WorldWideScience

Sample records for salt basins north

  1. Resource Assessment of the In-Place and Potentially Recoverable Deep Natural Gas Resource of the Onshore Interior Salt Basins, North Central and Northeastern Gulf of Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Ernest A. Mancini; Donald A. Goddard

    2005-04-15

    The principal research effort for the first six months of Year 2 of the project has been petroleum system characterization. Understanding the burial and thermal maturation histories of the strata in the onshore interior salt basins of the North Central and Northeastern Gulf of Mexico areas is important in petroleum system characterization. The underburden and overburden rocks in these basins and subbasins are a product of their rift-related geohistory. Petroleum source rock analysis and thermal maturation and hydrocarbon expulsion modeling indicate that an effective regional petroleum source rock in the onshore interior salt basins, the North Louisiana Salt Basin, Mississippi Interior Salt Basin, Manila Subbasin and Conecuh Subbasin, was the Upper Jurassic Smackover lime mudstone. The Upper Cretaceous Tuscaloosa shale was an effective local petroleum source rock in the Mississippi Interior Salt Basin and a possible local source bed in the North Louisiana Salt Basin. Hydrocarbon generation and expulsion was initiated in the Early Cretaceous and continued into the Tertiary in the North Louisiana Salt Basin and the Mississippi Interior Salt Basin. Hydrocarbon generation and expulsion was initiated in the Late Cretaceous and continued into the Tertiary in the Manila Subbasin and Conecuh Subbasin. Reservoir rocks include Jurassic, Cretaceous and Tertiary siliciclastic and carbonate strata. Seal rocks include Jurassic, Cretaceous and Tertiary anhydrite and shale beds. Petroleum traps include structural and combination traps.

  2. Resource Assessment of the In-Place and Potentially Recoverable Deep Natural Gas Resource of the Onshore Interior Salt Basins, North Central and Northeastern Gulf of Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Ernest A. Mancini; Paul Aharon; Donald A. Goddard; Roger Barnaby

    2005-10-28

    The principal research effort for Year 2 of the project has been petroleum system characterization and modeling. Understanding the burial, thermal maturation, and hydrocarbon expulsion histories of the strata in the onshore interior salt basins of the North Central and Northeastern Gulf of Mexico areas is important in hydrocarbon resource assessment. The underburden and overburden rocks in these basins and subbasins are a product of their rift-related geohistory. Petroleum source rock analysis and initial thermal maturation and hydrocarbon expulsion modeling indicated that an effective regional petroleum source rock in the onshore interior salt basins and subbasins, the North Louisiana Salt Basin, Mississippi Interior Salt Basin, Manila Subbasin and Conecuh Subbasin, was Upper Jurassic Smackover lime mudstone. The initial modeling also indicated that hydrocarbon generation and expulsion were initiated in the Early Cretaceous and continued into the Tertiary in the North Louisiana Salt Basin and the Mississippi Interior Salt Basin and that hydrocarbon generation and expulsion were initiated in the Late Cretaceous and continued into the Tertiary in the Manila Subbasin and Conecuh Subbasin. Refined thermal maturation and hydrocarbon expulsion modeling and additional petroleum source rock analysis have confirmed that the major source rock in the onshore interior salt basins and subbasins is Upper Jurassic Smackover lime mudstone. Hydrocarbon generation and expulsion were initiated in the Early to Late Cretaceous and continued into the Tertiary.

  3. Resource Assessment of the In-Place and Potentially Recoverable Deep Natural Gas Resource of the Onshore Interior Salt Basins, North Central and Northeastern Gulf of Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Ernest A. Mancini

    2006-09-30

    The objectives of the study were: (1) to perform resource assessment of the thermogenic gas resources in deeply buried (>15,000 ft) natural gas reservoirs of the onshore interior salt basins of the north central and northeastern Gulf of Mexico areas through petroleum system identification, characterization and modeling; and (2) to use the petroleum system based resource assessment to estimate the volume of the deep thermogenic gas resource that is available for potential recovery and to identify those areas in the interior salt basins with high potential for this thermogenic gas resource. Petroleum source rock analysis and petroleum system characterization and modeling, including thermal maturation and hydrocarbon expulsion modeling, have shown that the Upper Jurassic Smackover Formation served as the regional petroleum source rock in the North Louisiana Salt Basin, Mississippi Interior Salt Basin, Manila Subbasin and Conecuh Subbasin. Thus, the estimates of the total hydrocarbons, oil, and gas generated and expelled are based on the assumption that the Smackover Formation is the main petroleum source rock in these basins and subbasins. The estimate of the total hydrocarbons generated for the North Louisiana Salt Basin in this study using a petroleum system approach compares favorably with the total volume of hydrocarbons generated published by Zimmermann (1999). In this study, the estimate is 2,870 billion barrels of total hydrocarbons generated using the method of Schmoker (1994), and the estimate is 2,640 billion barrels of total hydrocarbons generated using the Platte River software application. The estimate of Zimmermann (1999) is 2,000 to 2,500 billion barrels of total hydrocarbons generated. The estimate of gas generated for this basin is 6,400 TCF using the Platte River software application, and 12,800 TCF using the method of Schmoker (1994). Barnaby (2006) estimated that the total gas volume generated for this basin ranges from 4,000 to 8,000 TCF. Seventy

  4. Salt disposal: Paradox Basin, Utah

    International Nuclear Information System (INIS)

    1983-04-01

    This report presents the findings of a study conducted for the National Waste Terminal Storage (NWTS) Program. Permanent disposal options are examined for salt resulting from the excavation of a waste repository in the bedded salt deposits of the Paradox Basin of southeastern Utah. The study is based on a repository salt backfill compaction of 60% of the original density which leaves a total of 8 million tons of 95% pure salt to be disposed of over a 30-year period. The feasibility, impacts, and mitigation methods are examined for five options: commercial disposal, permanent onsite surface disposal, permanent offsite disposal, deepwell injection, and ocean and Great Salt Lake disposal. The study concludes the following: Commercial marketing of all repository salt would require a subsidy for transportation to major salt markets. Permanent onsite surface storage is both economically and technically feasible. Permanent offsite disposal is technically feasible but would incur additional transportation costs. Selection of an offsite location would provide a means of mitigating impacts associated with surface storage at the repository site. Deepwell injection is an attractive disposal method; however, the large water requirement, high cost of development, and poor performance of similar operating brine disposal wells eliminates this option from consideration as the primary means of disposal for the Paradox Basin. Ocean disposal is expensive because of high transportation cost. Also, regulatory approval is unlikely. Ocean disposal should be eliminated from further consideration in the Paradox Basin. Great Salt Lake disposal appears to be technically feasible. Great Salt Lake disposal would require state approval and would incur substantial costs for salt transportation. Permanent onsite disposal is the least expensive method for disposal of all repository salt

  5. Salt tectonics in Santos Basin, Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Quirk, David G.; Nielsen, Malene; Raven, Madeleine [Maersk Oil and Gas, Copenhagen (Denmark); Menezes, Paulo [Maersk Oil and Gas, Rio de Janeiro, RJ (Brazil)

    2008-07-01

    From Albian to end Cretaceous times, the inboard part of the Santos Basin in Brazil was affected by extension as salt flowed basinwards under the effect of gravity. Salt rollers, flip-flop salt diapirs and the famous Albian Gap were all formed by this process. Outboard of these extensional structures, contraction was taken up in a wide zone of thickened salt where salt collected. The overburden was carried on top of the salt as it flowed down-dip, with up to 40 km of translation recorded in Albian strata. (author)

  6. BASIN ANALYSIS AND PETROLEUM SYSTEM CHARACTERIZATION AND MODELING, INTERIOR SALT BASINS, CENTRAL AND EASTERN GULF OF MEXICO

    Energy Technology Data Exchange (ETDEWEB)

    Ernest A. Mancini; Donald A. Goddard; Ronald K. Zimmerman

    2005-05-10

    The principal research effort for Year 2 of the project has been data compilation and the determination of the burial and thermal maturation histories of the North Louisiana Salt Basin and basin modeling and petroleum system identification. In the first nine (9) months of Year 2, the research focus was on the determination of the burial and thermal maturation histories, and during the remainder of the year the emphasis has basin modeling and petroleum system identification. Existing information on the North Louisiana Salt Basin has been evaluated, an electronic database has been developed, regional cross sections have been prepared, structure and isopach maps have been constructed, and burial history, thermal maturation history and hydrocarbon expulsion profiles have been prepared. Seismic data, cross sections, subsurface maps and related profiles have been used in evaluating the tectonic, depositional, burial and thermal maturation histories of the basin. Oil and gas reservoirs have been found to be associated with salt-supported anticlinal and domal features (salt pillows, turtle structures and piercement domes); with normal faulting associated with the northern basin margin and listric down-to-the-basin faults (state-line fault complex) and faulted salt features; and with combination structural and stratigraphic features (Sabine and Monroe Uplifts) and monoclinal features with lithologic variations. Petroleum reservoirs are mainly Upper Jurassic and Lower Cretaceous fluvial-deltaic sandstone facies and Lower Cretaceous and Upper Cretaceous shoreline, marine bar and shallow shelf sandstone facies. Cretaceous unconformities significantly contribute to the hydrocarbon trapping mechanism capacity in the North Louisiana Salt Basin. The chief petroleum source rock in this basin is Upper Jurassic Smackover lime mudstone beds. The generation of hydrocarbons from Smackover lime mudstone was initiated during the Early Cretaceous and continued into the Tertiary

  7. Salt toxicosis in waterfowl in North Dakota

    Science.gov (United States)

    Windingstad, Ronald M.; Kartch, Fred X.; Stroud, Richard K.; Smith, Milton R.

    1987-01-01

    About 150 waterfowl died and another 250 became weak and lethargic from suspected salt poisoning after using White Lake, a highly saline lake in Mountrail County, North Dakota. Frigid temperatures made fresh water unavailable, forcing the birds to ingest the saline waters with resultant toxic effects. Sick birds recovered when removed from the salt water and released into fresh water marshes. Brain sodium levels were higher in dead geese submitted for necropsy than in controls.

  8. Geology and salt deposits of the Michigan Basin

    International Nuclear Information System (INIS)

    Johnson, K.S.; Gonzales, S.

    1976-07-01

    The Silurian-age Salina salt, one of the greatest deposits of bedded rock salt in the world, underlies most of the Michigan basin and parts of the Appalachian basin in Ohio. Pennsylvania, New York, and West Virginia. Interest in this salt deposit has increased in recent years because there may be one or more areas where it could be used safely as a repository for the underground storage of high-level radioactive wastes. The general geology of the Michigan basin is summarized and the major salt deposits are described in the hope that these data will be useful in determining whether there are any areas in the basin that are sufficiently promising to warrant further detailed study. Distribution of the important salt deposits in the basin is limited to the Southern Peninsula of Michigan

  9. Comparison of the rift and post-rift architecture of conjugated salt and salt-free basins offshore Brazil and Angola/Namibia, South Atlantic

    Science.gov (United States)

    Strozyk, Frank; Back, Stefan; Kukla, Peter A.

    2017-10-01

    This study presents a regional comparison between selected 2D seismic transects from large, conjugated salt and salt-free basins offshore southern Brazil (Campos Basin, Santos Basin, Pelotas Basin) and southwest Africa (Kwanza Basin, northern and southern Namibe Basin, Walvis Basin). Tectonic-stratigraphic interpretation of the main rift and post-rift units, free-air gravity data and flexural isostatic backstripping were used for a comprehensive basin-to-basin documentation of key mechanisms controlling the present-day differences in conjugated and neighbouring South Atlantic basins. A significant variation in the tectonic-sedimentary architecture along-strike at each margin and between the conjugated basins across the South Atlantic reflects major differences in (1) the structural configuration of each margin segment at transitional phase between rifting and breakup, as emphasized in the highly asymmetric settings of the large Santos salt basin and the conjugated, salt-free southern Namibe Basin, (2) the post-breakup subsidence and uplift history of the respective margin segment, which caused major differences for example between the Campos and Espirito Santo basins and the conjugated northern Namibe and Kwanza basins, (3) variations in the quantity and distribution of post-breakup margin sediments, which led to major differences in the subsidence history and the related present-day basin architecture, for example in the initially rather symmetric, siliciclastic Pelotas and Walvis basins, and (4) the deposition of Aptian evaporites in the large rift and sag basin provinces north of the Rio Grande Rise and Walvis Ridge, highly contrasting the siliciclastic basins along the margin segments south of the ridges. The resulting present-day architecture of the basins can be generally classified as (i) moderately symmetric, salt-free, and magma-rich in the northern part of the southern segment, (i) highly asymmetric, salt-bearing and magma-poor vs. salt-free and magma

  10. Deep-seated salt dissolution in the Delaware basin, Texas and New Mexico

    International Nuclear Information System (INIS)

    Anderson, R.Y.

    1981-01-01

    Patterns of salt dissolution in the Delaware Basin are related to the bedrock geometry and hydrology that developed following uplift, tilting, and erosion in the late Cenozoic, and the greatest volume of salt has been removed since that time. During the Permian, some salt was dissolved from the top of the Castile Formation before deposition of the Salado Formation and from the top of the Salado before deposition of the Rustler Formation. In addition, some salt dissolution occurred after the Permian and before the Cretaceous. Post-uplift surface dissolution has progressed across the Delaware Basin from south to north and west to east and generally down the regional dip. Deep-seated dissolution has occurred around the margin of the basin where the Capitan Limestone aquifer is in contact with the Permian evaporites and within the basin where selective dissolution in the lower Salado has undercut the overlying salt beds of the middle and upper Salado. Dissolution has not advanced down regional dip uniformly but has left outliers of salt and has progressed selectively into structurally predisposed areas. This selective advance has significance for the stability of the U.S. Department of Energy's Waste Isolation Pilot Plant (WIPP) site

  11. Dissolution of the Upper Seven Rivers and Salado salt in the interior Palo Duro Basin, Texas: Revision: Topical report

    International Nuclear Information System (INIS)

    DeConto, R.T.; Murphy, P.J.

    1987-09-01

    The Upper Seven Rivers and Salado Formations contain the uppermost salts within the interior Palo Duro Basin, Stratigraphic and structural evidence based on geophysical well logs indicate that both dissolution and facies change have influenced the thickness of these uppermost salts. The magnitude of vertical salt loss due to dissolution is interminable at this time because original salt thickness is unknown. Gradual thinning of the Upper Seven Rivers Formation is recognized from south to north across the Palo Duro Basin. Anhydrites within the formation pinch out toward the basin margins, indicating that section loss is in part depositionally controlled. Additionally, informal subdivision of the Upper Seven Rivers Formation suggests that salt dissolution has occurred in the uppermost salt. A northeast-trending zone of thin Upper Seven Rivers Formation in portions of Deaf Smith, Randall, Castro, and Parmer Counties is possibly related to Tertiary dissolution. In New Mexico, local thinning of the Upper Seven Rivers Formation may be associated with faulting. Triassic erosion on uplifted fault blocks has affected the Upper Permian section. The Salado salt margin is located within the interior Palo Duro Basin. Geophysical well logs and core evidence indicate that the salt margin has migrated basinward as a result of dissolution. Permian dissolution probably contributed to some salt loss. 106 refs., 31 figs., 2 tabs

  12. Geology of the north end of the Salt Valley Anticline, Grand County, Utah

    International Nuclear Information System (INIS)

    Gard, L.M. Jr.

    1976-01-01

    The geology and hydrology of a portion of the Salt Valley anticline lying north of Moab, Utah, that is being studied as a potential site for underground storage of nuclear waste in salt are discussed. Selection of this area was based on recommendations made in an earlier appraisal of the potential of Paradox basin salt deposits for such use. Salt Valley anticline, a northwest-trending diapiric structure, consists of Mesozoic sedimentary rocks arched over a thick core of salt of the Paradox Member of the Middle Pennsylvanian Hermosa Formation. Salt began to migrate to form and/or develop this structure shortly after it was deposited, probably in response to faulting. This migration caused upwelling of the salt creating a linear positive area. This positive area, in turn, caused increased deposition of sediments in adjacent areas which further enhanced salt migration. Not until late Jurassic time had flowage of the salt slowed sufficiently to allow sediments of the Morrison and younger formations to be deposited across the salt welt. A thick cap of insoluble residue was formed on top of the salt diapir as a result of salt dissolution through time. The crest of the anticline is breached; it collapsed in two stages during the Tertiary Period. The first stage was graben collapse during the early Tertiary; the second stage occurred after Miocene regional uplift had caused downcutting streams to breach the salt core resulting in further collapse. The axis of the anticline is a narrow generally flat-floored valley containing a few hills composed of downdropped Mesozoic rocks foundered in thecaprock. The caprock, which underlies thin alluvium in the valley, is composed of contorted gypsum, shale, sandstone, and limestone--the insoluble residue of the Paradox salt

  13. Geologic appraisal of Paradox basin salt deposits for water emplacement

    Science.gov (United States)

    Hite, Robert J.; Lohman, Stanley William

    1973-01-01

    Thick salt deposits of Middle Pennsylvanian age are present in an area of 12,000 square miles in the Paradox basin of southeast Utah and southwest Colorado. The deposits are in the Paradox Member of the Hermosa Formation. The greatest thickness of this evaporite sequence is in a troughlike depression adjacent to the Uncompahgre uplift on the northeast side of the basin.The salt deposits consist of a cyclical sequence of thick halite units separated by thin units of black shale, dolomite, and anhydrite. Many halite units are several hundred feet thick and locally contain economically valuable potash deposits.Over much of the Paradox basin the salt deposits occur at depths of more than 5,000 feet. Only in a series of salt anticlines located along the northeastern side of the basin do the salt deposits rise to relatively shallow depths. The salt anticlines can be divided geographically and structurally into five major systems. Each system consists of a long undulating welt of thickened salt over which younger rocks are arched in anticlinal form. Locally there are areas along the axes of the anticlines where the Paradox Member was never covered by younger sediments. This allowed large-scale migration of Paradox strata toward and up through these holes in the sediment cover forming diapiric anticlines.The central or salt-bearing cores of the anticlines range in thickness from about 2,500 to 14,000 feet. Structure in the central core of the salt anticlines is the result of both regional-compression and flowage of the Paradox Member into the anticlines from adjacent synclines. Structure in the central cores of the salt anticlines ranges from relatively undeformed beds to complexly folded and faulted masses, in which stratigraphic continuity is undemonstrable.The presence of thick cap rock .over many of the salt anticlines is evidence of removal of large volumes of halite by groundwater. Available geologic and hydrologic information suggests that this is a relatively slow

  14. Structural Evolution of central part of the Tuzgolu (Salt Lake) Basin, Central Anatolia, Turkey

    Science.gov (United States)

    Ada, M.; Cemen, I.; Çaptuğ, A.; Demirci, M.; Engin, C.

    2017-12-01

    The Tuzgolu Basin in Central Anatolia, Turkey, covers low-relief areas located between the Pontide Mountains to the North and Tauride Mountains to the South. The basin started to form as a rift basin during the Late Maastrichtian. The main Tuzgolu-Aksaray fault zone on the eastern margin of the basin and the northwest trending Yeniceoba and Cihanbeyli fault zones on the western margin of the basin were probably developed during that time. The basin has also experienced westward extension in response to westward escape of the Anatolian plate since Late Miocene. Several geologic studies have been conducted in the Tuz Gölü (Salt Lake) Basin and surrounding areas to determine structural and tectono-stratigraphic development of the basin. However, there are still many questions regarding the structural evolution of the basin. The main purpose of this study is to investigate the structural evolution of the central Tuzgolu Basin based on the structural interpretation of available 2-D seismic reflection profiles, well log analysis and construction of structural cross sections. The cross-sections will be based on depth converted seismic lines to determine structural geometry of the faults and folds. A preliminary Petrel project has been prepared using available seismic profiles. Our preliminary structural interpretations suggest that a well-developed rollover anticline was developed with respect to the westward extension in Central Anatolia. The rollover anticline is faulted in its crest area by both down-to-the west and down-to-the east normal faults. The geometry of the main boundary fault at depth still remains in question. We anticipate that this question will be resolved based on depth converted structural cross-sections and their restoration.

  15. Style and timing of salt tectonics in the Dniepr-Donets Basin (Ukraine): implications for triggering and driving mechanisms of salt movement in sedimentary basins.

    NARCIS (Netherlands)

    Stovba, S.M.; Stephenson, R.A.

    2003-01-01

    The Ukrainian Dniepr-Donets Basin (DDB) is a Late Palaeozoic intracratonic rift basin, with sedimentary thicknesses up to 19 km, displaying the effects of salt tectonics during its entire history of formation, from Late Devonian rifting to the Tertiary. Hundreds of concordant and discordant salt

  16. Geology of the north end of the Salt Valley Anticline, Grand County, Utah

    Science.gov (United States)

    Gard, Leonard Meade

    1976-01-01

    This report describes the geology and hydrology of a portion of the Salt Valley anticline lying north of Moab, Utah, that is being studied as a potential site for underground storage of nuclear waste in salt. Selection of this area was based on recommendations made in an earlier appraisal of the potential of Paradox basin salt deposits for such use. Part of sec. 5, T. 23 S., R. 20 E. has been selected as a site for subsurface investigation as a potential repository for radioactive waste. This site has easy access to transportation, is on public land, is isolated from human habitation, is not visible from Arches National Park, and the salt body lies within about 800 feet (244 m) of the surface. Further exploration should include investigation of possible ground water in the caprock and physical exploration of the salt body to identify a thick bed of salt for use as a storage zone that can be isolated from the shaly interbeds that possibly contain quantities of hydrocarbons. Salt Valley anticline, a northwest-trending diapiric structure, consists of Mesozoic sedimentary rocks arched over a thick core of salt of the Paradox Member of the Middle Pennsylvanian Hermosa Formation. Salt began to migrate to form and/or develop this structure shortly after it was deposited, probably in response to faulting. This migration caused upwelling of the salt creating a linear positive area. This positive area, in turn, caused increased deposition of sediments in adjacent areas which further enhanced salt migration. Not until late Jurassic time had flowage of the salt slowed sufficiently to allow sediments of the Morrison and younger formations to be deposited across the salt welt. A thick cap of insoluble residue was formed on top of the salt diapir as a result of salt dissolution through time. The crest of the anticline is breached; it collapsed in two stages during the Tertiary Period. The first stage was graben collapse during the early Tertiary; the second stage occurred after

  17. Mechanical stratification of autochthonous salt: Implications from basin-scale numerical models of rifted margin salt tectonics

    Science.gov (United States)

    Ings, Steven; Albertz, Markus

    2014-05-01

    Deformation of salt and sediments owing to the flow of weak evaporites is a common phenomenon in sedimentary basins worldwide, and the resulting structures and thermal regimes have a significant impact on hydrocarbon exploration. Evaporite sequences ('salt') of significant thickness (e.g., >1km) are typically deposited in many cycles of seawater inundation and evaporation in restricted basins resulting in layered autochthonous evaporite packages. However, analogue and numerical models of salt tectonics typically treat salt as a homogeneous viscous material, often with properties of halite, the weakest evaporite. In this study, we present results of two-dimensional plane-strain numerical experiments designed to illustrate the effects of variable evaporite viscosity and embedded frictional-plastic ('brittle') sediment layers on the style of salt flow and associated deformation of the sedimentary overburden. Evaporite viscosity is a first-order control on salt flow rate and the style of overburden deformation. Near-complete evacuation of low-viscosity salt occurs beneath expulsion basins, whereas significant salt is trapped when viscosity is high. Embedded frictional-plastic sediment layers (with finite yield strength) partition salt flow and develop transient contractional structures (folds, thrust faults, and folded faults) in a seaward salt-squeeze flow regime. Multiple internal sediment layers reduce the overall seaward salt flow during sediment aggradation, leaving more salt behind to be re-mobilized during subsequent progradation. This produces more seaward extensive allochthonous salt sheets. If there is a density difference between the embedded layers and the surrounding salt, then the embedded layers 'fractionate' during deformation and either float to the surface or sink to the bottom (depending on density), creating a thick zone of pure halite. Such a process of 'buoyancy fractionation' may partially explain the apparent paradox of layered salt in

  18. The Agost Basin (Betic Cordillera, Alicante province, Spain): a pull-apart basin involving salt tectonics

    Science.gov (United States)

    Martín-Martín, Manuel; Estévez, Antonio; Martín-Rojas, Ivan; Guerrera, Francesco; Alcalá, Francisco J.; Serrano, Francisco; Tramontana, Mario

    2018-03-01

    The Agost Basin is characterized by a Miocene-Quaternary shallow marine and continental infilling controlled by the evolution of several curvilinear faults involving salt tectonics derived from Triassic rocks. From the Serravallian on, the area experienced a horizontal maximum compression with a rotation of the maximum stress axis from E-W to N-S. The resulting deformation gave rise to a strike-slip fault whose evolution is characterized progressively by three stages: (1) stepover/releasing bend with a dextral motion of blocks; (2) very close to pure horizontal compression; and (3) restraining bend with a sinistral movement of blocks. In particular, after an incipient fracturing stage, faults generated a pull-apart basin with terraced sidewall fault and graben subzones developed in the context of a dextral stepover during the lower part of late Miocene p.p. The occurrence of Triassic shales and evaporites played a fundamental role in the tectonic evolution of the study area. The salty material flowed along faults during this stage generating salt walls in root zones and salt push-up structures at the surface. During the purely compressive stage (middle part of late Miocene p.p.) the salt walls were squeezed to form extrusive mushroom-like structures. The large amount of clayish and salty material that surfaced was rapidly eroded and deposited into the basin, generating prograding fan clinoforms. The occurrence of shales and evaporites (both in the margins of the basin and in the proper infilling) favored folding of basin deposits, faulting, and the formation of rising blocks. Later, in the last stage (upper part of late Miocene p.p.), the area was affected by sinistral restraining conditions and faults must have bent to their current shape. The progressive folding of the basin and deformation of margins changed the supply points and finally caused the end of deposition and the beginning of the current erosive systems. On the basis of the interdisciplinary results

  19. Seismic-refraction survey to the top of salt in the north end of the Salt Valley Anticline, Grand County, Utah

    Science.gov (United States)

    Ackermann, Hans D.

    1979-01-01

    A seismic-refraction survey, consisting of three lines about 2700, 2760, and 5460 meters long, was made at the north end of the Salt Valley anticline of the Paradox Basin in eastern Utah. The target was the crest of a diapiric salt mass and the overlying, deformed caprock. The interpretations reveal an undulating salt surface with as much as 80 meters of relief. The minimum depth of about 165 meters is near the location of three holes drilled by the U.S. Department of Energy for the purpose of evaluating the Salt Valley anticline as a potential site for radioactive waste storages Caprock properties were difficult to estimate because the contorted nature of these beds invalidated a geologic interpretation in terms of velocity layers. However, laterally varying velocities of the critically refracted rays throughout the area suggest differences in the gross physical properties of the caprock.

  20. Seismic-refraction survey to the top of salt in the north end of the Salt valley anticline, Grand County, Utah

    International Nuclear Information System (INIS)

    Achermann, H.D.

    1979-01-01

    A sesimic-refraction survey, consisting of three lines about 2700, 2760, and 5460 meters long, was made at the north end of the Salt valley anticline of the Paradox Basin in eastern Utah. The target was the crest of a diapiric salt mass and the overlying, deformed caprock. The interpretations reveal an undulating salt surface with as much as 80 meters of relief. The minimum depth of about 165 meters is near the location of three holes drilled by the US Department of Energy for the purpose of evaluating the Salt Valley anticline as a potential site for radioactive waste storage. Caprock properties were difficult to estimate because the contorted nature of these beds invalidated a goelogic interpretation in terms of velocity layers. However, laterally varying velocities of the critically refracted rays throughout the area suggest differences in the gross physical properties of the caprock

  1. Fluid inclusion brine compositions from Palo Duro Basin salt sites

    International Nuclear Information System (INIS)

    Moody, J.B.

    1987-01-01

    The fluid inclusion analyses were done on salt samples from Lower San Andres Cycle 4 and 5. The stable isotope composition of the fluid inclusion brines was measured on duplicate samples taken from the same fluid inclusion brine for correlation of geochemical content with the stable isotopic content. The analyzed Palo Duro Basin salt fluid inclusions are predominantly one phase, i.e., the presence of a fluid only. However, many of the larger fluid inclusions do have a small vapor bubble. This liquid/vapor ratio is so high in these vapor-containing fluid inclusions that their behavior in a thermal gradient would be almost identical to that of all liquid inclusions. Closely associated with the fluid inclusions are cryptomelane where some fibers penetrate into halite host crystal. The fluid inclusions have a wide variability in content for those components that were analyzed, even within the same salt type. The fluid inclusion brines are also acidic, ranging from 3 to 6 as measured with pH test papers

  2. Investigations on boron isotopic geochemistry of salt lakes in Qaidam basin, Qinghai

    Digital Repository Service at National Institute of Oceanography (India)

    Xiao, Y; Shirodkar, P.V.; Liu, W.G.; Wang, Y; Jin, L.

    of brine and are related to boron origin, the corrosion of salt and to certain chemical constituents. The distribution of boron isotopes in Quidam Basin showed a regional feature: salt lake brines in the west and northwest basin have the highest d11B values...

  3. Major salt beds of the Palo Duro and Dalhart Basins, Texas

    International Nuclear Information System (INIS)

    1983-12-01

    Major salt beds are defined as salt intervals at least 75 feet thick that contain no interbeds greater than 10 feet thick and include no more than 15 percent non-salt interbeds. Maps based on the interpretation of geophysical logs from hundreds of oil and gas exploration wells reveal seven major salt beds in the Palo Duro Basin and one major salt bed in the Dalhart Basin. The most extensive major salt beds are in the central and northern Palo Duro Basin, in the Upper San Andres Formation and the Lower San Andres Formation Units 4 and 5. Of these, the major salt bed within the Lower San Andres Formation Unit 4 is the most widespread and generally the thickest. 7 references, 15 figures, 2 tables

  4. Reinterpretation of Halokinetic Features in the Ancestral Rocky Mountains Paradox Salt Basin, Utah and Colorado

    Science.gov (United States)

    Thompson, J. A.; Giles, K. A.; Rowan, M. G.; Hearon, T. E., IV

    2016-12-01

    The Paradox Basin in southeastern Utah and southwestern Colorado is a foreland basin formed in response to flexural loading by the Pennsylvanian-aged Uncompaghre uplift during the Ancestral Rocky Mountain orogen. Thick sequences of evaporites (Paradox Formation) were deposited within the foreland basin, which interfinger with clastic sediments in the foredeep and carbonates around the basin margin. Differential loading of the Pennsylvanian-Jurassic sediments onto the evaporites drove synsedimentary halokinesis, creating a series of salt walls and adjacent minibasins within the larger foreland basin. The growing salt walls within the basin influenced patterns of sediment deposition from the Pennsylvanian through the Cretaceous. By integrating previously published mapping with recent field observations, mapping, and subsurface interpretations of well logs and 2D seismic lines, we present interpretations of the timing, geometry, and nature of halokinesis within the Paradox Basin, which record the complex salt tectonic history in the basin. Furthermore, we present recent work on the relationships between the local passive salt history and the formation of syndepositional counter-regional extensional fault systems within the foreland. These results will be integrated into a new regional salt-tectonic and stratigraphic framework of the Paradox Basin, and have broader implications for interpreting sedimentary records in other basins with a mobile substrate.

  5. Geotemperature pattern and geothermal resources in North China Basin

    Energy Technology Data Exchange (ETDEWEB)

    Deng Xiao; Chen Moxing; Xiong Liangping; Zhang Juming [Inst. of Geology. Academis Sinica, Beijing (China)

    1995-12-31

    Geotemperature pattern of the North China Basin has been studied. Results indicate that the geotemperature pattern of the Basin is in close correlation with its geological structure, mainly controlled by the structural form or the relief of the basement rock. Generally, high heat flow and high geotemperature zone correspond to basement uplifts whereas low heat flow and low geotemperature zone, to basement depressions. As a consequence, a `high-low-high` geotemperature pattern with NE and EW trending was thus formed and is observed in the North China Basin. This pattern has been validated and revealed by mathematical simulation. In the North China Basin, two main thermal water reservoirs are identified: porous type water in the Neogene system and fissure type water in Lower Paleozoic to Mid-Upper Proterozoic limestone bedrocks. The reserve of thermal water and recoverable resource are estimated. Results show that the North China Basin is an area with abundant low-medium temperature thermal water resources. 9 figs., 5 tabs., 10 refs.

  6. Paleothermicity in the Central Asturian Coal Basin, North Spain

    Energy Technology Data Exchange (ETDEWEB)

    Piedad-Sanchez, Noe; Izart, Alain; Martinez, Luis; Elie, Marcel; Menetrier, Cedric [UMR G2R/7566-Geologie et Gestion des Ressources Minerales et Energetiques, Equipe Dynamique des Bassins Sedimentaires et des Matieres Organiques, Faculte des Sciences, Universite Henri Poincare, Nancy 1, BP-239, Boulevard des Aiguillettes, 54506 Vandoeuvre-les-Nancy Cedex (France); Suarez-Ruiz, Isabel [Instituto Nacional del Carbon (CSIC), C/ Francisco Pintado Fe, 26, 33011-Oviedo (Spain)

    2004-06-23

    This research shows for the first time maps of vitrinite reflectances and paleotemperatures from the Central Asturian Coal Basin (North Spain) which is a Carboniferous (Pennsylvanian) Basin mainly of Moscovian age. Vitrinite reflectance values decrease from north to south whereas volatile matter distribution increases from south to north. Vitrinite reflectance and volatile matter parameters indicate a coal rank ranging from high volatile bituminous coal in the north, to semianthracite and anthracite in the south. Rock-Eval data show that the organic matter of this basin is Type III kerogen, with a maturation ranging from oil to gas window. Paleotemperatures were calculated by diverse methods using vitrinite reflectance data for different durations of heating and Rock-Eval results. The calculated paleotemperatures and vertical paleotemperature gradients decrease from south to north. The thermal gradient variation in the Central Asturian Coal Basin points to the influence of at least two heating events that affected the organic matter. The first associated with a regular geothermal gradient operating over a long period of time, and the second linked to a southern granitic event of short duration estimated by tectonic data. The short thermal event was located at the end of sedimentation (Late Moscovian and Late Westphalian D) and after folding, but before the overthrusting during the Asturian tectonic phase located before the Early Kasimovian (Cantabrian and Stephanian) deposits. Finally, a simulation of paleotemperatures around the granitic pluton was calculated and compared to maps of paleotemperatures obtained by various methods. These maps refer to an initial depth of one or two km in accordance with the selected methods that are compatible with local erosion. This approach was preferred in order to explain the metamorphism of coal, rather than the hypothesis of hydrothermal fluid flow proposed for other foreland basins. This regional thermal anomaly could be

  7. Characterization of bedded salt for storage caverns -- A case study from the Midland Basin, Texas

    Energy Technology Data Exchange (ETDEWEB)

    Hovorka, Susan D.; Nava, Robin

    2000-06-13

    The geometry of Permian bedding salt in the Midland Basin is a product of interaction between depositional facies and postdepositional modification by salt dissolution. Mapping high-frequency cycle patterns in cross section and map view using wireline logs documents the salt geometry. Geologically based interpretation of depositional and dissolution processes provides a powerful tool for mapping and geometry of salt to assess the suitability of sites for development of solution-mined storage caverns. In addition, this process-based description of salt geometry complements existing data about the evolution of one of the best-known sedimentary basins in the world, and can serve as a genetic model to assist in interpreting other salts.

  8. Repository site data and information in bedded salt: Palo Duro Basin, Texas

    International Nuclear Information System (INIS)

    Tien, P.; Nimick, F.B.; Muller, A.B.; Davis, P.A.; Guzowski, R.V.; Duda, L.E.; Hunter, R.L.

    1983-11-01

    This report is a compilation of data from the literature on the Palo Duro Basin. The Palo Duro Basin is a structural basin, about 150 miles long and 80 miles wide, that is a part of the much larger Permian Basin. The US Department of Energy is investigating the Palo Duro Basin as a potentially suitable area for the site of a repository for the disposal of high-level radioactive waste. Sediments overlying the Precambrian basement range from about 5000 to about 11,000 ft in thickness and from Cambrian to Holocene in age. The strata in the Palo Duro Basin that are of primary interest to the Department of Energy are the bedded salts of the Permian San Andres Formation. The total thickness of the bedded salts is about 2000 ft. The geology of the Palo Duro Basin is well understood. A great deal of information exists on the properties of salt, although much of the available information was not collected in the Palo Duro Basin. Mineral resources are not currently being exploited from the center of the Palo Duro Basin at depth, although the possibility of exploration for and development of such resources can not be ruled out. The continued existence of salts of Permian age indicates a lack of any large amount of circulating ground water. The hydrology of the pre-Tertiary rocks, however, is currently too poorly understood to carry out detailed, site-specific hydrologic modeling with a high degree of confidence. In general, ground water flows from west to east in the Basin. There is little or no hydraulic connection between aquifers above and below the salt sequences. Potable water is pumped from the Ogallala aquifer. Most of the other aquifers yield only nonpotable water. More extensive hydrological data are needed for detailed future modeling in support of risk assessment for a possible repository for high-level waste in the Palo Duro Basin. 464 references

  9. Structure and dynamics of basin forested wetlands in North America

    International Nuclear Information System (INIS)

    Brown, S.

    1990-01-01

    Freshwater basin wetlands are found in depressions of various depths, generally in areas where precipitation exceeds evapotranspiration or where the depression intersects the water table creating groundwater seeps or springs. Forested basins are those that contain woody vegetation with the potential for reaching tree stature; they do not include woody shrub wetlands. In North America these areas are mainly in the central and eastern region. Pertinent information and reviews on the distribution, floristic composition, structure and dynamics of basin forested wetlands are summarized. The major emphasis is on freshwater wetlands, but data for saltwater wetlands mainly from Florida and tropical America are included. The external factors affecting basin wetlands or the important components of a wetlands energy signature are described as well as the distribution and floristic composition of representative basin wetlands. Sections on structural characteristics, organic matter dynamics, and nutrient cycling comprise the bulk of quantitative information. The effects of disturbances, both natural and human induced, with varying degrees of impact depending upon the intensity and on the part of the ecosystem to which the stressor is applied are evaluated. Examples of stressors in basin wetlands include water impoundment, water diversion, thermal stress from hot water, sedimentation, addition of toxic substances, addition of wastewater, oil spills, and harvesting. 86 refs., 5 figs., 11 tabs

  10. Bibliography, geophysical data locations, and well core listings for the Mississippi Interior Salt Basin

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-05-01

    To date, comprehensive basin analysis and petroleum system modeling studies have not been performed on any of the basins in the northeastern Gulf of Mexico. Of these basins, the Mississippi Interior Salt Basin has been selected for study because it is the most petroliferous basin in the northeastern Gulf of Mexico, small- and medium-size companies are drilling the majority of the exploration wells. These companies do not have the resources to perform basin analysis or petroleum system modeling research studies nor do they have the resources to undertake elaborate information searches through the volumes of publicly available data at the universities, geological surveys, and regulatory agencies in the region. The Advanced Geologic Basin Analysis Program of the US Department of Energy provides an avenue for studying and evaluating sedimentary basins. This program is designed to improve the efficiency of the discovery of the nation`s remaining undiscovered oil resources by providing improved access to information available in the public domain and by increasing the amount of public information on domestic basins. This report provides the information obtained from Year 1 of this study of the Mississippi Interior Salt Basin. The work during Year 1 focused on inventorying the data files and records of the major information repositories in the northeastern Gulf of Mexico and making these inventories easily accessible in an electronic format.

  11. Salt exploitation in the later prehistory of the Carpathian Basin

    Directory of Open Access Journals (Sweden)

    Anthony Harding

    2015-12-01

    Full Text Available Salt is a necessity for humans and animals, today as in the ancient past. The ways in which salt was produced in ancient times vary from area to area, and could use briquetage, deep mining (as at Hallstatt, or the technique specific to Transylvania, based on wooden troughs, perforated in the base. How these troughs functioned is still uncertain. In the Iron Age a different technique was employed, involving deep shafts dug down to the rock salt surface. As well as technological considerations, it is crucial to understand the social and economic importance of salt in the ancient world.

  12. Sediment quality in the north coastal basin of Massachusetts, 2003

    Science.gov (United States)

    Breault, Robert F.; Ashman, Mary S.; Heath, Douglas

    2004-01-01

    The U.S. Geological Survey, in cooperation with the Massachusetts Department of Environmental Protection, completed a reconnaissance-level study of bottom-sediment quality in selected lakes, rivers, and estuaries in the North Coastal Basin of Massachusetts. Bottom-sediment grab samples were collected from 20 sites in the North River, Lake Quannapowitt, Saugus River, Mill River, Shute Brook, Sea Plane Basin, Pines River, and Bear Creek. The samples were tested for various types of potentially harmful contaminants? including 33 elements, 17 polyaromatic hydrocarbons (PAHs), 22 organochlorine pesticides, and 7 polychlorinated biphenyl (PCB) mixtures (Aroclors)?to benthic organisms (bottom-dwelling) and humans. The results were compared among sampling sites, to background concentrations, and to concen-trations measured in other urban rivers, and sediment-quality guidelines were used to predict toxicity at the sampling sites to benthic organisms and humans. Because there are no standards for human toxicity for aquatic sediment, standards for contaminated upland soil were used. Contaminant concentrations measured in sediment collected from the North Coastal Basin generally were equal to or greater than concentrations in sediment from uncontaminated rivers throughout New England. Contaminants in North Coastal Basin sediment with elevated concentrations (above back-ground levels) included arsenic, chromium, copper, lead, nickel, and zinc, some of the PAHs, dichlorodiphenyltrichloro-ethane (DDT) and its metabolites, and dieldrin. No PCBs were measured above the detection limits. Measured concentrations of arsenic, chromium, and lead were also generally greater than those measured in other urban rivers throughout the conter-minous United States. With one exception (arsenic), local con-centrations measured in sediment samples collected from the North Coastal Basin were lower than concentrations measured in sediment collected from two of three urban rivers draining to Boston

  13. Analog modeling and kinematic restoration of inverted hangingwall synclinal basins developed above syn-kinematic salt: Application to the Lusitanian and Parentis basins

    Science.gov (United States)

    Roma, Maria; Vidal-Royo, Oskar; McClay, Ken; Ferrer, Oriol; Muñoz, Josep Anton

    2017-04-01

    The formation of hagingwall syncline basins is basically constrained by the geometry of the basement-involved fault, but also by salt distribution . The formation of such basins is common around the Iberian Peninsula (e.g. Lusitanian, Parentis, Basque-Cantabian, Cameros and Organyà basins) where Upper Triassic (Keuper) salt governed their polyphasic Mesozoic extension and their subsequent Alpine inversion. In this scenario, a precise interpretation of the sub-salt faults geometry and a reconstruction of the initial salt thickness are key to understand the kinematic evolution of such basins. Using an experimental approach (sandbox models) and these Mesozoic basins as natural analogues, the aim of this work is to: 1) investigate the main parameters that controlled the formation and evolution of hagingwall syncline basins analyzing the role of syn-kinematic salt during extension and subsequent inversion; and 2) quantify the deformation and salt mobilization based on restoration of analog model cross sections. The experimental results demonstrate that premature welds are developed by salt deflation with consequent upward propagation of the basal fault in salt-bearing rift systems with a large amount of extension,. In contrast, thicker salt inhibits the upward fault propagation, which results into a further salt migration and development of a hagingwall syncline basins flanked by salt walls. The inherited extensional architecture as well as salt continuity dramatically controlled subsequent inversion. Shortening initially produced the folding and the uplift of the synclinal basins. Minor reverse faults form as a consequence of overtightening of welded diapir stems. However, no trace of reverse faulting is found around diapirs stems, as ductile unit is still available for extrusion, squeezing and accommodation of shortening. Restoration of the sandbox models has demonstrated that this is a powerful tool to unravel the complex structures in the models and this may

  14. Geohydrology of the Keechi, Mount Sylvan, Oakwood, and Palestine salt domes in the northeast Texas salt-dome basin

    International Nuclear Information System (INIS)

    Carr, J.E.; Halasz, S.J.; Peters, H.B.

    1980-01-01

    The salt within these domes has penetrated as much as 20,000 feet of Mesozoic and Cenozoic strata, and presently extends to within 120 to 800 feet of the land surface. The salt penetrates or closely underlies major freshwater and salinewater aquifers within the basin. To provide a safe repository for radioactive wastes within one or more of these domes, a thorough understanding of the geohydrology needs to be obtained, and the hydrologic stability of the domes needs to be established for the expected life of the storage facility. Dissolution may exist at all four candidate salt domes, possibly through contact with Cretaceous or Tertiary aquifers, or through fault systems in the vicinity of the domes. Strata overlying and surrounding Palestine and Keechi Salt Domes have been arched into steeply-dipping folds that are complexly faulted. Similar conditions exist at Oakwood and Mount Sylvan Domes, except that the Tertiary strata have been only moderately disturbed. Additional problems concerning the hydrologic stability of Oakwood and Palestine Salt Domes have resulted from the disposal of oil-field salinewater in the cap rock at the Oakwood Dome and previous solution mining of salt at the Palestine Dome

  15. The Mesozoic rift basins of eastern North America: Potential reservoir or Explorationist's folly

    Energy Technology Data Exchange (ETDEWEB)

    Pyron, A.

    1991-08-01

    Mesozoic rift basins are found on the East Coast of North America from Georgia to Nova Scotia. The basins formed as a result of extensional activity associated with the breakup of Pangaea. The internal geometry of the basins includes a depositional sequence ranging from coarse fanglomerates to fine-grained siltstones and argillites. Since these Mesozoic rift basins were first studied, they have not been considered to be likely spots for hydrocarbon accumulations. Recently, geologists have reconsidered these Mesozoic basins and have developed a more synergistic approach that suggests that many of these rift basins might be suitable targets for exploration. By analogy, these Mesozoic basins are correlative to similar basins in northwestern Africa, where significant reserved of oil and natural gas have been developed. The similarity between the productive basins in northwestern Africa and the Mesozoic basins of North America and their proximity to major markets provides sufficient rationale to further investigate these basins.

  16. Sedimentary facies and depositional environments of early Mesozoic Newark Supergroup basins, eastern North America

    Science.gov (United States)

    Smoot, J.P.

    1991-01-01

    The early Mesozoic Newark Supergroup consists of continental sedimentary rocks and basalt flows that occupy a NE-trending belt of elongate basins exposed in eastern North America. The basins were filled over a period of 30-40 m.y. spanning the Late Triassic to Early Jurassic, prior to the opening of the north Atlantic Ocean. The sedimentary rocks are here divided into four principal lithofacies. The alluvial-fan facies includes deposits dominated by: (1) debris flows; (2) shallow braided streams; (3) deeper braided streams (with trough crossbeds); or (4) intense bioturbation or hyperconcentrated flows (tabular, unstratified muddy sandstone). The fluvial facies include deposits of: (1) shallow, ephemeral braided streams; (2) deeper, flashflooding, braided streams (with poor sorting and crossbeds); (3) perennial braided rivers; (4) meandering rivers; (5) meandering streams (with high suspended loads); (6) overbank areas or local flood-plain lakes; or (7) local streams and/or colluvium. The lacustrine facies includes deposits of: (1) deep perennial lakes; (2) shallow perennial lakes; (3) shallow ephemeral lakes; (4) playa dry mudflats; (5) salt-encrusted saline mudflats; or (6) vegetated mudflats. The lake margin clastic facies includes deposits of: (1) birdfoot deltas; (2) stacked Gilbert-type deltas; (3) sheet deltas; (4) wave-reworked alluvial fans; or (5) wave-sorted sand sheets. Coal deposits are present in the lake margin clastic and the lacustrine facies of Carnian age (Late Triassic) only in basins of south-central Virginia and North and South Carolina. Eolian deposits are known only from the basins in Nova Scotia and Connecticut. Evaporites (and their pseudomorphs) occur mainly in the northern basins as deposits of saline soils and less commonly of saline lakes, and some evaporite and alkaline minerals present in the Mesozoic rocks may be a result of later diagenesis. These relationships suggest climatic variations across paleolatitudes, more humid to the

  17. Neogene dinocyst zonation for the eastern North Sea Basin, Denmark

    DEFF Research Database (Denmark)

    Dybkjær, Karen; Piasecki, Stefan

    2010-01-01

    A dinocyst zonation for the Neogene succession in the eastern part of the North Sea Basin (Denmark) is presented. The zonation is based on an extensive database comprising data from more than fifty onshore and offshore boreholes and about twenty five outcrops. Most of the nineteen dinocyst zones......, of the Lower Miocene, and of the Upper Miocene and Pliocene successions. The previous zonation of the onshore Danish Middle Miocene is reconsidered and partly redefined. The zonation is correlated with other biostratigraphic subdivisions of the Neogene succession in the Danish region in addition to litho...

  18. Pore Pressure and Field stress variation from Salt Water Injection; A case Study from Beaver Lodge Field in Williston Basin

    Science.gov (United States)

    Mohammed, R. A.; Khatibi, S.

    2017-12-01

    One of the major concerns in producing from oil and gas reservoirs in North American Basins is the disposal of high salinity salt water. It is a misconception that Hydro frack triggers Earthquakes, but due to the high salinity and density of water being pumped to the formation that has pore space of the rock already filled, which is not the case in Hydro-frack or Enhanced Oil Recovery in which fracturing fluid is pumped into empty pore space of rocks in depleted reservoirs. A review on the Bakken history showed that the concerns related to induce seismicity has increased over time due to variations in Pore pressure and In-situ stress that have shown steep changes in the region over the time. In this study, we focused on Pore pressure and field Stress variations in lower Cretaceous Inyan Kara and Mississippian Devonian Bakken, Inyan Kara is the major source for class-II salt-water disposal in the basin. Salt-water disposal is the major cause for induced seismicity. A full field study was done on Beaver Lodge Field, which has many salt-water disposal wells Adjacent to Oil and Gas Wells. We analyzed formation properties, stresses, pore-pressure, and fracture gradient profile in the field and. The constructed Mechanical Earth Model (MEM) revealed changes in pore pressure and stresses over time due to saltwater injection. Well drilled in the past were compared to recently drilled wells, which showed much stress variations. Safe mud weight Window of wells near proximity of injection wells was examined which showed many cases of wellbore instabilities. Results of this study will have tremendous impact in studying environmental issues and the future drilling and Fracking operations.

  19. The Permian basin geology in the north of Uruguay.Sedimentology exam about the uranium signs

    International Nuclear Information System (INIS)

    Lhomer, A.; Manigault, B.; Doyhenart, A.; Rossi, P.; Spoturno, J.; De Santana, H.; Vaz, N.

    1982-01-01

    The basin is located in the Precambrian insular shelf limited to the North. East and South. The North (Brazil) and south (Uruguay) edge are constituted by the insular shelf ancient nucleus which dates from 2000 million years.

  20. Landslide inventory for the Little North Santiam River Basin, Oregon

    Science.gov (United States)

    Sobieszczyk, Steven

    2010-01-01

    This geodatabase is an inventory of existing landslides in the Little North Santiam River Basin, Oregon (2009). Each landslide feature shown has been classified according to a number of specific characteristics identified at the time recorded in the GIS database. The classification scheme was developed by the Oregon Department of Geology and Mineral Industries (Burns and Madin, 2009). Several significant landslide characteristics recorded in the database are portrayed with symbology on this map. The specific characteristics shown for each landslide are the activity of landsliding, landslide features, deep or shallow failure, type of landslide movement, and confidence of landslide interpretation. These landslide characteristics are determined primarily on the basis of geomorphic features, or landforms, observed for each landslide. This work was completed as part of the Master's thesis "Turbidity Monitoring and LiDAR Imagery Indicate Landslides are Primary Source of Suspended-Sediment Load in the Little North Santiam River Basin, Oregon, Winter 2009-2010" by Steven Sobieszczyk, Portland State University and U.S. Geological Survey. Data layers in this geodatabase include: landslide deposit boundaries (Deposits); field-verfied location imagery (Photos); head scarp or scarp flanks (Scarp_Flanks); and secondary scarp features (Scarps).The geodatabase template was developed by the Oregon Department of Geology and Mineral Industries (Burns and Madin, 2009).

  1. Executive summary of a draft report on the geology and salt deposits of the Salina Salt Basin

    International Nuclear Information System (INIS)

    1978-01-01

    The study discussed is the first phase of a program for the geologic evaluation of the Silurian-age bedded salt of the Salina Group. The Salina Salt Basin, as used in this study, includes those portions of the Appalachian and Michigan basins that are underlain by the Salina Group. The full draft report consists of a regional reconnaissance, identification of study areas in New York and Ohio which are deserving of a more thorough evaluation, and a program plan to accomplish that evaluation. The entire draft report is in two volumes, contains 1068 pages and 204 figures, and has a bibliography that consists of over 1100 separate entries. This summary has been prepared for the benefit of those who wish to review the results of this phase of the evaluation but who do not want to go through the exhaustive detail that is present in the full report. The regional reconnaissance was accomplished by a very thorough and extensive literature review, addressing the following topics: depth of salt, thickness, stratigraphy, tectonics, structure, seismicity, hydrology, erosion and denudation, and mineral resources. Before further technical evaluation proceeds, the draft report and the proposed program are being subjected to a thorough evaluation by a number of groups, including appropriate state agencies. This rather extensive review process is being conducted to ensure that the program is performed entirely in the open and subject to continuous public surveillance. This report does not represent the first work that has been done in this region with regard to evaluating the salt deposits for waste disposal. Previous efforts have been limited, however, and have been done by individual consultants. At the present time, the U.S. Geological Survey is also participating in the technical evaluation; their results will be issued separately. In addition to the technical evaluations, environmental surveys will also be conducted as an integral part of this thorough evaluation program

  2. Permian salt dissolution, alkaline lake basins, and nuclear-waste storage, Southern High Plains, Texas and New Mexico

    International Nuclear Information System (INIS)

    Reeves, C.C. Jr.; Temple, J.M.

    1986-01-01

    Areas of Permian salt dissolution associated with 15 large alkaline lake basins on and adjacent to the Southern High Plains of west Texas and eastern New Mexico suggest formation of the basins by collapse of strata over the dissolution cavities. However, data from 6 other alkaline basins reveal no evidence of underlying salt dissolution. Thus, whether the basins were initiated by subsidence over the salt dissolution areas or whether the salt dissolution was caused by infiltration of overlying lake water is conjectural. However, the fact that the lacustrine fill in Mound Lake greatly exceeds the amount of salt dissolution and subsidence of overlying beds indicates that at least Mound Lake basin was antecedent to the salt dissolution. The association of topography, structure, and dissolution in areas well removed from zones of shallow burial emphasizes the susceptibility of Permian salt-bed dissolution throughout the west Texas-eastern New Mexico area. Such evidence, combined with previous studies documenting salt-bed dissolution in areas surrounding a proposed high-level nuclear-waste repository site in Deaf Smith County, Texas, leads to serious questions about the rationale of using salt beds for nuclear-waste storage

  3. Cenozoic North American Drainage Basin Evolution, Sediment Yield, and Accumulation in the Gulf of Mexico Basin

    Science.gov (United States)

    Galloway, W.; Ganey-Curry, P. E.

    2010-12-01

    The Cenozoic fill of the Gulf of Mexico basin contains a continuous record of sediment supply from the North American continental interior for the past 65 million years. Regional mapping of unit thickness and paleogeography for 18 depositional episodes defines patterns of shifting entry points of continental fluvial systems and quantifies the total volume of sediment supplied during each episode. Eight fluvio-deltaic depocenters, named for geographic similarities to entry points and drainage basins of modern rivers, are present. From southwest to northeast, they are the Rio Bravo, Rio Grande, Guadalupe, Colorado, Houston-Brazos, Red, Mississippi, and Tennessee axes. Sediment volume was calculated from hand-contoured unit thickness maps compiled from basin-wide well and seismic control. Using a GIS algorithm to sum volumes within polygons bounding interpreted North American river contribution, the total extant volume was then calculated. General compaction factors were used to convert modern volume to quantitative approximations of total grain volume. Grain volume rate of supply for each depositional episode was then calculated. Values vary by more than an order of magnitude. Supply rate has commonly varied by two-fold or more between successive depositional episodes. Sediment supply is a significant, independent variable in development of stratigraphic sequences within the Gulf basin. Paleogeographic maps of the continental interior for eleven Cenozoic time intervals display the evolving and complex interplay of intracontinental tectonism, climate change, and drainage basin evolution. Five tectono-climatic eras are differentiated: Paleocene late Laramide era; early to middle Eocene terminal Laramide era; middle Cenozoic (Late Eocene—Early Miocene) dry, volcanogenic era; middle Neogene (Middle—Late Miocene) arid, extensional era; and late Neogene (Plio—Pleistocene) monsoonal, epeirogenic uplift era. Sediment supply to the GOM reflects the interplay of (1

  4. Composition of fluid inclusions in Permian salt beds, Palo Duro Basin, Texas, U.S.A.

    Science.gov (United States)

    Roedder, E.; d'Angelo, W. M.; Dorrzapf, A.F.; Aruscavage, P. J.

    1987-01-01

    Several methods have been developed and used to extract and chemically analyze the two major types of fluid inclusions in bedded salt from the Palo Duro Basin, Texas. Data on the ratio K: Ca: Mg were obtained on a few of the clouds of tiny inclusions in "chevron" salt, representing the brines from which the salt originally crystallized. Much more complete quantitative data (Na, K, Ca, Mg, Sr, Cl, SO4 and Br) were obtained on ??? 120 individual "large" (mostly ???500 ??m on an edge, i.e., ??? ??? 1.6 ?? 10-4 g) inclusions in recrystallized salt. These latter fluids have a wide range of compositions, even in a given piece of core, indicating that fluids of grossly different composition were present in these salt beds during the several (?) stages of recrystallization. The analytical results indicating very large inter-and intra-sample chemical variation verify the conclusion reached earlier, from petrography and microthermometry, that the inclusion fluids in salt and their solutes are generally polygenetic. The diversity in composition stems from the combination of a variety of sources for the fluids (Permian sea, meteoric, and groundwater, as well as later migrating ground-, formation, or meteoric waters of unknown age), and a variety of subsequent geochemical processes of dissolution, precipitation and rock-water interaction. The compositional data are frequently ambiguous but do provide constraints and may eventually yield a coherent history of the events that produced these beds. Such an understanding of the past history of the evaporite sequence of the Palo Duro Basin should help in predicting the future role of the fluids in the salt if a nuclear waste repository is sited there. ?? 1987.

  5. Storing CO2 under the North Sea Basin - A key solution for combating climate change

    International Nuclear Information System (INIS)

    Skogen, T; Morris, B; Agerup, M; Svenningsen, S Oe; Kropelien, K F; Solheim, M; Northmore, B; Dixon, T; O'Carroll, K; Greaves, A; Golder, J; Selmer-Olsen, S; Sjoeveit, A; Kaarstad, O; Riley, N; Wright, I; Mansfield, C

    2007-06-01

    This report represents the first deliverable of the North Sea Basin Task Force, which Norway and the UK established in November 2005 to work together on issues surrounding the transport and storage of CO 2 beneath the North Sea. The North Sea represents the best geological opportunity for storing our CO 2 emissions away from the atmosphere for both the UK and Norway

  6. Avalonian crustal controls on basin evolution: implications for the Mesozoic basins of the southern North Sea

    Science.gov (United States)

    Smit, Jeroen; van Wees, Jan-Diederik; Cloetingh, Sierd

    2015-04-01

    Little is known of the Southern North Sea Basin's (SNSB) Pre-Permian basement due to a lack of outcrop and cores. The nature and structure of the East Avalonian crust and lithosphere remain even less constrained in the absence of deep seismic (refraction) lines. However, various studies have hinted at the importance of the Reactivation of the Early Carboniferous fault network during each consecutive Mesozoic and Cenozoic tectonic phase, demonstrating the key role of weak zones from the Early Carboniferous structural grain in partitioning of structural deformation and vertical basin motions at various scales. Although the older basin history and the basement attract increasing attention, the Pre-Permian tectonics of the SNSB remains little studied with most attention focused on the Permian and younger history. The strong dispersal of existing constraints requires a comprehensive study from Denmark to the UK, i.e. the East Avalonian microplate, bordered by the Variscan Rheïc suture, the Atlantic and Baltica. Based on an extensive literature study and the reinterpretation of publicly available data, linking constraints from the crust and mantle to stratigraphic-sedimentological information, we complement the map of Early Carboniferous rifting of East Avalonia and propose a new tectonic scenario. From the reinterpretation of the boundary between Avalonia and Baltica we propose a new outline for the Avalonian microplate with implications for the tectonics of the North German Basin. Furthermore, we highlight the nature and extent of the major crustal/lithospheric domains with contrasting structural behaviour and the major boundaries that separate them. Results shed light on the effects of long lived differences in crustal fabric that are responsible for spatial heterogeneity in stress and strain magnitudes and zonations of fracturing, burial history and temperature history. The geomechanical control of large crustal-scale fault structures will provide the constraints

  7. Resource potential of the western North Atlantic Basin

    Science.gov (United States)

    Dillon, William P.; Manheim, Frank T.; Jansa, L.F.; Palmason, Gudmundur; Tucholke, Brian E.; Landrum, Richard S.

    1986-01-01

    We here consider the petroleum resources only of the off shelf portion of the western North Atlantic Ocean. Very little information is available for this region; off the eastern United States, only four petroleum exploration holes have been drilled in one restricted area seaward of the shelf, off the Baltimore Canyon trough. However, by interpreting seismic reflection profiles and Stratigraphie data from the Deep Sea Drilling Project (DSDP) and other wells on the adjacent slope and shelf, we can evaluate the geologic conditions that existed during development of the basin and that might lead to petroleum accumulations.The wellknown factors that lead to oil and gas accumulations are availability of source beds, adequate maturation, and the presence of reservoir beds and seals configured to create a trap. The western boundary of the area considered in this paper, the present sloperise break, is one that has developed from the interplay of sedimentation and erosion at the continental margin; these processes are affected by variations in margin subsidence, sedi-ment input, oceanic circulation, sea level, and other factors. Thus the sloperise break has migrated over time and is locally underlain by slope and shelf deposits, as well as deepbasin facies. These changes in depositional environments may well have caused juxtaposition of source and reservoir beds with effective seals.

  8. Graphical user interface for accessing water-quality data for the Devils Lake basin, North Dakota

    Science.gov (United States)

    Ryberg, Karen R.; Damschen, William C.; Vecchia, Aldo V.

    2005-01-01

    Maintaining the quality of surface waters in the Devils Lake Basin in North Dakota is important for protecting the agricultural resources, fisheries, waterfowl and wildlife habitat, and recreational value of the basin. The U.S. Geological Survey, in cooperation with local, State, and Federal agencies, has collected and analyzed water-quality samples from streams and lakes in the basin since 1957, and the North Dakota Department of Health has collected and analyzed water-quality samples from lakes in the basin since 2001. Because water-quality data for the basin are important for numerous reasons, a graphical user interface was developed to access, view, and download the historical data for the basin. The interface is a web-based application that is available to the public and includes data through water year 2003. The interface will be updated periodically to include data for subsequent years.

  9. Analogue modeling of arc and backarc deformation in the New Hebrides arc and North Fiji Basin

    NARCIS (Netherlands)

    Schellart, W. P.; Lister, G. S.; Jessell, M. W.

    In most backarc basins, extension is perpendicular to the arc. Thus individual spreading ridges extend approximately parallel to the arc. In the North Fiji Basin, however, several ancient and active spreading ridges strike 70°-90° to the New Hebrides arc. These high-angle spreading ridges relocated

  10. Investigation of the suspected presence of solid hydrocarbon in bedded salt samples from the Palo Duro Basin, Texas

    International Nuclear Information System (INIS)

    1985-10-01

    This report contains laboratory test results for two bedded salt samples from the Grabbe No. 1 (PD-2) Well of the Palo Duro Basin, Texas. This study was commissioned to determine whether or not solid hydrocarbons exist in bedded salt samples in the Palo Duro Basin. Laboratory investigations include electron microprobe examinations on polished thin sections and optical examinations and chemical tests on insoluble residues of the salt samples. No direct evidence was found that identifiable solid hydrocarbons are present in either sample of the bedded salt core. The total carbon content of the two salt samples was measured yielding 0.016 and 0.022 weight percent carbon. Detailed microscopic analyses showed that the carbon in the samples was associated with calcite, clays, and the epoxy resin used in sample preparation

  11. Fibers and cylinders of cryptomelane-hollandite in Permian bedded salt, Palo Duro Basin, Texas

    International Nuclear Information System (INIS)

    Belkin, H.E.; Libelo, E.L.

    1987-01-01

    Fibers and thin-walled, hollow cylinders of cryptomelane-hollandite have been found in both the chevron and the clear salt from various drill cores in Permian bedded salt from the Palo Duro Basin, Texas. The authors have found fibers or cylinders from only the lower San Andres Formation units 4 and 5, the upper San Andres Formation, and the Salado-Transill salt. The fibers are inorganic, light to dark reddish brown, pleochroic, highly birefringent, filamentary single crystals, < 1 to ∼ 5 μm in diameter, with length-to-diameter ratios of at least 20:1. The fibers can be straight and/or curved, can bifurcate, can form loops, waves or spirals, and can be isolated or in parallel groups. Detailed petrographic analyses show no evidence for recrystallization or deformation of the enclosing salt after fiber formation. Although the authors observations do not provide a definitive explanation for fiber origin, they suggest that the fibers grew in situ by a solid-state diffusional process at low temperatures. The cylinders are pleochroic, highly birefringent, light to dark reddish brown, hollow, thin-walled, open-ended right cylinders, having a 1- to 2-μm wall thickness and variable lengths and diameters. There also appear to be single crystals of cryptomelane-hollandite, but these are found almost entirely in fluid inclusions in the chevron and clear salt. Their presence in the primary halite suggests that they were formed contemporaneously with the chevron structure and were accidentally trapped in the fluid inclusions. The observation of cylinders partially or completely enclosed by salt stratigraphically above large fluid inclusions suggests that natural downward fluid-inclusion migration has occurred, in response to the geothermal gradient

  12. Clay mineral association in the salt formation of the Transylvanian Basin and its paleoenvironmental significance

    Directory of Open Access Journals (Sweden)

    Nicoleta Bican-Bris̡an

    2006-04-01

    Full Text Available The investigated clay fraction was separated from salt samples recovered from three boreholes located in the Praid salt deposit area. For comparison, samples collected from Turda deposit (Franz Josef adit, the Rudolf and Ghizele chambers and from the salt massif from Sărăţel were also analyzed. The qualitative investigations evidenced a clay minerals association dominated by illite and chlorite accompanied by subordinate amounts of kaolinite, smectite, fibrous clays (sepiolite, palygorskite, and in minor amounts, by 14/14 chlorite/vermiculite and chlorite/smectite interstratifications. A quantitative evaluation (% including a standard graphical representation was performed only for the borehole samples (Praid, according to the vertical distribution. The genetical interpretation of the identified clay minerals association took into account the influence of the sedimentation mechanisms and the climate control on the mineral phases. The environment of formation for the salt in the Transylvanian Basin was defined by the presence of specific climatic factors, also suggested by the palynological investigations.

  13. Plathelminth abundance in North Sea salt marshes: environmental instability causes high diversity

    Science.gov (United States)

    Armonies, Werner

    1986-09-01

    Although supralittoral salt marshes are habitats of high environmental instability, the meiofauna is rich in species and abundance is high. The community structure of free-living Plathelminthes (Turbellaria) in these salt marshes is described. On an average, 104 individuals are found below an area of 10 cm2. The average species density in ungrazed salt marshes is 11.3 below 10 cm2 and 45.2 below 100 cm2, indicating strong small-scale heterogenity. The faunal similarity between sediment and the corresponding above-ground vegetation is higher than between adjacent sample sites. Species prefer distinct ranges of salinity. In the lower part of the supralittoral salt marshes, the annual fluctuations of salinity are strongest and highly unpredictable. This region is richest in plathelminth species and abundance; diversity is highest, and the faunal composition of parallel samples is quite similar. In the upper part of the supralittoral salt marshes, the annual variability of salinity is lower, plathelminths are poor in species diversity and abundance. Parallel samples often have no species in common. Thus, those salt marsh regions with the most unstable environment are inhabited by the most diverse species assemblage. Compared to other littoral zones of the North Sea, however, plathelminth diversity in salt marshes is low. The observed plathelminth diversity pattern can apparently be explained by the “dynamic equilibrium model” (Huston, 1979).

  14. Encasement and subsidence of salt minibasins: observations from the SE Precaspian Basin and numerical modeling.

    Science.gov (United States)

    Fernandez, Naiara; Duffy, Oliver B.; Hudec, Michael R.; Jackson, Christopher A.-L.; Dooley, Tim P.; Jackson, Martin P. A.; Burg, George

    2017-04-01

    The SE Precaspian Basin is characterized by an assemblage of Upper Permian to Triassic minibasins. A recently acquired borehole-constrained 3D reflection dataset reveals the existence of abundant intrasalt reflection packages lying in between the Permo-Triassic minibasins. We propose that most of the mapped intrasalt reflection packages in the study area are minibasins originally deposited on top of salt that were later incorporated into salt by encasement processes. This makes the SE Precaspian Basin a new example of a salt province populated by encased minibasins, which until now had been mainly described from the Gulf of Mexico. Identifying salt-encased sediment packages in the study area has been crucial, not only because they provide a new exploration target, but also because they can play a key role on improving seismic imaging of adjacent or deeper stratigraphic sections. Another remarkable feature observed in the seismic dataset is the widespread occurrence of distinct seismic sequences in the Permo-Triassic minibasins. Bowl- and wedge-shaped seismic sequences define discrete periods of vertical and asymmetric minibasin subsidence. In the absence of shortening, the bowl-to-wedge transition is typically associated with the timing of basal welding and subsequent rotation of the minibasins. Timing of minibasin welding has important implications when addressing the likelihood of suprasalt reservoir charging. We performed a set of 2D numerical simulations aimed at investigating what drives the tilting of minibasins and how it relates to welding. A key observation from the numerical models is that the bowl-to-wedge transition can predate the time of basal welding.

  15. Hydrologic data for North Creek, Trinity River basin, Texas, 1975

    Science.gov (United States)

    Kidwell, C.C.

    1977-01-01

    This report contains the rainfall, runoff, and storage data collected during the 1975 water year for the 21.6-square-mile area above the stream-gaging station North Creek near Jacksboro, Texas. The weighted-mean rainfall in the study area during the water year was 39.01 inches, which is greater than the 18-year average of 30.21 inches for the period 1958-75. Monthly rainfall totals ranged from 1.04 inches in November to 7.94 inches in May. The mean discharge for 1975 at the stream-gaging station was 5.98 cfs, compared with the 14-year (1957-70) average of 5.75 cfs. The annual runoff from the basin above the stream-gaging station was 4,330 acre-feet or 3.76 inches. Three storms were selected for detailed computations for the 1975 water year. The storms occurred on Oct. 30-31, 1974, May 2, 1975 , and Aug. 26, 1975. Rainfall and discharge were computed on the basis of a refined time breakdown. Patterns of the storms are illustrated by hydrographs and mass curves. A summary of rainfall-runoff data is tabulated. There are five floodwater-retarding structures in the study area. These structures have a total capacity of 4,425 acre-feet below flood-spillway crests and regulate streamflow from 16.3 square miles, or 75 percent of the study area. A summary of the physical data at each of the floodwater-retarding structures is included. (Woodard-USGS)

  16. Studies of the suitability of salt domes in east Texas basin for geologic isolation of nuclear wastes

    International Nuclear Information System (INIS)

    Kreitler, C.W.

    1979-01-01

    The suitability of salt domes in the east Texas basin (Tyler basin), Texas, for long-term isolation of nulear wastes is being evaluated. The major issues concern hydrogeologic and tectonic stability of the domes and potential natural resources in the basin. These issues are being approached by integration of dome-specific and regional hydrogeolgic, geologic, geomorphic, and remote-sensing investigations. Hydrogeologic studies are evaluating basinal hydrogeology and ground-water flow around the domes in order to determine the degree to which salt domes may be dissolving, their rates of solution, and the orientation of saline plumes in the fresh-water aquifers. Subsurface geologic studies are being conducted: (1) to determine the size and shape of specific salt domes, the geology of the strata immediately surrounding the domes, and the regional geology of the east Texas basin; (2) to understand the geologic history of dome growth and basin infilling; and (3) to evaluate potential natural resources. Geomorphic and surficial geology studies are determining whether there has been any dome growth or tectonic movement in the basin during the Quaternary. Remote-sensing studies are being conducted to determine: (1) if dome uplift has altered regional lineation patterns in Quaternary sediments; and (2) whether drainage density indicates Quaternary structural movement. On the basis of the screening criteria of Brunton et al (1978), Oakwood and Keechi domes have been chosen as possible candidate domes. Twenty-three domes have been eliminated because of insufficient size, too great a depth to salt, major hydrocarbon production, or previous use (such as liquid propane storage or salt mining or brining). Detailed geologic, hydrogeologic, and geomorphic investigations are now being conducted around Oakwood and Keechi salt domes

  17. The role of salt tectonics and overburden in the generation of overpressure in the Dutch North Sea area

    NARCIS (Netherlands)

    Nelskamp, S.; Verweij, J.M.; Witmans, N.

    2012-01-01

    In this paper we study the effects of timing of salt movement and mechanical compaction on the generation of overpressures in Mesozoic rocks. To that end we apply 2D basin modelling on two N-S trending cross sections in the Dutch Central Graben and Terschelling Basin, respectively. Several

  18. Mesozoic lithofacies palaeogeography and petroleum prospectivity in North Carnarvon Basin, Australia

    Directory of Open Access Journals (Sweden)

    Tao Chongzhi

    2013-01-01

    Full Text Available The North Carnarvon Basin, which lies in the North West Shelf of Australia, is highly rich in gas resources. As a typical passive marginal basin, it experienced the pre-rifting, early rifting, main rifting, late rifting, post-rifting sagging and passive margin stages. The basin was mainly filled with thick Mesozoic-Cenozoic sediments, of which the Mesozoic hosts the principal source, reservoir and seal intervals. Mesozoic palaeogeography has an important control on the oil and gas distribution. Triassic gas-prone source rocks of deltaic origin determine the high endowment of natural gases in the North Carnarvon Basin. The more restricted distribution of oil accumulations is controlled by oil source rocks in the Upper Jurassic Dingo Claystone. The Muderong Shale deposited in the Early Cretaceous marine transgression provides the effective regional seal for the underlying oil and gas reservoirs.

  19. Geochemical records of salt-water inflows into the deep basins of the Baltic Sea

    DEFF Research Database (Denmark)

    Neumann, T.; Christiansen, C.; Clasen, S.

    1997-01-01

    The estuarine circulation system of the Baltic Sea promotes stable stratification and bottom water anoxia in sedimentary basins of the Baltic proper. Ingressions of saline, oxygen-rich waters from the North Sea replace the oxygen depleted deep water. Timing and extent of the ingressions vary...... on time-scales of years to decades, and are largely determined by wind-strength and storm frequency over the North Atlantic Ocean and Europe. Mn/Fe-ratios in sediments from a dated sediment core of the Gotland Deep (250 m water depth) record variations in redox conditions that can be linked to historical......-pressure areas over the North Atlantic in more recent times. The last three events have also been observed by hydrographic measurements. During the long time stagnation periods, Fe and Mn will be segregated into a particulate phase (iron sulfide) which accumulates at the seafloor and a dissolved phase (Mn2...

  20. Geologic Assessment of Undiscovered Oil and Gas Resources of the North Cuba Basin, Cuba

    Science.gov (United States)

    Schenk, Christopher J.

