, anion transport, and cell wall/plasma membrane related. Despite shared similarity to Ag+, cold and salt stresses, AgNPs are a new stressor to Arabidopsis.

  7. Implementation of Molten Salt Properties into RELAP5-3D/ATHENA

    International Nuclear Information System (INIS)

    Cliff Davis

    2005-01-01

    Molten salts are being considered as coolants for the Next Generation Nuclear Plant (NGNP) in both the reactor and the heat transport loop between the reactor and the hydrogen production plant because of their superior thermophysical properties compared to helium. Because specific molten salts have not been selected for either application, four separate molten salts were implemented into the RELAP5-3D/ATHENA computer program as working fluids. The implemented salts were LiF-BeF2 in a molar mixture that is 66% LiF and 34% BeF2, respectively, NaBF4-NaF (92% and 8%), LiF-NaF-KF (11.5%, 46.5%, and 42%), and NaF-ZrF4 (50% and 50%). LiF-BeF2 is currently the first choice for the primary coolant for the Advanced High-Temperature Reactor, while NaF-ZrF4 is being considered as an alternate. NaBF4-NaF and LiFNaF-KF are being considered as possible coolants for the heat transport loop. The molten salts were implemented into ATHENA using a simplified equation of state based on data and correlations obtained from Oak Ridge National Laboratory. The simplified equation of state assumes that the liquid density is a function of temperature and pressure and that the liquid heat capacity is constant. The vapor is assumed to have the same composition as the liquid and is assumed to be a perfect gas. The implementation of the thermodynamic properties into ATHENA for LiF-BeF2 was verified by comparisons with results from a detailed equation of state that utilized a soft-sphere model. The comparisons between the simplified and soft-sphere models were in reasonable agreement for liquid. The agreement for vapor properties was not nearly as good as that obtained for liquid. Large uncertainties are possible in the vapor properties because of a lack of experimental data. The simplified model used here is not expected to be accurate for boiling or single-phase vapor conditions. Because neither condition is expected during NGNP applications, the simplified equation of state is considered

  8. Chemical stability of salt cake in the presence of organic materials

    International Nuclear Information System (INIS)

    Beitel, G.A.

    1976-04-01

    High-level waste stored as salt cake is principally NaNO 3 . Some organic material is known to have been added to the waste tanks. It has been suggested that some of this organic material may have become nitrated and transformed to a detonable state. Arguments are presented to discount the presence of nitrated organics in the waste tanks. Nitrated organics generated accidentally usually explode at the time of formation. Detonation tests show that salt cake and ''worst-case'' organic mixtures are not detonable. Organic mixtures with salt cake are compared with black powder, a related exothermic reactant. Black-powder mixtures of widely varying composition can and do burn explosively; ignition temperatures are 300-450 0 C. However, black-powder-type mixes cannot be ignited by radiation and are shock-insensitive. Temperatures generated by radionuclide decay in the salt are below 175 0 C and would be incapable of igniting any of these mixtures. The expected effect of radiation on organics in the waste tanks is a slow dehydrogenation and depolymerization along with a slight increase in sensitivity to oxidation. The greatest explosion hazard, if any exists, is a hydrogen--oxygen explosion from water radiolysis, but the hydrogen must first be generated and then trapped so that the concentration of hydrogen can rise above 4 vol percent. This is impossible in salt cake. Final confirmation of the safety against organic-related explosive reactions in the salt cake will be based upon analytical determinations of organic concentrations. 12 tables, 5 fig

  9. Analysis of the vertical penetration of a heated fluid layer in a solid, miscible bed

    International Nuclear Information System (INIS)

    Eck, G.

    1982-03-01

    The present study investigates the mass and heat transfer for the vertical penetration of a heated fluid layer in a solid, miscible bed using water-salt solutions (ZnBr 2 , NaBr) and polyethylenglycol 1500 (PEG) as simulation materials. The time depending spatial distribution of the molten material (PEG) has been measured for the first time with conductivity probes. The dependence of the downward heat flux on the density ratio rho*, i.e. the density of the fluid / the density of the molten solid, has been investigated with two different methods of heating, planar heating with a heat exchanger in a defined initial distance to the PEG-surface and electrolytical volume heating with a defined and timely constant power input. For 1 2 two layers have been observed in the fluid. This phenomenon is caused among other things by an anomality of the mixture density of the system salt solution-PEG. This process affects the downward heat flux so strongly, that it is impossible to transfer the results of such a system in this region of rho* to another system, for example to a corecatcher. The discrepancies between the measured heat fluxes and heat transfer coefficients of this study and that of other authors can be explained by the different construction of the planar heater, or by different boundary conditions in the case of volume heating. (orig.) [de

  10. Inertia-confining thermonuclear molten salt reactors

    International Nuclear Information System (INIS)

    Furukawa, Kazuo; Yamanaka, Chiyoe; Nakai, Sadao; Imon, Shunji; Nakajima, Hidenori; Nakamura, Norio; Kato, Yoshio.

    1984-01-01

    Purpose: To increase the heat generating efficiency while improving the reactor safety and thereby maintaining the energy balance throughout the reactor. Constitution: In an inertia-confining type D-T thermonuclear reactor, the blanket is made of lithium-containing fluoride molten salts (LiF.BeF 2 , LiF.NaF.KF, LiF.KF, etc) which are cascaded downwardly in a large thickness (50 - 100 cm) along the inner wall of the thermonuclear reaction vessel, and neutrons generated by explosive compression are absorbed to lithium in the molten salts to produce tritium, Heat transportation is carried out by the molten salts. (Ikeda, J.)

  11. High Temperature Fluoride Salt Test Loop

    Energy Technology Data Exchange (ETDEWEB)

    Aaron, Adam M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Cunningham, Richard Burns [Univ. of Tennessee, Knoxville, TN (United States); Fugate, David L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Holcomb, David Eugene [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Kisner, Roger A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Peretz, Fred J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Robb, Kevin R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wilson, Dane F. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Yoder, Jr, Graydon L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-12-01

    Effective high-temperature thermal energy exchange and delivery at temperatures over 600°C has the potential of significant impact by reducing both the capital and operating cost of energy conversion and transport systems. It is one of the key technologies necessary for efficient hydrogen production and could potentially enhance efficiencies of high-temperature solar systems. Today, there are no standard commercially available high-performance heat transfer fluids above 600°C. High pressures associated with water and gaseous coolants (such as helium) at elevated temperatures impose limiting design conditions for the materials in most energy systems. Liquid salts offer high-temperature capabilities at low vapor pressures, good heat transport properties, and reasonable costs and are therefore leading candidate fluids for next-generation energy production. Liquid-fluoride-salt-cooled, graphite-moderated reactors, referred to as Fluoride Salt Reactors (FHRs), are specifically designed to exploit the excellent heat transfer properties of liquid fluoride salts while maximizing their thermal efficiency and minimizing cost. The FHR s outstanding heat transfer properties, combined with its fully passive safety, make this reactor the most technologically desirable nuclear power reactor class for next-generation energy production. Multiple FHR designs are presently being considered. These range from the Pebble Bed Advanced High Temperature Reactor (PB-AHTR) [1] design originally developed by UC-Berkeley to the Small Advanced High-Temperature Reactor (SmAHTR) and the large scale FHR both being developed at ORNL [2]. The value of high-temperature, molten-salt-cooled reactors is also recognized internationally, and Czechoslovakia, France, India, and China all have salt-cooled reactor development under way. The liquid salt experiment presently being developed uses the PB-AHTR as its focus. One core design of the PB-AHTR features multiple 20 cm diameter, 3.2 m long fuel channels

  12. Steam gasification of plant biomass using molten carbonate salts

    International Nuclear Information System (INIS)

    Hathaway, Brandon J.; Honda, Masanori; Kittelson, David B.; Davidson, Jane H.

    2013-01-01

    This paper explores the use of molten alkali-carbonate salts as a reaction and heat transfer medium for steam gasification of plant biomass with the objectives of enhanced heat transfer, faster kinetics, and increased thermal capacitance compared to gasification in an inert gas. The intended application is a solar process in which concentrated solar radiation is the sole source of heat to drive the endothermic production of synthesis gas. The benefits of gasification in a molten ternary blend of lithium, potassium, and sodium carbonate salts is demonstrated for cellulose, switchgrass, a blend of perennial plants, and corn stover through measurements of reaction rate and product composition in an electrically heated reactor. The feedstocks are gasified with steam at 1200 K in argon and in the molten salt. The use of molten salt increases the total useful syngas production by up to 25%, and increases the reactivity index by as much as 490%. Secondary products, in the form of condensable tar, are reduced by 77%. -- Highlights: ► The presence of molten salt increases the rate of gasification by up to 600%. ► Reaction rates across various feedstocks are more uniform with salt present. ► Useful syngas yield is increased by up to 30% when salt is present. ► Secondary production of liquid tars are reduced by 77% when salt is present.

  13. EXPERIMENTAL INVESTIGATION OF HEAT STORAGE CHARACTERISTIC OF UREA AND BORAX SALT GRADIENT SOLAR PONDS

    Directory of Open Access Journals (Sweden)

    Hüseyin KURT

    2006-03-01

    Full Text Available Salt gradient solar ponds are simple and low cost solar energy system for collecting and storing solar energy. In this study, heat storage characteristic of urea and borax solutions in the solar pond were examined experimentally. Establishing density gradients in different concentration, variations in the temperature and density profiles were observed in four different experiments. Maximum storage temperatures were measured as 28ºC and 36 ºC for the ponds with urea and borax solution, respectively. The temperature difference between the bottom and the surface of the pond were measured as 13 ºC for urea and 17 ºC for borax- solutions. According to these results, heat storage characteristic of the solar pond with borax solution was found to be better than urea solution.

  14. Thermodynamics of the heating of titanium magnetite concentrate in the presence of different alkali salts

    International Nuclear Information System (INIS)

    Paunova, R.; Marinov, M.; Ivanov, J.

    2003-01-01

    Thermodynamics of the processes of heating of titanium magnetite concentrate in the presence of 6% Na 2 CO 3 , 6% Na 2 SO 4 and 6% NaCl has been studied using the EMF method and X-rays analysis. The experiments were carried out in the temperature range 973 K - 1273 K. Functional relationships as InP'o 2 = f(T) and EMF = f(T) for the processes taking place within the concentrate were described for a fixed temperature range. The X-ray and Moessbauer spectroscopy analysis of the end products of the mixture with 6% Na 2 CO 3 shows Fe 3 O 4 (51.31%), FeO (26.86%), Fe 2 O 3 (15.46%) and NaFeO 2 (6.38%). The free phases of vanadates can not be observed probably because they are formed in quantity less than 5%. So they can not be marked on the X-ray patterns. The X-ray analysis of the end products of the mixtures with Na 2 SO 4 and NaCl presents decreasing of the magnetite and wustite quantities because of hematite increasing. The oxygen partial pressure data of the mixture with 6% Na 2 CO 3 show that the galvanic cell registers not only Po 2 on the border Fe 3 O 4 ↔FeO and also Po 2 (CO 2 ) and Po 2 of the new phase (NaFeO 2 ). It was found out that the processes running by heating of the mixture with Na 2 SO4 are carried on the border Fe3O 4 ↔FeO at the temperatures above 1073 K. The experimental lgPo 2 results for mixture with 6% NaCl (Table 4) are lower than theoretically calculated for Fe 3 O 4 ↔FeO equilibrium. It is due to the fact that the chlorine is a strong oxidant and contributes to increase of the part of Fe 2 O 3 quantity. (Original)

  15. Self-Healing Capacity of Asphalt Mixtures Including By-Products Both as Aggregates and Heating Inductors.

    Science.gov (United States)

    Vila-Cortavitarte, Marta; Jato-Espino, Daniel; Castro-Fresno, Daniel; Calzada-Pérez, Miguel Á

    2018-05-15

    Major advances have been achieved in the field of self-healing by magnetic induction in which the addition of metallic particles into asphalt mixtures enables repairing their own cracks. This technology has already been proven to increase the life expectancy of roads. Nevertheless, its higher costs in comparison with conventional maintenance caused by the price of virgin metallic particles still makes it unattractive for investment. This research aimed at making this process economically accessible as well as environmentally efficient. To this end, an intense search for suitable industrial by-products to substitute both the virgin metal particles and the natural aggregates forming asphalt mixtures was conducted. The set of by-products used included sand blasting wastes, stainless shot wastes, and polished wastes as metallic particles and other inert by-products as aggregates. The results demonstrated that the by-products were adequately heated, which leads to satisfactory healing ratios in comparison with the reference mixture.

  16. Salt-assisted and salt-suppressed sol-gel transitions of methylcellulose in water.

    Science.gov (United States)

    Xu, Y; Wang, C; Tam, K C; Li, L

    2004-02-03

    The effects of various salts on the sol-gel transition of aqueous methylcellulose (MC) solutions have been studied systematically by means of a micro differential scanning calorimeter. It was found that the heating process was endothermic while the cooling process was exothermic for both MC solutions with and without salts. The addition of salts did not change the patterns of gelation and degelation of MC. However, the salts could shift the sol-gel transition and the gel-sol transition to lower or higher temperatures from a pure MC solution, depending on the salt type. These opposite effects were termed the salt-assisted and salt-suppressed sol-gel transitions. Either the salt-assisted transition or the salt-suppressed sol-gel transition was a function of salt concentration. In addition, each salt was found to have its own concentration limit for producing a stable aqueous solution of MC at a given concentration of MC, which was related to the anionic charge density of the salt. Cations were proved to have weaker effects than anions. The "salt-out strength", defined as the salt effect per mole of anion, was obtained for each anion studied. The thermodynamic mechanisms involved in the salt-assisted and salt-suppressed sol-gel transitions are discussed.

  17. Thermodynamic Assessment of Hot Corrosion Mechanisms of Superalloys Hastelloy N and Haynes 242 in Eutectic Mixture of Molten Salts KF and ZrF4

    Energy Technology Data Exchange (ETDEWEB)

    Michael V. Glazoff

    2012-02-01

    The KF - ZrF4 system was considered for the application as a heat exchange agent in molten salt nuclear reactors (MSRs) beginning with the work carried out at ORNL in early fifties. Based on a combination of excellent properties such as thermal conductivity, viscosity in the molten state, and other thermo-physical and rheological properties, it was selected as one of possible candidates for the nuclear reactor secondary heat exchanger loop.

  18. Effects of high heat flux hydrogen and helium mixture beam irradiation on surface modification and hydrogen retention in tungsten materials

    International Nuclear Information System (INIS)

    Tokunaga, K.; Fujiwara, T.; Ezato, K.; Suzuki, S.; Akiba, M.; Kurishita, H.; Nagata, S.; Tsuchiya, B.; Tonegawa, A.; Yoshida, N.

    2009-01-01

    High heat flux experiments using a hydrogen-helium mixture beam have been carried out on powder metallurgy tungsten (PM-W) and ultra fine grain W-TiC alloy (W-0.5 wt%TiC-H 2 ). The energy of is 18 keV. Beam flux and heat flux at the beam center is 2.0 x 10 21 atoms/m 2 s and 7.0 MW/m 2 , respectively. Typical ratio of He/D ion is 0.25. Beam duration is 1.5-3 s and interval of beam shot start is 30 s. The samples are irradiated up to a fluence of 10 22 -10 24 He/m 2 by the repeated irradiation pulses. After the irradiation, surface modification by the irradiation and hydrogen retention, surface composition have been investigated. Surface modification by hydrogen-helium mixture beams is completely different from results of single beam irradiation. In particular, mixture beam irradiation causes remarkably high hydrogen retention.

  19. Mixed convection heat transfer between a steam / non-condensable gas mixture and an inclined finned tube bundle

    Energy Technology Data Exchange (ETDEWEB)

    Cachard, F. de; Lomperski, S.; Monauni, G.R. [Paul Scherrer Inst. (PSI), Villigen (Switzerland). Lab. for Thermal-Hydraulics

    1999-07-01

    An experimental and analytical program was performed at PSI to study the performance of a finned-tube condenser in the presence of non-condensable gases at low gas mass fluxes. The model developed for this application includes mixed convection heat transfer between the vapour/non-condensable mixture and the finned-tubes, heat conduction through the fins and tubes, and evaporative heat transfer inside the tubes. The finned-tubes condenser model has been assessed against data obtained at the PSI LINX facility with two test condensers. For the 62 LINX experiments performed, the model predictions are very good, i.e., less than 10 % standard deviation between experimental and predicted results. (authors)

  20. Synthesis and Characterization of Processable Polyaniline Salts

    International Nuclear Information System (INIS)

    Gul, Salma; Bilal, Salma; Shah, Anwar-ul-Haq Ali

    2013-01-01

    Polyaniline (PANI) is one of the most promising candidates for possible technological applications. PANI has potential applications in batteries, anion exchanger, tissue engineering, inhibition of steel corrosion, fuel cell, sensors and so on. However, its insolubility in common organic solvents limits its range of applications. In the present study an attempt has been made to synthesize soluble polyaniline salt via inverse polymerization pathway using benzoyl peroxide as oxidant and dodecylbenzenesulfonic acid (DBSA) as dopant as well as a surfactant. A mixture of chloroform and 2-butanol was used as dispersion medium for the first time. The influence of synthesis parameters such as concentration of aniline, benzoyl peroxide and DBSA on the yield and other properties of the resulting PANI salt was studied. The synthesized PANI salt was found to be completely soluble in DMSO, DMF, chloroform and in a mixture of toluene and 2-propanol. The synthesized polymer salt was also characterized with cyclic voltam-metry, SEM, XRD, UV-Vis spectroscopy and viscosity measurements. TGA was used to analyze the thermal properties of synthesized polymer. The extent of doping of the PANI salt was determined from UV-Vis spectra and TGA analysis. The activation energy for the degradation of the polymer was calculated with the help of TGA.

  1. Konjac flour improved textural and water retention properties of transglutaminase-mediated, heat-induced porcine myofibrillar protein gel: Effect of salt level and transglutaminase incubation.

    Science.gov (United States)

    Chin, Koo B; Go, Mi Y; Xiong, Youling L

    2009-03-01

    Functional properties of heat-induced gels prepared from microbial transglutaminase (TG)-treated porcine myofibrillar protein (MP) containing sodium caseinate with or without konjac flour (KF) under various salt concentrations (0.1, 0.3 and 0.6MNaCl) were evaluated. The mixed MP gels with KF exhibited improved cooking yields at all salt concentrations. TG treatment greatly enhanced gel strength and elasticity (storage modulus, G') at 0.6M NaCl, but not at lower salt concentrations. The combination of KF and TG improved the gel strength at 0.1 and 0.3M NaCl and G' at all salt concentrations, when compared with non-TG controls. Incubation of MP suspensions (sols) with TG promoted the disappearance of myosin heavy chain and the production of polymers. The TG-treated MP mixed gels had a compact structure, compared to those without TG, and the KF incorporation modified the gel matrix and increased its water-holding capacity. Results from differential scanning calorimetry suggested possible interactions of MP with KF, which may explain the changes in the microstructure of the heat-induced gels.

  2. Liquids and liquid mixtures

    CERN Document Server

    Rowlinson, J S; Baldwin, J E; Buckingham, A D; Danishefsky, S

    2013-01-01

    Liquids and Liquid Mixtures, Third Edition explores the equilibrium properties of liquids and liquid mixtures and relates them to the properties of the constituent molecules using the methods of statistical thermodynamics. Topics covered include the critical state, fluid mixtures at high pressures, and the statistical thermodynamics of fluids and mixtures. This book consists of eight chapters and begins with an overview of the liquid state and the thermodynamic properties of liquids and liquid mixtures, including vapor pressure and heat capacities. The discussion then turns to the thermodynami

  3. Investigation of sodalites for conditioning halide salts (NaCl and NaI): Comparison of two synthesis routes

    Energy Technology Data Exchange (ETDEWEB)

    Bardez, Isabelle; Campayo, Lionel; Rigaud, Danielle; Chartier, Myriam; Calvet, Aurelie [CEA, Laboratoire d' Etudes des Materiaux Ceramiques pour le Conditionnement, Site de Marcoule, Batiment 208, B.P. 17171, 30207 Bagnols sur Ceze cedex (France)

    2008-07-01

    Sodalites with the general formula Na{sub 8}Al{sub 6}Si{sub 6}O{sub 24}X{sub 2} (where X = Cl or I) were investigated for ceramic conditioning of halide salts (NaCl and NaI). Because of the tendency of halides to volatilize at high temperature, two synthesis routes were tested to optimize the halide content in the sodalite phase. The first is based on heating at high temperature of a [nepheline NaAlSiO{sub 4} + salt] mixture prepared by a dry process. The second, performed at low temperature, consists of the reaction in aqueous media between kaolinite (Al{sub 2}Si{sub 2}O{sub 5}(OH){sub 4}), sodium hydroxide (NaOH) and the salt. The present study compares these two syntheses and examines differences between chloro-sodalite and iodo-sodalite based on X-ray diffraction and infrared spectroscopy. The next step will consist in sintering the resulting powder samples to obtain dense ceramics. (authors)

  4. Molten salts and nuclear energy production

    International Nuclear Information System (INIS)

    Le Brun, Christian

    2007-01-01

    Molten salts (fluorides or chlorides) were considered near the beginning of research into nuclear energy production. This was initially due to their advantageous physical and chemical properties: good heat transfer capacity, radiation insensitivity, high boiling point, wide range solubility for actinides. In addition it was realised that molten salts could be used in numerous situations: high temperature heat transfer, core coolants with solid fuels, liquid fuel in a molten salt reactor, solvents for spent nuclear solid fuel in the case of pyro-reprocessing and coolant and tritium production in the case of fusion. Molten salt reactors, one of the six innovative concepts chosen by the Generation IV international forum, are particularly interesting for use as either waste incinerators or thorium cycle systems. As the neutron balance in the thorium cycle is very tight, the possibility to perform online extraction of some fission product poisons from the salt is very attractive. In this article the most important questions that must be addressed to demonstrate the feasibility of molten salt reactor will be reviewed

  5. Preliminary model validation for integral stability behavior in molten salt natural circulation

    International Nuclear Information System (INIS)

    Cai Chuangxiong; He Zhaozhong; Chen Kun

    2017-01-01

    Passive safety system is an important characteristic of Fluoride-Salt-Cooled High-Temperature Reactor (FHR). In order to remove the decay heat, a direct reactor auxiliary cooling system (DRACS) which uses the passive safety technology is proposed to the FHR as the ultimate heat sink. The DRACS is relying on the natural circulation, so the study of molten salt natural circulation plays an important role at TMSR. A high-temperature molten salt natural circulation test loop has been designed and constructed at the TMSR center of the Chinese Academy of Sciences (CAS) to understand the characteristics of the natural circulation and verify the design model. It adopts nitrate salt as the working fluid to simulate fluoride salts, and uses air as the ultimate heat sink. The test shows the operation very well and has a very nice performance, the Heat transfer coefficients (salt-salt or salt-air), power of the loop, heat loss of molten salt pool (or molten salt pipe or air cooling tower), starting time of the loop, flow rate that can be verified in this loop. A series of experiments have been done and the results show that the experimental data are well matched with the design data. This paper aims at analyzing the molten salt circulation model, studying the characteristics of the natural circulation, and verifying the Integral stability behavior by three different natural circulation experiments. Also, the experiment is going on, and more experiments will been carry out to study the molten salt natural circulation for optimizing the design. (author)

  6. Dietary supplementation of a mixture of Lactobacillus strains enhances performance of broiler chickens raised under heat stress conditions

    Science.gov (United States)

    Faseleh Jahromi, Mohammad; Wesam Altaher, Yassir; Shokryazdan, Parisa; Ebrahimi, Roohollah; Ebrahimi, Mahdi; Idrus, Zulkifli; Tufarelli, Vincenzo; Liang, Juan Boo

    2016-07-01

    High ambient temperature is a major problem in commercial broiler production in the humid tropics because high producing broiler birds consume more feed, have higher metabolic activity, and thus higher body heat production. To evaluate the effects of two previously isolated potential probiotic strains ( Lactobacillus pentosus ITA23 and Lactobacillus acidophilus ITA44) on broilers growing under heat stress condition, a total of 192 chicks were randomly allocated into four treatment groups of 48 chickens each as follows: CL, birds fed with basal diet raised in 24 °C; PL, birds fed with basal diet plus 0.1 % probiotic mixture raised in 24 °C; CH, birds fed with basal diet raised in 35 °C; and PH, birds fed with basal diet plus 0.1 % probiotic mixture raised in 35 °C. The effects of probiotic mixture on the performance, expression of nutrient absorption genes of the small intestine, volatile fatty acids (VFA) and microbial population of cecal contents, antioxidant capacity of liver, and fatty acid composition of breast muscle were investigated. Results showed that probiotic positively affected the final body weight under both temperature conditions (PL and PH groups) compared to their respective control groups (CL and CH). Probiotic supplementation numerically improved the average daily gain (ADG) under lower temperature, but significantly improved ADG under the higher temperature ( P < 0.05) by sustaining high feed intake. Under the lower temperature environment, supplementation of the two Lactobacillus strains significantly increased the expression of the four sugar transporter genes tested (GLUT2, GLUT5, SGLT1, and SGLT4) indicating probiotic enhances the absorption of this nutrient. Similar but less pronounced effect was also observed under higher temperature (35 °C) condition. In addition, the probiotic mixture improved bacterial population of the cecal contents, by increasing beneficial bacteria and decreasing Escherichia coli population, which could be

  7. Numerical Modelling of Induction Heating for a Molten Salts Pyrochemical Process

    Energy Technology Data Exchange (ETDEWEB)

    Vu, Xuan-Tuyen; Feraud, Jean-Pierre; Ode, Denis [CEA Marcoule: DTEC/SGCS/LGCI Bat. 57 B17171, 30207 Bagnols/Ceze (France); Du Terrail Couvat, Yves [SIMaP, Grenoble INP, CNRS: ENSEEG, BP 75, 38402 Saint Martin d' Heres Cedex (France)

    2008-07-01

    Technological developments in the pyro-chemistry program are required to allow choices for a reprocessing experiment on 100 g of spent nuclear fuel. In this context, a special device must be designed for the solid/gas reaction phases followed by actinide extraction and stripping in molten salt. This paper discusses a modelling approach for designing an induction furnace. Using this numerical approach is a good way to improve thermal performance of the device in terms of magnetic/thermal coupling phenomena. The influence of current frequency is also studied to give another view of the possibilities of an induction furnace. Electromagnetic forces are taken into account in a computational fluid dynamics code derived from a specifically developed exchange library. Induction heating systems are an example of a typical multi-physics problem involving numerically coupled equations. (authors)

  8. Numerical Modelling of Induction Heating for a Molten Salts Pyrochemical Process

    International Nuclear Information System (INIS)

    Vu, Xuan-Tuyen; Feraud, Jean-Pierre; Ode, Denis; Du Terrail Couvat, Yves

    2008-01-01

    Technological developments in the pyro-chemistry program are required to allow choices for a reprocessing experiment on 100 g of spent nuclear fuel. In this context, a special device must be designed for the solid/gas reaction phases followed by actinide extraction and stripping in molten salt. This paper discusses a modelling approach for designing an induction furnace. Using this numerical approach is a good way to improve thermal performance of the device in terms of magnetic/thermal coupling phenomena. The influence of current frequency is also studied to give another view of the possibilities of an induction furnace. Electromagnetic forces are taken into account in a computational fluid dynamics code derived from a specifically developed exchange library. Induction heating systems are an example of a typical multi-physics problem involving numerically coupled equations. (authors)

  9. SIMULATION OF NON-AZEOTROPIC REFRIGERANT MIXTURES FOR USE IN A DUAL-CIRCUIT REFRIGERATOR/FREEZER WITH COUNTERCURRENT HEAT EXCHANGES

    Science.gov (United States)

    The paper discusses a refrigerator/freezer (RF) system that has two complete and independent refrigeration cycles for the two compartments. It uses a non-azeotropic refrigerant mixture (NARM) in each cycle and countercurrent heat exchangers throughout. This RF is housed in a stan...

  10. Method for the production of uranium chloride salt

    Science.gov (United States)

    Westphal, Brian R.; Mariani, Robert D.

    2013-07-02

    A method for the production of UCl.sub.3 salt without the use of hazardous chemicals or multiple apparatuses for synthesis and purification is provided. Uranium metal is combined in a reaction vessel with a metal chloride and a eutectic salt- and heated to a first temperature under vacuum conditions to promote reaction of the uranium metal with the metal chloride for the production of a UCl.sub.3 salt. After the reaction has run substantially to completion, the furnace is heated to a second temperature under vacuum conditions. The second temperature is sufficiently high to selectively vaporize the chloride salts and distill them into a condenser region.

  11. Molecular dynamics simulations of a lithium/sodium carbonate mixture.

    Science.gov (United States)

    Ottochian, Alistar; Ricca, Chiara; Labat, Frederic; Adamo, Carlo

    2016-03-01

    The diffusion and ionic conductivity of Li x Na1-x CO3 salt mixtures were studied by means of Molecular Dynamics (MD) simulations, using the Janssen and Tissen model (Janssen and Tissen, Mol Simul 5:83-98; 1990). These salts have received particular attention due to their central role in fuel cells technology, and reliable numerical methods that could perform as important interpretative tool of experimental data are thus required but still lacking. The chosen computational model nicely reproduces the main structural behaviour of the pure Li2CO3, Na2CO3 and K2CO3 carbonates, but also of their Li/K and Li/Na mixtures. However, it fails to accurately describe dynamic properties such as activation energies of diffusion and conduction processes, outlining the need to develop more accurate models for the simulation of molten salt carbonates.

  12. A soluble, one-dimensional problem for coupled heat conduction and mass diffusion with aerosol formation in a vapour-gas mixture

    International Nuclear Information System (INIS)

    Barrett, J.C.; Clement, C.F.

    1986-01-01

    The coupled equations for heat and mass transfer are reduced to ordinary differential equations applying to semi-infinite region bounded by a wall. Solutions are obtained in the limits of no aerosol and of negligible supersaturations, in which case the aerosol growth rate is calculated. In agreement with earlier general predictions, results for water vapour-air mixtures show very different behaviour between heating and cooling the mixtures, and that aerosol growth rates do not increase with temperature, but rather become a much smaller fraction of evaporation or condensation rates at the wall. A new feature is that, in the cooling case, an aerosol growth region is predicted to exist immediately adjacent to the wall, whereas further away any aerosol is predicted to evaporate. (author)

  13. A universal salt model based on under-ground precipitation of solid salts due to supercritical water `out-salting'

    Science.gov (United States)

    Rueslåtten, H.; Hovland, M. T.

