WorldWideScience

Sample records for salmonella serovar typhimurium

  1. Arginine-dependent acid resistance in Salmonella enterica serovar Typhimurium

    NARCIS (Netherlands)

    Kieboom, J.; Abee, T.

    2006-01-01

    Salmonella enterica serovar Typhimurium does not survive a pH 2.5 acid challenge under conditions similar to those used for Escherichia coli (J. W. Foster, Nat. Rev. Microbiol. 2:898-907, 2004). Here, we provide evidence that S. enterica serovar Typhimurium can display arginine-dependent acid

  2. Practical considerations on surveillance of Salmonella serovars other than Enteritidis and Typhimurium

    DEFF Research Database (Denmark)

    Wagenaar, J. A.; Hendriksen, Rene S.; Carrigue-Mas, J.

    2013-01-01

    Non-typhoid Salmonella serovars other than Salmonella enterica serovars S. Enteritidis (SE) and S. Typhimurium (ST) are isolated throughout the world with huge variations in prevalence. Besides the more generally occurring serovars, such as S. Infantis and S. Hadar, there are many examples of ser...

  3. Polyamines Are Required for Virulence in Salmonella enterica Serovar Typhimurium

    DEFF Research Database (Denmark)

    Jelsbak, Lotte; Thomsen, Line Elnif; Wallrodt, Inke

    2012-01-01

    Sensing and responding to environmental cues is a fundamental characteristic of bacterial physiology and virulence. Here we identify polyamines as novel environmental signals essential for virulence of Salmonella enterica serovar Typhimurium, a major intracellular pathogen and a model organism......, we show that an S. Typhimurium polyamine mutant is defective for invasion, intracellular survival, killing of the nematode Caenorhabditis elegans and systemic infection of the mouse model of typhoid fever. Virulence of the mutant could be restored by genetic complementation, and invasion...... and intracellular survival could, as well, be complemented by the addition of exogenous putrescine and spermidine to the bacterial cultures prior to infection. Interestingly, intracellular survival of the polyamine mutant was significantly enhanced above the wild type level by the addition of exogenous putrescine...

  4. Salmonella gene rma (ramA) and multiple-drug-resistant Salmonella enterica serovar typhimurium

    NARCIS (Netherlands)

    Straaten, van T.; Janssen, R.; Mevius, D.J.; Dissel, van J.T.

    2004-01-01

    MarA and its homologue, RamA, have been implicated in multidrug resistance (MDR). RamA overexpression in Salmonella enterica serovar Typhimurium and Escherichia coli conferred MDR independently of marA. Inactivation of ramA did not affect the antibiotic susceptibilities of wild-type S. enterica

  5. Molecular characterisation of multidrug-resistant Salmonella enterica serovar Typhimurium isolates from Gomel region, Belarus

    DEFF Research Database (Denmark)

    Tapalski, D.; Hendriksen, Rene S.; Hasman, Henrik

    2007-01-01

    This study describes the characterisation by pulsed-field gel electrophoresis (PFGE), multilocus variable number tandem repeat analysis (MLVA) typing and antimicrobial resistance profiles of 35 Salmonella enterica serovar Typhimurium isolates, mostly from infections in children who acquired...

  6. Molecular Characterization of Multidrug-Resistant Salmonella enterica subsp. enterica Serovar Typhimurium Isolates from Swine

    OpenAIRE

    Gebreyes, Wondwossen Abebe; Altier, Craig

    2002-01-01

    As part of a longitudinal study of antimicrobial resistance among salmonellae isolated from swine, we studied 484 Salmonella enterica subsp. enterica serovar Typhimurium (including serovar Typhimurium var. Copenhagen) isolates. We found two common pentaresistant phenotypes. The first was resistance to ampicillin, chloramphenicol, streptomycin, sulfamethoxazole, and tetracycline (the AmCmStSuTe phenotype; 36.2% of all isolates), mainly of the definitive type 104 (DT104) phage type (180 of 187 ...

  7. Multiple roles of putrescine and spermidine in stress resistance and virulence of Salmonella enterica serovar Typhimurium

    DEFF Research Database (Denmark)

    Cartas Espinel, Irene; Guerra, Priscila Regina; Jelsbak, Lotte

    2016-01-01

    Polyamines (putrescine and spermidine) are small-cationic amines ubiquitous in nature and present in most living cells. In recent years they have been linked to virulence of several human pathogens including Shigella spp and Salmonella enterica serovar Typhimurium (S. Typhimurium). Central to S...

  8. Natural surface coating to inactivate Salmonella enterica Serovar Typhimurium and maintain quality of cherry tomatoes

    Science.gov (United States)

    The objectives of the present study were to investigate the effectiveness of zein-based coatings in reducing populations of Salmonella enterica serovar Typhimurium and preserving quality of cherry tomatoes. Tomatoes were inoculated with a cocktail of S. Typhimurium LT2 plus three mutants on the smoo...

  9. Detection of Salmonella enterica Serovar Typhimurium from Avians Using Multiplex-PCR

    Directory of Open Access Journals (Sweden)

    Alireza Talebi

    2011-09-01

    Full Text Available Abstract Salmonella enterica serovar Typhimurium and S.enterica serovar Enteritidis are the most frequently isolated serovars from food-borne diseases throughout the world. According to their antigenic profiles, salmonella shows different disease syndromes and host specificities. It is necessary and important to discriminate salmonella serovars from each other in order to ensure that each pathogen and its epidemiology are correctly recognized. Many PCR-based methods have been developed to identify salmonella serovars. The objective of present study was to identify S. Typhimurium in avians from different regions including: North, Northwest and capital city (Tehran of Iran. Also in this research, the quality of CHROMagar™ Salmonella medium (CAS medium in veterinary medicine was evaluated. The results of present study showed that out of 1870 intestine samples, fifty two S. Typhimurium including broiler (n=13, layer (n=12, duck (n=5, goose (n=5, sparrow (n=8, canary (n=3, pigeon (n=5 and African grey parrot (n=1 were identified using serotyping as well as multiplex-PCR. In conclusion, important measures must be taken on prevention and propagation of S. Typhimurium among avians. CHROMagar™ Salmonella medium has high levels of sensitivity and specificity and reduced the time to final identification of salmonella spp. in comparison with biochemical tests.

  10. Tetracycline promotes the expression of ten fimbrial operons in specific Salmonella enterica serovar Typhimurium isolates

    Science.gov (United States)

    Multidrug-resistant (MDR) Salmonella is associated with increased morbidity in humans and presents an important food safety concern. Antibiotic resistance among isolates of Salmonella enterica serovar Typhimurium has become especially prevalent as over 27 per cent of isolates from humans in the Unit...

  11. Supplemental invasion of Salmonella from the perspective of Salmonella enterica serovars Kentucky and Typhimurium.

    Science.gov (United States)

    Howe, Kevin; Salehi, Sanaz; Hartford Bailey, R; Brooks, John P; Wills, Robert; Lawrence, Mark L; Karsi, Attila

    2017-04-05

    Critical to the development of Salmonellosis in humans is the interaction of the bacterium with the epithelial lining of the gastrointestinal tract. Traditional scientific reasoning held type III secretion system (T3SS) as the virulence factor responsible for bacterial invasion. In this study, field-isolated Salmonella enterica serovar Kentucky and a known human pathogen Salmonella enterica serovar Typhimurium were mutated and evaluated for the invasion of human colorectal adenocarcinoma epithelial cells. S. enterica serovar Kentucky was shown to actively invade a eukaryotic monolayer, though at a rate that was significantly lower than Typhimurium. Additionally, strains mutated for T3SS formation were less invasive than the wild-type strains, but the decrease in invasion was not significant in Kentucky. Strains mutated for T3SS formation were able to initiate invasion of the eukaryotic monolayer to varying degrees based on strain, In the case of Kentucky, the mutated strain initiated invasion at a level that was not significantly different from the wild-type strain. A different result was observed for Typhimurium as the mutation significantly lowered the rate of invasion in comparison to the wild-type strain.

  12. Internal Colonization of Salmonella enterica Serovar Typhimurium in Tomato Plants

    Science.gov (United States)

    Gu, Ganyu; Hu, Jiahuai; Cevallos-Cevallos, Juan M.; Richardson, Susanna M.; Bartz, Jerry A.; van Bruggen, Ariena H. C.

    2011-01-01

    Several Salmonella enterica outbreaks have been traced back to contaminated tomatoes. In this study, the internalization of S. enterica Typhimurium via tomato leaves was investigated as affected by surfactants and bacterial rdar morphotype, which was reported to be important for the environmental persistence and attachment of Salmonella to plants. Surfactants, especially Silwet L-77, promoted ingress and survival of S. enterica Typhimurium in tomato leaves. In each of two experiments, 84 tomato plants were inoculated two to four times before fruiting with GFP-labeled S. enterica Typhimurium strain MAE110 (with rdar morphotype) or MAE119 (without rdar). For each inoculation, single leaflets were dipped in 109 CFU/ml Salmonella suspension with Silwet L-77. Inoculated and adjacent leaflets were tested for Salmonella survival for 3 weeks after each inoculation. The surface and pulp of ripe fruits produced on these plants were also examined for Salmonella. Populations of both Salmonella strains in inoculated leaflets decreased during 2 weeks after inoculation but remained unchanged (at about 104 CFU/g) in week 3. Populations of MAE110 were significantly higher (Penterica Typhimurium. In the second year, Salmonella was detected in adjacent non-inoculated leaves of eight tomato plants (five inoculated with strain MAE110). The pulp of 12 fruits from two plants inoculated with MAE110 was Salmonella positive (about 106 CFU/g). Internalization was confirmed by fluorescence and confocal laser microscopy. For the first time, convincing evidence is presented that S. enterica can move inside tomato plants grown in natural field soil and colonize fruits at high levels without inducing any symptoms, except for a slight reduction in plant growth. PMID:22096553

  13. Isolation and Characterization of Salmonella Enterica Serovar Typhimurium Circulating Among Healthy Chickens of Bangladesh

    Directory of Open Access Journals (Sweden)

    Md. Shafiullah Parvej

    2016-07-01

    Full Text Available Salmonella is considered as a global problem ranking first among food borne diseases. All motile Salmonella of poultry origin are zoonotic and readily transmit to human via meat and eggs but reports on non - typhoidal Salmonella serovars circulating in layer chickens is very limited in South-East Asian countries including Bangladesh. Salmonella serovars isolated from apparently healthy chickens were characterized in the present study. Of 170 samples (cloacal swab 150 and feed 20 collected from commercial layer farms, motile Salmonella was isolated 4% (6/150 and 50% (10/20 respectively by cultural, biochemical, motility test and by detection of hisJ gene. About 5% (8/170 samples possessed serovar-specific gene fimA, suggesting that isolates were Salmonella enterica serovar Typhimurium. Antimicrobial susceptibility testing demonstrated that the isolated serovars were multidrug resistant. Therefore apparently healthy layer chickens harbour and transmit S. Typhimurium to the environment, although little is alarming since it has zoonotic significance and the isolates were resistant to commonly used first line of antibiotic in Salmonella infection.

  14. Thioridazine protects the mouse from a virulent infection by Salmonella enterica serovar Typhimurium 74

    DEFF Research Database (Denmark)

    Dasgupta, Asish; Mukherjee, Sayanti; Chaki, Shaswati

    2010-01-01

    When administered to mice at doses of 100microg/mouse and 200microg/mouse, thioridazine (TDZ) significantly protected animals from the lethality produced by a virulent strain of Salmonella enterica serovar Typhimurium and reduced the number of bacteria retrieved from the spleen, liver and heart...

  15. Outbreak of Salmonella enterica serovar Typhimurium phage type DT41 in Danish poultry production

    DEFF Research Database (Denmark)

    Löfström, Charlotta; Hintzmann, Ann-Sofie; Sørensen, Gitte

    2015-01-01

    Salmonella enterica subspecies enterica serovar Typhimurium (S. Typhimurium) is one of the most prevalent serovars in Europe - where both poultry and poultry related products are common sources of human salmonellosis. Due to efficient control programs, the prevalence of S. Typhimurium in Danish...... poultry production is very low. Despite this, during the past decades there has been a reoccurring problem with infections with S. Typhimurium phage type DT41 in the Danish poultry production without identifying a clear source. In the end of 2013 and beginning of 2014 an increased isolation of S....... Typhimurium DT41 was noted mainly in this production, but also in other samples. To investigate this is in more detail, 47 isolates from egg layers (n = 5, 1 flock), broilers (n = 33, 13 flocks), broiler breeding flocks and hatches (n = 5; 2 flocks and 1 environmental hatchery sample), feed (n = 1), poultry...

  16. Characterization of Salmonella enterica serovar Typhimurium and Salmonella enterica serovar 4,[5],12:i:- isolates from pigs presenting with diarrhea in Korea.

    Science.gov (United States)

    Lee, Ki-Eun; Lee, Deog-Yong; Choi, Hwan-Won; Chae, Su-Jin; Yun, Young-Sun; Lee, Ki-Chan; Cho, Yun-Sang; Yang, Dong-Kun

    2015-11-01

    Between 2011 and 2012, a total of 896 pig fecal samples were collected from nine provinces in Korea, and 50 salmonella enterica susp. enterica serovar Typhimurium (S. Typhimurium) was isolated. The characteristics of the 50 strains were analyzed, and 4 strains were identified as Salmonella enterica subsp. enterica serovar 4,[5],12:i:-. Salmonella 4,[5],12:i:- could not be distinguished from S. Typhimurium through phage typing, antimicrobial resistance testing or multiple-locus variable-number tandem repeat analysis (MLVA). However, among the four Salmonella 4,[5],12:i:- strains, one (KVCC-BA1400078) was identified as a Salmonella 4,[5],12:i:- clone isolated from humans in the United States, and another (KVCC-BA1400080) was identified as DT193, which has been primarily isolated from humans and animals in European countries. The presence of Salmonella 4,[5],12:i:- in Korea poses a significant threat of horizontal transfer between pigs and humans.

  17. Survival and transmission of Salmonella enterica serovar typhimurium in an outdoor organic pig farming environment

    DEFF Research Database (Denmark)

    Jensen, Annette Nygaard; Dalsgaard, Anders; Stockmarr, Anders

    2006-01-01

    , which caused substantial contamination of the environment. This suggests that isolation of animals as soon as a Salmonella infection is indicated by clinical symptoms of diarrhea could be a means of reducing and controlling the spread and persistence of Salmonella in outdoor organic pig production......It was investigated how organic rearing conditions influence the Salmonella enterica infection dynamics in pigs and whether Salmonella persists in the paddock environment. Pigs inoculated with S. enterica serovar Typhimurium were grouped with Salmonella-negative tracer pigs. Bacteriological...... of Salmonella-negative pigs into four naturally Salmonella-contaminated paddocks caused Salmonella infections of pigs in two paddocks. In one of these paddocks, all tracer pigs (n = 10) became infected, coinciding with a previous high Salmonella infection rate and high Salmonella excretion level. Our results...

  18. Chlortetracycline and florfenicol induce expression of genes associated with pathogenicity in multidrug-resistant Salmonella enterica serovar Typhimurium

    Science.gov (United States)

    Background Multidrug-resistant (MDR) Salmonella enterica serovar Typhimurium (S. Typhimurium) is a serious public health threat as infections caused by these strains are more difficult and expensive to treat. Livestock serve as a reservoir for MDR Salmonella, and the antibiotics chlortetracycline an...

  19. Requirement for cobalamin by Salmonella enterica serovars Typhimurium, Pullorum, Gallinarum and Enteritidis during infection in chickens

    Directory of Open Access Journals (Sweden)

    Jacqueline Boldrin de Paiva

    2011-12-01

    Full Text Available Salmonella enterica serovar Typhimurium synthesizes cobalamin (vitamin B12 only during anaerobiosis. Two percent of the S. Typhimurium genome is devoted to the synthesis and uptake of vitamin B12 and to B12-dependent reactions. To understand the requirement for cobalamin synthesis better, we constructed mutants of Salmonella serovars Enteritidis and Pullorum that are double-defective in cobalamin biosynthesis (ΔcobSΔcbiA. We compared the virulence of these mutants to that of their respective wild type strains and found no impairment in their ability to cause disease in chickens. We then assessed B12 production in these mutants and their respective wild type strains, as well as in S. Typhimurium ΔcobSΔcbiA, Salmonella Gallinarum ΔcobSΔcbiA, and their respective wild type strains. None of the mutants was able to produce detectable B12. B12 was detectable in S. Enteritidis, S. Pullorum and S. Typhimurium wild type strains but not in S. Gallinarum. In conclusion, the production of vitamin B12 in vitro differed across the tested Salmonella serotypes and the deletion of the cbiA and cobS genes resulted in different levels of alteration in the host parasite interaction according to Salmonella serotype tested.

  20. Heat tolerance of Salmonella enterica serovars Agona, Enteritidis, and Typhimurium in peanut butter.

    Science.gov (United States)

    Shachar, Dina; Yaron, Sima

    2006-11-01

    Recent large foodborne outbreaks caused by Salmonella enterica serovars have been associated with consumption of foods with high fat content and reduced water activity, even though their ingredients usually undergo pasteurization. The present study was focused on the heat tolerance of Salmonella enterica serovars Agona, Enteritidis, and Typhimurium in peanut butter. The Salmonella serovars in the peanut butter were resistant to heat, and even at a temperature as high as 90 degrees C only 3.2-log reduction in CFU was observed. The obtained thermal inactivation curves were upwardly concave, indicating rapid death at the beginning (10 min) followed by lower death rates and an asymptotic tail. The curves fitted the nonlinear Weibull model with beta parameters pasteurization process cannot be improved significantly by longer treatment or higher temperatures.

  1. Risk factors associated with Salmonella enterica serovar typhimurium infection in Danish broiler flocks

    DEFF Research Database (Denmark)

    Skov, M. N.; Angen, Øystein; Chriel, M.

    1999-01-01

    A retrospective longitudinal study was conducted to identify risk factors associated with Salmonella enterica serovar typhimurium (S. typhimurium) infection in Danish broiler flocks. The data included all broiler flocks slaughtered in 1995, and the epidemiological unit was the individual broiler...... for analysis. Five factors and an interaction term were found significant by multivariate logistic regression analysis. An increased risk for S, typhimurium infection was associated with two parent flocks, one confirmed infected and one suspected of being infected with S. typhimurium, with two...... of the hatcheries, and with five houses on the farm. An interaction between season anal the previously mentioned hatcheries, and a random effect at farm level was also found to be statistically significant. Twelve variables were not found to be associated with S, typhimurium infection: medication, growth promoters...

  2. Risk factors associated with Salmonella enterica serovar typhimurium infection in Danish broiler flocks

    DEFF Research Database (Denmark)

    Skov, M. N.; Angen, Øystein; Chriel, M.

    1999-01-01

    A retrospective longitudinal study was conducted to identify risk factors associated with Salmonella enterica serovar typhimurium (S. typhimurium) infection in Danish broiler flocks. The data included all broiler flocks slaughtered in 1995, and the epidemiological unit was the individual broiler...... flock. The S. typhimurium status was determined by microbiological examination of 60 fresh fecal samples. This procedure should detect an infected flock with a probability above 95%, if the prevalence is above 5%, and given that the sensitivity of the test is 100%. Nineteen variables were selected...... for analysis. Five factors and an interaction term were found significant by multivariate logistic regression analysis. An increased risk for S, typhimurium infection was associated with two parent flocks, one confirmed infected and one suspected of being infected with S. typhimurium, with two...

  3. Streptomycin Induced Stress Response in Salmonella enterica Serovar Typhimurium Shows Distinct Colony Scatter Signature.

    Science.gov (United States)

    Singh, Atul K; Drolia, Rishi; Bai, Xingjian; Bhunia, Arun K

    2015-01-01

    We investigated the streptomycin-induced stress response in Salmonella enterica serovars with a laser optical sensor, BARDOT (bacterial rapid detection using optical scattering technology). Initially, the top 20 S. enterica serovars were screened for their response to streptomycin at 100 μg/mL. All, but four S. enterica serovars were resistant to streptomycin. The MIC of streptomycin-sensitive serovars (Enteritidis, Muenchen, Mississippi, and Schwarzengrund) varied from 12.5 to 50 μg/mL, while streptomycin-resistant serovar (Typhimurium) from 125-250 μg/mL. Two streptomycin-sensitive serovars (Enteritidis and Mississippi) were grown on brain heart infusion (BHI) agar plates containing sub-inhibitory concentration of streptomycin (1.25-5 μg/mL) and a streptomycin-resistant serovar (Typhimurium) was grown on BHI containing 25-50 μg/mL of streptomycin and the colonies (1.2 ± 0.1 mm diameter) were scanned using BARDOT. Data show substantial qualitative and quantitative differences in the colony scatter patterns of Salmonella grown in the presence of streptomycin than the colonies grown in absence of antibiotic. Mass-spectrometry identified overexpression of chaperonin GroEL, which possibly contributed to the observed differences in the colony scatter patterns. Quantitative RT-PCR and immunoassay confirmed streptomycin-induced GroEL expression while, aminoglycoside adenylyltransferase (aadA), aminoglycoside efflux pump (aep), multidrug resistance subunit acrA, and ribosomal protein S12 (rpsL), involved in streptomycin resistance, were unaltered. The study highlights suitability of the BARDOT as a non-invasive, label-free tool for investigating stress response in Salmonella in conjunction with the molecular and immunoassay methods.

  4. Quantification of contamination of lettuce by GFP-expressing Escherichia coli O157:H7 and Salmonella enterica serovar Typhimurium

    NARCIS (Netherlands)

    Franz, Eelco; Visser, Anna A; Van Diepeningen, Anne D; Klerks, Michel M; Termorshuizen, Aad J; van Bruggen, Ariena H C

    The primary objective of this study was to determine the possibility of internalization of GFP-expressing Escherichia coli O157:H7 and Salmonella enterica serovar Typhimurium (S. Typhimurium) strains MAE 110 (multi-cellular morphology) and 119 (wild type morphology) into lettuce seedlings (Lactuca

  5. Quantification of contamination of lettuce by GFP-expressing Escherichia coli O157:H7 and Salmonella enterica serovar Typhimurium

    NARCIS (Netherlands)

    Franz, E.; Visser, A.A.; Diepeningen, van A.D.; Klerks, M.M.; Termorshuizen, A.J.; Bruggen, van A.H.C.

    2007-01-01

    The primary objective of this study was to determine the possibility of internalization of GFP-expressing Escherichia coli O157:H7 and Salmonella enterica serovar Typhimurium (S. Typhimurium) strains MAE 110 (multi-cellular morphology) and 119 (wild type morphology) into lettuce seedlings (Lactuca

  6. Analysis of the contribution of bacteriophage ST64B to in vitro virulence traits of Salmonella enterica serovar Typhimurium

    DEFF Research Database (Denmark)

    Fresno, Ana Herrero; Leekitcharoenphon, Pimlapas; Hendriksen, Rene S.

    2014-01-01

    Comparison of the publicly available genomes of the virulent Salmonella enterica serovar Typhimurium (S. Typhimurium) strains SL1344, 14028s and D23580 to that of the virulence-attenuated isolate LT2 revealed the absence of a full sequence of bacteriophage ST64B in the latter. Four selected ST64B...

  7. Epidemiology of a Salmonella enterica subsp. Enterica serovar Typhimurium strain associated with a songbird outbreak.

    Science.gov (United States)

    Blehert, David S.; Hernandez, Sonia M.; Keel, Kevin; Sanchez, Susan; Trees, Eija; ,

    2012-01-01

    Salmonella enterica subsp. enterica serovar Typhimurium is responsible for the majority of salmonellosis cases worldwide. This Salmonella serovar is also responsible for die-offs in songbird populations. In 2009, there was an S. Typhimurium epizootic reported in pine siskins in the eastern United States. At the time, there was also a human outbreak with this serovar that was associated with contaminated peanuts. As peanuts are also used in wild-bird food, it was hypothesized that the pine siskin epizootic was related to this human outbreak. A comparison of songbird and human S. Typhimurium pulsed-field gel electrophoresis (PFGE) patterns revealed that the epizootic was attributed not to the peanut-associated strain but, rather, to a songbird strain first characterized from an American goldfinch in 1998. This same S. Typhimurium strain (PFGE type A3) was also identified in the PulseNet USA database, accounting for 137 of 77,941 total S. Typhimurium PFGE entries. A second molecular typing method, multiple-locus variable-number tandem-repeat analysis (MLVA), confirmed that the same strain was responsible for the pine siskin epizootic in the eastern United States but was distinct from a genetically related strain isolated from pine siskins in Minnesota. The pine siskin A3 strain was first encountered in May 2008 in an American goldfinch and later in a northern cardinal at the start of the pine siskin epizootic. MLVA also confirmed the clonal nature of S. Typhimurium in songbirds and established that the pine siskin epizootic strain was unique to the finch family. For 2009, the distribution of PFGE type A3 in passerines and humans mirrored the highest population density of pine siskins for the East Coast.

  8. The effect of nitric oxide combined with fluoroquinolones against Salmonella enterica serovar Typhimurium in vitro

    Directory of Open Access Journals (Sweden)

    Coban AY

    2003-01-01

    Full Text Available Two regulons, soxRS and marRAB, are associated with resistance to quinolones or multiple antibiotic in Salmonella enterica serovar Typhimurium. These regulons are activated by nitric oxide and redox-cycling drugs, such as paraquat and cause on activation of the acrAB-encoded efflux pump. In this study, we investigated the effect of nitric oxide (NO alone and in combination with ofloxacin, ciprofloxacin, and pefloxacin against S. typhimurium clinical isolates and mutant strains in vitro. We did not observe synergistic effect against clinical isolates and SH5014 (parent strain of acr mutant, while we found synergistic effect against PP120 (soxRS mutant and SH7616 (an acr mutant S. typhimurium for all quinolones. Our results suggest that the efficiencies of some antibiotics, including ofloxacin, ciprofloxacin, and pefloxacin are decreased via activation of soxRS and marRAB regulons by NO in S. enterica serovar Typhimurium. Further studies are warranted to establish the interaction of NO with the genes of Salmonella and, with multiple antibiotic resistance.

  9. Salmonella enterica serovar Typhimurium DT104 invasion is not enhanced by sub-inhibitory concentrations of the antibiotic florfenicol

    Science.gov (United States)

    The incidence of multi-drug resistant Salmonella has increased globally over the past several decades. Isolates of Salmonella enterica serovar Typhimurium DT104 are resistant to five or more antibiotics, including florfenicol, and have been associated with enhanced virulence in livestock and humans....

  10. Role of anionic charges of osmoregulated periplasmic glucans of Salmonella enterica Serovar Typhimurium SL1344 in mice virulence

    Science.gov (United States)

    Osmoregulated periplasmic glucans (OPGs) are important periplasmic constituents of Salmonella spp. and are required for optimal growth in hypoosmotic environments such as irrigation and vegetable wash waters as well as for mice virulence. opgB gene of Salmonella enterica serovar Typhimurium was ide...

  11. Effect of Human Immunodeficiency Virus Infection on Plasma Bactericidal Activity against Salmonella enterica Serovar Typhimurium

    Science.gov (United States)

    Trebicka, Estela; Shanmugam, Nanda Kumar N.; Mikhailova, Anastassia; Alter, Galit

    2014-01-01

    Individuals with human immunodeficiency virus (HIV) infection have increased susceptibility to invasive disease caused by Salmonella enterica serovar Typhimurium. Studies from Africa have suggested that this susceptibility is related in part to the development of a high level of lipopolysaccharide (LPS)-specific IgG that is able to inhibit the killing of S. Typhimurium by bactericidal antibodies in healthy individuals. To explore this issue further, we examined the bactericidal activity against S. Typhimurium using serum and plasma samples from healthy controls and various clinical subgroups of HIV-infected adults in the United States. We found that the bactericidal activity in the samples from HIV-positive elite controllers was comparable to that from healthy individuals, whereas it was significantly reduced in HIV-positive viremic controllers and untreated chronic progressors. As demonstrated previously for healthy controls, the bactericidal activity of the plasma from the elite controllers was inhibited by preincubation with S. Typhimurium LPS, suggesting that it was mediated by anti-LPS antibodies. S. Typhimurium LPS-specific IgG was significantly reduced in all subgroups of HIV-infected individuals. Interestingly, and in contrast to the healthy controls, plasma from all HIV-positive subgroups inhibited in vitro killing of S. Typhimurium by plasma from a healthy individual. Our results, together with the findings from Africa, suggest that multiple mechanisms may be involved in the HIV-induced dysregulation of humoral immunity to S. Typhimurium. PMID:25121777

  12. Microgravity as a novel environmental signal affecting Salmonella enterica serovar Typhimurium virulence

    Science.gov (United States)

    Nickerson, C. A.; Ott, C. M.; Mister, S. J.; Morrow, B. J.; Burns-Keliher, L.; Pierson, D. L.

    2000-01-01

    The effects of spaceflight on the infectious disease process have only been studied at the level of the host immune response and indicate a blunting of the immune mechanism in humans and animals. Accordingly, it is necessary to assess potential changes in microbial virulence associated with spaceflight which may impact the probability of in-flight infectious disease. In this study, we investigated the effect of altered gravitational vectors on Salmonella virulence in mice. Salmonella enterica serovar Typhimurium grown under modeled microgravity (MMG) were more virulent and were recovered in higher numbers from the murine spleen and liver following oral infection compared to organisms grown under normal gravity. Furthermore, MMG-grown salmonellae were more resistant to acid stress and macrophage killing and exhibited significant differences in protein synthesis than did normal-gravity-grown cells. Our results indicate that the environment created by simulated microgravity represents a novel environmental regulatory factor of Salmonella virulence.

  13. Salmonella enterica serovar Typhimurium exploits inflammation to modify swine intestinal microbiota.

    Directory of Open Access Journals (Sweden)

    Rosanna eDrumo

    2016-01-01

    Full Text Available Salmonella enterica serovar Typhimurium is an important zoonotic gastrointestinal pathogen responsible for foodborne disease worldwide. It is a successful enteric pathogen because it has developed virulence strategies allowing it to survive in a highly inflamed intestinal environment exploiting inflammation to overcome colonization resistance provided by intestinal microbiota. In this study, we used piglets featuring an intact microbiota, which naturally develop gastroenteritis, as model for salmonellosis. We compared the effects on the intestinal microbiota induced by a wild type and an attenuated S. Typhimurium in order to evaluate whether the modifications are correlated with the virulence of the strain. This study showed that Salmonella alters microbiota in a virulence-dependent manner. We found that the wild type S. Typhimurium induced inflammation and a reduction of specific protecting microbiota species (SCFA-producing bacteria normally involved in providing a barrier against pathogens. Both these effects could contribute to impair colonization resistance, increasing the host susceptibility to wild type S. Typhimurium colonization. In contrast, the attenuated S. Typhimurium, which is characterized by a reduced ability to colonize the intestine, and by a very mild inflammatory response, was unable to successfully sustain competition with the microbiota.

  14. Specific Monoclonal Antibody Overcomes the Salmonella enterica Serovar Typhimurium's Adaptive Mechanisms of Intramacrophage Survival and Replication.

    Directory of Open Access Journals (Sweden)

    Swarmistha Devi Aribam

    Full Text Available Salmonella-specific antibodies play an important role in host immunity; however, the mechanisms of Salmonella clearance by pathogen-specific antibodies remain to be completely elucidated since previous studies on antibody-mediated protection have yielded inconsistent results. These inconsistencies are at least partially attributable to the use of polyclonal antibodies against Salmonella antigens. Here, we developed a new monoclonal antibody (mAb-449 and identified its related immunogen that protected BALB/c mice from infection with Salmonella enterica serovar Typhimurium. In addition, these data indicate that the mAb-449 immunogen is likely a major protective antigen. Using in vitro infection studies, we also analyzed the mechanism by which mAb-449 conferred host protection. Notably, macrophages infected with mAb-449-treated S. Typhimurium showed enhanced pathogen uptake compared to counterparts infected with control IgG-treated bacteria. Moreover, these macrophages produced elevated levels of pro-inflammatory cytokine TNFα and nitric oxide, indicating that mAb-449 enhanced macrophage activation. Finally, the number of intracellular bacteria in mAb-449-activated macrophages decreased considerably, while the opposite was found in IgG-treated controls. Based on these findings, we suggest that, although S. Typhimurium has the potential to survive and replicate within macrophages, host production of a specific antibody can effectively mediate macrophage activation for clearance of intracellular bacteria.

  15. The Tricarballylate Utilization (tcuRABC) Genes of Salmonella enterica Serovar Typhimurium LT2

    OpenAIRE

    Lewis, Jeffrey A.; Horswill, Alexander R.; Schwem, Brian E.; Escalante-Semerena, Jorge C.

    2004-01-01

    The genes of Salmonella enterica serovar Typhimurium LT2 encoding functions needed for the utilization of tricarballylate as a carbon and energy source were identified and their locations in the chromosome were established. Three of the tricarballylate utilization (tcu) genes, tcuABC, are organized as an operon; a fourth gene, tcuR, is located immediately 5′ to the tcuABC operon. The tcuABC operon and tcuR gene share the same direction of transcription but are independently transcribed. The t...

  16. Elimination of Salmonella enterica serovar Typhimurium in artificially contaminated eggs through correct cooking and frying procedures

    Directory of Open Access Journals (Sweden)

    Geovana Dagostim Savi

    2011-06-01

    Full Text Available Salmonellosis is a serious foodborne disease associated with the presence of bacteria in eggs or foods containing raw eggs. However, the use of appropriate procedures of cooking and frying can eliminate this contamination. There are few studies on the elimination of contamination of Salmonella in hens' eggs through typical frying procedures, especially for Salmonella enterica serovar Typhimurium (or S. typhimurium. The aim of this study was to determine the appropriate conditions for cooking and frying hens' eggs artificially contaminated with S. typhimurium, making them free of bacterial contamination. Hens' eggs were artificially contaminated with S. typhimurium and subjected to various processes of cooking, frying and food preparation. It was observed that the minimum time necessary to eliminate contamination through cooking procedures is 5 minutes after the water starts boiling, and also that, cooking in the microwave oven complete eliminates the bacterial contamination. When the eggs were fried on both sides, keeping the yolk hard, a complete bacterial elimination was observed. Mayonnaise prepared with vinegar presented a decrease in bacterial colonies when compared mayonese prepared with lemon.

  17. Multiple roles of putrescine and spermidine in stress resistance and virulence of Salmonella enterica serovar Typhimurium.

    Science.gov (United States)

    Espinel, Irene Cartas; Guerra, Priscila Regina; Jelsbak, Lotte

    2016-06-01

    Polyamines (putrescine and spermidine) are small-cationic amines ubiquitous in nature and present in most living cells. In recent years they have been linked to virulence of several human pathogens including Shigella spp and Salmonella enterica serovar Typhimurium (S. Typhimurium). Central to S. Typhimurium virulence is the ability to survive and replicate inside macrophages and resisting the antimicrobial attacks in the form of oxidative and nitrosative stress elicited from these cells. In the present study, we have investigated the role of polyamines in intracellular survival and systemic infections of mice. Using a S. Typhimurium mutant defective for putrescine and spermidine biosynthesis, we show that polyamines are essential for coping with reactive nitrogen species, possibly linking polyamines to increased intracellular stress resistance. However, using a mouse model defective for nitric oxide production, we find that polyamines are required for systemic infections independently of host-produced reactive nitrogen species. To distinguish between the physiological roles of putrescine and spermidine, we constructed a strain deficient for spermidine biosynthesis and uptake, but with retained ability to produce and import putrescine. Interestingly, in this mutant we observe a strong attenuation of virulence during infection of mice proficient and deficient for nitric oxide production suggesting that spermidine, specifically, is essential for virulence of S. Typhimurium. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Antimicrobial resistance in Salmonella enterica subsp. enterica serovar typhimurium from humans and production animals

    DEFF Research Database (Denmark)

    Seyfarth, Anne Mette; Wegener, Henrik Caspar; FrimodtMoller, N.

    1997-01-01

    .4% of strains from cattle, 11.1% of strains from pigs and 9.2% of strains from poultry. Multiple resistance, i.e. resistance against at least four antimicrobial agents, was found in 9.2% of the human strains, but in only two of the cattle isolates, The majority of the multi-resistant strains in humans were from......: Poultry strains were usually resistant only to ampicillin, white pig and cattle isolates were most often resistant to sulphonamide, tetracycline and streptomycin. Typing of the strains showed that some animal strains and human strains were indistinguishable. In conclusion, while antimicrobial resistance......We have studied the frequency of antimicrobial resistance and epidemiological relatedness among 473 isolates of Salmonella enterica subsp, enterica serovar typhimurium (S. typhimurium) from human and veterinary sources. The human strains were clinical isolates from patients with diarrhoea sent...

  19. Antimicrobial resistance in Salmonella enterica subsp. enterica serovar typhimurium from humans and production animals

    DEFF Research Database (Denmark)

    Seyfarth, Anne Mette; Wegener, Henrik Caspar; FrimodtMoller, N.

    1997-01-01

    infections contracted outside Denmark, most often in southern Europe or south-east Asia. Resistance in human strains was most common against tetracycline (13%), ampicillin (12%), sulphonamide (12%), streptomycin (10%) and chloramphenicol (8%). The resistance pattern differed somewhat in animal isolates......: Poultry strains were usually resistant only to ampicillin, white pig and cattle isolates were most often resistant to sulphonamide, tetracycline and streptomycin. Typing of the strains showed that some animal strains and human strains were indistinguishable. In conclusion, while antimicrobial resistance......We have studied the frequency of antimicrobial resistance and epidemiological relatedness among 473 isolates of Salmonella enterica subsp, enterica serovar typhimurium (S. typhimurium) from human and veterinary sources. The human strains were clinical isolates from patients with diarrhoea sent...

  20. Evaluation of a Multiplex PCR Assay for the Identification of Salmonella Serovars Enteritidis and Typhimurium Using Retail and Abattoir Samples.

    Science.gov (United States)

    Ogunremi, Dele; Nadin-Davis, Susan; Dupras, Andrée Ann; Márquez, Imelda Gálvan; Omidi, Katayoun; Pope, Louise; Devenish, John; Burke, Teresa; Allain, Ray; Leclair, Daniel

    2017-02-01

    A multiplex PCR was developed to identify the two most common serovars of Salmonella causing foodborne illness in Canada, namely, serovars Enteritidis and Typhimurium. The PCR was designed to amplify DNA fragments from four Salmonella genes, namely, invA gene (211-bp fragment), iroB gene (309-bp fragment), Typhimurium STM 4497 (523-bp fragment), and Enteritidis SE147228 (612-bp fragment). In addition, a 1,026-bp ribosomal DNA (rDNA) fragment universally present in bacterial species was included in the assay as an internal control fragment. The detection rate of the PCR was 100% among Salmonella Enteritidis (n = 92) and Salmonella Typhimurium (n = 33) isolates. All tested Salmonella isolates (n = 194) were successfully identified based on the amplification of at least one Salmonella -specific DNA fragment. None of the four Salmonella DNA amplicons were detected in any of the non- Salmonella isolates (n = 126), indicating an exclusivity rate of 100%. When applied to crude extracts of 2,001 field isolates of Salmonella obtained during the course of a national microbiological baseline study in broiler chickens and chicken products sampled from abattoir and retail outlets, 163 isolates, or 8.1%, tested positive for Salmonella Enteritidis and another 80 isolates, or 4.0%, tested as Salmonella Typhimurium. All isolates identified by serological testing as Salmonella Enteritidis in the microbiological study were also identified by using the multiplex PCR. The new test can be used to identify or confirm pure isolates of the two serovars and is also amenable for integration into existing culture procedures for accurate detection of Salmonella colonies.

  1. Salmonella enterica serovar Typhimurium ΔmsbB Triggers Exacerbated Inflammation in Nod2 Deficient Mice

    Science.gov (United States)

    Claes, Anne-Kathrin; Steck, Natalie; Schultz, Dorothee; Zähringer, Ulrich; Lipinski, Simone; Rosenstiel, Philip; Geddes, Kaoru; Philpott, Dana J.; Heine, Holger; Grassl, Guntram A.

    2014-01-01

    The intracellular pathogen Salmonella enterica serovar Typhimurium causes intestinal inflammation characterized by edema, neutrophil influx and increased pro-inflammatory cytokine expression. A major bacterial factor inducing pro-inflammatory host responses is lipopolysaccharide (LPS). S. Typhimurium ΔmsbB possesses a modified lipid A, has reduced virulence in mice, and is being considered as a potential anti-cancer vaccine strain. The lack of a late myristoyl transferase, encoded by MsbB leads to attenuated TLR4 stimulation. However, whether other host receptor pathways are also altered remains unclear. Nod1 and Nod2 are cytosolic pattern recognition receptors recognizing bacterial peptidoglycan. They play important roles in the host's immune response to enteric pathogens and in immune homeostasis. Here, we investigated how deletion of msbB affects Salmonella's interaction with Nod1 and Nod2. S. Typhimurium Δ msbB-induced inflammation was significantly exacerbated in Nod2−/− mice compared to C57Bl/6 mice. In addition, S. Typhimurium ΔmsbB maintained robust intestinal colonization in Nod2−/− mice from day 2 to day 7 p.i., whereas colonization levels significantly decreased in C57Bl/6 mice during this time. Similarly, infection of Nod1−/− and Nod1/Nod2 double-knockout mice revealed that both Nod1 and Nod2 play a protective role in S. Typhimurium ΔmsbB-induced colitis. To elucidate why S. Typhimurium ΔmsbB, but not wild-type S. Typhimurium, induced an exacerbated inflammatory response in Nod2−/− mice, we used HEK293 cells which were transiently transfected with pathogen recognition receptors. Stimulation of TLR2-transfected cells with S. Typhimurium ΔmsbB resulted in increased IL-8 production compared to wild-type S. Typhimurium. Our results indicate that S. Typhimurium ΔmsbB triggers exacerbated colitis in the absence of Nod1 and/or Nod2, which is likely due to increased TLR2 stimulation. How bacteria with “genetically detoxified” LPS

  2. Salmonella enterica serovar Typhimurium lacking hfq gene confers protective immunity against murine typhoid.

    Directory of Open Access Journals (Sweden)

    Uday Shankar Allam

    Full Text Available Salmonella enterica is an important enteric pathogen and its various serovars are involved in causing both systemic and intestinal diseases in humans and domestic animals. The emergence of multidrug-resistant strains of Salmonella leading to increased morbidity and mortality has further complicated its management. Live attenuated vaccines have been proven superior over killed or subunit vaccines due to their ability to induce protective immunity. Of the various strategies used for the generation of live attenuated vaccine strains, focus has gradually shifted towards manipulation of virulence regulator genes. Hfq is a RNA chaperon which mediates the binding of small RNAs to the mRNA and assists in post-transcriptional gene regulation in bacteria. In this study, we evaluated the efficacy of the Salmonella Typhimurium Δhfq strain as a candidate for live oral vaccine in murine model of typhoid fever. Salmonella hfq deletion mutant is highly attenuated in cell culture and animal model implying a significant role of Hfq in bacterial virulence. Oral immunization with the Salmonella hfq deletion mutant efficiently protects mice against subsequent oral challenge with virulent strain of Salmonella Typhimurium. Moreover, protection was induced upon both multiple as well as single dose of immunizations. The vaccine strain appears to be safe for use in pregnant mice and the protection is mediated by the increase in the number of CD4(+ T lymphocytes upon vaccination. The levels of serum IgG and secretory-IgA in intestinal washes specific to lipopolysaccharide and outer membrane protein were significantly increased upon vaccination. Furthermore, hfq deletion mutant showed enhanced antigen presentation by dendritic cells compared to the wild type strain. Taken together, the studies in murine immunization model suggest that the Salmonella hfq deletion mutant can be a novel live oral vaccine candidate.

  3. Ecology and modelling of Escherichia coli O157:H7 and Salmonella enterica serovar Typhimurium in cattle manure and soil

    NARCIS (Netherlands)

    Semenov, A.V.

    2008-01-01

    The number of food poisoning cases caused by enteropathogens has increased in recent years. A significant part of the outbreaks associated with the consumption of raw vegetables has been attributed to Escherichia coli O157:H7 and Salmonella enterica subsp. enterica serovar Typhimurium. Bovine manure

  4. A functional cra gene is required for Salmonella enterica serovar typhimurium virulence in BALB/c mice

    DEFF Research Database (Denmark)

    Allen, J. H.; Utley, M.; Van den Bosch, H.

    2000-01-01

    A minitransposon mutant of Salmonella enterica serovar Typhimurium SR-11, SR-11 Fad(-), is unable to utilize gluconeogenic substrates as carbon sources and is avirulent and immunogenic when administered perorally to BALB/c mice (M. J. Utley et al., FEMS Microbiol. Lett., 163:129-134, 1998). Here...

  5. Transcriptomic analysis of swarm motility phenotype of Salmonella enterica serovar Typhimurium mutant defective in periplasmic glucan synthesis

    Science.gov (United States)

    Movement of food-borne pathogens on moist surfaces enables them to migrate towards more favorable niches and facilitate their survival for extended periods of time. Salmonella enterica serovar Typhimurium mutants defective in OPG synthesis are unable to exhibit motility on moist surfaces (swarming) ...

  6. A rapid and specific detection of pathogenic serovar Salmonella typhimurium by loop-mediated isothermal amplification method (LAMP

    Directory of Open Access Journals (Sweden)

    Hadi Ravan

    2017-09-01

    Discussion and conclusion: As a result of a high sensitivity and specificity of the method as well as its low cost per assay, it could be concluded that the present LAMP assay is a powerful, accurate, and efficient method for detecting pathogenic serovar Salmonella typhimurium in food-processing industries and diagnostic laboratories.

  7. Interactions of Salmonella enterica Serovar Typhimurium and Pectobacterium carotovorum within a Tomato Soft Rot.

    Science.gov (United States)

    George, Andrée S; Cox, Clayton E; Desai, Prerak; Porwolik, Steffen; Chu, Weiping; de Moraes, Marcos H; McClelland, Michael; Brandl, Maria T; Teplitski, Max

    2018-03-01

    Salmonella spp. are remarkably adaptable pathogens, and this adaptability allows these bacteria to thrive in a variety of environments and hosts. The mechanisms with which these pathogens establish within a niche amid the native microbiota remain poorly understood. Here, we aimed to uncover the mechanisms that enable Salmonella enterica serovar Typhimurium strain ATCC 14028 to benefit from the degradation of plant tissue by a soft rot plant pathogen, Pectobacterium carotovorum The hypothesis that in the soft rot, the liberation of starch (not utilized by P. carotovorum ) makes this polymer available to Salmonella spp., thus allowing it to colonize soft rots, was tested first and proven null. To identify the functions involved in Salmonella soft rot colonization, we carried out transposon insertion sequencing coupled with the phenotypic characterization of the mutants. The data indicate that Salmonella spp. experience a metabolic shift in response to the changes in the environment brought on by Pectobacterium spp. and likely coordinated by the csrBC small regulatory RNA. While csrBC and flhD appear to be of importance in the soft rot, the global two-component system encoded by barA sirA (which controls csrBC and flhDC under laboratory conditions) does not appear to be necessary for the observed phenotype. Motility and the synthesis of nucleotides and amino acids play critical roles in the growth of Salmonella spp. in the soft rot. IMPORTANCE Outbreaks of produce-associated illness continue to be a food safety concern. Earlier studies demonstrated that the presence of phytopathogens on produce was a significant risk factor associated with increased Salmonella carriage on fruits and vegetables. Here, we genetically characterize some of the requirements for interactions between Salmonella and phytobacteria that allow Salmonella spp. to establish a niche within an alternate host (tomato). Pathways necessary for nucleotide synthesis, amino acid synthesis, and motility

  8. Influence of the treatment of Listeria monocytogenes and Salmonella enterica serovar Typhimurium with citral on the efficacy of various antibiotics.

    Science.gov (United States)

    Zanini, Surama F; Silva-Angulo, Angela B; Rosenthal, Amauri; Aliaga, Dolores Rodrigo; Martínez, Antonio

    2014-04-01

    The main goal of this work was to study the bacterial adaptive responses to antibiotics induced by sublethal concentration of citral on first-and second-generation cells of Listeria monocytogenes serovar 4b (CECT 4032) and Salmonella enterica serovar Typhimurium (CECT 443). The first-generation cells were not pretreated with citral, while the second-generation cells were obtained from cells previously exposed to citral during 5 h. The trials were conducted at 37°C. The presence of citral in the culture medium and the antibiotic strips resulted in a reduced minimum inhibitory concentration (MIC) for the first-generation cells of Listeria monocytogenes serovar 4b and Salmonella Typhimurium. This result was observed for almost all the antibiotics, compared with the same microorganisms of the control group (without citral), which could represent an additive effect. For Listeria serovar 4b, the second-generation cells of the test group maintained the same susceptibility to antibiotics compared with cells in the control group and in the test group of the first generation. The second-generation cells of the control group indicated that the Salmonella Typhimurium maintained the same sensitivity to the antibiotics tested compared with the first generation of this group, except in the case of erythromycin, which exhibited an increased MIC value. With respect to the second-generation cells of Salmonella Typhimurium, the presence of citral determined a decrease in the antibiotic susceptibility for almost all of the antibiotics, except colistin, compared with the first-generation of the test group, which can be seen by increase of MIC values. In conclusion, the presence of citral in the culture medium of Listeria 4b and Salmonella Typhimurium increased the antibiotic susceptibility of the first generations, while we observed an increase in antibiotic resistance in the second generation of Salmonella Typhimurium.

  9. Salmonella enterica serovars Typhimurium and Enteritidis causing mixed infections in febrile children in Mozambique

    Directory of Open Access Journals (Sweden)

    García V

    2018-01-01

    Full Text Available Vanesa García,1 Inácio Mandomando,2,3 Joaquim Ruiz,4 Silvia Herrera-León,5 Pedro L Alonso,3,4 M Rosario Rodicio1 1Departamento de Biología Funcional, Área de Microbiología, Universidad de Oviedo, Oviedo, Spain; 2Centro de Investigação em Saúde de Manhiça, 3Instituto Nacional de Saúde, Ministério da Saúde, Maputo, Mozambique; 4ISGlobal, Barcelona Centre for International Health Research, Hospital Clínic, Universitat de Barcelona, Barcelona, 5Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain Background and purpose: Invasive nontyphoidal salmonellosis, mostly caused by serovars Typhimurium and Enteritidis of Salmonella enterica, has emerged as a major public health problem in sub-Saharan Africa. The aim of this study was the clinical and microbiological characterization of nontyphoidal salmonellosis episodes affecting febrile children in Mozambique. Patients and methods: The clinical records of the patients were evaluated, and S. enterica isolates were characterized with regard to serovar, phage type, antimicrobial resistance (phenotype/responsible genes, plasmid content, pulsed-field gel electrophoresis, and multilocus sequence typing. Results: Fifteen S. Typhimurium and 21 S. Enteritidis isolates were recovered from blood samples of 25 children, the majority with underlying risk factors. With regard to phage typing, most isolates were either untypeable or reacted but did not conform, revealing that a number of previously unrecognized patterns are circulating in Mozambique. Most isolates were multidrug-resistant, with nearly all of the responsible genes located on derivatives of serovar-specific virulence plasmids. ST313 and ST11 were the predominant sequence types associated with S. Typhimurium and S. Enteritidis, respectively, and the uncommon ST1479 was also detected in S. Enteritidis. A distinct XbaI fragment of ~350 kb was associated with pulsed-field gel electrophoresis patterns of

  10. Salmonella enterica Serovar Typhimurium Skills To Succeed in the Host: Virulence and Regulation

    Science.gov (United States)

    Fàbrega, Anna

    2013-01-01

    SUMMARY Salmonella enterica serovar Typhimurium is a primary enteric pathogen infecting both humans and animals. Infection begins with the ingestion of contaminated food or water so that salmonellae reach the intestinal epithelium and trigger gastrointestinal disease. In some patients the infection spreads upon invasion of the intestinal epithelium, internalization within phagocytes, and subsequent dissemination. In that case, antimicrobial therapy, based on fluoroquinolones and expanded-spectrum cephalosporins as the current drugs of choice, is indicated. To accomplish the pathogenic process, the Salmonella chromosome comprises several virulence mechanisms. The most important virulence genes are those located within the so-called Salmonella pathogenicity islands (SPIs). Thus far, five SPIs have been reported to have a major contribution to pathogenesis. Nonetheless, further virulence traits, such as the pSLT virulence plasmid, adhesins, flagella, and biofilm-related proteins, also contribute to success within the host. Several regulatory mechanisms which synchronize all these elements in order to guarantee bacterial survival have been described. These mechanisms govern the transitions from the different pathogenic stages and drive the pathogen to achieve maximal efficiency inside the host. This review focuses primarily on the virulence armamentarium of this pathogen and the extremely complicated regulatory network controlling its success. PMID:23554419

  11. Oxidoreductases that act as conditional virulence suppressors in Salmonella enterica serovar Typhimurium.

    Directory of Open Access Journals (Sweden)

    Naeem Anwar

    Full Text Available In Salmonella enterica serovar Typhimurium, oxidoreductases of the thioredoxin superfamily contribute to bacterial invasiveness, intracellular replication and to the virulence in BALB/c mice as well as in the soil nematode Caenorhabditis elegans. The scsABCD gene cluster, present in many but not all enteric bacteria, codes for four putative oxidoreductases of the thioredoxin superfamily. Here we have analyzed the potential role of the scs genes in oxidative stress tolerance and virulence in S. Typhimurium. An scsABCD deletion mutant showed moderate sensitization to the redox-active transition metal ion copper and increased protein carbonylation upon exposure to hydrogen peroxide. Still, the scsABCD mutant was not significantly affected for invasiveness or intracellular replication in respectively cultured epithelial or macrophage-like cells. However, we noted a significant copper chloride sensitivity of SPI1 T3SS mediated invasiveness that strongly depended on the presence of the scs genes. The scsABCD deletion mutant was not attenuated in animal infection models. In contrast, the mutant showed a moderate increase in its competitive index upon intraperitoneal challenge and enhanced invasiveness in small intestinal ileal loops of BALB/c mice. Moreover, deletion of the scsABCD genes restored the invasiveness of a trxA mutant in epithelial cells and its virulence in C. elegans. Our findings thus demonstrate that the scs gene cluster conditionally affects virulence and underscore the complex interactions between oxidoreductases of the thioredoxin superfamily in maintaining host adaptation of S. Typhimurium.

  12. Stress Response Protein BolA Influences Fitness and Promotes Salmonella enterica Serovar Typhimurium Virulence.

    Science.gov (United States)

    Mil-Homens, Dalila; Barahona, Susana; Moreira, Ricardo N; Silva, Inês J; Pinto, Sandra N; Fialho, Arsénio M; Arraiano, Cecília M

    2018-04-15

    The intracellular pathogen Salmonella enterica serovar Typhimurium has emerged as a major cause of foodborne illness, representing a severe clinical and economic concern worldwide. The capacity of this pathogen to efficiently infect and survive inside the host depends on its ability to synchronize a complex network of virulence mechanisms. Therefore, the identification of new virulence determinants has become of paramount importance in the search of new targets for drug development. BolA-like proteins are widely conserved in all kingdoms of life. In Escherichia coli , this transcription factor has a critical regulatory role in several mechanisms that are tightly related to bacterial virulence. Therefore, in the present work we used the well-established infection model Galleria mellonella to evaluate the role of BolA protein in S Typhimurium virulence. We have shown that BolA is an important player in S Typhimurium pathogenesis. Specifically, the absence of BolA leads to a defective virulence capacity that is most likely related to the remarkable effect of this protein on S Typhimurium evasion of the cellular response. Furthermore, it was demonstrated that BolA has a critical role in bacterial survival under harsh conditions since BolA conferred protection against acidic and oxidative stress. Hence, we provide evidence that BolA is a determining factor in the ability of Salmonella to survive and overcome host defense mechanisms, and this is an important step in progress to an understanding of the pathways underlying bacterial virulence. IMPORTANCE BolA has been described as an important protein for survival in the late stages of bacterial growth and under harsh environmental conditions. High levels of BolA in stationary phase and under stresses have been connected with a plethora of phenotypes, strongly suggesting its important role as a master regulator. Here, we show that BolA is a determining factor in the ability of Salmonella to survive and overcome host

  13. Three-dimensional tissue assemblies: novel models for the study of Salmonella enterica serovar Typhimurium pathogenesis

    Science.gov (United States)

    Nickerson, C. A.; Goodwin, T. J.; Terlonge, J.; Ott, C. M.; Buchanan, K. L.; Uicker, W. C.; Emami, K.; LeBlanc, C. L.; Ramamurthy, R.; Clarke, M. S.; hide

    2001-01-01

    The lack of readily available experimental systems has limited knowledge pertaining to the development of Salmonella-induced gastroenteritis and diarrheal disease in humans. We used a novel low-shear stress cell culture system developed at the National Aeronautics and Space Administration in conjunction with cultivation of three-dimensional (3-D) aggregates of human intestinal tissue to study the infectivity of Salmonella enterica serovar Typhimurium for human intestinal epithelium. Immunohistochemical characterization and microscopic analysis of 3-D aggregates of the human intestinal epithelial cell line Int-407 revealed that the 3-D cells more accurately modeled human in vivo differentiated tissues than did conventional monolayer cultures of the same cells. Results from infectivity studies showed that Salmonella established infection of the 3-D cells in a much different manner than that observed for monolayers. Following the same time course of infection with Salmonella, 3-D Int-407 cells displayed minimal loss of structural integrity compared to that of Int-407 monolayers. Furthermore, Salmonella exhibited significantly lower abilities to adhere to, invade, and induce apoptosis of 3-D Int-407 cells than it did for infected Int-407 monolayers. Analysis of cytokine expression profiles of 3-D Int-407 cells and monolayers following infection with Salmonella revealed significant differences in expression of interleukin 1alpha (IL-1alpha), IL-1beta, IL-6, IL-1Ra, and tumor necrosis factor alpha mRNAs between the two cultures. In addition, uninfected 3-D Int-407 cells constitutively expressed higher levels of transforming growth factor beta1 mRNA and prostaglandin E2 than did uninfected Int-407 monolayers. By more accurately modeling many aspects of human in vivo tissues, the 3-D intestinal cell model generated in this study offers a novel approach for studying microbial infectivity from the perspective of the host-pathogen interaction.

  14. aroA-Deficient Salmonella enterica Serovar Typhimurium Is More Than a Metabolically Attenuated Mutant

    Science.gov (United States)

    Frahm, Michael; Kocijancic, Dino; Rohde, Manfred; Eckweiler, Denitsa; Bielecka, Agata; Bueno, Emilio; Cava, Felipe; Abraham, Wolf-Rainer; Curtiss, Roy; Häussler, Susanne; Erhardt, Marc; Weiss, Siegfried

    2016-01-01

    ABSTRACT Recombinant attenuated Salmonella enterica serovar Typhimurium strains are believed to act as powerful live vaccine carriers that are able to elicit protection against various pathogens. Auxotrophic mutations, such as a deletion of aroA, are commonly introduced into such bacteria for attenuation without incapacitating immunostimulation. In this study, we describe the surprising finding that deletion of aroA dramatically increased the virulence of attenuated Salmonella in mouse models. Mutant bacteria lacking aroA elicited increased levels of the proinflammatory cytokine tumor necrosis factor alpha (TNF-α) after systemic application. A detailed genetic and phenotypic characterization in combination with transcriptomic and metabolic profiling demonstrated that ΔaroA mutants display pleiotropic alterations in cellular physiology and lipid and amino acid metabolism, as well as increased sensitivity to penicillin, complement, and phagocytic uptake. In concert with other immunomodulating mutations, deletion of aroA affected flagellin phase variation and gene expression of the virulence-associated genes arnT and ansB. Finally, ΔaroA strains displayed significantly improved tumor therapeutic activity. These results highlight the importance of a functional shikimate pathway to control homeostatic bacterial physiology. They further highlight the great potential of ΔaroA-attenuated Salmonella for the development of vaccines and cancer therapies with important implications for host-pathogen interactions and translational medicine. PMID:27601574

  15. Analysis of Spleen-Induced Fimbria Production in Recombinant Attenuated Salmonella enterica Serovar Typhimurium Vaccine Strains

    Directory of Open Access Journals (Sweden)

    Paweł Łaniewski

    2017-08-01

    Full Text Available Salmonella enterica serovar Typhimurium genome encodes 13 fimbrial operons. Most of the fimbriae encoded by these operons are not produced under laboratory conditions but are likely to be synthesized in vivo. We used an in vivo expression technology (IVET strategy to identify four fimbrial operons, agf, saf, sti, and stc that are expressed in the spleen. When any three of these operons were deleted, the strain retained wild-type virulence. However, when all four operons were deleted, the resulting strain was completely attenuated, indicating that these four fimbriae play functionally redundant roles critical for virulence. In mice, oral doses of as low as 1 × 105 CFU of the strain with four fimbrial operons deleted provided 100% protection against challenge with 1 × 109 CFU of wild-type S. Typhimurium. We also examined the possible effect of these fimbriae on the ability of a Salmonella vaccine strain to deliver a guest antigen. We modified one of our established attenuated vaccine strains, χ9088, to delete three fimbrial operons while the fourth operon was constitutively expressed. Each derivative was modified to express the Streptococcus pneumoniae antigen PspA. Strains that constitutively expressed saf or stc elicited a strong Th1 response with significantly greater levels of anti-PspA serum IgG and greater protective efficacy than strains carrying saf or stc deletions. The isogenic strain in which all four operons were deleted generated the lowest anti-PspA levels and did not protect against challenge with virulent S. pneumoniae. Our results indicate that these fimbriae play important roles, as yet not understood, in Salmonella virulence and immunogenicity.

  16. Control of virulence gene transcription by indirect readout in Vibrio cholerae and Salmonella enterica serovar Typhimurium.

    Science.gov (United States)

    Dorman, Charles J; Dorman, Matthew J

    2017-10-01

    Indirect readout mechanisms of transcription control rely on the recognition of DNA shape by transcription factors (TFs). TFs may also employ a direct readout mechanism that involves the reading of the base sequence in the DNA major groove at the binding site. TFs with winged helix-turn-helix (wHTH) motifs use an alpha helix to read the base sequence in the major groove while inserting a beta sheet 'wing' into the adjacent minor groove. Such wHTH proteins are important regulators of virulence gene transcription in many pathogens; they also control housekeeping genes. This article considers the cases of the non-invasive Gram-negative pathogen Vibrio cholerae and the invasive pathogen Salmonella enterica serovar Typhimurium. Both possess clusters of A + T-rich horizontally acquired virulence genes that are silenced by the nucleoid-associated protein H-NS and regulated positively or negatively by wHTH TFs: for example, ToxR and LeuO in V. cholerae; HilA, LeuO, SlyA and OmpR in S. Typhimurium. Because of their relatively relaxed base sequence requirements for target recognition, indirect readout mechanisms have the potential to engage regulatory proteins with many more targets than might be the case using direct readout, making indirect readout an important, yet often ignored, contributor to the expression of pathogenic phenotypes. © 2017 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.

  17. Characterization of a Monoclonal Antibody Directed against Salmonella enterica Serovar Typhimurium and Serovar [4,5,12:i:−] ▿

    Science.gov (United States)

    Rementeria, A.; Vivanco, A. B.; Ramirez, A.; Hernando, F. L.; Bikandi, J.; Herrera-León, S.; Echeita, A.; Garaizar, J.

    2009-01-01

    Flagellar extracts of Salmonella enterica serovars expressing phase 2 H1 antigenic complex (H:1,2, H:1,5, H:1,6, and H:1,7) and a mutant flagellin obtained by site-directed mutagenesis of the fljB gene from serovar Typhimurium at codon 218, transforming threonine to alanine, expressed in Escherichia coli (fljB218A) were used to analyze the H1 antigenic complex. Cross-reactions were detected by Western blotting and dot blotting using commercial polyclonal antibodies against the different wild-type extracts and mutant FljB218A. Therefore, we produced a monoclonal antibody (MAb), 23D4, isotyped as immunoglobulin M, against H:1,2 S. enterica serovar Typhimurium flagellin. The mutant flagellin was not recognized by this MAb. When a large number of phase 1 and phase 2 flagellin antigens of different serovars were used to characterize the 23D4 MAb, only extracts of serovars Typhimurium and [4,5,12:i:−] reacted. The protein composition of phase 1 and phase 2 extracts and highly purified H:1,2 flagellin from serovar Typhimurium strain LT2 and extract of strain 286 (serovar [4,5,12:i:−]), which reacted with the MAb, was studied. Phase 2 flagellin (FljBH:1,2) was detected in phase 1 and phase 2 flagellar heat extracts of serovar Typhimurium and was the single protein identified in all spots of purified H:1,2 flagellin. FliC, FlgK, and other proteins were detected in some immunoreactive spots and in the flagellar extract of serovar [4,5,12:i:−]. Immunoelectron microscopy of complete bacteria with 23D4 showed MAb attachment at the base of flagella, although the MAb failed to recognize the filament of flagella. Nevertheless, the results obtained by the other immunological tests (enzyme-linked immunosorbent assay, Western blotting, and dot blotting) indicate a reaction against flagellins. The epitopes could also be shared by other proteins on spots where FljB is not present, such as aminopeptidase B, isocitrate lyase, InvE, EF-TuA, enolase, DnaK, and others. In conclusion

  18. Involvement of SPI-2-encoded SpiC in flagellum synthesis in Salmonella enterica serovar Typhimurium

    Directory of Open Access Journals (Sweden)

    Sugita Asami

    2009-08-01

    Full Text Available Abstract Background SpiC encoded within Salmonella pathogenicity island 2 on the Salmonella enterica serovar Typhimurium chromosome is required for survival within macrophages and systemic infection in mice. Additionally, SpiC contributes to Salmonella-induced activation of the signal transduction pathways in macrophages by affecting the expression of FliC, a component of flagella filaments. Here, we show the contribution of SpiC in flagellum synthesis. Results Quantitative RT-PCR shows that the expression levels of the class 3 fliD and motA genes that encode for the flagella cap and motor torque proteins, respectively, were lower for a spiC mutant strain than for the wild-type Salmonella. Further, this mutant had lower expression levels of the class 2 genes including the fliA gene encoding the flagellar-specific alternative sigma factor. We also found differences in flagella assembly between the wild-type strain and the spiC mutant. Many flagella filaments were observed on the bacterial surface of the wild-type strain, whereas the spiC mutant had only few flagella. The absence of spiC led to reduced expression of the FlhD protein, which functions as the master regulator in flagella gene expression, although no significant difference at the transcription level of the flhDC operon was observed between the wild-type strain and the spiC mutant. Conclusion The data show that SpiC is involved in flagella assembly by affecting the post-transcription expression of flhDC.

  19. Role of Nod1 in mucosal dendritic cells during Salmonella pathogenicity island 1-independent Salmonella enterica serovar Typhimurium infection.

    Science.gov (United States)

    Le Bourhis, Lionel; Magalhaes, Joao Gamelas; Selvanantham, Thirumahal; Travassos, Leonardo H; Geddes, Kaoru; Fritz, Jörg H; Viala, Jérôme; Tedin, Karsten; Girardin, Stephen E; Philpott, Dana J

    2009-10-01

    Recent advances in immunology have highlighted the critical function of pattern-recognition molecules (PRMs) in generating the innate immune response to effectively target pathogens. Nod1 and Nod2 are intracellular PRMs that detect peptidoglycan motifs from the cell walls of bacteria once they gain access to the cytosol. Salmonella enterica serovar Typhimurium is an enteric intracellular pathogen that causes a severe disease in the mouse model. This pathogen resides within vacuoles inside the cell, but the question of whether cytosolic PRMs such as Nod1 and Nod2 could have an impact on the course of S. Typhimurium infection in vivo has not been addressed. Here, we show that deficiency in the PRM Nod1, but not Nod2, resulted in increased susceptibility toward a mutant strain of S. Typhimurium that targets directly lamina propria dendritic cells (DCs) for its entry into the host. Using this bacterium and bone marrow chimeras, we uncovered a surprising role for Nod1 in myeloid cells controlling bacterial infection at the level of the intestinal lamina propria. Indeed, DCs deficient for Nod1 exhibited impaired clearance of the bacteria, both in vitro and in vivo, leading to increased organ colonization and decreased host survival after oral infection. Taken together, these findings demonstrate a key role for Nod1 in the host response to an enteric bacterial pathogen through the modulation of intestinal lamina propria DCs.

  20. Higher Storage Temperature Causes Greater Salmonella enterica Serovar Typhimurium Internal Penetration of Artificially Contaminated, Commercially Available, Washed Free Range Eggs.

    Science.gov (United States)

    Whiley, Alice; Fallowfield, Howard; Ross, Kirstin; McEvoy, Vanessa; Whiley, Harriet

    2016-07-01

    Foodborne salmonellosis is a major public health concern, with contaminated eggs identified as a significant source of infection. In Australia, the most prevalent cause of salmonellosis from eggs is Salmonella enterica subsp. enterica serovar Typhimurium. This study explored the effect of temperature after 1, 7, 14, 21, and 28 days of storage on commercially available washed free range eggs, artificially contaminated with Salmonella Typhimurium on the external surface. At each time point, the external surface of the egg, the crushed eggshell, and the internal egg yolk and albumen were analyzed for Salmonella. After 28 days of storage, 25% of eggs stored at 4°C, 50% of eggs stored at 14°C, and 100% of eggs stored at 23 and 35°C were internally contaminated with Salmonella. After 1 day of storage, more than 50% of all eggs had Salmonella present in the crushed shell after the external surface had been disinfected with ethanol. This is the first study to demonstrate that refrigeration reduced the potential for Salmonella Typhimurium to penetrate the eggshell membrane and internally contaminate table eggs commercially available in Australia. It also suggests that the processes of cracking eggs may be a source of cross-contamination within the kitchen.

  1. The Base Excision Repair system of Salmonella enterica serovar typhimurium counteracts DNA damage by host nitric oxide.

    Directory of Open Access Journals (Sweden)

    Anthony R Richardson

    2009-05-01

    Full Text Available Intracellular pathogens must withstand nitric oxide (NO. generated by host phagocytes. Salmonella enterica serovar Typhimurium interferes with intracellular trafficking of inducible nitric oxide synthase (iNOS and possesses multiple systems to detoxify NO.. Consequently, the level of NO. stress encountered by S. Typhimurium during infection in vivo has been unknown. The Base Excision Repair (BER system recognizes and repairs damaged DNA bases including cytosine and guanine residues modified by reactive nitrogen species. Apurinic/apyrimidinic (AP sites generated by BER glycosylases require subsequent processing by AP endonucleases. S. Typhimurium xth nfo mutants lacking AP endonuclease activity exhibit increased NO. sensitivity resulting from chromosomal fragmentation at unprocessed AP sites. BER mutant strains were thus used to probe the nature and extent of nitrosative damage sustained by intracellular bacteria during infection. Here we show that an xth nfo S. Typhimurium mutant is attenuated for virulence in C3H/HeN mice, and virulence can be completely restored by the iNOS inhibitor L-NIL. Inactivation of the ung or fpg glycosylase genes partially restores virulence to xth nfo mutant S. Typhimurium, demonstrating that NO. fluxes in vivo are sufficient to modify cytosine and guanine bases, respectively. Mutants lacking ung or fpg exhibit NO.-dependent hypermutability during infection, underscoring the importance of BER in protecting Salmonella from the genotoxic effects of host NO.. These observations demonstrate that host-derived NO. damages Salmonella DNA in vivo, and the BER system is required to maintain bacterial genomic integrity.

  2. Salmonella Enterica Serovar Typhimurium BipA Exhibits Two Distinct Ribosome Binding Modes

    Energy Technology Data Exchange (ETDEWEB)

    deLivron, M.; Robinson, V

    2008-01-01

    BipA is a highly conserved prokaryotic GTPase that functions to influence numerous cellular processes in bacteria. In Escherichia coli and Salmonella enterica serovar Typhimurium, BipA has been implicated in controlling bacterial motility, modulating attachment and effacement processes, and upregulating the expression of virulence genes and is also responsible for avoidance of host defense mechanisms. In addition, BipA is thought to be involved in bacterial stress responses, such as those associated with virulence, temperature, and symbiosis. Thus, BipA is necessary for securing bacterial survival and successful invasion of the host. Steady-state kinetic analysis and pelleting assays were used to assess the GTPase and ribosome-binding properties of S. enterica BipA. Under normal bacterial growth, BipA associates with the ribosome in the GTP-bound state. However, using sucrose density gradients, we demonstrate that the association of BipA and the ribosome is altered under stress conditions in bacteria similar to those experienced during virulence. The data show that this differential binding is brought about by the presence of ppGpp, an alarmone that signals the onset of stress-related events in bacteria.

  3. Phenotype microarray analysis of the drug efflux systems in Salmonella enterica serovar Typhimurium.

    Science.gov (United States)

    Yamasaki, Seiji; Fujioka, Takuma; Hayashi, Katsuhiko; Yamasaki, Suguru; Hayashi-Nishino, Mitsuko; Nishino, Kunihiko

    2016-11-01

    A large number of drug efflux transporters have been identified in Salmonella enterica serovar Typhimurium, and increased expression of these transporters confers drug resistance in this organism. Here we compared the respiration activities of the wild-type strain and a mutant with nine deleted transporters by phenotype microarray analysis. The mutant was susceptible to 66 structurally unrelated compounds including many antibiotics, dyes, detergents, antihistamine agents, plant alkaloids, antidepressants, antipsychotic drugs, and antiprotozoal drugs. To investigate the effect of each transporter on the susceptibilities to these drugs, we used the single transporter mutants, several multiple deletion mutants, and the transporter overexpressor strains to determine minimum inhibitory concentrations of ampicillin, erythromycin, minocycline, ciprofloxacin, orphenadrine, amitriptyline, thioridazine, and chlorpromazine. The data indicate that the increased susceptibilities of the mutant lacking nine transporter genes are mainly dependent on the absence of the acrAB efflux genes as well as the tolC gene. In addition to the AcrAB-TolC efflux system, the results from the overexpressor strains show that AcrEF confers resistance to these compounds as well as AcrAB of Escherichia coli, MexAB-OprM and MexXY-OprM of Pseudomonas aeruginosa. The results highlight the importance of the efflux systems not only for resistance to antibiotics but also for resistance to antihistamine agents, plant alkaloids, antidepressants, antipsychotic drugs, and antiprotozoal drugs. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  4. Contribution of Target Gene Mutations and Efflux to Decreased Susceptibility of Salmonella enterica Serovar Typhimurium to Fluoroquinolones and Other Antimicrobials▿

    Science.gov (United States)

    Chen, Sheng; Cui, Shenghui; McDermott, Patrick F.; Zhao, Shaohua; White, David G.; Paulsen, Ian; Meng, Jianghong

    2007-01-01

    The mechanisms involved in fluoroquinolone resistance in Salmonella enterica include target alterations and overexpression of efflux pumps. The present study evaluated the role of known and putative multidrug resistance efflux pumps and mutations in topoisomerase genes among laboratory-selected and naturally occurring fluoroquinolone-resistant Salmonella enterica serovar Typhimurium strains. Strains with ciprofloxacin MICs of 0.25, 4, 32, and 256 μg/ml were derived in vitro using serovar Typhimurium S21. These mutants also showed decreased susceptibility or resistance to many nonfluoroquinolone antimicrobials, including tetracycline, chloramphenicol, and several β-lactams. The expression of efflux pump genes acrA, acrB, acrE, acrF, emrB, emrD, and mdlB were substantially increased (≥2-fold) among the fluoroquinolone-resistant mutants. Increased expression was also observed, but to a lesser extent, with three other putative efflux pumps: mdtB (yegN), mdtC (yegO), and emrA among mutants with ciprofloxacin MICs of ≥32 μg/ml. Deletion of acrAB or tolC in S21 and its fluoroquinolone-resistant mutants resulted in increased susceptibility to fluoroquinolones and other tested antimicrobials. In naturally occurring fluoroquinolone-resistant serovar Typhimurium strains, deletion of acrAB or tolC increased fluoroquinolone susceptibility 4-fold, whereas replacement of gyrA double mutations (S83F D87N) with wild-type gyrA increased susceptibility >500-fold. These results indicate that a combination of topoisomerase gene mutations, as well as enhanced antimicrobial efflux, plays a critical role in the development of fluoroquinolone resistance in both laboratory-derived and naturally occurring quinolone-resistant serovar Typhimurium strains. PMID:17043131

  5. SopB of Salmonella enterica serovar Typhimurium is a potential DNA vaccine candidate in conjugation with live attenuated bacteria.