    2010-01-01

    Petroleum generation in the North Cuba Basin is primarily the result of thrust loading of Jurassic and Cretaceous source rocks during formation of the North Cuba fold and thrust belt in the Late Cretaceous to Paleogene. The fold and thrust belt formed as Cuban arc-forearc rocks along the leading edge of the Caribbean plate translated northward during the opening of the Yucatan Basin and collided with the passive margin of southern North America in the Paleogene. Petroleum fluids generated during thrust loading migrated vertically into complex structures in the fold and thrust belt, into structures in the foreland basin, and possibly into carbonate reservoirs along the margins of the Yucatan and Bahama carbonate platforms. The U.S. Geological Survey (USGS) defined a Jurassic-Cretaceous Composite Total Petroleum System (TPS) and three assessment units (AU)-North Cuba Fold and Thrust Belt AU, North Cuba Foreland Basin AU, and the North Cuba Platform Margin Carbonate AU-within this TPS based mainly on structure and reservoir type (fig. 1). There is considerable geologic uncertainty as to the extent of petroleum migration that might have occurred within this TPS to form potential petroleum accumulations. Taking this geologic uncertainty into account, especially in the offshore area, the mean volumes of undiscovered resources in the composite TPS of the North Cuba Basin are estimated at (1) 4.6 billion barrels of oil (BBO), with means ranging from an F95 probability of 1 BBO to an F5 probability of 9 BBO; and (2) 8.6 trillion cubic feet of of gas (TCFG), of which 8.6 TCFG is associated with oil fields, and about 1.2 TCFG is in nonassociated gas fields in the North Cuba Foreland Basin AU.

  1. Mass fluxes in the Canary Basin (eastern boundary of the North Atlantic subtropical gyre)

    Science.gov (United States)

    Burgoa, N.; Machin, F.; Marrero-Díaz, Á.; Rodríguez-Santana, Á.; Martínez-Marrero, A.

    2017-12-01

    The circulation patterns in the Canary Basin are examined with hydrographic data from two cruises carried out in 2002 and 2003 in the eastern boundary of the North Atlantic subtropical gyre (21-27.5ºN, 17.5-26ºW). These cruises were part of the COCA Project (Coastal-Ocean Carbon Exchange in the Canary Region). First we estimate the geostrophic flow within a closed box divided into 12 layers of neutral density surfaces using the thermal wind equation. The geostrophic velocities are initially referenced to a selected neutral surface previously analyzed in deep. Then, the divergence and the convergence of the flow are analyzed in the closed water volume considering the Ekman transport in the surface of this whole region. The accumulated mass transport along the perimeter of the box is estimated with the aim to study transport imbalances in the different water masses. In addition, variables like the anomalies in the transport of the salt and heat are also considered. In general, mass transport results show that more than 50% of this transport takes place in central waters and around 25% in intermediate waters. In the first cruise carried out in late summer, the circulation of the shallowest layers goes into the box along the north and south transects with values which can arrive to 2 Sv and 1 Sv respectively and it flows westward with a maximum value of 2 Sv. At intermediate levels the mass transport changes its direction going out to the north with 0.5 Sv. On the other hand, in the second cruise carried out in late spring, the transport in the shallowest layers also gets in the box through the north transect, but it goes out along the west and south transects with values which can arrive to 1 Sv and 2 Sv, respectively. At intermediate levels the transports are similar to those already described for the summer cruise. Finally, an inverse box model is applied to both datasets to obtain a solution consistent with both the thermal wind equation and with the mass and

  2. Uranium in selected endorheic basins as partial analogue for spent fuel behavior in salt

    International Nuclear Information System (INIS)

    Van Luik, A.E.

    1987-01-01

    If uranium (U) behavior with respect to the components of certain endorheic (closed) basin subsurface, playa, or terminal lake brines were quantitatively understood, the ability to predict the long-term redistribution of emplaced U among analogous components of salt formations may be enhanced. Tests that determine the nature of U interactions with pure mineral and organic matter surfaces are important, but studying the natural systems available could give indications of long-term stabilities of processes, and of preferential processes. For example, some metals present in trace quantities, such as U, may be coprecipitated in the oxidized zone with an evaporite mineral that may afterward undergo diagenesis, especially if conditions become more reducing. During diagenesis, the trace metal may be remobilized, but scavenged by sulfides or organic particulates, leaving the evaporite mineral depleted of its trace metal content. A survey of the literature shows trace metal behavior in closed basins has been studied. However, information on U consists of only a few abundance determinations for some evaporite systems. Obtaining and interpreting natural analogue data for the U and Th decay series in selected endorheic basin environments is suggested. 44 refs., 3 figs

  3. Uranium in selected endorheic basins as partial analogue for spent fuel behavior in salt

    International Nuclear Information System (INIS)

    Luik, A.E. van

    1987-01-01

    If uranium (U) behavior with respect to the components of certain endorheic (closed) basin subsurface, playa, or terminal lake brines were quantitatively understood, the ability to predict the long-term redistribution of emplaced U among analogous components of salt formations may be enhanced. Tests that determine the nature of U interactions with pure mineral and organic matter surfaces are important, but studying the natural systems available could give indications of long-term stabilities of processes, and of preferential processes. For example, some metals present in trace quantities, such as U, may be coprecipitated in the oxidized zone with an evaporite mineral that may afterwards undergo diagenesis, especially if conditions become more reducing. During diagenesis, the trace metal may be remobilized, but scavenged by sulfides or organic particulates, leaving the evaporite mineral depleted of its trace metal content. A survey of the literature shows some trace metal behavior in closed basins has been studied. However, information on U consists of only a few abundance determinations for some evaporite systems. Obtaining and interpreting natural analogue data for the U and Th decay series in selected endorheic basin environments is suggested. (author)

  4. Anatomy of a rift system: Triassic-Jurassic basins of eastern North America

    Energy Technology Data Exchange (ETDEWEB)

    Schlische, R.W. (Rutgers Univ., New Brunswick, NJ (United States)); Olsen, P.E. (Columbia Univ., Palisades, NY (United States))

    1991-03-01

    Basins containing the early Mesozoic Newark Supergroup formed during the incipient rifting of Pangaea. The basins are characterized by the following: (1) The border fault systems (BFS) represent reactivated older faults. (2) A regionally persistent northwest-southeast to west-northeast-east-southeast extension direction reactivated northeast- to north-striking structures as predominantly normal dip-slip faults. (3) The half-grabens are lozenge-shaped basins in which subsidence-fault slip was greatest at or near the center of the BFS and decreased to zero toward either end. (4) Transverse folds in the hanging walls immediately adjacent to the BFS formed as a result of higher-frequency variations in subsidence. (5) Subsidence also decreased in a direction perpendicular to the BFS. (6) Intrabasinal faults are overwhelmingly synthetic and predominantly post-depositional. (7) Younger strata progressively onlap prerift rocks of the hanging wall block; this indicates that the basins grew both in width and length as they filled. (8) In all basins initial sedimentation was fluvial, reflecting an oversupply of sediment with respect to basin capacity. (9) Sediments were derived largely from the hanging wall block, which sloped toward the basin, and from streams that entered the basin axially; a direct footwall source was minor, owing to footwall uplift. (10) In strike-slip-dominated basins, subsidence was considerably less than in dip-slip basins, and mosaics of strike- and dip-slip faults are common.

  5. How three countries in the Americas are fortifying dietary salt reduction: a north and south perspective.

    Science.gov (United States)

    Legowski, Barbara; Legetic, Branka

    2011-09-01

    A chronic disease/risk factor prevention framework with three policy environments--communications, physical and economic--was used to organize population level interventions that address the "over consumption of dietary salt", a key risk factor for cardiovascular diseases. The framework was then used to map the population based strategies to reduce dietary salt consumption being applied in three countries in the Americas--Argentina, Canada and Chile--each with a history of multi-sector approaches to deal with the risk factors for chronic disease, offering a north versus south perspective. Results show that in all three countries policy instruments are concentrated in the communications environment, e.g., media and education campaigns and/or regulations for standardized information on the salt or sodium content of packaged food products. Notable gaps are the requirement for nutrient information on meals and food items prepared by food establishments and restrictions on advertising and marketing of foods to children. In the physical environment, referring to the sodium levels in commercially prepared foods and meals available on the market, voluntary reformulation of food products is underway at this time in the three countries. Argentina and Chile began with bread and have gradually added other food categories; Canada at the outset is addressing all food categories where products have added salt. Argentina alone is at this point actively approaching regulations to limit the salt content of food, preferring this over ongoing monitoring of voluntary targets. No government in the three counties has yet considered action in the economic environment, a complex area where the research on and initiatives to limit or disadvantage energy-dense food products to address obesity may also capture foods that are highly salted. In the meantime, with recent research estimating substantially higher gains in population health from government legislation to limit salt in foods

  6. Chemical quality of surface waters in Devils Lake basin, North Dakota

    Science.gov (United States)

    Swenson, Herbert; Colby, Bruce R.

    1955-01-01

    Devils Lake basin, a closed basin in northeastern North Dakota, covers about 3,900 square miles of land, the topography of which is morainal and of glacial origin. In this basin lies a chain of waterways, which begins with the Sweetwater group and extends successively through Mauvais Coulee, Devils Lake, East Bay Devils Lake, and East Devils Lake, to Stump Lake. In former years when lake levels were high, Mauvais Coulee drained the Sweetwater group and discharged considerable water into Devils Lake. Converging coulees also transported excess water to Stump Lake. For at least 70 years prior to 1941, Mauvais Coulee flowed only intermittently, and the levels of major lakes in this region gradually declined. Devils Lake, for example, covered an area of about 90,000 acres in 1867 but had shrunk to approximately 6,500 acres by 1941. Plans to restore the recreational appeal of Devils Lake propose the dilution and eventual displacement of the brackish lake water by fresh water that would be diverted from the Missouri River. Freshening of the lake water would permit restocking Devils Lake with fish. Devils and Stump Lake have irregular outlines and numerous windings and have been described as lying in the valley of a preglacial river, the main stem and tributaries of which are partly filled with drift. Prominent morainal hills along the south shore of Devils Lake contrast sharply with level farmland to the north. The mean annual temperature of Devils Lake basin ranges between 36 ? and 42 ? F. Summer temperatures above 100 ? F and winter temperatures below -30 ? Fare not uncommon. The annual precipitation for 77 years at the city of Devils Lake averaged 17.5 inches. Usually, from 75 to 80 percent of the precipitation in the basin falls during the growing season, April to September. From 1867 to 1941 the net fall of the water surface of Devils Lake was about 38 feet. By 1951 the surface had risen fully 14 feet from its lowest altitude, 1,400.9 feet. Since 1951, the level has

  7. Statistical summaries of water-quality data for selected streamflow-gaging stations in the Red River of the North basin, North Dakota, Minnesota, and South Dakota

    Science.gov (United States)

    Macek-Rowland, Kathleen M.; Dressler, Valerie M.

    2002-01-01

    The quantity and quality of current and future water resources in the Red River of the North Basin in North Dakota, Minnesota, and South Dakota are concerns of people who reside within the basin. Additional water resources are needed because of recent growth in population, industry, and agriculture. How the management of current and future water-resources will impact water quality within the basin is a critical issue. Water-quality data, particularly for surface-water sources, will help water-resources managers make decisions about current and future water resources in the Red River of the North Basin. Statistical summaries of water-quality data for 43 streamflow-gaging stations in the Red River of the North Basin in North Dakota, Minnesota, and South Dakota are presented in this report. Statistical summaries include sample size, maximum, minimum, mean, and values for the 95th, 75th, 50th, 25th, and 5th percentiles.

  8. Palaeoenvironmental changes across the Danian–Selandian boundary in the North Sea Basin

    DEFF Research Database (Denmark)

    Clemmensen, Anne; Thomsen, Erik

    2005-01-01

    cores from Storebælt in the eastern part of the North Sea Basin, we have reconstructed the palaeoenvironmental changes across the boundary. The benthic foraminiferal faunas belong to the “Midway-type fauna”. They are extremely rich and more than 260 taxa have been recognized. Q-mode cluster analysis......, the sea bottom conditions became colder and more acidic. This resulted in partial dissolution of the carbonates and the deposition shifted from marl to clay. Comparison with records from the Western Pyrenees, the Nile Basin and the eastern North America suggests that sea-level changes across the Danian......The Danian–Selandian boundary (not, vert, similar60 Ma) marks the cessation of 40 million years of carbonate deposition in the North Sea Basin and a shift to siliciclastic deposition. On the basis of variations in lithology, benthic and planktonic foraminifera and calcareous nannofossils in three...

  9. Limnology and plankton diversity of salt lakes from Transylvanian Basin (Romania: A review

    Directory of Open Access Journals (Sweden)

    Mircea Alexe

    2017-09-01

    Full Text Available In the present work, we review the current knowledge on genesis, limnology and biodiversity of salt lakes distributed around the inner contour of Eastern Carpathian arc (Transylvanian Basin, Central Romania. Transylvanian salt lakes formed on ancient halite (NaCl deposits following natural processes or quarrying activities.  Most of these lakes are located in eastern (Sovata area, southern (Ocna Sibiului, and western (Turda-Cojocna parts of the Transylvanian Basin, have small surfaces (0.1-4 ha, variable depths (2-100 m, are hypersaline (>10%, w/v, total salts, mainly NaCl and permanently stratified. As consequence of steady salinity/density gradient, heat entrapment below surface layer (i.e., heliothermy develops in several Transylvanian lakes. The physical and chemical water stratification is mirrored in the partition of plankton diversity. Lakes with less saline (2-10% salinity water layers appear to harbor halotolerant representatives of phyto- (e.g., marine native Picochlorum spp. and Synechococcus spp., zoo- (e.g., Moina salina, and bacterioplankton (e.g., Actinobacteria, Verrucomicobia, whereas halophilic plankton communities (e.g., green algae Dunaliella sp., brine shrimp Artemia sp., and members of Halobacteria class dominate in the oxic surface of hypersaline (>10% salinity lakes. Molecular approaches (e.g., PCR-DGGE, 16S rRNA gene-based clone libraries, and DNA metabarcoding showed that the O2-depleted bottom brines of deep meromictic Transylvanian lakes are inhabited by known extremely halophilic anaerobes (e.g. sulfate-reducing Delta-Proteobacteria, fermenting Clostridia, methanogenic and polymer-degrading archaea in addition to representatives of uncultured/unclassified prokaryotic lineages. Overall, the plankton communities thriving in saline Transylvanian lakes seem to drive full biogeochemical cycling of main elements. However, the trophic interactions (i.e., food web structure and energy flow as well as impact of human

  10. Distribution and abundance of Artemia salina in the Salt Lake Basin (Central Anatolia, Turkey

    Directory of Open Access Journals (Sweden)

    Alaş Ali

    2017-06-01

    Full Text Available In this study, the distribution and abundance of Artemia salina in 10 different stations of the Salt Lake basin were investigated. In addition, its relationship to pH, dissolved oxygen, temperature, electrical conductivity and water levels were analyzed. Field studies were carried out from July to August of 2010. Artemia salina was observed in five of these stations. Artemia salina was not seen in some stations that have high electrical conductivity. It is determined that, in the station named Tersakan Lake where electrical conductivity was 154 mS/cm, Artemia salina is more abundant when compared to the other stations. But as underground water pumps that are built for the irrigation of agricultural lands decrease water levels, Artemia salina’s life is under threat.

  11. Chapter 2. Assessment of undiscovered conventional oil and gas resources--Upper Jurassic-Lower Cretaceous Cotton Valley group, Jurassic Smackover interior salt basins total petroleum system, in the East Texas basin and Louisiana-Mississippi salt basins provinces.

    Science.gov (United States)

    Dyman, T.S.; Condon, S.M.

    2006-01-01

    The Jurassic Smackover Interior Salt Basins Total Petroleum System is defined for this assessment to include (1) Upper Jurassic Smackover Formation carbonates and calcareous shales and (2) Upper Jurassic and Lower Cretaceous Cotton Valley Group organic-rich shales. The Jurassic Smackover Interior Salt Basins Total Petroleum System includes four conventional Cotton Valley assessment units: Cotton Valley Blanket Sandstone Gas (AU 50490201), Cotton Valley Massive Sandstone Gas (AU 50490202), Cotton Valley Updip Oil and Gas (AU 50490203), and Cotton Valley Hypothetical Updip Oil (AU 50490204). Together, these four assessment units are estimated to contain a mean undiscovered conventional resource of 29.81 million barrels of oil, 605.03 billion cubic feet of gas, and 19.00 million barrels of natural gas liquids. The Cotton Valley Group represents the first major influx of clastic sediment into the ancestral Gulf of Mexico. Major depocenters were located in south-central Mississippi, along the Louisiana-Mississippi border, and in northeast Texas. Reservoir properties and production characteristics were used to identify two Cotton Valley Group sandstone trends across northern Louisiana and east Texas: a high-permeability blanket-sandstone trend and a downdip, low-permeability massive-sandstone trend. Pressure gradients throughout most of both trends are normal, which is characteristic of conventional rather than continuous basin-center gas accumulations. Indications that accumulations in this trend are conventional rather than continuous include (1) gas-water contacts in at least seven fields across the blanket-sandstone trend, (2) relatively high reservoir permeabilities, and (3) high gas-production rates without fracture stimulation. Permeability is sufficiently low in the massive-sandstone trend that gas-water transition zones are vertically extensive and gas-water contacts are poorly defined. The interpreted presence of gas-water contacts within the Cotton Valley

  12. Architectural features of the Kayenta formation (Lower Jurassic), Colorado Plateau, USA: relationship to salt tectonics in the Paradox Basin

    Science.gov (United States)

    Bromley, Michael H.

    1991-09-01

    Fluvial sandstones of the Kayenta Formation were analyzed using architectural element analysis. Paleocurrent trends, the distribution of lacustrine facies and local silcrete development indicate that synsedimentary movement of evaporites in the underlying Paradox Basin created an unstable basin floor beneath the Kayenta fluvial system. This instability resulted in deflection of fluvial axes, local basin development and local areas of interrupted fluvial deposition with eolian dunes. Paleocurrent trends in the Kayenta system reflect periodic interruptions of southwesterly flow. Salt migrating laterally out of a rim syncline into an adjacent salt anticline resulted in a rim syncline of slight topographic relief. The resulting basin was probably rapidly filled, allowing the resumption of southwesterly flow. Differential movement of salt (incipient solution collapse features (?)) resulted in the formation of small centripetal basins in which playa mudstones formed. A laterally extensive resistant ledge underlies a horizontal surface, suggestive of deflation to the water table of an exposed section of valley fill. A channel scour in the top of one of these surfaces has margins much steeper ( > 60°) than the angle of repose for unconsolidated sand. Early cementation of the exposed floodplain could account for this resistance.

  13. Links and Feedbacks between Salt Diapirs, Hydrates, and Submarine Landslides: Example from Cape Fear, offshore North Carolina, U.S.A.

    Science.gov (United States)

    Sawyer, D.; Akinci, L.; Nikolinakou, M. A.; Heidari, M.

    2015-12-01

    New 2-dimensional multi-channel seismic data acquired offshore east coast U.S.A in autumn 2014 provide high-resolution insight into the post-rift evolution of the margin by dynamic, interrelated processes of sediment transport, slope failure, salt diapirism, and gas hydrate formation and dissociation. This area contains some of the largest slope failure complexes in the North Atlantic and on-going salt tectonics and large-scale growth faulting continue to shape the margin. In addition, there is strong evidence for the existence of gas hydrate via bottom-simulating reflectors. The best example of where salt diapirism, hydrates, and landslides are affecting near-surface sediments is the Cape Fear Slide Complex in which two salt diapirs are surrounded by the 120-meter tall amphitheater-shaped lower headwall of the Cape Fear landslide, which occurred approximately 24-42 kya. One of the diapirs currently stands above the present-day seafloor. Previous interpretations propose that the Cape Fear landslide was triggered by the rising salt diaper. We test this by integrating our geophysical observations with cores from Ocean Drilling Program Leg 172 and an analytical model that solves for the upward velocity of salt diapirs based on regional basin sediment thickness and diapir diameter. We find that the rate of salt rise is 4-15 m/My. This indicates less than 1 meter post-landslide rise has occurred and thus that the present-day morphology as imaged in seismic data represents the geometry at the time of the Cape Fear landslide. Current sediment angles on the flanks of the diapir are a maximum of 7°, which are statically stable at hydrostatic pore pressure. This suggests that simple oversteepening is not enough to explain the landslide. The hydraulic conductivity of sediments is estimated from nearby ODP sites to be an order of magnitude greater than the upward salt velocity, which suggests that overpressure in the roof sediments was unlikely. We tentatively propose that

  14. Sedimentation and chemical quality of surface water in the Heart River drainage basin, North Dakota

    Science.gov (United States)

    Maderak, Marion L.

    1966-01-01

    The Heart River drainage basin of southwestern North Dakota comprises an area of 3,365 square miles and lies within the Missouri Plateau of the Great Plains province. Streamflow of the Heart River and its tributaries during 1949-58 was directly proportional to .the drainage area. After the construction of Heart Butte Dam in 1949 and Dickinson Dam in 1950, the mean annual streamflow near Mandan was decreased an estimated 10 percent by irrigation, evaporation from the two reservoirs, and municipal use. Processes that contribute sediment to the Heart River are mass wasting, advancement of valley heads, and sheet, lateral stream, and gully erosion. In general, glacial deposits, terraces, and bars of Quaternary age are sources of sand and larger sediment, and the rocks of Tertiary age are sources of clay, silt. and sand. The average annual suspended-sediment discharges near Mandan were estimated to be 1,300,000 tons for 1945-49 and 710,000 tons for 1970-58. The percentage composition of ions in water of the Heart River, based on average concentrations in equivalents per million for selected ranges of streamflow, changes with flow and from station to station. During extremely low flows the water contains a large percentage of sodium and about equal percentages of bicarbonate and .sulfate, and during extremely high flows the water contains a large percentage of calcium plus magnesium and bicarbonate. The concentrations, in parts per million, of most of the ions vary inversely with flow. The water in the reservoirs--Edward Arthur Patterson Lake and Lake Tschida--during normal or above-normal runoff is of suitable quality for public use. Generally, because of medium or high salinity hazards, the successful long-term use of Heart River water for irrigation will depend on a moderate amount of leaching, adequate drainage, ,and the growing of crops that have moderate or good salt tolerance.

  15. Geodynamic implications for zonal and meridional isotopic patterns across the northern Lau and North Fiji Basins

    Science.gov (United States)

    Price, Allison A.; Jackson, Matthew G.; Blichert-Toft, Janne; Kurz, Mark D.; Gill, Jim; Blusztajn, Jerzy; Jenner, Frances; Brens, Raul; Arculus, Richard

    2017-03-01

    We present new Sr-Nd-Pb-Hf-He isotopic data for 65 volcanic samples from the northern Lau and North Fiji Basins. This includes 47 lavas obtained from 40 dredge sites spanning an east-west transect across the Lau and North Fiji basins, 10 ocean island basalt (OIB)-type lavas collected from seven Fijian islands, and eight OIB lavas sampled on Rotuma. For the first time, we are able to map clear north-south and east-west geochemical gradients in 87Sr/86Sr across the northern Lau and North Fiji Basins: lavas with the most geochemically enriched radiogenic isotopic signatures are located in the northeast Lau Basin, while signatures of geochemical enrichment are diminished to the south and west away from the Samoan hot spot. Based on these geochemical patterns and plate reconstructions of the region, these observations are best explained by the addition of Samoa, Rurutu, and Rarotonga hot spot material over the past 4 Ma. We suggest that underplated Samoan material has been advected into the Lau Basin over the past ˜4 Ma. As the slab migrated west (and toward the Samoan plume) via rollback over time, younger and hotter (and therefore less viscous) underplated Samoan plume material was entrained. Thus, entrainment efficiency of underplated plume material was enhanced, and Samoan plume signatures in the Lau Basin became stronger as the trench approached the Samoan hot spot. The addition of subducted volcanoes from the Cook-Austral Volcanic Lineament first from the Rarotonga hot spot, then followed by the Rurutu hot spot, contributes to the extreme geochemical signatures observed in the northeast Lau Basin.

  16. Late-Variscan Tectonic Inheritance and Salt Tectonics Interplay in the Central Lusitanian Basin

    Science.gov (United States)

    Nogueira, Carlos R.; Marques, Fernando O.

    2017-04-01

    Tectonic inheritance and salt structures can play an important role in the tectono-sedimentary evolution of basins. The Alpine regional stress field in west Iberia had a horizontal maximum compressive stress striking approximately NNW-SSE, related to the Late Miocene inversion event. However, this stress field cannot produce a great deal of the observed and mapped structures in the Lusitanian Basin. Moreover, many observed structures show a trend similar to well-known basement fault systems. The Central Lusitanian basin shows an interesting tectonic structure, the Montejunto structure, generally assigned to this inversion event. Therefore, special attention was paid to: (1) basement control of important observed structures; and (2) diapir tectonics (vertical maximum compressive stress), which can be responsible for significant vertical movements. Based on fieldwork, tectonic analysis and interpretation of geological maps (Portuguese Geological Survey, 1:50000 scale) and geophysical data, our work shows: (1) the Montejunto structure is a composite structure comprising an antiform with a curved hinge and middle Jurassic core, and bounding main faults; (2) the antiform can be divided into three main segments: (i) a northern segment with NNE-SSW trend showing W-dipping bedding bounded at the eastern border by a NNE-SSW striking fault, (ii) a curved central segment, showing the highest topography, with a middle Jurassic core and radial dipping bedding, (iii) a western segment with ENE-WSW trend comprising an antiform with a steeper northern limb and periclinal termination towards WSW, bounded to the south by ENE-WSW reverse faulting, (3) both fold and fault trends at the northern and western segments are parallel to well-known basement faults related to late-Variscan strike-slip systems with NNE-SSW and ENE-WSW trends; (4) given the orientation of Alpine maximum compressive stress, the northern segment border fault should be mostly sinistral strike-slip and the western

  17. Ranking contributing areas of salt and selenium in the Lower Gunnison River Basin, Colorado, using multiple linear regression models

    Science.gov (United States)

    Linard, Joshua I.

    2013-01-01

    Mitigating the effects of salt and selenium on water quality in the Grand Valley and lower Gunnison River Basin in western Colorado is a major concern for land managers. Previous modeling indicated means to improve the models by including more detailed geospatial data and a more rigorous method for developing the models. After evaluating all possible combinations of geospatial variables, four multiple linear regression models resulted that could estimate irrigation-season salt yield, nonirrigation-season salt yield, irrigation-season selenium yield, and nonirrigation-season selenium yield. The adjusted r-squared and the residual standard error (in units of log-transformed yield) of the models were, respectively, 0.87 and 2.03 for the irrigation-season salt model, 0.90 and 1.25 for the nonirrigation-season salt model, 0.85 and 2.94 for the irrigation-season selenium model, and 0.93 and 1.75 for the nonirrigation-season selenium model. The four models were used to estimate yields and loads from contributing areas corresponding to 12-digit hydrologic unit codes in the lower Gunnison River Basin study area. Each of the 175 contributing areas was ranked according to its estimated mean seasonal yield of salt and selenium.

  18. Corridors of crestal and radial faults linking salt diapirs in the Espírito Santo Basin, SE Brazil

    Science.gov (United States)

    Mattos, Nathalia H.; Alves, Tiago M.

    2018-03-01

    This work uses high-quality 3D seismic data to assess the geometry of fault families around salt diapirs in SE Brazil (Espírito Santo Basin). It aims at evaluating the timings of fault growth, and suggests the generation of corridors for fluid migration linking discrete salt diapirs. Three salt diapirs, one salt ridge, and five fault families were identified based on their geometry and relative locations. Displacement-length (D-x) plots, Throw-depth (T-z) data and structural maps indicate that faults consist of multiple segments that were reactivated by dip-linkage following a preferential NE-SW direction. This style of reactivation and linkage is distinct from other sectors of the Espírito Santo Basin where the preferential mode of reactivation is by upwards vertical propagation. Reactivation of faults above a Mid-Eocene unconformity is also scarce in the study area. Conversely, two halokinetic episodes dated as Cretaceous and Paleogene are interpreted below a Mid-Eocene unconformity. This work is important as it recognises the juxtaposition of permeable strata across faults as marking the generation of fault corridors linking adjacent salt structures. In such a setting, fault modelling shows that fluid will migrate towards the shallower salt structures along the fault corridors first identified in this work.

  19. Hydrologic regimes of forested, mountainous, headwater basins in New Hampshire, North Carolina, Oregon, and Puerto Rico

    Science.gov (United States)

    David A. Post; Julia A. Jones

    2001-01-01

    This study characterized the hydrologic regimes at four forested, mountainous long-term ecological research (LTER) sites: H.J. Andrews (Oregon), Coweeta (North Carolina), Hubbard Brook (New Hampshire), and Luquillo (Puerto Rico). Over 600 basinyears of daily streadow records were examined from 18 basins that have not experienced human disturbances since at least the...

  20. Thermodynamic, geophysical and rheological modeling of the lithosphere underneath the North Atlantic Porcupine Basin (Ireland).

    Science.gov (United States)

    Botter, C. D.; Prada, M.; Fullea, J.

    2017-12-01

    The Porcupine is a North-South oriented basin located southwest of Ireland, along the North Atlantic continental margin, formed by several rifting episodes during Late Carboniferous to Early Cretaceous. The sedimentary cover is underlined by a very thin continental crust in the center of the basin (10 in the South. In spite of the abundant literature, most of the oil and gas exploration in the Porcupine Basin has been targeting its northern part and is mostly restricted to relatively shallow depths, giving a restrained overview of the basin structure. Therefore, studying the thermodynamic and composition of the deep and broader structures is needed to understand the processes linked to the formation and the symmetry signature of the basin. Here, we model the present-day thermal and compositional structure of the continental crust and lithospheric mantle underneath the Porcupine basin using gravity, seismic, heat flow and elevation data. We use an integrated geophysical-petrological framework where most relevant rock properties (density, seismic velocities) are determined as a function of temperature, pressure and composition. Our modelling approach solves simultaneously the heat transfer, thermodynamic, geopotential, seismic and isostasy equations, and fit the results to all available geophysical and petrological observables (LitMod software). In this work we have implemented a module to compute self-consistently a laterally variable lithospheric elastic thickness based on mineral physics rheological laws (yield strength envelopes over the 3D volume). An appropriate understanding of local and flexural isostatic behavior of the basin is essential to unravel its tectonic history (i.e. stretching factors, subsidence etc.). Our Porcupine basin 3D model is defined by four lithological layers, representing properties from post- and syn-rift sequences to the lithospheric mantle. The computed yield strength envelopes are representative of hyperextended lithosphere and

  1. The Association of Knowledge and Behaviours Related to Salt with 24-h Urinary Salt Excretion in a Population from North and South India.

    Science.gov (United States)

    Johnson, Claire; Mohan, Sailesh; Rogers, Kris; Shivashankar, Roopa; Thout, Sudhir Raj; Gupta, Priti; He, Feng J; MacGregor, Graham A; Webster, Jacqui; Krishnan, Anand; Maulik, Pallab K; Reddy, K Srinath; Prabhakaran, Dorairaj; Neal, Bruce

    2017-02-16

    Consumer knowledge is understood to play a role in managing risk factors associated with cardiovascular disease and may be influenced by level of education. The association between population knowledge, behaviours and actual salt consumption was explored overall, and for more-educated compared to less-educated individuals. A cross-sectional survey was done in an age-and sex-stratified random sample of 1395 participants from urban and rural areas of North and South India. A single 24-h urine sample, participants' physical measurements and questionnaire data were collected. The mean age of participants was 40 years, 47% were women and mean 24-h urinary salt excretion was 9.27 (8.87-9.69) g/day. Many participants reported favourable knowledge and behaviours to minimise risks related to salt. Several of these behaviours were associated with reduced salt intake-less use of salt while cooking, avoidance of snacks, namkeens, and avoidance of pickles (all p < 0.003). Mean salt intake was comparable in more-educated (9.21, 8.55-9.87 g/day) versus less-educated (9.34, 8.57-10.12 g/day) individuals ( p = 0.82). There was no substantively different pattern of knowledge and behaviours between more-versus less-educated groups and no clear evidence that level of education influenced salt intake. Several consumer behaviours related to use of salt during food preparation and consumption of salty products were related to actual salt consumption and therefore appear to offer an opportunity for intervention. These would be a reasonable focus for a government-led education campaign targeting salt.

  2. The Association of Knowledge and Behaviours Related to Salt with 24-h Urinary Salt Excretion in a Population from North and South India

    Directory of Open Access Journals (Sweden)

    Claire Johnson

    2017-02-01

    Full Text Available Consumer knowledge is understood to play a role in managing risk factors associated with cardiovascular disease and may be influenced by level of education. The association between population knowledge, behaviours and actual salt consumption was explored overall, and for more-educated compared to less-educated individuals. A cross-sectional survey was done in an age-and sex-stratified random sample of 1395 participants from urban and rural areas of North and South India. A single 24-h urine sample, participants’ physical measurements and questionnaire data were collected. The mean age of participants was 40 years, 47% were women and mean 24-h urinary salt excretion was 9.27 (8.87–9.69 g/day. Many participants reported favourable knowledge and behaviours to minimise risks related to salt. Several of these behaviours were associated with reduced salt intake—less use of salt while cooking, avoidance of snacks, namkeens, and avoidance of pickles (all p < 0.003. Mean salt intake was comparable in more-educated (9.21, 8.55–9.87 g/day versus less-educated (9.34, 8.57–10.12 g/day individuals (p = 0.82. There was no substantively different pattern of knowledge and behaviours between more-versus less-educated groups and no clear evidence that level of education influenced salt intake. Several consumer behaviours related to use of salt during food preparation and consumption of salty products were related to actual salt consumption and therefore appear to offer an opportunity for intervention. These would be a reasonable focus for a government-led education campaign targeting salt.

  3. Hydrologic data for North Creek, Trinity River basin, Texas, 1976

    Science.gov (United States)

    Kidwell, C.C.

    1978-01-01

    This report contains rainfall and runoff data collected during the 1976 water year for a 21.6-square mile area above the stream-gaging station on North Creek near Jacksboro, Texas. A continuous water-stage recording gage was installed at one representative floodwater-retarding structure (site 28-A) on Oct. 5, 1972. The data are used to compute the contents, surface area, inflow, and outflow at this site. The stream-gaging station on North Creek near Jacksboro continuously records the water level which, with measurements of streamflow, is used to compute the runoff from the study area. Streamflow records at this gage began on Aug. 8, 1956. Detailed rainfall-runoff computations, including hydrographs and mass curves, are included for two storm periods during the 1976 water year at the stream-gaging station. (Woodard-USGS)

  4. Hydrologic data for North Creek, Trinity River basin, Texas, 1979

    Science.gov (United States)

    Kidwell, C.C.

    1981-01-01

    This report contains rainfall and runoff data collected during the 1979 water year for the 21.6-square mile area above the stream-gaging station North Creek near Jacksboro, Texas. A continuous water-stage recording gage was installed at one representative floodwater-retarding structure (site 28-A) on Oct. 5, 1972. The data are collected to compute the contents, surface area, inflow, and outflow at this site. The stream-gaging station on North Creek near Jacksboro continuously records the water level which, with measurements of streamflow, is used to compute the runoff from the study area. Streamflow records at this gage began on Aug. 8, 1956. Detailed rainfall-runoff computations are included for one storm during the 1979 water year at the stream-gaging station. (USGS)

  5. Water in urban planning, Salt Creek Basin, Illinois water management as related to alternative land-use practices

    Science.gov (United States)

    Spieker, Andrew Maute

    1970-01-01

    Water management can be an integral part of urban comprehensive planning in a large metropolitan area. Water both imposes constraints on land use and offers opportunities for coordinated land and water management. Salt Creek basin in Cook and Du Page Counties of the Chicago metropolitan area is typical of rapidly developing suburban areas and has been selected to illustrate some of these constraints and opportunities and to suggest the effects of alternative solutions. The present study concentrates on the related problems of ground-water recharge, water quality, management of flood plains, and flood-control measures. Salt Creek basin has a drainage area of 150 square miles. It is in flat to. gently rolling terrain, underlain by glacial drift as much as 200 feet thick which covers a dolomite aquifer. In 1964, the population of the basin was about 400,000, and 40 percent of the land was in urban development. The population is expected to number 550,000 to 650,000 by 1990, and most of the land will be taken by urban development. Salt Creek is a sluggish stream, typical of small drainage channels in the headwaters area of northeastern Illinois. Low flows of 15 to 25 cubic feet per second in the lower part of the basin consist largely of sewage effluent. Nearly all the public water supplies in the basin depend on ground water. Of the total pumpage of 27.5 million gallons per day, 17.5 million gallons per day is pumped from the deep (Cambrian-Ordovician) aquifers and 10 million gallons per day is pumped from the shallow (Silurian dolomite and glacial drift) aquifers. The potential yield of the shallow aquifers, particularly glacial drift in the northern part of the basin, far exceeds present use. The largest concentration of pumpage from the shallow ,aquifers is in the Hinsdale-La Grange area. Salt Creek serves as an important source of recharge to these supplies, particularly just east of Hinsdale. The entire reach of Salt Creek south and east of Elmhurst can be

  6. Mesozoic basins and associated palaeogeographic evolution in North China

    Directory of Open Access Journals (Sweden)

    Yong-Qing Liu

    2015-04-01

    Besides, during the Late Mesozoic, a huge terrestrial biota, mainly dinosaur fauna, dominated in North China. The Yanliao biota of the Middle–Late Jurassic and the Jehol biota of the Early Cretaceous are characterized by feathered dinosaurs, primitive birds, mammals, pterosaur, insects and plants (angiosperms. In northeastern Asia, this Late Mesozoic tectonic background , palaeogeoraphy and palaeoecology were shared by East China, Korean Peninsula, Japan and the Far East of Russia.

  7. Reconstruction of North American drainage basins and river discharge since the Last Glacial Maximum

    Directory of Open Access Journals (Sweden)

    A. D. Wickert

    2016-11-01

    Full Text Available Over the last glacial cycle, ice sheets and the resultant glacial isostatic adjustment (GIA rearranged river systems. As these riverine threads that tied the ice sheets to the sea were stretched, severed, and restructured, they also shrank and swelled with the pulse of meltwater inputs and time-varying drainage basin areas, and sometimes delivered enough meltwater to the oceans in the right places to influence global climate. Here I present a general method to compute past river flow paths, drainage basin geometries, and river discharges, by combining models of past ice sheets, glacial isostatic adjustment, and climate. The result is a time series of synthetic paleohydrographs and drainage basin maps from the Last Glacial Maximum to present for nine major drainage basins – the Mississippi, Rio Grande, Colorado, Columbia, Mackenzie, Hudson Bay, Saint Lawrence, Hudson, and Susquehanna/Chesapeake Bay. These are based on five published reconstructions of the North American ice sheets. I compare these maps with drainage reconstructions and discharge histories based on a review of observational evidence, including river deposits and terraces, isotopic records, mineral provenance markers, glacial moraine histories, and evidence of ice stream and tunnel valley flow directions. The sharp boundaries of the reconstructed past drainage basins complement the flexurally smoothed GIA signal that is more often used to validate ice-sheet reconstructions, and provide a complementary framework to reduce nonuniqueness in model reconstructions of the North American ice-sheet complex.

  8. Water-quality data for aquifers, streams, and lakes in the vicinity of Keechi, Mount Sylvan, Oakwood, and Palestine salt domes, northeast Texas salt-dome basin

    International Nuclear Information System (INIS)

    Carr, J.E.; Halasz, S.J.; Liscum, F.

    1980-11-01

    This report contains water-quality data for aquifers, streams, and lakes in the vicinity of Keechi, Mount Sylvan, Oakwood, and Palestine Salt Domes in the northeast Texas salt-dome basin. Water-quality data were compiled for aquifers in the Wilcox Group, the Carrizo Sand, and the Queen City Sand. The data include analyses for dissolved solids, pH, temperature, hardness, calcium, magnesium, sodium, bicarbonate, chloride, and sulfate. Water-quality and streamflow data were obtained from 63 surface-water sites in the vicinity of the domes. These data include water discharge, specific conductance, pH, water temperature, and dissolved oxygen. Samples were collected at selected sites for analysis of principal and selected minor dissolved constituents

  9. Thermal conductivity and diffusivity of Permian Basin bedded salt at elevated pressure and temperature

    International Nuclear Information System (INIS)

    Durham, W.B.; Boro, C.O.; Beiriger, J.M.; Montan, D.N.

    1983-10-01

    Measurements of thermal conductivity and diffusivity were made on five core samples of bedded rock salt from the Permian Basin in Texas to determine its suitability as an underground nuclear waste repository. The sample size was 100 mm in diameter by 250 mm in length. Measurements were conducted under confining pressures ranging from 3.8 to 31.0 MPa and temperatures from room temperature to 473 K. Conductivity showed no dependence on confining pressure but evidenced a monotonic, negative temperature dependence. Four of the five samples showed conductivities clustered in a range of 5.6 +- 0.5 W/m.K at room temperature, falling to 3.6 +- 0.3 W/m.K at 473 K. These values are approximately 20% below those for pure halite, reflecting perhaps the 5 to 20%-nonhalite component of the samples. Diffusivity also showed a monotonic, negative temperature dependence, with four of the five samples clustered in a range of 2.7 +- 0.4 x 10 -6 m 2 /s at room temperature, and 1.5 +- 0.3 x 10 -6 m 2 /s at 473 K, all roughly 33% below the values for pure halite. One sample showed an unusually high conductivity (it also had the highest diffusivity), about 20% higher than the others; and one sample showed an unusually low diffusivity (it also had the lowest conductivity), roughly a factor of 2 lower than the others. 27 references, 8 figures, 4 tables

  10. Aptian ‘Shale Gas’ Prospectivity in the Downdip Mississippi Interior Salt Basin, Gulf Coast, USA

    Science.gov (United States)

    Hackley, Paul C.; Valentine, Brett J.; Enomoto, Catherine B.; Lohr, Celeste D.; Scott, Krystina R.; Dulong, Frank T.; Bove, Alana M.

    2016-01-01

    This study evaluates regional ‘shale gas’ prospectivity of the Aptian section (primarily Pine Island Shale) in the downdip Mississippi Salt Basin (MSB). Previous work by the U.S. Geological Survey estimated a mean undiscovered gas resource of 8.8 trillion cubic feet (TCF) in the chronostratigraphic-equivalent Pearsall Formation in the Maverick Basin of south Texas, where industry has established a moderately successful horizontal gas and liquids play. Wells penetrating the downdip MSB Aptian section at depths of 12,000-15,000 ft were used to correlate formation tops in a 15-well cross-section extending about 200 miles (mi) east-southeastward from Adams Co. to Jackson Co. Legacy cuttings from these wells were analyzed for thermal maturity and source rock quality. Bitumen reflectance (n=53) increases with increasing present-day burial depth in the east-central study area from 1.0% to 1.7%. As the Aptian section shallows in Adams Co. to the west, bitumen Ro values are higher (1.7-2.0%), either from relatively greater heat flux or greater mid-Cenomanian uplift and erosion in this area. Total organic carbon (TOC) content ranges 0.01-1.21 and averages 0.5 wt.% (n=51); pyrolysis output (S2; n=51) averages 0.40 mg HC/g rock, indicating little present-day hydrocarbon-generative potential. Bitumen reflectance is preferred as a thermal maturity parameter as Tmax values are unreliable. Normalized X-ray diffraction (XRD) mineral analyses (n=26) indicate high average clay abundance (53 wt.%) relative to quartz (29%) and carbonate (18%). Mineral content shows a spatial relationship to an Appalachian orogen clastic sediment source, with proximal high clay and quartz and distal high carbonate content. Clastic influx from the Appalachian orogen is confirmed by detrital zircon U-Pb ages with dominant Grenville and Paleozoic components [105 ages from a Rodessa sandstone and 112 ages from a Paluxy (Albian) sandstone]. Preliminary information from fluid inclusion microthermometry

  11. Ground-water availability from surficial aquifers in the Red River of the North Basin, Minnesota

    Science.gov (United States)

    Reppe, Thomas H.C.

    2005-01-01

    Population growth and commercial and industrial development in the Red River of the North Basin in Minnesota, North Dakota, and South Dakota have prompted the Bureau of Reclamation, U.S. Department of the Interior, to evaluate sources of water to sustain this growth. Nine surficial-glacial (surficial) aquifers (Buffalo, Middle River, Two Rivers, Beach Ridges, Pelican River, Otter Tail, Wadena, Pineland Sands, and Bemidji-Bagley) within the Minnesota part of the basin were identified and evaluated for their ground-water resources. Information was compiled and summarized from published studies to evaluate the availability of ground water. Published information reviewed for each of the aquifers included location and extent, physical characteristics, hydraulic properties, ground-water and surface-water interactions, estimates of water budgets (sources of recharge and discharge) and aquifer storage, theoretical well yields and actual ground-water pumping data, recent (2003) ground-water use data, and baseline ground-water-quality data.

  12. Flood-inundation maps for North Fork Salt Creek at Nashville, Indiana

    Science.gov (United States)

    Martin, Zachary W.

    2017-11-13

    Digital flood-inundation maps for a 3.2-mile reach of North Fork Salt Creek at Nashville, Indiana, were created by the U.S. Geological Survey (USGS) in cooperation with the Indiana Department of Transportation. The flood-inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science website at http://water.usgs.gov/osw/flood_inundation/, depict estimates of the areal extent and depth of flooding that correspond to selected water levels (stages) at the North Fork Salt Creek at Nashville, Ind., streamgage (USGS station number 03371650). Real-time stages at this streamgage may be obtained from the USGS National Water Information System at http://waterdata.usgs.gov/nwis or the National Weather Service (NWS) Advanced Hydrologic Prediction Service at http:/water.weather.gov/ahps/, which also shows observed USGS stages at the same site as the USGS streamgage (NWS site NFSI3).Flood profiles were computed for the stream reach by means of a one-dimensional, step-backwater hydraulic modeling software developed by the U.S. Army Corps of Engineers. The hydraulic model was calibrated using the current (2015) stage-discharge rating at the USGS streamgage 03371650, North Fork Salt Creek at Nashville, Ind. The hydraulic model was then used to compute 12 water-surface profiles for flood stages at 1-foot (ft) intervals, except for the highest profile of 22.9 ft, referenced to the streamgage datum ranging from 12.0 ft (the NWS “action stage”) to 22.9 ft, which is the highest stage of the current (2015) USGS stage-discharge rating curve and 1.9 ft higher than the NWS “major flood stage.” The simulated water-surface profiles were then combined with a geographic information system digital elevation model (derived from light detection and ranging data having a 0.98-ft vertical accuracy and 4.9-ft horizontal resolution) to delineate the area flooded at each stage.The availability of these maps, along with information regarding current stage from the USGS

  13. Assessment of undiscovered conventional oil and gas resources in the West Korea Bay–North Yellow Sea Basin, North Korea and China, 2017

    Science.gov (United States)

    Schenk, Christopher J.; Tennyson, Marilyn E.; Mercier, Tracey J.; Hawkins, Sarah J.; Finn, Thomas M.; Gaswirth, Stephanie B.; Marra, Kristen R.; Klett, Timothy R.; Le, Phuong A.; Leathers-Miller, Heidi M.; Woodall, Cheryl A.

    2017-07-11

    Using a geology-based assessment methodology, the U.S. Geological Survey estimated mean undiscovered, technically recoverable conventional resources of 1.1 billion barrels of oil and 2.2 trillion cubic feet of gas in the West Korea Bay–North Yellow Sea Basin, North Korea and China.

  14. Knowledge and Understanding of the Hydrogeology of the Salt Basin in South-Central New Mexico and Future Study Needs

    Science.gov (United States)

    Huff, G.F.; Chace, D.A.

    2006-01-01

    The Salt Basin covers about 2,400 square miles of south-central New Mexico and extends across the State line into Texas. As much as 57 million acre-feet of ground water may be stored within the New Mexico part of the Salt Basin of which 15 million acre-feet are potentially potable and recoverable. Recent work suggests that the volume of ground water in storage within the New Mexico portion of the Salt Basin may be substantially greater than 57 million acre-feet. In this report, aquifers contained in the San Andres, Bone Spring, and Victorio Peak Limestones and in the Yeso, Hueco, and Abo Formations are collectively referred to as the carbonate aquifer. Porosity and permeability of the major aquifer are primarily determined by the density and interconnectedness of fractures and karstic solution channels. The spatial variability of these fractures and karstic features leads to a large spatial variability in hydraulic properties in the carbonate aquifer. Ground water generally moves southward away from recharge areas along the northern border of the Salt Basin and generally moves eastward to southeastward away from areas of distributed recharge on the Otero Mesa and the Diablo Plateau. Ground water originating from these recharge areas generally moves toward the central valley. Present day discharge is mostly through ground-water withdrawal for agricultural irrigation. A zone of relatively low hydraulic gradient, corresponding to the location of the Otero Break, extends from near the Sacramento River watershed southward toward Dell City, Texas. Ground water in the carbonate aquifer generally is very hard and has dissolved-solids concentrations ranging from 500 to 6,500 milligrams per liter. Substantial variability exists in current estimates of (1) ground-water recharge, (2) natural ground-water discharge, (3) the volume of ground water in storage, (4) the volume of recoverable ground water, (5) the conceptual model of ground-water flow, (6) the distribution of ground

  15. Implications of diapir-derived detritus and gypsic paleosols in Lower Triassic strata near the Castle Valley salt wall, Paradox Basin, Utah

    Science.gov (United States)

    Lawton, Timothy F.; Buck, Brenda J.

    2006-10-01

    Gypsum-bearing growth strata and sedimentary facies of the Moenkopi Formation on the crest and NE flank of the Castle Valley salt wall in the Paradox Basin record salt rise, evaporite exposure, and salt-withdrawal subsidence during the Early Triassic. Detrital gypsum and dolomite clasts derived from the middle Pennsylvanian Paradox Formation were deposited in strata within a few kilometers of the salt wall and indicate that salt rise rates roughly balanced sediment accumulation, resulting in long-term exposure of mobile evaporite. Deposition took place primarily in flood-basin or inland sabkha settings that alternated between shallow subaqueous and subaerial conditions in a hyperarid climate. Matrix-supported and clast-supported conglomerates with gypsum fragments represent debris-flow deposits and reworked debris-flow deposits, respectively, interbedded with flood-basin sandstone and siltstone during development of diapiric topography. Mudstone-rich flood-basin deposits with numerous stage I to III gypsic paleosols capped by eolian gypsum sand sheets accumulated during waning salt-withdrawal subsidence. Association of detrital gypsum, eolian gypsum, and gypsic paleosols suggests that the salt wall provided a common source for gypsum in the surrounding strata. This study documents a previously unrecognized salt weld with associated growth strata containing diapir-derived detritus and gypsic palesols that can be used to interpret halokinesis.

  16. Tropical Cyclone Exposure for U.S. waters within the North Atlantic Ocean basin, 1900-2013

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data represent modeled, historical exposure of U.S. offshore and coastal waters to tropical cyclone activity within the North Atlantic Ocean basin. BOEM Outer...

  17. Magnetostratigraphy and 230Th dating of a drill core from the southeastern Qaidam Basin: Salt lake evolution and tectonic implications

    Directory of Open Access Journals (Sweden)

    An-Dong Chen

    2018-05-01

    Full Text Available The Qarhan Salt Lake area is the Quaternary depocenter of the Qaidam Basin, and carries thick lacustrine sediments, as well as rich potassium and magnesium salt deposits. The abundant resources and thick sediments in this lake provide an ideal place for the study of biogas formation and preservation, salt lake evolution, and the uplift of the Tibetan Plateau. In this study, we attempt to construct a paleomagnetic and 230Th age model and to obtain information on tectonic activity and salt lake evolution through detailed studies on a 1300-m-long drill core (15DZK01 from the northwestern margin of the Qarhan Salt Lake area (Dongling Lake. Based on gypsum 230Th dating, the age of the uppermost clastic deposit was calculated to be around 0.052 Ma. The polarity sequence consist of 13 pairs of normal and reversed zones, which can be correlated with subchrons C2r.1r-C1n of the geomagnetic polarity timescale (GPTS 2012 (from ∼2.070 Ma to ∼0.052 Ma. Sedimentary characteristics indicate that Dongling Lake witnessed freshwater environment between ∼2.070 Ma and 1.546 Ma. During this period, the sedimentary record reflects primarily lakeshore, shallow-water and swamp environments, representing favourable conditions for the formation of hydrocarbon source rocks. Between 1.546 Ma and ∼0.052 Ma, the Dongling Lake was in sulphate deposition stage, which contrasts with the central Qarhan Salt Lake area, where this stage did not occur in the meantime. During this stage, Dongling Lake was in a shallow saltwater lake environment, but several periods of reduced salinity occurred during this stage. During the late Pleistocene at ∼0.052 Ma, the Dongling Lake experienced uplift due to tectonic activity, and saltwater migrated through the Sanhu Fault to the central Qarhan Salt Lake area, resulting in the absence of halite deposition stage. The residual saline water was concentrated into magnesium-rich brine due to the lack of freshwater, and few

  18. Strong tidal modulation of net ecosystem exchange in a salt marsh in North Inlet, South Carolina

    Science.gov (United States)

    O'Halloran, T. L.; Smith, E. M.; Bogoev, I.

    2017-12-01

    Along the southeastern US, intertidal salt marshes represent a critical habitat at the interface of the terrestrial and marine environments and perform a variety of ecological functions and services that make them of great economic importance for coastal communities They provide essential fish and shellfish habitat, with a majority of all commercially- and recreationally important fish species being dependent on intertidal marsh habitat during some portion of their life cycle. The penaeid shrimp industry, South Carolina's most economically important fishery, would cease to exist without the critical nursery function provided by intertidal salt marshes. Smooth cordgrass (Spartina alterniflora) is a keystone species in the high salinity marshes of the southeastern U.S., and its functioning is essential to the health and survival of salt marshes under rising sea levels. To better quantify and facilitate prediction of future salt marsh productivity, in May of 2017, we established a new integrated eddy covariance tower system to measure the net ecosystem exchange of carbon in a salt marsh in coastal South Carolina. The tower site is co-located with long-term, ongoing measurements as part of the North Inlet-Winyah Bay National Estuarine Research Reserve (NI-WB NERR). Current sampling conducted within the eddy flux footprint includes: annual measures of the vegetation community at the time of peak biomass; bi-monthly measures of sediment elevation at Sediment Elevation Tables (SETs) located at the upper and lower ends of the flux footprint; monthly sediment porewater salinity and nutrient (ammonium, orthophosphate) and sulfide concentrations; and biannual sediment elevation surveys by RTK-GPS. A suite of water quality measurements are made every 15 minutes in the main creek that floods the marsh platform in the flux footprint. Here we present our first six months of observations investigating the abiotic drivers of productivity on daily (intratidal) to monthly timescales

  19. Assessment of tectonic hazards to waste storage in interior-basin salt domes

    International Nuclear Information System (INIS)

    Kehle, R.

    1979-01-01

    Salt domes in the northern Gulf of Mexico may make ideal sites for storage of radioactive waste because the area is tectonically quiet. The stability of such salt domes and the tectonic activity are discussed

  20. Ground-water quality in the Red River of the North Basin, Minnesota and North Dakota, 1991-95

    Science.gov (United States)

    Cowdery, T.K.

    1998-01-01

    Surveys of water quality in surficial, buried glacial, and Cretaceous aquifers in the Red River of the North Basin during 1991-95 showed that some major-ion, nutrient, pesticide, and radioactive-element concentrations differed by physiographic area and differed among these aquifer types. Waters in surficial aquifers in the Drift Prairie (west) and Lake Plain (central) physiographic areas were similar to each other but significantly higher than those in the Moraine (east) area in dissolved solids, sodium, potassium, sulfate, fluoride, silica, and uranium concentrations. Radium, iron, nitrate, and nitrite concentrations were also significantly different among these areas. Pesticides were detected in 12 percent of waters in surficial aquifers in the Drift Prairie area, 20 percent of those in the Lake Plain area, and 52 percent of those in the Moraine area. Triazines and bentazon accounted for 98 percent of summed pesticide concentrations in waters in surficial aquifers. Waters in buried glacial aquifers in the central one-third of the basin had significantly higher concentrations of dissolved solids, sodium, potassium, chloride, fluoride, and iron than did waters in surficial aquifers. No pesticides were detected in five samples from buried glacial aquifers or six samples from Cretaceous aquifers. Waters in all sampled aquifers had a calcium-magnesium ratio of about 1.75 ± 0.75 across the basin regardless of anionic composition.

  1. Literature and information related to the natural resources of the North Aleutian Basin of Alaska.

    Energy Technology Data Exchange (ETDEWEB)

    Stull, E.A.; Hlohowskyj, I.; LaGory, K. E.; Environmental Science Division

    2008-01-31

    The North Aleutian Basin Planning Area of the Minerals Management Service (MMS) is a large geographic area with significant natural resources. The Basin includes most of the southeastern part of the Bering Sea Outer Continental Shelf, including all of Bristol Bay. The area supports important habitat for a wide variety of species and globally significant habitat for birds and marine mammals, including several federally listed species. Villages and communities of the Alaska Peninsula and other areas bordering or near the Basin rely on its natural resources (especially commercial and subsistence fishing) for much of their sustenance and livelihood. The offshore area of the North Aleutian Basin is considered to have important hydrocarbon reserves, especially natural gas. In 2006, the MMS released a draft proposed program, 'Outer Continental Shelf Oil and Gas Leasing Program, 2007-2012' and an accompanying draft programmatic environmental impact statement (EIS). The draft proposed program identified two lease sales proposed in the North Aleutian Basin in 2010 and 2012, subject to restrictions. The area proposed for leasing in the Basin was restricted to the Sale 92 Area in the southwestern portion. Additional EISs will be needed to evaluate the potential effects of specific lease actions, exploration activities, and development and production plans in the Basin. A full range of updated multidisciplinary scientific information will be needed to address oceanography, fate and effects of oil spills, marine ecosystems, fish, fisheries, birds, marine mammals, socioeconomics, and subsistence in the Basin. Scientific staff at Argonne National Laboratory were contracted to assist MMS with identifying and prioritizing information needs related to potential future oil and gas leasing and development activities in the North Aleutian Basin. Argonne focused on three related tasks: (1) identify and gather relevant literature published since 1996, (2) synthesize and

  2. Use of Landsat Land Surface Temperature and Vegetation Indices for Monitoring Drought in the Salt Lake Basin Area, Turkey

    Directory of Open Access Journals (Sweden)

    Osman Orhan

    2014-01-01

    Full Text Available The main purpose of this paper is to investigate multitemporal land surface temperature (LST changes by using satellite remote sensing data. The study included a real-time field work performed during the overpass of Landsat-5 satellite on 21/08/2011 over Salt Lake, Turkey. Normalized vegetation index (NDVI, vegetation condition index (VCI, and temperature vegetation index (TVX were used for evaluating drought impact over the region between 1984 and 2011. In the image processing step, geometric and radiometric correction procedures were conducted to make satellite remote sensing data comparable with in situ measurements carried out using thermal infrared thermometer supported by hand-held GPS. The results showed that real-time ground and satellite remote sensing data were in good agreement with correlation coefficient (R2 values of 0.90. The remotely sensed and treated satellite images and resulting thematic indices maps showed that dramatic land surface temperature changes occurred (about 2∘C in the Salt Lake Basin area during the 28-year period (1984–2011. Analysis of air temperature data also showed increases at a rate of 1.5–2∘C during the same period. Intensification of irrigated agriculture particularly in the southern basin was also detected. The use of water supplies, especially groundwater, should be controlled considering particularly summer drought impacts on the basin.

  3. Fractal-like thickness and topography of the salt layer in a pillows province of the southern North Sea

    Science.gov (United States)

    Hernandez Maya, K.; Mitchell, N. C.; Huuse, M.

    2017-12-01

    Salt topography and thickness variations are important for testing theories of how halokinetic deformation proceeds. The ability to predict thickness variations of salt at small scale is also important for reservoir evaluations, as breach of the salt layer can lead to loss of petroleum fluids and can be difficult to evaluate from seismic reflection data. Relevant to these issues, we here report analysis of data on salt layer topography and thickness from the southern North Sea, where the salt is organized into pillows. These data were derived by the Geological Survey of the Netherlands (TNO) from industry 3D seismic reflection data combined with a dense network of well information. Highs and lows in the topography of the upper salt interface occur spaced over a variety of lengthscales. Power spectral analysis of the interface topography reveals a simple inverse power law relationship between power spectral density and spatial wave number. The relationship suggests that the interface is a self-affine fractal with a fractal dimension of 2.85. A similar analysis of the salt layer thickness also suggests a fractal-like power law. Whereas the layer thickness power law is unsurprising as the underlying basement topography dominates the thickness and it also has a fractal-like power spectrum, the salt topography is not so easily explained as not all the basement faults are overlaid by salt pillows, instead some areas of the dataset salt thinning overlies faults. We consider instead whether a spatially varied loading of the salt layer may have caused this fractal-like geometry. Varied density and thickness of overburdening layers seem unlikely causes, as thicknesses of layers and their reflectivities do not vary sympathetically with the topography of the interface. The composition of the salt layer varies with the relative proportions of halite and denser anhydrite and other minerals. Although limited in scope and representing the mobilized salt layer, the information from

  4. Joint inversion of high resolution S-wave velocity structure underneath North China Basin

    Science.gov (United States)

    Yang, C.; Li, G.; Niu, F.

    2017-12-01

    North China basin is one of earthquake prone areas in China. Many devastating earthquakes occurred in the last century and before, such as the 1937 M7.0 Heze Earthquake in Shandong province, the 1966 M7.2 Xingtai Earthquake and 1976 Tangshan Earthquake in Hebei province. Knowing the structure of the sediment cover is of great importance to predict strong ground motion caused by earthquakes. Unconsolidated sediments are loose materials, ranging from clay to sand to gravel. Earthquakes can liquefy unconsolidated sediments, thus knowing the distribution and thickness of the unconsolidated sediments has significant implication in seismic hazard analysis of the area. Quantitative estimates of the amount of extension of the North China basin is important to understand the thinning and evolution of the eastern North China craton and the underlying mechanism. In principle, the amount of lithospheric stretching can be estimated from sediment and crustal thickness. Therefore an accurate estimate of the sediment and crustal thickness of the area is also important in understanding regional tectonics. In this study, we jointly invert the Rayleigh wave phase-velocity dispersion and Z/H ratio data to construct a 3-D S-wave velocity model beneath North China area. We use 4-year ambient noise data recorded from 249 temporary stations, and 139 earthquake events to extract Rayleigh wave Z/H ratios. The Z/H ratios obtained from ambient noise data and earthquake data show a good agreement within the overlapped periods. The phase velocity dispersion curve was estimated from the same ambient noise data. The preliminary result shows a relatively low Z/H ratio and low velocity anomaly at the shallow part of sediment basins.

  5. Extension style in the Orphan Basin during the Mesozoic North Atlantic rifting

    Science.gov (United States)

    Gouiza, Mohamed; Hall, Jeremy

    2013-04-01

    The Orphan Basin, lying along the Newfoundland passive continental margin, has formed in Mesozoic time during the opening of the North Atlantic Ocean and the breakup of Iberia/Eurasia from North America. Regional deep seismic reflection profiles across the basin indicate that the Neoproterozoic basement has been affected by repeated extensional episodes between the Late Triassic/Jurassic and the Early Cretaceous. Deformation initiated in the eastern part of the Orphan basin in the Jurassic and migrated toward the west in the Early Cretaceous, resulting in numerous rift structures filled with Jurassic-Lower Cretaceous syn-rift successions and sealed by thick Upper Cretaceous-Cenozoic post-rift sediments. The seismic data show an extremely attenuated crust underneath the eastern and western part of the deep basin, forming two sub-basins associated with the development of rifting. The two sub-basins are separated by a wide structural high with a relatively thick crust and are bounded to the west by the continental shelf domain. Restoration of the Orphan Basin along a 2D crustal section (520 km long), yields a total amount of stretching of about 144 km, while the total crustal thinning indicates an extension of around 250 km, assuming mass conservation along the section and an initial crustal thickness of 28 km. Brittle deformation accommodated by normal faults is documented in the seismic profiles and affected essentially the present-day upper portion of the crust, and represents only 60% of the total extension which thinned the Orphan crust. The remaining crustal thinning must involve other deformation processes which are not (easily) recognizable in the seismic data. We propose two models that could explain discrepancies between brittle deformation and total crustal thinning during lithospheric extension. The first model assumes the reactivation of pre-rift inherited structures, which act as crustal-scale detachments during the early stages of rifting. The second

  6. Storing CO{sub 2} under the North Sea Basin - A key solution for combating climate change

    Energy Technology Data Exchange (ETDEWEB)

    Skogen, T; Morris, B; Agerup, M; Svenningsen, S Oe; Kropelien, K F; Solheim, M; Northmore, B; Dixon, T; O' Carroll, K; Greaves, A; Golder, J; Selmer-Olsen, S; Sjoeveit, A; Kaarstad, O; Riley, N; Wright, I; Mansfield, C

    2007-06-15

    This report represents the first deliverable of the North Sea Basin Task Force, which Norway and the UK established in November 2005 to work together on issues surrounding the transport and storage of CO{sub 2} beneath the North Sea. The North Sea represents the best geological opportunity for storing our CO{sub 2} emissions away from the atmosphere for both the UK and Norway

  7. Structuring and evolution of Neogene transcurrent basins in the Tellian foreland domain, north-eastern Tunisia

    Science.gov (United States)

    Melki, Fetheddine; Zouaghi, Taher; Harrab, Salah; Sainz, Antonio Casas; Bédir, Mourad; Zargouni, Fouad

    2011-07-01

    The Neogene sedimentary basins (Serravallian to Quaternary) of the Tellian tectonic foreland in north-eastern Tunisia formed within the overall NE-SW sinistral strike-slip tectonic framework of the Ras El Korane-Thibar and El Alia-Teboursouk fault systems. From stratigraphic logs, structural cross sections and interpretation of 2D seismic lines and boreholes, the pre-Neogene basement can be interpreted to be structured according to Eocene (NW-SE) compressional and Oligocene extensional phases. This basement comprises structural highs (anticlines and horsts) and subsiding areas (synclines, half-grabens and grabens) formed during the Neogene. The subsiding areas are delineated by faults striking N030E, N-S and N140E, defining (i) narrow, strongly subsiding synclines, (ii) lozenge-shaped basins and (iii) trapezoidal basins. The architecture of their fill results from the sedimentary balance between tectonics and eustatism. Halokinesis and clay diapirism (driven by Triassic and Neogene evaporites and clays) also played an important role in basin evolution, contributing to the formation of domes and diapirs along active faults.

  8. Tectonic-stratigraphic evolution of mini-basins and salt provinces of Espirito Santo Basin-Brazil; Analise da evolucao tectono sedimentar de mini-bacias e provincias de sal da Bacia do Espirito Santo

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira Neto, Walter Dias; Fernandes, Flavio Luis [Petroleum Geoscience Technology Ltda. (PGT), Rio de Janeiro, RJ (Brazil); Mohriak, Webster [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil); Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, RJ (Brazil)

    2008-07-01

    The Espirito Santo Basin integrates the group of basins along the eastern Brazilian continental margin. It is located between 18 deg and 21 deg S, encompassing an area of approximately 220,000 km{sup 2}, onshore and offshore the Espirito Santo State. Its geological limit with the Campos Basin to the south is defined by a Precambrian basement high (Vitoria Arch), and its northern limit with the Mucuri Basin is defined by a geopolitical limit. The study of salt tectonics processes in the Espirito Santo Basin allowed the deformational analysis and interpretation of the chronological evolution of the mini-basins developed between salt diapirs. We observe an intrinsic relationship between halokinesis and creation of subsidence troughs that may be important for trapping hydrocarbon reservoirs, and consequently form oil and gas accumulations in this portion of the basin. This geodynamics evolution of these structures is marked by a strong linkage between salt movement and coeval sedimentation in the interdomal basins, forming structures and stratigraphic traps that may constitute important aspects for the petroleum geology. (author)

  9. Salt anticlines in the Castile-Salado evaporite sequence, northern Delaware Basin, New Mexico

    International Nuclear Information System (INIS)

    Anderson, R.Y.; Powers, D.W.

    1977-01-01

    Anticlines are more common around basin margin but are present in basin-center areas. Both Halite I and Halite II may have flowed but Halite I was movement more extensive. Depressions associated with anticlines may be due to either flowage or subsequent dissolution. Association with brine flows is common. Anticline probably was formed with mid-Cenozoic uplift and tilting of basin and with adjustments around reef margin

  10. Observed Hydrologic Impacts of Landfalling Atmospheric Rivers in the Salt and Verde River Basins of Arizona, United States

    Science.gov (United States)

    Demaria, Eleonora M. C.; Dominguez, Francina; Hu, Huancui; von Glinski, Gerd; Robles, Marcos; Skindlov, Jonathan; Walter, James

    2017-12-01

    Atmospheric rivers (ARs), narrow atmospheric water vapor corridors, can contribute substantially to winter precipitation in the semiarid Southwest U.S., where natural ecosystems and humans compete for over-allocated water resources. We investigate the hydrologic impacts of 122 ARs that occurred in the Salt and Verde river basins in northeastern Arizona during the cold seasons from 1979 to 2009. We focus on the relationship between precipitation, snow water equivalent (SWE), soil moisture, and extreme flooding. During the cold season (October through March) ARs contribute an average of 25%/29% of total seasonal precipitation for the Salt/Verde river basins, respectively. However, they contribute disproportionately to total heavy precipitation and account for 64%/72% of extreme total daily precipitation (exceeding the 98th percentile). Excess precipitation during AR occurrences contributes to snow accumulation; on the other hand, warmer than normal temperatures during AR landfallings are linked to rain-on-snow processes, an increase in the basins' area contributing to runoff generation, and higher melting lines. Although not all AR events are linked to extreme flooding in the basins, they do account for larger runoff coefficients. On average, ARs generate 43% of the annual maximum flows for the period studied, with 25% of the events exceeding the 10 year return period. Our analysis shows that the devastating 1993 flooding event in the region was caused by AR events. These results illustrate the importance of AR activity on the hydrology of inland semiarid regions: ARs are critical for water resources, but they can also lead to extreme flooding that affects infrastructure and human activities.

  11. Climatology and potential effects of an emergency outlet, Devils Lake Basin, North Dakota

    Science.gov (United States)

    Wiche, Gregg J.; Vecchia, Aldo V.; Osborne, Leon; Fay, James T.

    2000-01-01

    The Devils Lake Basin is a 3,810-square-mile subbasin in the Red River of the North Basin.  At an elevation of about 1,447 feet above sea level, Devils Lake begins to spill into Stump Lake; and at an elevation of about 1,459 feet above sea level, the combined lakes begin to spill through Tolna Coulee into the Sheyenne River. Since the end of glaciation about 10,000 years ago, Devils Lake has fluctuated between spilling and being dry.  Research by the North Dakota Geological Survey indicates Devils Lake has overflowed into the Sheyenne River at least twice during the past 4,000 years and has spilled into the Stump Lakes several times (Bluemle, 1991; Murphy and others, 1997).  John Bluemle, North Dakota State Geologist, concluded the natural condition for Devils Lake is either rising or falling, and the lake should not be expected to remain at any elevation for a long period of time. Recent conditions indicate the lake is in a rising phase.  The lake rose 24.7 feet from February 1993 to August 1999, and flood damages in the Devils Lake Basin have exceeded $300 million.  These damages, and the potential for additional damages, have led to an effort to develop an outlet to help control lake levels.  Therefore, current and accurate climatologic and hydrologic data are needed to assess the viability of the various options to reduce flood damages at Devils Lake.

  12. Lower crustal earthquakes in the North China Basin and implications for crustal rheology

    Science.gov (United States)

    Yuen, D. A.; Dong, Y.; Ni, S.; LI, Z.

    2017-12-01

    The North China Basin is a Mesozoic-Cenozoic continental rift basin on the eastern North China Craton. It is the central region of craton destruction, also a very seismically active area suffering severely from devastating earthquakes, such as the 1966 Xingtai M7.2 earthquake, the 1967 Hejian M6.3 earthquake, and the 1976 Tangshan M7.8 earthquake. We found remarkable discrepancies of depth distribution among the three earthquakes, for instance, the Xingtai and Tangshan earthquakes are both upper-crustal earthquakes occurring between 9 and 15 km on depth, but the depth of the Hejian earthquake was reported of about 30 72 km, ranging from lowermost crust to upper mantle. In order to investigate the focal depth of earthquakes near Hejian area, we developed a method to resolve focal depth for local earthquakes occurring beneath sedimentary regions by P and S converted waves. With this method, we obtained well-resolved depths of 44 local events with magnitudes between M1.0 and M3.0 during 2008 to 2016 at the Hejian seismic zone, with a mean depth uncertainty of about 2 km. The depth distribution shows abundant earthquakes at depth of 20 km, with some events in the lower crust, but absence of seismicity deeper than 25 km. In particular, we aimed at deducing some constraints on the local crustal rheology from depth-frequency distribution. Therefore, we performed a comparison between the depth-frequency distribution and the crustal strength envelop, and found a good fit between the depth profile in the Hejian seismic zone and the yield strength envelop in the Baikal Rift Systems. As a conclusion, we infer that the seismogenic thickness is 25 km and the main deformation mechanism is brittle fracture in the North China Basin . And we made two hypotheses: (1) the rheological layering of dominant rheology in the North China Basin is similar to that of the Baikal Rift Systems, which can be explained with a quartz rheology at 0 10 km depth and a diabase rheology at 10 35 km

  13. Anthropogenic soils on spoil rock banks in North Bohemian Coal Basin, Czech Republic

    International Nuclear Information System (INIS)

    Raclavska, H.; Raclavsky, K.; Matysek, D.; Stalmachova, B.

    1997-01-01

    The area of the North Bohemian Coal Basin is devastated by the extensive exploitation of brown coal by open pit mining. Knowledge of newly formed soils, their properties, development and contamination is important from the point of view of biological regeneration of the landscape. The mineralogy of anthropogenic soils from the mining area is presented together with the geochemistry of nutrients and trace elements. Attention is paid to the soil-forming processes in the non-reclaimed spoil rock banks with the development of spontaneous vegetation. 3 refs., 1 fig., 4 tabs

  14. Late quaternary geomorphology of the Great Salt Lake region, Utah, and other hydrographically closed basins in the western United States: A summary of observations

    Science.gov (United States)

    Currey, Donald R.

    1989-01-01

    Attributes of Quaternary lakes and lake basins which are often important in the environmental prehistory of semideserts are discussed. Basin-floor and basin-closure morphometry have set limits on paleolake sizes; lake morphometry and basin drainage patterns have influenced lacustrine processes; and water and sediment loads have influenced basin neotectonics. Information regarding inundated, runoff-producing, and extra-basin spatial domains is acquired directly from the paleolake record, including the littoral morphostratigraphic record, and indirectly by reconstruction. Increasingly detailed hypotheses regarding Lake Bonneville, the largest late Pleistocene paleolake in the Great Basin, are subjects for further testing and refinement. Oscillating transgression of Lake Bonneville began about 28,000 yr B.P.; the highest stage occurred about 15,000 yr B.P., and termination occurred abruptly about 13,000 yr B.P. A final resurgence of perennial lakes probably occurred in many subbasins of the Great Basin between 11,000 and 10,000 yr B.P., when the highest stage of Great Salt Lake (successor to Lake Bonneville) developed the Gilbert shoreline. The highest post-Gilbert stage of Great Salt Lake, which has been one of the few permanent lakes in the Great Basin during Holocene time, probably occurred between 3,000 and 2,000 yr B.P.

  15. Geology and assessment of undiscovered oil and gas resources of the North Kara Basins and Platforms Province, 2008

    Science.gov (United States)

    Klett, Timothy R.; Pitman, Janet K.; Moore, T.E.; Gautier, D.L.

    2017-11-15

    The U.S. Geological Survey (USGS) recently assessed the potential for undiscovered oil and gas resources of the North Kara Basins and Platforms Province as part of the its Circum-Arctic Resource Appraisal. This geologic province is north of western Siberia, Russian Federation, in the North Kara Sea between Novaya Zemlya to the west and Severnaya Zemlya to the east. One assessment unit (AU) was defined, the North Kara Basins and Platforms AU, which coincides with the geologic province. This AU was assessed for undiscovered, technically recoverable resources. The total estimated mean volumes of undiscovered petroleum resources in the province are ~1.8 billion barrels of crude oil, ~15.0 trillion cubic feet of natural gas, and ~0.4 billion barrels of natural-gas liquids, all north of the Arctic Circle.