    2010-12-01

    One of the common characteristics of planets Earth and Mars is that both host water (H2O) and large accumulations of salt. Whereas Earth’s surface-environment can be regarded as ‘water-friendly’ and ‘salt hostile’, the reverse can be said for the surface of Mars. This is because liquid water is stable on Earth, and the atmosphere transports humidity around the globe, whereas on planet Mars, liquid water is unstable, rendering the atmosphere dry and, therefore, ‘salt-friendly’. The riddle as to how the salt accumulated in various locations on those two planets, is one of long-lasting and great debate. The salt accumulations on Earth are traditionally termed ‘evaporites’, meaning that they formed as a consequence of the evaporation of large masses of seawater. How the accumulations on Mars formed is much harder to explain, as an ocean only existed briefly. Although water molecules and OH-groups may exist in abundance in bound form (crystal water, adsorbed water, etc.), the only place where free water is expected to be stable on Mars is within underground faults, fractures, and crevices. Here it likely occurs as brine or in the form of ice. Based on these conditions, a key to understanding the accumulation of large deposits of salt on both planets is linked to how brines behave in the subsurface when pressurized and heated beyond their supercritical point. At depths greater than about 3 km (P>300 bars) water will no longer boil in a steam phase. Rather, it becomes supercritical and will attain the phase of supercritical water vapor (SCRIW) with a specific gravity of typically 0.3 g/cm3. An important characteristic of SCRIW is its inability to dissolve the common sea salts. The salt dissolved in the brines will therefore precipitate as solid particles when brines (seawater on the Earth) move into the supercritical P&T-domain (T>400°C, P>300 bars). Numerical modeling of a hydrothermal system in the Atlantis II Deep of the Red Sea indicates that a

  14. Heat transfer measurements in a forced convection loop with two molten-fluoride salts: LiF--BeF2--ThF2--UF4 and eutectic NaBF4--NaF

    International Nuclear Information System (INIS)

    Silverman, M.D.; Huntley, W.R.; Robertson, H.E.

    1976-10-01

    Heat transfer coefficients were determined experimentally for two molten-fluoride salts [LiF-BeF 2 -ThF 2 -UF 4 (72-16-12-0.3 mole %) and NaBF 4 -NaF (92-8 mole %] proposed as the fuel salt and coolant salt, respectively, for molten-salt breeder reactors. Information was obtained over a wide range of variables, with salt flowing through 12.7-mm-OD (0.5-in.) Hastelloy N tubing in a forced convection loop (FCL-2b). Satisfactory agreement with the empirical Sieder-Tate correlation was obtained in the fully developed turbulent region at Reynolds moduli above 15,000 and with a modified Hausen equation in the extended transition region (Re approx.2100-15,000). Insufficient data were obtained in the laminar region to allow any conclusions to be drawn. These results indicate that the proposed salts behave as normal heat transfer fluids with an extended transition region

  15. Potential for creation of a salt dome following disposal of radioactive waste in a salt layer

    International Nuclear Information System (INIS)

    Fries, G.

    1987-01-01

    The study aims at quantifying the possibility of creation of a salt dome from a salt layer in which heat-emitting radioactive waste would be buried. Volume 1 describes the results of numerical computer simulations, and of laboratory-scale models in centrifuges. Volume 2 envisages, in a geological perspective, the origin of salt domes, the mechanisms of thei formation, and the associated parameters [fr

  16. Potential for creation of a salt dome following disposal of radioactive waste in a salt layer

    International Nuclear Information System (INIS)

    Charo, L.; Habib, P.

    1987-01-01

    The study aims at quantifying the possibility of creation of a salt dome from a salt layer in which heat-emitting radioactive waste would be buried. Volume 1 describes the results of numerical computer simulations, and of laboratory-scale models in centrifuges. Volume 2 envisages, in a geological perspective, the origin of salt domes, the mechanisms of their formation, and the associated parameters [fr

  17. Basic studies for molten-salt reactor engineering in Japan

    International Nuclear Information System (INIS)

    Ishiguro, R.; Sugiyama, K.; Sakashita, H.

    1985-01-01

    A research project of nuclear engineering for the molten-salt reactor is underway which is supported by the Grant-in-Aid for Scientific Research of the Ministry of Education of Japan. At present, the major effort is devoted only to basic engineering problems because of the limited amount of the grant. The reporters introduce these and related studies that have been carrying out in Japanese universities. Discussions on the following four subjects are summerized in this report: a) Vapour explosion when hight temperature molten-salts are brought into direct contact with water. b) Measurements of exact thermophysical properties of molten-salt. c) Free convection heat transfer with uniform internal heat generation and a constant heating rate from the bottem. d) Stability of frozen salt film on the container surface. (author)

  18. Continuous Preparation of 1:1 Haloperidol-Maleic Acid Salt by a Novel Solvent-Free Method Using a Twin Screw Melt Extruder.

    Science.gov (United States)

    Lee, Hung Lin; Vasoya, Jaydip M; Cirqueira, Marilia de Lima; Yeh, Kuan Lin; Lee, Tu; Serajuddin, Abu T M

    2017-04-03

    Salts are generally prepared by acid-base reaction in relatively large volumes of organic solvents, followed by crystallization. In this study, the potential for preparing a pharmaceutical salt between haloperidol and maleic acid by a novel solvent-free method using a twin-screw melt extruder was investigated. The pH-solubility relationship between haloperidol and maleic acid in aqueous medium was first determined, which demonstrated that 1:1 salt formation between them was feasible (pH max 4.8; salt solubility 4.7 mg/mL). Extrusion of a 1:1 mixture of haloperidol and maleic acid at the extruder barrel temperature of 60 °C resulted in the formation of a highly crystalline salt. The effects of operating temperature and screw configuration on salt formation were also investigated, and those two were identified as key processing parameters. Salts were also prepared by solution crystallization from ethyl acetate, liquid-assisted grinding, and heat-assisted grinding and compared with those obtained by melt extrusion by using DSC, PXRD, TGA, and optical microscopy. While similar salts were obtained by all methods, both melt extrusion and solution crystallization yielded highly crystalline materials with identical enthalpies of melting. During the pH-solubility study, a salt hydrate form was also identified, which, upon heating, converted to anhydrate similar to that obtained by other methods. There were previous reports of the formation of cocrystals, but not salts, by melt extrusion. 1 H NMR and single-crystal X-ray diffraction confirmed that a salt was indeed formed in the present study. The haloperidol-maleic acid salt obtained was nonhygroscopic in the moisture sorption study and converted to the hydrate form only upon mixing with water. Thus, we are reporting for the first time a relatively simple and solvent-free twin-screw melt extrusion method for the preparation of a pharmaceutical salt that provides material comparable to that obtained by solution

  19. Mesoscale Eddies in the Northwestern Pacific Ocean: Three-Dimensional Eddy Structures and Heat/Salt Transports

    Science.gov (United States)

    Dong, Di; Brandt, Peter; Chang, Ping; Schütte, Florian; Yang, Xiaofeng; Yan, Jinhui; Zeng, Jisheng

    2017-12-01

    The region encompassing the Kuroshio Extension (KE) in the Northwestern Pacific Ocean (25°N-45°N and 130°E-180°E) is one of the most eddy-energetic regions of the global ocean. The three-dimensional structures and transports of mesoscale eddies in this region are comprehensively investigated by combined use of satellite data and Argo profiles. With the allocation of Argo profiles inside detected eddies, the spatial variations of structures of eddy temperature and salinity anomalies are analyzed. The results show that eddies predominantly have subsurface (near-surface) intensified temperature and salinity anomalies south (north) of the KE jet, which is related to different background stratifications between these regions. A new method based on eddy trajectories and the inferred three-dimensional eddy structures is proposed to estimate heat and salt transports by eddy movements in a Lagrangian framework. Spatial distributions of eddy transports are presented over the vicinity of the KE for the first time. The magnitude of eddy-induced meridional heat (freshwater volume) transport is on the order of 0.01 PW (103 m3/s). The eddy heat transport divergence results in an oceanic heat loss south and heat gain north of the KE, thereby reinforcing and counteracting the oceanic heat loss from air-sea fluxes south and north of the KE jet, respectively. It also suggests a poleward heat transport across the KE jet due to eddy propagation.

  20. Intergranular tellurium cracking of nickel-based alloys in molten Li, Be, Th, U/F salt mixture

    Science.gov (United States)

    Ignatiev, Victor; Surenkov, Alexander; Gnidoy, Ivan; Kulakov, Alexander; Uglov, Vadim; Vasiliev, Alexander; Presniakov, Mikhail

    2013-09-01

    In Russia, R&D on Molten Salt Reactor (MSR) are concentrated now on fast/intermediate spectrum concepts which were recognized as long term alternative to solid fueled fast reactors due to their attractive features: strong negative feedback coefficients, easy in-service inspection, and simplified fuel cycle. For high-temperature MSR corrosion of the metallic container alloy in primary circuit is the primary concern. Key problem receiving current attention include surface fissures in Ni-based alloys probably arising from fission product tellurium attack. This paper summarizes results of corrosion tests conducted recently to study effect of oxidation state in selected fuel salt on tellurium attack and to develop means of controlling tellurium cracking in the special Ni-based alloys recently developed for molten salt actinide recycler and tranforming (MOSART) system. Tellurium corrosion of Ni-based alloys was tested at temperatures up to 750 °C in stressed and unloaded conditions in molten LiF-BeF2 salt mixture fueled by about 20 mol% of ThF4 and 2 mol% of UF4 at different [U(IV)]/[U(III)] ratios: 0.7, 4, 20, 100 and 500. Following Ni-based alloys (in mass%): HN80М-VI (Mo—12, Cr—7.6, Nb—1.5), HN80МТY (Mo—13, Cr—6.8, Al—1.1, Ti—0.9), HN80МТW (Mo—9.4, Cr—7.0, Ti—1.7, W—5.5) and ЕМ-721 (W—25.2, Cr—5.7, Ti—0.17) were used for the study in the corrosion facility. If the redox state the fuel salt is characterized by uranium ratio [U(IV)]/[U(III)] uranium intermetallic compounds and alloys with nickel and molybdenum. This leads to spontaneous behavior of alloy formation processes on the specimens' surface and further diffusion of uranium deep into the metallic phase. As consequence of this films of intermetallic compounds and alloys of nickel, molybdenum, tungsten with uranium are formed on the alloys specimens' surface, and intergranular corrosion does not take place. In the fuel salt with [U(IV)]/[U(III)] = 4-20 the potentials of uranium

  1. Comments on US approach to backfilling: Thermochemical characterization of crushed salt

    International Nuclear Information System (INIS)

    Smith, S.; Hume, H.

    1988-01-01

    From recent studies and calculations, it has become apparent that expected brine in a United States salt repository would not seriously detract from the usefulness of rock salt as backfill. It also has been shown that adding clay to the salt might add to the pressure on the emplaced waste packages. Nevertheless, the Salt Repository Project has planned to evaluate a betonite/salt mixture during the next few years. The following items have also been discussed: advantages of backfilling, variables affecting crushed salt behavior, and the general approach to a preliminary testing program

  2. Experimental investigation of inserts configurations and PCM type on the thermal performance of PCM based heat sinks

    International Nuclear Information System (INIS)

    Mahmoud, Saad; Tang, Aaron; Toh, Chin; AL-Dadah, Raya; Soo, Sein Leung

    2013-01-01

    Highlights: • Inclusion of PCM can reduce heating rate and peak temperatures of the heat sinks. • Increasing the number of fins can enhance heat transfer to PCM. • Honeycomb inserts can replace machined fin structures in PCM based heat sinks. • PCMs with lower melting points produced lower heat sink operating temperatures. - Abstract: Efficient thermal management in portable electronic devices is necessary to ensure sufficiently low operating temperatures for reliability, increased installed functions, and user comfort. Using Phase Change Materials (PCMs) based heat sinks offers potential in these applications. However, PCMs generally suffer from low thermal conductivities; therefore it is important to enhance their thermal conductivity and improve cooling performance. This study presents experimental investigation of the effects of PCM material, heat sink designs and power levels on PCM based heat sinks performance for cooling electronic devices. Six PCMs were used including paraffin wax (as reference material), two materials based on mixture of inorganic hydrated salts, two materials based on mixture of organic substances and one material based on a mixture of both organic and inorganic materials. Also, six heat sink designs were tested: one with single cavity, two with parallel fin arrangement, two with cross fin arrangement, and one with honeycomb insert inside the single cavity. Heat sinks thermal performance was investigated using paraffin wax type PCM with power inputs ranging from 3 W to 5 W. Results showed that the inclusion of PCM can reduce heating rates and peak temperatures of heat sinks with increasing the number of fins can enhance heat distribution to PCM leading to lower heat sinks peak temperatures. Also, the use of honeycomb inserts to replace machined finned structures has shown comparable thermal performance. Regarding the PCM type, the material with the lowest melting temperature has shown the best performance in terms of lowest

  3. Resorption heat pump

    International Nuclear Information System (INIS)

    Vasiliev, L.L.; Mishkinis, D.A.; Antukh, A.A.; Kulakov, A.G.; Vasiliev, L.L.

    2004-01-01

    Resorption processes are based on at least two solid-sorption reactors application. The most favorable situation for the resorption heat pumps is the case, when the presence of a liquid phase is impossible. From simple case--two reactors with two salts to complicated system with two salts + active carbon fiber (fabric) and two branch of the heat pump acting out of phase to produce heat and cold simultaneously, this is the topic of this research program

  4. Active heat exchange system development for latent heat thermal energy storage

    Science.gov (United States)

    Alario, J.; Kosson, R.; Haslett, R.

    1980-01-01

    Various active heat exchange concepts were identified from among three generic categories: scrapers, agitators/vibrators and slurries. The more practical ones were given a more detailed technical evaluation and an economic comparison with a passive tube-shell design for a reference application (300 MW sub t storage for 6 hours). Two concepts were selected for hardware development: (1) a direct contact heat exchanger in which molten salt droplets are injected into a cooler counterflowing stream of liquid metal carrier fluid, and (2) a rotating drum scraper in which molten salt is sprayed onto the circumference of a rotating drum, which contains the fluid salt is sprayed onto the circumference of a rotating drum, which contains the fluid heat sink in an internal annulus near the surface. A fixed scraper blade removes the solidified salt from the surface which was nickel plated to decrease adhesion forces. In addition to improving performance by providing a nearly constant transfer rate during discharge, these active heat exchanger concepts were estimated to cost at least 25% less than the passive tube-shell design.

  5. Molten salt reactor concept

    International Nuclear Information System (INIS)

    Sood, D.D.

    1980-01-01

    Molten salt reactor is an advanced breeder concept which is suited for the utilization of thorium for nuclear power production. This reactor is based on the use of solutions of uranium or plutonium fluorides in LiF-BeF 2 -ThF 4 as fuel. Unlike the conventional reactors, no external coolant is used in the reactor core and the fuel salt itself is circulated through heat exchangers to transfer the fission produced heat to a secondary salt (NaF-NaBF 4 ) for steam generation. A part of the fuel stream is continuously processed to isolate 233 Pa, so that it can decay to fissile 233 U without getting converted to 234 Pa, and for the removal of neutron absorbing fission products. This on-line processing scheme makes this reactor concept to achieve a breeding ratio of 1.07 which is the highest for any thermal breeder reactor. Experimental studies at the Bhabha Atomic Research Centre, Bombay, have established the use of plutonium as fuel for this reactor. This molten salt reactor concept is described and the work conducted at the Bhabha Atomic Research Centre is summarised. (auth.)

  6. Molten salt based nanofluids based on solar salt and alumina nanoparticles: An industrial approach

    Science.gov (United States)

    Muñoz-Sánchez, Belén; Nieto-Maestre, Javier; Guerreiro, Luis; Julia, José Enrique; Collares-Pereira, Manuel; García-Romero, Ana

    2017-06-01

    Thermal Energy Storage (TES) and its associated dispatchability is extremely important in Concentrated Solar Power (CSP) plants since it represents the main advantage of CSP technology in relation to other renewable energy sources like photovoltaic (PV). Molten salts are used in CSP plants as a TES material because of their high operational temperature and stability of up to 600°C. Their main problems are their relative poor thermal properties and energy storage density. A simple cost-effective way to improve the thermal properties of molten salts is to dope them with nanoparticles, thus obtaining the so-called salt-based nanofluids. Additionally, the use of molten salt based nanofluids as TES materials and Heat Transfer Fluid (HTF) has been attracting great interest in recent years. The addition of tiny amounts of nanoparticles to the base salt can improve its specific heat as shown by different authors1-3. The application of these nano-enhanced materials can lead to important savings on the investment costs in new TES systems for CSP plants. However, there is still a long way to go in order to achieve a commercial product. In this sense, the improvement of the stability of the nanofluids is a key factor. The stability of nanofluids will depend on the nature and size of the nanoparticles, the base salt and the interactions between them. In this work, Solar Salt (SS) commonly used in CSP plants (60% NaNO3 + 40% KNO3 wt.) was doped with alumina nanoparticles (ANPs) at a solid mass concentration of 1% wt. at laboratory scale. The tendency of nanoparticles to agglomeration and sedimentation is tested in the molten state by analyzing their size and concentration through the time. The specific heat of the nanofluid at 396 °C (molten state) is measured at different times (30 min, 1 h, 5 h). Further research is needed to understand the mechanisms of agglomeration. A good understanding of the interactions between the nanoparticle surface and the ionic media would provide

  7. Thermal analysis to support decommissioning of the molten salt reactor experiment

    International Nuclear Information System (INIS)

    Sulfredge, C.D.; Morris, D.G.; Park, J.E.; Williams, P.T.

    1996-06-01

    As part of the decommissioning process for the Molten Salt Reactor Experiment (MSRE) at Oak Ridge National Laboratory, several thermal-sciences issues were addressed. Apparently a mixture of UF 6 and F 2 had diffused into the upper portion of one charcoal column in the MSRE auxiliary charcoal bed (ACB), leading to radiative decay heating and possible chemical reaction sources. A proposed interim corrective action was planned to remove the water from the ACB cell to reduce criticality and reactivity concerns and then fill the ACB cell with an inert material. This report describes design of a thermocouple probe to obtain temperature measurements for mapping the uranium deposit, as well as development of steady-state and transient numerical models for the heat transfer inside the charcoal column. Additional numerical modeling was done to support filling of the ACB cell. Results from this work were used to develop procedures for meeting the goals of the MSRE Remediation Project without exceeding appropriate thermal limits

  8. Thermal analysis to support decommissioning of the molten salt reactor experiment

    Energy Technology Data Exchange (ETDEWEB)

    Sulfredge, C.D.; Morris, D.G.; Park, J.E.; Williams, P.T.

    1996-06-01

    As part of the decommissioning process for the Molten Salt Reactor Experiment (MSRE) at Oak Ridge National Laboratory, several thermal-sciences issues were addressed. Apparently a mixture of UF{sub 6} and F{sub 2} had diffused into the upper portion of one charcoal column in the MSRE auxiliary charcoal bed (ACB), leading to radiative decay heating and possible chemical reaction sources. A proposed interim corrective action was planned to remove the water from the ACB cell to reduce criticality and reactivity concerns and then fill the ACB cell with an inert material. This report describes design of a thermocouple probe to obtain temperature measurements for mapping the uranium deposit, as well as development of steady-state and transient numerical models for the heat transfer inside the charcoal column. Additional numerical modeling was done to support filling of the ACB cell. Results from this work were used to develop procedures for meeting the goals of the MSRE Remediation Project without exceeding appropriate thermal limits.

  9. An experimental test facility to support development of the fluoride-salt-cooled high-temperature reactor

    International Nuclear Information System (INIS)

    Yoder, Graydon L.; Aaron, Adam; Cunningham, Burns; Fugate, David; Holcomb, David; Kisner, Roger; Peretz, Fred; Robb, Kevin; Wilgen, John; Wilson, Dane

    2014-01-01

    Highlights: • • A forced convection test loop using FLiNaK salt was constructed to support development of the FHR. • The loop is built of alloy 600, and operating conditions are prototypic of expected FHR operation. • The initial test article is designed to study pebble bed heat transfer cooled by FLiNaK salt. • The test facility includes silicon carbide test components as salt boundaries. • Salt testing with silicon carbide and alloy 600 confirmed acceptable loop component lifetime. - Abstract: The need for high-temperature (greater than 600 °C) energy transport systems is significantly increasing as the world strives to improve energy efficiency and develop alternatives to petroleum-based fuels. Liquid fluoride salts are one of the few energy transport fluids that have the capability of operating at high temperatures in combination with low system pressures. The fluoride-salt-cooled high-temperature reactor design uses fluoride salt to remove core heat and interface with a power conversion system. Although a significant amount of experimentation has been performed with these salts, specific aspects of this reactor concept will require experimental confirmation during the development process. The experimental facility described here has been constructed to support the development of the fluoride-salt-cooled high-temperature reactor concept. The facility is capable of operating at up to 700 °C and incorporates a centrifugal pump to circulate FLiNaK salt through a removable test section. A unique inductive heating technique is used to apply heat to the test section, allowing heat transfer testing to be performed. An air-cooled heat exchanger removes added heat. Supporting loop infrastructure includes a pressure control system, a trace heating system, and a complement of instrumentation to measure salt flow, temperatures, and pressures around the loop. The initial experiment is aimed at measuring fluoride-salt heat transfer inside a heated pebble bed

  10. Molten salt battery having inorganic paper separator

    Science.gov (United States)

    Walker, Jr., Robert D.

    1977-01-01

    A high temperature secondary battery comprises an anode containing lithium, a cathode containing a chalcogen or chalcogenide, a molten salt electrolyte containing lithium ions, and a separator comprising a porous sheet comprising a homogenous mixture of 2-20 wt.% chrysotile asbestos fibers and the remainder inorganic material non-reactive with the battery components. The non-reactive material is present as fibers, powder, or a fiber-powder mixture.

  11. Improvement to molten salt reactors

    International Nuclear Information System (INIS)

    Bienvenu, Claude.

    1975-01-01

    The invention proposes a molten salt nuclear reactor whose core includes a mass of at least one fissile element salt to which can be added other salts to lower the melting temperature of the mass. This mass also contains a substance with a low neutron capture section that does not give rise to a chemical reaction or to an azeotropic mixture with these salts and having an atmospheric boiling point under that of the mass in operation. Means are provided for collecting this substance in the vapour state and returning it as a liquid to the mass. The kind of substance chosen will depend on that of the molten salts (fissile element salts and, where required, salts to lower the melting temperature). In actual practice, the substance chosen will have an atmospheric pressure boiling point of between 600 and 1300 0 C and a melting point sufficiently below 600 0 C to prevent solidification and clogging in the return line of the substance from the exchanger. Among the materials which can be considered for use, mention is made of magnesium, rubidium, cesium and potassium but metal cesium is not employed in the case of many fissile salts, such as fluorides, which it would reduced to the planned working temperatures [fr

  12. MEASUREMENT OF SPECIFIC HEAT CAPACITY OF SALTSTONE

    International Nuclear Information System (INIS)

    Harbour, J.; Williams, V.

    2008-01-01

    One of the goals of the Saltstone variability study is to identify (and quantify the impact of) the operational and compositional variables that control or influence the important processing and performance properties of Saltstone grout mixtures. The heat capacity of the Saltstone waste form is one of the important properties of Saltstone mixes that was last measured at SRNL in 1997. It is therefore important to develop a core competency for rapid and accurate analysis of the specific heat capacity of the Saltstone mixes in order to quantify the impact of compositional and operational variations on this property as part of the variability study. The heat capacity, coupled with the heat of hydration data obtained from isothermal calorimetry for a given Saltstone mix, can be used to predict the maximum temperature increase in the cells within the vaults of the Saltstone Disposal Facility (SDF). The temperature increase controls the processing rate and the pour schedule. The maximum temperature is also important to the performance properties of the Saltstone. For example, in mass pours of concrete or grout of which Saltstone is an example, the maximum temperature increase and the maximum temperature difference (between the surface and the hottest location) are controlled to ensure durability of the product and prevent or limit the cracking caused by the thermal gradients produced during curing. This report details the development and implementation of a method for the measurement of the heat capacities of Saltstone mixes as well as the heat capacities of the cementitious materials of the premix and the simulated salt solutions used to batch the mixes. The developed method utilizes the TAM Air isothermal calorimeter and takes advantage of the sophisticated heat flow measurement capabilities of the instrument. Standards and reference materials were identified and used to validate the procedure and ensure accuracy of testing. Heat capacities of Saltstone mixes were

  13. MEASUREMENT OF SPECIFIC HEAT CAPACITY OF SALTSTONE

    Energy Technology Data Exchange (ETDEWEB)

    Harbour, J; Vickie Williams, V

    2008-09-29

    One of the goals of the Saltstone variability study is to identify (and quantify the impact of) the operational and compositional variables that control or influence the important processing and performance properties of Saltstone grout mixtures. The heat capacity of the Saltstone waste form is one of the important properties of Saltstone mixes that was last measured at SRNL in 1997. It is therefore important to develop a core competency for rapid and accurate analysis of the specific heat capacity of the Saltstone mixes in order to quantify the impact of compositional and operational variations on this property as part of the variability study. The heat capacity, coupled with the heat of hydration data obtained from isothermal calorimetry for a given Saltstone mix, can be used to predict the maximum temperature increase in the cells within the vaults of the Saltstone Disposal Facility (SDF). The temperature increase controls the processing rate and the pour schedule. The maximum temperature is also important to the performance properties of the Saltstone. For example, in mass pours of concrete or grout of which Saltstone is an example, the maximum temperature increase and the maximum temperature difference (between the surface and the hottest location) are controlled to ensure durability of the product and prevent or limit the cracking caused by the thermal gradients produced during curing. This report details the development and implementation of a method for the measurement of the heat capacities of Saltstone mixes as well as the heat capacities of the cementitious materials of the premix and the simulated salt solutions used to batch the mixes. The developed method utilizes the TAM Air isothermal calorimeter and takes advantage of the sophisticated heat flow measurement capabilities of the instrument. Standards and reference materials were identified and used to validate the procedure and ensure accuracy of testing. Heat capacities of Saltstone mixes were

  14. Microphase Separation in Oil-Water Mixtures Containing Hydrophilic and Hydrophobic Ions

    NARCIS (Netherlands)

    Tasios, Nikos; Samin, Sela; van Roij, Rene; Dijkstra, Marjolein

    2017-01-01

    We develop a lattice-based Monte Carlo simulation method for charged mixtures capable of treating dielectric heterogeneities. Using this method, we study oil-water mixtures containing an antagonistic salt, with hydrophilic cations and hydrophobic anions. Our simulations reveal several phases with a

  15. Salt Separation from Uranium Deposits in Integrated Crucible

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, S. W.; Park, K. M.; Chang, J. H.; Kim, J. G.; Park, S. B. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    The solid cathode processing is necessary to separate the salt from the cathode since the uranium deposit in a solid cathode contains electrolyte salt. A physical separation process, such as distillation separation, is more attractive than a chemical or dissolution process because physical processes generate much less secondary process. Distillation process was employed for the cathode processsing due to the advantages of minimal generation of secondary waste, compact unit process, simple and low cost equipment. The basis for vacuum distillation separation is the difference in vapor pressures between salt and uranium. A solid cathode deposit is heated in a heating region and salt vaporizes, while non-volatile uranium remains behind. It is very important to increase the throughput of the salt separation system due to the high uranium content of spent nuclear fuel and high salt fraction of uranium dendrites. The evaporation rate of the LiCl-KCl eutectic salt in vacuum distiller is not so high to come up with the generation capacity of uranium dendrites in electro-refiner. Therefore, wide evaporation area or high distillation temperature is necessary for the successful salt separation. The adhered salt in the uranium deposits was removed successfully. The salt content in the deposits was below 0.1 wt% after the sequential operation of the liquid salt separation - salt distillation.

  16. Distillation Separation of Hydrofluoric Acid and Nitric Acid from Acid Waste Using the Salt Effect on Vapor-Liquid Equilibrium

    Science.gov (United States)

    Yamamoto, Hideki; Sumoge, Iwao

    2011-03-01

    This study presents the distillation separation of hydrofluoric acid with use of the salt effect on the vapor-liquid equilibrium for acid aqueous solutions and acid mixtures. The vapor-liquid equilibrium of hydrofluoric acid + salt systems (fluorite, potassium nitrate, cesium nitrate) was measured using an apparatus made of perfluoro alkylvinylether. Cesium nitrate showed a salting-out effect on the vapor-liquid equilibrium of the hydrofluoric acid-water system. Fluorite and potassium nitrate showed a salting-in effect on the hydrofluoric acid-water system. Separation of hydrofluoric acid from an acid mixture containing nitric acid and hydrofluoric acid was tested by the simple distillation treatment using the salt effect of cesium nitrate (45 mass%). An acid mixture of nitric acid (5.0 mol · dm-3) and hydrofluoric acid (5.0 mol · dm-3) was prepared as a sample solution for distillation tests. The concentration of nitric acid in the first distillate decreased from 5.0 mol · dm-3 to 1.13 mol · dm-3, and the concentration of hydrofluoric acid increased to 5.41 mol · dm-3. This first distillate was further distilled without the addition of salt. The concentrations of hydrofluoric acid and nitric acid in the second distillate were 7.21 mol · dm-3 and 0.46 mol · dm-3, respectively. It was thus found that the salt effect on vapor-liquid equilibrium of acid mixtures was effective for the recycling of acids from acid mixture wastes.

  17. Experiments and Modeling in Support of Generic Salt Repository Science

    International Nuclear Information System (INIS)

    Bourret, Suzanne Michelle; Stauffer, Philip H.; Weaver, Douglas James; Caporuscio, Florie Andre; Otto, Shawn; Boukhalfa, Hakim; Jordan, Amy B.; Chu, Shaoping; Zyvoloski, George Anthony; Johnson, Peter Jacob

    2017-01-01

    Salt is an attractive material for the disposition of heat generating nuclear waste (HGNW) because of its self-sealing, viscoplastic, and reconsolidation properties (Hansen and Leigh, 2012). The rate at which salt consolidates and the properties of the consolidated salt depend on the composition of the salt, including its content in accessory minerals and moisture, and the temperature under which consolidation occurs. Physicochemical processes, such as mineral hydration/dehydration salt dissolution and precipitation play a significant role in defining the rate of salt structure changes. Understanding the behavior of these complex processes is paramount when considering safe design for disposal of heat-generating nuclear waste (HGNW) in salt formations, so experimentation and modeling is underway to characterize these processes. This report presents experiments and simulations in support of the DOE-NE Used Fuel Disposition Campaign (UFDC) for development of drift-scale, in-situ field testing of HGNW in salt formations.

  18. Experiments and Modeling in Support of Generic Salt Repository Science

    Energy Technology Data Exchange (ETDEWEB)

    Bourret, Suzanne Michelle [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Stauffer, Philip H. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Weaver, Douglas James [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Caporuscio, Florie Andre [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Otto, Shawn [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Boukhalfa, Hakim [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Jordan, Amy B. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Chu, Shaoping [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Zyvoloski, George Anthony [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Johnson, Peter Jacob [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-01-19

    Salt is an attractive material for the disposition of heat generating nuclear waste (HGNW) because of its self-sealing, viscoplastic, and reconsolidation properties (Hansen and Leigh, 2012). The rate at which salt consolidates and the properties of the consolidated salt depend on the composition of the salt, including its content in accessory minerals and moisture, and the temperature under which consolidation occurs. Physicochemical processes, such as mineral hydration/dehydration salt dissolution and precipitation play a significant role in defining the rate of salt structure changes. Understanding the behavior of these complex processes is paramount when considering safe design for disposal of heat-generating nuclear waste (HGNW) in salt formations, so experimentation and modeling is underway to characterize these processes. This report presents experiments and simulations in support of the DOE-NE Used Fuel Disposition Campaign (UFDC) for development of drift-scale, in-situ field testing of HGNW in salt formations.