    Science.gov (United States)

    Nagarajan, Arvindhan G; Balasundaram, Sudhagar V; Janice, Jessin; Karnam, Guruswamy; Eswarappa, Sandeepa M; Chakravortty, Dipshikha

    2009-05-11

    The immune response against Salmonella is multi-faceted involving both the innate and the adaptive immune system. The characterization of specific Salmonella antigens inducing immune response could critically contribute to the development of epitope based vaccines for Salmonella. We have tried to identify a protective T cell epitope(s) of Salmonella, as cell mediated immunity conferred by CD8+ T cells is the most crucial subset conferring protective immunity against Salmonella. It being a proven fact that secreted proteins are better in inducing cell mediated immunity than cell surface and cytosolic antigens, we have analyzed all the genbank annotated Salmonella pathogenicity island 1 and 2 secreted proteins of Salmonella enterica serovar Typhimurium (S. typhimurium) and S. enterica serovar Typhi (S. typhi). They were subjected to BIMAS and SYFPEITHI analysis to map MHC-I and MHC-II binding epitopes. The huge profile of possible T cell epitopes obtained from the two classes of secreted proteins were tabulated and using a scoring system that considers the binding affinity and promiscuity of binding to more than one allele, SopB and SifB were chosen for experimental confirmation in murine immunization model. The entire SopB and SifB genes were cloned into DNA vaccine vectors and were administered along with live attenuated Salmonella and it was found that SopB vaccination reduced the bacterial burden of organs by about 5-fold on day 4 and day 8 after challenge with virulent Salmonella and proved to be a more efficient vaccination strategy than live attenuated bacteria alone.

  6. Characterization and differential gene expression between two phenotypic phase variants in Salmonella enterica serovar Typhimurium.

    Directory of Open Access Journals (Sweden)

    Sheila K Patterson

    Full Text Available Salmonella enterica serovar Typhimurium strain 798 has previously been shown to undergo phenotypic phase variation. One of the phenotypes expresses virulence traits such as adhesion, while the other phenotype does not. Phenotypic phase variation appears to correlate with the ability of this strain to cause persistent, asymptomatic infections of swine. A new method to detect cells in either phenotypic phase was developed using Evans Blue-Uranine agar plates. Using this new assay, rates of phenotypic phase variation were obtained. The rate of phase variation from non-adhesive to adhesive phenotype was approximately 10(-4 per cell per generation while phase variation from the adhesive to the non-adhesive phenotype was approximately 10(-6 per cell per generation. Two highly virulent S. Typhimurium strains, SL1344 and ATCC 14028, were also shown to undergo phase variation. However, while the rate from adhesive to non-adhesive phenotype was approximately the same as for strain 798, the non-adhesive to adhesive phenotype shift was 37-fold higher. Differential gene expression was measured using RNA-Seq. Eighty-three genes were more highly expressed by 798 cells in the adhesive phenotype compared to the non-adhesive cells. Most of the up-regulated genes were in virulence genes and in particular all genes in the Salmonella pathogenicity island 1 were up-regulated. When compared to the virulent strain SL1344, expression of the virulence genes was approximately equal to those up-regulated in the adhesive phenotype of strain 798. A comparison of invasive ability demonstrated that strain SL1344 was the most invasive followed by the adhesive phenotype of strain 798, then the non-adhesive phenotype of strain 798. The least invasive strain was ATCC 14028. The genome of strain 798 was sequenced and compared to SL1344. Both strains had very similar genome sequences and gene deletions could not readily explain differences in the rates of phase variation from non

  7. Divergent roles of Salmonella pathogenicity island 2 and metabolic traits during interaction of S. enterica serovar typhimurium with host cells.

    Directory of Open Access Journals (Sweden)

    Stefanie U Hölzer

    Full Text Available The molecular mechanisms of virulence of the gastrointestinal pathogen Salmonella enterica are commonly studied using cell culture models of infection. In this work, we performed a direct comparison of the interaction of S. enterica serovar Typhimurium (S. Typhimurium with the non-polarized epithelial cell line HeLa, the polarized cell lines CaCo2, T84 and MDCK, and macrophage-like RAW264.7 cells. The ability of S. Typhimurium wild-type and previously characterized auxotrophic mutant strains to enter host cells, survive and proliferate within mammalian cells and deploy the Salmonella Pathogenicity Island 2-encoded type III secretion system (SPI2-T3SS was quantified. We found that the entry of S. Typhimurium into polarized cells was much more efficient than entry into non-polarized cells or phagocytic uptake. While SPI2-T3SS dependent intracellular proliferation was observed in HeLa and RAW cells, the intracellular replication in polarized cells was highly restricted and not affected by defective SPI2-T3SS. The contribution of aromatic amino acid metabolism and purine biosynthesis to intracellular proliferation was distinct in the various cell lines investigated. These observations indicate that the virulence phenotypes of S. Typhimurium are significantly affected by the cell culture model applied.

  8. Salmonella enterica serovar Typhimurium infection-induced CD11b+ Gr1+ cells ameliorate allergic airway inflammation.

    Science.gov (United States)

    Ganesh, Venkateswaran; Baru, Abdul Mannan; Hesse, Christina; Friedrich, Christin; Glage, Silke; Gohmert, Melanie; Jänke, Christine; Sparwasser, Tim

    2014-03-01

    Allergies are mainly characterized as an unrestrained Th2-biased immune response. Epidemiological data associate protection from allergic diseases with the exposure to certain infectious agents during early stages of life. Modulation of the immune response by pathogens has been considered to be a major factor influencing this protection. Recent evidence indicates that immunoregulatory mechanisms induced upon infection ameliorate allergic disorders. A longitudinal study has demonstrated reduced frequency and incidence of asthma in children who reported a prior infection with Salmonella. Experimental studies involving Salmonella enterica serovar Typhimurium-infected murine models have confirmed protection from induced allergic airway inflammation; however, the underlying cause leading to this amelioration remains incompletely defined. In this study, we aimed to delineate the regulatory function of Salmonella Typhimurium infection in the amelioration of allergic airway inflammation in mice. We observed a significant increase in CD11b+ Gr1+ myeloid cell populations in mice after infection with S. Typhimurium. Using in vitro and in vivo studies, we confirmed that these myeloid cells reduce airway inflammation by influencing Th2 cells. Further characterization showed that the CD11b+ Gr1+ myeloid cells exhibited their inhibitory effect by altering GATA-3 expression and interleukin-4 (IL-4) production by Th2 cells. These results indicate that the expansion of myeloid cells upon S. Typhimurium infection could potentially play a significant role in curtailing allergic airway inflammation. These findings signify the contribution of myeloid cells in preventing Th2-mediated diseases and suggest their possible application as therapeutics.

  9. Adjuvant effect of a probiotic fermented milk in the protection against Salmonella enteritidis serovar typhimurium infection: mechanisms involved.

    Science.gov (United States)

    De Moreno De Leblanc, A; Maldonado Galdeano, C; Dogi, C A; Carmuega, E; Weill, R; Perdigón, G

    2010-01-01

    Probiotics may offer protection against Salmonella enteritidis serovar Typhimurium infection via different mechanisms. The aim of this study is to investigate, using mouse models, the effect of the administration of fermented milk containing the probiotic bacteria L. casei DN-114 001 in the protection against Salmonella enteritidis serovar Typhimurium when this product is administered continuously before and after infection or only post-infection. The adjuvant effect of this probiotic fermented milk (PFM) against S. Typhimurium was also evaluated in newborn mice, whose mothers received the PFM during the suckling period or their offspring after weaning. The results obtained showed that PFM administration after salmonella infection was useful to decrease the severity of the infection. The best effect was obtained with continuous PFM administration. In the newborn mice model, PFM administration to the newborn mice after weaning showed the best effect against the pathogen. PFM administration to the mother during the suckling period was beneficial against this enterophatogen when their offspring did not receive probiotics after weaning. Continuous PFM administration to adult mice (before and after infection) was important to maintain the intestinal barrier and the immune surveillance in optimal conditions to diminish the pathway of entrance of salmonella and the spread of this pathogen to deeper tissues. In the newborn mice model, it was observed that PFM administration to the offspring after weaning or their mother during the suckling period had a protective effect against salmonella infection, however, in the mice from mothers that received PFM during nursing which were fed with PFM after weaning, we found a down regulated immune maturity that was not protective against this infection.

  10. Genomic Comparison of Non-Typhoidal Salmonella enterica Serovars Typhimurium, Enteritidis, Heidelberg, Hadar and Kentucky Isolates from Broiler Chickens.

    Science.gov (United States)

    Dhanani, Akhilesh S; Block, Glenn; Dewar, Ken; Forgetta, Vincenzo; Topp, Edward; Beiko, Robert G; Diarra, Moussa S

    2015-01-01

    Non-typhoidal Salmonella enterica serovars, associated with different foods including poultry products, are important causes of bacterial gastroenteritis worldwide. The colonization of the chicken gut by S. enterica could result in the contamination of the environment and food chain. The aim of this study was to compare the genomes of 25 S. enterica serovars isolated from broiler chicken farms to assess their intra- and inter-genetic variability, with a focus on virulence and antibiotic resistance characteristics. The genomes of 25 S. enterica isolates covering five serovars (ten Typhimurium including three monophasic 4,[5],12:i:, four Enteritidis, three Hadar, four Heidelberg and four Kentucky) were sequenced. Most serovars were clustered in strongly supported phylogenetic clades, except for isolates of serovar Enteritidis that were scattered throughout the tree. Plasmids of varying sizes were detected in several isolates independently of serovars. Genes associated with the IncF plasmid and the IncI1 plasmid were identified in twelve and four isolates, respectively, while genes associated with the IncQ plasmid were found in one isolate. The presence of numerous genes associated with Salmonella pathogenicity islands (SPIs) was also confirmed. Components of the type III and IV secretion systems (T3SS and T4SS) varied in different isolates, which could explain in part, differences of their pathogenicity in humans and/or persistence in broilers. Conserved clusters of genes in the T3SS were detected that could be used in designing effective strategies (diagnostic, vaccination or treatments) to combat Salmonella. Antibiotic resistance genes (CMY, aadA, ampC, florR, sul1, sulI, tetAB, and srtA) and class I integrons were detected in resistant isolates while all isolates carried multidrug efflux pump systems regardless of their antibiotic susceptibility profile. This study showed that the predominant Salmonella serovars in broiler chickens harbor genes encoding adhesins

  11. The Homolog of the GenebstAof the BTP1 Phage from Salmonella enterica Serovar Typhimurium ST313 Is an Antivirulence Gene in Salmonella enterica Serovar Dublin.

    Science.gov (United States)

    Herrero-Fresno, Ana; Espinel, Irene Cartas; Spiegelhauer, Malene Roed; Guerra, Priscila Regina; Andersen, Karsten Wiber; Olsen, John Elmerdahl

    2018-01-01

    In a previous study, a novel virulence gene, bstA , identified in a Salmonella enterica serovar Typhimurium sequence type 313 (ST313) strain was found to be conserved in all published Salmonella enterica serovar Dublin genomes. In order to analyze the role of this gene in the host-pathogen interaction in S Dublin, a mutant where this gene was deleted ( S Dublin Δ bstA ) and a mutant which was further genetically complemented with bstA ( S Dublin 3246-C) were constructed and tested in models of in vitro and in vivo infection as well as during growth competition assays in M9 medium, Luria-Bertani broth, and cattle blood. In contrast to the results obtained for a strain of S Typhimurium ST313, the lack of bstA was found to be associated with increased virulence in S Dublin. Thus, S Dublin Δ bstA showed higher levels of uptake than the wild-type strain during infection of mouse and cattle macrophages and higher net replication within human THP-1 cells. Furthermore, during mouse infections, S Dublin Δ bstA was more virulent than the wild type following a single intraperitoneal infection and showed an increased competitive index during competitive infection assays. Deletion of bstA did not affect either the amount of cytokines released by THP-1 macrophages or the cytotoxicity toward these cells. The histology of the livers and spleens of mice infected with the wild-type strain and the S Dublin Δ bstA mutant revealed similar levels of inflammation between the two groups. The gene was not important for adherence to or invasion of human epithelial cells and did not influence bacterial growth in rich medium, minimal medium, or cattle blood. In conclusion, a lack of bstA affects the pathogenicity of S Dublin by decreasing its virulence. Therefore, it might be regarded as an antivirulence gene in this serovar. Copyright © 2017 American Society for Microbiology.

  12. Salmonella DIVA vaccine reduces disease, colonization and shedding due to virulent S. Typhimurium infection in swine

    Science.gov (United States)

    Non-host adapted Salmonella serovars are opportunistic pathogens that can colonize food-producing animals without causing overt disease, including the frequent foodborne pathogen Salmonella enterica serovar Typhimurium (S. Typhimurium). Interventions against Salmonella need to both enhance food safe...

  13. Acid resistance variability among isolates of Salmonella enterica serovar Typhimurium DT104

    NARCIS (Netherlands)

    Berk, P.A.; Jonge, de R.; Zwietering, M.H.; Abee, T.; Kieboom, J.

    2005-01-01

    Aims: Acid resistance could be an indicator of virulence since acid resistant strains are able to better survive the human stomach passage and in macrophages. We studied the acid resistance of several Salmonella Typhimurium DT104 strains isolated from food and humans and identified cellular

  14. The transcriptional landscape and small RNAs of Salmonella enterica serovar Typhimurium

    DEFF Research Database (Denmark)

    Kröger, Carsten; Dillon, Shane C.; Cameron, Andrew D. S.

    2012-01-01

    for Salmonella infection, but basic genetic information such as the global locations of transcription start sites (TSSs) has been lacking. We combined three RNA-sequencing techniques and two sequencing platforms to generate a robust picture of transcription in S. Typhimurium. Differential RNA sequencing...

  15. Effects of P22 bacteriophage on salmonella Enterica subsp. enterica serovar Typhimurium DMC4 strain biofilm formation and eradication

    Directory of Open Access Journals (Sweden)

    Karaca Basar

    2015-01-01

    Full Text Available Over the last decades, several antimicrobial agents have been made available. Due to increasing antimicrobial resistance, bacteriophages were rediscovered for their potential applications against bacterial infections. In the present study, biofilm inhibition and eradication of Salmonella enterica subsp. enterica serovar Typhimurium DMC4 strain (S. Typhimurium was evaluated with respect to different incubation periods at different P22 phage titrations. The efficacy of P22 phage on biofilm formation and eradication of S. Typhimurium DMC4 strain was screened in vitro on polystyrene and stainless steel surfaces. The biofilm forming capacity of S. Typhimurium was significantly reduced at higher phage titrations (106 pfu/mL ≤. All phage titers (104-108 pfu/mL were found to be effective at the end of the 24 h-incubation period whereas higher phage titrations were found to be effective at the end of the 48 h and 72 h of incubation. P22 phage has less efficacy on already formed, especially mature biofilms (72 h-old biofilm. Notable results of P22 phage treatment on S. Typhimurium biofilm suggest that P22 phage has potential uses in food systems.

  16. Whole genome sequencing of multidrug-resistant Salmonella enterica serovar Typhimurium isolated from humans and poultry in Burkina Faso.

    Science.gov (United States)

    Kagambèga, Assèta; Lienemann, Taru; Frye, Jonathan G; Barro, Nicolas; Haukka, Kaisa

    2018-01-01

    Multidrug-resistant Salmonella is an important cause of morbidity and mortality in developing countries. The aim of this study was to characterize and compare multidrug-resistant Salmonella enterica serovar Typhimurium isolates from patients and poultry feces. Salmonella strains were isolated from poultry and patients using standard bacteriological methods described in previous studies. The strains were serotype according to Kaufmann-White scheme and tested for antibiotic susceptibility to 12 different antimicrobial agents using the disk diffusion method. The whole genome of the S. Typhimurium isolates was analyzed using Illumina technology and compared with 20 isolates of S. Typhimurium for which the ST has been deposited in a global MLST database.The ResFinder Web server was used to find the antibiotic resistance genes from whole genome sequencing (WGS) data. For comparative genomics, publicly available complete and draft genomes of different S. Typhimurium laboratory-adapted strains were downloaded from GenBank. All the tested Salmonella serotype Typhimurium were multiresistant to five commonly used antibiotics (ampicillin, chloramphenicol, streptomycin, sulfonamide, and trimethoprim). The multilocus sequence type ST313 was detected from all the strains. Our sequences were very similar to S. Typhimurium ST313 strain D23580 isolated from a patient with invasive non-typhoid Salmonella (NTS) infection in Malawi, also located in sub-Saharan Africa. The use of ResFinder web server on the whole genome of the strains showed a resistance to aminoglycoside associated with carriage of the following resistances genes: strA , strB , and aadA1 ; resistance to β-lactams associated with carriage of a bla TEM-1B genes; resistance to phenicol associated with carriage of catA1 gene; resistance to sulfonamide associated with carriage of sul1 and sul2 genes; resistance to tetracycline associated with carriage of tet B gene; and resistance to trimethoprim associated to dfrA1 gene

  17. Dormant intracellular Salmonella enterica serovar Typhimurium discriminates among Salmonella pathogenicity island 2 effectors to persist inside fibroblasts.

    Science.gov (United States)

    Núñez-Hernández, Cristina; Alonso, Ana; Pucciarelli, M Graciela; Casadesús, Josep; García-del Portillo, Francisco

    2014-01-01

    Salmonella enterica uses effector proteins delivered by type III secretion systems (TTSS) to colonize eukaryotic cells. Recent in vivo studies have shown that intracellular bacteria activate the TTSS encoded by Salmonella pathogenicity island-2 (SPI-2) to restrain growth inside phagocytes. Growth attenuation is also observed in vivo in bacteria colonizing nonphagocytic stromal cells of the intestinal lamina propria and in cultured fibroblasts. SPI-2 is required for survival of nongrowing bacteria persisting inside fibroblasts, but its induction mode and the effectors involved remain unknown. Here, we show that nongrowing dormant intracellular bacteria use the two-component system OmpR-EnvZ to induce SPI-2 expression and the PhoP-PhoQ system to regulate the time at which induction takes place, 2 h postentry. Dormant bacteria were shown to discriminate the usage of SPI-2 effectors. Among the effectors tested, SseF, SseG, and SseJ were required for survival, while others, such as SifA and SifB, were not. SifA and SifB dispensability correlated with the inability of intracellular bacteria to secrete these effectors even when overexpressed. Conversely, SseJ overproduction resulted in augmented secretion and exacerbated bacterial growth. Dormant bacteria produced other effectors, such as PipB and PipB2, that, unlike what was reported for epithelial cells, did not to traffic outside the phagosomal compartment. Therefore, permissiveness for secreting only a subset of SPI-2 effectors may be instrumental for dormancy. We propose that the S. enterica serovar Typhimurium nonproliferative intracellular lifestyle is sustained by selection of SPI-2 effectors that are produced in tightly defined amounts and delivered to phagosome-confined locations.

  18. Chlortetracycline and florfenicol induce expression of genes associated with pathogenicity in multidrug-resistant Salmonella enterica serovar Typhimurium.

    Science.gov (United States)

    Holman, Devin B; Bearson, Shawn M D; Bearson, Bradley L; Brunelle, Brian W

    2018-01-01

    Multidrug-resistant (MDR) Salmonella enterica serovar Typhimurium ( S . Typhimurium) is a serious public health threat as infections caused by these strains are more difficult and expensive to treat. Livestock serve as a reservoir for MDR Salmonella , and the antibiotics chlortetracycline and florfenicol are frequently administrated to food-producing animals to treat and prevent various diseases. Therefore, we evaluated the response of MDR S . Typhimurium after exposure to these two antibiotics. We exposed four MDR S . Typhimurium isolates to sub-inhibitory concentrations of chlortetracycline (16 and 32 µg/ml) or florfenicol (16 µg/ml) for 30 min during early-log phase. Differentially expressed genes following antibiotic treatment were identified using RNA-seq, and genes associated with attachment and those located within the Salmonella pathogenicity islands were significantly up-regulated following exposure to either antibiotic. The effect of antibiotic exposure on cellular invasion and motility was also assessed. Swimming and swarming motility were decreased due to antibiotic exposure. However, we observed chlortetracycline enhanced cellular invasion in two strains and florfenicol enhanced invasion in a third isolate. Chlortetracycline and florfenicol exposure during early-log growth altered the expression of nearly half of the genes in the S . Typhimurium genome, including a large number of genes associated with virulence and pathogenesis; this transcriptional alteration was not due to the SOS response. The results suggest that exposure to either of these two antibiotics may lead to the expression of virulence genes that are typically only transcribed in vivo, as well as only during late-log or stationary phase in vitro.

  19. Percolation and Survival of Escherichia coli O157:H7 and Salmonella enterica Serovar Typhimurium in Soil Amended with Contaminated Dairy Manure or Slurry

    NARCIS (Netherlands)

    Semenov, A.V.; Overbeek, van L.S.; Bruggen, van A.H.C.

    2009-01-01

    The effect of cattle manure and slurry application on percolation and survival of Escherichia coli O157:H7 and Salmonella enterica serovar Typhimurium was investigated for different soil depths after the addition of water. Four treatments were chosen for the first set of experiments: (i) addition of

  20. Mixed biofilm formation by Shiga toxin-producing Escherichia coli and Salmonella enterica serovar typhimurium enhanced bacterial resistance to sanitization due to extracellular polymeric substances

    Science.gov (United States)

    Shiga toxin–producing Escherichia coli O157:H7 and Salmonella enterica serovar Typhimurium are important foodborne pathogens capable of forming single-species biofilms or coexisting in multispecies biofilm communities. Bacterial biofilm cells are usually more resistant to sanitization than their pla...

  1. Complement receptor 3 and Toll-like receptor 4 act sequentially in uptake and intracellular killing of unopsonized Salmonella enterica serovar Typhimurium by human neutrophils

    NARCIS (Netherlands)

    van Bruggen, Robin; Zweers, Debby; van Diepen, Angela; van Dissel, Jaap T.; Roos, Dirk; Verhoeven, Arthur J.; Kuijpers, Taco W.

    2007-01-01

    The uptake and subsequent killing of Salmonella enterica serovar Typhimurium by human neutrophils was studied. In particular, two pattern recognition receptors, complement receptor 3 (CR3) and Toll-like receptor 4 (TLR4), were found to be essential for the efficient uptake and activation,

  2. Salmonella enterica Serovar Typhimurium Virulence-Resistance Plasmids Derived from the pSLT Carrying Nonconventional Class 1 Integrons with dfrA12 Gene in Their Variable Region and sul3 in the 3' Conserved Segment

    NARCIS (Netherlands)

    Beutlich, J.; Rodicio, M.R.; Mendoza, M.C.; Garcia, P.; Kirchner, M.; Luzzi, I.; Mevius, D.J.; Threllfall, J.; Helmuth, R.; Guerra, B.

    2013-01-01

    Drug-resistant derivatives of serovar-specific virulence plasmids, such as pSLT, in clinically-relevant Salmonella enterica serovar Typhimurium strains, represent a threat for human health. We have analysed 14 S. Typhimurium isolates recovered in Italy and the United Kingdom from swine and from

  3. The transcriptional programme of Salmonella enterica serovar Typhimurium reveals a key role for tryptophan metabolism in biofilms.

    LENUS (Irish Health Repository)

    Hamilton, Shea

    2009-12-11

    Abstract Background Biofilm formation enhances the capacity of pathogenic Salmonella bacteria to survive stresses that are commonly encountered within food processing and during host infection. The persistence of Salmonella within the food chain has become a major health concern, as biofilms can serve as a reservoir for the contamination of food products. While the molecular mechanisms required for the survival of bacteria on surfaces are not fully understood, transcriptional studies of other bacteria have demonstrated that biofilm growth triggers the expression of specific sets of genes, compared with planktonic cells. Until now, most gene expression studies of Salmonella have focused on the effect of infection-relevant stressors on virulence or the comparison of mutant and wild-type bacteria. However little is known about the physiological responses taking place inside a Salmonella biofilm. Results We have determined the transcriptomic and proteomic profiles of biofilms of Salmonella enterica serovar Typhimurium. We discovered that 124 detectable proteins were differentially expressed in the biofilm compared with planktonic cells, and that 10% of the S. Typhimurium genome (433 genes) showed a 2-fold or more change in the biofilm compared with planktonic cells. The genes that were significantly up-regulated implicated certain cellular processes in biofilm development including amino acid metabolism, cell motility, global regulation and tolerance to stress. We found that the most highly down-regulated genes in the biofilm were located on Salmonella Pathogenicity Island 2 (SPI2), and that a functional SPI2 secretion system regulator (ssrA) was required for S. Typhimurium biofilm formation. We identified STM0341 as a gene of unknown function that was needed for biofilm growth. Genes involved in tryptophan (trp) biosynthesis and transport were up-regulated in the biofilm. Deletion of trpE led to decreased bacterial attachment and this biofilm defect was restored by

  4. Persistence of a Salmonella enterica serovar typhimurium DT12 clone in a piggery and in agricultural soil amended with Salmonella-contaminated slurry

    DEFF Research Database (Denmark)

    Baloda, Suraj B.; Christensen, Lise; Trajcevska, Silvija

    2001-01-01

    Prevalence of Salmonella enterica on a Danish pig farm presenting recurrent infections was investigated. A comparison of the pulsed-held gel electrophoresis patterns of fecal isolates from piggeries, waste slurry, and agricultural soil amended with Salmonella-contaminated animal waste (slurry......) and subclinical isolates from the same farm (collected in 1996 and later) showed identical patterns, indicating long-term persistence of the Salmonella enterica serovar Typhimurium DT12 clone in the herd environment. Furthermore, when Salmonella-contaminated slurry was disposed of on the agricultural soil (a...... common waste disposal practice), the pathogen was isolated up to 14 days after the spread, indicating potentially high risks of transmission of the pathogen in the environment, animals, and humans....

  5. Use of a live attenuated Salmonella enterica serovar Typhimurium vaccine on farrow-to-finish pig farms.

    Science.gov (United States)

    De Ridder, L; Maes, D; Dewulf, J; Butaye, P; Pasmans, F; Boyen, F; Haesebrouck, F; Van der Stede, Y

    2014-11-01

    Salmonella enterica infection in pigs is economically important and poses a zoonotic risk. In this study, the efficacy of an attenuated S. enterica serovar Typhimurium strain was evaluated in three farrow-to-finish pig herds. In each herd, 120 piglets were vaccinated orally at 3 and 24 days of age, while 120 piglets served as unvaccinated controls. Faeces, ileocaecal lymph nodes and caecal contents were examined for S. Typhimurium by isolation and serum was analysed for antibodies against S. Typhimurium by ELISA. All pigs were weighed at pre-weaning and slaughter to determine daily weight gain. In vaccinated pigs prior to slaughter, significantly fewer animals excreted S. enterica, there was a significantly lower S. enterica-specific mean antibody titre and there was a significantly higher mean daily weight gain compared to unvaccinated controls. In two herds, there were significantly lower proportions of S. enterica positive ileocaecal lymph nodes and caecal contents at slaughter between the vaccinated and control groups, but this difference was not significant across all three herds. S. enterica with the same auxotrophic characteristics and genotype as the vaccine strain was isolated from several samples of faeces, ileocaecal lymph nodes and caecal contents from vaccinated pigs. These findings indicate that vaccination with an attenuated S. Typhimurium strain reduces S. enterica shedding, but the reduction is not consistent and the vaccine strain may persist in tissues. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Thermosensing coordinates a cis-regulatory module for transcriptional activation of the intracellular virulence system in Salmonella enterica serovar Typhimurium.

    Science.gov (United States)

    Duong, Nancy; Osborne, Suzanne; Bustamante, Víctor H; Tomljenovic, Ana M; Puente, José L; Coombes, Brian K

    2007-11-23

    The expression of bacterial virulence genes is tightly controlled by the convergence of multiple extracellular signals. As a zoonotic pathogen, virulence gene regulation in Salmonella enterica serovar Typhimurium must be responsive to multiple cues from the general environment as well as from multiple niches within animal and human hosts. Previous work has identified combined magnesium and phosphate limitation as an environmental cue that activates genes required for intracellular virulence. One unanswered question is how virulence genes that are expressed within the host are inhibited in non-host environments that satisfy the phosphate and magnesium limitation cues. We report here that thermosensing is the major mechanism controlling incongruous activation of the intracellular virulence phenotype. Bacteria grown at 30 degrees C or lower were unable to activate the intracellular type III secretion system even under strong inducing signals such as synthetic medium, contact with macrophages, and exposure to the murine gut. Thermoregulation was fully recapitulated in a Salmonella bongori strain engineered to contain the intracellular virulence genes of S. enterica sv. Typhimurium, suggesting that orthologous thermoregulators were available. Accordingly, virulence gene repression at the nonpermissive temperature required Hha and H-NS, two nucleoid-like proteins involved in virulence gene control. The use of combined environmental cues to control transcriptional "logic gates" allows for transcriptional selectivity of virulence genes that would otherwise be superfluous if activated in the non-host environment. Thus, thermosensing by Salmonella provides integrated control of host niche-specific virulence factors.

  7. Some putative prebiotics increase the severity of Salmonella enterica serovar Typhimurium infection in mice

    Directory of Open Access Journals (Sweden)

    Lahtinen Sampo

    2009-01-01

    Full Text Available Abstract Background Prebiotics are non-digestible food ingredients believed to beneficially affect host health by selectively stimulating the growth of the beneficial bacteria residing in the gut. Such beneficial bacteria have been reported to protect against pathogenic infections. However, contradicting results on prevention of Salmonella infections with prebiotics have been published. The aim of the present study was to examine whether S. Typhimurium SL1344 infection in mice could be prevented by administration of dietary carbohydrates with different structures and digestibility profiles. BALB/c mice were fed a diet containing 10% of either of the following carbohydrates: inulin, fructo-oligosaccharide, xylo-oligosaccharide, galacto-oligosaccharide, apple pectin, polydextrose or beta-glucan for three weeks prior to oral Salmonella challenge (107 CFU and compared to mice fed a cornstarch-based control diet. Results The mice fed with diets containing fructo-oligosaccharide (FOS or xylo-oligosaccharide (XOS had significantly higher (P < 0.01 and P < 0.05 numbers of S. Typhimurium SL1344 in liver, spleen and mesenteric lymph nodes when compared to the mice fed with the cornstarch-based control diet. Significantly increased amounts (P < 0.01 of Salmonella were detected in ileal and fecal contents of mice fed with diets supplemented with apple pectin, however these mice did not show significantly higher numbers of S. Typhimyrium in liver, spleen and lymph nodes than animals from the control group (P < 0.20. The acute-phase protein haptoglobin was a good marker for translocation of S. Typhimurium in mice. In accordance with the increased counts of Salmonella in the organs, serum concentrations of haptoglobin were significantly increased in the mice fed with FOS or XOS (P < 0.001. Caecum weight was increased in the mice fed with FOS (P < 0.01, XOS (P < 0.01, or polydextrose (P < 0.001, and caecal pH was reduced in the mice fed with polydextrose (P < 0

  8. Complete Genome Sequence of Salmonella enterica Serovar Typhimurium Strain SO2 (Sequence Type 302) Isolated from an Asymptomatic Child in Mexico

    Science.gov (United States)

    Calva, Edmundo; Puente, José L.; Zaidi, Mussaret B.

    2016-01-01

    The complete genome sequence of Salmonella enterica serovar Typhimurium strain SO2, isolated from an asymptomatic child in Mexico, was determined using PacBio single-molecule real-time technology. Strain SO2 has six complete chromosomal prophages, namely, ST104, Gifsy-2, ST64B, Gifsy-1, ELPhiS, and FSL SP-004, and carries a Salmonella virulence plasmid. PMID:27081133

  9. Change in antimicrobial resistance pattern in Salmonella enterica serovar Typhimurium isolates detected in a beef cattle farm.

    Science.gov (United States)

    Sugawara, Masaru; Shahada, Francis; Izumiya, Hidemasa; Watanabe, Haruo; Uchida, Ikuo; Tamamura, Yukino; Kusumoto, Masahiro; Iwata, Taketoshi; Akiba, Masato

    2012-01-01

    Multidrug-resistant Salmonella enterica serovar Typhimurium (S. Typhimurium) isolates with four different antimicrobial resistance patterns obtained from a beef cattle farm were characterized to determine their clonality. Macrorestriction analysis of genomic DNA revealed that these four isolates are closely related to each other and can be classified as a newly emerged pulsed-field gel electrophoresis type among cattle: cluster VII. Three of the four isolates showed resistance to extended-spectrum cephalosporins (ESCs), and this resistance was mediated by AmpC β-lactamase encoded by the bla(CMY-2) gene in a 190-kbp IncA/C plasmid. Results of restriction analysis and IncA/C backbone PCR suggest that the three 190-kbp plasmids are identical and that a 70-kbp IncA/C plasmid of the ESC-susceptible isolate is derived from the 190-kbp plasmid by a deletion event. Three isolates harboured a virulence-resistance plasmid (165 or 180 kbp), and restriction analysis revealed that these plasmids were identical or closely related to each other. These results suggest that the four S. Typhimurium cluster VII isolates originate from a common ancestor that probably invaded the farm prior to the salmonellosis outbreak. Antimicrobial resistance patterns may not necessarily reflect the relationships of the isolates.

  10. Using In Vitro Dynamic Models To Evaluate Fluoroquinolone Activity against Emergence of Resistant Salmonella enterica Serovar Typhimurium.

    Science.gov (United States)

    Lee, Seung-Jin; Awji, Elias Gebru; Park, Na-Hye; Park, Seung-Chun

    2017-02-01

    The objectives of this study were to determine pharmacokinetic/pharmacodynamic (PK/PD) indices of fluoroquinolones that minimize the emergence of resistant Salmonella enterica serovar Typhimurium (S Typhimurium) using in vitro dynamic models and to establish mechanisms of resistance. Three fluoroquinolones, difloxacin (DIF), enrofloxacin (ENR), and marbofloxacin (MAR), at five dose levels and 3 days of treatment were simulated. Bacterial killing-regrowth kinetics and emergence of resistant bacteria after antibacterial drug exposure were quantified. PK/PD indices associated with different levels of antibacterial activity were computed. Mechanisms of fluoroquinolone resistance were determined by analyzing target mutations in the quinolone resistance-determining regions (QRDRs) and by analyzing overexpression of efflux pumps. Maximum losses in susceptibility of fluoroquinolone-exposed S Typhimurium occurred at a simulated AUC/MIC ratio (area under the concentration-time curve over 24 h in the steady state divided by the MIC) of 47 to 71. Target mutations in gyrA (S83F) and overexpression of acrAB-tolC contributed to decreased susceptibility in fluoroquinolone-exposed S Typhimurium. The current data suggest AUC/MIC (AUC/mutant prevention concentration [MPC])-dependent selection of resistant mutants of S Typhimurium, with AUC/MPC ratios of 69 (DIF), 62 (ENR), and 39 (MAR) being protective against selection of resistant mutants. These values could not be achieved in veterinary clinical areas under the current recommended therapeutic doses of the fluoroquinolones, suggesting the need to reassess the current dosing regimen to include both clinical efficacy and minimization of emergence of resistant bacteria. Copyright © 2017 American Society for Microbiology.

  11. Designing a biochip following multiplex polymerase chain reaction for the detection of Salmonella serovars Typhimurium, Enteritidis, Infantis, Hadar, and Virchow in poultry products

    Directory of Open Access Journals (Sweden)

    Yu-Cheng Chiang

    2018-01-01

    Full Text Available Salmonella-contaminated foods, especially poultry-derived foods (eggs, chicken meat, are the major source of salmonellosis. Not only in the European Union (EU, but also in the United States, Japan, and other countries, has salmonellosis been an issue of concern for food safety control agencies. In 2005, EU regulation 1003/2005 set a target for the control and reduction of five target Salmonella enterica serovars—S. Typhimurium, S. Enteritidis, S. Infantis, S. Hadar, and S. Virchow—in breeding flocks. Thus, a simple biochip for the rapid detection of any of these five Salmonella serovars in poultry products may be required. The objectives of this study were to design S. Virchow-specific primers and to develop a biochip for the simultaneous identification of all or any of these five Salmonella serovars in poultry and poultry products. Experimentally, we designed novel polymerase chain reaction (PCR primers for the specific detection of S. Virchow, S. Infantis, and S. Hadar. The specificity of all these primers and two known primer sets for S. Typhimurium and S. Enteritidis was then confirmed under the same PCR conditions using 57 target strains and 112 nontarget Salmonella strains as well as 103 non-Salmonella strains. Following multiplex PCR, strains of any of these five Salmonella serovars could be detected by a chromogenic biochip deployed with DNA probes specific to these five Salmonella serovars. In comparison with the multiplex PCR methods, the biochip assay could improve the detection limit of each of the Salmonella serovars from N×103 cfu/mL to N×102 cfu/mL sample in either the pure culture or the chicken meat samples. With an 8-hour enrichment step, the detection limit could reach up to N×100 cfu/mL.

  12. Salmonella serovars differentially stimulate bovine leukocyte responses in vitro

    Science.gov (United States)

    The majority of Salmonella serovars cause no clinical signs in cattle, while some serovars, such as Salmonella enterica serovar Typhimurium (ST) and Dublin (SD), may cause severe disease. Mechanisms underlying the difference in pathogenesis between different serovars are not clear. The objective of ...

  13. Investigation of Outbreaks of Salmonella enterica Serovar Typhimurium and Its Monophasic Variants Using Whole-Genome Sequencing, Denmark

    DEFF Research Database (Denmark)

    Gymoese, Pernille; Sørensen, Gitte; Litrup, Eva

    2017-01-01

    Whole-genome sequencing is rapidly replacing current molecular typing methods for surveillance purposes. Our study evaluates core-genome single-nucleotide polymorphism analysis for outbreak detection and linking of sources of Salmonella enterica serovar Typhimurium and its monophasic variants...... during a 7-month surveillance period in Denmark. We reanalyzed and defined 8 previously characterized outbreaks from the phylogenetic relatedness of the isolates, epidemiologic data, and food traceback investigations. All outbreaks were identified, and we were able to exclude unrelated and include...... additional related human cases. We were furthermore able to link possible food and veterinary sources to the outbreaks. Isolates clustered according to sequence types (STs) 19, 34, and 36. Our study shows that core-genome single-nucleotide polymorphism analysis is suitable for surveillance and outbreak...

  14. Integrative analysis of Salmonellosis in Israel reveals association of Salmonella enterica Serovar 9,12:l,v:- with extraintestinal infections, dissemination of endemic S. enterica Serovar Typhimurium DT104 biotypes, and severe underreporting of outbreaks.

    Science.gov (United States)

    Marzel, Alex; Desai, Prerak T; Nissan, Israel; Schorr, Yosef Ilan; Suez, Jotham; Valinsky, Lea; Reisfeld, Abraham; Agmon, Vered; Guard, Jean; McClelland, Michael; Rahav, Galia; Gal-Mor, Ohad

    2014-06-01

    Salmonella enterica is the leading etiologic agent of bacterial food-borne outbreaks worldwide. This ubiquitous species contains more than 2,600 serovars that may differ in their host specificity, clinical manifestations, and epidemiology. To characterize salmonellosis epidemiology in Israel and to study the association of nontyphoidal Salmonella (NTS) serovars with invasive infections, 48,345 Salmonella cases reported and serotyped at the National Salmonella Reference Center between 1995 and 2012 were analyzed. A quasi-Poisson regression was used to identify irregular clusters of illness, and pulsed-field gel electrophoresis in conjunction with whole-genome sequencing was applied to molecularly characterize strains of interest. Three hundred twenty-nine human salmonellosis clusters were identified, representing an annual average of 23 (95% confidence interval [CI], 20 to 26) potential outbreaks. We show that the previously unsequenced S. enterica serovar 9,12:l,v:- belongs to the B clade of Salmonella enterica subspecies enterica, and we show its frequent association with extraintestinal infections, compared to other NTS serovars. Furthermore, we identified the dissemination of two prevalent Salmonella enterica serovar Typhimurium DT104 clones in Israel, which are genetically distinct from other global DT104 isolates. Accumulatively, these findings indicate a severe underreporting of Salmonella outbreaks in Israel and provide insights into the epidemiology and genomics of prevalent serovars, responsible for recurring illness. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  15. Retinoic acid decreases the severity of Salmonella enterica serovar Typhimurium mediated gastroenteritis in a mouse model.

    Science.gov (United States)

    Sinha, Ritam; Howlader, Debaki Ranjan; Mukherjee, Priyadarshini; Rai, Sulabh; Nag, Dhrubajyoti; Koley, Hemanta

    2016-07-01

    Gastroenteritis is a global burden; it's the major cause of morbidity and mortality both in adults and children of developing countries. Salmonella is one of the leading causes of bacteria-mediated gastroenteritis and due to its increasing multidrug antibiotic resistance; Salmonella-mediated gastroenteritis is difficult to control. Retinoic acid, the biologically active agent of vitamin A has an anti-inflammatory effect on experimental colitis. In this study we have shown All trans retinoic acid (ATRA) treatment down regulates Salmonella-mediated colitis in a murine model. Macroscopic signs of inflammation such as decrease in body weight and cecum weight, shorter length of proximal colon and pathological score of colitis were observed less in ATRA treated mice than in a vehicle control group. ATRA treatment not only reduced pro-inflammatory cytokine responses, such as TNF-α, IL-6, IL-1β, IFN-γ and IL-17 production but also increased IL-10 response in the supernatant of intestinal tissue. Results also suggested that ATRA treatment enhances the number of FoxP3-expressing T regulatory cells in MLN and also decreases bacterial load in systemic organs. We concluded that ATRA treatment indeed reduces Salmonella Typhimurium-mediated gastroenteritis in mice, suggesting it could be an important part of an alternative therapeutic approach to combat the disease. Copyright © 2016 Elsevier GmbH. All rights reserved.

  16. In Vitro Development of Ciprofloxacin Resistance of Salmonella enterica Serovars Typhimurium, Enteritidis, and Indiana Isolates from Food Animals.

    Science.gov (United States)

    Zhang, Wen-Hui; Zhang, Chuan-Zhen; Liu, Zhi-Jie; Gu, Xi-Xi; Li, Wan; Yang, Ling; Liu, Ya-Hong; Zeng, Zhen-Ling; Jiang, Hong-Xia

    2017-09-01

    Difference in the development of resistance may be associated with the epidemiological spread and drug resistance of different Salmonella enterica serovar strains. In the present study, three susceptible S. enterica serovars, Typhimurium (ST), Enteritidis (SE), and Indiana (SI) strains, were subjected to stepwise selection with increasing ciprofloxacin concentrations. The results indicated that the mutation frequencies of the SI group were 10 1 -10 4 higher and developed resistance to ciprofloxacin more rapidly compared with the ST and SE groups. Ciprofloxacin accumulation in the SI strain was also higher than the other two strains in the presence of an efflux pump inhibitor. The development of ciprofloxacin resistance was quite different among the three serovar strains. In SI, increasing AcrAB-TolC efflux pump expression and single or double mutations in gyrA with or without a single parC mutation (T57S) were found in the development of ciprofloxacin resistance. In SE, an increase in the AcrAB-TolC efflux pump regulatory gene ramA gradually decreased as resistant bacteria developed; then resistance resulted from gyrA D87G and gyrB E466D mutations and/or in other active efflux pumps besides AcrAB-TolC. For ST, ramA expression increased rapidly along with gyrA D87 N and/or gyrB S464F mutations. In conclusion, persistent use of ciprofloxacin may aggravate the resistance of different S. enterica serovars and prudent use of the fluoroquinolones is needed. The quicker resistance and higher mutation frequency of the SI isolates present a potential public health threat.

  17. Discovery of Novel Secreted Virulence Factors from Salmonella enterica Serovar Typhimurium by Proteomic Analysis of Culture Supernatants

    Energy Technology Data Exchange (ETDEWEB)

    Niemann, George; Brown, Roslyn N.; Gustin, Jean K.; Stufkens, Afke; Shaikh-Kidwai, Afshan S.; Li, Jie; McDermott, Jason E.; Brewer, Heather M.; Schepmoes, Athena A.; Smith, Richard D.; Adkins, Joshua N.; Heffron, Fred

    2011-01-01

    The intracellular pathogen Salmonella enterica serovar Typhimurium is a leading cause of acute gastroenteritis in the world. This pathogen has two type-III secretion systems (TTSS) necessary for virulence that are encoded in Salmonella pathogenicity islands 1 and 2 (SPI-1 and SPI-2) and are expressed during extracellular or intracellular infectious states, respectively, to deliver virulence factors (effectors) to the host cell cytoplasm. While many have been identified and at least partially characterized, the full repertoire of effectors has not been catalogued. In this mass spectrometry-based proteomics study, we identified effector proteins secreted under minimal acidic medium growth conditions that induced the SPI-2 TTSS and its effectors, and compared the secretome from the parent strain to the secretome from strains missing either essential (SsaK) or regulatory components (SsaL) of the SPI-2 secretion apparatus. We identified 75% of the known TTSS effector repertoire. Excluding translocon components, 95% of the known effectors were biased for identification in the ssaL mutant background, which demonstrated that SsaL regulates SPI-2 type III secretion. To confirm secretion to animal cells, we made translational fusions of several of the best candidates to the calmodulin-dependent adenylate cyclase of Bordetella pertussis and assayed cAMP levels of infected J774 macrophage-like cells. From these infected cells we identified six new TTSS effectors and two others that are secreted independent of TTSS. Our results substantiate reports of additional secretion systems encoded by Salmonella other than TTSS.

  18. Factors affecting the excretion of GFP Salmonella enterica serovar typhimurium by adult house flies (Diptera: Muscidae; Musca domestica L.)

    Science.gov (United States)

    House flies harbor and disseminate food-borne pathogens. Salmonella Typhimurium (S. Typhimurium) is a zoonotic pathogen shed by livestock that causes gastroenteritis in humans. We previously demonstrated that GFP-S. Typhimurium fed to house flies persist in the digestive for 24h. The excretion dynam...

  19. Effect of chlorate, molybdate, and shikimic acid on Salmonella enterica serovar Typhimurium in aerobic and anaerobic cultures.

    Science.gov (United States)

    Oliver, Christy E; Beier, Ross C; Hume, Michael E; Horrocks, Shane M; Casey, Thomas A; Caton, Joel S; Nisbet, David J; Smith, David J; Krueger, Nathan A; Anderson, Robin C

    2010-04-01

    Experiments were conducted to determine factors that affect sensitivity of Salmonella enterica serovar Typhimurium to sodium chlorate (5mM). In our first experiment, cultures grown without chlorate grew more rapidly than those with chlorate. An extended lag before logarithmic growth was observed in anaerobic but not aerobic cultures containing chlorate. Chlorate inhibition of growth during aerobic culture began later than that observed in anaerobic cultures but persisted once inhibition was apparent. Conversely, anaerobic cultures appeared to adapt to chlorate after approximately 10h of incubation, exhibiting rapid compensatory growth. In anaerobic chlorate-containing cultures, 20% of total viable counts were resistant to chlorate by 6h and had propagated to 100% resistance (>10(9)CFU mL(-1)) by 24h. In the aerobic chlorate-containing cultures, 12.9% of colonies had detectable resistance to chlorate by 6h, but only 1% retained detectable resistance at 24h, likely because these cultures had opportunity to respire on oxygen and were thus not enriched via the selective pressure of chlorate. In another study, treatment with shikimic acid (0.34 mM), molybdate (1mM) or their combination had little effect on aerobic or anaerobic growth of Salmonella in the absence of added chlorate. As observed in our earlier study, chlorate resistance was not detected in any cultures without added chlorate. Chlorate resistant Salmonella were recovered at equivalent numbers regardless of treatment after 8h of aerobic or anaerobic culture with added chlorate; however, by 24h incubation chlorate sensitivity was completely restored to aerobic but not anaerobic cultures treated with shikimic acid or molybdate but not their combination. Results indicate that anaerobic adaptation of S. Typhimurium to sodium chlorate during pure culture is likely due to the selective propagation of low numbers of cells exhibiting spontaneous resistance to chlorate and this resistance is not reversible by

  20. Genome Sequences of Three Highly Copper-Resistant Salmonella enterica subsp. I Serovar Typhimurium Strains Isolated from Pigs in Denmark

    DEFF Research Database (Denmark)

    Qin, Yanan; Hasman, Henrik; Aarestrup, Frank Møller

    2014-01-01

    Salmonella typhimurium is the causative agent of typhoid fever, which causes nearly 21.7 million illnesses and 217,000 deaths around the world each year. Here, we describe the draft genome sequences of the Salmonella typhimurium strains S7, S15, and S23, isolated from copper-fed pigs in Denmark...

  1. Elucidation of the outer membrane proteome of Salmonella enterica serovar Typhimurium utilising a lipid-based protein immobilization technique

    Directory of Open Access Journals (Sweden)

    Appleton Hazel

    2010-02-01

    Full Text Available Abstract Background Salmonella enterica serovar Typhimurium (S. Typhimurium is a major cause of human gastroenteritis worldwide. The outer membrane proteins expressed by S. Typhimurium mediate the process of adhesion and internalisation within the intestinal epithelium of the host thus influencing the progression of disease. Since the outer membrane proteins are surface-exposed, they provide attractive targets for the development of improved antimicrobial agents and vaccines. Various techniques have been developed for their characterisation, but issues such as carryover of cytosolic proteins still remain a problem. In this study we attempted to characterise the surface proteome of S. Typhimurium using Lipid-based Protein Immobilisation technology in the form of LPI™ FlowCells. No detergents are required and no sample clean up is needed prior to downstream analysis. The immobilised proteins can be digested with proteases in multiple steps to increase sequence coverage, and the peptides eluted can be characterised directly by liquid chromatography - tandem mass spectrometry (LC-MS/MS and identified from mass spectral database searches. Results In this study, 54 outer membrane proteins, were identified with two or more peptide hits using a multi-step digest approach. Out of these 28 were lipoproteins, nine were involved in transport and three with enzyme activity These included the transporters BtuB which is responsible for the uptake of vitamin B12, LamB which is involved in the uptake of maltose and maltodextrins and LolB which is involved in the incorporation of lipoproteins in the outer membrane. Other proteins identified included the enzymes MltC which may play a role in cell elongation and division and NlpD which is involved in catabolic processes in cell wall formation as well as proteins involved in virulence such as Lpp1, Lpp2 and OmpX. Conclusion Using a multi-step digest approach the LPI™ technique enables the incorporation of a

  2. Low-Shear modeled microgravity alters the Salmonella enterica serovar typhimurium stress response in an RpoS-independent manner

    Science.gov (United States)

    Wilson, James W.; Ott, C. Mark; Ramamurthy, Rajee; Porwollik, Steffen; McClelland, Michael; Pierson, Duane L.; Nickerson, Cheryl A.

    2002-01-01

    We have previously demonstrated that low-shear modeled microgravity (low-shear MMG) serves to enhance the virulence of a bacterial pathogen, Salmonella enterica serovar Typhimurium. The Salmonella response to low-shear MMG involves a signaling pathway that we have termed the low-shear MMG stimulon, though the identities of the low-shear MMG stimulon genes and regulatory factors are not known. RpoS is the primary sigma factor required for the expression of genes that are induced upon exposure to different environmental-stress signals and is essential for virulence in mice. Since low-shear MMG induces a Salmonella acid stress response and enhances Salmonella virulence, we reasoned that RpoS would be a likely regulator of the Salmonella low-shear MMG response. Our results demonstrate that low-shear MMG provides cross-resistance to several environmental stresses in both wild-type and isogenic rpoS mutant strains. Growth under low-shear MMG decreased the generation time of both strains in minimal medium and increased the ability of both strains to survive in J774 macrophages. Using DNA microarray analysis, we found no evidence of induction of the RpoS regulon by low-shear MMG but did find that other genes were altered in expression under these conditions in both the wild-type and rpoS mutant strains. Our results indicate that, under the conditions of these studies, RpoS is not required for transmission of the signal that induces the low-shear MMG stimulon. Moreover, our studies also indicate that low-shear MMG can be added to a short list of growth conditions that can serve to preadapt an rpoS mutant for resistance to multiple environmental stresses.

  3. Coordinated Regulation of Virulence during Systemic Infection of Salmonella enterica serovar Typhimurium

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Hyunjin; McDermott, Jason E.; Porwollik, Steffen; Mcclelland, Michael; Heffron, Fred

    2009-02-20

    Salmonella must respond to a myriad of environmental cues during infection of a mouse and express specific subsets of genes in a temporal and spatial manner to subvert the host defense mechanisms but these regulatory pathways are poorly established. To unravel how micro-environmental signals are processed and integrated into coordinated action, we constructed in-frame non-polar deletions of 84 regulators inferred to play a role in Salmonella typhimurium virulence and tested them in three virulence assays (intraperitoneal (i.p.), and intragastric (i.g.) infection in BALB/c mice, and persistence in SvJ129 mice). Overall 36 regulators were identified that were less virulent in at least one assay, and of those, 15 regulators were required for systemic mouse infection in an acute infection model. As a first step towards understanding the interplay between a pathogen and its host from a systems biology standpoint we focused on these 15 genes. Transcriptional profiles were obtained for each of these 15 regulators from strains grown under four different environmental conditions. These results as well as publicly available transcriptional profiles were analyzed using both network inference and cluster analysis algorithms. The analysis predicts a regulatory network in which all 15 regulators control a specific set of genes necessary for Salmonella to cause systemic infection. We tested the regulatory model by expressing a subset of the regulators in trans and monitoring transcription of 7 known virulence factors located within Salmonella pathogenicity island 2 (SPI-2). These experiments validated the regulatory model and showed that, for these 7 genes, the response regulator SsrB and the marR type regulator SlyA co-regulate in a regulatory cascade by integrating multiple signals.

  4. Comprehensive identification of Salmonella enterica serovar typhimurium genes required for infection of BALB/c mice.

    Directory of Open Access Journals (Sweden)

    Roy R Chaudhuri

    2009-07-01

    Full Text Available Genes required for infection of mice by Salmonella Typhimurium can be identified by the interrogation of random transposon mutant libraries for mutants that cannot survive in vivo. Inactivation of such genes produces attenuated S. Typhimurium strains that have potential for use as live attenuated vaccines. A quantitative screen, Transposon Mediated Differential Hybridisation (TMDH, has been developed that identifies those members of a large library of transposon mutants that are attenuated. TMDH employs custom transposons with outward-facing T7 and SP6 promoters. Fluorescently-labelled transcripts from the promoters are hybridised to whole-genome tiling microarrays, to allow the position of the transposon insertions to be determined. Comparison of microarray data from the mutant library grown in vitro (input with equivalent data produced after passage of the library through mice (output enables an attenuation score to be determined for each transposon mutant. These scores are significantly correlated with bacterial counts obtained during infection of mice using mutants with individual defined deletions of the same genes. Defined deletion mutants of several novel targets identified in the TMDH screen are effective live vaccines.

  5. Use of a recombinant Salmonella enterica serovar Typhimurium strain expressing C-Raf for protection against C-Raf induced lung adenoma in mice

    International Nuclear Information System (INIS)

    Gentschev, Ivaylo; Fensterle, Joachim; Schmidt, Andreas; Potapenko, Tamara; Troppmair, Jakob; Goebel, Werner; Rapp, Ulf R

    2005-01-01

    Serine-threonine kinases of the Raf family (A-Raf, B-Raf, C-Raf) are central players in cellular signal transduction, and thus often causally involved in the development of cancer when mutated or over-expressed. Therefore these proteins are potential targets for immunotherapy and a possible basis for vaccine development against tumors. In this study we analyzed the functionality of a new live C-Raf vaccine based on an attenuated Salmonella enterica serovar Typhimurium aroA strain in two Raf dependent lung tumor mouse models. The antigen C-Raf has been fused to the C-terminal secretion signal of Escherichia coli α-hemolysin and expressed in secreted form by an attenuated aroA Salmonella enterica serovar Typhimurium strain via the α-hemolysin secretion pathway. The effect of the immunization with this recombinant C-Raf strain on wild-type C57BL/6 or lung tumor bearing transgenic BxB mice was analyzed using western blot and FACS analysis as well as specific tumor growth assays. C-Raf antigen was successfully expressed in secreted form by an attenuated Salmonella enterica serovar Typhimurium aroA strain using the E. coli hemolysin secretion system. Immunization of wild-type C57BL/6 or tumor bearing mice provoked specific C-Raf antibody and T-cell responses. Most importantly, the vaccine strain significantly reduced tumor growth in two transgenic mouse models of Raf oncogene-induced lung adenomas. The combination of the C-Raf antigen, hemolysin secretion system and Salmonella enterica serovar Typhimurium could form the basis for a new generation of live bacterial vaccines for the treatment of Raf dependent human malignancies

  6. Exposure of Salmonella enterica serovar Typhimurium to high level biocide challenge can select multidrug resistant mutants in a single step.

    Directory of Open Access Journals (Sweden)

    Rebekah N Whitehead

    Full Text Available Biocides are crucial to the prevention of infection by bacteria, particularly with the global emergence of multiply antibiotic resistant strains of many species. Concern has been raised regarding the potential for biocide exposure to select for antibiotic resistance due to common mechanisms of resistance, notably efflux.Salmonella enterica serovar Typhimurium was challenged with 4 biocides of differing modes of action at both low and recommended-use concentration. Flow cytometry was used to investigate the physiological state of the cells after biocide challenge. After 5 hours exposure to biocide, live cells were sorted by FACS and recovered. Cells recovered after an exposure to low concentrations of biocide had antibiotic resistance profiles similar to wild-type cells. Live cells were recovered after exposure to two of the biocides at in-use concentration for 5 hours. These cells were multi-drug resistant and accumulation assays demonstrated an efflux phenotype of these mutants. Gene expression analysis showed that the AcrEF multidrug efflux pump was de-repressed in mutants isolated from high-levels of biocide.These data show that a single exposure to the working concentration of certain biocides can select for mutant Salmonella with efflux mediated multidrug resistance and that flow cytometry is a sensitive tool for identifying biocide tolerant mutants. The propensity for biocides to select for MDR mutants varies and this should be a consideration when designing new biocidal formulations.

  7. Igg Subclasses Targeting the Flagella of Salmonella enterica Serovar Typhimurium Can Mediate Phagocytosis and Bacterial Killing

    Science.gov (United States)

    Goh, Yun Shan; Armour, Kathryn L; Clark, Michael R; Grant, Andrew J; Mastroeni, Pietro

    2016-01-01

    Invasive non-typhoidal Salmonella are a common cause of invasive disease in immuno-compromised individuals and in children. Multi-drug resistance poses challenges to disease control, with a critical need for effective vaccines. Flagellin is an attractive vaccine candidate due to surface exposure and high epitope copy number, but its potential as a target for opsonophacytic antibodies is unclear. We examined the effect of targeting flagella with different classes of IgG on the interaction between Salmonella Typhimurium and a human phagocyte-like cell line, THP-1. We tagged the FliC flagellar protein with a foreign CD52 mimotope (TSSPSAD) and bacteria were opsonized with a panel of humanised CD52 antibodies with the same antigen-binding V-region, but different constant regions. We found that IgG binding to flagella increases bacterial phagocytosis and reduces viable intracellular bacterial numbers. Opsonisation with IgG3, followed by IgG1, IgG4, and IgG2, resulted in the highest level of bacterial uptake and in the highest reduction in the intracellular load of viable bacteria. Taken together, our data provide proof-of-principle evidence that targeting flagella with antibodies can increase the antibacterial function of host cells, with IgG3 being the most potent subclass. These data will assist the rational design of urgently needed, optimised vaccines against iNTS disease. PMID:27366588

  8. Induction of the Carrier State in Pigeons Infected with Salmonella enterica Subspecies enterica Serovar Typhimurium PT99 by Treatment with Florfenicol: a Matter of Pharmacokinetics▿

    Science.gov (United States)

    Pasmans, Frank; Baert, Kris; Martel, An; Bousquet-Melou, Alain; Lanckriet, Ruben; De Boever, Sandra; Van Immerseel, Filip; Eeckhaut, Venessa; de Backer, Patrick; Haesebrouck, Freddy

    2008-01-01

    Paratyphoid caused by Salmonella enterica subsp. enterica serovar Typhimurium is the main bacterial disease in pigeons. The ability of Salmonella serovar Typhimurium to persist intracellularly inside pigeon macrophages results in the development of chronic carriers, which maintain the infection in the flock. In this study, the effect of drinking-water medication with florfenicol on Salmonella infection in pigeons was examined. The pharmacokinetics of florfenicol in pigeons revealed a relatively high volume of distribution of 2.02 liters/kg of body weight and maximum concentrations in plasma higher than the MICs for the Salmonella strain used (4 μg/ml) but quick clearance of florfenicol due to a short half-life of 1.73 h. Together with highly variable bioavailability and erratic drinking-water uptake, these parameters resulted in the inability to reach a steady-state concentration through the continuous administration of florfenicol in the drinking water. Florfenicol was capable of reducing only moderately the number of intracellular salmonellae in infected pigeon macrophages in vitro. Only at high extracellular concentrations (>16 μg/ml) was a more-than-10-fold reduction of the number of intracellular bacteria noticed. Florfenicol treatment of pigeons via the drinking water from 2 days after experimental inoculation with Salmonella serovar Typhimurium until euthanasia at 16 days postinoculation resulted in a reduction of Salmonella shedding and an improvement in the fecal consistency. However, internal organs in florfenicol-treated pigeons were significantly more heavily colonized than those in untreated pigeons. In conclusion, the oral application of florfenicol for the treatment of pigeon paratyphoid contributes to the development of carrier animals through sub-MIC concentrations in plasma that do not inhibit intracellular persistency. PMID:18180355

  9. Interaction of Saccharomyces boulardii with Salmonella enterica serovar Typhimurium protects mice and modifies T84 cell response to the infection.

    Directory of Open Access Journals (Sweden)

    Flaviano S Martins

    Full Text Available BACKGROUND: Salmonella pathogenesis engages host cells in two-way biochemical interactions: phagocytosis of bacteria by recruitment of cellular small GTP-binding proteins induced by the bacteria, and by triggering a pro-inflammatory response through activation of MAPKs and nuclear translocation of NF-kappaB. Worldwide interest in the use of functional foods containing probiotic bacteria for health promotion and disease prevention has increased significantly. Saccharomyces boulardii is a non-pathogenic yeast used as a probiotic in infectious diarrhea. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we reported that S. boulardii (Sb protected mice from Salmonella enterica serovar Typhimurium (ST-induced death and prevented bacterial translocation to the liver. At a molecular level, using T84 human colorectal cancer cells, we demonstrate that incubation with Sb before infection totally abolished Salmonella invasion. This correlates with a decrease of activation of Rac1. Sb preserved T84 barrier function and decreased ST-induced IL-8 synthesis. This anti-inflammatory effect was correlated with an inhibitory effect of Sb on ST-induced activation of the MAPKs ERK1/2, p38 and JNK as well as on activation of NF-kappaB. Electron and confocal microscopy experiments showed an adhesion of bacteria to yeast cells, which could represent one of the mechanisms by which Sb exerts its protective effects. CONCLUSIONS: Sb shows modulating effects on permeability, inflammation, and signal transduction pathway in T84 cells infected by ST and an in vivo protective effect against ST infection. The present results also demonstrate that Sb modifies invasive properties of Salmonella.

  10. Characterisation of recently emerged multiple antibiotic-resistant Salmonella enterica serovar typhimurium DT104 and other multiresistant phage types from Danish pig herds

    DEFF Research Database (Denmark)

    Baggesen, Dorte Lau; Aarestrup, Frank Møller

    1998-01-01

    electrophoresis (PFGE) using the restriction enzyme Xba I, Overall, 66 per cent of the 670 isolates were sensitive to all the antimicrobial agents tested. Eleven isolates of S typhimurium were resistant to ampicillin, streptomycin and tetracycline and also resistant to other antibiotics in different resistance......A total of 670 isolates of Salmonella enterica were isolated from Danish pig herds, phage typed and tested for susceptibility to amoxycillin + clavulanate, ampicillin, colistin, enrofloxacin, gentamicin, neomycin, spectinomycin, streptomycin, tetracyclines, and trimethoprim + sulphadiazine. S...... enterica serovar typhimurium (S typhimurium) isolates resistant to ampicillin, streptomycin and tetracycline and three isolates of S typhimurium DT104, two from 1994 and one from 1995, were further tested for resistance against chloramphenicol and sulphonamide and analysed by pulsed-field gel...

  11. Choice of bacterial growth medium alters the transcriptome and phenotype of Salmonella enterica Serovar Typhimurium.

    Science.gov (United States)

    Blair, Jessica M A; Richmond, Grace E; Bailey, Andrew M; Ivens, Al; Piddock, Laura J V

    2013-01-01

    The type of bacterial culture medium is an important consideration during design of any experimental protocol. The aim of this study was to understand the impact of medium choice on bacterial gene expression and physiology by comparing the transcriptome of Salmonella enterica SL1344 after growth in the widely used LB broth or the rationally designed MOPS minimal medium. Transcriptomics showed that after growth in MOPS minimal media, compared to LB, there was increased expression of 42 genes involved in amino acid synthesis and 23 genes coding for ABC transporters. Seven flagellar genes had decreased expression after growth in MOPS minimal medium and this correlated with a decreased motility. In both MOPS minimal medium and MEM expression of genes from SPI-2 was increased and the adhesion of S. Typhimurium to intestinal epithelial cells was higher compared to the levels after growth in LB. However, SL1344 invasion was not significantly altered by growth in either MOPs minimal media or MEM. Expression of SPI-2 was also measured using chromosomal GFP reporter fusions followed by flow cytometry which showed, for the first time, that the reduction in SPI-2 transcript after growth in different media related to a reduction in the proportion of the bacterial population expressing SPI-2. These data highlight the profound differences in the global transcriptome after in vitro growth in different media and show that choice of medium should be considered carefully during experimental design, particularly when virulence related phenotypes are being measured.

  12. Characterization of variant Salmonella genomic island 1 multidrug resistance regions from serovars Typhimurium DT104 and Agona.

    Science.gov (United States)

    Boyd, David; Cloeckaert, Axel; Chaslus-Dancla, Elisabeth; Mulvey, Michael R

    2002-06-01

    Strains of multidrug-resistant Salmonella enterica serovar Typhimurium DT104 (DT104) and S. enterica serovar Agona (Agona) have been found to harbor Salmonella genomic island 1 (SGI1), a 43-kb genomic region that contains many of the drug resistance genes. Such strains are resistant to ampicillin (pse-1), chloramphenicol/florfenicol (floR), streptomycin/spectinomycin (aadA2), sulfonamides (sul1), and tetracycline [tet(G)] (commonly called the ACSSuT phenotype). All five resistance genes are found in a 13-kb multidrug resistance (MDR) region consisting of an unusual class I integron structure related to In4. We examined DT104 and Agona strains that exhibited other resistance phenotypes to determine if the resistance genes were associated with variant SGI1 MDR regions. All strains were found to harbor variant SGI1-like elements by using a combination of Southern hybridization, PCR mapping, and sequencing. Variant SGI1-like elements were found with MDR regions consisting of (i) an integron consisting of the SGI1 MDR region with the addition of a region containing a putative transposase gene (orf513) and dfrA10 located between duplicated qacEDelta1/sulI genes (SGI1-A; ACSSuTTm); (ii) an integron with either an aadA2 (SSu) or a pse-1 (ASu) cassette (SGI1-C and SGI1-B, respectively); (iii) an integron consisting of the SGI1-C MDR region plus an orf513/dfrA10 region as in SGI1-A (SGI1-D; ASSuTm; ampicillin resistance due to a TEM beta-lactamase); and (iv) an integron related to that in SGI1 but which contains a 10-kb inversion between two copies of IS6100, one which is inserted in floR (SGI1-E; ASSuT). We hypothesize that the MDR of SGI1 is subject to recombinational events that lead to the various resistance phenotypes in the Salmonella strains in which it is found.

  13. Association of virulence plasmid and antibiotic resistance determinants with chromosomal multilocus genotypes in Mexican Salmonella enterica serovar Typhimurium strains

    Directory of Open Access Journals (Sweden)

    Silva Claudia

    2009-07-01

    Full Text Available Abstract Background Bacterial genomes are mosaic structures composed of genes present in every strain of the same species (core genome, and genes present in some but not all strains of a species (accessory genome. The aim of this study was to compare the genetic diversity of core and accessory genes of a Salmonella enterica subspecies enterica serovar Typhimurium (Typhimurium population isolated from food-animal and human sources in four regions of Mexico. Multilocus sequence typing (MLST and macrorestriction fingerprints by pulsed-field gel electrophoresis (PFGE were used to address the core genetic variation, and genes involved in pathogenesis and antibiotic resistance were selected to evaluate the accessory genome. Results We found a low genetic diversity for both housekeeping and accessory genes. Sequence type 19 (ST19 was supported as the founder genotype of STs 213, 302 and 429. We found a temporal pattern in which the derived ST213 is replacing the founder ST19 in the four geographic regions analyzed and a geographic trend in the number of resistance determinants. The distribution of the accessory genes was not random among chromosomal genotypes. We detected strong associations among the different accessory genes and the multilocus chromosomal genotypes (STs. First, the Salmonella virulence plasmid (pSTV was found mostly in ST19 isolates. Second, the plasmid-borne betalactamase cmy-2 was found only in ST213 isolates. Third, the most abundant integron, IP-1 (dfrA12, orfF and aadA2, was found only in ST213 isolates. Fourth, the Salmonella genomic island (SGI1 was found mainly in a subgroup of ST19 isolates carrying pSTV. The mapping of accessory genes and multilocus genotypes on the dendrogram derived from macrorestiction fingerprints allowed the establishment of genetic subgroups within the population. Conclusion Despite the low levels of genetic diversity of core and accessory genes, the non-random distribution of the accessory genes

  14. A novel insight on signal transduction mechanism of RcsCDB system in Salmonella enterica serovar typhimurium.

    Directory of Open Access Journals (Sweden)

    María de Las Mercedes Pescaretti

    Full Text Available The RcsCDB system of Salmonella enterica serovar Typhimurium is implicated in the control of capsule and flagella synthesis. The hybrid sensor RcsC, the phosphotransferase RcsD and the RcsB regulator, constitute the main components of the RcsCDB system. The proposed Rcs signaling cascade involves the autophosphorylation of RcsC and the transfer of the phosphate group to RcsB, mediated by RcsD. We previously reported that the overexpression of rcsB repress the transcription of rcsD by an autoregulation mechanism. Moreover, we demonstrated that during the rcsD repression, the RcsB-dependent flagellar modulation remained active. These results suggest that the Rcs phosphorelay mechanism occurs even in the absence of RcsD. In this work, we established the existence of two alternative phosphorelay pathways driving activation of this system. We demonstrated that RcsC and RcsD can act as histidine kinase proteins which, after autophosphorylated, are able to independently transfer the phosphate to RcsB. Our results suggest that these pathways could be activated by different environmental signals, leading different levels of RcsB-phosphorylated to produce a differential gene modulation. These findings contribute to a better understanding of the complexity and importance of the Rcs system activation, where more than one phosphate flow pathway increases the possibilities to exert gene regulation for a quick environmental changes response.

  15. Poultry body temperature contributes to invasion control through reduced expression of Salmonella pathogenicity island 1 genes in Salmonella enterica serovars Typhimurium and Enteritidis.

    Science.gov (United States)

    Troxell, Bryan; Petri, Nicholas; Daron, Caitlyn; Pereira, Rafaela; Mendoza, Mary; Hassan, Hosni M; Koci, Matthew D

    2015-12-01

    Salmonella enterica serovars Typhimurium (S. Typhimurium) and Enteritidis (S. Enteritidis) are foodborne pathogens, and outbreaks are often associated with poultry products. Chickens are typically asymptomatic when colonized by these serovars; however, the factors contributing to this observation are uncharacterized. Whereas symptomatic mammals have a body temperature between 37°C and 39°C, chickens have a body temperature of 41°C to 42°C. Here, in vivo experiments using chicks demonstrated that numbers of viable S. Typhimurium or S. Enteritidis bacteria within the liver and spleen organ sites were ≥4 orders of magnitude lower than those within the ceca. When similar doses of S. Typhimurium or S. Enteritidis were given to C3H/HeN mice, the ratio of the intestinal concentration to the liver/spleen concentration was 1:1. In the avian host, this suggested poor survival within these tissues or a reduced capacity to traverse the host epithelial layer and reach liver/spleen sites or both. Salmonella pathogenicity island 1 (SPI-1) promotes localization to liver/spleen tissues through invasion of the epithelial cell layer. Following in vitro growth at 42°C, SPI-1 genes sipC, invF, and hilA and the SPI-1 rtsA activator were downregulated compared to expression at 37°C. Overexpression of the hilA activators fur, fliZ, and hilD was capable of inducing hilA-lacZ at 37°C but not at 42°C despite the presence of similar levels of protein at the two temperatures. In contrast, overexpression of either hilC or rtsA was capable of inducing hilA and sipC at 42°C. These data indicate that physiological parameters of the poultry host, such as body temperature, have a role in modulating expression of virulence. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  16. Impairment of Swimming Motility by Antidiarrheic Lactobacillus acidophilus Strain LB Retards Internalization of Salmonella enterica Serovar Typhimurium within Human Enterocyte-Like Cells▿

    Science.gov (United States)

    Liévin-Le Moal, Vanessa; Amsellem, Raymonde; Servin, Alain L.

    2011-01-01

    We report that both culture and the cell-free culture supernatant (CFCS) of Lactobacillus acidophilus strain LB (Lactéol Boucard) have the ability (i) to delay the appearance of Salmonella enterica serovar Typhimurium strain SL1344-induced mobilization of F-actin and, subsequently, (ii) to retard cell entry by S. Typhimurium SL1344. Time-lapse imaging and Western immunoblotting showed that S. Typhimurium SL1344 swimming motility, as represented by cell tracks of various types, was rapidly but temporarily blocked without affecting the expression of FliC flagellar propeller protein. We show that the product(s) secreted by L. acidophilus LB that supports the inhibitory activity is heat stable and of low molecular weight. The product(s) caused rapid depolarization of the S. Typhimurium SL1344 cytoplasmic membrane without affecting bacterial viability. We identified inhibition of swimming motility as a newly discovered mechanism by which the secreted product(s) of L. acidophilus strain LB retards the internalization of the diarrhea-associated pathogen S. enterica serovar Typhimurium within cultured human enterocyte-like cells. PMID:21825295

  17. Impairment of swimming motility by antidiarrheic Lactobacillus acidophilus strain LB retards internalization of Salmonella enterica serovar Typhimurium within human enterocyte-like cells.

    Science.gov (United States)

    Liévin-Le Moal, Vanessa; Amsellem, Raymonde; Servin, Alain L

    2011-10-01

    We report that both culture and the cell-free culture supernatant (CFCS) of Lactobacillus acidophilus strain LB (Lactéol Boucard) have the ability (i) to delay the appearance of Salmonella enterica serovar Typhimurium strain SL1344-induced mobilization of F-actin and, subsequently, (ii) to retard cell entry by S. Typhimurium SL1344. Time-lapse imaging and Western immunoblotting showed that S. Typhimurium SL1344 swimming motility, as represented by cell tracks of various types, was rapidly but temporarily blocked without affecting the expression of FliC flagellar propeller protein. We show that the product(s) secreted by L. acidophilus LB that supports the inhibitory activity is heat stable and of low molecular weight. The product(s) caused rapid depolarization of the S. Typhimurium SL1344 cytoplasmic membrane without affecting bacterial viability. We identified inhibition of swimming motility as a newly discovered mechanism by which the secreted product(s) of L. acidophilus strain LB retards the internalization of the diarrhea-associated pathogen S. enterica serovar Typhimurium within cultured human enterocyte-like cells.

  18. Interleukin-10 Production by T and B Cells Is a Key Factor to Promote Systemic Salmonella enterica Serovar Typhimurium Infection in Mice

    Directory of Open Access Journals (Sweden)

    Geraldyne A. Salazar

    2017-08-01

    Full Text Available Salmonella enterica serovar Typhimurium (S. Typhimurium is a Gram-negative bacterium that produces disease in numerous hosts. In mice, oral inoculation is followed by intestinal colonization and subsequent systemic dissemination, which leads to severe pathogenesis without the activation of an efficient anti-Salmonella immune response. This feature suggests that the infection caused by S. Typhimurium may promote the production of anti-inflammatory molecules by the host that prevent efficient T cell activation and bacterial clearance. In this study, we describe the contribution of immune cells producing the anti-inflammatory cytokine interleukin-10 (IL-10 to the systemic infection caused by S. Typhimurium in mice. We observed that the production of IL-10 was required by S. Typhimurium to cause a systemic disease, since mice lacking IL-10 (IL-10−/− were significantly more resistant to die after an infection as compared to wild-type (WT mice. IL-10−/− mice had reduced bacterial loads in internal organs and increased levels of pro-inflammatory cytokines in serum at 5 days of infection. Importantly, WT mice showed high bacterial loads in tissues and no increase of cytokines in serum after 5 days of S. Typhimurium infection, except for IL-10. In WT mice, we observed a peak of il-10 messenger RNA production in ileum, spleen, and liver after 5 days of infection. Importantly, the adoptive transfer of T or B cells from WT mice restored the susceptibility of IL-10−/− mice to systemic S. Typhimurium infection, suggesting that the generation of regulatory cells in vivo is required to sustain a systemic infection by S. Typhimurium. These findings support the notion that IL-10 production from lymphoid cells is a key process in the infective cycle of S. Typhimurium in mice due to generation of a tolerogenic immune response that prevents bacterial clearance and supports systemic dissemination.