  16. Constitutive parameters for salt and nonsalt rocks from the Detten, G. Friemel, and Zeeck wells in the Palo Duro Basin, Texas

    International Nuclear Information System (INIS)

    Senseny, P.E.; Pfeifle, T.W.; Mellegard, K.D.

    1985-01-01

    Results are presented from laboratory tests performed on salt and nonsalt rocks from the Palo Duro Basin in Texas. The Unit 5 salt from the Lower San Andres is assumed to be the repository horizon and is more completely characterized than other strata. For the Unit 5 salt, values are given for the parameters in the exponential-time constitutive law that models the time-independent elastic deformation and the time-dependent inelastic deformation. Both linear and nonlinear failure envelopes for this salt at 20 0 C are also determined. Data reported for twenty other salt and nonsalt horizons include tangent moduli and principal strain ratios, as well as linear failure envelopes at 20 0 C. The matrix of tests performed is adequate for conceptual repository design and performance analysis. However, final repository design and performance analysis requires more extensive characterization of the constitutive behavior of the stratigraphy, especially the repository-horizon salt

  17. Amount and nature of occluded water in bedded salt, Palo Duro Basin, Texas

    International Nuclear Information System (INIS)

    Fisher, R.S.

    1987-01-01

    The quantity and types of fluids within bedded salt cores from the Permian San Andres Formation, Palo Duro, Texas, were evaluated at the Texas Bureau of Economic Geology. Bedded halite from the San Andres Formation and other salt-bearing units were selected to represent the variety of salt types present, and were then analyzed. The mean water content of ''pure'' samples (more than 90% halite) is 0.4 weight percent, with none observed greater than 1.0 weight percent. Samples that contain more than 10 weight percent clay or mudstone display a trend of increasing water content with increasing clastic material. Chaotic mudstone-halite samples have as much as 5 weight percent water; halite-cemented mudstone interlayers, common throughout the bedded salts, may have water content values as high as 10 to 15 weight percent based on extrapolation of existing data that range from 0 to about 6%. No significant difference exists between the mean water content values of ''pure salt'' from the upper San Andres, lower San Andres Cycle 5, and lower San Andres Cycle 4 salt units. The fraction of total water present as mobile intergranular water is highly variable and not readily predicted from observed properties of the salt sample. The amount of water that would be affected by a high-level nuclear waste repository can be estimated if the volume of halite, the volume of clastic interlayers, and the amount and type of impurity in halite are known. Appendix contains seven vugraphs

  18. Progressive Seismic Failure, Seismic Gap, and Great Seismic Risk across the Densely Populated North China Basin

    Science.gov (United States)

    Yin, A.; Yu, X.; Shen, Z.

    2014-12-01

    Although the seismically active North China basin has the most complete written records of pre-instrumentation earthquakes in the world, this information has not been fully utilized for assessing potential earthquake hazards of this densely populated region that hosts ~200 million people. In this study, we use the historical records to document the earthquake migration pattern and the existence of a 180-km seismic gap along the 600-km long right-slip Tangshan-Hejian-Cixian (THC) fault zone that cuts across the North China basin. The newly recognized seismic gap, which is centered at Tianjin with a population of 11 million people and ~120 km from Beijing (22 million people) and Tangshan (7 million people), has not been ruptured in the past 1000 years by M≥6 earthquakes. The seismic migration pattern in the past millennium suggests that the epicenters of major earthquakes have shifted towards this seismic gap along the THC fault, which implies that the 180- km gap could be the site of the next great earthquake with M≈7.6 if it is ruptured by a single event. Alternatively, the seismic gap may be explained by aseismic creeping or seismic strain transfer between active faults.

  19. Landslide deposit boundaries for the Little North Santiam River Basin, Oregon

    Science.gov (United States)

    Sobieszczyk, Steven

    2010-01-01

    This layer is an inventory of existing landslides deposits in the Little North Santiam River Basin, Oregon (2009). Each landslide deposit shown on this map has been classified according to a number of specific characteristics identified at the time recorded in the GIS database. The classification scheme was developed by the Oregon Department of Geology and Mineral Industries (Burns and Madin, 2009). Several significant landslide characteristics recorded in the database are portrayed with symbology on this map. The specific characteristics shown for each landslide are the activity of landsliding, landslide features, deep or shallow failure, type of landslide movement, and confidence of landslide interpretation. These landslide characteristics are determined primarily on the basis of geomorphic features, or landforms, observed for each landslide. This work was completed as part of the Master's thesis "Turbidity Monitoring and LiDAR Imagery Indicate Landslides are Primary Source of Suspended-Sediment Load in the Little North Santiam River Basin, Oregon, Winter 2009-2010" by Steven Sobieszczyk, Portland State University and U.S. Geological Survey.Data layers in this geodatabase include: landslide deposit boundaries (Deposits); field-verfied location imagery (Photos); head scarp or scarp flanks (Scarp_Flanks); and secondary scarp features (Scarps).The geodatabase template was developed by the Oregon Department of Geology and Mineral Industries (Burns and Madin, 2009).

  20. On the evolution of the geothermal regime of the North China Basin

    Science.gov (United States)

    Wang, Ji-yang; Chen, Mo-xiang; Wang, Ji-an; Deng, Xiao

    1985-12-01

    Recent heat flow and regional geothermal studies indicate that the North China Basin is characterized by relatively high heat flow compared with most stable areas in other parts of the world, but lower heat flow than most active tectonic areas. Measured heat flow values range from 61 to 74 mW m -2. The temperature at a depth of 2000 m is generally in the range 75 to 85°C, but sometimes is 90°C or higher. The geothermal gradient in Cenozoic sediments is in the range 30 to 40°C/km for most of the area. The calculated temperature at the Moho is 560 and 640°C for surface heat flow values of 63 and 71 mW m -2, respectively. These thermal data are consistent with other geophysical observations for the North China Basin. Relatively high heat flow in this area is related to Late Cretaceous-Paleogene rifting as described in this paper.

  1. An Extended Forecast of the Frequencies of North Atlantic Basin Tropical Cyclone Activity for 2009

    Science.gov (United States)

    Wilson, Robert M.

    2009-01-01

    An extended forecast of the frequencies for the 2009 North Atlantic basin hurricane season is presented. Continued increased activity during the 2009 season with numbers of tropical cyclones, hurricanes, and major hurricanes exceeding long-term averages are indicated. Poisson statistics for the combined high-activity intervals (1950-1965 and 1995-2008) give the central 50% intervals to be 9-14, 5-8, and 2-4, respectively, for the number of tropical cyclones, hurricanes, and major hurricanes, with a 23.4% chance of exceeding 14 tropical cyclones, a 28% chance of exceeding 8 hurricanes, and a 31.9% chance of exceeding 4 major hurricanes. Based strictly on the statistics of the current high-activity interval (1995-2008), the central 50% intervals for the numbers of tropical cyclones, hurricanes, and major hurricanes are 12-18, 6-10, and 3-5, respectively, with only a 5% chance of exceeding 23, 13, or 7 storms, respectively. Also examined are the first differences in 10-yr moving averages and the effects of global warming and decadal-length oscillations on the frequencies of occurrence for North Atlantic basin tropical cyclones. In particular, temperature now appears to be the principal driver of increased activity and storm strength during the current high-activity interval, with near-record values possible during the 2009 season.

  2. A MAP MASH-UP APPLICATION: INVESTIGATION THE TEMPORAL EFFECTS OF CLIMATE CHANGE ON SALT LAKE BASIN

    Directory of Open Access Journals (Sweden)

    O. S. Kirtiloglu

    2016-06-01

    Full Text Available The main purpose of this paper is to investigate climate change effects that have been occurred at the beginning of the twenty-first century at the Konya Closed Basin (KCB located in the semi-arid central Anatolian region of Turkey and particularly in Salt Lake region where many major wetlands located in and situated in KCB and to share the analysis results online in a Web Geographical Information System (GIS environment. 71 Landsat 5-TM, 7-ETM+ and 8-OLI images and meteorological data obtained from 10 meteorological stations have been used at the scope of this work. 56 of Landsat images have been used for extraction of Salt Lake surface area through multi-temporal Landsat imagery collected from 2000 to 2014 in Salt lake basin. 15 of Landsat images have been used to make thematic maps of Normalised Difference Vegetation Index (NDVI in KCB, and 10 meteorological stations data has been used to generate the Standardized Precipitation Index (SPI, which was used in drought studies. For the purpose of visualizing and sharing the results, a Web GIS-like environment has been established by using Google Maps and its useful data storage and manipulating product Fusion Tables which are all Google’s free of charge Web service elements. The infrastructure of web application includes HTML5, CSS3, JavaScript, Google Maps API V3 and Google Fusion Tables API technologies. These technologies make it possible to make effective “Map Mash-Ups” involving an embedded Google Map in a Web page, storing the spatial or tabular data in Fusion Tables and add this data as a map layer on embedded map. The analysing process and map mash-up application have been discussed in detail as the main sections of this paper.

  3. a Map Mash-Up Application: Investigation the Temporal Effects of Climate Change on Salt Lake Basin

    Science.gov (United States)

    Kirtiloglu, O. S.; Orhan, O.; Ekercin, S.

    2016-06-01

    The main purpose of this paper is to investigate climate change effects that have been occurred at the beginning of the twenty-first century at the Konya Closed Basin (KCB) located in the semi-arid central Anatolian region of Turkey and particularly in Salt Lake region where many major wetlands located in and situated in KCB and to share the analysis results online in a Web Geographical Information System (GIS) environment. 71 Landsat 5-TM, 7-ETM+ and 8-OLI images and meteorological data obtained from 10 meteorological stations have been used at the scope of this work. 56 of Landsat images have been used for extraction of Salt Lake surface area through multi-temporal Landsat imagery collected from 2000 to 2014 in Salt lake basin. 15 of Landsat images have been used to make thematic maps of Normalised Difference Vegetation Index (NDVI) in KCB, and 10 meteorological stations data has been used to generate the Standardized Precipitation Index (SPI), which was used in drought studies. For the purpose of visualizing and sharing the results, a Web GIS-like environment has been established by using Google Maps and its useful data storage and manipulating product Fusion Tables which are all Google's free of charge Web service elements. The infrastructure of web application includes HTML5, CSS3, JavaScript, Google Maps API V3 and Google Fusion Tables API technologies. These technologies make it possible to make effective "Map Mash-Ups" involving an embedded Google Map in a Web page, storing the spatial or tabular data in Fusion Tables and add this data as a map layer on embedded map. The analysing process and map mash-up application have been discussed in detail as the main sections of this paper.

  4. Geohydrology of the northern Louisiana salt-dome basin pertinent to the storage of radioactive wastes; a progress report

    Science.gov (United States)

    Hosman, R.L.

    1978-01-01

    Salt domes in northern Louisiana are being considered as possible storage sites for nuclear wastes. The domes are in an area that received regional sedimentation through early Tertiary (Eocene) time with lesser amounts of Quaternary deposits. The Cretaceous-Tertiary accumulation is a few thousand feet thick; the major sands are regional aquifers that extend far beyond the boundaries of the salt-dome basin. Because of multiple aquifers, structural deformation, and variations in the hydraulic characteristics of cap rock, the ground-water hydrology around a salt dome may be highly complex. The Sparta Sand is the most productive and heavily used regional aquifer. It is either penetrated by or overlies most of the domes. A fluid entering the Sparta flow system would move toward one of the pumping centers, all at or near municipalities that pump from the Sparta. Movement could be toward surface drainage where local geologic and hydrologic conditions permit leakage to the surface or to a surficial aquifer. (Woodard-USGS)

  5. Disposal alternatives and recommendations for waste salt management for repository excavation in the Palo Duro Basin, Texas

    International Nuclear Information System (INIS)

    1987-01-01

    This report documents an evaluation of five alternatives for the disposal of waste salt that would be generated by the construction of a repository for radioactive waste in underground salt deposits at either of two sites in the Palo Duro Basin, Texas. The alternatives include commercial disposal, offsite deep-well injection, disposal in abandoned mines, ocean disposal, and land surface disposal on or off the site. For each alternative a reference case was rated - positive, neutral, or negative - in terms of environmental and dependability factors developed specifically for Texas sites. The factors constituting the environmental checklist relate to water quality impact, water- and land-use conflicts, ecological compatibility, conformity with air quality standards, and aesthetic impact. Factors on the dependability check-list relate to public acceptance, the adequacy of site characterization, permit and licensing requirements, technological requirements, and operational availability. A comparison of the ratings yielded the following viable alternatives, in order of preference: (1) land surface disposal, specifically disposal on tailings piles associated with abandoned potash mines; (2) disposal in abandoned mines, specifically potash mines; and (3) commercial disposal. Approaches to the further study of these three salt management techniques are recommended

  6. Geologic characterization report for the Paradox Basin Study Region, Utah Study Areas. Volume 6. Salt Valley

    International Nuclear Information System (INIS)

    1984-12-01

    Surface landforms in the Salt Valley Area are generally a function of the Salt Valley anticline and are characterized by parallel and subparallel cuestaform ridges and hogbacks and flat valley floors. The most prominent structure in the Area is the Salt Valley anticline. Erosion resulting from the Tertiary uplift of the Colorado Plateau led to salt dissolution and subsequent collapse along the crest of the anticline. Continued erosion removed the collapse material, forming an axial valley along the crest of the anticline. Paleozoic rocks beneath the salt bearing Paradox Formation consist of limestone, dolomite, sandstone, siltstone and shale. The salt beds of the Paradox Formation occur in distinct cycles separated by an interbed sequence of anhydrite, carbonate, and clastic rocks. The Paradox Formation is overlain by Pennsylvanian limestone; Permian sandstone; and Mesozoic sandstone, mudstone, conglomerate and shale. No earthquakes have been reported in the Area during the period of the historic record and contemporary seismicity appears to be diffusely distributed, of low level and small magnitude. The upper unit includes the Permian strata and upper Honaker Trail Formation. The current data base is insufficient to estimate ground-water flow rates and directions in this unit. The middle unit includes the evaporites in the Paradox Formation and no laterally extensive flow systems are apparent. The lower unit consists of the rocks below the Paradox Formation where permeabilities vary widely, and the apparent flow direction is toward the west. 108 refs., 39 figs., 9 tabs

  7. Geologic characterization report for the Paradox Basin Study Region, Utah Study Areas. Volume 6: Salt Valley

    Science.gov (United States)

    1984-12-01

    Surface landforms in the Salt Valley Area are generally a function of the Salt Valley anticline and are characterized by parallel and subparallel cuestaform ridges and hogbacks and flat valley floors. The most prominent structure in the Area is the Salt Valley anticline. Erosion resulting from the Tertiary uplift of the Colorado Plateau led to salt dissolution and subsequent collapse along the crest of the anticline. Continued erosion removed the collapse material, forming an axial valley along the crest of the anticline. Paleozoic rocks beneath the salt bearing Paradox Formation consist of limestone, dolomite, sandstone, siltstone and shale. The salt beds of the Paradox formation occur in distinct cycles separated by an interbed sequence of anhydrite, carbonate, and clastic rocks. The Paradox Formation is overlain by Pennsylvanian limestone; Permian sandstone; and Mesozoic sandstone, mudstone, conglomerate and shale. No earthquakes have been reported in the area during the period of the historic record and contemporary seismicity appears to be diffusely distributed, of low level and small magnitude. The upper unit includes the Permian strata and upper Honaker trail formation.

  8. The Transylvanian Basin (Romania) and its relation to the Carpathian fold and thrust belt: Insights in gravitational salt tectonics

    Energy Technology Data Exchange (ETDEWEB)

    Krezsek, Csaba [SNGN ROMGAZ, 4 Unirii 551025 Medias (Romania); Bally, Albert W. [Department of Geology and Geophysics, University of Rice, 6100 South Main Street, Houston, TX 77005-1892 (United States)

    2006-05-15

    Interpretation of regional seismic profiles, stratigraphic and sedimentologic data improved insights in the evolution of the Transylvanian Basin. The basin evolution was coeval with the post-Mid-Cretaceous to recent deformation of the Carpathian Mts. Four tectonostratigraphic megasequences are differentiated: Upper Cretaceous (rift), Paleogene (sag), Lower Miocene (flexural basin) and Middle to Upper Miocene (backarc sequence dominated by gravitational tectonics). The Mid-Miocene continental collision in the Eastern Carpathians is associated with the rising Carpathians. This uplift enhanced the differential load, which, together with the high heat flow induced by Late Miocene to Pliocene arc volcanism, triggered large-scale Mio-Pliocene gravity spreading of the salt overburden. This 'mega-slide' comprises three structural domains, as follows: extensional weld (upslope), contractional folds (central) and contractional toe thrust (downslope). The diapirs in the east indicate a pre-shortening reactive/passive growth stage. The central folds are mostly the result of late shortening. Basement involved thrusting uplifted the toe thrust domain by the Late Pliocene. The Late Neogene to recent Carpathians uplift, backarc volcanism and gravity spreading are largely coeval. (author)

  9. Preliminary study of the uranium potential of the Wadesboro Triassic basin, North Carolina

    International Nuclear Information System (INIS)

    Thayer, P.A.; Harris, W.B.

    1981-11-01

    This report presents results of a four-channel spectrometric survey of the Wadesboro Triassic basin and adjacent Piedmont, North and South Carolina. A total of 216 gamma-ray spectrometric measurements was taken at 165 sites in the Wadesboro Basin and at 37 sites in the adjacent Piedmont. The normal sampling density in the Wadesboro Basin is one site per 4.5 km 2 . Surface radiometric surveys reveal no anomalous radioactivity. Estimated uranium concentrations (eU) from the area are from 0.1 to 4.9 ppM. Average eU content of Triassic sandstones is 1.5 ppM, which is nearly the average for adjacent metavolcanic rocks (1.6 ppM). Granitic intrusives of the Pageland and Lilesville plutons display the highest eU concentrations in the area, averaging 3.3 ppM. The uranium/thorium ratio is consistently low throughout the area, from 0.01 to 0.54; the log uranium/log thorium ratio is from -1.11 to a maximum of 0.66. Triassic sandstones have the highest values, averaging 0.25. Granites of the Pageland and Lilesville plutons have an average uranium/thorium ratio of 0.21, and Slate Belt metavolcanic rocks average 0.15. On the basis of surface radiometric surveys and geologic studies, it is believed that sedimentary strata of the Wadesboro Basin are poor targets for further uranium exploration. This conclusion is based on the lack of many favorable characteristics associated with fluvial uranium deposits

  10. Revised conceptualization of the North China Basin groundwater flow system: Groundwater age, heat and flow simulations

    Science.gov (United States)

    Cao, Guoliang; Han, Dongmei; Currell, Matthew J.; Zheng, Chunmiao

    2016-09-01

    Groundwater flow in deep sedimentary basins results from complex evolution processes on geological timescales. Groundwater flow systems conceptualized according to topography and/or groundwater table configuration generally assume a near-equilibrium state with the modern landscape. However, the time to reach such a steady state, and more generally the timescales of groundwater flow system evolution are key considerations for large sedimentary basins. This is true in the North China Basin (NCB), which has been studied for many years due to its importance as a groundwater supply. Despite many years of study, there remain contradictions between the generally accepted conceptual model of regional flow, and environmental tracer data. We seek to reconcile these contractions by conducting simulations of groundwater flow, age and heat transport in a three dimensional model, using an alternative conceptual model, based on geological, thermal, isotope and historical data. We infer flow patterns under modern hydraulic conditions using this new model and present the theoretical maximum groundwater ages under such a flow regime. The model results show that in contrast to previously accepted conceptualizations, most groundwater is discharged in the vicinity of the break-in-slope of topography at the boundary between the piedmont and central plain. Groundwater discharge to the ocean is in contrast small, and in general there are low rates of active flow in the eastern parts of the basin below the central and coastal plain. This conceptualization is more compatible with geochemical and geothermal data than the previous model. Simulated maximum groundwater ages of ∼1 Myrs below the central and coastal plain indicate that residual groundwater may be retained in the deep parts of the basin since being recharged during the last glacial period or earlier. The groundwater flow system has therefore probably not reached a new equilibrium state with modern-day hydraulic conditions. The

  11. Climatology, hydrology, and simulation of an emergency outlet, Devils Lake basin, North Dakota

    Science.gov (United States)

    Wiche, Gregg J.; Vecchia, A.V.; Osborne, Leon; Wood, Carrie M.; Fay, James T.

    2000-01-01

    Devils Lake is a natural lake in northeastern North Dakota that is the terminus of a nearly 4,000-square-mile subbasin in the Red River of the North Basin. The lake has not reached its natural spill elevation to the Sheyenne River (a tributary of the Red River of the North) in recorded history. However, geologic evidence indicates a spill occurred sometime within the last 1,800 years. From 1993 to 1999, Devils Lake rose 24.5 feet and, at the present (August 2000), is about 13 feet below the natural spill elevation. The recent lake-level rise has caused flood damages exceeding $300 million and triggered development of future flood-control options to prevent further infrastructure damage and reduce the risk of a potentially catastrophic uncontrolled spill. Construction of an emergency outlet from the west end of Devils Lake to the Sheyenne River is one flood-control option being considered. This report describes the climatologic and hydrologic causes of the recent lake level rise, provides information on the potential for continued lake-level rises during the next 15 years, and describes the potential effectiveness of an emergency outlet in reducing future lake levels and in reducing the risk of an uncontrolled spill. The potential effects of an outlet on downstream water quantity and quality in the upper Sheyenne River also are described.

  12. Patterns of genetic diversity in Hepatozoon spp. infecting snakes from North Africa and the Mediterranean Basin.

    Science.gov (United States)

    Tomé, Beatriz; Maia, João P; Salvi, Daniele; Brito, José C; Carretero, Miguel A; Perera, Ana; Meimberg, Harald; Harris, David James

    2014-03-01

    Species of Hepatozoon Miller, 1908 are blood parasites most commonly found in snakes but some have been described from all tetrapod groups and a wide variety of hematophagous invertebrates. Previous studies have suggested possible associations between Hepatozoon spp. found in predators and prey. Particularly, some saurophagous snakes from North Africa and the Mediterranean region have been found to be infected with Hepatozoon spp. similar to those of various sympatric lizard hosts. In this study, we have screened tissue samples of 111 North African and Mediterranean snakes, using specific primers for the 18S rRNA gene. In the phylogenetic analysis, the newly-generated Hepatozoon spp. sequences grouped separately into five main clusters. Three of these clusters were composed by Hepatozoon spp. also found in snakes and other reptiles from the Mediterranean Basin and North Africa. In the other two clusters, the new sequences were not closely related to geographically proximate known sequences. The phylogeny of Hepatozoon spp. inferred here was not associated with intermediate host taxonomy or geographical distribution. From the other factors that could explain these evolutionary patterns, the most likely seems series of intermediate hosts providing similar ribotypes of Hepatozoon and a high prevalence of host shifts for Hepatozoon spp. This is indicated by ribotypes of high similarity found in different reptile families, as well as by divergent ribotypes found in the same host species. This potentially low host specificity has profound implications for the systematics of Hepatozoon spp.

  13. Chlorine isotopic geochemistry of salt lakes in the Qaidam Basin, China

    Digital Repository Service at National Institute of Oceanography (India)

    Liu, W.G.; Xiao, Y.K.; Wang, Q.Z.; Qi, H.P.; Wang, Y.H.; Zhou, Y.M.; Shirodkar, P.V.

    *Cl+ ion. Int. J. Mass Spectrom. Ion Process., 116: crysatallization of saline minerals in salt lake. J. Salt Lake 183-192. Sci., 2: 35-40 (in Chinese). Xiao, Y.K., Sun, D.P., Wang, Y.H., Qi, H.P. and Jin, L., 1992. Boron isotopic compositions of brine..., sediments, and source water in Da Qaidam Lake, Qinghai, China. Geochim. Cos- mochim. Acta, 56: 1.561-1568. Xiao, Y.K., Jin, L., Liu. W.G., Qi, H.P., Wang, W.H. and Sun, D.P., 1994a. The isotopic compositions of chlorine in Da Qaidam Lake. Chin. Sci...

  14. Salt or ice diapirism origin for the honeycomb terrain in Hellas basin, Mars?: Implications for the early martian climate

    Science.gov (United States)

    Weiss, David K.; Head, James W.

    2017-03-01

    The "honeycomb" terrain is a Noachian-aged cluster of ∼7 km wide linear cell-like depressions located on the northwestern floor of Hellas basin, Mars. A variety of origins have been proposed for the honeycomb terrain, including deformation rings of subglacial sediment, frozen convection cells from a Hellas impact melt sheet, a swarm of igneous batholiths, salt diapirism, and ice diapirism. Recent work has shown that the salt or ice diapirism scenarios appear to be most consistent with the morphology and morphometry of the honeycomb terrain. The salt and ice diapirism scenarios have different implications for the ancient martian climate and hydrological cycle, and so distinguishing between the two scenarios is critical. In this study, we specifically test whether the honeycomb terrain is consistent with a salt or ice diapir origin. We use thermal modeling to assess the stability limits on the thickness of an ice or salt diapir-forming layer at depth within the Hellas basin. We also apply analytical models for diapir formation to evaluate the predicted diapir wavelengths in order to compare with observations. Ice diapirism is generally predicted to reproduce the observed honeycomb wavelengths for ∼100 m to ∼1 km thick ice deposits. Gypsum and kieserite diapirism is generally predicted to reproduce the observed honeycomb wavelengths for ≥ 600-1000 m thick salt deposits, but only with a basaltic overburden. Halite diapirism generally requires approx. ≥ 1 km thick halite deposits in order to reproduce the observed honeycomb wavelengths. Hellas basin is a distinctive environment for diapirism on Mars due to its thin crust (which reduces surface heat flux), low elevation (which allows Hellas to act as a water/ice/sediment sink and increases the surface temperature), and location within the southern highlands (which may provide proximity to inflowing saline water or glacial ice). The plausibility of an ice diapir mechanism generally requires temperatures ≤ 250

  15. Salt-marsh restoration : evaluating the success of de-embankments in north-west Europe

    NARCIS (Netherlands)

    Wolters, M; Garbutt, A; Bakker, JP

    De-embankment of historically reclaimed salt marshes has become a widespread option for re-creating salt marshes, but to date little information exists on the success of de-embankments. One reason is the absence of pre-defined targets, impeding the measurement of success. In this review, success has

  16. Hydrologic variability in the Red River of the North basin at the eastern margin of the northern Great Plains

    International Nuclear Information System (INIS)

    Wiche, G.J.

    1991-01-01

    The temporal and spatial variations in streamflow in the Red River of the North basin on the eastern margin of the Great Plains are described and related to the various climatic conditions associated with the flows. The Red River drains about 290,000 square kilometers in parts of Minnesota, South Dakota, North Dakota, Saskatchewan and Manitoba, and a 200 year flood history is available from documents of fur traders, explorers and missionaries, as well as from gauging-station records. The coefficient of variation of mean annual streamflow ranges from ca 110% for streams in the southern and western parts of the Assiniboine River basin to ca 50% for streams along the eastern margin of the Red River of the North basin. Decadal streamflow variability is great in the Red River of the North basin, with mean annual streamflow for the 10 years ending 1940 of 489 cubic hectometers and for the 10 years ending 1975 of 3,670 cubic hectometers. Construction of the Rafferty Reservoir on the Souris River and the Almeda Reservoir on Moose Mountain Creek will cause changes in water quality in the Souris River, with most problems occurring during protracted low flow conditions

  17. Intake of low sodium salt substitute for 3years attenuates the increase in blood pressure in a rural population of North China - A randomized controlled trial.

    Science.gov (United States)

    Zhou, Bo; Webster, Jacqui; Fu, Ling-Yu; Wang, Hai-Long; Wu, Xiao-Mei; Wang, Wen-Li; Shi, Jing-Pu

    2016-07-15

    Lowering salt intake is one of the successful and cost-effective methods to reduce blood pressure (BP). In this randomized controlled study, we investigated the effects of a 3-year substitution of table salt with a low-sodium salt substitute in a rural population of North China. Subjects from 200 families residing in five villages in Liaoning, North China were registered in this study and randomly divided into two groups: normal salt (100% sodium chloride) and low salt substitute (65% NaCl, 25% KCl, 10% MgSO4). We compared the effects of the low-sodium salt substitute and normal salt on differences in BP from baseline to various follow-up time points during this 3-year study period. We also examined several factors that may affect the long-term changes in BP. Hypertension was defined per World Health Organization guidelines as BP≥140/90mmHg. The low sodium substitute significantly reduced the increase in both systolic and diastolic BP compared with the regular salt (P=0.000). Also, the population aged 40-70years showed most beneficial response to the salt substitute compared with those aged 70years. The low salt substitute had similar beneficial effects in both males and females. In addition, the salt type consumed and body mass index significantly affected the change in BP. Use of the salt substitute significantly reduces the increase in BP over a long term, and thus, the salt substitute can be used as a replacement for regular salt in the daily diet to prevent/diminish the incidence of hypertension. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  18. A new age model for the early-middle Miocene in the North Alpine Foreland Basin

    Science.gov (United States)

    Reichenbacher, Bettina; Krijgsman, Wout; Pippèrr, Martina; Sant, Karin; Kirscher, Uwe

    2016-04-01

    The establishment of high-resolution age models for sedimentary successions is crucial for numerous research questions in the geosciences and related disciplines. Such models provide an absolute chronology that permits precise dating of depositional episodes and related processes such as mountain uplift or climate change. Recently, our work in the Miocene sediments of the North Alpine Foreland Basin (NAFB) has revealed a significantly younger age (16.6 Myr) for sediments that were thought to have been deposited 18 Myr ago. This implies that a fundamentally revised new age model is needed for the entire suite of lower-middle Miocene sedimentary rocks in the NAFB (20 to 15-Myr). Our new data also indicate that previously published reconstructions of early-middle Miocene palaeogeography, sedimentation dynamics, mountain uplift and climate change in the NAFB all require a critical review and revision. Further, the time-span addressed is of special interest, since it encompasses the onset of a global warming phase. However, it appears that a fundamentally revised new age model for the entire suite of lower-middle Miocene sedimentary rocks in the NAFB can only be achieved based on a 500 m deep drilling in the NAFB for which we currently seek collaboration partners to develop a grant application to the International Continental Deep Drilling Program (ICDP). Reference: Reichenbacher, B., W. Krijgsman, Y. Lataster, M. Pippèrr, C. G. C. Van Baak, L. Chang, D. Kälin, J. Jost, G. Doppler, D. Jung, J. Prieto, H. Abdul Aziz, M. Böhme, J. Garnish, U. Kirscher, and V. Bachtadse. 2013. A new magnetostratigraphic framework for the Lower Miocene (Burdigalian/Ottnangian, Karpatian) in the North Alpine Foreland Basin. Swiss Journal of Geosciences 106:309-334.

  19. Geology and undiscovered resource assessment of the potash-bearing Central Asia Salt Basin, Turkmenistan, Uzbekistan, Tajikistan, and Afghanistan: Chapter AA in Global mineral resource assessment

    Science.gov (United States)

    Wynn, Jeff; Orris, Greta J.; Dunlap, Pamela; Cocker, Mark D.; Bliss, James D.

    2016-03-23

    Undiscovered potash resources in the Central Asia Salt Basin (CASB) of Turkmenistan, Uzbekistan, Tajikistan, and Afghanistan were assessed as part of a global mineral resource assessment led by the U.S. Geological Survey. The term “potash” refers to potassium-bearing, water-soluble salts derived from evaporite basins, where seawater dried up and precipitated various salt compounds; the word for the element “potassium” is derived from potash. Potash is produced worldwide at amounts exceeding 30 million metric tons per year, mostly for use in fertilizers. The term “potash” is used by industry to refer to potassium chloride, as well as potassium in sulfate, nitrate, and oxide forms. For the purposes of this assessment, the term “potash” refers to potassium ores and minerals and potash ore grades. Resource and production values are usually expressed by industry in terms of K2O (potassium oxide) or muriate of potash (KCl, potassium chloride).

  20. Geological characteristics and prospecting potential of sandstone-type uranium deposits in the north margin of Qaidam basin

    International Nuclear Information System (INIS)

    Liu Lin; Song Xiansheng; Feng Wei

    2012-01-01

    The north margin of Qaidam Basin is composed with rift trough and Oulongbuluke landmass which is clamped by Qilian Mountain and Qaidam block Suture zone. The two activities provide a rich source of uranium for the basin area. The coal-bearing rocks as stratums of medium and lower Jurassic, is the main exploration target zones of sandstone-type uranium ore. Through geological survey and drilling, we think that the interlayer oxidation zone. being primary factors of sandstone-type uranium, can be divided into ancient type and modern type. The ancient interlayer oxidation zone type uranium deposit is the main prospecting types in the north margin of Qaidam Basin. Combined with analysis on geological conditions of sandstone-type uranium mineralization, we propose that eastern edge of Yuqia, southern edge of Lucao Mountain, Beidatan and northwest edge of Ulan depression are good prospects. (authors)

  1. Electron microscopy study of microbial mat in the North Fiji basin hydrothermal vent

    Science.gov (United States)

    Park, H.; Kim, J. W.; Lee, J. W.

    2017-12-01

    Hydrothermal vent systems consisting of hydrothermal vent, hydrothermal sediment and microbial mat are widely spread around the ocean, particularly spreading axis, continental margin and back-arc basin. Scientists have perceived that the hydrothermal systems, which reflect the primeval earth environment, are one of the best places to reveal the origin of life and extensive biogeochemical process of microbe-mineral interaction. In the present study multiline of analytical methods (X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM)) were utilized to investigate the mineralogy/chemistry of microbe-mineral interaction in hydrothermal microbial mat. Microbial mat samples were recovered by Canadian scientific submersible ROPOS on South Pacific North Fiji basin KIOST hydrothermal vent expedition 1602. XRD analysis showed that red-colored microbial mat contains Fe-oxides and Fe-oxyhydroxides. Various morphologies of minerals in the red-colored microbial mat observed by SEM are mainly showed sheath shaped, resembled with Leptothrix microbial structure, stalks shaped, similar with Marioprofundus microbial structure and globule shaped microbial structures. They are also detected with DNA analysis. The cross sectional observation of microbial structures encrusted with Fe-oxide and Fe-oxyhydroxide at a nano scale by Transmission Electron Microscopy (TEM) and Focused Ion Beam (FIB) technique was developed to verify the structural/biogeochemical properties in the microbe-mineral interaction. Systematic nano-scale measurements on the biomineralization in the microbial mat leads the understandings of biogeochemical environments around the hydrothermal vent.

  2. Supra-salt normal fault growth during the rise and fall of a diapir: Perspectives from 3D seismic reflection data, Norwegian North Sea

    Science.gov (United States)

    Tvedt, Anette B. M.; Rotevatn, Atle; Jackson, Christopher A.-L.

    2016-10-01

    Normal faulting and the deep subsurface flow of salt are key processes controlling the structural development of many salt-bearing sedimentary basins. However, our detailed understanding of the spatial and temporal relationship between normal faulting and salt movement is poor due to a lack of natural examples constraining their geometric and kinematic relationship in three-dimensions. To improve our understanding of these processes, we here use 3D seismic reflection and borehole data from the Egersund Basin, offshore Norway, to determine the structure and growth of a normal fault array formed during the birth, growth and decay of an array of salt structures. We show that the fault array and salt structures developed in response to: (i) Late Triassic-to-Middle Jurassic extension, which involved thick-skinned, sub-salt and thin-skinned supra-salt faulting with the latter driving reactive diapirism; (ii) Early Cretaceous extensional collapse of the walls; and (iii) Jurassic-to-Neogene, active and passive diapirism, which was at least partly coeval with and occurred along-strike from areas of reactive diapirism and wall collapse. Our study supports physical model predictions, showcasing a three-dimensional example of how protracted, multiphase salt diapirism can influence the structure and growth of normal fault arrays.

  3. Groundwater flow and its effect on salt dissolution in Gypsum Canyon watershed, Paradox Basin, southeast Utah, USA

    Science.gov (United States)

    Reitman, Nadine G.; Ge, Shemin; Mueller, Karl

    2014-09-01

    Groundwater flow is an important control on subsurface evaporite (salt) dissolution. Salt dissolution can drive faulting and associated subsidence on the land surface and increase salinity in groundwater. This study aims to understand the groundwater flow system of Gypsum Canyon watershed in the Paradox Basin, Utah, USA, and whether or not groundwater-driven dissolution affects surface deformation. The work characterizes the groundwater flow and solute transport systems of the watershed using a three-dimensional (3D) finite element flow and transport model, SUTRA. Spring samples were analyzed for stable isotopes of water and total dissolved solids. Spring water and hydraulic conductivity data provide constraints for model parameters. Model results indicate that regional groundwater flow is to the northwest towards the Colorado River, and shallow flow systems are influenced by topography. The low permeability obtained from laboratory tests is inconsistent with field observed discharges, supporting the notion that fracture permeability plays a significant role in controlling groundwater flow. Model output implies that groundwater-driven dissolution is small on average, and cannot account for volume changes in the evaporite deposits that could cause surface deformation, but it is speculated that dissolution may be highly localized and/or weaken evaporite deposits, and could lead to surface deformation over time.

  4. Beyond Colorado's Front Range - A new look at Laramide basin subsidence, sedimentation, and deformation in north-central Colorado

    Science.gov (United States)

    Cole, James C.; Trexler, James H.; Cashman, Patricia H.; Miller, Ian M.; Shroba, Ralph R.; Cosca, Michael A.; Workman, Jeremiah B.

    2010-01-01

    This field trip highlights recent research into the Laramide uplift, erosion, and sedimentation on the western side of the northern Colorado Front Range. The Laramide history of the North Park?Middle Park basin (designated the Colorado Headwaters Basin in this paper) is distinctly different from that of the Denver basin on the eastern flank of the range. The Denver basin stratigraphy records the transition from Late Cretaceous marine shale to recessional shoreline sandstones to continental, fluvial, marsh, and coal mires environments, followed by orogenic sediments that span the K-T boundary. Upper Cretaceous and Paleogene strata in the Denver basin consist of two mega-fan complexes that are separated by a 9 million-year interval of erosion/non-deposition between about 63 and 54 Ma. In contrast, the marine shale unit on the western flank of the Front Range was deeply eroded over most of the area of the Colorado Headwaters Basin (approximately one km removed) prior to any orogenic sediment accumulation. New 40Ar-39Ar ages indicate the oldest sediments on the western flank of the Front Range were as young as about 61 Ma. They comprise the Windy Gap Volcanic Member of the Middle Park Formation, which consists of coarse, immature volcanic conglomerates derived from nearby alkalic-mafic volcanic edifices that were forming at about 65?61 Ma. Clasts of Proterozoic granite, pegmatite, and gneiss (eroded from the uplifted core of the Front Range) seem to arrive in the Colorado Headwaters Basin at different times in different places, but they become dominant in arkosic sandstones and conglomerates about one km above the base of the Colorado Headwaters Basin section. Paleocurrent trends suggest the southern end of the Colorado Headwaters Basin was structurally closed because all fluvial deposits show a northward component of transport. Lacustrine depositional environments are indicated by various sedimentological features in several sections within the >3 km of sediment

  5. Thin- and thick-skinned salt tectonics in the Netherlands: a quantitative approach

    NARCIS (Netherlands)

    Veen, J.H. ten; Gessel, S.F. van; Dulk, M. den

    2012-01-01

    The Zechstein salt in the Dutch part of the North Sea Basin played a key role in the generation of successful petroleum plays. This is not only because of its sealing capacity, but also because the salt occurs in structures that provide lateral and vertical traps. The structural styles of areas with

  6. Evolution characteristic of gypsum-salt rocks of the upper member of Oligocene Lower Ganchaigou Fm in the Shizigou area, western Qaidam Basin

    Directory of Open Access Journals (Sweden)

    Dinghong Yi

    2017-09-01

    Full Text Available Over years of oil and gas exploration in the Qaidam Basin, reservoirs have been discovered in many layers. In the Shizigou area, western Qaidam Basin, the upper member of Oligocene Lower Ganchaigou Fm is an important target for oil and gas exploration, and gypsum-salt rocks are the high-quality caprocks for the preservation of oil and gas reservoirs in this area. For predicting oil and gas exploration direction and target in the western Qaidam Basin and providing guidance for its oil and gas exploration deployment, its depositional characteristics and environment of gypsum-salt rocks in this area were investigated based on the core observation, thin section identification, and analysis of grain size, sensitivity parameter ratios (Sr/Cu, Fe/Mn, (Fe + Al/(Ca + Mg, V/(V + Ni and Pr/Ph, pyrite content and inclusions. The following characteristics are identified. First, gypsum-salt rocks are mainly distributed in the depocenter of the lake basin and their thickness decreases towards the margin of the basin. They are laterally transformed into carbonate rocks or terrigenous clastic rocks. They are areally distributed in the shape of irregular ellipse. Second, gypsum-salt rocks are vertically developed mainly in the middle and upper parts of the upper member of Lower Ganchaigou Fm and they are interbedded with carbonate rocks or terrigenous clastic rocks. Their single layer thickness changes greatly, and there are many layers with good continuity. Third, Sand Group III to Group I in the upper member of Lower Ganchaigou Fm (inter-salt are of reductive water environment of semi-deep to deep lake facies due to their sedimentation in an arid and hot climate. It is concluded that gypsum-salt rocks of the upper member of Lower Ganchaigou Fm are distributed widely with great accumulative thickness in this area; and that they are originated from deep lake water by virtue of evaporation, concentration and crystallization in an arid and hot climate instead

  7. Gas desorption and adsorption isotherm studies of coals in the Powder River basin, Wyoming and adjacent basins in Wyoming and North Dakota

    Science.gov (United States)

    Stricker, Gary D.; Flores, Romeo M.; McGarry, Dwain E.; Stillwell, Dean P.; Hoppe, Daniel J.; Stillwell, Cathy R.; Ochs, Alan M.; Ellis, Margaret S.; Osvald, Karl S.; Taylor, Sharon L.; Thorvaldson, Marjorie C.; Trippi, Michael H.; Grose, Sherry D.; Crockett, Fred J.; Shariff, Asghar J.

    2006-01-01

    The U.S. Geological Survey (USGS), in cooperation with the State Office, Reservoir Management Group (RMG), of the Bureau of Land Management (BLM) in Casper (Wyoming), investigated the coalbed methane resources (CBM) in the Powder River Basin, Wyoming and Montana, from 1999 to the present. Beginning in late 1999, the study also included the Williston Basin in Montana and North and South Dakota and Green River Basin and Big Horn Basin in Wyoming. The rapid development of CBM (referred to as coalbed natural gas by the BLM) during the early 1990s, and the lack of sufficient data for the BLM to fully assess and manage the resource in the Powder River Basin, in particular, gave impetus to the cooperative program. An integral part of the joint USGS-BLM project was the participation of 25 gas operators that entered individually into confidential agreements with the USGS, and whose cooperation was essential to the study. The arrangements were for the gas operators to drill and core coal-bed reservoirs at their cost, and for the USGS and BLM personnel to then desorb, analyze, and interpret the coal data with joint funding by the two agencies. Upon completion of analyses by the USGS, the data were to be shared with both the BLM and the gas operator that supplied the core, and then to be released or published 1 yr after the report was submitted to the operator.

  8. Magnetostratigraphy of the Neogene Chaka basin and its implications for mountain building processes in the north-eastern Tibetan Plateau

    Science.gov (United States)

    Zhang, H.-P.; Craddock, W.H.; Lease, R.O.; Wang, W.-T.; Yuan, D.-Y.; Zhang, P.-Z.; Molnar, P.; Zheng, D.-W.; Zheng, W.-J.

    2012-01-01

    Magnetostratigraphy of sedimentary rock deposited in the Chaka basin (north-eastern Tibetan Plateau) indicates a late Miocene onset of basin formation and subsequent development of the adjacent Qinghai Nan Shan. Sedimentation in the basin initiated at ~11Ma. In the lower part of the basin fill, a coarsening-upward sequence starting at ~9Ma, as well as rapid sedimentation rates, and northward paleocurrents, are consistent with continued growth of the Ela Shan to the south. In the upper section, several lines of evidence suggest that thrust faulting and topographic development of the Qinghai Nan Shan began at ~6.1Ma. Paleocurrent indicators, preserved in the basin in the proximal footwall of the Qinghai Nan Shan, show a change from northward to southward flow between 6.5 and 3.8Ma. At the same location, sediment derived from the Qinghai Nan Shan appears at 6.1Ma. Finally, the initiation of progressively shallowing dips observed in deformed basin strata and a change to pebbly, fluvial deposits at 6.1Ma provide a minimum age for the onset of slip on the thrust fault that dips north-east beneath the Qinghai Nan Shan. We interpret a decrease in sediment accumulation rates since ~6Ma to indicate a reduction in Chaka basin accommodation space due to active faulting and folding along the Qinghai Nan Shan and incorporation of the basin into the wedge-top depozone. Declination anomalies indicate the beginning of counter-clockwise rotation since 6.1Ma, which we associate with local deformation, not regional block rotation. The emergence of the Qinghai Nan Shan near the end of the Miocene Epoch partitioned the once contiguous Chaka-Gonghe and Qinghai basin complex. In a regional framework, our study adds to a growing body of evidence that points to widespread initiation and/or reactivation of fault networks during the late Miocene across the north-eastern Tibetan Plateau. ?? 2011 The Authors. Basin Research ?? 2011 Blackwell Publishing Ltd, European Association of Geoscientists

  9. Screening specifications for bedded salt, Salina Basin, New York and Ohio

    International Nuclear Information System (INIS)

    Brunton, G.D.; Laughon, R.B.; McClain, W.C.

    1978-01-01

    A survey of bedded salt deposits in New York and Ohio is planned to identify study areas for potential sites for radioactive waste disposal. Prior to the survey previous geological work related to these deposits will be reviewed. Preliminary screening specifications for the identification of study areas were derived for each of the geological evaluation criteria by application of the significant factors that will have an impact on the reconnaissance survey. These factors were selected by a review of the list of factors associated with each criterion. The procedure for the derivation of each screening specification is discussed. The screening specifications are the official Office of Waste Isolation values to be used for the first-cut acceptance for bedded salt study areas in Ohio and New York. The specifications will be reevaluated and refined for more-detailed investigations at each study area that passes the screening test. The derivation of the screening specifications is illustrated by (1) a statement of the geological evaluation criterion, (2) a discussion of the pertinent factors affecting the criterion, and (3) the evaluation of the value of the specification

  10. Environmental characterization of bedded salt formations and overlying areas of the Permian Basin

    International Nuclear Information System (INIS)

    1983-07-01

    This report constitutes one input to the first stage of site qualification studies. It presents a general environmental characterization of the region that is underlain by the Permian bedded salt formation. The formation covers portions of Colorado, Kansas, New Mexico, Oklahoma, and Texas. The Permian bedded salt formation is one of a number of deep, stable geologic formations being studied for potential locations for nuclear waste repositories. These studies will not necessarily lead to selection of a site. They are intended only to provide information necessary to evaluate the suitability of locations for repositories. The report is intended as a general characterization of the existing environmental setting of the Permian Region with emphasis on land, water, and air characteristics; resources; plant and animal life; and man's organizations and activities. The report provides background information about the role that this regional study will play in the overall plan for environmental impact assessments and statements deemed necessary as input to the decision-making process. Background information on the present concept of nuclear waste repository design and function is also included. The information presented in this report has been summarized from open literature readily accessible to the public. No field work was conducted nor new data used in developing the descriptions contained herein

  11. Quantifying the role of mantle forcing, crustal shortening and exogenic forcing on exhumation of the North Alpine Foreland Basin

    Science.gov (United States)

    von Hagke, C.; Luijendijk, E.; Hindle, D.

    2017-12-01

    In contrast to the internal zones of orogens, where the stacking of thrust sheets can overwhelm more subtle signals, foreland basins can record long-wavelength subsidence or uplift signals caused by mantle processes. We use a new and extensive compilation of geological and thermochronology data from the North Alpine Foreland Basin to understand the dynamics of foreland basins and their interaction with surface and geodynamic processes. We quantify cooling and exhumation rates in the basin by combining published and new vitrinite reflectance, apatite fission track and U-Th/He data with a new inverse burial and thermal history model, pybasin. No correlation is obvious between inferred cooling and exhumation rates and elevation, relief or tectonics. Uncertainty analysis shows that thermochronometers can be explained by cooling starting as early as the Miocene or as late as the Pleistocene. We compare derived temperature histories to exhumation estimates based on the retro-deformation of Molasse basin and the Jura mountains, and to exhumation caused by drainage reorganization and incision. Drainage reorganization can explain at most 25% of the observed cooling rates in the basin. Tectonic transport of the basin's sediments over the inclined basement of the alpine foreland as the Jura mountains shortened can explain part of the cooling signal in the western part of the basin. However, overall a substantial amount of cooling and exhumation remains unexplained by known tectonic and surface processes. Our results document basin wide exhumation that may be related to slab roll-back or other lithospheric processes. We suggest that new (U-Th)/He data from key areas close to the Alpine front may provide better constraints on the timing of exhumation.

  12. Water Quality and Algal Data for the North Umpqua River Basin, Oregon, 2005

    Science.gov (United States)

    Tanner, Dwight Q.; Arnsberg, Andrew J.; Anderson, Chauncey W.; Carpenter, Kurt D.

    2006-01-01

    The upper North Umpqua River Basin has experienced a variety of water-quality problems since at least the early 1990's. Several reaches of the North Umpqua River are listed as water-quality limited under section 303(d) of the Clean Water Act. Diamond Lake, a eutrophic lake that is an important source of water and nutrients to the upper North Umpqua River, is also listed as a water-quality limited waterbody (pH, nuisance algae). A draft Total Maximum Daily Load (TMDL) was proposed for various parameters and is expected to be adopted in full in 2006. Diamond Lake has supported potentially toxic blue-green algae blooms since 2001 that have resulted in closures to recreational water contact and impacts to the local economy. Increased populations of the invasive tui chub fish are reportedly responsible, because they feed on zooplankton that would otherwise control the algal blooms. The Final Environmental Impact Statement (FEIS) for the Diamond Lake Restoration Project advocates reduced fish biomass in Diamond Lake in 2006 as the preferred alternative. A restoration project scheduled to reduce fish biomass for the lake includes a significant water-level drawdown that began in January 2006. After the drawdown of Diamond Lake, the fish toxicant rotenone was applied to eradicate the tui chub. The lake will be refilled and restocked with game fish in 2007. Winter exports of nutrients from Diamond Lake during the restoration project could affect the summer trophic status of the North Umpqua River if retention and recycling in Lemolo Lake are significant. The FEIS includes comprehensive monitoring to assess the water quality of the restored Diamond Lake and the effects of that restoration downstream. One component of the monitoring is the collection of baseline data, in order to observe changes in the river's water quality and algal conditions resulting from the restoration of Diamond Lake. During July 2005, the USGS, in cooperation with Douglas County, performed a synoptic

  13. Late Burdigalian sea retreat from the North Alpine Foreland Basin: new magnetostratigraphic age constraints

    Science.gov (United States)

    Sant, K.; Kirscher, U.; Reichenbacher, B.; Pippèrr, M.; Jung, D.; Doppler, G.; Krijgsman, W.

    2017-05-01

    Accurate reconstruction of the final sea retreat from the North Alpine Foreland Basin (NAFB) during the Burdigalian (Early Miocene) is hampered by a lack of reliable age constraints. In this high resolution magnetostratigraphic study we try to solve a significant age bias for the onset of the Upper Freshwater Molasse (OSM) deposition in the neighboring S-German and Swiss Molasse Basins. We measured > 550 samples from eleven drill cores covering the transition from marine to brackish to freshwater environments in the S-German Molasse Basin. Based on combined bio-, litho- and magnetostratigraphic constraints, the composite magnetostratigraphic pattern of these cores provides two reasonable age correlation options (model 1 and 2). In model 1, the base of the brackish succession lies within Chron C5Cr ( 16.7-17.2 Ma), and the onset of OSM deposition has an age of 16.5 Ma. Correlation model 2 suggests the transition to brackish conditions to be within C5Dr.1r ( 17.7-17.5 Ma), and yields an age around 16.7 Ma for the shift to the OSM. Most importantly, both models confirm a much younger age for the OSM base in the study area than previously suggested. Our results demonstrate a possible coincidence of the last transgressive phase (Kirchberg Fm) with the Miocene Climatic Optimum (model 1), or with the onset of this global warming event (model 2). In contrast, the final retreat of the sea from the study area is apparently not controlled by climate change. Supplementary material B. Profiles of the eleven studied drill cores including lithologies, all magnetostratigraphic data (inclinations), interpreted polarity pattern (this study and Reichenbacher et al., 2013) and magnetic susceptibility (this study). Legend for graphs on page 1. Samples without a stable direction above 200 °C or 20 mT are depicted as +-signs and plotted at 0° inclination. The interpreted normal (black), reversed (white) and uncertain (grey) polarity zones in the polarity columns are based on at least

  14. Regional-scale brine migration along vertical pathways due to CO2 injection - Part 2: A simulated case study in the North German Basin

    Science.gov (United States)

    Kissinger, Alexander; Noack, Vera; Knopf, Stefan; Konrad, Wilfried; Scheer, Dirk; Class, Holger

    2017-06-01

    Saltwater intrusion into potential drinking water aquifers due to the injection of CO2 into deep saline aquifers is one of the hazards associated with the geological storage of CO2. Thus, in a site-specific risk assessment, models for predicting the fate of the displaced brine are required. Practical simulation of brine displacement involves decisions regarding the complexity of the model. The choice of an appropriate level of model complexity depends on multiple criteria: the target variable of interest, the relevant physical processes, the computational demand, the availability of data, and the data uncertainty. In this study, we set up a regional-scale geological model for a realistic (but not real) onshore site in the North German Basin with characteristic geological features for that region. A major aim of this work is to identify the relevant parameters controlling saltwater intrusion in a complex structural setting and to test the applicability of different model simplifications. The model that is used to identify relevant parameters fully couples flow in shallow freshwater aquifers and deep saline aquifers. This model also includes variable-density transport of salt and realistically incorporates surface boundary conditions with groundwater recharge. The complexity of this model is then reduced in several steps, by neglecting physical processes (two-phase flow near the injection well, variable-density flow) and by simplifying the complex geometry of the geological model. The results indicate that the initial salt distribution prior to the injection of CO2 is one of the key parameters controlling shallow aquifer salinization. However, determining the initial salt distribution involves large uncertainties in the regional-scale hydrogeological parameterization and requires complex and computationally demanding models (regional-scale variable-density salt transport). In order to evaluate strategies for minimizing leakage into shallow aquifers, other target

  15. Structural interpretation of the Ifal Basin in north-western Saudi Arabia from aeromagnetic data: hydrogeological and environmental implications

    Science.gov (United States)

    Elawadi, Eslam; Zaman, Haider; Batayneh, Awni; Mogren, Saad; Laboun, Abdalaziz; Ghrefat, Habes; Zumlot, Taisser

    2013-09-01

    The Ifal (Midyan) Basin is one of the well defined basins along the Red Sea coast, north-western Saudi Arabia. Location, geometry, thick sedimentary cover and structural framework qualify this basin for groundwater, oil and mineral occurrences. In spite of being studied by two airborne magnetic surveys during 1962 and 1983, structural interpretation of the area from a magnetic perspective, and its uses for hydrogeological and environmental investigations, has not been attempted. This work thus presents interpretation of the aeromagnetic data for basement depth estimation and tectonic framework delineation, which both have a role in controlling groundwater flow and accumulation in the Ifal Basin. A maximum depth of 3.5km is estimated for the basement surface by this study. In addition, several faulted and tilted blocks, perpendicularly dissected by NE-trending faults, are delineated within the structural framework of the study area. It is also observed that the studied basin is bounded by NW- and NE-trending faults. All these multi-directional faults/fracture systems in the Ifal Basin could be considered as conduits for groundwater accumulation, but with a possibility of environmental contamination from the surrounding soils and rock bodies.

  16. Ecological economics of North American integration: the reshaping of the economic landscape in the Santiago river basin

    Directory of Open Access Journals (Sweden)

    Salvador Peniche Camps

    2017-06-01

    Full Text Available Ecological Economics studies social metabolism; that is, the material and energy flow into and out of the economy. Using the ecological economics perspective, we analyse the transformation of the economic landscape of the Santiago river basin, Mexico. We discuss why the appropriation of water resources is one of the most important drivers of North American economic integration. We argue that the theoretical model of neo-extractivism can explain the dynamics of social metabolism behind the North American Free Trade Agreement (NAFTA.

  17. Insights into mantle heterogeneities: mid-ocean ridge basalt tapping an ocean island magma source in the North Fiji Basin

    Science.gov (United States)

    Brens, R., Jr.; Jenner, F. E.; Bullock, E. S.; Hauri, E. H.; Turner, S.; Rushmer, T. A.

    2015-12-01

    The North Fiji Basin (NFB), and connected Lau Basin, is located in a complex area of volcanism. The NFB is a back-arc basin (BAB) that is a result of an extinct subduction zone, incorporating the complicated geodynamics of two rotating landmasses: Fiji and the Vanuatu island arc. Collectively this makes the spreading centers of the NFB the highest producing spreading centers recorded. Here we present volatile concentrations, major, and trace element data for a previously undiscovered triple junction spreading center in the NFB. We show our enrichment samples contain some of the highest water contents yet reported from (MORB). The samples from the NFB exhibit a combination of MORB-like major chemical signatures along with high water content similar to ocean island basalts (OIB). This peculiarity in geochemistry is unlike other studied MORB or back-arc basin (to our knowledge) that is not attributed to subduction related signatures. Our results employ the use of volatiles (carbon dioxide and water) and their constraints (Nb and Ce) combined with trace element ratios to indicate a potential source for the enrichment in the North Fiji Basin. The North Fiji Basin lavas are tholeiitic with similar major element composition as averaged primitive normal MORB; with the exception of averaged K2O and P2O5, which are still within range for observed normal MORB. For a mid-ocean ridge basalt, the lavas in the NFB exhibit a large range in volatiles: H2O (0.16-0.9 wt%) and CO2 (80-359 ppm). The NFB lavas have volatile levels that exceed the range of MORB and trend toward a more enriched source. In addition, when compared to MORB, the NFB lavas are all enriched in H2O/Ce. La/Sm values in the NFB lavas range from 0.9 to 3.8 while, Gd/Yb values range from 1.2 to 2.5. The NFB lavas overlap the MORB range for both La/Sm (~1.1) and Gd/Yb (~1.3). However, they span a larger range outside of the MORB array. High La/Sm and Gd/Yb ratios (>1) are indications of deeper melting within the

  18. Seasonal Changes in Microbial Community Structure in Freshwater Stream Sediment in a North Carolina River Basin

    Directory of Open Access Journals (Sweden)

    John P. Bucci

    2014-01-01

    Full Text Available This study examined seasonal differences in microbial community structure in the sediment of three streams in North Carolina’s Neuse River Basin. Microbes that reside in sediment are at the base of the food chain and have a profound influence on the health of freshwater stream environments. Terminal-Restriction Fragment Length Polymorphism (T-RFLP, molecular fingerprint analysis of 16S rRNA genes was used to examine the diversity of bacterial species in stream sediment. Sediment was sampled in both wet and dry seasons from an agricultural (Bear, mixed urban (Crabtree and forested (Marks Creek, and the microbiota examined. Gamma, Alpha and Beta proteobacteria were prevalent species of microbial taxa represented among all sites. Actinobacteria was the next most prevalent species observed, with greater occurrence in dry compared to the wet season. Discernable clustering was observed of Marks and Bear Creek samples collected during the wetter period (September–April, which corresponded with a period of higher precipitation and cooler surface water temperatures. Although not statistically significant, microbial community structure appeared different between season (ANOSIM, R = 0.60; p < 0.10. Principal components analysis confirmed this pattern and showed that the bacterial groups were separated by wet and dry seasonal periods. These results suggest seasonal differences among the microbial community structure in sediment of freshwater streams and that these communities may respond to changes in precipitation during wetter periods.

  19. Diagenetic Evolution and Reservoir Quality of Sandstones in the North Alpine Foreland Basin: A Microscale Approach.

    Science.gov (United States)

    Gross, Doris; Grundtner, Marie-Louise; Misch, David; Riedl, Martin; Sachsenhofer, Reinhard F; Scheucher, Lorenz

    2015-10-01

    Siliciclastic reservoir rocks of the North Alpine Foreland Basin were studied focusing on investigations of pore fillings. Conventional oil and gas production requires certain thresholds of porosity and permeability. These parameters are controlled by the size and shape of grains and diagenetic processes like compaction, dissolution, and precipitation of mineral phases. In an attempt to estimate the impact of these factors, conventional microscopy, high resolution scanning electron microscopy, and wavelength dispersive element mapping were applied. Rock types were established accordingly, considering Poro/Perm data. Reservoir properties in shallow marine Cenomanian sandstones are mainly controlled by the degree of diagenetic calcite precipitation, Turonian rocks are characterized by reduced permeability, even for weakly cemented layers, due to higher matrix content as a result of lower depositional energy. Eocene subarkoses tend to be coarse-grained with minor matrix content as a result of their fluvio-deltaic and coastal deposition. Reservoir quality is therefore controlled by diagenetic clay and minor calcite cementation.Although Eocene rocks are often matrix free, occasionally a clay mineral matrix may be present and influence cementation of pores during early diagenesis. Oligo-/Miocene deep marine rocks exhibit excellent quality in cases when early cement is dissolved and not replaced by secondary calcite, mainly bound to the gas-water contact within hydrocarbon reservoirs.

  20. GIS-based hazard and risk maps of the Douro river basin (north-eastern Portugal

    Directory of Open Access Journals (Sweden)

    José Gomes Santos

    2015-02-01

    Full Text Available The Douro river basin, in north-eastern Portugal, is a very complex region in terms of its geomorphological structure and morphodynamics. More specifically, the region – the Port Wine-growing region, a UNESCO heritage site – is a landslide-prone area resulting from several factors intrinsic to the bedrock and its detritic cover, combined with factors capable of triggering slope instability mechanisms, such as intense rainfall and human activities. Recently, due to intense rainfall and human activities, frequent rock and mud slides occurred, some of them catastrophic, killing people and damaging property. In the last decade (2000–2010, an accurate inventory of these catastrophic events was made, showing that these events occurred near local small towns, Peso da Régua (2001, Armamar (2003 and Carrazeda de Ansiães (2007. In this paper, we present a case study using field data and Geographic Information Systems (GIS tools to evaluate landslide hazard and risk assessment following multicriteria evaluation techniques.

  1. Numerical modeling of fracking fluid migration through fault zones and fractures in the North German Basin

    Science.gov (United States)

    Pfunt, Helena; Houben, Georg; Himmelsbach, Thomas

    2016-09-01

    Gas production from shale formations by hydraulic fracturing has raised concerns about the effects on the quality of fresh groundwater. The migration of injected fracking fluids towards the surface was investigated in the North German Basin, based on the known standard lithology. This included cases with natural preferential pathways such as permeable fault zones and fracture networks. Conservative assumptions were applied in the simulation of flow and mass transport triggered by a high pressure boundary of up to 50 MPa excess pressure. The results show no significant fluid migration for a case with undisturbed cap rocks and a maximum of 41 m vertical transport within a permeable fault zone during the pressurization. Open fractures, if present, strongly control the flow field and migration; here vertical transport of fracking fluids reaches up to 200 m during hydraulic fracturing simulation. Long-term transport of the injected water was simulated for 300 years. The fracking fluid rises vertically within the fault zone up to 485 m due to buoyancy. Progressively, it is transported horizontally into sandstone layers, following the natural groundwater flow direction. In the long-term, the injected fluids are diluted to minor concentrations. Despite the presence of permeable pathways, the injected fracking fluids in the reported model did not reach near-surface aquifers, either during the hydraulic fracturing or in the long term. Therefore, the probability of impacts on shallow groundwater by the rise of fracking fluids from a deep shale-gas formation through the geological underground to the surface is small.

  2. Effect of diagenesis on pore pressures in fine-grained rocks in the Egersund Basin, Central North Sea

    OpenAIRE

    Kalani, Mohsen; Zadeh, Mohammad Koochak; Jahren, Jens; Mondol, Nazmul Haque; Faleide, Jan Inge

    2015-01-01

    - Pore pressure in fine-grained rocks is important with respect to drilling problems such as kicks, blowouts, borehole instability, stuck pipe and lost circulation. In this study, a succession of overpressured, fine-grained, sedimentary rocks located in the Egersund Basin, Central North Sea, was analysed with respect to mineralogical composition, source-rock maturation and log-derived petrophysical properties to highlight the effect of diagenetic processes on the pore pressure. Pe...

  3. Geology Structure Identification Using Pre-Stack Depth Migration (PSDM Method of Tomography Result in North West Java Basin

    Directory of Open Access Journals (Sweden)

    Sudra Irawan

    2017-06-01

    Full Text Available North West Java Basin is a tertiary sedimentary basin which is located in the right of the western part of the Java island. North West Java Basin is geodynamic where currently located at the rear position of the path of the volcanic arc of Java that is the result of the India-Australia plate subduction to the south towards the Eurasian plate (Explanation of Sunda in the north. Geology structure observation is difficult to be conducted at Quaternary volcanicfield due to the classical problem at tropical region. In the study interpretation of fault structures can be done on a cross-section of Pre-Stack Depth Migration (PSDM used prayer namely Hardware Key Device, ie Central Processing Unit: RedHat Enterprise Linux AS 5.0, prayer Monitor 24-inch pieces, Server: SGI altix 450/SuSe Linux Enterprise Server 9.0, 32 GB, 32 X 2,6 GHz Procesor, network: Gigabyte 1 Gb/s, and the software used is paradigm, product: Seismic Processing and Imaging. The third fault obtained in this study in accordance with the geological information derived from previous research conducted by geologists. The second general direction is northwest-southeast direction represented by Baribis fault, fault-fault in the Valley Cimandiri and Gunung Walat. This direction is often known as the directions Meratus (Meratus Trend. Meratus directions interpreted as directions that follow the pattern of continuous arc Cretaceous age to Meratus in Kalimantan.

  4. Indications of Hydrocarbons in the Tjörnes Basin, North Iceland

    Science.gov (United States)

    Richter, B.; Brandsdóttir, B.; Detrick, R.; Helgadóttir, G.; Kjartansson, E.; Gunnarsson, K.; Driscoll, N.; Kent, G.

    2002-12-01

    The Tjörnes basin, located within the Tjörnes Fracture Zone (TFZ) was initiated during the Miocene (7-9 Ma), following an eastward jump of the spreading axis in N-Iceland. The roughly 150 km long (EW) and 50 km wide (NS) basin has since accumulated a 0.5-4 km thick sedimentary sequence within three extensional grabens, Eyjafjardaráll, Skjálfandadjúp and Öxarfjördur. The transtensional Húsavík-Flatey fault defines the southern margin of the basin. The hangingwalls within the westernmost and deepest graben (Eyjafjardaráll) are transected by series of synthetic and antithetic listric faults. These structures are affiliated with a crustal-scale, listric east- to north-easterly dipping master fault which soles out in the lower crust, at about 7500 m depth. Near shore sediments are exposed on the Tjörnes peninsula, at the eastern margin of the central graben, where a basal unit of Tertiary lava flows, up to 10 Ma old is overlain by 500 m thick Miocene-Pliocene sediments (Tjörnes Beds). Several lignite layers are present within this predominantly marine succession. Multichannel Seismic data show that the Tjörnes Beds extend westwards into the Skjálfandi Bay. In 1989, gas emissions of thermogenic hydrocarbons were detected during a core-drilling in the easternmost basin, Öxarfjördur. Analyses of natural gas-emissions within the geothermal areas at Skógarlón and Skógar in Öxarfjördur also revealed hydrocarbons (methane-hexane) in high concentrations. These gasses probably originate from marine sediments and lignites similar to those found in the Tjörnes Beds. The Tjörnes Beds, as seen in the Tjörnes horst, are thermally immature with respect to petroleum generation. However, based on the tectonic history, this is probably a minimum-maturity indication as organic geochemical analysis and maturation simulations indicate that high geothermal gradient enhances the formation of dry and wet gasses and waxy oil. In 2001 a sidescan sonar imaging was

  5. Basin Analysis of the Mississippi Interior Salt Basin and Petroleum System Modeling of the Jurassic Smackover Formation, Eastern Gulf Coastal Plain, Final Report and Topical Reports 5-8 on Smackover Petroleum system and Underdevelopment Reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Mancini, Ernest A.; Puckett, T. Markham; Parcell, William C.; Llinas, Juan Carlos; Kopaska-Merkel, David C.; Townsend, Roger N.

    2002-03-05

    The Smackover Formation, a major hydrocarbon-producing horizon in the Mississippi Interior Salt Basin (MISB), conformably overlies the Norphlet Formation and is conformably overlain by the Buckner Anhydrite Member of the Haynesville Formation. The Norphlet-Smackover contact can be either gradational or abrupt. The thickness and lithofacies distribution of the Smackover Formation were controlled by the configuration of incipient paleotopography. The Smackover Formation has been subdivided into three informal members, referred to as the lower, middle and upper members.

  6. Chapter 5. Assessment of undiscovered conventional oil and gas resources-Lower Cretaceous Travis Peak and Hosston formations, Jurassic Smackover interior salt basins total petroleum system, in the East Texas basin and Louisiana-Mississippi salt basins provinces.

    Science.gov (United States)

    Dyman, T.S.; Condon, S.M.

    2006-01-01

    The Lower Cretaceous Travis Peak Formation of east Texas and southern Arkansas (and the correlative Hosston Formation of Louisiana and Mississippi) is a basinward-thickening wedge of terrigenous clastic sedimentary rocks that underlies the northern Gulf of Mexico Basin from east Texas across northern Louisiana to southern Mississippi. Clastic detritus was derived from two main fluvial-deltaic depocenters, one in northeastern Texas and the other extending from southeastern Mississippi northwestward into northeastern Louisiana. Across the main hydrocarbon-productive trend in east Texas and northern Louisiana, the Travis Peak and Hosston Formations are about 2,000 ft thick.

  7. Potential effects of energy development on environmental resources of the Williston Basin in Montana, North Dakota, and South Dakota

    Science.gov (United States)

    Post van der Burg, Max; Vining, Kevin C.; Frankforter, Jill D.

    2017-09-28

    The Williston Basin, which includes parts of Montana, North Dakota, and South Dakota in the United States, has been a leading domestic oil and gas producing area. To better understand the potential effects of energy development on environmental resources in the Williston Basin, the U.S. Geological Survey, in cooperation with the Bureau of Land Management, and in support of the needs identified by the Bakken Federal Executive Group (consisting of representatives from 13 Federal agencies and Tribal groups), began work to synthesize existing information on science topics to support management decisions related to energy development. This report is divided into four chapters (A–D). Chapter A provides an executive summary of the report and principal findings from chapters B–D. Chapter B provides a brief compilation of information regarding the history of energy development, physiography, climate, land use, demographics, and related studies in the Williston Basin. Chapter C synthesizes current information about water resources, identifies potential effects from energy development, and summarizes water resources research and information needs in the Williston Basin. Chapter D summarizes information about ecosystems, species of conservation concern, and potential effects to those species from energy development in the Williston Basin.

  8. Nonlinear interactions between the Amazon River basin and the Tropical North Atlantic at interannual timescales

    Science.gov (United States)

    Builes-Jaramillo, Alejandro; Marwan, Norbert; Poveda, Germán; Kurths, Jürgen

    2018-04-01

    We study the physical processes involved in the potential influence of Amazon (AM) hydroclimatology over the Tropical North Atlantic (TNA) Sea Surface Temperatures (SST) at interannual timescales, by analyzing time series of the precipitation index (P-E) over AM, as well as the surface atmospheric pressure gradient between both regions, and TNA SSTs. We use a recurrence joint probability based analysis that accounts for the lagged nonlinear dependency between time series, which also allows quantifying the statistical significance, based on a twin surrogates technique of the recurrence analysis. By means of such nonlinear dependence analysis we find that at interannual timescales AM hydrology influences future states of the TNA SSTs from 0 to 2 months later with a 90-95% statistical confidence. It also unveils the existence of two-way feedback mechanisms between the variables involved in the processes: (1) precipitation over AM leads the atmospheric pressure gradient between TNA and AM from 0 to 2 month lags, (2) the pressure gradient leads the trade zonal winds over the TNA from 0 to 3 months and from 7 to 12 months, (3) the zonal winds lead the SSTs from 0 to 3 months, and (4) the SSTs lead precipitation over AM by 1 month lag. The analyses were made for time series spanning from 1979 to 2008, and for extreme precipitation events in the AM during the years 1999, 2005, 2009 and 2010. We also evaluated the monthly mean conditions of the relevant variables during the extreme AM droughts of 1963, 1980, 1983, 1997, 1998, 2005, and 2010, and also during the floods of 1989, 1999, and 2009. Our results confirm that the Amazon River basin acts as a land surface-atmosphere bridge that links the Tropical Pacific and TNA SSTs at interannual timescales. The identified mutual interactions between TNA and AM are of paramount importance for a deeper understanding of AM hydroclimatology but also of a suite of oceanic and atmospheric phenomena over the TNA, including recently

  9. Geochemistry of metal-rich brines from central Mississippi Salt Dome basin, U.S.A.

    Science.gov (United States)

    Kharaka, Y.K.; Maest, A.S.; Carothers, W.W.; Law, L.M.; Lamothe, P.J.; Fries, T.L.

    1987-01-01

    Oil-field brines are the most favored ore-forming solutions for the sediment-hosted Mississippi Valley-type ore deposits. Detailed inorganic and organic chemical and isotope analyses of water and gas samples from six oil fields in central Mississippi, one of the very few areas with high metal brines, were conducted to study the inorganic and organic complexes responsible for the high concentrations of these metals. The samples were obtained from production zones consisting of sandstone and limestone that range in depth from 1900 to 4000 m (70-120??C) and in age from Late Cretaceous to Late Jurassic. Results show that the waters are dominantly bittern brines related to the Louann Salt. The brines have extremely high salinities that range from 160,000 to 320,000 mg/l total dissolved solids and are NaCaCl-type waters with very high concentrations of Ca (up to 48,000 mg/l) and other alkaline-earth metals, but with low concentrations of aliphatic acid anions. The concentrations of metals in many water samples are very high, reaching values of 70 mg/l for Pb, 245 mg/l for Zn, 465 mg/l for Fe and 210 mg/l for Mn. The samples with high metal contents have extremely low concentrations (<0.02 mg/l) of H2S. Samples obtained from the Smackover Formation (limestone) have low metal contents that are more typical of oil-field waters, but have very high concentrations (up to 85 mg/l) of H2S. Computations with the geochemical code SOLMINEQ.87 give the following results: (1) both Pb and Zn are present predominantly as aqueous chloride complexes (mainly as PbCl42- and ZnCl42-, respectively); (2) the concentrations of metals complexed with short-chained aliphatic acid anions and reduced S species are minor; (3) organic acid anions are important in controlling the concentrations of metals because they affect the pH and buffer capacity of the waters at subsurface conditions; and (4) galena and sphalerite solubilities control the concentrations of Pb and Zn in these waters. ?? 1988.

  10. The current strain distribution in the North China Basin of eastern China by least-squares collocation

    Science.gov (United States)

    Wu, J. C.; Tang, H. W.; Chen, Y. Q.; Li, Y. X.

    2006-07-01

    In this paper, the velocities of 154 stations obtained in 2001 and 2003 GPS survey campaigns are applied to formulate a continuous velocity field by the least-squares collocation method. The strain rate field obtained by the least-squares collocation method shows more clear deformation patterns than that of the conventional discrete triangle method. The significant deformation zones obtained are mainly located in three places, to the north of Tangshan, between Tianjing and Shijiazhuang, and to the north of Datong, which agree with the places of the Holocene active deformation zones obtained by geological investigations. The maximum shear strain rate is located at latitude 38.6°N and longitude 116.8°E, with a magnitude of 0.13 ppm/a. The strain rate field obtained can be used for earthquake prediction research in the North China Basin.