  19. Solution-derived sodalite made with Si- and Ge-ethoxide precursors for immobilizing electrorefiner salt

    Energy Technology Data Exchange (ETDEWEB)

    Riley, Brian J., E-mail: brian.riley@pnnl.gov; Lepry, William C.; Crum, Jarrod V.

    2016-01-15

    Chlorosodalite has the general form of Na{sub 8}(AlSiO{sub 4}){sub 6}Cl{sub 2} and this paper describes experiments conducted to synthesize sodalite with a solution-based approach to immobilize a simulated spent electrorefiner salt solution containing a mixture of alkali, alkaline earth, and lanthanide chlorides. The reactants used were the salt solution, NaAlO{sub 2}, and either Si(OC{sub 2}H{sub 5}){sub 4} or Ge(OC{sub 2}H{sub 5}){sub 4}. Additionally, seven different glass sintering aids (at loadings of 5 mass%) were evaluated as sintering aids for consolidating the as-made powders using a cold-press-and-sinter technique. This process of using alkoxide additives for the Group IV component can be used to produce large quantities of sodalite at near-room temperature as compared to a method where colloidal silica was used as the silica source. However, the small particle sizes inhibited densification during heat treatments.

  20. Advanced CSiC composites for high-temperature nuclear heat transport with helium, molten salts, and sulphur-iodine thermochemical hydrogen process fluids

    International Nuclear Information System (INIS)

    Peterson, P.F.; Forsberg, Ch.W.; Pickard, P.S.

    2004-01-01

    This paper discusses the use of liquid-silicon-impregnated (LSI) carbon-carbon composites for the development of compact and inexpensive heat exchangers, piping, vessels and pumps capable of operating in the temperature range of 800 to 1 100 deg C with high-pressure helium, molten fluoride salts, and process fluids for sulfur-iodine thermochemical hydrogen production. LSI composites have several potentially attractive features, including ability to maintain nearly full mechanical strength to temperatures approaching 1 400 deg C, inexpensive and commercially available fabrication materials, and the capability for simple forming, machining and joining of carbon-carbon performs, which permits the fabrication of highly complex component geometries. In the near term, these materials may prove to be attractive for use with a molten-salt intermediate loop for the demonstration of hydrogen production with a gas-cooled high temperature reactor. In the longer term, these materials could be attractive for use with the molten-salt cooled advanced high temperature reactor, molten salt reactors, and fusion power plants. (author)

  1. Polymeric membranes containing silver salts for propylene/propane separation

    Directory of Open Access Journals (Sweden)

    L. D. Pollo

    2012-06-01

    Full Text Available The separation of olefin/paraffin mixtures is one of the most important processes of the chemical industry. This separation is typically carried out by distillation, which is an energy and capital intensive process. One promising alternative is the use of facilitated transport membranes, which contain specific carrier agents in the polymer matrix that interact reversibly with the double bond in the olefin molecule, promoting the simultaneous increase of its permeability and selectivity. In this study, polyurethane (PU membranes were prepared using two different silver salts (triflate and hexafluorantimonate. The membranes were structurally characterized and their performance for the separation of propylene/propane mixtures was evaluated. The results of the characterization analyses indicated that the triflate salt was the most efficient carrier agent. The membranes containing this salt showed the best performance, reaching an ideal selectivity of 10 and propylene permeability of 188 Barrer.

  2. Flame stability and heat transfer analysis of methane-air mixtures in catalytic micro-combustors

    International Nuclear Information System (INIS)

    Chen, Junjie; Song, Wenya; Xu, Deguang

    2017-01-01

    Highlights: • The mechanisms of heat and mass transfer for loss of stability were elucidated. • Stability diagrams were constructed and design recommendations were made. • Flame characteristics were examined to determine extinction and blowout limits. • Heat loss greatly affects extinction whereas wall materials greatly affect blowout. • Radiation causes the flame to shift downstream. - Abstract: The flame stability and heat transfer characteristics of methane-air mixtures in catalytic micro-combustors were studied, using a two-dimensional computational fluid dynamics (CFD) model with detailed chemistry and transport. The effects of wall thermal conductivity, surface emissivity, fuel, flow velocity, and equivalence ratio were explored to provide guidelines for optimal design. Furthermore, the underlying mechanisms of heat and mass transfer for loss of flame stability were elucidated. Finally, stability diagrams were constructed and design recommendations were made. It was found that the heat loss strongly affects extinction, whereas the wall thermal conductivity greatly affects blowout. The presence of homogeneous chemistry extends blowout limits, especially for inlet velocities higher than 6 m/s. Increasing transverse heat transfer rate reduces stability, whereas increasing transverse mass transfer rate improves stability. Surface radiation behaves similarly to the heat conduction within the walls, but opposite trends are observed. High emissivity causes the flame to shift downstream. Methane exhibits much broader blowout limits. For a combustor with gap size of 0.8 mm, a residence time higher than 3 ms is required to prevent breakthrough, and inlet velocities lower than 0.8 m/s are the most desirable operation regime. Further increase of the wall thermal conductivity beyond 80 W/(m·K) could not yield an additional increase in stability.

  3. Viscosities of oxalic acid and its salts in water and binary aqueous ...

    Indian Academy of Sciences (India)

    Unknown

    Viscosities; oxalic acid and its salts; water + THF mixtures; structure-breakers. 1. Introduction ... has found its application in the organic syntheses as manifested from ... water. In other words, these results indicate that oxalic acid and its salts mix ...

  4. Statistical experimental design for saltstone mixtures

    International Nuclear Information System (INIS)

    Harris, S.P.; Postles, R.L.

    1991-01-01

    We used a mixture experimental design for determining a window of operability for a process at the Savannah River Site Defense Waste Processing Facility (DWPF). The high-level radioactive waste at the Savannah River Site is stored in large underground carbon steel tanks. The waste consists of a supernate layer and a sludge layer. 137 Cs will be removed from the supernate by precipitation and filtration. After further processing, the supernate layer will be fixed as a grout for disposal in concrete vaults. The remaining precipitate will be processed at the DWPF with treated waste tank sludge and glass-making chemicals into borosilicate glass. The leach rate properties of the supernate grout, formed from various mixes of solidified salt waste, needed to be determined. The effective diffusion coefficients for NO 3 and Cr were used as a measure of leach rate. Various mixes of cement, Ca(OH) 2 , salt, slag and flyash were used. These constituents comprise the whole mix. Thus, a mixture experimental design was used

  5. Expected environment for waste packages in a salt repository

    International Nuclear Information System (INIS)

    Pederson, L.R.; Clark, D.E.; Hodges, F.N.; McVay, G.L.; Rai, D.

    1983-01-01

    This paper discusses results of recent efforts to define the very near-field (within approximately 2 m) environmental conditions to which waste packages will be exposed in a salt repository. These conditions must be considered in the experimental design for waste package materials testing, which includes corrosion of barrier materials and leaching of waste forms. Site-specific brine compositions have been determined, and standard brine compositions have been selected for testing purposes. Actual brine compositions will vary depending on origin, temperature, irradiation history, and contact with irradiated rock salt. Results of irradiating rock salt, synthetic brines, rock salt/brine mixtures, and reactions of irradiated rock salt with brine solutions are reported. 38 references, 3 figures, 2 tables

  6. Isotope mixtures of hydrogen in vanadium

    International Nuclear Information System (INIS)

    Mecking-Schloetensack, P.

    1982-03-01

    The properties of isotope-mixtures of Protium and Deuterium stored in Vanadium have been studied. Protium and Deuterium are existing as interstitial-atoms on tetrahedral sites as well as on octahedral sites in this system. This feature leads to large isotopic-effects between the two isotopes. The dependence of the thermodynamic functions like heat of solution, nonconfigurational entropy, specific heat and ordering temperatures from the composition of the isotope-mixture has been determined. (orig.)

  7. Solubility of inorganic salts in pure ionic liquids

    International Nuclear Information System (INIS)

    Pereiro, A.B.; Araújo, J.M.M.; Oliveira, F.S.; Esperança, J.M.S.S.; Canongia Lopes, J.N.; Marrucho, I.M.; Rebelo, L.P.N.

    2012-01-01

    Highlights: ► We report the solubility of different conventional salts in several ionic liquids. ► The solubility was initially screened using a visual detection method. ► The most promising mixtures were quantitatively re-measured using an ATR–FTIR. - Abstract: The solubility of different conventional salts in several room-temperature ionic liquids – containing ammonium, phosphonium or imidazolium cations combined with acetate, sulfate, sulfonate, thiocyanate, chloride, tetracyano-borate, tris(pentafluoroethyl)trifluoro-phosphate, L-lactate, bis(trifluoromethylsulfonyl)imide or trifluoromethylsulfonate anions – were screened using a visual detection method. The most promising mixtures were then re-measured using an ATR–FTIR (Attenuated Total Reflection Fourier Transform Infra Red) spectroscopy technique in order to accurately and quantitatively determine the corresponding solubility at 298.15 K.

  8. Laboratory simulation of heat exchange for liquids with Pr > 1: Heat transfer

    Science.gov (United States)

    Belyaev, I. A.; Zakharova, O. D.; Krasnoshchekova, T. E.; Sviridov, V. G.; Sukomel, L. A.

    2016-02-01

    Liquid metals are promising heat transfer agents in new-generation nuclear power plants, such as fast-neutron reactors and hybrid tokamaks—fusion neutron sources (FNSs). We have been investigating hydrodynamics and heat exchange of liquid metals for many years, trying to reproduce the conditions close to those in fast reactors and fusion neutron sources. In the latter case, the liquid metal flow takes place in a strong magnetic field and strong thermal loads resulting in development of thermogravitational convection in the flow. In this case, quite dangerous regimes of magnetohydrodynamic (MHD) heat exchange not known earlier may occur that, in combination with other long-known regimes, for example, the growth of hydraulic drag in a strong magnetic field, make the possibility of creating a reliable FNS cooling system with a liquid metal heat carrier problematic. There exists a reasonable alternative to liquid metals in FNS, molten salts, namely, the melt of lithium and beryllium fluorides (Flibe) and the melt of fluorides of alkali metals (Flinak). Molten salts, however, are poorly studied media, and their application requires detailed scientific substantiation. We analyze the modern state of the art of studies in this field. Our contribution is to answer the following question: whether above-mentioned extremely dangerous regimes of MHD heat exchange detected in liquid metals can exist in molten salts. Experiments and numerical simulation were performed in order to answer this question. The experimental test facility represents a water circuit, since water (or water with additions for increasing its electrical conduction) is a convenient medium for laboratory simulation of salt heat exchange in FNS conditions. Local heat transfer coefficients along the heated tube, three-dimensional (along the length and in the cross section, including the viscous sublayer) fields of averaged temperature and temperature pulsations are studied. The probe method for measurements in

  9. The introduction of the safety of molten salt reactor

    International Nuclear Information System (INIS)

    Zuo Jiaxu; Zhang Chunming

    2011-01-01

    This paper introduces the generation TV Nuclear Energy Systems and molten salt reactor which is the only fluid fuel reactor in the Gen-TV. Safety features and attributes of MSR are described. The supply of fuel and the minimum of waste are described. The clean molten salt in the secondary heat transport system transfers the heat from the primary heat exchanger to a high-temperature Brayton cycle that converts the heat to electricity. With the Brayton cycle, the thermal efficiency of the system will be improved. Base on the MSR, the thorium-uranium fuel cycle is also introduced. (authors)

  10. A new correlation for nucleate pool boiling of aqueous mixtures

    International Nuclear Information System (INIS)

    Thome, J.R.; Shakir, S.

    1987-01-01

    A new mixture boiling correlation was developed for nucleate pool boiling of aqueous mixtures on plain, smooth tubes. The semi-empirical correlation models the rise in the local bubble point temperature in a mixture caused by the preferential evaporation of the more volatile component during bubble growth. This rise varies from zero at low heat fluxes (where only single-phase natural convection is present) up to nearly the entire boiling range at the peak heat flux (where latent heat transport is dominant). The boiling range, which is the temperature difference between the dew point and bubble point of a mixture, is used to characterize phase equilibrium effects. An exponential term models the rise in the local bubble point temperature as a function of heat flux. The correlation was compared against binary mixture boiling data for ethanol-water, methanol-water, n-propanol-water, and acetone-water. The majority of the data was predicted to within 20%. Further experimental research is currently underway to obtain multicomponent boiling data for aqueous mixtures with up to five components and for wider boiling ranges

  11. Applications of molten salts in plutonium processing

    International Nuclear Information System (INIS)

    Bowersox, D.F.; Christensen, D.C.; Williams, J.D.

    1987-01-01

    Plutonium is efficiently recovered from scrap at Los Alamos by a series of chemical reactions and separations conducted at temperatures ranging from 700 to 900 0 C. These processes usually employ a molten salt or salt eutectic as a heat sink and/or reaction medium. Salts for these operations were selected early in the development cycle. The selection criteria are being reevaluated. In this article we describe the processes now in use at Los Alamos and our studies of alternate salts and eutectics

  12. Removal and recovery of nitrogen and sulfur oxides from gaseous mixtures containing them

    International Nuclear Information System (INIS)

    Cooper, H.B.H.

    1984-01-01

    A cyclic process for removing lower valence nitrogen oxides from gaseous mixtures includes treating the mixtures with an aqueous media including alkali metal carbonate and alkali metal bicarbonate and a preoxygen oxidant to form higher valence nitrogen oxides and to capture these oxides as alkali metal salts, expecially nitrites and nitrates, in a carbonate/bicarbonate-containing product aqueous media. Highly selective recovery of nitrates in high purity and yield may then follow, as by crystallization, with the carbonate and bicarbonate alkali metal salts strongly increasing the selectivity and yield of nitrates. The product nitrites are converted to nitrates by oxidation after lowering the product aqueous media pH to below about 9. A cyclic process for removing sulfur oxides from gas mixtures includes treating these mixtures includes treating these mixtures with aqueous media including alkali metal carbonate and alkali metal bicarbonate where the ratio of alkali metal to sulfur dioxide is not less than 2. The sulfur values may be recovered from the resulting carbonate/bicarbonate/-sulfite containing product aqueous media as alkali metal sulfate or sulfite salts which are removed by crystallization from the carbonate-containing product aqueous media. As with the nitrates, the carbonate/bicarbonate system strongly increases yield of sulfate or sulfite during crystallization. Where the gas mixtures include both sulfur dioxide and lower valence nitrogen oxides, the processes for removing lower valence nitrogen oxides and sulfur dioxide may be combined into a single removal/recovery system, or may be effected in sequence

  13. Effect of mineral mixture and antioxidant supplementation on growth, reproductive performance and adaptive capability of Malpura ewes subjected to heat stress.

    Science.gov (United States)

    Sejian, V; Singh, A K; Sahoo, A; Naqvi, S M K

    2014-02-01

    This study was conducted to evaluate the effect of mineral and antioxidant supplementation on growth, reproductive performance and physiological adaptability of heat-stressed Malpura ewes. The study was conducted for a period of 21 days in 21 adult Malpura ewes. The ewes were randomly divided into three groups with seven animals each viz. GI (control; n = 7), GII (heat stress; n = 7) and GIII (heat stress + mineral and antioxidant supplementation; n = 7). The animals were stall fed ad libitum with the diet consisting of 70% roughage and 30% concentrate. GI ewes were maintained under normal controlled condition in the shed, while GII and GIII ewes were subjected to heat stress by exposing them to 42 °C in the climatic chamber. The parameters studied were feed intake (FI), water intake (WI), body weight, body condition score (BCS), physiological, biochemical and endocrine responses. Heat stress significantly altered FI, water intake, BCS, respiration rate and rectal temperature in the afternoon, oestrus duration, estradiol, progesterone, Hb, PCV, plasma glucose, total protein, cortisol, T3 and T4 levels while mineral and antioxidant supplementation ameliorated this heat stress effect on the parameters studied. Further, the adverse effect of heat stress on the productive and reproductive efficiency of Malpura ewes was reduced considerably by mineral mixture and antioxidant supplementation. This is evident from the non-significant difference in BCS, oestrus duration and plasma estradiol between GI and GIII in this study. Hence, it is very pertinent to conclude from this study that mineral mixture and antioxidant supplementation were able to protect Malpura ewes against heat stress. © 2013 Blackwell Verlag GmbH.

  14. Thermo-economic analysis of zeotropic mixtures based on siloxanes for engine waste heat recovery using a dual-loop organic Rankine cycle (DORC)

    International Nuclear Information System (INIS)

    Tian, Hua; Chang, Liwen; Gao, Yuanyuan; Shu, Gequn; Zhao, Mingru; Yan, Nanhua

    2017-01-01

    Highlights: • Various mixtures based on siloxanes used in the DORC system are proposed. • Thermo-economic analysis is conducted to explore mixtures’ application potential. • Cycle performances of D4/R123 (0.3/0.7) and MD2M/R123 (0.35/0.65) are superior. - Abstract: Siloxanes are usually used in the high temperature organic Rankine cycle (ORC) for engine waste heat recovery, but their flammability limits the practical application. Besides, blending siloxanes with retardants often brings a great temperature glide, causing the large condensation heat and the reduction in net output power. In view of this, the zeotropic mixtures based on siloxanes used in a dual-loop organic Rankine cycle (DORC) system are proposed in this paper. Three kinds of binary zeotropic mixtures consisting of R123 and various siloxanes (octamethylcyclotetrasiloxane ‘D4’, octamethyltrisiloxane ‘MDM’, decamethyltetrasiloxane ‘MD2M’), represented by D4/R123, MDM/R123 and MD2M/R123, are selected as the working fluid of the high temperature (HT) cycle. Meanwhile, R123 is always used in the low temperature (LT) cycle. The net output power and utilization of heat source are considered as the evaluation indexes to select the optimal mixture ratios for further analysis. Based on the thermodynamic and economic model, net output power, thermal efficiency, exergy efficiency, exergy destruction and electricity production cost (EPC) of the DORC system using the selected mixtures have been investigated under different operating parameters. According to the results, the DORC based on D4/R123 (0.3/0.7) shows the best thermodynamic performance with the largest net power of 21.66 kW and the highest thermal efficiency of 22.84%. It also has the largest exergy efficiency of 48.6% and the smallest total exergy destruction of 19.64 kW. The DORC using MD2M/R123 (0.35/0.65) represents the most economic system with the smallest EPC of 0.603 $/kW h. Besides, the irreversibility in the internal heat

  15. Catalytic Upgrading of Biomass-Derived Furfuryl Alcohol to Butyl Levulinate Biofuel over Common Metal Salts

    Directory of Open Access Journals (Sweden)

    Lincai Peng

    2016-09-01

    Full Text Available Levulinate ester has been identified as a promising renewable fuel additive and platform chemical. Here, the use of a wide range of common metal salts as acid catalysts for catalytic upgrading of biomass-derived furfuryl alcohol to butyl levulinate was explored by conventional heating. Both alkali and alkaline earth metal chlorides did not lead effectively to the conversion of furfuryl alcohol, while several transition metal chlorides (CrCl3, FeCl3, and CuCl2 and AlCl3 exhibited catalytic activity for the synthesis of butyl levulinate. For their sulfates (Cr(III, Fe(III, Cu(II, and Al(III, the catalytic activity was low. The reaction performance was correlated with the Brønsted acidity of the reaction system derived from the hydrolysis/alcoholysis of cations, but was more dependent on the Lewis acidity from the metal salts. Among these investigated metal salts, CuCl2 was found to be uniquely effective, leading to the conversion of furfuryl alcohol to butyl levulinate with an optimized yield of 95%. Moreover, CuCl2 could be recovered efficiently from the resulting reaction mixture and remained with almost unchanged catalytic activity in multiple recycling runs.

  16. Various methods to improve heat transfer in exchangers

    Directory of Open Access Journals (Sweden)

    Pavel Zitek

    2015-01-01

    Full Text Available The University of West Bohemia in Pilsen (Department of Power System Engineering is working on the selection of effective heat exchangers. Conventional shell and tube heat exchangers use simple segmental baffles. It can be replaced by helical baffles, which increase the heat transfer efficiency and reduce pressure losses. Their usage is demonstrated in the primary circuit of IV. generation MSR (Molten Salt Reactors. For high-temperature reactors we consider the use of compact desk heat exchangers, which are small, which allows the integral configuration of reactor. We design them from graphite composites, which allow up to 1000°C and are usable as exchangers: salt-salt or salt-acid (e.g. for the hydrogen production. In the paper there are shown thermo-physical properties of salts, material properties and principles of calculations.

  17. Effects of heat, cold, acid and bile salt adaptations on the stress tolerance and protein expression of kefir-isolated probiotic Lactobacillus kefiranofaciens M1.

    Science.gov (United States)

    Chen, Ming-Ju; Tang, Hsin-Yu; Chiang, Ming-Lun

    2017-09-01

    Lactobacillus kefiranofaciens M1 is a probiotic strain isolated from Taiwanese kefir grains. The present study evaluated the effects of heat, cold, acid and bile salt adaptations on the stress tolerance of L. kefiranofaciens M1. The regulation of protein expression of L. kefiranofaciens M1 under these adaptation conditions was also investigated. The results showed that adaptation of L. kefiranofaciens M1 to heat, cold, acid and bile salts induced homologous tolerance and cross-protection against heterologous challenge. The extent of induced tolerance varied depending on the type and condition of stress. Proteomic analysis revealed that 27 proteins exhibited differences in expression between non-adapted and stress-adapted L. kefiranofaciens M1 cells. Among these proteins, three proteins involved in carbohydrate metabolism (triosephosphate isomerase, enolase and NAD-dependent glycerol-3-phosphate dehydrogenase), two proteins involved in pH homeostasis (ATP synthase subunits AtpA and AtpB), two stress response proteins (chaperones DnaK and GroEL) and one translation-related protein (30S ribosomal protein S2) were up-regulated by three of the four adaptation treatments examined. The increased synthesis of these stress proteins might play a critical protective role in the cellular defense against heat, cold, acid and bile salt stresses. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Mixed convection heat transfer between a steam/non-condensable gas mixture and an inclined finned tube bundle

    Energy Technology Data Exchange (ETDEWEB)

    De Cachard, F.; Lompersky, S.; Monauni, G.R. [Paul Scherrer Institute, Villigen (Switzerland). Thermal Hydraulic Lab.

    1999-07-01

    An experimental and analytical program was performed at PSI (Paul Scherrer Institute) to study the performance of a finned-tube condenser in the presence of non-condensable gases at low gas mass fluxes. The model developed for this application includes mixed convection heat transfer between the vapour/non-condensable mixture and the finned tubes, heat conduction through the fins and tubes, and evaporative heat transfer inside the tubes. On the gas, heat transfer correlations are used, and the condensation rate is calculated using the heat/mass transfer analogy. A combination of various available correlations for forced convection in staggered finned tube bundles is used, together with a correction accounting for superimposed natural convection. For the condensate heat transfer resistance, the beatty and Katz model for gravity driven liquid films on the tubes is used. The fine efficiency is accounted for using classical iterative calculations. Evaporative heat transfer inside the tubes is predicted using the Chen correlation. The finned tube condenser model has been assessed against data obtained at the PSI LINX facility with two test condensers. For the 62 LINX experiments performed, the model predictions are very good, i.e., less then 10% standard deviation between experimental and predicted results.

  19. Non-isothermal decomposition kinetics, heat capacity and thermal safety of 37.2/44/16/2.2/0.2/0.4-GAP/CL-20/Al/N-100/PCA/auxiliaries mixture

    International Nuclear Information System (INIS)

    Zhang, Jiao-Qiang; Gao, Hong-Xu; Ji, Tie-Zheng; Xu, Kang-Zhen; Hu, Rong-Zu

    2011-01-01

    Highlights: → Non-isothermal decomposition kinetics, heat capacity and thermal safety on 37.2/44/16/2.2/0.2/0.4-GAP/CL-20/Al/N-100/PCA/auxiliaries mixture. → Apparent activation energy and pre-exponential constant obtained. → Thermal explosion temperature, adiabatic time-to-explosion, 50% drop height of impact sensitivity, and critical temperature of hot-spot initiation calculated. - Abstract: The specific heat capacity (C p ) of 37.2/44/16/2.2/0.2/0.4-GAP/CL-20/Al/N-100/PCA/auxiliaries mixture was determined with the continuous C p mode of microcalorimeter. The equation of C p with temperature was obtained. The standard molar heat capacity of GAP/CL-20/Al/N-100/PCA/auxiliaries mixture was 1.225 J mol -1 K -1 at 298.15 K. With the help of the peak temperature (T p ) from the non-isothermal DTG curves of the mixture at different heating rates (β), the apparent activation energy (E k and E o ) and pre-exponential constant (A K ) of thermal decomposition reaction obtained by Kissinger's method and Ozawa's method. Using density (ρ) and thermal conductivity (λ), the decomposition heat (Q d , taking half-explosion heat), Zhang-Hu-Xie-Li's formula, the values (T e0 and T p0 ) of T e and T p corresponding to β → 0, thermal explosion temperature (T be and T bp ), adiabatic time-to-explosion (t TIad ), 50% drop height (H 50 ) of impact sensitivity, and critical temperature of hot-spot initiation (T cr,hotspot ) of thermal explosion of the mixture were calculated. The following results of evaluating the thermal safety of the mixture were obtained: T be = 441.64 K, T bp = 461.66 K, t Tlad = 78.0 s (n = 2), t Tlad = 74.87s (n = 1), t Tlad = 71.85 s (n = 0), H 50 = 21.33 cm.

  20. Comparison of nanofluid heat transfer properties with theory using generalized property relations for EG-water mixture

    Directory of Open Access Journals (Sweden)

    Vandrangi Seshu Kumar

    2017-01-01

    Full Text Available A numerical analysis for the determination for turbulent characteristics of fluid flow and heat transfer have been developed by employing the eddy diffusivity equation of Van Driest. The properties of Silicon dioxide (SiO2 nanofluid with spherical particles in base liquid ethylene glycol (EG -water (W mixture of 60:40 ratio is employed for a wide range of concentrations and bulk temperature. A good agreement of the numerical results with the experimental data for properties and heat transfer is observed. A comparison of Copper oxide (CuO, Aluminum dioxide (Al2O3 and Silicon dioxide (SiO2 nanofluids revealed that SiO2 attain higher temperature gradients in comparison to CuO nanofluid at the same concentration and temperature.

  1. Metallic materials corrosion problems in molten salt reactors

    International Nuclear Information System (INIS)

    Chauvin, G.; Dixmier, J.; Jarny, P.

    1977-01-01

    The USA forecastings concerning the molten salt reactors are reviewed (mixtures of fluorides containing the fuel, operating between 560 and 700 0 C). Corrosion problems are important in these reactors. The effects of certain characteristic factors on corrosion are analyzed: humidity and metallic impurities in the salts, temperature gradients, speed of circulation of salts, tellurium from fission products, coupling. In the molten fluorides and experimental conditions, the materials with high Ni content are particularly corrosion resistant alloys (hastelloy N). The corrosion of this material is about 2.6 mg.cm -2 at 700 0 C [fr

  2. Effects of a mixture of vegetable and essential oils and fatty acid potassium salts on Tetranychus urticae and Phytoseiulus persimilis.

    Science.gov (United States)

    Tsolakis, H; Ragusa, S

    2008-06-01

    Laboratory trials were carried out to evaluate the toxicity and the influence of a commercial mixture of vegetal, essential oils, and potassium salts of fatty acids (Acaridoil 13SL) on the population growth rate (r(i)--instantaneous rate of increase) of two mite species, the phytophagous Tetranychus urticae Koch and the predator Phytoseiulus persimilis Athias-Henriot. A residue of 1.3 mg/cm(2) of pesticide solution was harmless for Ph. persimilis eggs, while a moderate mortality of eggs and of larvae from treated eggs of T. urticae, was observed (53.8%). The pesticide also caused a delay in the postembryonic development of the tetranychid. Moreover, 83.4% mortality was reported for treated females tetranychids and only 24.0% for Ph. persimilis females. The pesticide influenced negatively the population growth of T. urticae which showed a very low rate of increase (r(i)=0.07), compared to that obtained in the control (r(i)=0.68). The pesticide did not affect negatively the reproductive potential of Ph. persimilis (r(i)=0.54 and r(i)=0.57 for test and control, respectively). These results suggest a considerable acaricidal activity of potassium salts of fatty acids and caraway oil on T. urticae and a good selectivity on Ph. persimilis.

  3. Effect of anionic salts in concentrate mixture and magnesium intake on some blood and urine minerals and acid-base balance of dry pregnant cows on grass silage based feeding

    Directory of Open Access Journals (Sweden)

    S. TAURIAINEN

    2008-12-01

    Full Text Available Twenty Friesian cows were randomly assigned to one of four prepartum diets in a 2 x 2 factorially designed experiment to determine the effect of anionic salts contained in a concentrate mixture and magnesium (Mg intake on some blood and urine minerals in cows fed a grass silage based diet. Four diets provided either 16 g or 33 g total dietary Mg/day, and had either a low or high cation-anion difference. Dietary cation-anion balance (DCAB of the diets, calculated as milliequivalents [(Na+ + K+ - (Cl- + S2-], was +31 mEq/kg dry matter (DM in the low DCAB group and +340 mEq/kg DM in the high DCAB group. DCAB was formulated using NH4Cl, (NH42SO4 and MgCl2 as anionic salts. Cows received grass silage (5.2 kg DM, hay (1.0 kg DM and concentrate mixture (1.5 kg DM until calving. Blood and urine samples were collected 4, 3, 2 and 1 week before the expected calving date, at calving, the day after calving and 1 week following calving. Cows fed the low DCAB diet had a lower urinary pH (P

  4. Thermo-Economic Analysis of Zeotropic Mixtures and Pure Working Fluids in Organic Rankine Cycles for Waste Heat Recovery

    Directory of Open Access Journals (Sweden)

    Florian Heberle

    2016-03-01

    Full Text Available We present a thermo-economic analysis of an Organic Rankine Cycle (ORC for waste heat recovery. A case study for a heat source temperature of 150 °C and a subcritical, saturated cycle is performed. As working fluids R245fa, isobutane, isopentane, and the mixture of isobutane and isopentane are considered. The minimal temperature difference in the evaporator and the condenser, as well as the mixture composition are chosen as variables in order to identify the most suitable working fluid in combination with optimal process parameters under thermo-economic criteria. In general, the results show that cost-effective systems have a high minimal temperature difference ΔTPP,C at the pinch-point of the condenser and a low minimal temperature difference ΔTPP,E at the pinch-point of the evaporator. Choosing isobutane as the working fluid leads to the lowest costs per unit exergy with 52.0 €/GJ (ΔTPP,E = 1.2 K; ΔTPP,C = 14 K. Considering the major components of the ORC, specific costs range between 1150 €/kW and 2250 €/kW. For the zeotropic mixture, a mole fraction of 90% isobutane leads to the lowest specific costs per unit exergy. A further analysis of the ORC system using isobutane shows high sensitivity of the costs per unit exergy for the selected cost estimation methods and for the isentropic efficiency of the turbine.