  19. Effects of dietary clays on performance and intestinal mucus barrier of broiler chicks challenged with Salmonella enterica serovar Typhimurium and on goblet cell function in vitro.

    Science.gov (United States)

    Almeida, J A S; Ponnuraj, N P; Lee, J J; Utterback, P; Gaskins, H R; Dilger, R N; Pettigrew, J E

    2014-04-01

    In vivo and in vitro experiments were conducted to test for beneficial effects of dietary clays on broiler chicks challenged with Salmonella enterica serovar Typhimurium and to explore potential mechanisms. First, two hundred forty 1-d-old male broilers (initial BW: 41.6 ± 0.4 g) were allotted in a 2 × 4 factorial arrangement in a randomized complete block design. There were 2 infection treatments (with or without Salmonella) and 4 diets: basal (BAS), 0.3% smectite A (SMA), 0.3% smectite B, and 0.3% zeolite. The Salmonella reduced (P clay largely restored it (challenge × diet interaction, P clays (P clays restored the growth depression caused by Salmonella, and changes in goblet cell function may contribute to the benefits of one of the clays, specifically SMA.

  20. pH-, Lactic acid-, and non-lactic acid-dependent activities of probiotic Lactobacilli against Salmonella enterica Serovar Typhimurium.

    Science.gov (United States)

    Fayol-Messaoudi, Domitille; Berger, Cédric N; Coconnier-Polter, Marie-Hélène; Liévin-Le Moal, Vanessa; Servin, Alain L

    2005-10-01

    The mechanism(s) underlying the antibacterial activity of probiotic Lactobacillus strains appears to be multifactorial and includes lowering of the pH and the production of lactic acid and of antibacterial compounds, including bacteriocins and nonbacteriocin, non-lactic acid molecules. Addition of Dulbecco's modified Eagle's minimum essential medium to the incubating medium delays the killing activity of lactic acid. We found that the probiotic strains Lactobacillus johnsonii La1, Lactobacillus rhamnosus GG, Lactobacillus casei Shirota YIT9029, L. casei DN-114 001, and L. rhamnosus GR1 induced a dramatic decrease in the viability of Salmonella enterica serovar Typhimurium SL1344 mainly attributable to non-lactic acid molecule(s) present in the cell-free culture supernatant (CFCS). These molecules were more active against serovar Typhimurium SL1344 in the exponential growth phase than in the stationary growth phase. We also showed that the production of the non-lactic acid substance(s) responsible for the killing activity was dependent on growth temperature and that both unstable and stable substances with killing activity were present in the CFCSs. We found that the complete inhibition of serovar Typhimurium SL1344 growth results from a pH-lowering effect.

  1. Zinc Supplementation, via GPR39, Upregulates PKCζ to Protect Intestinal Barrier Integrity in Caco-2 Cells Challenged by Salmonella enterica Serovar Typhimurium.

    Science.gov (United States)

    Shao, Yu-Xin; Lei, Zhao; Wolf, Patricia G; Gao, Yan; Guo, Yu-Ming; Zhang, Bing-Kun

    2017-07-01

    Background: Zinc has been shown to improve intestinal barrier function against Salmonella enterica serovar Typhimurium ( S. typhimurium ) infection, but the mechanisms involved in this process remain undefined. Objective: We aimed to explore the roles of G protein-coupled receptor (GPR)39 and protein kinase Cζ (PKCζ) in the regulation by zinc of intestinal barrier function. Methods: A Transwell Caco-2 monolayer was pretreated with 0, 50, or 100 μM Zn and then incubated with S. typhimurium for 0-6 h. Afterward, cells silenced by the small interfering RNA for GPR39 or PKCζ were pretreated with 100 μM Zn and incubated with S. typhimurium for 3 h. Finally, transepithelial electrical resistance (TEER), permeability, tight junction (TJ) proteins, and signaling molecules GPR39 and PKCζ were measured. Results: Compared with controls, S. typhimurium decreased TEER by 62.3-96.2% at 4-6 h ( P 0.1). Silencing GPR39 decreased ( P zinc-activated PKCζ and blocked ( P zinc on epithelial integrity. Furthermore, silencing PKCζ counteracted the protective effect of zinc on epithelial integrity but did not inhibit GPR39 ( P = 0.138). Conclusion: We demonstrated that zinc upregulates PKCζ by activating GPR39 to enhance the abundance of ZO-1, thereby improving epithelial integrity in S. typhimurium- infected Caco-2 cells. © 2017 American Society for Nutrition.

  2. Influence of rpoS mutations on the response of Salmonella enterica serovar Typhimurium to solar radiation.

    Science.gov (United States)

    Oppezzo, Oscar J; Costa, Cristina S; Pizarro, Ramón A

    2011-01-10

    Salmonella enterica serovar Typhimurium is an important pathogen, and exhibits considerable resistance to the lethal effects of solar radiation. To evaluate the involvement of the RpoS transcription factor in the defense mechanisms of this organism, the sunlight response of a wild type strain (ATCC14028) was compared with that of an rpoS mutant, which exhibited increased sensitivity. Kinetics of cell death was complex in both strains, probably due to the presence of a variety of targets for the radiation. When ultraviolet radiation was excluded from the incident sunlight, lethal effects were abolished independently of the allelic state of rpoS. Reduction of oxygen concentration in the irradiation medium provided moderate protection to ATCC14028, but notably improved survival of the mutant. Similar assays were developed with another S. enterica strain (DA1468), which is a derivative of strain LT2 and produces low levels of RpoS. In this strain the loss of viability reveals the dependence on solar ultraviolet and oxygen concentration found for ATCC14028, but radiation resistance was slightly reduced. Increased sensitivity was observed in an rpoS mutant derived from DA1468, indicating that RpoS functions related to photoprotection are conserved in this strain. In addition, notable differences in the shape of the survival curves obtained for mutants derived from ATCC14028 and DA1468 were found, suggesting that genes beyond RpoS control are relevant in the sunlight response of these mutants. Copyright © 2010 Elsevier B.V. All rights reserved.

  3. Global Genomic Epidemiology of Salmonella enterica Serovar Typhimurium DT104

    DEFF Research Database (Denmark)

    Leekitcharoenphon, Pimlapas; Hendriksen, Rene S.; Le Hello, Simon

    2016-01-01

    structured sequence analysis within a Bayesian framework to reconstruct temporal and spatial phylogenetic trees and estimate the rates of mutation and divergence times of 315S Typhimurium DT104 isolates sampled from 1969 to 2012 from 21 countries on six continents. DT104 was estimated to have emerged...

  4. Mathematical model of flagella gene expression dynamics in Salmonella enterica serovar typhimurium

    OpenAIRE

    Jain, Kirti; Pradhan, Amit; Mokashi, Chaitanya; Saini, Supreet

    2015-01-01

    Flagellar assembly in Salmonella is controlled by an intricate genetic and biochemical network. This network comprises of a number of inter-connected feedback loops, which control the assembly process dynamically. Critical among these are the FliA–FlgM feedback, FliZ-mediated positive feedback, and FliT-mediated negative feedback. In this work, we develop a mathematical model to track the dynamics of flagellar gene expression in Salmonella. Analysis of our model demonstrates that the network ...

  5. Phage types of Salmonella enterica ssp. enterica serovar Typhimurium isolated from production animals and humans in Denmark

    DEFF Research Database (Denmark)

    Baggesen, Dorte Lau; Wegener, Henrik Caspar

    1994-01-01

    S. Typhimurium is one of the 2 most common salmonella serotypes causing human salmonellosis in Denmark. In order to illustrate the significance of different production animals as a source of infection, 1461 isolates were characterized by phage typing. The isolates originated from human patients a...

  6. An altered immune response, but not individual cationic antimicrobial peptides, is associated with the oral attenuation of Ara4N-deficient Salmonella enterica serovar Typhimurium in mice.

    Directory of Open Access Journals (Sweden)

    Kristi L Strandberg

    Full Text Available Salmonella enterica serovar Typhimurium (S. Typhimurium uses two-component regulatory systems (TCRS to respond to stimuli in the local microenvironment. Upon infection, the Salmonella TCRSs PhoP-PhoQ (PhoPQ and PmrA-PmrB (PmrAB are activated by environmental signals in the intestinal lumen and within host cells. TCRS-mediated gene expression results in lipopolysaccharide (LPS modification and cationic antimicrobial peptide resistance. The PmrA-regulated pmrHFIJKLM operon mediates 4-amino-4-deoxy-L-arabinose (Ara4N production and attachment to the lipid A of LPS. A ΔpmrF S. Typhimurium strain cannot produce Ara4N, exhibits increased sensitivity to cationic antimicrobial peptide (CAMP-mediated killing, and attenuated virulence in mice upon oral infection. CAMPs are predicted to play a role in elimination of Salmonella, and may activate PhoPQ and PmrAB in vivo, which could increase bacterial resistance to host defenses. Competition experiments between wild type (WT and ΔpmrF mutant strains of S. Typhimurium indicated that selection against this mutant first occurs within the intestinal lumen early during infection. However, CRAMP and active cryptdins alone are not responsible for elimination of Ara4N-deficient bacteria in vivo. Investigation into the early immune response to ΔpmrF showed that it differed slightly from the early immune response to WT S. Typhimurium. Further investigation into the early immune response to infection of Peyer's patches suggests a role for IL-13 in the attenution of the ΔpmrF mutant strain. Thus, prominent CAMPs present in the mouse intestine are not responsible for the selection against the ΔpmrF strain in this location, but limited alterations in innate immune induction were observed that affect bacterial survival and virulence.

  7. Salmonella enterica Serovar Typhimurium in Mauritius Linked to Consumption of Marlin Mousse

    DEFF Research Database (Denmark)

    Issack, M. I.; Hendriksen, Rene S.; Lun, P. L. K.

    2009-01-01

    We report the first outbreak of salmonellosis caused by consumption of contaminated marlin mousse. Between 29 October and 5 November 2008, at least 53 persons developed diarrheal illness, all with a history of eating marlin mousse. Salmonella spp. that did not produce gas from glucose was isolated...... from stools of 26 affected patients and blood culture from one patient. Salmonella sp. isolates with the same phenotype were isolated in three samples of marlin mousse manufactured on 27 October 2008. The constituents of the mousse were smoked marlin, raw eggs, bovine gelatin, oil, and cream...

  8. Some putative prebiotics increase the severity of Salmonella enterica serovar Typhimurium infection in mice

    DEFF Research Database (Denmark)

    Petersen, Anne; Heegaard, Peter M. H.; Pedersen, Anna Lovmand

    2009-01-01

    containing 10% of either of the following carbohydrates: inulin, fructo-oligosaccharide, xylo-oligosaccharide, galacto-oligosaccharide, apple pectin, polydextrose or beta-glucan for three weeks prior to oral Salmonella challenge (107 CFU) and compared to mice fed a cornstarch-based control diet. RESULTS...

  9. Interactions of Salmonella enterica Serovar Typhimurium and Pectobacterium carotovorum within a tomato soft rot

    Science.gov (United States)

    The human pathogen Salmonella has shown a remarkable adaptability which allows these bacteria to thrive in a variety of environments and hosts. The manner in which these pathogens establish within a niche amidst the native microbiota remains poorly understood. Here, we aimed to uncover the mechanism...

  10. Gene expression profiles following high-dose exposure to gamma radiation in salmonella enterica serovar typhimurium

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Sang Yong; Jung, Sun Wook; Joe, Min Ho; Kim, Dong Ho [Radiation Research Division for Biotechnology, Korea Atomic Energy Research Institute, Jeongeup (Korea, Republic of)

    2008-08-15

    Microarrays can measure the expression of thousands of genes to identify the changes in expression between different biological states. To survey the change of whole Salmonella genes after a relatively high dose of gamma radiation (1 kGy), transcriptome dynamics were examined in the cells by using DNA microarrays. At least 75 genes were induced and 89 genes were reduced two-fold or more after irradiation. Several genes located in pSLT plasmid, cyo operon, and Gifsy prophage were induced along with many genes encoding uncharacterized proteins.While, the expression of genes involved in the virulence of Salmonella as well as metabolic functions were decreased. Although the radiation response as a whole could not be illustrated by using DNA microarrays, the data suggest that the response to high dose of irradiation might be more complex than the SOS response.

  11. Gene expression profiles following high-dose exposure to gamma radiation in salmonella enterica serovar typhimurium

    International Nuclear Information System (INIS)

    Lim, Sang Yong; Jung, Sun Wook; Joe, Min Ho; Kim, Dong Ho

    2008-01-01

    Microarrays can measure the expression of thousands of genes to identify the changes in expression between different biological states. To survey the change of whole Salmonella genes after a relatively high dose of gamma radiation (1 kGy), transcriptome dynamics were examined in the cells by using DNA microarrays. At least 75 genes were induced and 89 genes were reduced two-fold or more after irradiation. Several genes located in pSLT plasmid, cyo operon, and Gifsy prophage were induced along with many genes encoding uncharacterized proteins.While, the expression of genes involved in the virulence of Salmonella as well as metabolic functions were decreased. Although the radiation response as a whole could not be illustrated by using DNA microarrays, the data suggest that the response to high dose of irradiation might be more complex than the SOS response

  12. Susceptibility of germ-free pigs to challenge with protease mutants of Salmonella enterica serovar Typhimurium

    Czech Academy of Sciences Publication Activity Database

    Šplíchal, Igor; Rychlík, I.; Gregorová, D.; Šebková, A.; Trebichavský, Ilja; Šplíchalová, Alla; Muneta, Y.; Mori, Y.

    2007-01-01

    Roč. 212, - (2007), s. 577-582 ISSN 0171-2985 R&D Projects: GA ČR GA524/05/2248 Grant - others:CZ(CZ) 1B4400020 Institutional research plan: CEZ:AV0Z50200510 Source of funding: V - iné verejné zdroje Keywords : salmonella * protease mutants * pig Subject RIV: EE - Microbiology, Virology Impact factor: 2.886, year: 2007

  13. Effects of cattle feeding regimen and soil management type on the fate of Escherichia coli O157:H7 and Salmonella enterica serovar Typhimurium in manure, manure-amended soil, and lettuce

    NARCIS (Netherlands)

    Franz, E.; Diepeningen, van A.D.; Vos, de O.J.; Bruggen, van A.H.C.

    2005-01-01

    Survival of the green fluorescent protein-transformed human pathogens Escherichia coli O157:H7 and Salmonella enterica serovar Typhimurium was studied in a laboratory-simulated lettuce production chain. Dairy cows were fed three different roughage types: high-digestible grass silage plus maize

  14. Correlation between ceftriaxone resistance of Salmonella enterica serovar Typhimurium and expression of outer membrane proteins OmpW and Ail/OmpX-like protein, which are regulated by BaeR of a two-component system.

    Science.gov (United States)

    Hu, Wensi S; Li, Pei-Chuan; Cheng, Chao-Yin

    2005-09-01

    Mutant 7F2 of Salmonella enterica serovar Typhimurium has a transposon inserted in the regulator gene baeR of a two-component system and showed a more-than-fourfold reduction in resistance to ceftriaxone. Complementation analysis suggested an association among the outer membrane proteins OmpW and STM3031, ceftriaxone resistance, and baeR.

  15. Effects of cattle feeding regimen and soil management type on the fate of Escherichia coli O157:H7 and salmonella enterica serovar typhimurium in manure, manure-amended soil, and lettuce

    NARCIS (Netherlands)

    Franz, Eelco; van Diepeningen, Anne D; de Vos, Oscar J; van Bruggen, Ariena H C

    2005-01-01

    Survival of the green fluorescent protein-transformed human pathogens Escherichia coli O157:H7 and Salmonella enterica serovar Typhimurium was studied in a laboratory-simulated lettuce production chain. Dairy cows were fed three different roughage types: high-digestible grass silage plus maize

  16. Use of multiple-locus variable-number of tandem repeats analysis (MLVA) to investigate genetic diversity of Salmonella enterica subsp. enterica serovar Typhimurium isolates from human, food, and veterinary sources

    DEFF Research Database (Denmark)

    Mateva, Gergana; Pedersen, Karl; Sørensen, Gitte

    2017-01-01

    Salmonella enterica subspecies enterica serovar Typhimurium is the most common zoonotic pathogen in Bulgaria. To allow efficient outbreak investigations and surveillance in the food chain, accurate and discriminatory methods for typing are needed. This study evaluated the use of multiple-locus va...

  17. Multidrug-resistant Salmonella enterica Serovar Typhimurium Monophasic Variant 4,12:i:- Isolated from Asymptomatic Wildlife in a Catalonian Wildlife Rehabilitation Center, Spain.

    Science.gov (United States)

    Molina-López, Rafael A; Vidal, Anna; Obón, Elena; Martín, Marga; Darwich, Laila

    2015-07-01

    Wildlife can act as long-term asymptomatic reservoirs for zoonotic bacteria, such as Salmonella. The prevalence and antimicrobial-susceptibility profiles of Salmonella spp. were assessed in 263 cases in wildlife from 22 animal orders from a wildlife rehabilitation center in Catalonia (NE Spain), September 2013-May 2014. Eleven of 263 tested animals were positive for Salmonella spp., representing an overall prevalence of 4.2%. Prevalences by taxonomic categories were 2% in mammals, 4.7% in birds, and 4.5% in reptiles. By species, one each of European hedgehog (Erinaceus europeus; from a sample of n = 26), Eurasian Eagle Owl (Bubo bubo; n = 2), Barn Owl (Tyto alba; n = 3), Tawny Owl (Strix aluco; n = 20), Egyptian Vulture (Neophron percnopterus; n = 1), Griffon Vulture (Gyps fulvus; n = 1), and Hoopoe (Upupa epops; n = 2), and two each Common Kestrels (Falco tinnunculus; n = 16) and pond sliders (Trachemys scripta; n = 25) were positive for Salmonella. By serotyping, seven of eleven isolates were classified as S. enterica subsp. enterica serovar Typhimurium, and five of seven belonged to the monophasic variant 4,12:i:-. All the monophasic variants were isolated from birds (4/5 in raptors) and showed a multidrug-resistance (MDR) profile to at least ampicillin, streptomycin, sulfonamide, and tetracycline (R-type ASSuT), and up to 12 antibiotics. The large proportion of S. Typhimurium monophasic MDR strains detected in wildlife never treated with antibiotics, especially in raptors, adds more complexity to the epidemiologic control of one of the most frequent serovars involved in human and livestock infection.

  18. Towards an understanding of Salmonella enterica serovar Typhimurium persistence in swine.

    Science.gov (United States)

    Patterson, Sheila K; Kim, Hyeun Bum; Borewicz, Klaudyna; Isaacson, Richard E

    2016-12-01

    Salmonella enterica is an important food borne pathogen that is frequently carried by swine. Carrier animals pose a food safety risk because they can transmit S. enterica to finished food products in the processing plant or by contamination of the environment. Environmental contamination has become increasingly important as non-animal foods (plant-based) have been implicated as sources of S. enterica. The prevalence of S. enterica in swine is high and yet carrier animals remain healthy. S. enterica has developed a highly sophisticated set of virulence factors that allow it to adapt to host environments and to cause disease. It is assumed that S. enterica also has developed unique ways to maintain itself in animals and yet not cause disease. Here we describe our research to understand persistence. Specifically, data are presented that demonstrates that detection of most carrier animals requires specific stresses that cause S. enterica to be shed from pigs. As well, we describe a phenotypic phase variation process that appears to be linked to the carrier state and a complex set of factors that control phenotypic phase variation. Finally, we describe how the composition of the gut bacterial microbiome may contribute to persistence and at the least how S. enterica might alter the composition of the gut bacterial microbiome.

  19. Role of antilipopolysaccharide antibodies in serum bactericidal activity against Salmonella enterica serovar Typhimurium in healthy adults and children in the United States.

    Science.gov (United States)

    Trebicka, Estela; Jacob, Susan; Pirzai, Waheed; Hurley, Bryan P; Cherayil, Bobby J

    2013-10-01

    Recent observations from Africa have rekindled interest in the role of serum bactericidal antibodies in protecting against systemic infection with Salmonella enterica serovar Typhimurium. To determine whether the findings are applicable to other populations, we analyzed serum samples collected from healthy individuals in the United States. We found that all but 1 of the 49 adult samples tested had robust bactericidal activity against S. Typhimurium in a standard in vitro assay. The activity was dependent on complement and could be reproduced by immunoglobulin G (IgG) purified from the sera. The bactericidal activity was inhibited by competition with soluble lipopolysaccharide (LPS) from S. Typhimurium but not from Escherichia coli, consistent with recognition of a determinant in the O-antigen polysaccharide. Sera from healthy children aged 10 to 48 months also had bactericidal activity, although it was significantly less than in the adults, correlating with lower levels of LPS-specific IgM and IgG. The lone sample in our collection that lacked bactericidal activity was able to inhibit killing of S. Typhimurium by the other sera. The inhibition correlated with the presence of an LPS-specific IgM and was associated with decreased complement deposition on the bacterial surface. Our results indicate that healthy individuals can have circulating antibodies to LPS that either mediate or inhibit killing of S. Typhimurium. The findings contrast with the observations from Africa, which linked bactericidal activity to antibodies against an S. Typhimurium outer membrane protein and correlated the presence of inhibitory anti-LPS antibodies with human immunodeficiency virus infection.

  20. Lack of AcrB Efflux Function Confers Loss of Virulence on Salmonella enterica Serovar Typhimurium

    Directory of Open Access Journals (Sweden)

    Xuan Wang-Kan

    2017-07-01

    Full Text Available AcrAB-TolC is the paradigm resistance-nodulation-division (RND multidrug resistance efflux system in Gram-negative bacteria, with AcrB being the pump protein in this complex. We constructed a nonfunctional AcrB mutant by replacing D408, a highly conserved residue essential for proton translocation. Western blotting confirmed that the AcrB D408A mutant had the same native level of expression of AcrB as the parental strain. The mutant had no growth deficiencies in rich or minimal medium. However, compared with wild-type SL1344, the mutant had increased accumulation of Hoechst 33342 dye and decreased efflux of ethidium bromide and was multidrug hypersusceptible. The D408A mutant was attenuated in vivo in mouse and Galleria mellonella models and showed significantly reduced invasion into intestinal epithelial cells and macrophages in vitro. A dose-dependent inhibition of invasion was also observed when two different efflux pump inhibitors were added to the wild-type strain during infection of epithelial cells. RNA sequencing (RNA-seq revealed downregulation of bacterial factors necessary for infection, including those in the Salmonella pathogenicity islands 1, 2, and 4; quorum sensing genes; and phoPQ. Several general stress response genes were upregulated, probably due to retention of noxious molecules inside the bacterium. Unlike loss of AcrB protein, loss of efflux function did not induce overexpression of other RND efflux pumps. Our data suggest that gene deletion mutants are unsuitable for studying membrane transporters and, importantly, that inhibitors of AcrB efflux function will not induce expression of other RND pumps.

  1. Characterization of Novel Factors Involved in Swimming and Swarming Motility in Salmonella enterica Serovar Typhimurium.

    Directory of Open Access Journals (Sweden)

    Julia Andrea Deditius

    Full Text Available Salmonella enterica utilizes flagellar motility to swim through liquid environments and on surfaces. The biosynthesis of the flagellum is regulated on various levels, including transcriptional and posttranscriptional mechanisms. Here, we investigated the motility phenotype of 24 selected single gene deletions that were previously described to display swimming and swarming motility effects. Mutations in flgE, fliH, ydiV, rfaG, yjcC, STM1267 and STM3363 showed an altered motility phenotype. Deletions of flgE and fliH displayed a non-motile phenotype in both swimming and swarming motility assays as expected. The deletions of STM1267, STM3363, ydiV, rfaG and yjcC were further analyzed in detail for flagellar and fimbrial gene expression and filament formation. A ΔydiV mutant showed increased swimming motility, but a decrease in swarming motility, which coincided with derepression of curli fimbriae. A deletion of yjcC, encoding for an EAL domain-containing protein, increased swimming motility independent on flagellar gene expression. A ΔSTM1267 mutant displayed a hypermotile phenotype on swarm agar plates and was found to have increased numbers of flagella. In contrast, a knockout of STM3363 did also display an increase in swarming motility, but did not alter flagella numbers. Finally, a deletion of the LPS biosynthesis-related protein RfaG reduced swimming and swarming motility, associated with a decrease in transcription from flagellar class II and class III promoters and a lack of flagellar filaments.

  2. Dormant intracellular salmonella enterica serovar typhimurium discriminates among salmonella pathogenicity island 2 effectors to persist inside fibroblasts

    OpenAIRE

    Núñez Hernández, Cristina; Alonso, Ana; Pucciarelli, María Graciela; Casadesús Pursals, Josep; García del Portillo, Francisco

    2014-01-01

    Salmonella enterica uses effector proteins delivered by type III secretion systems (TTSS) to colonize eukaryotic cells. Recent in vivo studies have shown that intracellular bacteria activate the TTSS encoded by Salmonella pathogenicity island-2 (SPI-2) to restrain growth inside phagocytes. Growth attenuation is also observed in vivo in bacteria colonizing nonphagocytic stromal cells of the intestinal lamina propria and in cultured fibroblasts. SPI-2 is required for survival of nongrowing bact...

  3. Genome expression analysis of nonproliferating intracellular Salmonella enterica serovar Typhimurium unravels an acid pH-dependent PhoP-PhoQ response essential for dormancy.

    Science.gov (United States)

    Núñez-Hernández, Cristina; Tierrez, Alberto; Ortega, Alvaro D; Pucciarelli, M Graciela; Godoy, Marta; Eisman, Blanca; Casadesús, Josep; García-del Portillo, Francisco

    2013-01-01

    Genome-wide expression analyses have provided clues on how Salmonella proliferates inside cultured macrophages and epithelial cells. However, in vivo studies show that Salmonella does not replicate massively within host cells, leaving the underlying mechanisms of such growth control largely undefined. In vitro infection models based on fibroblasts or dendritic cells reveal limited proliferation of the pathogen, but it is presently unknown whether these phenomena reflect events occurring in vivo. Fibroblasts are distinctive, since they represent a nonphagocytic cell type in which S. enterica serovar Typhimurium actively attenuates intracellular growth. Here, we show in the mouse model that S. Typhimurium restrains intracellular growth within nonphagocytic cells positioned in the intestinal lamina propria. This response requires a functional PhoP-PhoQ system and is reproduced in primary fibroblasts isolated from the mouse intestine. The fibroblast infection model was exploited to generate transcriptome data, which revealed that ∼2% (98 genes) of the S. Typhimurium genome is differentially expressed in nongrowing intracellular bacteria. Changes include metabolic reprogramming to microaerophilic conditions, induction of virulence plasmid genes, upregulation of the pathogenicity islands SPI-1 and SPI-2, and shutdown of flagella production and chemotaxis. Comparison of relative protein levels of several PhoP-PhoQ-regulated functions (PagN, PagP, and VirK) in nongrowing intracellular bacteria and extracellular bacteria exposed to diverse PhoP-PhoQ-inducing signals denoted a regulation responding to acidic pH. These data demonstrate that S. Typhimurium restrains intracellular growth in vivo and support a model in which dormant intracellular bacteria could sense vacuolar acidification to stimulate the PhoP-PhoQ system for preventing intracellular overgrowth.

  4. Genome Expression Analysis of Nonproliferating Intracellular Salmonella enterica Serovar Typhimurium Unravels an Acid pH-Dependent PhoP-PhoQ Response Essential for Dormancy

    Science.gov (United States)

    Núñez-Hernández, Cristina; Tierrez, Alberto; Ortega, Álvaro D.; Pucciarelli, M. Graciela; Godoy, Marta; Eisman, Blanca; Casadesús, Josep

    2013-01-01

    Genome-wide expression analyses have provided clues on how Salmonella proliferates inside cultured macrophages and epithelial cells. However, in vivo studies show that Salmonella does not replicate massively within host cells, leaving the underlying mechanisms of such growth control largely undefined. In vitro infection models based on fibroblasts or dendritic cells reveal limited proliferation of the pathogen, but it is presently unknown whether these phenomena reflect events occurring in vivo. Fibroblasts are distinctive, since they represent a nonphagocytic cell type in which S. enterica serovar Typhimurium actively attenuates intracellular growth. Here, we show in the mouse model that S. Typhimurium restrains intracellular growth within nonphagocytic cells positioned in the intestinal lamina propria. This response requires a functional PhoP-PhoQ system and is reproduced in primary fibroblasts isolated from the mouse intestine. The fibroblast infection model was exploited to generate transcriptome data, which revealed that ∼2% (98 genes) of the S. Typhimurium genome is differentially expressed in nongrowing intracellular bacteria. Changes include metabolic reprogramming to microaerophilic conditions, induction of virulence plasmid genes, upregulation of the pathogenicity islands SPI-1 and SPI-2, and shutdown of flagella production and chemotaxis. Comparison of relative protein levels of several PhoP-PhoQ-regulated functions (PagN, PagP, and VirK) in nongrowing intracellular bacteria and extracellular bacteria exposed to diverse PhoP-PhoQ-inducing signals denoted a regulation responding to acidic pH. These data demonstrate that S. Typhimurium restrains intracellular growth in vivo and support a model in which dormant intracellular bacteria could sense vacuolar acidification to stimulate the PhoP-PhoQ system for preventing intracellular overgrowth. PMID:23090959

  5. Antibody-based Detection of Escherichia coli O157:H7 and Salmonella enterica Serovar Typhimurium Grown in Low-shear Modeled Microgravity

    Science.gov (United States)

    Nyquist-Battie, Cynthia; Freeman, Laura; Leckband, Kristen; Martinez, Stephanie; Ansley, Ariel; Lund, Deanna; Lim, Daniel V.

    2008-06-01

    With the advent of prolonged spaceflights, it is important to determine if antibody-based assays can be used to monitor food and water for bacterial contaminants. In the present work, a ground-based high aspect ratio vessel (HARV) was used to determine if low shear modeled microgravity (LSMMG) alters antibody-binding to E. coli O157:H7 and Salmonella enterica serovar Typhimurium. Antibody-bacteria binding was similar under LSMMG and normal gravity because there was no difference in amount of captured bacteria measured by colony forming units (CFU) between assays conducted in the HARV and a conventional roller flask. The ability of E. coli O157:H7 and Salmonella Typhimurium grown in LSMMG to bind specific antibodies was also studied. After incubations of 4, 18 or 36 h in the HARV or a shaking incubator, bacteria were harvested for enzyme-linked immunosorbent assays (ELISA). In the E. coli O157:H7 ELISA using a goat polyclonal primary antibody, LSMMG did not alter the linear range of detection (105-107 cells/ml) nor the signal to noise ratio at any bacterial concentration. Although insignificant changes in signal to noise ratios were evident, LSMMG did not alter the range of detection (105-107 cells/ml) for Salmonella Typhimurium in ELISAs using either a polyclonal or a monoclonal antibody. These results suggest that immunoassays may be used in spacecrafts because LSMMG does not have significant deleterious effects on antibody-binding to bacteria nor does it significantly alter surface antigens necessary for antibody-based methods.

  6. An oral recombinant Salmonella enterica serovar Typhimurium mutant elicits systemic antigen-specific CD8+ T cell cytokine responses in mice

    Directory of Open Access Journals (Sweden)

    Chin'ombe Nyasha

    2009-04-01

    Full Text Available Abstract Background The induction of antigen-specific CD8+ T cell cytokine responses against an attenuated, oral recombinant Salmonella enterica serovar Typhimurium vaccine expressing a green fluorescent protein (GFP model antigen was investigated. A GFP expression plasmid was constructed in which the gfp gene was fused in-frame with the 5' domain of the Escherichia coli β-galactosidase α-gene fragment with expression under the lac promoter. Groups of mice were orally immunized three times with the bacteria and systemic CD8+ T cell cytokine responses were evaluated. Results High level of the GFP model antigen was expressed by the recombinant Salmonella vaccine vector. Systemic GFP-specific CD8+ T cell cytokine (IFN-γ and IL-4 immune responses were detected after mice were orally vaccinated with the bacteria. It was shown that 226 net IFN-γ and 132 net IL-4 GFP-specific SFUs/10e6 splenocytes were formed in an ELISPOT assay. The level of IFN-γ produced by GFP peptide-stimulated cells was 65.2-fold above background (p Conclusion These results suggested that a high expressing recombinant Salmonella vaccine given orally to mice would elicit antigen-specific CD8+ T cell responses in the spleen. Salmonella bacteria may, therefore, be used as potential mucosal vaccine vectors.

  7. Phage types of Salmonella enterica ssp. enterica serovar Typhimurium isolated from production animals and humans in Denmark

    DEFF Research Database (Denmark)

    Baggesen, Dorte Lau; Wegener, Henrik Caspar

    1994-01-01

    S. Typhimurium is one of the 2 most common salmonella serotypes causing human salmonellosis in Denmark. In order to illustrate the significance of different production animals as a source of infection, 1461 isolates were characterized by phage typing. The isolates originated from human patients...... and from cattle, pigs and poultry. By phage typing the isolates could be separated in 35 different phage types. Five types (10, 12, 66, 110 and 135) predominated and comprised 78.8% of the isolates. In humans, 57.3% of the isolates were phage type 12. This phage type was also predominant in pig herds and......, to a lesser degree, in cattle. Phage types 110, 120, 135 and 193 constituted 86.5% of the poultry isolates while these phage types only made up 12.9% of the human isolates. The investigation showed that pigs are probably a major source of S. Typhimurium infection in humans in Denmark today....

  8. Removal of the phage-shock protein PspB causes reduction of virulence in Salmonella enterica serovar Typhimurium independently of NRAMP1.

    Science.gov (United States)

    Wallrodt, Inke; Jelsbak, Lotte; Thomsen, Line E; Brix, Lena; Lemire, Sébastien; Gautier, Laurent; Nielsen, Dennis S; Jovanovic, Goran; Buck, Martin; Olsen, John E

    2014-06-01

    The phage-shock protein (Psp) system is believed to manage membrane stress in all Enterobacteriaceae and has recently emerged as being important for virulence in several pathogenic species of this phylum. The core of the Psp system consists of the pspA-D operon and the distantly located pspG gene. In Salmonella enterica serovar Typhimurium (S. Typhimurium), it has recently been reported that PspA is essential for systemic infection of mice, but only in NRAMP1(+) mice, signifying that attenuation is related to coping with divalent cation starvation in the intracellular environment. In the present study, we investigated the contribution of individual psp genes to virulence of S. Typhimurium. Interestingly, deletion of the whole pspA-D set of genes caused attenuation in both NRAMP1(+) and NRAMP1(-) mice, indicating that one or more of the psp genes contribute to virulence independently of NRAMP1 expression in the host. Investigations of single gene mutants showed that knock out of pspB reduced virulence in both types of mice, while deletion of pspA only caused attenuation in NRAMP1(+) mice, and deletion of pspD had a minor effect in NRAMP1(-) mice, while deletions of either pspC or pspG did not affect virulence. Experiments addressed at elucidating the role of PspB in virulence revealed that PspB is dispensable for uptake to and intracellular replication in cultured macrophages and resistance to complement-induced killing. Furthermore, the Psp system of S. Typhimurium was dispensable during pIV-induced secretin stress. In conclusion, our results demonstrate that removal of PspB reduces virulence in S. Typhimurium independently of host NRAMP1 expression, demonstrating that PspB has roles in intra-host survival distinct from the reported contributions of PspA. © 2014 The Authors.

  9. Periplasmic Cu,Zn superoxide dismutase and cytoplasmic Dps concur in protecting Salmonella enterica serovar Typhimurium from extracellular reactive oxygen species.

    Science.gov (United States)

    Pacello, Francesca; Ceci, Pierpaolo; Ammendola, Serena; Pasquali, Paolo; Chiancone, Emilia; Battistoni, Andrea

    2008-02-01

    Several bacteria possess periplasmic Cu,Zn superoxide dismutases which can confer protection from extracellular reactive oxygen species. Thus, deletion of the sodC1 gene reduces Salmonella enterica serovar Typhimurium ability to colonize the spleens of wild type mice, but enhances virulence in p47phox mutant mice. To look into the role of periplamic Cu,Zn superoxide dismutase and into possible additive effects of the ferritin-like Dps protein involved in hydrogen peroxide detoxification, we have analyzed bacterial survival in response to extracellular sources of superoxide and/or hydrogen peroxide. Exposure to extracellular superoxide of Salmonella Typhimurium mutant strains lacking the sodC1 and sodC2 genes and/or the dps gene does not cause direct killing of bacteria, indicating that extracellular superoxide is poorly bactericidal. In contrast, all mutant strains display a sharp hydrogen peroxide-dependent loss of viability, the dps,sodC1,sodC2 mutant being less resistant than the dps or the sodC1,sodC2 mutants. These findings suggest that the role of Cu,Zn superoxide dismutase in bacteria is to remove rapidly superoxide from the periplasm to prevent its reaction with other reactive molecules. Moreover, the nearly additive effect of the sodC and dps mutations suggests that localization of antioxidant enzymes in different cellular compartments is required for bacterial resistance to extracytoplasmic oxidative attack.

  10. Characterization of Salmonella enterica Serovar Typhimurium DT104 Isolated from Denmark and Comparison with Isolates from Europe and the United States

    DEFF Research Database (Denmark)

    Baggesen, Dorte Lau; Sandvang, D.; Aarestrup, Frank Møller

    2000-01-01

    A total of 136 isolates of Salmonella enterica serovar Typhimurium DT104 from Denmark (n = 93), Germany (n = 10), Italy (n = 4), Spain (n = 5), and the United Kingdom (n = 9) were characterized by antimicrobial resistance analysis, plasmid profiling, pulsed-field gel electrophoresis (PFGE...... the United States. All the isolates harbored common 95-kb plasmids either alone or in combination with smaller plasmids, and a total of 11 different plasmid profiles were observed. Furthermore, all but one of the multidrug-resistant isolates contained two integrons, ant (3 ")-Ia and pse-l, Sensitive isolates...... contained no integrons, and isolates that n ere resistant to spectinomycin, streptomycin, and sulfonamides had only one integron containing ant (3 ")-Ia. When restriction enzyme BlnI was used, the 14 isolates from one of the nine herds in Denmark showed unique profiles, whereas isolates from the remaining...

  11. Semiquantitative Analysis of the Red, Dry, and Rough Colony Morphology of Salmonella enterica Serovar Typhimurium and Escherichia coli Using Congo Red.

    Science.gov (United States)

    Cimdins, Annika; Simm, Roger

    2017-01-01

    The Congo Red (CR) assay is a standard biofilm test assessing the colony morphology of bacteria growing on agar plates supplemented with the diazo dye Congo Red. Biofilm forming Salmonella enterica serovar Typhimurium and Escherichia coli produce a red, dry, and rough (rdar) morphotype on CR-plates. The phenotype is characterized by staining of the extracellular matrix components curli (brown color) and cellulose (pink color) by CR. This method allows semiquantitative determination of the expression level of the individual matrix components and dissection of the regulatory networks controlling their production in response to c-di-GMP levels. Here, we describe the CR-assay and its variations and discuss the effect of deletion or overexpression of c-di-GMP turnover proteins on colony morphology.

  12. Minimal effects of high-pressure treatment on Salmonella enterica serovar Typhimurium inoculated into peanut butter and peanut products.

    Science.gov (United States)

    Grasso, Elizabeth M; Somerville, Jeremy A; Balasubramaniam, V M; Lee, Ken

    2010-10-01

    About 1.2 billion pounds of peanut butter are consumed annually in the United States. In 2008 to 2009, an outbreak involving Salmonella Typhimurium in peanut butter led to a recall of over 3900 products by over 200 companies. More than 700 people became sick, 100 were hospitalized, and 9 people died from this outbreak. This study examines the efficacy of high-pressure processing (HPP) to decrease S. Typhimurium American Type Culture Collection (ATCC) 53647 inoculated into peanut butter and model systems. The viability of S. Typhimurium in peanut butter stored at room temperature was investigated. A culture of S. Typhimurium (6.88 log CFU/g) was inoculated into peanut butter. Following 28 d at 20 °C there was a 1.23-log reduction. Approximately 10(6) to 10(7) CFU/g S. Typhimurium were inoculated into 4 brands of peanut butter, 3 natural peanut butters and peanut flour slurries at 2, 5, and 10% peanut flour protein in peanut oil and in distilled water. All were treated at 600 MPa for 5 min at 45 °C. While significant differences were found between natural peanut butter and peanut protein mixtures, the reduction was oil mixtures had a 1.7, 1.6, and 1.0-log reduction from HPP (2, 5, and 10% protein, respectively) whereas peanut flour/water mixtures had a 6.7-log reduction for all protein levels. Oil had a protective effect indicating HPP may not help the microbial safety of water-in-oil food emulsions including peanut butter. Practical Application: There have been multiple outbreaks of foodborne illness involving peanut butter products. This study looks at the potential use of high-pressure processing to reduce the bacteria that may be in peanut butter.

  13. Percolation and survival of Escherichia coli O157:H7 and Salmonella enterica serovar Typhimurium in soil amended with contaminated dairy manure or slurry.

    Science.gov (United States)

    Semenov, Alexander V; van Overbeek, Leo; van Bruggen, Ariena H C

    2009-05-01

    The effect of cattle manure and slurry application on percolation and survival of Escherichia coli O157:H7 and Salmonella enterica serovar Typhimurium was investigated for different soil depths after the addition of water. Four treatments were chosen for the first set of experiments: (i) addition of inoculated farmyard manure on the soil surface, (ii) mixing of inoculated farmyard manure with the top 10 cm of soil, (iii) addition of inoculated slurry on the soil surface, and (iv) injection of inoculated slurry into the top 10 cm of the soil. Homogeneity of water distribution in the soil profile was confirmed by a nondestructive nuclear magnetic resonance method. Survival data were fitted to a modified logistic model, and estimated survival times were compared. In the second set of experiments, pathogen-inoculated farmyard manure or slurry was applied to soil columns with 1-month-old lettuce plants. More pathogen cells percolated to greater depths after slurry than after manure application. Survival of E. coli O157:H7 was significantly longer in soil with slurry than in that with manure, while survival of Salmonella serovar Typhimurium was equally high with manure and slurry. The densities of the pathogens were not different in the rhizosphere compared to the bulk soil with manure, while the densities were higher by 0.88 +/- 0.11 and 0.71 +/- 0.23 log CFU per g (dry weight), respectively, in the rhizosphere than in bulk soil after slurry application. Our results suggest that surface application of manure may decrease the risk of contamination of groundwater and lettuce roots compared to injection of slurry.

  14. Non-Saccharomyces yeasts protect against epithelial cell barrier disruption induced by Salmonella enterica subsp. enterica serovar Typhimurium.

    Science.gov (United States)

    Smith, I M; Baker, A; Arneborg, N; Jespersen, L

    2015-11-01

    The human gastrointestinal epithelium makes up the largest barrier separating the body from the external environment. Whereas invasive pathogens cause epithelial barrier disruption, probiotic micro-organisms modulate tight junction regulation and improve epithelial barrier function. In addition, probiotic strains may be able to reduce epithelial barrier disruption caused by pathogenic species. The aim of this study was to explore non-Saccharomyces yeast modulation of epithelial cell barrier function in vitro. Benchmarking against established probiotic strains, we evaluated the ability of four nonpathogenic yeast species to modulate transepithelial electrical resistance (TER) across a monolayer of differentiated human colonocytes (Caco-2 cells). Further, we assessed yeast modulation of a Salmonella Typhimurium-induced epithelial cell barrier function insult. Our findings demonstrate distinct patterns of non-Saccharomyces yeast modulation of epithelial cell barrier function. While the established probiotic yeast Saccharomyces boulardii increased TER across a Caco-2 monolayer by 30%, Kluyveromyces marxianus exhibited significantly stronger properties of TER enhancement (50% TER increase). In addition, our data demonstrate significant yeast-mediated modulation of Salmonella-induced epithelial cell barrier disruption and identify K. marxianus and Metschnikowia gruessii as two non-Saccharomyces yeasts capable of protecting human epithelial cells from pathogen invasion. This study demonstrates distinct patterns of non-Saccharomyces yeast modulation of epithelial cell barrier function in vitro. Further, our data demonstrate significant yeast-mediated modulation of Salmonella Typhimurium-induced epithelial cell barrier disruption and identify Kluyveromyces marxianus and Metschnikowia gruessii as two non-Saccharomyces yeasts capable of protecting human epithelial cells from pathogen invasion. This study is the first to demonstrate significant non-Saccharomyces yeast

  15. Dam methylation regulates the expression of SPI-5-encoded sopB gene in Salmonella enterica serovar Typhimurium.

    Science.gov (United States)

    Giacomodonato, Mónica N; Llana, Mariángeles Noto; Castañeda, María del Rosario Aya; Buzzola, Fernanda; García, Mauro D; Calderón, Marina Gallo; Sarnacki, Sebastián H; Cerquetti, María C

    2014-08-01

    DNA adenine methylation is an essential factor in Salmonella virulence. Here, we investigate the involvement of DNA adenine methylase (Dam) in the expression and translocation of a SPI-5-encoded effector of S. Typhimurium. SopB expression and secretion were determined using SopB-FLAG-tagged wild type and dam strains of S. Typhimurium. Western blot and quantitative reverse transcriptase PCR analysis showed that the dam mutant expresses lower levels of SopB protein and sopB mRNA than the wild type strain under SPI-1 and SPI-2 inducing conditions in vitro. SopB secretion was also considerably impaired in the absence of dam. In agreement with in vitro experiments, SopB synthesis in dam mutants recovered from infected epithelial cells and from murine mesenteric lymph nodes was reduced by 40% respect to the wild type strain (p dam mutant. Taken together, our results demonstrate that, in S. Typhimurium, Dam methylation modulates the expression and translocation of SPI-5-encoded SopB effector. Copyright © 2014 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  16. Molecular epidemiology of Salmonella enterica serovar typhimurium isolates from cattle in hokkaido, Japan: evidence of clonal replacement and characterization of the disseminated clone.

    Science.gov (United States)

    Tamamura, Yukino; Uchida, Ikuo; Tanaka, Kiyoshi; Okazaki, Hizuru; Tezuka, Satoru; Hanyu, Hideki; Kataoka, Natsumi; Makino, Sou-Ichi; Kishima, Masato; Kubota, Takayuki; Kanno, Toru; Hatama, Shinichi; Ishihara, Ryoko; Hata, Eiji; Yamada, Hironari; Nakaoka, Yuuji; Akiba, Masato

    2011-03-01

    The molecular epidemiology of 545 Salmonella enterica serovar Typhimurium isolates collected between 1977 and 2009 from cattle in Hokkaido, Japan, was investigated using pulsed-field gel electrophoresis (PFGE). Nine main clusters were identified from 116 PFGE patterns. Cluster I comprised 248 isolates, 243 of which possessed a sequence specific to definitive phage type 104 (DT104) or U302. The cluster I isolates were dominant in 1993 to 2003, but their numbers declined beginning in 2004. Beginning in 2002, an increase was observed in the number of cluster VII isolates, consisting of 21 PFGE patterns comprising 165 isolates. A total of 116 isolates representative of the 116 PFGE profiles were analyzed by multilocus variable-number tandem-repeat analysis (MLVA). Other than two drug-sensitive isolates, 19 isolates within cluster VII were classified in the same cluster by MLVA. Among the cluster VII isolates, an antibiotic resistance type showing resistance to ampicillin, chloramphenicol, streptomycin, sulfonamides, tetracycline, kanamycin, cefazolin, and sulfamethoxazole-trimethoprim and a resistance type showing resistance to ampicillin, streptomycin, sulfonamides, tetracycline, and kanamycin were found in 23 and 125 isolates, respectively. In the 19 isolates representative of cluster VII, the bla(TEM-1) gene was found on a Salmonella serotype Typhimurium virulence plasmid, which was transferred to Escherichia coli by electroporation along with resistance to two to four other antimicrobials. Genomic analysis by subtractive hybridization and plasmid analysis suggested that the bla(TEM-1)-carrying virulence plasmid has a mosaic structure composed of elements of different origin. These results indicate an emerging multidrug-resistant S. Typhimurium clone carrying a virulence-resistance plasmid among cattle in Hokkaido, Japan.

  17. Molecular Epidemiology of Salmonella enterica Serovar Typhimurium Isolates from Cattle in Hokkaido, Japan: Evidence of Clonal Replacement and Characterization of the Disseminated Clone▿ †

    Science.gov (United States)

    Tamamura, Yukino; Uchida, Ikuo; Tanaka, Kiyoshi; Okazaki, Hizuru; Tezuka, Satoru; Hanyu, Hideki; Kataoka, Natsumi; Makino, Sou-ichi; Kishima, Masato; Kubota, Takayuki; Kanno, Toru; Hatama, Shinichi; Ishihara, Ryoko; Hata, Eiji; Yamada, Hironari; Nakaoka, Yuuji; Akiba, Masato

    2011-01-01

    The molecular epidemiology of 545 Salmonella enterica serovar Typhimurium isolates collected between 1977 and 2009 from cattle in Hokkaido, Japan, was investigated using pulsed-field gel electrophoresis (PFGE). Nine main clusters were identified from 116 PFGE patterns. Cluster I comprised 248 isolates, 243 of which possessed a sequence specific to definitive phage type 104 (DT104) or U302. The cluster I isolates were dominant in 1993 to 2003, but their numbers declined beginning in 2004. Beginning in 2002, an increase was observed in the number of cluster VII isolates, consisting of 21 PFGE patterns comprising 165 isolates. A total of 116 isolates representative of the 116 PFGE profiles were analyzed by multilocus variable-number tandem-repeat analysis (MLVA). Other than two drug-sensitive isolates, 19 isolates within cluster VII were classified in the same cluster by MLVA. Among the cluster VII isolates, an antibiotic resistance type showing resistance to ampicillin, chloramphenicol, streptomycin, sulfonamides, tetracycline, kanamycin, cefazolin, and sulfamethoxazole-trimethoprim and a resistance type showing resistance to ampicillin, streptomycin, sulfonamides, tetracycline, and kanamycin were found in 23 and 125 isolates, respectively. In the 19 isolates representative of cluster VII, the blaTEM-1 gene was found on a Salmonella serotype Typhimurium virulence plasmid, which was transferred to Escherichia coli by electroporation along with resistance to two to four other antimicrobials. Genomic analysis by subtractive hybridization and plasmid analysis suggested that the blaTEM-1-carrying virulence plasmid has a mosaic structure composed of elements of different origin. These results indicate an emerging multidrug-resistant S. Typhimurium clone carrying a virulence-resistance plasmid among cattle in Hokkaido, Japan. PMID:21239560

  18. Genome-wide analysis of the PreA/PreB (QseB/QseC regulon of Salmonella enterica serovar Typhimurium

    Directory of Open Access Journals (Sweden)

    Bhatiya Aditi

    2009-02-01

    Full Text Available Abstract Background The Salmonella PreA/PreB two-component system (TCS is an ortholog of the QseBC TCS of Escherichia coli. In both Salmonella and E. coli, this system has been shown to affect motility and virulence in response to quorum-sensing and hormonal signals, and to affect the transcription of the Salmonella enterica serovar Typhimurium (S. Typhimurium pmrAB operon, which encodes an important virulence-associated TCS. Results To determine the PreA/PreB regulon in S. Typhimurium, we performed DNA microarrays comparing the wild type strain and various preA and/or preB mutants in the presence of ectopically expressed preA (qseB. These data confirmed our previous findings of the negative effect of PreB on PreA gene regulation and identified candidate PreA-regulated genes. A proportion of the activated loci were previously identified as PmrA-activated genes (yibD, pmrAB, cptA, etc. or were genes located in the local region around preA, including the preAB operon. The transcriptional units were defined in this local region by RT-PCR, suggesting three PreA activated operons composed of preA-preB, mdaB-ygiN, and ygiW-STM3175. Several putative virulence-related phenotypes were examined for preAB mutants, resulting in the observation of a host cell invasion and slight virulence defect of a preAB mutant. Contrary to previous reports on this TCS, we were unable to show a PreA/PreB-dependent effect of the quorum-sensing signal AI-2 or of epinephrine on S. Typhimurium with regard to bacterial motility. Conclusion This work further characterizes this unorthadox OmpR/EnvZ class TCS and provides novel candidate regulated genes for further study. This first in-depth study of the PreA/PreB regulatory system phenotypes and regulation suggests significant comparative differences to the reported function of the orthologous QseB/QseC in E. coli.

  19. Synergistic effect of X-ray irradiation and sodium hypochlorite against Salmonella enterica serovar Typhimurium biofilms on quail eggshells.

    Science.gov (United States)

    Jung, Soo-Jin; Park, Shin Young; Ha, Sang-Do

    2018-05-01

    The present study investigated the synergistic bactericidal effects of combined X-ray irradiation (0.5, 1.0, 1.5, and 2.0 kGy) and sodium hypochlorite (NaOCl) (50, 100, 150, 200, and 300 ppm) treatment on the reduction of S. enterica serovar Typhimurium ATCC 14028 biofilms on quail eggshells. Additionally, the color change of the quail eggshells was measured by hunter color "L" (lightness), "a" (red/green), "b" (yellow/blue), and "ΔE" (total color difference). Additionally, the puncture force was tested to evaluate eggshell thickness after the combined treatments. The highest biofilm reduction values were observed as 4.6 log CFU/egg after X-ray (2.0 kGy) and NaOCl (300 ppm) treatment. Moreover, the synergistic reduction in values after combined treatment was evaluated, and the highest biofilm reduction value was 4.3 log CFU/egg by 2.0 kGy X-ray/50 ppm NaOCl (1.47 log higher than the sum of reduction values of the individual treatments). The color of the quail eggshell and puncture force were not significantly changed by combined treatments (p > 0.05 at both cases). Consequently, 2.0 kGy X-ray/50 ppm NaOCl was considered optimal for combination treatment for eliminating S. enterica ser. Typhimurium biofilms on eggshell without any color or thickness changes. Furthermore, combination treatment could be useful for improving microbiological safety in the quail egg industry. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Complete Genome Sequence of a Human-Invasive Salmonella enterica Serovar Typhimurium Strain of the Emerging Sequence Type 213 Harboring a Multidrug Resistance IncA/C Plasmid and a blaCMY-2-Carrying IncF Plasmid.

    Science.gov (United States)

    Silva, Claudia; Calva, Edmundo; Calva, Juan J; Wiesner, Magdalena; Fernández-Mora, Marcos; Puente, José L; Vinuesa, Pablo

    2015-11-12

    Salmonella enterica subsp. enterica serovar Typhimurium strain 33676 was isolated in Mexico City, Mexico, from a patient with a systemic infection, and its complete genome sequence was determined using PacBio single-molecule real-time technology. Strain 33676 harbors an IncF plasmid carrying the extended-spectrum cephalosporin gene blaCMY-2 and a multidrug resistance IncA/C plasmid. Copyright © 2015 Silva et al.

  1. A Constitutively Mannose-Sensitive Agglutinating Salmonella enterica subsp. enterica Serovar Typhimurium Strain, Carrying a Transposon in the Fimbrial Usher Gene stbC, Exhibits Multidrug Resistance and Flagellated Phenotypes

    Directory of Open Access Journals (Sweden)

    Kuan-Hsun Wu

    2012-01-01

    Full Text Available Static broth culture favors Salmonella enterica subsp. enterica serovar Typhimurium to produce type 1 fimbriae, while solid agar inhibits its expression. A transposon inserted in stbC, which would encode an usher for Stb fimbriae of a non-flagellar Salmonella enterica subsp. enterica serovar Typhimurium LB5010 strain, conferred it to agglutinate yeast cells on both cultures. RT-PCR revealed that the expression of the fimbrial subunit gene fimA, and fimZ, a regulatory gene of fimA, were both increased in the stbC mutant when grown on LB agar; fimW, a repressor gene of fimA, exhibited lower expression. Flagella were observed in the stbC mutant and this phenotype was correlated with the motile phenotype. Microarray data and RT-PCR indicated that the expression of three genes, motA, motB, and cheM, was enhanced in the stbC mutant. The stbC mutant was resistant to several antibiotics, consistent with the finding that expression of yhcQ and ramA was enhanced. A complementation test revealed that transforming a recombinant plasmid possessing the stbC restored the mannose-sensitive agglutination phenotype to the stbC mutant much as that in the parental Salmonella enterica subsp. enterica serovar Typhimurium LB5010 strain, indicating the possibility of an interplay of different fimbrial systems in coordinating their expression.

  2. Salmonella enterica serovar typhimurium colonization of the crop in the domestic turkey: influence of probiotic and prebiotic treatment (Lactobacillus acidophilus and lactose).

    Science.gov (United States)

    Johannsen, Sara A; Griffith, Ronald W; Wesley, Irene V; Scanes, Colin G

    2004-01-01

    Acute colonization of the crop of the domestic turkey by Salmonella enterica serovar typhimurium (ST) was examined. The influences of preharvest probiotic and prebiotic treatment with lactobaccilli and lactose on crop colonization with ST were also investigated. Prior to Salmonella challenge, poults received 2.5% lactose and Lactobacillus acidophilus (1.9 x 10(9) organisms/liter) in the only source of drinking water from 1 day old to termination. At 3-wk-old, turkey poults were challenged with ST (1.7 X 10(8) colony-forming units [CFU]/ml) before their natural nocturnal fast to determine the potential effects of supplementation on crop colonization when the crop was engorged and subsequently undergoing emptying. Crop ingesta and tissue were collected at time points 30 min and 4, 8, and 24 hr postchallenge and ST levels were determined. High levels of ST were detected in the crop. For instance, for the poults not receiving lactose or lactobacilli, 30 min after ST challenge, there were 4.4 x 10(7) CFU in the crop ingesta and 5.3 x 10(5) CFU in the crop wall. Ingesta ST levels dropped dramatically to 1.0 x 10(6) CFU after 4 hr as the crop emptied. Crop wall ST levels were steady during the nocturnal crop evacuation. Immunohistochemical staining demonstrated ST in close association with the crop epithelium. Treatment with lactose and L. acidophilus supplementation did not reduce ST colonization.

  3. Osmoregulated periplasmic glucans are needed for competitive growth and biofilm formation by Salmonella enterica serovar Typhimurium in leafy-green vegetable wash waters and colonization in mice.

    Science.gov (United States)

    Liu, Liu; Tan, Shawn; Jun, Won; Smith, Allen; Meng, Jianghong; Bhagwat, Arvind A

    2009-03-01

    Osmoregulated periplasmic glucans (OPGs) are major periplasmic constituents of Gram-negative bacteria. The role of OPGs has been postulated in symbiotic as well as pathogenic host-microorganism interactions. Here, we report the role of OPGs from Salmonella enterica serovar Typhimurium during growth and biofilm formation in leafy-green vegetable wash water. The opgGH mutant strain, which was defective in OPG biosynthesis, initiated the growth at a slower rate in wash waters obtained from spinach, lettuce and green collard and severely impaired biofilm formation. The lack of OPG synthesis did not influence biofilm formation by the opgGH mutant in low-nutrient low-osmolarity laboratory media. In coculture experiments initiated with equal proportions of cells, the opgGH mutant was outnumbered by the wild-type strain under the planktonic as well as the biofilm growth conditions. The opgGH mutant strain poorly colonized mouse organs when introduced orally along with the wild-type strain. This is the first report demonstrating the role of OPGs of Salmonella in competitive colonization of biofilms, planktonic cultures and mouse organs.

  4. Intravaginal immunization of mice with recombinant Salmonella enterica serovar Typhimurium expressing human papillomavirus type 16 antigens as a potential route of vaccination against cervical cancer.

    Science.gov (United States)

    Echchannaoui, Hakim; Bianchi, Matteo; Baud, David; Bobst, Martine; Stehle, Jean-Christophe; Nardelli-Haefliger, Denise

    2008-05-01

    Cervical cancer, the second leading cause of cancer deaths in women, is the consequence of high-risk human papillomavirus (HPV) infections. Toward the development of therapeutic vaccines that can induce both innate and adaptive mucosal immune responses, we analyzed intravaginal (ivag) vaccine delivery of live attenuated Salmonella enterica serovar Typhimurium expressing HPV16L1 as a model antigen. Innate immune responses were examined in cervicovaginal tissues by determining gene expression patterns by microarray analysis using nylon membranes imprinted with cDNA fragments coding for inflammation-associated genes. At 24 h, a wide range of genes, including those for chemokines and Th1- and Th2-type cytokine and chemokine receptors were up-regulated in mice ivag immunized with Salmonella compared to control mice. However, the majority of transcripts returned to their steady-state levels 1 week after immunization, suggesting a transient inflammatory response. Indeed, cervicovaginal histology of immunized mice showed a massive, but transient, infiltration of macrophages and neutrophils, while T cells were still increased after 7 days. Ivag immunization also induced humoral and antitumor immune responses, i.e., serum and vaginal anti-HPV16VLP antibody titers similar to those induced by oral immunization, and significant protection in tumor protection experiments using HPV16-expressing C3 tumor cells. These results show that ivag immunization with live attenuated Salmonella expressing HPV16 antigens modulates the local mucosal gene expression pattern into a transient proinflammatory profile, elicits strong systemic and mucosal immunity against HPV16, and confers protection against HPV16 tumor cells subcutaneously implanted in mice. Examination of the efficacy with which ivag HPV16E7E6 Salmonella induces regression of tumors located in cervicovaginal tissue is warranted.

  5. Pediatric Epidemic of Salmonella enterica Serovar Typhimurium in the Area of L'Aquila, Italy, Four Years after a Catastrophic Earthquake.

    Science.gov (United States)

    Nigro, Giovanni; Bottone, Gabriella; Maiorani, Daniela; Trombatore, Fabiana; Falasca, Silvana; Bruno, Gianfranco

    2016-05-06

    A Salmonella enterica epidemic occurred in children of the area of L'Aquila (Central Italy, Abruzzo region) between June 2013 and October 2014, four years after the catastrophic earthquake of 6 April 2009. Clinical and laboratory data were collected from hospitalized and ambulatory children. Routine investigations for Salmonella infection were carried out on numerous alimentary matrices of animal origin and sampling sources for drinking water of the L'Aquila district, including pickup points of the two main aqueducts. Salmonella infection occurred in 155 children (83 females: 53%), aged 1 to 15 years (mean 2.10). Of these, 44 children (28.4%) were hospitalized because of severe dehydration, electrolyte abnormalities, and fever resistant to oral antipyretic and antibiotic drugs. Three children (1.9%) were reinfected within four months after primary infection by the same Salmonella strain. Four children (2.6%), aged one to two years, were coinfected by rotavirus. A seven-year old child had a concomitant right hip joint arthritis. The isolated strains, as confirmed in about the half of cases or probable/possible in the remaining ones, were identified as S. enterica serovar Typhimurium [4,5:i:-], monophasic variant. Aterno river, bordering the L'Aquila district, was recognized as the main responsible source for the contamination of local crops and vegetables derived from polluted crops. The high rate of hospitalized children underlines the emergence of a highly pathogenic S. enterica strain probably subsequent to the contamination of the spring water sources after geological changes occurred during the catastrophic earthquake.

  6. Elimination of persistent vaccine bacteria of Salmonella enterica serovar Typhimurium in the guts of immunized mice by inducible expression of truncated YncE.

    Science.gov (United States)

    Wang, Yiran; Li, Jianhua; Xiong, Kun; Chen, Zhijin; Zheng, Chunping; Tan, Yong; Cong, Yanguang

    2017-01-01

    Orally administered vaccine bacteria usually persist for a period of time in the intestinal tracts of immunized individuals, and are excreted in feces to the environment resulting in a potential biosafety issue. The releasing risk can be minimized by immediate elimination of the persistent vaccine bacteria once adequate protective immune responses have been elicited by the vaccine bacteria. In a previous study, inducible expression of truncated yncE gene (yncE*) was found lethal to host bacteria. This feature has an application potential in biosafety control. Here, we assessed the efficacy of YncE* in eliminating an attenuated strain of Salmonella enterica serovar Typhimurium in a mouse model. To this end, a pBAD-derived plasmid containing yncE* under the control of the Ara promoter was transformed into a ΔphoPQ mutant of S. Typhimurium. Our data show that the induced expression of yncE* in the presence of arabinose eliminated the vaccine bacteria both in vitro and in vivo. BALB/c mice with or without streptomycin-pretreatment were used to assess the efficacy of YncE* in vivo. Oral administration of 500 μl of 20% arabinose at 24 h postvaccination removed the vaccine bacteria from the guts of the tested mice without streptomycin-pretreatment. For streptomycin-pretreated mice, which were colonized with higher levels of Salmonella, an additional gavage of arabinose was required to completely eliminate the vaccine bacteria in the guts of the tested mice. The orally administered arabinose did not affect the persistence of bacteria that had penetrated the intestinal mucosa of the immunized mice. Furthermore, there was no significant difference in the protection rate between the routine immunization and the immunization with the arabinose treatment. The results indicate that the yncE* element improves the biosafety of the bacterial vaccine, and can be taken in consideration in future design of live bacterial vaccines.

  7. Elimination of persistent vaccine bacteria of Salmonella enterica serovar Typhimurium in the guts of immunized mice by inducible expression of truncated YncE.

    Directory of Open Access Journals (Sweden)

    Yiran Wang

    Full Text Available Orally administered vaccine bacteria usually persist for a period of time in the intestinal tracts of immunized individuals, and are excreted in feces to the environment resulting in a potential biosafety issue. The releasing risk can be minimized by immediate elimination of the persistent vaccine bacteria once adequate protective immune responses have been elicited by the vaccine bacteria. In a previous study, inducible expression of truncated yncE gene (yncE* was found lethal to host bacteria. This feature has an application potential in biosafety control. Here, we assessed the efficacy of YncE* in eliminating an attenuated strain of Salmonella enterica serovar Typhimurium in a mouse model. To this end, a pBAD-derived plasmid containing yncE* under the control of the Ara promoter was transformed into a ΔphoPQ mutant of S. Typhimurium. Our data show that the induced expression of yncE* in the presence of arabinose eliminated the vaccine bacteria both in vitro and in vivo. BALB/c mice with or without streptomycin-pretreatment were used to assess the efficacy of YncE* in vivo. Oral administration of 500 μl of 20% arabinose at 24 h postvaccination removed the vaccine bacteria from the guts of the tested mice without streptomycin-pretreatment. For streptomycin-pretreated mice, which were colonized with higher levels of Salmonella, an additional gavage of arabinose was required to completely eliminate the vaccine bacteria in the guts of the tested mice. The orally administered arabinose did not affect the persistence of bacteria that had penetrated the intestinal mucosa of the immunized mice. Furthermore, there was no significant difference in the protection rate between the routine immunization and the immunization with the arabinose treatment. The results indicate that the yncE* element improves the biosafety of the bacterial vaccine, and can be taken in consideration in future design of live bacterial vaccines.

  8. Antimicrobial resistance and class 1 integron-associated gene cassettes in Salmonella enterica serovar Typhimurium isolated from pigs at slaughter and abattoir environment.

    Science.gov (United States)

    Lopes, Graciela Volz; Michael, Geovana Brenner; Cardoso, Marisa; Schwarz, Stefan

    2016-10-15

    Forty-five multi-resistant Salmonella enterica subsp. enterica serovar (S.) Typhimurium isolates obtained at five pig abattoirs in Southern Brazil were characterized. Their relatedness was determined by XbaI-macrorestriction analysis. Resistance genes, integrons and plasmid-mediated quinolone resistance genes (PMQR) were investigated by PCR. Amplicons for the variable part of class 1 integrons and the quinolone resistance-determining regions (QRDR) were sequenced. Plasmids were characterized by conjugation assays and replicon typing. Eighteen XbaI-macrorestriction patterns and 19 plasmid profiles were seen. Resistance to ampicillin (bla TEM ), chloramphenicol (catA1 and floR), streptomycin (strA-strB), streptomycin/spectinomycin (aadA variants), sulphonamides (sul1, sul2, sul3) and tetracyclines [tet(A) and tet(B)] were commonly found. A trimethoprim resistance gene, dfrA8, was identified on a 100-kb plasmid. Single substitutions in the QRDR of GyrA but no PMQR genes were found. Twenty-five isolates carried class 1 integrons with an aadA23 gene cassette or unusual class 1 integrons with a dfrA12-orfF-aadA27 gene cassette array. Both integrons were found on large conjugative plasmids. Salmonella plasmid-located virulence genes spvR, spvA, spvB, rck and pefA were found on an IncFIB resistance plasmid. Hybrid virulence-resistance plasmids or plasmids harbouring class 1 integrons may play a role in the maintenance and dissemination of antimicrobial resistance among S. Typhimurium in this pig production system. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. General response of Salmonella enterica serovar Typhimurium to desiccation: A new role for the virulence factors sopD and sseD in survival.

    Directory of Open Access Journals (Sweden)

    Alice Maserati

    Full Text Available Salmonella can survive for long periods under extreme desiccation conditions. This stress tolerance poses a risk for food safety, but relatively little is known about the molecular and cellular regulation of this adaptation mechanism. To determine the genetic components involved in Salmonella's cellular response to desiccation, we performed a global transcriptomic analysis comparing S. enterica serovar Typhimurium cells equilibrated to low water activity (aw 0.11 and cells equilibrated to high water activity (aw 1.0. The analysis revealed that 719 genes were differentially regulated between the two conditions, of which 290 genes were up-regulated at aw 0.11. Most of these genes were involved in metabolic pathways, transporter regulation, DNA replication/repair, transcription and translation, and, more importantly, virulence genes. Among these, we decided to focus on the role of sopD and sseD. Deletion mutants were created and their ability to survive desiccation and exposure to aw 0.11 was compared to the wild-type strain and to an E. coli O157:H7 strain. The sopD and sseD mutants exhibited significant cell viability reductions of 2.5 and 1.3 Log (CFU/g, respectively, compared to the wild-type after desiccation for 4 days on glass beads. Additional viability differences of the mutants were observed after exposure to aw 0.11 for 7 days. E. coli O157:H7 lost viability similarly to the mutants. Scanning electron microscopy showed that both mutants displayed a different morphology compared to the wild-type and differences in production of the extracellular matrix under the same conditions. These findings suggested that sopD and sseD are required for Salmonella's survival during desiccation.

  10. Serovars of Salmonella from captive reptiles

    DEFF Research Database (Denmark)

    Pedersen, Karl; Lassen-Nielsen, Anne Marie; Nordentoft, Steen

    2009-01-01

    The distribution on serovars of 60 Salmonella isolates from reptiles kept in captivity in Denmark during the period 1995–2006 was investigated. The isolates were all recovered from clinical specimens submitted to the National Veterinary Institute. A majority of the samples were from reptiles...... in zoological gardens or similar, while a minor number was from reptiles kept in private homes. A total of 43 serovars were detected, most of them being what is usually called exotic serotypes, and many not having a trivial name, while a few isolates belonged to well-known human pathogenic serovars, such as S....... Enteritidis, S. Typhimurium, S. Bovismorbificans. One isolate was rough and two were non-typeable. Isolates from turtles belonged to the subspecies enterica, while many isolates from both sauria and snakes belonged to other subspecies. The findings underline the potential zoonotic risk by handling reptiles...

  11. Effect of frequency and waveform on inactivation of Escherichia coli O157:H7 and Salmonella enterica Serovar Typhimurium in salsa by ohmic heating.

    Science.gov (United States)

    Lee, Su-Yeon; Ryu, Sangryeol; Kang, Dong-Hyun

    2013-01-01

    The effect of frequency of alternating current during ohmic heating on electrode corrosion, heating rate, inactivation of food-borne pathogens, and quality of salsa was investigated. The impact of waveform on heating rate was also investigated. Salsa was treated with various frequencies (60 Hz to 20 kHz) and waveforms (sine, square, and sawtooth) at a constant electric field strength of 12.5 V/cm. Electrode corrosion did not occur when the frequency exceeded 1 kHz. The heating rate of the sample was dependent on frequency up to 500 Hz, but there was no significant difference (P > 0.05) in the heating rate when the frequency was increased above 1 kHz. The electrical conductivity of the sample increased with a rise in the frequency. At a frequency of 60 Hz, the square wave produced a lower heating rate than that of sine and sawtooth waves. The heating rate between waveforms was not significantly (P > 0.05) different when the frequency was >500 Hz. As the frequency increased, the treatment time required to reduce Escherichia coli O157:H7 and Salmonella enterica serovar Typhimurium to below the detection limit (1 log CFU/g) decreased without affecting product quality. These results suggest that ohmic heating can be effectively used to pasteurize salsa and that the effect of inactivation is dependent on frequency and electrical conductivity rather than waveform.

  12. Internalisation potential of Escherichia coli O157:H7, Listeria monocytogenes, Salmonella enterica subsp. enterica serovar Typhimurium and Staphylococcus aureus in lettuce seedlings and mature plants.

    Science.gov (United States)

    Standing, Taryn-Ann; du Plessis, Erika; Duvenage, Stacey; Korsten, Lise

    2013-06-01

    The internalisation potential of Listeria monocytogenes, Staphylococcus aureus, Escherichia coli O157:H7 and Salmonella enterica subsp. enterica serovar Typhimurium in lettuce was evaluated using seedlings grown in vermiculite in seedling trays as well as hydroponically grown lettuce. Sterile distilled water was spiked with one of the four human pathogenic bacteria (10(5) CFU/mL) and used to irrigate the plants. The potential for pathogen internalisation was investigated over time using light microscopy, transmission electron microscopy and viable plate counts. Additionally, the identities of the pathogens isolated from internal lettuce plant tissues were confirmed using polymerase chain reaction with pathogen-specific oligonucleotides. Internalisation of each of the human pathogens was evident in both lettuce seedlings and hydroponically grown mature lettuce plants. To our knowledge, this is the first report of S. aureus internalisation in lettuce plants. In addition, the levels of background microflora in the lettuce plants were determined by plate counting and the isolates identified using matrix-assisted laser ionisation-time of flight (MALDI-TOF). Background microflora assessments confirmed the absence of the four pathogens evaluated in this study. A low titre of previously described endophytes and soil inhabitants, i.e., Enterobacter cloacae, Enterococcus faecalis, Lysinibacillus fusiformis, Rhodococcus rhodochrous, Staphylococcus epidermidis and Staphylococcus hominis were identified.

  13. Enhancement of Th1-biased protective immunity against avian influenza H9N2 virus via oral co-administration of attenuated Salmonella enterica serovar Typhimurium expressing chicken interferon-α and interleukin-18 along with an inactivated vaccine

    Directory of Open Access Journals (Sweden)

    Rahman Md

    2012-07-01

    Full Text Available Abstract Background Control of currently circulating re-assorted low-pathogenicity avian influenza (LPAI H9N2 is a major concern for both animal and human health. Thus, an improved LPAI H9N2 vaccination strategy is needed to induce complete immunity in chickens against LPAI H9N2 virus strains. Cytokines play a crucial role in mounting both the type and extent of an immune response generated following infection with a pathogen or after vaccination. To improve the efficacy of inactivated LPAI H9N2 vaccine, attenuated Salmonella enterica serovar Typhimurium was used for oral co-administration of chicken interferon-α (chIFN-α and chicken interleukin-18 (chIL-18 as natural immunomodulators. Results Oral co-administration of S. enterica serovar Typhimurium expressing chIFN-α and chIL-18, prior to vaccination with inactivated AI H9N2 vaccine, modulated the immune response of chickens against the vaccine antigen through enhanced humoral and Th1-biased cell-mediated immunity, compared to chickens that received single administration of S. enterica serovar Typhimurium expressing either chIFN-α or chIL-18. To further test the protective efficacy of this improved vaccination regimen, immunized chickens were intra-tracheally challenged with a high dose of LPAI H9N2 virus. Combined administration of S. enterica serovar Typhimurium expressing chIFN-α and chIL-18 showed markedly enhanced protection compared to single administration of the construct, as determined by mortality, clinical severity, and feed and water intake. This enhancement of protective immunity was further confirmed by reduced rectal shedding and replication of AIV H9N2 in different tissues of challenged chickens. Conclusions Our results indicate the value of combined administration of chIFN-α and chIL-18 using a Salmonella vaccine strain to generate an effective immunization strategy in chickens against LPAI H9N2.