  11. Effects of the North Atlantic Oscillation and wind waves on salt marsh dynamics in the Danish Wadden Sea

    DEFF Research Database (Denmark)

    Kim, Daehyun; Grant, William E.; Cairns, David M.

    2013-01-01

    Long-term eustatic sea-level variation has been recognized as a primary factor affecting the hydrological and geomorphic dynamics of salt marshes. However, recent studies suggest that wind waves influenced by atmospheric oscillations also may play an important role in many coastal areas. Although...... this notion has been conceptually introduced for the Wadden Sea, no modeling attempts have been made yet. As a proof of concept, this study developed a simulation model using the commercially available STELLAA (R) software, based on long-term data on water level and sedimentation collected at a back......-barrier marsh on the Skallingen peninsula in Denmark. In the model, the frequency (number year(-1)) of wind-driven extreme high water level (HWL) events (> 130 cm Danish Ordnance Zero) was simulated in terms of the North Atlantic Oscillation (NAO) index. Then, surface accretion (cm year(-1)) and submergence...

  12. Variety, State and Origin of Drained Thaw Lake Basins in West-Siberian North

    Science.gov (United States)

    Kirpotin, S.; Polishchuk, Y.; Bryksina, N.; Sugaipova, A.; Pokrovsky, O.; Shirokova, L.; Kouraev, A.; Zakharova, E.; Kolmakova, M.; Dupre, B.

    2009-04-01

    Drained thaw lake basins in Western Siberia have a local name "khasyreis" [1]. Khasyreis as well as lakes, ponds and frozen mounds are invariable element of sub-arctic frozen peat bogs - palsas and tundra landscapes. In some areas of West-Siberian sub-arctic khasyreis occupy up to 40-50% of total lake area. Sometimes their concentration is so high that we call such places ‘khasyrei's fields". Khasyreis are part of the natural cycle of palsa complex development [1], but their origin is not continuous and uniform in time and, according to our opinion, there were periods of more intensive lake drainage and khasyrei development accordingly. These times were corresponding with epochs of climatic warming and today we have faced with one of them. So, last years this process was sufficiently activated in the south part of West-Siberian sub-arctic [2]. It was discovered that in the zone of continuous permafrost thermokarst lakes have expanded their areas by about 10-12%, but in the zone of discontinuous permafrost the process of their drainage prevails. These features are connected with the thickness of peat layers which gradually decreases to the North, and thus have reduced the opportunity for lake drainage in northern areas. The most typical way of khasyrei origin is their drainage to the bigger lakes which are always situated on the lower levels and works as a collecting funnels providing drainage of smaller lakes. The lower level of the big lake appeared when the lake takes a critical mass of water enough for subsidence of the lake bottom due to the melting of underlaying rocks [2]. Another one way of lake drainage is the lake intercept by any river. Lake drainage to the subsurface (underlaying rocks) as some authors think [3, 4] is not possible in Western Siberia, because the thickness of permafrost is at list 500 m here being safe confining bed. We mark out few stages of khasyrei development: freshly drained, young, mature and old. This row reflects stages of

  13. Lava and Life: New investigations into the Carson Volcanics, lower Kimberley Basin, north Western Australia

    Science.gov (United States)

    Orth, Karin; Phillips, Chris; Hollis, Julie

    2014-05-01

    The Carson Volcanics are the only volcanic unit in the Paleoproterozoic Kimberley Basin and are part of a poorly studied Large Igneous Province (LIP) that was active at 1790 Ma. New work focussing on this LIP in 2012 and 2013 involved helicopter-supported traverses and sampling of the Carson Volcanics in remote areas near Kalumburu in far north Western Australia's Kimberley region. The succession is widespread and flat lying to gently dipping. It consists of three to six basalt units with intercalated sandstone and siltstone. The basalts are 20-40 m thick, but can be traced up to 60 km along strike. The basalt can be massive or amygdaloidal and commonly display polygonal to subhorizontal and rare vertical columnar jointing. Features of the basalt include ropy lava tops and basal pipe vesicles consistent with pahoehoe lavas. The intercalated cross-bedded quartzofeldspathic sandstone and siltstone vary in thickness up to 40 m and can be traced up to 40 km along strike. Peperite is common and indicates interaction between wet, unconsolidated sediment and hot lava. Stromatolitic chert at the top of the formation represents the oldest life found within the Kimberley region. Mud cracks evident in the sedimentary rocks, and stromatolites suggest an emergent broad tidal flat environment. The volcanics were extruded onto a wide marginal margin setting subject to frequent flooding events. Thickening of the volcanic succession south and the palaeocurrents in the underlying King Leopold Sandstone and the overlying Warton Sandstone suggest that this shelf sloped to the south. The type of basalt and the basalt morphology indicate a low slope gradient of about 1°.

  14. Transport and Retention of Nitrogen, Phosphorus and Carbon in North America’s Largest River Swamp Basin, the Atchafalaya River Basin

    Directory of Open Access Journals (Sweden)

    Y. Jun Xu

    2013-04-01

    Full Text Available Floodplains and river corridor wetlands may be effectively managed for reducing nutrients and carbon. However, our understanding is limited to the reduction potential of these natural riverine systems. This study utilized the long-term (1978–2004 river discharge and water quality records from an upriver and a downriver location of the Atchafalaya River to quantify the inflow, outflow, and inflow–outflow mass balance of total Kjeldahl nitrogen (TKN = organic nitrogen + ammonia nitrogen, nitrate + nitrite nitrogen (NO3 + NO2, total phosphorous (TP, and total organic carbon (TOC through the largest river swamp basin in North America. The study found that, over the past 27 years, the Atchafalaya River Basin (ARB acted as a significant sink for TKN (annual retention: 24%, TP (41%, and TOC (12%, but a source for NO3 + NO2 nitrogen (6%. On an annual basis, ARB retained 48,500 t TKN, 16,900 t TP, and 167,100 t TOC from the river water. The retention rates were closely and positively related to the river discharge with highs during the winter and spring and lows in the late summer. The higher NO3 + NO2 mass outflow occurred throughout spring and summer, indicating an active role of biological processes on nitrogen as water and air temperatures in the basin rise.

  15. Moisture transport from the Atlantic to the Pacific basin and its response to North Atlantic cooling and global warming

    Energy Technology Data Exchange (ETDEWEB)

    Richter, Ingo [University of Hawaii at Manoa, International Pacific Research Center, Honolulu, HI (United States); Xie, Shang-Ping [University of Hawaii at Manoa, Department of Meteorology, Honolulu, HI (United States)

    2010-08-15

    Atmospheric moisture transport from the Atlantic to the Pacific basin plays an important role in regulating North Atlantic salinity and thus the strength of the thermohaline circulation. Potential changes in the strength of this moisture transport are investigated for two different climate-change scenarios: North Atlantic cooling representative of Heinrich events, and increased greenhouse gas (GHG) forcing. The effect of North Atlantic cooling is studied using a coupled regional model with comparatively high resolution that successfully simulates Central American gap winds and other important aspects of the region. Cooler North Atlantic sea surface temperature (SST) in this model leads to a regional decrease of atmospheric moisture but also to an increase in wind speed across Central America via an anomalous pressure gradient. The latter effect dominates, resulting in a 0.13 Sv (1 Sv = 10{sup 6} m{sup 3} s{sup -1}) increase in overall moisture transport to the Pacific basin. In fresh water forcing simulations with four different general circulation models, the wind speed effect is also present but not strong enough to completely offset the effect of moisture decrease except in one model. The influence of GHG forcing is studied using simulations from the Intergovernmental Panel on Climate Change archive. In these simulations atmospheric moisture increases globally, resulting in an increase of moisture transport by 0.25 Sv from the Atlantic to Pacific. Thus, in both scenarios, moisture transport changes act to stabilize the thermohaline circulation. The notion that the Andes effectively block moisture transport from the Atlantic to the Pacific basin is not supported by the simulations and atmospheric reanalyses examined here. This indicates that such a blocking effect does not exist or else that higher resolution is needed to adequately represent the steep orography of the Andes. (orig.)

  16. Sources and mixing state of summertime background aerosol in the north-western Mediterranean basin

    Science.gov (United States)

    Arndt, Jovanna; Sciare, Jean; Mallet, Marc; Roberts, Greg C.; Marchand, Nicolas; Sartelet, Karine; Sellegri, Karine; Dulac, François; Healy, Robert M.; Wenger, John C.

    2017-06-01

    An aerosol time-of-flight mass spectrometer (ATOFMS) was employed to provide real-time single particle mixing state and thereby source information for aerosols impacting the western Mediterranean basin during the ChArMEx-ADRIMED and SAF-MED campaigns in summer 2013. The ATOFMS measurements were made at a ground-based remote site on the northern tip of Corsica. Twenty-seven distinct ATOFMS particle classes were identified and subsequently grouped into eight general categories: EC-rich (elemental carbon), K-rich, Na-rich, amines, OC-rich (organic carbon), V-rich, Fe-rich and Ca-rich particles. Mass concentrations were reconstructed for the ATOFMS particle classes and found to be in good agreement with other co-located quantitative measurements (PM1, black carbon (BC), organic carbon, sulfate mass and ammonium mass). Total ATOFMS reconstructed mass (PM2. 5) accounted for 70-90 % of measured PM10 mass and was comprised of regionally transported fossil fuel (EC-rich) and biomass burning (K-rich) particles. The accumulation of these transported particles was favoured by repeated and extended periods of air mass stagnation over the western Mediterranean during the sampling campaigns. The single particle mass spectra proved to be valuable source markers, allowing the identification of fossil fuel and biomass burning combustion sources, and was therefore highly complementary to quantitative measurements made by Particle into Liquid Sampler ion chromatography (PILS-IC) and an aerosol chemical speciation monitor (ACSM), which have demonstrated that PM1 and PM10 were comprised predominantly of sulfate, ammonium and OC. Good temporal agreement was observed between ATOFMS EC-rich and K-rich particle mass concentrations and combined mass concentrations of BC, sulfate, ammonium and low volatility oxygenated organic aerosol (LV-OOA). This combined information suggests that combustion of fossil fuels and biomass produced primary EC- and OC-containing particles, which then

  17. Sources and mixing state of summertime background aerosol in the north-western Mediterranean basin

    Directory of Open Access Journals (Sweden)

    J. Arndt

    2017-06-01

    Full Text Available An aerosol time-of-flight mass spectrometer (ATOFMS was employed to provide real-time single particle mixing state and thereby source information for aerosols impacting the western Mediterranean basin during the ChArMEx-ADRIMED and SAF-MED campaigns in summer 2013. The ATOFMS measurements were made at a ground-based remote site on the northern tip of Corsica. Twenty-seven distinct ATOFMS particle classes were identified and subsequently grouped into eight general categories: EC-rich (elemental carbon, K-rich, Na-rich, amines, OC-rich (organic carbon, V-rich, Fe-rich and Ca-rich particles. Mass concentrations were reconstructed for the ATOFMS particle classes and found to be in good agreement with other co-located quantitative measurements (PM1, black carbon (BC, organic carbon, sulfate mass and ammonium mass. Total ATOFMS reconstructed mass (PM2. 5 accounted for 70–90 % of measured PM10 mass and was comprised of regionally transported fossil fuel (EC-rich and biomass burning (K-rich particles. The accumulation of these transported particles was favoured by repeated and extended periods of air mass stagnation over the western Mediterranean during the sampling campaigns. The single particle mass spectra proved to be valuable source markers, allowing the identification of fossil fuel and biomass burning combustion sources, and was therefore highly complementary to quantitative measurements made by Particle into Liquid Sampler ion chromatography (PILS-IC and an aerosol chemical speciation monitor (ACSM, which have demonstrated that PM1 and PM10 were comprised predominantly of sulfate, ammonium and OC. Good temporal agreement was observed between ATOFMS EC-rich and K-rich particle mass concentrations and combined mass concentrations of BC, sulfate, ammonium and low volatility oxygenated organic aerosol (LV-OOA. This combined information suggests that combustion of fossil fuels and biomass produced primary EC- and OC-containing particles, which

  18. Morphostructural characterization of the Charco basin and its surrounding areas in the Chihuahua segment of north Mexican Basin and Range Province

    Science.gov (United States)

    Troiani, Francesco; Menichetti, Marco

    2014-05-01

    The Chihuahua Basin and Range (CBR) is the eastern branch of the northern Mexican Basin and Range Province that, from a morphostructural point of view, presently is one amongst the lesser-known zones of the southern portion of the North America Basin and Range Province. The study area covers an approximately 800 km2-wide portion of the CBR and encompasses the fault-bounded Charco basin and its surrounding areas. The bedrock of the area pertains to the large siliceous-igneous province of the Sierra Madre Occidental and consists of volcanoclastic rocks including Oligocene dacite, rhyolite, rhyolitic tuffs, and polimitic conglomerates. The region is characterized by a series of NW-SE oriented valleys delimited by tilted monoclinal blocks bounded by high angle, SW-dipping, normal faults. Abrupt changes in elevation, alternating between narrow faulted mountain chains and flat arid valleys or basins are the main morphological elements of the area. The valleys correspond to structural grabens filled with Plio-Pleistocene continental sediments. These grabens are about 10 km wide, while the extensional fault system extend over a distance of more than 15 km. The mountain ranges are in most cases continuous over distances that range from 10 to 70 km including different branches of the extensional and transfer faults. The morphogenesis is mainly erosive in character: erosional landforms (such as rocky scarps, ridges, strath-terraces, erosional pediment, reverse slopes, landslide scar zones, litho-structural flat surfaces) dominate the landscape. In contrast, Quaternary depositional landforms are mainly concentrated within the flat valleys or basins. The Quaternary deposits consist of wide alluvial fans extending to the foot of the main ridges, fluvial and debris-slope deposits. The morphostructural characterization of the area integrated different methodologies, including: i) geomorphological and structural field analyses; ii) remote sensing and geo-morphometric investigations

  19. A potential archive of Pleistocene uplift and erosion in the eastern Nete basin, Campine area, north-eastern Belgium

    Science.gov (United States)

    Beerten, Koen; Leterme, Bertrand

    2013-04-01

    From a geodynamic point of view, the Campine area is situated on the crossroads between distinctive tectonic settings: the subsiding North Sea basin and Roer Valley Graben in the north, and the uplifting Brabant Massif and Ardennes in the south. In general, this has led to overall Cenozoic subsidence of the area and sedimentation of unconsolidated marine sands. However, the morphology of the present-day Nete basin, which is situated in the central and eastern part of the Campine area, is a clear example of an erosional feature and shows evidence of up to 30 m of Quaternary erosion. However, the drivers, timing and rate of landscape development in the Nete basin are poorly constrained. Here, we present and describe geological and geomorphological remnants testifying to past landscape development in the Nete basin, that will help understanding the Quaternary geodynamic evolution (uplift) of the Campine area. The Nete basin is located in northern Belgium and is drained by two small rivers, the Kleine Nete and Grote Nete, that merge into the larger Nete river several km before entering the Lower Scheldt basin. The Nete basin can clearly be identified on topographical maps as a depression, ca. 40 km x 40 km, with valley floors ranging between 10-20 m above sea level (a.s.l.). It is bounded in the north, east and south by erosion resistant geological formations at altitudes between 30 m (north) and 60 m (south). The major direction of drainage is from ENE to WSW and the basin thus opens towards the west. The start of basin development is situated after deposition of Rhine sediments (~ 1 Ma) which form the erosion resistant eastern watershed with the Meuse basin at an altitude of ~ 50 m a.s.l. on top of the Campine Plateau. GIS-based landscape analysis of the topography and the contour map of the Quaternary base confirm the observation that the lowering of the relief from the Campine Plateau down to the floodplain of the Kleine Nete and Grote Nete shows a stepwise

  20. Organic-rich shales from internal Betic basins (SE Spain): potential source rocks analogs for the pre-Messinian Salt play in the western Mediterranean

    Energy Technology Data Exchange (ETDEWEB)

    Permanyer, A.; Jorge, R.; Baudino, R.; Gilbert, L.

    2016-07-01

    Southeastern Spain has a large number of Late Neogene basins with substantial evaporitic deposits that developed under an overall NNW-SSE compressional regime related to the African-European tectonic plates collision. Located in the Betic Cordillera, they can be considered as marginal Mediterranean basins that became gradually isolated during the Tortonian and Early Messinian due to tectonic uplift. Different evaporitic units accumulated in these basins during isolation and, in several cases, evaporitic conditions were associated to episodes of important organic matter accumulation. Results obtained from Late Tortonian to Early Messinian shales collected from boreholes, mines and outcrops in the internal Betic basins of Las Minas de Hellín, Cenajo and Socovos are presented. The organic matter was studied under fluorescence and scanning electron microscopy (SEM), and the main geochemical characteristics defined. They show a relation between organic-rich intervals with high potential of hydrocarbon generation, native sulfur, bio-induced dolomite and evaporitic deposits. These organicrich shales can be found before, during and after the evaporitic episodes. Results from the present study are compared with those previously obtained in the pre-evaporitic deposits of the Lorca Basin that showed high oil generation potential, a restricted-marine origin of the organic matter and a low degree of maturity. The occurrence of such potential source rocks in several basins points to a broad regional distribution. At a larger scale, in the Mediterranean Basin, organic-rich sediments were deposited before and during the Messinian Salinity Crisis. The studied examples could represent analogs for potential source rocks of the pre-Messinian salt play in the Western Mediterranean. (Author)

  1. Olea europaea L. in the North Mediterranean Basin during the Pleniglacial and the Early-Middle Holocene

    Science.gov (United States)

    Carrión, Yolanda; Ntinou, Maria; Badal, Ernestina

    2010-04-01

    The paper aims to define the natural distribution of Olea europaea L. var. sylvestris (Miller) Lehr. in the North Mediterranean basin during the Pleniglacial and the Early-Middle Holocene by means of the identification of its wood-charcoal and/or wood at prehistoric sites. For this purpose we have reviewed the previously available information and we have combined it with new wood-charcoal analyses data. We have taken under consideration the presence and frequency of O. europaea L. in the available wood-charcoal sequences, the characteristics of the accompanying flora, the associated chrono-cultural contexts, the broader biogeographical context and the AMS dates provided by Olea wood-charcoal or endocarps. According to the available evidence, during the Middle and Late Pleniglacial (ca 59-11.5 ka cal. BP), Olea would have persisted in thermophilous refugia located in the southern areas of the North Mediterranean basin, the southern Levant and the north of Africa. The Last Glacial Maximum (ca 22-18 ka cal. BP) probably reduced the distribution area of Olea. During the Preboreal and the Boreal (ca 11 500-8800 cal. BP) the species started to expand in the thermomediterranean bioclimatic level. In the western Mediterranean, during the Atlantic period (ca 8800-5600 cal. BP), the species became very abundant or dominant in the thermophilous plant formations and expanded to favorable enclaves outside the limits of the thermomediterranean level.

  2. Geology, selected geophysics, and hydrogeology of the White River and parts of the Great Salt Lake Desert regional groundwater flow systems, Utah and Nevada

    Science.gov (United States)

    Rowley, Peter D.; Dixon, Gary L.; Watrus , James M.; Burns, Andrews G.; Mankinen, Edward A.; McKee, Edwin H.; Pari, Keith T.; Ekren, E. Bartlett; Patrick , William G.; Comer, John B.; Inkenbrandt, Paul C.; Krahulec, K.A.; Pinnell, Michael L.

    2016-01-01

    The east-central Great Basin near the Utah-Nevada border contains two great groundwater flow systems. The first, the White River regional groundwater flow system, consists of a string of hydraulically connected hydrographic basins in Nevada spanning about 270 miles from north to south. The northernmost basin is Long Valley and the southernmost basin is the Black Mountain area, a valley bordering the Colorado River. The general regional groundwater flow direction is north to south. The second flow system, the Great Salt Lake Desert regional groundwater flow system, consists of hydrographic basins that straddle

  3. Optimum combination of water drainage, water supply and eco-environment protection in coal-accumulated basin of North China

    Institute of Scientific and Technical Information of China (English)

    武强; 董东林; 石占华; 武雄; 孙卫东; 叶责钧; 李树文; 刘金韬

    2000-01-01

    The conflict among water drainage, water supply and eco-environment protection is getting more and more serious due to the irrational drainage and exploitation of ground water resources in coal-accumulated basins of North China. Efficient solutions to the conflict are to maintain long-term dynamic balance between input and output of the ground water basins, and to try to improve resourcification of the mine water. All solutions must guarantee the eco-environment quality. This paper presents a new idea of optimum combination of water drainage, water supply and eco-environment protection so as to solve the problem of unstable mine water supply, which is caused by the changeable water drainage for the whole combination system. Both the management of hydraulic techniques and constraints in economy, society, ecology, environment, industrial structural adjustments and sustainable developments have been taken into account. Since the traditional and separate management of different departments of water drainage,

  4. A study on uranium metallogenetic prospects of ground water oxidation zone type in the lower cretaceous, north Shanganning basin

    International Nuclear Information System (INIS)

    Wang Jinping

    2000-01-01

    Lower Cretaceous is developed well in the north part of Shanganning basin. The area was widely uplifting vertically after their deposited. Based on the features of lithology, lithophase and Neotectonic forms, two main periods of oxidation-erosion of K2-E1 and N1-present can be distinguished. During these two periods, large scale horizontal oxidation were occurred. It is significant that the ground water oxidation related to the uranium mineralization and has been proved by the field investigation and the data of γ-logging in drill hole for oil. Meanwhile, according to the hydrodynamic features of present Shanganning plateau type artesian basin, it seems that uranium mineralization main related to the ground water oxidation the upper parts of the Lower Cretaceous

  5. Sensitivity of modeled atmospheric nitrogen species and nitrogen deposition to variations in sea salt emissions in the North Sea and Baltic Sea regions

    Directory of Open Access Journals (Sweden)

    D. Neumann

    2016-03-01

    Full Text Available Coarse sea salt particles are emitted ubiquitously from the ocean surface by wave-breaking and bubble-bursting processes. These particles impact the atmospheric chemistry by affecting the condensation of gas-phase species and, thus, indirectly the nucleation of new fine particles, particularly in regions with significant air pollution. In this study, atmospheric particle concentrations are modeled for the North Sea and Baltic Sea regions in northwestern Europe using the Community Multiscale Air Quality (CMAQ modeling system and are compared to European Monitoring and Evaluation Programme (EMEP measurement data. The sea salt emission module is extended by a salinity-dependent scaling of the sea salt emissions because the salinity in large parts of the Baltic Sea is very low, which leads to considerably lower sea salt mass emissions compared to other oceanic regions. The resulting improvement in predicted sea salt concentrations is assessed. The contribution of surf zone emissions is considered separately. Additionally, the impacts of sea salt particles on atmospheric nitrate and ammonium concentrations and on nitrogen deposition are evaluated. The comparisons with observational data show that sea salt concentrations are commonly overestimated at coastal stations and partly underestimated farther inland. The introduced salinity scaling improves the predicted Baltic Sea sea salt concentrations considerably. The dates of measured peak concentrations are appropriately reproduced by the model. The impact of surf zone emissions is negligible in both seas. Nevertheless, they might be relevant because surf zone emissions were cut at an upper threshold in this study. Deactivating sea salt leads to minor increases in NH3 +  NH4+ and HNO3 +  NO3− and a decrease in NO3− concentrations. However, the overall effect on NH3 +  NH4+ and HNO3 +  NO3− concentrations is smaller than the deviation from the measurements. Nitrogen wet deposition is

  6. Detailed geochemical study of the Dan River-Danville Triassic Basin, North Carolina and Virginia. National Uranium Resource Evaluation Program

    International Nuclear Information System (INIS)

    Thayer, P.A.; Cook, J.R.

    1982-08-01

    This abbreviated data report presents results of surface geochemical reconnaissance in the Dan River-Danville Triassic Basin of north-central North Carolina and south-central Virginia. Unweathered rock samples were collected at 380 sites within the basin at a nominal sampling density of one site per square mile. Field measurements and observations are reported for each site; analytical data and field measurements are presented in tables and maps. A detailed four-channel spectrometric survey was conducted, and the results are presented as a series of symbol plot maps for eU, eTh, and eU/eTh. Data from rock sample sites (on microfiche in pocket) include rock type and color and elemental analyses for U, Th, Hf, Al, Ce, Dy, Eu, Fe, La, Lu, Mn, Na, Sc, Sm, Ti, V, and Yb. Elemental uranium in 362 sedimentary rock samples from the Dan River-Danville Basin ranges from a low of 0.1 to a maximum of 13.3 parts per million (ppM). The log mean uranium concentration for these same samples is 0.37 ppM, and the log standard deviation is 0.24 ppM. Elemental uranium in 10 diabase dike samples from within the basin is in the range 0.1 to 0.7 ppM. The log mean uranium concentration for diabase samples is -.65 ppM, and the log standard deviation is 0.27. This report is issued in draft form, without detailed technical and copy editing. This was done to make the report available to the public before the end of the NURE program

  7. Drainage and Landscape Evolution in the Bighorn Basin Accompanying Advection of the Yellowstone Hotspot Swell Through North America

    Science.gov (United States)

    Guerrero, E. F.; Meigs, A.

    2012-12-01

    Mantle plumes have been recognized to express themselves on the surface as long wavelength and low amplitude topographic swells. These swells are measured as positive geoid anomalies and include shorter wavelength topographic features such as volcanic edifices and pre-exisitng topography. Advection of the topographic swell is expected as the lithosphere passes over the plume uplift source. The hot spot swell occurs in the landscape as transient signal that is expressed with waxing and waning topography. Waxing topography occurs at the leading edge of the swell and is expressed as an increase in rock uplift that is preserved by rivers and landscapes. Advection of topography predicts a shift in a basin from deposition to incision, an increase in convexity of a transverse river's long profile and a lateral river migration in the direction of advection. The Yellowstone region has a strong positive geoid anomaly and the volcanic signal, which have been interpreted as the longer and shorter wavelength topographic expressions of the hot spot. These expressions of the hot spot developed in a part of North America with a compounded deformation and topographic history. Previous studies of the Yellowstone topographic swell have concentrated on the waning or trailing signal preserved in the Snake River Plain. Our project revisits the classic geomorphology study area in the Bighorn Basin of Wyoming and Montana, which is in leading edge of the swell. Present models identify the swell as having a 400 km in diameter and that it is centered on the Yellowstone caldera. If we assume advection to occur in concert with the caldera eruptive track, the Yellowstone swell has migrated to the northeast at a rate of 3 cm yr-1 and began acting on the Bighorn Basin's landscape between 3 and 2 Ma. The Bighorn Basin has an established history of a basin-wide switch from deposition to incision during the late Pliocene, yet the age control on the erosional evolution of the region is relative. This

  8. Changes in streamflow and summary of major-ion chemistry and loads in the North Fork Red River basin upstream from Lake Altus, northwestern Texas and western Oklahoma, 1945-1999

    Science.gov (United States)

    Smith, S. Jerrod; Wahl, Kenneth L.

    2003-01-01

    Upstream from Lake Altus, the North Fork Red River drains an area of 2,515 square miles. The quantity and quality of surface water are major concerns at Lake Altus, and water-resource managers and consumers need historical information to make informed decisions about future development. The Lugert-Altus Irrigation District relies on withdrawals from the lake to sustain nearly 46,000 acres of agricultural land. Kendall's tau tests of precipitation data indicated no statistically significant trend over the entire 100 years of available record. However, a significant increase in precipitation occurred in the last 51 years. Four streamflow-gaging stations with more than 10 years of record were maintained in the basin. These stations recorded no significant trends in annual streamflow volume. Two stations, however, had significant increasing trends in the base-flow index, and three had significant decreasing trends in annual peak flows. Major-ion chemistry in the North Fork Red River is closely related to the chemical composition of the underlying bedrock. Two main lithologies are represented in the basin upstream from Lake Altus. In the upper reaches, young and poorly consolidated sediments include a range of sizes from coarse gravel to silt and clay. Nearsurface horizons commonly are cemented as calcium carbonate caliche. Finer-grained gypsiferous sandstones and shales dominate the lower reaches of the basin. A distinct increase in dissolved solids, specifically sodium, chloride, calcium, and sulfate, occurs as the river flows over rocks that contain substantial quantities of gypsum, anhydrite, and dolomite. These natural salts are the major dissolved constituents in the North Fork Red River.

  9. Formation of black and white smokers in the North Fiji Basin: Sulfur and lead isotope constraints

    Science.gov (United States)

    Kim, J.; Lee, I.; Lee, K.; Yoo, C.; Ko, Y.

    2004-12-01

    The hydrothermal chimneys were recovered from 16o50¡_S triple junction area in the North Fiji Basin. The chimney samples are divided into three groups according to their mineralogy and metal contents; 1) Black smoker, 2) White smoker, 3) Transitional type. Black smoker chimneys are mainly composed of chalcopyrite and pyrite, and are enriched in high temperature elements such as Cu, Co, Mo, and Se. White smoker chimneys consist of sphalerite and marcasite with trace of pyrite and chalcopyrite, and are enriched in low temperature elements (Zn, Cd, Pb, As, and Ga). Transitional chimneys show intermediate characteristics in mineralogy and composition between black and white smokers. Basaltic rocks sampled from the triple junction show wide variation in geochemistry. Trace elements composition of basaltic rocks indicates that the magma genesis in the triple junction area was affected by mixing between N-MORB and E-MORB sources. The sulfur and lead isotope compositions of hydrothermal chimneys show distinct differences between the black and white smokers. Black smokers are depleted in 34S (Øä34S = +0.4 to +4.8) and are low in lead isotope composition (206Pb/204Pb = 18.082 to 18.132; 207Pb/204Pb = 15.440 to 15.481; 208Pb/204Pb = 37.764 to 37.916) compared to white smoker and transitional chimneys (Øä34S = +2.4 to +5.6; 206Pb/204Pb = 18.122 to 18.193; 207Pb/204Pb = 15.475 to 15.554; 208Pb/204Pb = 37.882 to 38.150). The heavier sulfur isotopic fractionation in white smoker can be explained by boiling of hydrothermal fluids and mixing with ambient seawater. The lead isotope compositions of the hydrothermal chimneys indicate that the metal in black and white smokers come from hydrothermal reaction with N-MORB and E-MORB, respectively. Regarding both black and white smoker are located in the same site, the condition of phase separation of hydrothermal fluid that formed white smokers might result from P-T condition of high temperature reaction zone below the hydrothermal

  10. River Gain and Loss Studies for the Red River of the North Basin, North Dakota and Minnesota

    National Research Council Canada - National Science Library

    Williams-Sether, Tara

    2004-01-01

    The Dakota Water Resources Act passed by the U.S. Congress in 2000 authorized the Secretary of the Interior to conduct a comprehensive study of future water-quantity and -quality needs of the Red River of the North (Red River...

  11. Crustal layering and gravity highs in the Midcontinent of North America - implications for the formation of the Illinois Basin

    Science.gov (United States)

    Gilbert, H. J.; Boschelli, J.; Pavlis, G. L.; Hamburger, M. W.; Marshak, S.; Chen, C.; Yang, X.; DeLucia, M. S.; Larson, T. H.; Rupp, J.

    2017-12-01

    The emerging picture of crustal and lithospheric structure beneath the North American cratonic platform resulting from recent increases in the resolution of seismic studies is revealing a scale of complexity and heterogeneity not previously recognized. Examples of novel images of the lithosphere allowed by this increased sampling come from the results of the OIINK project, an EarthScope FlexArray experiment. OIINK data provides new insight into tectonic relationships among the Reelfoot Rift, Ozark Plateau, Rough Creek Graben, and Illinois Basin. Making use of ambient-noise tomography from data recorded by the OIINK Array and surrounding stations we produced a new shear-wave velocity model of the region. This model indicates detailed variations in crustal wavespeeds align with the regional tectonic features. Beyond corroborating previous observations of high-speed material in the mid- to lower crust of the southern Illinois Basin, this new model demonstrates that these anomalous velocities extend continuously from the Reelfoot, beneath the Mississippi Embayment, into southern Indiana. This model also includes a separate area characterized by a similarly thickened layer of increased velocities in the middle and lower crust beneath the LaSalle Deformation Belt, a north-south band of faults and folds that runs along the axis of the Illinois Basin. At depths of about 20 km, the top of these areas of thickened high-velocity crust align with a midcrustal discontinuity identified by receiver functions. Additionally, the lateral extent of these structures correlates with regions of increased Bouguer gravity. If the high-velocity structures contain high-density material, this configuration provides an explanation for the source of these positive gravity anomalies. These observations support a model in which Late Proterozoic rifting beneath the region of the Illinois Basin provided an opportunity for high-density material to enter the crust as residuum from melt extraction

  12. Geologic study of the interior Salt Domes of Northeast Texas Salt-Dome basin to investigate their suitability for possible storage of radioactive waste material

    International Nuclear Information System (INIS)

    1976-05-01

    The purpose of this study was to investigate the movement and hydrologic stability of the domes, to identify the domes which appear suitable for further study and consideration, and to outline the additional information needed to evaluate these domes. The growth of the interior salt domes appears to have slowed with geologic time and to have halted altogether. The Bullard, Whitehouse, and Keechi domes probably are not subject to significant dissolution at the present time. However, caprock found at Bullard and Whitehouse indicates that salt dissolution occurred at some period during the past 50 million years since Wilcox was deposited. It is recommended that shallow water wells be drilled and tested

  13. NFLUENCE OF SALTED ENVIRONMENT ON FODDER HERBS EFFICIENCY OF PASTURABLE PHYTOCOENOSES OF THE NORTH-WESTERN CASPIAN LOWLAND

    Directory of Open Access Journals (Sweden)

    R. Z. Usmanov

    2013-01-01

    Full Text Available Abstract. The changes in the intensity of biological processes in the vegetation and productivity of forage grasses depending on the degree of soil salinity of the North-West Caspian Lowland were studied. Salination factors are specific. They are formed because of their adaptive nature, providing for species the opportunity to get the certain position in the relevant biocenosis. As a result each species produces its own strategy of life. Development of saline processes of soil in the growth and development of the plant mass, biological and agronomic salt resistance is clearly seen. Biological salt resistance is characterized by the ability to maintain the viability of the plant body at the upper limit of salinity. Agronomical salt resistance is determined by the value of crop and productivity. Adaptive possibilities of different plant species with different biological characteristics were also examined.Subject, objective of the work. Productivity of vegetation of semidesert ecosystems and dynamics under the influence of salinity forage grass pasture phytocenoses of the North-West Caspian Lowland were studied.Test method. We studied fodder crops: wheat grass long (Elytrigia elongata, ctenoid wheatgrass (Agropirum cristatum and alfalfa (Medicago sativa. The crop from each significant area was weighed; it was taken from the average sample weighed in at 1 kg in a gauze bag for drying at a temperature of 60–65 °C in airing cupboard where brought to constant weight. Accounting for phytomass was carried by laying mowing area 8–10 times. Dimensions of mowing fields are 0.25 m2, that ensured coverage of all dominant plants.Results. At mid-saline meadow-chestnut soil of the North-West Caspian Lowland wheatgrass long gives the highest yield of green mass – 18,1 tons per hectare of dry weight average for 2003–2010. Alfalfa crop is in the second place, that is less than bluegrass by 18.0 % (2.9 tons per hectare. The least yield of these crops is

  14. Evolution of Meso-Cenozoic lithospheric thermal-rheological structure in the Jiyang sub-basin, Bohai Bay Basin, eastern North China Craton

    Science.gov (United States)

    Xu, Wei; Qiu, Nansheng; Wang, Ye; Chang, Jian

    2018-01-01

    The Meso-Cenozoic lithospheric thermal-rheological structure and lithospheric strength evolution of the Jiyang sub-basin were modeled using thermal history, crustal structure, and rheological parameter data. Results indicate that the thermal-rheological structure of the Jiyang sub-basin has exhibited obvious rheological stratification and changes over time. During the Early Mesozoic, the uppermost portion of the upper crust, middle crust, and the top part of the upper mantle had a thick brittle layer. During the early Early Cretaceous, the top of the middle crust's brittle layer thinned because of lithosphere thinning and temperature increase, and the uppermost portion of the upper mantle was almost occupied by a ductile layer. During the late Early Cretaceous, the brittle layer of the middle crust and the upper mantle changed to a ductile one. Then, the uppermost portion of the middle crust changed to a thin brittle layer in the late Cretaceous. During the early Paleogene, the thin brittle layer of the middle crust became even thinner and shallower under the condition of crustal extension. Currently, with the decrease in lithospheric temperature, the top of the upper crust, middle crust, and the uppermost portion of the upper mantle are of a brittle layer. The total lithospheric strength and the effective elastic thickness ( T e) in Meso-Cenozoic indicate that the Jiyang sub-basin experienced two weakened stages: during the late Early Cretaceous and the early Paleogene. The total lithospheric strength (approximately 4-5 × 1013 N m-1) and T e (approximately 50-60 km) during the Early Mesozoic was larger than that after the Late Jurassic (2-7 × 1012 N m-1 and 19-39 km, respectively). The results also reflect the subduction, and rollback of Pacific plate is the geodynamic mechanism of the destruction of the eastern North China Craton.

  15. Molten salt reactors and the oil sands: odd couple or key to north american energy independence?

    Energy Technology Data Exchange (ETDEWEB)

    LeBlanc, D., E-mail: d_leblanc@rogers.com [Ottawa Valley Research Associates Ltd., Ottawa, Ontario (Canada); Quesada, M.; Popoff, C.; Way, D. [Penumbra Energy, Calgary, Alberta (Canada)

    2012-07-01

    The use of nuclear power to aid oil sands development has often been proposed largely due to the virtual elimination of natural gas use and thus a large reduction in GHG emissions. Nuclear power can replace natural gas for process steam production (SAGD) and electricity generation but also potentially for hydrogen production to upgrade bitumen for pipeline transit, synthetic crude production and even at the final refinery stage. Prior candidates included CANDU and gas cooled Pebble Bed Reactors. The case for CANDU use can be shown to be marginally economic with a proven technology but with an uncertainty of current construction costs and too large a unit size (~2400 MWth). PBRs offered modest theoretical cost savings, smaller unit size and the ability to offer higher temperatures needed for thermochemical hydrogen production from water. Interest in PBRs however has greatly waned with the cancellation of their major South African development program which highlighted the severe challenges of helium as a coolant and TRISO fuel manufacturing. More recently, Small Modular Reactors based on scaled down light water reactor technology have attracted interest but are unlikely to compete economically outside of niche applications. However, a 'new' reactor option, the Molten Salt Reactor, has been rapidly gaining momentum over the past decade. This 'new' technology was actually developed over 50 years ago as a thorium breeder reactor to compete with the sodium cooled fast breeder reactor (U-Pu cycle). During this time two molten salt test reactors were constructed. A modern version however would likely be a simpler converter design using Low Enriched Uranium but needing only a small fraction the uranium resources of LWRs or CANDUs. Besides resource sustainability, these unique designs offer large potential improvements in the areas of capital costs, safety and nuclear waste. This presentation will explain the unique attributes and advantages of these

  16. Provenance of the Lower Triassic Bunter Sandstone Formation: implications for distribution and architecture of aeolian vs. fluvial reservoirs in the North German Basin

    DEFF Research Database (Denmark)

    Olivarius, Mette; Weibel, Rikke; Friis, Henrik

    2017-01-01

    Zircon U–Pb geochronometry, heavy mineral analyses and conventional seismic reflection data were used to interpret the provenance of the Lower Triassic Bunter Sandstone Formation. The succession was sampled in five Danish wells in the northern part of the North German Basin. The results show...... Shield did not supply much sediment to the basin as opposed to what was previously believed. Sediment from the Variscan belt was transported by wind activity across the North German Basin when it was dried out during deposition of the aeolian part of the Volpriehausen Member (lower Bunter Sandstone......). Fluvial sand was supplied from the Ringkøbing-Fyn High to the basin during precipitation events which occurred most frequently when the Solling Member was deposited (upper Bunter Sandstone). Late Neoproterozoic to Carboniferous zircon ages predominate in the Volpriehausen Member where the dominant age...

  17. Application of Geographic Information System (GIS) to Model the Hydrocarbon Migration: Case Study from North-East Malay Basin, Malaysia

    Science.gov (United States)

    Rudini; Nasir Matori, Abd; Talib, Jasmi Ab; Balogun, Abdul-Lateef

    2018-03-01

    The purpose of this study is to model the migration of hydrocarbon using Geographic Information System (GIS). Understanding hydrocarbon migration is important since it can mean the difference between success and failure in oil and gas exploration project. The hydrocarbon migration modeling using geophysical method is still not accurate due to the limitations of available data. In recent years, GIS has emerged as a powerful tool for subsurface mapping and analysis. Recent studies have been carried out about the abilities of GIS to model hydrocarbon migration. Recent advances in GIS support the establishment and monitoring of prediction hydrocarbon migration. The concept, model, and calculation are based on the current geological situation. The spatial data of hydrocarbon reservoirs is determined by its geometry of lithology and geophysical attributes. Top of Group E horizon of north-east Malay basin was selected as the study area due to the occurrence of hydrocarbon migration. Spatial data and attributes data such as seismic data, wells log data and lithology were acquired and processed. Digital Elevation Model (DEM) was constructed from the selected horizon as a result of seismic interpretation using the Petrel software. Furthermore, DEM was processed in ArcGIS as a base map to shown hydrocarbon migration in north-east Malay Basin. Finally, all the data layers were overlaid to produce a map of hydrocarbon migration. A good data was imported to verify the model is correct.

  18. Application of Geographic Information System (GIS to Model the Hydrocarbon Migration: Case Study from North-East Malay Basin, Malaysia

    Directory of Open Access Journals (Sweden)

    Rudini

    2018-01-01

    Full Text Available The purpose of this study is to model the migration of hydrocarbon using Geographic Information System (GIS. Understanding hydrocarbon migration is important since it can mean the difference between success and failure in oil and gas exploration project. The hydrocarbon migration modeling using geophysical method is still not accurate due to the limitations of available data. In recent years, GIS has emerged as a powerful tool for subsurface mapping and analysis. Recent studies have been carried out about the abilities of GIS to model hydrocarbon migration. Recent advances in GIS support the establishment and monitoring of prediction hydrocarbon migration. The concept, model, and calculation are based on the current geological situation. The spatial data of hydrocarbon reservoirs is determined by its geometry of lithology and geophysical attributes. Top of Group E horizon of north-east Malay basin was selected as the study area due to the occurrence of hydrocarbon migration. Spatial data and attributes data such as seismic data, wells log data and lithology were acquired and processed. Digital Elevation Model (DEM was constructed from the selected horizon as a result of seismic interpretation using the Petrel software. Furthermore, DEM was processed in ArcGIS as a base map to shown hydrocarbon migration in north-east Malay Basin. Finally, all the data layers were overlaid to produce a map of hydrocarbon migration. A good data was imported to verify the model is correct.

  19. Magnetotelluric and aeromagnetic investigations for assessment of groundwater resources in Parnaiba basin in Piaui State of North-East Brazil

    Science.gov (United States)

    Chandrasekhar, E.; Fontes, Sergio L.; Flexor, Jean M.; Rajaram, Mita; Anand, S. P.

    2009-06-01

    In an attempt to locate the presence of possible groundwater resource regions in the semi-arid North-East Brazil, an integrated survey including aeromagnetic and magnetotelluric (MT) studies have been undertaken in the Guaribas region and only MT survey in the Caracol region. In the Guaribas region the aeromagnetic data, its analytic signal and Euler solutions reveal several subsurface small-scale faults and intrusives that are conducive to be potential groundwater resource regions. A total of about 22 broad-band magnetotelluric (MT) soundings in the period range of 0.006-300 s along two profiles on the marginal arcs of the intra-cratonic sedimentary Parnaíba basin in North-East Brazil have been made across the regional geological strike, the Senador Pompeu Lineament (SPL). SPL trends N40°E and marks a basement high reflecting an irregularity in the original basin geometry. While one of the MT profiles traverses across the SPL, the other lies only in the aeromagnetically surveyed sedimentary region. Two-dimensional inversion of MT data of both profiles shows that the sedimentary basin is conductive (100-150 Ω m) and shows as a thin graben with an average thickness of about 2-3 km beneath both profiles. The basin is located to be at shallow depths (from surface to about 500 m). Based on the facts that the study region falls on sedimentary region having low-to-very low permeability and also in accordance with the subsurface lithology around the study region, the mapped sedimentary basin largely manifests the zone of potential sedimentary aquifer having moderate resistivity of 50-250 Ω m and is located at relatively shallow depths. The identified aquifer zone is believed to have links with the Parnaiba River flowing at a distance of about 300 km NW from the study region. We discuss interpretation of our results of MT and aeromagnetic data sets in the light of hydrological features of the study region.

  20. Elements of an environmental decision support system for seasonal wetland salt management in a river basin subjected to water quality regulation

    Energy Technology Data Exchange (ETDEWEB)

    Quinn, N.W.T.

    2009-06-01

    Seasonally managed wetlands in the Grasslands Basin on the west-side of California's San Joaquin Valley provide food and shelter for migratory wildfowl during winter months and sport for waterfowl hunters during the annual duck season. Surface water supply to these wetlands contain salt which, when drained to the San Joaquin River during the annual drawdown period, can negatively impact water quality and cause concern to downstream agricultural riparian water diverters. Recent environmental regulation, limiting discharges salinity to the San Joaquin River and primarily targeting agricultural non-point sources, now also targets return flows from seasonally managed wetlands. Real-time water quality management has been advocated as a means of continuously matching salt loads discharged from agricultural, wetland and municipal operations to the assimilative capacity of the San Joaquin River. Past attempts to build environmental monitoring and decision support systems (EDSS's) to implement this concept have enjoyed limited success for reasons that are discussed in this paper. These reasons are discussed in the context of more general challenges facing the successful implementation of a comprehensive environmental monitoring, modelling and decision support system for the San Joaquin River Basin.

  1. High pollution events in the Great Salt Lake Basin and its adjacent valleys. Insights on mechanisms and spatial distribution of the formation of secondary aerosol.

    Science.gov (United States)

    Franchin, A.; Middlebrook, A. M.; Baasandorj, M.; Brown, S. S.; Fibiger, D. L.; Goldberger, L.; McDuffie, E. E.; Moravek, A.; Murphy, J. G.; Thornton, J. A.; Womack, C.

    2017-12-01

    High pollution events are common in many locations in the U.S.A. and around the world. They can last several days or up to weeks and they negatively affect human health, deteriorate visibility, and increase premature mortality. The main causes for high pollution events are related to meteorology and sources. They often happen in the winter, when high emissions, stagnation and reduced mixing, due to a shallow boundary layer, cause high concentrations of pollutants to accumulate. In the last decades, the air quality in the U.S. has seen an overall improvement, due to the reductions in particulate and gaseous pollutants. However, some areas remain critical. The Great Salt Lake Basin and its adjacent valleys are currently areas where high pollution events are a serious environmental problem involving more than 2.4 million people. We will present the results of the Utah Wintertime Fine Particulate Study (UWFPS) that took place in winter 2017. During UWFPS, we carried out airborne measurements of aerosol chemical composition and precursor vapor concentrations over the Great Salt Lake Basin and its adjacent valleys. We will give insights into how and under which conditions conversion of precursor vapors into aerosol particles takes place in the area. We will also present a comparison of our measurements with models that will provide an insight of the mechanisms that lead to the formation of secondary aerosol particles. With the results of our work, we aim to inform strategies for pollution control in the future.

  2. A reassessment of North American river basin water balances in light of new estimates of mountain snow accumulation

    Science.gov (United States)

    Wrzesien, M.; Durand, M. T.; Pavelsky, T.

    2017-12-01

    The hydrologic cycle is a key component of many aspects of daily life, yet not all water cycle processes are fully understood. In particular, water storage in mountain snowpacks remains largely unknown. Previous work with a high resolution regional climate model suggests that global and continental models underestimate mountain snow accumulation, perhaps by as much as 50%. Therefore, we hypothesize that since snow water equivalent (one aspect of the water balance) is underestimated, accepted water balances for major river basins are likely wrong, particularly for mountainous river basins. Here we examine water balances for four major high latitude North American watersheds - the Columbia, Mackenzie, Nelson, and Yukon. The mountainous percentage of each basin ranges, which allows us to consider whether a bias in the water balance is affected by mountain area percentage within the watershed. For our water balance evaluation, we especially consider precipitation estimates from a variety of datasets, including models, such as WRF and MERRA, and observation-based, such as CRU and GPCP. We ask whether the precipitation datasets provide enough moisture for seasonal snow to accumulate within the basin and whether we see differences in the variability of annual and seasonal precipitation from each dataset. From our reassessment of high-latitude water balances, we aim to determine whether the current understanding is sufficient to describe all processes within the hydrologic cycle or whether datasets appear to be biased, particularly in high-elevation precipitation. Should currently-available datasets appear to be similarly biased in precipitation, as we have seen in mountain snow accumulation, we discuss the implications for the continental water budget.

  3. An integrated geological and geophysical study of the Parnaíba cratonic basin, North-East Brazil

    Science.gov (United States)

    Tozer, B.; Watts, A. B.; Daly, M.

    2015-12-01

    Cratonic basins are characterized by their sub-circular shape, long-lived (>100 Myr) subsidence, shallow marine/terrestrial sediments that young towards the center of the basin and exhibit little internal deformation, and thick seismic lithosphere. Despite the recognition of >30 world-wide, the paucity of geological and geophysical data over these basins means their origin remains enigmatic. In order to address this problem, we have used a recently acquired 1400 km long seismic reflection profile recorded to 20 s TWTT, field observations and well logs, gravity and magnetic data acquired at 1 km intervals, and five wide-angle refection/refraction receiver gathers recorded at offsets up to 100 km, to constrain the origin of the Parnaíba basin, North-East Brazil. We find a depth to pre-Paleozoic basement and Moho of ~ 3.5 and ~ 40 - 42 km respectively beneath the basin center. A prominent mid-crustal reflection (MCR) can be tracked laterally for ~ 300 km at depths between 17 - 25 km and a low-fold wide-angle receiver gather stack shows that the crust below the MCR is characterized by a ~ 4 s TWTT package of anastomosing reflections. Gravity modelling suggests that the MCR represents the upper surface of a high density (+0.14 kg m-3) lower crustal body, which is probably of magmatic origin. Backstripping of biostratigraphic data from wells in the center of the basin show an exponentially decreasing subsidence. We show that although cooling of a thick (180 km) lithosphere following prolonged rifting (~ 65 Myr) can provide a good fit to the tectonic subsidence curves, process-oriented gravity and flexure modelling suggest that other processes must be important, as rifting does not account for the observed gravity anomaly and predicts too thin a crust (~ 34 km). The thicker than expected crust suggests warping due, for example, to far-field stresses or basal tractions. Another possibility, which is compatible with existing geophysical data, is a dense magmatic intrusion

  4. Preliminary study of the uranium potential of the northern part of the Durham Triassic Basin, North Carolina

    International Nuclear Information System (INIS)

    Harris, W.B.; Thayer, P.A.

    1981-09-01

    This report presents results of a four-channel spectrometric survey of the northern part of the Durham Triassic basin and adjacent Piedmont, North Carolina. Gamma-ray spectrometric measurements were obtained at 112 localities from 136 different lithologies. The nominal sampling density in the Durham Basin is one site per 2 mi 2 . Surface radiometric surveys reveal no anomalous radioactivity in the northern part of the Durham Basin. Uranium concentrations in Triassic rocks are from 0.6 to 9.7 ppM and average 2.9 ppM. Mudrocks contain from 1.3 to 9.7 ppM, and the average is 4.5 ppM. Sandstones contain from 0.6 to 8.8 ppM, and the average is 2.5 ppM. Fanglomerates contain the lowest concentrations of uranium, from 1.4 to 2.0 ppM, for an average of 1.8 ppM. Uranium/thorium ratios average 0.27 for Triassic rocks and are from 0.04 to 1.85. The mean log uranium/log thorium for Triassic rocks is 0.37. Mudrock has the highest average uranium/thorium ratio (0.32), and the range is 0.09 to 0.66. Sandstones have an average uranium/thorium ratio of 0.26, and the range is 0.04 to 1.85. Fanglomerates have the lowest range uranium/thorium ratio (0.19), and the range is 0.12 to 0.19. On the basis of surface radiometric surveys and geologic studies, it is believed that sedimentary strata in the northern part of the Durham Basin are poor targets for further uranium exploration. This conclusion is based on the lack of favorable characteristics commonly present in fluvial uranium deposits. Among these are: (1) carbonaceous material is absent in Triassic rocks of the northern basin, (2) indicators of a reduzate facies in sandstones are not present, and (3) no tuffaceous beds are associated with sediments in the northern Durham Basin

  5. Comparison of two different sea-salt aerosol schemes as implemented in air quality models applied to the Mediterranean Basin

    Directory of Open Access Journals (Sweden)

    P. Jiménez-Guerrero

    2011-05-01

    Full Text Available A number of attempts have been made to incorporate sea-salt aerosol (SSA source functions in chemistry transport models with varying results according to the complexity of the scheme considered. This contribution compares the inclusion of two different SSA algorithms in two chemistry transport models: CMAQ and CHIMERE. The main goal is to examine the differences in average SSA mass and composition and to study the seasonality of the prediction of SSA when applied to the Mediterranean area with high resolution for a reference year. Dry and wet deposition schemes are also analyzed to better understand the differences observed between both models in the target area. The applied emission algorithm in CHIMERE uses a semi-empirical formulation which obtains the surface emission rate of SSA as a function of the particle size and the surface wind speed raised to the power 3.41. The emission parameterization included within CMAQ is somehow more sophisticated, since fluxes of SSA are corrected with relative humidity. In order to evaluate their strengths and weaknesses, the participating algorithms as implemented in the chemistry transport models were evaluated against AOD measurements from Aeronet and available surface measurements in Southern Europe and the Mediterranean area, showing biases around −0.002 and −1.2 μg m−3, respectively. The results indicate that both models represent accurately the patterns and dynamics of SSA and its non-uniform behavior in the Mediterranean basin, showing a strong seasonality. The levels of SSA strongly vary across the Western and the Eastern Mediterranean, reproducing CHIMERE higher annual levels in the Aegean Sea (12 μg m−3 and CMAQ in the Gulf of Lion (9 μg m−3. The large difference found for the ratio PM2.5/total SSA in CMAQ and CHIMERE is also investigated. The dry and wet removal rates are very similar for both models despite the different schemes

  6. An environmental DNA assay for detecting Arctic grayling in the upper Missouri River basin, North America

    Science.gov (United States)

    K. J. Carim; J. C. S. Dysthe; Michael Young; Kevin McKelvey; Michael Schwartz

    2016-01-01

    The upper Missouri River basin in the northwestern US contains disjunct Arctic grayling (Thymallus arcticus) populations of conservation concern. To assist efforts aimed at understanding Artic grayling distribution, we developed a quantitative PCR assay to detect the presence of Arctic grayling DNA in environmental samples. The assay amplified low...

  7. Source rocks and related petroleum systems of the Chelif Basin, (western Tellian domain, north Algeria)

    NARCIS (Netherlands)

    Arab, Mohamed; Bracène, Rabah; Roure, François; Zazoun, Réda Samy; Mahdjoub, Yamina; Badji, Rabie

    2015-01-01

    In the Chelif basin, the geochemical characterization reveals that the Upper Cretaceous and Messinian shales have a high generation potential. The former exhibits fair to good TOC values ranging from 0.5 to 1.2% with a max. of 7%. The Messinian series show TOC values comprised between 0.5 and 2.3%

  8. Geological evolution of the North Sea: Cross-border basin modeling study on the schillground high

    NARCIS (Netherlands)

    Heim, S.; Lutz, R.; Nelskamp, S.; Verweij, J.M.; Kaufmann, D.; Reinhardt, L.

    2013-01-01

    This study presents the results of a basin modeling study covering the cross-border area of the southern Schillground High in the Dutch-German offshore area. A high resolution petroleum system model has been constructed with the aim to evaluate the hydrocarbon generation potential of Carboniferous

  9. Water quality of streams in the Red River of the North Basin, Minnesota, North Dakota, and South Dakota, 1970-2001

    Science.gov (United States)

    Tornes, Lan H.

    2005-01-01

    Data for the Red River of the North (Red River) Basin in Minnesota, North Dakota, and South Dakota were analyzed to determine whether the water quality of streams in the basin is adequate to meet future needs. For the Red River at Emerson, Manitoba, site, pH values, water temperatures, and dissolved-oxygen concentrations generally were within the criteria established for the protection of aquatic life. Dissolved-solids concentrations ranged from 245 to 1,100 milligrams per liter. Maximum sulfate and chloride concentrations were near, but did not exceed, the established secondary maximum contaminant level. The trace elements considered potentially harmful generally were at concentrations that were less than the established guidelines, standards, and criteria. The concentrations of lead that were detected may have occurred as a result of sample contamination.  For the Red River upstream from Emerson, Manitoba, sites, pH and other field values rarely exceeded the criteria established for the protection of aquatic life. Many constituent concentrations for the Red River below Fargo, N. site exceeded water-quality guidelines, standards, and criteria. However, the trace-element exceedances could be natural or could be related to pollution or sample contamination. Many of the tributaries in the western part of the Red River Basin had median specific-conductance values that were greater than 1,000 microsiemens per centimeter. Sulfate concentrations occasionally exceeded the established drinking-water standard. Median arsenic concentrations were 6 micrograms per liter or less, and maximum concentrations rarely exceeded the 10-microgram-per-liter drinking-water standard that is scheduled to take effect in 2006. The small concentrations of lead, mercury, and selenium that occasionally were detected may have been a result of sample contamination or other factors. The tributaries in the eastern part of the Red River Basin had median specific-conductance values that were less

  10. North Atlantic near-surface salinity contrasts and intra-basin water vapor transfer

    Science.gov (United States)

    Reagan, J. R.; Seidov, D.; Boyer, T.

    2017-12-01

    The geographic distribution of near-surface salinity (NSS) in the North Atlantic is characterized by a very salty (>37) subtropical region contrasting with a much fresher (NSS. Additional results and potential implications will be presented and discussed.

  11. Analysis of the fault geometry of a Cenozoic salt-related fault close to the D-1 well, Danish North Sea

    Energy Technology Data Exchange (ETDEWEB)

    Roenoe Clausen, O.; Petersen, K.; Korstgaard, A.

    1995-12-31

    A normal detaching fault in the Norwegian-Danish Basin around the D-1 well (the D-1 faults) has been mapped using seismic sections. The fault has been analysed in detail by constructing backstripped-decompacted sections across the fault, contoured displacement diagrams along the fault, and vertical displacement maps. The result shows that the listric D-1 fault follows the displacement patterns for blind normal faults. Deviations from the ideal displacement pattern is suggested to be caused by salt-movements, which is the main driving mechanisms for the faulting. Zechstein salt moves primarily from the hanging wall to the footwall and is superposed by later minor lateral flow beneath the footwall. Back-stripping of depth-converted and decompacted sections results in an estimation of the salt-surface and the shape of the fault through time. This procedure then enables a simple modelling of the hanging wall deformation using a Chevron model with hanging wall collapse along dipping surfaces. The modelling indicates that the fault follows the salt surface until the Middle Miocene after which the offset on the fault also may be accommodated along the Top Chalk surface. (au) 16 refs.

  12. Influence of the Istranca-Rhodope Massifs and strands of the North Anatolian Fault on oil potential of Thrace Basin, NW Turkey

    International Nuclear Information System (INIS)

    Coskun, B.

    2000-01-01

    The Thrace Basin (NW Turkey) is an intermontane trough bounded to the north and west by the granitic and metamorphic rocks of the Istranca and Rhodope Massifs. Recent subsurface studies of the NW portion of the Thrace Basin have led to the identification of two trends in geothermal gradient, both of which are oriented approximately NW-SE (i.e. parallel to the depositional axis of the basin). Geological and geophysical data indicate that, due to the thrust of the Istranca Massif upon the Rhodope Massif, the subsurface temperature may have increased in the northern part of the basin. Other controls were wrench-fault activity of the Splays of the North Anatolian Fault (SNAF) and continuing basinal subsidences. The thermal history of the southern part of the basin was affected by Miocene ophiolitic emplacement to the west in Greece. The presence of a belt of intrabasinal palaeotopography (mainly Palaeozoic rocks) also contributed to increased geothermal gradients in the southern part of the study area. The basin is divisible into northern and southern zones of subsidence, which are separated by the Kuleli-Babaeski High. During the Oligocene, subsidence rates were highest in the northern zone and in the western sector of the southern zone. Later, during the Miocene, basin subsidence was associated with intense tectonic activity of the SNAF and with the emplacement of ophiolites to the west. A map of the top of the oil generation zone, based on TTI values calculated by the Lopatin method, indicates the presence of two maturation zones in the basin ; these were separated by the Late Oligocene Kuleli-Babaeski High. Oil generation in these zones was influenced by rapid subsidence, by a NW-SE oriented wrench fault system associated with the NAF and also by tectonic activity of the Istranca and Rhodope Massifs in the study area

  13. Study on the relationship of the fault-block structure feature and sandstone uranium formation in Chaoshui basin north belt

    International Nuclear Information System (INIS)

    Liu Lin

    2006-12-01

    The mineralization conditions for three types of acclivity belt (Baojia Jing A' Lashan Youqi-Tangjia Gou and Taojia Jing CHAOSHUI BASIN NORTH BELT) are analyzed, according to the fault-block acclivity belt, the prospecting goal layer, the interlayer oxidized zone and uranium metallization characteristic and so on. It is considered that the positive fault-block acclivity belt favors containing oxygen and uranium water coming from eclipse source area to go into prospecting goal layer, and advanced the formation of interlayer oxidized zone and sandstone uranium metallization. The antithetic fault-block and the buried fault-block acclivity don't favors containing oxygen and uranium water into prospecting goal layer, and format difficultly interlayer oxidized belt and sandstone uranium metallization. Therefore A'Lashan Youqi-Tangjia Gou part is a uranium mineralization prospect sector. (authors)

  14. Rift magmatism on the Eurasia basin margin: U–Pb baddeleyite ages of alkaline dyke swarms in North Greenland

    DEFF Research Database (Denmark)

    Thórarinsson, Sigurjón B.; Söderlund, Ulf; Døssing, Arne

    2015-01-01

    The opening of the Arctic Ocean involved multiple stages of continental rifting and intrusion of extensive dyke swarms. To trace tectonomagmatic processes of the High Arctic, we present the first U–Pb ages for alkaline dyke swarms of North Greenland. Concordia ages of 80.8 ± 0.6 and 82.1 ± 1.5 Ma...... indicate that north–south and east–west dykes are coeval. The north–south dykes reflect initial east–west rifting that led to break-up along the Gakkel Ridge and formation of the Eurasia Basin. The east–west dykes reflect local variations in the stress field associated with reactivated Palaeozoic faults...

  15. Consequences of coal mining and burning in the North Bohemian Brown Coal Basin (2). Territorial consequences of coal mining

    International Nuclear Information System (INIS)

    Stahlik, Z.

    1992-01-01

    Out of the 1450 km 2 of the North Bohemian Brown Coal Basin, the area of the coal-bearing territory is 850 km 2 . The area occupied by the open pits, spoil banks and mines is nearly 27O km 2 , out of which over 90 km 2 have already been recultivated. Predicted mining development scenarios for the region till 2035 are outlined. The extent of mining will decrease gradually, and land will be reclaimed. The abandoned pits will be filled with water and employed for recreation purposes. The specific features of the individual open pit mines are given. The ways to reduce the adverse environmental impacts of mining are outlined; these include, in particular, desulfurization of existing power plants on the one hand, and energy savings associated with a reduction in mining and power generation activities on the other hand. (J.B.)

  16. Fluvial evolution of the Rhine during the last interglacial-glacial cycle in the southern North Sea basin : A review and look forward

    NARCIS (Netherlands)

    Peeters, Jan; Busschers, Freek S.; Stouthamer, Esther

    2015-01-01

    This paper presents the current state of knowledge on the evolution and depositional history of the River Rhine in the southern part of the North Sea basin during the upper Middle and Late Pleistocene, and its response to climate change, sea-level oscillation and glacio-isostasy. The study focuses

  17. Fluvial evolution of the Rhine during the last interglacial-glacial cycle in the southern North Sea basin: A review and look forward

    NARCIS (Netherlands)

    Peeters, J.; Busschers, F.S.; Stouthamer, E.

    2015-01-01

    This paper presents the current state of knowledge on the evolution and depositional history of the River Rhine in the southern part of the North Sea basin during the upper Middle and Late Pleistocene, and its response to climate change, sea-level oscillation and glacio-isostasy. The study focuses

  18. Pleistocene magnetochronology of the fauna and Paleolithic sites in the Nihewan Basin: Significance for environmental and hominin evolution in North China

    NARCIS (Netherlands)

    Ao, H.; An, Z.; Dekkers, M.J.; Li, Y.; Xiao, G.; Zhao, H.; Qiang, X.

    2013-01-01

    The fluvio-lacustrine sequences in the Nihewan Basin of North China (known as the Nihewan Formation) are rich sources of Early Pleistocene Paleolithic sites and mammalian fossils (known as the Nihewan Fauna sensu lato), which offer an excellent opportunity to investigate the evolution of early

  19. Hydrology of the Chicod Creek basin, North Carolina, prior to channel improvements

    Science.gov (United States)

    Simmons, Clyde E.; Aldridge, Mary C.

    1980-01-01

    Extensive modification and excavation of stream channels in the 6-square mile Chicod Creek basin began in mid-1979 to reduce flooding and improve stream runoff conditions. The effects of channel improvements on this Coastal Pain basin 's hydrology will be determined from data collected prior to, during, and for several years following channel alternations. This report summarizes the findings of data collected prior to these improvements. During the 3-year study period, flow data collected from four stream gaging stations in the basin show that streams are dry approximately 10 percent of the time. Chemical analyses of water samples from the streams and from eight shallow groundwater observation wells indicate that water discharge from the surficial aquifer is the primary source of streamflow during rainless periods. Concentrations of Kjeldahl nitrogen, total nitrogen, and total phosphorus were often 5 to 10 times greater at Chicod Creek sites than those at nearby baseline sites. It is probable that runoff from farming and livestock operations contributes significantly to these elevated concentrations in Chicod Creek. The only pesticides detected in stream water were low levels of DDT and dieldrin, which occurred during storm runoff. A much wider range of pesticides, however, are found associated with streambed materials. The ratio of fecal coliform counts to those of fecal streptococcus indicate that the streams receive fecal wastes from livestock and poultry operations.

  20. A record of astronomically forced climate change in a late Ordovician (Sandbian) deep marine sequence, Ordos Basin, North China

    Science.gov (United States)

    Fang, Qiang; Wu, Huaichun; Hinnov, Linda A.; Wang, Xunlian; Yang, Tianshui; Li, Haiyan; Zhang, Shihong

    2016-07-01

    The late Ordovician Pingliang Formation on the southwestern margin of the Ordos Basin, North China, consists of rhythmic alternations of shale, limestone, and siliceous beds. To explore the possible astronomical forcing preserved in this lithological record, continuous lithological rank and magnetic susceptibility (MS) stratigraphic series were obtained from a 34 m thick section of the Pingliang Formation at Guanzhuang. Power spectral analysis of the MS and rank series reveal 85.5 cm to 124 cm, 23 cm to 38 cm, and 15 cm to 27 cm thick sedimentary cycles that in ratio match that of late Ordovician short eccentricity, obliquity and precession astronomical cycles. The power spectrum of the MS time series, calibrated to interpreted short orbital eccentricity cycles, aligns with spectral peaks to astronomical parameters, including 95 kyr short orbital eccentricity, 35.3 kyr and 30.6 kyr obliquity, and 19.6 kyr and 16.3 kyr precession cycles. The 15 cm to 27 cm thick limestone-shale couplets mainly represent precession cycles, and siliceous bed deposition may be related to both precession and obliquity forcing. We propose that precession-forced sea-level fluctuations mainly controlled production of lime mud in a shallow marine environment, and transport to the basin. Precession and obliquity controlled biogenic silica productivity, and temperature-dependent preservation of silica may have been influenced by obliquity forcing.

  1. Hydro engineering Feasibility Study of Surface Runoff Water Harvesting in Al-Ajeej Basin, North West Iraq

    Directory of Open Access Journals (Sweden)

    Thair M. Al-Taiee

    2013-04-01

    Full Text Available The hydro engineering  characteristics of Al-Ajeej basin which was located within south Sinjar plain north west Iraq was analyzed to predict the possibility of surface runoff harvesting during rainfall season in the upstream sites in this basin using watershed modeling system (WMS. The hydrological feasibility of constructing small dam on Al-Ajeej valley with some preliminary design calculations were presented. The best optimum dam site was selected to be located (3.95 km downstream the confluence of Al-Badee branch with Al-Ajeej valley (35° 46¢ 6² Latitude and Longitude 41° 36¢ 11² having a catchment's area of (3043km2. The proposed dam  height was (12.5 meter with a dam length of (1277m, while the normal storage volume of the reservoir is (38.8 million m3. Construction a dams in such sites characterized by water shortage during all  around the year will give an aid in the sustainable development of such area by increasing  the cultivation lands, the agricultural products and also modify the income of the villagers living  in this area leading to prevent them leaving their lands to other places

  2. A regional ocean circulation model for the mid-Cretaceous North Atlantic Basin: implications for black shale formation

    Directory of Open Access Journals (Sweden)

    R. P. M. Topper

    2011-03-01

    Full Text Available High concentrations of organic matter accumulated in marine sediments during Oceanic Anoxic Events (OAEs in the Cretaceous. Model studies examining these events invariably make use of global ocean circulation models. In this study, a regional model for the North Atlantic Basin during OAE2 at the Cenomanian-Turonian boundary has been developed. A first order check of the results has been performed by comparison with the results of a recent global Cenomanian CCSM3 run, from which boundary and initial conditions were obtained. The regional model is able to maintain tracer patterns and to produce velocity patterns similar to the global model. The sensitivity of the basin tracer and circulation patterns to changes in the geometry of the connections with the global ocean is examined with three experiments with different bathymetries near the sponges. Different geometries turn out to have little effect on tracer distribution, but do affect circulation and upwelling patterns. The regional model is also used to test the hypothesis that ocean circulation may have been behind the deposition of black shales during OAEs. Three scenarios are tested which are thought to represent pre-OAE, OAE and post-OAE situations. Model results confirm that Pacific intermediate inflow together with coastal upwelling could have enhanced primary production during OAE2. A low sea level in the pre-OAE scenario could have inhibited large scale black shale formation, as could have the opening of the Equatorial Atlantic Seaway in the post-OAE scenario.

  3. Genesis of the North German basin - a metamorphosis model; Die Entstehung des Norddeutschen Beckens - ein Metamorphose-Modell

    Energy Technology Data Exchange (ETDEWEB)

    Brink, H.J. [ExxonMobil Production Deutschland GmbH, Hannover (Germany)

    2003-07-01

    In an integrative analysis, metamorphosis processes in the aggregated crust, potential field anomalies, the temperature field and the subsidence history are combined into a model of the genesis of the North German Basin. The model takes account of phenomena like high nitrogen concentrations in natural gases of permian sandstone and the structure of the crust and combines them with theoretical considerations. The new model for explaining geonsynclinals, in which geochemical and petrophysical processes in the lower crust have a decisive role, appears to be globally applicable. It can provide an intrinsic variant of the application of existing tectonic expansion models for explaining the subsidence of sediment basins. [German] In einer integrativen Analyse werden Metamorphoseprozesse in der aggregierten Kruste, Potentialfeldanomalien, Temperaturfeld sowie die Subsidenzgeschichte zu einem Modell fuer die Entstehung des Norddeutschen Beckens zusammengefasst, das beobachtete Phaenomene wie Stickstoffreichtum in Erdgasen permischer Sandsteine und die Struktur der Kruste mit theoretischen Ableitungen verknuepft. Das so entstandene neue Modell zur Erklaerung von Geosynklinalen, bei dem geochemisch/petrophysikalische Prozesse in der Unterkruste eine entscheidende Rolle spielen, scheint global anwendbar zu sein. Es kann die Anwendung existierender tektonischer Dehnungsmodelle zur Erklaerung der Subsidenz von Sedimentbecken um eine intrinsische Variante ergaenzen. (orig.)

  4. Pre-Messinian (Sub-Salt Source-Rock Potential on Back-Stop Basins of the Hellenic Trench System (Messara Basin, Central Crete, Greece

    Directory of Open Access Journals (Sweden)

    Maravelis A.

    2016-01-01

    Full Text Available The Greek part of the Mediterranean Ridge suggests, in terms of its hydrocarbon potential, further frontier exploration. The geological similarities between its prolific portions, within the Cyprus and Egyptian Exclusive Economic Zones, indicate possible recoverable natural gas reserves in its Greek portion. Nevertheless it lacks of systematic frontier exploration although direct petroleum indicators occur. Active mud volcanoes on the Mediterranean Ridge, still emitting concurrently gas and gas hydrates, have not been yet assessed even though are strongly related to hydrocarbon occurrence worldwide (Caspian Sea, Gulf of Mexico, Western African Basin, Trinidad-Tobago, the Nile Cone. For this reason, the source rock potential of the Late Miocene lacustrine deposits on a backstop basin of the Hellenic Trench System (Messara Basin, Crete, Greece, was studied. The obtained pyrolysis data indicate that the containing organic matter is present in sufficient abundance and with good enough quality to be regarded as potential source rocks. The observed type III kerogen suggests gas generation potential. Although indications of higher thermal evolution occur the studied rocks suggest low maturation levels. The biogenic gas seeps in the studied research well further demonstrate the regional gas generation potential.

  5. Characterization of habitat and biological communities at fixed sites in the Great Salt Lake basins, Utah, Idaho, and Wyoming, water years 1999-2001

    Science.gov (United States)

    Albano, Christine M.; Giddings, Elise M.P.

    2007-01-01

    Habitat and biological communities were sampled at 10 sites in the Great Salt Lake Basins as part of the U.S. Geological Survey National Water-Quality Assessment program to assess the occurrence and distribution of biological organisms in relation to environmental conditions. Sites were distributed among the Bear River, Weber River, and Utah Lake/Jordan River basins and were selected to represent stream conditions in different land-use settings that are prominent within the basins, including agriculture, rangeland, urban, and forested.High-gradient streams had more diverse habitat conditions with larger substrates and more dynamic flow characteristics and were typically lower in discharge than low-gradient streams, which had a higher degree of siltation and lacked variability in geomorphic channel characteristics, which may account for differences in habitat. Habitat scores were higher at high-gradient sites with high percentages of forested land use within their basins. Sources and causes of stream habitat impairment included effects from channel modifications, siltation, and riparian land use. Effects of hydrologic modifications were evident at many sites.Algal sites where colder temperatures, less nutrient enrichment, and forest and rangeland uses dominated the basins contained communities that were more sensitive to organic pollution, siltation, dissolved oxygen, and salinity than sites that were warmer, had higher degrees of nutrient enrichment, and were affected by agriculture and urban land uses. Sites that had high inputs of solar radiation and generally were associated with agricultural land use supported the greatest number of algal species.Invertebrate samples collected from sites where riffles were the richest-targeted habitat differed in species composition and pollution tolerance from those collected at sites that did not have riffle habitat (nonriffle sites), where samples were collected in depositional areas, woody snags, or macrophyte beds

  6. Water resources of the Yadkin-Pee Dee River Basin, North Carolina

    Science.gov (United States)

    Fish, Robert Eugene; LeGrand, H.E.; Billingsley, G.A.