  5. Thermo-Chemical Conversion of Microwave Activated Biomass Mixtures

    Science.gov (United States)

    Barmina, I.; Kolmickovs, A.; Valdmanis, R.; Vostrikovs, S.; Zake, M.

    2018-05-01

    Thermo-chemical conversion of microwave activated wheat straw mixtures with wood or peat pellets is studied experimentally with the aim to provide more effective application of wheat straw for heat energy production. Microwave pre-processing of straw pellets is used to provide a partial decomposition of the main constituents of straw and to activate the thermo-chemical conversion of wheat straw mixtures with wood or peat pellets. The experimental study includes complex measurements of the elemental composition of biomass pellets (wheat straw, wood, peat), DTG analysis of their thermal degradation, FTIR analysis of the composition of combustible volatiles entering the combustor, the flame temperature, the heat output of the device and composition of the products by comparing these characteristics for mixtures with unprocessed and mw pre-treated straw pellets. The results of experimental study confirm that mw pre-processing of straw activates the thermal decomposition of mixtures providing enhanced formation of combustible volatiles. This leads to improvement of the combustion conditions in the flame reaction zone, completing thus the combustion of volatiles, increasing the flame temperature, the heat output from the device, the produced heat energy per mass of burned mixture and decreasing at the same time the mass fraction of unburned volatiles in the products.

  6. A Two-Dimensional Numerical Study of Hydrodynamic, Heat and Mass Transfer and Stability in a Salt Gradient Solar Pond

    Directory of Open Access Journals (Sweden)

    Ali Ben Moussa

    2012-10-01

    Full Text Available In this work, the problem of hydrodynamic, heat and mass transfer and stability in a salt gradient solar pond has been numerically studied by means of computational fluid dynamics in transient regime. The body of the simulated pond is an enclosure of height H and length L wherein an artificial salinity gradient is created in order to suppress convective motions induced by solar radiation absorption and to stabilize the solar pond during the period of operation. Here we show the distribution of velocity, temperature and salt concentration fields during energy collection and storage in a solar pond filled with water and constituted by three different salinity zones. The bottom of the pond is blackened and the free-surface is subjected to heat losses by convection, evaporation and radiation while the vertical walls are adiabatic and impermeable. The governing equations of continuity, momentum, thermal energy and mass transfer are discretized by finite–volume method in transient regime. Velocity vector fields show the presence of thin convective cells in the upper convective zone (UCZ and large convective cells in the lower convective zone (LCZ. This study shows the importance of buoyancy ratio in the decrease of temperature in the UCZ and in the preservation of high temperature in the LCZ. It shows also the importance of the thickness of Non-Convective Zone (NCZ in the reduction of the upwards heat losses.

  7. Thermochemical investigation of molten fluoride salts for Generation IV nuclear applications - an equilibrium exercise

    NARCIS (Netherlands)

    van der Meer, J.P.M.

    2006-01-01

    The concept of the Molten Salt Reactor, one of the so-called Generation IV future reactors, is that the fuel, a fissile material, which is dissolved in a molten fluoride salt, circulates through a closed circuit. The heat of fission is transferred to a second molten salt coolant loop, the heat of

  8. A soluble one-dimensional problem for coupled heat conduction and mass diffusion with aerosol formation in a vapour-gas mixture

    International Nuclear Information System (INIS)

    Barrett, J.C.; Clement, C.F.

    1986-01-01

    The coupled equations for heat and mass transfer are reduced to ordinary differential equations applying to a semi-infinite region bounded by a wall. Solutions are obtained in the limits of no aerosol and of negligible supersaturations in which case the aerosol growth rate is calculated. In agreement with earlier general predictions, results for water vapour-air mixtures show very different behaviour between heating and cooling the mixtures, and that aerosol growth rates do not increase with temperature, but rather become a much smaller fraction of evaporation or condensation rates at the wall. A new feature is that, in the cooling case, an aerosol growth region is predicted to exist immediately adjacent to the wall, whereas further away any aerosol is predicted to evaporate. The general features of the results are expected to apply to many situations of steady or quasi-steady flow. For example, similar results to ours would be obtained for the laminar flow of a saturated water vapour-air mixture past a wall through which it is being cooled. General characteristics of such flows should include a widening mist-filled layer next to the wall and separation by a sharp spatial division from an unsaturated layer. (author)

  9. Nuclear combined cycle gas turbines for variable electricity and heat using firebrick heat storage and low-carbon fuels

    International Nuclear Information System (INIS)

    Forsberg, Charles; Peterson, Per F.; McDaniel, Patrick; Bindra, Hitesh

    2017-01-01

    The world is transitioning to a low-carbon energy system. Variable electricity and industrial energy demands have been met with storable fossil fuels. The low-carbon energy sources (nuclear, wind and solar) are characterized by high-capital-costs and low-operating costs. High utilization is required to produce economic energy. Wind and solar are non-dispatchable; but, nuclear is the dispatchable energy source. Advanced combined cycle gas turbines with firebrick heat storage coupled to high-temperature reactors may enable economic variable electricity and heat production with constant full-power reactor output. Such systems efficiently couple to fluoride-salt-cooled high-temperature reactors (FHRs) with solid fuel and clean salt coolants, molten salt reactors (MSRs) with fuel dissolved in the salt coolant and salt-cooled fusion machines. Open Brayton combined cycles allow the use of natural gas, hydrogen, other fuels and firebrick heat storage for peak electricity production with incremental heat-to-electricity efficiencies from 66 to 70+% efficient. There are closed Brayton cycle options that use firebrick heat storage but these have not been investigated in any detail. Many of these cycles couple to high-temperature gas-cooled reactors (HTGRs). (author)

  10. Energy Savings Calculations for Heat Island Reduction Strategies in Baton Rouge, Sacramento and Salt Lake City

    Energy Technology Data Exchange (ETDEWEB)

    Konopacki, S.; Akbari, H.

    2000-03-01

    In 1997, the US Environmental Protection Agency (EPA) established the ''Heat Island Reduction Initiative'', to quantify the potential benefits of Heat Island Reduction (HIR) strategies (i.e., shade trees, reflective roofs, reflective pavements and urban vegetation) to reduce cooling energy use in buildings, lower the ambient air temperature and improve urban air quality in cities, and reduce CO2 emissions from power plants. Under this initiative, the Urban Heat Island Pilot Project (UHIPP) was created with the objective to investigate the potential of HIR strategies in residential and commercial buildings in three initial UHIPP cities: Baton Rouge, Sacramento and Salt Lake City. This paper summarizes our efforts to calculate the annual energy savings, peak power avoidance and annual C02 reduction of HIR strategies in the three initial cities. In this analysis, we focused on three building types that offer most savings potential: single-family residence, office and retail store. Each building type was characterized in detail by old or new construction and with a gas furnace or an electric heat pump. We defined prototypical building characteristics for each building type and simulated the impact of HIR strategies on building cooling and heating energy use and peak power demand using the DOE-2.IE model. Our simulations included the impact of (1) strategically-placed shade trees near buildings [direct effect], (2) use of high-albedo roofing material on building [direct effect], (3) combined strategies I and 2 [direct effect], (4) urban reforestation with high-albedo pavements and building surfaces [indirect effect] and (5) combined strategies 1, 2 and 4 [direct and indirect effects]. We then estimated the total roof area of air-conditioned buildings in each city using readily obtainable data to calculate the metropolitan-wide impact of HIR strategies. The results show, that in Baton Rouge, potential annual energy savings of $15M could be realized by

  11. Ionomic and metabolic responses to neutral salt or alkaline salt stresses in maize (Zea mays L.) seedlings.

    Science.gov (United States)

    Guo, Rui; Shi, LianXuan; Yan, Changrong; Zhong, Xiuli; Gu, FengXue; Liu, Qi; Xia, Xu; Li, Haoru

    2017-02-10

    Soil salinity and alkalinity present a serious threat to global agriculture. However, most of the studies have focused on neutral salt stress, and the information on the metabolic responses of plants to alkaline salt stress is limited. This investigation aimed at determining the influence of neutral salt and alkaline salt stresses on the content of metal elements and metabolites in maize plant tissues, by using mixtures of various proportions of NaCl, NaHCO 3 , Na 2 SO 4 , and Na 2 CO 3 . We found that alkaline salt stress suppressed more pronouncedly the photosynthesis and growth of maize plants than salinity stress. Under alkaline salt stress conditions, metal ions formed massive precipitates, which ultimately reduced plant nutrient availability. On the other hand, high neutral salt stress induced metabolic changes in the direction of gluconeogenesis leading to the enhanced formation of sugars as a reaction contributing to the mitigation of osmotic stress. Thus, the active synthesis of sugars in shoots was essential to the development of salt tolerance. However, the alkaline salt stress conditions characterized by elevated pH values suppressed substantially the levels of photosynthesis, N metabolism, glycolysis, and the production of sugars and amino acids. These results indicate the presence of different defensive mechanisms responsible for the plant responses to neutral salt and alkaline salt stresses. In addition, the increased concentration of organic acids and enhanced metabolic energy might be potential major factors that can contribute to the maintenance intracellular ion balance in maize plants and counteract the negative effects of high pH under alkaline salt stress.

  12. Salt-specific effects in lysozyme solutions

    Directory of Open Access Journals (Sweden)

    T. Janc

    2016-03-01

    Full Text Available The effects of additions of low-molecular-mass salts on the properties of aqueous lysozyme solutions are examined by using the cloud-point temperature, T_{cloud}, measurements. Mixtures of protein, buffer, and simple salt in water are studied at pH=6.8 (phosphate buffer and pH=4.6 (acetate buffer. We show that an addition of buffer in the amount above I_{buffer} = 0.6 mol dm^{-3} does not affect the T_{cloud} values. However, by replacing a certain amount of the buffer electrolyte by another salt, keeping the total ionic strength constant, we can significantly change the cloud-point temperature. All the salts de-stabilize the solution and the magnitude of the effect depends on the nature of the salt. Experimental results are analyzed within the framework of the one-component model, which treats the protein-protein interaction as highly directional and of short-range. We use this approach to predict the second virial coefficients, and liquid-liquid phase diagrams under conditions, where T_{cloud} is determined experimentally.

  13. Utilization of ruthenium volatilization at heating of residue containing phosphates and nitrates for ruthenium separation and for its qualitative proof

    International Nuclear Information System (INIS)

    Holgye, Z.

    1979-01-01

    The volatility of ruthenium during the heating of a residue after evaporation of a solution containing ruthenium, phosphates and nitrates may be utilized for the separation of ruthenium from various substances. Sup(103,106) Ru may be rapidly, selectively, and quantitatively separated from fission products mixture. Ruthenium may be also separated in this way from various inorganic salts or from biological material. The volatility of ruthenium may be used also for its qualitative proof. (author)

  14. Thermodynamic analysis of a novel exhaust heat-driven non-adiabatic ejection-absorption refrigeration cycle using R290/oil mixture

    International Nuclear Information System (INIS)

    Li, Keqiao; Cai, Dehua; Liu, Yue; Jiang, Jingkai; Sun, Wei; He, Guogeng

    2017-01-01

    Graphical abstract: A novel air-cooled non-adiabatic ejection-absorption refrigeration cycle using R290/refrigeration oil has been thermodynamically analyzed. Influences of the ejector and the non-adiabatic absorber applications on the system performance and other system operation parameters have been investigated. The simulation results will be of great help to the miniaturization and practical application of the air-cooled absorption refrigeration system. - Highlights: • A novel air-cooled non-adiabatic ejection-absorption refrigeration cycle is proposed. • Influences of the ejector and the air-cooled non-adiabatic absorber applications on the system performance are investigated. • Variations of system performance and other system operation parameters are investigated. • R290/refrigeration oil mixture used as working pairs is analyzed. - Abstract: This paper thermodynamically analyzes a novel air-cooled non-adiabatic ejection-absorption refrigeration cycle with R290/oil mixture driven by exhaust heat. An ejector located at the upstream of the non-adiabatic absorber is employed to improve the cycle performance. Variations of COP, circulation ratio and component heat load of the system as a function of generating temperature, pressure ratio, absorption temperature, condensing temperature and evaporating temperature have been investigated in this work. The simulation results show that, compared with the conventional absorption refrigeration cycle, this non-adiabatic ejection-absorption refrigeration cycle has higher absorption efficiency, better performance, wider working condition range and lower total heat load and its COP can reach as high as 0.5297. The implementation of the ejector and the non-adiabatic absorber helps to realize the miniaturization and wider application of the absorption refrigeration system. In addition, R290/oil mixture is a kind of highly potential working pairs for absorption refrigeration.

  15. In situ brine migration experiments at the Avery Island salt mine

    International Nuclear Information System (INIS)

    Krause, W.B.; Van Sambeek, L.L.; Stickney, R.G.

    1980-01-01

    An in situ brine movement study was conducted at the Avery Island Salt Mine of the International Salt Company in southwestern Louisiana. The objective of the in situ experiments was to relate field measurements to previously determined laboratory and analytical results for the purpose of determining the rate and amount of brine movement through dome salt when subjected to heating. The heating in the experiments was provided by electrical heaters emplaced in the salt mine floor. An understanding of thermally induced brine movement is essential from the standpoint of identifying conditions which may influence the physical integrity of the nuclear waste canisters or impede the functional performance of the waste package system in a nuclear waste repository in geologic salt. 28 refs

  16. Fuel processing for molten-salt reactors

    International Nuclear Information System (INIS)

    Hightower, J.R. Jr.

    1975-01-01

    Progress is reported on the development of processes for the isolation of protactinium and for the removal of fission products from molten-salt breeder reactors. The metal transfer experiment MTE-3 (for removing rare earths from MSRE fuel salt) was completed and the equipment used in that experiment was examined. The examination showed that no serious corrosion had occurred on the internal surfaces of the vessels, but that serious air oxidation occurred on the external surfaces of the vessels. Analyses of the bismuth phases indicated that the surfaces in contact with the salts were enriched in thorium and iron. Mass transfer coefficients in the mechanically agitated nondispersing contactors were measured in the Salt/Bismuth Flow-through Facility. The measured mass transfer coefficients are about 30 to 40 percent of those predicted by the preferred literature correlation, but were not as low as those seen in some of the runs in MTE-3. Additional studies using water--mercury systems to simulate molten salt-bismuth systems indicated that the model used to interpret results from previous measurements in the water--mercury system has significant deficiencies. Autoresistance heating studies were continued to develop a means of internal heat generation for frozen-wall fluorinators. Equipment was built to test a design of a side arm for the heating electrode. Results of experiments with this equipment indicate that for proper operation the wall temperature must be held much lower than that for which the equipment was designed. Studies with an electrical analog of the equipment indicate that no regions of abnormally high current density exist in the side arm. (JGB)

  17. A radioactive tracer dilution method to determine the mass of molten salt

    International Nuclear Information System (INIS)

    Lei Cao; Jarrell, Josh; Hardtmayer, D.E.; White, Susan; Herminghuysen, Kevin; Kauffman, Andrew; Sanders, Jeff; Li, Shelly

    2017-01-01

    A new technique for molten salt mass determination, termed radioactive tracer dilution, that uses 22 Na as a tracer was validated at bench scale. It has been a challenging problem to determine the mass of molten salt in irregularly shaped containers, where a highly radioactive, high-temperature molten salt was used to process nuclear spent/used fuel during electrochemical recycling (pyro-processing) or for coolant/fuel salt from molten salt reactors. A radioactive source with known activity is dissolved into the salt. After a complete mixture, a small amount of the salt is sampled and measured in terms of its mass and radioactivity. By finding the ratio of the mass to radioactivity, the unknown salt mass in the original container can be precisely determined. (author)

  18. Modeling the surface tension of complex, reactive organic-inorganic mixtures

    Science.gov (United States)

    Schwier, A. N.; Viglione, G. A.; Li, Z.; McNeill, V. Faye

    2013-11-01

    Atmospheric aerosols can contain thousands of organic compounds which impact aerosol surface tension, affecting aerosol properties such as heterogeneous reactivity, ice nucleation, and cloud droplet formation. We present new experimental data for the surface tension of complex, reactive organic-inorganic aqueous mixtures mimicking tropospheric aerosols. Each solution contained 2-6 organic compounds, including methylglyoxal, glyoxal, formaldehyde, acetaldehyde, oxalic acid, succinic acid, leucine, alanine, glycine, and serine, with and without ammonium sulfate. We test two semi-empirical surface tension models and find that most reactive, complex, aqueous organic mixtures which do not contain salt are well described by a weighted Szyszkowski-Langmuir (S-L) model which was first presented by Henning et al. (2005). Two approaches for modeling the effects of salt were tested: (1) the Tuckermann approach (an extension of the Henning model with an additional explicit salt term), and (2) a new implicit method proposed here which employs experimental surface tension data obtained for each organic species in the presence of salt used with the Henning model. We recommend the use of method (2) for surface tension modeling of aerosol systems because the Henning model (using data obtained from organic-inorganic systems) and Tuckermann approach provide similar modeling results and goodness-of-fit (χ2) values, yet the Henning model is a simpler and more physical approach to modeling the effects of salt, requiring less empirically determined parameters.

  19. Selective solid-liquid extraction of lithium halide salts using a ditopic macrobicyclic receptor.

    Science.gov (United States)

    Mahoney, Joseph M; Beatty, Alicia M; Smith, Bradley D

    2004-11-29

    A ditopic salt receptor that is known to bind and extract solid NaCl, KCl, NaBr, and KBr into organic solution as their contact ion pairs is now shown by NMR and X-ray crystallography to bind and extract solid LiCl and LiBr as water-separated ion pairs. The receptor can transport these salts from an aqueous phase through a liquid organic membrane with a cation selectivity of K+ > Na+ > Li+. However, the selectivity order is strongly reversed when the receptor extracts solid alkali metal chlorides and bromides into organic solution. For a three-component mixture of solid LiCl, NaCl, and KCl, the ratio of salts extracted and complexed to the receptor in CDCl3 was 94:4:2, respectively. The same strong lithium selectivity was also observed in the case of a three-component mixture of solid LiBr, NaBr, and KBr where the ratio of extracted salts was 92:5:3. This observation is attributed to the unusually high solubility of lithium salts in organic solvents. The study suggests that ditopic receptors with an ability to extract solid salts as associated ion pairs may have application in separation processes.

  20. Immobilization of IFR salt wastes in mortar

    International Nuclear Information System (INIS)

    Fisher, D.F.; Johnson, T.R.

    1988-01-01

    Portland cement-base mortars are being considered for immobilizing chloride salt wastes from the fuel cycle of an integral fast reactor (IFR). The IFR is a sodium-cooled fast reactor with metal fuel. It has a close-coupled fuel cycle in which fission products are separated from the actinides in an electrochemical cell operating at 500 degrees C. This cell has a cadmium anode and a liquid salt electrolyte. The salt will be a low-melting mixture of alkaline and alkaline earth chlorides. This paper discusses one method being considered for immobilizing this treated salt, to disperse it in a portland cement-base motar, which would then be sealed in corrosion-resistant containers. For this application, the grout must be sufficiently fluid that it can be pumped into canisters where it will solidify into a strong, leach-resistant material

  1. Heat transfer and hydraulic resistance in steam-water mixture flow with large void fractions in an annular channel

    International Nuclear Information System (INIS)

    Dzarasov, Yu.I.

    1976-01-01

    Results of studies for a vapour-water dispersive-ring flow in the heated tore channel are presented. The work area has been a vertical tore channel with external and internal cross-section diameters equal to 12 and 6 mm, respectively, and with the internal heated wall of 1000 mm and 2500 mm long, respectively. The medium moves upward with the pressure 35 and 70 bar. Local heat emission factors α as a function of the channel height have been determined with measuring wall-flow temperature difference at the outlet cross-section. It has been noted that in addition to dependence of the α factor from heat emission q, the factor is also greatly affected by the mass speed and steam content X with the growth of which α increases. The model of the flow explaining the effect of X upon α has been proposed. It has been found that convective heat emission under boiling of the vapour-water mixture in the channels is determined not only by the flow rate but by the amount of liquid in the flow and particular, by the amount of liquid setting at the heating surface

  2. Thermal energy storage for low grade heat in the organic Rankine cycle

    Science.gov (United States)

    Soda, Michael John

    addition of graphite to augment heat transfer rates was also tested. Melting and solidification temperatures largely matched predictions. The magnesium salts were found to be less stable under thermal cycling than the waxes. Graphite was only soluble in the waxes. Mixtures of magnesium salts and waxes yielded a layered composite with the less dense waxes creating a sealing layer over the salt layer that significantly increased the stability of the magnesium salts. Research into optimum heat exchangers and storage vessels for these applications indicates that horizontally oriented aluminum pipes with vertically oriented aluminum fins would be the best method of storing and retrieving energy. Fin spacing can be predicted by an equation based on target temperatures and PCM characteristics.

  3. Improved Design and Fabrication of Hydrated-Salt Pills

    Science.gov (United States)

    Shirron, Peter J.; DiPirro, Michael J.; Canavan, Edgar R.

    2011-01-01

    A high-performance design, and fabrication and growth processes to implement the design, have been devised for encapsulating a hydrated salt in a container that both protects the salt and provides thermal conductance between the salt and the environment surrounding the container. The unitary salt/container structure is known in the art as a salt pill. In the original application of the present design and processes, the salt is, more specifically, a hydrated paramagnetic salt, for use as a refrigerant in a very-low-temperature adiabatic demagnetization refrigerator (ADR). The design and process can also be applied, with modifications, to other hydrated salts. Hydrated paramagnetic salts have long been used in ADRs because they have the desired magnetic properties at low temperatures. They also have some properties, disadvantageous for ADRs, that dictate the kind of enclosures in which they must be housed: Being hydrated, they lose water if exposed to less than 100-percent relative humidity. Because any dehydration compromises their magnetic properties, salts used in ADRs must be sealed in hermetic containers. Because they have relatively poor thermal conductivities in the temperature range of interest (<0.1 K), integral thermal buses are needed as means of efficiently transferring heat to and from the salts during refrigeration cycles. A thermal bus is typically made from a high-thermal-conductivity met al (such as copper or gold), and the salt is configured to make intimate thermal contact with the metal. Commonly in current practice (and in the present design), the thermal bus includes a matrix of wires or rods, and the salt is grown onto this matrix. The density and spacing of the conductors depend on the heat fluxes that must be accommodated during operation.

  4. Thermochemical Properties of Nicotine Salts

    Directory of Open Access Journals (Sweden)

    Riggs DM

    2014-12-01

    Full Text Available The thermal gravimetric analysis (TGA and differential scanning calorimetry (DSC results presented in this report clearly show that the thermal stability and the endothermic peak nicotine release temperatures are different for different nicotine salts and these temperatures appear to be linked to the general microstructural details of the salt itself. In addition, the peak nicotine release temperatures are highly dependent upon the sample size used. The heat of vaporization for neat (non-protonated nicotine is also sample-size dependent. The TGA data showed that the least stable of the salts tested at elevated temperatures was the liquid salt nicotine triacetate followed by the crystalline materials (e.g., nicotine gallate and finally, the amorphous salts (e.g., nicotine alginate. The DSC results revealed that the liquid and crystalline salts exhibit nicotine release endotherms that are strongly related to the sample weight being tested. The amorphous salts show nicotine endotherm peak temperatures that are nearly independent of the sample weight. The range of peak nicotine release temperatures varied depending upon the specific salts and the sample size from 83 oC to well over 200 oC. Based on these results, the evolution of nicotine from the nicotine salt should be expected to vary based on the composition of the salt, the details of its microstructure, and the amount of nicotine salt tested.

  5. Fundamental Properties of Salts

    Energy Technology Data Exchange (ETDEWEB)

    Toni Y Gutknecht; Guy L Fredrickson

    2012-11-01

    Thermal properties of molten salt systems are of interest to electrorefining operations, pertaining to both the Fuel Cycle Research & Development Program (FCR&D) and Spent Fuel Treatment Mission, currently being pursued by the Department of Energy (DOE). The phase stability of molten salts in an electrorefiner may be adversely impacted by the build-up of fission products in the electrolyte. Potential situations that need to be avoided, during electrorefining operations, include (i) fissile elements build up in the salt that might approach the criticality limits specified for the vessel, (ii) electrolyte freezing at the operating temperature of the electrorefiner due to changes in the liquidus temperature, and (iii) phase separation (non-homogenous solution). The stability (and homogeneity) of the phases can be monitored by studying the thermal characteristics of the molten salts as a function of impurity concentration. Simulated salt compositions consisting of the selected rare earth and alkaline earth chlorides, with a eutectic mixture of LiCl-KCl as the carrier electrolyte, were studied to determine the melting points (thermal characteristics) using a Differential Scanning Calorimeter (DSC). The experimental data were used to model the liquidus temperature. On the basis of the this data, it became possible to predict a spent fuel treatment processing scenario under which electrorefining could no longer be performed as a result of increasing liquidus temperatures of the electrolyte.

  6. Corrosive gas generation potential from chloride salt radiolysis in plutonium environments

    International Nuclear Information System (INIS)

    Tandon, L.; Allen, T.H.; Mason, R.E.; Penneman, R.A.

    1999-01-01

    The specific goal of this project was to evaluate the magnitude and practical significance of radiation effects involving mixtures of chloride salts and plutonium dioxide (PuO 2 ) sealed in stainless steel containers and stored for up to 50 yr, after stabilization at 950 C and packaging according to US Department of Energy (DOE) standards. The potential for generating chemically aggressive molecular chlorine (and hydrogen chloride by interaction with adsorbed water or hydrogen gas) by radiolysis of chloride ions was studied. To evaluate the risks, an annotated bibliography on chloride salt radiolysis was created with emphasis on effects of plutonium alpha radiation. The authors present data from the material identification and surveillance (MIS) project obtained from examination and analysis of representative PuO 2 items from various DOE sites, including the headspace gas analysis data of sealed mixtures of PuO 2 and chloride salts following long-term storage

  7. Process for improving the energy density of feedstocks using formate salts

    Energy Technology Data Exchange (ETDEWEB)

    Wheeler, Marshall Clayton; van Heiningen, Adriaan R.P.; Case, Paige A.

    2015-09-01

    Methods of forming liquid hydrocarbons through thermal deoxygenation of cellulosic compounds are disclosed. Aspects cover methods including the steps of mixing a levulinic acid salt-containing feedstock with a formic acid salt, exposing the mixture to a high temperature condition to form hydrocarbon vapor, and condensing the hydrocarbon vapor to form liquid hydrocarbons, where both the formic acid salt and the levulinic acid salt-containing feedstock decompose at the high temperature condition and wherein one or more of the mixing, exposing, and condensing steps is carried out a pressure between about vacuum and about 10 bar.

  8. Ripening of Sudanese Braided (Muddaffara Cheese Manufactured from Raw or Pasteurized Milk: Effect of Heat Treatment and Salt Concentration on the Physicochemical Properties

    Directory of Open Access Journals (Sweden)

    Mohamed O. E. Altahir

    2014-01-01

    Full Text Available The objective of the study was to investigate the interactive effect of heat treatment (raw or pasteurized milk, ripening in salted whey (SW and storage period for up to 3 months on the physicochemical properties of Sudanese braided cheese (SBC. Braided cheeses were manufactured from raw (BCRM and pasteurized (BCPM milk and ripened in SW (0%, 5%, and 10% salt for up to 90 days. All the treatments significantly (P≤0.05 affected the physicochemical characteristics of SBC. The total solid, protein, and fat contents of BCRM or BCPM decreased (P≤0.05, whereas their TA, SN, and salt contents increased significantly (P≤0.05 as storage period and the salt level of the whey were elevated. Both FRI and SRI of BCRM and BCPM increased with the increase in storage period and the salt level of the whey. For SN, FRI, SRI, pH, and moisture contents the magnitude of the change was more pronounced in BCRM than in BCPM, while for protein, fat, salt, and TS contents, the opposite was true; that is, the magnitude of the change was more pronounced in BCPM than in BCRM. Further studies are required to standardize muddaffara cheese manufacturing procedure particularly in rural areas.

  9. Ripening of Sudanese Braided (Muddaffara) Cheese Manufactured from Raw or Pasteurized Milk: Effect of Heat Treatment and Salt Concentration on the Physicochemical Properties.

    Science.gov (United States)

    Altahir, Mohamed O E; Elgasim, Elgasim A; Mohamed Ahmed, Isam A

    2014-01-01

    The objective of the study was to investigate the interactive effect of heat treatment (raw or pasteurized milk), ripening in salted whey (SW) and storage period for up to 3 months on the physicochemical properties of Sudanese braided cheese (SBC). Braided cheeses were manufactured from raw (BCRM) and pasteurized (BCPM) milk and ripened in SW (0%, 5%, and 10% salt) for up to 90 days. All the treatments significantly (P ≤ 0.05) affected the physicochemical characteristics of SBC. The total solid, protein, and fat contents of BCRM or BCPM decreased (P ≤ 0.05), whereas their TA, SN, and salt contents increased significantly (P ≤ 0.05) as storage period and the salt level of the whey were elevated. Both FRI and SRI of BCRM and BCPM increased with the increase in storage period and the salt level of the whey. For SN, FRI, SRI, pH, and moisture contents the magnitude of the change was more pronounced in BCRM than in BCPM, while for protein, fat, salt, and TS contents, the opposite was true; that is, the magnitude of the change was more pronounced in BCPM than in BCRM. Further studies are required to standardize muddaffara cheese manufacturing procedure particularly in rural areas.

  10. Enhanced performance of wet compression-resorption heat pumps by using NH_3-CO_2-H_2O as working fluid

    International Nuclear Information System (INIS)

    Gudjonsdottir, V.; Infante Ferreira, C.A.; Rexwinkel, Glenn; Kiss, Anton A.

    2017-01-01

    Upgrading waste heat by compression resorption heat pumps (CRHP) has the potential to make a strong impact in industry. The efficiency of CRHP can be further improved by using alternative working fluids. In this work, the addition of carbon dioxide to aqueous ammonia solutions for application in CRHP is investigated. The previously published thermodynamic models for the ternary mixture are evaluated by comparing their results with experimental thermodynamic data, and checking their advantages and disadvantages. Then the models are used to investigate the impact of adding CO_2 to NH_3-H_2O in wet compression resorption heat pump applications. For an application where a waste stream is heated from 60 to 105 °C, a COP increase of up to 5% can be attained by adding CO_2 to the ammonia-water mixture, without any risk of salt formation. Additional advantages of adding CO_2 to the ammonia-water mixture in that case are decreased pressure ratio, as well as an increase in the lower pressure level. When practical pressure restrictions are considered the benefits of the added CO_2 become even larger or around 25% increase in the COP. Nonetheless, when the waste stream was considered to be additionally cooled down, no significant benefits were observed. - Highlights: • NH_3-CO_2-H_2O mixture is proposed as a working fluid for CRHP. • COP improvements of 5% are achieved compared to NH_3-H_2O. • Additional advantages of the added CO_2 are decreased pressure ratio.