  14. Colicinogeny in Salmonella serovars isolated in Brazil

    Directory of Open Access Journals (Sweden)

    Leila Carvalho Campos

    1988-06-01

    Full Text Available A study of colicinogeny was made in 748 strains of Salmonella (97 serovars isolated from different sources; human (291, animal (119, environmental (141, food (102 and animal feed (95. Colicin production was detected in 64 strains (8.6%, particularly isolated from foods (30.4%. Col. E1 (53 and Ia (44 were the most frequently observed, especially in S. agona for environment and food sources. Col V production was identified in 5 strains of S. typhimurium within 8 producer cultures isolated from humans. Its relationship with the sources and serovars of Salmonella are discussed.Investigou-se a produção de colicina em 748 amostras de Salmonella (97 sorovares advindas de díferentes fontes: humana (291, animal (119, ambiental (141, de alimentos (102 e rações (95. Detectaram-se 64 amostras (8,6% colicinogênicas, particularmente isoladas de alimentos (30,4%. ColE1 (53 e Ia (44 foram as mais freqüentes, especialmente no sorovar S, agona, de origem ambiental e de alimentos. Identificou-se também a produção de col V em 5 amostras de S. typhimurium dentre 8 culturas produtoras de origem humana. Discute-se a relação entre a capacidade colicinogênica e as fontes e sorovares de Salmonella.

  15. Characterisation of recently emerged multiple antibiotic-resistant Salmonella enterica serovar typhimurium DT104 and other multiresistant phage types from Danish pig herds

    DEFF Research Database (Denmark)

    Baggesen, Dorte Lau; Aarestrup, Frank Møller

    1998-01-01

    electrophoresis (PFGE) using the restriction enzyme Xba I, Overall, 66 per cent of the 670 isolates were sensitive to all the antimicrobial agents tested. Eleven isolates of S typhimurium were resistant to ampicillin, streptomycin and tetracycline and also resistant to other antibiotics in different resistance...... enterica serovar typhimurium (S typhimurium) isolates resistant to ampicillin, streptomycin and tetracycline and three isolates of S typhimurium DT104, two from 1994 and one from 1995, were further tested for resistance against chloramphenicol and sulphonamide and analysed by pulsed-field gel...... patterns. Seven different multiresistant clones were identified, The most common clones were four isolates of DT104 and three isolates of DT193, TWO Of the three S typhimurium DT104 from 1994 and 1995 were sensitive to all the antimicrobials tested whereas the remaining isolate from 1994 was resistant...

  16. The AcrB multidrug transporter plays a major role in high-level fluoroquinolone resistance in Salmonella enterica serovar typhimurium phage type DT204.

    Science.gov (United States)

    Baucheron, Sylvie; Imberechts, Hein; Chaslus-Dancla, Elisabeth; Cloeckaert, Axel

    2002-01-01

    Salmonella enterica serovar Typhimurium phage type DT204 strains isolated from cattle and animal feed in Belgium were characterized for high-level fluoroquinolone resistance mechanisms [MICs to enrofloxacin (Enr) and ciprofloxacin (Cip), 64 and 32 microg/ml, respectively]. These strains isolated during the periods 1991-1994, and in 2000 were clonally related as shown by pulsed-field gel electrophoresis (PFGE). Selected strains studied carried several mutations in the quinolone target genes, i.e., a double mutation in the quinolone resistance-determining region (QRDR) of gyrA leading to amino acid changes Ser83Ala and Asp87Asn, a single mutation in the QRDR of gyrB leading to amino acid change Ser464Phe, and a single mutation in the QRDR of parC leading to amino acid change Ser80Ile. Moreover, Western blot analysis showed overproduction of the AcrA periplasmic protein belonging to the AcrAB-ToIC efflux system. This suggested active efflux as additional resistance mechanism resulting in a multiple antibiotic resistance (MAR) phenotype, which was measurable by an increased level of resistance to the structurally unrelated antibiotic florfenicol in the absence of the specific floR resistance gene. The importance of the AcrAB-TolC efflux system in high-level fluoroquinolone resistance was further confirmed by inactivating the acrB gene coding for the multidrug transporter. This resulted in a 32-fold reduction of resistance level to Enr (MIC = 2 microg/ml) and actually in a susceptible phenotype according to clinical breakpoints. Thus, AcrB plays a major role in high-level fluoroquinolone resistance, even when multiple target gene mutations are present. The same effect was obtained using the recently identified efflux pump inhibitor (EPI) Phe-Arg-naphthylamide also termed MC207,110. Among several fluoroquinolones tested in combination with EPI, the MIC of Enr was reduced most significantly. Thus, using EPI together with fluoroquinolones such as Enr may be promising in

  17. Extensive amplification of GI-VII-6, a multidrug resistance genomic island of Salmonella enterica serovar Typhimurium, increases resistance to extended-spectrum cephalosporins

    Directory of Open Access Journals (Sweden)

    Ken-ichi eLee

    2015-02-01

    Full Text Available GI-VII-6 is a chromosomally integrated multidrug resistance genomic island harbored by a specific clone of Salmonella enterica serovar Typhimurium (S. Typhimurium. It contains a gene encoding CMY-2 β-lactamase (blaCMY-2, and therefore contributes to extended-spectrum cephalosporin resistance. To elucidate the significance of GI-VII-6 on adaptive evolution, spontaneous mutants of S. Typhimurium strain L-3553 were selected on plates containing cefotaxime (CTX. The concentrations of CTX were higher than its minimum inhibition concentration to the parent strain. The mutants appeared on the plates containing 12.5 and 25 μg/ml CTX at a frequency of 10−6 and 10−8, respectively. No colonies were observed at higher CTX concentrations. The copy number of blaCMY-2 increased up to 85 per genome in the mutants, while the parent strain contains one copy of that in the chromosome. This elevation was accompanied by increased amount of transcription. The blaCMY-2 copy number in the mutants drastically decreased in the absence of antibiotic selection pressure. Southern hybridization analysis and short-read mapping indicated that the entire 125 kb GI-VII-6 or parts of it were tandemly amplified. GI-VII-6 amplification occurred at its original position, although it also transposed to other locations in the genome in some mutants, including an endogenous plasmid in some of the mutants, leading to the amplification of GI-VII-6 at different loci. Insertion sequences were observed at the junction of the amplified regions in the mutants, suggesting their significant roles in the transposition and amplification. Plasmid copy number in the selected mutants was 1.4 to 4.4 times higher than that of the parent strain. These data suggest that transposition and amplification of the blaCMY-2-containing region, along with the copy number variation of the plasmid, contributed to the extensive amplification of blaCMY-2 and increased resistance to CTX.

  18. Acute infection of swine by various Salmonella serovars.

    Science.gov (United States)

    Loynachan, A T; Nugent, J M; Erdman, M M; Harris, D L

    2004-07-01

    The objective of this study was to evaluate the ability of various serovars of Salmonella enterica subsp. enterica to infect alimentary and nonalimentary tissues of swine within 3 h of inoculation. Fourteen wild-type S. enterica serovars (4,12:imonophasic, 6,7 nonmotile, Agona, Brandenburg, Bredeney, Derby, Heidelberg, Infantis, Muenchen, Thompson, Typhimurium, Typhimurium variant Copenhagen, untypeable, and Worthington), two known virulent S. enterica serovars (Choleraesuis strain SC-38 and Typhimurium strain chi4232), and two avirulent S. enterica Choleraesuis vaccine strains (Argus and SC-54) were inoculated intranasally (approximately 5 x 10(9) cells) into swine (four animals per Salmonella isolate). Three hours after inoculation, animals were euthanized, and both alimentary tissues (tonsil, colon contents, and cecum contents) and nonalimentary tissues (mandibular lymph node, thymus, lung, liver, spleen, ileocecal lymph node, and blood) were collected for Salmonella isolation. All Salmonella serovars evaluated except Salmonella Choleraesuis SC-54 acutely infected both alimentary and nonalimentary tissues. These results indicate that Salmonella isolates commonly found in swine are capable of acutely infecting both alimentary and nonalimentary tissues in a time frame consistent with that in which animals are transported and held in lairage prior to slaughter.

  19. Curcumin Reduces the Motility of Salmonella enterica Serovar Typhimurium by Binding to the Flagella, Thereby Leading to Flagellar Fragility and Shedding

    Science.gov (United States)

    Balakrishnan, Arjun; Negi, Vidya Devi; Sakorey, Deepika; Chandra, Nagasuma

    2016-01-01

    ABSTRACT One of the important virulence properties of the pathogen is its ability to travel to a favorable environment, cross the viscous mucus barrier (intestinal barrier for enteric pathogens), and reach the epithelia to initiate pathogenesis with the help of an appendage, like flagella. Nonetheless, flagella can act as an “Achilles heel,” revealing the pathogen's presence to the host through the stimulation of innate and adaptive immune responses. We assessed whether curcumin, a dietary polyphenol, could alter the motility of Salmonella, a foodborne pathogen. It reduced the motility of Salmonella enterica serovar Typhimurium by shortening the length of the flagellar filament (from ∼8 μm to ∼5 μm) and decreasing its density (4 or 5 flagella/bacterium instead of 8 or 9 flagella/bacterium). Upon curcumin treatment, the percentage of flagellated bacteria declined from ∼84% to 59%. However, no change was detected in the expression of the flagellin gene and protein. A fluorescence binding assay demonstrated binding of curcumin to the flagellar filament. This might make the filament fragile, breaking it into smaller fragments. Computational analysis predicted the binding of curcumin, its analogues, and its degraded products to a flagellin molecule at an interface between domains D1 and D2. Site-directed mutagenesis and a fluorescence binding assay confirmed the binding of curcumin to flagellin at residues ASN120, ASP123, ASN163, SER164, ASN173, and GLN175. IMPORTANCE This work, to our knowledge the first report of its kind, examines how curcumin targets flagellar density and affects the pathogenesis of bacteria. We found that curcumin does not affect any of the flagellar synthesis genes. Instead, it binds to the flagellum and makes it fragile. It increases the torsional stress on the flagellar filament that then breaks, leaving fewer flagella around the bacteria. Flagella, which are crucial ligands for Toll-like receptor 5, are some of the most important

  20. Immunogenicity of recombinant proteins consisting of Plasmodium vivax circumsporozoite protein allelic variant-derived epitopes fused with Salmonella enterica Serovar Typhimurium flagellin.

    Science.gov (United States)

    Leal, Monica Teixeira Andrade; Camacho, Ariane Guglielmi Ariza; Teixeira, Laís Helena; Bargieri, Daniel Youssef; Soares, Irene Silva; Tararam, Cibele Aparecida; Rodrigues, Mauricio M

    2013-09-01

    A Plasmodium falciparum circumsporozoite protein (CSP)-based recombinant fusion vaccine is the first malaria vaccine to reach phase III clinical trials. Resistance to infection correlated with the production of antibodies to the immunodominant central repeat region of the CSP. In contrast to P. falciparum, vaccine development against the CSP of Plasmodium vivax malaria is far behind. Based on this gap in our knowledge, we generated a recombinant chimeric protein containing the immunodominant central repeat regions of the P. vivax CSP fused to Salmonella enterica serovar Typhimurium-derived flagellin (FliC) to activate the innate immune system. The recombinant proteins that were generated contained repeat regions derived from each of the 3 different allelic variants of the P. vivax CSP or a fusion of regions derived from each of the 3 allelic forms. Mice were subcutaneously immunized with the fusion proteins alone or in combination with the Toll-like receptor 3 (TLR-3) agonist poly(I·C), and the anti-CSP serum IgG response was measured. Immunization with a mixture of the 3 recombinant proteins, each containing immunodominant epitopes derived from a single allelic variant, rather than a single recombinant protein carrying a fusion of regions derived from each of 3 allelic forms elicited a stronger immune response. This response was independent of TLR-4 but required TLR-5/MyD88 activation. Antibody titers significantly increased when poly(I·C) was used as an adjuvant with a mixture of the 3 recombinant proteins. These recombinant fusion proteins are novel candidates for the development of an effective malaria vaccine against P. vivax.

  1. Outer membrane protein STM3031 (Ail/OmpX-like protein) plays a key role in the ceftriaxone resistance of Salmonella enterica serovar Typhimurium.

    Science.gov (United States)

    Hu, Wensi S; Lin, Jing-Fang; Lin, Ying-Hsiu; Chang, Hsin-Yu

    2009-08-01

    Previously, the putative outer membrane protein STM3031 has been correlated with ceftriaxone resistance in Salmonella enterica serovar Typhimurium. In this study, this protein was almost undetectable in the ceftriaxone-susceptible strain 01-4, but its levels were increased in 01-4 isogenic strains for which MICs were higher. The stm3031 gene deletion mutant, R200(Deltastm3031), was generated and showed >64-fold lower ceftriaxone resistance than R200, supporting a key role for STM3031 in ceftriaxone resistance. To investigate which outer membrane protein(s) was associated with resistance, the outer membrane protein profiles of 01-4, R200, and R200(Deltastm3031) were compared proteomically. Nine proteins were identified as altered. The expression levels of AcrA, TolC, STM3031, STM1530, VacJ, and Psd in R200 were increased; those of OmpC, OmpD, and OmpW were decreased. The expression levels of OmpD, OmpW, STM1530, VacJ, and Psd, but not those of OmpC, AcrA, and TolC, in R200(Deltastm3031) were returned to the levels in strain 01-4. Furthermore, the genes' mRNA levels correlated with their protein levels when the three strains were compared. The detection of higher AcrB levels, linked to higher acrB, acrD, and acrF mRNA levels, in strain R200 than in strains 01-4 and R200(Deltastm3031) suggests that AcrB, AcrD, and AcrF participate in ceftriaxone resistance. Taken together with the location of STM3031 in the outer membrane, these results suggest that STM3031 plays a key role in ceftriaxone resistance, probably by reducing permeability via a decreased porin OmpD level and enhancing export via increased AcrD efflux pump activity.

  2. MDR Salmonella enterica serovar Typhimurium isolates are resistant to antibiotics that influence their swimming and swarming motility

    Science.gov (United States)

    Motile bacteria utilize one or more strategies for movement, such as darting, gliding, sliding, swarming, swimming, and twitching. The ability to move is considered a virulence factor in many pathogenic bacteria, including Salmonella. Multidrug-resistant (MDR) Salmonella encodes acquired factors t...

  3. Iron-induced virulence of Salmonella enterica serovar typhimurium at the intestinal epithelial interface can be suppressed by carvacrol

    NARCIS (Netherlands)

    Kortman, G.A.M.; Roelofs, R.W.H.M.; Swinkels, D.W.; Jonge, M.I. de; Burt, S.A.; Tjalsma, H.

    2014-01-01

    Oral iron therapy can increase the abundance of bacterial pathogens, e.g., Salmonella spp., in the large intestine of African children. Carvacrol is a natural compound with antimicrobial activity against various intestinal bacterial pathogens, among which is the highly prevalent Salmonella enterica

  4. Stress response and virulence in Salmonella Typhimurium: a genomics approach

    NARCIS (Netherlands)

    Hermans, A.P.H.M.

    2007-01-01

    Since 1995 the number of human infections with Salmonella serovar Typhimurium DT104 increased in The Netherlands and abroad. The multi antibiotic resistance of this strain has been often proposed as plausible reason for this increase. Within his PhD research, Armand Hermans found novel DT104

  5. A multi-pronged search for a common structural motif in the secretion signal of Salmonella enterica serovar Typhimurium type III effector proteins

    Energy Technology Data Exchange (ETDEWEB)

    Buchko, Garry W.; Niemann, George; Baker, Erin Shammel; Belov, Mikhail E.; Smith, Richard D.; Heffron, Fred; Adkins, Joshua N.; McDermott, Jason E.

    2010-11-08

    Many pathogenic Gram-negative bacteria use a type III secretion system (T3SS) to deliver effector proteins into the host cell where they reprogram host defenses and facilitate pathogenesis. While it has been determined that the first 20 - 30 N-terminal residues usually contain the ‘secretion signal’ that targets effector proteins for translocation, the molecular basis for recognition of this signal is not understood. Recent machine-learning approaches, such as SVM-based Identification and Evaluation of Virulence Effectors (SIEVE), have improved the ability to identify effector proteins from genomics sequence information. While these methods all suggest that the T3SS secretion signal has a characteristic amino acid composition bias, it is still unclear if the amino acid pattern is important and if there are any unifying structural properties that direct recognition. To address these issues a peptide corresponding to the secretion signal for Salmonella enterica serovar Typhimurium effector SseJ was synthesized (residues 1-30, SseJ) along with scrambled peptides of the same amino acid composition that produced high (SseJ-H) and low (SseJ-L) SIEVE scores. The secretion properties of these three peptides were tested using a secretion signal-CyaA fusion assay and their structures systematically probed using circular dichroism, nuclear magnetic resonance, and ion mobility spectrometry-mass spectrometry. The signal-CyaA fusion assay showed that the native and SseJ-H fusion constructs were secreted into J774 macrophage at similar levels via the SPI-2 secretion pathway while secretion of the SseJ-L fusion construct was substantially retarded, suggesting that the SseJ secretion signal was sequence order dependent. The structural studies showed that the SseJ, SseJ-H, and SseJ-L peptides were intrinsically disordered in aqueous solution with only a small predisposition to adopt nascent helical structure in the presence of the powerful structure stabilizing agent, 1

  6. Genomics of an emerging clone of Salmonella serovar Typhimurium ST313 from Nigeria and the Democratic Republic of Congo

    DEFF Research Database (Denmark)

    Leekitcharoenphon, Pimlapas; Rundsten, Carsten Friis; Zankari, Ea

    2013-01-01

    We showed in a limited number of isolates that S. Typhimurium ST313 is a prevalent sequence-type causing gastrointestinal diseases and septicemia in patients from Nigeria and DRC. We found three distinct phylogenetic clusters based on the origin of isolation suggesting some spatial evolution...

  7. Effects of transparent exopolymer particles and suspended particles on the survival of Salmonella enterica serovar Typhimurium in seawater.

    Science.gov (United States)

    Davidson, Marion C F; Berardi, Terra; Aguilar, Beatriz; Byrne, Barbara A; Shapiro, Karen

    2015-03-01

    The bacterium Salmonella enterica can infect marine mammals and has been increasingly implicated in seafood-borne disease outbreaks in humans. Despite the risk this zoonotic agent poses to animals and people, little is known regarding the environmental factors that affect its persistence in the sea. The goal of this study was to evaluate the impact of two constituents on the survival of Salmonella in the marine environment: transparent exopolymer particles (TEP) and suspended particles. A decay experiment was conducted by spiking Salmonella into bottles containing seawater, seawater with alginic acid as a source of TEP, filtered seawater or filtered seawater with alginic acid. Survival of Salmonella was monitored using culture followed by enrichment assays to evaluate if the bacteria entered a viable but non-cultivable (VBNC) state. Salmonella cell counts dropped significantly faster (P ≤ 0.05) in the unfiltered seawater samples with and without TEP. The slowest decay occurred in filtered seawater containing alginic acid, with VBNC Salmonella persisting for 17 months. These findings suggest that TEP may favor Salmonella survival while suspended particles facilitate its decay. Insight on the survival of allochthonous, zoonotic pathogens in seawater can guide monitoring, management and policy decisions relevant to wildlife and human public health. © FEMS 2015. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  8. The Arf GTPase-activating protein family is exploited by Salmonella enterica serovar Typhimurium to invade nonphagocytic host cells.

    Science.gov (United States)

    Davidson, Anthony C; Humphreys, Daniel; Brooks, Andrew B E; Hume, Peter J; Koronakis, Vassilis

    2015-02-10

    To establish intracellular infections, Salmonella bacteria trigger host cell membrane ruffling and invasion by subverting cellular Arf guanine nucleotide exchange factors (GEFs) that activate Arf1 and Arf6 GTPases by promoting GTP binding. A family of cellular Arf GTPase-activating proteins (GAPs) can downregulate Arf signaling by stimulating GTP hydrolysis, but whether they do this during infection is unknown. Here, we uncovered a remarkable role for distinct Arf GAP family members in Salmonella invasion. The Arf6 GAPs ACAP1 and ADAP1 and the Arf1 GAP ASAP1 localized at Salmonella-induced ruffles, which was not the case for the plasma membrane-localized Arf6 GAPs ARAP3 and GIT1 or the Golgi-associated Arf1 GAP1. Surprisingly, we found that loss of ACAP1, ADAP1, or ASAP1 impaired Salmonella invasion, revealing that GAPs cannot be considered mere terminators of cytoskeleton remodeling. Salmonella invasion was restored in Arf GAP-depleted cells by expressing fast-cycling Arf derivatives, demonstrating that Arf GTP/GDP cycles facilitate Salmonella invasion. Consistent with this view, both constitutively active and dominant-negative Arf derivatives that cannot undergo GTP/GDP cycles inhibited invasion. Furthermore, we demonstrated that Arf GEFs and GAPs colocalize at invading Salmonella and collaborate to drive Arf1-dependent pathogen invasion. This study revealed that Salmonella bacteria exploit a remarkable interplay between Arf GEFs and GAPs to direct cycles of Arf GTPase activation and inactivation. These cycles drive Salmonella cytoskeleton remodeling and enable intracellular infections. To initiate infections, the Salmonella bacterial pathogen remodels the mammalian actin cytoskeleton and invades host cells by subverting host Arf GEFs that activate Arf1 and Arf6 GTPases. Cellular Arf GAPs deactivate Arf GTPases and negatively regulate cell processes, but whether they target Arfs during infection is unknown. Here, we uncovered an important role for the Arf GAP

  9. Transfer of Salmonella enterica serovar Typhimurium from contaminated irrigation water to parsley is dependent on curli and cellulose, the biofilm matrix components.

    Science.gov (United States)

    Lapidot, Anat; Yaron, Sima

    2009-03-01

    Enteric pathogens can contaminate fresh produce, and this contaminated produce can be a significant potential source of human illness. The objective of this study was to determine a possible mode of transfer of Salmonella Typhimurium from contaminated irrigation water to mature parsley plants and to investigate the role of bacterial cellulose and curli. Parsley plants were drip irrigated with water containing green fluorescent protein-labeled Salmonella Typhimurium. Stems and leaves were harvested 1 day after the third irrigation and examined for the presence of Salmonella Typhimurium. Three weeks after harvesting, the presence of Salmonella was again confirmed in the regrown plants. During this period, bacterial numbers on leaves declined from 4.1 (+/- 0.3) to 2.3 (+/- 0.1) log CFU g(-1) (P edible parts of the plants. Confocal laser scanning microscopic images revealed that Salmonella Typhimurium formed aggregates at a depth of 8 to 32 microm beneath the leaf surface. Penetration might be achieved through the roots or the phyllosphere. The importance of the bacterial cellulose and curli was determined by comparing the wild-type strain with its mutants, which lack the ability to synthesize cellulose and curli. Counts of the double mutant were 2-log higher in the soil but 1-log lower in the leaves (P < 0.05). Deletion of the agfBA gene (for curli) was more effective than deletion of bcsA (for cellulose). Thus, curli and cellulose play a role in the transfer or survival of Salmonella Typhimurium in the plant, as they do for plant pathogens.

  10. Non-essential genes from the hubs of genome scale protein function and environmental gene expression networks in Salmonella enterica serovar Typhimurium

    NARCIS (Netherlands)

    Rosenkrantz, J.T.; Aarts, H.; Abee, T.; Rolfe, M.D.; Knudsen, G.M.; Nielsen, M.B.; Thomsen, L.E.; Zwietering, M.H.; Olsen, J.E.; Pin, C.

    2013-01-01

    Background Salmonella Typhimurium is an important pathogen of human and animals. It shows a broad growth range and survives in harsh conditions. The aim of this study was to analyze transcriptional responses to a number of growth and stress conditions as well as the relationship of metabolic

  11. Inactivation of Bacillus cereus and Salmonella enterica serovar Typhimurium by aqueous ozone (O3): Modeling and Uv-Vis spectroscopic analysis

    Science.gov (United States)

    Ozone (O3) is a natural antimicrobial agent with potential applications in food industry. In this study, inactivation of Bacillus cereus and Salmonella enterica Typhimurium by aqueous ozone was evaluated. Ozone gas was generated using a domestic ozone generator with an output of 200 mg/hr (approx. 0...

  12. Dose-dependent effects on survival of Salmonella enterica serovar Typhimurium in house flies (Musca domestica L.)

    Science.gov (United States)

    Adult house flies ingest variable numbers of bacteria when they encounter microbe-rich substrates. Bacterial abundance may affect survival within the fly gut, which subsequently impacts vector potential. This study investigated the dose-dependent survival of GFP-expressing Salmonella enterica serova...

  13. Abrogation of the Twin Arginine Transport System in Salmonella enterica Serovar Typhimurium Leads to Colonization Defects during Infection

    Science.gov (United States)

    Reynolds, M. Megan; Bogomolnaya, Lydia; Guo, Jinbai; Aldrich, Lindsay; Bokhari, Danial; Santiviago, Carlos A.; McClelland, Michael; Andrews-Polymenis, Helene

    2011-01-01

    TatC (STM3975) is a highly conserved component of the Twin Arginine Transport (Tat) systems that is required for transport of folded proteins across the inner membrane in gram-negative bacteria. We previously identified a ΔtatC mutant as defective in competitive infections with wild type ATCC14028 during systemic infection of Salmonella-susceptible BALB/c mice. Here we confirm these results and show that the ΔtatC mutant is internalized poorly by cultured J774-A.1 mouse macrophages a phenotype that may be related to the systemic infection defect. This mutant is also defective for short-term intestinal and systemic colonization after oral infection of BALB/c mice and is shed in reduced numbers in feces from orally infected Salmonella-resistant (CBA/J) mice. We show that the ΔtatC mutant is highly sensitive to bile acids perhaps resulting in the defect in intestinal infection that we observe. Finally, the ΔtatC mutant has an unusual combination of motility phenotypes in Salmonella; it is severely defective for swimming motility but is able to swarm well. The ΔtatC mutant has a lower amount of flagellin on the bacterial surface during swimming motility but normal levels under swarming conditions. PMID:21298091

  14. Camel as a transboundary vector for emerging exotic Salmonella serovars.

    Science.gov (United States)

    Ghoneim, Nahed H; Abdel-Moein, Khaled A; Zaher, Hala

    2017-05-01

    The current study was conducted to shed light on the role of imported camels as a transboundary vector for emerging exotic Salmonella serovars. Fecal samples were collected from 206 camels directly after slaughtering including 25 local camels and 181 imported ones as well as stool specimens were obtained from 50 slaughterhouse workers at the same abattoir. The obtained samples were cultured while Salmonella serovars were identified through Gram's stain films, biochemical tests and serotyping with antisera kit. Moreover, the obtained Salmonella serovars were examined by PCR for the presence of invA and stn genes. The overall prevalence of Salmonella serovars among the examined camels was 8.3%. Stn gene was detected in the vast majority of exotic strains (11/14) 78.6% including emerging serovars such as Salmonella Saintpaul, S. Chester, S. Typhimurium whereas only one isolate from local camels carried stn gene (1/3) 33.3%. On the other hand, none of the examined humans yielded positive result. Our findings highlight the potential role of imported camels as a transboundary vector for exotic emerging Salomenella serovars.

  15. Improving resolution of public health surveillance for human Salmonella enterica serovar Typhimurium infection: 3 years of prospective multiple-locus variable-number tandem-repeat analysis (MLVA

    Directory of Open Access Journals (Sweden)

    Sintchenko Vitali

    2012-03-01

    Full Text Available Abstract Background Prospective typing of Salmonella enterica serovar Typhimurium (STM by multiple-locus variable-number tandem-repeat analysis (MLVA can assist in identifying clusters of STM cases that might otherwise have gone unrecognised, as well as sources of sporadic and outbreak cases. This paper describes the dynamics of human STM infection in a prospective study of STM MLVA typing for public health surveillance. Methods During a three-year period between August 2007 and September 2010 all confirmed STM isolates were fingerprinted using MLVA as part of the New South Wales (NSW state public health surveillance program. Results A total of 4,920 STM isolates were typed and a subset of 4,377 human isolates was included in the analysis. The STM spectrum was dominated by a small number of phage types, including DT170 (44.6% of all isolates, DT135 (13.9%, DT9 (10.8%, DT44 (4.5% and DT126 (4.5%. There was a difference in the discriminatory power of MLVA types within endemic phage types: Simpson's index of diversity ranged from 0.109 and 0.113 for DTs 9 and 135 to 0.172 and 0.269 for DTs 170 and 44, respectively. 66 distinct STM clusters were observed ranging in size from 5 to 180 cases and in duration from 4 weeks to 25 weeks. 43 clusters had novel MLVA types and 23 represented recurrences of previously recorded MLVA types. The diversity of the STM population remained relatively constant over time. The gradual increase in the number of STM cases during the study was not related to significant changes in the number of clusters or their size. 667 different MLVA types or patterns were observed. Conclusions Prospective MLVA typing of STM allows the detection of community outbreaks and demonstrates the sustained level of STM diversity that accompanies the increasing incidence of human STM infections. The monitoring of novel and persistent MLVA types offers a new benchmark for STM surveillance. A part of this study was presented at the MEEGID

  16. Effects of propolis from Brazil and Bulgaria on Salmonella serovars

    Directory of Open Access Journals (Sweden)

    R. O. Orsi

    2007-01-01

    Full Text Available Propolis shows biological properties such as antibacterial action. This bee product has a complex chemical composition, which depends on the local flora where it is produced. Salmonella serovars are responsible for human diseases that range from localized gastroenteritis to systemic infections. The aim of the present study was to investigate the susceptibility of Salmonella strains, isolated from food and infectious processes, to the antibacterial action of Brazilian and Bulgarian propolis, as well as to determine the behavior of these bacteria, according to the incubation period, in medium plus propolis. Dilution of ethanolic extract of propolis in agar was the used method. Brazilian and Bulgarian propolis showed an antibacterial action against all Salmonella serovars. The minimal inhibitory concentrations (MIC of propolis were similar, although they were collected in different geographic regions. Salmonella typhimurium, isolated from human infection, was more resistant to propolis than Salmonella enteritidis.

  17. The SseC translocon component in Salmonella enterica serovar Typhimurium is chaperoned by SscA.

    Science.gov (United States)

    Cooper, Colin A; Mulder, David T; Allison, Sarah E; Pilar, Ana Victoria C; Coombes, Brian K

    2013-10-04

    Salmonella enterica is a causative agent of foodborne gastroenteritis and the systemic disease known as typhoid fever. This bacterium uses two type three secretion systems (T3SSs) to translocate protein effectors into host cells to manipulate cellular function. Salmonella pathogenicity island (SPI)-2 encodes a T3SS required for intracellular survival of the pathogen. Genes in SPI-2 include apparatus components, secreted effectors and chaperones that bind to secreted cargo to coordinate their release from the bacterial cell. Although the effector repertoire secreted by the SPI-2 T3SS is large, only three virulence-associated chaperones have been characterized. Here we report that SscA is the chaperone for the SseC translocon component. We show that SscA and SseC interact in bacterial cells and that deletion of sscA results in a loss of SseC secretion, which compromises intracellular replication and leads to a loss of competitive fitness in mice. This work completes the characterization of the chaperone complement within SPI-2 and identifies SscA as the chaperone for the SseC translocon.

  18. The type VI secretion system encoded in SPI-6 plays a role in gastrointestinal colonization and systemic spread of Salmonella enterica serovar Typhimurium in the chicken.

    Directory of Open Access Journals (Sweden)

    David Pezoa

    Full Text Available The role of the Salmonella Pathogenicity Islands (SPIs in pathogenesis of Salmonella enterica Typhimurium infection in the chicken is poorly studied, while many studies have been completed in murine models. The Type VI Secretion System (T6SS is a recently described protein secretion system in Gram-negative bacteria. The genus Salmonella contains five phylogenetically distinct T6SS encoded in differentially distributed genomic islands. S. Typhimurium harbors a T6SS encoded in SPI-6 (T6SSSPI-6, which contributes to the ability of Salmonella to colonize mice. On the other hand, serotype Gallinarum harbors a T6SS encoded in SPI-19 (T6SSSPI-19 that is required for colonization of chicks. In this work, we investigated the role of T6SSSPI-6 in infection of chicks by S. Typhimurium. Oral infection of White Leghorn chicks showed that a ΔT6SSSPI-6 mutant had reduced colonization of the gut and internal organs, compared with the wild-type strain. Transfer of the intact T6SSSPI-6 gene cluster into the T6SS mutant restored bacterial colonization. In addition, our results showed that transfer of T6SSSPI-19 from S. Gallinarum to the ΔT6SSSPI-6 mutant of S. Typhimurium not only complemented the colonization defect but also resulted in a transient increase in the colonization of the cecum and ileum of chicks at days 1 and 3 post-infection. Our data indicates that T6SSSPI-6 contributes to chicken colonization and suggests that both T6SSSPI-6 and T6SSSPI-19 perform similar functions in vivo despite belonging to different phylogenetic families.

  19. Evidence of metabolic switching and implications for food safety from the phenome(s) of Salmonella enterica serovar Typhimurium DT104 cultured at selected points across the pork production food chain.

    Science.gov (United States)

    Martins, Marta; McCusker, Matthew P; McCabe, Evonne M; O'Leary, Denis; Duffy, Geraldine; Fanning, Séamus

    2013-09-01

    Salmonella enterica serovar Typhimurium DT104 is a recognized food-borne pathogen that displays a multidrug-resistant phenotype and that is associated with systemic infections. At one extreme of the food chain, this bacterium can infect humans, limiting the treatment options available and thereby contributing to increased morbidity and mortality. Although the antibiotic resistance profile is well defined, little is known about other phenotypes that may be expressed by this pathogen at key points across the pork production food chain. In this study, 172 Salmonella enterica serovar Typhimurium DT104/DT104b isolated from an extensive "farm-to-fork" surveillance study, focusing on the pork food chain, were characterized in detail. Isolates were cultured from environmental, processing, retail, and clinical sources, and the study focused on phenotypes that may have contributed to persistence/survival in these different niches. Molecular subtypes, along with antibiotic resistance profiles, tolerance to biocides, motility, and biofilm formation, were determined. As a basis for human infection, acid survival and the ability to utilize a range of energy sources and to adhere to and/or invade Caco-2 cells were also studied. Comparative alterations to biocide tolerance were observed in isolates from retail. l-Tartaric acid and d-mannose-1-phosphate induced the formation of biofilms in a preselected subset of strains, independent of their origin. All clinical isolates were motile and demonstrated an enhanced ability to survive in acidic conditions. Our data report on a diverse phenotype, expressed by S. Typhimurium isolates cultured from the pork production food chain. Extending our understanding of the means by which this pathogen adapts to environmental niches along the "farm-to-fork" continuum will facilitate the protection of vulnerable consumers through targeted improvements in food safety measures.

  20. The Global Regulatory Cyclic AMP Receptor Protein (CRP) Controls Multifactorial Fluoroquinolone Susceptibility in Salmonella enterica Serovar Typhimurium.

    Science.gov (United States)

    Kary, Stefani C; Yoneda, Joshua R K; Olshefsky, Stephen C; Stewart, Laura A; West, Steven B; Cameron, Andrew D S

    2017-11-01

    Fluoroquinolone antibiotics are prescribed for the treatment of Salmonella enterica infections, but resistance to this family of antibiotics is growing. Here we report that loss of the global regulatory protein cyclic AMP (cAMP) receptor protein (CRP) or its allosteric effector, cAMP, reduces susceptibility to fluoroquinolones. A Δ crp mutation was synergistic with the primary fluoroquinolone resistance allele gyrA83 , thus able to contribute to clinically relevant resistance. Decreased susceptibility to fluoroquinolones could be partly explained by decreased expression of the outer membrane porin genes ompA and ompF with a concomitant increase in the expression of the ciprofloxacin resistance efflux pump gene acrB in Δ crp cells. Expression of gyrAB , which encode the DNA supercoiling enzyme GyrAB, which is blocked by fluoroquinolones, and expression of topA , which encodes the dominant supercoiling-relaxing enzyme topoisomerase I, were unchanged in Δ crp cells. Yet Δ crp cells maintained a more relaxed state of DNA supercoiling, correlating with an observed increase in topoisomerase IV ( parCE ) expression. Surprisingly, the Δ crp mutation had the unanticipated effect of enhancing fitness in the presence of fluoroquinolone antibiotics, which can be explained by the observation that exposure of Δ crp cells to ciprofloxacin had the counterintuitive effect of restoring wild-type levels of DNA supercoiling. Consistent with this, Δ crp cells did not become elongated or induce the SOS response when challenged with ciprofloxacin. These findings implicate the combined action of multiple drug resistance mechanisms in Δ crp cells: reduced permeability and elevated efflux of fluoroquinolones coupled with a relaxed DNA supercoiling state that buffers cells against GyrAB inhibition by fluoroquinolones. Copyright © 2017 American Society for Microbiology.

  1. Identification by PCR of non-typhoidal Salmonella enterica serovars associated with invasive infections among febrile patients in Mali.

    Directory of Open Access Journals (Sweden)

    Sharon M Tennant

    2010-03-01

    Full Text Available In sub-Saharan Africa, non-typhoidal Salmonella (NTS are emerging as a prominent cause of invasive disease (bacteremia and focal infections such as meningitis in infants and young children. Importantly, including data from Mali, three serovars, Salmonella enterica serovar Typhimurium, Salmonella Enteritidis and Salmonella Dublin, account for the majority of non-typhoidal Salmonella isolated from these patients.We have extended a previously developed series of polymerase chain reactions (PCRs based on O serogrouping and H typing to identify Salmonella Typhimurium and variants (mostly I 4,[5],12:i:-, Salmonella Enteritidis and Salmonella Dublin. We also designed primers to detect Salmonella Stanleyville, a serovar found in West Africa. Another PCR was used to differentiate diphasic Salmonella Typhimurium and monophasic Salmonella Typhimurium from other O serogroup B, H:i serovars. We used these PCRs to blind-test 327 Salmonella serogroup B and D isolates that were obtained from the blood cultures of febrile patients in Bamako, Mali.We have shown that when used in conjunction with our previously described O-serogrouping PCR, our PCRs are 100% sensitive and specific in identifying Salmonella Typhimurium and variants, Salmonella Enteritidis, Salmonella Dublin and Salmonella Stanleyville. When we attempted to differentiate 171 Salmonella Typhimurium (I 4,[ 5],12:i:1,2 strains from 52 monophasic Salmonella Typhimurium (I 4,[5],12:i:- strains, we were able to correctly identify 170 of the Salmonella Typhimurium and 51 of the Salmonella I 4,[5],12:i:- strains.We have described a simple yet effective PCR method to support surveillance of the incidence of invasive disease caused by NTS in developing countries.

  2. Impacts of Salmonella enterica Serovar Typhimurium and Its speG Gene on the Transcriptomes of In Vitro M Cells and Caco-2 Cells

    Science.gov (United States)

    Wang, Ke-Chuan; Huang, Chih-Hung; Huang, Ching-Jou

    2016-01-01

    Microfold or membranous (M) cells are specialized intestinal epithelial cells responsible for host immunity. The speG mutant of Salmonella Typhimurium (S. Typhimurium) is a nonreplicating strain within human cells to be a candidate vaccine vector for interacting with M cells. We conducted this study to identify the genes are differently expressed between in vitro M cells and Caco-2 cells, and to determine whether S. Typhimurium and speG affect the transcriptomes of both cell types. In vitro M cells and Caco-2 cells were infected with wild-type (WT) S. Typhimurium, its ΔspeG mutant, or none for 1 h for RNA microarrays; the transcriptomes among the 6 pools were pairwisely compared. Genetic loci encoding scaffold (e.g., HSCHR7_CTG4_4, HSCHR9_CTG9_35), long noncoding RNA, membrane-associated protein (PITPNB), neuron-related proteins (OR8D1, OR10G9, and NTNG2), and transporter proteins (MICU2 and SLC28A1) were significantly upregulated in uninfected M cells compared with uninfected Caco-2 cells; and their encoding proteins are promising M-cell markers. Significantly upregulated HSCHR7_CTG4_4 of uninfected in vitro M cells were speG-independently downregulated by S. Typhimurium infection that is a remarkable change representing an important but unreported characteristic of M cells. The immune responses of in vitro M cells and Caco-2 cells can differ and reply on speG or not, with speG-dependent regulation of KYL4, SCTR, IL6, TNF, and CELF4 in Caco-2 cells, JUN, KLF6, and KCTD11 in M cells, or speG-independent modulation of ZFP36 in both cells. This study facilitates understanding of the immune responses of in vitro M cells after administering the S. Typhimurium ΔspeG mutant as a future vaccine vector. PMID:27064787

  3. Characterisation of recently emerged multiple antibiotic-resistant Salmonella enterica serovar typhimurium DT104 and other multiresistant phage types from Danish pig herds

    DEFF Research Database (Denmark)

    Baggesen, Dorte Lau; Aarestrup, Frank Møller

    1998-01-01

    electrophoresis (PFGE) using the restriction enzyme Xba I, Overall, 66 per cent of the 670 isolates were sensitive to all the antimicrobial agents tested. Eleven isolates of S typhimurium were resistant to ampicillin, streptomycin and tetracycline and also resistant to other antibiotics in different resistance...... patterns. Seven different multiresistant clones were identified, The most common clones were four isolates of DT104 and three isolates of DT193, TWO Of the three S typhimurium DT104 from 1994 and 1995 were sensitive to all the antimicrobials tested whereas the remaining isolate from 1994 was resistant......A total of 670 isolates of Salmonella enterica were isolated from Danish pig herds, phage typed and tested for susceptibility to amoxycillin + clavulanate, ampicillin, colistin, enrofloxacin, gentamicin, neomycin, spectinomycin, streptomycin, tetracyclines, and trimethoprim + sulphadiazine. S...

  4. Effect of dietary addition of nitrate on growth, salivary and gastric function, immune response, and excretion of Salmonella enterica serovar Typhimurium, in weaning pigs challenged with this microbe strain

    Directory of Open Access Journals (Sweden)

    M. Mazzoni

    2010-04-01

    Full Text Available Two dietary additions of nitrate (15 mg/kg or 150 mg/kg, supplied by potassium salt were tested in a total 96 weaning pigs challenged or not with Salmonella enterica serovar typhimurium (ST. The oral challenge was done on d 5 and pigs were sacrificed on d 7 or d 25. The effect of challenge never interacted significantly with the dietary treatment. Feed intake, growth, body temperature, salivary excretion, and faecal excretion of ST and gastric function were not affected by the nitrate supplementation. With nitrate additions, total IgA in blood serum tended to be higher before and after the challenge (P<0.10. Nitrite in saliva – but not nitrate – increased with the increasing supplementation at d 5, but not at d 19. The nitrate additions did not negatively affect the weaning performance, but also did not contrast the effect of ST infection.

  5. Salmonella Sofia differs from other poultry-associated Salmonella serovars with respect to cell surface hydrophobicity.

    Science.gov (United States)

    Chia, T W R; Fegan, N; McMeekin, T A; Dykes, G A

    2008-12-01

    Salmonella enterica is one of the most important foodborne pathogens. Salmonella enterica subsp. II 4,12:b:- (Salmonella Sofia) is commonly found in Australian poultry. It has been suggested that physicochemical properties such as surface charge and hydrophobicity may affect bacterial attachment to surfaces and their ability to persist in food systems. A possible link between hydrophobicity cell surface charge and persistence of Salmonella from the poultry system was examined. Hydrophobicity of Salmonella Sofia (n = 14), Salmonella Typhimurium (n = 6), Salmonella Infantis (n = 3), and Salmonella Virchow (n = 2) was assayed using hydrophobic interaction chromatography, bacterial adherence to hydrocarbons (BATH), using xylene or hexadecane, and the contact angle method (CAM). Cellular surface charge (CSC) of the isolates was determined using zeta potential measurements. The majority (12 of 14) of Salmonella Sofia isolates were found to be hydrophobic when assayed using BATH with xylene, except isolates S1635 and S1636, and the other serovars were found to be hydrophilic. Salmonella Sofia isolates were not significantly different (P > 0.05) from isolates of other serovars as measured by hydrophobic interaction, BATH with hexadecane, or the CAM. No significant differences (P > 0.05) in zeta potential measurements were observed between isolates. Principal component analysis using results from all four measures of hydrophobicity allowed clear differentiation between isolates of the serovar Salmonella Sofia (except S1635 and S1636) and those of other Salmonella serovars. Differences in physicochemical properties may be a contributing factor to the Salmonella Sofia serovar's ability to attach to surfaces and persist in a food system.

  6. Prevalence of R-type ACSSuT in strains of Salmonella serovar Typhimurium DT193 isolated from human infections in Brazil Prevalencia de resistencia de tipo ACSSuT en cepas de Salmonella serovariedad Typhimurium DT193 aisladas a partir de infecciones humanas en el Brasil

    Directory of Open Access Journals (Sweden)

    Eliane Moura Falavina dos Reis

    2011-06-01

    Full Text Available OBJECTIVE: To determine the prevalence of resistance to ampicillin, chloramphenicol, streptomycin, sulphonamides, and tetracyclines (ACSSuT in Salmonella serovar Typhimurium definitive [phage] type (DT 193 strains isolated from human sources over the last four decades. METHODS: From 2008 to 2010, 553 DT193 isolates out of 810 human-origin Salmonella ser. Typhimurium phage-typed strains isolated from the 1970s through 2008 were selected and tested for ACSSuT resistance: 91 strains isolated during the 1970s, 65 from the 1980s, 70 from the 1990s, and 327 from 2000-2008. Resistance profiles were determined using the disk diffusion method. RESULTS: †An antimicrobial susceptibility assay indicated 20.9%, or 116, of all isolates tested were ACSSuT-resistant, 52.0% (287 were resistant to one or more drugs in the ACSSuT profile, and 27.1% (150 were nonresistant (susceptible to antimicrobials. Based on the assay, overall antimicrobial resistance was extremely high in the 1970s (affecting 99.0% of isolates from that period and remained high during the 1980s, when 95.4% of isolates had some type of antimicrobial resistance and incidence of Salmonella ser. Typhimurium DT193 R-type ACSSuT increased to 73.8%. R-type ACSSuT dropped to 27.1% (19 isolates during the 1990s, and to 5.2% (17 during 2000-2008, despite a substantial increase in the number of isolates tested (397 versus 204, 111, and 98, respectively, for the previous three decades. CONCLUSIONS: †Although prevalence of Salmonella ser. Typhimurium DT193 R-type ACSSuT in Brazil has decreased since the 1970s, ACSSuT resistance markers continue to circulate. Therefore, continuous surveillance should be conducted to evaluate the occurrence of Salmonella ser. Typhimurium DT193 and its antimicrobial resistance.OBJETIVO: Determinar la prevalencia de resistencia a la ampicilina, el cloranfenicol, la estreptomicina, las sulfonamidas y las tetraciclinas (ACSSuT en cepas de Salmonella serovariedad Typhimurium

  7. Emergence of a multidrug-resistant (ASSuTTm) strain of Salmonella enterica serovar Typhimurium DT120 in England in 2011 and the use of multiple-locus variable-number tandem-repeat analysis in supporting outbreak investigations.

    Science.gov (United States)

    Paranthaman, Karthikeyan; Haroon, Sophie; Latif, Samia; Vinnyey, Natalie; de Souza, Valerie; Welfare, William; Tahir, Mamoona; Cooke, Edward; Stone, Kirsten; Lane, Chris; Peters, Tansy; Puleston, Richard

    2013-10-01

    In summer 2011, two outbreaks of a unique, multidrug-resistant strain of Salmonella enterica serovar Typhimurium phage type 120 (DT120) occurred mainly in the Midlands, England. The first outbreak occurred among guests attending a wedding in July 2011 ('Wedding outbreak'), followed by a more geographically dispersed outbreak in August and September 2011 ('Midlands outbreak'). Fifty-one cases were confirmed. Detailed epidemiological and environmental health investigations suggested that pork was the most likely source of both outbreaks. All human samples and one pork sample showed the specific multiple-locus variable-number tandem-repeat analysis (MLVA) profile 3-11-12-NA-0211, with at most two loci variations. Trace-back investigations suggested a link to a butcher's shop and a pig farm in the East Midlands. The investigations highlight the utility of molecular analysis (MLVA) in supporting epidemiological investigations of outbreaks caused by S. Typhimurium DT120. Safe handling and cooking of pork by food business operators and consumers are key interventions to prevent future outbreaks.

  8. 9 CFR 113.120 - Salmonella Typhimurium Bacterin.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Salmonella Typhimurium Bacterin. 113... REQUIREMENTS Inactivated Bacterial Products § 113.120 Salmonella Typhimurium Bacterin. Salmonella Typhimurium Bacterin shall be prepared from a culture of Salmonella typhimurium which has been inactivated and is...

  9. Non-essential genes form the hubs of genome scale protein function and environmental gene expression networks in Salmonella enterica serovar Typhimurium

    DEFF Research Database (Denmark)

    Rosenkrantz, Jesper T.; Aarts, Henk; Abee, Tjakko

    2013-01-01

    Background: Salmonella Typhimurium is an important pathogen of human and animals. It shows a broad growth range and survives in harsh conditions. The aim of this study was to analyze transcriptional responses to a number of growth and stress conditions as well as the relationship of metabolic...... genes under a number of growth and stress conditions were used to construct a bipartite network connecting culture conditions and significantly regulated genes (transcriptional network). Also, a genome scale network was constructed for strain LT2. The latter connected genes with metabolic pathways...... pathways and/or cell functions at the genome-scale-level by network analysis, and further to explore whether highly connected genes ( hubs) in these networks were essential for growth, stress adaptation and virulence. Results: De novo generated as well as published transcriptional data for 425 selected...

  10. Backyard Farms Represent a Source of Wide Host Range Salmonella Phages That Lysed the Most Common Salmonella Serovars.

    Science.gov (United States)

    Rivera, Dácil; Toledo, Viviana; Pillo, Francisca DI; Dueñas, Fernando; Tardone, Rodolfo; Hamilton-West, Christopher; Vongkamjan, Kitiya; Wiedmann, Martin; Switt, Andrea I Moreno

    2018-02-01

    The genus Salmonella has more than 2,600 serovars, and this trait is important when considering interventions for Salmonella control. Bacteriophages that are used for biocontrol must have an exclusively lytic cycle and the ability to lyse several Salmonella serovars under a wide range of environmental conditions. Salmonella phages were isolated and characterized from 34 backyard production systems (BPSs) with a history of Salmonella infections. BPSs were visited once, and cloacal or fecal samples were processed for phage isolation. Four hosts, Salmonella serovars Enteritidis, Heidelberg, Infantis, and Typhimurium, were used for phage isolation. The host range of the phages was later characterized with a panel of 23 Salmonella serovars (serovar diversity set) and 31 isolates obtained from the same farms (native set). Genetic relatedness for 10 phages with a wide host range was characterized by restriction fragment length polymorphism, and phages clustered based on the host range. We purified 63 phages, and 36 phage isolates were obtained on Salmonella Enteritidis, 16 on Salmonella Heidelberg, and 11 on Salmonella Infantis. Phages were classified in three clusters: (i) phages with a wide host range (cluster I), (ii) phages that lysed the most susceptible Salmonella serovars (serogroup D) and other isolates (cluster II), and (iii) phages that lysed only isolates of serogroup D (cluster III). The most susceptible Salmonella serovars were Enteritidis, Javiana, and Dublin. Seven of 34 farms yielded phages with a wide host range, and these phages had low levels of genetic relatedness. Our study showed an adaptation of the phages in the sampled BPSs to serogroup D Salmonella isolates and indicated that isolation of Salmonella phages with wide host range differs by farm. A better understanding of the factors driving the Salmonella phage host range could be useful when designing risk-based sampling strategies to obtain phages with a wide lytic host range for biocontrol

  11. Interaction of the carbon monoxide-releasing molecule Ru(CO)3Cl(glycinate) (CORM-3) with Salmonella enterica serovar Typhimurium: in situ measurements of carbon monoxide binding by integrating cavity dual-beam spectrophotometry.

    Science.gov (United States)

    Rana, Namrata; McLean, Samantha; Mann, Brian E; Poole, Robert K

    2014-12-01

    Carbon monoxide (CO) is a toxic gas that binds to haems, but also plays critical signalling and cytoprotective roles in mammalian systems; despite problems associated with systemic delivery by inhalation of the gas, it may be employed therapeutically. CO delivered to cells and tissues by CO-releasing molecules (CO-RMs) has beneficial and toxic effects not mimicked by CO gas; CO-RMs are also attractive candidates as novel antimicrobial agents. Salmonella enterica serovar Typhimurium is an enteropathogen causing gastroenteritis in humans. Recent studies have implicated haem oxygenase-1 (HO-1), the protein that catalyses the degradation of haem into biliverdin, free iron and CO, in the host immune response to Salmonella infection. In several studies, CO administration via CO-RMs elicited many of the protective roles of HO-1 induction and so we investigated the effects of a well-characterized water-soluble CO-RM, Ru(CO)3Cl(glycinate) (CORM-3), on Salmonella. CORM-3 exhibits toxic effects at concentrations significantly lower than those reported to cause toxicity to RAW 264.7 macrophages. We demonstrated here, through oxyhaemoglobin assays, that CORM-3 did not release CO spontaneously in phosphate buffer, buffered minimal medium or very rich medium. CORM-3 was, however, accumulated to high levels intracellularly (as shown by inductively coupled plasma MS) and released CO inside cells. Using growing Salmonella cultures without prior concentration, we showed for the first time that sensitive dual-beam integrating cavity absorption spectrophotometry can detect directly the CO released from CORM-3 binding in real-time to haems of the bacterial electron transport chain. The toxic effects of CO-RMs suggested potential applications as adjuvants to antibiotics in antimicrobial therapy. © 2014 The Authors.

  12. Antimicrobial Resistance Profiles of the Two Porcine Salmonella Typhimurium Isolates

    Directory of Open Access Journals (Sweden)

    Kemal METİNER

    2016-07-01

    Full Text Available The aim of the study is to detect the presence of the Salmonella species in swine with diarrhea, and to investigate their antimicrobial resistance and extended spectrum beta lactamase (ESBL and/or AmpC β-lactamase production. For this purpose, stool samples from three commercial pig farms in Istanbul and Tekirdag were collected and processed for Salmonella isolation by culture and isolates were identified by biochemical activity tests. Salmonella isolates were confirmed by PCR then serotyped. Antimicrobial resistance and ESBL and AmpC production of the isolates were determined according to the Clinical and Laboratory Standards Institute (CLSI standard. In the study, two hundred and thirty eight stool samples were examined. Salmonella spp. were obtained from 2 samples, and the isolation rate was determined as 0.8%. Both of the isolates were defined as Salmonella enterica subsp. enterica serovar Typhimurium (serotype 1, 4, [5], 12: I: 1, 2 by serotyping. Both of them were resistant to cefaclor, cloxacillin and lincomycin (100%. Multidrug resistance (resistance ≥3 antimicrobials observed in all isolates. ESBL and AmpC production were not detected in any of the isolates. To our knowledge, this is the first report of the isolation of S. Typhimurium in pigs with diarrhea in Turkey. This study also represents the first report of multi-drug resistant S. Typhimurium isolates from pig stools in Turkey.

  13. Non-essential genes form the hubs of genome scale protein function and environmental gene expression networks in Salmonella enterica serovar Typhimurium.

    Science.gov (United States)

    Rosenkrantz, Jesper T; Aarts, Henk; Abee, Tjakko; Rolfe, Matthew D; Knudsen, Gitte M; Nielsen, Maj-Britt; Thomsen, Line E; Zwietering, Marcel H; Olsen, John E; Pin, Carmen

    2013-12-17

    Salmonella Typhimurium is an important pathogen of human and animals. It shows a broad growth range and survives in harsh conditions. The aim of this study was to analyze transcriptional responses to a number of growth and stress conditions as well as the relationship of metabolic pathways and/or cell functions at the genome-scale-level by network analysis, and further to explore whether highly connected genes (hubs) in these networks were essential for growth, stress adaptation and virulence. De novo generated as well as published transcriptional data for 425 selected genes under a number of growth and stress conditions were used to construct a bipartite network connecting culture conditions and significantly regulated genes (transcriptional network). Also, a genome scale network was constructed for strain LT2. The latter connected genes with metabolic pathways and cellular functions. Both networks were shown to belong to the family of scale-free networks characterized by the presence of highly connected nodes or hubs which are genes whose transcription is regulated when responding to many of the assayed culture conditions or genes encoding products involved in a high number of metabolic pathways and cell functions.The five genes with most connections in the transcriptional network (wraB, ygaU, uspA, cbpA and osmC) and in the genome scale network (ychN, siiF (STM4262), yajD, ybeB and dcoC) were selected for mutations, however mutagenesis of ygaU and ybeB proved unsuccessful. No difference between mutants and the wild type strain was observed during growth at unfavorable temperatures, pH values, NaCl concentrations and in the presence of H2O2. Eight mutants were evaluated for virulence in C57/BL6 mice and none differed from the wild type strain. Notably, however, deviations of phenotypes with respect to the wild type were observed when combinations of these genes were deleted. Network analysis revealed the presence of hubs in both transcriptional and functional

  14. Influence of moisture content on inactivation of Escherichia coli O157:H7 and Salmonella enterica serovar Typhimurium in powdered red and black pepper spices by radio-frequency heating.

    Science.gov (United States)

    Jeong, Seul-Gi; Kang, Dong-Hyun

    2014-04-17

    The influence of moisture content during radio-frequency (RF) heating on heating rate, dielectric properties, and inactivation of foodborne pathogens was investigated. The effect of RF heating on the quality of powdered red and black pepper spices with different moisture ranges was also investigated. Red pepper (12.6%, 15.2%, 19.1%, and 23.3% dry basis, db) and black pepper (10.1%, 17.2%, 23.7%, and 30.5% db) inoculated with Escherichia coli O157:H7 and Salmonella enterica serovar Typhimurium were treated in a RF heating system with 27.12 MHz. The heating rate of the sample was dependent on moisture content up to 19.1% (db) of red pepper and 17.2% (db) of black pepper, but there was a significant decrease in the heating rate when the moisture content was increased beyond these levels. The dielectric properties of both samples increased with a rise in moisture content. As the moisture content increased, treatment time required to reduce E. coli O157:H7 and S. Typhimurium by more than 7 log CFU/g (below the detection limit, 1 log CFU/g) decreased and then increased again without affecting product quality when the moisture content exceeded a level corresponding to the peak heating rate. RF treatment significantly (Pheating can be effectively used to not only control pathogens but also reduce moisture levels in spices and that the effect of inactivation is dependent on moisture content. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Survival of Host-Associated Bacteroidales Cells and Their Relationship with Enterococcus spp., Campylobacter jejuni, Salmonella enterica Serovar Typhimurium, and Adenovirus in Freshwater Microcosms as Measured by Propidium Monoazide-Quantitative PCR

    Science.gov (United States)

    Bae, Sungwoo

    2012-01-01

    The ideal host-associated genetic fecal marker would be capable of predicting the presence of specific pathogens of concern. Flowthrough freshwater microcosms containing mixed feces and inocula of the pathogens Campylobacter jejuni, Salmonella enterica serovar Typhimurium, and adenovirus were placed at ambient temperature in the presence and absence of diurnal sunlight. The total Enterococcus DNA increased during the early periods (23 h) under sunlight exposure, even though cultivable Enterococcus and DNA in intact cells, as measured by propidium monoazide (PMA), decreased with first-order kinetics during the entire period. We found a significant difference in the decay of host-associated Bacteroidales cells between sunlight exposure and dark conditions (P value 0.05). Overall, the ratio of quantitative PCR (qPCR) cycle threshold (CT) values with and without PMA treatment was indicative of the time elapsed since inoculation of the microcosm with (i) fecal material from different animal sources based on host-associated Bacteroidales and (ii) pure cultures of bacterial pathogens. The use of both PMA-qPCR and qPCR may yield more realistic information about recent sources of fecal contamination and result in improved prediction of waterborne pathogens and assessment of health risk. PMID:22139002

  16. Serovars of Salmonella isolated from Danish turkeys between 1995 and 2000 and their antimicrobial resistance

    DEFF Research Database (Denmark)

    Pedersen, Karl; Hansen, H.C.; Jørgensen, J.C.

    2002-01-01

    , florfenicol, or amoxycillin with clavulanic acid, only 24 isolates were resistant to two or more compounds in various combinations of up to six compounds; one Salmonella Havana isolate was resistant to six compounds. Six isolates were serovar Typhimurium, but none of them belonged to phage type DT104....

  17. Effect of milk fat content on the performance of ohmic heating for inactivation of Escherichia coli O157:H7, Salmonella enterica Serovar Typhimurium and Listeria monocytogenes.

    Science.gov (United States)

    Kim, S-S; Kang, D-H

    2015-08-01

    The effect of milk fat content on ohmic heating compared to conventional heating for inactivation of food-borne pathogens was investigated. Sterile cream was mixed with sterile buffered peptone water and adjusted to 0, 3, 7, 10% (w/v) milk fat content. These samples with varying fat content were subjected to ohmic and conventional heating. The effect of milk fat on temperature increase and electrical conductivity were investigated. Also, the protective effect of milk fat on the inactivation of foodborne pathogens was studied. For conventional heating, temperatures of samples increased with time and were not significantly (P > 0.05) different regardless of fat content. Although the inactivation rate of Escherichia coli O157:H7, Salmonella Typhimurium and L. monocytogens decreased in samples of 10% fat content, a protective effect was not observed for conventional heating. In contrast with conventional heating, ohmic heating was significantly affected by milk fat content. Temperature increased more rapidly with lower fat content for ohmic heating due to higher electrical conductivity. Nonuniform heat generation of nonhomogeneous fat-containing samples was verified using a thermal infrared camera. Also, the protective effect of milk fat on E. coli O157:H7 and Listeria monocytogenes was observed in samples subjected to ohmic heating. These results indicate that food-borne pathogens can survive in nonhomogeneous fat-containing foods subjected to ohmic heating. Therefore, more attention is needed regarding ohmic heating than conventional heating for pasteurizing fat-containing foods. The importance of adequate pasteurization for high milk fat containing foods was identified. © 2015 The Society for Applied Microbiology.

  18. The Role of the st313-td Gene in Virulence of Salmonella Typhimurium ST313

    DEFF Research Database (Denmark)

    Herrero-Fresno, Ana; Wallrodt, Inke; Leekitcharoenphon, Pimlapas

    2014-01-01

    Multidrug-resistant Salmonella enterica serovar Typhimurium ST313 has emerged in sub-Saharan Africa causing severe infections in humans. Therefore, it has been speculated that this specific sequence type, ST313, carries factors associated with increased pathogenicity. We assessed the role...

  19. Characterization and Antimicrobial Resistance of Salmonella Typhimurium Isolates from Clinically Diseased Pigs in Korea.

    Science.gov (United States)

    Oh, Sang-Ik; Kim, Jong Wan; Chae, Myeongju; Jung, Ji-A; So, Byungjae; Kim, Bumseok; Kim, Ha-Young

    2016-11-01

    This study investigated the prevalence of Salmonella enterica serovar and antimicrobial resistance in Salmonella Typhimurium isolates from clinically diseased pigs collected from 2008 to 2014 in Korea. Isolates were also characterized according to the presence of antimicrobial resistance genes and pulsed-field gel electrophoresis patterns. Among 94 Salmonella isolates, 81 (86.2%) were identified as being of the Salmonella Typhimurium serotype, followed by Salmonella Derby (6 of 94, 6.4%), Salmonella 4,[5],12:i:- (4 of 94, 4.3%), Salmonella Enteritidis (2 of 94, 2.1%), and Salmonella Brandenburg (1 of 94, 1.1%). The majority of Salmonella Typhimurium isolates were resistant to tetracycline (92.6%), followed by streptomycin (88.9%) and ampicillin (80.2%). Overall, 96.3% of Salmonella Typhimurium isolates showed multidrug-resistant phenotypes and commonly harbored the resistance genes bla TEM (64.9%), flo (32.8%), aadA (55.3%), strA (58.5%), strB (58.5%), sulII (53.2%), and tetA (61.7%). The pulsed-field gel electrophoresis analysis of 45 Salmonella Typhimurium isolates from individual farms revealed 27 distinct patterns that formed one major and two minor clusters in the dendrogram analysis, suggesting that most of the isolates (91.1%) from diseased pigs were genetically related. These findings can assist veterinarians in the selection of appropriate antimicrobial agents to combat Salmonella Typhimurium infections in pigs. Furthermore, they highlight the importance of continuous surveillance of antimicrobial resistance and genetic status in Salmonella Typhimurium for the detection of emerging resistance trends.

  20. Salmonella Typhimurium infection in the porcine intestine

    DEFF Research Database (Denmark)

    Schauser, Kirsten; Olsen, John Elmerdahl; Larsson, Lars-Inge

    2005-01-01

    The normal intestinal epithelium is renewed with a turnover rate of 3-5 days. During Salmonella infection increased cell loss is observed, possibly as a result of programmed cell death (PCD). We have, therefore, studied the effects of Salmonella Typhimurium infection on three elements involved...... in scattered epithelial cells and the number of positive cells increased with increasing times of exposure to Salmonella (P

  1. Multidrug-Resistant Salmonella enterica Serovar Muenchen from Pigs and Humans and Potential Interserovar Transfer of Antimicrobial Resistance

    OpenAIRE

    Gebreyes, Wondwossen A.; Thakur, Siddhartha

    2005-01-01

    Salmonella serovars are important reservoirs of antimicrobial resistance. Recently, we reported on multidrug-resistant (MDR) Salmonella enterica serovar Typhimurium strains among pigs with resistance to ampicillin, kanamycin, streptomycin, sulfamethoxazole, and tetracycline (resistance [R] type AKSSuT) and resistance to amoxicillin-clavulanic acid, ampicillin, chloramphenicol, streptomycin, sulfamethoxazole, and tetracycline (R type AxACSSuT). In the present study, 67 isolates (39 from humans...

  2. Quinolone resistance in Salmonella enterica serovar Typhi ...

    African Journals Online (AJOL)

    Introduction. The human restricted bacteria, Salmonella enterica serovar. Typhi is the major cause of typhoid fever (or enteric fever), a characteristic severe systemic illness [1]. In 2010, typhoid fever accounted for an estimated global burden of. 27 million new cases and 200,000 deaths [2]. For over two decades, S. enterica ...

  3. Cloning and sequencing of protein L-isoaspartyl O-methyl transferase of Salmonella Typhimurium isolated from poultry

    Directory of Open Access Journals (Sweden)

    S. K. Dixit

    2014-09-01

    Full Text Available Aim: To clone the Salmonella Typhimurium protein L-isoaspartyl O-methyl transferase (PIMT enzyme and to analyze the sequence with PIMT gene of other pathogenic serovars of Salmonella. Materials and Methods: Salmonella Typhimurium strain E-2375 was procured from the National Salmonella Center, IVRI. The genomic DNA was isolated from Salmonella Typhimurium. Polymerase chain reaction (PCR was carried out to amplify PIMT gene using the designed primers. The PCR product was cloned into pET28c plasmid vector and transformed into Escherichia coli DH5α cells. The plasmid was isolated from E. coli and was sequenced. The sequence was analyzed and submitted in Genbank. Results: The PCR product revealed a distinct amplicon of 627 bp. The clone was confirmed by PCR. Sequencing data revealed 100% homology between PIMT sequences from Salmonella Typhimurium strain E-2375 (used in the current study and PIMT sequences of standard reported strain (Salmonella Typhimurium str. LT2 in NCBI data base. This submitted sequence in Genbank having accession no. KJ575536. Conclusions: PIMT gene of Salmonella is highly conserved in most of the pathogenic Salmonella serovars. The PIMT clone can be used to isolate PIMT protein. This PIMT protein will be helpful to identify isoaspartate containing proteins thus can help in study Salmonella virulence.

  4. Effect of electropermeabilization by ohmic heating for inactivation of Escherichia coli O157:H7, Salmonella enterica serovar Typhimurium, and Listeria monocytogenes in buffered peptone water and apple juice.

    Science.gov (United States)

    Park, Il-Kyu; Kang, Dong-Hyun

    2013-12-01

    The effect of electric field-induced ohmic heating for inactivation of Escherichia coli O157:H7, Salmonella enterica serovar Typhimurium, and Listeria monocytogenes in buffered peptone water (BPW) (pH 7.2) and apple juice (pH 3.5; 11.8 °Brix) was investigated in this study. BPW and apple juice were treated at different temperatures (55°C, 58°C, and 60°C) and for different times (0, 10, 20, 25, and 30 s) by ohmic heating compared with conventional heating. The electric field strength was fixed at 30 V/cm and 60 V/cm for BPW and apple juice, respectively. Bacterial reduction resulting from ohmic heating was significantly different (Pheating at 58°C and 60°C in BPW and at 55°C, 58°C, and 60°C in apple juice for intervals of 0, 10, 20, 25, and 30 s. These results show that electric field-induced ohmic heating led to additional bacterial inactivation at sublethal temperatures. Transmission electron microscopy (TEM) observations and the propidium iodide (PI) uptake test were conducted after treatment at 60°C for 0, 10, 20, 25 and 30 s in BPW to observe the effects on cell permeability due to electroporation-caused cell damage. PI values when ohmic and conventional heating were compared were significantly different (Pheating can more effectively reduce bacterial populations at reduced temperatures and shorter time intervals, especially in acidic fruit juices such as apple juice. Therefore, loss of quality can be minimized in a pasteurization process incorporating ohmic heating.

  5. Survival of foodborne pathogenic bacteria (Bacillus cereus, Escherichia coli O157:H7, Salmonella enterica serovar Typhimurium, Staphylococcus aureus, and Listeria monocytogenes) and Bacillus cereus spores in fermented alcoholic beverages (beer and refined rice wine).

    Science.gov (United States)

    Kim, S A; Kim, N H; Lee, S H; Hwang, I G; Rhee, M S

    2014-03-01

    Only limited information is available on the microbiological safety of fermented alcoholic beverages because it is still a common belief that such beverages do not provide a favorable environment for bacterial growth and survival. Thus, in this study, we examined the survival of major foodborne pathogens and spores in fermented alcoholic beverages. Foodborne pathogens (Bacillus cereus, Escherichia coli O157:H7, Listeria monocytogenes, Salmonella enterica serovar Typhimurium, and Staphylococcus aureus) and B. cereus spores (initial population, 3 to 4 log CFU/ml) were inoculated separately into three types of beer and refined rice wine, which were then stored at 5 and 22°C. Bacterial counts were assayed periodically for up to 28 days. Vegetative B. cereus counts decreased rapidly, whereas B. cereus spore counts remained constant (P > 0.05) for a long period of time in all beverages. Vegetative B. cereus cells formed spores in beer at 5 and 22°C, and the spores survived for long periods. Among vegetative cells, E. coli O157:H7 had the highest survival (only 1.49 to 1.56 log reduction during 28 days in beer at 5°C). Beer and refined rice wine supported microbial survival from several days to several weeks. Our results appear to contradict the common belief that pathogens cannot survive in alcoholic beverages. Long-term survival of pathogens (especially B. cereus and E. coli O157:H7) in beer and refined rice wine should be taken into consideration by the manufacturers of these beverages. This study provides basic information that should help further research into microbial survival in alcoholic beverages and increase the microbiological safety regulation of fermented alcoholic beverages.

  6. Sublethal Exposure to Commercial Formulations of the Herbicides Dicamba, 2,4-Dichlorophenoxyacetic Acid, and Glyphosate Cause Changes in Antibiotic Susceptibility in Escherichia coli and Salmonella enterica serovar Typhimurium

    Science.gov (United States)

    Kurenbach, Brigitta; Marjoshi, Delphine; Amábile-Cuevas, Carlos F.; Ferguson, Gayle C.; Godsoe, William; Gibson, Paddy

    2015-01-01

    ABSTRACT Biocides, such as herbicides, are routinely tested for toxicity but not for sublethal effects on microbes. Many biocides are known to induce an adaptive multiple-antibiotic resistance phenotype. This can be due to either an increase in the expression of efflux pumps, a reduced synthesis of outer membrane porins, or both. Exposures of Escherichia coli and Salmonella enterica serovar Typhimurium to commercial formulations of three herbicides—dicamba (Kamba), 2,4-dichlorophenoxyacetic acid (2,4-D), and glyphosate (Roundup)—were found to induce a changed response to antibiotics. Killing curves in the presence and absence of sublethal herbicide concentrations showed that the directions and the magnitudes of responses varied by herbicide, antibiotic, and species. When induced, MICs of antibiotics of five different classes changed up to 6-fold. In some cases the MIC increased, and in others it decreased. Herbicide concentrations needed to invoke the maximal response were above current food maximum residue levels but within application levels for all herbicides. Compounds that could cause induction had additive effects in combination. The role of soxS, an inducer of the AcrAB efflux pump, was tested in β-galactosidase assays with soxS-lacZ fusion strains of E. coli. Dicamba was a moderate inducer of the sox regulon. Growth assays with Phe-Arg β-naphtylamide (PAβN), an efflux pump inhibitor, confirmed a significant role of efflux in the increased tolerance of E. coli to chloramphenicol in the presence of dicamba and to kanamycin in the presence of glyphosate. Pathways of exposure with relevance to the health of humans, domestic animals, and critical insects are discussed. PMID:25805724

  7. Removal of the phage-shock protein PspB causes reduction of virulence in Salmonella enterica serovar Typhimurium independently of NRAMP1

    DEFF Research Database (Denmark)

    Wallrodt, Inke; Jelsbak, Lotte; Thomsen, Line E.

    2014-01-01

    , we investigated the contribution of individual psp genes to virulence of S. Typhimurium. Interestingly, deletion of the whole pspA-D set of genes caused attenuation in both NRAMP1(+) and NRAMP1(-) mice, indicating that one or more of the psp genes contribute to virulence independently of NRAMP1......IV-induced secretin stress. In conclusion, our results demonstrate that removal of PspB reduces virulence in S. Typhimurium independently of host NRAMP1 expression, demonstrating that PspB has roles in intra-host survival distinct from the reported contributions of PspA....

  8. Salmonella Typhimurium and multidirectional communication in the gut

    Directory of Open Access Journals (Sweden)

    Elena V. Gart

    2016-11-01

    Full Text Available The mammalian digestive tract is home to trillions of microbes, including bacteria, archaea, protozoa, fungi and viruses. In monogastric mammals the stomach and small intestine harbor diverse bacterial populations but are typically less populated than the colon. The gut bacterial community (microbiota hereafter varies widely among different host species and individuals within a species. It is influenced by season of the year, age of the host, stress and disease. Ideally, the host and microbiota benefit each other. The host provides nutrients to the microbiota and the microbiota assists the host with digestion and nutrient metabolism. The resident microbiota competes with pathogens for space and nutrients and, through this competition, protects the host in a phenomenon called colonization resistance. The microbiota participates in development of the host immune system, particularly regulation of autoimmunity and mucosal immune response. The microbiota also shapes gut-brain communication and host responses to stress; and, indeed, the microbiota is a newly recognized endocrine organ within mammalian hosts.Salmonella enterica serovar Typhimurium (S. Typhimurium hereafter is a food-borne pathogen which adapts to and alters the gastrointestinal (GI environment. In the GI tract, S. Typhimurium competes with the microbiota for nutrients and overcomes colonization resistance to establish infection. To do this, S. Typhimurium uses multiple defense mechanisms to resist environmental stressors, like the acidic pH of the stomach, and virulence mechanisms which allow it to invade the intestinal epithelium and disseminate throughout the host. To coordinate gene expression and disrupt signaling within the microbiota and between host and microbiota, S. Typhimurium employs its own chemical signaling and may regulate host hormone metabolism.This review will discuss the multidirectional interaction between S. Typhimurium, host and microbiota as well as mechanisms

  9. Gamma irradiation or CD4+-T-cell depletion causes reactivation of latent Salmonella enterica serovar Typhimurium infection in C3H/HeN mice.

    NARCIS (Netherlands)

    Diepen, A. van; Gevel, J.S. van de; Koudijs, M.; Ossendorp, F.; Beekhuizen, H.; Janssen, R.; Dissel, J.T. van

    2005-01-01

    Upon infection with Salmonella, a host develops an immune response to limit bacterial growth and kill and eliminate the pathogen. Salmonella has evolved mechanisms to remain dormant within the body, only to reappear (reactivate) at a later time when the immune system is abated. We have developed an

  10. A novel Salmonella serovar isolated from Peregrine Falcon (Falco peregrinus) nestlings in Sweden: Salmonella enterica enterica serovar Pajala (Salmonella Pajala)

    OpenAIRE

    Hernández, Jorge; Lindberg, Peter; Waldenström, Jonas; Drobni, Mirva; Olsen, Björn

    2012-01-01

    A novel Salmonella serovar was isolated from Peregrine falcon (Falco peregrinus) nestlings in northern Sweden in 2006. Three isolates of the same clone was retrieved from three falcon siblings and characterized as Salmonella enterica sub-species enterica: O-phase 13, 23:-: e, n, z 15 and the H-phase was not present. We propose the geographical name Salmonella enterica, sub-species entericaserovar Pajala to this novel Salmonella.Keywords: Salmonella; epidemiology; ecology; peregrine falcon; no...