    1957-01-01

    Sufficient water is available in the basin of the Yadkin and Pee Dee Rivers to meet present requirements and those for many years to come if water use increases at about the present rate. Data presented in this report show that the average annual streamflow from approximately 82 percent of the basin area during the 25-year period, 1929-53, was about 6,200 mgd, representing essentially the total available water supply. Comparison of the available water supply to the estimated withdrawal use (excluding water power) of both surface and ground water of 600 mgd indicates the relative utilization of the water resources of the basin at present. If proper pollution controls are observed and practiced so that water in the various streams may be reused several times, the potential water available is even greater than indicated by the above comparison. Preliminary studies indicate that the quantity of water now being withdrawn from ground-water reservoirs in the basin is only a fraction of the total that may be obtained from this source. Twenty-eight of the 64 municipalities having public water-supply systems use surface water; however, as the largest cities in the area use surface supplies, about 85 percent of the water used for public supplies is from surface sources. Of the 20 complete-record stream-gaging stations now in operation in this area 7 have been in operation for 24 years or longer. Periodic measurements of the rate of flow have been made at 31 additional sites on streams scattered widely over the basin. All available streamflow data including those for 1953 are summarized in either graphic or tabular form, or both. Because of the critically low flows occurring during the drought of 1954, several illustrations include data for 1954 and the early months of 1955 for comparison with the minima of previous years. Adequate water for domestic use is available from wells throughout the basin. The consolidated rocks of the Piedmont furnish water for small industries and

  7. Distinct Osmoadaptation Strategies in the Strict Halophilic and Halotolerant Bacteria Isolated from Lunsu Salt Water Body of North West Himalayas.

    Science.gov (United States)

    Vaidya, Shivani; Dev, Kamal; Sourirajan, Anuradha

    2018-07-01

    Two strict halophilic bacterial strains, Halobacillus trueperi SS1, and Halobacillus trueperi SS3, and three halotolerant bacterial strains, Shewanella algae SS2, Halomonas venusta SS5, and Marinomonas sp. SS8 of Lunsu salt water body, Himachal Pradesh, India, were selected to study the mechanism of salt tolerance and the role of osmolytes therein. A combination of flame photometry, chromatographic and colorimetric assays was used to study the mechanism of salt tolerance in the selected strict halophilic and halotolerant bacterial strains. The strict halophiles and, one of the halotolerants, Marinomonas sp. SS8 were found to utilize both "salt-in strategy" and "accumulation of compatible solutes strategy" for osmoregulation in hypersaline conditions. On the contrary, the remaining two halotolerants used "accumulation of compatible solutes strategy" under saline stress and not the "salt-in strategy". The present study suggests towards distinct mechanisms of salt tolerance in the two classes, wherein strict halophiles accumulate compatible solutes as well as adopt salt-in strategy, while the halotolerant bacteria accumulate a range of compatible solutes, except Marinomonas sp. SS8, which utilizes both the strategies to combat salt stress.

  8. Isotopic composition of salt efflorescence from the sandstone castellated rocks of the Bohemian Cretaceous Basin (Czech Republic)

    Czech Academy of Sciences Publication Activity Database

    Schweigstillová, Jana; Přikryl, R.; Novotná, M.

    2009-01-01

    Roč. 58, č. 1 (2009), s. 217-225 ISSN 0943-0105 Institutional research plan: CEZ:AV0Z30460519 Keywords : stable isotopes * salt efflorescence * sandstone Subject RIV: DB - Geology ; Mineralogy Impact factor: 1.078, year: 2009

  9. Assessment of the sardine (Sardina pilchardus Walbaum, 1792 fishery in the eastern Mediterranean basin (North Aegean Sea

    Directory of Open Access Journals (Sweden)

    K. ANTONAKAKIS

    2011-06-01

    Full Text Available The aim of this study was to describe the biometric characteristics of the European sardine (Sardina pilchardus catches and assess the current status of sardine stock in North Aegean Sea based on population characteristics and abundance trends. The stock was dominated by age groups 1 and 2, not exceeding age group 4. The sardine stock in this area was assessed through an Integrated Catch-at-Age model which implements a separable Virtual Population Analysis on catch at age data with weighted tuning indices. Sardine landings data derived from the commercial purse seine fishery over the period 2000-2008 were combined with the age structure of the stock as resulted from fisheries independent acoustic surveys. Sensitivity analysis of the impact of natural mortality values on stock assessment results was applied. Additionally forecast of the sardine population parameters and catches under different exploitation scenarios was implemented in a medium term basis. Results indicated that the North Aegean Sea sardine stock is considered fully exploited with the fishery operating close but over the empirical exploitation level for sustainability. Finally, the status of the sardine stock in N. Aegean Sea is discussed in relation to the sardine stocks from the western and the central Mediterranean basin.

  10. Seasonal variability of faecal indicator bacteria numbers and die-off rates in the Red River basin, North Viet Nam

    Science.gov (United States)

    Nguyen, Huong Thi Mai; Le, Quynh Thi Phuong; Garnier, J.; Janeau, J.-L.; Rochelle-Newall, E.

    2016-02-01

    The Red River is the second largest river in Viet Nam and constitutes the main water source for a large percentage of the population of North Viet Nam. Here we present the results of an annual survey of Escherichia coli (EC) and Total Coliforms (TC) in the Red River basin, North Viet Nam. The objective of this work was to obtain information on faecal indicator bacteria (FIB) numbers over an annual cycle and, secondly, to determine the die-off rates of these bacterial indicators. Monthly observations at 10 stations from July 2013-June 2014 showed that TC and EC reached as high as 39100 cfu (colony forming units) 100 ml-1 and 15300 colonies 100 ml-1, respectively. We observed a significant seasonal difference for TC (p < 0.05) with numbers being higher during the wet season. In contrast, no significant seasonal difference was found for EC. The FIB die-off rates ranged from 0.01 d-1 to a maximum of 1.13 d-1 for EC and from 0.17 d-1 to 1.33 d-1 for TC. Die-off rates were significantly higher for free bacteria than for total (free + particle attached) bacteria, suggesting that particle attachment provided a certain level of protection to FIB in this system.

  11. Organic petrology of the Aptian-age section in the downdip Mississippi Interior Salt Basin, Mississippi, USA: Observations and preliminary implications for thermal maturation history

    Science.gov (United States)

    Valentine, Brett J.; Hackley, Paul C.; Enomoto, Catherine B.; Bove, Alana M.; Dulong, Frank T.; Lohr, Celeste D.; Scott, Krystina R.

    2014-01-01

    This study identifies a thermal maturity anomaly within the downdip Mississippi Interior Salt Basin (MISB) of southern Mississippi, USA, through examination of bitumen reflectance data from Aptian-age strata (Sligo Formation, Pine Island Shale, James Limestone, and Rodessa Formation). U.S. Geological Survey (USGS) reconnaissance investigations conducted in 2011–2012 examined Aptian-age thermal maturity trends across the onshore northern Gulf of Mexico region and indicated that the section in the downdip MISB is approaching the wet gas/condensate window (Ro~1.2%). A focused study in 2012–2013 used 6 whole core, one sidewall core, and 49 high-graded cutting samples (depth range of 13,000–16,500 ft [3962.4–5029.2 m] below surface) collected from 15 downdip MISB wells for mineralogy, fluid inclusion, organic geochemistry, and organic petrographic analysis. Based on native solid bitumen reflectance (Ro generally > 0.8%; interpreted to be post-oil indigenous bitumens matured in situ), Ro values increase regionally across the MISB from the southeast to the northwest. Thermal maturity in the eastern half of the basin (Ro range 1.0 to 1.25%) appears to be related to present-day burial depth and shows a gradual increase with respect to depth. To the west, thermal maturity continues to increase even as the Aptian section shallows structurally on the Adams County High (Ro range 1.4 to > 1.8%). After evaluating the possible thermal agents responsible for increasing maturity at shallower depths (i.e., igneous activity, proximity to salt, variations in regional heat flux, and uplift), we tentatively propose that either greater paleoheat flow or deeper burial coupled with uplift in the western part of the MISB could be responsible for the thermal maturity anomaly. Further research and additional data are needed to determine the cause(s) of the thermal anomaly.

  12. A new troodontid theropod, Talos sampsoni gen. et sp. nov., from the Upper Cretaceous Western Interior Basin of North America.

    Directory of Open Access Journals (Sweden)

    Lindsay E Zanno

    Full Text Available Troodontids are a predominantly small-bodied group of feathered theropod dinosaurs notable for their close evolutionary relationship with Avialae. Despite a diverse Asian representation with remarkable growth in recent years, the North American record of the clade remains poor, with only one controversial species--Troodon formosus--presently known from substantial skeletal remains.Here we report a gracile new troodontid theropod--Talos sampsoni gen. et sp. nov.--from the Upper Cretaceous Kaiparowits Formation, Utah, USA, representing one of the most complete troodontid skeletons described from North America to date. Histological assessment of the holotype specimen indicates that the adult body size of Talos was notably smaller than that of the contemporary genus Troodon. Phylogenetic analysis recovers Talos as a member of a derived, latest Cretaceous subclade, minimally containing Troodon, Saurornithoides, and Zanabazar. MicroCT scans reveal extreme pathological remodeling on pedal phalanx II-1 of the holotype specimen likely resulting from physical trauma and subsequent infectious processes.Talos sampsoni adds to the singularity of the Kaiparowits Formation dinosaur fauna, which is represented by at least 10 previously unrecognized species including the recently named ceratopsids Utahceratops and Kosmoceratops, the hadrosaurine Gryposaurus monumentensis, the tyrannosaurid Teratophoneus, and the oviraptorosaurian Hagryphus. The presence of a distinct troodontid taxon in the Kaiparowits Formation supports the hypothesis that late Campanian dinosaurs of the Western Interior Basin exhibited restricted geographic ranges and suggests that the taxonomic diversity of Late Cretaceous troodontids from North America is currently underestimated. An apparent traumatic injury to the foot of Talos with evidence of subsequent healing sheds new light on the paleobiology of deinonychosaurians by bolstering functional interpretations of prey grappling and

  13. [Distribution pattern of riparian invasive plants in Luanhe Basin, North China and its relationship with environment].

    Science.gov (United States)

    Ren, Ying; He, Ping; Xu, Jie; Jia, Jiao

    2017-06-18

    In this study, the invasive plant species from the riparian vegetation in 56 sampling sites of Luanhe Basin were identified, and the correlations between their composition, spatial distribution and environmental factors were explored. In the basin, a total of 26 invasive species were registered, which belonged to 19 genera and 12 families, and 73.1% of them were annual plants. Asteraceae and Amaranthaceae were the two dominant families with the most invasive species, attributing to 50% of the total invasive species. Amaranthus retroflexus, Bidens frondosa and Chenopodium serotinum appeared with the highest frequencies. The number of invasive species and the invasive intensity at each site were significantly negatively correlated with the altitude. The distribution of invasive plants was significantly influenced by the intensity of human activities. The invasive plants were mainly distributed in the plain area, shallow mountainous area with many reservoirs, and the mountainous area with developed tourism around Chengde City, meanwhile, only few species with broad ecological amplitude existed in the plateau area. In general, species with higher invasive grades were mainly distributed in low and medium altitude areas below 400 m. Except for A. retroflexus, no high-grade invasive plants were discovered in high altitude area so far.

  14. Climate change impact on soil erosion in the Mandakini River Basin, North India

    Science.gov (United States)

    Khare, Deepak; Mondal, Arun; Kundu, Sananda; Mishra, Prabhash Kumar

    2017-09-01

    Correct estimation of soil loss at catchment level helps the land and water resources planners to identify priority areas for soil conservation measures. Soil erosion is one of the major hazards affected by the climate change, particularly the increasing intensity of rainfall resulted in increasing erosion, apart from other factors like landuse change. Changes in climate have an adverse effect with increasing rainfall. It has caused increasing concern for modeling the future rainfall and projecting future soil erosion. In the present study, future rainfall has been generated with the downscaling of GCM (Global Circulation Model) data of Mandakini river basin, a hilly catchment in the state of Uttarakhand, India, to obtain future impact on soil erosion within the basin. The USLE is an erosion prediction model designed to predict the long-term average annual soil loss from specific field slopes in specified landuse and management systems (i.e., crops, rangeland, and recreational areas) using remote sensing and GIS technologies. Future soil erosion has shown increasing trend due to increasing rainfall which has been generated from the statistical-based downscaling method.

  15. Standardized Water Budget Index and Validation in Drought Estimation of Haihe River Basin, North China

    Directory of Open Access Journals (Sweden)

    Shaohua Liu

    2016-01-01

    Full Text Available The physical-based drought indices such as the self-calibrated Palmer Drought Severity Index (sc-PDSI with the fixed time scale is inadequate for the multiscalar drought assessment, and the multiscalar drought indices including Standardized Precipitation Index (SPI, Reconnaissance Drought Index (RDI, and Standardized Precipitation Evapotranspiration Index (SPEI based on the meteorological factors are lack of physical mechanism and cannot depict the actual water budget. To fill this gap, the Standardized Water Budget Index (SWBI is constructed based on the difference between areal precipitation and actual evapotranspiration (AET, which can describe the actual water budget but also assess the drought at multiple time scales. Then, sc-PDSI was taken as the reference drought index to compare with multiscalar drought indices at different time scale in Haihe River basin. The result shows that SWBI correlates better with sc-PDSI and the RMSE of SWBI is less than other multiscalar drought indices. In addition, all of drought indices show a decreasing trend in Haihe River Basin, possibly due to the decreasing precipitation from 1961 to 2010. The decreasing trends of SWBI were significant and consistent at all the time scales, while the decreasing trends of other multiscalar drought indices are insignificant at time scale less than 3 months.

  16. Stratigraphy and palynology of the Lower Carboniferous Sortebakker Formation, Wandel Sea Basin, eastern North Greenland

    Energy Technology Data Exchange (ETDEWEB)

    Dalhoff, F.; Stemmerik, L. [Geological Survey of Denmark and Greenland, Copenhagen (Denmark); Vigran, J.O. [IKU Petroleum Research, Trondheim (Norway)

    2000-07-01

    Two palynological assemblages of Early Carboniferous age have been recorded from the upper parts of the non-marine, fluvial-dominated Sortebakker Formation in the Wandel Sea Basin. The stratigraphically lower assemblage includes poorly preserved Cingulizonates spp., Densosporites spp., Lycospora spp. and Schulzospora spp. whereas the upper assemblage contains a more diversified microflora including the stratigraphically important Tripartites distinctus, Potoniespores delicatus and Savitrisporites spp. The microflora enables correlation and dating of the succession to the late Visean Perotrilites tessellatus - Schulzospora campyloptera (TC) and Raistrickia nigra - Triquitrites marginatus (NM) miospore Biozones of western Europe. The depositional facies correspond to those seen in time equivalent deposits from East Greenland, Svalbard, Bjoernoeya and the Barents Sea. (au)

  17. Palaeoenvironments in the Skagerrak-Kattegat basin in the eastern North Sea during the last deglaciation

    DEFF Research Database (Denmark)

    Knudsen, K.L.; Conradsen, Keld; Heier-Nielsen, S.

    1996-01-01

    The study of a c. 18 m thick Late Weichseltan - Early Holocene (isotope stage 2/1) marine succession (original water depth 100-150 m) from the Skagen 3 borehole, northern Denmark, has led to a better understanding of the palaeoenvironmental changes during the last deglaciation. The palaeoenvironm......The study of a c. 18 m thick Late Weichseltan - Early Holocene (isotope stage 2/1) marine succession (original water depth 100-150 m) from the Skagen 3 borehole, northern Denmark, has led to a better understanding of the palaeoenvironmental changes during the last deglaciation......-Holocene transition after the Younger Dryas occurred in two stages. Arctic/subarctic deep-water assemblages persisted continuously at Skagen after the first stage at 10 100 BP, while cold boreal assemblages existed in shallower water environments in the Kattegat-Skagerrak basin during the same period of time...

  18. Petroleum systems and geologic assessment of undiscovered oil and gas, Cotton Valley group and Travis Peak-Hosston formations, East Texas basin and Louisiana-Mississippi salt basins provinces of the northern Gulf Coast region. Chapters 1-7.

    Science.gov (United States)

    ,

    2006-01-01

    The purpose of the U.S. Geological Survey's (USGS) National Oil and Gas Assessment is to develop geologically based hypotheses regarding the potential for additions to oil and gas reserves in priority areas of the United States. The USGS recently completed an assessment of undiscovered oil and gas potential of the Cotton Valley Group and Travis Peak and Hosston Formations in the East Texas Basin and Louisiana-Mississippi Salt Basins Provinces in the Gulf Coast Region (USGS Provinces 5048 and 5049). The Cotton Valley Group and Travis Peak and Hosston Formations are important because of their potential for natural gas resources. This assessment is based on geologic principles and uses the total petroleum system concept. The geologic elements of a total petroleum system include hydrocarbon source rocks (source rock maturation, hydrocarbon generation and migration), reservoir rocks (sequence stratigraphy and petrophysical properties), and hydrocarbon traps (trap formation and timing). The USGS used this geologic framework to define one total petroleum system and eight assessment units. Seven assessment units were quantitatively assessed for undiscovered oil and gas resources.

  19. Chapter 7. The GIS project for the geologic assessment of undiscovered oil and gas in the Cotton Valley group and Travis Peak and Hosston formations, East Texas basin and Louisiana-Mississippi salt basins provinces.

    Science.gov (United States)

    Biewick, Laura

    2006-01-01

    A geographic information system (GIS) focusing on the Upper Jurassic-Lower Cretaceous Cotton Valley Group and the Lower Cretaceous Travis Peak and Hosston Formations in the northern Gulf Coast region was developed as a visual-analysis tool for the U.S. Geological Survey's 2002 assessment of undiscovered, technically recoverable oil and natural gas resources in the East Texas Basin and Louisiana-Mississippi Salt Basins Provinces. The Central Energy Resources Team of the U.S. Geological Survey has also developed an Internet Map Service to deliver the GIS data to the public. This mapping tool utilizes information from a database about the oil and natural gas endowment of the United States-including physical locations of geologic and geographic data-and converts the data into visual layers. Portrayal and analysis of geologic features on an interactive map provide an excellent tool for understanding domestic oil and gas resources for strategic planning, formulating economic and energy policies, evaluating lands under the purview of the Federal Government, and developing sound environmental policies. Assessment results can be viewed and analyzed or downloaded from the internet web site, http://energy.cr.usgs.gov/oilgas/noga/ .

  20. Reservoir quality in the A2C-Stringer interval of the late Neoproterozoic Ara-Group of the South Oman Salt Basin. Diagenetic relationships in space and time

    Energy Technology Data Exchange (ETDEWEB)

    Becker, S. [RWTH Aachen (Germany). LuFG Reservoir Petrology; Reuning, L.; Kukla, P.A. [RWTH Aachen (Germany). Geological Inst.; Abe, S.; Li, Shiyan; Urai, J.L. [RWTH Aachen (Germany). Structural Geology, Tectonics and Geomechanics; Farqani, S.; Lopes Cardozo, G.; Rawahi, Z. [Petroleum Development Oman (Oman)

    2013-08-01

    The Ediacaran-Early Cambrian Ara Group of the South Oman Salt Basin consists of six carbonate to evaporite (rock salt, gypsum) sequences. These Ara Group carbonates are termed A0C to A6C from the bottom towards the top of the basin. Differential loading of locally 5 km thick Cambrian to Ordovician clastics onto the mobile rock salt of the Ara Group caused growth of isolated salt diapirs, which resulted in strong fragmentation and faulting of the carbonate intervals into several isolated so-called 'stringers'. These carbonate stringers represent a unique intra-salt petroleum system, which has been successfully explored in recent years. However, some of the stringers failed to produce at significant rates due to the complex diagenetic history from the shallow to the deep burial realm. The goal of this study is twofold. Firstly, to unravel the complex diagenesis and its relative timing and link them to the burial history of the salt basin. Secondly, to detect spatial distribution patterns of diagenetic phases and their effect on reservoir properties. Mineralogy, rock fabrics, paragenetic relationships and geochemistry of {proportional_to} 400 samples from several petroleum wells from the late Neoproterozoic A2C interval were analyzed and combined with pre-existing data. The spatial distribution of diagenetic phases and petrophysical characteristics will be displayed in field-scale distribution maps. These maps comprise crucial information for better prediction of reservoir quality in the analyzed fields, planning of new exploration wells and better volumetric calculations. An integration of the paragenetic sequence derived from thin-section analysis with results from finite element and discrete element models further helps to constrain the effect of salt tectonics on fracture formation and fluid evolution within the stringers.

  1. The genetic impact of the lake chad basin population in North Africa as documented by mitochondrial diversity and internal variation of the L3e5 haplogroup.

    Science.gov (United States)

    Podgorná, Eliška; Soares, Pedro; Pereira, Luísa; Cerný, Viktor

    2013-11-01

    The presence of sub-Saharan L-type mtDNA sequences in North Africa has traditionally been explained by the recent slave trade. However, gene flow between sub-Saharan and northern African populations would also have been made possible earlier through the greening of the Sahara resulting from Early Holocene climatic improvement. In this article, we examine human dispersals across the Sahara through the analysis of the sub-Saharan mtDNA haplogroup L3e5, which is not only commonly found in the Lake Chad Basin (∼17%), but which also attains nonnegligible frequencies (∼10%) in some Northwestern African populations. Age estimates point to its origin ∼10 ka, probably directly in the Lake Chad Basin, where the clade occurs across linguistic boundaries. The virtual absence of this specific haplogroup in Daza from Northern Chad and all West African populations suggests that its migration took place elsewhere, perhaps through Northern Niger. Interestingly, independent confirmation of Early Holocene contacts between North Africa and the Lake Chad Basin have been provided by craniofacial data from Central Niger, supporting our suggestion that the Early Holocene offered a suitable climatic window for genetic exchanges between North and sub-Saharan Africa. In view of its younger founder age in North Africa, the discontinuous distribution of L3e5 was probably caused by the Middle Holocene re-expansion of the Sahara desert, disrupting the clade's original continuous spread. © 2013 John Wiley & Sons Ltd/University College London.

  2. Sequestration of Carbon Dioxide with Enhanced Gas Recovery-CaseStudy Altmark, North German Basin

    Energy Technology Data Exchange (ETDEWEB)

    Rebscher, Dorothee; Oldenburg, Curtis M.

    2005-10-12

    Geologic carbon dioxide storage is one strategy for reducingCO2 emissions into the atmosphere. Depleted natural gas reservoirs are anobvious target for CO2 storage due to their proven record of gascontainment. Germany has both large industrial sources of CO2 anddepleting gas reservoirs. The purpose of this report is to describe theanalysis and modeling performed to investigate the feasibility ofinjecting CO2 into nearly depleted gas reservoirs in the Altmark area inNorth Germany for geologic CO2 storage with enhanced gasrecovery.

  3. Methodology of the 137 Cs for the soil erosion and deposition determination in a micro basin from the north of Parana State

    International Nuclear Information System (INIS)

    Andrello, Avacir Casanova

    1997-01-01

    The measurement of 137 Cs redistribution in the field allows the determination of soil erosion/accumulation. The 137 Cs activity of soil samples, taken from a small basin at the North of Parana, were measured employing a HPGe gamma ray detector and a standard spectrometric nuclear electronic chain. Standard oil samples with known concentrations of 137 Cs were prepared for the detection efficiency determination. Soil loss or gain was measured at the top, midslope and low slope regions, for six different transects at the investigated small basin. (author)

  4. Increasing Awareness and Use of Iodised Salt in a Marginalised Community Setting in North-West Pakistan

    Directory of Open Access Journals (Sweden)

    Nicola Lowe

    2015-11-01

    Full Text Available Iodine deficiency is still prevalent in parts of Pakistan, despite the introduction of a national Iodine Deficiency Disorder Control Programme in 1994. The purpose of this study was to gain an understanding of the knowledge, attitudes and practice regarding the use of iodised salt in a brick kiln community, and to use this information to design an intervention to increase its consumption. A cross-sectional survey was used to assess the use of iodised salt and focus group discussions explored the attitudes and barriers to its use. Thematically analysed transcripts informed the design of a 4-month intervention. Iodised salt sales and urine iodine concentration (UIC were monitored to assess the effectiveness of the intervention. At baseline, 2.6% of households reported use of iodised salt and barriers included its higher cost and belief about a negative impact on reproduction. During the intervention, sales of salt labelled as iodised increased by 45%, however this was not reflected in an increase in UIC. This study highlighted the positive impact of education and awareness raising on iodised salt consumption in a hard to reach, marginalised community. However, issues regarding adequate iodisation by local producers and appropriate storage also need to be urgently addressed at a provincial level.

  5. Modeling of extreme freshwater outflow from the north-eastern Japanese river basins to western Pacific Ocean

    Science.gov (United States)

    Troselj, Josko; Sayama, Takahiro; Varlamov, Sergey M.; Sasaki, Toshiharu; Racault, Marie-Fanny; Takara, Kaoru; Miyazawa, Yasumasa; Kuroki, Ryusuke; Yamagata, Toshio; Yamashiki, Yosuke

    2017-12-01

    This study demonstrates the importance of accurate extreme discharge input in hydrological and oceanographic combined modeling by introducing two extreme typhoon events. We investigated the effects of extreme freshwater outflow events from river mouths on sea surface salinity distribution (SSS) in the coastal zone of the north-eastern Japan. Previous studies have used observed discharge at the river mouth, as well as seasonally averaged inter-annual, annual, monthly or daily simulated data. Here, we reproduced the hourly peak discharge during two typhoon events for a targeted set of nine rivers and compared their impact on SSS in the coastal zone based on observed, climatological and simulated freshwater outflows in conjunction with verification of the results using satellite remote-sensing data. We created a set of hourly simulated freshwater outflow data from nine first-class Japanese river basins flowing to the western Pacific Ocean for the two targeted typhoon events (Chataan and Roke) and used it with the integrated hydrological (CDRMV3.1.1) and oceanographic (JCOPE-T) model, to compare the case using climatological mean monthly discharges as freshwater input from rivers with the case using our hydrological model simulated discharges. By using the CDRMV model optimized with the SCE-UA method, we successfully reproduced hindcasts for peak discharges of extreme typhoon events at the river mouths and could consider multiple river basin locations. Modeled SSS results were verified by comparison with Chlorophyll-a distribution, observed by satellite remote sensing. The projection of SSS in the coastal zone became more realistic than without including extreme freshwater outflow. These results suggest that our hydrological models with optimized model parameters calibrated to the Typhoon Roke and Chataan cases can be successfully used to predict runoff values from other extreme precipitation events with similar physical characteristics. Proper simulation of extreme

  6. Preliminary study of the uranium potential of the Triassic Sanford basin and Colon cross structure, North Carolina

    International Nuclear Information System (INIS)

    Lee, C.H.

    1978-01-01

    A preliminary geologic investigation was conducted to determine if Triassic sedimentary rocks of the Sanford basin and Colon cross structure in North Carolina are favorable hosts for uranium deposits. Rocks of adjacent Carolina slate belt were also examined as a potential source of uranium. On the basis of favorability criteria for sandstone-type uranium deposits, and geologic and geophysical investigations of the study area, the most favorable sites for further investigation are (1) at the contacts between the Pekin and Cumnock and between the Pekin and Sanford Formations near the Colon cross structure and (2) at the base of the Jonesboro fault, which lies below the Sanford Formation, northwest of Sanford. The highly weathered granites southeast of the Jonesboro fault were a source of the detritus deposited on the cross structure and may have been a primary source of uranium. Uranium leached from the coarse sediment (Pekin Formation) of the cross structure may have been transported downdip and may have been precipitated by the carbonaceous shales of the Cumnock Formation on the western side of the cross structure or at the Pekin-Sanford contact to the east. The Jonesboro fault may provide an impermeable barrier to ground-water migration in the metamorphosed basement rocks below the Triassic sediments. Such a barrier would constitute a favorable site for the precipitation and retention of uranium. Scintillometer surveys and laboratory analyses indicate no anomalous surface radioactivity in the study area. However, deep surface weathering may have caused the uranium to be leached from the exposed rocks and redeposited at depth. Geologic investigations show that conditions which have proven favorable for deposition of uranium in other areas are present in the Triassic rocks of the Sanford basin and Colon cross structure. However, because of deep surface weathering, further subsurface studies are necessary to confirm the favorability of the rocks as hosts for uranium

  7. Watershed prioritization in the upper Han River basin for soil and water conservation in the South-to-North Water Transfer Project (middle route) of China.

    Science.gov (United States)

    Wu, Haibing

    2018-01-01

    Watershed prioritization with the objective of identifying critical areas to undertake soil and water conservation measures was conducted in the upper Han River basin, the water source area of approximately 95,000 km 2 for the middle route of China's South-to-North Water Transfer Project. Based on the estimated soil erosion intensity in uplands and clustering analysis of measured nutrient concentrations in rivers, the basin was grouped into very-high-, high-, moderate-, and low-priority regions for water and soil conservation, respectively. The results indicated that soil erosion was primarily controlled by topography, and nutrients in rivers were associated with land use and land cover in uplands. Also, there was large spatial disparity between soil erosion intensity in the uplands and nutrient concentrations in the rivers across the basin. Analysis was then performed to prioritize the basin by the integration of the soil erosion intensity and water quality on a GIS platform in order to identify critical areas for water and soil conservation in the basin. The identified high-priority regions which occupy 5.74% of the drainage areas need immediate attention for soil and water conservation treatments, of which 5.28% is critical for soil erosion prevention and 0.46% for water conservation. Understandings of the basin environment and pollutant loading with spatial explicit are critical to the soil and water resource conservation for the interbasin water transfer project.

  8. Spatial and temporal changes of water quality, and SWAT modeling of Vosvozis river basin, North Greece.

    Science.gov (United States)

    Boskidis, Ioannis; Gikas, Georgios D; Pisinaras, Vassilios; Tsihrintzis, Vassilios A

    2010-09-01

    The results of an investigation of the quantitative and qualitative characteristics of Vosvozis river in Northern Greece is presented. For the purposes of this study, three gaging stations were installed along Vosvozis river, where water quantity and quality measurements were conducted for the period August 2005 to November 2006. Water discharge, temperature, pH, dissolved oxygen (DO) and electrical conductivity (EC) were measured in situ using appropriate equipment. The collected water samples were analyzed in the laboratory for the determination of nitrate, nitrite and ammonium nitrogen, total Kjeldalh nitrogen (TKN), orthophosphate (OP), total phosphorus (TP), COD, and BOD. Agricultural diffuse sources provided the major source of nitrate nitrogen loads during the wet period. During the dry period (from June to October), the major nutrient (N, P) and COD, BOD sources were point sources. The trophic status of Vosvozis river during the monitoring period was determined as eutrophic, based on Dodds classification scheme. Moreover, the SWAT model was used to simulate hydrographs and nutrient loads. SWAT was validated with the measured data. Predicted hydrographs and pollutographs were plotted against observed values and showed good agreement. The validated model was used to test eight alternative scenarios concerning different cropping management approaches. The results of these scenarios indicate that nonpoint source pollution is the prevailing type of pollution in the study area. The SWAT model was found to satisfactorily simulate processes in ephemeral river basins and is an effective tool in water resources management.

  9. Stream fish colonization but not persistence varies regionally across a large North American river basin

    Science.gov (United States)

    Wheeler, Kit; Wengerd, Seth J.; Walsh, Stephen J.; Martin, Zachary P.; Jelks, Howard L.; Freeman, Mary C.

    2018-01-01

    Many species have distributions that span distinctly different physiographic regions, and effective conservation of such taxa will require a full accounting of all factors that potentially influence populations. Ecologists recognize effects of physiographic differences in topography, geology and climate on local habitat configurations, and thus the relevance of landscape heterogeneity to species distributions and abundances. However, research is lacking that examines how physiography affects the processes underlying metapopulation dynamics. We used data describing occupancy dynamics of stream fishes to evaluate evidence that physiography influences rates at which individual taxa persist in or colonize stream reaches under different flow conditions. Using periodic survey data from a stream fish assemblage in a large river basin that encompasses multiple physiographic regions, we fit multi-species dynamic occupancy models. Our modeling results suggested that stream fish colonization but not persistence was strongly governed by physiography, with estimated colonization rates considerably higher in Coastal Plain streams than in Piedmont and Blue Ridge systems. Like colonization, persistence was positively related to an index of stream flow magnitude, but the relationship between flow and persistence did not depend on physiography. Understanding the relative importance of colonization and persistence, and how one or both processes may change across the landscape, is critical information for the conservation of broadly distributed taxa, and conservation strategies explicitly accounting for spatial variation in these processes are likely to be more successful for such taxa.

  10. Spatial assessment of water quality in the vicinity of Lake Alice National Wildlife Refuge, Upper Devils Lake Basin, North Dakota.

    Science.gov (United States)

    Vandeberg, Gregory S; Dixon, Cami S; Vose, Brian; Fisher, Mark R

    2015-02-01

    Runoff from concentrated animal feeding operations and croplands in the Upper Devils Lake Basin (Towner and Ramsey Counties), North Dakota, has the potential to impact the water quality and wildlife of the Lake Alice National Wildlife Refuge. Water samples were collected at eight locations upstream and downstream of the refuge, beginning in June 2007 through March 2011, to identify the spatial distribution of water quality parameters and assess the potential impacts from the upstream land use practices. Geographic Information Systems, statistical analysis, and regulatory standards were used to differentiate between sample locations, and identify potential impacts to water quality for the refuge based on 20 chemical constituents. Kruskal-Wallis analysis of variance (ANOVA) showed significant differences between sample locations based on boron, calcium, Escherichia coli, phosphorus, aluminum, manganese, and nickel. Hierarchical agglomerative cluster analysis of these constituents identified four distinct water quality groupings in the study area. Furthermore, this study found a significant positive correlation between the nutrient measures of nitrate-nitrite and total Kjeldahl nitrogen, and the percentage of concentrated animal feeding operation nutrient management areas using the non-parametric Spearman rho method. Significant correlations were also noted between total organic carbon and nearness to concentrated animal feeding operations. Finally, dissolved oxygen, pH, sulfate, E. coli, total phosphorus, nitrate-nitrite, and aluminum exceeded state of North Dakota and/or US Environmental Protection Agency water quality standards and/or guidelines. Elevated concentrations of phosphorus, nitrate-nitrite, and E. coli from upstream sources likely have the greatest potential impact on the Lake Alice Refuge.

  11. Fluids along the North Anatolian Fault, Niksar basin, north central Turkey: Insight from stable isotopic and geochemical analysis of calcite veins

    Science.gov (United States)

    Sturrock, Colin P.; Catlos, Elizabeth J.; Miller, Nathan R.; Akgun, Aykut; Fall, András; Gabitov, Rinat I.; Yilmaz, Ismail Omer; Larson, Toti; Black, Karen N.

    2017-08-01

    Six limestone assemblages along the North Anatolian Fault (NAF) Niksar pull-apart basin in northern Turkey were analyzed for δ18OPDB and δ13CPDB using bulk isotope ratio mass spectrometry (IRMS). Matrix-vein differences in δ18OPDB (-2.1 to 6.3‰) and δ13CPDB (-0.9 to 4.6‰) suggest a closed fluid system and rock buffering. Veins in one travertine and two limestone assemblages were further subjected to cathodoluminescence, trace element (Laser Ablation Inductively Coupled Plasma Mass Spectrometry) and δ18OPDB (Secondary Ion Mass Spectrometry, SIMS) analyses. Fluid inclusions in one limestone sample yield Th of 83.8 ± 7.3 °C (±1σ, mean average). SIMS δ18OPDB values across veins show fine-scale variations interpreted as evolving thermal conditions during growth and limited rock buffering seen at a higher-resolution than IRMS. Rare earth element data suggest calcite veins precipitated from seawater, whereas the travertine has a hydrothermal source. The δ18OSMOW-fluid for the mineralizing fluid that reproduces Th is +2‰, in range of Cretaceous brines, as opposed to negative δ18OSMOW-fluid from meteoric, groundwater, and geothermal sites in the region and highly positive δ18OSMOW-fluid expected for mantle-derived fluids. Calcite veins at this location do not record evidence for deeply-sourced metamorphic and magmatic fluids, an observation that differs from what is reported for the NAF elsewhere along strike.

  12. Investigation of the utility of Gulf Coast salt domes for the storage or disposal of radioactive wastes

    International Nuclear Information System (INIS)

    Martinez, J.D.; Thoms, R.L.; Kupfer, D.H.

    1976-01-01

    Analysis of tectonic, geohydrologic, and cultural data led to the selection of three salt domes (Vacherie, Rayburn's, Prothro) in the North Louisiana Basin and three (Keechi, Mt. Sylvan, Palestine) in the Northeast Texas Basin. Results of the tectonic stability studies (monitoring of dome movement, quaternary, Mesozoic and Tertiary, seismic, corehole in Vacherie) and hydrologic stability studies (numerical modeling, caprock, mine leaks) are discussed in detail and recommendations for further study are given

  13. Investigation of the utility of Gulf Coast salt domes for the storage or disposal of radioactive wastes

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, J.D.; Thoms, R.L.; Kupfer, D.H.

    1976-09-30

    Analysis of tectonic, geohydrologic, and cultural data led to the selection of three salt domes (Vacherie, Rayburn's, Prothro) in the North Louisiana Basin and three (Keechi, Mt. Sylvan, Palestine) in the Northeast Texas Basin. Results of the tectonic stability studies (monitoring of dome movement, quaternary, Mesozoic and Tertiary, seismic, corehole in Vacherie) and hydrologic stability studies (numerical modeling, caprock, mine leaks) are discussed in detail and recommendations for further study are given. (DLC)

  14. Tectonic inheritage from adjacent basement, north of the Campos Basin; Heranca tectonica no embasamento adjacente no norte da Bacia de Campos

    Energy Technology Data Exchange (ETDEWEB)

    Ferroni, Felipe R. [Universidade Estadual Paulista (UNESP), Rio Claro, SP (Brazil); Castro, Joel C. de [Universidade Estadual Paulista (UNESP), Rio Claro, SP (Brazil). Inst. de Geociencias e Ciencias Exatas. Dept. de Geologia Aplicada; Souza, Iata A. de; Castro, Joel C. de [Universidade Estadual Paulista (UNESP), Rio Claro, SP (Brazil). Inst. de Geociencias e Ciencias Exatas

    2008-07-01

    The evolution of the Atlantic Brazilian basins is a target of researches since the firth discovery of oil deposits. With the advance of the geophysical methods the understanding of the structures in depth became possible. The objective of this paper is to determine if the adjacent basement in the north of Campos Basin has significant influence in the identification of areas that can contain hydrocarbons. Therefore, lineaments had been extracted with SRTM images of continental basement and the main alignment was correlated with gravimetric anomalies map and seismic data. Eight levels on seismic data had been interpreted (basement, top rift, shallow water Albian, Albian, mid-Oligocene and mid-Miocene). In all levels were identified a fault normal system, which cut sediments since basement until the Recent. The main direction of the basement is NE-SW, and the alignments formed for basin basement faults coincide with this direction, what indicates that the system is active and also genetically related. (author)

  15. Freshwater fish faunas, habitats and conservation challenges in the Caribbean river basins of north-western South America.

    Science.gov (United States)

    Jiménez-Segura, L F; Galvis-Vergara, G; Cala-Cala, P; García-Alzate, C A; López-Casas, S; Ríos-Pulgarín, M I; Arango, G A; Mancera-Rodríguez, N J; Gutiérrez-Bonilla, F; Álvarez-León, R

    2016-07-01

    The remarkable fish diversity in the Caribbean rivers of north-western South America evolved under the influences of the dramatic environmental changes of neogene northern South America, including the Quechua Orogeny and Pleistocene climate oscillations. Although this region is not the richest in South America, endemism is very high. Fish assemblage structure is unique to each of the four aquatic systems identified (rivers, streams, floodplain lakes and reservoirs) and community dynamics are highly synchronized with the mono-modal or bi-modal flooding pulse of the rainy seasons. The highly seasonal multispecies fishery is based on migratory species. Freshwater fish conservation is a challenge for Colombian environmental institutions because the Caribbean trans-Andean basins are the focus of the economic development of Colombian society, so management measures must be directed to protect aquatic habitat and their connectivity. These two management strategies are the only way for helping fish species conservation and sustainable fisheries. © 2016 The Fisheries Society of the British Isles.

  16. Natural radiogenic heat production in the northeastern part of the North German Basin; Natuerliche radiogene Waermeproduktion im Nordostdeutschen Becken

    Energy Technology Data Exchange (ETDEWEB)

    Ullner, H A [GeoForschungsZentrum Potsdam (Germany)

    1997-12-01

    The radiogenic heat-production rate is a parameter that affects the thermal structure in the sedimentary cover. The parameter is important to warrant an extensive study. The first results gained in the northeastern part of the North German Basin show values in the range between 2.2 and 2.6 {mu}W/m{sup 3} in Permian mudstones in the Peckensen borehole and in the Bonese borehole (Altmark area). Comparable results were obtained in mudstones from a {gamma}-ray log measured in the Rheinsberg borehole (Brandenburg area). (orig.) [Deutsch] Die Untersuchung der thermischen Struktur des nordostdeutschen Beckens erfordert Kenntnisse ueber die radiogene Waermeproduktion der in zahlreichen Bohrungen aufgeschlossenen Sedimente. Die erste Ergebnisse eines am GFZ Postdam begonnenen Messprogrammes zeigen Waermeproduktionsraten im Bereich 2,2 bis 2,6 {mu}W/m{sup 3} in Tonsteinen des Perm in den Bohrungen Peckensen und Bonese (Altmark). Eine vergleichbare Waermeproduktion wurde anhand eines {gamma}-ray-Logs in Tonsteinen in der Bohrung Rheinsberg (Brandenburg) ermittelt. (orig.)

  17. Early Pleistocene archaeological occurrences at the Feiliang site, and the archaeology of human origins in the Nihewan Basin, North China.

    Directory of Open Access Journals (Sweden)

    Shuwen Pei

    Full Text Available The Early Pleistocene archaeological evidence from the fluvio-lacustrine sequence of the Nihewan Basin (North China offers an excellent opportunity to explore early human evolution and behavior in a temperate setting in East Asia, following the earliest 'Out of Africa'. Here we present the first comprehensive study of the Feiliang (FL site, with emphasis on the archaeological sequence, site integrity, and stone artifact assemblages. Magnetostratigraphic dating results show that early humans occupied the site ca. 1.2 Ma. Archaeological deposits were buried rapidly in primary context within shallow lake margin deposits, with only minor post-depositional disturbance from relatively low energy hydraulic forces. The FL lithic assemblage is characterized by a core and flake, Oldowan-like or Mode 1 technology, with a low degree of standardization, expedient knapping techniques, and casually retouched flakes. The bone assemblage suggests that hominin occupation of the FL site was in an open habitat of temperate grassland with areas of steppe and water. The main features of the FL assemblage are discussed in the context of the early Pleistocene archaeology of Nihewan, for which an assessment of current and future research is also presented.

  18. Lithospheric rheology and Moho upheaval control the generation mechanism of the intraplate earthquakes in the North China Basin

    Science.gov (United States)

    Liu, Chang; Zhu, Bojing; Shi, Yaolin

    2016-05-01

    Many devastating intraplate earthquakes, such as the 1966 Xingtai earthquake (Ms 7.2) and the 1976 Tangshan earthquake (Ms 7.8), occurred in the North China Basin (NCB). This study aims to investigate the generation mechanism of the large intraplate earthquakes in the NCB and the spatial distribution of earthquake activity through numerical experiments. In order to simulate the interseismic stress accumulation process in the NCB, we set up several 3D finite element models based on different lithospheric rheological structure and apply boundary conditions of horizontal compression. We find that stress concentration with high rate in the regions where Moho upheaves is responsible for the large earthquakes in the NCB. During the interseismic period large stress rate is located nearly around the bottom of the brittle upper crust, where stress accumulates fast to reach fault strength and active the main shocks. Aftershocks in the seismogenic layers could be triggered by the main shocks. Two factors are critical to the crustal stress accumulation process. (1) The first is Moho upheaval in the seismic zones. (2) The second is viscosity contrast among the crustal layers. Our results support the lithospheric rheological structure in the NCB as following: the brittle upper crust, brittle-ductile transition in the middle crust, the ductile lower crust, and the ductile lithospheric upper mantle.

  19. Heat flow and subsurface temperature as evidence for basin-scale ground-water flow, North Slope of Alaska

    Science.gov (United States)

    Deming, D.; Sass, J.H.; Lachenbruch, A.H.; De Rito, R. F.

    1992-01-01

    Several high-resolution temperature logs were made in each of 21 drillholes and a total of 601 thermal conductivity measurements were made on drill cuttings and cores. Near-surface heat flow (??20%) is inversely correlated with elevation and ranges from a low of 27 mW/m2 in the foothills of the Brooks Range in the south, to a high of 90 mW/m2 near the north coast. Subsurface temperatures and thermal gradients estimated from corrected BHTs are similarly much higher on the coastal plain than in the foothills province to the south. Significant east-west variation in heat flow and subsurface temperature is also observed; higher heat flow and temperature coincide with higher basement topography. The observed thermal pattern is consistent with forced convection by a topographically driven ground-water flow system. Average ground-water (Darcy) velocity in the postulated flow system is estimated to be of the order of 0.1 m/yr; the effective basin-scale permeability is estimated to be of the order of 10-14 m2. -from Authors

  20. Preliminary Study of the Pozzolanic Activity of Dumped Mine Wastes Obtained from the North Bohemian Basin in the Czech Republic

    Directory of Open Access Journals (Sweden)

    Konstantinos SOTIRIADIS

    2017-02-01

    Full Text Available Three dumped raw materials, a tuff and two bentonites, obtained from two mining sites at the North Bohemian basin in the Czech Republic, have been studied in order to evaluate them as pozzolanic admixtures in lime mortars for employment in restoration of cultural heritage objects. After thermal activation (800 °C; 5 h, their pozzolanic properties were compared with those of commercial metakaolin. Quantitative phase analysis with the Rietveld method from X-ray powder diffraction patterns, morphological observations, as well as the Frattini and the modified Chapelle tests were performed. In addition, lime mortars, incorporating the fired materials, were prepared and subjected to simultaneous thermal analysis after a 28-day initial curing (20 ± 1 °C; 60 ± 5 % RH. The results showed that all three materials possess pozzolanic activity. However, when employed in lime mortars they did not result in formation of pozzolanic reaction products. Two methods were proposed to improve their reactivity; grinding to obtain finer particle size and removal of quartz content where necessary.DOI: http://dx.doi.org/10.5755/j01.ms.23.1.14864

  1. A documentation of structures in unconsolidated sediments along the north shore of the Minas Basin, Nova Scotia

    International Nuclear Information System (INIS)

    Stokes, T.R.

    1988-12-01

    During the summer of 1987 the north shore of the Minas Basin, Nova Scotia, was examined for evidence of structures in unconsolidated sediments. This shoreline exposes the eastern extension of the Cobequid-Chedabucto fault system which was active from the Devonian until at least the Permian, and possible into the Mesozoic. The primary aim of the study was to document, measure and record any structures in unconsolidated sediments. In all, thirty-four structure locations were found; of these, twenty-nine were in glacial outwash deltas, the results of the Late Wisconsinan ice retreat. The most important structures include: 1) conjugate normal faults in Advocate Harbour sands and muds at East Finney Brook; 2) associated faults and folds in the Advocate Harbour bottomset muds at Lower Five Islands; and 3) major convolutions in Advocate Harbour bottomset muds at Economy Point. The convolutions are the results of seismic shaking which either postdated delta formation or triggered synsedimentary slumping. The faults and folds at Lower Five Islands were formed by extension related to either delta slumping or possible bedrock movement. The conjugate fault set at East Finney Brook is the result of an extensional event probably caused by late NE-SW normal fault reactivation. It is unclear whether this reactivation is the result of glacial rebound or neotectonic movement

  2. Governing change: land-use change and the prevention of nonpoint source pollution in the north coastal basin of California.

    Science.gov (United States)

    Short, Anne G

    2013-01-01

    Many rural areas in the United States and throughout much of the postindustrial world are undergoing significant ecological, socioeconomic, and political transformations. The migration of urban and suburban dwellers into rural areas has led to the subdivision of large tracts of land into smaller parcels, which can complicate efforts to govern human-environmental problems. Non-point source (NPS) pollution from private rural lands is a particularly pressing human-environmental challenge that may be aggravated by changing land tenure. In this article, I report on a study of the governance and management of sediment (a common NPS pollutant) in the North Coastal basin of California, a region undergoing a transition from traditional extractive and agricultural land uses to rural residential and other alternative land uses. I focus on the differences in the governance and management across private timber, ranch, residential, vacation, and other lands in the region. I find that (1) the stringency and strength of sediment regulations differ by land use, (2) nonregulatory programs tend to target working landscapes, and (3) rural residential landowners have less knowledge of sediment control and report using fewer sediment-control techniques than landowners using their land for timber production or ranching. I conclude with an exploration of the consequences of these differences on an evolving rural landscape.

  3. Assessment of sediments in the riverine impoundments of national wildlife refuges in the Souris River Basin, North Dakota

    Science.gov (United States)

    Tangen, Brian A.; Laubhan, Murray K.; Gleason, Robert A.

    2014-01-01

    Accelerated sedimentation of reservoirs and riverine impoundments is a major concern throughout the United States. Sediments not only fill impoundments and reduce their effective life span, but they can reduce water quality by increasing turbidity and introducing harmful chemical constituents such as heavy metals, toxic elements, and nutrients. U.S. Fish and Wildlife Service national wildlife refuges in the north-central part of the United States have documented high amounts of sediment accretion in some wetlands that could negatively affect important aquatic habitats for migratory birds and other wetland-dependent wildlife. Therefore, information pertaining to sediment accumulation in refuge impoundments potentially is important to guide conservation planning, including future management actions of individual impoundments. Lands comprising Des Lacs, Upper Souris, and J. Clark Salyer National Wildlife Refuges, collectively known as the Souris River Basin refuges, encompass reaches of the Des Lacs and Souris Rivers of northwestern North Dakota. The riverine impoundments of the Souris River Basin refuges are vulnerable to sedimentation because of the construction of in-stream dams that interrupt and slow river flows and because of post-European settlement land-use changes that have increased the potential for soil erosion and transport to rivers. Information regarding sediments does not exist for these refuges, and U.S. Fish and Wildlife Service personnel have expressed interest in assessing refuge impoundments to support refuge management decisions. Sediment cores and surface sediment samples were collected from impoundments within Des Lacs, Upper Souris, and J. Clark Salyer National Wildlife Refuges during 2004–05. Cores were used to estimate sediment accretion rates using radioisotope (cesium-137 [137Cs], lead-210 [210Pb]) dating techniques. Sediment cores and surface samples were analyzed for a suite of elements and agrichemicals, respectively. Examination of

  4. Radioactive waste isolation in salt: peer review of the Office of Nuclear Waste Isolation's reports on preferred repository sites within the Palo Duro Basin, Texas

    International Nuclear Information System (INIS)

    Fenster, D.; Edgar, D.; Gonzales, S.; Domenico, P.; Harrison, W.; Engelder, T.; Tisue, M.

    1984-04-01

    Documents are being submitted to the Salt Repository Project Office (SRPO) of the US Department of Energy (DOE) by Battelle Memorial Institute's Office of Nuclear Waste Isolation (ONWI) to satisfy milestones of the Salt Repository Project of the Civilian Radioactive Waste Management Program. Some of these documents are being reviewed by multidisciplinary groups of peers to ensure DOE of their adequacy and credibility. Adequacy of documents refers to their ability to meet the standards of the US Nuclear Regulatory Commission, as enunciated in 10 CFR 60, and the requirements of the National Environmental Policy Act and the Nuclear Waste Policy Act of 1982. Credibility of documents refers to the validity of the assumptions, methods, and conclusions, as well as to the completeness of coverage. This report summarizes Argonne's review of ONWI's two-volume draft report entitled Identification of Preferred Sites within the Palo Duro Basin: Vol. 1 - Palo Duro Location A, and Vol. 2 - Palo Duro Location B, dated January 1984. Argonne was requested by DOE to review these documents on January 17 and 24, 1984 (see App. A). The review procedure involved obtaining written comments on the reports from three members of Argonne's core peer review staff and three extramural experts in related research areas. The peer review panel met at Argonne on February 6, 1984, and reviewer comments were integrated into this report by the review session chairman, with the assistance of Argonne's core peer review staff. All of the peer review panelists concurred in the way in which their comments were represented in this report (see App. B). A letter report and a draft of this report were sent to SRPO on February 10, 1984, and April 17, 1984, respectively. 5 references

  5. Citronelle Dome: A giant opportunity for multizone carbon storage and enhanced oil recovery in the Mississippi Interior Salt Basin of Alabama

    Science.gov (United States)

    Esposito, R.A.; Pashin, J.C.; Walsh, P.M.

    2008-01-01

    The Citronelle Dome is a giant, salt-cored anticline in the eastern Mississippi Interior Salt Basin of southern Alabama that is located near several large-scale, stationary, carbon-emitting sources in the greater Mobile area. The dome forms an elliptical, four-way structural closure containing opportunities for CO2-enhanced oil recovery (CO2-EOR) and large-capacity saline reservoir CO2 sequestration. The Citronelle oil field, located on the crest of the dome, has produced more than 169 million bbl of 42-46?? API gravity oil from sandstone bodies in the Lower Cretaceous Rodessa Formation. The top seal for the oil accumulation is a thick succession of shale and anhydrite, and the reservoir is underfilled such that oil-water contacts are typically elevated 30-60 m (100-200 ft) above the structural spill point. Approximately 31-34% of the original oil in place has been recovered by primary and secondary methods, and CO2-EOR has the potential to increase reserves by up to 20%. Structural contour maps of the dome demonstrate that the area of structural closure increases upward in section. Sandstone units providing prospective carbon sinks include the Massive and Pilot sands of the lower Tuscaloosa Group, as well as several sandstone units in the upper Tuscaloosa Group and the Eutaw Formation. Many of these sandstone units are characterized by high porosity and permeability with low heterogeneity. The Tuscaloosa-Eutaw interval is capped by up to 610 m (2000 ft) of chalk and marine shale that are proven reservoir seals in nearby oil fields. Therefore, the Citronelle Dome can be considered a major geologic sink where CO2 can be safely stored while realizing the economic benefits associated with CO2-EOR. Copyright ?? 2008. The American Association of Petroleum Geologists/Division of Environmental Geosciences. All rights reserved.

  6. Nonlinear vegetation cover changes in the North Ethiopian Highlands: Evidence from the Lake Ashenge closed basin

    Energy Technology Data Exchange (ETDEWEB)

    Lanckriet, Sil, E-mail: sil.lanckriet@ugent.be [Department of Geography, Ghent University, Krijgslaan 281 (S8), B-9000 Ghent (Belgium); Rucina, Stephen [National Museum of Kenya, Earth Science Department, Palynology Section, P.O. Box 40658 00100, Nairobi (Kenya); Frankl, Amaury [Department of Geography, Ghent University, Krijgslaan 281 (S8), B-9000 Ghent (Belgium); Ritler, Alfons [Centre for Development and Environment, University of Bern, Hallerstrasse 10, CH-3012 Bern (Switzerland); Gelorini, Vanessa [Department of Geology and Soil Science, Ghent University, Krijgslaan 281 (S8), B-9000 Ghent (Belgium); Nyssen, Jan [Department of Geography, Ghent University, Krijgslaan 281 (S8), B-9000 Ghent (Belgium)

    2015-12-01

    Vegetation cover changes in African drylands are often thought to result from population growth, social factors and aridification. Here we show that long-term vegetation proxy records can help disentangling these main driving factors. Taking the case of North Ethiopia, we performed an integrated investigation of land cover changes over the last four centuries around the endorheic Lake Ashenge, as derived from pollen analysis and repeat photography complemented with information from historical sources. Pollen and sediment analysis of radiocarbon-dated lake deposits shows a phase of environmental destabilization during the 18th century, after a more stable previous period. This is evidenced by decreases of tree pollen (Juniperus, Olea, Celtis, Podocarpus < 5%), increases in Poaceae (> 40%) and deposition of coarser silt lake sediments (> 70%). Quantitative analysis of 30 repeated landscape photographs around the lake indicates a gradual decline of the vegetation cover since a relative maximum during the mid-19th Century. Vegetation cover declined sharply between the 1950s and the 1980s, but has since begun to recover. Overall, the data from around Lake Ashenge reveal a nonlinear pattern of deforestation and forest regrowth with several periods of vegetation cover change over the past four centuries. While there is forcing of regional drought and the regional land tenure system, the cyclic changes do not support a simplified focus on aridification or population growth. - Highlights: • Vegetation cover changes are often related with population growth or climate • We investigated land cover changes over the last four centuries near Lake Ashenge • Overall, the data reveal a nonlinear pattern of deforestation and forest regrowth.

  7. Nonlinear vegetation cover changes in the North Ethiopian Highlands: Evidence from the Lake Ashenge closed basin

    International Nuclear Information System (INIS)

    Lanckriet, Sil; Rucina, Stephen; Frankl, Amaury; Ritler, Alfons; Gelorini, Vanessa; Nyssen, Jan

    2015-01-01

    Vegetation cover changes in African drylands are often thought to result from population growth, social factors and aridification. Here we show that long-term vegetation proxy records can help disentangling these main driving factors. Taking the case of North Ethiopia, we performed an integrated investigation of land cover changes over the last four centuries around the endorheic Lake Ashenge, as derived from pollen analysis and repeat photography complemented with information from historical sources. Pollen and sediment analysis of radiocarbon-dated lake deposits shows a phase of environmental destabilization during the 18th century, after a more stable previous period. This is evidenced by decreases of tree pollen (Juniperus, Olea, Celtis, Podocarpus < 5%), increases in Poaceae (> 40%) and deposition of coarser silt lake sediments (> 70%). Quantitative analysis of 30 repeated landscape photographs around the lake indicates a gradual decline of the vegetation cover since a relative maximum during the mid-19th Century. Vegetation cover declined sharply between the 1950s and the 1980s, but has since begun to recover. Overall, the data from around Lake Ashenge reveal a nonlinear pattern of deforestation and forest regrowth with several periods of vegetation cover change over the past four centuries. While there is forcing of regional drought and the regional land tenure system, the cyclic changes do not support a simplified focus on aridification or population growth. - Highlights: • Vegetation cover changes are often related with population growth or climate • We investigated land cover changes over the last four centuries near Lake Ashenge • Overall, the data reveal a nonlinear pattern of deforestation and forest regrowth

  8. ECOLOGICALLY ACCEPTABLE WAY OF DEVELOPMENT OF THE NORTH CAUCASIAN FEDERAL DISTRICT AND PLANS FOR RESTORING TEREK RIVER BASIN

    Directory of Open Access Journals (Sweden)

    G. M. Abdurakhmanov

    2015-01-01

    Full Text Available Aim. This paper analyzes the data on contamination of the Terek river basin in the period of 1978-2012. We give assessment to process of self-purification from oil pollution of coastal waters of the Dagestan coast of the Caspian Sea; tracked seasonal and long-term dynamics of the concentration of petroleum hydrocarbons in sea water, calculated an average concentration and load of petroleum hydrocarbons in the seaside area of Terek River. We also present information obtained in the course of fieldwork in Agrakhan Bay. As a result of field research we conducted full hydrochemical analysis of water samples taken at stations, evaluating the degree of water pollution of Agrakhan Bay.Materials and Methodology. We identified features of pollution of the seaside wellhead of Terek River by analyzing the information from the review journals of the state of environment and its pollution, and magazine-yearbooks of marine waters quality by hydrochemical indicators as well as our own data collections and analysis. Agrakhan Bay Research was conducted using modern physical and chemical methods of quantitative chemical analysis. The date was collected on an integrated basis at 16 stations.Results. It was found that anthropogenic load has reached its limits in the Terek basin. The main factor for the destruction of the ecology of Terek River constitutes extremely large number of oil extracting and refining industries in the region. Studies of Agrakhan Bay revealed a high concentration of zinc. We also found a slight excess of maximum permissible concentration of lead and copper in the southern part of the bay.Main conclusion. For the revival of the Terek River it is necessary to optimize the ecological and environmental impacts of activities of enterprises and industries, improve the efficiency of the entire economy of the North Caucasian region. It is crucial to combine environmental, economic, scientific, technical and organizational measures into a single set

  9. Eocene lake basins in Wyoming and Nevada record rollback of the Farallon flat-slab beneath western North America

    Science.gov (United States)

    Smith, M. E.; Cassel, E. J.; Jicha, B. R.; Singer, B. S.; Carroll, A.

    2014-12-01

    Numerical and conceptual models of flat-slab rollback predict broad initial dynamic subsidence above the slab hinge then uplift and volcanism triggered by the advection of asthenosphere beneath the overriding plate. These predicted surface effects provide a viable but largely untested explanation for lake basin formation in Cordilleran-type orogenies. We argue that the hydrologic closure of both the foreland (early Eocene) and hinterland (late Eocene) of the North American Cordillera were caused by a trenchward-migrating wave of dynamic and thermal topography resulting from progressive removal of the Farallon flat-slab. Two major episodes of hydrologic drainage closure are recorded by Eocene terrestrial strata in the western United States. The first occurred in the retroarc foreland during the early Eocene, and resulted in the deposition of the Green River Fm. The second occurred in the hinterland during the late Eocene and resulted in accumulation of the Elko Fm. In both regions, lake strata overlie fluvial strata and become progressively more evaporative up-section, and are overlain by volcaniclastic strata. Both successions were then truncated by regional unconformities that extend until the Oligocene. We interpret these stratigraphic successions to record trenchward propagation of a regional topographic wave, caused by slab rollback. Migration of the slab-hinge initially caused dynamic subsidence and initiation of lacustrine deposition. Regional surface uplift followed, and was associated with scattered volcanism. Uplift promoted formation of endorheic basins and ultimately the development of regional unconformities. The height of the uplift can be roughly approximated by the preserved thickness of lacustrine and other nonmarine deposits at both locations (0.2-1.0 km). The 40Ar/39Ar and U-Pb geochronology of Green River Fm ash beds indicate that this surface topographic wave migrated trenchward (SW) across the foreland from 53 to 47 Ma at a velocity of ~6 cm

  10. Laboratory testing of rock and salt samples for determination of specific gravity and total porosity of the Zeeck No. 1 well (PD-7), Palo Duro Basin, Texas: unanalyzed data

    International Nuclear Information System (INIS)

    1984-07-01

    This report contains the specific gravity and total porosity determinations for rock and salt samples from Zeeck No. 1 Well of the Permian Basin. The laboratory test samples were measured for water content, apparent specific gravity, specific gravity of solids, total porosity and effective porosity. Specimen descriptions including specimen number, formation/group, and lithologic description as well as typical data sheets are included in the appendices. These data are preliminary. They have been neither analyzed nor evaluated

  11. Plant-water relationships in the Great Basin Desert of North America derived from Pinus monophylla hourly dendrometer records

    Science.gov (United States)

    Biondi, Franco; Rossi, Sergio

    2015-08-01

    Water is the main limiting resource for natural and human systems, but the effect of hydroclimatic variability on woody species in water-limited environments at sub-monthly time scales is not fully understood. Plant-water relationships of single-leaf pinyon pine ( Pinus monophylla) were investigated using hourly dendrometer and environmental data from May 2006 to October 2011 in the Great Basin Desert, one of the driest regions of North America. Average radial stem increments showed an annual range of variation below 1.0 mm, with a monotonic steep increase from May to July that yielded a stem enlargement of about 0.5 mm. Stem shrinkage up to 0.2 mm occurred in late summer, followed by an abrupt expansion of up to 0.5 mm in the fall, at the arrival of the new water year precipitation. Subsequent winter shrinkage and enlargement were less than 0.3 mm each. Based on 4 years with continuous data, diel cycles varied in both timing and amplitude between months and years. Phase shifts in circadian stem changes were observed between the growing season and the dormant one, with stem size being linked to precipitation more than to other water-related indices, such as relative humidity or soil moisture. During May-October, the amplitude of the phases of stem contraction, expansion, and increment was positively related to their duration in a nonlinear fashion. Changes in precipitation regime, which affected the diel phases especially when lasting more than 5-6 h, could substantially influence the dynamics of water depletion and replenishment in single-leaf pinyon pine.

  12. Active Deformation of Malawi Rift's North Basin Hinge Zone Modulated by Reactivation of Preexisting Precambrian Shear Zone Fabric

    Science.gov (United States)

    Kolawole, F.; Atekwana, E. A.; Laó-Dávila, D. A.; Abdelsalam, M. G.; Chindandali, P. R.; Salima, J.; Kalindekafe, L.

    2018-03-01

    We integrated temporal aeromagnetic data and recent earthquake data to address the long-standing question on the role of preexisting Precambrian structures in modulating strain accommodation and subsequent ruptures leading to seismic events within the East African Rift System. We used aeromagnetic data to elucidate the relationship between the locations of the 2009 Mw 6.0 Karonga, Malawi, earthquake surface ruptures and buried basement faults along the hinge zone of the half-graben comprising the North Basin of the Malawi Rift. Through the application of derivative filters and depth-to-magnetic-source modeling, we identified and constrained the trend of the Precambrian metamorphic fabrics and correlated them to the three-dimensional structure of buried basement faults. Our results reveal an unprecedented detail of the basement fabric dominated by high-frequency WNW to NW trending magnetic lineaments associated with the Precambrian Mughese Shear Zone fabric. The high-frequency magnetic lineaments are superimposed by lower frequency NNW trending magnetic lineaments associated with possible Cenozoic faults. Surface ruptures associated with the 2009 Mw 6.0 Karonga earthquake swarm aligned with one of the NNW-trending magnetic lineaments defining a normal fault that is characterized by right-stepping segments along its northern half and coalesced segments on its southern half. Fault geometries, regional kinematics, and spatial distribution of seismicity suggest that seismogenic faults reactivated the basement fabric found along the half-graben hinge zone. We suggest that focusing of strain accommodation and seismicity along the half-graben hinge zone is facilitated and modulated by the presence of the basement fabric.

  13. The Eocene-Oligocene transition in the North Alpine Foreland Basin and subsequent closure of a Paratethys gateway

    Science.gov (United States)

    van der Boon, A.; Beniest, A.; Ciurej, A.; Gaździcka, E.; Grothe, A.; Sachsenhofer, R. F.; Langereis, C. G.; Krijgsman, W.

    2018-03-01

    During the Eocene-Oligocene transition (EOT), a major palaeoenvironmental change took place in the Paratethys Sea of central Eurasia. Restricted connectivity and increased stratification resulted in wide-spread deposition of organic-rich sediments which nowadays make up important hydrocarbon source rocks. The North Alpine Foreland Basin (NAFB) was a major gateway of the Paratethys Sea to the open ocean during the Eocene, but the age of closure of this gateway is still uncertain. The Ammer section in southern Germany documents the shallowing of this connection and subsequent disappearance of marine environments in the NAFB, as reflected in its sedimentary succession of turbidites to marls (Deutenhausen to Tonmergel beds), via coastal sediments (Baustein beds) to continental conglomerates (Weißach beds). Here, we apply organic geochemistry and date the lithological transitions in the Ammer section using integrated stratigraphy, including magnetostratigraphy and biostratigraphy. Nannoplankton and dinocyst results can be reconciled when dinoflagellate species Wetzeliella symmetrica is of late Eocene age. Our magnetostratigraphy then records C13r-C13n-C12r and allows calculation of sediment accumulation rates and estimation of ages of lithological transitions. We show that the shallowing from turbiditic slope deposits (Deutenhausen beds) to shelf sediments (Tonmergel beds) coincides with the Eocene-Oligocene boundary at 33.9 Ma. The transition to continental sediments is dated at ca. 33.15 Ma, significantly older than suggested by previous studies. We conclude that the transition from marine to continental sediments drastically reduced the marine connection through the western part of the NAFB and influenced the oxygen conditions of the Paratethys Sea.

  14. Buried paleo-sedimentary basins in the north-eastern Black Sea-Azov Sea area and tectonic implications (DOBRE-2)

    Science.gov (United States)

    Starostenko, Vitaly; Stephenson, Randell; Janik, Tomasz; Tolkunov, Anatoly

    2014-05-01

    A number of independent but inter-related projects carried out under the auspices of various national and international programmes in Ukraine including DARIUS were aimed at imaging the upper lithosphere, crustal and sedimentary basin architecture in the north-eastern Black Sea, southern Crimea and Kerch peninsulas and the Azov Sea. This region marks the transition from relatively undisturbed Precambrian European cratonic crust and lithosphere north of the Azov Sea to areas of significant Phanerozoic tectonics and basin development, in both extensional as well as compressional environments, to the south, including the eastern Black Sea rift, which is the main sedimentary basin of the study area. The wide-angle reflection and refraction (WARR) profile DOBRE-2, a Ukrainian national project with international participation (see below), overlapping some 115 km of the southern end of the DOBREfraction'99 profile (that crosses the intracratonic Donbas Foldbelt) in the north and running to the eastern Black Sea basin in the south, utilised on- and offshore recording and energy sources. It maps crustal velocity structure across the craton margin and documents, among other things, that the Moho deepens from 40 km to ~47 km to the southwest below the Azov Sea and Crimean-Caucasus deformed zone. A regional CDP seismic profile coincident with DOBRE-2, crossing the Azov Sea, Kerch Peninsula and the north-eastern Black Sea southwest to the Ukraine-Turkey border, acquired by Ukrgeofisika (the Ukrainian national geophysical company) reveals in its inferred structural relationships the ages of Cretaceous and younger extensional and subsequent basin inversion tectonic events as well as the 2D geometry of basement displacement associated with post mid-Eocene inversion. A direct comparison of the results of the WARR velocity model and the near-vertical reflection structural image has been made by converting the former into the time domain. The results dramatically demonstrate that

  15. Use of a watershed-modeling approach to assess hydrologic effects of urbanization, North Fork Pheasant Branch basin near Middleton, Wisconsin

    Science.gov (United States)

    Steuer, Jeffrey J.; Hunt, R.J.

    2001-01-01

    The North Fork Pheasant Branch Basin in Dane County, Wisconsin is expected to undergo development. There are concerns that development will adversely affect water resources with increased flood peaks, increased runoff volumes, and increased pollutant loads. To provide a scientific basis for evaluating the hydrologic system response to development the Precipitation Runoff Modeling System (PRMS) was used to model the upper Pheasant Branch Creek watershed with an emphasis on the North Fork Basin. The upper Pheasant Branch Creek (18.3 mi2; 11,700 acres) Basin was represented with 21 Hydrologic Response Units (daily time step) and 50 flow planes (5-minute time steps). Precipitation data from the basin outlet streamflow-gaging station located at Highway 12 and temperature data from a nearby airport were used to drive the model. Continuous discharge records at three gaging stations were used for model calibration. To qualitatively assess model representation of small subbasins, periodic reconnaissance, often including a depth measurement, was made after precipitation to determine the occurrence of flow in ditches and channels from small subbasins. As a further effort to verify the model on a small subbasin scale, continuous-stage sensors (15-minute intervals) measured depth at the outlets of three small subbasins (500 to 1,200 acres). Average annual precipitation for the simulation period from 1993 to 1998 was 35.2 inches. The model simulations showed that, on average, 23.9 inches were intercepted by vegetation, or lost to evapotranspiration, 6.0 inches were infiltrated and moved to the regional ground-water system, and 4.8 inches contributed to the upper Pheasant Branch streamflow. The largest runoff event during the calibration interval was in July 1993 (746 ft3/sec; with a recurrence interval of approximately 25 years). Resulting recharge rates from the calibrated model were subsequently used as input into a ground-water-flow model. Average annual recharge varied

  16. Paleobasin analysis and tectonic framework development of southern Zagros basin, interpreted from Landsat 4 thematic mapper image

    Energy Technology Data Exchange (ETDEWEB)

    Iranpanah, A.

    1986-05-01

    Detailed lineament maps produced with the digitally enhanced Landsat 4 thematic mapper in conjunction with field data provide new information on structural relations to the southern Zagros basin. Three major parallel lineaments are from north to south, Qatar-Kazern, Razak, and Oman. These lineaments trend approximately N17/sup 0/E and subdivide the Zagros basin into northern, central, and southern segments. The study area is enclosed by the Razak and Oman lineaments. Piercement salt domes (Precambrian salt) are abundant within the southern Zagros basin, absent east of the Oman lineament, and scarce in the area west of the Razak lineament. This salt dome distribution and the N17/sup 0/E trend suggest that these lineaments are surface manifestations of boundaries of basement crustal blocks that have been reactivated periodically since the Precambrian. The northern extension of this Precambrian basin is marked by salt domes (Precambrian salt) along the Oman lineament, located in the Kerman region 400 km north of Minab. Along the eastern boundary, at the juncture of the southern Zagros basin and western Makran Ranges, the trend of fold axes changes from east-west to north-south. The western basin boundary is characterized by a gradual change in the trend of the fold axis from east-west to northwest-southeast. This study provides useful information for subsurface interpretations, which will benefit hydrocarbon exploration. The Razak and Oman lineaments enclose a highly productive area, and separate the southern Zagros basin from less productive areas to the west and from a nonproductive region to the east where chromite and iron deposits are common. These findings suggest that lineaments may serve as an exploration guide for hydrocarbons and economic mineral deposits, and as a model for developing the tectonic framework of the southern Zagros basin.

  17. Trends in Streamflow Characteristics of Selected Sites in the Elkhorn River, Salt Creek, and Lower Platte River Basins, Eastern Nebraska, 1928-2004, and Evaluation of Streamflows in Relation to Instream-Flow Criteria, 1953-2004

    Science.gov (United States)

    Dietsch, Benjamin J.; Godberson, Julie A.; Steele, Gregory V.

    2009-01-01

    (06800000), Elkhorn River at Waterloo (06800500), Salt Creek at Greenwood (06803555), and Platte River at Louisville (06805500). In general, sites in the Elkhorn River Basin upstream from Norfolk showed fewer significant trends than did sites downstream from Norfolk and sites in the Platte River and Salt Creek basins, where trends in low flows also were positive. Historical Platte River streamflow records for the streamflow-gaging station at Louisville, Nebraska, were used to determine the number of days per water year (Sept. 30 to Oct. 1) when flows failed to satisfy the minimum criteria of the instream-flow appropriation prior to its filing in 1993. Before 1993, the median number of days the criteria were not satisfied was about 120 days per water year. During 1993 through 2004, daily mean flows at Louisville, Nebraska, have failed to satisfy the criteria for 638 days total (median value equals 21.5 days per year). Most of these low-flow intervals occurred in summer through early fall. For water years 1953 through 2004, of the discrete intervals when flow was less that the criteria levels, 61 percent were 3 days or greater in duration, and 38 percent were 7 days or greater in duration. The median duration of intervals of flow less than the criteria levels was 4 consecutive days during 1953 through 2004.

  18. Generic aspects of salt repositories

    International Nuclear Information System (INIS)

    Laughon, R.B.

    1979-01-01

    The history of geological disposal of radioactive wastes in salt is presented from 1957 when a panel of the National Academy of Sciences-National Research Council recommended burial in bedded salt deposits. Early work began in the Kansas, portion of the Permian Basin where simulated wastes were placed in an abandoned salt mine at Lyons, Kansas, in the late 1960's. This project was terminated when the potential effect of nearby solution mining activities could not be resolved. Evaluation of bedded salts resumed a few years later in the Permian Basin in southeastern New Mexico, and search for suitable sites in the 1970's resulted in the formation of the National Waste Terminal Storage Program in 1976. Evaluation of salt deposits in many regions of the United States has been virtually completed and has shown that deposits having the greatest potential for radioactive waste disposal are those of the largest depositional basins and salt domes of the Gulf Coast region

  19. The impact of the winter North Atlantic Oscillation on the frequency of spring dust storms over Tarim Basin in northwest China in the past half-century

    International Nuclear Information System (INIS)

    Zhao Yong; Huang Anning; Zhou Yang; Huang Ying; Zhu Xinsheng

    2013-01-01

    The relationship between the frequency of spring dust storms over Tarim Basin in northwest China and the winter North Atlantic Oscillation (NAO) is investigated by using the observed dust storm frequency (DSF) and the 10 m wind velocity at 36 stations in Tarim Basin and the National Centers for Environment Prediction/National Center for Atmospheric Research reanalysis data for the period 1961–2007. The spring DSF (winter NAO) index shows a clear decreasing (increasing) linear trend over 1961–2007. The winter NAO correlates well with the subsequent spring DSF over Tarim Basin on both interannual and interdecadal time scales and its interannual to interdecadal variation plays an important role in the spring DSF. Two possible physical mechanisms are identified. One is related to the large scale anomalous circulations in spring in the middle to high troposphere modulated by the winter NAO, providing the background of dynamical conditions for the dust storm occurrences. The other is related to the shifts in the local horizontal sea level pressure (SLP) gradients and 10 m wind speed, corresponding to changes in the large scale circulations in spring. The decrease in the local 10 m wind speed due to the reduced horizontal SLP gradients over Tarim Basin during the strong winter NAO years contributes to the decline of the DSF in the subsequent spring. (letter)

  20. Producing landslide susceptibility maps by utilizing machine learning methods. The case of Finikas catchment basin, North Peloponnese, Greece.