  11. Studies on components for a molten salt reactor

    International Nuclear Information System (INIS)

    Nejedly, M.; Matal, O.

    2003-01-01

    The aim is contribute to a design of selected components of molten salt reactors with fuel in the molten fluoride salt matrix. Molten salt reactors (MSRs) permit the utilization of plutonium and minor actinides as new nuclear fuel from a traditional nuclear power station with production of electric energy. Results of preliminary feasibility studies of an intermediate heat exchanger, a small power molten salt pump and a modular conception of a steam generator for a demonstration unit of the MSR (30 MW) are summarized. (author)

  12. Salt content impact on the unsaturated property of bentonite-sand buffer backfilling materials

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Ming [Key Laboratory of Mechanics on Disaster and Environment in Western China, Lanzhou University, Lanzhou 730000 (China); Zhang Huyuan, E-mail: p1314lvp@yahoo.com.cn [Key Laboratory of Mechanics on Disaster and Environment in Western China, Lanzhou University, Lanzhou 730000 (China); Jia Lingyan; Cui Suli [Key Laboratory of Mechanics on Disaster and Environment in Western China, Lanzhou University, Lanzhou 730000 (China)

    2012-09-15

    Highlights: Black-Right-Pointing-Pointer SWCC and infiltration process of bentonite-sand mixtures is researched. Black-Right-Pointing-Pointer The k{sub u} of bentonite-sand mixtures was evaluated as the buffer backfilling materials. Black-Right-Pointing-Pointer Salt content impacting on the unsaturated property of bentonite-sand materials is small. - Abstract: Bentonite mixed with sand is often considered as possible engineered barrier in deep high-level radioactive waste disposal in China. In the present work, the vapor transfer technique and water infiltration apparatus were used to measure the soil water characteristic curve (SWCC) and unsaturated hydraulic conductivity (k{sub u}) of bentonite-sand mixtures (B/S) effected by salt content. Results show, the water-holding capacity and k{sub u} increase slightly with the concentration of Na{sup +} in pore liquid increasing from 0 g/L to 12 g/L, similar with the solution concentration of Beishan groundwater in China. Salt content in the laboratory produced only one order of magnitude increase in k{sub u}, which is the 'safe' value. The different pore liquid concentrations used in this study led to small differences in thickness of diffuse double layer of bentonite in mixtures, this might explain why some differences have been found in final values of k{sub u}.

  13. In situ investigations on the impact of heat production and gamma radiation with regard to high-level radioactive waste disposal in rock salt formations

    International Nuclear Information System (INIS)

    Rothfuchs, T.

    1986-01-01

    Deep geological formations especially rock salt formations, are considered worldwide as suitable media for the final disposal of radioactive high-level waste (HLW). In the Federal Republic of Germany, the Institut fur Tieflagerung of the Gesellschaft fur Strahlen- und Umweltforschung mbH Munchen operates the Asse Salt Mine as a pilot facility for testing the behavior of an underground nuclear waste repository. The tests are performed using heat and radiation sources to simulate disposed HLW canisters. The measured data obtained since 1965 show that the thermomechanical response of the salt formation and the physical/chemical changes in the vicinity of disposal boreholes are not a serious concern and that their long-term consequences can be estimated based on theoretical considerations and in-situ investigations

  14. A systematic multi-step screening of numerous salt hydrates for low temperature thermochemical energy storage

    International Nuclear Information System (INIS)

    N’Tsoukpoe, Kokouvi Edem; Schmidt, Thomas; Rammelberg, Holger Urs; Watts, Beatriz Amanda; Ruck, Wolfgang K.L.

    2014-01-01

    Highlights: • We report an evaluation of the potential of salt hydrates for thermochemical storage. • Both theoretical calculations and experimental measurements using TGA/DSC are used. • Salt hydrates offer very low potential for thermochemical heat storage. • The efficiency of classical processes using salt hydrates is very low: typically 25%. • New processes are needed for the use of salt hydrates in thermochemical heat storage. - Abstract: In this paper, the potential energy storage density and the storage efficiency of salt hydrates as thermochemical storage materials for the storage of heat generated by a micro-combined heat and power (micro-CHP) have been assessed. Because salt hydrates used in various thermochemical heat storage processes fail to meet the expectations, a systematic evaluation of the suitability of 125 salt hydrates has been performed in a three-step approach. In the first step general issues such as toxicity and risk of explosion have been considered. In the second and third steps, the authors implement a combined approach consisting of theoretical calculations and experimental measurements using Thermogravimetric Analysis (TGA). Thus, application-oriented comparison criteria, among which the net energy storage density of the material and the thermal efficiency, have been used to evaluate the potential of 45 preselected salt hydrates for a low temperature thermochemical heat storage application. For an application that requires a discharging temperature above 60 °C, SrBr 2 ·6H 2 O and LaCl 3 ·7H 2 O appear to be the most promising, only from thermodynamic point of view. However, the maximum net energy storage density including the water in the water storage tank that they offer (respectively 133 kW h m −3 and 89 kW h m −3 ) for a classical thermochemical heat storage process are not attractive for the intended application. Furthermore, the thermal efficiency that would result from the storage process based on salt hydrates

  15. Geothermal in situ experiments in the Asse salt-mine

    International Nuclear Information System (INIS)

    Kopietz, J.; Jung, R.

    1978-01-01

    The paper presents design and results of in situ experiments carried out by the Bundesanstat fuer Geowissenschaften und Rohstoffe (Federal Institute for Geosciences and Natural Resources, F.R. of Germany) in the Asse salt-mine. With reference to model calculations of the temperature field which is produced in salt formations by radioactive waste, temperature measurements in the area of electrical heating elements and in situ measurements of thermal conductivity have been performed. The measured temperatures are in good accordance with the theoretical prediction. Preliminary results of the thermal conductivity measurements correspond with the data of single NaCl crystals published by Birch and Clark. At present a heating experiment is being conducted in the Asse mine to investigate thermo-mechanical effects of a cylindrical heat source upon the surrounding rock salt. Possible thermal induced fractures monitored by permeability changes and seismoacoustical phenomena are the main objects of this experiment

  16. Variable electricity and steam from salt, helium and sodium cooled base-load reactors with gas turbines and heat storage - 15115

    International Nuclear Information System (INIS)

    Forsberg, C.; McDaniel, P.; Zohuri, B.

    2015-01-01

    Advances in utility natural-gas-fired air-Brayton combed cycle technology is creating the option of coupling salt-, helium-, and sodium-cooled nuclear reactors to Nuclear air-Brayton Combined Cycle (NACC) power systems. NACC may enable a zero-carbon electricity grid and improve nuclear power economics by enabling variable electricity output with base-load nuclear reactor operations. Variable electricity output enables selling more electricity at times of high prices that increases plant revenue. Peak power is achieved using stored heat or auxiliary fuel (natural gas, bio-fuels, hydrogen). A typical NACC cycle includes air compression, heating compressed air using nuclear heat and a heat exchanger, sending air through a turbine to produce electricity, reheating compressed air, sending air through a second turbine, and exhausting to a heat recovery steam generator (HRSG). In the HRSG, warm air produces steam that is used to produce added electricity. For peak power production, auxiliary heat (natural gas, stored heat) is added before the air enters the second turbine to raise air temperatures and power output. Like all combined cycle plants, water cooling requirements are dramatically reduced relative to other power cycles because much of the heat rejection is in the form of hot air. (authors)

  17. Influence of de-icing salt chemistry on the corrosion behavior of AA6016

    DEFF Research Database (Denmark)

    Schoukens, Ine; Cavezza, Francesca; Cerezo, Jose

    2017-01-01

    De-icing salts are commonly used on European roads during winter and are usually based on chlorides of sodium, magnesium, or calcium. The salt selection depends on the local climate and legislation. Therefore, the chemical composition of the de-icing mixture can be very different within Europe. T...

  18. Experimental study on thermal storage performance of binary mixtures of fatty acids

    Science.gov (United States)

    Yan, Quanying; Zhang, Jing; Liu, Chao; Liu, Sha; Sun, Xiangyu

    2018-02-01

    We selected five kinds of fatty acids including the capric acid, stearic acid, lauric acid, palmitic acid and myristic acid and mixed them to prepare10 kinds of binary mixtures of fatty acids according to the predetermined proportion,tested the phase change temperature and latent heat of mixtures by differential scanning calorimetry(DSC). In order to find the fatty acid mixture which has suitable phase change temperature, the larger phase change latent heat and can be used for phase change wall. The results showed that the phase change temperature and latent heats of the binary mixtures of fatty acids decreased compared with the single component;The phase change temperature of the binary mixtures of fatty acids containing capric acid were lower, the range was roughly 20∼30°C,and latent heat is large,which are ideal phase change materials for phase change wall energy storage;The phase change temperature of the binary mixtures consisting of other fatty acids were still high,didn’t meet the temperature requirements of the wall energy storage.

  19. Process for introducing radioactive articles into a transport and/or storage container and transporting and/or storing the container and later extraction of the article from the container, and container for transporting and/or storing radioactive articles

    International Nuclear Information System (INIS)

    Vox, A.J.

    1979-01-01

    The articles, for example fuel elements, are introduced into the container and the remaining space inside the container is filled with lead, a salt or a mixture of salts of eutectic composition, which freezes at ambient temperature. This makes dry transport possible. To extract the fuel elements, it is sufficient to heat the container, which softens the protective and shielding material. The salt or mixture of salts is suitable for thermal conduction. (DG) [de

  20. Molten salt treatment to minimize and optimize waste

    International Nuclear Information System (INIS)

    Gat, U.; Crosley, S.M.; Gay, R.L.

    1993-01-01

    A combination molten salt oxidizer (MSO) and molten salt reactor (MSR) is described for treatment of waste. The MSO is proposed for contained oxidization of organic hazardous waste, for reduction of mass and volume of dilute waste by evaporation of the water. The NTSO residue is to be treated to optimize the waste in terms of its composition, chemical form, mixture, concentration, encapsulation, shape, size, and configuration. Accumulations and storage are minimized, shipments are sized for low risk. Actinides, fissile material, and long-lived isotopes are separated and completely burned or transmuted in an MSR. The MSR requires no fuel element fabrication, accepts the materials as salts in arbitrarily small quantities enhancing safety, security, and overall acceptability

  1. Solidification of salt solutions on a horizontal surface

    International Nuclear Information System (INIS)

    Braga, S.L.; Viskanta, R.

    1990-01-01

    The freezing of water-salt solutions on a horizontal wall is investigated experimentally and theoretically. The growth of the solid-liquid region is observed for NaCl - H sub(2)O and N H sub(4)Cl - H sub(2)O systems under different temperature and concentration conditions. A unidirectional mathematical model is used to predict the solidification process. The transport of heat is by diffusion, and convection is absent. The mass diffusion is neglected and the growth of crystal is governed by the transport of heat. In all experiments, the solution salt concentration is smaller than the eutectic composition, and the wall temperature is higher than the eutectic temperature. The predicted temperature and salt concentration profiles, as well as the interface position, are compared with experimental data. (author)

  2. Analysis of the temperature field around salt diapirs

    DEFF Research Database (Denmark)

    Jensen, Peter Klint

    1990-01-01

    heat flux should be higher over 3D structures. On the other hand the areal extent of the temperature anomaly around the salt structures is less in the 3D case. Calculation examples indicate that low temperature geothermal energy exploitation of the formations around the top of a salt diapir can...

  3. Heat Transfer Salts for Nuclear Reactor Systems - Chemistry Control, Corrosion Mitigation, and Modeling

    International Nuclear Information System (INIS)

    Anderson, Mark; Sridharan, Kumar; Morgan, Dane; Peterson, Per; Calderoni, Pattrick; Scheele, Randall; Casekka, Andrew; McNamara, Bruce

    2015-01-01

    The concept of a molten salt reactor has existed for nearly sixty years. Previously all work was done during a large collaborative effort at Oak Ridge National Laboratory, culminating in a research reactor which operated for 15,000 hours without major error. This technical success has garnished interest in modern, high temperature, reactor schemes. Research using molten fluoride salts for nuclear applications requires a steady supply of high grade molten salts. There is no bulk supplier of research grade fluoride salts in the world, so a facility which could provide all the salt needed for testing at the University of Wisconsin had to be produced. Two salt purification devices were made for this purpose, a large scale purifier, and a small scale purifier, each designed to clean the salts from impurities and reduce their corrosion potential. As of now, the small scale has performed with flibe salt, hydrogen, and hydrogen fluoride, yielding clean salt. This salt is currently being used in corrosion testing facilities at the Massachusetts Institute of Technology and the University of Wisconsin. Working with the beryllium based salts requires extensive safety measures and health monitoring to prevent the development of acute or chronic beryllium disease, two pulmonary diseases created by an allergic reaction to beryllium in the lungs. Extensive health monitoring, engineering controls, and environment monitoring had to be set up with the University of Wisconsin department of Environment, Health and Safety. The hydrogen fluoride required for purification was also an extreme health hazard requiring thoughtful planning and execution. These dangers have made research a slow and tedious process. Simple processes, such as chemical handling and clean-up, can take large amounts of ingenuity and time. Other work has complemented the experimental research at Wisconsin to advance high temperature reactor goals. Modeling work has been performed in house to re

  4. Heat Transfer Salts for Nuclear Reactor Systems - Chemistry Control, Corrosion Mitigation, and Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Mark [Univ. of Wisconsin, Madison, WI (United States); Sridharan, Kumar [Univ. of Wisconsin, Madison, WI (United States); Morgan, Dane [Univ. of Wisconsin, Madison, WI (United States); Peterson, Per [Univ. of Wisconsin, Madison, WI (United States); Calderoni, Pattrick [Univ. of Wisconsin, Madison, WI (United States); Scheele, Randall [Univ. of Wisconsin, Madison, WI (United States); Casekka, Andrew [Univ. of Wisconsin, Madison, WI (United States); McNamara, Bruce [Univ. of Wisconsin, Madison, WI (United States)

    2015-01-22

    The concept of a molten salt reactor has existed for nearly sixty years. Previously all work was done during a large collaborative effort at Oak Ridge National Laboratory, culminating in a research reactor which operated for 15,000 hours without major error. This technical success has garnished interest in modern, high temperature, reactor schemes. Research using molten fluoride salts for nuclear applications requires a steady supply of high grade molten salts. There is no bulk supplier of research grade fluoride salts in the world, so a facility which could provide all the salt needed for testing at the University of Wisconsin had to be produced. Two salt purification devices were made for this purpose, a large scale purifier, and a small scale purifier, each designed to clean the salts from impurities and reduce their corrosion potential. As of now, the small scale has performed with flibe salt, hydrogen, and hydrogen fluoride, yielding clean salt. This salt is currently being used in corrosion testing facilities at the Massachusetts Institute of Technology and the University of Wisconsin. Working with the beryllium based salts requires extensive safety measures and health monitoring to prevent the development of acute or chronic beryllium disease, two pulmonary diseases created by an allergic reaction to beryllium in the lungs. Extensive health monitoring, engineering controls, and environment monitoring had to be set up with the University of Wisconsin department of Environment, Health and Safety. The hydrogen fluoride required for purification was also an extreme health hazard requiring thoughtful planning and execution. These dangers have made research a slow and tedious process. Simple processes, such as chemical handling and clean-up, can take large amounts of ingenuity and time. Other work has complemented the experimental research at Wisconsin to advance high temperature reactor goals. Modeling work has been performed in house to re

  5. Neutronic design of a Liquid Salt-cooled Pebble Bed Reactor (LSPBR)

    International Nuclear Information System (INIS)

    De Zwaan, S. J.; Boer, B.; Lathouwers, D.; Kloosterman, J. L.

    2006-01-01

    A renewed interest has been raised for liquid salt cooled nuclear reactors. The excellent heat transfer properties of liquid salt coolants provide several benefits, like lower fuel temperatures, higher coolant outlet temperatures, increased core power density and better decay heat removal. In order to benefit from the online refueling capability of a pebble bed reactor, the Liquid Salt Pebble Bed Reactor (LSPBR) is proposed. This is a high temperature pebble-bed reactor with a fuel design similar to existing HTRs, but using a liquid salt as a coolant. In this paper, the selection criteria for the liquid salt coolant are described. Based on its neutronic properties, LiF-BeF 2 (FLIBE) was selected for the LSPBR. Two designs of the LSPBR were considered: a cylindrical core and an annular core with a graphite inner reflector. Coupled neutronic-thermal hydraulic calculations were performed to obtain the steady state power distribution and the corresponding fuel temperatures. Finally, calculations were performed to investigate the decay heat removal capability in a protected loss-of-forced cooling accident. The maximum allowable power that can be produced with the LSPBR is hereby determined. (authors)

  6. Photolysis of phenyldiazonium salts with heteropolyacid anions in aqueous organic media

    International Nuclear Information System (INIS)

    Kupletskaya, N.B.; Tikhonova, T.N.; Sagalovich, V.P.; Kazitsyna, L.A.

    1983-01-01

    Photochemical properties of phenyl-diazonium salts of n-XC 6 H 4 N 2 + Y - general formula, where X=EtN, CH 3 O, Br and Y - =PMo 12 O 40 -3 , PW 12 O 40 -3 are investigated. It is shown that in water-dimethylformamide mixture heteropolyanions during irradiation give heteropoly blues, which reduce diazonium cation and can be photosensitizers of phenyldiazonium salts decomposition. Substituted derivatives of phenyldiazonium salts are proposed to use for estimation of oxidizability of heteropoly blues. Quantum yields of decompositon of these salts in DMFA and CH 3 CN are determined; it is established that the heteropolyanion does not affect photosensitivity of the diazonium cation

  7. Notes from the CKD kitchen: a variety of salt-free seasonings.

    Science.gov (United States)

    Sunwold, Duane

    2007-05-01

    One of the challenges with renal diets is how to make flavorful food while maintaining the low sodium restrictions. I have found three spice companies that have created seasoning mixtures using a mixture of herbs that do not add sodium or potassium chloride in their flavors. The recipe Ginger Roasted Chicken with an Asian Slaw is an example of how you can use three different salt-free seasonings to create a flavorful meal. I know from personal experience that I feel better, have more energy, and sleep better if I restrict my sodium intake. It is easy to stop using the salt shaker and replace the garlic salt and onion salt with garlic powder and onion powder in the kitchen. It takes a dedicated shopper to find the hidden sodium in foods. I find myself reading more and more labels in the aisles of the grocery store before I put any foods in my grocery cart. I also find myself studying the spice selections looking for salt-free seasonings. Mrs. Dash is great and very popular, but there must be more options for us patients with chronic kidney disease. After doing some culinary research, I was pleased to find a much larger section of salt-free seasonings than I expected. I have listed a few of the seasoning combinations below and a table of three major spice companies along with their contact information for purchasing their products.

  8. Power cycles with ammonia-water mixtures as working fluid

    Energy Technology Data Exchange (ETDEWEB)

    Thorin, Eva

    2000-05-01

    It is of great interest to improve the efficiency of power generating processes, i.e. to convert more of the energy in the heat source to power. This is favorable from an environmental point of view and can also be an economic advantage. To use an ammonia-water mixture instead of water as working fluid is a possible way to improve the efficiency of steam turbine processes. This thesis includes studies of power cycles with ammonia-water mixtures as working fluid utilizing different kinds of heat sources for power and heat generation. The thermophysical properties of the mixture are also studied. They play an important role in the calculations of the process performance and for the design of its components, such as heat exchangers. The studies concern thermodynamic simulations of processes in applications suitable for Swedish conditions. Available correlations for the thermophysical properties are compared and their influence on simulations and heat exchanger area predictions is investigated. Measurements of ammonia-water mixture viscosities using a vibrating wire viscometer are also described. The studies performed show that power cycles with ammonia-water mixtures as the working fluid are well suited for utilization of waste heat from industry and from gas engines. The ammonia-water power cycles can give up to 32 % more power in the industrial waste heat application and up to 54 % more power in the gas engine bottoming cycle application compared to a conventional Rankine steam cycle. However, ammonia-water power cycles in small direct-fired biomass-fueled cogeneration plants do not show better performance than a conventional Rankine steam cycle. When different correlations for the thermodynamic properties are used in simulations of a simple ammonia-water power cycle the difference in efficiency is not larger than 4 %, corresponding to about 1.3 percentage points. The differences in saturation properties between the correlations are, however, considerable at high

  9. Barium iodide and strontium iodide crystals and scintillators implementing the same

    Science.gov (United States)

    Payne, Stephen A.; Cherepy, Nerine; Pedrini, Christian; Burger, Arnold

    2016-09-13

    In one embodiment, a crystal includes at least one metal halide; and an activator dopant comprising ytterbium. In another general embodiment, a scintillator optic includes: at least one metal halide doped with a plurality of activators, the plurality of activators comprising: a first activator comprising europium, and a second activator comprising ytterbium. In yet another general embodiment, a method for manufacturing a crystal suitable for use in a scintillator includes mixing one or more salts with a source of at least one dopant activator comprising ytterbium; heating the mixture above a melting point of the salt(s); and cooling the heated mixture to a temperature below the melting point of the salts. Additional materials, systems, and methods are presented.

  10. Autoignited laminar lifted flames of methane/hydrogen mixtures in heated coflow air

    KAUST Repository

    Choi, Byungchul

    2012-04-01

    Autoignited lifted flame behavior in laminar jets of methane/hydrogen mixture fuels has been investigated experimentally in heated coflow air. Three regimes of autoignited lifted flames were identified depending on initial temperature and hydrogen to methane ratio. At relatively high initial temperature, addition of a small amount of hydrogen to methane improved ignition appreciably such that the liftoff height decreased significantly. In this hydrogen-assisted autoignition regime, the liftoff height increased with jet velocity, and the characteristic flow time - defined as the ratio of liftoff height to jet velocity - correlated well with the square of the adiabatic ignition delay time. At lower temperature, the autoignited lifted flame demonstrated a unique feature in that the liftoff height decreased with increasing jet velocity. Such behavior has never been observed in lifted laminar and turbulent jet flames. A transition regime existed between these two regimes at intermediate temperature. © 2011 The Combustion Institute.

  11. Density anomaly of charged hard spheres of different diameters in a mixture with core-softened model solvent. Monte Carlo simulation results

    Directory of Open Access Journals (Sweden)

    B. Hribar-Lee

    2013-01-01

    Full Text Available Very recently the effect of equisized charged hard sphere solutes in a mixture with core-softened fluid model on the structural and thermodynamic anomalies of the system has been explored in detail by using Monte Carlo simulations and integral equations theory (J. Chem. Phys., Vol. 137, 244502 (2012. Our objective of the present short work is to complement this study by considering univalent ions of unequal diameters in a mixture with the same soft-core fluid model. Specifically, we are interested in the analysis of changes of the temperature of maximum density (TMD lines with ion concentration for three model salt solutes, namely sodium chloride, potassium chloride and rubidium chloride models. We resort to Monte Carlo simulations for this purpose. Our discussion also involves the dependences of the pair contribution to excess entropy and of constant volume heat capacity on the temperature of maximum density line. Some examples of the microscopic structure of mixtures in question in terms of pair distributions functions are given in addition.

  12. Evaluation of a molten salt electrolyte for direct reduction of actinides

    International Nuclear Information System (INIS)

    Alangi, Nagaraj; Anupama, P.; Mukherjee, Jaya; Gantayet, L.M.

    2011-01-01

    Use of molten fluoride salt towards direct reduction of actinides and lanthanides by molten salt electrolysis is of interest for problems related to metallic nuclear fuels. The performance of the molten salt bath is dependent on the pre-conditioning of the molten salt. A procedure for conditioning of LiF-BaF 2 salt mixtures has been developed based on systematic electrochemical experimental investigations using voltammetry with graphite and platinum as electrode materials. We utilize the linear sweep voltammetry (LSV) as a diagnostic tool for assessment of the electrolyte condition. This technique is fast and offers the advantage of in-situ/online measurement eliminating the need for sampling. The conditioning procedure that was developed was tried on LiF-CaF 2

  13. Fundamentals of molten-salt thermal technology

    International Nuclear Information System (INIS)

    1980-08-01

    This book has been published by the Society of Molten-Salt Thermal Technology to publish a part of the achievement of its members. This book is composed of seven chapters. The chapter 1 is Introduction. The chapter 2 explains the physical properties of molten salts, such as thermal behavior, surface tension, viscosity, electrical conductivity and others. The chapter 3 presents the compatibility with construction materials. Corrosion in molten salts, the electrochemical behavior of fluoride ions on carbon electrodes in fluoride melts, the behaviors of hastelloy N and metals in melts are items of this chapter. The equipments and instruments for molten salts are described in chapter 4. The heat transfer in molten salts is discussed in chapter 5. The chapter 6 explains the application of molten salt technology. The molten salt technology can be applied not only to thermal engineering and energy engineering but also to chemical and nuclear engineerings, and the technical fundamentals, current development status, technical problems and the perspective for the future are outlined. The chapter 7 is the summary of this book. The commercialization of molten salt power reactors is discussed at the end of this book. (Kato, T.)

  14. Trial storage of high-level waste in the Asse II salt mine

    International Nuclear Information System (INIS)

    1984-01-01

    This report covers a second phase of the work performed by GSF and KfK in the Asse II salt mine, with a view to disposal of radioactive waste in salt formations. New items of the research were geophysical investigations of the behaviour of heated salt and preparation of a trial storage in the Asse II salt mine

  15. Salt Removal from the Uranium Deposits of Electrorefiner

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, S. W.; Park, K. M.; Lee, S. J.; Park, S. B.; Cho, C. H.; Choi, S. Y.; Lee, H. S.; Kim, J. G. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2010-10-15

    Electrorefining is a key step in pyroprocessing. The electrorefining process is generally composed of two recovery steps. The deposit of uranium onto a solid cathode and the recovery of the remaining uranium and TRU elements simultaneously by a liquid cadmium cathode. The solid cathode processing is necessary to separate the salt from the cathode since the uranium deposit in a solid cathode contains electrolyte salt. In the liquid cathode, cadmium metal should be removed to recover actinide product. A physical separation process, such as distillation separation, is more attractive than a chemical or dissolution process because physical processes generate much less secondary process. Distillation process was employed for the cathode processing due to the advantages of minimal generation of secondary waste, compact unit process, simple and low cost equipment. The basis for vacuum distillation separation is the difference in vapor pressures between salt and uranium. A solid cathode deposit is heated in a heating region and salt vaporizes, while non volatile uranium remains behind. It is very important to increase the throughput of the salt separation system due to the high uranium content of spent nuclear fuel and high salt fraction of uranium dendrites. The evaporation rate of the LiCl-KCl eutectic salt in vacuum distiller is not so high to come up with the generation capacity of uranium dendrites in electro-refiner. Therefore, wide evaporation area or high distillation temperature is necessary for the successful salt separation. In this study, the solid-liquid separation was proposed prior to distillation of salt and a feasibility of the separation of the liquid salt by a metallic wire mesh (sieve) was tested for the reduction of the burden of the following vacuum distillation process

  16. Salt Removal from the Uranium Deposits of Electrorefiner

    International Nuclear Information System (INIS)

    Kwon, S. W.; Park, K. M.; Lee, S. J.; Park, S. B.; Cho, C. H.; Choi, S. Y.; Lee, H. S.; Kim, J. G.

    2010-01-01

    Electrorefining is a key step in pyroprocessing. The electrorefining process is generally composed of two recovery steps. The deposit of uranium onto a solid cathode and the recovery of the remaining uranium and TRU elements simultaneously by a liquid cadmium cathode. The solid cathode processing is necessary to separate the salt from the cathode since the uranium deposit in a solid cathode contains electrolyte salt. In the liquid cathode, cadmium metal should be removed to recover actinide product. A physical separation process, such as distillation separation, is more attractive than a chemical or dissolution process because physical processes generate much less secondary process. Distillation process was employed for the cathode processing due to the advantages of minimal generation of secondary waste, compact unit process, simple and low cost equipment. The basis for vacuum distillation separation is the difference in vapor pressures between salt and uranium. A solid cathode deposit is heated in a heating region and salt vaporizes, while non volatile uranium remains behind. It is very important to increase the throughput of the salt separation system due to the high uranium content of spent nuclear fuel and high salt fraction of uranium dendrites. The evaporation rate of the LiCl-KCl eutectic salt in vacuum distiller is not so high to come up with the generation capacity of uranium dendrites in electro-refiner. Therefore, wide evaporation area or high distillation temperature is necessary for the successful salt separation. In this study, the solid-liquid separation was proposed prior to distillation of salt and a feasibility of the separation of the liquid salt by a metallic wire mesh (sieve) was tested for the reduction of the burden of the following vacuum distillation process

  17. HEAT TRANSFER ANALYSIS FOR FIXED CST AND RF COLUMNS

    International Nuclear Information System (INIS)

    Lee, S

    2007-01-01

    In support of a small column ion exchange (SCIX) process for the Savannah River Site waste processing program, transient and steady state two-dimensional heat transfer models have been constructed for columns loaded with cesium-saturated crystalline silicotitanate (CST) or spherical Resorcinol-Formaldehyde (RF) beads and 6 molar sodium tank waste supernate. Radiolytic decay of sorbed cesium results in heat generation within the columns. The models consider conductive heat transfer only with no convective cooling and no process flow within the columns (assumed column geometry: 27.375 in ID with a 6.625 in OD center-line cooling pipe). Heat transfer at the column walls was assumed to occur by natural convection cooling with 35 C air. A number of modeling calculations were performed using this computational heat transfer approach. Minimal additional calculations were also conducted to predict temperature increases expected for salt solution processed through columns of various heights at the slowest expected operational flow rate of 5 gpm. Results for the bounding model with no process flow and no active cooling indicate that the time required to reach the boiling point of ∼130 C for a CST-salt solution mixture containing 257 Ci/liter of Cs-137 heat source (maximum expected loading for SCIX applications) at 35 C initial temperature is about 6 days. Modeling results for a column actively cooled with external wall jackets and the internal coolant pipe (inlet coolant water temperature: 25 C) indicate that the CST column can be maintained non-boiling under these conditions indefinitely. The results also show that the maximum temperature of an RF-salt solution column containing 133 Ci/liter of Cs-137 (maximum expected loading) will never reach boiling under any conditions (maximum predicted temperature without cooling: 88 C). The results indicate that a 6-in cooling pipe at the center of the column provides the most effective cooling mechanism for reducing the maximum

  18. Pyrophoric potential of plutonium-containing salt residues

    International Nuclear Information System (INIS)

    Haschke, John M.; Fauske, Hans K.; Phillips, Alan G.

    2000-01-01

    Ignition temperatures of plutonium and the pyrophoric potential of plutonium-containing pyrochemical salt residues are determined from differential thermal analysis (DTA) data and by modeling of thermal behavior. Exotherms observed at 90-200 deg. C for about 30% of the residues are attributed to reaction of plutonium with water from decomposition of hydrated salts. Exotherms observed near 300 deg. C are consistent with ignition of metal particles embedded in the salt. Onset of self-sustained reaction at temperatures as low as 90 deg. C is not precluded by these results and heat-balance models are developed and applied in predicting the static ignition point of massive metal and in evaluating salt pyrophoricity. Results show that ambient temperatures in excess of 200 deg. C are required for ignition of salt residues and that the most reactive salts cannot ignite at low temperatures because diffusion of oxidant to embedded metal is limited by low salt porosity

  19. Heat transfer, condensation and fog formation in crossflow plastic heat exchangers

    NARCIS (Netherlands)

    Brouwers, H.J.H.