  11. Detection of OmpA gene by PCR for specific detection of Salmonella serovars

    Directory of Open Access Journals (Sweden)

    Joy. L. Kataria

    2013-10-01

    Full Text Available Aim: The study was carried out to determine the sensitivity and specificity of OmpA gene in Salmonella serovarsthrough PCR.Materials and Methods: Aset of primers were designed targeting the OmpAgene specific for the Salmonella and polymerasechain reaction was standardized using Salomonella Typhimurium as a positive control and as a negative control 4 nonsalmonella cultures such as Campylobacter coli, Arcobacter butzleri, Brucella abortus and E. coli. Sensitivity of the test wasdetermined by serial dilution of genomic DNAof standard S. Typhimurium. The PCR standardized was used for screening 68strains of different serovars of Salmonella.Results: The PCR developed targeting OmpA specific for Salmonella was highly specific in detection of the salmonellaserovar alone and sensitivity was upto 68.8 fg. Atotal of 68 virulent/ natural strains of different serovars of salmonella takenup for the study were positive by OmpAbased PCR.Conclusions: This study reports that, OmpAgene which is conserved among Salmonella serovars can be used for the detectionof Salmonella in food or clinical samples in further studies, with high sensitivity and specificity.

  12. Experimental Salmonella typhimurium infections in rats. I

    DEFF Research Database (Denmark)

    Hougen, H P; Jensen, E T; Klausen, B

    1989-01-01

    The course of experimentally induced Salmonella typhimurium infection was studied in three groups of inbred LEW rats: homozygous +/+, athymic rnu/rnu and isogeneic thymus-grafted rnu/rnu rats. In the first experiment the animals were inoculated intraperitoneally with 10(8) bacteria and all animals...

  13. InvS Coordinates Expression of PrgH and FimZ and Is Required for Invasion of Epithelial Cells by Salmonella enterica serovar Typhimurium

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Lu; Cai, Xia; Wu, Shuyan; Bomjan, Rajdeep; Nakayasu, Ernesto S.; Händler, Kristian; Hinton, Jay C. D.; Zhou, Daoguo; DiRita, Victor J.

    2017-04-24

    ABSTRACT

    Deep sequencing has revolutionized our understanding of the bacterial RNA world and has facilitated the identification of 280 small RNAs (sRNAs) inSalmonella. Despite the suspicions that sRNAs may play important roles inSalmonellapathogenesis, the functions of most sRNAs remain unknown. To advance our understanding of RNA biology inSalmonellavirulence, we searched for sRNAs required for bacterial invasion into nonphagocytic cells. After screening 75 sRNAs, we discovered that the ablation of InvS caused a significant decrease ofSalmonellainvasion into epithelial cells. A proteomic analysis showed that InvS modulated the levels of several type III secretedSalmonellaproteins. The level of PrgH, a type III secretion apparatus protein, was significantly lower in the absence of InvS, consistent with the known roles of PrgH in effector secretion and bacterial invasion. We discovered that InvS modulatesfimZexpression and hence flagellar gene expression and motility. We propose that InvS coordinates the increase of PrgH and decrease in FimZ that promote efficientSalmonellainvasion into nonphagocytic cells.

    IMPORTANCESalmonellosis continues to be the most common foodborne infection reported by the CDC in the United States. Central toSalmonellapathogenesis is the ability to invade nonphagocytic cells and to replicate inside host cells. Invasion genes are known to be regulated by protein transcriptional networks, but little is known

  14. Salmonella Pathogenicity and Host Adaptation in Chicken-Associated Serovars

    Science.gov (United States)

    Johnson, Timothy J.; Ricke, Steven C.; Nayak, Rajesh; Danzeisen, Jessica

    2013-01-01

    SUMMARY Enteric pathogens such as Salmonella enterica cause significant morbidity and mortality. S. enterica serovars are a diverse group of pathogens that have evolved to survive in a wide range of environments and across multiple hosts. S. enterica serovars such as S. Typhi, S. Dublin, and S. Gallinarum have a restricted host range, in which they are typically associated with one or a few host species, while S. Enteritidis and S. Typhimurium have broad host ranges. This review examines how S. enterica has evolved through adaptation to different host environments, especially as related to the chicken host, and continues to be an important human pathogen. Several factors impact host range, and these include the acquisition of genes via horizontal gene transfer with plasmids, transposons, and phages, which can potentially expand host range, and the loss of genes or their function, which would reduce the range of hosts that the organism can infect. S. Gallinarum, with a limited host range, has a large number of pseudogenes in its genome compared to broader-host-range serovars. S. enterica serovars such as S. Kentucky and S. Heidelberg also often have plasmids that may help them colonize poultry more efficiently. The ability to colonize different hosts also involves interactions with the host's immune system and commensal organisms that are present. Thus, the factors that impact the ability of Salmonella to colonize a particular host species, such as chickens, are complex and multifactorial, involving the host, the pathogen, and extrinsic pressures. It is the interplay of these factors which leads to the differences in host ranges that we observe today. PMID:24296573

  15. Proteomic pleiotropy of OpgGH, an operon necessary for efficient growth of Salmonella enterica serovar Typhimurium under low-osmotic conditions

    Science.gov (United States)

    Salmonella enterica, a bacterial, food-borne pathogen of humans, can contaminate raw fruits and vegetables. Causing much public concern, the bacteria can survive in water used to wash produce. The ability to survive the low-osmolarity of the wash waters is attributed to the OpgGH operon that leads...

  16. Unique Helicase Determinants in the Essential Conjugative TraI Factor from Salmonella enterica Serovar Typhimurium Plasmid pCU1

    Energy Technology Data Exchange (ETDEWEB)

    McLaughlin, Krystle J.; Nash, Rebekah P.; Redinbo, Mathew R. (UNC)

    2014-06-16

    The widespread development of multidrug-resistant bacteria is a major health emergency. Conjugative DNA plasmids, which harbor a wide range of antibiotic resistance genes, also encode the protein factors necessary to orchestrate the propagation of plasmid DNA between bacterial cells through conjugative transfer. Successful conjugative DNA transfer depends on key catalytic components to nick one strand of the duplex DNA plasmid and separate the DNA strands while cell-to-cell transfer occurs. The TraI protein from the conjugative Salmonella plasmid pCU1 fulfills these key catalytic roles, as it contains both single-stranded DNA-nicking relaxase and ATP-dependent helicase domains within a single, 1,078-residue polypeptide. In this work, we unraveled the helicase determinants of Salmonella pCU1 TraI through DNA binding, ATPase, and DNA strand separation assays. TraI binds DNA substrates with high affinity in a manner influenced by nucleic acid length and the presence of a DNA hairpin structure adjacent to the nick site. TraI selectively hydrolyzes ATP, and mutations in conserved helicase motifs eliminate ATPase activity. Surprisingly, the absence of a relatively short (144-residue) domain at the extreme C terminus of the protein severely diminishes ATP-dependent strand separation. Collectively, these data define the helicase motifs of the conjugative factor TraI from Salmonella pCU1 and reveal a previously uncharacterized C-terminal functional domain that uncouples ATP hydrolysis from strand separation activity.

  17. The Vi capsular polysaccharide enables Salmonella enterica serovar typhi to evade microbe-guided neutrophil chemotaxis.

    Directory of Open Access Journals (Sweden)

    Tamding Wangdi

    2014-08-01

    Full Text Available Salmonella enterica serovar Typhi (S. Typhi causes typhoid fever, a disseminated infection, while the closely related pathogen S. enterica serovar Typhimurium (S. Typhimurium is associated with a localized gastroenteritis in humans. Here we investigated whether both pathogens differ in the chemotactic response they induce in neutrophils using a single-cell experimental approach. Surprisingly, neutrophils extended chemotactic pseudopodia toward Escherichia coli and S. Typhimurium, but not toward S. Typhi. Bacterial-guided chemotaxis was dependent on the presence of complement component 5a (C5a and C5a receptor (C5aR. Deletion of S. Typhi capsule biosynthesis genes markedly enhanced the chemotactic response of neutrophils in vitro. Furthermore, deletion of capsule biosynthesis genes heightened the association of S. Typhi with neutrophils in vivo through a C5aR-dependent mechanism. Collectively, these data suggest that expression of the virulence-associated (Vi capsular polysaccharide of S. Typhi obstructs bacterial-guided neutrophil chemotaxis.

  18. msbB deletion confers acute sensitivity to CO2 in Salmonella enterica serovar Typhimurium that can be suppressed by a loss-of-function mutation in zwf

    Directory of Open Access Journals (Sweden)

    Troy Kimberly

    2009-08-01

    Full Text Available Abstract Background Pathogens tolerate stress conditions that include low pH, oxidative stress, high salt and high temperature in order to survive inside and outside their hosts. Lipopolysaccharide (LPS, which forms the outer-leaflet of the outer membrane in Gram-negative bacteria, acts as a permeability barrier. The lipid A moiety of LPS anchors it to the outer membrane bilayer. The MsbB enzyme myristoylates the lipid A precursor and loss of this enzyme, in Salmonella, is correlated with reduced virulence and severe growth defects that can both be compensated with extragenic suppressor mutations. Results We report here that msbB (or msbB somA Salmonella are highly sensitive to physiological CO2 (5%, resulting in a 3-log reduction in plating efficiency. Under these conditions, msbB Salmonella form long filaments, bulge and lyse. These bacteria are also sensitive to acidic pH and high osmolarity. Although CO2 acidifies LB broth media, buffering LB to pH 7.5 did not restore growth of msbB mutants in CO2, indicating that the CO2-induced growth defects are not due to the effect of CO2 on the pH of the media. A transposon insertion in the glucose metabolism gene zwf compensates for the CO2 sensitivity of msbB Salmonella. The msbB zwf mutants grow on agar, or in broth, in the presence of 5% CO2. In addition, msbB zwf strains show improved growth in low pH or high osmolarity media compared to the single msbB mutant. Conclusion These results demonstrate that msbB confers acute sensitivity to CO2, acidic pH, and high osmolarity. Disruption of zwf in msbB mutants restores growth in 5% CO2 and results in improved growth in acidic media or in media with high osmolarity. These results add to a growing list of phenotypes caused by msbB and mutations that suppress specific growth defects.

  19. Sublethal exposure to commercial formulations of the herbicides dicamba, 2,4-dichlorophenoxyacetic acid, and glyphosate cause changes in antibiotic susceptibility in Escherichia coli and Salmonella enterica serovar Typhimurium.

    Science.gov (United States)

    Kurenbach, Brigitta; Marjoshi, Delphine; Amábile-Cuevas, Carlos F; Ferguson, Gayle C; Godsoe, William; Gibson, Paddy; Heinemann, Jack A

    2015-03-24

    Biocides, such as herbicides, are routinely tested for toxicity but not for sublethal effects on microbes. Many biocides are known to induce an adaptive multiple-antibiotic resistance phenotype. This can be due to either an increase in the expression of efflux pumps, a reduced synthesis of outer membrane porins, or both. Exposures of Escherichia coli and Salmonella enterica serovar Typhimurium to commercial formulations of three herbicides-dicamba (Kamba), 2,4-dichlorophenoxyacetic acid (2,4-D), and glyphosate (Roundup)-were found to induce a changed response to antibiotics. Killing curves in the presence and absence of sublethal herbicide concentrations showed that the directions and the magnitudes of responses varied by herbicide, antibiotic, and species. When induced, MICs of antibiotics of five different classes changed up to 6-fold. In some cases the MIC increased, and in others it decreased. Herbicide concentrations needed to invoke the maximal response were above current food maximum residue levels but within application levels for all herbicides. Compounds that could cause induction had additive effects in combination. The role of soxS, an inducer of the AcrAB efflux pump, was tested in β-galactosidase assays with soxS-lacZ fusion strains of E. coli. Dicamba was a moderate inducer of the sox regulon. Growth assays with Phe-Arg β-naphtylamide (PAβN), an efflux pump inhibitor, confirmed a significant role of efflux in the increased tolerance of E. coli to chloramphenicol in the presence of dicamba and to kanamycin in the presence of glyphosate. Pathways of exposure with relevance to the health of humans, domestic animals, and critical insects are discussed. Increasingly common chemicals used in agriculture, domestic gardens, and public places can induce a multiple-antibiotic resistance phenotype in potential pathogens. The effect occurs upon simultaneous exposure to antibiotics and is faster than the lethal effect of antibiotics. The magnitude of the

  20. The role of ClpP, RpoS and CsrA in growth and filament formation of Salmonella enterica serovar Typhimurium at low temperature

    DEFF Research Database (Denmark)

    Knudsen, Gitte Maegaard; Nielsen, Maj-Britt; Thomsen, Line Elnif

    2014-01-01

    Background: Salmonellae are food-borne pathogens of great health and economic importance. To pose a threat to humans, Salmonellae normally have to cope with a series of stressful conditions in the food chain, including low temperature. In the current study, we evaluated the importance of the Clp....... The clpP mutant formed cold resistant suppressor mutants at a frequency of 2.5 x 10(-3) and these were found not to express RpoS. Together these results indicated that the impaired growth of the clpP mutant was caused by high level of RpoS. Evaluation by microscopy of the clpP mutant revealed...... that the phenotype of the csrA mutant was independent from RpoS. Conclusions: The cold sensitivity of clpP mutant was associated with increased levels of RpoS and probably caused by toxic levels of RpoS. Although a csrA mutant also accumulated high level of RpoS, growth impairment caused by lack of csr...

  1. Cell yields and fermentation responses of a Salmonella Typhimurium poultry isolate at different dilution rates in an anaerobic steady state continuous culture

    Science.gov (United States)

    The objectives of these studies were to determine cell yield and fermentation responses of a Salmonella enterica serovar Typhimurium poultry isolate using various dilution rates in steady state continuous culture incubations. S. enterica Typhimurium cells were propagated in continuous cultures with ...

  2. Transcriptional response of turkeys to MDR Salmonella enterica serovar heidelberg

    Science.gov (United States)

    Food-producing animals such as swine, cattle and poultry are a major reservoir of the human foodborne pathogen Salmonella. While some Salmonella serovars can cause disease in food-producing animals, most serovars colonize these animals asymptomatically, resulting in the hosts becoming carriers and ...

  3. Investigation of optimum ohmic heating conditions for inactivation of Escherichia coli O157:H7, Salmonella enterica serovar Typhimurium, and Listeria monocytogenes in apple juice.

    Science.gov (United States)

    Park, Il-Kyu; Ha, Jae-Won; Kang, Dong-Hyun

    2017-05-19

    Control of foodborne pathogens is an important issue for the fruit juice industry and ohmic heating treatment has been considered as one of the promising antimicrobial interventions. However, to date, evaluation of the relationship between inactivation of foodborne pathogens and system performance efficiency based on differing soluble solids content of apple juice during ohmic heating treatment has not been well studied. This study aims to investigate effective voltage gradients of an ohmic heating system and corresponding sugar concentrations (°Brix) of apple juice for inactivating major foodborne pathogens (E. coli O157:H7, S. Typhimurium, and L. monocytogenes) while maintaining higher system performance efficiency. Voltage gradients of 30, 40, 50, and 60 V/cm were applied to 72, 48, 36, 24, and 18 °Brix apple juices. At all voltage levels, the lowest heating rate was observed in 72 °Brix apple juice and a similar pattern of temperature increase was shown in18-48 °Brix juice samples. System performance coefficients (SPC) under two treatment conditions (30 V/cm in 36 °Brix or 60 V/cm in 48 °Brix juice) were relatively greater than for other combinations. Meanwhile, 5-log reductions of the three foodborne pathogens were achieved after treatment for 60 s in 36 °Brix at 30 V/cm, but this same reduction was observed in 48 °Brix juice at 60 V/cm within 20 s without affecting product quality. With respect to both bactericidal efficiency and SPC values, 60 V/cm in 48 °Brix was the most effective ohmic heating treatment combination for decontaminating apple juice concentrates.

  4. Experimental Adaptation of Salmonella typhimurium to Mice

    OpenAIRE

    Nilsson, Annika I.; Kugelberg, Elisabeth; Berg, Otto G.; Andersson, Dan I.

    2004-01-01

    Experimental evolution is a powerful approach to study the dynamics and mechanisms of bacterial niche specialization. By serial passage in mice, we evolved 18 independent lineages of Salmonella typhimurium LT2 and examined the rate and extent of adaptation to a mainly reticuloendothelial host environment. Bacterial mutation rates and population sizes were varied by using wild-type and DNA repair-defective mutator (mutS) strains with normal and high mutation rates, respectively, and by varying...

  5. [Monophasic Salmonella Typhimurium outbreak due to the consumption of roast pork meat].

    Science.gov (United States)

    de Frutos, M; López-Urrutia, L; Berbel, C; Allue, M; Herrera, S; Azcona, J M; Beristaín, X; Aznar, E; Albert, M; Ruiz, C; Eiros, J M

    2018-03-20

    This report presents an outbreak of monophasic Salmonella enteric serovar Typhimurium fagotipe 4, 5, 12: i:-, in a motorcycle concentration in Valladolid. Information was collected to one hundred and twelve affected from seven Spanish Autonomous Communities. The epidemiological investigation associated the outbreak with the consumption of roast pork with sauce sandwiches sold at a street market in that event. © The Author 2018. Published by Sociedad Española de Quimioterapia.

  6. Molecular characterization, spread and evolution of multidrug resistance in Salmonella enterica Typhimurium DT104

    OpenAIRE

    Cloeckaert, Axel; Schwarz, Stefan

    2001-01-01

    International audience; Multidrug-resistant Salmonella enterica serovar Typhimurium phage type DT104 has emerged during the last decade as a global health problem because of its involvement in diseases in animals and humans. Multidrug-resistant DT104 strains are mostly resistant to ampicillin, chloramphenicol, streptomycin, sulfonamides and tetracyclines (ACSSuT resistance type). The genes coding for such resistances are clustered on the chromosome. This paper reviews new developments in the ...

  7. Inactivation of Salmonella Typhimurium and quality preservation of cherry tomatoes by in-package aerosolization of antimicrobials

    Science.gov (United States)

    The purpose of the present study was to investigate the efficacy of in-package aerosolized aqueous sanitizers in reducing populations of attenuated Salmonella enterica serovar Typhimurium inoculated on tomato fruit and in maintaining fruit quality. Cherry tomatoes were inoculated with a cocktail of ...

  8. Phenotypic and molecular characterization of Salmonella enterica serovar Sofia, an avirulent species in Australian poultry.

    Science.gov (United States)

    Gan, Emily; Baird, Fiona J; Coloe, Peter J; Smooker, Peter M

    2011-04-01

    Salmonella enterica serovar Sofia (S. Sofia) is often isolated from chickens in Australia. However, despite its high frequency of isolation from chicken and chicken meat products, S. Sofia is rarely associated with animal or human salmonellosis, presumably because this serovar is avirulent in nature. The objective of this work was to investigate the phenotypic and molecular properties of S. Sofia in order to assess its pathogenic potential. Our in vivo studies support the observation that this serovar can colonize tissues, but does not cause disease in chickens. This was further confirmed with tissue culture assays, which showed that the ability of S. Sofia to adhere, invade and survive intracellularly is significantly diminished compared with the pathogenic Salmonella enterica serovar Typhimurium (S. Typhimurium) 82/6915. Molecular analysis of Salmonella pathogenicity islands (SPIs) showed that most of the differences observed in SPI1 to SPI5 of S. Sofia could be attributed to minor changes in the sequences, as indicated by a loss or gain of restriction cleavage sites within these regions. Sequence analysis demonstrated that the majority of virulence genes identified were predicted to encode proteins sharing a high identity (75-100 %) with corresponding proteins from S. Typhimurium. However, a number of virulence genes in S. Sofia have accumulated mutations predicted to affect transcription and/or translation. The avirulence of this serovar is probably not the result of a single genetic change but rather of a series of alterations in a large number of virulence-associated genes. The acquisition of any single virulence gene will almost certainly not be sufficient to restore S. Sofia virulence.

  9. Salmonella enterica: Survival, Colonization, and Virulence Differences among Serovars

    Science.gov (United States)

    Andino, A.; Hanning, I.

    2015-01-01

    Data indicate that prevalence of specific serovars of Salmonella enterica in human foodborne illness is not correlated with their prevalence in feed. Given that feed is a suboptimal environment for S. enterica, it appears that survival in poultry feed may be an independent factor unrelated to virulence of specific serovars of Salmonella. Additionally, S. enterica serovars appear to have different host specificity and the ability to cause disease in those hosts is also serovar dependent. These differences among the serovars may be related to gene presence or absence and expression levels of those genes. With a better understanding of serovar specificity, mitigation methods can be implemented to control Salmonella at preharvest and postharvest levels. PMID:25664339

  10. Cantaloupe facilitates transmission of Salmonella typhimurium between adult house flies

    Science.gov (United States)

    Salmonella enterica ser. Typhimurium (S. Typhimurium) is a pathogen harbored by livestock that can contaminate fresh produce, such as cantaloupe, and cause food-borne illnesses. We previously demonstrated that house flies acquire and harbor S. Typhimurium after exposure to inoculated cattle manure. ...

  11. A low-pH medium in vitro or the environment within a macrophage decreases the transcriptional levels of fimA, fimZ and lrp in Salmonella enterica serovar Typhimurium.

    Science.gov (United States)

    Wang, Ke-Chuan; Hsu, Yuan-Hsun; Huang, Yi-Ning; Chen, Ter-Hsin; Lin, Jiunn-Horng; Hsuan, Shih-Ling; Chien, Maw-Sheng; Lee, Wei-Cheng; Yeh, Kuang-Sheng

    2013-09-01

    Many Salmonella Typhimurium isolates produce type 1 fimbriae and exhibit fimbrial phase variation in vitro. Static broth culture favours the production of fimbriae, while solid agar medium inhibits the generation of these appendages. Little information is available regarding whether S. Typhimurium continues to produce type 1 fimbriae during in vivo growth. We used a type 1 fimbrial phase-variable strain S. Typhimurium LB5010 and its derivatives to infect RAW 264.7 macrophages. Following entry into macrophages, S. Typhimurium LB5010 gradually decreased the transcript levels of fimbrial subunit gene fimA, positive regulatory gene fimZ, and global regulatory gene lrp. A similar decrease in transcript levels was detected by RT-PCRwhen the pH of static brothmediumwas shifted frompH 7 to amore acidic pH 4. A fimA-deleted strain continued to multiply within macrophages as did the parental strain. An lrp deletion strain was unimpaired for in vitro growth at pH 7 or pH 4, while a strain harboring an lrp-containing plasmid exhibited impaired in vitro growth at pH 4. We propose that acidic medium, which resembles one aspect of the intracellular environment in a macrophage, inhibits type 1 fimbrial production by down-regulation of the expression of lrp, fimZ and fimA.

  12. Transfer and internalisation of Escherichia coli O157:H7 and Salmonella enterica serovar Typhimurium in cabbage cultivated on contaminated manure-amended soil under tropical field conditions in Sub-Saharan Africa.

    Science.gov (United States)

    Ongeng, D; Vasquez, G A; Muyanja, C; Ryckeboer, J; Geeraerd, A H; Springael, D

    2011-01-31

    Surface contamination and internalisation of Escherichia coli O157:H7 and Salmonella Typhimurium in cabbage leaf tissues at harvest (120 days post-transplantation) following amendment of contaminated bovine manure to soil at different times during crop cultivation were investigated under tropical field conditions in the Central Agro-Ecological Zone of Uganda. Fresh bovine manure inoculated with rifampicin-resistant derivatives of non-virulent strains of E. coli O157:H7 and S. Typhimurium was incorporated into the soil to achieve inoculum concentrations of 4 and 7 log CFU/g at the point of transplantation, 56 or 105 days post-transplantation of cabbage seedlings. Frequent sampling of the soil enabled the accurate identification of the survival kinetics in soil, which could be described by the Double Weibull model in all but one of the cases. The persistence of 4 log CFU/g E. coli O157:H7 and S. Typhimurium in the soil was limited, i.e. only inocula applied 105 days post-transplantation were still present at harvest. Moreover, no internalisation in cabbage leaf tissues was observed. In contrast, at the 7 log CFU/g inoculum level, E. coli O157:H7 and S. Typhimurium survived in the soil throughout the cultivation period. All plants (18/18) examined for leaf contamination were positive for E. coli O157:H7 at harvest irrespective of the time of manure application. A similar incidence of leaf contamination was found for S. Typhimurium. On the other hand, only plants (18/18) cultivated on soil amended with contaminated manure at the point of transplantation showed internalised E. coli O157:H7 and S. Typhimurium at harvest. These results demonstrate that under tropical field conditions, the risk of surface contamination and internalisation of E. coli O157:H7 and S. Typhimurium in cabbage leaf tissues at harvest depend on the inoculum concentration and the time of manure application. Moreover, the internalisation of E. coli O157:H7 and S. Typhimurium in cabbage leaf tissues

  13. Porcine Response to a Multidrug-Resistant Salmonella enterica serovar I 4,[5],12:i:- Outbreak Isolate.

    Science.gov (United States)

    Shippy, Daniel C; Bearson, Bradley L; Holman, Devin B; Brunelle, Brian W; Allen, Heather K; Bearson, Shawn M D

    2018-02-07

    Salmonella enterica serovar I 4,[5],12:i:- has emerged as a common nontyphoidal Salmonella serovar to cause human foodborne illness. An interesting trait of serovar I 4,[5],12:i:- is that it only expresses the fliC gene for bacterial motility (i.e., monophasic), while most Salmonella strains alternately express two flagellin genes (fliC and fljB). The goal of this study was to characterize the porcine response following inoculation with a multidrug-resistant (MDR) serovar I 4,[5],12:i:- isolate associated with a multistate pork outbreak to determine if the increased prevalence of serovar I 4,[5],12:i:- in swine is due to enhanced pathogenicity. Pigs were inoculated and subsequently evaluated for the ability of the isolate to colonize intestinal tissues, cause clinical symptoms, induce an immune response, and alter the fecal microbiota over a 7-day period. Pigs exhibited a significant increase in rectal temperature (fever) (p isolate induced transient clinical disease in swine and perturbed the gastrointestinal microbial community. The porcine response to MDR serovar I 4,[5],12:i:- is similar to previous studies with virulent biphasic Salmonella enterica serovar Typhimurium, suggesting that the absence of fljB does not substantially alter acute colonization or pathogenesis in pigs.

  14. Immunochromatographic strip assay for the rapid and sensitive detection of Salmonella Typhimurium in artificially contaminated tomato samples.

    Science.gov (United States)

    Shukla, Shruti; Leem, Hyerim; Lee, Jong-Suk; Kim, Myunghee

    2014-06-01

    This study was designed to confirm the applicability of a liposome-based immunochromatographic assay for the rapid detection of Salmonella enterica subsp. enterica serovar Typhimurium (Salmonella Typhimurium) in artificially contaminated tomato samples. To determine the detection limit and pre-enrichment incubation time (10, 12, and 18 h pre-enrichment in 1% buffered peptone water), the tests were performed with different cell numbers of Salmonella Typhimurium (3 × 10(0), 3 × 10(1), 3 × 10(2), and 3 × 10(3) CFU·mL(-1)) inoculated into 25 g of crushed tomato samples. The assay was able to detect as few as 30 Salmonella Typhimurium cells per 25 g of tomato samples (1.2 cells·g(-1)) after 12 h pre-enrichment incubation. Moreover, when the developed assay was compared with traditional morphological and biochemical culture-based methods as well as colloidal gold nanoparticle-based commercial test strips, the developed assay yielded positive results for the detection of Salmonella Typhimurium within a shorter period time. These findings confirm that the developed assay may have practical application for the sensitive detection of Salmonella Typhimurium in various food samples, including raw vegetables, with a relatively low detection limit and shorter analysis time.

  15. Analysis of the Salmonella typhimurium Proteome through Environmental Response toward Infectious Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Adkins, Joshua N.; Mottaz, Heather M.; Norbeck, Angela D.; Gustin, Jean K.; Rue, Joanne; Clauss, Therese RW; Purvine, Samuel O.; Rodland, Karin D.; Heffron, Fred; Smith, Richard D.

    2006-08-01

    Salmonella enterica serovar Typhimurium (aka, S. typhimurium) is a facultative intracellular pathogen that causes ~40,000 reported cases of acute gastroenteritis and diarrhea a year in the United States. To develop a deeper understanding of the infectious state of S. typhimurium, liquid chromatography-mass spectrometry-based “bottom-up” proteomics was used to globally analyze the proteins present under specific growth conditions. Salmonella typhimurium LT2 strain cells were grown in contrasting culture conditions that mimicked both natural free-living conditions and an infectious state, i.e., logarithm phase, stationary phase and Mg-depleted medium growth. Initial comparisons of the LT2 strain protein abundances among cell culture conditions indicate that the majority of proteins do not change significantly. Not unexpectedly, cells grown in Mg-depleted medium conditions had a higher abundance of Mg2+ transport proteins than found in other growth conditions. A second more virulent Salmonella typhimurium strain (14028) was also studied with these growth conditions and used to directly compare to the LT2 strain. The strain comparison offers a unique opportunity to compare and contrast observations in these closely related bacteria. One particular protein family, propanediol utilization proteins, was drastically more abundant in the 14028 strain than in the LT2 strain, and may be a contributor to increased pathogenicity in the 14028 strain.

  16. Persistence of Salmonella Typhimurium LT2 in Soil Enhanced after Growth in Lettuce Medium

    Directory of Open Access Journals (Sweden)

    Kornelia Smalla

    2017-04-01

    Full Text Available The persistence of Salmonella in the environment is influenced by a multitude of biotic and abiotic factors. In addition, its persistence can be influenced by preadaptation before the introduction into the environment. In order to study how preadaptation changes the survival of Salmonella in soil and therefore its potential to colonize the phytosphere, we developed a new medium based on lettuce material [lettuce medium (LM]. Salmonella enterica serovar Typhimurium strain LT2 was used as a model for Salmonella in this study. LT2 was inoculated into soil microcosms after pregrowth in Luria Bertani (LB broth or in LM. Survival of LT2 in soil was monitored over 56 days by plate counts and quantification of the Typhimurium-specific gene STM4497 using qPCR in total community DNA for which primers and TaqMan probe were designed in this study. Significantly enhanced persistence was observed for LT2 pregrown in LM compared to LT2 pregrown in LB, indicating a preadaptation effect. Surprisingly, no improved survival could be observed for S. Typhimurium strain 14028s and S. enterica serovar Senftenberg after pregrowth on LM. This indicates a high strain specificity of preadaptation. Results from previous studies suggested that biofilm formation could enhance the survival of human pathogens in various environments and might contribute to enhanced survival on plants. In vitro biofilm assays with several Salmonella strains revealed a strain-specific effect of LM on the biofilm formation. While LM significantly improved the biofilm formation of S. Senftenberg, the biofilm formation of LT2 was better in LB. This indicates that the better survival of LM-pregrown LT2 in soil was not linked to an improved ability to form biofilms but was likely due to other factors. Most importantly, this study showed that the medium used to pregrow Salmonella can influence its survival in soil and its biofilm formation which might influence the fate of Salmonella in soil.

  17. Study of Salmonella Typhimurium infection in laying hens

    Directory of Open Access Journals (Sweden)

    Kapil eChousalkar

    2016-02-01

    Full Text Available Members of Salmonella enterica are frequently involved in egg and egg product related human food poisoning outbreaks worldwide. In Australia, Salmonella Typhimurium is frequently involved in egg and egg product related foodborne illness and Salmonella Mbandaka has also been found to be a contaminant of the layer farm environment. The ability possessed by Salmonella Enteritidis to colonise reproductive organs and contaminate developing eggs has been well described. However, there are few studies investigating this ability for Salmonella Typhimurium. The hypothesis of this study was that the Salmonella Typhimurium can colonise the gut for a prolonged period of time and that horizontal infection through feces is the main route of egg contamination. At 14 weeks of age hens were orally infected with either S. Typhimurium PT 9 or S. Typhimurium PT 9 and Salmonella Mbandaka. Salmonella shedding in feces and eggs was monitored for 15 weeks post infection. Egg shell surface and internal contents of eggs laid by infected hens were cultured independently for detection of Salmonella spp. The mean Salmonella load in feces ranged from 1.54 to 63.35 and 0.31 to 98.38 most probable number/g (MPN/g in the S. Typhimurium and S. Typhimurium + S. Mbandaka group respectively. No correlation was found between mean fecal Salmonella load and frequency of egg shell contamination. Egg shell contamination was higher in S. Typhimurium + S. Mbandaka infected group (7.2% Typhimurium, 14.1% Mbandaka compared to birds infected with S. Typhimurium (5.66% however, co-infection had no significant impact on egg contamination by S. Typhimurium. Throughout the study Salmonella was not recovered from internal contents of eggs laid by hens. Salmonella was isolated from different segments of oviduct of hens from both the groups, however pathology was not observed on microscopic examination. This study investigated Salmonella shedding for up to 15 weeks p.i which is a longer period of

  18. Pattern of multi-drug resistant Salmonella enterica serovar typhi ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-11-05

    Nov 5, 2008 ... Typhoid fever continues to remain a health problem as the causative organism, Salmonella enterica serovar typhi, has developed resistance to many antibiotics used. This study was undertaken to determine the current pattern of resistance to antimicrobial agents by S. enterica serovar typhi isolates.

  19. O-Serotype Conversion in Salmonella Typhimurium Induces Protective Immune Responses against Invasive Non-Typhoidal Salmonella Infections

    Directory of Open Access Journals (Sweden)

    Pei Li

    2017-12-01

    Full Text Available Salmonella infections remain a big problem worldwide, causing enteric fever by Salmonella Typhi (or Paratyphi or self-limiting gastroenteritis by non-typhoidal Salmonella (NTS in healthy individuals. NTS may become invasive and cause septicemia in elderly or immuno-compromised individuals, leading to high mortality and morbidity. No vaccines are currently available for preventing NTS infection in human. As these invasive NTS are restricted to several O-antigen serogroups including B1, D1, C1, and C2, O-antigen polysaccharide is believed to be a good target for vaccine development. In this study, a strategy of O-serotype conversion was investigated to develop live attenuated S. Typhimurium vaccines against the major serovars of NTS infections. The immunodominant O4 serotype of S. Typhimurium was converted into O9, O7, and O8 serotypes through unmarked chromosomal deletion–insertion mutations. O-serotype conversion was confirmed by LPS silver staining and western blotting. All O-serotype conversion mutations were successfully introduced into the live attenuated S. Typhimurium vaccine S738 (Δcrp Δcya to evaluate their immunogenicity in mice model. The vaccine candidates induced high amounts of heterologous O-polysaccharide-specific functional IgG responses. Vaccinated mice survived a challenge of 100 times the 50% lethality dose (LD50 of wild-type S. Typhimurium. Protective efficacy against heterologous virulent Salmonella challenges was highly O-serotype related. Furthermore, broad-spectrum protection against S. Typhimurium, S. Enteritidis, and S. Choleraesuis was observed by co-vaccination of O9 and O7 O-serotype-converted vaccine candidates. This study highlights the strategy of expressing heterologous O-polysaccharides via genetic engineering in developing live attenuated S. Typhimurium vaccines against NTS infections.

  20. The metabolic pathways utilized by Salmonella Typhimurium during infection of host cells.

    Science.gov (United States)

    Thompson, Arthur; Fulde, Marcus; Tedin, Karsten

    2018-04-01

    Only relatively recently has research on the metabolism of intracellular bacterial pathogens within their host cells begun to appear in the published literature. This reflects in part the experimental difficulties encountered in separating host metabolic processes from those of the resident pathogen. One of the most genetically tractable and thoroughly studied intracellular bacterial pathogens, Salmonella enterica serovar Typhimurium (S. Typhimurium), has been at the forefront of metabolic studies within eukaryotic host cells. In this review, we offer a synthesis of what has been discovered to date regarding the metabolic adaptation of S. Typhimurium to survival and growth within the infected host. We discuss many studies in the context of techniques used, types of host cells, how host metabolites contribute to intracellular survival and proliferation of the pathogen and how bacterial metabolism affects the virulence and persistence of the pathogen. © 2018 Society for Applied Microbiology and John Wiley & Sons Ltd.

  1. Characterization of Isolates of Salmonella enterica Serovar Stanley, a Serovar Endemic to Asia and Associated with Travel

    DEFF Research Database (Denmark)

    Hendriksen, Rene S.; Le Hello, Simon; Bortolaia, Valeria

    2012-01-01

    Salmonella enterica serovar Stanley (S. Stanley) is a common serovar in Southeast Asia and was the second most common serovar implicated in human salmonellosis in Thailand in the years 2002 to 2007. In contrast, this serovar is relatively uncommon in Europe. The objective of this study was to cha...

  2. Importance of sigma factor mutations in increased triclosan resistance in Salmonella Typhimurium

    DEFF Research Database (Denmark)

    Gantzhorn, Mette Rørbæk; Olsen, John Elmerdahl; Thomsen, Line Elnif

    2015-01-01

    BACKGROUND: Salmonella enterica is the second most common foodborne pathogen. The use of biocides is crucial to prevent spread of foodborne pathogens, and it would be devastating for food safety if Salmonella would become resistant to the disinfectants used. Another concern is that exposure...... to disinfectants might lead to decreased susceptibility to antibiotics. The current study aimed to identify genetic changes causing high level triclosan resistance in S. enterica serovar Typhimurium and evaluate how these affected antibiotic resistance and efflux pump activity. RESULTS: Wild type strains S....... Typhimurium 4/74 and DTU3 were adapted to increasing concentrations of the biocide triclosan by serial passage. High level triclosan resistant isolates (MIC > 1000 μg/ml) were obtained. Strains were genome sequenced, and SNPs in fabI, rpoS and rpoD were found to be associated with high level resistance...

  3. Genotypic and phenotypic characterization of multidrug resistant Salmonella Typhimurium and Salmonella Kentucky strains recovered from chicken carcasses.

    Directory of Open Access Journals (Sweden)

    Rizwana Tasmin

    Full Text Available Salmonella Typhimurium is the leading cause of human non-typhoidal gastroenteritis in the US. S. Kentucky is one the most commonly recovered serovars from commercially processed poultry carcasses. This study compared the genotypic and phenotypic properties of two Salmonella enterica strains Typhimurium (ST221_31B and Kentucky (SK222_32B recovered from commercially processed chicken carcasses using whole genome sequencing, phenotype characterizations and an intracellular killing assay. Illumina MiSeq platform was used for sequencing of two Salmonella genomes. Phylogenetic analysis employing homologous alignment of a 1,185 non-duplicated protein-coding gene in the Salmonella core genome demonstrated fully resolved bifurcating patterns with varying levels of diversity that separated ST221_31B and SK222_32B genomes into distinct monophyletic serovar clades. Single nucleotide polymorphism (SNP analysis identified 2,432 (ST19 SNPs within 13 Typhimurium genomes including ST221_31B representing Sequence Type ST19 and 650 (ST152 SNPs were detected within 13 Kentucky genomes including SK222_32B representing Sequence Type ST152. In addition to serovar-specific conserved coding sequences, the genomes of ST221_31B and SK222_32B harbor several genomic regions with significant genetic differences. These included phage and phage-like elements, carbon utilization or transport operons, fimbriae operons, putative membrane associated protein-encoding genes, antibiotic resistance genes, siderophore operons, and numerous hypothetical protein-encoding genes. Phenotype microarray results demonstrated that ST221_31B is capable of utilizing certain carbon compounds more efficiently as compared to SK222_3B; namely, 1,2-propanediol, M-inositol, L-threonine, α-D-lactose, D-tagatose, adonitol, formic acid, acetoacetic acid, and L-tartaric acid. ST221_31B survived for 48 h in macrophages, while SK222_32B was mostly eliminated. Further, a 3-fold growth of ST221_31B was

  4. Comparative genome analysis of the high pathogenicity Salmonella Typhimurium strain UK-1.

    Directory of Open Access Journals (Sweden)

    Yingqin Luo

    Full Text Available Salmonella enterica serovar Typhimurium, a gram-negative facultative rod-shaped bacterium causing salmonellosis and foodborne disease, is one of the most common isolated Salmonella serovars in both developed and developing nations. Several S. Typhimurium genomes have been completed and many more genome-sequencing projects are underway. Comparative genome analysis of the multiple strains leads to a better understanding of the evolution of S. Typhimurium and its pathogenesis. S. Typhimurium strain UK-1 (belongs to phage type 1 is highly virulent when orally administered to mice and chickens and efficiently colonizes lymphoid tissues of these species. These characteristics make this strain a good choice for use in vaccine development. In fact, UK-1 has been used as the parent strain for a number of nonrecombinant and recombinant vaccine strains, including several commercial vaccines for poultry. In this study, we conducted a thorough comparative genome analysis of the UK-1 strain with other S. Typhimurium strains and examined the phenotypic impact of several genomic differences. Whole genomic comparison highlights an extremely close relationship between the UK-1 strain and other S. Typhimurium strains; however, many interesting genetic and genomic variations specific to UK-1 were explored. In particular, the deletion of a UK-1-specific gene that is highly similar to the gene encoding the T3SS effector protein NleC exhibited a significant decrease in oral virulence in BALB/c mice. The complete genetic complements in UK-1, especially those elements that contribute to virulence or aid in determining the diversity within bacterial species, provide key information in evaluating the functional characterization of important genetic determinants and for development of vaccines.

  5. 2D proteome analysis initiates new Insights on the Salmonella Typhimurium LuxS protein

    Directory of Open Access Journals (Sweden)

    Vanderleyden Jos

    2009-09-01

    Full Text Available Abstract Background Quorum sensing is a term describing a bacterial communication system mediated by the production and recognition of small signaling molecules. The LuxS enzyme, catalyzing the synthesis of AI-2, is conserved in a wide diversity of bacteria. AI-2 has therefore been suggested as an interspecies quorum sensing signal. To investigate the role of endogenous AI-2 in protein expression of the Gram-negative pathogen Salmonella enterica serovar Typhimurium (S. Typhimurium, we performed a 2D-DIGE proteomics experiment comparing total protein extract of wildtype S. Typhimurium with that of a luxS mutant, unable to produce AI-2. Results Differential proteome analysis of wildtype S. Typhimurium versus a luxS mutant revealed relatively few changes beyond the known effect on phase 2 flagellin. However, two highly differentially expressed protein spots with similar molecular weight but differing isoelectric point, were identified as LuxS whereas the S. Typhimurium genome contains only one luxS gene. This observation was further explored and we show that the S. Typhimurium LuxS protein can undergo posttranslational modification at a catalytic cysteine residue. Additionally, by constructing LuxS-βla and LuxS-PhoA fusion proteins, we demonstrate that S. Typhimurium LuxS can substitute the cognate signal peptide sequences of β-lactamase and alkaline phosphatase for translocation across the cytoplasmic membrane in S. Typhimurium. This was further confirmed by fractionation of S. Typhimurium protein extracts, followed by Western blot analysis. Conclusion 2D-DIGE analysis of a luxS mutant vs. wildtype Salmonella Typhimurium did not reveal new insights into the role of AI-2/LuxS in Salmonella as only a small amount of proteins were differentially expressed. However, subsequent in depth analysis of the LuxS protein itself revealed two interesting features: posttranslational modification and potential translocation across the cytoplasmic membrane. As

  6. Differential Killing of Salmonella enterica Serovar Typhi by Antibodies Targeting Vi and Lipopolysaccharide O:9 Antigen

    Science.gov (United States)

    Hart, Peter J.; O’Shaughnessy, Colette M.; Siggins, Matthew K.; Bobat, Saeeda; Kingsley, Robert A.; Goulding, David A.; Crump, John A.; Reyburn, Hugh; Micoli, Francesca; Dougan, Gordon; Cunningham, Adam F.; MacLennan, Calman A.

    2016-01-01

    Salmonella enterica serovar Typhi expresses a capsule of Vi polysaccharide, while most Salmonella serovars, including S. Enteritidis and S. Typhimurium, do not. Both S. Typhi and S. Enteritidis express the lipopolysaccharide O:9 antigen, yet there is little evidence of cross-protection from anti-O:9 antibodies. Vaccines based on Vi polysaccharide have efficacy against typhoid fever, indicating that antibodies against Vi confer protection. Here we investigate the role of Vi capsule and antibodies against Vi and O:9 in antibody-dependent complement- and phagocyte-mediated killing of Salmonella. Using isogenic Vi-expressing and non-Vi-expressing derivatives of S. Typhi and S. Typhimurium, we show that S. Typhi is inherently more sensitive to serum and blood than S. Typhimurium. Vi expression confers increased resistance to both complement- and phagocyte-mediated modalities of antibody-dependent killing in human blood. The Vi capsule is associated with reduced C3 and C5b-9 deposition, and decreased overall antibody binding to S. Typhi. However, purified human anti-Vi antibodies in the presence of complement are able to kill Vi-expressing Salmonella, while killing by anti-O:9 antibodies is inversely related to Vi expression. Human serum depleted of antibodies to antigens other than Vi retains the ability to kill Vi-expressing bacteria. Our findings support a protective role for Vi capsule in preventing complement and phagocyte killing of Salmonella that can be overcome by specific anti-Vi antibodies, but only to a limited extent by anti-O:9 antibodies. PMID:26741681

  7. Differential Killing of Salmonella enterica Serovar Typhi by Antibodies Targeting Vi and Lipopolysaccharide O:9 Antigen.

    Directory of Open Access Journals (Sweden)

    Peter J Hart

    Full Text Available Salmonella enterica serovar Typhi expresses a capsule of Vi polysaccharide, while most Salmonella serovars, including S. Enteritidis and S. Typhimurium, do not. Both S. Typhi and S. Enteritidis express the lipopolysaccharide O:9 antigen, yet there is little evidence of cross-protection from anti-O:9 antibodies. Vaccines based on Vi polysaccharide have efficacy against typhoid fever, indicating that antibodies against Vi confer protection. Here we investigate the role of Vi capsule and antibodies against Vi and O:9 in antibody-dependent complement- and phagocyte-mediated killing of Salmonella. Using isogenic Vi-expressing and non-Vi-expressing derivatives of S. Typhi and S. Typhimurium, we show that S. Typhi is inherently more sensitive to serum and blood than S. Typhimurium. Vi expression confers increased resistance to both complement- and phagocyte-mediated modalities of antibody-dependent killing in human blood. The Vi capsule is associated with reduced C3 and C5b-9 deposition, and decreased overall antibody binding to S. Typhi. However, purified human anti-Vi antibodies in the presence of complement are able to kill Vi-expressing Salmonella, while killing by anti-O:9 antibodies is inversely related to Vi expression. Human serum depleted of antibodies to antigens other than Vi retains the ability to kill Vi-expressing bacteria. Our findings support a protective role for Vi capsule in preventing complement and phagocyte killing of Salmonella that can be overcome by specific anti-Vi antibodies, but only to a limited extent by anti-O:9 antibodies.

  8. Differential Killing of Salmonella enterica Serovar Typhi by Antibodies Targeting Vi and Lipopolysaccharide O:9 Antigen.

    Science.gov (United States)

    Hart, Peter J; O'Shaughnessy, Colette M; Siggins, Matthew K; Bobat, Saeeda; Kingsley, Robert A; Goulding, David A; Crump, John A; Reyburn, Hugh; Micoli, Francesca; Dougan, Gordon; Cunningham, Adam F; MacLennan, Calman A

    2016-01-01

    Salmonella enterica serovar Typhi expresses a capsule of Vi polysaccharide, while most Salmonella serovars, including S. Enteritidis and S. Typhimurium, do not. Both S. Typhi and S. Enteritidis express the lipopolysaccharide O:9 antigen, yet there is little evidence of cross-protection from anti-O:9 antibodies. Vaccines based on Vi polysaccharide have efficacy against typhoid fever, indicating that antibodies against Vi confer protection. Here we investigate the role of Vi capsule and antibodies against Vi and O:9 in antibody-dependent complement- and phagocyte-mediated killing of Salmonella. Using isogenic Vi-expressing and non-Vi-expressing derivatives of S. Typhi and S. Typhimurium, we show that S. Typhi is inherently more sensitive to serum and blood than S. Typhimurium. Vi expression confers increased resistance to both complement- and phagocyte-mediated modalities of antibody-dependent killing in human blood. The Vi capsule is associated with reduced C3 and C5b-9 deposition, and decreased overall antibody binding to S. Typhi. However, purified human anti-Vi antibodies in the presence of complement are able to kill Vi-expressing Salmonella, while killing by anti-O:9 antibodies is inversely related to Vi expression. Human serum depleted of antibodies to antigens other than Vi retains the ability to kill Vi-expressing bacteria. Our findings support a protective role for Vi capsule in preventing complement and phagocyte killing of Salmonella that can be overcome by specific anti-Vi antibodies, but only to a limited extent by anti-O:9 antibodies.

  9. Study of Salmonella typhimurium mutagenicity assay of (E ...

    African Journals Online (AJOL)

    Study of Salmonella typhimurium mutagenicity assay of (E)-piplartine by the Ames test. AA Morandim-Giannetti, F Cotinguiba, LO Regasini, MC Frigieri, EA Varanda, A Coqueiro, MJ Kato, VS Bolzani, M Furlan ...

  10. Experimental Salmonella typhimurium infections in rats. I

    DEFF Research Database (Denmark)

    Hougen, H P; Jensen, E T; Klausen, B

    1989-01-01

    The course of experimentally induced Salmonella typhimurium infection was studied in three groups of inbred LEW rats: homozygous +/+, athymic rnu/rnu and isogeneic thymus-grafted rnu/rnu rats. In the first experiment the animals were inoculated intraperitoneally with 10(8) bacteria and all animals...... became severely septicemic and died within a week of inoculation, irrespective of presence or absence of thymus. In the second experiment the animals were inoculated with 10(6) bacteria, and both euthymic and thymus-grafted animals responded with high titres of anti bacterial antibodies while these were...... very low in the athymic nude animals. Polyclonal antibody production was only observed in the euthymic animals and only regarding IgG. Athymic rats were not able to clear the infection, while the thymus-grafted animals reacted like euthymic rats: Very few animals housed the bacteria four weeks after...

  11. SopB-Mediated Recruitment of SNX18 Facilitates Salmonella Typhimurium Internalization by the Host Cell

    Science.gov (United States)

    Liebl, David; Qi, Xiaying; Zhe, Yang; Barnett, Timothy C.; Teasdale, Rohan D.

    2017-01-01

    To invade epithelial cells, Salmonella enterica serovar Typhimurium (S. Typhimurium) induces macropinocytosis through the action of virulence proteins delivered across the host cell membrane via a type III secretion system. We show that after docking at the plasma membrane S. Typhimurium triggers rapid recruitment of cytosolic SNX18, a SH3-PX-BAR domain sorting nexin protein, to the bacteria-induced membrane ruffles and to the nascent Salmonella-containing vacuole. SNX18 recruitment required the inositol-phosphatase activity of the Salmonella effector SopB and an intact phosphoinositide-binding site within the PX domain of SNX18, but occurred independently of Rho-GTPases Rac1 and Cdc42 activation. SNX18 promotes formation of the SCV from the plasma membrane by acting as a scaffold to recruit Dynamin-2 and N-WASP in a process dependent on the SH3 domain of SNX18. Quantification of bacteria uptake revealed that overexpression of SNX18 increased bacteria internalization, whereas a decrease was detected in cells overexpressing the phosphoinositide-binding mutant R303Q, the ΔSH3 mutant, and in cells where endogenous levels of SNX18 were knocked-down. This study identifies SNX18 as a novel target of SopB and suggests a mechanism where S. Typhimurium engages host factors via local manipulation of phosphoinositide composition at the site of invasion to orchestrate the internalization process. PMID:28664153

  12. InduciblespyTranscription Acts as a Sensor for Envelope Stress ofSalmonella typhimurium.

    Science.gov (United States)

    Jeong, Seon Mi; Lee, Hwa Jeong; Park, Yoon Mee; Kim, Jin Seok; Lee, Sang Dae; Bang, Iel Soo

    2017-01-01

    Salmonella enterica infects a broad range of host animals, and zoonostic infection threatens both public health and the livestock and meat processing industries. Many antimicrobials have been developed to target Salmonella envelope that performs essential bacterial functions; however, there are very few analytical methods that can be used to validate the efficacy of these antimicrobials. In this study, to develop a potential biosensor for Salmonella envelope stress, we examined the transcription of the S. enterica serovar typhimurium spy gene, the ortholog of which in Escherichia coli encodes Spy (spheroplast protein y). Spy is a chaperone protein expressed and localized in the periplasm of E. coli during spheroplast formation, or by exposure to protein denaturing conditions. spy expression in S. typhimurium was examined by constructing a spy-gfp transcriptional fusion. S. typhimurium spy transcription was strongly induced during spheroplast formation, and also when exposed to membrane-disrupting agents, including ethanol and the antimicrobial peptide polymyxin B. Moreover, spy induction required the activity of regulator proteins BaeR and CpxR, which are part of the major envelope stress response systems BaeS/BaeR and CpxA/CpxR, respectively. Results suggest that monitoring spy transcription may be useful to determine whether a molecule particularly cause envelope stress in Salmonella .

  13. Survey of Salmonella serovars in broilers and laying breeding reproducers in East of Algeria.

    Science.gov (United States)

    Ammar, Ayachi; Alloui, Nadir; Bennoune, Omar; Kassah-Laouar, Ahmed

    2010-03-08

    Avian salmonellosis affects the poultry industry in underdeveloped and in developed countries. The aim of this study was to identify the most common Salmonella serovars in broilers and laying breeding reproducers in Eastern Algeria according to the ISO 6579 method. A total of 294 samples were obtained from two flocks of 10,000 broilers and laying breeding reproducers. Samples included livers and spleens, drag swabs of bottom boxes of young chickens, cloacal swabs, and faecal samples of chickens. Additional samples were also taken from water, feed and dusty surfaces. Only the cloacal swabs, poultry faeces and samples from dusty surfaces were positive for Salmonella Typhimurium and Salmonella Livingstone with a detection rate of 12% and 1.6% respectively. The results showed evidence of legislative failure regarding biosafety within the poultry industry in the area of Batna, Eastern Algeria.

  14. Phenotypic and molecular detection of multi-drug resistant S a l m o n e l l a Enteritidis, S a l m o n e l l a Typhimurium and Salmonella species in retail raw beef and chicken

    Directory of Open Access Journals (Sweden)

    Roseline Ekiomado Uzeh

    2017-08-01

    Full Text Available Objective: To detect Salmonella species and its’ serovars, Salmonella Enteritidis (S. Enteritidis and Salmonella Typhimurium (S. Typhimurium in retail raw beef and chicken in Nigerian markets. Methods: A total of 100 samples, including 50 beef and 50 chicken were purchased from retailers in Lagos, Nigeria. Presence of Salmonella species and its’ serovars, Salmonella Enteritidis and Salmonella Typhimurium in the beef and chicken were assessed phenotypically and by PCR assay. Antibiotic susceptibility test of the isolates was done. Primers were from fliC and sefA genes of Salmonella Typhimurium and Salmonella Enteritidis, respectively. Results: From PCR analysis, fliC gene (559 bp was amplified in one beef sample and was positive for S. Typhimurium while sefA gene (312 bp was amplified in one chicken and three beef samples and were positive for S. Enteritidis. In all, 1% of total meat had S. Typhimurium while 4% and 18% were contaminated with S. Enteritidis and Salmonella spp., respectively. For beef, 2% was contaminated with S. Typhimurium, 6% with S. Enteritidis and 26% with Salmonella spp. In chicken 2% was contaminated with S. Enteritidis, 12% with Salmonella spp. A total of 23 isolates were obtained by ERIC-PCR. All Salmonella spp. were 100% resistant to amoxicillin and amoxicillin-clavulanate. Strains of S. Enteritidis were also resistant to cotrimoxazole, nitrofurantoin, nalidixic acid, gentamycin and tetracycline. Conclusions: The presence of S. Typhimurium, S. Enteritidis and Salmonella spp. in retail raw beef and chicken and their multi-drug resistance is of health significance and great concern because the two serovars are commonly implicated in human salmonellosis.

  15. Sub-Inhibitory Concentrations of the Antibiotic Florfenicol Reduces Invasion in Isolates of Multi-Drug Resistant Salmonella Typhimurium DT104

    Science.gov (United States)

    Virulence can be enhanced in certain bacteria that are exposed to sub-lethal levels of antibiotics. Salmonella enterica serovar Typhimurium DT104 is resistant to five different antibiotics, including florfenicol. Using real-time PCR and a tissue culture invasion assay, we investigated the impact of ...

  16. Ecology and risk assessment of E. coli O157:H7 and Salmonella typhimurium in the primary production chain of lettuce

    NARCIS (Netherlands)

    Franz, E.

    2007-01-01

    Survival of the green fluorescent protein-transformed human pathogens Escherichia coli O157:H7 and Salmonella enterica serovar Typhimurium was studied in a laboratorysimulated lettuce production chain. Dairy cows were fed 3 different roughage types: high digestible grass silage + maize silage (6:4),

  17. Change in attachment of Salmonella Typhimurium, Yersinia enterocolitica, and Listeria monocytogenes to pork skin and muscle after hot water and lactic acid decontamination

    DEFF Research Database (Denmark)

    Morild, Rikke K.; Olsen, John E.; Aabo, Søren

    2011-01-01

    The attachment of Salmonella enterica subsp. enterica serovar Typhimurium, Yersinia enterocolitica, and Listeria monocytogenes to pig skin and muscle tissue decontaminated with 80°C water or 55°C, 1% lactic acid for 5 and 15s was investigated. Attachment properties differed between skin and muscle...

  18. Salmonella Typhimurium metabolism affects virulence in the host - A mini-review.

    Science.gov (United States)

    Herrero-Fresno, Ana; Olsen, John Elmerdhahl

    2018-05-01

    Salmonella enterica remains an important food borne pathogen in all regions of the world with S. Typhimurium as one of the most frequent serovars causing food borne disease. Since the majority of human cases are caused by food of animal origin, there has been a high interest in understanding how S. Typhimurium interacts with the animal host, mostly focusing on factors that allow it to breach host barriers and to manipulate host cells to the benefit of itself. Up to recently, such studies have ignored the metabolic factors that allow the bacteria to multiply in the host, but this is changing rapidly, and we are now beginning to understand that virulence and metabolism in the host are closely linked. The current review highlights which metabolic factors that are essential for Salmonella Typhimurium growth in the intestine, in cultured epithelial and macrophage-like cell lines, at systemic sites during invasive salmonellosis, and during long term asymptomatic colonization of the host. It also points to the limitations in our current knowledge, most notably that most studies have been carried out with few well-characterized laboratory strains, that we do not know how much the in vivo metabolism differs between serotypes, and that most results are based on challenges in the mouse model of infection. It will be very important to realize whether the current understanding of Salmonella metabolism in the host is true for all serotypes and all possible hosts. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Isolation and Evaluation Virulence Factors of Salmonella typhimurium and Salmonella enteritidis in Milk and Dairy Products

    Directory of Open Access Journals (Sweden)

    Shima Shaigan nia

    2014-06-01

    Conclusions: To our best knowledge the present study is the first prevalence report of Salmonella spp., Salmonella enteritidis and Salmonella typhimurium in raw sheep and goat samples in Iran. Consumption of pasteurized milk and dairy products can reduce the risk of salmonellosis.

  20. Rapid Screening of Epidemiologically Important Salmonella enterica subsp. enterica Serovars by Whole-Cell Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry ▿

    Science.gov (United States)

    Dieckmann, Ralf; Malorny, Burkhard

    2011-01-01

    Currently, 2,610 different Salmonella serovars have been described according to the White-Kauffmann-Le Minor scheme. They are routinely differentiated by serotyping, which is based on the antigenic variability at lipopolysaccharide moieties (O antigens), flagellar proteins (H1 and H2 antigens), and capsular polysaccharides (Vi antigens). The aim of this study was to evaluate the potential of matrix-assisted laser desorption ionization–time of flight (MALDI-TOF) mass spectrometry for rapid screening and identification of epidemiologically important Salmonella enterica subsp. enterica serovars based on specific sets of serovar-identifying biomarker ions. By analyzing 913 Salmonella enterica subsp. enterica strains representing 89 different serovars using MALDI-TOF mass spectrometry, several potentially serovar-identifying biomarker ions were selected. Based on a combination of genus-, species-, subspecies-, and serovar-identifying biomarker ions, a decision tree classification algorithm was derived for the rapid identification of the five most frequently isolated Salmonella enterica serovars, Enteritidis, Typhimurium/4,[5],12:i:-, Virchow, Infantis, and Hadar. Additionally, sets of potentially serovar-identifying biomarker ions were detected for other epidemiologically interesting serovars, such as Choleraesuis, Heidelberg, and Gallinarum. Furthermore, by using a bioinformatic approach, sequence variations corresponding to single or multiple amino acid exchanges in several biomarker proteins were tentatively assigned. The inclusivity and exclusivity of the specific sets of serovar-identifying biomarker ions for the top 5 serovars were almost 100%. This study shows that whole-cell MALDI-TOF mass spectrometry can be a rapid method for prescreening S. enterica subsp. enterica isolates to identify epidemiologically important serovars and to reduce sample numbers that have to be subsequently analyzed using conventional serotyping by slide agglutination techniques. PMID

  1. Chasing Salmonella Typhimurium in free range egg production system.

    Science.gov (United States)

    Chousalkar, Kapil; Gole, Vaibhav; Caraguel, Charles; Rault, Jean-Loup

    2016-08-30

    Free range production systems are becoming a major source of egg production in Australia and worldwide. This study investigated shedding and ecology of Salmonella Typhimurium and Salmonella species in a free range layer flock, wild birds and foxes in the vicinity of the free range farm in different seasons. Shedding of Salmonella was significantly higher in summer. Within the shed, overall, Salmonella prevalence was highest in dust. Corticosterone level in faeces was highest in spring and lowest in winter. There was no direct association between the Salmonella shedding (MPN/gm) and corticosterone levels in faeces. Salmonella Typhimurium MLVA types isolated from fox and wild birds were similar to MLVA types isolated from layer flock and reported during human food borne illness. Wild birds and foxes appear to play an important role in S. Typhimurium ecology and food safety. Environmental factors could play a role in evolution of S. Typhimurium in free range environment. Crown Copyright © 2016. Published by Elsevier B.V. All rights reserved.

  2. Prevalence of antimicrobial resistance of non-typhoidal Salmonella serovars in retail aquaculture products.

    Science.gov (United States)

    Zhang, Jianmin; Yang, Xiaowei; Kuang, Dai; Shi, Xianming; Xiao, Wenjia; Zhang, Jing; Gu, Zhen; Xu, Xuebin; Meng, Jianghong

    2015-10-01

    Aquaculture products can become sources of Salmonella by exposure to contaminated water or through processing practices, thus representing a public health hazard. A study was conducted on Salmonella contamination in aquaculture products sampled from marketplaces and retailers in Shanghai, China. A total of 730 samples (including fish, shellfish, bullfrog, clam, shrimp and others) were obtained from 2006 to 2011. Among them, 217 (29.7%) were positive for Salmonella. Thirty-eight serovars were identified in the 217 Salmonella isolates. The most prevalent were Salmonella Aberdeen (18.4%), S. Wandsworth (12.0%), S. Thompson (9.2%), S. Singapore (5.5%), S. Stanley (4.6%), S. Schwarzengrund (4.6%), S. Hvittingfoss (4.1%) and S. Typhimurium (4.1%). Many resistant isolates were detected, with 69.6% resistant to at least one antimicrobial drug. We observed high resistance to sulfonamides (56.5%), tetracycline (34.1%), streptomycin (28.6%), ampicillin (23.5%) and nalidixic acid (21.2%). Lower levels of resistance were found for gentamicin (3.2%), ciprofloxacin (2.3%), ceftiofur (1.3%), cefotaxime (0.9%), ceftazidime (0.5%) and cefepime (0.5%). A total of 43.3% of the Salmonella isolates were multidrug-resistant and 44 different resistance patterns were found. This study provided data on the prevalence, serovars and antimicrobial resistance of Salmonella from retail aquaculture products in Shanghai, and indicated the need for monitoring programs for microbiologic safety in such projects and for more prudent drug use in aquaculture production in order to reduce the risk of development and spread of antimicrobial resistance. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Prevalence and antimicrobial profiles of Salmonella serovars from ...

    African Journals Online (AJOL)

    were collected from five different farms and Maiduguri central market from May to August, 2009. Presumptive Salmonella isolates were determined by using the conventional biochemical tests, Serovars were confirmed by serotyping, using slide agglutination technique. Antimicrobial susceptibility test was performed with 17 ...

  4. Method for the detection of Salmonella enterica serovar Enteritidis

    Energy Technology Data Exchange (ETDEWEB)

    Agron, Peter G. (Castro Valley, CA); Andersen, Gary L. (Berkeley, CA); Walker, Richard L. (Davis, CA)

    2008-10-28

    Described herein is the identification of a novel Salmonella enterica serovar Enteritidis locus that serves as a marker for DNA-based identification of this bacterium. In addition, three primer pairs derived from this locus that may be used in a nucleotide detection method to detect the presence of the bacterium are also disclosed herein.

  5. Isolation and characterization of polyvalent bacteriophages infecting multi drug resistant Salmonella serovars isolated from broilers in Egypt.

    Science.gov (United States)

    Mahmoud, Mayada; Askora, Ahmed; Barakat, Ahmed Barakat; Rabie, Omar El-Farouk; Hassan, Sayed Emam

    2018-02-02

    In this study, we isolated and characterized three phages named as Salmacey1, Salmacey2 and Salmacey3, infecting multi drug resistant Salmonella serovars isolated from broilers in Egypt. The most prevalent Salmonella serovars were S. typhimurium, S. enteritidis, and S. kentucky. All these Salmonella serovars were found to be resistant to more than two of the ten antimicrobial agents tested. Only S. kentucky was found to be resistant to seven antimicrobial agents. Examination of these phage particles by transmission electron microscopy (TEM), demonstrated that two phages (Salmacey1, Salmacey2) were found to belong to family Siphoviridae, and Salmacey3 was assigned to the family Myoviridae. The results of host range assay revealed that these bacteriophages were polyvalent and thus capable of infecting four strains of Salmonella serovars and Citrobacter freundii. Moreover, the two phages (Salmacey1, Salmacey2) had a lytic effect on Enterobacter cloacae and Salmacey3 was able to infect E. coli. All phages could not infect S. para Typhi, Staphylococus aureus and Bacillus cereus. One-step growth curves of bacteriophages revealed that siphovirus phages (Salmacey1, Salmacey2) have burst size (80 and 90pfu per infected cell with latent period 35min and 40min respectively), and for the myovirus Salmacey3 had a burst size 110pfu per infected cell with latent period 60min. Molecular analyses indicated that these phages contained double-stranded DNA genomes. The lytic activity of the phages against the most multidrug resistant serovars S. kentucky as host strain was evaluated. The result showed that these bacteriophages were able to completely stop the growth of S. kentucky in vitro. These results suggest that phages have a high potential for phage application to control Salmonella serovars isolated from broilers in Egypt. Copyright © 2017. Published by Elsevier B.V.

  6. Ultraviolet (UV-C) inactivation of Enterococcus faecium, Salmonella choleraesuis and Salmonella typhimurium in porcine plasma

    OpenAIRE

    Bl?zquez, Elena; Rodr?guez, Carmen; R?denas, Jes?s; P?rez de Rozas, Ana; Segal?s, Joaquim; Pujols, Joan; Polo, Javier

    2017-01-01

    The objective of this study was to assess the effectiveness of an ultraviolet (UV-C, 254 nm) irradiation system on reducing the load of Salmonella typhimurium (S. typhimurium), Salmonella choleraesuis (S. choleraesuis) resistant to streptomycin and Enterococcus faecium (E. faecium) inoculated in sterile porcine plasma and then subjected to different UV-C irradiation doses (750, 1500, 3000, 6000 and 9000 J/L) using a pilot plant UV-C device working under turbulent flow. Results indicated that ...

  7. L-asparaginase II produced by Salmonella typhimurium inhibits T cell responses and mediates virulence.

    Science.gov (United States)

    Kullas, Amy L; McClelland, Michael; Yang, Hee-Jeong; Tam, Jason W; Torres, AnnMarie; Porwollik, Steffen; Mena, Patricio; McPhee, Joseph B; Bogomolnaya, Lydia; Andrews-Polymenis, Helene; van der Velden, Adrianus W M

    2012-12-13

    Salmonella enterica serovar Typhimurium avoids clearance by the host immune system by suppressing T cell responses; however, the mechanisms that mediate this immunosuppression remain unknown. We show that S. Typhimurium inhibit T cell responses by producing L-Asparaginase II, which catalyzes the hydrolysis of L-asparagine to aspartic acid and ammonia. L-Asparaginase II is necessary and sufficient to suppress T cell blastogenesis, cytokine production, and proliferation and to downmodulate expression of the T cell receptor. Furthermore, S. Typhimurium-induced inhibition of T cells in vitro is prevented upon addition of L-asparagine. S. Typhimurium lacking the L-Asparaginase II gene (STM3106) are unable to inhibit T cell responses and exhibit attenuated virulence in vivo. L-Asparaginases are used to treat acute lymphoblastic leukemia through mechanisms that likely involve amino acid starvation of leukemic cells, and these findings indicate that pathogens similarly use L-asparagine deprivation to limit T cell responses. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. Salmonella enterica Typhimurium fljBA operon stability: implications regarding the origin of Salmonella enterica I 4,[5],12:i:.

    Science.gov (United States)

    Tomiyama, M P O; Werle, C H; Milanez, G P; Nóbrega, D B; Pereira, J P; Calarga, A P; Flores, F; Brocchi, M

    2015-12-29

    Salmonella enterica subsp enterica serovar 4,5,12:i:- has been responsible for many recent Salmonella outbreaks worldwide. Several studies indicate that this serovar originated from S. enterica subsp enterica serovar Typhimurium, by the loss of the flagellar phase II gene (fljB) and adjacent sequences. However, at least two different clones of S. enterica 4,5,12:i:- exist that differs in the molecular events responsible for fljB deletion. The aim of this study was to test the stability of the fljBA operon responsible for the flagellar phase variation under different growth conditions in order to verify if its deletion is a frequent event that could explain the origin and dissemination of this serovar. In fact, coding sequences for transposons are present near this operon and in some strains, such as S. enterica Typhimurium LT2, the Fels-2 prophage gene is inserted near this operon. The presence of mobile DNA could confer instability to this region. In order to examine this, the cat (chloramphenicol acetyltransferase) gene was inserted adjacent to the fljBA operon so that deletions involving this genomic region could be identified. After growing S. enterica chloramphenicol-resistant strains under different conditions, more than 104 colonies were tested for the loss of chloramphenicol resistance. However, none of the colonies were sensitive to chloramphenicol. These data suggest that the origin of S. enterica serovar 4,5,12:i:- from Typhimurium by fljBA deletion is not a frequent event. The origin and dissemination of 4,5,12:i:- raise several questions about the role of flagellar phase variation in virulence.

  9. Genetic Relatedness of Salmonella Serovars Isolated from Catfish (Clarias gariepinus) and Tilapia (Tilapia mossambica) Obtained from Wet Markets and Ponds in Penang, Malaysia.

    Science.gov (United States)

    Budiati, Titik; Rusul, Gulam; Wan-Abdullah, Wan Nadiah; Chuah, Li-Oon; Ahmad, Rosma; Thong, Kwai Lin

    2016-04-01

    A total of 43 Salmonella enterica isolates belonging to different serovars (Salmonella Albany, Salmonella Agona, Salmonella Corvallis, Salmonella Stanley, Salmonella Typhimurium, Salmonella Mikawasima, and Salmonella Bovismorbificans) were isolated from catfish (Clarias gariepinus) and tilapia (Tilapia mossambica) obtained from nine wet markets and eight ponds in Penang, Malaysia. Thirteen, 19, and 11 isolates were isolated from 9 of 32 catfish, 14 of 32 tilapia, and 11 of 44 water samples, respectively. Fish reared in ponds were fed chicken offal, spoiled eggs, and commercial fish feed. The genetic relatedness of these Salmonella isolates was determined by random amplified polymorphic DNA PCR (RAPD-PCR) using primer OPC2, repetitive extragenic palindromic PCR (REP-PCR), and pulsed-field gel electrophoresis (PFGE). Composite analysis of the RAPD-PCR, REP-PCR, and PFGE results showed that the Salmonella serovars could be differentiated into six clusters and 15 singletons. RAPD-PCR differentiated the Salmonella isolates into 11 clusters and 10 singletons, while REP-PCR differentiated them into 4 clusters and 1 singleton. PFGE differentiated the Salmonella isolates into seven clusters and seven singletons. The close genetic relationship of Salmonella isolates from catfish or tilapia obtained from different ponds, irrespective of the type of feed given, may be caused by several factors, such as the quality of the water, density of fish, and size of ponds.

  10. Isolation of OmpA gene from Salmonella typhimurium and ...

    African Journals Online (AJOL)

    Isolation of OmpA gene from Salmonella typhimurium and transformation into alfalfa in order to develop an edible plant based vaccine. ... The recombinant OmpA was expressed in Escherichia coli TG1. The new construct was used to transform the Agrobacterium tumefaciens Strain LBA4404 before plant transformation.

  11. Amperometric biosensor for Salmonella typhimurium detection in milk

    Science.gov (United States)

    This paper reports an amperometric biosensor for rapid and sensitive Salmonella Typhimurium detection in milk. The biosensor was assembled from the self-assembled monolayers technique on a gold surface. In this device, polyclonal antibodies were oriented by protein A. The biosensor structure was cha...

  12. Large outbreaks of Salmonella Typhimurium infection in Denmark in 2008

    DEFF Research Database (Denmark)

    Ethelberg, S.; Wingstrand, Anne; Jensen, T.

    2008-01-01

    An outbreak of Salmonella Typhimurium phage type U292 has been ongoing in Denmark since 1 April, with 1,054 cases registered until 23 October 2008. Extensive investigations including hypothesis-generating interviews, matched case-control studies, cohort studies in embedded outbreaks, shopping list...

  13. Salmonella Typhimurium transcription profiles in space flight

    Data.gov (United States)

    National Aeronautics and Space Administration — Salmonella transcription profiles were obtained from samples flown on space shuttle mission STS-115 and compared to profiles from Salmonella grown under identical...

  14. Influence of Natural Organic Matter on Attachment Kinetics of Salmonella Typhimurium

    Science.gov (United States)

    Chowdhury, I.; Zorlu, O.; Hill, J. E.; Walker, S. L.

    2011-12-01

    Salmonella enterica serovar Typhimurium is one of the most common and virulent bacterial pathogens, usually found in food and water. This waterborne pathogen has been attributed to causing gastroenteritis and typhoid fever, leading to 16 million cases and over half a million deaths worldwide each year. Natural organic matter (NOM) is ubiquitous in environment and previous work has shown NOM to enhance the stability and transport of bacteria cells; hence NOM will certainly interact with Salmonella and affect its transport in environment. The objective of this study was to investigate the influence of NOM (Suwannee River humic acid standard II, SRHA) on the attachment kinetics of a model Salmonella (Salmonella enterica serovar Typhimurium SA5983) to glass. The transport study was conducted in a parallel plate flow chamber using fluorescent microscope to visualize the bacterial cells, which were tagged with green fluorescent protein (GFP). The solution pH was unadjusted, and the flow rate through parallel plate channel was 0.1 mL/min to simulate groundwater conditions. Parameters varied in this study were NOM presence, ion valence (K+, Ca2+) as well as cell growth phase (mid-exponential and late-exponential growth phases). These parameters were chosen because ion valence may alter the NOM conformation and capacity for bridging, as well growth phase impacts the cellular surface chemistry. Extensive characterization of the bacterial cells was conducted including measurements of electrophoretic mobility, hydrophobicity, acidity, surface charge density and extracellular polymeric substance content. Additionally, electrokintic characterization was conducted for the glass. Preliminary results demonstrated the sensitivity of cell attachment to ionic valence and cell growth phase. Also the addition of NOM reduced the attachment of the Salmonella cells significantly under all of these conditions. Without NOM, attachment efficiencies (α) in KCl were similar at both growth

  15. Development of a paper-based lateral flow immunoassay for simultaneous detection of lipopolysaccharides of Salmonella serovars.