    Science.gov (United States)

    Tsangaratos, Paraskevas; Ilia, Ioanna; Loupasakis, Constantinos; Papadakis, Michalis; Karimalis, Antonios

    2017-04-01

    The main objective of the present study was to apply two machine learning methods for the production of a landslide susceptibility map in the Finikas catchment basin, located in North Peloponnese, Greece and to compare their results. Specifically, Logistic Regression and Random Forest were utilized, based on a database of 40 sites classified into two categories, non-landslide and landslide areas that were separated into a training dataset (70% of the total data) and a validation dataset (remaining 30%). The identification of the areas was established by analyzing airborne imagery, extensive field investigation and the examination of previous research studies. Six landslide related variables were analyzed, namely: lithology, elevation, slope, aspect, distance to rivers and distance to faults. Within the Finikas catchment basin most of the reported landslides were located along the road network and within the residential complexes, classified as rotational and translational slides, and rockfalls, mainly caused due to the physical conditions and the general geotechnical behavior of the geological formation that cover the area. Each landslide susceptibility map was reclassified by applying the Geometric Interval classification technique into five classes, namely: very low susceptibility, low susceptibility, moderate susceptibility, high susceptibility, and very high susceptibility. The comparison and validation of the outcomes of each model were achieved using statistical evaluation measures, the receiving operating characteristic and the area under the success and predictive rate curves. The computation process was carried out using RStudio an integrated development environment for R language and ArcGIS 10.1 for compiling the data and producing the landslide susceptibility maps. From the outcomes of the Logistic Regression analysis it was induced that the highest b coefficient is allocated to lithology and slope, which was 2.8423 and 1.5841, respectively. From the

  1. Integrated Assessment Of Groundwater Recharge In The North Kelantan River Basin Using Environmental Water Stable Isotopes, Tritium And Chloride Data

    International Nuclear Information System (INIS)

    Wan Zakaria Wan Muhamad Tahir; Nur Hayati Hussin; Ismail Yusof; Kamaruzaman Mamat; Johari Abdul Latif; Rohaimah Demanah

    2014-01-01

    Estimation and understanding of groundwater recharge mechanism and capacity of aquifer are essential issues in water resources investigation. An integrated study of environmental chloride content in the unsaturated zone using chloride mass balance method (CMB) and isotopic analyses of deuterium, oxygen-18, and tritium values range in the alluvial channel aquifer profiles (quaternary sediments) of the North Kelantan River basin has been carried out in order to estimate and understand groundwater recharge processes. However, the rate of aquifer recharge is one of the most difficult factors to measure in the evaluation of ground water resources. Estimation of recharge, by whatever method, is normally subject to large uncertainties and errors. In this paper, changes in stable isotopic signatures in different seasons and tritium analysis of the sampled groundwater observed at different depth in the aquifer system were evaluated. Stable isotope data are slightly below the local meteoric water line (LMWL) indicating that there is some isotopic enrichment due to direct evaporation through the soil surface which is exposed prior or during the recharging process. The overall data on water isotopic signatures from boreholes and production wells (shallow and relatively deep aquifer system) are spread over a fairly small range but somewhat distinct compared to river water isotopic compositions. Such a narrow variation in isotopic signatures of the sampled groundwaters may suggest that all groundwater samples originated from the same area of direct recharge predominantly from rainfall and nearby rivers. Environmental tritium data measured in groundwater at different depths and locations together with a medium-term of limited monthly rainfall collections were used to investigate the groundwater age distributions (residence times). The existence of groundwater in the aquifer system (sampled wells) is predominantly designated as modern (young) water that has undergone recharged

  2. Evaluation and Application of Gridded Snow Water Equivalent Products for Improving Snowmelt Flood Predictions in the Red River Basin of the North

    Science.gov (United States)

    Schroeder, R.; Jacobs, J. M.; Vuyovich, C.; Cho, E.; Tuttle, S. E.

    2017-12-01

    Each spring the Red River basin (RRB) of the North, located between the states of Minnesota and North Dakota and southern Manitoba, is vulnerable to dangerous spring snowmelt floods. Flat terrain, low permeability soils and a lack of satisfactory ground observations of snow pack conditions make accurate predictions of the onset and magnitude of major spring flood events in the RRB very challenging. This study investigated the potential benefit of using gridded snow water equivalent (SWE) products from passive microwave satellite missions and model output simulations to improve snowmelt flood predictions in the RRB using NOAA's operational Community Hydrologic Prediction System (CHPS). Level-3 satellite SWE products from AMSR-E, AMSR2 and SSM/I, as well as SWE computed from Level-2 brightness temperatures (Tb) measurements, including model output simulations of SWE from SNODAS and GlobSnow-2 were chosen to support the snowmelt modeling exercises. SWE observations were aggregated spatially (i.e. to the NOAA North Central River Forecast Center forecast basins) and temporally (i.e. by obtaining daily screened and weekly unscreened maximum SWE composites) to assess the value of daily satellite SWE observations relative to weekly maximums. Data screening methods removed the impacts of snow melt and cloud contamination on SWE and consisted of diurnal SWE differences and a temperature-insensitive polarization difference ratio, respectively. We examined the ability of the satellite and model output simulations to capture peak SWE and investigated temporal accuracies of screened and unscreened satellite and model output SWE. The resulting SWE observations were employed to update the SNOW-17 snow accumulation and ablation model of CHPS to assess the benefit of using temporally and spatially consistent SWE observations for snow melt predictions in two test basins in the RRB.

  3. Effectiveness of North Carolina phosphate rock and fertilizer tablets in reclaiming disturbed land in Copper Basin, Tennessee, USA

    International Nuclear Information System (INIS)

    Sikora, F.J.; Soileau, J.M.; Maddox, J.J.; Kelsoe, J.J.

    2002-01-01

    Open smelting of copper ore about 100 years ago resulted in approximately 9,300 ha of disturbed land with severely eroded acidic soils at Copper Basin, Tennessee, USA. A field study was initiated in 1992 to compare revegetation from surface application of North Carolina phosphate rock (PR) and triple superphosphate (TSP) at 20, 59, and 295 kg P ha -1 , and determine benefits of fertilizer tablets. Measurements included survival and growth of transplanted pine seedlings, ground cover from an aerially seeded grass/legume mixture, and soil acidity. Tree survival was greater than 87% with no difference among treatments. When fertilizer tablets were not used, tree height and diameter increased with increasing soil P rates with growth maximized at 59 kg P ha -1 . After 96 and 240 d, there was no difference between PR and TSP with respect to growth of loblolly pine. After 960 days, PR caused greater tree growth compared to TSP. Weeping love grass provided the most ground cover, and its growth was stimulated with fertilizer tablets and P application. Fescue, lespedeza, and black locust trees responded more to PR than to TSP. Soil pH increased, and 0.01-M SrCl 2 extractable Al decreased, with increasing rate of PR. The molar ratios of Ca:Al in 0.01-M SrCl 2 soil extracts were also greater with PR compared to TSP. Decreased soil acidity, increased growth of loblolly pines, and increased diversity of ground cover vegetation from PR application makes PR a suitable material for reclaiming extremely acidic soils. Fertilizer tablets had an effect of improving loblolly pine growth when no P was surface applied. However, with surface P application of 59 kg ha -1 as PR, fertilizer tablets did not add any additional benefit to loblolly pine growth. Some improvement in tree growth was observed using fertilizer tablets with P applied as TSP at 59 kg ha -1 . Fertilizer tablets did greatly improve ground coverage of weeping love grass. Use of fertilizer tablets in reclamation efforts in

  4. Environmental signatures and effects of an oil and gas wastewater spill in the Williston Basin, North Dakota

    Science.gov (United States)

    Cozzarelli, Isabelle M.; Skalak, Katherine; Kent, D.B.; Engle, Mark A.; Benthem, Adam J.; Mumford, Adam; Haase, Karl B.; Farag, Aïda M.; Harper, David; Nagel, S. C.; Iwanowicz, Luke R.; Orem, William H.; Akob, Denise M.; Jaeschke, Jeanne B.; Galloway, Joel M.; Kohler, Matthias; Stoliker, Deborah L.; Jolly, Glenn D.

    2017-01-01

    Wastewaters from oil and gas development pose largely unknown risks to environmental resources. In January 2015, 11.4 M L (million liters) of wastewater (300 g/L TDS) from oil production in the Williston Basin was reported to have leaked from a pipeline, spilling into Blacktail Creek, North Dakota. Geochemical and biological samples were collected in February and June 2015 to identify geochemical signatures of spilled wastewaters as well as biological responses along a 44-km river reach. February water samples had elevated chloride (1030 mg/L) and bromide (7.8 mg/L) downstream from the spill, compared to upstream levels (11 mg/L and < 0.4 mg/L, respectively). Lithium (0.25 mg/L), boron (1.75 mg/L) and strontium (7.1 mg/L) were present downstream at 5–10 times upstream concentrations. Light hydrocarbon measurements indicated a persistent thermogenic source of methane in the stream. Semi-volatile hydrocarbons indicative of oil were not detected in filtered samples but low levels, including tetramethylbenzenes and di-methylnaphthalenes, were detected in unfiltered water samples downstream from the spill. Labile sediment-bound barium and strontium concentrations (June 2015) were higher downstream from the Spill Site. Radium activities in sediment downstream from the Spill Site were up to 15 times the upstream activities and, combined with Sr isotope ratios, suggest contributions from the pipeline fluid and support the conclusion that elevated concentrations in Blacktail Creek water are from the leaking pipeline. Results from June 2015 demonstrate the persistence of wastewater effects in Blacktail Creek several months after remediation efforts started. Aquatic health effects were observed in June 2015; fish bioassays showed only 2.5% survival at 7.1 km downstream from the spill compared to 89% at the upstream reference site. Additional potential biological impacts were indicated by estrogenic inhibition in downstream waters. Our findings demonstrate that

  5. Environmental signatures and effects of an oil and gas wastewater spill in the Williston Basin, North Dakota.

    Science.gov (United States)

    Cozzarelli, I M; Skalak, K J; Kent, D B; Engle, M A; Benthem, A; Mumford, A C; Haase, K; Farag, A; Harper, D; Nagel, S C; Iwanowicz, L R; Orem, W H; Akob, D M; Jaeschke, J B; Galloway, J; Kohler, M; Stoliker, D L; Jolly, G D

    2017-02-01

    Wastewaters from oil and gas development pose largely unknown risks to environmental resources. In January 2015, 11.4ML (million liters) of wastewater (300g/L TDS) from oil production in the Williston Basin was reported to have leaked from a pipeline, spilling into Blacktail Creek, North Dakota. Geochemical and biological samples were collected in February and June 2015 to identify geochemical signatures of spilled wastewaters as well as biological responses along a 44-km river reach. February water samples had elevated chloride (1030mg/L) and bromide (7.8mg/L) downstream from the spill, compared to upstream levels (11mg/L and <0.4mg/L, respectively). Lithium (0.25mg/L), boron (1.75mg/L) and strontium (7.1mg/L) were present downstream at 5-10 times upstream concentrations. Light hydrocarbon measurements indicated a persistent thermogenic source of methane in the stream. Semi-volatile hydrocarbons indicative of oil were not detected in filtered samples but low levels, including tetramethylbenzenes and di-methylnaphthalenes, were detected in unfiltered water samples downstream from the spill. Labile sediment-bound barium and strontium concentrations (June 2015) were higher downstream from the Spill Site. Radium activities in sediment downstream from the Spill Site were up to 15 times the upstream activities and, combined with Sr isotope ratios, suggest contributions from the pipeline fluid and support the conclusion that elevated concentrations in Blacktail Creek water are from the leaking pipeline. Results from June 2015 demonstrate the persistence of wastewater effects in Blacktail Creek several months after remediation efforts started. Aquatic health effects were observed in June 2015; fish bioassays showed only 2.5% survival at 7.1km downstream from the spill compared to 89% at the upstream reference site. Additional potential biological impacts were indicated by estrogenic inhibition in downstream waters. Our findings demonstrate that environmental signatures

  6. Water-quality and algal conditions in the North Umpqua River basin, Oregon, 1992-95, and indications for resource management

    Science.gov (United States)

    Anderson, Chauncey W.; Carpenter, Kurt D.

    1998-01-01

    This report describes the results of a synoptic water-quality and algal investigation during July 1995 at 36 stream sites in a 1,350 square-mile area of the North Umpqua River Basin, Oregon. The study area includes a headwaters hydroelectric project area, a Wild and Scenic reach in the main stem immediately downstream, and the watersheds of several major tributaries. Additional data from previous investigations are reviewed, and impacts on water quality in the Wild and Scenic reach from resource management, including forestry and reservoir operations, are inferred where sufficient data exist.

  7. Assessment of water and proppant quantities associated with petroleum production from the Bakken and Three Forks Formations, Williston Basin Province, Montana and North Dakota, 2016

    Science.gov (United States)

    Haines, Seth; Varela, Brian A.; Hawkins, Sarah J.; Gianoutsos, Nicholas J.; Thamke, Joanna N.; Engle, Mark A.; Tennyson, Marilyn E.; Schenk, Christopher J.; Gaswirth, Stephanie B.; Marra, Kristen R.; Kinney, Scott A.; Mercier, Tracey J.; Martinez, Cericia D.

    2017-06-23

    The U.S. Geological Survey (USGS) has completed an assessment of water and proppant requirements and water production associated with the possible future production of undiscovered oil and gas resources in the Three Forks and Bakken Formations (Late Devonian to Early Mississippian) of the Williston Basin Province in Montana and North Dakota. This water and proppant assessment is directly linked to the geology-based assessment of the undiscovered, technically recoverable continuous oil and gas resources that is described in USGS Fact Sheet 2013–3013.

  8. Late Quaternary stratigraphy, sedimentology, and geochemistry of an underfilled lake basin in the Puna (north-west Argentina)

    Science.gov (United States)

    McGlue, Michael M.; Cohen, Andrew S.; Ellis, Geoffrey S.; Kowler, Andrew L.

    2013-01-01

    Depositional models of ancient lakes in thin-skinned retroarc foreland basins rarely benefit from appropriate Quaternary analogues. To address this, we present new stratigraphic, sedimentological and geochemical analyses of four radiocarbon-dated sediment cores from the Pozuelos Basin (PB; northwest Argentina) that capture the evolution of this low-accommodation Puna basin over the past ca. 43 cal kyr. Strata from the PB are interpreted as accumulations of a highly variable, underfilled lake system represented by lake-plain/littoral, profundal, palustrine, saline lake and playa facies associations. The vertical stacking of facies is asymmetric, with transgressive and thin organic-rich highstand deposits underlying thicker, organic-poor regressive deposits. The major controls on depositional architecture and basin palaeogeography are tectonics and climate. Accommodation space was derived from piggyback basin-forming flexural subsidence and Miocene-Quaternary normal faulting associated with incorporation of the basin into the Andean hinterland. Sediment and water supply was modulated by variability in the South American summer monsoon, and perennial lake deposits correlate in time with several well-known late Pleistocene wet periods on the Altiplano/Puna plateau. Our results shed new light on lake expansion–contraction dynamics in the PB in particular and provide a deeper understanding of Puna basin lakes in general.

  9. The lithospheric-scale 3D structural configuration of the North Alpine Foreland Basin constrained by gravity modelling and the calculation of the 3D load distribution

    Science.gov (United States)

    Przybycin, Anna M.; Scheck-Wenderoth, Magdalena; Schneider, Michael

    2014-05-01

    The North Alpine Foreland Basin is situated in the northern front of the European Alps and extends over parts of France, Switzerland, Germany and Austria. It formed as a wedge shaped depression since the Tertiary in consequence of the Euro - Adriatic continental collision and the Alpine orogeny. The basin is filled with clastic sediments, the Molasse, originating from erosional processes of the Alps and underlain by Mesozoic sedimentary successions and a Paleozoic crystalline crust. For our study we have focused on the German part of the basin. To investigate the deep structure, the isostatic state and the load distribution of this region we have constructed a 3D structural model of the basin and the Alpine area using available depth and thickness maps, regional scale 3D structural models as well as seismic and well data for the sedimentary part. The crust (from the top Paleozoic down to the Moho (Grad et al. 2008)) has been considered as two-parted with a lighter upper crust and a denser lower crust; the partition has been calculated following the approach of isostatic equilibrium of Pratt (1855). By implementing a seismic Lithosphere-Asthenosphere-Boundary (LAB) (Tesauro 2009) the crustal scale model has been extended to the lithospheric-scale. The layer geometry and the assigned bulk densities of this starting model have been constrained by means of 3D gravity modelling (BGI, 2012). Afterwards the 3D load distribution has been calculated using a 3D finite element method. Our results show that the North Alpine Foreland Basin is not isostatically balanced and that the configuration of the crystalline crust strongly controls the gravity field in this area. Furthermore, our results show that the basin area is influenced by varying lateral load differences down to a depth of more than 150 km what allows a first order statement of the required compensating horizontal stress needed to prevent gravitational collapse of the system. BGI (2012). The International

  10. Kinematic reconstitution and tectono-sedimentation associated to salt domes in deep water of Santos basin, Brazil; Reconstituicao cinematica e tectono-sedimentacao associada a domos salinos nas aguas profundas da bacia de Santos, Brasil

    Energy Technology Data Exchange (ETDEWEB)

    Caldas, Manuela Fernandes [PETROBRAS E e P - Exploracao, Rio de Janeiro, RJ (Brazil). Polo Centro], E-mail: manuela.caldas@petrobras.com.br; Zalan, Pedro Victor [PETROBRAS E e P - Exploracao, Rio de Janeiro, RJ (Brazil). Gestao de Projetos Exploratorios], E-mail: zalan@petrobras.com.br

    2009-05-15

    This article presents new methods for structural restoration and kinematic evolution of salt domes during the opening stages and growth of a passive margin in the Santos Basin. The traditional method or restoration of salt bodies uses software and a 3D database. Using 2D seismic data and adapting/improving methods published in the oil industry literature, we developed a method based on the observation of the stratal geometric patterns of sedimentary packages associated to the salt bodies such as tabular forms (straight parallel reflectors, pre or post-tectonic sedimentary sequences), or dish/bowl forms (with very distinct depocenters and thinned margins with fanning of dips, syntectonic/halokinetic sedimentary sequences), and on the determination/mapping of growth axes and thinning axes in halokinetic strata. Horizontal and vertical reconstitutions of the salt flow (inflation, deflation and horizontal flow) were deduced based on isochron (isopach maps in time) and axes maps and flattened seismic sections at the time of deposition of each associated sedimentary sequence. The resulting maps and reconstitutions presented an amazing correlation with the current patterns mapped in the study area. The interpreted tectonic phases of halokinetic evolution, deduced from the produced maps and reconstitutions, showed a good agreement with the regional events that affected the Santos Basin and adjoining basement. Based on those results, we believe that the application of this method provides an important contribution for the oil exploration industry, considering that it presents outstanding results based on 2D seismic data. It allows an understanding of the structural and kinematic evolution of the salt bodies and of the halokinetic sequences associated, with important implications on the modeling of petroleum systems, thus, reducing the risk of exploration prospects. (author)

  11. Exhumation of the North Alpine Foreland Basin- Quantitative insights from structural analysis, thermochronology and a new thermal history model

    Science.gov (United States)

    Luijendijk, Elco; von Hagke, Christoph; Hindle, David

    2016-04-01

    Due to a wealth of geological and thermochronology data the northern foreland basin of the European Alps is an ideal natural laboratory for understanding the dynamics of foreland basins and their interaction with surface and geodynamic processes. We present an unprecedented compilation of thermochronological data from the basin and quantify cooling and exhumation rates in the basin by combining published and new vitrinite reflectance, apatite fission track and U-Th/He data with a new inverse burial and thermal history model. No correlation is obvious between inferred cooling and exhumation rates and elevation, relief or tectonics. We compare derived temperature histories to exhumation estimates based on the retro-deformation of Molasse basin and the Jura mountains, and to exhumation caused by drainage reorganization and incision. Drainage reorganization can explain at most 25% of the observed cooling rates in the basin. Tectonic transport of the basin's sediments over the inclined basement of the alpine foreland as the Jura mountains shortened can explain part of the cooling signal in the western part of the basin. However, overall a substantial amount of cooling and exhumation remains unexplained by known tectonic and surface processes. Our results document basin wide exhumation that may be related to slab roll-back or other lithospheric processes. Uncertainty analysis shows that thermochronometers can be explained by cooling and exhumation starting as early as the Miocene or as late as the Pleistocene. New (U-Th)/He data from key areas close to the Alpine front may provide better constraints on the timing of exhumation.

  12. Environmental survey in the Tuul and Orkhon River basins of north-central Mongolia, 2010: metals and other elements in streambed sediment and floodplain soi

    Science.gov (United States)

    Brumbaugh, William G.; Tillitt, Donald E.; May, Thomas W.; Choijil, J.; Komov, T.V.

    2013-01-01

    Streambed sediment and subsurface floodplain soil were sampled for elemental analyses from 15 locations in river basins of north-central Mongolia during August 2010. Our primary objective was to conduct a reconnaissance-level assessment of potential inputs of toxicologically important metals and metalloids to Lake Baikal, Russia, that might originate from mining and urban activities within tributaries of the Selenga River in Mongolia. Samples were collected in triplicate from all sites, then dried, and sieved to city of Ulaanbaatar, but those concentrations were considerably less than probable effects benchmarks. Historical and possibly present mining activities have led to considerable metal contamination in certain tributaries of the Orkhon River in north-central Mongolia; however, metals originating from those sources did not appear to be accumulating in sediments at our downstream-most sampling sites located near the border between Mongolia and Russia.

  13. Geology of the Fox Hills Formation (late Cretaceous) in the Williston Basin of North Dakota, with reference to uranium potential. Report of investigation No. 55

    International Nuclear Information System (INIS)

    Cvancara, A.M.

    1976-01-01

    The Fox Hills Formation is a marine and brackish sequence of primarily medium and fine clastics within the Late Cretaceous Montana Group. In the Williston basin of North Dakota, four members (in ascending order) are recognized: Trail City, Timber Lake, Iron Lightning (with Bullhead and Colgate lithofacies), and Linton. The Fox Hills conformably overlies the Pierre Shale and conformably and disconformably underlies and interfingers with the Hell Creek Formation; it occurs in about the western two-thirds of the state. The geology of the Fox Hills Formation in North Dakota, and the stratigraphy of which is based on previous surface information and recent subsurface data, are summarized, and its potential for uranium is evaluated

  14. Soil erodibility mapping using the RUSLE model to prioritize erosion control in the Wadi Sahouat basin, North-West of Algeria.

    Science.gov (United States)

    Toubal, Abderrezak Kamel; Achite, Mohammed; Ouillon, Sylvain; Dehni, Abdelatif

    2018-03-12

    Soil losses must be quantified over watersheds in order to set up protection measures against erosion. The main objective of this paper is to quantify and to map soil losses in the Wadi Sahouat basin (2140 km 2 ) in the north-west of Algeria, using the Revised Universal Soil Loss Equation (RUSLE) model assisted by a Geographic Information System (GIS) and remote sensing. The Model Builder of the GIS allowed the automation of the different operations for establishing thematic layers of the model parameters: the erosivity factor (R), the erodibility factor (K), the topographic factor (LS), the crop management factor (C), and the conservation support practice factor (P). The average annual soil loss rate in the Wadi Sahouat basin ranges from 0 to 255 t ha -1  year -1 , maximum values being observed over steep slopes of more than 25% and between 600 and 1000 m elevations. 3.4% of the basin is classified as highly susceptible to erosion, 4.9% with a medium risk, and 91.6% at a low risk. Google Earth reveals a clear conformity with the degree of zones to erosion sensitivity. Based on the soil loss map, 32 sub-basins were classified into three categories by priority of intervention: high, moderate, and low. This priority is available to sustain a management plan against sediment filling of the Ouizert dam at the basin outlet. The method enhancing the RUSLE model and confrontation with Google Earth can be easily adapted to other watersheds.

  15. Hydrology in a Mediterranean mountain environment, the Vallcebre Research basins (North Eastern Spain). IV. Testing hydrological and erosion models

    International Nuclear Information System (INIS)

    Gallart, F.; Latron, J.; Llorens, P.; Martinez-Carreras, N.

    2009-01-01

    Three modelling exercises were carried out in the Vallcebre research basins in order to both improve the understanding of the hydrological processes and test the adequate of some models in such Mediterranean mountain conditions. These exercises consisted of i) the analysis of the hydrological role of the agricultural terraces using the TOPMODEL topographic index, ii) the parametrisation of TOPMODEL using internal basin information, and iii) a test of the erosion model KINEROS2 for simulating badlands erosion. (Author) 13 refs.

  16. Origins of the Salado, Seven Rivers, and San Andres salt margins in Texas and New Mexico: Revision 1: Topical report

    International Nuclear Information System (INIS)

    Boyd, S.D.; Murphy, P.J.

    1987-02-01

    The present boundaries of the San Andres, Seven Rivers, and Salado salts generally lie along the periphery of the Palo Duro and Tucumcari Basins. Various geologic mechanisms occurring singularly or in combination determined the positions of the salt margins. These mechanisms include nondeposition of salt and syndepositional and postdepositional dissolution. In New Mexico, San Andres units pinch out against the Pedernal and Sierra Grande Uplifts, indicating that nondeposition established the original salt margins there. Syndepositional dissolution of exposed Upper San Andres salts occurred in response to Guadalupian upwarp of the basin margins. Triassic erosion differentially removed Permian salt-bearing formations along the uplifts. Late Tertiary dissolution is indicated by fill of north-south trending collapse valleys. In Texas, Guadalupian upwarp along the Amarillo Uplift caused pinchout of Units 2 and 3 in the Lower San Andres and influenced the deposition of subsequent salt-bearing strata. The discontinuity of Upper San Andres evaporites across the Amarillo Uplift suggests syndepositional dissolution. Along the eastern and northeastern basin margin, dissolution may have accompanied Triassic erosion of locally uplifted Upper Permian strata. Tertiary dissolution is recognized beneath anomalously thick Ogallala Formation sections that overlie collasped Permian strata. 49 refs., 31 figs., 2 tabs

  17. Heat and salt budgets over the Gulf Stream North Wall during LatMix survey in winter 2012.

    Science.gov (United States)

    Sanchez-Rios, A.; Shearman, R. K.; D'Asaro, E. A.; Lee, C.; Gula, J.; Klymak, J. M.

    2016-02-01

    As part of the ONR-sponsored LatMix Experiment, ship-based and glider-based observations following a Lagrangian float are used to examine the evolution of temperature, salinity and density along the Gulf Stream north wall in wintertime. Satellite observations during the survey and the in-situ measurements showed the presence of submesoscale (1) calculated for this regions corroborates the possibility of submesoscale dynamics. Using a heat and salinity budget, we show that surface forcing, entrainment from below and advection by the mean flow velocities are not sufficient to explain the observed rate of change of heat and salinity in the mixed layer. Although confidence estimates prevent an accurate flux divergence calculation, Reynold flux estimates are consistent with a cross-frontal exchange that can reproduce the observed temporal trends.

  18. Study of weathering velocity of rocks with uranium as a natural tracer. Application to two drainage basins of the north-east of Brazil

    International Nuclear Information System (INIS)

    Costa Pinto Moreira Nordemann, L.M. da.

    1977-01-01

    Study on rock weathering rate, i.e. rock-soil interface formation, by measuring the elements dissolved in river waters. These elements are used as natural tracers. This work has been carried out in the drainage basin of Preto and Salgado Rivers, in Brazil. Conventional elements, sodium, potassium, calcium and magnesium have been utilized first and all dissolved salts have been used as natural tracers to allow comparison with other scientific works. Then, uranium has been used because it is not found in rain waters so that corrections are not necessary and because its abundance can be measured by α and γ spectrometry, and the 234 U/ 238 U ratio obtained, 234 U being more rapidly dissolved during weathering. Another reason is that no interaction occurs between uranium and the biomass. It is then possible to find a geochemical balance for this area [fr

  19. Mapping potential zones for groundwater recharge and its evaluation in arid environments using a GIS approach: Case study of North Gafsa Basin (Central Tunisia)

    Science.gov (United States)

    Mokadem, Naziha; Boughariou, Emna; Mudarra, Matías; Ben Brahim, Fatma; Andreo, Bartolome; Hamed, Younes; Bouri, Salem

    2018-05-01

    With the progressive evolution of industrial sector, agricultural, urbanization, population and drinking water supply, the water demand continuously increases which necessitates the planning of groundwater recharge particularly in arid and semi-arid regions. This paper gives a comprehensive review of various recharges studies in the North Gafsa basin (South Tunisia). This latter is characterized by a natural groundwater recharge that is deeply affected by the lack of precipitations. The aim of this study is to determine the recharge potential zones and to quantify (or estimate) the rainfall recharge of the shallow aquifers. The mapping of the potential recharge zones was established in North Gafsa basin, using geological and hydrological parameters such as slope, lithology, topography and stream network. Indeed, GIS provide tools to reclassify these input layers to produce the final map of groundwater potential zones of the study area. The final output map reveals two distinct zones representing moderate and low groundwater potential recharge. Recharge estimations were based on the four methods: (1) Chloride Method, (2) ERAS Method, (3) DGRE coefficient and (4) Fersi equations. Therefore, the overall results of the different methods demonstrate that the use of the DGRE method applying on the potential zones is more validated.

  20. Lithospheric rheological heterogeneity across an intraplate rift basin (Linfen Basin, North China) constrained from magnetotelluric data: Implications for seismicity and rift evolution

    Science.gov (United States)

    Yin, Yaotian; Jin, Sheng; Wei, Wenbo; Ye, Gaofeng; Jing, Jian'en; Zhang, Letian; Dong, Hao; Xie, Chengliang; Liang, Hongda

    2017-10-01

    We take the Linfen Basin, which is the most active segment of the Cenozoic intraplate Shanxi Rift, as an example, showing how to use magnetotelluric data to constrain lithospheric rheological heterogeneities of intraplate tectonic zones. Electrical resistivity models, combined with previous rheological numerical simulation, show a good correlation between resistivity and rheological strength, indicating the mechanisms of enhanced conductivity could also be reasons of reduced viscosity. The crust beneath the Linfen Basin shows overall stratified features in both electrical resistivity and rheology. The uppermost crustal conductive layer is dominated by friction sliding-type brittle fracturing. The high-resistivity mid-crust is inferred to be high-viscosity metamorphic basement being intersected by deep fault. The plastic lower crust show significantly high-conductivity feature. Seismicity appears to be controlled by crustal rheological heterogeneity. Micro-earthquakes mainly distribute at the brittle-ductile transition zones as indicated by high- to low-resistivity interfaces or the high pore pressure fault zones while the epicenters of two giant destructive historical earthquakes occur within the high-resistivity and therefore high-strength blocks near the inferred rheological interfaces. The lithosphere-scale lateral rheological heterogeneity along the profile can also be illustrated. The crust and upper mantle beneath the Ordos Block, Lüliang Mountains and Taihang Mountains are of high rheological strength as indicated by large-scale high-resistivity zones while a significant high-conductivity, lithosphere-scale weak zone exists beneath the eastern margin of the Linfen Basin. According to previous geodynamic modeling works, we suggest that this kind of lateral rheological heterogeneity may play an essential role for providing driving force for the formation and evolution of the Shanxi Rift, regional lithospheric deformation and earthquake activities under the

  1. Modeling and assessing the function and sustainability of natural patches in salt-affected agro-ecosystems: Application to tamarisk (Tamarix chinensis Lour.) in Hetao, upper Yellow River basin

    Science.gov (United States)

    Ren, Dongyang; Xu, Xu; Ramos, Tiago B.; Huang, Quanzhong; Huo, Zailin; Huang, Guanhua

    2017-09-01

    Relatively low-lying zones of natural vegetation within irrigated areas are not only carriers of biodiversity but also dry drainage areas of excess water and salts applied to nearby croplands. It is thus useful to have a correct understanding of the soil water-salt dynamics and plant water use for keeping the sustainability of those natural areas. The HYDRUS-dualKc model that couples the HYDRUS-1D model with the FAO-56 dualKc approach was extended to simulate the eco-hydrological processes in natural patches of Hetao Irrigation District (Hetao), upper Yellow River basin. Field experiments were conducted in a tamarisk (Tamarix chinensis Lour.) dominated area during the growing seasons of 2012 and 2013. The model was calibrated and validated using the two-year experimental data, and applied to analyze the water and salt dynamics and the tamarisk water consumption for the present situation. Then, various groundwater depth (i.e. the depth from groundwater surface to water table, GWD) scenarios were simulated while considering the fluctuating and constant regimes of GWD changes, as well as variations of the rooting depth. Results indicated that this natural land functioned efficiently as a drainage area for subsurface flow and excess salt from surrounding croplands. However, the present GWDs were too shallow leading to high soil evaporation and severe salt stress. The soil evaporation accounted for 50% of the total evapotranspiration (ETa) while root zone salt storage increased about 50% during growing seasons. On the basis of scenario analysis, an optimum groundwater depth of 140-200 cm with smaller fluctuation was suggested for the growing seasons of natural patches. In addition, tamarisk growth could be largely improved if the roots can grow deeper with water table decline in the future. We demonstrated that monitoring and modeling could be used to support the development of water management strategies in Hetao aimed at conserving water while sustaining local

  2. An integrated framework to assess adaptation options to climate change impacts in an irrigated basin in Central North Chile

    Science.gov (United States)

    Vicuna, S.; Melo, O.; Meza, F. J.; Alvarez, P.; Maureira, F.; Sanchez, A.; Tapia, A.; Cortes, M.; Dale, L. L.

    2013-12-01

    Future climate conditions could potentially affect water supply and demand on water basins throughout the world but especially on snowmelt-driven agriculture oriented basins that can be found throughout central Chile. Increasing temperature and reducing precipitation will affect both the magnitude and timing of water supply this part of the world. Different adaptation strategies could be implemented to reduce the impacts of such scenarios. Some could be incorporated as planned policies decided at the basin or Water Use Organization levels. Examples include changing large scale irrigation infrastructure (reservoirs and main channels) either physically or its operation. Complementing these strategies it is reasonable to think that at a disaggregated level, farmers would also react (adapt) to these new conditions using a mix of options to either modify their patterns of consumption (irrigation efficiency, crop mix, crop area reduction), increase their ability to access new sources of water (groundwater, water markets) or finally compensate their expected losses (insurance). We present a modeling framework developed to represent these issues using as a case study the Limarí basin located in Central Chile. This basin is a renowned example of how the development of reservoirs and irrigation infrastructure can reduce climate vulnerabilities allowing the economic development of a basin. Farmers in this basin tackle climate variability by adopting different strategies that depend first on the reservoir water volume allocation rule, on the type and size of investment they have at their farms and finally their potential access to water markets and other water supplies options. The framework developed can be used to study these strategies under current and future climate scenarios. The cornerstone of the framework is an hydrology and water resources model developed on the WEAP platform. This model is able to reproduce the large scale hydrologic features of the basin such as

  3. Retrodeforming the Sivas Basin (Turkey): Structural style of the central Anatolian basins and their integration in the geodynamic framework of Eastern Anatolia

    Science.gov (United States)

    Legeay, Etienne; Ringenbach, Jean-Claude; Callot, Jean-Paul; Mohn, Geoffroy; Kavak, Kaan

    2017-04-01

    Anatolia is the result of the amalgamation of Gondwandian microcontinents against Eurasia active margin. These were originally separated by several Neotethyan oceanic domains consumed by north-dipping subductions. Prior to the continental collision, regional convergence resulted in an obduction event, from north to south in Campanian time, which led to the emplacement of ophiolite nappes and ophiolitic mélanges onto the Tauride passive margin. Several sedimentary basins subsequently developed above the former sutures zones recorded the long-lasting geological evolution of the Anatolian domain from Late Cretaceous to Present The Sivas Basin is all together the richest, the most studied and also most complex of the group of Tertiary basins. The Sivas Basin formed above the northern leading edge of the Tauride platform, the Kırşehir micro-continent, the edge of the Pontide arc and the related sutures. Its complex structure is that of a fold-and-thrust belt with syn-orogenic salt tectonics. After the obduction, the Sivas basin recorded a relative quiet tectonic phase from Maastrichtian to Paleocene with basinal pelagic sedimentation and carbonate platform emplacement on its southern edge. Then shortening resumed in the Early Eocene with the development of north-verging thrusts. It is recorded by a coarse clastic input, with conglomeratic deltas fans grading up to basinal turbidites until the Late Eocene. Then the basin is progressively isolated and becomes an isolated foreland in which a thick evaporite formation deposited. Oligocene to Miocene continental clastics deposition was then mainly controlled by halokinesis: minibasin, salt ridges and salt sheets development. A first canopy is attributed to the second pulse of contraction from Late-Oligocene to Middle Miocene. This second stage end with the formation of back-thrust within the Sivas Basin and southward as a passive roof above a pre-salt triangle zone. This study relies both on extensive fieldwork (4 Ph

  4. Crust and upper-mantle structure of Wanganui Basin and southern Hikurangi margin, North Island, New Zealand as revealed by active source seismic data

    Science.gov (United States)

    Tozer, B.; Stern, T. A.; Lamb, S. L.; Henrys, S. A.

    2017-11-01

    Wide-angle reflection and refraction data recorded during the Seismic Array HiKurangi Experiment (SAHKE) are used to constrain the crustal P-wave velocity (Vp) structure along two profiles spanning the length and width of Wanganui Basin, located landwards of the southern Hikurangi subduction margin, New Zealand. These models provide high-resolution constraints on the structure and crustal thickness of the overlying Australian and subducted Pacific plates and plate interface geometry. Wide-angle reflections are modelled to show that the subducted oceanic Pacific plate crust is anomalously thick (∼10 km) below southern North Island and is overlain by a ∼1.5-4.0 km thick, low Vp (4.8-5.4 km s-1) layer, interpreted as a channel of sedimentary material, that persists landwards at least as far as Kapiti Island. Distinct near vertical reflections from onshore shots identify a ∼4 km high mound of low-velocity sedimentary material that appears to underplate the overlying Australian plate crust and is likely to contribute to local rock uplift along the Axial ranges. The overriding Australian plate Moho beneath Wanganui Basin is imaged as deepening southwards and reaches a depth of at least 36.4 km. The Moho shape approximately mirrors the thickening of the basin sediments, suggestive of crustal downwarping. However, the observed crustal thickness variation is insufficient to explain the large negative Bouguer gravity anomaly (-160 mGal) centred over the basin. Partial serpentinization within the upper mantle with a concomitant density decrease is one possible way of reconciling this anomaly.

  5. Climate change and human occupations in the Lake Daihai basin, north-central China over the last 4500 years: A geo-archeological perspective

    Science.gov (United States)

    Xu, Lichen; Liu, Yan; Sun, Qianli; Chen, Jing; Cheng, Peng; Chen, Zhongyuan

    2017-05-01

    High-resolution climate variations since the last 4500 years in the monsoonal-arid transition zone of north-central China were revealed through the integration of proxies from sediment cores in the Lake Daihai basin. Human occupations in the lake basin deduced from archeological findings and historical literatures were then incorporated into the climate sequence to demonstrate the patterns of human responses to the climate changes, and the recent anthropogenic effects. It indicated that: (1) Climate dominated human-environment adaptations prevailed prior to ∼2700 cal yr BP. An amicable climate setting before ∼4100 cal yr BP would facilitate the growth of the Laohushan Culture (LC) in the lake basin, while a pronounced deterioration of water thermal condition after that had led to human exodus and the collapse of the LC. The reduced human activity in the lake basin indicated at ∼3800-3500 cal yr BP and a subsequent cultural blank at ∼3500-2700 cal yr BP, were both in response to the climate and lake level fluctuations during ∼3800-2800 cal yr BP. (2) Transition to a positive human adaptation was seen at ∼2700-1100 cal yr BP, represented by the exploitation of arable land for cultivation and animal husbandry as the lake contracted. (3) An increasing human presence that affected environmental processes became more severe over the last ∼1100 cal yr BP. This was basically due to the ongoing lake shore reclamation for cropping, and more recently heavy metals emissions from fossil fuel combustion and local industries.

  6. Seismic geomorphology and origin of diagenetic geobodies in the Upper Cretaceous Chalk of the North Sea Basin (Danish Central Graben)

    DEFF Research Database (Denmark)

    Smit, F. W. H.; van Buchem, F.S.P.; Holst, J.H.

    2018-01-01

    that the geobodies are of an open-system diagenetic origin caused by ascending basin fluids guided by faults and stratigraphic heterogeneities. Increased amounts of porosity-occluding cementation, contact cement and/or high-density/-velocity minerals caused an impedance contrast that can be mapped in seismic data...... failure, followed by local mechanical compaction of high-porous chalks, paired with 2) ascension of basinal diagenetic fluids along fault systems that locally triggered cementation of calcite and dolomite within the chalk, causing increased contact cements and/or reducing porosity. The migration pathway...... of the fluids is marked by the SCRs, which are the outlines of high-density bodies of chalk nested in highly porous chalks. This study thus provides new insights into the 3D relationship between fault systems, fluid migration and diagenesis in chalks, and has important applications for basin modeling...

  7. The HC potential of pre-Westphalian sediments in the North German basin. A synthesis; Das Kohlenwasserstoff-Potential des Praewestfals im norddeutschen Becken. Eine Synthese

    Energy Technology Data Exchange (ETDEWEB)

    Gerling, P.; Kockel, F.; Krull, P. [Bundesanstalt fuer Geowissenschaften und Rohstoffe, Berlin (Germany).]|[Bundesanstalt fuer Geowissenschaften und Rohstoffe, Hannover (Germany)

    1999-07-01

    It was the aim of the interdisciplinary and interinstitutional research program to investigate the possibilities of HC generation from pre-Westphalian sediments in the North German basin in space and time. Potential source rock horizons exist within all pre-Westphalian structural units in Northern Europe, ranging from Cambrian to the Namurian in age and deposited in different environments. The structural framework of the basement of the North German Permian basin was described, the position of the Variscan outer front newly defined and the maturation history during the Late Palaeozoic, Mesozoic and Cainozoic deciphered. Pyrolysis experiments have shown that HC generation, especially from type III kerogen, is possible even beyond a maturity of 4% Rmax. Detailed geochemical and isotope-geochemical investigations of the natural gases from all North German fields indicate gas contributions from pre-Westphalian sources in special regions (Ems Estuary region, Altmark). By integrating all the results of the study an estimation of the possibilities of pre-Westphalian gas occurrences in Northern Germany could be made and the most promising areas for prospecting have been outlined. (orig.) [Deutsch] Aufgabe des interdisziplinaeren und interinstitutionellen Forschungsvorhabens war es, die Moeglichkeiten der Kohlenwasserstoff-Bildung aus praewestfalen Sedimenten im Norddeutschen Becken in Raum und Zeit zu erkunden. In allen praewestfalen strukturellen Grosseinheiten Nordeuropas existieren potentielle Muttergesteinshorizonte kambrischen bis namurischen Alters aus unterschiedlichen Ablagerungsmilieus. Das strukturelle Inventar des Untergrundes des norddeutschen Permbeckens, der Verlauf der Variszidenfront in Norddeutschland und die Reifungsgeschichte der praewestfalen Muttergesteine im Verlauf der jungpalaeozoischen, mesozoischen und tertiaeren Entwicklung wurden entschluesselt. Pyrolyseversuche zeigten, dass eine KW-Genese, vor allem fuer Kerogen des Typs III, auch jenseits

  8. Reappraisal of the extinct seal “Phoca” vitulinoides from the Neogene of the North Sea Basin, with bearing on its geological age, phylogenetic affinities, and locomotion

    Directory of Open Access Journals (Sweden)

    Leonard Dewaele

    2017-05-01

    Full Text Available Background Discovered on the southern margin of the North Sea Basin, “Phoca” vitulinoides represents one of the best-known extinct species of Phocidae. However, little attention has been given to the species ever since its original 19th century description. Newly discovered material, including the most complete specimen of fossil Phocidae from the North Sea Basin, prompted the redescription of the species. Also, the type material of “Phoca” vitulinoides is lost. Methods “Phoca” vitulinoides is redescribed. Its phylogenetic position among Phocinae is assessed through phylogenetic analysis. Dinoflagellate cyst biostratigraphy is used to determine and reassess the geological age of the species. Myological descriptions of extant taxa are used to infer muscle attachments, and basic comparative anatomy of the gross morphology and biomechanics are applied to reconstruct locomotion. Results Detailed redescription of “Phoca” vitulinoides indicates relatively little affinities with the genus Phoca, but rather asks for the establishment of a new genus: Nanophoca gen. nov. Hence, “Phoca” vitulinoides is recombined into Nanophoca vitulinoides. This reassignment is confirmed by the phylogenetic analysis, grouping the genus Nanophoca and other extinct phocine taxa as stem phocines. Biostratigraphy and lithostratigraphy expand the known stratigraphic range of N. vitulinoides from the late Langhian to the late Serravallian. The osteological anatomy of N. vitulinoides indicates a relatively strong development of muscles used for fore flipper propulsion and increased flexibility for the hind flipper. Discussion The extended stratigraphic range of N. vitulinoides into the middle Miocene confirms relatively early diversification of Phocinae in the North Atlantic. Morphological features on the fore- and hindlimb of the species point toward an increased use of the fore flipper and greater flexibility of the hind flipper as compared to extant

  9. Detailed north-south cross section showing environments of deposition, organic richness, and thermal maturities of lower Tertiary rocks in the Uinta Basin, Utah

    Science.gov (United States)

    Johnson, Ronald C.

    2014-01-01

    , and North Horn Formations since 1970. Datum for the cross section is sea level so that hydrocarbon source rocks and reservoir rocks could be integrated into the structural framework of the basin.

  10. Hydrochemical and isotopic studies of ground water from Botucatu Aquifer - Partial results for North region of Parana Basin

    International Nuclear Information System (INIS)

    Silva, R.B.G. da; Kimmelmann, A.A.; Cunha Reboucas, A. da

    1985-01-01

    The first results of an investigation, to study the flow path, the processes controlling the chemical composition, the recharge, as well as, the origin, apparent ages and dynamic of the groundwater of the Botucatu Aquifer in the Brazilian part of the Parana Basin (818.000 Km 2 ), using hydrochemical and environmental isotope technics ( 2 H, 18 O, 13 C, 3 H, 14 C), are presented. Samples of 20 deep wells, located in the northern part of the Basin (states of Sao Paulo, Mato Grosso do Sul and Goias), were analysed. (Author) [pt

  11. An Archaeological Survey of Selected Portions of the Lower and Middle Sheyenne River Basin in North Dakota

    Science.gov (United States)

    1979-01-01

    local relief (Bluemle 1977: 3). Surface drainage is very poor with runoff tending to collect in -. low lying areas ( Scoby et. al. 1973: 23). Prior to...significant changes within the basin ( Scoby et. al. 1973: 9). The normal annual temperature for the basin is about 5.50 C. ( Scoby et. al. 1973: 9). From 1951 to...1960 temperatures averaged from about -13.70 C. in January to 21.50 C. in July ( Scoby et. al. 1973: 10, Table 1). However, the extremes for this

  12. Tectonic history in the Fort Worth Basin, north Texas, derived from well-log integration with multiple 3D seismic reflection surveys: implications for paleo and present-day seismicity in the basin

    Science.gov (United States)

    Magnani, M. B.; Hornbach, M. J.

    2016-12-01

    Oil and gas exploration and production in the Fort Worth Basin (FWB) in north Texas have accelerated in the last 10 years due to the success of unconventional gas production. Here, hydraulic fracturing wastewater is disposed via re-injection into deep wells that penetrate Ordovician carbonate formations. The rise in wastewater injection has coincided with a marked rise in earthquake rates, suggesting a causal relationship between industry practices and seismicity. Most studies addressing this relationship in intraplate regions like the FWB focus on current seismicity, which provides an a-posteriori assessment of the processes involved. 3D seismic reflection data contribute complementary information on the existence, distribution, orientation and long-term deformation history of faults that can potentially become reactivated by the injection process. Here we present new insights into the tectonic evolution of faults in the FWB using multiple 3D seismic reflection surveys in the basin, west of the Dallas Fort-Worth Metroplex, where high-volume wastewater injection wells have increased most significantly in number in the past few years. The datasets image with remarkable clarity the 3,300 m-thick sedimentary rocks of the basin, from the crystalline basement to the Cretaceous cover, with particular detail of the Paleozoic section. The data, interpreted using coincident and nearby wells to correlate seismic reflections with stratigraphic markers, allow us to identify faults, extract their orientation, length and displacements at several geologic time intervals, and therefore, reconstruct the long-term deformation history. Throughout the basin, the data show that all seismically detectable faults were active during the Mississippian and Pennsylvanian, but that displacement amounts drop below data resolution ( 7 m) in the post-Pennsylvanian deposits. These results indicate that faults have been inactive for at least the past 300 Ma, until the recent 2008 surge in

  13. Application of the dating by fission tracks to determine thermicity of basins within petroleum potentialities: example of Sbaa and Ahnet-North basins located in Western Saharan platform, Algeria

    International Nuclear Information System (INIS)

    Akkouche, M.

    2007-05-01

    The interpretation of old fundamental research works and the results obtained by this study based on: the analysis of apatite fission tracks (AFT), the burial evolution curves and the sequential analysis of outcrop section, as well as the curves of signal of gamma ray (GR) analysis from drilling wells, allow to precise that the geodynamic evolution of the studied Algerian sedimentary basins (Ahnet and Sbaa) have been occurred principally in the Paleozoic era. The analysis of burial evolution curves shows that during the Paleozoic period, the sedimentation is controlled by the tectonic subsidence, particularly at the end of Carboniferous in the favor of Ougarta folding. The curves indicate an uplift from the Permian to middle Jurassic, expressed by an important erosion of sedimentary series and is considered as a response of thermal convection of the Saharan platform followed by thermal subsidence. This can be explained by the halt motion of rift extension caused by the opening of the Atlantic Ocean. To bring the sequential analysis out, it appears that Ahnet and Sbaa basins present contrasted stratigraphic recordings, so much in time than in space, indicated the different effects from subsidence and erosions according to their sectors. In thermal point of view, temperatures are still moderate in Sbaa depression and favorite the preservation of organic matter and might generate hydrocarbons until now. However, these conditions are not similar to ones in the case of Ahnet basin. In the North part of Ahnet basin (MRS-1, MSL-1), the ages are around 50 Ma, attested that sedimentary layers have been sustained a post-Hercynian thermal phase. This phase could be estimated probably more than 100 C. This is also produced during the regional extension of the Triassic-Jurassic rifting. This episode could also be responsible of disappearance (total?) of pre-existence fission tracks in the Devonian layers of the well MSR-1, which exhibits at the depth 505 m under the Hercynian

  14. Magnetostratigraphic dating of the Xiashagou Fauna and implication for sequencing the mammalian faunas in the Nihewan Basin, North China

    NARCIS (Netherlands)

    Liu, Ping; Deng, Chenglong; Li, Shihu; Cai, Shuhui; Cheng, Hongjiang; Wei, Qi; Zhu, Rixiang

    2012-01-01

    The Nihewan Basin sedimentary sequences in northern China are rich in mammalian fossil and Paleolithic sites, thus providing insights into our understanding of Quaternary land mammal biochronology and early human settlements in East Asia. Here we present high-resolution magnetostratigraphic results

  15. An integrated approach to investigate the hydrological behavior of the Santa Fe River Basin, north central Florida

    Science.gov (United States)

    Vibhava, F.; Graham, W. D.; De Rooij, R.; Maxwell, R. M.; Martin, J. B.; Cohen, M. J.

    2011-12-01

    The Santa Fe River Basin (SFRB) consists of three linked hydrologic units: the upper confined region (UCR), semi-confined transitional region (Cody Escarpment, CE) and lower unconfined region (LUR). Contrasting geological characteristics among these units affect streamflow generation processes. In the UCR, surface runoff and surficial stores dominate whereas in the LCR minimal surface runoff occurs and flow is dominated by groundwater sources and sinks. In the CE region the Santa Fe River (SFR) is captured entirely by a sinkhole into the Floridan aquifer, emerging as a first magnitude spring 6 km to the south. In light of these contrasting hydrological settings, developing a predictive, basin scale, physically-based hydrologic simulation model remains a research challenge. This ongoing study aims to assess the ability of a fully-coupled, physically-based three-dimensional hydrologic model (PARFLOW-CLM), to predict hydrologic conditions in the SFRB. The assessment will include testing the model's ability to adequately represent surface and subsurface flow sources, flow paths, and travel times within the basin as well as the surface-groundwater exchanges throughout the basin. In addition to simulating water fluxes, we also are collecting high resolution specific conductivity data at 10 locations throughout the river. Our objective is to exploit hypothesized strong end-member separation between riverine source water geochemistry to further refine the PARFLOW-CLM representation of riverine mixing and delivery dynamics.

  16. Geochronological and sedimentological evidences of Panyangshan foreland basin for tectonic control on the Late Paleozoic plate marginal orogenic belt along the northern margin of the North China Craton

    Science.gov (United States)

    Li, Jialiang; Zhou, Zhiguang; He, Yingfu; Wang, Guosheng; Wu, Chen; Liu, Changfeng; Yao, Guang; Xu, Wentao; Zhao, Xiaoqi; Dai, Pengfei

    2017-08-01

    There is a wide support that the Inner Mongolia Palaeo-uplift on the northern margin of the North China Craton has undergone an uplifting history. However, when and how did the uplift occurred keeps controversial. Extensive field-based structural, metamorphic, geochemical, geochronological and geophysical investigations on the Inner Mongolia Palaeo-uplift, which suggested that the Inner Mongolia Palaeo-uplift was an uplifted region since the Early Precambrian or range from Late Carboniferous-Early Jurassic. The geochemical characteristics of the Late Paleozoic to Early Mesozoic intrusive rocks indicated that the Inner Mongolia Palaeo-uplift was an Andean-type continental margin that is the extensional tectonic setting. To address the spatial and temporal development of the Inner Mongolia Palaeo-uplift, we have carried out provenance analysis of Permian sedimentary rocks which collected from the Panyangshan basin along the northern margin of the North China Craton. The QFL diagram revealed a dissected arc-recycled orogenic tectonic setting. Moreover, the framework grains are abundant with feldspar (36-50%), indicating the short transport distance and unstable tectonic setting. Detrital zircon U-Pb analysis ascertained possible provenance information: the Precambrian basement ( 2490 and 1840 Ma) and continental arc magmatic action ( 279 and 295 Ma) along the northern margin of the North China Craton. The projection in rose diagrams of the mean palaeocurrent direction, revealing the SSW and SSE palaeoflow direction, also shows the provenance of the Panyangshan basin sources mainly from the Inner Mongolia Palaeo-uplift. The andesite overlying the Naobaogou Formation has yielded U-Pb age of 277.3 ± 1.4 Ma. The additional dioritic porphyry dike intruded the Naobaogou and Laowopu Formations, which has an emplacement age of 236 ± 1 Ma. The above data identify that the basin formed ranges from Early Permian to Middle Triassic (277-236 Ma). Accordingly, the Inner Mongolia

  17. Influence of vegetation on the infilling of a macrotidal embayment: examples from salt marshes and shingle spit of the Baie de Somme (North France)

    Science.gov (United States)

    Le Bot, Sophie; Forey, Estelle; Lafite, Robert; Langlois, Estelle

    2015-04-01

    As many estuaries in the English Channel, the Baie de Somme is currently filling with a mean seabed elevation between 1.3 and 1.8 cm/yr. Embankments and polders, as well as sea level rise, increase this natural accretion process, which leads to important modifications of environment uses. Interactions between vegetation and sediment dynamics constitute a key-point to consider, in order to better understand the infilling processes in estuaries. To estimate the effect of vegetation on these processes, two particular environments have been studied in the bay: (i) the mid salt marsh covered with Halimione portulacoides, associated with a silty sedimentation, and (ii) the shingle spit, that closes the bay from the South, on which the sea kale (Crambe maritime), a protected pioneer species, develops. Salt marshes progress with a rate of 5-10 m/yr (mean value calculated on the 1947-2011 period). Sedimentological analysis have been conducted on 9 cores (50cm long) collected in three Halimione communities of the bay. They are associated with a silty-dominated (38-84 micrometer) sedimentation under the influence of decantation processes. Rhythmicity is observed in the sedimentation, due to the repetition of a two-layer pattern, that includes a dark layer composed of vegetal rests and that would represent annual sedimentation. Annual sedimentation rates (0.7 to 5.8 cm/yr) are consistent with mean values previously recorded. The shingle spit progresses to the North under the influence of the littoral drift at a rate of 7 m/yr (mean value calculated on the 1947-2011 period). Sea kales are observed on parts formed since several years, above the level of the highest astronomical tides. TLS surveys and sedimentation bars have allowed to measure erosion/sedimentation volumes at the scale of the spit and of sea kale individuals, during spring 2013. Individuals of this species facilitate the trapping of sand, transported by winds from the intertidal flats. Sea kale thus contributes

  18. CONSIDERATION ABOUT A CONSERVACIONIST STUDY ABOUT THE MICRO BASINS HYDROGRAPHICS OF THE RIVERS DOS APERTADOS AND TRÊS BOCAS, NORTH OF PARANÁ – BRAZIL

    Directory of Open Access Journals (Sweden)

    Walquíria Machado

    2005-05-01

    Full Text Available The environmental planning in hydrographic micro basins may minimize the incidence of environmental impacts as consequence of the human indiscriminate action. The hydrographic basin is worldly recognized as the best unit for handling natural resources. Thus, a methodology for diagnosis of the real situation of natural resources, in a basin, turns to be a necessary tool for the preservation and management of these resources. The identification of the different kinds of predominant vegetables informs, chiefly, about the level of soil protection, since the vegetation is responsible for the protection against the impacts of the raindrops (splash, by the reduction of the speed of surface outflow (runoff, through the increasing of the land ruggedness and greater soil structure constitution that may offer greater resistance to the action of the erosive processes. Besides, the collected data about the covering vegetation generally comes along with the information about the current use of the soil, since they both are strictly related. Several authors have pointed out the importance of geo morphological mappings of environmental planning projects. The use of the cartography and geo morphological information aim to represent the physiography of the landscape,considering the elements identification or environment of transport and accumulation, characterization of the morph genetics processes, and the human action implications. From the environmental point of view, the landforms are factors that influence the local hydrological conditions and specific top climatic. In this sense, the micro basins of Ribeirões dos Apertados and Três Bocas located between the municipalities of Londrina and Arapongas, North of Paraná, though constituted by fertile soils, Nitossolos and Argissolos, present a mainframe of environmental degradation common to other micro basins of the region, or, the lack of banks vegetation, the action of erosive processes, blocking the water

  19. Submarine Salt Karst Terrains

    Directory of Open Access Journals (Sweden)

    Nico Augustin

    2016-06-01

    Full Text Available Karst terrains that develop in bodies of rock salt (taken as mainly of halite, NaCl are special not only for developing in one of the most soluble of all rocks, but also for developing in one of the weakest rocks. Salt is so weak that many surface-piercing salt diapirs extrude slow fountains of salt that that gravity spread downslope over deserts on land and over sea floors. Salt fountains in the deserts of Iran are usually so dry that they flow at only a few cm/yr but the few rain storms a decade so soak and weaken them that they surge at dm/day for a few days. We illustrate the only case where the rates at which different parts of one of the many tens of subaerial salt karst terrains in Iran flows downslope constrains the rates at which its subaerial salt karst terrains form. Normal seawater is only 10% saturated in NaCl. It should therefore be sufficiently aggressive to erode karst terrains into exposures of salt on the thousands of known submarine salt extrusions that have flowed or are still flowing over the floors of hundreds of submarine basins worldwide. However, we know of no attempt to constrain the processes that form submarine salt karst terrains on any of these of submarine salt extrusions. As on land, many potential submarine karst terrains are cloaked by clastic and pelagic sediments that are often hundreds of m thick. Nevertheless, detailed geophysical and bathymetric surveys have already mapped likely submarine salt karst terrains in at least the Gulf of Mexico, and the Red Sea. New images of these two areas are offered as clear evidence of submarine salt dissolution due to sinking or rising aggressive fluids. We suggest that repeated 3D surveys of distinctive features (± fixed seismic reflectors of such terrains could measure any downslope salt flow and thus offer an exceptional opportunity to constrain the rates at which submarine salt karst terrains develop. Such rates are of interest to all salt tectonicians and the many

  20. A giant oil seep at a salt-induced escarpment of the São Paulo Plateau, Espírito Santo Basin, off Brazil: Host rock characteristics and geochemistry

    Science.gov (United States)

    Freire, Antonio Fernando Menezes; Iemini, Juliana Andrade; Viana, Adriano Roessler; Magnavita, Luciano Portugal; Dehler, Nolan Maia; Kowsmann, Renato Oscar; Miller, Dennis James; Bezerra, Sabrina Helena Diniz Gilaberte; Zerfass, Geise de Santana dos Anjos; Shimabukuro, Seirin; Nóbrega, Marcos, II

    2017-12-01

    An international research cruise named Iatá-Piuna took place on the São Paulo Plateau on May 2013 in the Campos and Espírito Santo basins, off Brazil. The cruise was carried ou on board the research vessel (R/V) Yokosuka that hosts the human operated vehicle (HOV) SHINKAI 6500. It aimed at finding chemosynthetic communities, composed of organisms capable of generating their own vital energy by metabolizing organic and inorganic compounds related to seeps. Identification of these organisms could provide information for understanding the origin of life, since they may resemble primitive organisms that existed in the initial stages of life on Earth. During Leg 2 (May 10-24, 2013), however, dives on the northern part of the São Paulo Plateau at the Espírito Santo Basin led to the discovery of a giant oil seep. The seep, ca. 3 nautical miles (ca. 5.6 km) in length is located along an outcrop of Eocene rocks on a salt-induced escarpment of the plateau and at a water depth of ca. 2700 m. The 200 m relief of the seafloor suggests that the seep takes place along an active fault system driven by salt diapirism. The oil was analyzed and identified as a severely biodegraded marine oil, generated by carbonate rocks within a minibasin located to the east of the escarpment. This represents valuable exploratory information because it proves that an active petroleum system is present in the context of minibasins associated with salt diapirism in the area.

  1. SHRIMP zircon dating and LA-ICPMS Hf analysis of early Precambrian rocks from drill holes into the basement beneath the Central Hebei Basin, North China Craton

    Directory of Open Access Journals (Sweden)

    Yusheng Wan

    2014-07-01

    Full Text Available The Central Hebei Basin (CHB is one of the largest sedimentary basins in the North China Craton, extending in a northeast–southwest direction with an area of >350 km2. We carried out SHRIMP zircon dating, Hf-in-zircon isotopic analysis and a whole-rock geochemical study on igneous and metasedimentary rocks recovered from drill holes that penetrated into the basement of the CHB. Two samples of gneissic granodiorite (XG1-1 and gneissic quartz diorite (J48-1 have magmatic ages of 2500 and 2496 Ma, respectively. Their zircons also record metamorphic ages of 2.41–2.51 and ∼2.5 Ga, respectively. Compared with the gneissic granodiorite, the gneissic quartz diorite has higher ΣREE contents and lower Eu/Eu* and (La/Ybn values. Two metasedimentary samples (MG1, H5 mainly contain ∼2.5 Ga detrital zircons as well as late Paleoproterozoic metamorphic grains. The zircons of different origins have εHf (2.5 Ga values and Hf crustal model ages ranging from 0 to 5 and 2.7 to 2.9 Ga, respectively. Therefore, ∼2.5 Ga magmatic and Paleoproterozoic metasedimentary rocks and late Neoarchean to early Paleoproterozoic and late Paleoproterozoic tectono-thermal events have been identified in the basement beneath the CHB. Based on regional comparisons, we conclude that the early Precambrian basement beneath the CHB is part of the North China Craton.

  2. On the Sizes of the North Atlantic Basin Tropical Cyclones Based on 34- and 64-kt Wind Radii Data, 2004-2013

    Science.gov (United States)

    Wilson, Robert M.

    2014-01-01

    At end of the 2012 hurricane season the National Hurricane Center retired the original HURDAT dataset and replaced it with the newer version HURDAT2, which reformatted the original data and included additional information, in particular, estimates of the 34-, 50, and 64-kt wind radii for the interval 2004-2013. During the brief 10-year interval, some 164 tropical cyclones are noted to have formed in the North Atlantic basin, with 77 becoming hurricanes. Hurricane Sandy (2012) stands out as being the largest individual storm that occurred in the North Atlantic basin during the 2004 -2013 timeframe, both in terms of its 34- and 64-kt wind radii and wind areas, having maximum 34- and 64-kt wind radii, maximum wind areas, and average wind areas each more than 2 standard deviations larger than the corresponding means. In terms of the largest yearly total 34-kt wind area (i.e., the sum of all individual storm 34-kt wind areas during the year), the year 2010 stands out as being the largest (about 423 × 10(exp 6) nmi(exp 2)), compared to the mean of about 174 × 10(exp 6) nmi(exp 2)), surpassing the year 2005 (353 x 10(exp 6) nmi(exp 2)) that had the largest number of individual storms (28). However, in terms of the largest yearly total 64-kt wind area, the year 2005 was the largest (about 9 × 10(exp 6) nmi(exp 2)), compared to the mean of about 3 × 106 nmi(exp 2)). Interesting is that the ratio of total 64-kt wind area to total 34-kt wind area has decreased over time, from 0.034 in 2004 to 0.008 in 2013.

  3. Salts slurries using in 'offshore' recent cementation in Campos Basin; Pastas salinas utilizadas em cimentacoes recentes 'offshore' na Bacia de Santos

    Energy Technology Data Exchange (ETDEWEB)

    Garzon, Ricardo [BJ Services, Macae, RJ (Brazil); Simao, Cristina Aiex; Sledz, Marcelo [PETROBRAS S.A., RJ (Brazil)

    2008-07-01

    PETROBRAS has recently begun active drilling on locations where the interest zone is below salt formations, which can be as thick as 2000 meters, formation that may contain mobile salts as taquihydryte. This paper refers to the slurries used on the first well drilled under those conditions and to slurry designs used in other similar wells. The challenge is to avoid the open hole closure by the taquihydryte before the next phase is drilled and cased. In order to do so, it was programmed to use a heavy spacer to maintain the wells stability for at least 30 days, due to hydrostatic pressure. This spacer and the heavy salt slurry (18,5 lb/gal) were used for the first time in Brazil. To cement the production casings, similar formulations were used, although with 15,8 lb/gal density slurries and a minimum of 10% bwow salt (NaCl). On the surface cementing operations, light slurries with sea water, salt, and, silicate and aluminate based additives, were designed and used, followed by the 15,8 lb/gal with 18% bwow salt slurry. Information about the different slurries are presented. (author)

  4. Integrated petrographic and geochemical study of coal and gas shales from the Sabinas and Chihuahua basins, North of Mexico: estimation of methane gas resources

    International Nuclear Information System (INIS)

    De La O Burrola, Francisco

    2013-01-01

    organic matter (OM) of the coals is of type III. A mixture of type II and III form the organic matter shale gas type. - High values of IH, in coals of 227-667, (average of 456), is the first time reported in the Sabinas Basin. - The reflectance values of coals ranging from: 0.8 to 1.5% PRV, with an average of 1.22% PRV. - The sub-basins of the north, are the richest organic, with values of 32 to 45% TOC. - We conducted a mapping of coal gas. Iso-values curves for the estimated quantities of methane, defined two areas producing maximum values: 3.9 to 5.5 m 3 /t of coal. - Theoretical estimation of coal gas generation in Sabinas basin sample order resources: PC 221 361 Bcf. - The isotopic values measured from samples of coal gas 'in situ', indicate a thermogenic origin. The main results for the basin of Chihuahua are: - The kerogen of the coals of the San Carlos Formation is of type III. - Most of the samples of the Formation San Carlos, are at the beginning of the window of the oil with a hydrocarbon production rate low. - The greatest iso-values of %TOC, (19 to 42%) for the San Carlos Formation, is located toward the Sierra Rica. - The lowest values in %TOC (3.7 to 7.45), are located in the area of Jaso. - In the area of Nuevo Lajitas, wealth in %TOC is considered intermediate - The Sierra Rica shows a generation of methane gas, with estimated values of 0.56 to 2.98 m 3 /t. This gas is associated with coal seams San Carlos Formation. - The zones Jaso and Nuevo Lajitas, presenting low estimates for generating methane gas, with values of: 0.1 to a maximum 0.47 m 3 /t. - The organic matter of carbonaceous shales Ojinaga Formation correspond to a mixture of kerogen types II and III, the thermal maturity is located in the window of the wet gas to dry gas. - Ojinaga Formation has good levels of kerogen transformation, generating gas of the order of 0.19 to 2.19 m 3 /t. - The formations La Casita and La Pena, are in the wet gas window, with low levels of free

  5. Hydrochemical and isotopic patterns in a calc-alkaline Cu- and Au-rich arid Andean basin: The Elqui River watershed, North Central Chile

    International Nuclear Information System (INIS)

    Oyarzún, Jorge; Carvajal, María José; Maturana, Hugo; Núñez, Jorge; Kretschmer, Nicole; Amezaga, Jaime M.; Rötting, Tobias S.; Strauch, Gerhard; Thyne, Geoffrey; Oyarzún, Ricardo

    2013-01-01

    Highlights: ► Major ions are provided by rock weathering and NaCl recycling. ► Aridity and cal-alkaline lithology effects abate acid drainage. ► Factors affecting hydrochemistry in mineral rich zone are addressed. ► Stable isotopes confirm the meteoric origin of groundwaters. ► High sulfate contents are explained by widespread sulfide minerals. - Abstract: The geochemistry of surface water and groundwater from the Elqui River basin, North-Central Chile, was studied in spring 2007 and fall 2008 to obtain a general understanding of the factors and mechanisms controlling the water chemistry of steep rivers located in mineral-rich, arid to semi arid zones. Besides its uniform intermediate igneous lithology, this basin is known for acid drainage and high As contents in the El Indio Au–Cu–As district, in its Andean head. Abundant tailings deposits are present in the middle part of the basin, where agricultural activities are important. According to the results, the chemical and isotopic composition of the Elqui basin surface water and groundwater is related to uniform calc-alkaline lithology and the major polluting system of the chemically reactive, but closed El Indio mining district. The resulting compositional imprints in surface and ground-water are, (a) high SO 4 levels, reaching about 1000 mg/L in the Toro River water, directly draining the mining area; (b) a major depletion of Fe and pollutant metals in surface water after the confluence of the Toro and La Laguna rivers; (c) similar chemical composition of surface and ground-waters that differ in H and O isotopic composition, reflecting the effect of differential evaporation processes downstream of the Puclaro dam; and (d) seasonal variations of Fe, Mn, Cu and Zn in surface water. In contrast, the groundwater chemistry exhibits moderate seasonal changes, mainly in HCO 3 - content. In spite of the acid drainage pollution, water quality is adequate for human consumption and irrigation. This is a

  6. High-resolution digital elevation model of Mount St. Helens crater and upper North Fork Toutle River basin, Washington, based on an airborne lidar survey of September 2009

    Science.gov (United States)

    Mosbrucker, Adam

    2014-01-01

    The lateral blast, debris avalanche, and lahars of the May 18th, 1980, eruption of Mount St. Helens, Washington, dramatically altered the surrounding landscape. Lava domes were extruded during the subsequent eruptive periods of 1980–1986 and 2004–2008. More than three decades after the emplacement of the 1980 debris avalanche, high sediment production persists in the North Fork Toutle River basin, which drains the northern flank of the volcano. Because this sediment increases the risk of flooding to downstream communities on the Toutle and Cowlitz Rivers, the U.S. Army Corps of Engineers (USACE), under the direction of Congress to maintain an authorized level of flood protection, built a sediment retention structure on the North Fork Toutle River in 1989 to help reduce this risk and to prevent sediment from clogging the shipping channel of the Columbia River. From September 16–20, 2009, Watershed Sciences, Inc., under contract to USACE, collected high-precision airborne lidar (light detection and ranging) data that cover 214 square kilometers (83 square miles) of Mount St. Helens and the upper North Fork Toutle River basin from the sediment retention structure to the volcano's crater. These data provide a digital dataset of the ground surface, including beneath forest cover. Such remotely sensed data can be used to develop sediment budgets and models of sediment erosion, transport, and deposition. The U.S. Geological Survey (USGS) used these lidar data to develop digital elevation models (DEMs) of the study area. DEMs are fundamental to monitoring natural hazards and studying volcanic landforms, fluvial and glacial geomorphology, and surface geology. Watershed Sciences, Inc., provided files in the LASer (LAS) format containing laser returns that had been filtered, classified, and georeferenced. The USGS produced a hydro-flattened DEM from ground-classified points at Castle, Coldwater, and Spirit Lakes. Final results averaged about five laser last

  7. Geomechanics considerations for through-and near-salt well design

    International Nuclear Information System (INIS)

    Willson, S.M.; Fredrich, Joanne T.

    2005-01-01

    Over the next decade a significant amount of exploration and new field developments will take place in salt provinces around the world - in the deepwater Gulf of Mexico, and offshore Angola, Brazil, and North and West Africa. Salt formations provide both opportunities and challenges to the design and construction of the often complex wells to be drilled in these locations. An overview of the many geomechanical considerations necessary to ensure successful well construction when drilling in through-, sub- and near-salt environments is presented. The structural styles of deformed sediments adjacent to salt, combined with stress perturbations caused by the presence of salt, are used to assess the risk of encountering zones that might cause wellbore instability or lost-circulation problems. Well design examples are provided that show how near- and through-salt uncertainties may be included within a geomechanical well design for required mud weights while drilling. Salt is found in many hydrocarbon basins around the world. Significant deposits exist in the Gulf of Mexico (GoM), offshore West Africa and Brazil, in the Southern North Sea, Egypt, and the Middle East (Figure 1(1)). In deep water offshore North America, the GoM and offshore Nova Scotia (NE Canada) are notable areas of current oil and gas exploration and production. Significant exploration activity is also targeting areas offshore Angola and Brazil. The extent of deepwater exploration in the GoM is illustrated in Figure 2 that shows the steady march into deeper water, together with a focusing of efforts in the Sigsbee Escarpment areas of Green Canyon, Walker Ridge and Atwater Valley. The deepest wells in the GoM are reaching true vertical depths of up to 32,000 feet, with maximum-recorded downhole pressures in excess of 26,000 psi and bottomhole temperatures in excess of 400 F. Such wells may penetrate considerable thicknesses of salt - up to 20,000 feet of salt is not unheard of. With substantial discoveries

  8. Tectono-sedimentary events and geodynamic evolution of the Mesozoic and Cenozoic basins of the Alpine Margin, Gulf of Tunis, north-eastern Tunisia offshore

    Science.gov (United States)

    Melki, Fetheddine; Zouaghi, Taher; Chelbi, Mohamed Ben; Bédir, Mourad; Zargouni, Fouad

    2010-09-01

    The structural pattern, tectono-sedimentary framework and geodynamic evolution for Mesozoic and Cenozoic deep structures of the Gulf of Tunis (north-eastern Tunisia) are proposed using petroleum well data and a 2-D seismic interpretation. The structural system of the study area is marked by two sets of faults that control the Mesozoic subsidence and inversions during the Paleogene and Neogene times: (i) a NE-SW striking set associated with folds and faults, which have a reverse component; and (ii) a NW-SE striking set active during the Tertiary extension episodes and delineating grabens and subsiding synclines. In order to better characterize the tectono-sedimentary evolution of the Gulf of Tunis structures, seismic data interpretations are compared to stratigraphic and structural data from wells and neighbouring outcrops. The Atlas and external Tell belonged to the southernmost Tethyan margin record a geodynamic evolution including: (i) rifting periods of subsidence and Tethyan oceanic accretions from Triassic until Early Cretaceous: we recognized high subsiding zones (Raja and Carthage domains), less subsiding zones (Gamart domain) and a completely emerged area (Raouad domain); (ii) compressive events during the Cenozoic with relaxation periods of the Oligocene-Aquitanian and Messinian-Early Pliocene. The NW-SE Late Eocene and Tortonian compressive events caused local inversions with sealed and eroded folded structures. During Middle to Late Miocene and Early Pliocene, we have identified depocentre structures corresponding to half-grabens and synclines in the Carthage and Karkouane domains. The north-south contractional events at the end of Early Pliocene and Late Pliocene periods are associated with significant inversion of subsidence and synsedimentary folded structures. Structuring and major tectonic events, recognized in the Gulf of Tunis, are linked to the common geodynamic evolution of the north African and western Mediterranean basins.