    1996-01-01

    In this paper heat transfer of air-water-vapour mixtures in plastic crossflow heat exchangers is studied theoretically and experimentally. First, a model for heat transfer without condensation is derived, resulting in a set of classical differential equations. Subsequently, heat transfer with wall

  20. Development of an integrated crucible for the salt separation

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, S. W.; Park, K. M.; Jeong, J. H.; Lee, H. S.; Kim, J. G. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-05-15

    Pyroprocessing has been developed for the recovery of actinide elements from spent fuel due to its advantages. Electrorefining is a key step in pyroprocessing. The electrorefining process is generally composed of two recovery steps. The deposit of uranium onto a solid cathode and the recovery of the remaining uranium and TRU elements simultaneously by a liquid cadmium cathode. The solid cathode processing is necessary to separate the salt from the cathode since the uranium deposit in a solid cathode contains electrolyte salt. A physical separation process, such as distillation separation, is more attractive than a chemical or dissolution process because physical processes generate much less secondary process. Distillation process was employed for the cathode process sing due to the advantages of minimal generation of secondary waste, compact unit process, simple and low cost equipment. The basis for vacuum distillation separation is the difference in vapor pressures between salt and uranium. A solid cathode deposit is heated in a heating region and salt vaporizes, while non volatile uranium remains behind. It is very important to increase the throughput of the salt separation system due to the high uranium content of spent nuclear fuel and high salt fraction of uranium dendrites. The evaporation rate of the LiCl-KCl eutectic salt in vacuum distiller is not so high to come up with the generation capacity of uranium dendrites in electro-refiner. Therefore, wide evaporation area or high distillation temperature is necessary for the successful salt separation. In this study, the integrated salt separation system was developed to increase the throughput of the salt removal process by the separation of the liquid salt prior to the distillation of the LiCl-KCl eutectic salt from the uranium deposits

  1. Characterization of bioactive mixtures oligogalacturonidos

    International Nuclear Information System (INIS)

    Mederos Torres, Yuliem; Hormaza Montenegro, Josefa; Reynaldo Escobar, Ines; Montesino Sequi, Raquel

    2011-01-01

    Oligogalacturonides are pectic oligosaccharides composed of lineal chains of D-galacturonic acid, linked by α (1-4) glycosidic linkage. Oligogalacturonides' mixtures are obtained by enzymatic hydrolysis of pectins of diverse vegetal species. These oligosaccharides unchain a diverse biological activity in plants, which depends mainly on their polymerization degrees. The National Institute of Agricultural Science has a patent technology at national scale that lets to obtain a mixture of oligogalacturonides with different polymerization degree. In this work is presented the characterization of oligogalacturonides by spectrophotometric analysis attending to their uronic acids, reductor sugars, and neutral sugars content. Also the chromatographic profile of samples in study is obtained, using the derivatization with 2-aminobenzamide label and the separation by high pH anion exchange chromatography. It is achieved the separation of at least eight galacturonic acid oligomers with a variable degree of polymerization. On the other hand, the analysis by Fourier transform-infrared spectroscopy (FT-IR) showed that mixtures were composed by galacturonic acid salts. Results indicated that starting from two pectic acids with different characteristics, mixtures of oligogalacturonides of similar chemical composition could be obtained, but they differ in the proportion that they are presented

  2. Experimental investigation of a molten salt thermocline storage tank

    Science.gov (United States)

    Yang, Xiaoping; Yang, Xiaoxi; Qin, Frank G. F.; Jiang, Runhua

    2016-07-01

    Thermal energy storage is considered as an important subsystem for solar thermal power stations. Investigations into thermocline storage tanks have mainly focused on numerical simulations because conducting high-temperature experiments is difficult. In this paper, an experimental study of the heat transfer characteristics of a molten salt thermocline storage tank was conducted by using high-temperature molten salt as the heat transfer fluid and ceramic particle as the filler material. This experimental study can verify the effectiveness of numerical simulation results and provide reference for engineering design. Temperature distribution and thermal storage capacity during the charging process were obtained. A temperature gradient was observed during the charging process. The temperature change tendency showed that thermocline thickness increased continuously with charging time. The slope of the thermal storage capacity decreased gradually with the increase in time. The low-cost filler material can replace the expensive molten salt to achieve thermal storage purposes and help to maintain the ideal gravity flow or piston flow of molten salt fluid.

  3. Thermal transport properties of helium, helium--air mixtures, water, and tubing steel used in the CACHE program to compute HTGR auxiliary heat exchanger performance

    International Nuclear Information System (INIS)

    Tallackson, J.R.

    1976-02-01

    A description is presented of the thermal transport properties of the materials involved in digital computer calculations of heat transfer rates by the core auxiliary heat exchangers in large HTGR nuclear steam supply systems. These materials are pure helium, mixtures of helium with common gases having molecular weights in the range of 28 to 32, alloy steel tubing, and water. For use in programmed computations the viscosity, thermal conductivity, and specific heat are represented primarily by equations augmented by curves and tabulations. Materials supporting the development and selection of the property equations are included

  4. Electrochemical studies on plutonium in molten salts

    International Nuclear Information System (INIS)

    Bourges, G.; Lambertin, D.; Rochefort, S.; Delpech, S.; Picard, G.

    2007-01-01

    Electrochemical studies on plutonium have been supporting the development of pyrochemical processes involving plutonium at CEA. The electrochemical properties of plutonium have been studied in molten salts - ternary eutectic mixture NaCl-KCl-BaCl 2 , equimolar mixture NaCl-KCl and pure CaCl 2 - and in liquid gallium at 1073 K. The formal, or apparent, standard potential of Pu(III)/Pu redox couple in eutectic mixture of NaCl-KCl-BaCl 2 at 1073 K determined by potentiometry is equal to -2.56 V (versus Cl 2 , 1 atm/Cl - reference electrode). In NaCl-KCl eutectic mixture and in pure CaCl 2 the formal standard potentials deduced from cyclic voltammetry are respectively -2.54 V and -2.51 V. These potentials led to the calculation of the activity coefficients of Pu(III) in the molten salts. Chronoamperometry on plutonium in liquid gallium using molten chlorides - CaCl 2 and equimolar NaCl/KCl - led to the determination of the activity coefficient of Pu in liquid Ga, log γ = -7.3. This new data is a key parameter to assess the thermodynamic feasibility of a process using gallium as solvent metal. By comparing gallium with other solvent metals - cadmium, bismuth, aluminum - gallium appears to be, with aluminum, more favorable for the selectivity of the separation at 1073 K of plutonium from cerium. In fact, compared with a solid tungsten electrode, none of these solvent liquid metals is a real asset for the selectivity of the separation. The role of a solvent liquid metal is mainly to trap the elements

  5. Methods for microwave heat treatment of manufactured components

    Science.gov (United States)

    Ripley, Edward B.

    2010-08-03

    An apparatus for heat treating manufactured components using microwave energy and microwave susceptor material. Heat treating medium such as eutectic salts may be employed. A fluidized bed introduces process gases which may include carburizing or nitriding gases. The process may be operated in a batch mode or continuous process mode. A microwave heating probe may be used to restart a frozen eutectic salt bath.

  6. Evaluation of dried salted pork ham and neck quality

    Directory of Open Access Journals (Sweden)

    Simona Kunová

    2015-12-01

    Full Text Available The aim of the present study was analysed chemical and physical parameters of dried salted pork ham and neck. Dry-cured meat is a traditional dry-cured product obtained after 12 - 24 months of ripening under controlled environmental conditions.  Ham and neck was salted by nitrite salt mixture during 1 week. Salted meat products were dried at 4 °C and relative humidity 85% 1 week after salting. The quality of dry-cured meat is influenced by the processing technology, for example length of drying and ripening period. The average moisture of dried salted pork ham was 63.77% and dried salted pork neck was 59.26%. The protein content was 24.87% in dried salted pork ham and significantly lower (20.51% in dried salted pork neck. The value of intramuscular fat in dried salted pork ham was 4.97% and 14.40% in dried salted pork neck. The salt content was 5.39% in dried salted pork ham and 4.83% in dried salted pork neck. The cholesterol content was 1.36 g.kg-1 in dried salted pork ham and significant lower in dried salted pork neck (0.60 g.kg-1. The value of lightness was 44.36 CIE L* in dried salted pork ham and significantly lower in dried salted pork neck (40.74 CIE L*. The pH value was 5.84 in dried salted pork ham and 5.80 in dried salted pork neck. The shear work was 9.99 kg.s-1 in dried salted pork ham and 6.34 in dried salted pork neck. The value of water activity (aw was 0.929 in dried salted pork ham and similar 0.921 in dried salted pork neck. 

  7. Liquid salt environment stress-rupture testing

    Science.gov (United States)

    Ren, Weiju; Holcomb, David E.; Muralidharan, Govindarajan; Wilson, Dane F.

    2016-03-22

    Disclosed herein are systems, devices and methods for stress-rupture testing selected materials within a high-temperature liquid salt environment. Exemplary testing systems include a load train for holding a test specimen within a heated inert gas vessel. A thermal break included in the load train can thermally insulate a load cell positioned along the load train within the inert gas vessel. The test specimen can include a cylindrical gage portion having an internal void filled with a molten salt during stress-rupture testing. The gage portion can have an inner surface area to volume ratio of greater than 20 to maximize the corrosive effect of the molten salt on the specimen material during testing. Also disclosed are methods of making a salt ingot for placement within the test specimen.

  8. Pyrolytic conversion of plastic and rubber waste to hydrocarbons with basic salt catalysts

    Science.gov (United States)

    Wingfield, Jr., Robert C.; Braslaw, Jacob; Gealer, Roy L.

    1985-01-01

    The invention relates to a process for improving the pyrolytic conversion of waste selected from rubber and plastic to low molecular weight olefinic materials by employing basis salt catalysts in the waste mixture. The salts comprise alkali or alkaline earth compounds, particularly sodium carbonate, in an amount of greater than about 1 weight percent based on the waste feed.

  9. Field experiments in salt formations

    International Nuclear Information System (INIS)

    Kuehn, K.

    1986-01-01

    Field experiments in salt formations started as early as 1965 with Project Salt Vault in the Lyons Mine, Kansas, U.S.A., and with the purchase of the Asse salt mine by the German Federal Government. Underground tests concentrated on the heat dissipation around buried high-level radioactive wastes and the geomechanical consequences of their disposal. Near-field investigations cover the properties of water and gas release, radiolysis and corrosion. Further objectives of field experiments are the development and underground testing of a handling system for high-level wastes. The performance of an underground test disposal for such wastes is not only considered to be necessary for technical and scientific reasons but also for improving public acceptance of the concept of radioactive waste disposal. (author)

  10. Candidate molten salt investigation for an accelerator driven subcritical core

    International Nuclear Information System (INIS)

    Sooby, E.; Baty, A.; Beneš, O.; McIntyre, P.; Pogue, N.; Salanne, M.; Sattarov, A.

    2013-01-01

    Highlights: • Developing accelerator driven subcritical fission to destroy transuranics in SNF. • The core is a vessel containing a molten mixture of NaCl and transuranic chlorides. • Molecular dynamics used to calculate the thermophysical properties of the salt. • Density and molecular structure for actinide salts reported here. • The neutronics of ADS fission in molten salt are presented. -- Abstract: We report a design for accelerator-driven subcritical fission in a molten salt core (ADSMS) that utilizes a fuel salt composed of NaCl and transuranic (TRU) chlorides. The ADSMS core is designed for fast neutronics (28% of neutrons >1 MeV) to optimize TRU destruction. The choice of a NaCl-based salt offers benefits for corrosion, operating temperature, and actinide solubility as compared with LiF-based fuel salts. A molecular dynamics (MD) code has been used to estimate properties of the molten salt system which are important for ADSMS design but have never been measured experimentally. Results from the MD studies are reported. Experimental measurements of fuel salt properties and studies of corrosion and radiation damage on candidate metals for the core vessel are anticipated

  11. Candidate molten salt investigation for an accelerator driven subcritical core

    Energy Technology Data Exchange (ETDEWEB)

    Sooby, E., E-mail: soobyes@tamu.edu [Texas A and M University, Accelerator Research Laboratory, 3380 University Dr. East, College Station, TX 77845 (United States); Baty, A. [Texas A and M University, Accelerator Research Laboratory, 3380 University Dr. East, College Station, TX 77845 (United States); Beneš, O. [European Commission, DG Joint Research Centre, Institute for Transuranium Elements, P.O. Box 2340, 76125 Karlsruhe (Germany); McIntyre, P.; Pogue, N. [Texas A and M University, Accelerator Research Laboratory, 3380 University Dr. East, College Station, TX 77845 (United States); Salanne, M. [Université Pierre et Marie Curie, CNRS, Laboratoire PECSA, F-75005 Paris (France); Sattarov, A. [Texas A and M University, Accelerator Research Laboratory, 3380 University Dr. East, College Station, TX 77845 (United States)

    2013-09-15

    Highlights: • Developing accelerator driven subcritical fission to destroy transuranics in SNF. • The core is a vessel containing a molten mixture of NaCl and transuranic chlorides. • Molecular dynamics used to calculate the thermophysical properties of the salt. • Density and molecular structure for actinide salts reported here. • The neutronics of ADS fission in molten salt are presented. -- Abstract: We report a design for accelerator-driven subcritical fission in a molten salt core (ADSMS) that utilizes a fuel salt composed of NaCl and transuranic (TRU) chlorides. The ADSMS core is designed for fast neutronics (28% of neutrons >1 MeV) to optimize TRU destruction. The choice of a NaCl-based salt offers benefits for corrosion, operating temperature, and actinide solubility as compared with LiF-based fuel salts. A molecular dynamics (MD) code has been used to estimate properties of the molten salt system which are important for ADSMS design but have never been measured experimentally. Results from the MD studies are reported. Experimental measurements of fuel salt properties and studies of corrosion and radiation damage on candidate metals for the core vessel are anticipated.

  12. Molten salt extractive distillation process for zirconium-hafnium separation

    International Nuclear Information System (INIS)

    McLaughlin, D.F.; Stoltz, R.A.

    1989-01-01

    This patent describes an improvement in a process for zirconium-hafnium separation. It utilizes an extractive distillation column with a mixture of zirconium and hafnium tetrachlorides introduced into a distillation column having a top and bottom with hafnium enriched overheads taken from the top of the column and a molten salt solvent circulated through the column to provide a liquid phase, and with molten salt solvent containing zirconium chloride being taken from the bottom of the distillation column. The improvements comprising: utilizing a molten salt solvent consisting principally of lithium chloride and at least one of sodium, potassium, magnesium and calcium chlorides; stripping of the zirconium chloride taken from the bottom of the distillation column by electrochemically reducing zirconium from the molten salt solvent; and utilizing a pressurized reflux condenser on the top of the column to add the hafnium chloride enriched overheads to the molten salt solvent previously stripped of zirconium chloride

  13. Levels of multiple supplements or nitrogen salt for beef heifers in pasture during the dry season

    Directory of Open Access Journals (Sweden)

    Ériton Egidio Lisboa Valente

    2011-09-01

    Full Text Available The study assessed performance, microbial protein synthesis, intake and digestibility of nutrients by beef heifers receiving levels of multiple supplements or nitrogen salt, in a self-controlled intake, on pasture, during the dry season. Thirty-five beef heifers, from 6 to 9 months of age and average initial body weight of 203.4 + 4.5 kg, were used. Study factors were: control - mineral mixture; nitrogen salt - 50% of urea + mineral mixture, at proportion of 1:1, and 50% of corn (75% of crude protein; levels of multiple supplementation - multiple supplements with different percentages of intake controller mixture (urea + mineral mixture, at the proportion of 1:1, corn and soybean meal (45% of crude protein. Supplement consumptions observed were: 115, 173, 572 and 1214 g/animal/day for animals fed on nitrogen salt, low, medium and high levels of multiple supplement, respectively. Supplemented animals had greater average daily gain, evidencing the positive linear effect of the levels of multiple supplementation on average daily gain. Overall, there were no significant differences between average daily gain of animals fed on multiple supplements or nitrogen salt. Supplementation increased the intake and digestibility of nutrients, except for digestibility of neutral detergent fiber, although the intake of digested neutral detergent fiber increased. Supplementation increased the production of microbial nitrogen as well as nitrogen losses in urine, although the quantity of nitrogen assimilated by bacteria, proportionally to intake, was higher. Supplementation improves nutritional parameters and weight gain.

  14. Kinematics and dynamics of salt movement driven by sub-salt normal faulting and supra-salt sediment accumulation - combined analogue experiments and analytical calculations

    Science.gov (United States)

    Warsitzka, Michael; Kukowski, Nina; Kley, Jonas

    2017-04-01

    In extensional sedimentary basins, the movement of ductile salt is mainly controlled by the vertical displacement of the salt layer, differential loading due to syn-kinematic deposition, and tectonic shearing at the top and the base of the salt layer. During basement normal faulting, salt either tends to flow downward to the basin centre driven by its own weight or it is squeezed upward due to differential loading. In analogue experiments and analytical models, we address the interplay between normal faulting of the sub-salt basement, compaction and density inversion of the supra-salt cover and the kinematic response of the ductile salt layer. The analogue experiments consist of a ductile substratum (silicone putty) beneath a denser cover layer (sand mixture). Both layers are displaced by normal faults mimicked through a downward moving block within the rigid base of the experimental apparatus and the resulting flow patterns in the ductile layer are monitored and analysed. In the computational models using an analytical approximative solution of the Navier-Stokes equation, the steady-state flow velocity in an idealized natural salt layer is calculated in order to evaluate how flow patterns observed in the analogue experiments can be translated to nature. The analytical calculations provide estimations of the prevailing direction and velocity of salt flow above a sub-salt normal fault. The results of both modelling approaches show that under most geological conditions salt moves downwards to the hanging wall side as long as vertical offset and compaction of the cover layer are small. As soon as an effective average density of the cover is exceeded, the direction of the flow velocity reverses and the viscous material is squeezed towards the elevated footwall side. The analytical models reveal that upward flow occurs even if the average density of the overburden does not exceed the density of salt. By testing various scenarios with different layer thicknesses

  15. Modeling Solute Thermokinetics in LiCI-KCI Molten Salt for Nuclear Waste Separation

    Energy Technology Data Exchange (ETDEWEB)

    Morgan, Dane; Eapen, Jacob

    2013-10-01

    Recovery of actinides is an integral part of a closed nuclear fuel cycle. Pyrometallurgical nuclear fuel recycling processes have been developed in the past for recovering actinides from spent metallic and nitride fuels. The process is essentially to dissolve the spent fuel in a molten salt and then extract just the actinides for reuse in a reactor. Extraction is typically done through electrorefining, which involves electrochemical reduction of the dissolved actinides and plating onto a cathode. Knowledge of a number of basic thermokinetic properties of salts and salt-fuel mixtures is necessary for optimizing present and developing new approaches for pyrometallurgical waste processing. The properties of salt-fuel mixtures are presently being studied, but there are so many solutes and varying concentrations that direct experimental investigation is prohibitively time consuming and expensive (particularly for radioactive elements like Pu). Therefore, there is a need to reduce the number of required experiments through modeling of salt and salt-fuel mixture properties. This project will develop first-principles-based molecular modeling and simulation approaches to predict fundamental thermokinetic properties of dissolved actinides and fission products in molten salts. The focus of the proposed work is on property changes with higher concentrations (up to 5 mol%) of dissolved fuel components, where there is still very limited experimental data. The properties predicted with the modeling will be density, which is used to assess the amount of dissolved material in the salt; diffusion coefficients, which can control rates of material transport during separation; and solute activity, which determines total solubility and reduction potentials used during electrorefining. The work will focus on La, Sr, and U, which are chosen to include the important distinct categories of lanthanides, alkali earths, and actinides, respectively. Studies will be performed using LiCl-KCl salt

  16. Assessment of Candidate Molten Salt Coolants for the Advanced High Temperature Reactor (AHTR)

    Energy Technology Data Exchange (ETDEWEB)

    Williams, D.F.

    2006-03-24

    The Advanced High-Temperature Reactor (AHTR) is a novel reactor design that utilizes the graphite-matrix high-temperature fuel of helium-cooled reactors, but provides cooling with a high-temperature fluoride salt. For applications at temperatures greater than 900 C the AHTR is also referred to as a Liquid-Salt-Cooled Very High-Temperature Reactor (LS-VHTR). This report provides an assessment of candidate salts proposed as the primary coolant for the AHTR based upon a review of physical properties, nuclear properties, and chemical factors. The physical properties most relevant for coolant service were reviewed. Key chemical factors that influence material compatibility were also analyzed for the purpose of screening salt candidates. Some simple screening factors related to the nuclear properties of salts were also developed. The moderating ratio and neutron-absorption cross-section were compiled for each salt. The short-lived activation products, long-lived transmutation activity, and reactivity coefficients associated with various salt candidates were estimated using a computational model. Table A presents a summary of the properties of the candidate coolant salts. Certain factors in this table, such as melting point, vapor pressure, and nuclear properties, can be viewed as stand-alone parameters for screening candidates. Heat-transfer properties are considered as a group in Sect. 3 in order to evaluate the combined effects of various factors. In the course of this review, it became apparent that the state of the properties database was strong in some areas and weak in others. A qualitative map of the state of the database and predictive capabilities is given in Table B. It is apparent that the property of thermal conductivity has the greatest uncertainty and is the most difficult to measure. The database, with respect to heat capacity, can be improved with modern instruments and modest effort. In general, ''lighter'' (low-Z) salts tend to

  17. Salt pill design and fabrication for adiabatic demagnetization refrigerators

    Science.gov (United States)

    Shirron, Peter J.; McCammon, Dan

    2014-07-01

    The performance of an adiabatic demagnetization refrigerator (ADR) is critically dependent on the design and construction of the salt pills that produce cooling. In most cases, the primary goal is to obtain the largest cooling capacity at the low temperature end of the operating range. The realizable cooling capacity depends on a number of factors, including refrigerant mass, and how efficiently it absorbs heat from the various instrument loads. The design and optimization of “salt pills” for ADR systems depend not only on the mechanical, chemical and thermal properties of the refrigerant, but also on the range of heat fluxes that the salt pill must accommodate. Despite the fairly wide variety of refrigerants available, those used at very low temperature tend to be hydrated salts that require a dedicated thermal bus and must be hermetically sealed, while those used at higher temperature - greater than about 0.5 K - tend to be single- or poly-crystals that have much simpler requirements for thermal and mechanical packaging. This paper presents a summary of strategies and techniques for designing, optimizing and fabricating salt pills for both low- and mid-temperature applications.

  18. Salt Pill Design and Fabrication for Adiabatic Demagnetization Refrigerators

    Science.gov (United States)

    Shirron, Peter J.; Mccammon, Dan

    2014-01-01

    The performance of an adiabatic demagnetization refrigerator (ADR) is critically dependent on the design and construction of the salt pills that produce cooling. In most cases, the primary goal is to obtain the largest cooling capacity at the low temperature end of the operating range. The realizable cooling capacity depends on a number of factors, including refrigerant mass, and how efficiently it absorbs heat from the various instrument loads. The design and optimization of "salt pills" for ADR systems depend not only on the mechanical, chemical and thermal properties of the refrigerant, but also on the range of heat fluxes that the salt pill must accommodate. Despite the fairly wide variety of refrigerants available, those used at very low temperature tend to be hydrated salts that require a dedicated thermal bus and must be hermetically sealed, while those used at higher temperature - greater than about 0.5 K - tend to be single-­- or poly-­-crystals that have much simpler requirements for thermal and mechanical packaging. This paper presents a summary of strategies and techniques for designing, optimizing and fabricating salt pills for both low-­- and mid-­-temperature applications.

  19. Implications of thermophysical properties in geoscientific investigations for the disposal of nuclear waste in a salt dome

    International Nuclear Information System (INIS)

    Kopietz, J.

    1984-01-01

    Examples from laboratory and in-situ experiments on the thermomechanical behavior of rock salt are used to discuss the implications of thermophysical properties for disposal of nuclear waste in a salt dome. The implications of thermophysical properties are also illustrated by a brief review of geothermal investigations made within the scope of geological and hydrogeological exploration of the Gorleben salt dome in northern Germany. High-resolution temperature measurements performed in shallow and deep boreholes drilled for the exploration of the Gorleben salt dome, together with thermal conductivity measurements on representative core samples from these boreholes, are contributing to a determination of groundwater flow in the covering layers of the salt dome and to the identification of zones of impurity (eg carnallitite layers) within the salt structure. Data from these experiments are used for setting up numerical models for heat propagation around a prospective waste repository in the Gorleben salt dome. Long-term creep experiments on samples of rock salt at up to 400 deg C are used to derive constitutive relations on the creep behavior of salt. In-situ heating experiments are being conducted in the Asse salt mine to determine the effect of a heat source on the integrity of the surrounding salt rock. (author)

  20. Compact heat and mass exchangers of the plate fin type in thermal sorption systems: Application in an absorption heat pump with the working pair CH3OH-LiBr/ZnBr2

    Science.gov (United States)

    Becker, Harry

    The possible application of Compact Heat and Mass Exchangers (CHME) in a gas fired Absorption Heat Pump (AHP) for domestic heating is studied. The above mentioned heat and mass exchangers are of the plate type. The space between the parallel and plain plates is filled up with corrugated plates of a certain height. The plain and finned plates are stacked and welded together. This gives a heat and mass exchanger which is very compact, expressed by a high area density (m2/m3). This leads to heat and mass transfer processes with small temperature and concentration differences. For testing purposes a pilot plant was built using the above type of components in order to test their heat and/or mass transfer performance. Only the generator is of the Shell And Tube (SAT) type. As the working pair, CH3OH - LiBr/ ZnBr2 was chosen, with the alcohol as the solvent and the salt mixture as the absorbent. This leads to sub atmospheric working pressures with only solvent in the vapor phase. Three series of experiments have been carried out, during which the input parameters were varied over a certain range. It is concluded that the plate fin CHMES are very suitable for application in an AHP for domestic heating purposes.

  1. The effect of non-condensable gas on direct contact condensation of steam/air mixture

    International Nuclear Information System (INIS)

    Lee, H. C.; Park, S. K.; Kim, M. H.

    1998-01-01

    To investigate the effects of noncondensable gas on the direct contact film condensation of vapor mixture, a series of experiments has been carried out. The rectangular duct inclined 87.deg. to the horizontal plane was used for this experiment. The average heat transfer coefficient of the steam-air mixture was obtained at the atmospheric pressure with four main parameters, air-mass fraction, vapor velocity, film Reynolds number,and the degree of water film subcooling having an influence on the condensation heat transfer coefficient. With the analysis on 88 cases of experiments, a correlation of the average Nusselt number for direct contact film condensation of steam-air mixture at a vertical wall proposed as functions of film Reynolds number, mixture Reynolds number, air mass fraction, and Jacob number. The average heat transfer coefficient for steam-air mixture condensation decreased significantly while air mass fraction increases with the same inlet mixture velocity and inlet film temperature. The average heat transfer coefficients also decreased with the degree of film subcooling increasing and were scarcely affected by film Reynolds number below the mixture Reynolds number about 30,000

  2. Plutonium and americium separation from salts

    International Nuclear Information System (INIS)

    Hagan, P.G.; Miner, F.J.

    1976-01-01

    Salts or materials containing plutonium and americium are dissolved in hydrochloric acid, heated, and contacted with an alkali metal carbonate solution to precipitate plutonium and americium carbonates which are thereafter readily separable from the solution

  3. Engineering Evaluation of Proposed Alternative Salt Transfer Method for the Molten Salt Reactor Experiment for the Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    Carlberg, Jon A.; Roberts, Kenneth T.; Kollie, Thomas G.; Little, Leslie E.; Brady, Sherman D.

    2009-01-01

    - There are likely multiple phases of material in the salt (metal or compound), either suspended through the salt matrix, layered in the bottom of the tank, or both. These phases may contribute to plugging during any planned transfer. There is not enough data to know for sure. (4) Probe heat trace - The alternate transfer method does not include heat tracing of the bottom of the probe. There is a concern that this may cool the salt and other phases of materials present enough to block the flow of salt. (5) Stress-corrosion cracking - Additionally, there is a concern regarding moisture that may have been introduced into the tanks. Due to time constraints, this concern was not validated. However, if moisture was introduced into the tanks and not removed during heating the tanks before HF and F2 sparging, there would be an additional concern regarding the potential for stress-corrosion cracking of the tank walls.

  4. Spectral identification and quantification of salts in the Atacama Desert

    Science.gov (United States)

    Harris, J. K.; Cousins, C. R.; Claire, M. W.

    2016-10-01

    Salt minerals are an important natural resource. The ability to quickly and remotely identify and quantify salt deposits and salt contaminated soils and sands is therefore a priority goal for the various industries and agencies that utilise salts. The advent of global hyperspectral imagery from instruments such as Hyperion on NASA's Earth-Observing 1 satellite has opened up a new source of data that can potentially be used for just this task. This study aims to assess the ability of Visible and Near Infrared (VNIR) spectroscopy to identify and quantify salt minerals through the use of spectral mixture analysis. The surface and near-surface soils of the Atacama Desert in Chile contain a variety of well-studied salts, which together with low cloud coverage, and high aridity, makes this region an ideal testbed for this technique. Two forms of spectral data ranging 0.35 - 2.5 μm were collected: laboratory spectra acquired using an ASD FieldSpec Pro instrument on samples from four locations in the Atacama desert known to have surface concentrations of sulfates, nitrates, chlorides and perchlorates; and images from the EO-1 satellite's Hyperion instrument taken over the same four locations. Mineral identifications and abundances were confirmed using quantitative XRD of the physical samples. Spectral endmembers were extracted from within the laboratory and Hyperion spectral datasets and together with additional spectral library endmembers fed into a linear mixture model. The resulting identification and abundances from both dataset types were verified against the sample XRD values. Issues of spectral scale, SNR and how different mineral spectra interact are considered, and the utility of VNIR spectroscopy and Hyperion in particular for mapping specific salt concentrations in desert environments is established. Overall, SMA was successful at estimating abundances of sulfate minerals, particularly calcium sulfate, from both hyperspectral image and laboratory sample spectra

  5. Evaluation of the effect of salts on chemical, structural, textural, sensory and heating properties of cheese: Contribution of conventional methods and spectral ones.