    Science.gov (United States)

    Schenk, Florian; Weber, Patricia; Vogler, Julian; Hecht, Lars; Dietzel, Andreas; Gauglitz, Günter

    2018-01-01

    Lateral flow type detection is becoming interesting not only in regions with a poor medical infrastructure but also for practitioners in day-to-day clinical work or for veterinary control in case of possible epidemics. In this work, we describe the first steps of development of a multi-channel strip with potential internal calibration of multiparametric and colorimetric lateral flow assays for the simultaneous detection of the lipopolysaccharides (LPS) of Salmonella typhimurium (S. typhimurium) and Salmonella enteritidis (S. enteritidis). We structured four channels in the nitrocellulose membrane with a Yb:KGW solid-state femtosecond laser ("cold" ablation process) to form distinct tracks of porous material and used gold nanoparticles for the labeling of the antibodies. In addition, calibration curves of the spot intensities of both serovars are presented, and it was shown that no cross reactivity between the different capture antibodies and LPS occurred. Finally, we detected LPS of both Salmonella serovars simultaneously. The color changes (spot intensities of the reaction zones) were evaluated using the open-source image-processing program ImageJ. Graphical abstract Multiparametric testing, strip A was tested with LPS S. enteritidis ( c=0.01 g/L) and LPS S.typhimurium ( c=0.0001 g/L), strip B with LPS S. enteritidis ( c=0.001 g/L) and LPS S. typhimurium ( c=0.001g/L) and strip C with LPS S. enteritidis (c=0.0001 g/L) and LPS S. typhimurium ( c=0.01 g/L), and read-out.

  16. FAKTOR VIRULENSI Salmonella enterica SEROVAR TYPHI

    Directory of Open Access Journals (Sweden)

    Marvy Khrisna Pranamartha

    2015-09-01

    Full Text Available ABSTRAK Demam tifoid disebabkan oleh bakteri Salmonella typhi, dengan gejala umum berupa demam tinggi dan nyeri perut. Tifoid adalah penyakit infeksi yang disebabkan oleh bakteri Salmonella typhi, yang masuk ke dalam tubuh melalui mulut dan saluran cerna.1 Untuk bisa memahami patogenesis dari demam tifoid sampai ke tingkat selular dan molekular, ada 5 hal penting yang harus digaris bawahi, yaitu: 1.\tTipe 3 Sistem Sekresi (T3SS 2.\tVirulence Genes dari Salmonella yang mengkode 5 SIP (Salmonella Invasion Protein SIP A, B, C, D, dan E. 3.\tToll R2 dan toll R3 yang merupakan lapisan luar dari makrofag. 4.\tSistem imun lumen usus sampai ke organ dalam 5.\tFungsi endotelial sel dalam inflamasi. Infeksi Salmonella dapat berakibat fatal kepada bayi, balita, ibu hamil dan kandungannya serta orang lanjut usia. Hal ini disebabkan karena kekebalan tubuh mereka yang menurun. Virulensi salmonella tidak lepas dari peranan SPI, yang terletak di dalam kromosom dan plasmid bakteri. Dimana SPI 1 dan SPI 2 telah dikaji cukup mendalam karena keterkaitannya dengan T3SS, dan berperan sangat penting pada invasi awal serta siklus hidup intrasel dari bakteri Salmonella. Kontaminasi Salmonella dapat dicegah dengan mencuci tangan dan menjaga kebersihan makanan yang dikonsumsi. Selalu menjaga kebersihan lingkungan hidup kita agar terhindar dari kontaminasi dengan bakteri Salmonella typhi. Agar mewaspadai sejak dini pencegahan dan pengobatan penyakit typhus. Studi mendalam perlu dilakukan agar kita mampu lebih memahami proses kompleks antara patogen dan sel inang. Mengingat dari 15 SPI yang sudah diketahui, hanya SPI 1 dan SPI 2 yang sudah dikaji secara mendalam. Kata Kunci: Salmonella, Salmonella Invasion Protein, Typhi.

  17. Analysis of the ArcA regulon in anaerobically grown Salmonella enterica sv. Typhimurium

    Directory of Open Access Journals (Sweden)

    Porwollik Steffen

    2011-03-01

    Full Text Available Abstract Background Salmonella enterica serovar Typhimurium (S. Typhimurium is a Gram-negative pathogen that must successfully adapt to the broad fluctuations in the concentration of dissolved dioxygen encountered in the host. In Escherichia coli, ArcA (Aerobic Respiratory Control helps the cells to sense and respond to the presence of dioxygen. The global role of ArcA in E. coli is well characterized; however, little is known about its role in anaerobically grown S. Typhimurium. Results We compared the transcriptional profiles of the virulent wild-type (WT strain (ATCC 14028s and its isogenic arcA mutant grown under anaerobic conditions. We found that ArcA directly or indirectly regulates 392 genes (8.5% of the genome; of these, 138 genes are poorly characterized. Regulation by ArcA in S. Typhimurium is similar, but distinct from that in E. coli. Thus, genes/operons involved in core metabolic pathways (e.g., succinyl-CoA, fatty acid degradation, cytochrome oxidase complexes, flagellar biosynthesis, motility, and chemotaxis were regulated similarly in the two organisms. However, genes/operons present in both organisms, but regulated differently by ArcA in S. Typhimurium included those coding for ethanolamine utilization, lactate transport and metabolism, and succinate dehydrogenases. Salmonella-specific genes/operons regulated by ArcA included those required for propanediol utilization, flagellar genes (mcpAC, cheV, Gifsy-1 prophage genes, and three SPI-3 genes (mgtBC, slsA, STM3784. In agreement with our microarray data, the arcA mutant was non-motile, lacked flagella, and was as virulent in mice as the WT. Additionally, we identified a set of 120 genes whose regulation was shared with the anaerobic redox regulator, Fnr. Conclusion(s We have identified the ArcA regulon in anaerobically grown S. Typhimurium. Our results demonstrated that in S. Typhimurium, ArcA serves as a transcriptional regulator coordinating cellular metabolism, flagella

  18. Buffer capacity of food components influences the acid tolerance response in Salmonella Typhimurium during simulated gastric passage

    DEFF Research Database (Denmark)

    Henriksen, Sidsel; Buschhardt, Tasja; Hansen, Tina Beck

    2014-01-01

    phase Salmonella Typhimurium during simulated gastric acid passage. We used a computer-controlled fermentor to employ pH changes in synthetic gastric fluid, mimicking the dynamic pH during gastric passage. In order to minimise variation, Salmonella enterica serovar Typhimurium was contained in dialysis......Food composition, buffer capacity, and fat and protein content have been shown to effect the gastric acid survival of pathogens (Waterman & Small 1998). In this study, simple food-model substances with different buffer capacities were investigated for their ability to support survival of stationary...... major stationary phase ATR regulators, we found an approx. four-fold increase in expression of ompR and an approx. three-fold increase of rpoS in saline and buffered saline, respectively, after 15 min of gastric acid challenge. The relative expression of these genes, were significantly lower in Brain...

  19. MALDI-TOF mass spectrometry provides high accuracy in identification of Salmonella at species level but is limited to type or subtype Salmonella serovars.

    Science.gov (United States)

    Kang, Lin; Li, Nan; Li, Ping; Zhou, Yang; Gao, Shan; Gao, Hongwei; Xin, Wenwen; Wang, Jinglin

    2017-04-01

    Salmonella can cause global foodborne illnesses in humans and many animals. The current diagnostic gold standard used for detecting Salmonella infection is microbiological culture followed by serological confirmation tests. However, these methods are complicated and time-consuming. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) analysis offers some advantages in rapid identification, for example, simple and fast sample preparation, fast and automated measurement, and robust and reliable identification up to genus and species levels, possibly even to the strain level. In this study, we established a reference database for species identification using whole-cell MALDI-TOF MS; the database consisted of 12 obtained main spectra of the Salmonella culture collection strains belonged to seven serotypes. Eighty-two clinical isolates of Salmonella were identified using established database, and partial 16S rDNA gene sequencing and serological method were used as comparison. We found that MALDI-TOF mass spectrometry provided high accuracy in identification of Salmonella at species level but was limited to type or subtype Salmonella serovars. We also tried to find serovar-specific biomarkers and failed. Our study demonstrated that (a) MALDI-TOF MS was suitable for identification of Salmonella at species level with high accuracy and (b) that MALDI-TOF MS method presented in this study was not useful for serovar assignment of Salmonella currently, because of its low matching with serological method and (c) MALDI-TOF MS method presented in this study was not suitable to subtype S. typhimurium because of its low discriminatory ability.

  20. A new repertoire of informations about the quorum sensing system in Salmonella enterica serovar Enteritidis PT4.

    Science.gov (United States)

    Campos-Galvão, M E M; Leite, T D S; Ribon, A O B; Araújo, E F; Vanetti, M C D

    2015-04-27

    Salmonella spp are among the main causative agents of foodborne diseases. Some phenotypes associated with increased drug resistance and virulence are regulated by quorum sensing (QS). In the present study, the autoinducer (AI)-1- and -2-mediated QS mechanisms were characterized in Salmonella enterica serovar Enteritidis PT4 for the first time. Salmonella Enteritidis did not produce AI-1. Phylogenetic analysis of nucleotides encoding the SdiA protein, the response regulator of AI-1-mediated QS, and comparative alignment of its amino acids showed that the gene and protein are conserved within the same bacterial genus. Thus, bacteria of the same genus respond to the same AIs. However, this finding did not preclude the possibility that Salmonella Enteritidis might respond to AIs released from bacteria of a different genus, which might confer a competitive advantage to this pathogen. We found that the regulation of AI-2-mediated QS in Salmonella Enteritidis is similar to that in serovar Typhimurium. The elucidation of the AI-1- and AI-2-mediated QS mechanisms in Salmonella Enteritidis will contribute to the development of new control strategies for this pathogen by indicating new targets for antimicrobial drugs.

  1. Inhibitory Effects of Several Essential Oils towards Salmonella typhimurium, Salmonella paratyphi A and Salmonella paratyphi B

    Directory of Open Access Journals (Sweden)

    S.F. Mazhar

    2014-09-01

    Full Text Available Plant essential oils are natural products extracted from plants and because of their antimicrobial properties can be used as natural additives in foods. They are also useful for decontamination of food-borne pathogens and can be a safe additive in foods. The antimicrobial activities of essential oils belonging to Saturiea hortensis, Thymus vulgaris, Mentha polegium, Cuminum cyminum, Lavandula officinalis and Mentha viridis L. (spearmint were investigated at different concentrations (0.1, 0.3, 0.5, 1, 2, 5 and 10%v/v against Salmonella typhimurium, Salmonella paratyphi A and Salmonella paratyphi B by using the agar well diffusion method. Essential oils showed inhibitory effect on Salmonella spp. in the agar well diffusion assay. In addition, the capability of essential oils for decontamination of minced row beef, ground beef, minced raw chicken and minced raw fish inoculated with Salmonella spp. at 0.1 and 0.5%v/v were assessed. Reduction of the Salmonella spp. population was observed following the inoculation of the cultures with 0.1 and 0.5%v/v essential oils.

  2. Physiological and Immunological Regulations in Caenorhabditis elegans Infected with Salmonella enterica serovar Typhi.

    Science.gov (United States)

    Sivamaruthi, Bhagavathi Sundaram; Balamurugan, Krishnaswamy

    2014-03-01

    Studies pertaining to Salmonella enterica serovar Typhimurium infection by utilizing model systems failed to mimic the essential aspects of immunity induced by Salmonella enterica serovar Typhi, as the determinants of innate immunity are distinct. The present study investigated the physiological and innate immune responses of S. Typhi infected Caenorhabditis elegans and also explored the Ty21a mediated immune enhancement in C. elegans. Ty21a is a known live vaccine for typhoidal infection in human beings. Physiological responses of C. elegans infected with S. Typhi assessed by survival and behavioral assays revealed that S. Typhi caused host mortality by persistent infection. However, Ty21a exposure to C. elegans was not harmful. Ty21a pre-exposed C. elegans, exhibited significant resistance against S. Typhi infection. Elevated accumulation of S. Typhi inside the infected host was observed when compared to Ty21a exposures. Transcript analysis of candidate innate immune gene (clec-60, clec-87, lys-7, ilys-3, scl-2, cpr-2, F08G5.6, atf-7, age-1, bec-1 and daf-16) regulations in the host during S. Typhi infection have been assessed through qPCR analysis to understand the activation of immune signaling pathways during S. Typhi infections. Gene silencing approaches confirmed that clec-60 and clec-87 has a major role in the defense system of C. elegans during S. Typhi infection. In conclusion, the study revealed that preconditioning of host with Ty21a protects against subsequent S. Typhi infection.

  3. Salmonella serovar-specific interaction with jejunal epithelial cells.

    Science.gov (United States)

    Razzuoli, Elisabetta; Amadori, Massimo; Lazzara, Fabrizio; Bilato, Dania; Ferraris, Monica; Vito, Guendalina; Ferrari, Angelo

    2017-08-01

    Gut is often a receptacle for many different pathogens in feed and/or the environment, such as Salmonella spp. The current knowledge about pathogenicity of Salmonella is restricted to few serotypes, whereas other important ones like S. Coeln, S. Thompson, S. Veneziana, have not been investigated yet in human and animal models. Therefore, the aim of our work was to verify the ability of widespread environmental Salmonella strains to penetrate and modulate innate immunity in pig intestinal IPEC-J2 cells. Our results outline the different ability of Salmonella strains to modulate innate immunity; the expression of the IFN-β gene was increased by S. Typhimurium, S. Ablogame and S. Diarizonae 2, that also caused an inflammatory response in terms of Interleukin (IL)-1β and/or IL-8 gene espression. In particular, IL-8 gene expression and protein release were significantly modulated by 5 Salmonella strains out of 7. Interestingly, S. Typhimurium, S. Coeln and S. Thompson strains, characterized by a peculiar ability to penetrate into IPEC-J2 cells, up-regulated both IL-8 and TNF-α gene expression. Accordingly, blocking IL-8 was shown to decrease the penetration of S. Typhimurium. On the contrary, S. Diarizonae strain 1, showing lesser invasion of IPEC-J2 cells, down-regulated the p38-MAPK pathway, and it did not induce an inflammatory response. Our results confirm that IPEC-J2 cells are a useful model to evaluate host-gut pathogen interaction and indicate IL-8 and TNF-α as possible predictive markers of invasiveness of Salmonella strains in enterocytes. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Bacteriophages with potential to inactivate Salmonella Typhimurium: Use of single phage suspensions and phage cocktails.

    Science.gov (United States)

    Pereira, Carla; Moreirinha, Catarina; Lewicka, Magdalena; Almeida, Paulo; Clemente, Carla; Cunha, Ângela; Delgadillo, Ivonne; Romalde, Jésus L; Nunes, Maria L; Almeida, Adelaide

    2016-07-15

    The aim of this study was to compare the dynamics of three previously isolated bacteriophages (or phages) individually (phSE-1, phSE-2 and phSE-5) or combined in cocktails of two or three phages (phSE-1/phSE-2, phSE-1/phSE-5, phSE-2/phSE-5 and phSE-1/phSE-2/phSE-5) to control Salmonella enterica serovar Typhimurium (Salmonella Typhimurium) in order to evaluate their potential application during depuration. Phages were assigned to the family Siphoviridae and revealed identical restriction digest profiles, although they showed a different phage adsorption, host range, burst size, explosion time and survival in seawater. The three phages were effective against S. Typhimurium (reduction of ∼2.0 log CFU/mL after 4h treatment). The use of cocktails was not significantly more effective than the use of single phages. A big fraction of the remained bacteria are phage-resistant mutants (frequency of phage-resistant mutants 9.19×10(-5)-5.11×10(-4)) but phage- resistant bacterial mutants was lower for the cocktail phages than for the single phage suspensions and the phage phSE-1 presented the highest rate of resistance and phage phSE-5 the lowest one. The spectral changes of S. Typhimurium resistant and phage-sensitive cells were compared and revealed relevant differences for peaks associated to amide I (1620cm(-1)) and amide II (1515cm(-1)) from proteins and from carbohydrates and phosphates region (1080-1000cm(-1)). Despite the similar efficiency of individual phages, the development of lower resistance indicates that phage cocktails might be the most promising choice to be used during the bivalve depuration to control the transmission of salmonellosis. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Salmonella Typhimurium induces SPI-1 and SPI-2 regulated and strain dependent downregulation of MHC II expression on porcine alveolar macrophages

    Directory of Open Access Journals (Sweden)

    Van Parys Alexander

    2012-06-01

    Full Text Available Abstract Foodborne salmonellosis is one of the most important bacterial zoonotic diseases worldwide. Salmonella Typhimurium is the serovar most frequently isolated from persistently infected slaughter pigs in Europe. Circumvention of the host’s immune system by Salmonella might contribute to persistent infection of pigs. In the present study, we found that Salmonella Typhimurium strain 112910a specifically downregulated MHC II, but not MHC I, expression on porcine alveolar macrophages in a Salmonella pathogenicity island (SPI-1 and SPI-2 dependent way. Salmonella induced downregulation of MHC II expression and intracellular proliferation of Salmonella in macrophages were significantly impaired after opsonization with Salmonella specific antibodies prior to inoculation. Furthermore, the capacity to downregulate MHC II expression on macrophages differed significantly among Salmonella strains, independently of strain specific differences in invasion capacity, Salmonella induced cytotoxicity and altered macrophage activation status. The fact that strain specific differences in MHC II downregulation did not correlate with the extent of in vitro SPI-1 or SPI-2 gene expression indicates that other factors are involved in MHC II downregulation as well. Since Salmonella strain dependent interference with the pig’s immune response through downregulation of MHC II expression might indicate that certain Salmonella strains are more likely to escape serological detection, our findings are of major interest for Salmonella monitoring programs primarily based on serology.

  6. Rapid detection and specific differentiation of Salmonella enterica subsp. enterica Enteritidis, Typhimurium and its monophasic variant 4,[5],12:i:- by real-time multiplex PCR.

    Science.gov (United States)

    Maurischat, Sven; Baumann, Beatrice; Martin, Annett; Malorny, Burkhard

    2015-01-16

    Salmonella enterica is one of the most common zoonotic pathogens worldwide causing clinical diseases in human and animal hosts. Targeting a reduction of Salmonella prevalence in poultry, the EU set up a microbiological criterion that demands the absence of S. enterica subsp. enterica serovars Enteritidis and Typhimurium including its monophasic variant with seroformula 4,[5],12:i:- in 25 g of poultry neck skin samples and fresh meat according to regulation (EU) no 1086/2011. We developed and in-house validated a method that detects and differentiates these Salmonella serovars based on a 5-plex real-time PCR assay within 24 h after sampling. The inclusivity and exclusivity were between 98 and 99% analysing 456 bacterial strains. Validation according to ISO 16140:2003 against the traditional cultural reference method ISO 6579:2002 was performed using 60 artificially contaminated and 31 presumably naturally contaminated chicken neck skin samples resulting in a relative accuracy of 100%. The detection probability reached 100% between 3 and 5 CFU/25 g sample. We were also able to assign rough and non-motile strains to S. enterica subsp. enterica serovars Enteritidis and Typhimurium. In conclusion, we provide diagnostic laboratories a fast and accurate method to monitor these Salmonella serovars in chicken neck skin samples. Other matrices could be easily adapted. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Impact of relative humidity, inoculum carrier and size, and native microbiota on Salmonella ser. Typhimurium survival in baby lettuce.

    Science.gov (United States)

    López-Gálvez, Francisco; Gil, Maria Isabel; Allende, Ana

    2018-04-01

    The effects of relative humidity (RH), fluctuating climate conditions, inoculum size and carrier on the survival of Salmonella enterica serovar Typhimurium on baby lettuce in environmental test chambers were studied. Buffered peptone water (BPW), distilled water (DW), and irrigation water (IW) were compared as inoculum carriers. Additionally, survival of Salmonella in suspensions prepared using filtered and unfiltered IW was assessed. Salmonella Typhimurium survived better on baby lettuce plants at high RH independently of the inoculum size. When lettuce plants were grown under fluctuating environmental conditions, Salmonella survival was similar under both RH conditions. Regarding the inoculum carrier, the inoculated microorganism survived better on lettuce plants when BPW was used as carrier both at high and low RH. Survival rate of Salmonella in IW was affected by the presence of native microbiota. Native microbiota present in IW did not affect survival of Salmonella or the levels of mesophilic bacteria on the baby lettuce leaves. The information obtained in the present study contributes to the knowledge on the effect of environmental conditions on pathogenic bacteria survival on growing edible plants. These results are useful when selecting the methodology to carry out experimental studies on the survival of microbial pathogens under different pre-harvest conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Epidemiological investigation of Salmonella enterica serovar Kedougou in Thailand.

    Science.gov (United States)

    Pornruangwong, Srirat; Hendriksen, Rene S; Pulsrikarn, Chaiwat; Bangstrakulnonth, Aroon; Mikoleit, Matthew; Davies, Rob H; Aarestrup, Frank M; Garcia-Migura, Lourdes

    2011-02-01

    Salmonella enterica serovar Kedougou is among the top 10 serovars reported in northern Thailand. The objective of this study was to identify risk factors associated with Salmonella Kedougou infection in Thailand and to compare the molecular types and antimicrobial resistance with Salmonella Kedougou isolates of human origin from United States and of animal origin from the United Kingdom. Data from 13,976 Salmonella infections of which 253 were Salmonella Kedougou collected in Thailand between 2002 and 2008 were analyzed by logistic regression. Antimicrobial susceptibility testing and pulsed-field gel electrophoresis (PFGE) were performed on selected Salmonella Kedougou strains causing infections in Thailand (n = 66), and compared to isolates from the United States (n = 5) and the United Kingdom (n = 20). Logistic analysis revealed season (hot/dry; p = 0.023), region (northern Thailand; p Thailand were resistant to third-generation cephalosporins: two harbored bla(CTX-M-63) and one bla(CMY-2). PFGE revealed 45 unique clusters. Isolates obtained from humans in Thailand and the United States presented identical PFGE profiles suggesting a travel association, whereas the majority of the animal isolates from United Kingdom clustered separately. This study reveals Salmonella Kedougou as a major cause of human infections in northern Thailand especially during the hot period and suggests a global spread probably due to travel. The clonal types causing infections in humans differed from those observed in animals in United Kingdom, which suggests the absence of an epidemiological link and could suggest differences in virulence. The high frequency of antimicrobial resistance, including emergence of resistance to fluoroquinolones and third-generation cephalosporins, might pose problems for treatment of infections.

  9. Utilization of a novel autologous killed tri-vaccine (serogroups B [Typhimurium], C [Mbandaka] and E [Orion]) for Salmonella control in commercial poultry breeders.

    Science.gov (United States)

    Pavic, Anthony; Groves, Peter J; Cox, Julian M

    2010-02-01

    An autologous killed trivalent vaccine (3x10(8) colony-forming units [CFU]), based on three Salmonella serovars (Typhimurium - serogroup B, Mbandaka - serogroup C, and Orion - serogroup E) prevalent in the flocks of Australian poultry companies, was developed using Salenvac techniques. At 20 weeks, hens vaccinated at 12 and 17 weeks as well as non-vaccinated hens were challenged (250 microl of 10(7) CFU) with autologous and heterologous serovars belonging to serogroup B (Typhimurium and Agona), serogroup C (Mbandaka and Infantis) and serogroup E (Orion and Zanzibar). Overall, vaccination resulted in a significant difference in carriage of Salmonella between non-vaccinated and vaccinated commercial Cobb hens (P 0.05) could be determined for serogroup E. All vaccinated flocks produced a significant antibody response (P<0.001) to the S. Typhimurium vaccine strain, measured using a S. Typhimurium enzyme-linked immunosorbent assay (Guildhay), which peaked at 20 weeks of age, with 39% of the hens positive. Maternal antibodies were detected in 16% of the yolks from eggs produced by these flocks. There was a significant difference after challenge with Salmonella (P <0.05) among 1-day-old chicks from vaccinated versus non-vaccinated parents, when challenged using 10(4) CFU but not when challenged with 10(8) CFU. The success of this trial resulted in the incorporation of this vaccine into a Salmonella control system in commercial broiler breeder production.

  10. Cloning of Salmonella typhimurium DNA encoding mutagenic DNA repair

    International Nuclear Information System (INIS)

    Thomas, S.M.; Sedgwick, S.G.

    1989-01-01

    Mutagenic DNA repair in Escherichia coli is encoded by the umuDC operon. Salmonella typhimurium DNA which has homology with E. coli umuC and is able to complement E. coli umuC122::Tn5 and umuC36 mutations has been cloned. Complementation of umuD44 mutants and hybridization with E. coli umuD also occurred, but these activities were much weaker than with umuC. Restriction enzyme mapping indicated that the composition of the cloned fragment is different from the E. coli umuDC operon. Therefore, a umu-like function of S. typhimurium has been found; the phenotype of this function is weaker than that of its E. coli counterpart, which is consistent with the weak mutagenic response of S. typhimurium to UV compared with the response in E. coli

  11. IDENTIFICATION OF SALMONELLA SEROVARS ISOLATED DURING 2009-2016 IN TERNOPIL REGION, UKRAINE

    Directory of Open Access Journals (Sweden)

    Pokryshko O.V.

    2017-06-01

    Full Text Available Introduction. Salmonellosis is registered in all regions of the world. Relevance of salmonellosis is due its global distribution, increasing incidence, even in developed countries, frequent outbreaks. The most reports in different countries demonstrated that one of the common Salmonella serotypes isolated from food and environmental samples had been serovars Salmonella Enterica, Typhimurium. In Ukraine 7.3% of all acute diarrheal infections have been cases of salmonellosis. Although large Salmonella outbreaks usually attract media attention, 60–80% of all salmonellosis cases are not recognized as part of a known outbreak and are classified as sporadic cases, or are not diagnosed as such at all. Material & methods. The samples from cultured stool, bile samples, food and environment were inoculated in the Tryptic Soya Broth (TSB for the enrichment and detection of the bacteria. After 24 hours incubation, microorganisms were cultured on the MacConkey agar plates. Then biochemical and serological tests were performed to identify the serovars of the isolated Salmonella in Ternopil regional laboratory center, Ukraine.Results & discussion. Over the past 8 years the incidence of salmonellosis has varied between 8.41 3.3 cases per 100 thousand of population (35 - 90 cases. During this period, the lowest rate recorded in 2015 (3.3 cases per 100 thousand of population, the highest – in 2014. Analysis of morbidity has been shown that elevated levels of infection were due to outbreaks registrated in 2011 (the number of infected people was 23, in 2013 (53 infected people, in 2014 (67 infected people and in 2016 (16 infected people. In Ternopil region the dominant serovar of Salmonella spp. isolated from patients are S. enteritidis (56.8 - 93.5% of all cases of diseases and S. typhimurium (7.8 - 43.8% in last 8 years. Among the carriers circulate S.enteritidis, S. typhimurium – mainly (64,8% and 35.2% respectively. Not typical for Ternopil region

  12. Salmonella-Typhimurium phage types from human salmonellosis in denmark 1988 to 1993

    DEFF Research Database (Denmark)

    Wegener, Henrik Caspar; Baggesen, Dorte Lau; Gaarslev, K.

    1994-01-01

    and 194. It is concluded that phage typing, although here performed retrospectively, produces valuable epidemiological information regarding changes in the relative importance of different sources of infection in humans. It is suggested that phage typing be performed prospectively on both human and animal......A total of 989 isolates of Salmonella enterica ssp. enterica serovar Typhimurium from cases of human salmonellosis were investigated by phage typing, The isolates comprised all isolates recovered during the month of August in each of the years from 1988 to 1993. Phage typing assigned 82.......6% of the strains to 36 different definitive types, 11.9% of the strains belonged to types of unknown lysis pattern (RDNC), and 5.5% could not be typed by the phages used (NT). Three phage types (12, 66 and 110) made up approximately 50% of the isolates in each of the years investigated. During the period...

  13. Antimicrobial effect of Thai spices against Listeria monocytogenes and Salmonella typhimurium DT104.

    Science.gov (United States)

    Thongson, Chitsiri; Davidson, P Michael; Mahakarnchanakul, Warapa; Vibulsresth, Preeya

    2005-10-01

    The objective of this study was to determine the potential antimicrobial activity of extracts and essential oils of spices from Thailand against foodborne pathogenic bacteria. The antimicrobial efficacy of ginger (Zingiber officinale), fingerroot (Boesenbergia pandurata), and turmeric (Curcuma longa) was evaluated against five strains of Listeria monocytogenes and four strains of Salmonella enterica ssp. enterica serovar Typhimurium DT104. Antimicrobial activity was investigated in microbiological media by using an agar dilution assay and enumeration over time and a model food system, apple juice, by monitoring growth over time. In the agar dilution assay, water extracts of the three spices had no effect on L. monocytogenes. Similarly, 50% ethanol extracts of ginger or turmeric had no effect. In contrast, ethanolic fingerroot extracts at 5 to 10% (vol/ vol) inhibited most L. monocytogenes strains for 24 h in the agar dilution assay. Commercial essential oils (EO) of ginger or turmeric inhibited all L. monocytogenes at pathogens in food systems.

  14. Antibiotic and disinfectant resistance of Salmonella serovars ...

    African Journals Online (AJOL)

    The Salmonella isolates tested displayed multiple antibiotic resistance to a number of antibiotics used to treat both humans and animals. No resistance was seen to disinfectants used at the manufacturer\\'s recommended rate of dilution. The bacteria were resistant, though, at lower dilutions, highlighting the necessity of ...

  15. Porcine response to a multidrug-resistant Salmonella enterica serovar I 4,[5],12:i:- outbreak isolate

    Science.gov (United States)

    Salmonella enterica serovar I 4,[5],12:i:- has emerged as a common nontyphoidal Salmonella serovar to cause human foodborne illness. An interesting trait of serovar I 4,[5],12:i:- is it only expresses the fliC gene for bacterial motility (i.e. monophasic), while most Salmonella strains alternately e...

  16. Antimicrobial Resistance of Salmonella Serovars and Campylobacter spp. Isolated from an Opportunistic Gull Species, Yellow-legged Gull ( Larus michahellis ).

    Science.gov (United States)

    Migura-Garcia, Lourdes; Ramos, Raül; Cerdà-Cuéllar, Marta

    2017-01-01

    Wildlife is a natural reservoir of Salmonella and Campylobacter, the most important human foodborne pathogens worldwide. Free-living birds have the potential to transport, over large distances, such zoonotic bacteria that may harbor antimicrobial resistance traits. On the northeastern Iberian coast, we assessed the role of Yellow-legged Gulls ( Larus michahellis ) as reservoirs of antimicrobial resistance in Salmonella and thermophilic Campylobacter isolates recovered from gulls at three colonies, with varying degrees of dependence on refuse dumps as food sources. Of the 39 Salmonella isolates we tested, 17 were multiresistant (resistance to three antimicrobial families), with eight being Salmonella enterica serovar Typhimurium. Other clinically relevant Salmonella serovars showing multiresistance included Hadar, Bredeney, and Virchow. Relevant Campylobacter antimicrobial resistances were detected among three Campylobacter jejuni isolates, of which all three showed resistance to nalidixic acid, two were resistant to ciprofloxacin, one was resistant to enrofloxacin, and one was resistant to tetracycline. Our results highlight the importance of free-living gulls with opportunistic feeding habits in the dissemination of enteric pathogens resistant to multiple antimicrobial agents of public health concern.

  17. Structural characterization of the Salmonella typhimurium LT2 umu operon

    International Nuclear Information System (INIS)

    Thomas, S.M.; Crowne, H.M.; Pidsley, S.C.; Sedgwick, S.G.

    1990-01-01

    The umuDC operon of Escherichia coli encodes functions required for mutagenesis induced by radiation and a wide variety of chemicals. The closely related organism Salmonella typhimurium is markedly less mutable than E. coli, but a umu homolog has recently been identified and cloned from the LT2 subline. In this study the nucleotide sequence and structure of the S. typhimurium LT2 umu operon have been determined and its gene products have been identified so that the molecular basis of umu activity might be understood more fully. S. typhimurium LT2 umu consists of a smaller 417-base-pair (bp) umuD gene ending 2 bp upstream of a larger 1,266-bp umuC gene. The only apparent structural difference between the two operons is the lack of gene overlap. An SOS box identical to that found in E. coli is present in the promoter region upstream of umuD. The calculated molecular masses of the umuD and umuC gene products were 15.3 and 47.8 kilodaltons, respectively, which agree with figures determined by transpositional disruption and maxicell analysis. The S. typhimurium and E. coli umuD sequences were 68% homologous and encoded products with 71% amino acid identity; the umuC sequences were 71% homologous and encoded products with 83% amino acid identity. Furthermore, the potential UmuD cleavage site and associated catalytic sites could be identified. Thus the very different mutagenic responses of S. typhimurium LT2 and E. coli cannot be accounted for by gross differences in operon structure or gene products. Rather, the ability of the cloned S. typhimurium umuD gene to give stronger complementation of E. coli umuD77 mutants in the absence of a functional umuC gene suggests that Salmonella UmuC protein normally constrains UmuD protein activity

  18. Temperature-sensitive glutamate dehydrogenase mutants of Salmonella typhimurium.

    OpenAIRE

    Dendinger, S M; Brenchley, J E

    1980-01-01

    Mutants of Salmonella typhimurium defective in glutamate dehydrogenase activity were isolated in parent strains lacking glutamate synthase activity by localizcd mutagenesis or by a general mutagenesis combined with a cycloserine enrichment for glutamate auxotrophs. Two mutants with temperature-sensitive phenotypes had glutamate dehydrogenase activities that were more thermolabile than that of an isogenic control strain. Eight other mutants had less than 10% of the wild-type glutamate dehydrog...

  19. Effect of microwave irradiation on Salmonella typhimurium cells

    International Nuclear Information System (INIS)

    Danilenko, I.I.; Mirutenko, V.I.; Sopil', A.V.; Koval'chuk, V.K.; Lyakhovchuk, N.N.; Popovich, G.G.; Bondarenko, V.I.

    1985-01-01

    It is shown that effect of electromagnetic energy of SHF-frequency, 8 mm wavelength and integral output power of 1MWt during 5.20 and 30 min results in negligible variations of Salmonella typhimurium cell ultrastructure. Increase of lipid peroxide amount determined according to malonic dialdehyde is observed in treated cells; it constitutes 10.23x10 -9 nm of malonic dialdehyde as compared to 3.20x10 -9 nm in control (untreated) cells

  20. The phorbol 12-myristate-13-acetate differentiation protocol is critical to the interaction of THP-1 macrophages with Salmonella Typhimurium.

    Science.gov (United States)

    Starr, Tregei; Bauler, Timothy J; Malik-Kale, Preeti; Steele-Mortimer, Olivia

    2018-01-01

    THP-1 cells differentiated with phorbol 12-myristate 13-acetate (PMA) are widely used as a model for function and biology of human macrophages. However, the conditions used for differentiation, particularly the concentration of PMA and the duration of treatment, vary widely. Here we compare several differentiation conditions and compare the ability of THP-1 macrophages to interact with the facultative intracellular pathogen Salmonella enterica serovar Typhimurium. The results show that THP-1 macrophages differentiated in high concentrations of PMA rapidly died following infection whereas those differentiated in low concentrations of PMA survived and were able to control the intracellular bacteria similar to primary human macrophages.

  1. Isolation of Salmonella enterica subsp. enterica (O:4,5:i and Salmonella enterica subsp. Typhimurium from free-living domestic pigeons (Columba livia

    Directory of Open Access Journals (Sweden)

    R.C. Rocha-e-Silva

    2014-10-01

    Full Text Available The present study reports the isolation of Salmonella enterica in organs of free-living domestic pigeons. In the clinic examination, the presence of feces in the peri-cloacal and abdominal regions were observed, as well as symptoms such as cachexy, incoordination and opisthotonos. Before any therapeutic protocol was applied the bird died and a necropsy was then performed for the removal of spleen, liver, kidney and intestine for bacteriological examination and antibiotic sensitivity test. Salmonella enterica subsp.enterica (O:4,5:i- and Salmonella enterica subsp. enterica serovar Typhimurium were isolated from the liver and intestine and the sensitivity test demonstrated that these strains are sensitive to several antibiotics.

  2. Prevalence and antimicrobial resistance of Salmonella serovars isolated from poultry in Ghana

    DEFF Research Database (Denmark)

    Andoh, Linda A.; Dalsgaard, Anders; Obiri-Danso, K.

    2016-01-01

    Poultry are possible sources of non-typhoidal Salmonella serovars which may cause foodborne human disease. We conducted a cross-sectional study to determine the prevalence of Salmonella serovars in egg-laying hens and broilers at the farm level and their susceptibility to antimicrobials commonly ...

  3. Salmonella enterica serovar Kentucky flagella are required for broiler skin adhesion and Caco-2 cell invasion

    Science.gov (United States)

    Nontyphoidal Salmonella strains are the main source of pathogenic bacterial contamination in the poultry industry. Recently, Salmonella enterica serovar Kentucky has been recognized as the most prominent serovar on carcasses in poultry-processing plants. Previous studies showed that flagella are one...

  4. Repeated isolation of Salmonella enterica Goverdhan, a very rare serovar, from Danish poultry surveillance samples

    DEFF Research Database (Denmark)

    Pedersen, Karl; Sørensen, Gitte; Szabo, Istvan

    2014-01-01

    We report here the appearance of a very rare serovar of Salmonella, S. enterica subsp. enterica serovar Goverdhan, in routine Salmonella surveillance samples from Danish poultry production. S. Goverdhan was found on nine occasions: in one broiler breeder farm in October 2010, four broiler farms a...

  5. Salmonella serovars from humans and other sources in Thailand, 1993-2002

    DEFF Research Database (Denmark)

    Bangtrakulnonth, A.; Pornreongwong, S.; Pulsrikarn, C.

    2004-01-01

    We serotyped 44,087 Salmonella isolates from humans and 26,148 from other sources from 1993 through 2002. The most common serovar causing human salmonellosis in Thailand was Salmonella enterica Weltevreden. Serovars causing human infections in Thailand differ from those in other countries and seem...

  6. Resistance of Salmonella enteritidis variety typhimurium to gamma radiation

    International Nuclear Information System (INIS)

    Norberg, A.N.; Maliska, C.

    1988-01-01

    The use of ionizing radiations to kill microrganisms responsible for food deterioration, and toxinfections is an example of peaceful use of nuclear energy. Food toxinfections are, amongus, produced mostly by Salmonella enteritidis var. typhimurium. Due to the pauncity of information on the resistance to gamma radiation of Salmonella enteritidis var. typhimurium this paper has the aim to define the 60-Cobalt gamma radiation lethal dose to these bacteria, in experimentally contaminated milk by samples recovered from our geographycal area. One hundred nineteen samples of milk containing about 150.000 bacteria per ml were irradiated with doses ranging from 100 to 1.100 Gy. Two samples of surving bacteria were again irradiated by doses up to 2.500 Gy. The bacteria not previously irradiated were killed by doses of 1.100 Gy. It was concluded that the 60-Cobalt gamma radiation minimal lethal dose to Salmonella enteritidis var. typhimurium is 1.200 Gy. The surviving strains to smaller doses than 1.200 Gy when re-irradiated prompt the forthcoming of more radio-resistant germs. (author) [pt

  7. Prevalence of Salmonella Isolates from Chicken and Pig Slaughterhouses and Emergence of Ciprofloxacin and Cefotaxime Co-Resistant S. enterica Serovar Indiana in Henan, China

    Science.gov (United States)

    Bai, Li; Lan, Ruiting; Zhang, Xiuli; Cui, Shenghui; Xu, Jin; Guo, Yunchang; Li, Fengqin; Zhang, Ding

    2015-01-01

    The prevalence of Salmonella from chicken and pig slaughterhouses in Henan, China and antimicrobial susceptibility of these isolates to antibiotics was determined. From 283 chicken samples and 240 pig samples collected, 128 and 70 Salmonella isolates were recovered with an isolation rate of 45.2 and 29.2% respectively. The predominant serovars in chicken samples were S. enterica serovar Enteritidis, S. enterica serovar Hadar and S. enterica serovar Indiana, while those in pig samples were S. enterica serovar Typhimurium, S. enterica serovar Derby and S. enterica serovar Enteritidis. Resistance to ciprofloxacin was 8.6 and 10.0% for isolates from chickens and pigs respectively, whereas resistance to cefotaxime was 5.5 and 8.6%, respectively. Multidrug resistance (resistance to three or more classes of antimicrobial agent) was markedly higher in pig isolates (57.1%) than in chicken isolates (39.8%). Of particular concern was the detection of ciprofloxacin and cefotaxime co-resistant S. enterica serovar Indiana isolates, which pose risk to public health. All 16 S. enterica serovar Indiana isolates detected were resistant to ciprofloxacin, among which 11 were co-resistant to cefotaxime. The S. enterica serovar Indiana isolates accumulated point mutations in quinolone resistance determination regions of gyrA (S83F/D87G or S83F/D87N) and parC (T57S/S80R). Two plasmid mediated quinolone resistant determinants were found with aac (6')-Ib-cr and oqxAB in 16 and 12 S. enterica serovar Indiana isolates respectively. Cefotaxime-resistance of S. enterica serovar Indiana was associated with the acquisition of a blaCTX-M-65 gene. The potential risk of ciprofloxacin and cefotaxime co-resistant S. enterica serovar Indiana infection is a significant concern due to limited alternative treatment options. Reduction of Salmonella in chicken and pig slaughterhouses, in particular, ciprofloxacin and cefotaxime co-resistant S. enterica serovar Indiana will be an important measure to reduce

  8. Salmonella Typhimurium exploits inflammation to its own advantage in piglets.

    Science.gov (United States)

    Chirullo, Barbara; Pesciaroli, Michele; Drumo, Rosanna; Ruggeri, Jessica; Razzuoli, Elisabetta; Pistoia, Claudia; Petrucci, Paola; Martinelli, Nicola; Cucco, Lucilla; Moscati, Livia; Amadori, Massimo; Magistrali, Chiara F; Alborali, Giovanni L; Pasquali, Paolo

    2015-01-01

    Salmonella Typhimurium (S. Typhimurium) is responsible for foodborne zoonotic infections that, in humans, induce self-limiting gastroenteritis. The aim of this study was to evaluate whether the wild-type strain S. Typhimurium (STM14028) is able to exploit inflammation fostering an active infection. Due to the similarity between human and porcine diseases induced by S. Typhimurium, we used piglets as a model for salmonellosis and gastrointestinal research. This study showed that STM14028 is able to efficiently colonize in vitro porcine mono-macrophages and intestinal columnar epithelial (IPEC-J2) cells, and that the colonization significantly increases with LPS pre-treatment. This increase was then reversed by inhibiting the LPS stimulation through LPS antagonist, confirming an active role of LPS stimulation in STM14028-intracellular colonization. Moreover, LPS in vivo treatment increased cytokines blood level and body temperature at 4 h post infection, which is consistent with an acute inflammatory stimulus, capable to influence the colonization of STM14028 in different organs and tissues. The present study proves for the first time that in acute enteric salmonellosis, S. Typhimurium exploits inflammation for its benefit in piglets.

  9. Prevalence and epidemiology of Salmonella enterica serovar Gallinarum from poultry in some parts of Haryana, India

    Directory of Open Access Journals (Sweden)

    Devan Arora

    2015-11-01

    Full Text Available Aim: The present study was investigated to ascertain the epidemiological status of fowl typhoid (FT in broilers in some parts of Haryana during January 2011 to December 2013. Materials and Methods: To elucidate the epidemiological status of FT in broiler chickens for the 3 years (2011-2013 and to study the prevalence of various Salmonella serovars in poultry on the basis of culture characteristics, biochemical features, serotyping, and their antibiogram profile from some parts of Haryana (India. Results: A total of 309 outbreaks of FT were recorded in chickens during this period. Overall percent morbidity, mortality, case-fatality rate (CFR in broiler chicks due to FT during this period was 9.45, 6.77, and 71.55. The yearly observations were divided into quarters A (January-March, B (April-June, C (July-September and D (October-December. Maximum number of outbreaks - 106 (34.3% was recorded in quarter D followed by quarters B - 84 (27.3%, C - 64 (20.7%, and A - 55 (17.7%. Salmonella isolates (253 were recovered from disease outbreaks in broilers from different parts of Haryana. Typical morphology and colony characters on MacConkeys Lactose Agar and Brilliant Green agar, biochemical reactions, serotyping along with antibiogram profiles were able to group these isolates into 3 groups namely Salmonella Gallinarum (183, Salmonella Enteritidis (41 and Salmonella Typhimurium (29. The antibiogram pattern of 183 isolates of S. Gallinarum revealed that most of the isolates were sensitive to gentamicin (76% followed by amikacin (72%, kanamycin (71%. Conclusion: FT is prevalent in commercial broiler flocks in different parts of Haryana and is responsible for considerably high morbidity and mortality in affected flocks. Isolation of S. Gallinarum (9, 12:183 from FT cases suggest it to be the primary pathogen, however, isolation of S. Typhimurium and S. Enteritidis from these cases is a major concern. The detection of S. Enteritidis and S. Typhimurium from

  10. Changing trends in antimicrobial resistance of Salmonella enterica serovar typhi and salmonella enterica serovar paratyphi A in Chennai

    Directory of Open Access Journals (Sweden)

    Krishnan Padma

    2009-10-01

    Full Text Available Background and Objectives: Chloramphenicol was considered the anti-microbial gold standard for typhoid treatment but, following the increasing worldwide frequency of antibiotic resistance, ciprofloxacin has been the mainstay of therapy since 1980. Recent studies have shown a shifting of susceptibility to conventional drugs like chloramphenicol, ampicillin and cotrimoxazole. The primary objective of the study was to evaluate the in vitro activity of chloramphenicol and other first-line drugs in comparison with cephalosporins and quinolones. Materials and Methods: Fifty isolates of Salmonella obtained from blood culture were subjected to serotyping at the Central Research Institute, Kasauli. Phage typing and biotyping was performed at the National Phage Typing Centre, New Delhi. Antibiotic sensitivity testing was carried out for 10 drugs by the Kirby-Bauer disc diffusion method and minimum inhibitory concentration by broth microdilution for nalidixic acid, chloramphenicol, ciprofloxacin, ceftriaxone, cefixime and ofloxacin. Multi-drug-resistant (MDR strains were checked for plasmid. Results: In the present study, 70 and 30% of the isolates were Salmonella enterica serovar typhi and paratyphi A, respectively. They were highly sensitive to chloramphenicol (86%, ampicillin (84% and cotrimoxazole (88%. Highest sensitivity was seen for cephalosporins, followed by quinolones. Seventeen/21 (81% and 100% of the Salmonella enterica serovar typhi strains belonged to E1 phage type and biotype 1, respectively. Antibiogram showed 2% of the strains to be sensitive to all the drugs tested and 12% were MDR and showed the presence of plasmids. Conclusion: The study indicates reemergence of chloramphenicol-susceptible Salmonella enterica serovar typhi and paratyphi A isolates, a significant decline in MDR strains and high resistance to nalidixic acid. E1 phage type and biotype 1 are found to be most prevalent in Chennai, India.

  11. ANTIBACTERIAL ACTIVITY OF SILVER NANOPARTICLES: SENSITIVITY OF DIFFERENT SALMONELLA SEROVARS

    Directory of Open Access Journals (Sweden)

    Carmen eLosasso

    2014-05-01

    Full Text Available Salmonella spp. is one of the main causes of foodborne illnesses in humans worldwide. Consequently, great interest exists in reducing its impact on human health by lowering its prevalence in the food chain. Antimicrobial formulations in the form of nanoparticles exert bactericidal action due to their enhanced reactivity resultant from their high surface/volume ratio. Silver nanoparticles (AgNPs are known to be highly toxic to Gram-negative and Gram-positive microorganisms, including multidrug resistant bacteria. However, few data concerning their success against different Salmonella serovars are available. Aims of the present study were to test the antimicrobial effectiveness of AgNPs, against Salmonella Enteritidis, Hadar and Senftenberg, and to investigate the causes of their different survival abilities from a molecular point of view.Results showed an immediate, time-limited and serovar-dependent reduction of bacterial viability. In the case of S. Senftenberg, the reduction in numbers was observed for up to 4 h of incubation in the presence of 200 mg/L of AgNPs; on the contrary, S. Enteritidis and S. Hadar resulted to be inhibited for up to 48 h. RT-PCR experiments demonstrated the constitutive expression of the plasmidic silver resistance determinant (SilB by S. Senftenberg, thus suggesting the importance of a cautious use of AgNPs.

  12. Complete Genome and Methylome Sequences of Salmonella enterica subsp. enterica Serovar Panama (ATCC 7378) and Salmonella enterica subsp. enterica Serovar Sloterdijk (ATCC 15791)

    OpenAIRE

    Yao, Kuan; Muruvanda, Tim; Roberts, Richard J.; Payne, Justin; Allard, Marc W.; Hoffmann, Maria

    2016-01-01

    Salmonella enterica spp. are pathogenic bacteria commonly associated with food-borne outbreaks in human and animals. Salmonella enterica spp. are characterized into more than 2,500 different serotypes, which makes epidemiological surveillance and outbreak control more difficult. In this report, we announce the first complete genome and methylome sequences from two Salmonella type strains associated with food-borne outbreaks, Salmonella enterica subsp. enterica serovar Panama (ATCC 7378) and S...

  13. Persistence of salmonella typhimurium in nopal cladodes

    Science.gov (United States)

    Fresh produce associated outbreaks have increased in the last few years. E.coli O157:H7 and Salmonella have been causative agents of infection in these outbreaks. Fresh produce is consumed raw, and in the absence of terminal kill treatment, it is imperative to understand sources of contamination o...

  14. Persistence of salmonella Typhimurium in Nopal

    Science.gov (United States)

    Having documented information available on the capability of Salmonella to remain in the cladode tissue it is important to understand the role of nopal on the lifecycle of enteropathogenic bacteria in humans, as well as for management and control programs of theses pathogens in plants. Because of th...

  15. Oral vaccination with LcrV from Yersinia pestis KIM delivered by live attenuated Salmonella enterica serovar Typhimurium elicits a protective immune response against challenge with Yersinia pseudotuberculosis and Yersinia enterocolitica.

    Science.gov (United States)

    Branger, Christine G; Torres-Escobar, Ascención; Sun, Wei; Perry, Robert; Fetherston, Jacqueline; Roland, Kenneth L; Curtiss, Roy

    2009-08-27

    The use of live recombinant attenuated Salmonella vaccines (RASV) synthesizing Yersinia proteins is a promising approach for controlling infection by Yersinia species. In this study, we constructed attenuated Salmonella strains which synthesize a truncated form of LcrV, LcrV196 and evaluated the immune response and protective efficacy elicited by these strains in mice against two other major species of Yersinia: Yersinia pseudotuberculosis and Yersinia enterocolitica. Surprisingly, we found that the RASV strain alone was sufficient to afford nearly full protection against challenge with Y. pseudotuberculosis, indicating the likelihood that Salmonella produces immunogenic cross-protective antigens. In contrast, lcrV196 expression was required for protection against challenge with Y. enterocolitica strain 8081, but was not sufficient to achieve significant protection against challenge with Y. enterocolitica strain WA, which expressed a divergent form of lcrV. Nevertheless, we are encouraged by these findings to continue pursuing our long-term goal of developing a single vaccine to protect against all three human pathogenic species of Yersinia.

  16. QCM-based aptamer selection and detection of Salmonella typhimurium.

    Science.gov (United States)

    Wang, Lijun; Wang, Ronghui; Chen, Fang; Jiang, Tieshan; Wang, Hong; Slavik, Michael; Wei, Hua; Li, Yanbin

    2017-04-15

    In this study, quartz crystal microbalance (QCM) was used to select aptamers against Salmonella typhimurium. To increase the success rate of Systematic Evolution of Ligands Exponential Enrichment (SELEX), the affinity of DNA pool in each round was simultaneously tracked using QCM in order to avoid the loss of high-quality aptamers. When the frequency change reached a maximum value after several rounds of selection and counter-selection, the candidate pool was cloned and sequenced. Out of three aptamer candidates, aptamer B5 showed high specificity and binding affinity with dissociation constant (K d value) of 58.5nM, and was chosen for further studies. Subsequently, a QCM-based aptasensor was developed to detect S. typhimurium. This aptasensor was able to detect 10 3 CFU/mL of S. typhimurium with less than 1h. This study demonstrated QCM-based selection could be more effective selection of aptamers and QCM-based aptasensor could be more sensitive in detecting S. typhimurium. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. The architecture and ppGpp-dependent expression of the primary transcriptome of Salmonella Typhimurium during invasion gene expression

    Directory of Open Access Journals (Sweden)

    Ramachandran Vinoy K

    2012-01-01

    Full Text Available Abstract Background Invasion of intestinal epithelial cells by Salmonella enterica serovar Typhimurium (S. Typhimurium requires expression of the extracellular virulence gene expression programme (STEX, activation of which is dependent on the signalling molecule guanosine tetraphosphate (ppGpp. Recently, next-generation transcriptomics (RNA-seq has revealed the unexpected complexity of bacterial transcriptomes and in this report we use differential RNA sequencing (dRNA-seq to define the high-resolution transcriptomic architecture of wild-type S. Typhimurium and a ppGpp null strain under growth conditions which model STEX. In doing so we show that ppGpp plays a much wider role in regulating the S. Typhimurium STEX primary transcriptome than previously recognised. Results Here we report the precise mapping of transcriptional start sites (TSSs for 78% of the S. Typhimurium open reading frames (ORFs. The TSS mapping enabled a genome-wide promoter analysis resulting in the prediction of 169 alternative sigma factor binding sites, and the prediction of the structure of 625 operons. We also report the discovery of 55 new candidate small RNAs (sRNAs and 302 candidate antisense RNAs (asRNAs. We discovered 32 ppGpp-dependent alternative TSSs and determined the extent and level of ppGpp-dependent coding and non-coding transcription. We found that 34% and 20% of coding and non-coding RNA transcription respectively was ppGpp-dependent under these growth conditions, adding a further dimension to the role of this remarkable small regulatory molecule in enabling rapid adaptation to the infective environment. Conclusions The transcriptional architecture of S. Typhimurium and finer definition of the key role ppGpp plays in regulating Salmonella coding and non-coding transcription should promote the understanding of gene regulation in this important food borne pathogen and act as a resource for future research.

  18. Evaluation of WGS based approaches for investigating a food-borne outbreak caused by Salmonella enterica serovar Derby in Germany.

    Science.gov (United States)

    Simon, Sandra; Trost, Eva; Bender, Jennifer; Fuchs, Stephan; Malorny, Burkhard; Rabsch, Wolfgang; Prager, Rita; Tietze, Erhard; Flieger, Antje

    2018-05-01

    In Germany salmonellosis still represents the 2nd most common bacterial foodborne disease. The majority of infections are caused by Salmonella (S.) Typhimurium and S. Enteritidis followed by a variety of other broad host-range serovars. Salmonella Derby is one of the five top-ranked serovars isolated from humans and it represents one of the most prevalent serovars in pigs, thus bearing the potential risk for transmission to humans upon consumption of pig meat and products thereof. From November 2013 to January 2014 S. Derby caused a large outbreak that affected 145 primarily elderly people. Epidemiological investigations identified raw pork sausage as the probable source of infection, which was confirmed by microbiological evidence. During the outbreak isolates from patients, food specimen and asymptomatic carriers were investigated by conventional typing methods. However, the quantity and quality of available microbiological and epidemiological data made this outbreak highly suitable for retrospective investigation by Whole Genome Sequencing (WGS) and subsequent evaluation of different bioinformatics approaches for cluster definition. Overall the WGS-based methods confirmed the results of the conventional typing but were of significant higher discriminatory power. That was particularly beneficial for strains with incomplete epidemiological data. For our data set both, single nucleotide polymorphism (SNP)- and core genome multilocus sequence typing (cgMLST)-based methods proved to be appropriate tools for cluster definition. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Molecular Subtyping of Salmonella Typhimurium with Multiplex Oligonucleotide Ligation-PCR (MOL-PCR).

    Science.gov (United States)

    Wuyts, Véronique; Mattheus, Wesley; Roosens, Nancy H C; Marchal, Kathleen; Bertrand, Sophie; De Keersmaecker, Sigrid C J

    2017-01-01

    A multiplex oligonucleotide ligation-PCR (MOL-PCR) assay is a valuable high-throughput technique for the detection of bacteria and viruses, for characterization of pathogens and for diagnosis of genetic diseases, as it allows one to combine different types of molecular markers in a high-throughput multiplex assay. A MOL-PCR assay starts with a multiplex oligonucleotide ligation reaction for detection of the molecular marker, followed by a singleplex PCR for signal amplification and analysis of the MOL-PCR products on a Luminex platform. This last step occurs through a liquid bead suspension array in which the MOL-PCR products are hybridized to MagPlex-TAG beads.In this chapter, we describe the complete procedure for a MOL-PCR assay for subtyping of Salmonella enterica subsp. enterica serovar Typhimurium (S. Typhimurium) and its monophasic variant S. 1,4[5],12:i:- from DNA isolation through heat lysis up to data interpretation through a Gödel Prime Product. The subtyping assay consists of 50 discriminative molecular markers and two internal positive control markers divided over three MOL-PCR assays.

  20. First isolation of Salmonella enterica serovar Napoli from wild birds in Italy

    Directory of Open Access Journals (Sweden)

    Laura Mancini

    2014-03-01

    Full Text Available Salmonella enterica serovar Napoli (S. Napoli is an emerging serovar in Italy. It accounts for 2-4% of all serovars isolated from human infections. The zoonotic origin of this serovar is still unknown and this makes difficult to apply any control intervention. We report here the isolation of S. Napoli from a river nightingale (Cettia cetti, Temminck 1820 which represents the first description of this serovar from wild birds. This finding adds knowledge to the ecology of S. Napoli and addresses further studies aimed to assess the epidemiologic link between S. Napoli isolated from wild birds, food, environmental sources and human infections.

  1. Salmonella Typhimurium and Salmonella Sofia: Growth in and Persistence on Eggs under Production and Retail Conditions.

    Science.gov (United States)

    McAuley, Catherine M; Duffy, Lesley L; Subasinghe, Nela; Hogg, Geoff; Coventry, John; Fegan, Narelle

    2015-01-01

    Salmonellosis in Australia has been linked to eggs and egg products with specific serotypes associated with outbreaks. We compared attachment to and survival on egg shells and growth in eggs of two Salmonella serotypes, an egg outbreak associated Salmonella Typhimurium and a non-egg-associated Salmonella enterica ssp. II 1,4,12,27:b:[e,n,x] (S. Sofia). Experiments were conducted at combinations of 4, 15, 22, 37 and 42 °C. No significant differences occurred between the serotypes in maximum growth rates, which were significantly greater (P Sofia after 1 min at 4 °C and S. Typhimurium ATCC 14028 attaching at higher (P < 0.05) levels at 22 °C. Survival on egg shells was not significantly different across isolates. Salmonella serotypes behaved similarly regarding growth in egg contents, attachment to egg shells and survival on eggs, indicating that other factors more likely contributed to reasons for S. Typhimurium being implicated in multiple egg-associated outbreaks.

  2. Motility, biofilm formation, apoptotic effect and virulence gene expression of atypical Salmonella Typhimurium outside and inside Caco-2 cells.

    Science.gov (United States)

    Chakroun, Ibtissem; Mahdhi, Abdelkarim; Morcillo, Patricia; Cordero, Hector; Cuesta, Alberto; Bakhrouf, Amina; Mahdouani, Kacem; Esteban, Maria Ángeles

    2018-01-01

    Disease outbreaks related to waterborne pathogen contamination throughout the world as well as challenges that lie ahead for addressing persistent infection are of renewed interest. In this research, we studied the effects of prolonged exposure of Salmonella enterica serovar Typhimurium to the cues encountered in the extracellular environment particularly in seawater microcosm on bacterial virulence and subsequent infection in Caco-2 cells. Our data show a significant difference in biofilm formation, swimming and swarming motilities between normal and stressed cells of S. Typhimurium under differing NaCl conditions (P Caco-2 epithelial cells were determined during infection with normal and stressed Salmonella. Furthermore, we compared the expression of SPI-1 virulence genes (sopA, sopB, sopD, sopE2 and hilA) of normal and stressed S. Typhimurium in response to salt conditions encountered in the extracellular environment in LB broth and after epithelial cell exposure. The interest of the present study is due to the fact that to investigate the bacterial survival strategies during its movement from the natural surroundings to the host cell is fundamental to our understanding of the infection process during the host-pathogen interactions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Genome-Scale Co-Expression Network Comparison across Escherichia coli and Salmonella enterica Serovar Typhimurium Reveals Significant Conservation at the Regulon Level of Local Regulators Despite Their Dissimilar Lifestyles

    Science.gov (United States)

    Zarrineh, Peyman; Sánchez-Rodríguez, Aminael; Hosseinkhan, Nazanin; Narimani, Zahra; Marchal, Kathleen; Masoudi-Nejad, Ali

    2014-01-01

    Availability of genome-wide gene expression datasets provides the opportunity to study gene expression across different organisms under a plethora of experimental conditions. In our previous work, we developed an algorithm called COMODO (COnserved MODules across Organisms) that identifies conserved expression modules between two species. In the present study, we expanded COMODO to detect the co-expression conservation across three organisms by adapting the statistics behind it. We applied COMODO to study expression conservation/divergence between Escherichia coli, Salmonella enterica, and Bacillus subtilis. We observed that some parts of the regulatory interaction networks were conserved between E. coli and S. enterica especially in the regulon of local regulators. However, such conservation was not observed between the regulatory interaction networks of B. subtilis and the two other species. We found co-expression conservation on a number of genes involved in quorum sensing, but almost no conservation for genes involved in pathogenicity across E. coli and S. enterica which could partially explain their different lifestyles. We concluded that despite their different lifestyles, no significant rewiring have occurred at the level of local regulons involved for instance, and notable conservation can be detected in signaling pathways and stress sensing in the phylogenetically close species S. enterica and E. coli. Moreover, conservation of local regulons seems to depend on the evolutionary time of divergence across species disappearing at larger distances as shown by the comparison with B. subtilis. Global regulons follow a different trend and show major rewiring even at the limited evolutionary distance that separates E. coli and S. enterica. PMID:25101984

  4. Stress induced Salmonella Typhimurium recrudescence in pigs coincides with cortisol induced increased intracellular proliferation in macrophages

    Directory of Open Access Journals (Sweden)

    Verbrugghe Elin

    2011-12-01

    Full Text Available Abstract Salmonella Typhimurium infections in pigs often result in the development of carriers that intermittently excrete Salmonella in very low numbers. During periods of stress, for example transport to the slaughterhouse, recrudescence of Salmonella may occur, but the mechanism of this stress related recrudescence is poorly understood. Therefore, the aim of the present study was to determine the role of the stress hormone cortisol in Salmonella recrudescence by pigs. We showed that a 24 h feed withdrawal increases the intestinal Salmonella Typhimurium load in pigs, which is correlated with increased serum cortisol levels. A second in vivo trial demonstrated that stress related recrudescence of Salmonella Typhimurium in pigs can be induced by intramuscular injection of dexamethasone. Furthermore, we found that cortisol, but not epinephrine, norepinephrine and dopamine, promotes intracellular proliferation of Salmonella Typhimurium in primary porcine alveolar macrophages, but not in intestinal epithelial cells and a transformed cell line of porcine alveolar macrophages. A microarray based transcriptomic analysis revealed that cortisol did not directly affect the growth or the gene expression or Salmonella Typhimurium in a rich medium, which implies that the enhanced intracellular proliferation of the bacterium is probably caused by an indirect effect through the cell. These results highlight the role of cortisol in the recrudescence of Salmonella Typhimurium by pigs and they provide new evidence for the role of microbial endocrinology in host-pathogen interactions.

  5. Sewage sludge amendment and inoculation with plant-parasitic nematodes do not facilitate the internalization of Salmonella Typhimurium LT2 in lettuce plants.

    Science.gov (United States)

    Fornefeld, Eva; Baklawa, Mohamed; Hallmann, Johannes; Schikora, Adam; Smalla, Kornelia

    2018-05-01

    Contamination of fruits and vegetables with Salmonella is a serious threat to human health. In order to prevent possible contaminations of fresh produce it is necessary to identify the contributing ecological factors. In this study we investigated whether the addition of sewage sludge or the presence of plant-parasitic nematodes foster the internalization of Salmonella enterica serovar Typhimurium LT2 into lettuce plants, posing a potential threat for human health. Greenhouse experiments were conducted to investigate whether the amendment of sewage sludge to soil or the presence of plant-parasitic nematodes Meloidogyne hapla or Pratylenchus crenatus promote the internalization of S. Typhimurium LT2 from soil into the edible part of lettuce plants. Unexpectedly, numbers of cultivable S. Typhimurium LT2 decreased faster in soil with sewage sludge than in control soil but not in root samples. Denaturing gradient gel electrophoresis analysis revealed shifts of the soil bacterial communities in response to sewage sludge amendment and time. Infection and proliferation of nematodes inside plant roots were observed but did not influence the number of cultivable S. Typhimurium LT2 in the root samples or in soil. S. Typhimurium LT2 was not detected in the leaf samples 21 and 49 days after inoculation. The results indicate that addition of sewage sludge, M. hapla or P. crenatus to soil inoculated with S. Typhimurium LT2 did not result in an improved survival in soil or internalization of lettuce plants. Copyright © 2017. Published by Elsevier Ltd.

  6. Salmonella serovars along two beef chains in Ethiopia.

    Science.gov (United States)

    Hiko, Adem; Irsigler, Herlinde; Ameni, Gobena; Zessin, Karl-Hans; Fries, Reinhard

    2016-11-24

    Salmonella has been reported from foods and the food production environment, with outbreaks occurring in the human population worldwide. A survey on Salmonella in two beef production lines (a beef abattoir line and a processing line) in Addis Ababa, Ethiopia was conducted, with a total of 668 various samples randomly collected from animal-related materials, the environment, and a beef product (mortadella). Overall, a 12.9% prevalence (26.3% from the abattoir line, 5.3% from the processing plant line) was observed. The prevalence in the abattoir line environment (36.6%) was higher than that in animal-related samples (14.7%); the reverse was true for the processing plant line. Out of 86 isolates, 10 serovars were identified, and 8 remained unidentified. The predominant serotypes were S. Saintpaul (32.5%), S. Muenchen (19.8%), and S. Larochelle (12.8%). S. Kastrup and S. London were isolated for the first time in Ethiopia. Data indicate open ports of entry for Salmonella, with possible transfer along the line. Further investigations from farm to fork are recommended in order to identify these positions of entry.

  7. Comparison of methods for quantitating Salmonella enterica Typhimurium and Heidelberg strain attachment to reusable plastic shipping container coupons and preliminary assessment of sanitizer efficacy.

    Science.gov (United States)

    Shi, Zhaohao; Baker, Christopher A; Lee, Sang In; Park, Si Hong; Kim, Sun Ae; Ricke, Steven C

    2016-09-01

    Salmonella serovars, one of the leading contributors to foodborne illness and are especially problematic for foods that are not cooked before consumption, such as fresh produce. The shipping containers that are used to transport and store fresh produce may play a role in cross contamination and subsequent illnesses. However, methods for quantitatively attached cells are somewhat variable. The overall goal of this study was to compare conventional plating with molecular methods for quantitating attached representative strains for Salmonella Typhimurium and Heidelberg on reusable plastic containers (RPC) coupons, respectively. We attached Salmonella enterica serovar Typhimurium ATCC 14028 and serovar Heidelberg SL486 (parent and an antibiotic resistant marker strain) to plastic coupons (2.54 cm(2)) derived from previously used shipping containers by growing for 72 h in tryptic soy broth. The impact of the concentration of sanitizer on log reductions between unsanitized and sanitized coupons was evaluated by exposing attached S. Typhimurium cells to 200 ppm and 200,000 ppm sodium hypochlorite (NaClO). Differences in sanitizer effectiveness between serovars were also evaluated with attached S. Typhimurium compared to attached S. Heidelberg populations after being exposed to 200 ppm peracetic acid (PAA). Treatment with NaClO caused an average of 2.73 ± 0.23 log CFU of S. Typhimurium per coupon removed with treatment at 200 ppm while 3.36 ± 0.54 log CFU were removed at 200,000 ppm. Treatment with PAA caused an average of 2.62 ± 0.15 log CFU removed for S. Typhimurium and 1.41 ± 0.17 log CFU for S. Heidelberg (parent) and 1.61 ± 0.08 log CFU (marker). Lastly, scanning electron microscopy (SEM) was used to visualize cell attachment and coupon surface topography. SEM images showed that remaining attached cell populations were visible even after sanitizer application. Conventional plating and qPCR yielded similar levels of enumerated bacterial populations

  8. A community effort towards a knowledge-base and mathematical model of the human pathogen Salmonella Typhimurium LT2

    Energy Technology Data Exchange (ETDEWEB)

    Thiele, Ines; Hyduke, Daniel R.; Steeb, Benjamin; Fankam, Guy; Allen, Douglas K.; Bazzani, Susanna; Charusanti, Pep; Chen, Feng-Chi; Fleming, Ronan MT; Hsiung, Chao A.; De Keersmaecker, Sigrid CJ; Liao, Yu-Chieh; Marchal, Kathleen; Mo, Monica L.; Özdemir, Emre; Raghunathan, Anu; Reed, Jennifer L.; Shin, Sook-Il; Sigurbjörnsdóttir, Sara; Steinmann, Jonas; Sudarsan, Suresh; Swainston, Neil; Thijs, Inge M.; Zengler, Karsten; Palsson, Bernhard O.; Adkins, Joshua N.; Bumann, Dirk

    2011-01-01

    Metabolic reconstructions (MRs) are common denominators in systems biology and represent biochemical, genetic, and genomic (BiGG) knowledge-bases for target organisms by capturing currently available information in a consistent, structured manner. Salmonella enterica subspecies I serovar Typhimurium is a human pathogen, causes various diseases and its increasing antibiotic resistance poses a public health problem. Here, we describe a community-driven effort, in which more than 20 experts in S. Typhimurium biology and systems biology collaborated to reconcile and expand the S. Typhimurium BiGG knowledge-base. The consensus MR was obtained starting from two independently developed MRs for S. Typhimurium. Key results of this reconstruction jamboree include i) development and implementation of a community-based workflow for MR annotation and reconciliation; ii) incorporation of thermodynamic information; and iii) use of the consensus MR to identify potential multi-target drug therapy approaches. Finally, taken together, with the growing number of parallel MRs a structured, community-driven approach will be necessary to maximize quality while increasing adoption of MRs in experimental design and interpretation.

  9. Multiple‐locus variable‐number tandem repeat analysis of Salmonella enterica subsp. enterica serovar Dublin

    DEFF Research Database (Denmark)

    Kjeldsen, M. K.; Torpdahl, M.; Campos, J.

    2014-01-01

    Salmonella serovar Dublin causes disease in cattle and leads to considerable production losses. In humans, severe invasive disease and high mortality rates are reported. The presently available typing methods provide insufficient discrimination within Salm. Dublin for epidemiological investigatio...

  10. Physiological and molecular response of Lactuca sativa to colonization by Salmonella enterica serovar Dublin

    NARCIS (Netherlands)

    Klerks, M.M.; Gent-Pelzer, van M.P.E.; Franz, E.; Zijlstra, C.; Bruggen, van A.H.C.

    2007-01-01

    This paper describes the physiological and molecular interactions between the human-pathogenic organism Salmonella enterica serovar Dublin and the commercially available mini Roman lettuce cv. Tamburo. The association of S. enterica serovar Dublin with lettuce plants was first determined, which

  11. Complete genome sequence of a multiple drug resistant Salmonella enterica serovar Typhi CT18

    DEFF Research Database (Denmark)

    Parkhill, J.; Dougan, G.; James, K.D.

    2001-01-01

    Salmonella enterica serovar Typhi (S. typhi) is the aetiological agent of typhoid fever, a serious invasive bacterial disease of humans with an annual global burden of approximately 16 million cases, leading to 600,000 fatalities(1). Many S. enterica serovars actively invade the mucosal surface o...... plasmid of Yersinia pestis....

  12. Resistant mechanism study of benzalkonium chloride selected Salmonella Typhimurium mutants.

    Science.gov (United States)

    Guo, Wei; Cui, Shenghui; Xu, Xiao; Wang, Haoyan

    2014-02-01

    Benzalkonium chloride is one of the invaluable biocides that is extensively used in healthcare settings as well as in the food processing industry. After exposing wild-type Salmonella Typhimurium 14028s or its AcrAB inactivation mutant to gradually increasing levels of benzalkonium chloride, resistance mutants S-41, S-150, S-AB-23, S-AB-38, and S-AB-73 were selected and these mutants also showed a 2-64-fold stable minimum inhibitory concentration (MIC) increase to chloramphenicol, ciprofloxacin, nalidixic acid, and tetracycline. In S-41 and S-150, the expression of acrB was increased 2.7- and 7.6-fold, and ΔtolC or ΔacrAB mutants of S-41 and S-150 showed the same MICs to all tested antimicrobials as the equivalent Salmonella Typhimurium 14028s mutants. However, in S-AB-23, S-AB-38, and S-AB-73, the expression of acrF was increased 96-, 230-, and 267-fold, respectively, and ΔtolC or ΔacrEF mutants of S-AB-23, S-AB-38, and S-AB-73 showed the similar MICs to all tested antimicrobials as the ΔtolC mutant of Salmonella Typhimurium 14028s. Our data showed that constitutively over-expressed AcrAB working through TolC was the main resistance mechanism in ST14028s benzalkonium chloride resistance mutants. However, after AcrAB had been inactivated, benzalkonium chloride-resistant mutants could still be selected and constitutively over-expressed, AcrEF became the dominant efflux pump working through TolC and being responsible for the increasing antimicrobial resistance. These data indicated that different mechanisms existed for acrB and acrF constitutive over-expression. Since exposure to benzalkonium chloride may lead to Salmonella mutants with a decreased susceptibility to quinolones, which is currently one of the drugs of choice for the treatment of life-threatening salmonelosis, research into the pathogenesis and epidemiology of the benzalkonium chloride resistance mutants will be of increasing importance.

  13. Typing of Salmonella enterica serovar Saintpaul: an outbreak investigation

    DEFF Research Database (Denmark)

    Baggesen, Dorte Lau; Wegener, Henrik Caspar; Christensen, J.P.

    1996-01-01

    During the summer of 1993 an outbreak of human salmonellosis caused by Salmonella serovar Saintpaul occurred in Denmark. A total of 35 isolates originating from pigs, turkeys and imported foodstuffs, and 10 human isolates were compared following their characterization by agglutination of the O:5...... factor, antibiogram typing, plasmid profiling, ribotyping and pulsed field gel electrophoresis, in order to identify the most probable source of infection. After typing, the source of the investigated outbreak remains obscure because so far no isolates with traits of the outbreak strain have been...... recovered from production animals. Presence of the O:5 factor and absence of plasmids in human and porcine isolates pointed to pork as the source of infection, whereas human isolates and all Danish isolates from turkeys had the same ribotype, indicating that turkey was the infection source. A possible...

  14. Modification of Salmonella Typhimurium motility by the probiotic yeast strain Saccharomyces boulardii.

    Directory of Open Access Journals (Sweden)

    Rodolphe Pontier-Bres

    Full Text Available BACKGROUND: Motility is an important component of Salmonella enterica serovar Typhimurium (ST pathogenesis allowing the bacteria to move into appropriate niches, across the mucus layer and invade the intestinal epithelium. In vitro, flagellum-associated motility is closely related to the invasive properties of ST. The probiotic yeast Saccharomyces boulardii BIOCODEX (S.b-B is widely prescribed for the prophylaxis and treatment of diarrheal diseases caused by bacteria or antibiotics. In case of Salmonella infection, S.b-B has been shown to decrease ST invasion of T84 colon cell line. The present study was designed to investigate the impact of S.b-B on ST motility. METHODOLOGY/PRINCIPAL FINDINGS: Experiments were performed on human colonic T84 cells infected by the Salmonella strain 1344 alone or in the presence of S.b-B. The motility of Salmonella was recorded by time-lapse video microscopy. Next, a manual tracking was performed to analyze bacteria dynamics (MTrackJ plugin, NIH image J software. This revealed that the speed of bacterial movement was modified in the presence of S.b-B. The median curvilinear velocity (CLV of Salmonella incubated alone with T84 decreased from 43.3 µm/sec to 31.2 µm/sec in the presence of S.b-B. Measurement of track linearity (TL showed similar trends: S.b-B decreased by 15% the number of bacteria with linear tract (LT and increased by 22% the number of bacteria with rotator tract (RT. Correlation between ST motility and invasion was further established by studying a non-motile flagella-deficient ST strain. Indeed this strain that moved with a CLV of 0.5 µm/sec, presented a majority of RT and a significant decrease in invasion properties. Importantly, we show that S.b-B modified the motility of the pathogenic strain SL1344 and significantly decreased invasion of T84 cells by this strain. CONCLUSIONS: This study reveals that S.b-B modifies Salmonella's motility and trajectory which may account for the modification

  15. Comparative study of class 1 integron, ampicillin, chloramphenicol, streptomycin, sulfamethoxazole, tetracycline (ACSSuT) and fluoroquinolone resistance in various Salmonella serovars from humans and animals.