  9. The Impact of Hydraulic Resources on Sustainable Development of the Timgad Basin North-East of Algeria

    International Nuclear Information System (INIS)

    Fouad, D; Ali, A.

    2009-01-01

    Algeria has undertaken a great project consisting to realise an interconnection hydraulic Work in objective to be satisfy in resource water for population and agriculture. Timgad basin located in Aures is characterized by a particular morpho structural relief with dense streams which favorise streaming rain water. This basin includes globally detritital geological formations represented by argilious and sand of Miocene. Concerning agriculture development in this area and to supply neighbouring population with fresh water, Forum Toub site is choose to built a reserve collinear. Geological and geotechnical investigations give interesting results concerning place. However from hydrological study appear that an important solid volume, on twenty years, is largely over capacity water. Then the apparition of this new problem makes this project unrealisable and the site must be changed. It is interesting to build another Work with great capacity on another site taking in account the characteristic of the catchment area. The second proposal will could be assure a sustainable development with availability of water. The handling methods of transported sediments must be applied in upstream in order to increase the life time of water stopping

  10. Depositional environment of a fan delta in a Vistulian proglacial lake (Skaliska Basin, north-eastern Poland

    Directory of Open Access Journals (Sweden)

    Woronko Barbara

    2013-06-01

    Full Text Available The study reconstructed the environment of a fan delta filling the vast end depression of the Skaliska Basin, and its overlying aeolian deposits. The formation of the large fan delta is associated with the presence of an ice-dammed lake functioning during the retreat of the Vistulian Glaciation (MIS 2. The examined material was collected from five boreholes. Sediments were analysed for their granulometric composition and subjected to analyses of frosting and rounding of quartz grains. Grain size analysis showed that the fan delta deposits are built of sand sediments of very low lateral and vertical variability. The fan delta was supplied with fluvioglacial sediments. Accumulation of sediments occurred in shallow water with a very low-gradient slope. The exposed fan delta became a site conducive to aeolian processes after the lake waters fell and the Skaliska Basin depression dried. Dune deposits overlying the fan were affected by short-distance transport so they did not acquire features typical for aeolian deposits.

  11. Interaction of water components in the semi-arid Huasco and Limarí river basins, North Central Chile

    Directory of Open Access Journals (Sweden)

    G. Strauch

    2009-10-01

    Full Text Available For sustainable water resource management in semi-arid regions, sound information is required about interactions between the different components of the water system: rain/snow precipitation, surface/subsurface run-off, groundwater recharge. Exemplarily, the Huasco and Limarí river basins as water stressed river catchments have been studied by isotope and hydrochemical methods for (i the origin of water, (ii water quality, (iii relations of surface and groundwater.

    Applying the complex multi-isotopic and hydrochemical methodology to the water components of the Huasco and Limarí basins, a differentiation of water components concerning subsurface flow and river water along the catchment area and by anthropogenic impacts are detected. Sulphate and nitrate concentrations indicate remarkable input from mining and agricultural activities along the river catchment.

    The 2H-18O relations of river water and groundwater of both catchments point to the behaviour of river waters originated in an arid to semi-arid environment.

    Consequently, the groundwater from several production wells in the lower parts of the catchments is related to the rivers where the wells located, however, it can be distinguished from the river water. Using the hydrological water balance and the isotope mixing model, the interaction between surface and subsurface flows and river flow is estimated.

  12. Water Resources Status and Availability Assessment in Current and Future Climate Change Scenarios for Beas River Basin of North Western Himalaya

    Science.gov (United States)

    Aggarwal, S. P.; Thakur, P. K.; Garg, V.; Nikam, B. R.; Chouksey, A.; Dhote, P.; Bhattacharya, T.

    2016-10-01

    The water resources status and availability of any river basin is of primary importance for overall and sustainable development of any river basin. This study has been done in Beas river basin which is located in North Western Himalaya for assessing the status of water resources in present and future climate change scenarios. In this study hydrological modelling approach has been used for quantifying the water balance components of Beas river basin upto Pandoh. The variable infiltration capacity (VIC) model has been used in energy balance mode for Beas river basin at 1km grid scale. The VIC model has been run with snow elevation zones files to simulate the snow module of VIC. The model was run with National Centre for Environmental Prediction (NCEP) forcing data (Tmax, Tmin, Rainfall and wind speed at 0.5degree resolution) from 1 Jan. 1999 to 31 Dec 2006 for calibration purpose. The additional component of glacier melt was added into overall river runoff using semi-empirical approach utilizing air temperature and glacier type and extent data. The ground water component is computed from overall recharge of ground water by water balance approach. The overall water balance approach is validated with river discharge data provided by Bhakra Beas Management Board (BBMB) from 1994-2014. VIC routing module was used to assess pixel wise flow availability at daily, monthly and annual time scales. The mean monthly flow at Pandoh during study period varied from 19 - 1581 m3/s from VIC and 50 to 1556 m3/sec from observation data, with minimum water flow occurring in month of January and maximum flow in month of August with annual R2 of 0.68. The future climate change data is taken from CORDEX database. The climate model of NOAA-GFDL-ESM2M for IPCC RCP scenario 4.5 and 8.5 were used for South Asia at 0.44 deg. grid from year 2006 to 2100. The climate forcing data for VIC model was prepared using daily maximum and minimum near surface air temperature, daily precipitation and

  13. WATER RESOURCES STATUS AND AVAILABILITY ASSESSMENT IN CURRENT AND FUTURE CLIMATE CHANGE SCENARIOS FOR BEAS RIVER BASIN OF NORTH WESTERN HIMALAYA

    Directory of Open Access Journals (Sweden)

    S. P. Aggarwal

    2016-10-01

    Full Text Available The water resources status and availability of any river basin is of primary importance for overall and sustainable development of any river basin. This study has been done in Beas river basin which is located in North Western Himalaya for assessing the status of water resources in present and future climate change scenarios. In this study hydrological modelling approach has been used for quantifying the water balance components of Beas river basin upto Pandoh. The variable infiltration capacity (VIC model has been used in energy balance mode for Beas river basin at 1km grid scale. The VIC model has been run with snow elevation zones files to simulate the snow module of VIC. The model was run with National Centre for Environmental Prediction (NCEP forcing data (Tmax, Tmin, Rainfall and wind speed at 0.5degree resolution from 1 Jan. 1999 to 31 Dec 2006 for calibration purpose. The additional component of glacier melt was added into overall river runoff using semi-empirical approach utilizing air temperature and glacier type and extent data. The ground water component is computed from overall recharge of ground water by water balance approach. The overall water balance approach is validated with river discharge data provided by Bhakra Beas Management Board (BBMB from 1994-2014. VIC routing module was used to assess pixel wise flow availability at daily, monthly and annual time scales. The mean monthly flow at Pandoh during study period varied from 19 - 1581 m3/s from VIC and 50 to 1556 m3/sec from observation data, with minimum water flow occurring in month of January and maximum flow in month of August with annual R2 of 0.68. The future climate change data is taken from CORDEX database. The climate model of NOAA-GFDL-ESM2M for IPCC RCP scenario 4.5 and 8.5 were used for South Asia at 0.44 deg. grid from year 2006 to 2100. The climate forcing data for VIC model was prepared using daily maximum and minimum near surface air temperature, daily

  14. The initiation and tectonic regimes of the Cenozoic extension in the Bohai Bay Basin, North China revealed by numerical modelling

    Science.gov (United States)

    Li, Lu; Qiu, Nansheng

    2017-06-01

    In this study the dynamic aspects of the Cenozoic extension in the Bohai Bay Basin are considered in the context of initial thickness of the crust and lithosphere, tectonic force, strain rate and thermal rheology, which are directly or indirectly estimated from a pure shear extensional model. It is accordingly reasonable to expect that, in the Bohai Bay Basin, the thickness variation could be present prior to the initiation of extension. The extensional deformation is localized by a thickness variation of the crust and lithosphere and the heterogeneity of the initial thickness plays an important role in rifting dynamics. The onset of rifting requires a critical tectonic force (initial tectonic force) to be applied, which then immediately begins to decay gradually. Rifting will only occur when the total effective buoyancy force of the subducting slab reaches a critical level, after a certain amount of subduction taking place. The magnitude of the tectonic force decreases with time in the early phase of rifting, which indicates the weakening due to the increase in geothermal gradient. In order to deform the continental lithosphere within the currently accepted maximum magnitude of the force derived from subducted slab roll-back, the following conditions should be satisfied: (1) the thickness of the continental lithosphere is significantly thin and less than 125 km and (2) the lithosphere has a wet and hot rheology, which provides implications for rheological layering in continental lithosphere. Our results are strongly supported by the ;crème brûlée; model, in which the lower crust and mantle are relatively ductile.

  15. Three-dimensional mapping of salt load in the Murray-Darling Basin, 1 Steps in calibration of airborne electromagnetic surveys

    NARCIS (Netherlands)

    Cresswell, R.G.; Dent, D.L.; Jones, G.; Galloway, D.

    2004-01-01

    An airborne electromagnetic survey yields a three-dimensional map of ground electrical conductivity. The remotely sensed data are translated into salt load by field and laboratory calibration: drilling, measurement of borehole conductivity, electrical conductivity of 1 : 5 soil¿water extracts

  16. Reddies River Lake, Yadkin River Basin, Reddies River, North Carolina. General Design Memorandum. Phase I. Plan Formulation.

    Science.gov (United States)

    1975-03-01

    and suckers. The North Carolina Office of Fisheries and Wildlife Resources stocka adult trout in the upper reaches, which would be above Reddies...youi if we learn of any significant prnpnrty near the proposed projec-t. As you knw, this doon not include Dr. Joffrn L.. Con’s review of 4 possible...4 *** V.V ’S A - C, A, ~ / C. 4. . .~- ~ * C’- 5’ S&W ~ S -. - efl ~ *5 *~ C. - DoW#Es~mf AM ’CA CA ta.i a ’C * I’ *,. .. *-- - I -.. ’p.-. -I fCC

  17. Optimum combination of water drainage,water supply and eco-environment protection in coal-accumulated basin of North China

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The conflict among water drainage,water supply and eco-environment protection is getting more and more serious due to the irrational drainage and exploitation of ground water resources in coal-accumulated basins of North China.Efficient solutions to the conflict are to maintain long-term dynamic balance between input and output of the ground water basins,and to try to improve resourcification of the mine water.All solutions must guarantee the eco-environment quality.This paper presents a new idea of optimum combination of water drainage,water supply and eco-environment protection so as to solve the problem of unstable mine water supply,which is caused by the changeable water drainage for the whole combination system.Both the management of hydraulic techniques and constraints in economy,society,ecology,environment,industrial structural adjustments and sustainable developments have been taken into account.Since the traditional and separate management of different departments of water drainage,water supply and eco-environment protection is broken up,these departments work together to avoid repeated geological survey and specific evaluation calculations so that large amount of national investment can be saved and precise calculation for the whole system can be obtained.In the light of the conflict of water drainage,water supply and eco-environment protection in a typical sector in Jiaozuo coal mine,a case study puts forward an optimum combination scheme,in which a maximum economic benefit objective is constrained by multiple factors.The scheme provides a very important scientific base for finding a sustainable development strategy.

  18. The age of volcanic tuffs from the Upper Freshwater Molasse (North Alpine Foreland Basin) and their possible use for tephrostratigraphic correlations across Europe for the Middle Miocene

    Science.gov (United States)

    Rocholl, Alexander; Schaltegger, Urs; Gilg, H. Albert; Wijbrans, Jan; Böhme, Madelaine

    2018-03-01

    The Middle Miocene Upper Freshwater Molasse sediments represent the last cycle of clastic sedimentation during the evolution of the North Alpine Foreland Basin. They are characterized by small-scale lateral and temporal facies changes that make intra-basin stratigraphic correlations at regional scale difficult. This study provides new U-Pb zircon ages as well as revised 40Ar/39Ar data of volcanic ash horizons in the Upper Freshwater Molasse sediments from southern Germany and Switzerland. In a first and preliminary attempt, we propose their possible correlation to other European tephra deposits. The U-Pb zircon data of one Swiss (Bischofszell) and seven southern German (Zahling, Hachelstuhl, Laimering, Unterneul, Krumbad, Ponholz) tuff horizons indicate eruption ages between roughly 13.0 and 15.5 Ma. The stratigraphic position of the Unterneul and Laimering tuffs, bracketing the ejecta of the Ries impact (Brockhorizon), suggests that the Ries impact occurred between 14.93 and 15.00 Ma, thus assigning the event to the reversed chron C5Bn1r (15.032-14.870 Ma) which is in accordance with paleomagnetic evidence. We combine our data with published ages of tuff horizons from Italy, Switzerland, Bavaria, Styria, Hungary, and Romania to derive a preliminary tephrochronological scheme for the Middle Miocene in Central Europe in the age window from 13.2 to 15.5 Ma. The scheme is based on the current state of knowledge that the Carpathian-Pannonian volcanic field was the only area in the region producing explosive calc-alkaline felsic volcanism. This preliminary scheme will require verification by more high-quality ages complemented by isotopic, geochemical and paleomagnetic data.

  19. An Early Permian epithermal gold system in the Tulasu Basin in North Xinjiang, NW China: Constraints from in situ oxygen-sulfur isotopes and geochronology

    Science.gov (United States)

    Dong, Leilei; Wan, Bo; Deng, Chen; Cai, Keda; Xiao, Wenjiao

    2018-03-01

    The Axi and Jingxi-Yelmand gold deposits, being the largest gold deposits in the Chinese North Tianshan, NW China, are located ca. l0 km apart in the Tulasu Basin, and are hosted by the Late Devonian - Early Carboniferous Dahalajunshan Formation. In situ LA-ICP-MS titanium analyses on quartz from the Axi and Jingxi-Yelmand deposits are broadly identical. Accordingly, the calculated ore-forming temperatures by Ti-in-quartz thermometer give average temperatures of 279 °C and 294 °C, respectively. Results of in situ SIMS analyses of oxygen and sulfur isotopes on quartz and pyrite from these two deposits are similar. Temperature-corrected fluids of the Axi deposit have δ18O values of 2.6-8.1‰ and δ34S values of 0.8-2.4‰, whereas the fluids of the Jingxi-Yelmand deposit have δ18O of 6.4-8.9‰ and δ34S of -0.4 to 4.0‰. The oxygen and sulfur isotopes from the two deposits indicate a magmatic origin. LA-ICP-MS zircon U-Pb ages of Aqialehe Formation sandstone provided a lower limit for the mineralization timing of the Axi deposit (288 Ma). In situ SIMS U-Pb analyses on entrapped zircon (297 Ma) and newly recognized 284.5 Ma columnar rhyolite implies that the Jingxi-Yelmand deposit formed in the Early Permian. Based on the magmatic affinity of the ore fluids, similar age and ore-formation temperatures, we propose that the Axi and Jingxi-Yelmand deposits comprise an epithermal gold system, which was driven by the same Permian magma in the Tulasu Basin. The ore geological features together with our new results indicate that the Axi and Jingxi-Yelmand deposits are intermediate and high sulfidation type epithermal deposits, respectively.

  20. Melo carboniferous basin

    International Nuclear Information System (INIS)

    Flossdarf, A.

    1988-01-01

    This report is about of the Melo carboniferous basin which limits are: in the South the large and high Tupambae hill, in the west the Paraiso hill and the river mountains, in the North Yaguaron river basin to Candidata in Rio Grande del Sur in Brazil.

  1. Improvement of high floods predictability in the Red River of the North basin using combined remote-sensed, gauge-based and assimilated precipitation data

    Science.gov (United States)

    Semenova, O.; Restrepo, P. J.

    2011-12-01

    The Red River of the North basin (USA) is considered to be under high risk of flood danger, having experienced serious flooding during the last few years. The region climate can be characterized as cold and, during winter, it exhibits continuous snowcover modified by wind redistribution. High-hazard runoff regularly occurs as a major spring snowmelt event resulting from the relatively rapid release of water from the snowpack on frozen soils. Although in summer/autumn most rainfall occurs from convective storms over small areas and does not generate dangerous floods, the pre-winter state of the soils may radically influence spring maximum flows. Large amount of artificial agricultural tiles and numerous small post-glacial depressions influencing the redistribution of runoff complicates the predictions of high floods. In such conditions any hydrological model would not be successful without proper precipitation input. In this study the simulation of runoff processes for two watersheds in the basin of the Red River of the North, USA, was undertaken using the Hydrograph model developed at the State Hydrological Institute (St. Petersburg, Russia). The Hydrograph is a robust process-based model, where the processes have a physical basis combined with some strategic conceptual simplifications that give it the ability to be applied in the conditions of low information availability. It accounts for the processes of frost and thaw of soils, snow redistribution and depression storage impacts. The assessment of the model parameters was conducted based on the characteristics of soil and vegetation cover. While performing the model runs, the parameters of depression storage and the parameters of different types of flow were manually calibrated to reproduce the observed flow. The model provided satisfactory simulation results in terms not only of river runoff but also variable sates of soil like moisture and temperature over a simulation period 2005 - 2010. For experimental runs

  2. Geometry and kinematics of Majiatan Fold-and-thrust Belt, Western Ordos Basin: implication for Tectonic Evolution of North-South Tectonic Belt

    Science.gov (United States)

    He, D.

    2017-12-01

    The Helan-Chuandian North-South Tectonic Belt crossed the central Chinese mainland. It is a boundary of geological, geophysical, and geographic system of Chinese continent tectonics from shallow to deep, and a key zone for tectonic and geomorphologic inversion during Mesozoic to Cenozoic. It is superimposed by the southeastward and northeastward propagation of Qinghai-Tibet Plateau in late Cenozoic. It is thus the critical division for West and East China since Mesozoic. The Majiatan fold-and-thrust belt (MFTB), locating at the central part of HCNSTB and the western margin of Ordos Basin, is formed by the tectonic evolution of the Helan-Liupanshan Mountains. Based on the newly-acquired high-resolution seismic profiles, deep boreholes, and surface geology, the paper discusses the geometry, kinematics, and geodynamic evolution of MFTB. With the Upper Carboniferous coal measures and the pre-Sinian ductile zone as the detachments, MFTB is a multi-level detached thrust system. The thrusting was mainly during latest Jurassic to Late Cretaceous, breaking-forward in the foreland, and resulting in a shortening rate of 25-29%. By structural restoration, this area underwent extension in Middle Proterozoic to Paleozoic, which can be divided into three phases of rifting such as Middle to Late Proterozoic, Cambiran to Ordovician, and Caboniferous to early Permian. It underwent compression since Late Triassic, including such periods as Latest Triassic, Late Jurassic to early Cretaceous, Late Cretaceous to early Paleogene, and Pliocene to Quaternary, with the largest shortening around Late Jurassic to early Cretaceous period (i.e. the mid-Yanshanian movement by the local name). However, trans-extension since Eocene around the Ordos Basin got rise to the formation the Yingchuan, Hetao, and Weihe grabens. It is concluded that MFTB is the leading edge of the intra-continental Helan orogenic belt, and formed by multi-phase breaking-forward thrusting during Late Jurassic to Cretaceous

  3. Holocene sedimentary processes in the Gemlik Gulf: a transtensional basin on the middle Strand of the North Anatolian Fault, Sea of Marmara

    Science.gov (United States)

    Özmaral, A.; Çagatay, M. N.; Imren, C.; Gasperini, L.; Henry, P.

    2012-04-01

    Gemlik Gulf is an oval-shaped transtensional basin with a maximum depth of 113 m, located on the middle strand of the North Anatolian Fault (NAF) in the eastern part of the Sea of Marmara (SOM). During the last glacial period until the Holocene marine transgression about 12 ka BP, the sea level was below the Çanakkale (Dardanelles) Strait's bedrock sill depth of -85 m, and the Gemlik Basin became a lake isolated lake from the rest of the Sea of Marmara "Lake" and the global ocean. The high resolution seismic profiles and the multi- beam bathymetric map of the basin show that the basin is characterized by NW-SE trending transtensional oblique faults, delta lobes of the Büyükdere (Kocadere) to the east and an erosional surface below an up to 15 m-thick Holocene mud drape. The Holocene mud drape was studied in up to 9.5 m-long gravity-piston and 0.84 m-long sediment/water interface cores located at -105 to -113 m in the basin's depocentre. The Holocene mud consists mainly of plastic gray green marine clayey mud that includes thick-red brown clay layers and a laminated organic-rich, dark olive green sapropel in the lower part, which was previously dated at 11.6-6.4 14Ckyr (uncalib) BP. Multi-proxy analyses of the Holocene mud drape in the sediment cores were carried out using Multisensor Core Logger, XRF Core Scanner equipped with digital X-Ray radiography, and laser particle size analyzer. Seismic-core correlation was made using seismic data of the chirp profiles at the core locations and the synthetic seismograms generated using the MSCL P-wave velocity and gamma density measurements. The long piston-gravity cores include five 20 to 100 mm-thick "red brown mud layers" in the top 2.5 m of the core. These layers have a sharp basal boundary and gradational upper boundary. The red brown layers consist of 55-75% clay-size material with an average grain size of 3-4 µm, and have relatively a high magnetic susceptibility. They are enriched in K, Fe, Ti and Zr that are

  4. Characterising flow regime and interrelation between surface-water and ground-water in the Fuente de Piedra salt lake basin by means of stable isotopes, hydrogeochemical and hydraulic data

    Science.gov (United States)

    Kohfahl, Claus; Rodriguez, Miguel; Fenk, Cord; Menz, Christian; Benavente, Jose; Hubberten, Hans; Meyer, Hanno; Paul, Liisa; Knappe, Andrea; López-Geta, Juan Antonio; Pekdeger, Asaf

    2008-03-01

    SummaryThis research reports the characterisation of ground- and surface-water interaction in the Fuente de Piedra Salt lake basin in southern Spain by a combined approach using hydraulic, hydrogeochemical and stable isotope data. During three sampling campaigns (February 2004, 2005 and October 2005) ground- and surface-water samples were collected for stable isotope studies ( 18O, D) and for major and minor ion analysis. Hydraulic measurements at multilevel piezometers were carried out at four different locations around the lake edge. Conductivity logs were performed at four piezometers located along a profile at the northern lake border and at two deeper piezometers in the Miocene basin at a greater distance from the lake. To describe processes that control the brine evolution different hydrogeochemical simulations were performed. Hydrogeochemical data show a variety of brines related to thickness variations of lacustrine evaporites around the lake. Salinity profiles in combination with stable isotope and hydraulic data indicate the existence of convection cells and recycled brines. Furthermore restricted ground-water inflow into the lake was detected. Dedolomitisation processes were identified by hydrogeochemical simulations and different brine origins were reproduced by inverse modelling approaches.

  5. Porous media of the Red River Formation, Williston Basin, North Dakota: a possible Sedimentary Enhanced Geothermal System

    Science.gov (United States)

    Hartig, Caitlin M.

    2018-01-01

    Fracture-stimulated enhanced geothermal systems (EGS) can be developed in both crystalline rocks and sedimentary basins. The Red River Formation (Ordovician) is a viable site for development of a sedimentary EGS (SEGS) because the formation temperatures exceed 140 °C and the permeability is 0.1-38 mD; fracture stimulation can be utilized to improve permeability. The spatial variations of the properties of the Red River Formation were analyzed across the study area in order to understand the distribution of subsurface formation temperatures. Maps of the properties of the Red River Formation-including depth to the top of the formation, depth to the bottom of the formation, porosity, geothermal gradient, heat flow, and temperature-were produced by the Kriging interpolation method in ArcGIS. In the future, these results may be utilized to create a reservoir simulation model of an SEGS in the Red River Formation; the purpose of this model would be to ascertain the thermal response of the reservoir to fracture stimulation.

  6. Geophysical insights on the GIA process provided by high-quality constraints from peripheral regions: An outlook on perspectives from North America and from the Mediterranean basin

    Science.gov (United States)

    Roy, K.; Peltier, W. R.

    2017-12-01

    Our understanding of the Earth-Ice-Ocean interactions that have accompanied the large glaciation-deglaciation process characteristic of the last half of the Pleistocene has benefited significantly from the development of high-quality models of the Glacial Isostatic Adjustment (GIA) process. These models provide fundamental insight on the large changes in sea level and land ice cover over this time period, as well as key constraints on the viscosity structure of the Earth's interior. Their development has benefited from the recent availability of high-quality constraints from regions of forebulge collapse. In particular, over North America, the joint use of high-quality sea level data from the U.S. East coast, together with the vast network of precise space-geodetic observations of crustal motion existing over most of the interior of the continent, has led to the latest ICE-7G_NA (VM7) model (Roy & Peltier, GJI, 2017). In this paper, exciting opportunities provided by such high-quality observations related to the GIA process will be discussed, not only in the context of the continuing effort to refine global models of this phenomenon, but also in terms of the fundamental insight they may provide on outstanding issues in high-pressure geophysics, paleoclimatology or hydrogeology. Specific examples where such high-quality observations can be used (either separately, or using a combination of independent sources) will be presented, focusing particularly on constraints from the North American continent and from the Mediterranean basin. This work will demonstrate that, given the high-quality of currently available constraints on the GIA process, considerable further geophysical insight can be obtained based upon the use of spherically-symmetric models of the viscosity structure of the planet.

  7. Transport of North African dust from the Bodélé depression to the Amazon Basin: a case study

    Directory of Open Access Journals (Sweden)

    Y. Ben-Ami

    2010-08-01

    Full Text Available Through long-range transport of dust, the North-African desert supplies essential minerals to the Amazon rain forest. Since North African dust reaches South America mostly during the Northern Hemisphere winter, the dust sources active during winter are the main contributors to the forest. Given that the Bodélé depression area in southwestern Chad is the main winter dust source, a close link is expected between the Bodélé emission patterns and volumes and the mineral supply flux to the Amazon.

    Until now, the particular link between the Bodélé and the Amazon forest was based on sparse satellite measurements and modeling studies. In this study, we combine a detailed analysis of space-borne and ground data with reanalysis model data and surface measurements taken in the central Amazon during the Amazonian Aerosol Characterization Experiment (AMAZE-08 in order to explore the validity and the nature of the proposed link between the Bodélé depression and the Amazon forest.

    This case study follows the dust events of 11–16 and 18–27 February 2008, from the emission in the Bodélé over West Africa (most likely with contribution from other dust sources in the region the crossing of the Atlantic Ocean, to the observed effects above the Amazon canopy about 10 days after the emission. The dust was lifted by surface winds stronger than 14 m s−1, usually starting early in the morning. The lofted dust, mixed with biomass burning aerosols over Nigeria, was transported over the Atlantic Ocean, and arrived over the South American continent. The top of the aerosol layer reached above 3 km, and the bottom merged with the boundary layer. The arrival of the dusty air parcel over the Amazon forest increased the average concentration of aerosol crustal elements by an order of magnitude.

  8. Radioactive waste isolation in salt: peer review of the Office of Nuclear Waste Isolation's report on the Organic Geochemistry of Deep Groundwaters from the Palo Duro Basin, Texas

    International Nuclear Information System (INIS)

    Fenster, D.F.; Brookins, D.G.; Harrison, W.; Seitz, M.G.; Lerman, A.; Stamoudis, V.C.

    1984-08-01

    This report summarizes Argonne's review of the Office of Nuclear Waste Isolation's (ONWI's) final report entitled The Organic Geochemistry of Deep Ground Waters from the Palo Duro Basin, Texas, dated September 1983. Recommendations are made for improving the ONWI report. The main recommendation is to make the text consistent with the title and with the objective of the project as stated in the introduction. Three alternatives are suggested to accomplish this

  9. Identification of hazards for water environment in the Upper Silesian Coal Basin caused by the discharge of salt mine water containing particularly harmful substances and radionuclides

    Directory of Open Access Journals (Sweden)

    Jan Bondaruk

    2015-01-01

    Full Text Available The Upper Silesian urban-industrial agglomeration is one of the most industrialized areas in Europe. The intense industrialization should be attributed mostly to the presence of coal and other minerals deposits and its extraction. Mining areas of hard coal mines comprise approximately 25% of the total catchment area of watercourses in the area of Upper Silesian Coal Basin, including the river basin of the Upper Oder River and the Little Vistula River. The mining, its scope and depth, duration of mining works, extraction systems being used and the total volume of the drainage fundamentally affect the conditions of groundwater and surface water in the studied area. In this paper, an overall characteristics of the coal mining industry in the area of USCB was made, including the issues of its influence on water environment in the light of the requirements of the Water Framework Directive (WFD and its guidelines transposed into Polish law. An analysis of the collected data, obtained from collieries, relating to the quantity and quality of water flowing into the workings and discharged to surface watercourses, was performed. An approach to the requirements for wastewater discharge into the environment by these enterprises was presented regarding the physicochemical parameters, possible harmful substances and radionuclides measured in mine waters. The main goal of the paper is to recognize the condition of surface water bodies in the area of Upper Silesian Coal Basin and to make the assessment of the biological condition using Ecological Risk Assessment and bioindication methods.

  10. Simulation of Water Quality in the Tull Creek and West Neck Creek Watersheds, Currituck Sound Basin, North Carolina and Virginia

    Science.gov (United States)

    Garcia, Ana Maria

    2009-01-01

    A study of the Currituck Sound was initiated in 2005 to evaluate the water chemistry of the Sound and assess the effectiveness of management strategies. As part of this study, the Soil and Water Assessment Tool (SWAT) model was used to simulate current sediment and nutrient loadings for two distinct watersheds in the Currituck Sound basin and to determine the consequences of different water-quality management scenarios. The watersheds studied were (1) Tull Creek watershed, which has extensive row-crop cultivation and artificial drainage, and (2) West Neck Creek watershed, which drains urban areas in and around Virginia Beach, Virginia. The model simulated monthly streamflows with Nash-Sutcliffe model efficiency coefficients of 0.83 and 0.76 for Tull Creek and West Neck Creek, respectively. The daily sediment concentration coefficient of determination was 0.19 for Tull Creek and 0.36 for West Neck Creek. The coefficient of determination for total nitrogen was 0.26 for both watersheds and for dissolved phosphorus was 0.4 for Tull Creek and 0.03 for West Neck Creek. The model was used to estimate current (2006-2007) sediment and nutrient yields for the two watersheds. Total suspended-solids yield was 56 percent lower in the urban watershed than in the agricultural watershed. Total nitrogen export was 45 percent lower, and total phosphorus was 43 percent lower in the urban watershed than in the agricultural watershed. A management scenario with filter strips bordering the main channels was simulated for Tull Creek. The Soil and Water Assessment Tool model estimated a total suspended-solids yield reduction of 54 percent and total nitrogen and total phosphorus reductions of 21 percent and 29 percent, respectively, for the Tull Creek watershed.

  11. Palynostratigraphy, palynofacies and depositional environment of a lignite-bearing succession at Surkha Mine, Cambay Basin, north-western India

    Directory of Open Access Journals (Sweden)

    Monga Priyanka

    2015-12-01

    successions of the Cambay and Kutch basins correlate well with the present findings.

  12. Source rock formation evaluation using TOC & Ro log model based on well-log data procesing: study case of Ngimbang formation, North East Java basin

    Directory of Open Access Journals (Sweden)

    Fatahillah Yosar

    2017-01-01

    Full Text Available Ngimbang Formation is known as one major source of hydrocarbon supply in the North Eastern Java Basin. Aged Mid-Eocene, Ngimbang is dominated by sedimentary clastic rocks mostly shale, shaly sandstone, and thick layers of limestone (CD Limestone, with thin layers of coal. Although, laboratory analyses show the Ngimbang Formation to be a relatively rich source-rocks, such data are typically too limited to regionally quantify the distribution of organic matter. To adequately sample the formation both horizontally and vertically on a basin–wide scale, large number of costly and time consuming laboratory analyses would be required. Such analyses are prone to errors from a number of sources, and core data are frequently not available at key locations. In this paper, the authors established four TOC (Total Organic Carbon Content logging calculation models; Passey, Schmoker-Hester, Meyer-Nederloff, and Decker/Density Model by considering the geology of Ngimbang. Well data along with its available core data was used to determine the most suitable model to be applied in the well AFA-1, as well as to compare the accuracy of these TOC model values. The result shows good correlation using Decker (TOC Model and Mallick-Raju (Ro- Vitrinite Reflectance Model. Two source rocks potential zones were detected by these log models.

  13. Evaluation of Extratropical Cyclone Precipitation in the North Atlantic Basin: An analysis of ERA-Interim, WRF, and two CMIP5 models.

    Science.gov (United States)

    Booth, James F; Naud, Catherine M; Willison, Jeff

    2018-03-01

    The representation of extratropical cyclones (ETCs) precipitation in general circulation models (GCMs) and a weather research and forecasting (WRF) model is analyzed. This work considers the link between ETC precipitation and dynamical strength and tests if parameterized convection affects this link for ETCs in the North Atlantic Basin. Lagrangian cyclone tracks of ETCs in ERA-Interim reanalysis (ERAI), the GISS and GFDL CMIP5 models, and WRF with two horizontal resolutions are utilized in a compositing analysis. The 20-km resolution WRF model generates stronger ETCs based on surface wind speed and cyclone precipitation. The GCMs and ERAI generate similar composite means and distributions for cyclone precipitation rates, but GCMs generate weaker cyclone surface winds than ERAI. The amount of cyclone precipitation generated by the convection scheme differs significantly across the datasets, with GISS generating the most, followed by ERAI and then GFDL. The models and reanalysis generate relatively more parameterized convective precipitation when the total cyclone-averaged precipitation is smaller. This is partially due to the contribution of parameterized convective precipitation occurring more often late in the ETC life cycle. For reanalysis and models, precipitation increases with both cyclone moisture and surface wind speed, and this is true if the contribution from the parameterized convection scheme is larger or not. This work shows that these different models generate similar total ETC precipitation despite large differences in the parameterized convection, and these differences do not cause unexpected behavior in ETC precipitation sensitivity to cyclone moisture or surface wind speed.

  14. Procedure for calculating estimated ultimate recoveries of wells in the Mississippian Barnett Shale, Bend Arch–Fort Worth Basin Province of north-central Texas

    Science.gov (United States)

    Leathers-Miller, Heidi M.

    2017-11-28

    In 2015, the U.S. Geological Survey published an assessment of technically recoverable continuous oil and gas resources of the Mississippian Barnett Shale in the Bend Arch–Fort Worth Basin Province of north-central Texas. Of the two assessment units involved in the overall assessment, one included a roughly equal number of oil wells and gas wells as classified by the U.S. Geological Survey’s standard of gas wells having production greater than or equal to 20,000 cubic feet of gas per barrel of oil and oil wells having production less than 20,000 cubic feet of gas per barrel of oil. As a result, estimated ultimate recoveries (EURs) were calculated for both oil wells and gas wells in one of the assessment units. Generally, only gas EURs or only oil EURs are calculated for an assessment unit. These EURs were calculated with data from IHS MarkitTM using DeclinePlus software in the Harmony interface and were a major component of the quantitative resource assessment. The calculated mean EURs ranged from 235 to 2,078 million cubic feet of gas and 21 to 39 thousand barrels of oil for various subsets of wells.

  15. Gamma-ray analysis for U, Th and K on bulk cutting samples from deep wells in the Danish Subbasin and the North German Basin

    International Nuclear Information System (INIS)

    Lovborg, L.

    1987-07-01

    A total of 1329 bulk cutting samples from deep wells in Denmark were analysed for U, Th and K by laboratory gamma-ray analysis. Contamination of the samples by drilling mud additives, mud solids and fall down was studied by means of a wash down experiment and by comparison with the total gamma-ray response from wireline logging. It is concluded that the inorganic geochemistry on bulk cutting samples must be applied with great caution. The data are useful for geochemical characterization of well sections and for regional geochemical correlation. Radioelement abundance logs and radioelement ratio logs are presented from 3 wells in the Danish Subbasin and 2 wells in the North German Basin. The radioelement geochemistry is discussed for the successive lithostratigraphical units and a reference radioelement profile is established for the central part of the Danish Subbasin. Finally, a model describing the relationship between common lithofacies and their U content and Th/U ratio is suggested. The model deliniates the depositional environment and the relative distances to the provenance areas. It is concluded that: (1) Uranium is mobile during deposition, but since then it is fixed by stable mineral phases at depth; (2) Thorium reflects source area characteristics and that any available ions are readily adsorbed by clay minerals. Thorium anomalies may thus serve as lithostratigraphical markers; (3) Potassium occurs in unstable rock forming mineral phases. The present distribution is controlled not only by the clastic mineral assemblage, but also by the diagenetic processes through geologic time

  16. Laboratory testing and field implementation of scale inhibitor squeeze treatments to subsea and platform horizontal wells, North Sea Basin

    Energy Technology Data Exchange (ETDEWEB)

    Jordan, M. M.; Lewis, M. [Nalco/Exxon Energy Chemicals Ltd, Aberdeen (United Kingdom); Tomlinson, C. J.; Pritchard, A. R. P. [Enterprise Oil Plc, Aberdeen (United Kingdom)

    1998-12-31

    Field results from a number of scale squeeze treatments carried out on subsea and platform horizontal wells in the Nelson Field of the North Sea are presented. Scale inhibitor chemicals are reviewed along with factors which influence inhibitor selection for both horizontal and highly deviated wells. Formation brine/inhibitor incompatibility, formation minerals/inhibitor incompatibility, and the potential for sand production and oil-in-water process as a result of these incompatibilities, are discussed. Practical difficulties in squeezing subsea horizontal wells, the use of chemical stabilizers to reduce formation brine/inhibitor incompatibility, variation of pump rates to encourage propagation of inhibitor along the wellbore, and the potential of fluid diversion are outlined, stressing the significance of production logging data (or good reservoir simulation data), to evaluate the location of water production prior to the squeeze treatment. Results of these treatments show that with the correct laboratory evaluation of both scale inhibitor and divertor agents, and with appropriate utilization of production logging or reservoir simulation data, it is possible to carry out scale inhibitor squeeze treatments of subsea and platform horizontal wells without having to resort to coiled tubing. 22 refs., 1 tab., 14 figs

  17. Structural imprints at the front of the Chocó-Panamá indenter: Field data from the North Cauca Valley Basin, Central Colombia

    Science.gov (United States)

    Suter, F.; Sartori, M.; Neuwerth, R.; Gorin, G.

    2008-11-01

    The northern Andes are a complex area where tectonics is dominated by the interaction between three major plates and accessory blocks, in particular, the Chocó-Panamá and Northern Andes Blocks. The studied Cauca Valley Basin is located at the front of the Chocó-Panamá Indenter, where the major Romeral Fault System, active since the Cretaceous, changes its kinematics from right-lateral in the south to left-lateral in the north. Structural studies were performed at various scales: DEM observations in the Central Cordillera between 4 and 5.7°N, aerial photograph analyses, and field work in the folded Oligo-Miocene rocks of the Serranía de Santa Barbara and in the flat-lying, Pleistocene Quindío-Risaralda volcaniclastic sediments interfingering with the lacustrine to fluviatile sediments of the Zarzal Formation. The data acquired allowed the detection of structures with a similar orientation at every scale and in all lithologies. These families of structures are arranged similarly to Riedel shears in a right-lateral shear zone and are superimposed on the Cretaceous Romeral suture. They appear in the Central Cordillera north of 4.5°N, and define a broad zone where 060-oriented right-lateral distributed shear strain affects the continental crust. The Romeral Fault System stays active and strain partitioning occurs among both systems. The southern limit of the distributed shear strain affecting the Central Cordillera corresponds to the E-W trending Garrapatas-Ibagué shear zone, constituted by several right-stepping, en-échelon, right-lateral, active faults and some lineaments. North of this shear zone, the Romeral Fault System strike changes from NNE to N. Paleostress calculations gave a WNW-ESE trending, maximum horizontal stress, and 69% of compressive tensors. The orientation of σ1 is consistent with the orientation of the right-lateral distributed shear strain and the compressive state characterizing the Romeral Fault System in the area: it bisects the

  18. Sources of coal-mine drainage and their effects on surface-water chemistry in the Claybank Creek basin and vicinity, north-central Missouri, 1983-84

    Science.gov (United States)

    Blevins, Dale W.

    1989-01-01

    Eighteen sources of drainage related to past coal-mining activity were identified in the Claybank Creek, Missouri, study area, and eight of them were considered large enough to have detectable effects on receiving streams. However, only three sources (two coal-waste sites and one spring draining an underground mine) significantly affected the chemistry of water in receiving streams. Coal wastes in the Claybank Creek basin contributed large quantities of acid drainage to receiving streams during storm runoff. The pH of coal-waste runoff ranged from 2.1 to 2.8. At these small pH values, concentrations of some dissolved metals and dissolved sulfate were a few to several hundred times larger than Federal and State water-quality standards established for these constituents. Effects of acid storm runoff were detected near the mouth of North Fork Claybank Creek where the pH during a small storm was 3.9. Coal wastes in the streambeds and seepage from coal wastes also had significant effects on receiving streams during base flows. The receiving waters had pH values between 2.8 and 3.5, and concentrations of some dissolved metals and dissolved sulfate were a few to several hundred times larger than Federal and State water-quality standards. Most underground mines in the North Fork Claybank Creek basin seem to be hydraulically connected, and about 80 percent of their discharge surfaced at one site. Drainage from the underground mines contributed most of the dissolved constituents in North Fork Claybank Creek during dry weather. Underground-mine water always had a pH near 5.9 and was well-buffered. It had a dissolved-sulfate concentration of about 2,400 milligrams per liter, dissolved-manganese concentrations ranging from 4.0 to 5.3 milligrams per liter, and large concentrations of ferrous iron. Iron was in the ferrous state because of reducing conditions in the mines. When underground-mine drainage reached the ground surface, the ferrous iron was oxidized and precipitated to

  19. Basin-scale variability in plankton biomass and community metabolism in the sub-tropical North Atlantic Ocean

    Science.gov (United States)

    Harrison, W. G.; Arístegui, J.; Head, E. J. H.; Li, W. K. W.; Longhurst, A. R.; Sameoto, D. D.

    Three trans-Atlantic oceanographic surveys (Nova Scotia to Canary Islands) were carried out during fall 1992 and spring 1993 to describe the large-scale variability in hydrographic, chemical and biological properties of the upper water column of the subtropical gyre and adjacent waters. Significant spatial and temporal variability characterized a number of the biological pools and rate processes whereas others were relatively invariant. Systematic patterns were observed in the zonal distribution of some properties. Most notable were increases (eastward) in mixed-layer temperature and salinity, depths of the nitracline and chlorophyll- a maximum, regenerated production (NH 4 uptake) and bacterial production. Dissolved inorganic carbon (DIC) concentrations, phytoplankton biomass, mesozooplankton biomass and new production (NO 3 uptake) decreased (eastward). Bacterial biomass, primary production, and community respiration exhibited no discernible zonal distribution patterns. Seasonal variability was most evident in hydrography (cooler/fresher mixed-layer in spring), and chemistry (mixed-layer DIC concentration higher and nitracline shallower in spring) although primary production and bacterial production were significantly higher in spring than in fall. In general, seasonal variability was greater in the west than in the east; seasonality in most properties was absent west of Canary Islands (˜20°W). The distribution of autotrophs could be reasonably well explained by hydrography and nutrient structure, independent of location or season. Processes underlying the distribution of the microheterophs, however, were less clear. Heterotrophic biomass and metabolism was less variable than autotrophs and appeared to dominate the upper ocean carbon balance of the subtropical North Atlantic in both fall and spring. Geographical patterns in distribution are considered in the light of recent efforts to partition the ocean into distinct "biogeochemical provinces".

  20. Radioactive waste isolation in salt: peer review of the D'Appolonia report on Schematic Designs for Penetration Seals for a Repository in the Permian Basin, Texas

    International Nuclear Information System (INIS)

    Hambley, D.F.; Stormont, J.C.; Russell, J.E.; Edgar, D.E.; Fenster, D.F.; Harrison, W.; Tisue, M.W.

    1984-09-01

    Argonne made the following recommedations for improving the reviewed reports. The authors of the report should: state the major assumptions of the study in Sec. 1.1 rather than later in the report; consider using salt for the shaft seals in salt horizons; reconsider whether keys are needed for the bulkheads; provide for interface grouting because use of expansive cement will not guarantee that interfaces will be impermeable; discuss the sealing schedule and, where appropriate, consider what needs to be done to ensure that emplaced radioactive waste could be retrieved if necessary; describe in more detail the sealing of the Dockum and Ogallala aquifers; consider an as low as reasonably achievable approach to performance requirements for the initial design phase; address the concerns in the 1983 US Nuclear Regulatory Commission document entitled Draft Technical Position: Borehole and Shaft Sealing of High-Level Nuclear Waste Repositories; cite the requirements for release of radioactivity by referring to specific clauses in the regulations of the US Environmental Protection Agency; and provide further explanation in the outline of future activities about materials development and verification testing. More emphasis on development of accelerated testing programs is also required

  1. Objective Tracking of Tropical Cyclones in the North-West Pacific Basin Based on Wind Field Information only

    Science.gov (United States)

    Leckebusch, G. C.; Befort, D. J.; Kruschke, T.

    2016-12-01

    Although only ca. 12% of the global insured losses of natural disasters occurred in Asia, there are two major reasons to be concerned about risks in Asia: a) The fraction of loss events was substantial higher with 39% of which 94% were due to atmospheric processes; b) Asia and especially China, is undergoing quick transitions and especially the insurance market is rapidly growing. In order to allow for the estimation of potential future (loss) impacts in East-Asia, in this study we further developed and applied a feature tracking system based on extreme wind speed occurrences to tropical cyclones, which was originally developed for extra-tropical cyclones (Leckebusch et al., 2008). In principle, wind fields will be identified and tracked once a coherent exceedance of local percentile thresholds is identified. The focus on severe wind impact will allow an objective link between the strength of a cyclone and its potential damages over land. The wind tracking is developed in such a way to be applicable also to course-gridded AOGCM simulation. In the presented configuration the wind tracking algorithm is applied to the Japanese reanalysis (JRA55) and TC Identification is based on 850hPa wind speeds (6h resolution) from 1979 to 2014 over the Western North Pacific region. For validation the IBTrACS Best Track archive version v03r8 is used. Out of all 904 observed tracks, about 62% can be matched to at least one windstorm event identified in JRA55. It is found that the relative amount of matched best tracks increases with the maximum intensity. Thus, a positive matching (hit rate) of above 98% for Violent Typhoons (VTY), above 90% for Very Strong Typhoons (VSTY), about 75% for Typhoons (TY), and still some 50% for less intense TCs (TD, TS, STS) is found. This result is extremely encouraging to apply this technique to AOGCM outputs and to derive information about affected regions and intensity-frequency distributions potentially changed under future climate conditions.

  2. Analysis of Land Use and Land Cover Changes and Their Impacts on Future Runoff in the Luanhe River Basin in North China Using Markov and SWAT

    Science.gov (United States)

    Yang, W.; Long, D.

    2017-12-01

    Both land use/cover change (LUCC) and climate change exert significant impacts on runoff, which needs to be thoroughly examined in the context of urbanization, population growth, and climate change. The majority of studies focus on the impacts of either LUCC or climate on runoff in the upper reaches of the Panjiakou Reservoir in the Luanhe River basin, North China. In this study, first, two land use change matrices for periods 1970‒1980 and 1980‒2000 were constructed based on the theory of the Markov Chain which were used to predict the land use scenario of the basin in year 2020. Second, a distributed hydrological model, Soil Water Assessment Tools (SWAT), was set up and driven mainly by the China Gauge-based Daily Precipitation Analysis (CGDPA) product and outputs from three general circulation models (GCMs) of the Inter-Sectoral Impact Model Inter-comparison Project (ISI-MIP). Third, under the land use scenario in 2000, streamflow at the Chengde gauging station for the period 1998‒2014 was simulated with the CGDPA as input, and streamflow for the period 2015‒2025 under four representative concentration pathways (RCPs) was simulated using the outputs from GCMs and compared under the land use scenarios in 2000 and 2020. Results show that during 2015‒2025, the ensemble average precipitation in summer (i.e., from June to August) may increase up to 20% but decrease by -16% in fall (i.e., from September to November). The streamflow may increase in all the seasons, particularly in spring (i.e., from March to May) and summer reaching 150% and 142%, respectively. Furthermore, the streamflow may increase even more when the land use scenario for the period 1998‒2025 remains the same as that in 2000. The minimum (61mm) and maximum (77mm) mean annual runoff depth occur under the RCP4.5 and RCP6 scenarios, respectively, compared with the mean annual observed streamflow of 33 mm from 1998 to 2014. Finally, we analyzed the correlation among the main land use types

  3. Miocene transgression in the central and eastern parts of the Sivas Basin (Central Anatolia, Turkey) and the Cenozoic palaeogeographical evolution

    Science.gov (United States)

    Poisson, André; Vrielynck, Bruno; Wernli, Roland; Negri, Alessandra; Bassetti, Maria-Angela; Büyükmeriç, Yesim; Özer, Sacit; Guillou, Hervé; Kavak, Kaan S.; Temiz, Haluk; Orszag-Sperber, Fabienne

    2016-01-01

    We present here a reappraisal of the tectonic setting, stratigraphy and palaeogeography of the central part of the Sivas Basin from Palaeocene to late Miocene. The Sivas Basin is located in the collision zone between the Pontides (southern Eurasia) and Anatolia (a continental block rifted from Gondwana). The basin overlies ophiolites that were obducted onto Anatolia from Tethys to the north. The Central Anatolian Crystalline Complex (CACC) experienced similar ophiolite obduction during Campanian time, followed by exhumation and thrusting onto previously emplaced units during Maastrichtian time. To the east, crustal extension related to exhumation of the CACC created grabens during the early Tertiary, including the Sivas Basin. The Sivas Basin underwent several tectonic events during Paleogene-Neogene. The basin fill varies, with several sub-basins, each being characterised by a distinctive sequence, especially during Oligocene and Miocene. Evaporite deposition in the central part of the basin during early Oligocene was followed by mid-late Oligocene fluvio-lacustrine deposition. The weight of overlying fluvial sediments triggered salt tectonics and salt diapir formation. Lacustrine layers that are interbedded within the fluviatile sediments have locally yielded charophytes of late Oligocene age. Emergent areas including the pre-existing Sivas Basin and neighbouring areas were then flooded from the east by a shallow sea, giving rise to a range of open-marine sub-basins, coralgal reef barriers and subsiding, restricted-marine sub-basins. Utilising new data from foraminifera, molluscs, corals and nannoplankton, the age of the marine transgression is reassessed as Aquitanian. Specifically, age-diagnostic nannoplankton assemblages of classical type occur at the base of the transgressive sequence. However, classical stratigraphic markers have not been found within the planktic foraminiferal assemblages, even in the open-marine settings. In the restricted-marine sediments

  4. Breaching of strike-slip faults and flooding of pull-apart basins to form the southern Gulf of California seaway from 8 to 6 Ma

    Science.gov (United States)

    Umhoefer, P. J.; Skinner, L. A.; Oskin, M. E.; Dorsey, R. J.; Bennett, S. E. K.; Darin, M. H.

    2017-12-01

    Studies from multiple disciplines delineate the development of the oblique-divergent Pacific - North America plate boundary in the southern Gulf of California. Integration of onshore data from the Loreto - Santa Rosalia margin with offshore data from the Pescadero, Farallon, and Guaymas basins provides a detailed geologic history. Our GIS-based paleotectonic maps of the plate boundary from 9 to 6 Ma show that evolution of pull-apart basins led to the episodic northwestward encroachment of the Gulf of California seaway. Because adjacent pull-apart basins commonly have highlands between them, juxtaposition of adjacent basin lows during translation and pull apart lengthening played a critical role in seaway flooding. Microfossils and volcanic units date the earliest marine deposits at 9(?) - 8 Ma at the mouth of the Gulf. By ca. 8 Ma, the seaway had flooded north to the Pescadero basin, while the Loreto fault and the related fault-termination basin was proposed to have formed along strike at the plate margin. East of Loreto basin, a short topographic barrier between the Pescadero and Farallon pull-apart basins suggests that the Farallon basin was either a terrestrial basin, or if breaching occurred, it may contain 8 Ma salt or marine deposits. This early southern seaway formed along a series of pull-apart basins within a narrow belt of transtension structurally similar to the modern Walker Lane in NV and CA. At ca. 7 Ma, a series of marine incursions breached a 75-100 km long transtensional fault barrier between the Farallon and Guaymas basins offshore Bahía Concepción. Repeated breaching events and the isolation of the Guaymas basin in a subtropical setting formed a 2 km-thick salt deposit imaged in offshore seismic data, and thin evaporite deposits in the onshore Santa Rosalia basin. Lengthening of the Guaymas, Yaqui, and Tiburon basins caused breaches of the intervening Guaymas and Tiburón transforms by 6.5-6.3 Ma, forming a permanent 1500 km-long marine seaway

  5. Present-day geothermal characteristics of the Ordos Basin, western North China Craton: new findings from deep borehole steady-state temperature measurements

    Science.gov (United States)

    Gao, Peng; Qiu, Qianfeng; Jiang, Guangzheng; Zhang, Chao; Hu, Shengbiao; Lei, Yuhong; Wang, Xiangzeng

    2018-07-01

    Heat flow and associated thermal regimes are related to the tectonic evolution and geophysical properties of the lithosphere. The Ordos Basin is located in a tectonic transitional zone: areas to the east of the basin are characterized as tectonically active, while regions to the west of the basin are characterized as tectonically stable. It is of general interest to learn the geothermal characteristics of the basin in such tectonic conditions. To clarify the spatial variability of the present-day geothermal field across the basin and its implications, we report 13 terrestrial heat flow points based on the first systematic steady-state deep borehole temperature measurements in the basin. The new data together with existing data show that the geothermal gradients in the basin range from 12.6 to 42.3 °C km-1 with a mean of 27.7 ± 5.3 °C km-1; the terrestrial heat flow values range from 43.3 to 88.7 mW m-2 with a mean of 64.7 ± 8.9 mW m-2. Such values are higher than those of typical cratonic basins and lower than those of tectonically active areas. By using all these data in the basin and adjacent areas, we plot geothermal gradient and heat flow distribution maps. The maps reveal that the basin is cooling westwards and northwards. The distribution pattern of the geothermal field is consistent with the lithospheric thickness variation in the basin. This similarity suggests that the geothermal spatial variability of the Ordos Basin is mainly influenced by heat from the deep mantle. In the southeastern basin, we locate a positive geothermal anomaly caused by the convergence of heat flow in basement highs and the high radiogenic heat production. In addition, the high heat flow in the eastern basin is related to the intense uplift during the Cenozoic Era.

  6. Present-day geothermal characteristics of the Ordos Basin, western North China Craton: new findings from deep borehole steady-state temperature measurements

    Science.gov (United States)

    Gao, Peng; Qiu, Qianfeng; Jiang, Guangzheng; Zhang, Chao; Hu, Shengbiao; Lei, Yuhong; Wang, Xiangzeng

    2018-03-01

    Heat flow and associated thermal regimes are related to the tectonic evolution and geophysical properties of the lithosphere. The Ordos Basin is located in a tectonic transitional zone: areas to the east of the basin are characterized as tectonically active, while regions to the west of the basin are characterized as tectonically stable. It is of general interest to learn the geothermal characteristics of the basin in such tectonic conditions. To clarify the spatial variability of the present-day geothermal field across the basin and its implications, we report 13 terrestrial heat flow points based on the first systematic steady-state deep borehole temperature measurements in the basin. The new data together with existing data show that the geothermal gradients in the basin range from 12.6 to 42.3° C km-1 with a mean of 27.7 ± 5.3° C km-1; the terrestrial heat flow values range from 43.3 to 88.7 mW/m2 with a mean of 64.7 ± 8.9 mW/m2. Such values are higher than those of typical cratonic basins and lower than those of tectonically active areas. By using all these data in the basin and adjacent areas, we plot geothermal gradient and heat flow distribution maps. The maps reveal that the basin is cooling westward and northward. The distribution pattern of the geothermal field is consistent with the lithospheric thickness variation in the basin. This similarity suggests that the geothermal spatial variability of the Ordos Basin is mainly influenced by heat from the deep mantle. In the southeastern basin, we locate a positive geothermal anomaly caused by the convergence of heat flow in basement highs and the high radiogenic heat production. In addition, the high heat flow in the eastern basin is related to the intense uplift during the Cenozoic Era.

  7. Effects of Two Salts Compounds on Mycelial Growth, Sporulation, and Spore Germination of Six Isolates of Botrytis cinerea in the Western North of Algeria

    Directory of Open Access Journals (Sweden)

    Boualem Boumaaza

    2015-01-01

    Full Text Available Six isolates of Botrytis cinerea were isolated from leaves and stems of different tomato varieties taken from four areas in the northwest of Algeria where tomato is mostly grown in greenhouses and high tunnels. The purpose of this research was to determine the effect of two salts, NaCl and CaCl2, on three stages of Botrytis cinerea’s life cycle. All isolates tested were stimulated in 50 to 150 ppm; NaCl was the most effective treatment to increase mycelial growth at two tested concentrations. However, at 300 ppm concentration, CaCl2 completely inhibited the growth of mycelium; they reach 34.78% for the isolate TR46 and 26.72% for isolate F27. The sodium and calcium salts stimulated conidia production in liquid culture. We noticed that the effect of calcium chloride on sporulation was average while sodium chloride. In the medium containing 50 ppm, calcium chloride and sodium chloride increased the germination capacity of most isolates compared with the control. Other calcium salts, at 100 or 300 ppm, decreased the germination percentage of the conidia. With the exception of sodium salts, the inhibitions of germination reduce at 150 or 300 compared with the control. Conidial germination was slightly inhibited by sodium chloride only when the concentration was over 300 ppm.

  8. Zechstein salt Denmark. Vol. 1

    International Nuclear Information System (INIS)

    Lyngsie Jacobsen, F.; Soenderholm, M.; Springer, N.; Gutzon Larsen, J.; Lagoni, P.; Fabricius, J.

    1984-01-01

    The Salt Research Project EFP-81 has mainly been aiming upon an elucidation of the stratigraphy of the Danish Zechstein evaporites. Also an attempt to clarify the connection between the fabric and the strength of the strongly deformed domal rock salt is performed. The unravelling of the stratigraphy is carried out by means of renewed interpretations of new and old data from all the wells drilling in the Danish Permian basin in connection with a revaluation of the core descriptions. By means of trace elements analysis it is possible to some extent to distinguish between Zestein 1 and 2 ''grey salt''. A description of the transition zone between Zechstein 1 and 2 is carried out. New methods of fabric analyses are introduced and the strength measurements of the rock salt are treated statistically in connection with new defined rock salt parameters. An investigation of fluid inclusions in halite and quartz crystals from dome salt has resulted in the determination of salinity and chemical composition of the brines present in the salt. Temperatures and corresponding pressures during the evolution of the salt pillow and salt dome have been established. The dehydration conditions of natural carnallite in situ are clarified. (author)

  9. Petrographic report on clay-rich samples from Permian Unit 4 salt, G. Friemel No. 1 well, Palo Duro Basin, Deaf Smith County, Texas: unanalyzed data

    International Nuclear Information System (INIS)

    Fukui, L.M.

    1983-09-01

    This report presents the results of mineralogic and petrographic analyses performed on five samples of clay-rich rock from salt-bearing Permian strata sampled by drill core from G. Friemel No. 1 Well, Deaf Smith County, Texas. Five samples of clay-rich rock from depths of about 2457, 2458, 2521, 2548, and 2568 feet were analyzed to determine the amounts of soluble phase (halite) and the amounts and mineralogy of the insoluble phases. The amounts of halite found were 59, 79, 47, 40, and 4 weight percent, respectively, for the samples. The insoluble minerals are predominately clay (20 to 60 volume percent) and anhydrite (up to 17 volume percent), with minor (about 1.0%) and trace amounts of quartz, dolomite, muscovite, and gypsum. The clays include illite, chlorite, and interstratified chlorite-smectite. The results presented in this petrographic report are descriptive, uninterpreted data. 2 references, 7 tables

  10. Methane leakage during the evolution of petroleum systems in the Western Canada Sedimentary Basin and the Central Graben area of the North Sea

    Science.gov (United States)

    Berbesi, L. A.; di Primio, R.; Anka, Z.; Horsfield, B.

    2012-04-01

    Around 500 to 600 Tg (1 Tg = 1012 g) of methane enter the atmosphere every year, mainly as product of microbial processes and combustion of fossil fuels and burning biomass. The importance of another source, the geologic emissions of methane, is up to now only loosely constrained. In this study, we addressed the potential methane emissions during the geological evolution of the Western Canada sedimentary basin (WCSB), which holds the largest oil sand accumulations in the world, and the Central Graben area of the North Sea. In the case of the WCSB, thermogenic gas generation and leakage at the sediment surface were addressed through 3D petroleum systems modeling. In this basin, the accumulated oil experienced intense biodegradation that resulted in large masses of biogenic methane. We quantified this latter mass though a two-step mass balance approach. Firstly, we estimated the rate of petroleum degradation and the magnitude of petroleum loss. After this, we calculated the mass of biogenic methane generated using a model that assumes hexadecane (C16H34) as representative of the saturated compounds (Zengler et al., 1999). Our 3D model suggests that 90000-150000 Tg of dry gas (mostly methane) could have leaked during the interval from 80 Ma to 60 Ma. Therefore, uniform leakage rates would have been in the order of 10-3-10-2 Tg yr-1. Biogenic methane generation could have taken place at rates of 10-4 to 10-2 Tg yr-1. However, the effective mass of thermogenic and biogenic methane reaching the atmosphere might have been up to 90% lower than calculated here due to methanotrophic consumption in soils (Etiope and Klusman, 2002). We addressed the thermogenic gas generation and leakage in the Central Graben through two different methods. The first is based on a previous 3D petroleum system modeling of the region (Neumann, 2006). The second consisted of calculating the mass of generated petroleum based on source rock extension and properties (Schmoker, 1994), and then

  11. Real-Time Monitoring of Mountain Conifer Growth Response to Seasonal Climate and the Summer Monsoon in the Great Basin of North America

    Science.gov (United States)

    Strachan, S.; Biondi, F.

    2013-12-01

    Tree rings in the American intermountain west are often used for palaeoclimatic purposes, including reconstructions of precipitation, temperature, and drought. Specific seasonal phenomena such as the North American Monsoon (NAM) are also being identified in tree-ring studies as being related to certain growth features in the rings (such as early-onset 'false' latewood). These relationships have historically been developed using statistical relationships between tree-ring chronologies and regional weather observations. In zones near the periphery of the NAM, summertime precipitation may be more sporadic, yet localized vegetation assemblages in the northern Mojave desert and Great Basin regions indicate that these events are still important for some ecosystems which have established in areas where NAM activity is present. Major shifts in NAM behavior in the past may have been recorded by tree rings, and identifying the specific mechanisms/circumstances by which this occurs is critical for efforts seeking to model ecosystem response to climate changes. By establishing in-situ monitoring of climate/weather, soils, and tree-growth variables in Pinus ponderosa scopulorum and Pinus monophylla zones at study sites in eastern/southern Nevada, we are able to address these issues at very fine spatial and temporal scales. Data from two seasons of monitoring precipitation, solar radiation, air temperature, soil temperature, soil water content, tree sap flow, tree radial distance increment, and hourly imagery are presented. Point dendrometers along with sap flow sensors monitor growth in these ponderosa pine around the clock to help researchers understand tree-ring/climate relationships.

  12. Microbial composition in a deep saline aquifer in the North German Basin -microbiologically induced corrosion and mineral precipitation affecting geothermal plant operation and the effects of plant downtime

    Science.gov (United States)

    Lerm, Stephanie; Westphal, Anke; Miethling-Graff, Rona; Alawi, Mashal; Seibt, Andrea; Wolfgramm, Markus; Würdemann, Hilke

    2013-04-01

    The microbial composition in fluids of a deep saline geothermal used aquifer in the North German Basin was characterized over a period of five years. The genetic fingerprinting techniques PCR-SSCP and PCR-DGGE revealed distinct microbial communities in fluids produced from the cold and warm side of the aquifer. Direct cell counting and quantification of 16S rRNA genes and dissimilatory sulfite reductase (dsrA) genes by real-time PCR proved different population sizes in fluids, showing higher abundance of Bacteria and sulfate reducing bacteria (SRB) in cold fluids compared to warm fluids. Predominating SRB in the cold well probably accounted for corrosion damage to the submersible well pump, and iron sulfide precipitates in the near wellbore area and topside facility filters. This corresponded to a lower sulfate content in fluids produced from the cold well as well as higher content of hydrogen gas that was probably released from corrosion, and maybe favoured growth of hydrogenotrophic SRB. Plant downtime significantly influenced the microbial biocenosis in fluids. Samples taken after plant restart gave indications about the processes occurring downhole during those phases. High DNA concentrations in fluids at the beginning of the restart process with a decreasing trend over time indicated a higher abundance of microbes during plant downtime compared to regular plant operation. It is likely that a gradual drop in temperature as well as stagnant conditions favoured the growth of microbes and maturation of biofilms at the casing and in pores of the reservoir rock in the near wellbore area. Furthermore, it became obvious that the microorganisms were more associated to particles then free-living. This study reflects the high influence of microbial populations for geothermal plant operation, because microbiologically induced precipitative and corrosive processes adversely affect plant reliability. Those processes may favourably occur during plant downtime due to enhanced

  13. Gamma-ray analysis for U, TH and K on bulk cutting samples from deep wells in the Danish subbasin and the North German basin

    International Nuclear Information System (INIS)

    Leth Nielsen, B.; Loevborg, L.; Soerensen, P.; Mose, E.

    1987-04-01

    A total of 1329 bulk cutting samples from deep wells in Denmark were analysed for U, Th and K by laboratory gamma-ray analysis. Contamination of the samples by drilling mud additives, mud solids and fall down was studied by means of a wash down experiment and by comparison with the total gamma-ray response from wire-line logging. It is concluded that the inorganic geochemistry on bulk cutting samples must be applied with great caution. The data are useful for geochemical characterization of well sections and for regional geochemical correlation. Radioelement abundance logs and radioelement ratio logs are presented from 3 wells in the Danish Subbasin and 2 wells in the North German Basin. The radioelement geochemistry is discussed for the successive lithostratigraphical units and a reference radio element profile is established for the central part of the Danish Subbasin. Finally, a model describing the relationship between common lithofacies and their U content and Th/U ratio is suggested. The model deliniates the depositional environment and the relative distances to the provenance areas. It is concluded that 1) Uranium is mobile during deposition, but since then it is fixed by stable mineral phases at depth. 2) Thorium reflects source area characteristics and that any available ions are readily adsorped by clay minerals. Thorium anomalies may thus serve as lithostratigraphical markers. 3) Potassium occurs in unstable rock forming mineral phases. The present distribution is controlled not only by the clastic mineral assemblage, but also by the diagenetic processes through geologic time. 33 refs. (author)

  14. Analysis of flood-magnitude and flood-frequency data for streamflow-gaging stations in the Delaware and North Branch Susquehanna River Basins in Pennsylvania

    Science.gov (United States)

    Roland, Mark A.; Stuckey, Marla H.

    2007-01-01

    The Delaware and North Branch Susquehanna River Basins in Pennsylvania experienced severe flooding as a result of intense rainfall during June 2006. The height of the flood waters on the rivers and tributaries approached or exceeded the peak of record at many locations. Updated flood-magnitude and flood-frequency data for streamflow-gaging stations on tributaries in the Delaware and North Branch Susquehanna River Basins were analyzed using data through the 2006 water year to determine if there were any major differences in the flood-discharge data. Flood frequencies for return intervals of 2, 5, 10, 50, 100, and 500 years (Q2, Q5, Q10, Q50, Q100, and Q500) were determined from annual maximum series (AMS) data from continuous-record gaging stations (stations) and were compared to flood discharges obtained from previously published Flood Insurance Studies (FIS) and to flood frequencies using partial-duration series (PDS) data. A Wilcoxon signed-rank test was performed to determine any statistically significant differences between flood frequencies computed from updated AMS station data and those obtained from FIS. Percentage differences between flood frequencies computed from updated AMS station data and those obtained from FIS also were determined for the 10, 50, 100, and 500 return intervals. A Mann-Kendall trend test was performed to determine statistically significant trends in the updated AMS peak-flow data for the period of record at the 41 stations. In addition to AMS station data, PDS data were used to determine flood-frequency discharges. The AMS and PDS flood-frequency data were compared to determine any differences between the two data sets. An analysis also was performed on AMS-derived flood frequencies for four stations to evaluate the possible effects of flood-control reservoirs on peak flows. Additionally, flood frequencies for three stations were evaluated to determine possible effects of urbanization on peak flows. The results of the Wilcoxon signed

  15. Detailed cross sections of the Eocene Green River Formation along the north and east margins of the Piceance Basin, western Colorado, using measured sections and drill hole information

    Science.gov (United States)

    Johnson, Ronald C.

    2014-01-01

    This report presents two detailed cross sections of the Eocene Green River Formation in the Piceance Basin, northwestern Colorado, constructed from eight detailed measured sections, fourteen core holes, and two rotary holes. The Eocene Green River Formation in the Piceance Basin contains the world’s largest known oil shale deposit with more than 1.5 billion barrels of oil in place. It was deposited in Lake Uinta, a long-lived saline lake that once covered much of the Piceance Basin and the Uinta Basin to the west. The cross sections extend across the northern and eastern margins of the Piceance Basin and are intended to aid in correlating between surface sections and the subsurface in the basin.

  16. Characterization of Stream Channel Evolution Due to Extensional Tectonics Along the Western Margin of North Boulder Basin (Bull Mountain), SW Montana with the Use of Geologic Mapping and Thermochronologic (U-Th/He) Dating.

    Science.gov (United States)

    Cataldo, K.; Douglas, B. J.; Yanites, B.

    2017-12-01

    Landscape response to active tectonics, such as fault motion or regional uplift, can be recorded in river profiles as changes in slope (i.e. knickpoints) or topography. North Boulder basin region (SW Montana), experienced two separate phases of extension, from 45 - 35 Ma and again beginning 14 Ma to the present, producing basin-and-range style fault-blocks. Focusing on the Bull Mountain region, located on the western margin of the North Boulder basin, data is collected to test the hypothesis that Bull Mountain is located on the hanging wall of a half-graben. Our objective is to elucidate the active tectonics of the study area within a regional context by utilizing river profile analysis and thermochronometric data. High-resolution (distribution of water, which is an important commodity in SW Montana for ranchers and farmers. Thus, the ability to discern the probability of recurring tectonic events and the effects on the regional watersheds, could help facilitate solutions before these events take place.

  17. Natural factors and mining activity bearings on the water quality of the Choapa basin, North Central Chile: insights on the role of mafic volcanic rocks in the buffering of the acid drainage process.

    Science.gov (United States)

    Parra, Amparo; Oyarzún, Jorge; Maturana, Hugo; Kretschmer, Nicole; Meza, Francisco; Oyarzún, Ricardo

    2011-10-01

    This contribution analyzes water chemical data for the Choapa basin, North Central Chile, for the period 1980-2004. The parameters considered are As, Cu Fe, pH, EC, SO₄⁻², Cl⁻¹, and HCO[Formula: see text], from samples taken in nine monitoring stations throughout the basin. Results show rather moderate contents of As, Cu, and Fe, with the exception of the Cuncumén River and the Aucó creek, explained by the influence of the huge porphyry copper deposit of Los Pelambres and by the presence of mining operations, respectively. When compared against results obtained in previous researches at the neighboring Elqui river basin, which host the El Indio Au-Cu-As district, a much reduced grade of pollution is recognized for the Choapa basin. Considering the effect of acid rock drainage (ARD)-related Cu contents on the fine fraction of the sediments of both river basins, the differences recorded are even more striking. Although the Los Pelambres porphyry copper deposit, on the headwaters of the Choapa river basin, is between one and two orders of magnitude bigger than El Indio, stream water and sediments of the former exhibit significantly lower copper contents than those of the latter. A main factor which may explain these results is the smaller degree of H( + )-metasomatism on the host rocks of the Los Pelambres deposit, where mafic andesitic volcanic rocks presenting propylitic hydrothermal alteration are dominant. This fact contrast with the highly altered host rocks of El Indio district, where most of them have lost their potential to neutralize ARD.

  18. Hydrology and surface morphology of the Bonneville Salt Flats and Pilot Valley Playa, Utah

    Science.gov (United States)

    Lines, Gregory C.

    1979-01-01

    The Bonneville Salt Flats and Pilot Valley are in the western part of the Great Salt Lake Desert in northwest Utah. The areas are separate, though similar, hydrologic basins, and both contain a salt crust. The Bonneville salt crust covered about 40 square miles in the fall of 1976, and the salt crust in Pilot Valley covered 7 square miles. Both areas lack any noticeable surface relief (in 1976, 1.3 feet on the Bonneville salt crust and 0.3 foot on the Pilot Valley salt crust).The salt crust on the Salt Flats has been used for many years for automobile racing, and brines from shallow lacustrine deposits have been used for the production of potash. In recent years, there has been an apparent conflict between these two major uses of the area as the salt crust has diminished in both thickness and extent. Much of the Bonneville Racetrack has become rougher, and there has also been an increase in the amount of sediment on the south end of the racetrack. The Pilot Valley salt crust and surrounding playa have been largely unused.Evaporite minerals on the Salt Flats and the Pilot Valley playa are concentrated in three zones: (1) a carbonate zone composed mainly of authigenic clay-size carbonate minerals, (2) a sulfate zone composed mainly of authigenic gypsum, and (3) a chloride zone composed of crystalline halite (the salt crust). Five major types of salt crust were recognized on the Salt Flats, but only one type was observed in Pilot Valley. Geomorphic differences in the salt crust are caused by differences in their hydrologic environments. The salt crusts are dynamic features that are subject to change because of climatic factors and man's activities.Ground water occurs in three distinct aquifers in much of the western Great Salt Lake Desert: (1) the basin-fill aquifer, which yields water from conglomerate in the lower part of the basin fill, (2) the alluvial-fan aquifer, which yields water from sand and gravel along the western margins of both playas, and (3) the

  19. Salt Tolerance

    OpenAIRE

    Xiong, Liming; Zhu, Jian-Kang

    2002-01-01

    Studying salt stress is an important means to the understanding of plant ion homeostasis and osmo-balance. Salt stress research also benefits agriculture because soil salinity significantly limits plant productivity on agricultural lands. Decades of physiological and molecular studies have generated a large body of literature regarding potential salt tolerance determinants. Recent advances in applying molecular genetic analysis and genomics tools in the model plant Arabidopsis thaliana are sh...

  20. Sea salt

    OpenAIRE

    Galvis-Sánchez, Andrea C.; Lopes, João Almeida; Delgadillo, Ivone; Rangel, António O. S. S.

    2013-01-01

    The geographical indication (GI) status links a product with the territory and with the biodiversity involved. Besides, the specific knowledge and cultural practices of a human group that permit transforming a resource into a useful good is protected under a GI designation. Traditional sea salt is a hand-harvested product originating exclusively from salt marshes from specific geographical regions. Once salt is harvested, no washing, artificial drying or addition of anti-caking agents are all...