    Science.gov (United States)

    Loudiyi, M; Aït-Kaddour, A

    2018-03-21

    Chemical composition, sensory characteristics, textural and functional properties are among the most important characteristics, which directly relates to the global quality of cheese and to consumer acceptability. A number of factors including milk composition, processing conditions and salt content, influences these properties. The past decades many investigations were performed on the possibilities to reduce salt content of cheese due to its adverse health effects, the current lifestyle and the awareness of the consumers for nutrition quality products. Due to the multiple potential effects of reducing NaCl (simple reduction or substitution) on cheese attributes, it is of utmost importance to identify and understand those effects in order to control the global quality and safety of the final product. In the present review a collection of the different results and conclusions drawn after studying the effect of salts by conventional (e.g. wet chemistry) and instrumental (e.g. spectral) methods on chemical, structural, textural, sensory and heating properties of cheese are presented.

  6. THE IMPACT OF DISSOLVED SALTS ON PASTES CONTAINING FLY ASH, CEMENT AND SLAG

    Energy Technology Data Exchange (ETDEWEB)

    Harbour, J.; Edwards, T.; Williams, V.

    2009-09-21

    The degree of hydration of a mixture of cementitious materials (Class F fly ash, blast furnace slag and portland cement) in highly concentrated alkaline salt solutions is enhanced by the addition of aluminate to the salt solution. This increase in the degree of hydration, as monitored with isothermal calorimetry, leads to higher values of dynamic Young's modulus and compressive strength and lower values of total porosity. This enhancement in performance properties of these cementitious waste forms by increased hydration is beneficial to the retention of the radionuclides that are also present in the salt solution. The aluminate ions in the solution act first to retard the set time of the mix but then enhance the hydration reactions following the induction period. In fact, the aluminate ions increase the degree of hydration by {approx}35% over the degree of hydration for the same mix with a lower aluminate concentration. An increase in the blast furnace slag concentration and a decrease in the water to cementitious materials ratio produced mixes with higher values of Young's modulus and lower values of total porosity. Therefore, these operational factors can be fine tuned to enhance performance properties of cementitious waste form. Empirical models for Young modulus, heat of hydration and total porosity were developed to predict the values of these properties. These linear models used only statistically significant compositional and operational factors and provided insight into those factors that control these properties.

  7. Compatibility of molten salt and structural materials

    International Nuclear Information System (INIS)

    Kawakami, Masahiro

    1994-01-01

    As the important factors for considering the compatibility of fuel salt and coolant salt with structural materials in molten salt reactors, there are the moisture remaining in molten salt and the fluorine potential in molten salt. In this study, as for the metals which are the main components of corrosion resistant alloys, the corrosion by the moisture remaining in molten salt and the dependence of the corrosion on fluorine potential were examined. As the molten salts, an eutectic molten salt LiF-BeF 2 was mainly used, and LiF-KF was used in combination. As the metallic materials, Cr, Ni and Cu which are the main components of corrosion resistant and heat resistant alloys, Hastelloy and Monel, were used. In the experiment, the metal pieces were immersed in the molten salt, and by sampling the molten salt, the change with time lapse of the concentration of the dissolved metals was examined. Besides, the electrochemical measurement was carried out for Cr, of which the corrosion was remarkable, and the change with time lapse of the dissolved ions was examined. The experimental setup, the experimental method, and the results of the immersion test and the electrochemical test are reported. The experiment on the corrosion of metals depending on fluorine potential is also reported. (K.I.)

  8. A Numerical Study on the Heat Transfer Characteristics of a Solar Thermal Receiver with High-temperature Heat Pipes

    International Nuclear Information System (INIS)

    Park, Young Hark; Jung, Eui Guk; Boo, Joon Hong

    2007-01-01

    A numerical analysis was conducted to predict the heat transfer characteristics of a solar receiver which is subject to very high heat fluxes and temperatures for solar thermal applications. The concentration ratio of the solar receiver ranges from 200 to 1000 and the concentrated heat is required to be transported to a certain distance for specific applications. The study deals with a solar receiver incorporating high-temperature sodium heat pipe as well as typical one that employs a molten-salt circulation loop. The isothermal characteristics in the receiver section is of major concern. The diameter of the solar thermal receiver was 120 mm and the length was 400 mm. For the molten-salt circulation type receiver, 48 axial channels of the same dimensions were attached to the outer wall of the receiver with even spacing in the circumferential direction. The molten salt fed through the channels by forced convection using a special pump. For the heat pipe receiver, the channels are changed to high-temperature sodium heat pipes. Commercial softwares were employed to deal with the radiative heat transfer inside the receiver cavity and the convection heat transfer along the channels. The numerical results are compared and analyzed from the view point of high-temperature solar receiver

  9. In Situ Production of Copper Oxide Nanoparticles in a Binary Molten Salt for Concentrated Solar Power Plant Applications.

    Science.gov (United States)

    Lasfargues, Mathieu; Stead, Graham; Amjad, Muhammad; Ding, Yulong; Wen, Dongsheng

    2017-05-19

    Seeding nanoparticles in molten salts has been shown recently as a promising way to improve their thermo-physical properties. The prospect of such technology is of interest to both academic and industrial sectors in order to enhance the specific heat capacity of molten salt. The latter is used in concentrated solar power plants as both heat transfer fluid and sensible storage. This work explores the feasibility of producing and dispersing nanoparticles with a novel one pot synthesis method. Using such a method, CuO nanoparticles were produced in situ via the decomposition of copper sulphate pentahydrate in a KNO₃-NaNO₃ binary salt. Analyses of the results suggested preferential disposition of atoms around produced nanoparticles in the molten salt. Thermal characterization of the produced nano-salt suspension indicated the dependence of the specific heat enhancement on particle morphology and distribution within the salts.

  10. A Dual-Continuum Model for Brine Migration in Salt Associated with Heat-Generating Nuclear Waste: Fully Coupled Thermal-Hydro-Mechanical Analysis

    Science.gov (United States)

    Hu, M.; Rutqvist, J.

    2017-12-01

    The disposal of heat-generating nuclear waste in salt host rock establishes a thermal gradient around the waste package that may cause brine inclusions in the salt grains to migrate toward the waste package. In this study, a dual-continuum model is developed to analyze such a phenomenon. This model is based on the Finite Volume Method (FVM), and it is fully thermal-hydro-mechanical (THM) coupled. For fluid flow, the dual-continuum model considers flow in the interconnected pore space and also in the salt grains. The mass balance of salt and water in these two continua is separately established, and their coupling is represented by flux associated with brine migration. Together with energy balance, such a system produces a coupled TH model with strongly nonlinear features. For mechanical analysis, a new formulation is developed based on the Voronoi tessellated mesh. By relating each cell to several connected triangles, first-order approximation is constructed. The coupling between thermal and mechanical fields is only considered in terms of thermal expansion. And the coupling between the hydraulic and mechanical fields in terms of pore-volume effects is consistent with Biot's theory. Therefore, a fully coupled THM model is developed. Several demonstration examples are provided to verify the model. Last the new model is applied to analyze coupled THM behavior and the results are compared with experimental data.

  11. Molten Salt-Carbon Nanotube Thermal Energy Storage for Concentrating Solar Power Systems Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Michael Schuller; Frank Little; Darren Malik; Matt Betts; Qian Shao; Jun Luo; Wan Zhong; Sandhya Shankar; Ashwin Padmanaban

    2012-03-30

    We demonstrated that adding nanoparticles to a molten salt would increase its utility as a thermal energy storage medium for a concentrating solar power system. Specifically, we demonstrated that we could increase the specific heat of nitrate and carbonate salts containing 1% or less of alumina nanoparticles. We fabricated the composite materials using both evaporative and air drying methods. We tested several thermophysical properties of the composite materials, including the specific heat, thermal conductivity, latent heat, and melting point. We also assessed the stability of the composite material with repeated thermal cycling and the effects of adding the nanoparticles on the corrosion of stainless steel by the composite salt. Our results indicate that stable, repeatable 25-50% improvements in specific heat are possible for these materials. We found that using these composite salts as the thermal energy storage material for a concentrating solar thermal power system can reduce the levelized cost of electricity by 10-20%. We conclude that these materials are worth further development and inclusion in future concentrating solar power systems.

  12. Overexpression of WsSGTL1 Gene of Withania somnifera Enhances Salt Tolerance, Heat Tolerance and Cold Acclimation Ability in Transgenic Arabidopsis Plants

    Science.gov (United States)

    Mishra, Manoj K.; Chaturvedi, Pankaj; Singh, Ruchi; Singh, Gaurav; Sharma, Lokendra K.; Pandey, Vibha; Kumari, Nishi; Misra, Pratibha

    2013-01-01

    Background Sterol glycosyltrnasferases (SGT) are enzymes that glycosylate sterols which play important role in plant adaptation to stress and are medicinally important in plants like Withania somnifera. The present study aims to find the role of WsSGTL1 which is a sterol glycosyltransferase from W. somnifera, in plant’s adaptation to abiotic stress. Methodology The WsSGTL1 gene was transformed in Arabidopsis thaliana through Agrobacterium mediated transformation, using the binary vector pBI121, by floral dip method. The phenotypic and physiological parameters like germination, root length, shoot weight, relative electrolyte conductivity, MDA content, SOD levels, relative electrolyte leakage and chlorophyll measurements were compared between transgenic and wild type Arabidopsis plants under different abiotic stresses - salt, heat and cold. Biochemical analysis was done by HPLC-TLC and radiolabelled enzyme assay. The promoter of the WsSGTL1 gene was cloned by using Genome Walker kit (Clontech, USA) and the 3D structures were predicted by using Discovery Studio Ver. 2.5. Results The WsSGTL1 transgenic plants were confirmed to be single copy by Southern and homozygous by segregation analysis. As compared to WT, the transgenic plants showed better germination, salt tolerance, heat and cold tolerance. The level of the transgene WsSGTL1 was elevated in heat, cold and salt stress along with other marker genes such as HSP70, HSP90, RD29, SOS3 and LEA4-5. Biochemical analysis showed the formation of sterol glycosides and increase in enzyme activity. When the promoter of WsSGTL1 gene was cloned from W. somnifera and sequenced, it contained stress responsive elements. Bioinformatics analysis of the 3D structure of the WsSGTL1 protein showed functional similarity with sterol glycosyltransferase AtSGT of A. thaliana. Conclusions Transformation of WsSGTL1 gene in A. thaliana conferred abiotic stress tolerance. The promoter of the gene in W.somnifera was found to have stress

  13. Application of approximations for joint cumulative k-distributions for mixtures to FSK radiation heat transfer in multi-component high temperature non-LTE plasmas

    International Nuclear Information System (INIS)

    Maurente, André; França, Francis H.R.; Miki, Kenji; Howell, John R.

    2012-01-01

    Approximations for joint cumulative k-distribution for mixtures are efficient for full spectrum k-distribution (FSK) computations. These approximations provide reduction of the database that is necessary to perform FSK computation when compared to the direct approach, which uses cumulative k-distributions computed from the spectrum of the mixture, and also less computational expensive when compared to techniques in which RTE's are required to be solved for each component of the mixture. The aim of the present paper is to extend the approximations for joint cumulative k-distributions for non-LTE media. For doing that, a FSK to non-LTE media formulation well-suited to be applied along with approximations for joint cumulative k-distributions is presented. The application of the proposed methodology is demonstrated by solving the radiation heat transfer in non-LTE high temperature plasmas composed of N, O, N 2 , NO, N 2 + and mixtures of these species. The two more efficient approximations, that is, the superposition and multiplication are employed and analyzed.

  14. Experimental research on thermal characteristics of a hybrid thermocline heat storage system

    International Nuclear Information System (INIS)

    Yin, Huibin; Ding, Jing; Yang, Xiaoxi

    2014-01-01

    Considering the high-temperature thermal utilization of solar energy as the research background in this paper and focussing on the heat storage process, a kind of hybrid thermocline heat storage method in multi-scale structure and relevant experimental systems are designed by using the mixed molten nitrate salt as the heat storage medium and two representative porous materials, i.e. zirconium ball and silicon carbide (SiC) foam, as the heat storage fillers. The fluid flow and heat storage performance of molten salt in multi-scale structure are experimentally investigated. The results show that the theoretical heat storage efficiencies amongst the three experimental heat storage manners are less than 80% because of the existence of thermocline layers. Comparing to the single-phase molten salt heat storage, the two hybrid thermocline heat storage manners with porous fillers lead to a certain decrease in the effective heat storage capacity. The presence of porous fillers can also help to maintain the molten salt fluid as ideal gravity flow or piston flow and partially replace expensive molten salt. Therefore, it requires a combination of heat storage capacity and economical consideration for optimization design when similar spherical particles or foam ceramics are employed as the porous fillers. -- Highlights: • A hybrid thermocline heat storage method in multi-scale structure is developed. • The fluid flow and heat storage performance are experimentally investigated. • Stable thermocline can form in single tank for the experimental cases. • The hybrid thermocline heat storage with porous filler is promising

  15. Novel waste printed circuit board recycling process with molten salt.

    Science.gov (United States)

    Riedewald, Frank; Sousa-Gallagher, Maria

    2015-01-01

    The objective of the method was to prove the concept of a novel waste PCBs recycling process which uses inert, stable molten salts as the direct heat transfer fluid and, simultaneously, uses this molten salt to separate the metal products in either liquid (solder, zinc, tin, lead, etc.) or solid (copper, gold, steel, palladium, etc.) form at the operating temperatures of 450-470 °C. The PCB recovery reactor is essentially a U-shaped reactor with the molten salt providing a continuous fluid, allowing molten salt access from different depths for metal recovery. A laboratory scale batch reactor was constructed using 316L as suitable construction material. For safety reasons, the inert, stable LiCl-KCl molten salts were used as direct heat transfer fluid. Recovered materials were washed with hot water to remove residual salt before metal recovery assessment. The impact of this work was to show metal separation using molten salts in one single unit, by using this novel reactor methodology. •The reactor is a U-shaped reactor filled with a continuous liquid with a sloped bottom representing a novel reactor concept.•This method uses large PCB pieces instead of shredded PCBs as the reactor volume is 2.2 L.•The treated PCBs can be removed via leg B while the process is on-going.

  16. Novel waste printed circuit board recycling process with molten salt

    Science.gov (United States)

    Riedewald, Frank; Sousa-Gallagher, Maria

    2015-01-01

    The objective of the method was to prove the concept of a novel waste PCBs recycling process which uses inert, stable molten salts as the direct heat transfer fluid and, simultaneously, uses this molten salt to separate the metal products in either liquid (solder, zinc, tin, lead, etc.) or solid (copper, gold, steel, palladium, etc.) form at the operating temperatures of 450–470 °C. The PCB recovery reactor is essentially a U-shaped reactor with the molten salt providing a continuous fluid, allowing molten salt access from different depths for metal recovery. A laboratory scale batch reactor was constructed using 316L as suitable construction material. For safety reasons, the inert, stable LiCl–KCl molten salts were used as direct heat transfer fluid. Recovered materials were washed with hot water to remove residual salt before metal recovery assessment. The impact of this work was to show metal separation using molten salts in one single unit, by using this novel reactor methodology. • The reactor is a U-shaped reactor filled with a continuous liquid with a sloped bottom representing a novel reactor concept. • This method uses large PCB pieces instead of shredded PCBs as the reactor volume is 2.2 L. • The treated PCBs can be removed via leg B while the process is on-going. PMID:26150977

  17. Crystallisation of mixtures of ammonium nitrate, ammonium sulphate and soot

    NARCIS (Netherlands)

    Dougle, P.G.; Veefkind, J.P.; Brink, H.M. ten

    1998-01-01

    Crystallisation of laboratory aerosols of ammonium nitrate and of internal mixtures of this salt with ammonium sulphate were investigated using humidity controlled nephelometry. The aerosol was produced via nebulizing of solutions and then dried to 25% RH, which is a realistic minimum value for

  18. Corrosion protection of steel in ammonia/water heat pumps

    Science.gov (United States)

    Mansfeld, Florian B.; Sun, Zhaoli

    2003-10-14

    Corrosion of steel surfaces in a heat pump is inhibited by adding a rare earth metal salt to the heat pump's ammonia/water working fluid. In preferred embodiments, the rare earth metal salt includes cerium, and the steel surfaces are cerated to enhance the corrosion-inhibiting effects.

  19. In Situ Production of Copper Oxide Nanoparticles in a Binary Molten Salt for Concentrated Solar Power Plant Applications

    Directory of Open Access Journals (Sweden)

    Mathieu Lasfargues

    2017-05-01

    Full Text Available Seeding nanoparticles in molten salts has been shown recently as a promising way to improve their thermo-physical properties. The prospect of such technology is of interest to both academic and industrial sectors in order to enhance the specific heat capacity of molten salt. The latter is used in concentrated solar power plants as both heat transfer fluid and sensible storage. This work explores the feasibility of producing and dispersing nanoparticles with a novel one pot synthesis method. Using such a method, CuO nanoparticles were produced in situ via the decomposition of copper sulphate pentahydrate in a KNO3-NaNO3 binary salt. Analyses of the results suggested preferential disposition of atoms around produced nanoparticles in the molten salt. Thermal characterization of the produced nano-salt suspension indicated the dependence of the specific heat enhancement on particle morphology and distribution within the salts.

  20. Improvements in or relating to transfer of heat to fluidized-solid beds

    Energy Technology Data Exchange (ETDEWEB)

    1952-01-30

    A method is described for supplying heat to a dense turbulent mass of finely divided solids fluidized by an upwardly flowing gas to resemble a boiling liquid having a well-defined upper level, which comprises contacting the mass with the surface of a heat-transfer element heated by a fluid combustion mixture burning in contact with the surface, the surface separating the mass from the mixture, wherein the burning of the combustion mixture is localized in the heat-transfer element near the point of entry of the combustion mixture. A substantial temperature gradient is maintained along the path of the combustion mixture and combustion products through the heat-transfer element.

  1. Domestic Material Content in Molten-Salt Concentrating Solar Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Turchi, Craig [National Renewable Energy Lab. (NREL), Golden, CO (United States); Kurup, Parthiv [National Renewable Energy Lab. (NREL), Golden, CO (United States); Akar, Sertac [National Renewable Energy Lab. (NREL), Golden, CO (United States); Flores, Francisco [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-08-26

    This study lists material composition data for two concentrating solar power (CSP) plant designs: a molten-salt power tower and a hypothetical parabolic trough plant, both of which employ a molten salt for the heat transfer fluid (HTF) and thermal storage media. The two designs have equivalent generating and thermal energy storage capacities. The material content of the saltHTF trough plant was approximately 25% lower than a comparably sized conventional oil-HTF parabolic trough plant. The significant reduction in oil, salt, metal, and insulation mass by switching to a salt-HTF design is expected to reduce the capital cost and LCOE for the parabolic trough system.

  2. Status of tellurium--hastelloy N studies in molten fluoride salts

    International Nuclear Information System (INIS)

    Keiser, J.R.

    1977-10-01

    Tellurium, which is a fission product in nuclear reactor fuels, can embrittle the surface grain boundaries of nickel-base structural materials. This report summarizes results of an experimental investigation conducted to understand the mechanism and to develop a means of controlling this embrittlement in the alloy Hastelloy N. The addition of a chromium telluride to salt can be used to provide small partial pressures of tellurium simulating a reactor environment where tellurium appears as a fission product. The intergranular embrittlement produced in Hastelloy N when exposed to this chromium telluride-salt mixture can be reduced by adding niobium to the Hastelloy N or by controlling the oxidation potential of the salt in the reducing range

  3. A numerical study on the oil retention of R410A and PVE oil mixture in multi heat pump system

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hak Soo; Kim, Min Soo [Seoul National University, Seoul (Korea, Republic of)

    2016-04-15

    Predicting an amount of discharged oil from a compressor is necessary to charge the compressor with proper amount of oil. The amount of discharged oil can be predicted by calculating the oil retention amount in each component of a heat pump system. This study suggests a method for calculating the oil retention amount in a heat pump system. In addition, flow pattern of refrigerant and oil mixture in horizontal gas line of refrigerant was ascertained by flow visualization. The oil retention amounts in each component of multi heat pump system were calculated with respect to mass flux of refrigerant, Oil circulation ratio (OCR), length of horizontal and vertical lines. Oil retention amounts in horizontal and vertical gas lines of refrigerant were significant. To validate the model for gas lines of refrigerant, comparison between predicted and experimental oil retention amounts was conducted, and mean absolute percentage error was 15.0%.

  4. Multilayer Porous Crucibles for the High Throughput Salt Separation from Uranium Deposits

    International Nuclear Information System (INIS)

    Kwon, S. W.; Park, K. M.; Kim, J. G.; Kim, I. T.; Seo, B. K.; Moon, J. G.

    2013-01-01

    Solid cathode processing is necessary to separate the salt from the cathode since the uranium deposit in a solid cathode contains electrolyte salt. A physical separation process, such as a distillation separation, is more attractive than a chemical or dissolution process because physical processes generate much less secondary process. Distillation process was employed for the cathode processsing due to the advantages of minimal generation of secondary waste, compact unit process, simple and low cost equipment. The basis for vacuum distillation separation is the difference in vapor pressures between salt and uranium. A solid cathode deposit is heated in a heating region and salt vaporizes, while nonvolatile uranium remains behind. It is very important to increase the throughput of the salt separation system owing to the high uranium content of spent nuclear fuel and high salt fraction of uranium dendrites. The evaporation rate of the LiCl-KCl eutectic salt in vacuum distiller is not so high to come up with the generation capacity of uranium dendrites in an electro-refiner. Therefore, a wide evaporation area or high distillation temperature is necessary for the successful salt separation. In this study, it was attempted to enlarge a throughput of the salt distiller with a multilayer porous crucibles for the separation of adhered salt in the uranium deposits generated from the electrorefiner. The feasibility of the porous crucibles was tested by the salt distillation experiments. In this study, the salt distiller with multilayer porous crucibles was proposed and the feasibility of liquid salt separation was examined to increase a throughput. It was found that the effective separation of salt from uranium deposits was possible by the multilayer porous crucibles

  5. Multilayer Porous Crucibles for the High Throughput Salt Separation from Uranium Deposits

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, S. W.; Park, K. M.; Kim, J. G.; Kim, I. T.; Seo, B. K.; Moon, J. G. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-05-15

    Solid cathode processing is necessary to separate the salt from the cathode since the uranium deposit in a solid cathode contains electrolyte salt. A physical separation process, such as a distillation separation, is more attractive than a chemical or dissolution process because physical processes generate much less secondary process. Distillation process was employed for the cathode processsing due to the advantages of minimal generation of secondary waste, compact unit process, simple and low cost equipment. The basis for vacuum distillation separation is the difference in vapor pressures between salt and uranium. A solid cathode deposit is heated in a heating region and salt vaporizes, while nonvolatile uranium remains behind. It is very important to increase the throughput of the salt separation system owing to the high uranium content of spent nuclear fuel and high salt fraction of uranium dendrites. The evaporation rate of the LiCl-KCl eutectic salt in vacuum distiller is not so high to come up with the generation capacity of uranium dendrites in an electro-refiner. Therefore, a wide evaporation area or high distillation temperature is necessary for the successful salt separation. In this study, it was attempted to enlarge a throughput of the salt distiller with a multilayer porous crucibles for the separation of adhered salt in the uranium deposits generated from the electrorefiner. The feasibility of the porous crucibles was tested by the salt distillation experiments. In this study, the salt distiller with multilayer porous crucibles was proposed and the feasibility of liquid salt separation was examined to increase a throughput. It was found that the effective separation of salt from uranium deposits was possible by the multilayer porous crucibles.

  6. Development of technology for reduction of radiotoxicity of uranium mixture

    International Nuclear Information System (INIS)

    Kim, Kwangwook; Lee, E. H.; Yang, H. B.

    2012-03-01

    The phase 1 of this research project was carried out as a project entitled 'Development of technology for reduction of actinide radiotoxicity' in 2007 to 2009. Its phase 2 was carried out as a project entitled 'Development of technology for reduction of radiotoxicity of uranium mixture' in 2010 to 2011. Five unit research items to accomplish it such as evaluation of dissolution and aquatic chemistry characteristics of U, TRU, RE, and etc elements evaluation of chemical and electrolytic dissolution characteristics of U and SIMFUEL oxides evaluation of removal of environmentally-detrimental elements, and high purity precipitation of uranium evaluation of salt-free electrolytic decarbonation characteristics, and recovery of used carbonate salt, and development of the process to treat uranium mixture materials and the relevant unit equipments and system with engineering concept. were carried out. The obtained results were as follows. -Evaluation of chemical characteristics of several uranium oxide materials and verification of insolubility properties of TRU oxides in carbonate media -Suggestion of the optimal conditions for dissolutions of uranium and SIMFUEL oxides - Development of technology for co-precipitation of environmentally-detrimental elements - Development of an electrolytic recycle way of used carbonate salt solution - Suggestion of a new conceptual process, named COL process to treat spent nuclear fuel, uranium-bearing wastes with high and low contents

  7. Compatibility of molten salt and structural materials

    Energy Technology Data Exchange (ETDEWEB)

    Kawakami, Masahiro [Toyohashi Univ. of Technology, Aichi (Japan)

    1994-12-01

    As the important factors for considering the compatibility of fuel salt and coolant salt with structural materials in molten salt reactors, there are the moisture remaining in molten salt and the fluorine potential in molten salt. In this study, as for the metals which are the main components of corrosion resistant alloys, the corrosion by the moisture remaining in molten salt and the dependence of the corrosion on fluorine potential were examined. As the molten salts, an eutectic molten salt LiF-BeF{sub 2} was mainly used, and LiF-KF was used in combination. As the metallic materials, Cr, Ni and Cu which are the main components of corrosion resistant and heat resistant alloys, Hastelloy and Monel, were used. In the experiment, the metal pieces were immersed in the molten salt, and by sampling the molten salt, the change with time lapse of the concentration of the dissolved metals was examined. Besides, the electrochemical measurement was carried out for Cr, of which the corrosion was remarkable, and the change with time lapse of the dissolved ions was examined. The experimental setup, the experimental method, and the results of the immersion test and the electrochemical test are reported. The experiment on the corrosion of metals depending on fluorine potential is also reported. (K.I.).

  8. SnO2Nanowire Arrays and Electrical Properties Synthesized by Fast Heating a Mixture of SnO2and CNTs Waste Soot

    Directory of Open Access Journals (Sweden)

    Zhou Zhi-Hua

    2009-01-01

    Full Text Available Abstract SnO2nanowire arrays were synthesized by fast heating a mixture of SnO2and the carbon nanotubes waste soot by high-frequency induction heating. The resultant SnO2nanowires possess diameters from 50 to 100 nm and lengths up to tens of mircrometers. The field-effect transistors based on single SnO2nanowire exhibit that as-synthesized nanowires have better transistor performance in terms of transconductance and on/off ratio. This work demonstrates a simple technique to the growth of nanomaterials for application in future nanoelectronic devices.

  9. Enhancement of Condensation Heat Transfer Rate of the Air-Steam Mixture on a Passive Condenser System Using Annular Fins

    Directory of Open Access Journals (Sweden)

    Yeong-Jun Jang

    2017-11-01

    Full Text Available This paper presents an experimental investigation on the enhancement of the heat transfer rate of steam condensation on the external surfaces of a vertical tube with annular fins. A cylindrical condenser tube, which is 40 mm in outer diameter and 1000 mm in length, with annular disks of uniform cross-sectional area is fabricated in the manner of ensuring perfect contact between the base surface and fins. A total of 13 annular fins of 80 mm diameter were installed along the tube height in order to increase the effective heat transfer area by 85%. Through a series of condensation tests for the air-steam mixture under natural convection conditions, the heat transfer data was measured in the pressure range of between 2 and 5 bar, and the air mass fraction from 0.3 to 0.7. The rates of heat transfer of the finned tube are compared to those that are measured on a bare tube to demonstrate the enhanced performance by extended surfaces. In addition, based on the experimental results and the characteristics of steam condensation, the applicability of finned tubes to a large condenser system with a bundle layout is evaluated.

  10. Study on corrosion of metal materials in nitrate molten salts

    Science.gov (United States)

    Zhai, Wei; Yang, Bo; Li, Maodong; Li, Shiping; Xin, Mingliang; Zhang, Shuanghong; Huang, Guojia

    2017-01-01

    High temperature molten salts as a heat transfer heat storage medium has been more widely used in the field of concentrated solar thermal power generation. In the thermal heat storage system, metal material stability and performance at high temperatures are of one major limitation in increasing this operating temperature. In this paper, study on corrosion of 321H, 304, 316L, P91 metal materials in modified solar two molten salts. The corrosion kinetics of 304, 316L, 321H, P91 metal material in the modified solar two molten salts at 450°C, 500°C is also investigated. Under the same condition it was found that 304, 321H corroded at a rate of 40% less than P91. Spallation of corrosion products was observed on P91 steel, while no obvious observed on other kinds of stainless steel. Corrosion rates of 304, 321H, and 316L slowly increased with temperature. Oxidation mechanisms little varied with temperature. Corrosion products of metal materials observed at 450°C, 500°C were primarily Fe oxide and Fe, Cr oxide.

  11. Design and control of an ideal heat-integrated distillation column (ideal HIDiC) system separating a close-boiling ternary mixture

    International Nuclear Information System (INIS)

    Huang Kejin; Shan Lan; Zhu Qunxiong; Qian Jixin

    2007-01-01

    Despite the fact that a stand-alone ideal heat-integrated distillation column (ideal HIDiC) can be thermodynamically efficient and operationally stable, the application of an ideal HIDiC system to separate a close-boiling multi-component mixture is still a challenging problem because of the possibility of strong interactions within/between the ideal HIDiCs involved. In this work, employment of two ideal HIDiCs to separate a close-boiling ternary mixture is studied in terms of static and dynamic performance. It is found that the ideal HIDiC system can be a competitive alternative with a substantial energy saving and comparable dynamic performance in comparison with its conventional counterpart. The direct sequence appears to be superior to the indirect sequence due to the relatively small vapor flow rates to the compressors. Controlling the bottom composition of the first ideal HIDiC with the pressure elevation from the stripping section to the rectifying section helps to suppress the disturbances from the feed to the second ideal HIDiC. Special caution should, however, be taken when the latent heat of the distillates is to be recovered within/between the ideal HIDiCs involved, because a positive feedback mechanism may be formed and give rise to additional difficulties in process operation

  12. Avery Island heater tests: measured data for 1000 days of heating

    International Nuclear Information System (INIS)

    Van Sambeek, L.L.; Stickney, R.G.; DeJong, K.B.