    Science.gov (United States)

    Hsu, Yuan-Man; Tang, Chiu-Ying; Lin, Hsuan; Chen, Yu-Hsin; Chen, Yu-Lin; Su, Yu-Heng; Chen, Daniel S; Lin, Jiunn-Horng; Chang, Chao-Chin

    2013-01-01

    A total of 499 Salmonella isolates including 9 serovars from humans and various animal hosts were collected to compare prevalence of integron and antimicrobial resistance. The integron and gene cassette were detected by PCR, and then the gene cassette type was further determined by sequencing and restriction fragment length polymorphism (RFLP) analysis. The antimicrobial susceptibility test was conducted by disk diffusion method. The positivity percentage of class 1 integron and the diversity of gene cassettes carried by integron were quite different in various Salmonella serovars, especially comparing those from animals to humans. After sequencing and RFLP analysis, it was identified eight gene cassette types. The gene cassette type D carrying ampicillin/streptomycin resistance genes was the most common one (42.2%) in the integron-positive isolates. More diversity of gene cassette types was identified in humans comparing to that in animals. Several gene cassette types were identified for the first time in some Salmonella serovars. In this study, 31.5% (157/499) of the isolates were multi-resistant to ampicillin, chloramphenicol, streptomycin, sulfamethoxazole, and tetracycline (ACSSuT). S. Choleraesuis isolates with the cassette type A1, but S. Typhimurium isolates with the cassette type E1, were frequently associated with ACSSuT-resistant (80.6% and 72.7%, respectively). There was a significant association between the presence of class 1 integron and quinolone resistance in S. Choleraesuis isolates, but not in S. Typhimurium. Our findings imply that transmission efficiency of various gene cassettes through the integron could be different in various Salmonella serovars. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Signal transduction pathway mediated by the novel regulator LoiA for low oxygen tension induced Salmonella Typhimurium invasion.

    Science.gov (United States)

    Jiang, Lingyan; Feng, Lu; Yang, Bin; Zhang, Wenwen; Wang, Peisheng; Jiang, Xiaohan; Wang, Lei

    2017-06-01

    Salmonella enterica serovar Typhimurium (S. Typhimurium) is a major intestinal pathogen of both humans and animals. Salmonella pathogenicity island 1 (SPI-1)-encoded virulence genes are required for S. Typhimurium invasion. While oxygen (O2) limitation is an important signal for SPI-1 induction under host conditions, how the signal is received and integrated to the central SPI-1 regulatory system in S. Typhimurium is not clear. Here, we report a signal transduction pathway that activates SPI-1 expression in response to low O2. A novel regulator encoded within SPI-14 (STM14_1008), named LoiA (low oxygen induced factor A), directly binds to the promoter and activates transcription of hilD, leading to the activation of hilA (the master activator of SPI-1). Deletion of loiA significantly decreased the transcription of hilA, hilD and other representative SPI-1 genes (sipB, spaO, invH, prgH and invF) under low O2 conditions. The response of LoiA to the low O2 signal is mediated by the ArcB/ArcA two-component system. Deletion of either arcA or arcB significantly decreased transcription of loiA under low O2 conditions. We also confirmed that SPI-14 contributes to S. Typhimurium virulence by affecting invasion, and that loiA is the virulence determinant of SPI-14. Mice infection assays showed that S. Typhimurium virulence was severely attenuated by deletion of either the entire SPI-14 region or the single loiA gene after oral infection, while the virulence was not affected by either deletion after intraperitoneal infection. The signal transduction pathway described represents an important mechanism for S. Typhimurium to sense and respond to low O2 conditions of the host intestinal tract for invasion. SPI-14-encoded loiA is an essential element of this pathway that integrates the low O2 signal into the SPI-1 regulatory system. Acquisition of SPI-14 is therefore crucial for the evolution of S. Typhimurium as an intestinal pathogen.

  17. Signal transduction pathway mediated by the novel regulator LoiA for low oxygen tension induced Salmonella Typhimurium invasion.

    Directory of Open Access Journals (Sweden)

    Lingyan Jiang

    2017-06-01

    Full Text Available Salmonella enterica serovar Typhimurium (S. Typhimurium is a major intestinal pathogen of both humans and animals. Salmonella pathogenicity island 1 (SPI-1-encoded virulence genes are required for S. Typhimurium invasion. While oxygen (O2 limitation is an important signal for SPI-1 induction under host conditions, how the signal is received and integrated to the central SPI-1 regulatory system in S. Typhimurium is not clear. Here, we report a signal transduction pathway that activates SPI-1 expression in response to low O2. A novel regulator encoded within SPI-14 (STM14_1008, named LoiA (low oxygen induced factor A, directly binds to the promoter and activates transcription of hilD, leading to the activation of hilA (the master activator of SPI-1. Deletion of loiA significantly decreased the transcription of hilA, hilD and other representative SPI-1 genes (sipB, spaO, invH, prgH and invF under low O2 conditions. The response of LoiA to the low O2 signal is mediated by the ArcB/ArcA two-component system. Deletion of either arcA or arcB significantly decreased transcription of loiA under low O2 conditions. We also confirmed that SPI-14 contributes to S. Typhimurium virulence by affecting invasion, and that loiA is the virulence determinant of SPI-14. Mice infection assays showed that S. Typhimurium virulence was severely attenuated by deletion of either the entire SPI-14 region or the single loiA gene after oral infection, while the virulence was not affected by either deletion after intraperitoneal infection. The signal transduction pathway described represents an important mechanism for S. Typhimurium to sense and respond to low O2 conditions of the host intestinal tract for invasion. SPI-14-encoded loiA is an essential element of this pathway that integrates the low O2 signal into the SPI-1 regulatory system. Acquisition of SPI-14 is therefore crucial for the evolution of S. Typhimurium as an intestinal pathogen.

  18. Diversity and antimicrobial susceptibility of Salmonella enterica serovars isolated from pig farms in Ibadan, Nigeria

    DEFF Research Database (Denmark)

    Fashae, Kayode; Hendriksen, Rene S.

    2014-01-01

    Kingston (n = 13; 5.7 %). The most widely distributed serovars among the farms were Salmonella Give (six farms) and Salmonella Elisaberthville (six farms). Resistance to chloramphenicol, sulfonamides, nalidixic acid, streptomycin, and tetracycline ranged from 11.6 % (n = 26) to 22.8 % (n = 51). Resistance...... of plasmid-mediated quinolone resistance (PMQR) genes in pigs in Ibadan, Nigeria. Pooled fresh pen floor fecal samples of pigs collected from 31 pig farms were cultured; the Salmonella isolates were serotyped and their antimicrobial susceptibility was determined. PMQR genes were screened by polymerase chain...... ciprofloxacin and gentamicin was low (n = 2; 0.9 %). Multiply resistant isolates included Salmonella Kentucky, the most resistant serovar. qnrB19 was found in two isolates of Salmonella Corvallis and one isolate of Salmonella Larochelle, respectively, while qnrS1 was found in two isolates of Salmonella Derby...

  19. Detection of Quinolone Resistance in Salmonella typhimurium Pig Isolates Determined by gyrA Gene Mutation Using PCR- and Sequence-Based Techniques within the gyrA Gene.

    Science.gov (United States)

    Macías Farrera, Guadalupe Patricia; Borroto, Esvieta Tenorio; Ramírez, Fabiola Rivera; Vázquez Chagoyán, Juan Carlos; Rojas, Martín Talavera; Angel, Gilberto Yong; de Oca Jimenez, Roberto Montes

    2016-01-01

    The emergence of reduced susceptibility to fluoroquinolones among Salmonella enterica serotype Typhimurium isolates leading to clinical failure of treatment poses a great therapeutic challenge. The current study is focused on the evaluation of the minimum inhibitory concentration (MIC) of quinolones in 29 Salmonella typhimurium of 86 Salmonella spp. strains, obtained from pigs from the State of Mexico. The MIC was performed with the Kirby-Bauer method. On the other hand, the GyrA gene was sequenced. The present study was undertaken to describe the resistance profiles and fluoroquinolone resistance mechanism of Salmonella Typhimurium. The DNA sequence of the gyrA genes from Salmonella enterica serovar typhimurium revealed strong similarity between gyrA and its counterpart in Escherichia coli. The sequencing of quinolone resistance-determining region (QRDR) of the gyrA gene showed the presence of mutation at either S83 or at D87 in almost all the Salmonella typhimurium isolates. This mutation, although phenotypically expressed as decreased susceptibility to fluoroquinolones goes undetected by the disk diffusion method using the present method of Kirby-Bauer. Hence, it can increase morbidity and mortality due to delay in appropriate antibiotic treatment.

  20. Presence of β-lactamases in extended-spectrum-cephalosporin-resistant Salmonella enterica of 30 different serovars in Germany 2005-11.

    Science.gov (United States)

    Eller, Christoph; Simon, Sandra; Miller, Tatjana; Frick, Julia-Stefanie; Prager, Rita; Rabsch, Wolfgang; Guerra, Beatriz; Werner, Guido; Pfeifer, Yvonne

    2013-09-01

    Between 20 000 and 35 000 cases of salmonellosis are detected annually in Germany, but only a few Salmonella are resistant to third-generation cephalosporins. The German National Reference Centre for Salmonella and other Enterics obtained 150 Salmonella enterica isolates from human infections between 2005 and 2011. In the present study we identified the β-lactamase genes causing resistance to third-generation cephalosporins in these isolates. For all isolates serotyping and antimicrobial susceptibility testing were performed. The presence of β-lactamase genes was detected by PCR amplification and sequencing. Isolates with identical serovar and β-lactamase genes were typed by XbaI macrorestriction followed by PFGE. Broth mate conjugation assays and plasmid analysis using S1 nuclease restriction of genomic DNA and subsequent PFGE as well as PCR-based replicon typing were performed for selected isolates. The 150 isolates were assigned to 30 different serovars, with S. enterica serovar Typhimurium (n = 73; 48.7%) as the most prevalent. Two different AmpC β-lactamase genes (blaCMY-2, n = 8; blaACC-1, n = 6) and various extended-spectrum β-lactamase (ESBL) genes were identified. The majority harboured the blaCTX-M-1 gene (n = 91; 60.7%) followed by blaCTX-M-14 (n = 12; 8.0%) and blaSHV-12 (n = 11; 7.3%). Typing of strains and subsequent comparison with selected Salmonella isolates from livestock revealed the presence of several clones in both humans and livestock. The wide spread of ESBL and AmpC genes in Salmonella of various serovars is most probably due to transfer of conjugative plasmids. Furthermore, our data indicate the clonal spread of distinct cephalosporin-resistant Salmonella strains from livestock to humans.

  1. Competitive Survival of Escherichia coli, Vibrio cholerae, Salmonella typhimurium and Shigella dysenteriae in Riverbed Sediments

    CSIR Research Space (South Africa)

    Abia, AL

    2016-11-01

    Full Text Available investigated the survival of Escherichia coli, Salmonella enterica ser. Typhimurium, Vibrio cholerae and Shigella dysenteriae in riverbed sediments of the Apies River. Experiments were performed in flow chambers containing three sediment types and connected...

  2. Fate of Salmonella Typhimurium in laboratory-scale drinking water biofilms

    CSIR Research Space (South Africa)

    Schaefer, Lisa M

    2013-08-01

    Full Text Available Investigations were carried out to evaluate and quantify colonization of laboratory-scale drinking water biofilms by a chromosomally green fluorescent protein (gfp)-tagged strain of Salmonella Typhimurium. Gfp encodes the green fluorescent protein...

  3. Affinity-Selected Filamentous Bacteriophage as a Probe for Acoustic Wave Biodetectors of Salmonella typhimurium

    National Research Council Canada - National Science Library

    Olsen, Eric V; Sorokulova, Iryna B; Petrenko, Valery A; Chen, I-Hsuan; Barbaree, James M; Vodyanoy, Vitaly J

    2005-01-01

    Proof-in-concept biosensors were prepared for the rapid detection of Salmonella typhimurium in solution, based on affinity-selected filamentous phage prepared as probes physically adsorbed to piezoelectric transducers...

  4. An outbreak of multidrug-resistant, quinolone-resistant Salmonella enterica serotype typhimurium DT104

    DEFF Research Database (Denmark)

    Molbak, K.; Baggesen, Dorte Lau; Aarestrup, Frank Møller

    1999-01-01

    Background Food-borne salmonella infections have become a major problem in industrialized countries. The strain of Salmonella enterica serotype typhimurium known as definitive phage type 104 (DT104) is usually resistant to five drugs: ampicillin, chloramphenicol, streptomycin, sulfonamides......, and tetracycline. An increasing proportion of DT104 isolates also have reduced susceptibility to fluoroquinolones. Methods The Danish salmonella surveillance program determines the phage types of all typhimurium strains from the food chain, and in the case of suspected outbreaks, five-drug-resistant strains...... are characterized by molecular methods. All patients infected with five-drug-resistant typhimurium are interviewed to obtain clinical and epidemiologic data. In 1998, an outbreak of salmonella occurred, in which the strain of typhimurium DT104 was new to Denmark. We investigated this outbreak and report our...

  5. Radiation-induced mutagenicity and lethality in Salmonella typhimurium

    International Nuclear Information System (INIS)

    Isildar, M.; Bakale, G.

    1983-01-01

    The mutagenic and lethal effects of ionizing radiation on histidine-deficient auxotrophs of Salmonella typhimurium were studied to improve the understanding of radiation damage to DNA. The auxotrophs were divided into two groups - one which is sensitive to base-pair substitutions and another sensitive to frameshifts. These groups were composed of parent-daughter pairs in which the chemical mutagenicity enhancing plasmid, pKM101, is absent in the parent strain and present in the daughter. Co-60 #betta#-radiation and 250 kV x-rays were used to irradiate the bacteria. Irradiation of the frameshift - sensitive strains which carry the pKm101 plasmid doubled the absolute number of induced revertants whereas irradiation of the base-pair substitution sensitive strain which also carries the pKm101 plasmid produced nearly no change in the number of induced revertants. A nearly negligible effect on the mutation rate was observed for all parent strains

  6. A Phylogenetic and Phenotypic Analysis of Salmonella enterica Serovar Weltevreden, an Emerging Agent of Diarrheal Disease in Tropical Regions.

    Directory of Open Access Journals (Sweden)

    Carine Makendi

    2016-02-01

    Full Text Available Salmonella enterica serovar Weltevreden (S. Weltevreden is an emerging cause of diarrheal and invasive disease in humans residing in tropical regions. Despite the regional and international emergence of this Salmonella serovar, relatively little is known about its genetic diversity, genomics or virulence potential in model systems. Here we used whole genome sequencing and bioinformatics analyses to define the phylogenetic structure of a diverse global selection of S. Weltevreden. Phylogenetic analysis of more than 100 isolates demonstrated that the population of S. Weltevreden can be segregated into two main phylogenetic clusters, one associated predominantly with continental Southeast Asia and the other more internationally dispersed. Subcluster analysis suggested the local evolution of S. Weltevreden within specific geographical regions. Four of the isolates were sequenced using long read sequencing to produce high quality reference genomes. Phenotypic analysis in Hep-2 cells and in a murine infection model indicated that S. Weltevreden were significantly attenuated in these models compared to the classical S. Typhimurium reference strain SL1344. Our work outlines novel insights into this important emerging pathogen and provides a baseline understanding for future research studies.

  7. Characterization of Salmonella Typhimurium isolates associated with septicemia in swine

    Science.gov (United States)

    Bergeron, Nadia; Corriveau, Jonathan; Letellier, Ann; Daigle, France; Quessy, Sylvain

    2010-01-01

    Salmonella Typhimurium is frequently isolated from pigs and may also cause enteric disease in humans. In this study, 33 isolates of S. Typhimurium associated with septicemia in swine (CS) were compared to 33 isolates recovered from healthy animals at slaughter (WCS). The isolates were characterized using phenotyping and genotyping methods. For each isolate, the phage type, antimicrobial resistance, and pulsed-field gel electrophoresis (PFGE) DNA profiles were determined. In addition, the protein profiles of each isolate grown in different conditions were studied by Coomassie Blue-stained sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and immunoblot. Various phage types were identified. The phage type PT 104 represented 36.4% of all isolates from septicemic pigs. Resistance to as many as 12 antimicrobial agents, including some natural resistances, was found in isolates from CS and WCS. Many genetic profiles were identified among the PT 104 phage types. Although it was not possible to associate one particular protein with septicemic isolates, several highly immunogenic proteins, present in all virulent isolates and in most isolates from clinically healthy animals, were identified. These results indicated that strains associated with septicemia belong to various genetic lineages that can also be recovered from asymptomatic animals at the time of slaughter. PMID:20357952

  8. New flagellin gene for Salmonella enterica serovar Typhi from the East Indonesian archipelago

    NARCIS (Netherlands)

    Hatta, Mochammad; Sultan, Andi R.; Pastoor, Rob; Smits, Henk L.

    2011-01-01

    Phase variation is a property unique of some Salmonella enterica serovar Typhi strains from Indonesia. Salmonella Typhi isolates from Indonesia have been described that in addition to the phase 1 Hd flagellin gene contain a second flagellin gene named z66. S. Typhi isolates from Indonesia with a

  9. Model-driven discovery of synergistic inhibitors against E. coli and S. enterica serovar Typhimurium targeting a novel synthetic lethal pair, aldA and prpC

    Directory of Open Access Journals (Sweden)

    Ramy Karam Aziz

    2015-09-01

    Full Text Available Mathematical models of biochemical networks form a cornerstone of bacterial systems biology. Inconsistencies between simulation output and experimental data point to gaps in knowledge about the fundamental biology of the organism. One such inconsistency centers on the gene aldA in Escherichia coli: it is essential in a computational model of E. coli metabolism, but experimentally it is not. Here we reconcile this disparity by providing evidence that aldA and prpC form a synthetic lethal pair, as the double knockout could only be created through complementation with a plasmid-borne copy of aldA. Moreover, virtual and biological screening against the two proteins led to a set of compounds that inhibited the growth of E. coli and Salmonella enterica serovar Typhimurium synergistically at 100 – 200 μM individual concentrations. These results highlight the power of metabolic models to drive basic biological discovery and their potential use to discover new combination antibiotics.

  10. Intragastric immunization with recombinant Lactobacillus casei expressing flagellar antigen confers antibody-independent protective immunity against Salmonella enterica serovar Enteritidis

    NARCIS (Netherlands)

    Kajikawa, A.; Satoh, E.; Leer, R.J.; Yamamoto, S.; Igimi, S.

    2007-01-01

    A recombinant Lactobacillus casei expressing a flagellar antigen from Salmonella enterica serovar Enteritidis was constructed and evaluated as a mucosal vaccine. Intragastric immunization of the recombinant strain conferred protective immunity against Salmonella infection in mice. This immunization

  11. A modified Weibull model for growth and survival of Listeria innocua and Salmonella Typhimurium in chicken breasts during refrigerated and frozen storage.

    Science.gov (United States)

    Pradhan, A K; Li, M; Li, Y; Kelso, L C; Costello, T A; Johnson, M G

    2012-06-01

    The potential of food-borne pathogens to survive and grow during refrigerated and frozen storage has raised serious concerns over the safety of stored poultry products. In this study, the effect of refrigeration and freezing temperatures (-20, -12, 0, 4, and 8°C) on growth and survival of Listeria innocua and Salmonella enterica serovar Typhimurium in raw chicken breasts for storage times of 3, 7, 10, 14, and 21 d were investigated. A modified Weibull model was also developed to analyze the microbial behavior of both microorganisms in raw chicken breasts under different refrigerated storage conditions over time. The results showed that the bacterial loads of L. innocua at 4 and 8°C and Salmonella Typhimurium at 8°C were significantly different (P innocua at 4 and 8°C was 2.1 log cfu/g and 3.7 log cfu/g, respectively, and that of Salmonella Typhimurium at 8°C was 1.2 log cfu/g. The root mean square errors, median relative error, mean absolute relative error, and the plot of predicted versus observed bacterial loads showed a good performance of the model. The results from this study provided useful information regarding the behavior of Listeria and Salmonella in raw chicken breast meat during refrigerated and frozen storage, which would be helpful in giving insight over the safety of poultry products storage.

  12. The detection of Salmonella typhimurium on shell eggs using a phage-based biosensor

    Science.gov (United States)

    Chai, Yating; Li, Suiqiong; Horikawa, Shin; Shen, Wen; Park, Mi-Kyung; Vodyanoy, Vitaly J.; Chin, Bryan A.

    2011-06-01

    This paper presents the direct detection of Salmonella typhimurium on shell eggs using a phage-based magnetoelastic (ME) biosensor. The ME biosensor consists of a ME resonator as the sensor platform and E2 phage as the biorecognition element that is genetically engineered to specifically bind with Salmonella typhimurium. The ME biosensor, which is a wireless sensor, vibrates with a characteristic resonant frequency under an externally applied magnetic field. Multiple sensors can easily be remotely monitored. Multiple measurement and control sensors were placed on the shell eggs contaminated by Salmonella typhimurium solutions with different known concentrations. The resonant frequency of sensors before and after the exposure to the spiked shell eggs was measured. The frequency shift of the measurement sensors was significantly different than the control sensors indicating Salmonella contamination. Scanning electron microscopy was used to confirm binding of Salmonella to the sensor surface and the resulting frequency shift results.

  13. Saccharomyces boulardii Modifies Salmonella Typhimurium Traffic and Host Immune Responses along the Intestinal Tract

    Science.gov (United States)

    Pontier-Bres, Rodolphe; Munro, Patrick; Boyer, Laurent; Anty, Rodolphe; Imbert, Véronique; Terciolo, Chloé; André, Fréderic; Rampal, Patrick; Lemichez, Emmanuel; Peyron, Jean-François; Czerucka, Dorota

    2014-01-01

    Salmonella enterica serovar Typhimurium (ST) is an enteropathogenic Gram-negative bacterium that causes infection following oral ingestion. ST spreads rapidly along the gastrointestinal tract (GIT) and invades the intestinal epithelium to ultimately reach internal body organs. The probiotic yeast Saccharomyces boulardii BIOCODEX (S.b-B) is prescribed for prophylaxis of diarrheal infectious diseases. We previously showed that S.b-B prevents weight loss in ST-infected mice and significantly decreases bacterial translocation to the spleen and liver. This study was designed to investigate the effect of S.b-B on ST migration along the GIT and the impact of the yeast on the host's early innate immune responses. Bioluminescent imaging (BLI) was used to evaluate the effect of S.b-B on the progression of luminescent Salmonella Typhimurium (ST-lux) in the GIT of mice pretreated with streptomycin. Photonic emission (PE) was measured in GIT extracts (stomach, small intestine, cecum and colon) at various time periods post-infection (PI). PE analysis revealed that, 45 min PI, ST-lux had migrated slightly faster in the mice treated with S.b-B than in the untreated infected animals. At 90 min PI, ST-lux had reached the cecum in both groups of mice. Adhesion of ST to S.b-B was visualized in the intestines of the mice and probably accounts for (1) the faster elimination of ST-lux in the feces, and (2) reduced translocation of ST to the spleen and liver. In the early phase of infection, S.b-B also modifies the host's immune responses by (1) increasing IFN-γ gene expression and decreasing IL-10 gene expression in the small intestine, and (2) elevating both IFN-γ, and IL-10 mRNA levels in the cecum. BLI revealed that S.b-B modifies ST migration and the host immune response along the GIT. Study findings shed new light on the protective mechanisms of S.b-B during the early phase of Salmonella pathogenesis. PMID:25118595

  14. Saccharomyces boulardii modifies Salmonella typhimurium traffic and host immune responses along the intestinal tract.

    Directory of Open Access Journals (Sweden)

    Rodolphe Pontier-Bres

    Full Text Available Salmonella enterica serovar Typhimurium (ST is an enteropathogenic Gram-negative bacterium that causes infection following oral ingestion. ST spreads rapidly along the gastrointestinal tract (GIT and invades the intestinal epithelium to ultimately reach internal body organs. The probiotic yeast Saccharomyces boulardii BIOCODEX (S.b-B is prescribed for prophylaxis of diarrheal infectious diseases. We previously showed that S.b-B prevents weight loss in ST-infected mice and significantly decreases bacterial translocation to the spleen and liver. This study was designed to investigate the effect of S.b-B on ST migration along the GIT and the impact of the yeast on the host's early innate immune responses. Bioluminescent imaging (BLI was used to evaluate the effect of S.b-B on the progression of luminescent Salmonella Typhimurium (ST-lux in the GIT of mice pretreated with streptomycin. Photonic emission (PE was measured in GIT extracts (stomach, small intestine, cecum and colon at various time periods post-infection (PI. PE analysis revealed that, 45 min PI, ST-lux had migrated slightly faster in the mice treated with S.b-B than in the untreated infected animals. At 90 min PI, ST-lux had reached the cecum in both groups of mice. Adhesion of ST to S.b-B was visualized in the intestines of the mice and probably accounts for (1 the faster elimination of ST-lux in the feces, and (2 reduced translocation of ST to the spleen and liver. In the early phase of infection, S.b-B also modifies the host's immune responses by (1 increasing IFN-γ gene expression and decreasing IL-10 gene expression in the small intestine, and (2 elevating both IFN-γ, and IL-10 mRNA levels in the cecum. BLI revealed that S.b-B modifies ST migration and the host immune response along the GIT. Study findings shed new light on the protective mechanisms of S.b-B during the early phase of Salmonella pathogenesis.

  15. Identification of metabolic pathways essential for fitness of Salmonella Typhimurium in vivo.

    Directory of Open Access Journals (Sweden)

    Lotte Jelsbak

    Full Text Available Bacterial infections remain a threat to human and animal health worldwide, and there is an urgent need to find novel targets for intervention. In the current study we used a computer model of the metabolic network of Salmonella enterica serovar Typhimurium and identified pairs of reactions (cut sets predicted to be required for growth in vivo. We termed such cut sets synthetic auxotrophic pairs. We tested whether these would reveal possible combined targets for new antibiotics by analyzing the performance of selected single and double mutants in systemic mouse infections. One hundred and two cut sets were identified. Sixty-three of these included only pathways encoded by fully annotated genes, and from this sub-set we selected five cut sets involved in amino acid or polyamine biosynthesis. One cut set (asnA/asnB demonstrated redundancy in vitro and in vivo and showed that asparagine is essential for S. Typhimurium during infection. trpB/trpA as well as single mutants were attenuated for growth in vitro, while only the double mutant was a cut set in vivo, underlining previous observations that tryptophan is essential for successful outcome of infection. speB/speF,speC was not affected in vitro but was attenuated during infection showing that polyamines are essential for virulence apparently in a growth independent manner. The serA/glyA cut-set was found to be growth attenuated as predicted by the model. However, not only the double mutant, but also the glyA mutant, were found to be attenuated for virulence. This adds glycine production or conversion of glycine to THF to the list of essential reactions during infection. One pair (thrC/kbl showed true redundancy in vitro but not in vivo demonstrating that threonine is available to the bacterium during infection. These data add to the existing knowledge of available nutrients in the intra-host environment, and have identified possible new targets for antibiotics.

  16. Antioxidant oils and Salmonella enterica Typhimurium reduce tumor in an experimental model of hepatic metastasis

    Directory of Open Access Journals (Sweden)

    Sorenson BS

    2011-05-01

    Full Text Available Brent S Sorenson, Kaysie L Banton, Lance B Augustin, Arnold S Leonard, Daniel A SaltzmanDepartment of Surgery, University of Minnesota Medical School, Minneapolis, MN, USAAbstract: Fruit seeds high in antioxidants have been shown to have anticancer properties and enhance host protection against microbial infection. Recently we showed that a single oral dose of Salmonella enterica serovar Typhimurium expressing a truncated human interleukin-2 gene (SalpIL2 is avirulent, immunogenic, and reduces hepatic metastases through increased natural killer cell populations in mice. To determine whether antioxidant compounds enhance the antitumor effect seen in SalpIL2-treated animals, we assayed black cumin (BC, black raspberry (BR, and milk thistle (MT seed oils for the ability to reduce experimental hepatic metastases in mice. In animals without tumor, BC and BR oil diets altered the kinetics of the splenic lymphocyte response to SalpIL2. Consistent with previous reports, BR and BC seed oils demonstrated independent antitumor properties and moderate adjuvant potential with SalpIL2. MT oil, however, inhibited the efficacy of SalpIL2 in our model. Based on these data, we conclude that a diet high in antioxidant oils promoted a more robust immune response to SalpIL2, thus enhancing its antitumor efficacy.Keywords: antioxidants, colorectal cancer, tumor models, metastasis

  17. Dose determination for acute Salmonella infection in pigs.

    Science.gov (United States)

    Loynachan, A T; Harris, D L

    2005-05-01

    Pigs were exposed to various levels of Salmonella enterica subsp. enterica serovar Typhimurium by either intranasal inoculation or by subjecting them to a contaminated environment. More than 10(3) salmonellae were required to induce acute Salmonella infection. These results indicate that intervention against acute Salmonella infection in lairage may be more readily achieved than previously thought.

  18. Dose Determination for Acute Salmonella Infection in Pigs

    OpenAIRE

    Loynachan, A. T.; Harris, D. L.

    2005-01-01

    Pigs were exposed to various levels of Salmonella enterica subsp. enterica serovar Typhimurium by either intranasal inoculation or by subjecting them to a contaminated environment. More than 103 salmonellae were required to induce acute Salmonella infection. These results indicate that intervention against acute Salmonella infection in lairage may be more readily achieved than previously thought.

  19. Identification of Metabolic Pathways Essential for Fitness of Salmonella Typhimurium In Vivo

    DEFF Research Database (Denmark)

    Jelsbak, Lotte; Hartman, Hassan; Schroll, Casper

    2014-01-01

    Bacterial infections remain a threat to human and animal health worldwide, and there is an urgent need to find novel targets for intervention. In the current study we used a computer model of the metabolic network of Salmonella enterica serovar Typhimurium and identified pairs of reactions (cut...... sets) predicted to be required for growth in vivo. We termed such cut sets synthetic auxotrophic pairs. We tested whether these would reveal possible combined targets for new antibiotics by analyzing the performance of selected single and double mutants in systemic mouse infections. One hundred and two...... cut sets were identified. Sixty-three of these included only pathways encoded by fully annotated genes, and from this sub-set we selected five cut sets involved in amino acid or polyamine biosynthesis. One cut set (asnA/asnB) demonstrated redundancy in vitro and in vivo and showed that asparagine...

  20. Genome-wide methylation patterns in Salmonella enterica Subsp. enterica Serovars.

    Directory of Open Access Journals (Sweden)

    Cary Pirone-Davies

    Full Text Available The methylation of DNA bases plays an important role in numerous biological processes including development, gene expression, and DNA replication. Salmonella is an important foodborne pathogen, and methylation in Salmonella is implicated in virulence. Using single molecule real-time (SMRT DNA-sequencing, we sequenced and assembled the complete genomes of eleven Salmonella enterica isolates from nine different serovars, and analysed the whole-genome methylation patterns of each genome. We describe 16 distinct N6-methyladenine (m6A methylated motifs, one N4-methylcytosine (m4C motif, and one combined m6A-m4C motif. Eight of these motifs are novel, i.e., they have not been previously described. We also identified the methyltransferases (MTases associated with 13 of the motifs. Some motifs are conserved across all Salmonella serovars tested, while others were found only in a subset of serovars. Eight of the nine serovars contained a unique methylated motif that was not found in any other serovar (most of these motifs were part of Type I restriction modification systems, indicating the high diversity of methylation patterns present in Salmonella.

  1. Identification of a umuDC locus in Salmonella typhimurium LT2

    International Nuclear Information System (INIS)

    Smith, C.M.; Eisenstadt, E.

    1989-01-01

    The umuDC operon of Escherichia coli is required for efficient mutagenesis by UV light and many other DNA-damaging agents. The existence of a umuDC analog in Salmonella typhimurium has been questioned. With DNA probes to the E. coli umuD and umuC genes, we detected, by Southern blot hybridization, sequences similar to both of these genes in S. typhimurium LT2. We also confirmed that the presence of cloned E. coli umuD enhances the UV mutability and resistance of S. typhimurium. Our data strongly suggest that S. typhimurium contains a functional umuDC operon

  2. Salmonella Typhimurium strain ATCC14028 requires H2-hydrogenases for growth in the gut, but not at systemic sites.

    Directory of Open Access Journals (Sweden)

    Lisa Maier

    Full Text Available Salmonella enterica is a common cause of diarrhea. For eliciting disease, the pathogen has to colonize the gut lumen, a site colonized by the microbiota. This process/initial stage is incompletely understood. Recent work established that one particular strain, Salmonella enterica subspecies 1 serovar Typhimurium strain SL1344, employs the hyb H2-hydrogenase for consuming microbiota-derived H2 to support gut luminal pathogen growth: Protons from the H2-splitting reaction contribute to the proton gradient across the outer bacterial membrane which can be harvested for ATP production or for import of carbon sources. However, it remained unclear, if other Salmonella strains would use the same strategy. In particular, earlier work had left unanswered if strain ATCC14028 might use H2 for growth at systemic sites. To clarify the role of the hydrogenases, it seems important to establish if H2 is used at systemic sites or in the gut and if Salmonella strains may differ with respect to the host sites where they require H2 in vivo. In order to resolve this, we constructed a strain lacking all three H2-hydrogenases of ATCC14028 (14028hyd3 and performed competitive infection experiments. Upon intragastric inoculation, 14028hyd3 was present at 100-fold lower numbers than 14028WT in the stool and at systemic sites. In contrast, i.v. inoculation led to equivalent systemic loads of 14028hyd3 and the wild type strain. However, the pathogen population spreading to the gut lumen featured again up to 100-fold attenuation of 14028hyd3. Therefore, ATCC14028 requires H2-hydrogenases for growth in the gut lumen and not at systemic sites. This extends previous work on ATCC14028 and supports the notion that H2-utilization might be a general feature of S. Typhimurium gut colonization.

  3. Application of molecular methods for identification of strains classified as Salmonella enterica serovar 6, 7/-/- by conventional serotyping

    DEFF Research Database (Denmark)

    Chadfield, M. S.; Christensen, J. P.; Madsen, Mogens

    2002-01-01

    An increased prevalence of Salmonella enterica serovar Tennessee (6, 7: z(29):-) was observed in broiler flocks in Denmark in 1994 and a parallel increase in the prevalence of Salmonella enterica serovar 6, 7:-:- was demonstrated, albeit at a lower level. Plasmid profiling and ribotyping revealed...

  4. Molecular characterization of "inconsistent" variants of Salmonella Typhimurium isolated in Italy

    DEFF Research Database (Denmark)

    Barco, Lisa; Longo, Alessandra; Lettini, Antonia Anna

    2014-01-01

    Salmonella 4,[5],12:i:- is a variant of Salmonella Typhimurium, which lacks the expression of phase-2 flagellar antigen, generally associated with the deletion of the fljB gene. Additional mechanisms involving the fljAB operon ( fljA, fljB, and hin genes) lead to the lack of expression of phase-2...

  5. Development of a multiplex polymerase chain reaction protocol for the simultaneous detection of Salmonella enterica serovar Typhi and Class 1 integron

    Directory of Open Access Journals (Sweden)

    Juthika Mandal

    2014-09-01

    Full Text Available Objective: To develop a multiplex polymerase chain reaction (PCR protocol for the simultaneous detection of Salmonella enterica serovar Typhi (S. Typhi and Class 1 integron, so as to aid rapid diagnosis of S. Typhi cases and help in the selection of treatment options based on the presence of the Class 1 integron that can carry resistance cassettes to a range of antibiotics. Methods: PCR for amplification of specific regions was done using fliC-d and intl primers and agarose gel electrophoresis was used for resolution of PCR products. Results: The fliC-d primer (S. Typhi specific amplified a 587 bp region and the intl primer (Class 1 integron specific amplified two bands approximately 500 and 550 bps. The developed method was specific for S. Typhi and did not amplify any products with Salmonella enterica serovar Typhimurium ATCC 14028, Salmonella enterica serovar Paratyphi and Escherichia coli O157:H7. Conclusions: The developed multiplex PCR protocol can be used for rapid diagnosis and aid in proper treatment strategies for patients infected with S. Typhi.

  6. First report of iliacus abscess caused by Salmonella enterica serovar Othmarschen.

    Science.gov (United States)

    Jha, Babita; Kim, Choon-Mee; Kim, Dong-Min; Chung, Jong-Hoon; Yoon, Na-Ra; Jha, Piyush; Kim, Seok Won; Jang, Sook Jin; Kim, Seon Gyeong; Chung, Jae Keun

    2016-02-01

    The non-typhoidal bacterium Salmonella enterica subspecies enterica serovar Othmarschen (Salmonella Othmarschen) is a rare human pathogen. Abscess formation due to non-typhoidal Salmonella infections is a very rare complication in this antibiotic era. We report the first case of iliacus abscess after a short period of gastroenteritis which was caused by non-typhoidal Salmonella enterica belonging to group C1, serovar Othmarschen in a patient without any underlying conditions. A young female presented in our hospital complaining of pain in right hip joint area. She gave a history of watery diarrhea 3 days before the onset of pain. On examination the patient was ill-looking and there was tenderness in the right hip joint area. S. enterica was identified using 16S rRNA gene amplification by PCR and serotyped to be serovar Othmarschen from the pus sample of iliacus abscess. This is the first reported case of iliacus abscess due to Salmonella serover Othmarschen infection. Our case suggests that S. enterica serovar Othmarschen can cause severe focal infections associated with gastroenteritis. The literature on the rare association of Salmonella enterica and abscess formation is reviewed. Copyright © 2015 Japanese Society of Chemotherapy and The Japanese Association for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  7. A comparison of cecal colonization of Salmonella enterica serotype Typhimurium in white leghorn chicks and Salmonella-resistant mice

    Directory of Open Access Journals (Sweden)

    Bogomolnaya Lydia M

    2008-10-01

    Full Text Available Abstract Background Salmonellosis is one of the most important bacterial food borne illnesses worldwide. A major source of infection for humans is consumption of chicken or egg products that have been contaminated with Salmonella enterica serotype Typhimurium, however our knowledge regarding colonization and persistence factors in the chicken is small. Results We compared intestinal and systemic colonization of 1-week-old White Leghorn chicks and Salmonella-resistant CBA/J mice during infection with Salmonella enterica serotype Typhimurium ATCC14028, one of the most commonly studied isolates. We also studied the distribution of wild type serotype Typhimurium ATCC14028 and an isogenic invA mutant during competitive infection in the cecum of 1-week-old White Leghorn chicks and 8-week-old CBA/J mice. We found that although the systemic levels of serotype Typhimurium in both infected animal models are low, infected mice have significant splenomegaly beginning at 15 days post infection. In the intestinal tract itself, the cecal contents are the major site for recovery of serotype Typhimurium in the cecum of 1-week-old chicks and Salmonella-resistant mice. Additionally we show that only a small minority of Salmonellae are intracellular in the cecal epithelium of both infected animal models, and while SPI-1 is important for successful infection in the murine model, it is important for association with the cecal epithelium of 1-week-old chicks. Finally, we show that in chicks infected with serotype Typhimurium at 1 week of age, the level of fecal shedding of this organism does not reflect the level of cecal colonization as it does in murine models. Conclusion In our study, we highlight important differences in systemic and intestinal colonization levels between chick and murine serotype Typhimurium infections, and provide evidence that suggests that the role of SPI-1 may not be the same during colonization of both animal models.

  8. Genome-Scale Screening and Validation of Targets for Identification of Salmonella enterica and Serovar Prediction.

    Science.gov (United States)

    Zhou, Xiujuan; Zhang, Lida; Shi, Chunlei; Fratamico, Pina M; Liu, Bin; Paoli, George C; Dan, Xianlong; Zhuang, Xiaofei; Cui, Yan; Wang, Dapeng; Shi, Xianming

    2016-03-01

    Salmonella enterica is the most common foodborne pathogen worldwide, with 2,500 recognized serovars. Detection of S. enterica and its classification into serovars are essential for food safety surveillance and clinical diagnosis. The PCR method is useful for these applications because of its rapidity and high accuracy. We obtained 412 candidate detection targets for S. enterica using a comparative genomics mining approach. Gene ontology (GO) functional enrichment analysis of these candidate targets revealed that the GO term with the largest number of unigenes with known function (38 of 177, 21.5%) was significantly involved in pathogenesis (P enterica by verification with 151 S. enterica strains and 34 non-Salmonella strains. The phylogenetic trees of verified targets were highly comparable with those of housekeeping genes, especially for differentiating S. enterica strains into serovars. The serovar prediction ability was validated by sequencing one target (S9) for 39 S. enterica strains belonging to six serovars. Identical mutation sites existed in the same serovar, and different mutation sites were found in diverse serovars. Our findings revealed that 15 verified targets can be potentially used for molecular detection, and some of them can be used for serotyping of S. enterica strains.

  9. Ultraviolet (UV-C inactivation of Enterococcus faecium, Salmonella choleraesuis and Salmonella typhimurium in porcine plasma.

    Directory of Open Access Journals (Sweden)

    Elena Blázquez

    Full Text Available The objective of this study was to assess the effectiveness of an ultraviolet (UV-C, 254 nm irradiation system on reducing the load of Salmonella typhimurium (S. typhimurium, Salmonella choleraesuis (S. choleraesuis resistant to streptomycin and Enterococcus faecium (E. faecium inoculated in sterile porcine plasma and then subjected to different UV-C irradiation doses (750, 1500, 3000, 6000 and 9000 J/L using a pilot plant UV-C device working under turbulent flow. Results indicated that UV-C treatment induced a viability reduction of 0.38, 1.18, 3.59, 4.72 and 5.06 log10 S. typhimurium when irradiated at 750, 1500, 3000, 6000 and 9000 J/L, respectively. The observed log10 reduction of S. choleraesuis was 1.44, 2.68, 5.55, 7.07 and 7.97 at 750, 1500, 3000, 6000 and 9000 J/L, respectively. The best-fit inactivation for S. choleraesuis was the Weibull distribution curve, while the best-fit curve for S. typhimurium was the Weibull plus tail model, indicating that around 102 cfu/mL resistant S. typhimurium was detected when the liquid plasma was UV-C irradiated at doses up to 9000 J/L. Viability reduction for E. faecium was 0.44, 1.01, 3.70, 5.61 and 6.22 log10 when irradiated at 750, 1500, 3000, 6000 and 9000 J/L, respectively, with no bacterial resistance observed with UV-C doses of 6000 J/L or higher. The biphasic model was the best fit model for the inactivation curve for E. faecium. For the three microorganisms tested, about a 4 log-unit reduction was achieved when the liquid plasma was irradiated at 3000J/L. Overall results demonstrate the usefulness of the UV-C system to inactivate bacteria in liquid plasma before spray-drying. We conclude that the UV-C system can provide an additional biosafety feature that can be incorporated into the manufacturing process for spray-dried animal plasma.

  10. Ultraviolet (UV-C) inactivation of Enterococcus faecium, Salmonella choleraesuis and Salmonella typhimurium in porcine plasma.

    Science.gov (United States)

    Blázquez, Elena; Rodríguez, Carmen; Ródenas, Jesús; Pérez de Rozas, Ana; Segalés, Joaquim; Pujols, Joan; Polo, Javier

    2017-01-01

    The objective of this study was to assess the effectiveness of an ultraviolet (UV-C, 254 nm) irradiation system on reducing the load of Salmonella typhimurium (S. typhimurium), Salmonella choleraesuis (S. choleraesuis) resistant to streptomycin and Enterococcus faecium (E. faecium) inoculated in sterile porcine plasma and then subjected to different UV-C irradiation doses (750, 1500, 3000, 6000 and 9000 J/L) using a pilot plant UV-C device working under turbulent flow. Results indicated that UV-C treatment induced a viability reduction of 0.38, 1.18, 3.59, 4.72 and 5.06 log10 S. typhimurium when irradiated at 750, 1500, 3000, 6000 and 9000 J/L, respectively. The observed log10 reduction of S. choleraesuis was 1.44, 2.68, 5.55, 7.07 and 7.97 at 750, 1500, 3000, 6000 and 9000 J/L, respectively. The best-fit inactivation for S. choleraesuis was the Weibull distribution curve, while the best-fit curve for S. typhimurium was the Weibull plus tail model, indicating that around 102 cfu/mL resistant S. typhimurium was detected when the liquid plasma was UV-C irradiated at doses up to 9000 J/L. Viability reduction for E. faecium was 0.44, 1.01, 3.70, 5.61 and 6.22 log10 when irradiated at 750, 1500, 3000, 6000 and 9000 J/L, respectively, with no bacterial resistance observed with UV-C doses of 6000 J/L or higher. The biphasic model was the best fit model for the inactivation curve for E. faecium. For the three microorganisms tested, about a 4 log-unit reduction was achieved when the liquid plasma was irradiated at 3000J/L. Overall results demonstrate the usefulness of the UV-C system to inactivate bacteria in liquid plasma before spray-drying. We conclude that the UV-C system can provide an additional biosafety feature that can be incorporated into the manufacturing process for spray-dried animal plasma.

  11. Dam methylation participates in the regulation of PmrA/PmrB and RcsC/RcsD/RcsB two component regulatory systems in Salmonella enterica serovar Enteritidis.

    Directory of Open Access Journals (Sweden)

    Sebastián Hernán Sarnacki

    Full Text Available The absence of Dam in Salmonella enterica serovar Enteritidis causes a defect in lipopolysaccharide (LPS pattern associated to a reduced expression of wzz gene. Wzz is the chain length regulator of the LPS O-antigen. Here we investigated whether Dam regulates wzz gene expression through its two known regulators, PmrA and RcsB. Thus, the expression of rcsB and pmrA was monitored by quantitative real-time RT-PCR and Western blotting using fusions with 3×FLAG tag in wild type (wt and dam strains of S. Enteritidis. Dam regulated the expression of both rcsB and pmrA genes; nevertheless, the defect in LPS pattern was only related to a diminished expression of RcsB. Interestingly, regulation of wzz in serovar Enteritidis differed from that reported earlier for serovar Typhimurium; RcsB induces wzz expression in both serovars, whereas PmrA induces wzz in S. Typhimurium but represses it in serovar Enteritidis. Moreover, we found that in S. Enteritidis there is an interaction between both wzz regulators: RcsB stimulates the expression of pmrA and PmrA represses the expression of rcsB. Our results would be an example of differential regulation of orthologous genes expression, providing differences in phenotypic traits between closely related bacterial serovars.

  12. Butyrate Specifically Down-Regulates Salmonella Pathogenicity Island 1 Gene Expression

    OpenAIRE

    Gantois, I.; Ducatelle, R.; Pasmans, F.; Haesebrouck, F.; Hautefort, I.; Thompson, A.; Hinton, J. C.; Van Immerseel, F.

    2006-01-01

    Invasion of intestinal epithelial cells by Salmonella enterica is decreased after exposure to butyric acid. To understand the molecular mechanisms of this phenomenon, a comparative transcriptomic analysis of Salmonella enterica serovar Enteritidis and Salmonella enterica serovar Typhimurium grown in medium supplemented with butyrate was performed. We found that butyrate down-regulated the expression of 19 genes common to both serovars by a factor of twofold or more, and 17 of these genes loca...

  13. Experimental Salmonella typhimurium infections in rats. III. Transfer of immunity with primed lymphocyte subpopulations

    DEFF Research Database (Denmark)

    Hougen, H P; Jensen, E T

    1990-01-01

    The protective effect of primed lymphocytes against a lethal dose of Salmonella typhimurium was studied in athymic and euthymic LEW rats. Primed lymphocytes were obtained by inoculating euthymic and thymus-grafted animals with a non-lethal dose of Salmonella typhimurium. Four weeks after the infe...... and lymph node CD4+ cells in the athymic rats were comparable to those found in the euthymic animals. The study shows that primed CD4+ lymphocytes even in very low doses are able to induce immunity against a Salmonella typhimurium infection.......The protective effect of primed lymphocytes against a lethal dose of Salmonella typhimurium was studied in athymic and euthymic LEW rats. Primed lymphocytes were obtained by inoculating euthymic and thymus-grafted animals with a non-lethal dose of Salmonella typhimurium. Four weeks after...... and athymic rats were injected with different doses of primed pan B, pan T, CD4+ and CD8+ T lymphocytes before inoculation with a lethal bacterial dose. Most of the animals treated with pan B, pan T or CD8+ cells died within two weeks. After treatment with primed CD4+ cells, only six of 39 animals died. Doses...

  14. Variable carbon catabolism among Salmonella enterica serovar Typhi isolates.

    Directory of Open Access Journals (Sweden)

    Lay Ching Chai

    Full Text Available BACKGROUND: Salmonella enterica serovar Typhi (S. Typhi is strictly a human intracellular pathogen. It causes acute systemic (typhoid fever and chronic infections that result in long-term asymptomatic human carriage. S. Typhi displays diverse disease manifestations in human infection and exhibits high clonality. The principal factors underlying the unique lifestyle of S. Typhi in its human host during acute and chronic infections remain largely unknown and are therefore the main objective of this study. METHODOLOGY/PRINCIPAL FINDINGS: To obtain insight into the intracellular lifestyle of S. Typhi, a high-throughput phenotypic microarray was employed to characterise the catabolic capacity of 190 carbon sources in S. Typhi strains. The success of this study lies in the carefully selected library of S. Typhi strains, including strains from two geographically distinct areas of typhoid endemicity, an asymptomatic human carrier, clinical stools and blood samples and sewage-contaminated rivers. An extremely low carbon catabolic capacity (27% of 190 carbon substrates was observed among the strains. The carbon catabolic profiles appeared to suggest that S. Typhi strains survived well on carbon subtrates that are found abundantly in the human body but not in others. The strains could not utilise plant-associated carbon substrates. In addition, α-glycerolphosphate, glycerol, L-serine, pyruvate and lactate served as better carbon sources to monosaccharides in the S. Typhi strains tested. CONCLUSION: The carbon catabolic profiles suggest that S. Typhi could survive and persist well in the nutrient depleted metabolic niches in the human host but not in the environment outside of the host. These findings serve as caveats for future studies to understand how carbon catabolism relates to the pathogenesis and transmission of this pathogen.

  15. The dark side of the salad: Salmonella typhimurium overcomes the innate immune response of Arabidopsis thaliana and shows an endopathogenic lifestyle.

    Directory of Open Access Journals (Sweden)

    Adam Schikora

    2008-05-01

    Full Text Available Salmonella enterica serovar typhimurium contaminated vegetables and fruits are considerable sources of human infections. Bacteria present in raw plant-derived nutrients cause salmonellosis, the world wide most spread food poisoning. This facultative endopathogen enters and replicates in host cells and actively suppresses host immune responses. Although Salmonella survives on plants, the underlying bacterial infection mechanisms are only poorly understood. In this report we investigated the possibility to use Arabidopsis thaliana as a genetically tractable host system to study Salmonella-plant interactions. Using green fluorescent protein (GFP marked bacteria, we show here that Salmonella can infect various Arabidopsis tissues and proliferate in intracellular cellular compartments. Salmonella infection of Arabidopsis cells can occur via intact shoot or root tissues resulting in wilting, chlorosis and eventually death of the infected organs. Arabidopsis reacts to Salmonella by inducing the activation of mitogen-activated protein kinase (MAPK cascades and enhanced expression of pathogenesis related (PR genes. The induction of defense responses fails in plants that are compromised in ethylene or jasmonic acid signaling or in the MKK3-MPK6 MAPK pathway. These findings demonstrate that Arabidopsis represents a true host system for Salmonella, offering unique possibilities to study the interaction of this human pathogen with plants at the molecular level for developing novel drug targets and addressing current safety issues in human nutrition.

  16. Prevalence of Salmonella spp., and serovars isolated from captive exotic reptiles in New Zealand.

    Science.gov (United States)

    Kikillus, K H; Gartrell, B D; Motion, E

    2011-07-01

    To investigate the prevalence of Salmonella spp. in captive exotic reptile species in New Zealand, and identify the serovars isolated from this population. Cloacal swabs were obtained from 378 captive exotic reptiles, representing 24 species, residing in 25 collections throughout New Zealand between 2008 and 2009. Samples were cultured for Salmonella spp., and suspected colonies were serotyped by the Institute of Environmental Science and Research (ESR). Forty-three of the 378 (11.4%) reptiles sampled tested positive for Salmonella spp., with 95% CI for the estimated true prevalence being 12-25% in exotic reptiles in this study population. Lizards tested positive for Salmonella spp. more often than chelonians. Agamid lizards tested positive more often than any other family group, with 95% CI for the estimated true prevalence being 56-100%.. Six Salmonella serovars from subspecies I and two from subspecies II were isolated. The serovar most commonly isolated was S. Onderstepoort (30.2%), followed by S. Thompson (20.9%), S. Potsdam (14%), S. Wangata (14%), S. Infantis (11.6%) and S. Eastbourne (2.3%). All of the subspecies I serovars have been previously reported in both reptiles and humans in New Zealand, and include serovars previously associated with disease in humans. This study showed that Salmonella spp. were commonly carried by exotic reptiles in the study population in New Zealand. Several serovars of Salmonella spp. with known pathogenicity to humans were isolated, including S. Infantis, which is one of the most common serovars isolated from both humans and non-human sources in New Zealand. The limitations of this study included the bias engendered by the need for voluntary involvement in the study, and the non-random sampling design. Based on the serovars identified in this and previous studies, it is recommended native and exotic reptiles be segregated within collections, especially when native reptiles may be used for biodiversity restoration

  17. Salmonella Typhimurium ST213 is associated with two types of IncA/C plasmids carrying multiple resistance determinants.

    Science.gov (United States)

    Wiesner, Magdalena; Calva, Edmundo; Fernández-Mora, Marcos; Cevallos, Miguel A; Campos, Freddy; Zaidi, Mussaret B; Silva, Claudia

    2011-01-11

    Salmonella Typhimurium ST213 was first detected in the Mexican Typhimurium population in 2001. It is associated with a multi-drug resistance phenotype and a plasmid-borne blaCMY-2 gene conferring resistance to extended-spectrum cephalosporins. The objective of the current study was to examine the association between the ST213 genotype and blaCMY-2 plasmids. The blaCMY-2 gene was carried by an IncA/C plasmid. ST213 strains lacking the blaCMY-2 gene carried a different IncA/C plasmid. PCR analysis of seven DNA regions distributed throughout the plasmids showed that these IncA/C plasmids were related, but the presence and absence of DNA stretches produced two divergent types I and II. A class 1 integron (dfrA12, orfF and aadA2) was detected in most of the type I plasmids. Type I contained all the plasmids carrying the blaCMY-2 gene and a subset of plasmids lacking blaCMY-2. Type II included all of the remaining blaCMY-2-negative plasmids. A sequence comparison of the seven DNA regions showed that both types were closely related to IncA/C plasmids found in Escherichia, Salmonella, Yersinia, Photobacterium, Vibrio and Aeromonas. Analysis of our Typhimurium strains showed that the region containing the blaCMY-2 gene is inserted between traA and traC as a single copy, like in the E. coli plasmid pAR060302. The floR allele was identical to that of Newport pSN254, suggesting a mosaic pattern of ancestry with plasmids from other Salmonella serovars and E. coli. Only one of the tested strains was able to conjugate the IncA/C plasmid at very low frequencies (10-7 to 10-9). The lack of conjugation ability of our IncA/C plasmids agrees with the clonal dissemination trend suggested by the chromosomal backgrounds and plasmid pattern associations. The ecological success of the newly emerging Typhimurium ST213 genotype in Mexico may be related to the carriage of IncA/C plasmids. We conclude that types I and II of IncA/C plasmids originated from a common ancestor and that the

  18. Salmonella serovars and antimicrobial resistance in strains isolated from wild animals in captivity in Sinaloa, Mexico

    OpenAIRE

    Silva-Hidalgo, Gabriela; López-Valenzuela, Martin; Juárez-Barranco, Felipe; Montiel-Vázquez, Edith; Valenzuela-Sánchez, Beatriz

    2014-01-01

    The aim of the present study was to evaluate the frequency of antibiotic resistance in Salmonella spp. strains from wild animals in captivity at the Culiacan Zoo and the Mazatlan Aquarium in Sinaloa, Mexico. We identified 17 different Salmonella enterica serovars at a prevalence of 19.90% (Culiacan Zoo) and 6.25% (Mazatlan Aquarium). Antibiotic sensitivity tests revealed that, of the 83 strains studied, 100% were multidrug resistant (MDR). The drugs against which the greatest resistance was o...

  19. Validation of Baking To Control Salmonella Serovars in Hamburger Bun Manufacturing, and Evaluation of Enterococcus faecium ATCC 8459 and Saccharomyces cerevisiae as Nonpathogenic Surrogate Indicators.

    Science.gov (United States)

    Channaiah, Lakshmikantha H; Holmgren, Elizabeth S; Michael, Minto; Sevart, Nicholas J; Milke, Donka; Schwan, Carla L; Krug, Matthew; Wilder, Amanda; Phebus, Randall K; Thippareddi, Harshavardhan; Milliken, George

    2016-04-01

    This study was conducted to validate a simulated commercial baking process for hamburger buns to destroy Salmonella serovars and to determine the appropriateness of using nonpathogenic surrogates (Enterococcus faecium ATCC 8459 or Saccharomyces cerevisiae) for in-plant process validation studies. Wheat flour was inoculated (∼6 log CFU/g) with three Salmonella serovars (Typhimurium, Newport, or Senftenberg 775W) or with E. faecium. Dough was formed, proofed, and baked to mimic commercial manufacturing conditions. Buns were baked for up to 13 min in a conventional oven (218.3°C), with internal crumb temperature increasing to ∼100°C during the first 8 min of baking and remaining at this temperature until removal from the oven. Salmonella and E. faecium populations were undetectable by enrichment (>6-log CFU/g reductions) after 9.0 and 11.5 min of baking, respectively, and ≥5-log-cycle reductions were achieved by 6.0 and 7.75 min, respectively. D-values of Salmonella (three-serovar cocktail) and E. faecium 8459 in dough were 28.64 and 133.33, 7.61 and 55.67, and 3.14 and 14.72 min at 55, 58, and 61°C, respectively, whereas D-values of S. cerevisiae were 18.73, 5.67, and 1.03 min at 52, 55, and 58°C, respectivly. The z-values of Salmonella, E. faecium, and S. cerevisiae were 6.58, 6.25, and 4.74°C, respectively. A high level of thermal lethality was observed for baking of typical hamburger bun dough, resulting in rapid elimination of high levels of the three-strain Salmonella cocktail; however, the lethality and microbial destruction kinetics should not be extrapolated to other bakery products without further research. E. faecium demonstrated greater thermal resistance compared with Salmonella during bun baking and could serve as a conservative surrogate to validate thermal process lethality in commercial bun baking operations. Low thermal tolerance of S. cerevisiae relative to Salmonella serovars limits its usefulness as a surrogate for process validations.

  20. Studies on the interaction between Salmonella enterica ser. Typhimurium and intestinal helminths in pigs

    DEFF Research Database (Denmark)

    Steenhard, N.R.; Roepstorff, A.; Baggesen, Dorte Lau

    2006-01-01

    Concomitant infections with helminths and bacteria may affect the course and the resulting disease outcome of the individual infections. Salmonella, Oesophagostomum, Trichuris and Ascaris coexist naturally in pig herds in Denmark, and possible interactions were studied. Pigs in one experiment were...... trickle infected with low or moderate dose levels of Oesophagostomum spp. and challenge infected with S. Typhimurium. In another experiment, pigs were inoculated with S. Typhimurium followed by a challenge exposure to either Oesophagostomum, Trichuris or Ascaris. Enhancement of the Salmonella infection...... was not demonstrated in either experiment. The helminth effect on the pigs was modest and may explain the lack of influence on the Salmonella infection. A previous experiment with a larger Oesophagostomum infection level resulted in enhancement of the S. Typhimurium infection. A dose dependency of the interaction...

  1. Plasma-treated polyethylene film: A smart material applied for Salmonella Typhimurium detection

    Energy Technology Data Exchange (ETDEWEB)

    Peng-Ubol, Triranat [Department of Chemistry, Faculty of Science, Mahidol University, Rama 6 Rd, Phayathai, Bangkok 10400 (Thailand); Phinyocheep, Pranee, E-mail: scppo@mahidol.ac.th [Department of Chemistry, Faculty of Science, Mahidol University, Rama 6 Rd, Phayathai, Bangkok 10400 (Thailand); Daniel, Philippe [Laboratoire de Physique de l' Etat Condense (LPEC-UMR CNRS 6087), Universite du Maine, Avenue Olivier Messiaen, 72085, Le Mans Cedex 9 (France); Panbangred, Watanalai [Department of Biotechnology and Mahidol University-Osaka University Collaborative Research Center for Bioscience and Biotechnology (MU-OU: CRC), Faculty of Science, Mahidol University, Rama 6 Rd, Phayathai, Bangkok 10400 (Thailand); Pilard, Jean-Francois [Unite de Chimie Organique Moleculaire et Macromoleculaire (UCO2M-UMR CNRS 6011), Universite du Maine, Avenue Olivier Messiaen, 72085 Le Mans Cedex 9 (France); Thouand, Gerald; Durand-Thouand, Marie-Jose [Genie des Procedes Environnement et Agroalimentaire (GEPEA UMR CNRS 6144), Departement Genie Biologique, IUT de la Roche/Yon, Universite de Nantes, 18 Bd G. Defferre, 85035 La Roche sur Yon (France)

    2012-12-01

    Salmonella is a major cause of foodborne illness worldwide and is not allowed to be present in any food in all countries. The purpose of this study is to develop a simple alternative method for the detection of Salmonella based on functionalized polyethylene (PE) surfaces. Salmonella Typhimurium was used as a model bacterium. PE film was treated using dielectric plasma in order to alter the wettability of the PE surface and consequently introduce functionality on the surface. The PE film characterized by ATR-FTIR spectroscopy revealed the presence of C=O stretching of ketones, aldehydes and carboxylic acids. The antibodies against O or H antigens of Salmonella and S. Typhimurium were then respectively immobilized on the PE surface after activation of the carboxylic group using NHS/EDC followed by protein A. The evidences from ATR-FTIR, scanning electron microscopy and optical microscopy showed the presence of S. Typhimurium attached to the plasma treated PE surfaces via the two types of anti-Salmonella antibody. The plasma treated PE film developed is simple and allows efficient association of bacterial cells on the treated surfaces without the necessity of time-consuming centrifugation and washing steps for isolation of the cells. This material is considered to be a smart material applicable for S. Typhimurium detection. Highlights: Black-Right-Pointing-Pointer We developed a functionalized polyethylene film for bacterial detection. Black-Right-Pointing-Pointer We modified the surface of polyethylene film by plasma treatment. Black-Right-Pointing-Pointer ATR-FTIR spectroscopy was used to analyze the functionality on the PE surface. Black-Right-Pointing-Pointer We introduced Salmonella Typhimurium on the modified PE film. Black-Right-Pointing-Pointer SEM revealed the presence of S. Typhimurium on the plasma treated PE film.

  2. Plasma-treated polyethylene film: A smart material applied for Salmonella Typhimurium detection

    International Nuclear Information System (INIS)

    Peng-Ubol, Triranat; Phinyocheep, Pranee; Daniel, Philippe; Panbangred, Watanalai; Pilard, Jean-François; Thouand, Gerald; Durand-Thouand, Marie-José

    2012-01-01

    Salmonella is a major cause of foodborne illness worldwide and is not allowed to be present in any food in all countries. The purpose of this study is to develop a simple alternative method for the detection of Salmonella based on functionalized polyethylene (PE) surfaces. Salmonella Typhimurium was used as a model bacterium. PE film was treated using dielectric plasma in order to alter the wettability of the PE surface and consequently introduce functionality on the surface. The PE film characterized by ATR-FTIR spectroscopy revealed the presence of C=O stretching of ketones, aldehydes and carboxylic acids. The antibodies against O or H antigens of Salmonella and S. Typhimurium were then respectively immobilized on the PE surface after activation of the carboxylic group using NHS/EDC followed by protein A. The evidences from ATR-FTIR, scanning electron microscopy and optical microscopy showed the presence of S. Typhimurium attached to the plasma treated PE surfaces via the two types of anti-Salmonella antibody. The plasma treated PE film developed is simple and allows efficient association of bacterial cells on the treated surfaces without the necessity of time-consuming centrifugation and washing steps for isolation of the cells. This material is considered to be a smart material applicable for S. Typhimurium detection. Highlights: ► We developed a functionalized polyethylene film for bacterial detection. ► We modified the surface of polyethylene film by plasma treatment. ► ATR-FTIR spectroscopy was used to analyze the functionality on the PE surface. ► We introduced Salmonella Typhimurium on the modified PE film. ► SEM revealed the presence of S. Typhimurium on the plasma treated PE film.

  3. Inducible pathway is required for mutagenesis in Salmonella typhimurium LT2

    International Nuclear Information System (INIS)

    Orrego, C.; Eisenstadt, E.

    1987-01-01

    UV mutability of Salmonella typhimurium LT2 was eliminated in the presence of a multicopy plasmid carrying the Escherichia coli lexA + gene. This result suggests that inducible, SOS-like functions are required for UV mutagenesis in S. typhimurium. S. typhimurium strains carrying either point or deletion mutations in topA had previously been shown to lose their mutability by UV or methyl methanesulfonate. Mitomycin C induction of the Phi(mucB'-lacZ') fusion (a DNA damage-inducible locus carried on plasmid pSE205) in S. typhimurium topA was normal, suggesting that RecA is activated in topA mutants. These observations lead the authors deduce that S. typhimurium has at least one DNA damage-inducible locus in addition to recA that is required for UV mutability

  4. Microbial population profiles of the microflora associated with pre- and postharvest tomatoes contaminated with Salmonella typhimurium or Salmonella montevideo.

    Science.gov (United States)

    Shi, X; Wu, Z; Namvar, A; Kostrzynska, M; Dunfield, K; Warriner, K

    2009-07-01

    To determine the microflora profiles of pre- and postharvest tomatoes contaminated with Salmonella montevideo or S. typhimurium DT104. Salmonella montevideo or S. typhimurium was inoculated onto the flowers of tomato plants with the microflora of the subsequent fruit examined using a combination of Source Carbon Utilization and 16S rDNA-PCR profiling. From 16S rDNA profiles it was evident that tomatoes derived from Salmonella inoculated plants harboured a different microbial population compared to nontreated controls. The same result was observed for tomatoes inoculated at postharvest and subsequently stored for 14 days at 15 degrees C. From sequencing analysis it was found that tomatoes derived from Salmonella inoculated plants but testing negative for the enteric pathogen, frequently harboured Enterobacter and Bacillus spp. In contrast, both bacterial types were not found associated with tomatoes testing positive for Salmonella. Salmonella introduced onto tomatoes at pre- or postharvest alters the composition of the microbial community. The presence of Enterobacter and Bacillus spp negatively affects the persistence of Salmonella on preharvest tomatoes. Salmonella appears to modify rather than become integrated into the microbial communities associated with tomatoes. Yet, the presence of antagonistic bacteria appears to reduce the persistence of the enteric pathogen.

  5. Increasing Incidence of Salmonella in Australia, 2000-2013

    Science.gov (United States)

    Glass, Kathryn; Veitch, Mark; Wardell, Rebecca; Polkinghorne, Ben; Dobbins, Timothy; Lal, Aparna; Kirk, Martyn D.

    2016-01-01

    Salmonella is a key cause of foodborne gastroenteritis in Australia and case numbers are increasing. We used negative binomial regression to analyze national surveillance data for 2000–2013, for Salmonella Typhimurium and non-Typhimurium Salmonella serovars. We estimated incidence rate ratios adjusted for sex and age to show trends over time. Almost all states and territories had significantly increasing trends of reported infection for S. Typhimurium, with states and territories reporting annual increases as high as 12% (95% confidence interval 10–14%) for S. Typhimurium in the Australian Capital Territory and 6% (95% CI 5–7%) for non-Typhimurium Salmonella in Victoria. S. Typhimurium notification rates were higher than non-Typhimurium Salmonella rates in most age groups in the south eastern states of Australia, while non-Typhimurium rates were higher in most age groups elsewhere. The S. Typhimurium notification rate peaked at 12–23 months of age and the non-Typhimurium Salmonella notification rate peaked at 0–11 months of age. The age-specific pattern of S. Typhimurium cases suggests a foodborne origin, while the age and geographic pattern for non-Typhimurium may indicate that other transmission routes play a key role for these serovars. PMID:27732615

  6. Extremely Drug-Resistant Salmonella enterica Serovar Senftenberg Infections in Patients in Zambia

    DEFF Research Database (Denmark)

    Hendriksen, Rene S.; Joensen, Katrine Grimstrup; Lukwesa-Musyani, Chileshe

    2013-01-01

    Two cases of extremely drug-resistant Salmonella enterica serovar Senftenberg isolated from patients in Zambia were investigated by utilizing MIC determinations and whole-genome sequencing. The isolates were resistant to, and harbored genes toward, nine drug classes, including fluoroquinolones an...... and extended-spectrum cephalosporins, contained two plasmid replicons, and differed by 93 single-nucleotide polymorphisms....

  7. Potential International Spread of Multidrug-Resistant Invasive Salmonella enterica Serovar Enteritidis

    Science.gov (United States)

    Rodicio, M. Rosario; Guerra, Beatriz; Hopkins, Katie L.

    2012-01-01

    In developing countries, Salmonella enterica serovar Enteritidis causes substantial illness and death, and drug resistance is increasing. Isolates from the United Kingdom containing virulence-resistance plasmids were characterized. They mainly caused invasive infections in adults linked to Africa. The common features in isolates from these continents indicate the role of human travel in their spread. PMID:22709653

  8. Typhaea stercorea (Coleoptera : Mycetophagidae), a carrier of Salmonella enterica serovar Infantis in a Danish broiler house

    DEFF Research Database (Denmark)

    Hald, Birthe; Olsen, A.; Madsen, Mogens

    1998-01-01

    In December 1994, Salmonella enterica serovar Infantis (S. Infantis) was accidentally introduced into a Danish broiler house by stocking an S. Infantis-infected broiler nock of 39,900 day-old chicks. At the time of the study, the infection had persisted through e broiler cycles. Typhaea stercorea...

  9. Phytogenic feed additives in piglets challenged with Salmonella Typhimurium

    Directory of Open Access Journals (Sweden)

    Daniel Gonçalves Bruno

    2013-02-01

    Full Text Available The effects of phytogenic feed additives on piglet performance and fecal score (FDD, as well as on lipid oxidation of pork meat were evaluated. One hundred and twenty crossbred weaned piglets were randomly assigned to six treatments according to a 2 × 3 factorial design with five replicates per treatment. Factors were: challenge with Salmonella Typhimurium at 35 days of age or no challenge, and three different additives (control (CTR, basal diet; phytogenic feed additives (PHY, basal diet plus 2000 ppm of phytogenic feed additives - Rosmarinus officinalis, Mentha piperita, Lippia sidoides and Porophyllum ruderale; and antimicrobial agent (ATB, basal diet plus 100 ppm of tylosin, 2000 ppm of zinc and colistin sulfate, 30 ppm in the pre-starter basal diet, 10 ppm in the starter basal diet I and II, and 5 ppm in growth and finishing basal diet. Body weight (BW of the piglets of ATB was greater throughout the experimental period, without any differences detected between CTR and PHY. Nevertheless, from 96 to 106 days of age, the BW of the CTR group was greater than PHY. From 21 to 34 days of age, feed conversion of ATB was lower than CTR; however, PHY showed an intermediate result, which did not differ from either ATB or CTR. Challenged animals reduced feed intake from day 35 to 48 compared with unchallenged animals. Piglet performance and fecal score from 21 to 48 days of age were lower in piglets that received ATB compared with the other treatments. However, from 35 to 48 days of age, the FDD of PHY was lower than CTR. Lipid oxidation was not reduced in treated animals. Antimicrobial agent improved the growth performance of piglets until 63 days of age, and no difference was observed between the treatments from 64 to 131 days of age. Antimicrobial agent reduced FDD; the FDD of PHY was similar to that of ATB after 48 days. None of the treatments affected lipid oxidation of pork meat.

  10. Decrease of Salmonella typhimurium in skim milk and egg by heat and ultrasonic wave treatment

    International Nuclear Information System (INIS)

    Wrigley, D.M.; Llorca, N.G.

    1992-01-01

    Ultrasonic waves induce cavitation which is lethal for many bacteria. When Salmonella typhimurium was suspended in skim milk or brain heart infusion broth and placed in an ultrasonicating water bath, the number of bacteria decreased by 2 to 3 log CFU in a time dependent manner. The killing by ultrasonic waves was enhanced if the menstruum was simultaneously maintained at 50 degrees C. Ultrasonic reduction in S. typhimurium numbers in liquid whole egg ranged from 1-3 log CFU at 50 degrees C. The results indicate that indirect ultrasonic wave treatment is effective in killing Salmonella in some foods

  11. Characterization of Isolates of Salmonella enterica Serovar Stanley, a Serovar Endemic to Asia and Associated with Travel

    Science.gov (United States)

    Le Hello, Simon; Bortolaia, Valeria; Pulsrikarn, Chaiwat; Nielsen, Eva Møller; Pornruangmong, Srirat; Chaichana, Phattharaporn; Svendsen, Christina Aaby; Weill, François-Xavier; Aarestrup, Frank M.

    2012-01-01

    Salmonella enterica serovar Stanley (S. Stanley) is a common serovar in Southeast Asia and was the second most common serovar implicated in human salmonellosis in Thailand in the years 2002 to 2007. In contrast, this serovar is relatively uncommon in Europe. The objective of this study was to characterize a collection of S. Stanley strains isolated from Thai (n = 62), Danish (n = 39), and French (n = 24) patients to gain a broader understanding of the genetic diversity, population dynamics, and susceptibility to antimicrobials. All isolates were characterized by pulsed-field gel electrophoresis and antimicrobial susceptibility testing. The molecular mechanisms of resistance to extended-spectrum cephalosporins and plasmid-mediated resistance to quinolones were characterized by PCR and sequencing. Plasmid profiling, replicon typing, and microarray analysis were used to characterize the genetic mechanisms of antimicrobial resistance in 10 extended-spectrum cephalosporinase-producing isolates. Considerable genetic diversity was observed among the isolates characterized with 91 unique XbaI pulsed-field gel electrophoresis (PFGE) patterns, including 17 distinct clusters consisting of two to seven indistinguishable isolates. We found some of the S. Stanley isolates isolated from patients in Europe were acquired during travel to Southeast Asia, including Thailand. The presence of multiple plasmid lineages carrying the extended-spectrum cephalosporinase-encoding blaCMY-2 gene in S. Stanley isolates from the central part of Thailand was confirmed. Our results emphasize that Thai authorities, as well as authorities in other countries lacking prudent use of antimicrobials, should improve the ongoing efforts to regulate antimicrobial use in agriculture and in clinical settings to limit the spread of multidrug-resistant Salmonella isolates and plasmids among humans and pigs in Thailand and abroad. PMID:22205822

  12. Reactive oxygen species are the major antibacterials against Salmonella Typhimurium purine auxotrophs in the phagosome of RAW 264.7 cells.

    Science.gov (United States)

    Mantena, Radha K R; Wijburg, Odilia L C; Vindurampulle, Christofer; Bennett-Wood, Vicki R; Walduck, Anna; Drummond, Grant R; Davies, John K; Robins-Browne, Roy M; Strugnell, Richard A

    2008-05-01

    Intramacrophage survival appears to be a pathogenic trait common to Salmonellae and definition of the metabolic requirements of Salmonella within macrophages might provide opportunities for novel therapeutic interventions. We show that loss of PurG function in Salmonella enterica serovar Typhimurium SL1344 leads to death of the bacterium in RAW264.7 cells, which was due to unavailability of purine nucleotides but not thiamine in the phagosome of RAW264.7 cells. Phagosomal escape of purG mutant restored growth, suggesting that the phagosomal environment, but not the cytosol, is toxic to Salmonella purine auxotrophs. NADPH oxidase inhibition restored the growth of purG mutant in RAW264.7 cells, implying that the Salmonella-containing vacuole acquires reactive oxygen species (ROS) that are lethal to purine auxotrophs. Under purine limiting conditions, purG mutant was unable to repair the damage caused by hydrogen peroxide or UV irradiation, suggesting that ROS-mediated DNA damage may have been responsible for the attenuated phenotype of purG mutant in RAW264.7 cells and in mice. These studies highlight the possibility of utilizing the Salmonella purine nucleotide biosynthetic pathway as a prospective therapeutic target and also underline the importance of metabolic pathways in assembling a comprehensive understanding of the host-pathogen interactions inside phagocytic cells.