  1. Status and understanding of groundwater quality in the North San Francisco Bay Shallow Aquifer study unit, 2012; California GAMA Priority Basin Project (ver. 1.1, February 2018)

    Science.gov (United States)

    Bennett, George L.

    2017-07-20

    Groundwater quality in the North San Francisco Bay Shallow Aquifer study unit (NSF-SA) was investigated as part of the Priority Basin Project of the California Groundwater Ambient Monitoring and Assessment (GAMA) Program. The study unit is in Marin, Mendocino, Napa, Solano, and Sonoma Counties and included two physiographic study areas: the Valleys and Plains area and the surrounding Highlands area. The NSF-SA focused on groundwater resources used for domestic drinking water supply, which generally correspond to shallower parts of aquifer systems than that of groundwater resources used for public drinking water supply in the same area. The assessments characterized the quality of untreated groundwater, not the quality of drinking water.This study included three components: (1) a status assessment, which characterized the status of the quality of the groundwater resources used for domestic supply for 2012; (2) an understanding assessment, which evaluated the natural and human factors potentially affecting water quality in those resources; and (3) a comparison between the groundwater resources used for domestic supply and those used for public supply.The status assessment was based on data collected from 71 sites sampled by the U.S. Geological Survey for the GAMA Priority Basin Project in 2012. To provide context, concentrations of constituents measured in groundwater were compared to U.S. Environmental Protection Agency (EPA) and California State Water Resources Control Board Division of Drinking Water regulatory and non-regulatory benchmarks for drinking-water quality. The status assessment used a grid-based method to estimate the proportion of the groundwater resources that has concentrations of water-quality constituents approaching or above benchmark concentrations. This method provides statistically unbiased results at the study-area scale and permits comparisons to other GAMA Priority Basin Project study areas.In the NSF-SA study unit as a whole, inorganic

  2. Source indicators of biomass burning associated with inorganic salts and carboxylates in dry season ambient aerosol in Chiang Mai Basin, Thailand

    Science.gov (United States)

    Tsai, Ying I.; Sopajaree, Khajornsak; Chotruksa, Auranee; Wu, Hsin-Ching; Kuo, Su-Ching

    2013-10-01

    PM10 aerosol was collected between February and April 2010 at an urban site (CMU) and an industrial site (TOT) in Chiang Mai, Thailand, and characteristics and provenance of water-soluble inorganic species, carboxylates, anhydrosugars and sugar alcohols were investigated with particular reference to air quality, framed as episodic or non-episodic pollution. Sulfate, a product of secondary photochemical reactions, was the major inorganic salt in PM10, comprising 25.9% and 22.3% of inorganic species at CMU and TOT, respectively. Acetate was the most abundant monocarboxylate, followed by formate. Oxalate was the dominant dicarboxylate. A high acetate/formate mass ratio indicated that primary traffic-related and biomass-burning emissions contributed to Chiang Mai aerosols during episodic and non-episodic pollution. During episodic pollution carboxylate peaks indicated sourcing from photochemical reactions and/or directly from traffic-related and biomass burning processes and concentrations of specific biomarkers of biomass burning including water-soluble potassium, glutarate, oxalate and levoglucosan dramatically increased. Levoglucosan, the dominant anhydrosugar, was highly associated with water-soluble potassium (r = 0.75-0.79) and accounted for 93.4% and 93.7% of anhydrosugars at CMU and TOT, respectively, during episodic pollution. Moreover, levoglucosan during episodic pollution was 14.2-21.8 times non-episodic lows, showing clearly that emissions from biomass burning are the major cause of PM10 episodic pollution in Chiang Mai. Additionally, the average levoglucosan/mannosan mass ratio during episodic pollution was 14.1-14.9, higher than the 5.73-7.69 during non-episodic pollution, indicating that there was more hardwood burning during episodic pollution. Higher concentrations of glycerol and erythritol during episodic pollution further indicate that biomass burning activities released soil biota from forest and farmland soils.

  3. Magnetic anomalies across the transitional crust of the passive conjugate margins of the North Atlantic: Iberian Abyssal Plain/Northern Newfoundland Basin

    Science.gov (United States)

    Srivastava, S.; Sibuet, J.; Manatschal, G.

    2005-12-01

    The magma starved Iberia Abyssal Plain (IAP) margin off Iberia is probably one of the most studied non-volcanic continental margin in the world. Numerous multi-channel seismic cruises, detailed refraction surveys, and ODP drilling (Legs 149 and 173) have been carried out across it. Yet serious disagreement exists about the nature and mode of emplacement of the transitional crust which lies between true continental and true oceanic crusts in this region. One group regards this crust to be excessively thinned continental crust through which mantle was exhumed while the other group regards it to be oceanic crust, a mixture of basalt and mantle material, formed during ultraslow seafloor spreading. However, neither the drilling, which was carried out only on the basement highs and recovered serpentinized peridotites together with some gabbroic material, nor the detailed refraction measurements have been of much help in solving this dispute because the velocity values in this region neither correspond to true volcanic materials nor to true continental rocks. Similarly the magnetic anomalies in this region have been also interpreted differently by the two groups. One group negates the existence of any seafloor spreading type anomalies over the transition zone. On the other hand, examination of surface and deep-tow magnetic data from conjugate sections of the margins across this part of the North Atlantic shows a good correlation between them. The prime reason for such differences in the interpretation of magnetic data lies in the low amplitude of the surface magnetic anomalies forming the M sequence anomalies in this region compared to those of similar age present in the Central Atlantic. We demonstrate here that the symmetrical magnetic anomalies identified within the transitional zones between Iberia and North America, and across passive margins in general where separation between plates has been very slow, are caused by the serpentinization of the exhumed mantle rocks

  4. How do salt withdrawal minibasins form? Insights from forward modelling, and implications for hydrocarbon migration

    Science.gov (United States)

    Peel, Frank J.

    2014-09-01

    Existing models for the initiation of salt withdrawal minibasins focus on the role of triggers that exist within the minibasin, either stratigraphic (e.g. differential deposition) or tectonic (extension, translation or contraction). Existing studies tend to focus on complex settings, such as continental margins, which contain many different potential triggering mechanisms. It can be difficult in these settings to identify which process is responsible for minibasin initiation, or the influence of individual factors on their subsequent development. Salt withdrawal minibasins also exist in simpler settings, without any obvious intrinsic trigger; the region of the North German Basin used by Trusheim (1960) in the classic definition of salt withdrawal geometries was of this nature. There is no overall basal or surface slope, no major lateral movement, and there is no depositional heterogeneity. Previously recognized trigger processes for minibasin initiation do not apply in this benign setting, suggesting that other, potentially more fundamental, influences may be at work. A simple forward-modelling approach shows how, in the absence of any other mechanism, a new minibasin can develop as the consequence of salt movement driven by its neighbour, and families of withdrawal minibasins can propagate across a region from a single seed point. This new mechanism may explain how some minibasins appear to initiate before the sediment density has exceeded that of the underlying salt. The forward modelling also indicates that some minibasins begin to invert to form turtle anticlines before the underlying salt has been evacuated, so that the timing of turtle formation may not be diagnostic of weld formation. This mechanism may also give rise to salt-cored turtles that have a lens of salt trapped beneath their cores. These new findings have implications for hydrocarbon migration and trapping.

  5. Fluid circulation and diagenesis of carbonated and sandstone reservoirs in the fronts and fore-lands of folded chains: the Salt Range case - Poswar (Pakistan); Circulation des fluides et diagenese des reservoirs carbonates et greseux dans les fronts de chaines plissees et leur avant pays: le cas du Salt Range - Poswar (Pakistan)

    Energy Technology Data Exchange (ETDEWEB)

    Benchilla, L.

    2003-05-01

    The Salt Range-Poswar Province is located in the western foothills of the Himalayas, in northern Pakistan. It extends over 170 km from the Main Boundary Thrust (MBT) in the north to the Salt Range in the south. The Salt Range itself is dominantly an ENE-trending structure, but it comprises also a NNW-trending lateral ramp which connects to the west with the Surghar Range. The Salt Range constitutes the frontal part of a detached allochthonous thrust sheet. The sedimentary cover is indeed entirely detached from its substratum along Infracambrian salt horizons. Palaeozoic to Eocene platform series are well exposed in the hanging wall, whereas Neogene molasse has been extensively under-thrust in the footwall of this large over-thrust. The North Potwar Basin is bordered by the Khari-Murat Ridge and coeval back-thrusts in the south, by the northern flank of the Soan syncline in the southeast, and by the MBT in the north. In addition to Neogene outcrops, it also comprises a number of surface anticlines and thrust fronts along which the Eocene platform carbonates are exposed. The Datta Formation is the main Jurassic oil reservoir in the Potwar Basin. It is a fluvio-deltaic deposit which comprises large porous and permeable channels associated to many-calcareous interbeds. The formations crop out well in both the Nammal and Chichali Gorges. The oil field of Toot, located in the western part of the basin, is producing from this reservoir. The petrographic observations show that diagenesis occurred mainly early and was controlled by the fluvio-deltaic environment. (author)

  6. Tectonic control on turbiditic sedimentation: The Late Cretaceous-Eocene successions in the Sinop-Boyabat Basin of north-central Turkey

    Energy Technology Data Exchange (ETDEWEB)

    Janbu, Nils Erik

    2004-07-01

    The aim of this study: Tectonics is widely recognized by geologists as the single most important factor controlling the development, filling and deformation of sedimentary basins. In general terms, the role of tectonics seems rather ''obvious'' to most geologists, because we know reasonably well as what tectonics ''can do'' as the agent of structural deformation. Therefore, the role of tectonics is often invoked as a kind of ballpark variable - as the obvious cause of ''subsidence'' or ''uplift'' - and seems to some authors even too obvious to mention. Relatively little attempt has been in sedimentological and stratigraphic studies to recognize as to what effects exactly the tectonic activity had on sedimentation in a particular basin. The principal aim of the present study has been to improve our understanding of how tectonic activity can affect deep-water turbiditic sedimentation in a particular basin, including its ''external'' influences (basin geometry, basin-margin configuration, sediment source/supply and relative sea-level change) and ''internal'' effects (basin-floor subsidence, seafloor deformation). Foreland basins are some of the most active tectonically, and the Sinop- Boyabat Basin is a fascinating case of a rift converted into a foreland basin and increasingly deformed. Summary of papers: The main part of the field study, concerned with the sedimentology and facies analysis of the turbiditic succession, is summarized in Papers 1-3, which put special emphasis on the physical character and morphodynamic evolution of the depositional systems and on the tectonic control on their development. Paper 4 focuses on the frequency distribution of bed thickness data collected by detailed logging of various turbiditic assemblages: siliciclastic deposits of nonchannelized currents (lobe and overbank facies); siliciclastic deposits of poorly

  7. Tectonic control on turbiditic sedimentation: The Late Cretaceous-Eocene successions in the Sinop-Boyabat Basin of north-central Turkey

    Energy Technology Data Exchange (ETDEWEB)

    Janbu, Nils Erik

    2004-07-01

    The aim of this study: Tectonics is widely recognized by geologists as the single most important factor controlling the development, filling and deformation of sedimentary basins. In general terms, the role of tectonics seems rather ''obvious'' to most geologists, because we know reasonably well as what tectonics ''can do'' as the agent of structural deformation. Therefore, the role of tectonics is often invoked as a kind of ballpark variable - as the obvious cause of ''subsidence'' or ''uplift'' - and seems to some authors even too obvious to mention. Relatively little attempt has been in sedimentological and stratigraphic studies to recognize as to what effects exactly the tectonic activity had on sedimentation in a particular basin. The principal aim of the present study has been to improve our understanding of how tectonic activity can affect deep-water turbiditic sedimentation in a particular basin, including its ''external'' influences (basin geometry, basin-margin configuration, sediment source/supply and relative sea-level change) and ''internal'' effects (basin-floor subsidence, seafloor deformation). Foreland basins are some of the most active tectonically, and the Sinop- Boyabat Basin is a fascinating case of a rift converted into a foreland basin and increasingly deformed. Summary of papers: The main part of the field study, concerned with the sedimentology and facies analysis of the turbiditic succession, is summarized in Papers 1-3, which put special emphasis on the physical character and morphodynamic evolution of the depositional systems and on the tectonic control on their development. Paper 4 focuses on the frequency distribution of bed thickness data collected by detailed logging of various turbiditic assemblages: siliciclastic deposits of nonchannelized currents (lobe and overbank facies); siliciclastic deposits of poorly confined, aggradational channels; siliciclastic deposits of well-defined sinuous channels nested into channel complexes; and

  8. Salt cookbook

    CERN Document Server

    Saha, Anirban

    2015-01-01

    If you are a professional associated with system and infrastructure management, looking at automated infrastructure and deployments, then this book is for you. No prior experience of Salt is required.

  9. The Central European Permian Basins; Rheological and structural controls on basin history and on inter-basin connectivity

    NARCIS (Netherlands)

    Smit, Jeroen; van Wees, Jan-Diederik; Cloetingh, Sierd

    2014-01-01

    We analyse the relative importance of the major crustal-scale fault zones and crustal architecture in controlling basin formation, deformation and the structural connections between basins. The North and South Permian Basins of Central Europe are usually defined by the extend of Rotliegend

  10. Geological evaluation of Gulf Coast salt domes: overall assessment of the Gulf Interior Region

    International Nuclear Information System (INIS)

    1981-10-01

    The three major phases in site characterization and selection are regional studies, area studies, and location studies. This report characterizes regional geologic aspects of the Gulf Coast salt dome basins. It includes general information from published sources on the regional geology; the tectonic, domal, and hydrologic stability; and a brief description the salt domes to be investigated. After a screening exercise, eight domes were chosen for further characterization: Keechi, Oakwood, and Palestine Domes in Texas; Vacherie and Rayburn's domes in North Louisiana; and Cypress Creek and Richton domes in Mississippi. A general description of each, maps of the location, property ownership, and surface geology, and a geologic cross section were presented for each dome

  11. Geological evaluation of Gulf Coast salt domes: overall assessment of the Gulf Interior Region

    Energy Technology Data Exchange (ETDEWEB)

    None

    1981-10-01

    The three major phases in site characterization and selection are regional studies, area studies, and location studies. This report characterizes regional geologic aspects of the Gulf Coast salt dome basins. It includes general information from published sources on the regional geology; the tectonic, domal, and hydrologic stability; and a brief description the salt domes to be investigated. After a screening exercise, eight domes were chosen for further characterization: Keechi, Oakwood, and Palestine Domes in Texas; Vacherie and Rayburn's domes in North Louisiana; and Cypress Creek and Richton domes in Mississippi. A general description of each, maps of the location, property ownership, and surface geology, and a geologic cross section were presented for each dome.

  12. Dependence between Ventilation and Climate as recorded with Biomarkers over the last 420,000 years in the Guianas Region (North-western Amazon Basin)

    Science.gov (United States)

    Rama, O.; Lopez-Otalvaro, G.; Martrat, B.; Flores, J.; Sierro, F. J.; Grimalt, J. O.

    2009-12-01

    There is growing evidence that the majority of the Amazon rainforest survived the climatic threshold of the last ice age. This information is crucial given that this region could be currently near its critical resiliency tipping point; thus, minor climate warming, widespread reductions in precipitation and lengthening of the dry season may be sufficient to gradually contribute to the forest dieback and biodiversity loss [Cowling et al., 2004; Lenton et al., 2008; Maslin, 2004]. To contribute to this knowledge, palaeoclimatic oscillations have been identified in this study by using fossil organic compounds synthesized by marine and terrestrial flora and later accumulated on sediment strata (MD03-2616, 7N, 53W, -1233 meters below sea-level) from the Guianas region, closely linked to the Amazon Basin. Different indicators have been considered to continuously reconstruct the climate over the past 420,000 years at centennial scale: average annual sea surface temperatures (SST, Uk’37), productivity of the coccolithophora flora (alken-2-ones), continental vegetation variability (long chain n-alkanes) and changes in oxygenation of the deep-sea floor (ratio between n-alkan-1-ols and n-alkanes). At present, the Guianas region is largely influenced by migration of the intertropical convergence zone (ITCZ), related temperature and wind patterns, together with changes in hydrological conditions, atmospheric and oceanic fronts. Annual SST is 27.7C; two rain seasons and two dry seasons occur. At the core location, surface waters present complex seasonal configuration, while oxygen-enriched and low-salinity Antarctic Intermediate waters (AAIW) flow northward from -700 to -1500 meters depth; the Upper North Atlantic Deep waters circulate southward at greater depths [World Meteo. Org.; Masson & Delecluse, 2001; Arz et al., 2001]. This study reveals that completely different hydrological conditions and much colder climate occurred in the past, e.g. a harsh drop in SST of up to 24C

  13. Regional hydrology of the Dolores River Basin, eastern Paradox Basin, Colorado and Utah

    International Nuclear Information System (INIS)

    Weir, J.E. Jr.; Maxfield, E.B.; Zimmerman, E.A.

    1983-01-01

    The Dolores River Basin, is in the eastern part of the Paradox Basin and includes the eastern slope of the La Sal Mountains, the western slopes of the Rico and La Plata Mountains, and the southwest flank of the Uncompahgre Plateau. The climate of this area is more humid than most of the surrounding Colorado Plateau region. Precipitation ranges from slightly 200 mm/yr to 1000 mm/yr; the estimated volume of water falling on the area is 4000 x 10 6 cm 3 /yr. Of this total, about 600 x 10 6 cm 3 /yr is runoff; 190 x 10 6 cm 3 /yr recharges the upper ground-water system; and an estimated 55 x 10 6 cm 3 returns to the atmosphere via evapotranspiration from stream valleys. The remainder evaporates. Principal hydrogeologic units are permeable sandstone and limestone and nearly impermeable salt (halitic) deposits. Structurally, the area is dominated by northwest-trending salt anticlines and contiguous faults paralleled by synclinal structures. The Uncompahgre Plateau lies along the north and northeast sides of the area. The instrusive masses that form the La Sal Mountains are laccoliths with bysmaliths and other complex intrusive forms comprising, in gross form, moderately faulted omal structures. Intrusive rocks underlie the La Plata and Rico Mountains along the southeastern edge of the area. These geologic structures significantly modify ground-water flow patterns in the upper ground-water system, but have no conspicuous effect on the flow regime in the lower ground-water system. The water in the upper ground-water system generally is fresh except where it is affected by evaporite dissolution from salt anticlines. The water of the lower ground-water system is slightly saline to briny. Water quality of the Dolores River is slightly saline to fresh, based on dissolved chemical constituents; some of the smaller tributaries of the river have saline water

  14. A double-layer structure model of uranium-bearing horizon in inland basins of medium to big size, North-west China, and its significance in metallogenic potential assessment

    International Nuclear Information System (INIS)

    Wang Zhilong.

    1985-01-01

    This paper presents a double-layer structure model of uranium-bearing horizon, i.e. uranium-bearing horizon = source rock (arkose red beds) + uranium trap (grey beds favourable to uranium precipitation) in inland basins of medium to big size, North-west China. The mechanism of its formation is: during diagenetic-epigenetic processes resulted in arkose red bed formation, feldspar was hydromicatized, feldspar and quartz were replaced by authigenic hematite, goethite and hydrogoethite and became red. In such oxidation process, part of uranium in detritus of silicates such as feldspar, quartz etc. was mobilized and released, but the released uranium can not be precipitated because of the oxidation environment, and it can be diffused during diagenetic dehydration and then precipitated in nearby grey beds with low Eh together with uranium-bearing 'stagnant water' fixed in pores, forming economic uranium concentration. It is evident that uranium deposit could not be formed owing to uranium dispersion in the case of absence of certain pervious grey beds rich in reductants, although arkose red beds could provide sufficient uranium source. Therefore, only the two conditions existed simultaneously, could the uranium-bearing horizons be formed. The significance of the model for uranium prospecting are as follows: 1. Uranium source range is much expanded concerning uranium prospecting in sandstone. Except the source in basement of the basin and its margins, we must also pay attention to the overlying red beds, especially the arkose red beds in inland basin of medium to big size. 2. For the potential assessment of basin and the selection of potential area, the model is an important prospecting criterion. 3. If we apply the main criterion uranium-bearing horizon-arkose red beds well, the buried ore bodies can be found provided that arkose red beds were regarded as a significant criterion of uranium-bearing horizon

  15. Possible salt mine and brined cavity sites for radioactive waste disposal in the northeastern southern peninsula of Michigan

    International Nuclear Information System (INIS)

    Landes, K.K.; Bourne, H.L.

    1976-01-01

    A reconnaissance report on the possibilities for disposal of radioactive waste covers Michigan only, and is more detailed than an earlier one involving the northeastern states. Revised ''ground rules'' for pinpointing both mine and dissolved salt cavern sites for waste disposal include environmental, geologic, and economic factors. The Michigan basin is a structural bowl of Paleozoic sediments resting on downwarped Precambrian rocks. The center of the bowl is in Clare and Gladwin Counties, a short distance north of the middle of the Southern Peninsula. The strata dip toward this central area, and some stratigraphic sequences, including especially the salt-containing Silurian section, increase considerably in thickness in that direction. Lesser amounts of salt are also present in the north central part of the Lower Peninsula. Michigan has been an oil and gas producing state since 1925 and widespread exploration has had two effects on the selection of waste disposal sites: (1) large areas are leased for oil and gas; and (2) the borehole concentrations, whether producing wells, dry holes, or industrial brine wells that penetrated the salt section, should be avoided. Two types of nuclear waste, low level and high level, can be stored in man-made openings in salt beds. The storage facilities are created by (1) the development of salt mines where the depths are less than 3000 ft, and (2) cavities produced by pumping water into a salt bed, and bringing brine back out. The high level waste disposal must be confined to mines of limited depth, but the low level wastes can be accommodated in brine cavities at any depth. Seven potential prospects have been investigated and are described in detail

  16. Overview of ONWI'S Salt site selection program

    International Nuclear Information System (INIS)

    Madia, W.J.

    1983-01-01

    In the past year, activities in the salt site selection program of the Office of Nuclear Waste Isolation (ONWI) have focused on narrowing the number and size of areas under consideration as candidate repository sites. The progressive focusing is illustrated. Bedded salt, in the Permian Basin of West Texas and the Paradox Basin of Utah, and salt domes in the Gulf Coast Salt Dome Region (including parts of East Texas, Louisiana, and Mississippi) have been the subjects of geologic, environmental, and socioeconomic characterization of progressively greater detail as the screening process has proceeded. Detailed, field-oriented research and testing have superceded broad-based studies relying heavily on literature and other existing data. Coinciding with the increased field activities has been the publication of results and recommendations resulting from earlier program efforts

  17. Influence of domestic livestock grazing on American Pika (Ochotona princeps) forage and haypiling behavior in the Great Basin. Western North American Naturalist.

    Science.gov (United States)

    Constance I. Millar

    2011-01-01

    In a pilot study, I observed a relationship between domestic livestock grazing and location of American pika (Ochotona princeps) haypiles in the eastern Sierra Nevada and several Great Basin mountain ranges. Where vegetation communities adjacent to talus bases (forefields) were grazed, mean distance from the talus borders to the closest fresh...

  18. National Account Energy Alliance Final Report for the Basin Electric Project at Northern Border Pipeline Company's Compressor Station #7, North Dakota

    Energy Technology Data Exchange (ETDEWEB)

    Sweetzer, Richard [Exergy Partners Corp.; Leslie, Neil [Gas Technology Institute

    2008-02-01

    A field research test and verification project was conducted at the recovered energy generation plant at Northern Border Pipeline Company Compressor Station #7 (CS#7) near St. Anthony. Recovered energy generation plant equipment was supplied and installed by ORMAT Technologies, Inc. Basin Electric is purchasing the electricity under a purchase power agreement with an ORMAT subsidiary, which owns and operates the plant.

  19. Sub-basin-scale sea level budgets from satellite altimetry, Argo floats and satellite gravimetry: a case study in the North Atlantic Ocean

    NARCIS (Netherlands)

    Kleinherenbrink, M.; Riva, R.E.M.; Sun, Y.

    2016-01-01

    . In this study, for the first time, an attempt is made to close the sea level budget on a sub-basin scale in terms of trend and amplitude of the annual cycle. We also compare the residual time series after removing the trend, the semiannual and the annual signals. To obtain errors for altimetry and

  20. An assessment to prioritise the critical erosion-prone sub-watersheds for soil conservation in the Gumti basin of Tripura, North-East India.

    Science.gov (United States)

    Ahmed, Istak; Das Pan, Nibedita; Debnath, Jatan; Bhowmik, Moujuri

    2017-10-31

    Erosion-induced land degradation problem has emerged as a serious environmental issue across the world. Assessment of this problem through modelling can generate valuable quantitative information for the planners to identify priority areas for proper soil conservation measures. The Gumti River basin of Tripura falls under humid tropical climate and experiences soil erosion for a prolonged period which has turned into a major environmental issue. Increased sediment supply through top soil erosion is one of the major reasons for reduced navigability of this river. Thus, the present study is an attempt to prioritize the sub-watersheds of the Gumti basin by estimating soil loss through the USLE (Universal Soil Loss Equation) model. For that purpose, five parameters of the USLE model were processed, computed and overlaid in a GIS environment. The result shows that potential mean annual soil loss of the Gumti basin ranges between 0.03 and 114.08 t ha -1  year -1 . The resultant values of soil loss were classified into five categories considering the minimum and maximum values. It has been identified that low, moderate, high, very high and severe soil loss categories occupy 68.71, 8.94, 5.86, 5.02 and 11.47% of the basin respectively. Moreover, it has been recognised that sub-watersheds like SW7, SW8, SW12, SW21, SW24 and SW29 fall under very high priority class for which mitigation measures are essential. Therefore, the present study recommends mitigation measures through terrace cultivation, as an alternative of shifting cultivation in the hilly areas and through construction of check dams at the appropriate sites of the erosion prone sub-watersheds. Moreover, proper afforestation programmes that have been implemented successfully in other parts of Tripura through the Japan International Cooperation Agency, Joint Forest Management, and National Afforestation Programme should be initiated in the highly erosion-prone areas of the Gumti River basin.

  1. A numerical investigation into the ability of the Poisson PDE to extract the mass-density from land-based gravity data: A case study of salt diapirs in the north coast of the Persian Gulf

    Science.gov (United States)

    AllahTavakoli, Yahya; Safari, Abdolreza

    2017-08-01

    This paper is counted as a numerical investigation into the capability of Poisson's Partial Differential Equation (PDE) at Earth's surface to extract the near-surface mass-density from land-based gravity data. For this purpose, first it focuses on approximating the gradient tensor of Earth's gravitational potential by means of land-based gravity data. Then, based on the concepts of both the gradient tensor and Poisson's PDE at the Earth's surface, certain formulae are proposed for the mass-density determination. Furthermore, this paper shows how the generalized Tikhonov regularization strategy can be used for enhancing the efficiency of the proposed approach. Finally, in a real case study, the formulae are applied to 6350 gravity stations located within a part of the north coast of the Persian Gulf. The case study numerically indicates that the proposed formulae, provided by Poisson's PDE, has the ability to convert land-based gravity data into the terrain mass-density which has been used for depicting areas of salt diapirs in the region of the case study.

  2. Bath Salts

    Science.gov (United States)

    ... deaths and been blamed for a handful of suicides and murders. Two of the chemicals in bath salts (mephedrone and MDPV) are Schedule I class drugs. That means they have a high potential for abuse and no accepted medical use . People who are ...

  3. Pumping test and fluid sampling report, Mansfield No. 1 well, Palo Duro Basin: Report of the Geologic Project Manager, Permian Basin

    Energy Technology Data Exchange (ETDEWEB)

    1983-07-01

    This report describes pumping test and fluid sampling activities performed at the Mansfield No. 1 well in Oldham County about 10 miles north of Vega, Texas. The well site was selected by TBEG and is located along the northern margin of the Palo Duro Basin in an area of active dissolution with the Permian salt sections. The objectives of the pumping test and fluid sampling program were to collect data to determine the hydrologic characteristics (formation pressure and permeability) of deep water bearing formations, and to obtain formation fluid samples for analyses (gas and fluid chemistry) in order to evaluate fluid migration and age relationships in the Permian Basin. 4 refs., 8 figs., 2 tabs.

  4. Pumping test and fluid sampling report, Mansfield No. 1 well, Palo Duro Basin: Report of the Geologic Project Manager, Permian Basin

    International Nuclear Information System (INIS)

    1983-07-01

    This report describes pumping test and fluid sampling activities performed at the Mansfield No. 1 well in Oldham County about 10 miles north of Vega, Texas. The well site was selected by TBEG and is located along the northern margin of the Palo Duro Basin in an area of active dissolution with the Permian salt sections. The objectives of the pumping test and fluid sampling program were to collect data to determine the hydrologic characteristics (formation pressure and permeability) of deep water bearing formations, and to obtain formation fluid samples for analyses (gas and fluid chemistry) in order to evaluate fluid migration and age relationships in the Permian Basin. 4 refs., 8 figs., 2 tabs

  5. Investigation of the 234U/238U disequilibrium in the natural waters of the Santa Fe River basin north-central Florida

    International Nuclear Information System (INIS)

    Briel, L.I.

    1976-01-01

    Typical surface water masses in the Santa Fe basin are characterized by a 238 U concentration of 0.224 +- .014 ppB and a 234 U/ 238 U activity ratio of 1.081 +- .038. The Floridan aquifer in this area is represented by at least two distinct regimes of ground water. The effluent from the Poe Springs group has a nominal uranium concentration of 0.938 +- .014 ppB and an activity ratio of 0.900 +- .012, while the effluent from the Ichetucknee Springs group has a nominal uranium concentration of 0.558 +- .018 ppB and an activity ratio of 0.707 +- .022. The effluent from ten additional springs in the Santa Fe system can be represented by hypothetical mixtures of these two ground water regimes and a hypothetical surface water component, which may reflect the extent of local recharge to the aquifer in different parts of the basin

  6. Cetaceans occurrence visual monitoring during seismic survey in the North of Campos Basin; Monitoramento visual de ocorrencia de cetaceos durante o levantamento de dados sismicos no norte da Bacia de Campos

    Energy Technology Data Exchange (ETDEWEB)

    Flor, Karina C.A.; Amaro, Thays P.C.; Carloni, Giuliano G. [Ecologus Engenharia Consultiva, Rio de Janeiro, RJ (Brazil); Uller, George A. [CGGVeritas, Rio de Janeiro, RJ (Brazil)

    2008-07-01

    The objective of this research is to present the results of the marine biota visual monitoring developed during the seismic survey in the north area of Campos Basin. The monitoring lasted five months, between 14 February and 14 July 2007, reaching, on average, eleven hours and fifty one minutes of sign effort per day. It was conducted by fourteen marine biota catch sign, three for each period of boarding, that took over during all period of the activity. Sixty two cetaceans were registered, eight belonging to suborder Odontoceti and four belonging to suborder Mysticeti. Tursiops truncatus was the predominant species in number of registers, followed by Megaptera novaeangliae. It's important to report that during all seismic activity period there wasn't any cetacean register presenting any behavior disturbance. (author)

  7. A sedimentological analysis of sediments corresponding to the San Gregorio Formation )Lower Permian), located in the eastern border of the North Uruguayan Basin, Sierra Guazunambi

    International Nuclear Information System (INIS)

    Goso Aguilar, C.; Gama, E.

    1998-01-01

    A sedimentological analysis of sediments corresponding to the San Gregorio Formation (Lower Permian), located in the eastern border of the Norte Uruguayan Basin, Sierra Guazunambi, Cerro Largo Departament was made. Facies analysis of about 100 otucrops fand more than 1.300 meters, in an area of 45 square kilometers showed diamictites rhytmites and massive sandstones, formed by gravitational sedimentary flows. Also present are prodelta mudrocks and deltaic front sandstones.(author)

  8. Integrated Groundwater Resources Management Using the DPSIR Approach in a GIS Environment Context: A Case Study from the Gallikos River Basin, North Greece

    Directory of Open Access Journals (Sweden)

    Christos Mattas

    2014-04-01

    Full Text Available The Gallikos River basin is located in the northern part of Greece, and the coastal section is part of a deltaic system. The basin has been influenced by anthropogenic activities during the last decades, leading to continuous water resource degradation. The holistic approach of the Driver-Pressure-State-Impact-Response (DPSIR framework was applied in order to investigate the main causes and origins of pressures and to optimize the measures for sustainable management of water resources. The major driving forces that affect the Gallikos River basin are urbanization, intensive agriculture, industry and the regional development strategy. The main pressures on water resources are the overexploitation of aquifers, water quality degradation, and decrease of river discharge. Recommended responses were based on the Water Framework Directive (WFD 2000/60/EC, and sum up to rationalization of water resources, land use management and appropriate utilization of waste, especially so effluent. The application of the DPSIR analysis in this paper links the socioeconomic drivers to the water resource pressures, the responses based on the WFD and the national legislation and is as a useful tool for land-use planning and decision making in the area of water protection.

  9. Late holocene climate derived from vegetation history and plant cellulose stable isotope records from the Great Basin of western North America

    International Nuclear Information System (INIS)

    Wigand, P.E.; Hemphill, M.L.; Patra, S.M.

    1994-01-01

    Integration of pollen records, and fossil woodrat midden data recovered from multiple strata of fossil woodrat (Neotoma spp.) dens (middens) in both northern and southern Nevada reveal a detailed paleoclimatic proxy record for the Great Basin during the last 45,000 years in growing detail. Clear, late Holocene climate-linked elevational depressions of plant species' distributions have occurred throughout the Great Basin of up to 200 m below today's and by as much as 1000 m below what they were during the middle Holocene. Horizontal plant range extentions during the Holocene reflecting the final northern most adjustments to Holocene climates range up to several hundred kilometers in the Great Basin. Well documented lags evidenced in the late Holocene response of vegetation communities to increased precipitation indicate reduced effectiveness in the ability of plant communities to assimilate excess precipitation. This resulted in significant runoff that was available for recharge. These responses, although indicating both rapid and dramatic fluctuations of climate for the Holocene, fall far short of the scale of such changes during the late Pleistocene. Extension of these results to Pleistocene woodrat den and pollen data evidence spans lasting several hundred to a thousand or more years during which significantly greater amounts of precipitation would have been available for runnoff or recharge

  10. Descriptions of wells penetrating the Wanapum Basalt Formation in the Pasco Basin area, Washington. Volume 1. Well records and driller's logs for wells in Townships 7 north through 12 north

    International Nuclear Information System (INIS)

    Summers, W.K.; Weber, P.A.

    1978-04-01

    About 7000 wells have been drilled in the Pasco Basin, of which about 4000 are on the Hanford Reservation. Information on these wells ranges from depth of the well to a complete driller's log and casing record. This report presents the data available on 268 wells that were drilled into basalts deeper than the Mabton Interbed, or its equivalent. Thus, these are the wells which are open in basalt flows that are at least 15 million years old. 3 figures, 2 tables

  11. Silicic magmatism associated with Late Cretaceousrifting in the Arctic Basin – petrogenesis of the Kap Kane sequence, the Kap Washington Group volcanics, North Greenland

    DEFF Research Database (Denmark)

    Þórarinsson, Sigurjón Böðvar; Holm, Paul Martin; Duprat, Helene Inga

    2011-01-01

    The bimodal, Late Cretaceous–Palaeocene (71–61 Ma) Kap Washington Group volcanic sequence on the north coast of Greenland was erupted in a continental rift setting during the opening of the Arctic Ocean. On Kap Kane ca. 70 Ma silicic lavas and ignimbrites dominate over mildly alkaline basalts...

  12. Differential Extension, Displacement Transfer, and the South to North Decrease in Displacement on the Furnace Creek - Fish Lake Valley Fault System, Western Great Basin.

    Science.gov (United States)

    Katopody, D. T.; Oldow, J. S.

    2015-12-01

    The northwest-striking Furnace Creek - Fish Lake Valley (FC-FLV) fault system stretches for >250 km from southeastern California to western Nevada, forms the eastern boundary of the northern segment of the Eastern California Shear Zone, and has contemporary displacement. The FC-FLV fault system initiated in the mid-Miocene (10-12 Ma) and shows a south to north decrease in displacement from a maximum of 75-100 km to less than 10 km. Coeval elongation by extension on north-northeast striking faults within the adjoining blocks to the FC-FLV fault both supply and remove cumulative displacement measured at the northern end of the transcurrent fault system. Elongation and displacement transfer in the eastern block, constituting the southern Walker Lane of western Nevada, exceeds that of the western block and results in the net south to north decrease in displacement on the FC-FLV fault system. Elongation in the eastern block is accommodated by late Miocene to Pliocene detachment faulting followed by extension on superposed, east-northeast striking, high-angle structures. Displacement transfer from the FC-FLV fault system to the northwest-trending faults of the central Walker Lane to the north is accomplished by motion on a series of west-northwest striking transcurrent faults, named the Oriental Wash, Sylvania Mountain, and Palmetto Mountain fault systems. The west-northwest striking transcurrent faults cross-cut earlier detachment structures and are kinematically linked to east-northeast high-angle extensional faults. The transcurrent faults are mapped along strike for 60 km to the east, where they merge with north-northwest faults forming the eastern boundary of the southern Walker Lane. The west-northwest trending transcurrent faults have 30-35 km of cumulative left-lateral displacement and are a major contributor to the decrease in right-lateral displacement on the FC-FLV fault system.

  13. Quantifying drag on wellbore casings in moving salt sheets

    Science.gov (United States)

    Weijermars, R.; Jackson, M. P. A.; Dooley, T. P.

    2014-08-01

    Frontier hydrocarbon development projects in the deepwater slopes of the Gulf of Mexico Basin, Santos Basin and Lower Congo Basin all require wells to cross ductile layers of autochthonous or allochthonous salt moving at peak rates of 100 mm yr-1. The Couette-Poiseuille number is introduced here to help pinpoint the depth of shear stress reversal in such salt layers. For any well-planned through salt, the probable range of creep forces of moving salt needs to be taken into account when designing safety margins and load-factor tolerance of the well casing. Drag forces increase with wellbore diameter, but more significantly with effective viscosity and speed of the creeping salt layer. The potential drag forces on cased wellbores in moving salt sheets are estimated analytically using a range of salt viscosities (1015-1019 Pa s) and creep rates (0-10 mm yr-1). Drag on perfectly rigid casing of infinite strength may reach up to 13 Giga Newton per meter wellbore length in salt having a viscosity of 1019 Pa s. Well designers may delay stress accumulations due to salt drag when flexible casing accommodates some of the early displacement and strain. However, all creeping salt could displace, fracture and disconnect well casing, eventually. The shear strength of typical heavy duty well casing (about 1000 MPa) can be reached due to drag by moving salt. Internal flow of salt will then fracture the casing near salt entry and exit points, but the structural damage is likely to remain unnoticed early in the well-life when the horizontal shift of the wellbore is still negligibly small (at less than 1 cm yr-1). Disruption of casing and production flow lines within the anticipated service lifetime of a well remains a significant risk factor within distinct zones of low-viscosity salt which may reach ultrafast creep rates of 100 mm yr-1.

  14. Temperature profiles from Salt Valley, Utah

    Science.gov (United States)

    Sass, J. H.; Lachenbruch, A. H.; Smith, E. P.

    Temperature profiles were obtained in the nine drilled wells as part of a thermal study of the Salt Valley anticline, Paradox Basin, Utha. Thermal conductivities were also measured on 10 samples judged to be representative of the rocks encountered in the deepest hole. The temperature profiles and thermal conductivities are presented, together with preliminary interpretive remarks and suggestions for additional work.

  15. Hydrodynamic characteristics in the Levantine Basin in autumn 2016 - The CINEL experiment (CIrculation and water mass properties in the North-Eastern Levantine)

    Science.gov (United States)

    Mauri, Elena; Poulain, Pierre-Marie; Gerin, Riccardo; Hayes, Dan; Gildor, Hezi; Kokkini, Zoi

    2017-04-01

    During the CINEL experiment, currents and thermohaline properties of the water masses in the eastern areas of the Levantine Basin (Mediterranean Sea) were monitored with mobile autonomous systems in October-December 2016. Two gliders were operated together with satellite-tracked drifters and Argo floats to study the complex circulation features governing the dynamics near the coast and in the open sea. Strong mesoscale and sub-basin scale eddies were detected and were crossed several times by the gliders during the experiment. The physical and biogeochemical parameters were sampled, showing peculiar characteristics in some of the mesoscale features and a probable interaction with a persistent coastal current off Israel. The in-situ observations were interpreted in concert with the distribution of tracers (sea surface temperature, chlorophyll) and altimetry data obtained from satellites. Numerical simulations with a high resolution model in which deep profiles of temperature and salinity from gliders were assimilated, were used in near-real time to fine tune the observational array and to help with the interpretation of the local dynamics.

  16. Environmental status of the Jilantai Basin, North China, on the northwestern margin of the modern Asian summer monsoon domain during Marine Isotope Stage 3

    Science.gov (United States)

    Fan, Yuxin; Wang, Yongda; Mou, Xuesong; Zhao, Hui; Zhang, Fu; Zhang, Fan; Liu, Wenhao; Hui, Zhengchuang; Huang, Xiaozhong; Ma, Jun

    2017-10-01

    Two drill cores were obtained from the Jilantai sub-depression (JLT(d)) and the neighboring Dengkou sub-uplift (DK(u)), within a huge, former lake basin in northern China. From an analysis of the lithology and pollen assemblages, combined with radiocarbon dating of extracted pollen and OSL dating of extracted quartz, we concluded the following: JLT(d) was continuously occupied by lakes since 85 ka; however, DK(u), the neighboring sub-uplift, was covered by lakes during 80-74 ka, 50-44 ka, 32.5-27.5 ka and DK(u) during Marine Isotope Stage (MIS) 3. Evidence from shorelines, previously published cores, and the sedimentary and chronological evidence presented in this paper indicate the occurrence of a sub-humid environment, characterized by the occurrence of lakes separated by dunes, in the Jilantai Basin during MIS 3. However, further work is needed to understand the environmental significance of the co-existence of lakes and dunes during MIS 3, although a sub-humid climate background during MIS 3 is supported by well-dated geological archives along the western front of the present-day Asian Summer Monsoon domain and its eastern extensional area.

  17. Earthquake in La Rochelle (North of the Aquitaine Basin) on the 28 April 2016 (6h46 UT), Magnitude = 5.2 (Ml - CEA)

    International Nuclear Information System (INIS)

    2016-01-01

    This publication firstly briefly recalls data regarding a moderate earthquake which occurred near La Rochelle on the 28 of April 2016, evokes the few damages, and notices that such an event is rather frequent in this region. It also recalls various recorded and historical earthquakes with a magnitude higher than 7 and which occurred in northern part of the Aquitaine Basin. It indicates the geological origin of this seismic activity. Then, it proposes an overview of the impact of the earthquake of April 2016 on nuclear installations. It outlines that, due to the distance of these installations to the epicentre and to the relatively moderate magnitude, no effect had to be expected, and that the seismic hazard taken into account for the nuclear installations is in fact much higher than that of the event

  18. Petroleum prospectivity of the Canada Basin, Arctic Ocean

    Science.gov (United States)

    Grantz, A.; Hart, P.E.

    2011-01-01

    Reconnaissance seismic reflection data indicate that Canada Basin is a remnant of the Amerasia Basin of the Arctic Ocean that lies south of the Alpha-Mendeleev Large Igneous Province, which was constructed on the northern part of the Amerasia Basin between about 127 and 89-75 Ma. Canada Basin is filled with Early Jurassic to Holocene detritus from the Mackenzie River system, which drains the northern third of interior North America, with sizable contributions from Alaska and Northwest Canada. Except for the absence of a salt- and shale-bearing mobile substrate Canada Basin is analogous to the Mississippi Delta and the western Gulf of Mexico. Canada Basin contains about 7 to >14 km of sediment beneath the Mackenzie Prodelta on the southeast, 6 to 7 km of sediment beneath the abyssal plain on the west, and roughly 5 or 6 million cubic km of sediment. About three fourths of the basin fill generates low amplitude seismic reflections, interpreted to represent hemiplegic deposits, and a fourth of the fill generates interbedded lenses to extensive layers of moderate to high amplitude reflections interpreted to represent unconfined turbidite and amalgamated channel deposits. Extrapolation from Arctic Alaska and Northwest Canada suggests that three fourths of the section in Canada Basin may contain intervals of hydrocarbon source rocks and the apparent age of the basin suggests that it contains three of the six stratigraphic intervals that together provided >90?? of the World's discovered reserves of oil and gas.. Worldwide heat flow averages suggest that about two thirds of Canada Basin lies in the oil or gas window. At least five types of structural or stratigraphic features of local to regional occurrence offer exploration targets in Canada Basin. These consist of 1) a belt of late Eocene to Miocene shale-cored detachment folds containing with at least two anticlines that are capped by beds with bright spots, 2) numerous moderate to high amplitude reflection packets

  19. Basin scale variability of active diazotrophs and nitrogen fixation in the North Pacific, from the tropics to the subarctic Bering Sea

    Science.gov (United States)

    Shiozaki, Takuhei; Bombar, Deniz; Riemann, Lasse; Hashihama, Fuminori; Takeda, Shigenobu; Yamaguchi, Tamaha; Ehama, Makoto; Hamasaki, Koji; Furuya, Ken

    2017-06-01

    Nitrogen-fixing microorganisms (diazotrophs) provide biologically available nitrogen to plankton communities and thereby greatly influence the productivity in many marine regions. Various cyanobacterial groups have traditionally been considered the major oceanic diazotrophs, but later noncyanobacterial and presumably heterotrophic diazotrophs were also found to be widespread and potentially important in nitrogen fixation. However, the distribution and activity of different diazotroph groups is still poorly constrained for most oceanic ecosystems. Here we examined diazotroph community structure and activity along a 7500 km south-north transect between the central equatorial Pacific and the Bering Sea. Nitrogen fixation contributed up to 84% of new production in the upper waters of the subtropical gyre, where the diazotroph community included the gammaproteobacterium γ-24774A11 and highly active cyanobacterial phylotypes (>50% of total nifH transcript abundance). Nitrogen fixation was sometimes detectable down to 150 m depth and extended horizontally to the edge of the gyre at around 35°N. Nitrogen fixation was even detected far north on the Bering Sea shelf. In the Alaskan Coastal Waters on the Bering Sea shelf, low nitrate together with high dissolved iron concentrations seemed to foster diazotroph growth, including a prominent role of UCYN-A2, which was abundant near the surface (1.2×105 nifH gene copies L-1). Our study provides evidence for nitrogen fixation in the Bering Sea and suggests a clear contrast in the composition of diazotrophs between the tropical/subtropical gyre and the separate waters in the cold northern regions of the North Pacific.

  20. Specific investigations related to salt rock behaviour

    International Nuclear Information System (INIS)

    Vons, L.H.

    1985-01-01

    In this paper results are given of work in various countries in rather unrelated areas of research. Nevertheless, since the studies have been undertaken to better understand salt behaviour, both from mechanical and chemical points of view, some connection between the studies can be found. In the French contribution the geological conditions have been investigated that might promote or prevent the formation of salt domes from layers in view of possible use of the latter type of formation. This was done theoretically by the finite element method, and a start was made with centrifuge tests. The density of a number of samples from salt and overburden from the Bresse basin was measured and it was shown that a favourable condition exists in this region for waste disposal. In the German contribution various subjects are touched upon, one being the effect of water on the mobility in the early stages of salt dome formation. Evidence was found for an anisotropy in salt. One Dutch contribution describes results of studies on the effect of small amounts of water on the rheology of salt. The results imply that flow laws obtained for salt at rapid strain rates and/or low confining pressure cannot be reliably extrapolated to predict the long term behaviour of wet or even very dry material under natural conditions. Preliminary results on the effect of water upon ion-mobility indicate a certain pseudo-absorptive capacity of salt e.g. for Sr

  1. Western Canada Sedimentary Basin competitiveness

    International Nuclear Information System (INIS)

    Millar, R.H.G.

    1996-01-01

    Recent dramatic expansion of the natural gas industry in the Western Canada Sedimentary Basin provided ample proof of the potential of this area for further development of natural gas supply. However, the inherent competitive advantages provided by the Western Canada Sedimentary Basin were said to have been offset by low netback prices resulting in poor producer economics when competitiveness is measured by availability of opportunities to find and develop gas supply at costs low enough to ensure attractive returns. Technology was identified as one of the key elements in improving basin competitiveness, but the greatest potential lies in reduced transportation costs and increased access to North American market centres. 8 figs

  2. Methodology of the {sup 137} Cs for the soil erosion and deposition determination in a micro basin from the north of Parana State; Metodologia do {sup 137} Cs para determinacao da erosao e deposicao de solo em uma microbacia do norte do Parana

    Energy Technology Data Exchange (ETDEWEB)

    Andrello, Avacir Casanova

    1997-12-31

    The measurement of {sup 137} Cs redistribution in the field allows the determination of soil erosion/accumulation. The {sup 137} Cs activity of soil samples, taken from a small basin at the North of Parana, were measured employing a HPGe gamma ray detector and a standard spectrometric nuclear electronic chain. Standard oil samples with known concentrations of {sup 137} Cs were prepared for the detection efficiency determination. Soil loss or gain was measured at the top, midslope and low slope regions, for six different transects at the investigated small basin. (author) 47 refs., 31 figs., 11 tabs.

  3. Methodology of the {sup 137} Cs for the soil erosion and deposition determination in a micro basin from the north of Parana State; Metodologia do {sup 137} Cs para determinacao da erosao e deposicao de solo em uma microbacia do norte do Parana

    Energy Technology Data Exchange (ETDEWEB)

    Andrello, Avacir Casanova

    1998-12-31

    The measurement of {sup 137} Cs redistribution in the field allows the determination of soil erosion/accumulation. The {sup 137} Cs activity of soil samples, taken from a small basin at the North of Parana, were measured employing a HPGe gamma ray detector and a standard spectrometric nuclear electronic chain. Standard oil samples with known concentrations of {sup 137} Cs were prepared for the detection efficiency determination. Soil loss or gain was measured at the top, midslope and low slope regions, for six different transects at the investigated small basin. (author) 47 refs., 31 figs., 11 tabs.

  4. Early to middle Jurassic salt in Baltimore Canyon trough

    Science.gov (United States)

    McKinney, B. Ann; Lee, Myung W.; Agena, Warren F.; Poag, C. Wylie

    2005-01-01

    A pervasive, moderately deep (5-6 s two-way traveltime), high-amplitude reflection is traced on multichannel seismic sections over an approximately 7500 km² area of Baltimore Canyon Trough. The layer associated with the reflection is about 25 km wide, about 60 m thick in the center, and thins monotonically laterally, though asymmetrically, at the edges. Geophysical characteristics are compatible with an interpretation of this negative-polarity reflector as a salt lens deposited on the top of a synrift evaporite sequence. However, alternative interpretations of the layer as gas-saturated sediments, an overpressured shale, or a weathered igneous intrusion are also worthy of consideration.Geophysical analyses were made on three wavelet- and true-amplitude processed multichannel seismic dip lines. The lens-shaped layer demarked by the reflection has a velocity of 4.4 km/s; the lens lies within strata having velocities of 5.3 to 5.7 km/s. A trough marking the onset of the lens has an amplitude that is 10 to 20 db greater than reflections from the encasing layers and an apparent reflection coefficient of -0.24. Using amplitude versus offset analysis methods, we determined that observed reflection coefficients, though variable, decrease consistently with respect to increasing offset. Linear inversion yields a low density, about 2.2 g/cc. Integration of one of the true-amplitude-processed lines and one-dimensional modeling of the layer provide data on the impedance contrast and interference patterns that further reinforce the salt lens interpretation.The thin, horizontal salt lens was probably deposited or precipitated during the Jurassic in a shallow, narrow (peripheral) rift basin, as rifting progressed down the North Atlantic margin. Unlike thicker deposits in other areas that deformed and flowed, often into diapir structures, this thin lens has remained relatively undisturbed since deposition.

  5. Cooking without salt

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/patientinstructions/000760.htm Cooking without salt To use the sharing features on ... other dishes to add zest. Try Salt-free Cooking Explore cooking with salt substitutes. Add a splash ...

  6. Long-range transport and mixing of aerosol sources during the 2013 North American biomass burning episode: analysis of multiple lidar observations in the western Mediterranean basin

    Directory of Open Access Journals (Sweden)

    G. Ancellet

    2016-04-01

    Full Text Available Long-range transport of biomass burning (BB aerosols between North America and the Mediterranean region took place in June 2013. A large number of ground-based and airborne lidar measurements were deployed in the western Mediterranean during the Chemistry-AeRosol Mediterranean EXperiment (ChArMEx intensive observation period. A detailed analysis of the potential North American aerosol sources is conducted including the assessment of their transport to Europe using forward simulations of the FLEXPART Lagrangian particle dispersion model initialized using satellite observations by MODIS and CALIOP. The three-dimensional structure of the aerosol distribution in the ChArMEx domain observed by the ground-based lidars (Minorca, Barcelona and Lampedusa, a Falcon-20 aircraft flight and three CALIOP tracks, agrees very well with the model simulation of the three major sources considered in this work: Canadian and Colorado fires, a dust storm from western US and the contribution of Saharan dust streamers advected from the North Atlantic trade wind region into the westerlies region. Four aerosol types were identified using the optical properties of the observed aerosol layers (aerosol depolarization ratio, lidar ratio and the transport model analysis of the contribution of each aerosol source: (i pure BB layer, (ii weakly dusty BB, (iii significant mixture of BB and dust transported from the trade wind region, and (iv the outflow of Saharan dust by the subtropical jet and not mixed with BB aerosol. The contribution of the Canadian fires is the major aerosol source during this episode while mixing of dust and BB is only significant at an altitude above 5 km. The mixing corresponds to a 20–30 % dust contribution in the total aerosol backscatter. The comparison with the MODIS aerosol optical depth horizontal distribution during this episode over the western Mediterranean Sea shows that the Canadian fire contributions were as large as the direct

  7. Application of ERTS and EREP images to geologic investigations of the basin and range: Colorado plateau boundary in northwestern and north-central Arizona

    Science.gov (United States)

    Goetz, A. F. H. (Principal Investigator); Billingsley, F. C.; Elston, D. P.; Lucchita, I.; Shoemaker, E. M.

    1974-01-01

    The author has identified the following significant results. In the course of the ERTS investigation in the Cataract Creek Basin of the Coconino Plateau it was recognized that shallow perched ground water associated with the Kaibab Limestone could be discovered by means of drilling guided by geologic mapping aided by the use of ERTS imagery. At the Globe Ranch, the perched water table is only 5 meters beneath the surface at the site of the original, hand dug well. Recharge occurs from local runoff and from direct precipitation on the outcrop belt of the sandstone. This well provides water for the ranch at the rate of about 1,000 gallons a week. In order to explore the possibility of further developing this aquifer, unit 5 was mapped over an area of about 50 square miles in the vicinity of the hand-dug well, with negative results. A new location was then picked for drilling based on the occurrence of unit 5 in a favorable structural setting. This location was along a normal fault, and it was anticipated that water might be structurally trapped within the down-dropped block of the fault. Four shallow testholes were drilled and all encountered water. These four water-bearing holes are currently being monitored and will be tested to determine potential production of water from the local sandstone aquifer.

  8. Agricultural crop mapping and classification by Landsat images to evaluate water use in the Lake Urmia basin, North-west Iran

    Science.gov (United States)

    Fazel, Nasim; Norouzi, Hamid; Madani, Kaveh; Kløve, Bjørn

    2016-04-01

    Lake Urmia, once one of the largest hypersaline lakes in the world has lost more than 90% of its surface body mainly due to the intensive expansion of agriculture, using more than 90% of all water in the region. Access to accurate and up-to-date information on the extent and distribution of individual crop types, associated with land use changes and practices, has significant value in intensively agricultural regions. Explicit information of croplands can be useful for sustainable water resources, land and agriculture planning and management. Remote sensing, has been proven to be a more cost-effective alternative to the traditional statistically-based ground surveys for crop coverage areas that are costly and provide insufficient information. Satellite images along with ground surveys can provide the necessary information of spatial coverage and spectral responses of croplands for sustainable agricultural management. This study strives to differentiate different crop types and agricultural practices to achieve a higher detailed crop map of the Lake Urmia basin. The mapping approach consists of a two-stage supervised classification of multi-temporal multi-spectral high resolution images obtained from Landsat imagery archive. Irrigated and non-irrigated croplands and orchards were separated from other major land covers (urban, ranges, bare-lands, and water) in the region by means of maximum Likelihood supervised classification method. The field data collected during 2015 and land use maps generated in 2007 and Google Earth comparisons were used to form a training data set to perform the supervised classification. In the second stage, non-agricultural lands were masked and the supervised classification was applied on the Landsat images stack to identify seven major croplands in the region (wheat and barley, beetroot, corn, sunflower, alfalfa, vineyards, and apple orchards). The obtained results can be of significant value to the Urmia Lake restoration efforts which

  9. Application of the North American Multi-Model Ensemble to seasonal water supply forecasting in the Great Lakes basin through the use of the Great Lakes Seasonal Climate Forecast Tool

    Science.gov (United States)

    Gronewold, A.; Apps, D.; Fry, L. M.; Bolinger, R.

    2017-12-01

    The U.S. Army Corps of Engineers (USACE) contribution to the internationally coordinated 6-month forecast of Great Lakes water levels relies on several water supply models, including a regression model relating a coming month's water supply to past water supplies, previous months' precipitation and temperature, and forecasted precipitation and temperature. Probabilistic forecasts of precipitation and temperature depicted in the Climate Prediction Center's seasonal outlook maps are considered to be standard for use in operational forecasting for seasonal time horizons, and have provided the basis for computing a coming month's precipitation and temperature for use in the USACE water supply regression models. The CPC outlook maps are a useful forecast product offering insight into interpretation of climate models through the prognostic discussion and graphical forecasts. However, recent evolution of USACE forecast procedures to accommodate automated data transfer and manipulation offers a new opportunity for direct incorporation of ensemble climate forecast data into probabilistic outlooks of water supply using existing models that have previously been implemented in a deterministic fashion. We will present results from a study investigating the potential for applying data from the North American Multi-Model Ensemble to operational water supply forecasts. The use of NMME forecasts is facilitated by a new, publicly available, Great Lakes Seasonal Climate Forecast Tool that provides operational forecasts of monthly average temperatures and monthly total precipitation summarized for each lake basin.

  10. The organic petrology and thermal maturity of Lower Carboniferous and Upper Devonian source rocks in the Liard Basin, at Jackfish Gap-Yohin Ridge and North Beaver River, northern Canada: Implications for hydrocarbon exploration

    Energy Technology Data Exchange (ETDEWEB)

    Potter, J. (Univ. of Newcastle-upon-Tyne (United Kingdom)); Richards, B.C.; Goodarzi, G. (Geological Survey, Calgary, Alberta (Canada))

    Basinal shales of the Besa River Fm. have TOC values ranging from 1 to 4% and contain abundant type II, dominantly amorphous, kerogen of marine origin. Shales in the Yohin, Clausen, Prophet, and Golata Formations are of mixed maring and terrestrial origins and yield TOC values of 1 to 3%. Kerogen in the Golata and Yohin Formations are dominated by terrestrial components, while the Clausen and Flett kerogen comprises marine liptinites and bitumens. Kerogen from the deltaic Mattson shales at Jackfish Gap are types II and III, having mixed marine and terrestrial origins consistent with shallow, nearshore, subtidal environments. The coals are sapropelic and probably lacustrine in origin. Algal laminites associated with coals in the Upper Mattson have >10% TOC values, while non-laminite shales contain between 2 and 5% TOC. Comparable measured and calculated vitrinite reflectance data indicate that kerogen in the Lower Carboniferous at Jackfish Gap is mature. Kerogen in correlative formations in the subsurface at North Beaver River is more marine. Vitrinites are rate and oxidized, but four populations of bitumens are distinguished on the basis of relative reflectivity and morphological or petrophysical associations. Types A and B bitumens are primary and by-products of hydrocarbon generation from type II (algal and amorphous) kerogens. Correlations between depth and reflectance of bitumens A and B are very good. Vitrinite reflectance data calculated from bitumen reflectance measurements for the Besa River, Prophet, and Golata indicate that they are potential sources of catagenic gas. The Mattson kerogen is mature, oil and gas-prone.

  11. Site characterization plan: Gulf Coast salt domes

    International Nuclear Information System (INIS)

    1983-12-01

    The National Waste Terminal Storage (NWTS) program of the US Department of Energy (DOE) is responsible for developing technology and providing facilities for safe, environmentally acceptable, permanent disposal of high-level nuclear waste. The Office of Nuclear Waste Isolation has been intensively investigating Gulf Coast Salt Dome Basin salt domes and bedded salt in Texas and Utah since 1978. In the Gulf Coast, the application of screening criteria in the region phase led to selection of eight domes for further study in the location phase. Further screening in the area phase identified four domes for more intensive study in the location phase: Oakwood Dome, Texas; Vacherie Dome, Louisiana; and Richton Dome and Cypress Creek Dome, Mississippi. For each dome, this Site Characterization Plan identifies specific hydrologic, geologic, tectonic, geochemical, and environmental key issues that are related to the DOE/NWTS screening criteria or affect the feasibility of constructing an exploratory shaft. The Site Characterization Plan outlines studies need to: (1) resolve issues sufficiently to allow one or more salt domes to be selected and compared to bedded salt sites in order to determine a prime salt site for an exploratory shaft; (2) conduct issue-related studies to provide a higher level of confidence that the preferred salt dome site is viable for construction of an exploratory shaft; and (3) provide a vehicle for state input to issues. Extensive references, 7 figures, 20 tables

  12. Petroleum systems and hydrocarbon accumulation models in the Santos Basin, SP, Brazil; Sistemas petroliferos e modelos de acumulacao de hidrocarbonetos na Bacia de Santos

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Hung Kiang; Assine, Mario Luis; Correa, Fernando Santos; Tinen, Julio Setsuo [Universidade Estadual Paulista (UNESP), Rio Claro, SP (Brazil). Lab. de Estudos de Bacias]. E-mails: chang@rc.unesp.br; assine@rc.unesp.br; fscorrea@rc.unesp.br; jstinen@rc.unesp.br; Vidal, Alexandre Campane; Koike, Luzia [Universidade Estadual de Campinas (UNICAMP), Campinas, SP (Brazil). Centro de Estudos de Petroleo]. E-mails: vidal@ige.unicamp.br; luzia@iqm.unicamp.br

    2008-07-01

    The Santos Basin was formed by rifting process during Mesozoic Afro-American separation. Sediment accumulation initiated with fluvial-lacustrine deposits, passing to evaporitic stage until reaching marginal basin stages. The analysis of hydrocarbon potential of Santos Basin identified two petroleum systems: Guaratiba-Guaruja and Itajai-Acu-Ilhabela. The Guaratiba Formation is less known in the Santos Basin because of small number of wells that have penetrated the rift section. By comparison with Campos Basin, hydrocarbons are of saline lacustrine origin deposited in Aptian age. Analogous to Campos Basin the major source rock is of saline-lacustrine origin, which has been confirmed from geochemical analyses of oil samples recovered from the various fields. These analyses also identified marine source rock contribution, indicating the Itajai-Acu source rock went through oil-window, particularly in structural lows generated by halokynesis. Models of hydrocarbon accumulation consider Guaratiba Formacao as the major source rock for shallow carbonate reservoirs of Guaruja Formacao and for late Albian to Miocene turbidites, as well as siliciclastic and carbonate reservoirs of the rift phase. Migration occurs along salt window and through carrier-beds. The seal rock is composed of shales and limestones intercalated with reservoir facies of the post-rift section and by thick evaporites overlying rift section, especially in the deeper water. In the shallow portion, shale inter-tongued with reservoir rocks is the main seal rock. The hydrocarbon generation and expulsion in the central-north portion of the basin is caused by overburden of a thick Senonian section. Traps can be structural (rollovers and turtle), stratigraphic (pinch-outs) and mixed origins (pinch-outs of turbidites against salt domes). (author)

  13. Gravity signals from the lithosphere in the Central European Basin System

    Science.gov (United States)

    Yegorova, T.; Bayer, U.; Thybo, H.; Maystrenko, Y.; Scheck-Wenderoth, M.; Lyngsie, S. B.

    2007-01-01

    We study the gravity signals from different depth levels in the lithosphere of the Central European Basin System (CEBS). The major elements of the CEBS are the Northern and Southern Permian Basins which include the Norwegian-Danish Basin (NDB), the North-German Basin (NGB) and the Polish Trough (PT). An up to 10 km thick sedimentary cover of Mesozoic-Cenozoic sediments, hides the gravity signal from below the basin and masks the heterogeneous structure of the consolidated crust, which is assumed to be composed of domains that were accreted during the Paleozoic amalgamation of Europe. We performed a three-dimensional (3D) gravity backstripping to investigate the structure of the lithosphere below the CEBS. Residual anomalies are derived by removing the effect of sediments down to the base of Permian from the observed field. In order to correct for the influence of large salt structures, lateral density variations are incorporated. These sediment-free anomalies are interpreted to reflect Moho relief and density heterogeneities in the crystalline crust and uppermost mantle. The gravity effect of the Moho relief compensates to a large extent the effect of the sediments in the CEBS and in the North Sea. Removal of the effects of large-scale crustal inhomogeneities shows a clear expression of the Variscan arc system at the southern part of the study area and the old crust of Baltica further north-east. The remaining residual anomalies (after stripping off the effects of sediments, Moho topography and large-scale crustal heterogeneities) reveal long wavelength anomalies, which are caused mainly by density variations in the upper mantle, though gravity influence from the lower crust cannot be ruled out. They indicate that the three main subbasins of the CEBS originated on different lithospheric domains. The PT originated on a thick, strong and dense lithosphere of the Baltica type. The NDB was formed on a weakened Baltica low-density lithosphere formed during the Sveco

  14. A systematic technique for the sequential restoration of salt structures

    Science.gov (United States)

    Rowan, Mark G.

    1993-12-01

    area of offshore Louisiana. The section is characterized by a variety of salt structures, including salt rollers, a diapiric massif, a remnant salt sheet, and a salt weld, which are shown to have derived from an originally continuous salt sheet which has been modified by sedimentary loading. Early loading created vertical basin growth that was accommodated primarily by salt withdrawal and associated diapiric rise through the process of downbuilding. Once the salt weld formed, continued sedimentation was accommodated by a lateral increase in basin size caused by down-dip extension on listric growth faults.

  15. Ophiolitic basement to the Great Valley forearc basin, California, from seismic and gravity data: Implications for crustal growth at the North American continental margin

    Science.gov (United States)

    Godfrey, N.J.; Beaudoin, B.C.; Klemperer, S.L.; Levander, A.; Luetgert, J.; Meltzer, A.; Mooney, W.; Tréhu, A.

    1997-01-01

    The nature of the Great Valley basement, whether oceanic or continental, has long been a source of controversy. A velocity model (derived from a 200-km-long east-west reflection-refraction profile collected south of the Mendocino triple junction, northern California, in 1993), further constrained by density and magnetic models, reveals an ophiolite underlying the Great Valley (Great Valley ophiolite), which in turn is underlain by a westward extension of lower-density continental crust (Sierran affinity material). We used an integrated modeling philosophy, first modeling the seismic-refraction data to obtain a final velocity model, and then modeling the long-wavelength features of the gravity data to obtain a final density model that is constrained in the upper crust by our velocity model. The crustal section of Great Valley ophiolite is 7-8 km thick, and the Great Valley ophiolite relict oceanic Moho is at 11-16 km depth. The Great Valley ophiolite does not extend west beneath the Coast Ranges, but only as far as the western margin of the Great Valley, where the 5-7-km-thick Great Valley ophiolite mantle section dips west into the present-day mantle. There are 16-18 km of lower-density Sierran affinity material beneath the Great Valley ophiolite mantle section, such that a second, deeper, "present-day" continental Moho is at about 34 km depth. At mid-crustal depths, the boundary between the eastern extent of the Great Valley ophiolite and the western extent of Sierran affinity material is a near-vertical velocity and density discontinuity about 80 km east of the western margin of the Great Valley. Our model has important implications for crustal growth at the North American continental margin. We suggest that a thick ophiolite sequence was obducted onto continental material, probably during the Jurassic Nevadan orogeny, so that the Great Valley basement is oceanic crust above oceanic mantle vertically stacked above continental crust and continental mantle.

  16. Saline Playas on Qinghai-Tibet Plateau as Mars Analog for the Formation-Preservation of Hydrous Salts and Biosignatures

    Science.gov (United States)

    Wang, A.; Zheng, M.; Kong, F.; Sobron, P.; Mayer, D. P.

    2010-12-01

    Qinghai-Tibet (QT) Plateau has the highest average elevation on Earth (~ 4500 m, about 50-60% of atmospheric pressure at sea-level). The high elevation induces a tremendous diurnal (and seasonal) temperature swing caused by high level of solar irradiation during the day and low level of atmospheric insulation during the evening. In addition, the Himalaya mountain chain (average height >6100 m) in the south of the QT Plateau largely blocks the pathway of humid air from the Indian Ocean, and produces a Hyperarid region (Aridity Index, AI ~ 0.04), the Qaidam Basin (N32-35, E90-100) at the north edge of the QT Plateau. Climatically, the low P, T, large ΔT, high aridity, and high UV radiation all make the Qaidam basin to be one of the most similar places on Earth to Mars. Qaidam basin has the most ancient playas (up to Eocene) and the lakes with the highest salinity on QT Plateau. More importantly, Mg-sulfates appear in the evaporative salts within the most ancient playas (Da Langtang) at the northwest corner of Qaidam basin, which mark the final stage of the evaporation sequence of brines rich in K, Na, Ca, Mg, Fe, C, B, S, and Cl. The evaporation minerals in the saline playas of Qaidam basin, their alteration and preservation under hyperarid conditions can be an interesting analog for the study of Martian salts and salty regolith. We conducted a field investigation at Da Langtan playa in Qaidam basin, with combined remote sensing (ASTER on board of NASA’s Terra satellite, 1.656, 2.167, 2.209, 2.62, 2.336, 2.40 µm), in situ sensing of a portable NIR spectrometer (WIR, 1.25-2.5 µm continuous spectral range), and the laboratory analyses of collected samples from the field (ASD spectrometer, 0.4 -2.5 µm, and Laser Raman spectroscopy). The results indicate that the materials contributing the high albedo layers in playa deposits are carbonate-gypsum-bearing surface soils, salt-clay-bearing exhaumed Pleistocene deposits, dehydrated Na-sulfates, hydrous Mg

  17. [Historical roles of salt].

    Science.gov (United States)

    Ritz, E; Ritz, C

    2004-12-17

    Recently increasing evidence has been provided pointing to a close relation of salt consumption to hypertension as well as to target organ damage. It is interesting to note that the discussion concerning salt is unusually emotional. This may be explained, at least in part, by the fact that since ancient times salt had deep symbolic significance, as exemplified, mostly subconsciously, by many customs and expressions still in current use. In the past salt was essential to preserve food. The past importance of salt as a commodity can well be compared with that of oil today. These and further historical aspects of the role of salt are briefly dealt with in this article.

  18. Reinterpretation of the tectonics and formation of the Pernambuco Plateau Basin, NE Brazil.

    Science.gov (United States)

    Hoggett, Murray; Jones, Stephen M.; Dunkley Jones, Tom; Reston, Timothy; Barbosa, Antonio; Biondo, Vanessa; Mort, Haydon P.

    2017-04-01

    The continental margin from Alagoas to Natal represents arguably the most frontier region for exploration on the Brazillian margin. High quality seismic data was not collected in the region for many decades as it was believed that only a few kilometers of sediment existed, and thus there was no exploration potential. Here we present the results of work done as part of an IODP virtual site survey. The work has resulted in a total reinterpretation of the basin structure and tectonics, including finding sediment filled half grabens holding up to 8km thick stratigraphic sections. The two deepest grabens likely represent rift jumps during breakup, which may imply different age sediments in the different grabens. The basin is also found to contain a sizable salt accumulation, previously uninterpreted due to hard overlying carbonates hampering seismic imaging. This salt can be seen to have been highly mobile in the past, and has developed into kilometer scale diapirs flanked by typical rollover anticlines. For the first time we show the basin has all the elements needed for a working petroleum system, with the exception a source rock - which cannot be speculated on further as the basin is undrilled. However source rock sequences are present in the Alagoas basin to the south, and recent released seep data show evidence for both biogeneic and thermogenic seeps over the plateau basin, which could also signal source rock presence. We present seismic and potential fields data, including forward potential fields models and seismically derived crustal stretching and thinning estimates, to show that the half grabens terminate abruptly at the latitude of the Pernambuco Shear Zone, a major crustal scale Precambrian shear zone. Onshore boreholes, well away from the deep seismically imaged half grabens offshore, find crystalline basement to drop away rapidly across the shearzone, revealing a third graben to terminate at the shear zone. We interpret this as that the preexisting

  19. The role of salinity in the decadal variability of the North Atlantic meridional overturning circulation

    Energy Technology Data Exchange (ETDEWEB)

    Frankignoul, Claude [Universite Pierre et Marie Curie, Paris 6, LOCEAN/IPSL, Paris Cedex 05 (France); Deshayes, Julie; Curry, Ruth [Woods Hole Oceanographic Institution, Woods Hole, MA (United States)

    2009-11-15

    An OGCM hindcast is used to investigate the linkages between North Atlantic Ocean salinity and circulation changes during 1963-2003. The focus is on the eastern subpolar region consisting of the Irminger Sea and the eastern North Atlantic where a careful assessment shows that the simulated interannual to decadal salinity changes in the upper 1,500 m reproduce well those derived from the available record of hydrographic measurements. In the model, the variability of the Atlantic meridional overturning circulation (MOC) is primarily driven by changes in deep water formation taking place in the Irminger Sea and, to a lesser extent, the Labrador Sea. Both are strongly influenced by the North Atlantic Oscillation (NAO). The modeled interannual to decadal salinity changes in the subpolar basins are mostly controlled by circulation-driven anomalies of freshwater flux convergence, although surface salinity restoring to climatology and other boundary fluxes each account for approximately 25% of the variance. The NAO plays an important role: a positive NAO phase is associated with increased precipitation, reduced northward salt transport by the wind-driven intergyre gyre, and increased southward flows of freshwater across the Greenland-Scotland ridge. Since the NAO largely controlled deep convection in the subpolar gyre, fresher waters are found near the sinking region during convective events. This markedly differs from the active influence on the MOC that salinity exerts at decadal and longer timescales in most coupled models. The intensification of the MOC that follows a positive NAO phase by about 2 years does not lead to an increase in the northward salt transport into the subpolar domain at low frequencies because it is cancelled by the concomitant intensification of the subpolar gyre which shifts the subpolar front eastward and reduces the northward salt transport by the North Atlantic Current waters. This differs again from most coupled models, where the gyre

  20. Geothermal studies of seven interior salt domes

    International Nuclear Information System (INIS)

    1983-06-01

    This report defines and compares the geothermal environments of eight selected Gulf Coast salt domes. The thermal regimes in and around Gulf Coast salt domes are not well documented. The data base used for this study is an accumulation of bottom-hole temperature readings from oil and gas exploration wells and temperature logs run for the National Waste Terminal Storage (NWTS) program. The bottom-hole tempreatures were corrected in order to estimate the actual geothermal environments. Prior thermal studies and models indicate temperatures in and around salt domes are elevated above the norm by 1 0 F to 25 0 F. Using existing geothermal data and accepted theory, geothermal gradients for the selected domes and surrounding sediments were estimated. This study concludes that salt domes within a given basin have similar geothermal gradients, but that the basins differ in average geothermal gradients. This relationship is probably controlled by deep basement structural trends. No evidence of residual heat of emplacement was found associated with any of the selected domes

  1. Sea Salt vs. Table Salt: What's the Difference?

    Science.gov (United States)

    ... and healthy eating What's the difference between sea salt and table salt? Answers from Katherine Zeratsky, R.D., L.D. The main differences between sea salt and table salt are in their taste, texture ...

  2. Folding and fracturing of