    1983-10-01

    Three heater tests were conducted in the Avery Island salt mine. The measurements of temperature and displacement, and the calculation of stress in the vicinity of each heater are of primary importance in the understanding of the thermal and thermomechanical response of the salt to an emplaced heat source. This report presents the temperature, displacement, and calculated stress data gathered during the heating phase of the three heater tests. The data presented have application in the ongoing studies of the response of geologicic media to an emplaced heat source. Specifically, electric heaters, which simulate canisters of heat-generating nuclear waste, were placed in the floor of the Avery Island salt mine, and measurements were made of the response of the salt caused by the heating. The purpose of this report is to transmit the data to the scientific community; rigorous analysis and interpretation of the data are considered beyond the scope of this data report. 11 references, 46 figures

  13. Investigation of molten salt fast reactor

    International Nuclear Information System (INIS)

    Kubota, Kenichi; Konomura, Mamoru

    2002-01-01

    On survey research for practicability strategy of fast reactor (FR) (phase 1), to extract future practicability image candidates of FR from wide options, in addition to their survey and investigation objects of not only solid fuel reactors of conventional research object but also molten salt reactor as a flowing fuel reactor, investigation on concept of molten salt FR plant was carried out. As a part of the first step of the survey research for practicability strategy, a basic concept on plant centered at nuclear reactor facility using chloride molten salt reactor capable of carrying out U-Pu cycle was examined, to perform a base construction to evaluate economical potential for a practical FBR. As a result, a result could be obtained that because of inferior fuel inventory and heat transmission to those in Na cooling reactor in present knowledge, mass of reactor vessel and intermediate heat exchanger were to widely increased to expect reduction of power generation unit price even on considering cheapness of its fuel cycle cost. Therefore, at present step further investigation on concept design of the chloride molten salt reactor plant system is too early in time, and it is at a condition where basic and elementary researches aiming at upgrading of economical efficiency such as wide reduction of fuel inventory, a measure expectable for remarkable rationalization effect of reprocessing system integrating a reactor to a processing facility, and so on. (G.K.)

  14. Removal of salt from rare earth precipitates by vacuum distillation

    International Nuclear Information System (INIS)

    Yang, Hee-Chul; Eun, Hee-Chul; Cho, Yong-Zun; Park, Hwan-Seo; Kim, In-Tae

    2008-01-01

    This study investigated the distillation rates of LiCl-KCl eutectic salt from the rare earth (RE) precipitates originating from the oxygen-sparging RE precipitation process. The first part study investigated distillation rates of eutectic salt under different vacuums at high temperatures by using thermo-gravimetric furnace system. The second part study tested the removal efficiency of eutectic salt from RE precipitates by using the laboratory vacuum distillation furnace system. Investigated variables were the temperature, the degree of vacuum and the time. Salt distillation operation with a moderated distillation rate of 10 -4 - 10 -5 mole sec -1 cm -2 is possible at temperature less than 1300 K and vacuums of 5-50 Torr, by minimizing the potentials of the RE particle entrainment. An increase in the vaporizing surface area is relatively effective for removing the residual salt in pores of bulk of the precipitated RE particles, when compared to that for the vaporizing time. Over 99.9% of the salt removal from the salt-RE precipitate mixture could be achieved by increasing the vaporizing surface area under moderate vacuum conditions of 50 Torr at 1200 K. (author)

  15. Pilot-Scale Removal Of Fluoride From Legacy Plutonium Materials Using Vacuum Salt Distillation

    International Nuclear Information System (INIS)

    Pierce, R. A.; Pak, D. J.

    2012-01-01

    Between September 2009 and January 2011, the Savannah River National Laboratory (SRNL) and HB-Line designed, developed, tested, and successfully deployed a system for the distillation of chloride salts. In 2011, SRNL adapted the technology for the removal of fluoride from fluoride-bearing salts. The method involved an in situ reaction between potassium hydroxide (KOH) and the fluoride salt to yield potassium fluoride (KF) and the corresponding oxide. The KF and excess KOH can be distilled below 1000°C using vacuum salt distillation (VSD). The apparatus for vacuum distillation contains a zone heated by a furnace and a zone actively cooled using either recirculated water or compressed air. During a vacuum distillation operation, a sample boat containing the feed material is placed into the apparatus while it is cool, and the system is sealed. The system is evacuated using a vacuum pump. Once a sufficient vacuum is attaned, heating begins. Volatile salts distill from the heated zone to the cooled zone where they condense, leaving behind the non-volatile material in the feed boat. Studies discussed in this report were performed involving the use of non-radioactive simulants in small-scale and pilot-scale systems as well as radioactive testing of a small-scale system with plutonium-bearing materials. Aspects of interest include removable liner design considerations, boat materials, in-line moisture absorption, and salt deposition

  16. COSA II Further benchmark exercises to compare geomechanical computer codes for salt

    International Nuclear Information System (INIS)

    Lowe, M.J.S.; Knowles, N.C.

    1989-01-01

    Project COSA (COmputer COdes COmparison for SAlt) was a benchmarking exercise involving the numerical modelling of the geomechanical behaviour of heated rock salt. Its main objective was to assess the current European capability to predict the geomechanical behaviour of salt, in the context of the disposal of heat-producing radioactive waste in salt formations. Twelve organisations participated in the exercise in which their solutions to a number of benchmark problems were compared. The project was organised in two distinct phases: The first, from 1984-1986, concentrated on the verification of the computer codes. The second, from 1986-1988 progressed to validation, using three in-situ experiments at the Asse research facility in West Germany as a basis for comparison. This document reports the activities of the second phase of the project and presents the results, assessments and conclusions

  17. Mass transfer and transport in salt repositories

    International Nuclear Information System (INIS)

    Pigford, T.H.; Chambre, P.L.; Lee, W.W.L.

    1989-02-01

    Salt is a unique rock isolation of nuclear waste because it is ''dry'' and nearly impermeable. In this paper we summarize some mass-transfer and transport analyses of salt repositories. First we analyses brine migration. Heating by high-level waste can cause brine in grain boundaries to move due to pressure-gradients. We analyze brine migration treating salt as a thermoelastic solid and found that brine migration is transient and localized. We use previously developed techniques to estimate release rates from waste packages by diffusion. Interbeds exist in salt and may be conduits for radionuclide migration. We analyze steady-state migration due to brine flow in the interbed, as a function of the Peclet number. Then we analyze transient mass transfer, both into the interbed and directly to salt, due only to diffusion. Finally we compare mass transfer rates of a waste cylinder in granite facing a fracture and in salt facing an interbed. In all cases, numerical illustrations of the analytic solution are given. 10 refs., 4 figs., 3 tabs

  18. Ground Source Heat Pump in Heating System with Electronics Monitoring

    Directory of Open Access Journals (Sweden)

    NEAMŢU Ovidiu

    2013-10-01

    Full Text Available The monitoring system is implemented for a ground coupled heat pump in heating/ system. The borehole heat exchangers – which are 150 m long - are filled with a mixture of water and ethilene glycol calledbrine. Metering and monitoring energy consumption is achieved for: heat pump, circulation pumps, additional electrical heating, hot air ventilation systems, control systems with sensors: analog and smart sensors. Instantaneous values are stored in a local computer.

  19. Molten salt processes in special materials preparation

    International Nuclear Information System (INIS)

    Krishnamurthy, N.; Suri, A.K.

    2013-01-01

    As a class, molten salts are the largest collection of non aqueous inorganic solvents. On account of their stability at high temperature and compatibility to a number of process requirements, molten salts are considered indispensable to realize many of the numerous benefits of high temperature technology. They play a crucial role and form the basis for numerous elegant processes for the preparation of metals and materials. Molten salt are considered versatile heat transfer media and have led to the evolution of many interesting reactor concepts in fission and possibly in fusion. They also have been the basis of thinking for few novel processes for power generation. While focusing principally on the actual utilization of molten salts for a variety of materials preparation efforts in BARC, this lecture also covers a few of the other areas of technological applications together with the scientific basis for considering the molten salts in such situations. (author)

  20. The advantages of a salt/bentonite backfill for Waste Isolation Pilot Plant disposal rooms

    International Nuclear Information System (INIS)

    Butcher, B.M.; Novak, C.F.; Jercinovic, M.

    1991-04-01

    A 70/30 wt% salt/bentonite mixture is shown to be preferable to pure crushed salt as backfill for disposal rooms in the Waste Isolation Pilot Plant (WIPP). This report discusses several selection criteria used to arrive at this conclusion: the need for low permeability and porosity after closure, chemical stability with the surroundings, adequate strength to avoid shear erosion from human intrusion, ease of emplacement, and sorption potential for brine and radionuclides. Both salt and salt/bentonite are expected to consolidate to a final state of impermeability (i.e., ≤ 10 -18 m 2 ) adequate for satisfying federal nuclear regulations. Any advantage of the salt/bentonite mixture is dependent upon bentonite's potential for sorbing brine and radionuclides. Estimates suggest that bentonite's sorption potential for water in brine is much less than for pure water. While no credit is presently taken for brine sorption in salt/bentonite backfill, the possibility that some amount of inflowing brine would be chemically bound is considered likely. Bentonite may also sorb much of the plutonium, americium, and neptunium within the disposal room inventory. Sorption would be effective only if a major portion of the backfill is in contact with radioactive brine. Brine flow from the waste out through highly localized channels in the backfill would negate sorption effectiveness. Although the sorption potentials of bentonite for both brine and radionuclides are not ideal, they are distinctly beneficial. Furthermore, no detrimental aspects of adding bentonite to the salt as a backfill have been identified. These two observations are the major reasons for selecting salt/bentonite as a backfill within the WIPP. 39 refs., 16 figs., 6 tabs

  1. Thermal gradient brine inclusion migration in salt study: gas-liquid inclusions, preliminary model

    International Nuclear Information System (INIS)

    Olander, D.R.; Machiels, A.J.

    1979-10-01

    Natural salt deposits contain small cubical inclusions of brine distributed through the salt. Temperature gradients, resulting from storing heat-generating wastes in the salt, can cause the inclusions to move through the salt. Prediction of the rate and amount of brine-inclusion migration is necessary for the evaluation of bedded or domed salts as possible media for waste repositories. Inclusions filled exclusively with liquid migrate up the temperature gradient towards the heat source. The solubility of salt in the brine inclusion increases with temperature. Consequently, salt dissolves into the inclusion across the hot surface and crystallizes out at the cold surface. Diffusion of salt within the liquid phase from the hot to the cold faces causes the inclusions to move in the opposite direction. In so doing, they change shape and eventually become rectangular parallelipipeds with a width (dimension perpendicular to the thermal gradient) much larger than the thickness (dimension in the direction of the thermal gradient). The inclusions may also contain a gas phase predominantly consisting of water vapor. These entities are termed two-phase or gas-liquid inclusions. The two-phase inclusions usually migrate down the temperature gradient away from the heat source remaining more-or-less cubical. A two-phase inclusion also forms when an all-liquid inclusion reaches the waste package; upon opening up at the salt-package interface, the brine partially evaporates and the inclusion reseals with some insoluble gas trapped inside. These gas-liquid inclusions proceed to move down the temperature gradient, in the opposite sense of the all-liquid inclusions. The gas-liquid inclusions phenomenon provides a pathway by which radionuclides leached from the wasteform by the brine can be transported away from the waste package and thus might have greater access to the biosphere

  2. Molten salt reactors. Synthesis of studies realized between 1973 and 1983. Experimental loop file

    International Nuclear Information System (INIS)

    1983-03-01

    Four test loops were developed for the experimental study of a molten salt reactor with lead salt direct contact. A molten salt loop, completely in graphite, including the pump, showed that this material is convenient for salt containment and circulation. Reactor components like flowmeters, electromagnetic pumps, pressure gauge, valves developed for liquid sodium, were tested with liquid lead. A water-mercury loop was built for lead-molten salt simulation studies. Finally a lead-salt loop (COMPARSE) was built to study the behaviour of salt particles carried by lead in the heat exchanger. [fr

  3. Molten salt reactor type

    International Nuclear Information System (INIS)

    1977-01-01

    This document is one of the three parts of a first volume devoted to the compilations of American data on the molten salt reactor concept. This part 'CIRCUITS' regroups under a condensed form - in French and using international units - the essential information contained in both basic documents of the American project for a molten-salt breeder power plant. This part is only dealing with things relating to the CEA-EDF workshop 'CIRCUITS'. It is not concerned with information on: the reactor and the moderator replacement, the primary and secondary salts, and the fuel salt reprocessing, that are dealt with in parts 'CORE' and 'CHEMISTRY' respectively. The possible evolutions in the data - and solutions - taken by the American designers for their successive projects (1970 to 1972) are shown. The MSBR power plant comprises three successive heat transfer circuits. The primary circuit (Hastelloy N), radioactive and polluted, containing the fuel salt, includes the reactor, pumps and exchangers. The secondary circuit (pipings made of modified Hastelloy N) contaminated in the exchanger, ensures the separation between the fuel and the fluid operating the turbo-alternator. The water-steam circuit feeds the turbine with steam. This steam is produced in the steam generator flowed by the secondary fluid. Some subsidiary circuits (discharge and storage of the primary and secondary salts, ventilation of the primary circuit ...) complete the three principal circuits which are briefly described. All circuits are enclosed inside the controlled-atmosphere building of the nuclear boiler. This building also ensures the biological protection and the mechanical protection against outer aggressions [fr

  4. Engineering development studies for molten-salt breeder reactor processing No. 18

    International Nuclear Information System (INIS)

    Hightower, J.R. Jr.

    1975-03-01

    A water--mercury system was used to study the effect of geometric variations on mass transfer rates in rectangular contractors similar to those proposed for the molten-salt breeder reactor (MSBR) fuel reprocessing scheme. Since mass transfer rates were not accurately predicted by the Lewis correlation, other correlations were investigated. A correlation which was found to fit the experimental results is given. Mass transfer rates are being measured in a fluoride salt--bismuth contactor. Experimental results indicate that the mass transfer rates in the salt--bismuth system fall between the Lewis correlation and the modified correlation given above. Autoresistance heating tests were continued in the fluorinator mock-up using LiF--BeF 2 --ThF 4 (72-16-12 mole percent) salt. The equipment was returned to operating condition, and five experiments were run. Although correct steady-state operation was not achieved, the results were encouraging. A two-dimensional electrical analog was constructed to study current flow through the electrode sidearm and other critical areas of the test vessel. These studies indicate that no regions of abnormally high current density existed in the first nine runs with the present autoresistance heating equipment. Localized heating had previously been the suspected cause for the failure to achieve proper operation of this equipment. (U.S.)

  5. Thermal-gradient migration of brine inclusions in salt

    International Nuclear Information System (INIS)

    Yagnik, S.K.

    1982-02-01

    It has been proposed that the high level nuclear waste be buried deep underground in a suitable geologic formation. Natural salt deposits have been under active consideration as one of the geologic formations where a nuclear waste repository may be built in future. The salt deposits, however, are known to contain a small amount (about 0.5 vol.%) of water in the form of brine inclusions which are dispersed throughout the medium. The temperature gradients imposed by the heat generating nuclear waste will mobilize these brine inclusions. It is important to know the rate and the amount of brine accumulating at the waste packages to properly evaluate the performance of a nuclear waste repository. An extensive experimental investigation of the migration velocities of brine inclusions in synthetic single crystals of NaCl and in polycrystalline natural salt crystals has been conducted. The results show that in a salt repository the brine inclusions within a grain would move with the diffusion controlled velocities. The brine reaching a grain boundary may be swept across, if the thermal gradient is high enough. Grain boundaries in polycrystalline rock salt are apparently quite weak and open up due to drilling the hole for a waste canister and to the thermal stresses which accompany the thermal gradient produced by the heat generating waste. The enhanced porosity allows the water reaching the grain boundary to escape by a vapor transport process

  6. Performance Test of the Salt transfer and Pellet fabrication of UCl3 Making Equipment for Electrorefining

    International Nuclear Information System (INIS)

    Woo, M. S.; Jin, H. J.; Park, G. I.; Park, S. B.

    2014-01-01

    The process to produce a uranium chloride salt includes two steps: a reaction process of gaseous chlorine with liquid cadmium to form the CdCl 2 occurring in a Cd layer, followed by a process to produce UCl 3 by the reaction of U in the LiCl-KCl eutectic salt and CdCl 2 . Chemical reaction is next chlorination reaction; - Cd chlorination : Cd + Cl2 → CdCl 2 - U chlorination : 3CdCl2 + 2U → 3Cd + 2UCl 3 The apparatus for producing UCl 3 consists of a chlorine gas generator, a uranium chlorinator, a Cd distiller, the pelletizer, a off-gas wet scrubber and a dry scrubber. Salt transfer system set among reactors to transfer salt at 500 .deg. C. The temperature of the reactants is maintained at about 600 .deg. C. After the reaction is completed in the uranium chlorinator, The Salt product is transferred to the Cd distiller to decrease residual Cd concentration in the salts, and then salt is transferred to the mould of pelletizer by a transfer system to fabricate pellet type salt. Performance test of the salt transfer and pellet fabrication of its equipment was tested in this work. Performance test of the salt transfer and pellet fabrication of UCl3 making equipment for Electrorefining carried out in this work. The result of equipment test is that melted salt at 600 .deg. C was easy transferred by salt transfer equipment heated at 500 .deg. C. In this time, salt transfer was carried out by argon gas pressurization at 3bar. When velocity of salt transfer was controlled under reduce pressure, velocity of salt transfer was difficult to control. And when salt pellet was fabricated by the mold of pelletizer heated at 90 .deg. C better than mold of pelletizer heated at 200 .deg. C because salt melted prevent leakage from mold of pelletizer

  7. Intermediate temperature heat release in an HCCI engine fueled by ethanol/n-heptane mixtures: An experimental and modeling study

    KAUST Repository

    Vuilleumier, David

    2014-03-01

    This study examines intermediate temperature heat release (ITHR) in homogeneous charge compression ignition (HCCI) engines using blends of ethanol and n-heptane. Experiments were performed over the range of 0-50% n-heptane liquid volume fractions, at equivalence ratios 0.4 and 0.5, and intake pressures from 1.4bar to 2.2bar. ITHR was induced in the mixtures containing predominantly ethanol through the addition of small amounts of n-heptane. After a critical threshold, additional n-heptane content yielded low temperature heat release (LTHR). A method for quantifying the amount of heat released during ITHR was developed by examining the second derivative of heat release, and this method was then used to identify trends in the engine data. The combustion process inside the engine was modeled using a single-zone HCCI model, and good qualitative agreement of pre-ignition pressure rise and heat release rate was found between experimental and modeling results using a detailed n-heptane/ethanol chemical kinetic model. The simulation results were used to identify the dominant reaction pathways contributing to ITHR, as well as to verify the chemical basis behind the quantification of the amount of ITHR in the experimental analysis. The dominant reaction pathways contributing to ITHR were found to be H-atom abstraction from n-heptane by OH and the addition of fuel radicals to O2. © 2013 The Combustion Institute.

  8. Intermediate temperature heat release in an HCCI engine fueled by ethanol/n-heptane mixtures: An experimental and modeling study

    KAUST Repository

    Vuilleumier, David; Kozarac, Darko; Mehl, Marco; Saxena, Samveg; Pitz, William J.; Dibble, Robert W.; Chen, Jyhyuan; Sarathy, Mani

    2014-01-01

    This study examines intermediate temperature heat release (ITHR) in homogeneous charge compression ignition (HCCI) engines using blends of ethanol and n-heptane. Experiments were performed over the range of 0-50% n-heptane liquid volume fractions, at equivalence ratios 0.4 and 0.5, and intake pressures from 1.4bar to 2.2bar. ITHR was induced in the mixtures containing predominantly ethanol through the addition of small amounts of n-heptane. After a critical threshold, additional n-heptane content yielded low temperature heat release (LTHR). A method for quantifying the amount of heat released during ITHR was developed by examining the second derivative of heat release, and this method was then used to identify trends in the engine data. The combustion process inside the engine was modeled using a single-zone HCCI model, and good qualitative agreement of pre-ignition pressure rise and heat release rate was found between experimental and modeling results using a detailed n-heptane/ethanol chemical kinetic model. The simulation results were used to identify the dominant reaction pathways contributing to ITHR, as well as to verify the chemical basis behind the quantification of the amount of ITHR in the experimental analysis. The dominant reaction pathways contributing to ITHR were found to be H-atom abstraction from n-heptane by OH and the addition of fuel radicals to O2. © 2013 The Combustion Institute.

  9. Chemical behaviors of tritium formed in a LiF-BeF2 mixture and its removal from a molten mixture

    International Nuclear Information System (INIS)

    Oishi, J.; Moriyama, H.; Maeda, S.; Ohmura, T.; Moritani, K.

    1987-01-01

    Chemical behaviors of tritium formed in a LiF-BeF 2 mixture were studied using a radiometric method. Most of tritium was found to be present in the T + and T - states under no thermal treatment. The distribution of tritium in chemical states was explained by considering hot atom reactions and radiation chemical reactions. Tritium behaviors in a molten LiF-BeF 2 mixture were also studied at 873 K. In the presence of hydrogen, the isotopic exchange reaction which is TF + H 2 → HT + HF was observed to occur probably in the salt phase. The removal of tritium in a molten LiF-BeF 2 mixture was tried by sparging a gas in a melt for tritium purge, and the effects of the composition of purge gas and of the construction material of crucibles containing the melt on the removal rate were observed. (author)

  10. Salt evaporation behaviors of uranium deposits from an electrorefiner

    International Nuclear Information System (INIS)

    Sung Bin Park; Dong Wook Cho; Gyu Hwan Oh; Sung Chan Hwang; Young Ho Kang; Hansoo Lee; Eung Ho Kim; Seong-Won Park; Jong Hyeon Lee

    2010-01-01

    From an electrorefining process, uranium deposits were recovered at the solid cathode of an electrorefining system. The uranium deposits from the electrorefiner contained about 30-40 wt% salts. In order to recover pure uranium and transform it into metal ingots, these salts have to be removed. A salt distiller was adapted for a salt evaporation. A batch operation for the salt removal was carried out by a heating and a vacuum evaporation. The operational conditions were a 700-1,000 deg C hold temperature and less than a 1 Torr under Argon atmosphere, respectively. The behaviors of the salt evaporations were investigated by focusing on the effects of the pressure and the holding temperature for the salt distillation. The removal efficiencies of the salts were obtained with regard to the operational conditions. The experimental results of the salt evaporations were evaluated by using the Hertz-Langmuir relation. The effective evaporation coefficients of this relation were obtained with regards to the vacuum pressures and the hold temperatures. The higher the vacuum pressure and the higher the holding temperature were, the higher the removal efficiencies of the salts were. (author)

  11. Novel waste printed circuit board recycling process with molten salt

    OpenAIRE

    Riedewald, Frank; Sousa-Gallagher, Maria

    2015-01-01

    The objective of the method was to prove the concept of a novel waste PCBs recycling process which uses inert, stable molten salts as the direct heat transfer fluid and, simultaneously, uses this molten salt to separate the metal products in either liquid (solder, zinc, tin, lead, etc.) or solid (copper, gold, steel, palladium, etc.) form at the operating temperatures of 450?470??C. The PCB recovery reactor is essentially a U-shaped reactor with the molten salt providing a continuous fluid, a...

  12. Experimental study on density, thermal conductivity, specific heat, and viscosity of water-ethylene glycol mixture dispersed with carbon nanotubes

    Directory of Open Access Journals (Sweden)

    Ganeshkumar Jayabalan

    2017-01-01

    Full Text Available This article presents the effect of adding multi wall carbon nanotubes (MWCNT in water – ethylene glycol mixture on density and various thermophysical properties such as thermal conductivity, specific heat and viscosity. Density of nanofluids was measured using standard volumetric flask method and the data showed a good agreement with the mixing theory. The maximum thermal conductivity enhancement of 11 % was noticed for the nanofluids with 0.9 wt. %. Due to lower specific heat of the MWCNT, the specific heat of the nanofluids decreased in proportion with the MWCNT concentration. The rheological analysis showed that the transition region from shear thinning to Newtonian extended to the higher shear stress range compared to that of base fluids. Viscosity ratio of the nanofluids augmented anomalously with respect to increase in temperature and about 2.25 fold increase was observed in the temperature range of 30 – 40 ˚C. The modified model of Maron and Pierce predicted the viscosity of the nanofluids with the inclusion of effect of aspect ratio of MWCNT and nanoparticle aggregates.

  13. Facilitated transport of hydrophilic salts by mixtures of anion and cation carriers and by ditopic carriers

    NARCIS (Netherlands)

    Chrisstoffels, L.A.J.; de Jong, Feike; Reinhoudt, David; Sivelli, Stefano; Gazzola, Licia; Casnati, Alessandro; Ungaro, Rocco

    1999-01-01

    Anion transfer to the membrane phase affects the extraction efficiency of salt transport by cation carriers 1 and 3. Addition of anion receptors 5 or 6 to cation carriers 1, 3, or 4 in the membrane phase enhances the transport of salts under conditions in which the cation carriers alone do not

  14. Salt-occluded zeolite waste forms: Crystal structures and transformability

    International Nuclear Information System (INIS)

    Richardson, J.W. Jr.

    1996-01-01

    Neutron diffraction studies of salt-occluded zeolite and zeolite/glass composite samples, simulating nuclear waste forms loaded with fission products, have revealed complex structures, with cations assuming the dual roles of charge compensation and occlusion (cluster formation). These clusters roughly fill the 6--8 angstrom diameter pores of the zeolites. Samples are prepared by equilibrating zeolite-A with complex molten Li, K, Cs, Sr, Ba, Y chloride salts, with compositions representative of anticipated waste systems. Samples prepared using zeolite 4A (which contains exclusively sodium cations) as starting material are observed to transform to sodalite, a denser aluminosilicate framework structure, while those prepared using zeolite 5A (sodium and calcium ions) more readily retain the zeolite-A structure. Because the sodalite framework pores are much smaller than those of zeolite-A, clusters are smaller and more rigorously confined, with a correspondingly lower capacity for waste containment. Details of the sodalite structures resulting from transformation of zeolite-A depend upon the precise composition of the original mixture. The enhanced resistance of salt-occluded zeolites prepared from zeolite 5A to sodalite transformation is thought to be related to differences in the complex chloride clusters present in these zeolite mixtures. Data relating processing conditions to resulting zeolite composition and structure can be used in the selection of processing parameters which lead to optimal waste forms

  15. Operation characteristic and performance comparison of organic Rankine cycle (ORC) for low-grade waste heat using R245fa, R123 and their mixtures

    International Nuclear Information System (INIS)

    Feng, Yong-qiang; Hung, Tzu-Chen; He, Ya-Ling; Wang, Qian; Wang, Shuang; Li, Bing-xi; Lin, Jaw-Ren; Zhang, Wenping

    2017-01-01

    Highlights: • Experimental comparison using R123, R245fa and their mixtures has been investigated. • The basic operation parameters and the detailed operation characteristics of pure and mixture working fluids are addressed. • The mixture owns a relatively higher pump power consumption, 10–50% higher than that of R245fa and 2–47% higher than that of R123. • The highest system generating efficiency of 4.53% is obtained by 0.67R245fa/0.33R123. - Abstract: The operation characteristic and performance comparison of low-grade organic Rankine cycle (ORC) using R245fa, R123 and their mixtures have been investigated. The heat source temperature is set to be 120 °C, while the mass flow rate is controlled by adjusting the pump frequency. The basic operation parameters are first examined, while the detailed operation characteristics of pure and mixture working fluids are addressed. The system overall performance, including thermal efficiency and system generating efficiency, for pure and mixture working fluids are explored. The experimental results show that the mixtures own a relatively higher pump power consumption and enhancing the pump performance is also significant for ORC application. Whether the mixtures exhibit better thermodynamic performance than the pure working fluids depend on the operation parameters and mass fraction of mixtures. 0.67R245fa/0.33R123 owns the highest maximum net electricity output of 1.67 kW, 4.38% higher than that of R245fa and 63.73% higher than that of R123. Compared to the pure working fluids, the mixture working fluids own a better thermodynamic performance and a moderate economic performance.

  16. In-situ stress measurements - results of experiments performed at the ASSE salt mine - Federal Republic of Germany

    International Nuclear Information System (INIS)

    Feddersen, H.K.

    1989-01-01

    High-level nuclear wastes are heat generating wastes. Heat will be transferred to the surrounding salt formation. This heating of the host rock will result in an increased temperature and in stress changes. From 1983 through 1985 two underground tests were conducted in the Asse Salt Mine (Federal Republic of Germany) in which, among others, thermally induced stress changes were investigated. These tests are discussed in this paper

  17. Method and apparatus for nuclear heating of oil-bearing formations

    International Nuclear Information System (INIS)

    Alspaw, D.I.

    1979-01-01

    A method and apparatus are provided for using heat generated by absorption of radiation from nuclear waste materials to reduce the viscosity of petroleum products contained within a subsurface earth formation. The nuclear waste material is positioned in a salt water formation underlying the subsurface earth formation so that the radiation emitted by the material heats the salt water formation. conduction and convection transfer the heat to the subsurface earth formation, raising the temperature and thereby reducing the viscosity of the petroleum products. To prevent radioactive contamination within the salt water formation, the nuclear waste material may be encapsulated in a material selected to absorb alpha and beta radiation

  18. Noble gas, binary mixtures for commercial gas-cooled reactor systems

    International Nuclear Information System (INIS)

    El-Genk, M. S.; Tournier, J. M.

    2007-01-01

    Commercial gas cooled reactors employ helium as a coolant and working fluid for the Closed Brayton Cycle (CBC) turbo-machines. Helium has the highest thermal conductivity and lowest dynamic viscosity of all noble gases. This paper compares the relative performance of pure helium to binary mixtures of helium and other noble gases of higher molecular weights. The comparison is for the same molecular flow rate, and same operating temperatures and geometry. Results show that although helium is a good working fluid because of its high heat transfer coefficient and significantly lower pumping requirement, a binary gas mixture of He-Xe with M = 15 gm/mole has a heat transfer coefficient that is ∼7% higher than that of helium and requires only 25% of the number stages of the turbo-machines. The binary mixture, however, requires 3.5 times the pumping requirement with helium. The second best working fluid is He-Kr binary mixture with M = 10 gm/mole. It has 4% higher heat transfer coefficient than He and requires 30% of the number of stages in the turbo-machines, but requires twice the pumping power

  19. Thermal energy storage using thermo-chemical heat pump

    International Nuclear Information System (INIS)

    Hamdan, M.A.; Rossides, S.D.; Haj Khalil, R.

    2013-01-01

    Highlights: ► Understanding of the performance of thermo chemical heat pump. ► Tool for storing thermal energy. ► Parameters that affect the amount of thermal stored energy. ► Lithium chloride has better effect on storing thermal energy. - Abstract: A theoretical study was performed to investigate the potential of storing thermal energy using a heat pump which is a thermo-chemical storage system consisting of water as sorbet, and sodium chloride as the sorbent. The effect of different parameters namely; the amount of vaporized water from the evaporator, the system initial temperature and the type of salt on the increase in temperature of the salt was investigated and hence on the performance of the thermo chemical heat pump. It was found that the performance of the heat pump improves with the initial system temperature, with the amount of water vaporized and with the water remaining in the system. Finally it was also found that lithium chloride salt has higher effect on the performance of the heat pump that of sodium chloride.

  20. Heating Performance Analysis of a Geothermal Heat Pump Working with Different Zeotropic and Azeotropic Mixtures

    OpenAIRE

    Robert Bedoić; Veljko Filipan

    2018-01-01

    The aim of the paper is to examine the possibility of application of the spreadsheet calculator and Reference Fluid Thermodynamic and Transport Properties database to a thermodynamic process. The heating process of a real soil-to-water heat pump, including heat transfer in the borehole heat exchanger has been analysed. How the changes of condensing temperature, at constant evaporating temperature, influence the following: heating capacity, compressor effective power, heat supplied to evaporat...