  13. Salmonella serovars and antimicrobial resistance in strains isolated from wild animals in captivity in Sinaloa, Mexico.

    Science.gov (United States)

    Silva-Hidalgo, Gabriela; López-Valenzuela, Martin; Juárez-Barranco, Felipe; Montiel-Vázquez, Edith; Valenzuela-Sánchez, Beatriz

    2014-08-01

    The aim of the present study was to evaluate the frequency of antibiotic resistance in Salmonella spp. strains from wild animals in captivity at the Culiacan Zoo and the Mazatlan Aquarium in Sinaloa, Mexico. We identified 17 different Salmonella enterica serovars at a prevalence of 19.90% (Culiacan Zoo) and 6.25% (Mazatlan Aquarium). Antibiotic sensitivity tests revealed that, of the 83 strains studied, 100% were multidrug resistant (MDR). The drugs against which the greatest resistance was observed were: penicillin, erythromycin, dicloxacillin, ampicillin, cephalothin, and chloramphenicol. We therefore conclude that MDR is common among Salmonella isolates originating from wild animals in captivity in Sinaloa.

  14. Growth potential of exponential- and stationary-phase Salmonella Typhimurium during sausage fermentation

    DEFF Research Database (Denmark)

    Birk, Tina; Henriksen, Sidsel; Müller, K.

    2016-01-01

    Raw meat for sausage production can be contaminated with Salmonella. For technical reasons, meat is often frozen prior to mincing but it is unknown how growth of Salmonella in meat prior to freezing affects its growth potential during sausage fermentation. We investigated survival of exponential-...... fermentation, sporadic growth of exponential-phase cells of S. Typhimurium was observed drawing attention to the handling and storage of sausage meat.......Raw meat for sausage production can be contaminated with Salmonella. For technical reasons, meat is often frozen prior to mincing but it is unknown how growth of Salmonella in meat prior to freezing affects its growth potential during sausage fermentation. We investigated survival of exponential...... starter culture. With no starter culture, both strains grew in both growth phases. In general, a functional starter culture abolished S. Typhimurium growth independent of growth phase and we concluded that ensuring correct fermentation is important for sausage safety. However, despite efficient...

  15. Survivability of Salmonella typhimurium L1388 and Salmonella enteritidis L1225 under stressful growth conditions

    Directory of Open Access Journals (Sweden)

    Ngwai YB

    2007-11-01

    Full Text Available In an earlier study with Salmonella typhimurium L1388 (ST and Salmonella enteritidis L1225 (SE isolated from diseased chickens, we found that SE formed more biofilm than ST on abiotic surfaces in a time-dependent manner. Since the ability of salmonellae to survive extreme environment is related to their virulence, the present study examined the survival of Salmonella typhimurium L1388 and Salmonella nteritidis L1225 under the usual stresses that salmonellae encounter during their life cycle. This is with a view to understanding the strains’ stress tolerance that could be used to explain their virulence. Incubation at 37oC for various time periods was done for: i stationary phase (SP cells at pH 2.6; ii log-phase (LP cells at pH 4.0; log-phase or stationary phase cells in broth containing iii hydrogen peroxide, iv sodium chloride and v ethanol; vi stationary phase cells in Hank’s balanced salt solution (single strength containing 10% human serum; and vii prolong stationary phase cells. Stationary phase cells were also incubated at 52oC for 15 min. Surviving cells at the various incubation times were counted on trypticase soy agar (TSA after appropriate dilution in saline and overnight incubation at 37oC. Growth iron-poor medium was determined by growing a single bacterial colony in Medium A with shaking at 37oC or 40oC for 24 h. Statistics was done by one-way analysis-of-variance (ANOVA at P = 0.05. Differences in the survival of ST and SE were insignificant (p>0.05 in acid pH at both pH 4.0 (p = 0.3783 and pH 2.6 (p = 0.4711; at high salinity for log-phase (p = 0.1416 and stationary phase (p = 0.1816 cells; in ethanol (p = 0.5984, human serum (p = 0.8139, prolonged stationary phase (p = 0.3506; and under heat (p = 0.5766. SE was significantly (p<0.05; p = 0.0031 more tolerant to oxidative-killing by hydrogen peroxide. Culturable growth of the ST and SE in an iron-poor medium A revealed insignificant differences at 37oC (p = 0.8381 but

  16. Molecular identification of common Salmonella serovars using multiplex DNA sensor-based suspension array.

    Science.gov (United States)

    Aydin, Muhsin; Carter-Conger, Jacqueline; Gao, Ning; Gilmore, David F; Ricke, Steven C; Ahn, Soohyoun

    2018-04-01

    Salmonella is one of major foodborne pathogens and the leading cause of foodborne illness-related hospitalizations and deaths. It is critical to develop a sensitive and rapid detection assay that can identify Salmonella to ensure food safety. In this study, a DNA sensor-based suspension array system of high multiplexing ability was developed to identify eight Salmonella serovars commonly associated with foodborne outbreaks to the serotype level. Each DNA sensor was prepared by activating pre-encoded microspheres with oligonucleotide probes that are targeting virulence genes and serovar-specific regions. The mixture of 12 different types of DNA sensors were loaded into a 96-well microplate and used as a 12-plex DNA sensor array platform. DNA isolated from Salmonella was amplified by multiplex polymerase chain reaction (mPCR), and the presence of Salmonella was determined by reading fluorescent signals from hybridization between probes on DNA sensors and fluorescently labeled target DNA using the Bio-Plex® system. The developed multiplex array was able to detect synthetic DNA at the concentration as low as 100 fM and various Salmonella serovars as low as 100 CFU/mL within 1 h post-PCR. Sensitivity of this assay was further improved to 1 CFU/mL with 6-h enrichment. The array system also correctly and specifically identified serotype of tested Salmonella strains without any cross-reactivity with other common foodborne pathogens. Our results indicate the developed DNA sensor suspension array can be a rapid and reliable high-throughput method for simultaneous detection and molecular identification of common Salmonella serotypes.

  17. EVALUATION OF AN O-ANTIGEN ELISA FOR SCREENING CATTLE HERDS FOR SALMONELLA-TYPHIMURIUM

    DEFF Research Database (Denmark)

    Hoorfar, Jeffrey; Bitsch, V.

    1995-01-01

    A total of 2585 serum samples from 62 dairy herds located in four different regions of Denmark were tested in an O-antigen (0:1,4,5,12)-based ELISA for the detection of antibodies against Salmonella typhimurium. Ten closed herds from an island with no reported occurrence of salmonellosis for seve......A total of 2585 serum samples from 62 dairy herds located in four different regions of Denmark were tested in an O-antigen (0:1,4,5,12)-based ELISA for the detection of antibodies against Salmonella typhimurium. Ten closed herds from an island with no reported occurrence of salmonellosis...... for several years, and 12 herds from a salmonella enzootic area which had had clinical outbreaks of S typhimurium were used to define a herd ELISA cut-off value. When herds with at least 5 per cent of the serum samples having an optical density of >0.5 were considered ELISA-positive, all 10 herds from...... the salmonellosis-free island were ELISA-negative, and all but one of the 12 S typhimurium-infected herds were ELISA-positive, which resulted in a herd test sensitivity of 0.92 and herd test specificity of 1.0. Eleven of the 12 S typhimurium-infected herds were negative in a blocking ELISA based on a monoclonal...

  18. The elimination of Salmonella typhimurium in coastal waters with various levels of microbiologically hygienic contamination.

    Science.gov (United States)

    Glaus, H; Heinemeyer, E A

    1994-12-01

    The biotic elimination of Salmonella typhimurium in coastal sea water is primarily caused by protozoa. The elimination is usually faster in summer than in winter and in the vicinity of waste water outlets partially faster than in coastal areas with less contamination. When the rate of elimination is measured twice in succession in the same sample (primary/secondary culture) the second reduction is considerably faster. This activation is attributed to the multiplication of protozoa (predator-prey-effect). The activation is also possible through E. coli in concentrations such as those found in waste from sewage treatment plants or by Salmonella typhimurium themselves and vice versa. After 12 hours incubation the number of E. coli in the primary culture was still about 58% of the original quantity and 12 hours after a renewed inoculation in the secondary culture only 1%. When salmonella were added to the primary culture it was already impossible to detect E. coli after 12 hours in the secondary culture. Salmonella showed comparable tendencies, although the elimination of salmonella was clearly slower than the elimination of E. coli even after activation with salmonella. In the primary culture E. coli is already recultivatable in a smaller quantity than salmonella. Furthermore the addition of Cycloheximide to the secondary culture provides a considerably better protection for salmonella than for E. coli, so that it can be assumed that other or additional factors are involved in the elimination of E. coli.

  19. Subversion of innate and adaptive immune activation induced by structurally modified lipopolysaccharide from Salmonella typhimurium.

    Science.gov (United States)

    Pastelin-Palacios, Rodolfo; Gil-Cruz, Cristina; Pérez-Shibayama, Christian I; Moreno-Eutimio, Mario A; Cervantes-Barragán, Luisa; Arriaga-Pizano, Lourdes; Ludewig, Burkhard; Cunningham, Adam F; García-Zepeda, Eduardo A; Becker, Ingeborg; Alpuche-Aranda, Celia; Bonifaz, Laura; Gunn, John S; Isibasi, Armando; López-Macías, Constantino

    2011-08-01

    Salmonella are successful pathogens that infect millions of people every year. During infection, Salmonella typhimurium changes the structure of its lipopolysaccharide (LPS) in response to the host environment, rendering bacteria resistant to cationic peptide lysis in vitro. However, the role of these structural changes in LPS as in vivo virulence factors and their effects on immune responses and the generation of immunity are largely unknown. We report that modified LPS are less efficient than wild-type LPS at inducing pro-inflammatory responses. The impact of this LPS-mediated subversion of innate immune responses was demonstrated by increased mortality in mice infected with a non-lethal dose of an attenuated S. typhimurium strain mixed with the modified LPS moieties. Up-regulation of co-stimulatory molecules on antigen-presenting cells and CD4(+) T-cell activation were affected by these modified LPS. Strains of S. typhimurium carrying structurally modified LPS are markedly less efficient at inducing specific antibody responses. Immunization with modified LPS moiety preparations combined with experimental antigens, induced an impaired Toll-like receptor 4-mediated adjuvant effect. Strains of S. typhimurium carrying structurally modified LPS are markedly less efficient at inducing immunity against challenge with virulent S. typhimurium. Hence, changes in S. typhimurium LPS structure impact not only on innate immune responses but also on both humoral and cellular adaptive immune responses. © 2011 The Authors. Immunology © 2011 Blackwell Publishing Ltd.

  20. Prevalence, serovars and antimicrobial susceptibility of Salmonella spp. from wild and domestic green iguanas (Iguana iguana) in Grenada, West Indies.

    Science.gov (United States)

    Sylvester, W R B; Amadi, V; Pinckney, R; Macpherson, C N L; McKibben, J S; Bruhl-Day, R; Johnson, R; Hariharan, H

    2014-09-01

    Cloacal swabs from 62 green iguanas (Iguana iguana), including 47 wild and 15 domestic ones from five parishes of Grenada, were sampled during a 4-month period of January to April 2013 and examined by enrichment and selective culture for the presence of Salmonella spp. Fifty-five per cent of the animals were positive, and eight serovars of Salmonella were isolated. The most common serovar was Rubislaw (58.8%), a serovar found recently in many cane toads in Grenada, followed by Oranienburg (14.7%), a serovar that has been causing serious human disease outbreaks in Japan. Serovar IV:48:g,z51 :- (formerly, S. Marina) highly invasive and known for serious infections in children in the United States, constituted 11.8% of the isolates, all of them being from domestic green iguanas. Salmonella Newport, a serovar recently found in a blue land crab in Grenada, comprised 11.8% of the isolates from the green iguanas. The remaining four less frequent serovars included S. Javiana and S. Glostrup. Antimicrobial susceptibility tests conducted by a disc diffusion method against amoxicillin-clavulanic acid, ampicillin, cefotaxime, ceftazidime, ciprofloxacin, enrofloxacin, gentamicin, nalidixic acid, streptomycin, tetracycline and trimethoprim-sulfamethoxazole showed that drug resistance is minimal, with intermediate susceptibility, mainly to streptomycin, tetracycline and cefotaxime. This is the first report of isolation and antimicrobial susceptibilities of various Salmonella serovars from wild and domestic green iguanas in Grenada, West Indies. © 2013 Blackwell Verlag GmbH.

  1. Development of Real Time PCR Using Novel Genomic Target for Detection of Multiple Salmonella Serovars from Milk and Chickens

    Science.gov (United States)

    Background: A highly sensitive and specific novel genomic and plasmid target-based PCR platform was developed to detect multiple Salmonella serovars (S. Heidelberg, S. Dublin, S. Hadar, S. Kentucky and S. Enteritidis). Through extensive genome mining of protein databases of these serovars and compar...

  2. [Molecular typing and surveillance on Salmonella typhimurium strain in Guangdong province, 2009-2011].

    Science.gov (United States)

    Huang, Yanhui; Ke, Bixia; Sun, Jiufeng; He, Dongmei; Chen, Qing; Ke, Changwen; Yu, Shouyi

    2014-08-01

    To understand the distribution and the characteristics on molecular typing of Salmonella (S.) typhimurium isolates gathered from the surveillance program and to construct the standard S. typhimurium databank in the laboratory through surveillance network PulseNet, in Guangdong province to improve the capability of detection on laboratory-based foodborne outbreaks. With the application of standard pulse-field gel electrophoresis (PFGE) and multiple loci VNTR analysis (MLVA) including seven VNTRs loci protocols on PulseNet International Network, 275 isolates of S. typhimurium from ten cities in Guangdong province were typed and their patterns analyzed. The molecular typing databank was constructed by BioNumerics. With S. typhimurium the most common serotypes, the average annual positive rate of Salmonella strains and S. typhimurium were 4.03% and 1.38% respectively. The positive rate and proportion presented a double-peak trend, appearing in May and September. The chromosomal DNA of S. typhimurium was digested with Xba I restricted endo-nucleotidase and 124 PFGE patterns were observed after pulse-field gel electrophoresis, with the discrimination index (D) as 0.928 6. The patterns including more than three S. typhimurium isolates and were further digested with the second enzyme Bln I to achieve 174 patterns, with the D value as 0.989 1. Under MLVA method, 143 variant patterns were obtained, with the D value reaching 0.966 5. Data showed that the discriminatory ability of the MLVA typing method in S. typhimurium was superior to PFGE-Xba I but equal to PFGE-Xba I-Bln I. In addition, when S. typhimurium strains were respectively analyzed by PFGE under double enzymes digestion and MLVA, the results appeared coincident and relative. The variant patterns showed by the two molecular typing methods indicating a genetic diversity existed among the clinical S. typhimurium isolates in Guangdong province. Databank of S. typhimurium was constructed and could be used in laboratory

  3. Structure of Salmonella typhimurium OMP Synthase in a Complete Substrate Complex

    DEFF Research Database (Denmark)

    Grubmeyer, Charles; Hansen, Michael Riis; Fedorov, Alexander A.

    2012-01-01

    Dimeric Salmonella typhimurium orotate phosphoribosyltransferase (OMP synthase, EC 2.4.2.10), a key enzyme in de novo pyrimidine nucleotide synthesis, has been cocrystallized in a complete substrate E·MgPRPP·orotate complex and the structure determined to 2.2 Å resolution. This structure resem...

  4. Comparison between digital PCR and real-time PCR in detection of Salmonella typhimurium in milk.

    Science.gov (United States)

    Wang, Meng; Yang, Junjie; Gai, Zhongtao; Huo, Shengnan; Zhu, Jianhua; Li, Jun; Wang, Ranran; Xing, Sheng; Shi, Guosheng; Shi, Feng; Zhang, Lei

    2018-02-02

    As a kind of zero-tolerance foodborne pathogens, Salmonella typhimurium poses a great threat to quality of food products and public health. Hence, rapid and efficient approaches to identify Salmonella typhimurium are urgently needed. Combined with PCR and fluorescence technique, real-time PCR (qPCR) and digital PCR (ddPCR) are regarded as suitable tools for detecting foodborne pathogens. To compare the effect between qPCR and ddPCR in detecting Salmonella typhimurium, a series of nucleic acid, pure strain culture and spiking milk samples were applied and the resistance to inhibitors referred in this article as well. Compared with qPCR, ddPCR exhibited more sensitive (10 -4 ng/μl or 10 2 cfu/ml) and less pre-culturing time (saving 2h). Moreover, ddPCR had stronger resistance to inhibitors than qPCR, yet absolute quantification hardly performed when target's concentration over 1ng/μl or 10 6 cfu/ml. This study provides an alternative strategy in detecting foodborne Salmonella typhimurium. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Cloning, sequencing and in silico analysis of omp C of salmonella typhimurium.

    Science.gov (United States)

    Jha, Richa; Kumar, Anil; Saxena, Anjani; Tamuly, Shantanu; Saxena, M K

    2012-01-01

    Salmonella Typhimurium is an important pathogen having a broad host range. In human population it causes mostly gastroenteritis but there are reports in which it was found to be responsible to cause several lethal diseases like endocarditis and meningitis. Poultry products are the major sources of this organism in India as these are consumed at various stages of cooking. The available vaccines have their own limitations such as short-term immunity. Outer membrane proteins have shown some promising potential, so in the present study Omp C of Salmonella Typhimurium was cloned and sequenced to explore the possibility of development of r-DNA vaccine against Salmonella Typhimurium for poultry. The sequence of Omp C was studied for antigenic indexing, epitope mapping, and MHC mapping using various bioinformatic tools. The ORF analysis revealed a complete coding region of approximately 1000 bp. Five major and 13 minor B-cell epitopes were identified having an antigenic index of 1.7. The sequences also showed major histocompatibility complex (MHC) class I and class II binding region indicating a potential of eliciting cell-mediated immune response. The findings indicate that Omp C may be proven as promising candidate for development of r-DNA vaccine against Salmonella Typhimurium.

  6. Lack of specific hybridization between the lep genes of Salmonella typhimurium and Bacillus licheniformis

    NARCIS (Netherlands)

    van Dijl, J M; Jong, de Anne; Smith, H; Bron, Sierd; Venema, G

    1991-01-01

    This paper describes an attempt to clone the Bacillus licheniformis lep gene, encoding signal peptidase, using the Salmonella typhimurium lep gene as a hybridization probe. Although a hybridizing fragment was obtained, DNA sequence analysis indicated that it did not contain the lep gene. Instead,

  7. Characterisation of integrons and antibiotic resistance genes in Danish multiresistant Salmonella enterica Typhimurium DT104

    DEFF Research Database (Denmark)

    Sandvang, Dorthe; Aarestrup, Frank Møller; Jensen, Lars Bogø

    1997-01-01

    The presence and genetic content of integrons was investigated in eight Salmonella enterica Typhimurium DT104 isolates from different pig herds in Denmark. Two different integrons were identified using PCR and sequencing. Each of the integrons carried a single resistance cassette in addition to t...

  8. Characterisation of integrons and antibiotic resistance genes in Danish multiresistant Salmonella enterica Typhimurium DT104

    DEFF Research Database (Denmark)

    Sandvang, Dorthe; Aarestrup, Frank Møller; Jensen, Lars Bogø

    1998-01-01

    The presence and genetic content of integrons was investigated in eight Salmonella enteritica Typhimurium DT104 isolates from different pig herds in Denmark. Two different integrons were identified using PCR and sequencing. Each of the integrons carried a single resistance cassette in addition to...

  9. Polisakarida Mengandung Mannan dari Bungkil Inti Sawit Sebagai Antimikroba Salmonella typhimurium pada Ayam

    Directory of Open Access Journals (Sweden)

    M. Tafsin

    2007-08-01

    Full Text Available Mannan containing polysaccharides could be used as an alternative to replace antibiotics due to their capacity to block the colonization of pathogenic bacteria in the intestine of poultry. The aim of this study was to investigate mannan containing polysaccharides from palm kernel meal (PKM and its inhibitory effect against Salmonella typhimurium. Hot water extractions were used to isolate mannan containing polysaccharides from cell wall of PKM. In vivo studies were conducted using broiler and layer chicks that were challenged orally with 104 cfu Salmonella typhimurium on third day. Split plot design was used as experimental design with strain as main plot and level of mannan polysaccharides as sub plot. The levels of mannan containing polysaccharides that were used consisted of 0 (R0; 1000 (R1; 2000 (R2; 3000 (R3; 4000 (R4 ppm, in term of total sugar. The results indicated that compared to the control group, feeding PKM containing mannan 4000 ppm decreased (P<0.01 Salmonella typhimurium incidence. The addition of mannan did not affect feed consumption. On the contrary, the addition of 4000 ppm mannan gave significantly higher feed/weight gain ratio of the chicks (P<0.05. The administration of feed supplemented with mannan from PKM did not influence weight gain of poultry. It is concluded that mannan from PKM can prevent the colonization of Salmonella typhimurium in poultry.

  10. Virulence of invasive Salmonella Typhimurium ST313 in animal models of infection.

    Directory of Open Access Journals (Sweden)

    Girish Ramachandran

    2017-08-01

    Full Text Available Salmonella Typhimurium sequence type (ST 313 produces septicemia in infants in sub-Saharan Africa. Although there are known genetic and phenotypic differences between ST313 strains and gastroenteritis-associated ST19 strains, conflicting data about the in vivo virulence of ST313 strains have been reported. To resolve these differences, we tested clinical Salmonella Typhimurium ST313 and ST19 strains in murine and rhesus macaque infection models. The 50% lethal dose (LD50 was determined for three Salmonella Typhimurium ST19 and ST313 strains in mice. For dissemination studies, bacterial burden in organs was determined at various time-points post-challenge. Indian rhesus macaques were infected with one ST19 and one ST313 strain. Animals were monitored for clinical signs and bacterial burden and pathology were determined. The LD50 values for ST19 and ST313 infected mice were not significantly different. However, ST313-infected BALB/c mice had significantly higher bacterial numbers in blood at 24 h than ST19-infected mice. ST19-infected rhesus macaques exhibited moderate-to-severe diarrhea while ST313-infected monkeys showed no-to-mild diarrhea. ST19-infected monkeys had higher bacterial burden and increased inflammation in tissues. Our data suggest that Salmonella Typhimurium ST313 invasiveness may be investigated using mice. The non-human primate results are consistent with clinical data, suggesting that ST313 strains do not cause diarrhea.

  11. Plasma lipopolysaccharide level and enterocyte brush border enzymes in gnotobiotic piglets infected with Salmonella typhimurium

    Czech Academy of Sciences Publication Activity Database

    Trebichavský, Ilja; Kozáková, Hana; Šplíchal, Igor

    2002-01-01

    Roč. 47, - (2002), s. 289-294 ISSN 8750-7943 R&D Projects: GA ČR GA524/01/0917; GA AV ČR IAA5020101 Institutional research plan: CEZ:AV0Z5020903 Keywords : swine * gnotobiotic piglet * salmonella typhimurium Subject RIV: EE - Microbiology, Virology Impact factor: 0.107, year: 2002

  12. Characterization of a Salmonella typhimurium mutant defective in phosphoribosylpyrophosphate synthetase

    DEFF Research Database (Denmark)

    Jochimsen, Bjarne U.; Hove-Jensen, Bjarne; Garber, Bruce B.

    1985-01-01

    This study describes the isolation and characterization of a mutant (strain GP122) of Salmonella typhimurium with a partial deficiency of phosphoribosylpyrophosphate (PRPP) synthetase activity. This strain was isolated in a purE deoD gpt purine auxotroph by a procedure designed to select guanosine...

  13. Pharmacokinetics and tissue distribution of amoxicillin in healthy and Salmonella Typhimurium-inoculated pigs

    DEFF Research Database (Denmark)

    Agerso, H.; Friis, C.; Nielsen, Jens

    2000-01-01

    Objective--To determine pharmacokinetics and tissue distribution of amoxicillin in healthy and Salmonella Typhimurium-inoculated pigs. Animals--12 healthy pigs and 12 S Typhimurium-inoculated pigs. Procedure-Concentration of amoxicillin in tissue was measured by use of high-performance liquid...... chromatography 4, 8, 12, and 24 hours after IM administration. Pharmacokinetic values of amoxicillin in plasma were assessed by use of a l-compartment model with first-order absorption. Results--Inoculation caused diarrhea and increased rectal temperature and WBC count. Absorption half-life was shorter...... pigs and from 0.22 to 0.36 in inoculated pigs. Conclusions and Clinical Relevance-Salmonella Typhimurium inoculation altered absorption of amoxicillin from the injection sire and prolonged elimination half-life. However, distribution of amoxicillin to intestinal tract tissue was only affected...

  14. The sensitivity of real-time PCR amplification targeting invasive Salmonella serovars in biological specimens

    Directory of Open Access Journals (Sweden)

    Chau Tran

    2010-05-01

    Full Text Available Abstract Background PCR amplification for the detection of pathogens in biological material is generally considered a rapid and informative diagnostic technique. Invasive Salmonella serovars, which cause enteric fever, can be commonly cultured from the blood of infected patients. Yet, the isolation of invasive Salmonella serovars from blood is protracted and potentially insensitive. Methods We developed and optimised a novel multiplex three colour real-time PCR assay to detect specific target sequences in the genomes of Salmonella serovars Typhi and Paratyphi A. We performed the assay on DNA extracted from blood and bone marrow samples from culture positive and negative enteric fever patients. Results The assay was validated and demonstrated a high level of specificity and reproducibility under experimental conditions. All bone marrow samples tested positive for Salmonella, however, the sensitivity on blood samples was limited. The assay demonstrated an overall specificity of 100% (75/75 and sensitivity of 53.9% (69/128 on all biological samples. We then tested the PCR detection limit by performing bacterial counts after inoculation into blood culture bottles. Conclusions Our findings corroborate previous clinical findings, whereby the bacterial load of S. Typhi in peripheral blood is low, often below detection by culture and, consequently, below detection by PCR. Whilst the assay may be utilised for environmental sampling or on differing biological samples, our data suggest that PCR performed directly on blood samples may be an unsuitable methodology and a potentially unachievable target for the routine diagnosis of enteric fever.

  15. Pseudogene accumulation in the evolutionary histories of Salmonella enterica serovars Paratyphi A and Typhi

    Directory of Open Access Journals (Sweden)

    White Brian

    2009-01-01

    Full Text Available Abstract Background Of the > 2000 serovars of Salmonella enterica subspecies I, most cause self-limiting gastrointestinal disease in a wide range of mammalian hosts. However, S. enterica serovars Typhi and Paratyphi A are restricted to the human host and cause the similar systemic diseases typhoid and paratyphoid fever. Genome sequence similarity between Paratyphi A and Typhi has been attributed to convergent evolution via relatively recent recombination of a quarter of their genomes. The accumulation of pseudogenes is a key feature of these and other host-adapted pathogens, and overlapping pseudogene complements are evident in Paratyphi A and Typhi. Results We report the 4.5 Mbp genome of a clinical isolate of Paratyphi A, strain AKU_12601, completely sequenced using capillary techniques and subsequently checked using Illumina/Solexa resequencing. Comparison with the published genome of Paratyphi A ATCC9150 revealed the two are collinear and highly similar, with 188 single nucleotide polymorphisms and 39 insertions/deletions. A comparative analysis of pseudogene complements of these and two finished Typhi genomes (CT18, Ty2 identified several pseudogenes that had been overlooked in prior genome annotations of one or both serovars, and identified 66 pseudogenes shared between serovars. By determining whether each shared and serovar-specific pseudogene had been recombined between Paratyphi A and Typhi, we found evidence that most pseudogenes have accumulated after the recombination between serovars. We also divided pseudogenes into relative-time groups: ancestral pseudogenes inherited from a common ancestor, pseudogenes recombined between serovars which likely arose between initial divergence and later recombination, serovar-specific pseudogenes arising after recombination but prior to the last evolutionary bottlenecks in each population, and more recent strain-specific pseudogenes. Conclusion Recombination and pseudogene-formation have been

  16. Molecular Characterization of Motile Serovars of Salmonella enterica from Breeder and Commercial Broiler Poultry Farms in Bangladesh

    Science.gov (United States)

    Barua, Himel; Biswas, Paritosh K.; Olsen, Katharina E. P.; Shil, Subrata K.; Christensen, Jens P.

    2013-01-01

    Contaminated poultry and poultry products are a major source of motile Salmonellae for human salmonellosis worldwide. Local circulation of any motile Salmonella serovar in poultry has a wider public health impact beyond its source of origin for being dispersed elsewhere through poultry trades or human travels. To investigate the status of motile Salmonella serovars in breeder farms in Bangladesh, multiple flocks of two breeder farms were observed for a period of six months. In addition, a cross-sectional survey was carried out to determine the prevalence and serovar distribution of motile Salmonella by randomly selecting 100 commercial broiler poultry farms. Five pooled faecal samples representing an entire housed flock of breeders or broilers were screened for presence of motile Salmonella following conventional bacteriological procedures. The Salmonella isolates obtained were subsequently serotyped, and characterized by plasmid profiling and pulsed-field gel electrophoresis (PFGE). The results revealed that both the breeder farms were positive with three Salmonella serovars: S. Virchow, S. Paratyphi B var Java (S. Java) and S. Enteritidis. Eleven of the 100 broiler farms investigated were positive for motile Salmonella, giving a farm-level prevalence of 11% (95% confidence interval 5–17%). S. Virchow and S. Kentucky were the two predominant serovars isolated from the broiler farms. The PFGE genotyping demonstrated that the isolates belonging to the same serovars were closely related due to variation in only 1–4 bands. All the S. Virchow and S. Java isolates, irrespective of breeder or broiler farm origin, were plasmid-free, except for one S. Virchow isolate from a broiler farm that harboured a 9.7 kb-sized plasmid. The S. Kentucky isolates belonged to three plasmid profiles having plasmids of four different sizes, ranging from 2.7 to 109 kb. This is the first report of any motile Salmonella serovars from breeder and commercial broiler poultry farms in

  17. Molecular characterization of motile serovars of Salmonella enterica from breeder and commercial broiler poultry farms in Bangladesh.

    Directory of Open Access Journals (Sweden)

    Himel Barua

    Full Text Available Contaminated poultry and poultry products are a major source of motile Salmonellae for human salmonellosis worldwide. Local circulation of any motile Salmonella serovar in poultry has a wider public health impact beyond its source of origin for being dispersed elsewhere through poultry trades or human travels. To investigate the status of motile Salmonella serovars in breeder farms in Bangladesh, multiple flocks of two breeder farms were observed for a period of six months. In addition, a cross-sectional survey was carried out to determine the prevalence and serovar distribution of motile Salmonella by randomly selecting 100 commercial broiler poultry farms. Five pooled faecal samples representing an entire housed flock of breeders or broilers were screened for presence of motile Salmonella following conventional bacteriological procedures. The Salmonella isolates obtained were subsequently serotyped, and characterized by plasmid profiling and pulsed-field gel electrophoresis (PFGE. The results revealed that both the breeder farms were positive with three Salmonella serovars: S. Virchow, S. Paratyphi B var Java (S. Java and S. Enteritidis. Eleven of the 100 broiler farms investigated were positive for motile Salmonella, giving a farm-level prevalence of 11% (95% confidence interval 5-17%. S. Virchow and S. Kentucky were the two predominant serovars isolated from the broiler farms. The PFGE genotyping demonstrated that the isolates belonging to the same serovars were closely related due to variation in only 1-4 bands. All the S. Virchow and S. Java isolates, irrespective of breeder or broiler farm origin, were plasmid-free, except for one S. Virchow isolate from a broiler farm that harboured a 9.7 kb-sized plasmid. The S. Kentucky isolates belonged to three plasmid profiles having plasmids of four different sizes, ranging from 2.7 to 109 kb. This is the first report of any motile Salmonella serovars from breeder and commercial broiler poultry

  18. Molecular characterization of motile serovars of Salmonella enterica from breeder and commercial broiler poultry farms in Bangladesh.

    Science.gov (United States)

    Barua, Himel; Biswas, Paritosh K; Olsen, Katharina E P; Shil, Subrata K; Christensen, Jens P

    2013-01-01

    Contaminated poultry and poultry products are a major source of motile Salmonellae for human salmonellosis worldwide. Local circulation of any motile Salmonella serovar in poultry has a wider public health impact beyond its source of origin for being dispersed elsewhere through poultry trades or human travels. To investigate the status of motile Salmonella serovars in breeder farms in Bangladesh, multiple flocks of two breeder farms were observed for a period of six months. In addition, a cross-sectional survey was carried out to determine the prevalence and serovar distribution of motile Salmonella by randomly selecting 100 commercial broiler poultry farms. Five pooled faecal samples representing an entire housed flock of breeders or broilers were screened for presence of motile Salmonella following conventional bacteriological procedures. The Salmonella isolates obtained were subsequently serotyped, and characterized by plasmid profiling and pulsed-field gel electrophoresis (PFGE). The results revealed that both the breeder farms were positive with three Salmonella serovars: S. Virchow, S. Paratyphi B var Java (S. Java) and S. Enteritidis. Eleven of the 100 broiler farms investigated were positive for motile Salmonella, giving a farm-level prevalence of 11% (95% confidence interval 5-17%). S. Virchow and S. Kentucky were the two predominant serovars isolated from the broiler farms. The PFGE genotyping demonstrated that the isolates belonging to the same serovars were closely related due to variation in only 1-4 bands. All the S. Virchow and S. Java isolates, irrespective of breeder or broiler farm origin, were plasmid-free, except for one S. Virchow isolate from a broiler farm that harboured a 9.7 kb-sized plasmid. The S. Kentucky isolates belonged to three plasmid profiles having plasmids of four different sizes, ranging from 2.7 to 109 kb. This is the first report of any motile Salmonella serovars from breeder and commercial broiler poultry farms in Bangladesh.

  19. Metabolic parameters linked by Phenotype MicroArray to acid resistance profiles of poultry-associated Salmonella enterica.

    Science.gov (United States)

    Phenotype microarrays were analyzed for 51 datasets derived from Salmonella enterica. The top 4 serovars associated with poultry products and one associated with turkey, respectively Typhimurium, Enteritidis, Heidelberg, Infantis and Senftenberg, were represented. Datasets were clustered into two ...

  20. Prevalence and antimicrobial profiles of Salmonella serovars from ...

    African Journals Online (AJOL)

    ADEYEYE

    2014-01-21

    Jan 21, 2014 ... This study was conducted to examine vegetable from farms and market, to determine the serovars, the prevalence rate and the antimicrobial ..... Listeria monocytogenes on salad vegetables. World Journal of Microbiology and Biotechnology, 14(3): 383-387. Le Hello S, Hendriksen RS, Doublet B, Fisher I,.

  1. Effect of the irradiation on Salmonella enteretidis var. typhimurium with gamma rays from 60Co

    International Nuclear Information System (INIS)

    Maliska, C.; Norberg, A.N.; Norberg, J.B.M.; Santos Souza, R.C. dos; Silva Tavares, P.R. da

    1988-01-01

    The use of ionizinf radiation to the destruction of microrganisms responsible for food deterioration, and productive of feeding toxinfections constitute their usefulness for actually peaceful goals of nuclear energy. The feeding toxinfections are, among us, produced in their most part by Salmonella enteritidis var. typhimurim. One hundred nineteen samples of milk containing about 150.000 bacteria per ml, by means doses ranging from 100 to 1.100 gy, two samples of surviving bacteria were again irradiated by doses up to 2.5000 Gy. The bacteria not previously irradiated were throughly killed by means of doses of 1.100 Gy. Salmonella enteritidis var. typhimurium was inactivated by means of 1.200 and 1.900 Gy doses. It was concluded that 60-Cobalt gamma radiation minimal lethal dose to Salmonella enteritidis var. typhimurium is 1.200 Gy; the re-irradiation to the survivors prompts the forthcoming of more resistant germs. (author) [pt

  2. Salmonella serovars and their distribution in Nigerian commercial chicken layer farms

    Science.gov (United States)

    Fagbamila, Idowu Oluwabunmi; Barco, Lisa; Mancin, Marzia; Kwaga, Jacob; Ngulukun, Sati Samuel; Zavagnin, Paola; Lettini, Antonia Anna; Lorenzetto, Monica; Abdu, Paul Ayuba; Kabir, Junaidu; Umoh, Jarlath; Ricci, Antonia; Muhammad, Maryam

    2017-01-01

    Commercial poultry farms (n° 523), located in all the six regions of Nigeria were sampled with a view to generate baseline information about the distribution of Salmonella serovars in this country. Five different matrices (litter, dust, faeces, feed and water) were collected from each visited farm. Salmonella was isolated from at least one of the five matrices in 228 farms, with a farm prevalence of 43.6% (CI95[39.7–48.3%]). Altogether, 370 of 2615 samples collected (14.1%, CI95[12.8; 15.5%]) contained Salmonella. Considering the number of positive farms and the number of positive samples, it was evident that for the majority of the sampled farms, few samples were positive for Salmonella. With regard to the matrices, there was no difference in Salmonella prevalence among the five matrices considered. Of the 370 isolates serotyped, eighty-two different serotypes were identified and Salmonella Kentucky was identified as having the highest isolation rate in all the matrices sampled (16.2%), followed by S. Poona and S. Elisabethville. S. Kentucky was distributed across the country, whereas the other less frequent serovars had a more circumscribed diffusion. This is one of few comprehensive studies on the occurrence and distribution of Salmonella in commercial chicken layer farms from all the six regions of Nigeria. The relatively high prevalence rate documented in this study may be attributed to the generally poor infrastructure and low biosecurity measures in controlling stray animals, rodents and humans. Data collected could be valuable for instituting effective intervention strategies for Salmonella control in Nigeria and also in other developing countries with a similar poultry industry structure, with the final aim of reducing Salmonella spread in animals and ultimately in humans. PMID:28278292

  3. Salmonella serovars and their distribution in Nigerian commercial chicken layer farms.

    Science.gov (United States)

    Fagbamila, Idowu Oluwabunmi; Barco, Lisa; Mancin, Marzia; Kwaga, Jacob; Ngulukun, Sati Samuel; Zavagnin, Paola; Lettini, Antonia Anna; Lorenzetto, Monica; Abdu, Paul Ayuba; Kabir, Junaidu; Umoh, Jarlath; Ricci, Antonia; Muhammad, Maryam

    2017-01-01

    Commercial poultry farms (n° 523), located in all the six regions of Nigeria were sampled with a view to generate baseline information about the distribution of Salmonella serovars in this country. Five different matrices (litter, dust, faeces, feed and water) were collected from each visited farm. Salmonella was isolated from at least one of the five matrices in 228 farms, with a farm prevalence of 43.6% (CI95[39.7-48.3%]). Altogether, 370 of 2615 samples collected (14.1%, CI95[12.8; 15.5%]) contained Salmonella. Considering the number of positive farms and the number of positive samples, it was evident that for the majority of the sampled farms, few samples were positive for Salmonella. With regard to the matrices, there was no difference in Salmonella prevalence among the five matrices considered. Of the 370 isolates serotyped, eighty-two different serotypes were identified and Salmonella Kentucky was identified as having the highest isolation rate in all the matrices sampled (16.2%), followed by S. Poona and S. Elisabethville. S. Kentucky was distributed across the country, whereas the other less frequent serovars had a more circumscribed diffusion. This is one of few comprehensive studies on the occurrence and distribution of Salmonella in commercial chicken layer farms from all the six regions of Nigeria. The relatively high prevalence rate documented in this study may be attributed to the generally poor infrastructure and low biosecurity measures in controlling stray animals, rodents and humans. Data collected could be valuable for instituting effective intervention strategies for Salmonella control in Nigeria and also in other developing countries with a similar poultry industry structure, with the final aim of reducing Salmonella spread in animals and ultimately in humans.

  4. Prevalence and antimicrobial profiles of Salmonella serovars from ...

    African Journals Online (AJOL)

    ADEYEYE

    2014-01-21

    Jan 21, 2014 ... nematodes, amoebas and Salmonella. Journal of the Association of Official. Analytical Chemists 67(3): 613–615. Sirichote P, Bangtrakulnonth A, Tianmanee K,. Unahalekhaka A, Oulai A, Chittaphithakchai. S, Kheorwrod W & Hendriksen RS (2010). Serotypes and antimicrobial resistance of. Salmonella ...

  5. Shoot Injury Increases the Level of Persistence of Salmonella enterica Serovar Sofia and Listeria innocua on Cos Lettuce and of Salmonella enterica Serovar Sofia on Chive.

    Science.gov (United States)

    Harapas, Dean; Premier, Robert; Tomkins, Bruce; Hepworth, Graham; Ajlouni, Said

    2015-12-01

    Minor shoot injury significantly (P cos lettuce in the greenhouse. Initial mean counts of the Salmonella on the injured and uninjured cos lettuce were on the order of 6 log CFU/g. After 3 days, the mean count decreased to 4.8 log CFU/g on the injured plants compared with the significantly (P cos lettuce and S. enterica serovar Sofia on chive. The findings reaffirm earlier results with Escherichia coli and increase the impetus to avoid shoot injury during the production of cos lettuce and chive, if bacteria of food safety concern are present.

  6. Development of PCR primers for the detection of Salmonella enterica serovar Choleraesuis based on the fliC gene.

    Science.gov (United States)

    Chiu, Tsai-Hsin; Pang, Jen-Chieh; Hwang, Wen-Zhe; Tsen, Hau-Yang

    2005-08-01

    Salmonella enterica serovar Choleraesuis may cause swine salmonellosis and human infection. Because the conventional method for detection of this Salmonella serovar may take 3 to 5 days, a PCR method for detection was evaluated. By comparing the sequence of the phase 1 flagellin (fliC) gene of Salmonella Choleraesuis with that of other Salmonella serovars and of other bacteria species available in GenBank, two PCR primers (flinC-F and flinC-R) were designed. Using these primers, all 97 Salmonella Choleraesuis strains assayed generated the expected PCR product, with a molecular mass of 963 bp. Except for S. enterica Paratyphi C, Salmonella isolates other than Salmonella Choleraesuis and non-Salmonella isolates, including strains of Enterobacteriaceae, all generated negative PCR results. Salmonella Paratyphi C could be differentiated from Salmonella Choleraesuis through the use of primers designed from the viaB gene. When Salmonella Choleraesuis isolates from swine stool, pork, liver, feed, and human whole blood samples were assayed with a preenrichment step, as low as 1 CFU/g or ml of the original sample could be detected.

  7. A questionnaire-based, retrospective field study of persistence of Salmonella Enteritidis and Salmonella Typhimurium in Danish broiler houses

    DEFF Research Database (Denmark)

    Gradel, K.O.; Rattenborg, Erik

    2003-01-01

    A questionnaire-based, retrospective field study was conducted in 78 Danish broiler houses (analytical units) on 42 farms. In spring 1997, all these broiler houses had been infected with Salmonella Enteritidis, phage type 8, and/or Salmonella Typhimurium, definitive-type 66, by day-old chicks del...... soap and water for washing hands in the anteroom, hygiene barriers when removing dead broilers, gravel alongside the broiler house, systematic checks of indoor rodent-bait depots, and combined surface and pulse-fogging disinfection....

  8. Evaluation of the respiratory route as a viable portal of entry for Salmonella in poultry via intratracheal challenge of Salmonella Enteritidis and Salmonella Typhimurium.

    Science.gov (United States)

    Kallapura, G; Morgan, M J; Pumford, N R; Bielke, L R; Wolfenden, A D; Faulkner, O B; Latorre, J D; Menconi, A; Hernandez-Velasco, X; Kuttappan, V A; Hargis, B M; Tellez, G

    2014-02-01

    Experimental and epidemiological evidence suggests that primary infection of Salmonella is by the oral-fecal route for poultry. However, the airborne transmission of Salmonella and similar enteric zoonotic pathogens has been historically neglected. Increasing evidence of Salmonella bioaerosol generation in production facilities and studies suggesting the vulnerabilities of the avian respiratory architecture together have indicated the possibility of the respiratory system being a potential portal of entry for Salmonella in poultry. Presently, we evaluated this hypothesis through intratracheal (IT) administration of Salmonella Enteritidis and Salmonella Typhimurium, as separate challenges, in a total of 4 independent trials, followed by enumeration of cfu recovery in ceca-cecal tonsils and recovery incidence in liver and spleen. In all trials, both Salmonella Enteritidis and Salmonella Typhimurium, challenged IT colonized cecae to a similar or greater extent than oral administration at identical challenge levels. In most trials, chickens cultured for cfu enumeration from IT-challenged chicks at same dose as orally challenged, resulted in an increase of 1.5 log higher Salmonella Enteritidis from ceca-cecal tonsils and a much lower dose IT of Salmonella Enteritidis could colonize ceca to the same extent than a higher oral challenge. This trend of increased cecal colonization due to IT challenge was observed with all trails involving week-old birds (experiment 2 and 3), which are widely considered to be more difficult to infect via the oral route. Liver-spleen incidence data showed 33% of liver and spleen samples to be positive for Salmonella Enteritidis administered IT (10(6) cfu/chick), compared with 0% when administered orally (experiment 2, trial 1). Collectively, these data suggest that the respiratory tract may be a largely overlooked portal of entry for Salmonella infections in chickens.

  9. Evaluation of the respiratory route as a viable portal of entry for Salmonella in poultry via intratracheal challenge of Salmonella Enteritidis and Salmonella Typhimurium1

    Science.gov (United States)

    Kallapura, G.; Morgan, M. J.; Pumford, N. R.; Bielke, L. R.; Wolfenden, A. D.; Faulkner, O. B.; Latorre, J. D.; Menconi, A.; Hernandez-Velasco, X.; Kuttappan, V. A.; Hargis, B. M.; Tellez, G.

    2014-01-01

    Experimental and epidemiological evidence suggests that primary infection of Salmonella is by the oral-fecal route for poultry. However, the airborne transmission of Salmonella and similar enteric zoonotic pathogens has been historically neglected. Increasing evidence of Salmonella bioaerosol generation in production facilities and studies suggesting the vulnerabilities of the avian respiratory architecture together have indicated the possibility of the respiratory system being a potential portal of entry for Salmonella in poultry. Presently, we evaluated this hypothesis through intratracheal (IT) administration of Salmonella Enteritidis and Salmonella Typhimurium, as separate challenges, in a total of 4 independent trials, followed by enumeration of cfu recovery in ceca-cecal tonsils and recovery incidence in liver and spleen. In all trials, both Salmonella Enteritidis and Salmonella Typhimurium, challenged IT colonized cecae to a similar or greater extent than oral administration at identical challenge levels. In most trials, chickens cultured for cfu enumeration from IT-challenged chicks at same dose as orally challenged, resulted in an increase of 1.5 log higher Salmonella Enteritidis from ceca-cecal tonsils and a much lower dose IT of Salmonella Enteritidis could colonize ceca to the same extent than a higher oral challenge. This trend of increased cecal colonization due to IT challenge was observed with all trails involving week-old birds (experiment 2 and 3), which are widely considered to be more difficult to infect via the oral route. Liver-spleen incidence data showed 33% of liver and spleen samples to be positive for Salmonella Enteritidis administered IT (106 cfu/chick), compared with 0% when administered orally (experiment 2, trial 1). Collectively, these data suggest that the respiratory tract may be a largely overlooked portal of entry for Salmonella infections in chickens. PMID:24570455

  10. A novel imageable therapeutic probe for cancer; cytolysin a expressing attenuated salmonella typhimurium

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Vu Hong; Tae, Seong Ho; Piao, Hong Hua; Hong, Yeoung Jin; Choy, Hyon E.; Bom, Hee Seung; Min, Jung Joon [Chonnam National University Medical School, Gwangju (Korea, Republic of)

    2007-07-01

    Oncolytic strategy using bacteria has a long history. With the discovery of fluorescent and luminescent reporter genes, bacteria can be easily monitored continuously in treatment process. Salmonella typhimurium ppGpp mutant, one of the prominent attenuated bacteria, has just reported recently, Therefore, in this study, we established strain Cytolysin A (Cly A) expressing light-emitting S. typhimurium ppGpp mutant. S. typhimurium ppGpp mutant was transducted by lux gene for in vivo imaging (S. typhimurium ppGpp/lux) and then, plasmid containing ClyA gene, which is encoded for a pore-forming protein toxin, was transformed to create the strain expressing haemolytic activity (S. typhimurium ppGpp/lux/ClyA). The toxicity of ClyA was evaluated in vitro by inoculating the bacteria with various cultured cancer cell lines. On the other hand, to test the therapeutic effect, the bacteria were injected intermittently, intraperitoneal y or intravenously into CT26-bearing Balb/c mice. The sizes of tumors were measured and in vivo imaging was taken everyday by IVIS machine (Xenogen). The in vitro result showed the number of death cells were significantly higher in the samples containing S. typhimurium ppGpp/lux/ClyA compared with the samples containing S. typhimurium ppGpp/lux. After two days injection, the growth of tumors were repressed in mice injected with either S. typhimurium ppGpp/lux/ClyA or S. typhimurium ppGpp/lux, while tumors in control group still grew fast. In day 3, the tumors inoculated with S. typhimurium ppGpp/lux/ClyA became necrosis and regressed in the following days but not in other groups. In addition, in vivo imaging data showed that the Salmonella strains selectively located in the tumor. By in vivo imaging technique, the light-emitting bacteria can be easily monitored and quantified non-invasively and repeatedly. And ClyA expressing light-emitting S. typhimurium ppGpp mutant can become an effective and safely candidate for cancer treatment.

  11. Extended-spectrum cephalosporin- resistant Salmonella enterica serovar heidelberg strains, the Netherlands

    NARCIS (Netherlands)

    Liakopoulos, Apostolos; Geurts, Yvon; Dierikx, Cindy M.; Brouwer, Mike; Kant, Arie; Wit, Ben; Heymans, Raymond; Pelt, Van Wilfrid; Mevius, Dik J.

    2016-01-01

    Extended-spectrum cephalosporin-resistant Salmonella enterica serovar Heidelberg strains (JF6X01.0022/XbaI.0251, JF6X01.0326/XbaI.1966, JF6X01.0258/XbaI.1968, and JF6X01.0045/XbaI.1970) have been identified in the United States with pulsed-field gel electrophoresis. Our examination of isolates

  12. Biofilm formation by Salmonella Enteritidis and Salmonella Typhimurium isolated from avian sources is partially related with their in vivo pathogenicity.

    Science.gov (United States)

    Borges, Karen Apellanis; Furian, Thales Quedi; de Souza, Sara Neves; Menezes, Rafaela; de Lima, Diane Alves; Fortes, Flávia Bornancini Borges; Salle, Carlos Tadeu Pippi; Moraes, Hamilton Luiz Souza; Nascimento, Vladimir Pinheiro

    2018-03-22

    Salmonella Enteritidis and Salmonella Typhimurium are among the most prevalent serotypes isolated from salmonellosis outbreaks and poultry. Salmonella spp. have the capacity to form biofilms on several surfaces, which can favour survival in hostile environments, such as slaughterhouses. Salmonella strains present differences in pathogenicity. However, there is little information regarding the pathogenicity of S. Enteritidis and S. Typhimurium isolated from avian sources and their relationship to biofilm production. The aim of this study was to use a novel pathogenicity index and a biofilm production assay to evaluate their relationships within these serotypes. In addition, we detected the presence of the spiA and agfA genes in these strains. Biofilm formation was investigated at two temperatures (37 °C and 28 °C) using microtiter plate assay, and the results were compared with the individual pathogenicity index of each strain. PCR was used to detect spiA and agfA, virulence genes associated with biofilm production. S. Enteritidis and S. Typhimurium strains were capable of producing biofilm at 37 °C and 28 °C. Sixty-two percent and 59.5% of S. Enteritidis and 73.8% and 46.2% of S. Typhimurium produced biofilm at 37 °C and 28 °C, respectively. Biofilm production at 37 °C was significantly higher in both serotypes. Only S. Enteritidis was capable of adhering strongly at both temperatures. Biofilm production was related to pathogenicity index only at 28 °C for S. Enteritidis. spiA and agfA were found in almost all strains and were not statistically associated with biofilm production. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Hatchery-borne Salmonella enterica serovar Tennessee infections in broilers

    DEFF Research Database (Denmark)

    Christensen, J.P.; Brown, D.J.; Madsen, Mogens

    1997-01-01

    A substantial increase in the prevalence of S. enterica serovar Tennessee was observed in broiler flocks in Denmark at the turn of the year 1994 and in the following months. Epidemiological data indicated that a single hatchery was involved in spreading of the infection. Molecular characterization...... of S. enterica serovar Tennessee isolates from Danish broilers (1992 to 1995), the suspected hatchery and strains from various other sources included for comparison was initiated in order to trace the source of infection of the broilers. In general, strains of S. enterica ser. Tennessee showed only....... Restriction enzyme analysis of the plasmid ensured that the plasmids from broilers and the hatchery were identical. By analysis of cleaning and disinfection procedures and by sampling of different control points in the hatchery it was shown that S. enterica ser. Tennessee had colonized areas of the hatchers...

  14. Mutagenicity of irradiated solutions of nuclei acid bases and nucleosides in Salmonella typhimurium

    International Nuclear Information System (INIS)

    Wilmer, J.; Schubert, J.

    1981-01-01

    Solutions of nucleic acid bases, nucleosides and a nucleotide, saturated with either N 2 , N 2 O or O 2 , were irradiated and tested for mutagenicity towards Salmonella typhimurium, with and without pre-incubation. Irradiated solutions of the nuclei acid bases were all non-mutagenic. Irradiated solutions of the nucleosides showed mutagenicity in S. typhimurium TA100 (pre-incubation assay). Generally, the mutagenicity followed the order: N 2 O > N 2 > O 2 . The results show that the formation of mutagenic radiolytic products is initiated by attack of mainly solutions of the nucleotide thymidine-5'-monophosphate, no mutagenicity could be detected. (orig.)

  15. Transfer of primed CD4+OX40- T lymphocytes induces increased immunity to experimental Salmonella typhimurium infections in rats

    DEFF Research Database (Denmark)

    Thygesen, P; Christensen, H B; Hougen, H P

    1997-01-01

    The protective effect of primed CD4 T cells against a lethal dose of Salmonella typhimurium was studied in Lewis rats. Primed CD4 T cells were obtained by inoculating Lewis rats with a non-lethal dose of S. typhimurium. Four weeks after the infection, spleen non-adherent mononuclear cells were...

  16. PHYSICAL AND MICROBIOLOGICALQUALITYOFOPAQUE, SANITIZED, AND CHILLED QUAIL EGGS EXPERIMENTALLY CONTAMINATED WITH Salmonella enteric SER. TYPHIMURIUM

    Directory of Open Access Journals (Sweden)

    Maria Juliana Ribeiro Lacerda

    2016-01-01

    Full Text Available The objective of this study was to verify the physical, chemical and microbiological quality of Japanese quail eggs artificially contaminated with Salmonella enterica ser. Typhimurium. The eggs were sanitized and stored at different temperatures (between 5 and 25 ºC for 27 days. We used 768 eggs with opaque shells, typical pigments of the species, and average weight of 11 g. The experimental design was completely randomized in a 2x2x2 factorial arrangement (contamination x sanitation x cooling with six replications and one egg per experimental unit. The eggs were contaminated by handling with 1.5 x 105 colony forming unit (CFU of Salmonella. Typhimurium / mL and sanitized according to the treatments with a 5 ppm Cl solution. The data were subjected to analysis of variance and t test. Bacterial contamination has damaged the egg weight, Haugh unit, yolk index and albumen, and pH of yolk and albumen, from 18 days of storage. The egg storage time and storage temperature affected the internal quality of quail eggs in all variables. The worst internal quality was observed in eggs stored at 25 ºC. The sanitation and cooling reduced the growth of Salmonella in contaminated eggs. Eggs in opaque shell, when not refrigerated, should be consumed within 18 days after laying. Keywords: opaque shell; quail eggs; Salmonella Typhimurium; sanitization; storage.

  17. Behaviour of Salmonella Typhimurium during production and storage of artisan water buffalo mozzarella cheese

    Directory of Open Access Journals (Sweden)

    Roberto Rosmini

    2012-07-01

    Full Text Available Water buffalo mozzarella cheese (WBMC is a fresh pasta filata cheese produced from whole chilled buffalo milk. Although pasteurization of milk and the use of defined starter cultures are recommended, traditional technology involving the use of unpasteurized milk and natural whey cultures is still employed for WBMC production in Italy. The aim of this study were to assess the behaviour of Salmonella Typhimurium during the production of artisan water buffalo mozzarella cheese and during its shelf life under different temperature conditions. Raw milk was inoculated with S. Typhimurium and the evolution of S. Typhimurium count during production and shelf life was monitored. In artisan WBMC production technology S. Typhimurium multiplied in the curd during ripening, but its growth rate expressed in log CFU/g/h was lower than the growth rate reported by theoretical predictions. Stretching proved to be a process with good repeatability and able to reduce S. Typhimurium contamination by 5.5 Log CFU/g. The intrinsic characteristics of traditional WBMC proved to be unable to obstacolate the growth of S. Typhimurium during storage in the case of thermal abuse. Control of raw milk contamination and a proper refrigeration temperature are key factors in reducing the risk for consumers.

  18. Effect of the oyster contaminated in Salmonella typhimurium and Escherichia coli; Efecto del ostion contaminado en Salmonella typhimurium y Escherichia coli

    Energy Technology Data Exchange (ETDEWEB)

    Brena V, M

    1992-08-15

    In this work the effect of the oyster contaminated in the species of bacteria better studied by its genetic composition these are the Salmonella typhimurium and the Escherichia coli and that its have been starting point for later radiobiological studies in superior organisms. Of this its have arisen two general lines. The research about the genotoxic effect of substances or mixtures in bacteria with the collaboration of the groups of Drosophila and X-ray Fluorescence analysis and on the other hand the study of the low doses of radiation also in bacteria. It is also treated the topic about the genetic effect of aromatic hydrocarbons in different biological systems. (Author)

  19. Prevalence and characterization of multi-drug resistant Salmonella Enterica serovar Gallinarum biovar Pullorum and Gallinarum from chicken

    Directory of Open Access Journals (Sweden)

    Md. Shafiullah Parvej

    2016-01-01

    Full Text Available Aim: Salmonella is an important zoonotic pathogen responsible for animal and human diseases. The aim of the present study was to determine the prevalence and stereotyping of Salmonella isolates isolated from apparently healthy poultry. Furthermore, the clonal relatedness among the isolated Salmonella serovars was assessed. Materials and Methods: A total of 150 cloacal swab samples from apparently healthy chickens were collected, and were subjected for the isolation and identification of associated Salmonella organisms. The isolated colonies were identified and characterized on the basis of morphology, cultural characters, biochemical tests, slide agglutination test, polymerase chain reaction, and pulsed-field gel electrophoresis (PFGE. Antibiotic sensitivity patterns were also investigated using commonly used antibiotics. Results: Of the 150 samples, 11 (7.33% produced characteristics pink colony with black center on XLD agar medium, and all were culturally and biochemically confirmed to be Salmonella. All possessed serovar-specific gene SpeF and reacted uniformly with group D antisera, suggesting that all of the isolates were Salmonella Enterica serovar Gallinarum, biovar Pullorum and/or Gallinarum. Antimicrobial susceptibility testing revealed that 54.54% of the isolated Salmonella Enterica serovars were highly sensitive to ciprofloxacin, whereas the 81.81% isolates were resistant to amoxycillin, doxycycline, kanamycin, gentamycin, and tetracycline. Pulsed-field gel electrophoresis of the XbaI-digested genomic DNA exhibited identical banding patterns, suggesting that the multidrug resistant Salmonella Enterica serovars occurring in commercial layers are highly clonal in Bangladesh. Conclusion: The present study was conducted to find out the prevalence of poultry Salmonella in layer chicken and to find out the clonal relationship among them. The data in this study suggest the prevalence of Salmonella Enterica, which is multidrug resistant and

  20. Effect of essential oil compound on shedding and colonization of Salmonella enterica serovar Heidelberg in broilers.

    Science.gov (United States)

    Alali, W Q; Hofacre, C L; Mathis, G F; Faltys, G

    2013-03-01

    The objectives of this study were to determine the effect of an essential oil blend (EO; carvacrol, thymol, eucalyptol, lemon) administered in drinking water on the performance, mortality, water consumption, pH of crop and ceca, and Salmonella enterica serovar Heidelberg fecal shedding and colonization in broiler birds following Salmonella Heidelberg challenge and feed withdrawal. Chicks were randomly assigned to water treatments containing 0.05, 0.025, or 0.0125% EO or untreated controls. Treatments were administered in drinking water on 0 to 7 and 35 to 42 d. One-half of the chicks were challenged with Salmonella Heidelberg and placed in pens with unchallenged chicks on d 1. Performance, mortality, water consumption, and pH were determined during the 42-d study. Prevalence of Salmonella Heidelberg was determined on drag swabs (0, 14, and 42 d) and in the ceca and crops (42 d). The 0.05% EO administered in drinking water significantly (P water significantly lowered the feed conversion ratio and increased weight gain compared with controls, but did not significantly reduce Salmonella Heidelberg colonization in the crops. The EO in drinking water did not significantly reduce Salmonella Heidelberg colonization in ceca or fecal shedding in broilers. The EO used in the study may control Salmonella Heidelberg contamination in crops of broilers when administered in drinking water and therefore may reduce the potential for cross-contamination of the carcass when the birds are processed.

  1. Survival of Salmonella spp. and fecal indicator bacteria in Vietnamese biogas digesters receiving pig slurry

    DEFF Research Database (Denmark)

    Luu, Huong Quynh; Forslund, Anita; Madsen, Henry

    2014-01-01

    . and the fecal indicator bacteria, enterococci, E. coli, and spores of Clostridium perfringens in biogas digesters operated by small-scale Vietnamese pig farmers. The serovar and antimicrobial susceptibility of the Salmonella spp. isolated were also established. The study was conducted in 12 farms (6 farms...... digesters when comparing raw slurry and biogas effluent. Salmonella spp. was found in both raw slurry and biogas effluent. A total of 19 Salmonella serovars were identified, with the main serovars being Salmonella Typhimurium (55/138), Salmonella enterica serovar 4,[5],12:i:- (19/138), Salmonella...... Weltevreden (9/138) and Salmonella Rissen (9/138). The Salmonella serovars showed similar antimicrobial resistance patterns to those previously reported from Vietnam. When promoting biogas, farmers should be made aware that effluent should only be used as fertilizer for crops not consumed raw...

  2. Modelling transfer of Salmonella Typhimurium DT104 during simulation of grinding of pork

    DEFF Research Database (Denmark)

    Møller, Cleide; Nauta, Maarten; Christensen, B. B.

    2012-01-01

    Aims: The aim of this study was to develop a model to predict cross‐contamination of Salmonella during grinding of pork. Methods and Results: Transfer rates of Salmonella were measured in three experiments, where between 10 and 20 kg meat was ground into 200‐g portions. In each experiment, five...... pork slices of about 200 g per slice were inoculated with 8–9 log‐units of Salmonella Typhimurium DT104 and used for building up the contamination in the grinder. Subsequently, Salmonella‐free slices were ground and collected as samples of c. 200 g minced pork. Throughout the process, representative...... during a small‐scale grinding process. It was, therefore, hypothesized that transfer occurred from two environmental matrices inside the grinder and a model was developed. The developed model satisfactorily predicted the observed concentrations of Salmonella during its cross‐contamination in the grinding...

  3. Monitoring bacteriolytic therapy of salmonella typhimurium with optical imaging system

    International Nuclear Information System (INIS)

    Kim, Sun A; Min, Jung Joon; Moon, Sung Min; Kim, Hyun Ju; Kim, Sung Mi; Song, Ho Cheon; Choy, Hyon E.; Bom, Hee Seung

    2005-01-01

    Systemically administrated Salmonella has been studied for targeting tumor and developed as an anticancer agent. In Salmonella, because msbB gene plays role in the terminal myristoylation of lipid A and induces tumor necrosis factor a (TNF-a) -mediated septic shock, Salmonella msbB mutant strain is safe and useful for tumor-targeting therapy. Here we report that Salmonella msbB mutant strain induce onco lysis after intravenous injection in tumor bearing mice. The CT26 mouse colon cancer cells were stably transfected with firefly luciferase gene and subcutaneously implantated in Balb/C mice. After establishing subcutaneous tumor mass, we intravenously injected 1x108 cfu Salmonella msbB mutant strain or MG1655 E coli strain. Not only tumor size but also total photon flux from the tumor mass were monitored. everyday and compared among experimental groups (No treatment, Salmonella treatment, E. coli MG1655 treatment group). After intraperitoneal injection of D-Iuciferin (3 mg/animal), in vivo optical imaging for firefly luciferase was performed using cooled CCD camera. Imaging signal from Salmonella injected group were significantly lower than that of no treatment or E. coli treatment group on day 2 after injection. On day 4 after injection, imaging signal of salmonella-injected group was 43.8 or 20.7 times lower than that of no treatment or E. coli treatment group, respectively (no treatment: 2.78E+07 p/s/cm 2 /sr, Salmonella treatment: 6.35E+05 p/s/cm 2 /sr, E. coli treatment: 1.29E+07 p/s/cm 2 /sr, P<0.05). However. when we injected E. coli MG1655 into tumor bearing mice, the intensity of imaging signal was not different from no treatment group. These findings suggest that Salmonella msbB mutant strain retains its tumor-targeting properties and have therapeutical effect. Bioluminescent tumor bearing animal model was useful for assessing tumor viability after bacteriolytic therapy using Salmonella

  4. Tetracycline consumption and occurrence of tetracycline resistance in Salmonella typhimurium phage types from Danish pigs

    DEFF Research Database (Denmark)

    Emborg, Hanne-Dorthe; Vigre, Håkan; Jensen, Vibeke Frøkjær

    2007-01-01

    The aims of the present study were to investigate at the farm-owner level the effect of prescribed tetracycline consumption in pigs and different Salmonella Typhimurium phage types on the probability that the S. Typhimurium was resistant to tetracycline. In this study, 1,307 isolates were included...... was strongly associated with tetracycline resistance. A further analysis of data from the Danish Integrated Antimicrobial Resistance Monitoring and Research Programme (DANMAP) indicates that the tetracycline-susceptible phage types only slowly become tetracycline resistant, although tetracycline consumption......, originating from 877 farm owners, and data were analyzed using logistic regression. The analysis showed that both the S. Typhimurium phage type (p resistance. In particular, the phage type...

  5. The putative thiosulfate sulfurtransferases PspE and GlpE contribute to virulence of Salmonella Typhimurium in the mouse model of systemic disease

    DEFF Research Database (Denmark)

    Wallrodt, Inke; Jelsbak, Lotte; Thorndahl, Lotte

    2013-01-01

    , was not affected in this assay, we concluded that resistance tooxidative stress and the virulence phenotype was most likely not linked. The two genes did not contribute to nitric oxide stress, to synthesis of essential sulfur containing amino acids, nor to detoxification of cyanide. Currently, the precise......The phage-shock protein PspE and GlpE of the glycerol 3-phosphate regulon of Salmonella enterica serovar Typhimurium are predicted to belong to the class of thiosulfate sulfurtransferases, enzymes that traffic sulfur between molecules. In the present study we demonstrated that the two genes...... that their contribution to virulence could be in sulfur metabolism or by contributing to resistance to nitric oxide, oxidative stress, or cyanide detoxification. In vitro studies demonstrated that glpE but not pspE was important for resistance to H2O2. Since the double mutant, which was the one affected in virulence...

  6. Molecular detection assay of five Salmonella serotypes of public interest: Typhimurium, Enteritidis, Newport, Heidelberg, and Hadar.

    Science.gov (United States)

    Bugarel, M; Tudor, A; Loneragan, G H; Nightingale, K K

    2017-03-01

    Foodborne illnesses due to Salmonella represent an important public-health concern worldwide. In the United States, a majority of Salmonella infections are associated with a small number of serotypes. Furthermore, some serotypes that are overrepresented among human disease are also associated with multi-drug resistance phenotypes. Rapid detection of serotypes of public-health concern might help reduce the burden of salmonellosis cases and limit exposure to multi-drug resistant Salmonella. We developed a two-step real-time PCR-based rapid method for the identification and detection of five Salmonella serotypes that are either overrepresented in human disease or frequently associated with multi-drug resistance, including serotypes Enteritidis, Typhimurium, Newport, Hadar, and Heidelberg. Two sets of four markers were developed to detect and differentiate the five serotypes. The first set of markers was developed as a screening step to detect the five serotypes; whereas, the second set was used to further distinguish serotypes Heidelberg, Newport and Hadar. The utilization of these markers on a two-step investigation strategy provides a diagnostic specificity of 97% for the detection of Typhimurium, Enteritidis, Heidelberg, Infantis, Newport and Hadar. The diagnostic sensitivity of the detection makers is >96%. The availability of this two-step rapid method will facilitate specific detection of Salmonella serotypes that contribute to a significant proportion of human disease and carry antimicrobial resistance. Published by Elsevier B.V.

  7. Impact of phytopathogen infection and extreme weather stress on internalization of Salmonella Typhimurium in lettuce.

    Science.gov (United States)

    Ge, Chongtao; Lee, Cheonghoon; Nangle, Ed; Li, Jianrong; Gardner, David; Kleinhenz, Matthew; Lee, Jiyoung

    2014-01-03

    Internalization of human pathogens, common in many types of fresh produce, is a threat to human health since the internalized pathogens cannot be fully inactivated/removed by washing with water or sanitizers. Given that pathogen internalization can be affected by many environmental factors, this study was conducted to investigate the influence of two types of plant stress on the internalization of Salmonella Typhimurium in iceberg lettuce during pre-harvest. The stresses were: abiotic (water stress induced by extreme weather events) and biotic (phytopathogen infection by lettuce mosaic virus [LMV]). Lettuce with and without LMV infection were purposefully contaminated with green fluorescence protein-labeled S. Typhimurium on the leaf surfaces. Lettuce was also subjected to water stress conditions (drought and storm) which were simulated by irrigating with different amounts of water. The internalized S. Typhimurium in the different parts of the lettuce were quantified by plate count and real-time quantitative PCR and confirmed with a laser scanning confocal microscope. Salmonella internalization occurred under the conditions outlined above; however internalization levels were not significantly affected by water stress alone. In contrast, the extent of culturable S. Typhimurium internalized in the leafy part of the lettuce decreased when infected with LMV under water stress conditions and contaminated with high levels of S. Typhimurium. On the other hand, LMV-infected lettuce showed a significant increase in the levels of culturable bacteria in the roots. In conclusion, internalization was observed under all experimental conditions when the lettuce surface was contaminated with S. Typhimurium. However, the extent of internalization was only affected by water stress when lettuce was infected with LMV. © 2013.

  8. Use of acetic and citric acids to control Salmonella Typhimurium in tahini (sesame paste).

    Science.gov (United States)

    Al-Nabulsi, Anas A; Olaimat, Amin N; Osaili, Tareq M; Shaker, Reyad R; Zein Elabedeen, Noor; Jaradat, Ziad W; Abushelaibi, Aisha; Holley, Richard A

    2014-09-01

    Since tahini and its products have been linked to Salmonella illness outbreaks and product recalls in recent years, this study assessed the ability of Salmonella Typhimurium to survive or grow in commercial tahini and when hydrated (10% w/v in water), treated with 0.1%-0.5% acetic or citric acids, and stored at 37, 21 and 10 °C for 28 d. S. Typhimurium survived in commercial tahini up to 28 d but was reduced in numbers from 1.7 to 3.3 log10 CFU/ml. However, in the moist or hydrated tahini, significant growth of S. Typhimurium occurred at the tested temperatures. Acetic and citric acids at ≤0.5% reduced S. Typhimurium by 2.7-4.8 log10 CFU/ml and 2.5-3.8 log10 CFU/ml, respectively, in commercial tahini at 28 d. In hydrated tahini the organic acids were more effective. S. Typhimurium cells were not detected in the presence of 0.5% acetic acid after 7 d or with 0.5% citric acid after 21 d at the tested temperatures. The ability of S. Typhimurium to grow or survive in commercial tahini and products containing hydrated tahini may contribute to salmonellosis outbreaks; however, use of acetic and citric acids in ready-to-eat foods prepared from tahini can significantly minimize the risk associated with this pathogen. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Antimicrobial susceptibility and internalization of Salmonella Typhimurium in vacuum-tumbled marinated beef products.

    Science.gov (United States)

    Pokharel, S; Brooks, J C; Martin, J N; Brashears, M M

    2016-12-01

    As the incidence of multidrug resistance (MDR) Salmonella enterica serotype Typhimurium is increasing, data regarding the antimicrobial interventions and pathogen internalization in marinated meat products are important. This study evaluated the antimicrobial intervention and internalization of Salm. Typhimurium in marinated beef sirloin steaks. Beef bottom sirloin flaps (IMPS #185A; USDA Select) inoculated (10 8  log 10  CFU ml -1 ) with Salm. Typhimurium were sprayed (lactic acid (4%) and buffered vinegar (2%)) prior to vacuum-tumbled marination (0·35% sodium chloride and 0·45% sodium tripolyphosphate) for 30 min. Pathogen presence after antimicrobial spray, vacuum-tumbled marination, and translocation was determined by direct plating on Xylose Lysine Deoxycholate (XLD) agar with tryptic soy agar (TSA) overlay. The data imply varied internalization and antimicrobial susceptibility pattern of Salm. Typhimurium in marinated meat. Lactic acid (4%) spray (P internalization and potential survival of Salmonella spp. in marinated beef products is a major concern. These results highlight the internalization of pathogens in vacuum-tumbled meat products and emphasize the importance of considering these products as nonintact. Similarly, these data confirm the efficacy and utility of interventions prior to vacuum-tumbled marination. Further research is needed to identify additional strategies to mitigate internalization and translocation of pathogens into vacuum-marinated meat products. © 2016 The Society for Applied Microbiology.

  10. Efficacy of solar disinfection of Escherichia coli, Shigella flexneri, Salmonella Typhimurium and Vibrio cholerae.

    Science.gov (United States)

    Berney, M; Weilenmann, H-U; Simonetti, A; Egli, T

    2006-10-01

    To determine the efficacy of solar disinfection (SODIS) for enteric pathogens and to test applicability of the reciprocity law. Resistance to sunlight at 37 degrees C based on F99 values was in the following order: Salmonella Typhimurium>Escherichia coli>Shigella flexneri>Vibrio cholerae. While F90 values of Salm. Typhimurium and E. coli were similar, F99 values differed by 60% due to different inactivation curve shapes. Efficacy seemed not to be dependent on fluence rate for E. coli stationary cells. Sensitivity to mild heat was observed above a temperature of 45 degrees C for E. coli, Salm. Typhimurium and Sh. flexneri, while V. cholerae was already susceptible above 40 degrees C. Salmonella Typhimurium was the most resistant and V. cholerae the least resistant enteric strain. The reciprocity law is applicable for stationary E. coli cells irradiated with sunlight or artificial sunlight. Escherichia coli might not be the appropriate indicator bacterium to test the efficacy of SODIS on enteric bacteria and the physiological response to SODIS might be different among enteric bacteria. The applicability of the reciprocity law indicates that fluence rate plays a secondary role in SODIS efficacy. Stating inactivation efficacy with T90 or F90 values without showing original data is inadequate for SODIS studies.

  11. Rapid detection of Salmonella typhimurium on fresh spinach leaves using phage-immobilized magnetoelastic biosensors

    Science.gov (United States)

    Horikawa, Shin; Li, Suiqiong; Chai, Yating; Park, Mi-Kyung; Shen, Wen; Barbaree, James M.; Vodyanoy, Vitaly J.; Chin, Bryan A.

    2011-06-01

    This paper presents an investigation into the use of magnetoelastic biosensors for the rapid detection of Salmonella typhimurium on fresh spinach leaves. The biosensors used in this investigation were comprised of a strip-shaped, goldcoated sensor platform (2 mm-long) diced from a ferromagnetic, amorphous alloy and a filamentous fd-tet phage which specifically binds with S. typhimurium. After surface blocking with bovine serum albumin, these biosensors were, without any preceding sample preparation, directly placed on wet spinach leaves inoculated with various concentrations of S.